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Abstract 
Economic dynamic models of climate change usually involve many variables, complex 

dynamics and uncertainties. However, the limited computing tools do not have abilities to 

include these factors, so the complexity of the models is often reduced. In this paper, I 

investigated if the model-free deep reinforcement learning (RL) approach can provide a viable 

alternative in finding optimal strategies in IAM models with multi-objectives. As the first step 

to promote RL in large-scale IAM models, I adapted an IAM based on DICE baseline into an 

OpenAI Gym environment. I use stable_baseline 3 as the RL framework, and apply Soft Actor 

Critic (SAC), which is one of the most advanced model-free RL training algorithms nowadays. 

Policy was learned through interactions with the environment without knowledge of model 

dynamics. After 88,000 timesteps, I got a learning strategy in my model, which consists of 

annual abatement rate and consumption. The results are compared with the baseline policy data 

in DICE 2013, showing a high consistency and accuracy. It demonstrates the potential of RL 

framework for economic dynamics. 

 

Keywords: IAM, DICE, Reinforcement Learning, Model-Free 

 

1 Introduction 
Climate Economy has emerged as climate change is one of the greatest challenges that 

mankind facing and is becoming a hot topic of academic research. 

Nordhaus (1975) pioneered the integration of the economic and climate systems within a 

modeling framework, using economic principles to assess and compare the benefits and costs 

faced by different climate scenarios to analyze the effects of climate policies. Since then, 

academic research has been conducted to study climate change issues using modern methods 

of economic analysis. Stern (2006) published the classic work on the economics of climate 

change, which laid the foundation for the economics of climate change. Since then, economists 

have constructed several Integrated Assessment Models (IAM), which have become the 

mainstream tool for analyzing the effects of climate change policies in the Intergovernmental 

Panel on Climate Change (IPCC) and in some countries (Clarke et al., 2009).  

The Integrated Assessment Model (IAM) describe the continuous interactions between 

climate and economics. IAM is based on a cost-benefit analysis. It uses the assumptions and 

analysis methods of traditional economics to explore the impact of specific topics such as 
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emission reduction, abatement control, and assessing on optimal economic policies in climate 

change issues. IPCC classifies models into two main categories: Policy Optimization Models 

(POMs) and Policy Evaluation Models (PEMs). One of the most popular POMS is the Dynamic 

Integrated Model of Climate and the Economy (DICE) (Nordhaus,1994, 2007, 2010). Being a 

deterministic model, it can be directly solved with the power of nonlinear programming, such 

as the Generalized Reduced Gradient (Brooke et al. 2005).  

However, it is a more difficult task to apply these methods to such complex and uncertain 

problems as climate change: firstly, climate change and many economic processes are 

unpredictable because of their inherent nature. Numerous variables affecting the climate change 

phenomenon and economics, among which, technological progress, human consumption 

patterns, energy use patterns, people's subjective judgments on certain value scales etc., can 

easily overturn the results of an evaluation. When a large degree of uncertainties must be 

considered to analyze the impact of climate policies, the complexity of obtaining a solution 

from these models will be increased exponentially.  

The issue has been addressed in several works. A growing literature has been attempting to 

apply probabilistic uncertainty to IAMs. One approach is Monte Carlo simulation, e.g., Manne 

and Richels (1994), Reilly et al. (1987), Scott et al. (1999), Webster et al. (2008), Webster et 

al. (2009). However, Monte Carlo simulation can be far from accurate, as Crost and Traeger 

(2013) pointed out that and get the sign of uncertainty wrong from Monte Carlo simulation. 

Another notable approach is stochastic dynamic programming. Baker and Solak (2011) 

introduce a stochastic dynamic programming version of an IAM. However, stochastic dynamic 

programming algorithms based on value iteration or policy iteration (Bertsekas 2007) suffer 

greatly from the curse of dimensionality, where the complexity of the problem grows 

exponentially with the number of states (Bellman, 1957). Therefore, to address the complexity 

problems we need new methods from other fields. 

Recently, machine learning methods have been used to excel traditional algorithms in 

various fields. Traditionally, machine learning algorithms can be classified into supervised 

learning, unsupervised learning, and reinforcement learning. Methods of supervised learning 

and unsupervised learning have been applied in economic dynamics, which are mainly used to 

reduce dimension and approximate function. For example, Duffy and McNelis (2001) used 

neural networks to express expected functions. Renner and Scheidegger (2018) and 

Scheidegger and Billions (2019) use Gaussian-process machine learning and active subspace 

methods for dimensionality reduction. Fernández-Villaverde et al. (2019) for applying neural 

networks to approximate the Russell and Smith (1998) model.  
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Reinforcement Learning is a powerful mathematical framework for experience-driven 

autonomous learning solving sequential decision problem (Sutton, 1996). It was combined with 

deep learning, in which neural network were constructed to represent strategies or value 

functions, such as TD-Gammon (Tesauro, 1995), which is now called "Deep RL". Generally 

speaking, "Deep" means that deep neural networks is involved as an approximator of 

reinforcement learning structures such as the values functions. When we talk about 

reinforcement learning, we usually mean deep RL. In this document, we also pay attention to a 

specific type of reinforcement learning, that is, model-free learning, as up to now, most deep 

reinforcement learning algorithms are developed for model-free learning.  

Although RL algorithms have been successful in many fields, there have been fewer studies 

that have explored the power of this category of machine learning in Economics compared to 

other machine leaning methods. One early adaption is Jirniy and Lepetyuk (2012) incorporated 

“Temporal Difference” (TD) (Sutton, 1988) in solving Krusell and Smith (1998) model. More 

recent work can be found in Lilia Maliar et al. (2021), presenting a more comprehensive review 

of reinforcement learning, and brought up a lifetime reward algorithm based on such an 

approach.  

Impressive applications in computing, including the pioneering AlphaGo (Silver, 2016), 

inspired me to try to integrate such a framework into IAMs.  

I consider deep RL approaches to be especially well-suited to IAMs as: 

1. Economic dynamics can generally be described as a state transition process (time 

series), involving optimization, such as minimum cost or maximum utility. This is exactly the 

RL problem.  

2. The models in economics can be represented as simulators and can be interacted 

repetitively by the agent and therefore an abundant data can always be obtained.  

3. The deep network model makes RL more flexible for online updating and adapts to 

more varied environments.  

4. RL have proven successful solving large-scale systems and decision-making policies 

with deep neural networks. 

Therefore, as the first step to evaluate the potential RL approach in large scale IAM, I first 

brough RL into an IAM based on DICE2013 (Nordhaus and P. Sztorc, 2013).  

DICE2013 draws on the earlier DICE model created by Nordhaus (1994, 2007, 2010), 

which is a global aggregation model that aggregates output, capital stock, technology and 

emission levels of different countries, as well as a simplified analytical and empirical model. 

The model approaches the economics of climate change from neoclassical economic growth 
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theory. Its main purpose is to run as a policy optimization model or a simple forecasting model. 

Its aim is to maximize the objective function (i.e., social welfare). It prevents the hazards of 

climate change by investing in capital, technology, and education in each economy, forgoing 

or reducing current consumption, and increasing future consumption by working to reduce 

emissions. It integrates the relevant factors affecting economic growth, emissions, the carbon 

cycle, climate change, and policies to improve climate change. The equations in the model 

follow different laws of economics, ecology, and earth sciences, and then, mathematical 

optimization software is used to plan for economic and environmental outcomes. 

The model assumes that economic and climate policies are based on maximizing total 

consumption, and the results of the DICE2013 runs include projections of world gross product, 

per capita consumption, industrial CO2 emissions, CO2 concentration, temperature change, 

emission control rate, and carbon price for six emission scenarios. 

I implemented the IAM based on DICE2013(Nordhaus and P. Sztorc, 2013) as a 

simulator (environment) with Python. In designing the environment, I took advantage of the 

OpenAI Gym (Brockman et al., 2016) environment instance, which is the standard API for 

building machine learning environment with Python. I also use stable_baseline3 (Raffin et al., 

2021) as the RL framework. I applied Soft Actor Critic (SAC) (Haarnoja et al., 2018a, 2018b, 

208c), which is one of the current state-of-the-art model-free RL training algorithms. I 

obtained the training results and compared the optimal policy with DICE2013 under baseline 

scenario.  

Because of the limited time in this project, the scope of the study is limited to the economics 

part of the DICE model (which does not include the atmospheric physics part). By tapping the 

emission control rate as a solution target for RL, the prediction of world gross product, per 

capita consumption, industrial CO2 emissions, emission control rate, and carbon price is 

achieved, and the results are compared with the baseline DICE2013, which proves that the 

platform is valid, and the results are satisfactory for the continued evolution of the RL 

environment as a solution for the DICE model. 

The rest of the paper is organized as follows:  

In Section 2, we will explain the methods and procedures used. Section 2.1 focuses on the 

formulation of economic relations in the DICE2013 model. Section 2.2 is a brief introduction 

to reinforcement learning. In Section 2.3, we will focus on how to translate our proposed DICE 

model into a reinforcement learning problem. Including how to design reward function and 

action space, how to choose reinforcement learning algorithm. In Sections 2.4 and 2.5, we 
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describe the experimental procedure and how to tune the RL parameters. In  Section 3, we 

present the findings. In Section 3.1, the system operation of the RL framework will be 

presented. In Sections 3.2 and 3.3, we present data obtained from RL system predictions to 

demonstrate the effectiveness of the system. In Section 4, there is some discussion on the 

practice of converting from DICE problems to RL problems. Finally, Section 5 is the 

conclusion. 

 

2 Methodology and Process 
In this section I present my study of the economics dynamics of DICE2013, which aims to 

address the abatement rates while maximizing the social welfare.  

The research work is modeled based on DICE2013 under the baseline scenario (or without 

controls) to develop the analysis. According to DICE2013 (Nordhaus 2013), the baseline 

scenario represents the results of market and policy factors that currently exist. In other words, 

the baseline model attempts to predict the level and growth of key economic and environmental 

variables from a positive perspective, as is the case with current climate change policies. the 

baseline scenario is an indefinite extension of current policies as of 2010. 

Due to timing reasons, this study is limited to the study of economic growth and carbon 

emissions and does not involve the geophysical component of the study, using only impairment 

data. The simplification of the model does not affect the significance or the methodology of the 

study. 

As the time step of DICE2013 has been changed to five years. To maintain synchronization 

with the DICE2013 cycle, the software also uses 5 years as a period. Of course, this software 

cycle can be changed to one year without affecting the results of the study.  

 

2.1  Formation of the Model 

This	section	focuses	on	the	economic	relations	and	formulations	of	the	research	

question.	

The	model	is	based	on	DICE2013.	I	also	adapted	the	notions	from	DICE2013	

(Nordhaus	and	P.	Sztorc,	2013).	

The	model	solves	total	wealfare,		
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𝑊 = max&𝑈
!

"#$

[𝑐(𝑡), 𝐿(𝑡)]𝑅(𝑡) (1)	

The	utility	is		

𝑈[𝑐(𝑡), 𝐿(𝑡)]  = 𝐿 (𝑡)𝑐(𝑡)($&')/(1 − α) (2)	

c(t)	is	per	capita	consumption,	L(t)	is	population	as	well	as	labor	inputs,	and	R(t)	is	the	

discount	factor.	The	pure	rate	of	social	time	preference,	ρ,	is	the	discount	rate	which	

provides	the	welfare	weights	on	the	utilities	of	different	generations.	

𝑅(𝑡) = (1 + 𝜌)(&") (3)	

	

Net	GDP	Y:	

𝑌" = 𝐹(𝐴" , 𝐿" , 𝐾" , 𝐸") = 𝐴"𝐾"
)𝐿"

$&)?1 − 𝛬"(𝜇")B (4)	

	

The	function	𝛬"(𝜇")	is	Nordhaus'	abatement	cost	function.	DICE2013	assumes	

that	abatement	costs	to	be	in	the	form	of	

𝛬(𝑡) = 𝜃$(𝑡)𝜇(𝑡)*! (5)	

	

where	𝜇(t)	is	emissions	control	rate.	

Capital	stock	comes	from	the	accumulation	of	capital	and	new	investments	it	

depreciates	over	time.	

𝐾(𝑡 + 1) = 𝐹?𝐾(𝑡), 𝐼(𝑡)B = 𝛿+𝐾(𝑡) + 𝐼(𝑡) (6)	

𝐼(𝑡) = 𝑄(𝑡)𝜁(𝑡) (7)	

Temperatures	above	pre-industrial	level	cause	a	damage,	

𝑄(𝑡) = 𝑌"(1 + 𝛺") (8)	
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where	𝛺"	is	the	total	damage	represented	by	the	fraction	of	gross	output.	This	study	is	

limited	to	the	study	of	economic	growth	and	carbon	emissions	and	does	not	involve	

temperature	dynamics.	The	damage	data	used	are	directly	from	DICE	2013.	

Total	factor	productivity	(TFP)	and	the	level	of	labor	force/population	increase	

with	time.	

𝐴(𝑡) = 𝐴(𝑡 − 1),$-."(")/ (9)	

𝑔0(𝑡) = 𝑔0(𝑡 − 1)/(1 + 𝛿0) (10)	

𝐿(𝑡) = 𝐿(𝑡 − 1) ∗ ?1 + 𝑔1(𝑡)B (11)	

𝑔(𝑡) = 𝑔1(𝑡 − 1)/(1 +	𝛿1) (12)	

Production	causes	emissions,	

𝐸Ind	(𝑡) = 𝜎(𝑡)[1 − 𝜇(𝑡)]𝐴(𝑡)𝐾(𝑡))𝐿(𝑡)$&) (13)	

This	also	means	that	the	raw	production	value	Y(t)	includes	1)	the	production	

achieved	with	zero	emissions	2)	the	production	achieved	with	emissions.	The	ratio	is	

𝜇: (1 − 𝜇).	The	corresponding	output	values	are	𝜇Y(t)	and	(1 − 𝜇)Y(t).	Corresponding	to	

𝜇Y(t),	the	backstop	technology	is	used	to	achieve	emission	reduction,	and	the	backstop	

technology	has	a	cost,	which	corresponds	to	the	backstop	price.	

PB(t + 1) = PB(t)(1 − g2) (14)	

As	the	backstop	price	decreases,	the	abatement	rate	gradually	increases.	

θ1(𝑡) = σ(𝑡)𝐵𝑃(𝑡)/θ2/1000 (15)	

σ(𝑡) = σ(𝑡 − 1)[1 + 𝑔3(𝑡)] (16)	

𝑔3(𝑡) = 𝑔3(𝑡 − 1)/(1 + δ3) (17)	

CP(𝑡 + 1) = CP(t)(1 + 𝑔4)5 (18)	

,	where	𝜎(𝑡)	is	the	emissions	intensity.	

Note,	this	study	focuses	on	the	carbon	emission	control	rate	and	the	specific	baseline	

of	the	DICE	2013	model.		
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2.2  A Brief Introduction to Reinforcement Learning 

In this section, reinforcement learning is briefly introduced to help the reader 

understand the research methods in advance, even though he knows little about reinforcement 

learning. We suggest that reader refer to detailed explanations, such as the amazing 

introduction done by Sutton (1998).  

Generally, RL Problem Solving markov decision processes (MDP). A MDP can be 

formalized as ⟨𝑆, 𝐴, 𝑅, 𝑃, 𝛾⟩. S is the set of states, A is the set of actions, R is the reward 

function, and 𝑃 describes the probability distribution of moving to the next state 𝑠6, 

𝑝(𝑠6 ∣ 𝑠, 𝑎) . At each time step t, the agent: 

5. observes the state of 𝑠" ∈ 𝑆 ;  

6. takes and action 𝑎" ∈ 𝐴;  

7. and receive an instant reward 𝑟: 𝑆 × 𝐴 → 𝑅.  

A policy 𝜋 is to generate 𝑎 ∼ 𝜋(⋅∣ 𝑠) which action to take according to 𝑠 . The goal of RL 

is to find the optimal policy 𝜋∗ that maximize the lifetime discontinued return  

𝑉8(𝑠) = 𝐸 q&𝛾"
"

𝑟"r (19) 

 

this is referred as the (state) value function, where 𝛾 ∈ [0,1] is the discount factor. The 

optimal state-value function is  

𝑉∗(𝑠) = max
8
𝑉8(𝑠) (20) 

 

Please note that in practice of the model-free RL application, R and P are not 

observed. Agent only knows where the states is, what actions agents can take (a), and a 

reward (r) indicating whether our actions are good or bad, even though it being built in the 

environment in the code.  

RL algorithms can be divided into 3 categories: value-based, policy-based and actor-

critic. We only introduce the simplest RL algorithm here because it defines some important 

symbols.  
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First, we studied the value-based approach. Value-based methods draws lessons from 

the concept of dynamic programming, that is, value function iteration and strategy function 

iteration. Value-based reinforcement learning algorithm calculates the value of each action 

according to the current state, and then selects the actions according to the value according to 

a certain strategy (e.g., greedy).  

We first introduce the bellman equation, 

𝑉(𝑠) = max
9
?𝑅(𝑠, 𝑎) + 𝛾𝑉(𝑠6)B (21) 

This formula states that for a given state 𝑠 and its value function 𝑉(𝑠), is determined 

by the action a that has the highest value among all the actions a that the agent can choose in 

this state s. It consists of the direct reward 𝑅(𝑠, 𝑎), and the value 𝑉(𝑠6) of the new state s6 in 

the next step. 𝑅(𝑠, 𝑎) is the reward that is determined, and 𝑉(𝑠6) is the value of the state after 

the next step,  

With stochasticity, it can be written as   

𝑉(𝑠) = max9 t𝑅(𝑠, 𝑎) + 𝛾&𝑃(𝑠, 𝑎, 𝑠6)𝑉(𝑠6)u	 (22) 

We then define 𝑄(𝑠, 𝑎), to represent the values of the value where: 

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾&𝑃(𝑠, 𝑎, 𝑠6)𝑉(𝑠6) (23) 

This Q function is one of the functions to be learned inside the reinforcement learning 

algorithm. Because when we get this Q function and enter a certain state, its optimal behavior 

can be obtained by this Q function. 

We also have, 

𝑉(𝑠) = max
9
𝑄(𝑠, 𝑎) (24) 

substitute into the previous formula we get, 

𝑄(𝑠, 𝑎) = t𝑅(𝑠, 𝑎) + 𝛾&𝑃(𝑠, 𝑎, 𝑠6)max
9#
𝑄(𝑠6, 𝑎6)u (25) 

If we introduce TD method into this formula, we can get 

𝑄"(𝑠, 𝑎) = 𝑄"&$(𝑠, 𝑎) + 𝛼 t𝑅(𝑠, 𝑎) + 𝛾&𝑃(𝑠, 𝑎, 𝑠6)max9#𝑄(𝑠6, 𝑎6)u − 𝑄"&$(𝑠, 𝑎)w (26) 

And this is the famous Q-learning algorithm (Watkins, 1989).  
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Policy-based methods are based directly on the current state, using the outputs of the 

action or the probability of the action. The most representative is the policy gradient (Sutton 

et al. 2000). The idea is to increase the probabilities of actions that have higher return and 

decrease the ones with a lower return.  

More recent reinforcement learning is implemented through an Actor-Critic neural 

network. Actor-critic method is a time difference method (TD method), which combines the 

method based on the value function with the method based on the policy function. In this 

case, the Policy function is an "Actor" that gives actions. The value function acts as a "critic", 

evaluating the quality of the actions given by the actors, and generating TD difference signals 

to guide the updating of the value function and policy functions.  

The Agent obtains the state of the environment (both actor and critic get the same 

state), and the actor selects the action from the action space according to the policy function 

and passes it to the environment. After receiving the action, the environment will give 

feedback (received by the critics) to the agent, and the feedback will give the environment a 

good or bad result. After receiving the feedback, the critic deduces the TD error according to 

the value function, and the TD error is passed on to the actor, who adjusts his strategy 

according to the TD error. At the same time, critics also adjust their Q value. The result of this 

interaction is that the actor's policy will choose the action with higher probability of scoring 

higher in an identical state, and the critic's Q value will become more and more stable. At last, 

the two sides reached an approximate optimal policy. 

• The following are some commonly used Reinforcement Learning algorithms:  

• DQN (Minh et al. 2013): An algorithm combining deep learning and Q-learning. 

Designed for discrete action spaces.  

• DDPG (Silver et al. 2014): Off-policy method making neural network updates are more 

efficient, can only be used with continuous action spaces.  

• TD3 (Fujimoto et al, 2018): It introduced 3 tricks to improve the performance of DDPG: 

Clipped Double-Q Learning, “Delayed” Policy Updates, Target Policy Smoothing. It 

can work with continuous action spaces.   

• SAC (Haarnoja et al, 2018a, 2018b, 2018c): Introduce maximum entropy to actor-critic 

model. So that the agent can explore more uniformly and easier to adjust when faced 

with interference.  
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2.3 Deep Reinforcement Learning Environment for DICE 

  In this section, we will focus on the integration of DICE models with Reinforcement 

Learning to determine the reward function, action space and observation space employed in 

Reinforcement Learning for our research topic. The related research of the DICE model has 

been introduced in Section 2.1, and the relevant knowledge of Reinforcement Learning is 

briefly introduced in Section 2.2. 

  Now, we need to translate the research problem in Section 2.1 into the DRL problem 

described in Section 2.2. 

  The first step is to determine the technical framework for DRL. Through research on 

the current popular DRL technologies, we	decided	to	use	OpenAI	gym	and	Stable	Baselines	

3	(SB	3)	as	the	foundation	for	building	the	DRL	environment	quickly.	 

  OpenAI gym is a powerful contains relevant and useful wrappers, utilities and tests that 

can help users quickly create new RL environments. In this study, the environment is created 

by inheriting from gym.Env, which is specifically implemented as class inheritance in the 

python language. 

	 RL	 environment	 is	 a	 term	 in	 the	 field	 of	 artificial	 intelligence,	which	 is	 used	 to	

indicate	the	MDP	formulation	of	the	certain	problem.	It	is	simply	called	"world"	by	many	

articles.		

	 Such	 an	 environment	 can	 be	 well	 built	 in	 the	 OpenAI	 gym,	 which	 links	 the	

definition	of	MDP	with	the	Python	coding.	According	to	the	structure	of	OpenAi	gym	class,	

I	define	a	continuous	state	set	(which	is	essentially	the	observation	set	in	OpenAI	gym)	

and	an	action	set	𝐴,	where	S	is	constrained	by	x𝑆
_
, 𝑆y,	where	𝑆

_
	is	the	inf	for	𝑆	and	where	is	

𝑆	the	sup	for	𝑆,	Action	set	x𝐴
_
, 𝐴y	takes	a	similar	fashion.	I	normalize	our	state	space	and	

action	space	according	to	how	DICE	model	is	usually	constructed,	but	the	action	sets	and	

state	sets	don't	necessarily	need	to	be	normalized	at	initialization,	because	the	activation	

functions	in	our	networks	will	map	the	value	space	to	the	normalized	value	space.		

	 We	use	a	build-in	method	step()	to	define	the	𝑆 → 𝐴 → 𝑅 → 𝑆′	process.	The	classic	

diagram	is	as	follows:	
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Diagram 1: The Classical "Agent Environment Loop": the agent performs some actions in 

the environment (the growth rate and saving rate of µ are given in this paper) and observes 

how the state of the environment changes. 

 

At each step, the agent observes states (observations) and selects the actions 𝑎 ∼ 𝜋(⋅∣ 𝑠), 

collects current round of rewards, and finally calculates the value of the motion law of the next 

state, and passes it to the next step. The equation of motion is defined in section 2.1.  

According to the research scope described in Section 2.1, we have identified data and 

formula resources, including: 

1. 18 basic equations 

2. Variables (Table 1) 

 

Table 1 Variables 

No. name notes 
1 A total factor productivity 
2 gA Rate of growth of productivity (per 5-year, log) 
3 K Capital ($trill, 2005$) 
4 L population 
5 BP backstop price 
6 σ emissions intensity industrial 
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7 gσ Growth rate of sigma (per year, log) 
8 CP co2 price 
9 Y Output gross of abatement cost 
10 θ1 θ1 (t) in Lambda function  
11 Λ Abatement cost function 
12 Q Net output 
13 μ Emissions control rate 
14 I Gross investment ($trill per year, 2005$) 
15 C Consumption 
16 cpc per capita consumption 
17 u Utility of p. c. consumption 
18 Eind Industrial emissions (GTCO2 per year) 
19 CCA Cumulative Emissions to date 
20 left_cc remaining quota of carbon resources (GtC) 

 

	 Therefore,	I	can	design	the	environment	as:		

  Reward The reward at each time step consists of two parts. The first part is a positive 

reward U(t), which is the population-weighted utility of per capita consumption for each period. 

This is because maximizing the population-weighted utility of per capita consumption is the 

target in the DICE model. 

	 The	 second	part	 is	 the	punitive	measures	 to	prevent	 total	 carbon	 consumption	

from	exceeding	the	GtC.	If	the	agent	selects	small	abatement	at	every	step,	it	will	cause	the	

quota	 remaining	 for	 carbon	 resources	 (left	 _	 cc)	 to	be	 insufficient	 to	 support	 the	 total	

period.	To	prevent	the	quota	of	carbon	resources	from	running	out.	When	this	happens,	

the	environment	will	 give	 the	agent	a	penalty,	 that	 is,	 it	will	 give	 the	agent	a	negative	

reward.	

	 Specifically,	we	define:	

	 𝑟𝑒𝑤𝑎𝑟𝑑 = 	−10 ln(𝑁 − 𝑡)	if（left_cc(t)<0）	

	 and		𝑟𝑒𝑤𝑎𝑟𝑑	 = 𝐿 (𝑡)𝑐(𝑡)($&')/(1 − α)/500					

Note	I	use	reward/500.	This	is	to	prevent	the	reward	being	too	large	and	thus	affecting	

convergence.		

  Action and Action Space Selecting abatement growth rate and saving rate as action 

space allows the agent to control the appropriate amount of carbon reduction. Control rate and 

savings rate ensure the utility maximization under the DICE model. A reasonable saving rate 
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ensures a reasonable investment and consumption ratio, considering the present and the future 

interests. As a variable, reasonable investment promotes the change in K (t). 

  The appropriate μ to ensure the minimization of carbon emission reduction cost. To 

simplify the realization of the model, we indirectly control μ by the growth rate of μ. 

  The savings rate is used to choose the ratio of investment and consumption, considering 

present and the future income. Choosing a reasonable investment rate to drive the capital 

change.  

  Recall that 

  𝑌" = 𝐹(𝐴" , 𝐿" , 𝐾" , 𝐸") = 𝐴"𝐾"
;𝐿"
$&;?1 − Λ"(µ")B 

  Thereby driving the change of original output and the changes of net output, CPC (t) 

and U(t). 

  States and State space We analyze the 18 formulas and 20 variables in Table 1 to find 

the dependencies between the variables, as shown in Figure 1. 

 

Figure 1 

 

 

With Figure 1, we analysis the lineage between variables. The following 8 variables (table 

2) describes the motion; thus, we use those to construct our observation space in the RL issue 

has at most these 8 variables. 
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Table 2 Observation Space 

 

No. Name Notes 
1 A(t) total factor productivity at t 
2 K(t) Capital at t 
3 L(t) Population at t 
4 I(t) Investment at t 
5 BP(t) backstop price at t 
6 σ (t) emissions intensity industrial at t 
7 left_cc(t) remaining quota of carbon resources (GtC) at t 

8 μ(t) 
emissions control rate at t, As the growth rate of μ is 
used as the action of the world, μ becomes an 
important variable 

 

   

In this way, the observations are passed to the agent. Then, the agent chooses the action 

based on the policy function by observing the state accordingly. 

According to the analysis in section 2.2, we choose SAC as the algorithm for our purpose.  

The realization of this algorithm is provided by the stable Baselines 3. Stable Baseline 3 

naturally blends in with gym.  

 

2.4  Initialization  

I initialized the environment with the parameters in Table 3. Dataset is borrowed from 

DICE2013. 

Table 3 Initial Data 

index name value Notes 
0 YEARS_PER_PERIOD 5 fixed 
1 gL 0.13449 growth rate of world population 
2 L0 6838 Initial world population (millions) 
3 popasym 10500 infinity world population (millions) 
4 A0 3.7976214 Initial level of total factor productivity 
5 gA 0.079 Initial growth rate for TFP per 5 years 

6 δA -0.006 annual rate of decline of production tech 
growth rate 

7 θ2 2.8 Exponent of control cost function 
8 BP0 344 Backstop price (1000$ per ton CO2) 

9 gb 0.025 Decline rate of backstop price (per half-
decade) 
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10 init_sigma 0.489 
Initial sigma (MtC per $1000 GDP US 
$) 

11 gσ -0.01 Growth rate of sigma (per year log) 

12 δσ -0.001 Decline rate of sigma growth rate (per 
year) 

13 μ0 0.039 
Initial emissions control rate for base 
case 2010 

14 α 1.45 Elasticity of MU of consumption 

15 ρ 0.015 Initial rate of social time preference per 
year 

16 k0 135 Initial capital value (trill 2005 USD) 

17 I0 16.361 Initial investment value (trill 2005 
USD) 

18 γ 0.3 Capital elasticity in production function 
19 δ K 0.1 Depreciation rate on capital (per year) 
20 cca0 90 init cca 

21 inf_cca 680 Maximum cumulative extraction fossil 
fuels (GtC) 

22 inf_cca_year 2060 Year to inf_cca 
 

For the hyperparameters for the RL framework, I use 1000 hidden units, ReLU as the 

activation function. Learning rate is 0.002. Batch size is set to 128, and the loss function is KL-

Divergence and MSE as in the SAC implemented in the stable_baseline3. The hyperparameter 

of temperature in SAC are automatically turned in stable_baseline3. I also use the multi-vector 

environment in training to speed up sampling. Note that in the absence of parallel environment, 

the deep learning framework such as PyTorch or Tensorflow requires adding a dimension to 

meet the the default tensor format data structure, this encourages one to use multiple vector 

environments releasing the power of SIMD.  

 

3 Results 
Run the model using the settings I described in Section 2. This section presents the results 

obtained.  

Section 3.1 describes the performance of the RL framework that I implemented. 

Section 3.2 and 3.3 show the predicted data obtained from the training. According to our 

research, predictions of world GDP, per capita consumption, industrial carbon dioxide 

emissions, emission control rate and carbon price is put forward. This result is also compared 

with the result of DICE 2013.  
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3.1 Performance  

We used a PC with i7-7700K CPU @ 4.20 GHz, 32.0 GB RAM. Usable results are 

obtained at after 88,000 steps.  

At the beginning of training, the agent will choose as little abatement as possible, 

because it yields better current reward, resulting in a negative reward by running out of 

carbon quota (GtC) in the first few steps, as follows 

 

 

 

As can be seen, in all 10th steps agent is receiving a negative reward.  

This is because at the beginning the Reinforcement Learning agent does not know 

what will happen if it takes a certain action, it can only explore through trial and error. 

Therefore, exploration is a trial-and-error method, to find out whether the actions taken have a 

good return. Exploitation means that we directly take an action which is known to have a 

good return. Therefore, there is a trade-off on how to gain an understanding of behavior by 

sacrificing some short-term rewards, to learn better strategies.  

For this training, the learning rate is 0.002, and when it runs to the 152nd episodes, the 

reward no longer has a negative value, which means that the agent has learned to abate the 

region. The following is shown. 
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The later training is to reinforce this result and to explore the learning gradually to 

approach the optimal solution. 

In 88000 training steps, we can get stable results, and in 220000 steps, we can get a 

usable training model. The reward function during the training steps can is shown in figure 2 

Figure 2 

 

In Figure 3, the blue scattered points are the settlement reward obtained within an 

episode, and at the beginning, the settlement reward value changes a lot, and at the beginning, 

there are still data below 60. 
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Figure 3 

 

The reward data for the first 2000 steps can be shown more clearly, and the change 

curve is more obvious. This is due to the reason that the agent tries a low abatement rate 

resulting in a negative reward value when there are no more carbon resources available in the 

last few steps. As the number of learning increases, the following scatter points become less 

and less, and have converged by 180,000 steps, indicating that the agent has initially learned 

the carbon reduction control. 

Figures 4 and 5 show the change curves of actor loss and critic loss with learning. Over 

time, actor loss fluctuates in a range, while critic loss tends to zero.	

 

Figure 4 

 

 

 

 

-35

-30

-25

-20

-15

-10

-5

0

st
ep
13
2

st
ep
22
0

st
ep
30
8

st
ep
39
6

st
ep
48
4

st
ep
53
3

st
ep
62
1

st
ep
70
9

st
ep
79
7

st
ep
88
5

st
ep
97
3

st
ep
10
22

st
ep
11
10

st
ep
11
98

st
ep
12
86

st
ep
13
74

st
ep
14
62

st
ep
15
11

st
ep
15
99

st
ep
16
87

st
ep
17
75

st
ep
18
63

st
ep
19
51

actor_loss



20	
	

Figure 5 

 

 

 

3.2 Base Results 

The actions obtained from the training are the basic results, including the carbon 

reduction rate μ and saving rate. These two are the two key indicators as they are the results 

learned by the agent.  

 

Figure 6 

 

 
 

 

Comparing the data, from 2015 to 2050, with DICE 2013 data, the relative errors are 0.68%, 

-0.54%, -0.52%, -0.23%, -0.06%, -0.85%, 0.65%, and -0.41%, respectively. 
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Since we choose the growth rate of μ instead of using μ directly, we show this data, see 

Figure 7. 

 

Figure 7 

 

 
 

In the DICE 2013 document, the growth rate of μ is a constant value equal to 0.0715. 

The data obtained in this study fluctuate around this constant value, with a mean of 0.0701 

and a standard deviation of 0.00948. The result shows that the carbon emission control rate 

obtained by RL training is acceptable. 

The second data is the saving rate, see Figure 8 for comparison, 

 

Figure 8 
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Table 4 Saving Rate 

 
year 2015 2020 2025 2030 2035 2040 2045 2050 

RL result 0.241715 0.241484 0.24126 0.246682 0.241081 0.250159 0.242857 0.241291 

DICE2013 0.255117 0.252528 0.25021 0.248155 0.246348 0.244767 0.243389 0.242192 

𝑅$  % -5.25 -4.37 -3.58 -0.59 -2.14 2.20 -0.22 -0.37 

 

From 2015 to 2050, comparing DICE 2013saving rate data, the savings rates are generally 

lower, except for only one cycle (2040) being higher. This deviation can be within the 

confidence interval. It is worth noticing that, if we use saving rate from the RL training, we can 

get a higher u(t). 

Based on the learned policy of the above two actions, other research data can be 

obtained. Those data are given in Section 3.3. 

 

3.3 Comparison of RL results with DICE2013 data 

This	section	shows	that	we	have	obtained	relevant	forecast	data,	including	the	

forecast	results	of	world	gross	product,	per	capita	consumption,	industrial	CO2	

emissions,	and	carbon	price	as	shown	below.	

Figure 9 
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Comparing the data from RL and DICE2013 for output gross of abatement cost and 

climate damage and abatement cost, the total output is lower than the data of DICE2013 by 

3%~6%. The main reason is that the saving rate is lower in my result. 

 

Figure 10 

 
 

 

 

 

Figure 11 

 
  

0.00E+00
2.00E-06
4.00E-06
6.00E-06
8.00E-06
1.00E-05
1.20E-05
1.40E-05
1.60E-05
1.80E-05
2.00E-05

2015 2020 2025 2030 2035 2040 2045 2050

Abatement	cost	(fraction	of	output)

RL	Result DICE2013

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

2015 2020 2025 2030 2035 2040 2045 2050

Abatement	cost	($	trillion)

RL	Result DICE2013



24	
	

Comparing the RL result and abatement cost faction, the consistency of the predicted data 

between the two is very good, thanks to the consistency of the prediction of µ-values, and the 

low abatement cost is related to the low Output gross of abatement cost and climate damage, 

which is rooted in the saving rate. 

 

Figure 12 

 
 

 

Figure 13 
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Figure 14 

 

 

Comparing RL results with the investment and consumption data of DICE 2013, we 

can see that the forecast data of both are very consistent. The reason for the lower values is 

the same: our savings rate is lower. 

Figure 15 
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Figure 16 

 

 
 

The predictions of industrial carbon emissions and carbon prices is directly learned by 

RL without the help of model dynamics. They are very consistent, and the savings rate being 

the cause of low carbon emissions. 

 

4 Discussion 

Overall, this study uses reinforcement learning to solve the optimal carbon emission 

rate and the consumption in a DICE-like model, which is a beneficial exploration and has 

achieved satisfactory results.  

Here we address some topics associated to the RL.  

First is the adjustment of parameters. Tuning the parameters is one of the main tasks 

during the training of Reinforcement Learning. Here I describe how I tuned the parameters of 

the model. Recall the discount factor means how many next steps of reward one wants to 

consider for each step you want your agent to perform at minimum. If I want to consider the 

next t step, then I let the reward of step t be a 0.1 fraction of the Q value of the current step, 

which is the 

0,1	 ≈ 	 𝛾" 

For the reward, there is total rewards in an episode, generally called the settlement 

rewards, and the rewards of each step, called the daily rewards. The percentage of rewards in 
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each step of the settlement reward is determined by the gamma value. In general, if an episode 

is trained at the end of step t, from the Bellman expansion formula 

𝑄$ 	= 	 𝛾<𝑟$ 	+ 	𝛾$𝑟= 	+ 	⋯	+ 𝛾"&$𝑟"	 

that can be seen more clearly, which is the theoretical basis for adjusting the gamma 

parameter. It is recommended to try between 0.95 and 0.98. 

The learning rate can be tried from a relatively large value, such as 0.02, and then 

0.02, 0.002, and 0.0002 can be chosen to follow the principle of large to small, which can 

avoid choosing a very small value (such as 0.0002) to enter the local optimum and not get the 

correct result. 

The batch size represents the size of the data used for one calculation. Generally, we 

try from 64, 128, 256 (Nth power of 2). It is recommended to use a larger batch size, as it is 

easier to obtain a monotonically increasing learning curve with a larger batch size, but leads 

to more training sessions, which is slower but more stable, but allows a larger learning rate. 

Usually, the combination of a large batch size and a larger learning rate is used to save 

training time and get better results. batch size is chosen to match the memory of the computer 

used and the storage size of the GPU.   

It might be possible to use RL method can as a method for economics because the RL 

method enables model-free learning. Economic dynamics are designed as state transition 

processes in time series, and involve optimization, such as cost minimization or utility 

maximization. For any economic problem, if the state process is described as an MDP, and 

the definition of the value function associated with the optimal strategy satisfies Bellman's 

principle, this problem is exactly consistent with the Reinforcement learning principle, and 

Reinforcement learning can be attempted to solve this problem. This is also the theoretical 

support for transforming an economic problem into a RL problem as described in Section 2.3. 

The code implementation also shows the applicability of RL. I have shown that the RL 

environment is OpenAI Gym is a good description of the RL environments. And many 

toolkits like stable_baseline 3 can be a reliable framework of reinforcement learning 

algorithms. These algorithms will allow the research groups and industry to easily set up 

projects based on implementation, either to copy, improve the current algorithms or put new 

ideas into RL framework without getting caught up in the implementation details of the 

algorithms.  
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However, there also a trade-off between generic. One I immediately identify is the low 

sample efficiency. This is partly due to the current model-free algorithm. Intuitively a long 

convergence time. It is worth noticing that a model-free RL model can be much more arduous 

to train compared to conventional methods (Biemann et al., 2021). Even when it was 

compared to model-based RL models, model-free RL turns to have less sample efficiency, 

which thus results in more computational time. On the other hand, let's keep in mind that, as 

stated by (Marlir et al, 2019), the advancement of computational power over the years will 

soon keep up and overcome the long-time training issue.  

I also suggest a way to partially address the issue of sample inefficiency. One can 

apply a prior knowledge to increase the speed of learning. Here I used a parametric form μ to 

address such issue. It is assumed in DICE2013 that μ increases over time. For a variable in a 

time series, it can always be written as 𝑥(𝑡 + 1) 	= 	𝑥?1 + 	𝑟(𝑡)B. As in this project, we 

define 𝜇(𝑡 + 1) = 	𝜇(𝑡) t1 +	𝑔>(𝑡)u where 𝑔>(𝑡) is the growth rate of 𝜇(𝑡). Following this 

equation, let 𝑔>(𝑡) be the action of the agent instead of μ. When the agent learns an 

appropriate 𝑔>(𝑡)	strategy from the environment, we can also easily obtain the value of μ. I 

was able to observe a faster convergence speed after applied such a form of μ. As there are 

many assumptions in the economic problems, I encourage applying a priori knowledge into 

the design of the RL environment and try with different parameters. 

There is also a disadvantage that one should pay attention to. The convergence theory 

has not been fully developed for this kind of RL. Despite the convergence of discrete action 

spaces though SAC is proved, the author mentioned that the convergence neural network 

approximated value functions only work in practice (Haarnoja et al., 2018a).  

Yet the main goal of this project is to demonstrate the potential such a framework 

might work and pave a way for researchers to apply economic dynamics were predicting 

ahead is not feasible. For example, in IAMs where complex dynamics and uncertainties are 

involved. The ability of learning without fully observing the MDP can come to real use.  

 

 

5 Conclusion 

In this project I have made a demonstration of a model-free deep Reinforcement Learning 

framework and applied it to a DICE model with 8 variables constituting states in observation 
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space, 2 actions in action space.	The reward is U(t), the population-weighted utility of per 

capita consumption for each step. The agent was able to interact with the environment and 

obtain optimal policies of actions that maximize the lifetime reward without making any 

prediction of the utility or dynamics in the model. Instead, the agent is self-learning to find the 

optimal policy through repeated training from the observed states, the actions chosen, and the 

rewards obtained.	And after around 90K timesteps, the results we get are the optimal policies 

that demonstrate to be a good match with the DICE2013 reference results. This shows to what 

extent of potential such a framework possesses. As a matter of fact, it could be extended to 

more complex and unpredictable environments, where further works should and could be 

done. It’s also worth mentioning that deep Reinforcement Learning can be computationally 

expensive with the context in this project.  
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