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We numerically and analytically explore the background cosmological dynamics of multifield dark
energy with highly nongeodesic or “spinning” field-space trajectories. These extensions of standard single-
field quintessence possess appealing theoretical features and observable differences from the cosmological
standard model. At the level of the cosmological background, we perform a phase-space analysis and
identify approximate attractors with late-time acceleration for a wide range of initial conditions. Focusing
on two classes of field-space geometry, we derive bounds on parameter space by demanding viable late-
time acceleration and the absence of gradient instabilities, as well as from the de Sitter swampland
conjecture.
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I. INTRODUCTION

Finding the physical mechanism responsible for late-
time cosmic acceleration [1,2] is one of the most exciting
challenges in cosmology. Phenomenologically the simplest
possibility is a cosmological constant, which with cold dark
matter constitutes the cosmological standard model,
ΛCDM. Despite the remarkable empirical success of
ΛCDM [3], an extensive effort has been dedicated to
studying possible alternatives to the cosmological constant
(see [4–13] for reviews). This is largely motivated by the
fine-tuning problem of the cosmological constant [14,15].
Even without such theory considerations, the wealth of
current and upcoming precise cosmological probes is a
strong driving force for testing the theoretically viable
alternatives to the cosmological constant scenario.
Indeed, the discovery of any effects signaling deviations

from the ΛCDM model is among the primary objectives of
near-future major cosmological surveys, such as the Euclid
space mission [16,17]. The careful modeling and

classification of theoretically possible signals are therefore
of utmost interest and importance.
Dark energy beyond the cosmological constant is usually

modeled with a single scalar field, with prominent
examples being quintessence [4] and scalar-tensor gravity
[5]. Quintessence is the simplest dynamical dark energy
scenario, which assumes a minimally coupled canonical
scalar field with a prespecified potential. Successful accel-
eration requires the potential to be nearly flat, with a mass
scale of the order of the Hubble constant (∼10−33 eV). As a
result, the quintessence field acts as a smooth, unclustered
energy component at observationally relevant scales [8],
and the primary prediction is a modified expansion history,
uniquely determined by the shape of the potential.
While quintessence models are typically considered to

have a single scalar field, low-energy effective theories
arising from string theory generically predict the presence
of multiple dynamical scalar fields [18,19]. Multifield
models have been thoroughly studied in the context of
cosmic inflation [20–33]. Although more scarcely, they
have also been discussed in the context of dark energy; see,
e.g., [34–47]. Building on our earlier work [43], in this
paper we provide a detailed study of multifield dark energy
models featuring a nontrivial field-space geometry.
Multifield dynamics is significantly richer compared to
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the single-field counterparts, and possesses several theo-
retically and phenomenologically appealing properties.
Particularly, owing to the nontrivial geometry of the field
space, a successful cosmic acceleration can take place even
if the scalar potential is very steep.
The latter is not only a conceptually novel possibility

worth investigating further, but might also be of crucial
importance in the context of possible theoretical restrictions
of finding de Sitter–like solutions in quantum gravity, such
as string theory. Particularly, it has been conjectured
[48–51] that the effective low-energy descriptions of viable
string theory embeddings impose restrictions on the relative
slope of the scalar potentials, limiting them to be steep.
While the validity of these swampland conjectures is being
actively debated [52–56], they provide an additional
motivation for multifield extensions of the standard
quintessence scenario, and we will include them in our
analyses for the sake of completeness.
One of the primary features of multifield scenarios is the

possibility of strongly curved trajectories in field space.
Particularly, our focus will be the “spinning” regime where
the fields rotate rapidly on almost-circular trajectories.
Despite the highly dynamical nature of this regime, it
predicts cosmological background solutions close to
ΛCDM [43]. In this paper we investigate a comprehensive
class of two-field dark energy models and address the
question of how general the spinning regime is. We
parametrize the field space with “radial” and “angular”
fields r and θ, and we impose a θ shift symmetry on the
field-space metric, Gab ¼ diagð1; fðrÞÞ. While in [43] our
focus was to provide a proof of concept based on a flat field
space, fðrÞ ¼ r2, in the present analysis we study more
general metrics. Our first choice is a generic power-law
form for fðrÞ, and the second one is a hyperbolic metric
with negative curvature.
While identifying any exact fixed points in cosmological

evolution appears to be challenging, we numerically prove
that spinning trajectories are generically achieved and
maintained with a relatively simple choice for the two-
field potential, and, importantly, for a wide pool of initial
conditions. For all the cases we also explicitly demonstrate
that the de Sitter swampland conjecture is satisfied for large
regions in the parameter space. In addition to the afore-
mentioned de Sitter conjecture, we also show that our
models generically satisfy the distance conjecture [57] in
the observationally relevant epochs.
Even though the spinning solutions universally predict

cosmological-constant–like cosmic backgrounds, the spin-
ning multifield scenarios we discuss can be observationally
distinguished from ΛCDM owing to their richer clustering
properties. Particularly, the rapidly rotating multifield
constructions possess a perturbation mode much heavier
than the Hubble scale, leading to enhanced clustering on
sub-Hubble scales. Moreover, the sound speed of the
effective massless mode is significantly reduced, again,

leading to enhanced subhorizon clustering of the dark
energy component [43].
For each of the considered models we have identified a

range of linear, subhorizon scales affected by the clustering,
demonstrating the presence of a wide range of observatio-
nally accessible scales which are of interest for upcoming
large-scale structure probes. The effective sound speed can
turn imaginary in certain, though by far not all, cases,
signaling the presence of gradient instabilities which limit
the range of validity of the models. We provide summaries
of observational viability, satisfaction of the de Sitter
conjecture, and the absence of gradient instabilities, effec-
tively limiting the parameter ranges of the considered
models. One or more of these limits can be used as generic
guiding principles when constructing multifield models.

II. MULTIFIELD DARK ENERGY

In this paper, we consider a multifield model of dark
energy where a number of scalar fields ϕa live in a field
space with a nontrivial metric GabðϕÞ and are minimally
coupled to gravity, resulting in the action

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R−

1

2
GabðϕÞ∂μϕa

∂
μϕb−VðϕÞþLm

�
:

ð1Þ

Here R is the Ricci curvature for the spacetime metric gμν,
MPl is the Planck mass, VðϕÞ is the potential for the scalar
fields, and Lm is the matter Lagrangian.

A. Background evolution and phase-space dynamics

Considering the flat Friedmann-Lemaître-Robertson-
Walker (FLRW) metric, the Friedmann equation is

3M2
PlH

2 ¼ 1

2
Gab

_ϕa _ϕb þ V þ ρm; ð2Þ

where H ≡ _a=a is the Hubble expansion rate with a the
scale factor and ρm is the energy density of matter fields.
An overdot denotes a derivative with respect to cosmic
time t. The scalar field equations of motion are

Dt
_ϕa þ 3H _ϕa þ Va ¼ 0; ð3Þ

where Va ≡ ∂V=∂ϕa and Dt is the field-space covariant
time derivative defined as

DtAa ≡ _Aa þ Γa
bcA

b _ϕc; ð4Þ

with Γa
bc the field-space Christoffel symbols.

Even though one can consider any number of scalar
fields for the dark energy models we are interested in, in the
rest of this paper we follow [43] and restrict ourselves to
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two fields, ϕa ¼ ðr; θÞ.1 This suffices to display many of
the novel features that arise when moving to multifield
models. Consider a two-dimensional field-space metric of
the form

ds2fields ¼ dr2 þ fðr; θÞdθ2: ð5Þ

It is often helpful to interpret r and θ as polar coordinates in
field space, hence the notation ϕa ¼ ðr; θÞ for the scalars.
As we will see later, this is motivated by examples where
the metric enjoys a shift symmetry in the θ direction, so that
fðr; θÞ ¼ fðrÞ. In this case Eq. (5) is the most general field-
space metric, up to field redefinitions.
For the metric (5), the Friedmann equation (2) and the

scalar field equations of motion (3) become

3M2
PlH

2 ¼ 1

2
ð_r2 þ f _θ2Þ þ V þ ρm; ð6Þ

̈rþ 3H_rþ Vr −
1

2
fr _θ

2 ¼ 0; ð7Þ

θ̈ þ 3H _θ þ 1

f
Vθ þ

fr
f
_r _θþ fθ

2f
_θ2 ¼ 0; ð8Þ

where Vr ≡ ∂V=∂r, Vθ ≡ ∂V=∂θ, fr ≡ ∂f=∂r, and
fθ ≡ ∂f=∂θ. In order to analyze the phase-space dynamics
of these background equations, we rewrite them as a set of
first-order differential equations,

x0r ¼ 3xr
�
x2r þ x2θ − 1þ 1þ wm

2
ð1 − x2r − x2θ − y2Þ

�
þ

ffiffiffiffiffiffiffiffi
3=2

p
k1x2θ −

ffiffiffiffiffiffiffiffi
3=2

p
k2y2; ð9Þ

x0θ ¼ 3xθ
�
x2r þ x2θ − 1þ 1þ wm

2
ð1 − x2r − x2θ − y2Þ

�
−

ffiffiffiffiffiffiffiffi
3=2

p
k1xrxθ −

ffiffiffiffiffiffiffiffi
3=2

p
k3y2; ð10Þ

y0 ¼ 3y
�
x2r þ x2θ þ

1þ wm

2
ð1 − x2r − x2θ − y2Þ

�
þ

ffiffiffiffiffiffiffiffi
3=2

p
yðk2xr þ k3xθÞ; ð11Þ

where we have introduced the quantities

xr ≡ _rffiffiffi
6

p
HMPl

; xθ ≡
ffiffiffi
f

p
_θffiffiffi

6
p

HMPl

; y≡
ffiffiffiffi
V

pffiffiffi
3

p
HMPl

;

ð12Þ

k1 ≡MPl
fr
f
; k2 ≡MPl

Vr

V
; k3 ≡MPl

Vθffiffiffi
f

p
V
; ð13Þ

primes denote derivatives with respect to N ≡ ln a, and wm
is the equation of state for matter. Additionally, the
Friedmann equation becomes the constraint

1 ¼ x2r þ x2θ þ y2 þ Ωm; ð14Þ

where Ωm is the fractional energy density parameter of
matter fields. Note that Eqs. (9)–(11) do not directly depend
on fθ, even though it appears in Eq. (8). We can also
express the scalar fields’ equation of state wϕ and fractional
energy density parameter Ωϕ ≡ ρϕ=ðρϕ þ ρmÞ, with ρϕ the
scalar fields’ energy density, in terms of xr, xθ, and y,

wϕ ¼ x2r þ x2θ − y2

x2r þ x2θ þ y2
; ð15Þ

Ωϕ ¼ x2r þ x2θ þ y2: ð16Þ

When k1, k2, and k3 are constant, Eqs. (9)–(11) form a
closed autonomous system, with some of its critical points
possibly acting as attractors. If k3 ¼ 0, then the system is
closed for f ¼ gðθÞeλr and V ¼ ceκr, with λ, c, and
κ constants, and gðθÞ arbitrary. The critical points for
gðθÞ ¼ 1 have been studied in [41,42]. We are interested in
cases where the potential depends on θ (in order to obtain
spinning solutions [43]) and therefore k3 ≠ 0. In this case,
there is no choice of f and V which will set k1;2;3 constant
simultaneously: requiring k1;2 constant sets both f and V to
be of the form gðθÞeλr, in which case k3 necessarily has r
dependence going as f−1=2. Note, however, that the choice
f ∼ gðθÞ2 and V ∼ eλrþgðθÞ with gðθÞ ∼ eβθ leads to constant
k1;2;3. We do not consider this case since it leads to the
function f being independent of r. Since at least one of the
ki always depends on one of the fields, Eqs. (9)–(11) do not
represent a closed system of equations, and identification of
exact attractor points is challenging. Later we will prove
numerically and via approximate treatment of the dynami-
cal system that cosmologically relevant approximate
(slowly varying in time) attractor points do in fact exist.

B. Swampland conjectures

It is shown in [43] that the scalar fields of models (1) can
maintain their motion on a steep potential while leading to a
small dark energy slow-roll parameter

ϵϕ ¼ 3

2
ðwϕ þ 1Þ ¼ 3

2

_ϕ2

1
2
_ϕ2 þ V

; ð17Þ

where

_ϕ2 ≡ Gab
_ϕa _ϕb: ð18Þ

An ϵϕ ≪ 1 is required for the Universe to be accelerating at
late times, as ϵϕ approaches a small Hubble slow-roll

1These should not be confused with physical radial or angular
coordinates.
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parameter ϵ≡ − _H=H2 when dark energy dominates.
Additionally, the scalar fields move in field space with a
turning rate

Ω ¼ jDtT j; ð19Þ
where T is the normalized tangent vector to the field-space
trajectory given by

T a ¼
_ϕa

_ϕ
: ð20Þ

A nonzeroΩ signals that the scalars move along a trajectory
in field space that is not a geodesic, which is a hallmark
feature of multifield dynamics. The turning rate (19) can be
written as

Ω ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffij detGjp j _ϕ1V2 − _ϕ2V1j
_ϕ2

ð21Þ

for models with two scalar fields ϕ1 and ϕ2, where
_ϕa ¼ Gab

_ϕb. The dark energy slow-roll parameter ϵϕ is
then related to the so-called potential slow-roll parameter

ϵV ≡M2
Pl

2

GabVaVb

V2
; ð22Þ

through the relation

ϵϕ ¼ ϵVΩϕ

�
1þ Ω2

9H2

�−1
: ð23Þ

Given that the turning rate can be arbitrarily large in these
dark energy models, i.e., Ω ≫ H, it is possible for ϵϕ to be
small for arbitrarily large ϵV , i.e., for arbitrarily steep
potentials. This means that the condition required by the
swampland de Sitter conjecture,

j∇Vj
V

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GabVaVb

p
V

≥
c

MPl
; ð24Þ

with c a constant of Oð1Þ, can be satisfied in these models.
In addition to the de Sitter conjecture, we can also

consider the swampland distance conjecture. This is the
conjecture that when the fields traverse a Planckian dis-
tance in field space, an infinite tower of light modes (e.g.,
Kaluza-Klein modes) appears, spoiling the effective field
theory. More concretely, the “refined” distance conjecture
states that these light modes appear with a mass scale [57]

M ∼Minie−λΔϕ=MPl ; ð25Þ

where λ ¼ Oð1Þ, Mini is some initial mass scale, and Δϕ is
the field-space distance traveled by the scalar fields. This
then means that the effective field theory breaks down when

Δϕ≡
Z

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gab

_ϕa _ϕb
q

≳ λ−1MPl: ð26Þ

Using Eqs. (15) and (16), it is easy to show that Δϕ can be
expressed as

Δϕ ¼
ffiffiffi
6

p
MPl

Z
dN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2θ

q

¼
ffiffiffi
3

p
MPl

Z
dN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ wϕÞΩϕ

q
: ð27Þ

The second equation in (27), which can be proved to be
independent of both the number of fields and the field-
space metric, clearly shows that if the fields move forever
and never settle at a local minimum, then the field-space
distance will diverge. The Universe will eventually reach a
point where a tower of light states is expected to appear due
to the distance conjecture, resulting in a breakdown of the
effective field theory. We will, however, show that for the
class of models we study in this paper this breakdown will
not happen in the near future. It is also interesting to note
that Eq. (27) is analogous to what happens during inflation
where the field-space distance can be written as a function
of the tensor-to-scalar ratio r,

Δϕ ¼ ΔN
ffiffiffi
r
8

r
MPl; ð28Þ

with ΔN the number of inflationary e-folds.
In the rest of this paper, we will investigate to which

degree both the de Sitter and the distance conjectures are
satisfied for specific classes of multifield dark energy
models, in addition to studying their cosmological dynam-
ics. While different string-theory-based models predict
different explicit values for the constants c and λ in (24)
and (25), here we do not make any assumptions about their
values and only assume that both are of Oð1Þ.

III. EXPLICIT MODELS

We now perform analytical and numerical analyses of
specific and simple classes of multifield dark energy
models, and show explicitly how easily large turning rates
can be achieved without tuning the initial conditions of the
dynamical system. We also demonstrate that such models
generically satisfy theoretical viability conditions imposed
by the swampland conjectures.
We consider a potential of the form

Vðr; θÞ ¼ V0 − αθ þ 1

2
m2ðr − r0Þ2; ð29Þ

where V0, α,m, and r0 are free parameters to be determined
observationally. As argued in [43], this is a minimal
potential in an effective field theory framework which
allows for the “spinning” solutions we wish to study,
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consisting of a mass term (after shifting r) and a term softly
breaking the θ shift symmetry.2 Additionally, we assume
that the field-space metric (5) only depends on r and
consider two specific forms for the field-space func-
tion fðr; θÞ ¼ fðrÞ3:

(i) Power-law metric with fðrÞ ¼ rp: The Ricci curva-
ture corresponding to this field-space metric is
R ¼ −pðp − 2Þ=ð2r2Þ, and we allow the parameter
p to take any positive or negative values. This means
that, depending on the value of p, the field space can
be positively curved [for p ∈ ð0; 2Þ], flat (for p ¼ 0,
2), or negatively curved (for p < 0 and p > 2). For
the flat metric with p ¼ 2, the fields r and θ have a
direct polar coordinate interpretation. This is the
case studied in [43], where it was shown that the de
Sitter condition is satisfied with a dark energy
equation of state wϕ ≈ −1.
The power-law metric fðrÞ ¼ rp leads to singu-

larities in the θ equation of motion (8) for r ¼ 0; this
is due to the 1=f factors appearing in the terms on
the left-hand side of the equation. In our studies of
the power-law metric in this paper, we assume that
the r-field vacuum expectation value (VEV), i.e., r0
in the potential (29), is nonzero, and we restrict
ourselves to r0 > 0. As we will see later, r will then
remain nonzero for the cosmological solutions of
interest, avoiding singularities in Eq. (8). Unless
otherwise stated, we set r0 to 7 × 10−4, but we find
that the evolution of dark energy fields for the
power-law metric fðrÞ ¼ rp and the potential (29)
is insensitive to the value of r0 when r0 ≲ 10−3. This
is because, as we will see, at late times r reaches a
semiequilibrium value which is much larger than r0.

(ii) Hyperbolic metric with fðrÞ ¼ eβr: The Ricci cur-
vature for this metric isR ¼ −β2=2 with β constant.
This means that the field space is negatively curved
for all nonzero values of β; β ¼ 0 corresponds to a
flat field space. Unlike the power-law field-space
metric, here r ¼ 0 does not lead to any singularities
in the equations of motion, and we therefore choose
to set r0 ¼ 0. We find that different values of r0
result in negligible differences in the evolution of
dark energy fields, as long as r0 ≲ 10−3.
The hyperbolic metric fðrÞ ¼ eβr corresponds to

hyperbolic space H2 or, equivalently, Euclidean
AdS2 with radius 2=β. The scalar fields parametrize
an SL(2,R)/SO(2) coset space. Consequently, the
field space is invariant under Möbius transforma-
tions acting on τ≡ β

2
θ þ ie−βr=2,

τ →
aτ þ b
cτ þ d

; ð30Þ

with a, b, c, d real constants satisfying ad − bc ¼ 1.
This is a three-parameter group, including the θ shift
symmetry (a ¼ d ¼ 1, c ¼ 0), a scaling symmetry
(b ¼ c ¼ 0, ad ¼ 1), and an SO(2) subgroup
(a ¼ d ¼ cosφ, c ¼ −b ¼ sinφ). The presence of
a potential generically breaks these, though can
preserve a subgroup. Dark energy with a hyperbolic
field space has also been studied in [46].

A. Power-law field-space metric

We start our analysis of the explicit models specified by
the potential (29) by first analyzing cosmological solutions
for the power-law field-space metric, fðrÞ ¼ rp. In order to
understand the cosmological dynamics of these models, we
provide in Fig. 1 the polar-coordinate representation of a
typical evolution of the scalar fields r and θ. We have set
p ¼ 2, which is the specific case of power-law-metric
models studied in [43]. In the left panel of the figure, we
present the evolution of the fields with time for two
different r-field initial conditions—we have set the initial
value of θ to zero for simplicity and without loss of
generality.
In the early moments of cosmic evolution, and as the

Hubble friction decreases, the r field begins to move. The
figure shows that, independent of its initial value, r climbs
up the potential until it reaches a semiequilibrium value
req > r0, which varies very slowly with time. The figure
also shows that the θ field increases with time, which is
expected by the fact that the potential contains a −αθ term.
Although the exact evolution of the fields is model

dependent and can only be obtained numerically, it is

FIG. 1. Examples of polar-coordinate evolution of dark energy
fields r and θ. Here, we have assumed a power-law field-space
metric with p ¼ 2 and a potential of the form (29). The two
trajectories shown in the left plot correspond to two different (and
arbitrary) initial conditions rini ¼ 0.2r0 and rini ¼ 8r0, both of
which converge toward the analytic semiequilibrium value req
given by Eq. (39). The colored dots indicate where we are today.
The right plot shows the trajectory of the fields as they roll down
the potential. For better visualization in the left plot, we have
divided the θ field by 30. We have set V0 ¼ 2.19H2

0,
α ¼ 2 × 10−3H2

0, m ¼ 50H0, and r0 ¼ 7 × 10−4 in both plots.

2This is not an exhaustive study of all two-field models; see
[41,42,47] for other examples of cosmologically viable choices of
f and V.

3From now on, we set MPl ¼ 1.

COSMOLOGICAL DYNAMICS OF MULTIFIELD DARK ENERGY PHYS. REV. D 106, 023512 (2022)

023512-5



possible to find an analytical approximation to the semi-
equilibrium value req by using Eqs. (9)–(11) and assuming
that dark energy has almost fully dominated the matter
fields, i.e., Ωϕ ≈ 1. By assuming r ≈ req, or equivalently
xr ≈ 0, Eqs. (9) and (11) then lead to two simple equations
for xθ,

xθ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

k1 þ k2

s
; ð31Þ

xθ ≈ −
1ffiffiffi
6

p k3: ð32Þ

Here, we have additionally assumed x0r ≈ 0, y0 ≈ 0, wm ≈ 0
(as matter fields are nonrelativistic at late times and in the
future) and Ωm ≈ 0 (as dark energy is fully dominant); the
latter in combination with Eq. (14) implies y2 ≈ 1 − x2θ,
which we have used in deriving Eqs. (31) and (32). These
assumptions are valid for a large class of interesting
cosmological solutions as they are equivalent to the
justified assumption that the kinetic contributions to the
total energy of dark energy fields are much smaller than
the contribution from the potential, i.e., xr ≪ y and xθ ≪ y.
Equation (31) can also be written as

xθ ≈

ffiffiffiffiffi
k2
k1

s
y; ð33Þ

which means that the conditions k2 ≪ k1 and y ≈ 1 are
equivalent. These approximations are then valid as long as
xθ ≪ 1, in which case Eq. (15) implies that wϕ ≈ −1.
Without assuming k2 ≪ k1, and therefore neglecting k2 in
the denominator of Eq. (31), the equation for req would be
cumbersome. Here, we therefore restrict ourselves to
cosmological solutions with wϕ ≈ −1 and assume

xθ ≈
ffiffiffiffiffiffiffiffiffiffiffi
k2=k1

p
: ð34Þ

We will check the validity of this approximation for the
parameter choices we make in obtaining our numerical
solutions and will comment on cases where the approxi-
mation does not hold.
By combining Eqs. (32) and (34) and using Eq. (13) for

k1, k2, and k3, we obtain the approximate equation

ðreq − r0Þ3 þ
2

m2
ðV0 − αθÞðreq − r0Þ ¼

α2

3m4

frðreqÞ
fðreqÞ2

ð35Þ

for a general field-space metric fðrÞ and the potential (29).
In addition to providing an analytical way to find an
approximate value for the semiequilibrium quantity req,
Eq. (35) also helps us better understand the cosmological
dynamics and important features of our models.

Let us start with the turning rateΩ given by Eqs. (19) and
(21). Assuming r is almost constant, i.e., r ≈ req, we can
neglect the _r and ̈r terms in Eqs. (7) and (21), the
combination of which then gives

Ω2 ¼ frðreqÞ
2fðreqÞ

VrðreqÞ ¼
frðreqÞ
2fðreqÞ

m2ðreq − r0Þ: ð36Þ

Here, we have assumed that fðrÞ is positive, which is
necessary for avoiding ghost instabilities, as fðrÞmultiplies
one of the kinetic terms in the action (1). Since Ω2 is
in general either zero or positive, we must require
ðreq − r0ÞfrðreqÞ ≥ 0. As a nonzero (and sufficiently large)
turning rate Ω (for which Ω=H ≫ 1) is required for the
turning solutions we are seeking, req must be different than
r0, so the field r is pushed away from its VEV, r0. There is
clearly a large family of fðrÞ which provide nonzero values
for req − r0. Additionally, Eq. (35) tells us that in order for
any real, nonzero solution req − r0 to exist, frðreqÞ has to
have the same sign as req − r0. This means that the
requirement ðreq − r0ÞfrðreqÞ > 0 (for Ω ≠ 0) is always
satisfied, independently of the form of fðrÞ.
Focusing now on the power-law metric, fðrÞ ¼ rp, and

assuming that req ≫ r0, Eq. (35) becomes

rpþ4
eq þ 2ðV0 − αθÞ

m2
rpþ2
eq ¼ pα2

3m4
: ð37Þ

This equation cannot be solved for a general p, but we can
find an approximate analytic expression for req in certain
cases. Let us write Eq. (37) as

rpþ2
eq

�
r2eq þ

2ðV0 − αθÞ
m2

�
¼ pα2

3m4
; ð38Þ

which immediately tells us that if r2eq ≪ 2ðV0 − αθÞ=m2,
then

req ≈
�

pα2

6m2ðV0 − αθÞ
� 1

pþ2

: ð39Þ

The formula (39) therefore provides a good approximation
for the semiequilibrium value req if

�
pα2

6m2ðV0 − αθÞ
� 2

pþ2

≪
2ðV0 − αθÞ

m2
: ð40Þ

For the example we have presented in Fig. 1, we have
shown both the exact numerical solution and the approxi-
mate semiequilibrium value req calculated using Eq. (39).
The figure shows excellent agreement between the numeri-
cal solution and req for the two representative r-field initial
conditions, and we have checked that the condition (40) is
satisfied for the set of parameter values we have chosen for
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that example. In general, our numerical analysis shows that
αθ ≪ V0 over the entire cosmic history for a large set of
parameter values, and therefore, if the parameters of a
model satisfy the condition (40) for θ ¼ 0 (i.e., the initial
value of θ), then the condition is also satisfied at later times.
Since θ increases with time, V0 and αθ eventually become
comparable, but this does not happen in the past or even in
the near future for the set of parameter values considered in
this paper. One should, however, note that even though the
condition (40) and, consequently, the expression (39) are
valid for the entire history, req slowly increases with time as
the quantity V0 − αθ in the denominator of Eq. (39)
decreases. We will see this slight change in the value of
req for some of the cases we study later in this paper.
Finally, the expression (39) also shows that in order to have
a positive req, p must be positive since it appears in the
numerator of the expression.
The other interesting quantity to study is the dark energy

equation of state wϕ. By combining Eq. (15) and the
approximate equation (33), we obtain

wϕ ¼ k2 − k1
k2 þ k1

¼ −1þ 2

�
1þ fr

f
V
Vr

�
−1
; ð41Þ

where we have also used Eqs. (13) for k1 and k2 in terms of
the field-space metric function fðrÞ, the potential V, and
their derivatives with respect to r. We know that today wϕ is
close to −1, and we expect it to stay close to −1 as dark
energy fully dominates, i.e., as Ωϕ → 1. By requiring the
equation of state to be close to −1when the r field is almost
at its equilibrium value req, Eq. (41) leads to the condition

frðreqÞ
fðreqÞ

�
V0 − αθ

m2ðreq − r0Þ
þ 1

2
ðreq − r0Þ

�
≫ 1 ð42Þ

for the potential (29). Rewriting this in terms of the turning
rate of Eq. (36), we obtain

�
frðreqÞ
fðreqÞ

�
2 V0 − αθ

2Ω2
þ Ω2

m2
≫ 1; ð43Þ

which means that at least one of the two terms on the left-
hand side of the inequality must be large. For the power-law
metric with fðrÞ ¼ rp and by taking into account that
req ≫ r0 for the solutions we consider in our analysis,
Eq. (36) implies that

Ω2

m2
≈
p
2
: ð44Þ

This means that for the values of p that are not much larger
than 2, which are the cases we consider in this paper, the
quantity Ω2=m2 cannot be much larger than unity. The
inequality (43) then tells us that

p2

r2eq

V0 − αθ

2Ω2
≫ 1: ð45Þ

Given that V0 is of OðH2
0Þ, αθ ≪ V0, and Ω ≫ H,4 we

obtain the hierarchical inequality

1

r2eq
≫

Ω2

H2
0

≫
�
H
H0

�
2

ð46Þ

for the semiequilibrium value req and the turning rate Ω.
For the power-law field-space metric and the potential

(29), the dark energy equation of state (41) becomes

wϕ ¼ −1þ 2

1þ p
2
þ pðV0−αθÞ

m2r2eq

; ð47Þ

where we have assumed req ≫ r0. For the specific case of
p ¼ 2, we obtain

wϕ ¼ −1þ 1

1þ
ffiffi
3

p ðV0−αθÞ3=2
mα

; ð48Þ

where we have used the approximate expression (39) for
req. This analytic equation of state agrees very well with our
numerical solutions as the blue dot shows in the upper left
panel of Fig. 2, where we have depicted the evolution of the
fields for different Ωϕ and wϕ initial conditions. We have
allowed the fields to evolve for two e-folds (i.e., ΔN ¼ 2),
and the arrows indicate the directions of evolution while the
length of an arrow shows the relative distance that the fields
have moved in the Ωϕ − wϕ phase space. The plot shows
that the fields converge to the analytic semiequilibrium
equation of state (48) marked with the blue dot. Note that
the dot corresponds to θ ¼ 0 in the equation and wϕ

increases slowly over time as θ increases. For comparison,
we have also shown in the upper right panel of Fig. 2 a
phase-space evolution of the fields for the power-lawmetric
with p ¼ 3. The plot shows that the approximate wϕ of
Eq. (47) for p ¼ 3 is slightly smaller than the numerically
computed value. This can be explained by the fact that for
the chosen set of parameters in the potential the kinetic
terms xr and xθ are no longer negligible and we are
therefore not allowed to assume y ≈ 1, or equivalently
k2 ≪ k1, in Eq. (31), which we assumed in order to obtain
the analytic expression (47).

4Note that this condition of Ω being large is required for steep
potentials to provide viable late-time cosmic acceleration and
consequently satisfy the de Sitter swampland condition (see
Secs. II B and III C); otherwise, there are choices of parameters
for each model with which the potential is shallow, Ω is small,
and the de Sitter condition is consequently not satisfied. In these
cases, the models reduce, effectively, to single-field quintessence
and can still provide viable cosmic acceleration.
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The equation of state (47) can also be used to place
analytic bounds on some of the parameters of the potential.
Let us first consider the specific case of p ¼ 2 for which the
equation of state takes the form (48). We require that the
denominator of the equation be large so that wϕ ≈ −1. We
find numerically that V0 is always close to the cosmological
constant value of ∼2.19H2

0 (assuming Ωϕ ≈ 0.7 today),
which is due to the fact that the fields are not allowed to
substantially move until dark energy begins to dominate.
The assumption wϕ ≈ −1 then results in the condition

αmffiffiffi
3

p
V3=2
0

≪ 1 ð49Þ

for p ¼ 2. Given that V0 ∼ 2H2
0 in order for the cosmo-

logical solutions to describe the observed evolution of the
Universe, the condition (49) leads to

α

H2
0

m
H0

≪ 5: ð50Þ

More generally for any p, it is easy to show that Eqs. (39)
and (47) lead to the bound

2ðα2mpÞ 2
pþ2V

−pþ4
pþ2

0 ð36ppÞ− 1
pþ2 ≪ 1; ð51Þ

which, assuming again that V0 ∼ 2H2
0, leads to the simple

condition

α

H2
0

�
m
H0

�
p=2

≪ 2
ffiffiffi
3

p
pp=4: ð52Þ

Our numerical studies confirm this analytical result as
shown in Fig. 3, where we present different numerically

FIG. 2. Phase-space diagrams for the evolution of dark energy
fields in terms of the dark energy fractional density parameter Ωϕ

and equation of state wϕ for the power-law field-space metric
with p ¼ 2 and p ¼ 3. Here, we have obtained the initial
conditions for xθ and y from Ωϕ and wϕ, while we have set
xr ¼ 0 initially. The arrows indicate in which directions the fields
have traveled during one e-fold and not the instant directions of
motion. They therefore show the averaged behavior of the fields
rather than the (oscillating) instantaneous behavior. Each upper
panel is the zoomed version of the red box in the corresponding
lower panel, and the blue dots show the approximate analytic
solutions given by the combination of Eqs. (39) and (47) with
θ ¼ 0. We have set V0 ¼ 2.19H2

0, α ¼ 2 × 10−3H2
0, and r0 ¼

7 × 10−4 for both p ¼ 2 and p ¼ 3, while m ¼ 50H0 for p ¼ 2
and m ¼ 30H0 for p ¼ 3.

FIG. 3. Qualitative exclusion plots for parameters α, m, and p
of the potential (29) and the power-law field-space metric. The
dark red regions correspond to parameter values which do not
provide cosmological solutions consistent with observations of the
current phase of the cosmic evolutionwhereΩϕ ≈ 0.7 andwϕ ≈ −1
today, while the parameter values in the dark orange regions violate
the de Sitter condition (24) with c ¼ 0.5 as a representative Oð1Þ
value. The light gray region shows the parameter values for which
the speed of sound of the light mode of linear cosmological
perturbations becomes imaginary at some point during the cosmic
history and the perturbations are therefore plagued by gradient
instabilities. We have set α ¼ 2 × 10−3H2

0 in the upper panel and
p ¼ 2 in the lower panel, while V0 ¼ 2.19H2

0 and r0 ¼ 7 × 10−4

for both panels. The gray solid curve in the lower panel corresponds
to values of α and m which satisfy αm ¼ ffiffiffi

3
p

V3=2
0 , showing the

analytically obtained bound (49). The black dots A and B show the
two sets of benchmark parameter values which we have used in
Figs. 11 and 12 for the perturbative analysis of the models with a
power-law metric.
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obtained constraints on different parameters of models with
a power-law metric. The dark red regions show the
excluded parts of the parameter space for which dark
energy does not evolve similarly to what we observe in the
Universe today, i.e., the evolution with Ωϕ ≈ 0.7 and
wϕ ≈ −1. The dark orange regions correspond to the
parameter values for which the de Sitter condition (24)
is violated for c ¼ 0.5 as a representative Oð1Þ value (see
Sec. III C for details). The remaining regions therefore
show the parameter values that are consistent with both
cosmological observations and the de Sitter condition. We
have additionally presented in the lower panel of the figure
the αm ¼ ffiffiffi

3
p

V3=2
0 curve demonstrating that our numeri-

cally obtained cosmologically viable parameter values all
respect the bound (49), as the white region is located well
below the curve.
It is important to note that Fig. 3 is only a qualitative

representation of how the parameter space of a model can
be constrained by observational and theoretical consider-
ations, and precise constraints can only be provided
through a rigorous statistical exploration of the parameter
space. Figure 3, however, provides a useful illustration of
how the dark energy models we study in this paper can be
strongly constrained when a combination of theoretical and
observational constraints is considered.
It is also interesting to know how the evolution of scalar

fields depends on different initial conditions. In Fig. 4, we
again show phase-space diagrams for the power-law field-
space metric in terms of Ωϕ and wϕ, as we did in Fig. 2.
Here, however, we only show, for each diagram, two
cosmic trajectories corresponding to two different sets of
initial conditions for the field velocities xr and xθ: xinir ¼
xiniθ ¼ 10−2 and xinir ¼ xiniθ ¼ 10−6. We present the dia-
grams for four cases of r0, r1, r2, and r3, and we set
θini ¼ 0, rini ¼ r0, and yini ¼ 10−5 for the initial values of
θ, r, and y. The figure shows oscillations along the
trajectories for the initial conditions xinir ¼ xiniθ ¼ 10−2.
This is because the r field oscillates while climbing up
the potential, as seen in Fig. 1 for the representative case of
r2. There are similar oscillations for the other case of
xinir ¼ xiniθ ¼ 10−5, but the oscillations are too small to be
seen in the figure. Our numerical analysis shows similar
trajectories even if one of the two quantities xinir and xiniθ is
set to zero. We also notice that each trajectory shown in
Fig. 4 converges to the analytic value of the equation of
state give by Eq. (47) for the corresponding value of p.
These asymptotic equations of state increase with time very
slowly as θ increases and falls down the potential. All these
observations suggest that for the potential (29) and the
power-law metric rp the overall evolution of the fields is
not highly sensitive to the initial conditions for _r and _θ.
Similarly, Fig. 5 shows that the evolution of the system

does not depend strongly on the initial value of r. The

figure presents the phase-space dynamics for the same
field-space metrics and values of the parameters V0, α, m,
and r0 as in Fig. 4. For each of the four diagrams
corresponding to the four metrics, we show three cosmic
trajectories for three initial values of r: 0.05r0, r0, and
100r0. In all these cases, we have set θini ¼ 0, xinir ¼ 0,
xiniθ ¼ 0, and yini ¼ 10−5 for the initial values of θ, xr, xθ,
and y. Similar to Fig. 4, here we see that even though the
exact trajectories differ for different initial values of r, all of
them converge asymptotically to Ωϕ ¼ 1 and the analytic
value of wϕ given by Eq. (47). One case which may seem to
be behaving differently is the r3 case with the small initial
value for r, i.e., the rini ¼ 0.05r0 case in the lower right
panel of Fig. 5. Our numerical analysis shows, however,
that even though Ωϕ increases much more slowly in that
case compared to the cases with rini ≥ r0, the trajectory
eventually converges to the same point in the phase space as
for the other trajectories.

FIG. 4. Examples of phase-space evolution of dark energy
fields in terms of the dark energy fractional density parameter Ωϕ

and equation of state wϕ for the power-law field-space metric
with p ¼ 0, 1, 2, 3. Each diagram shows two trajectories
corresponding to two initial values of xr and xθ. We have set
θini ¼ 0, rini ¼ r0, and yini ¼ 10−5 in all cases. We have also
assumed that cosmic evolution starts from a matter-dominated
phase, and we have set V0 ¼ 2.19H2

0, α ¼ 10−3H2
0, m ¼ 50H0,

and r0 ¼ 7 × 10−4. The dSB for each trajectory indicates the
largest value of the constant c in the swampland de Sitter
condition (24) allowed by the corresponding trajectory. The
colored dots correspond to the moments in the cosmic evolution
by which the fields have traveled the Planckian distance Δϕ ¼ 1.
Note that for p ¼ 0, r converges to its VEV r0, making the
equation of state converge to −1.
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We do not need to discuss in detail how cosmological
solutions depend on the initial value of θ, as changing θini is
simply equivalent to changing the value of the parameter V0

in the potential.

B. Hyperbolic field-space metric

We now consider a field-space metric with fðrÞ ¼ eβr

and the same potential as in the previous section, i.e., the
potential (29), and we set r0 ¼ 0 without loss of generality.
Both the metric and the potential are now Z2-symmetric,
i.e., the transformation

	
β → −β
r → −r

ð53Þ

leaves the action invariant. This means that we are allowed
to consider both positive and negative values of β. In the
rest of this paper, we assume that β is positive, but because
of the Z2 symmetry, all of our results are also valid for
negative β.
For the hyperbolic metric, Eq. (36) for the turning rate

gives

Ω2 ¼ 1

2
m2βreq; ð54Þ

where we have assumed that the r field is at its semi-
equilibrium value req, which satisfies the equation

r3eq þ
2

m2
ðV0 − αθÞreq ¼

α2

3m4
βe−βreq : ð55Þ

This equation does not have a closed-form solution for req,
but we immediately see that req is positive for positive β.
This is assuming that V0 − αθ is positive for the entire
history of the Universe, including late times where dark
energy becomes dominant. The approximate equation of
state (41) now becomes

wϕ ¼ −1þ 2

1þ β V
Vr

¼ −1þ 2

1þ β
2
req þ βðV0−αθÞ

m2req

: ð56Þ

Since here, contrary to the power-law field-space metric of
the previous section, we do not have an analytical solution
for req, we cannot provide an approximate expression for
the asymptotic dark energy equation of state similar to
Eq. (48) for the p ¼ 2 power-law metric. However, the
Ωϕ − wϕ phase-space diagrams of Fig. 6 show that the
hyperbolic metric also leads to semiattractor solutions.5 For
the examples of β ¼ 500 and β ¼ 1000 in the figure, the
asymptotic points are positioned at fwϕ ≈ −0.96;Ωϕ ≈ 1g
and fwϕ ≈ −0.99;Ωϕ ≈ 1g, respectively.
By requiring the equation of state (56) to be close to −1,

we obtain the condition

βðV0 − αθÞ
m2req

þ 1

2
βreq ≫ 1: ð57Þ

FIG. 5. As in Fig. 4, but for three different initial values of r. In
all cases we have set θini ¼ 0, xinir ¼ 0, xiniθ ¼ 0, and yini ¼ 10−5.

FIG. 6. As in Fig. 2, but for the hyperbolic field-space metric
with β ¼ 500 and β ¼ 1000. We have set V0 ¼ 2.19H2

0,
α ¼ 3H2

0, m ¼ 50H0, and r0 ¼ 0 in both cases.

5See Sec. III C for an explanation of why in the figure we have
set α to an OðH2

0Þ value.
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On the other hand, Eq. (55) implies that βreq cannot be
much larger than unity. We can see this by multiplying the
equation by β3,

ðβreqÞ3 þ
2β2

m2
ðV0 − αθÞðβreqÞ ¼

α2β4

3m4
e−βreq : ð58Þ

Now if we assume βreq ≫ 1, and given that V0 − αθ is
positive as mentioned earlier, the right-hand side of
Eq. (58) quickly tends to zero and the only real solution
for βreq will be βreq → 0, which violates our assumption of
βreq ≫ 1. Since we cannot have βreq ≫ 1, the condition
(57) then leads to the requirement

β ≫
�
m
H0

�
2

req; ð59Þ

as V0 is of OðH2
0Þ and αθ ≪ V0. By combining this

condition with the requirement that the turning rate (54)
must satisfy Ω ≫ H in order for steep potentials to provide
viable cosmic acceleration, we obtain the condition

β2 ≫
�
m
H0

�
2

βreq ≫
�
H
H0

�
2

: ð60Þ

Assuming that today (i.e., when H ¼ H0) the field r is
almost at its semiequilibrium value req, the condition (60)
leads particularly to

�
m
H0

�
2

βreq ≫ 1: ð61Þ

Since βreq cannot be much larger than unity, this condition
provides a lower bound on the mass of the r field,

m ≫ H0; ð62Þ

while the condition (60) also implies that β ≫ 1. Note that
the condition (62) comes from the assumption that Ω is
large, and therefore, in addition to being necessary for steep
potentials to work, it is also a necessary condition for the
models to satisfy the de Sitter swampland condition (24).
Our numerical results confirm this as shown in Fig. 7,
where numerically obtained constraints on different param-
eters of models with a hyperbolic metric are presented for
two cases of fixed α and β; see Fig. 3 for the description of
different exclusion regions. The dark orange regions, which
correspond to the parts of the parameter space which do not
satisfy the de Sitter condition, basically show the parameter
values which do not provide large turning rates. It is then
clear from the figure that small values ofm are excluded by
that constraint when β ≫ 1, which is in agreement with the
condition (60). The dark red region in the upper panel of
Fig. 7 also shows that for any given value ofm (and α) there

is a lower bound on the parameter β. Our numerical analysis
shows that a large value of β forces req to become small and
scale approximately as req ∝ 1=β. We show in an accom-
panying paper [58] that a large β has strong effects on the
evolution of cosmological perturbations.
As in the case of the power-law field-space metric, it is

interesting to know how the evolution of the scalar fields r
and θ depends on the initial values of r and the field
velocities xr and xθ. In Fig. 8, we present four diagrams,
each showing two Ωϕ − wϕ phase-space trajectories cor-
responding to the two sets of initial conditions xinir ¼ xiniθ ¼
10−2 and xinir ¼ xiniθ ¼ 10−6, as we did in Fig. 4 for the
power-law metric. The diagrams correspond to four cases
of β ¼ 100, β ¼ 300, β ¼ 1000, and β ¼ 3000, where we
have set θini ¼ 0, rini ¼ 0, and yini ¼ 10−5 for the initial
values of θ, r, and y. Similar to the power-law metric of the
previous section, the larger the initial values of xr and xθ,
the larger the oscillations along the trajectories caused by
oscillations in the field r. Finally, we present in Fig. 9 four
similar diagrams, each showing three phase-space trajec-
tories corresponding to the three sets of initial conditions
rini ¼ −5=β, rini ¼ 0, and rini ¼ 5=β for the field r. In all
these cases, we have set θini ¼ 0, xinir ¼ 0, xiniθ ¼ 0, and
yini ¼ 10−5 for the initial values of θ, xr, xθ, and y, as we
did in Fig. 5 for the power-law metric. Comparing Figs. 8
and 9 with Figs. 4 and 5 demonstrates that the hyperbolic
field-space metric shares many features with the power-law
metric in terms of the background evolution of dark energy
fields.

FIG. 7. As in Fig. 3, but for the hyperbolic field-space metric.
We have set α ¼ 1.5H2

0 in the upper panel and β ¼ 600 in the
lower panel. In both panels we have set V0 ¼ 2.19H2

0 and r0 ¼ 0.
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C. Swampland constraints

In this section, we study the swampland conjectures of
Sec. II B in more detail and in context of the explicit models
of power-law and hyperbolic field-space metrics with the
potential Eq. (29). We are particularly interested in the

theoretical constraints that the conjectures would place on
the parameters of the models.
Let us assume, without loss of generality, that the θ field

is initially set to zero.6 Our analysis shows that independent
of the initial value of the r field, it quickly and almost
instantly drops into its vacuum expectation value r0 before
θ moves substantially. The field r then moves up the
potential, away from its VEV and toward the semiequili-
brium value req as θ increases; see, e.g., Fig. 1 for the
examples with the power-law metric r2. This means that the
field r takes the value r0 at some point during the early
evolution of the fields and when θ ≈ 0.
It is then easy to show that for the field r sitting at its

vacuum expectation value r0, the de Sitter condition (24)
becomes

αffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
V0

≥ c ð63Þ

for any field-space metric of the form (5) with a positive
fðr; θÞ ¼ fðrÞ, and assuming V0 > 0 and θ ≈ 0.
Restricting ourselves to the classes of metrics studied in
the previous sections, the condition then becomes

r
−p

2

0

α

V0

≥ c ð64Þ

for the power-law metric, where fðrÞ ¼ rp, and

α

V0

≥ c ð65Þ

for the hyperbolic metric, where fðrÞ ¼ eβr. Note that we
have set r0 ¼ 0 for the hyperbolic metric, while we assume
0 < r0 ≪ 1 for the power-law metric, as it does not allow
r0 ¼ 0. For a V0 ofOðH2

0Þ, i.e., the order of the dark energy
scale, and a c of Oð1Þ, the condition (65) implies that α
cannot be smaller than OðH2

0Þ for the hyperbolic metric,
while the condition (64) implies that it can be arbitrarily
small for the power-law metric, as r0 can be as close to zero
as we want.
Figure 10 shows examples of how the de Sitter con-

jecture quantity j∇Vj=V, or the slope of the potential, varies
with respect to r and θ. Note that we show the curves as a
function of αθ instead of θ, as it is that combination which
appears in j∇Vj=V. We have set V0 ¼ 2.19H2

0 and m ¼
50H0 in both cases, while α ¼ 2 × 10−3H2

0 and r0 ¼ 7 ×
10−4 for the power-law metric, and α ¼ 3H2

0 and r0 ¼ 0 for
the hyperbolic metric; these are the values we used for the
examples of the previous sections. The figure shows that for
these values of the parameters, the de Sitter condition is not

FIG. 8. As in Fig. 4, but for the hyperbolic field-space metric
with β ¼ 100, β ¼ 300, β ¼ 1000, and β ¼ 3000. In all cases we
have set θini ¼ 0, rini ¼ r0, and yini ¼ 10−5. We have also set
V0 ¼ 2.19H2

0, α ¼ 3H2
0, m ¼ 50H0, and r0 ¼ 0.

FIG. 9. As in Fig. 8, but for three different initial values of r. In
all cases we have set θini ¼ 0, xinir ¼ 0, xiniθ ¼ 0, and yini ¼ 10−5.

6Any other initial values of θ are equivalent to shifts in the
parameter V0 of the potential given that the field-space metric and
therefore the kinetic terms in the action (1) are independent of θ.
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violated as long as r ≪ 10, which is guaranteed if r starts
with a small value initially. The reason is that independent
of the initial value of r, it almost instantly goes to its VEV,
r0, and then moves asymptotically toward its semiequili-
brium value req, which is much smaller than 10 in the
examples of Fig. 10. As briefly mentioned in Secs. III A
and III B, we have provided in the exclusion plots of Figs. 3
and 7 examples of the regions in the parameter space for
both power-law and hyperbolic metrics which violate the
de Sitter condition (24). These are the dark orange regions
in the figures for which we have assumed c ¼ 0.5 as a
representative example of Oð1Þ values. We discussed
some of the features of these excluded regions in
Secs. III A and III B in terms of the analytical conditions
imposed on the parameters of the models by assuming that
the turning rateΩ is much larger than the Hubble expansion
rate. Note that, as we discussed in those sections, not only is
this assumption of Ω ≫ H necessary for steep potentials to
provide desired cosmological solutions, it is also effectively
equivalent to requiring that the de Sitter swampland
condition is satisfied.
In Figs. 4, 5, 8, and 9 of the previous sections, where we

presented examples of the phase-space trajectory of dark
energy fields for different power-law and hyperbolic

metrics and for different initial conditions, we have also
provided the largest value of the constant c that is allowed
by each trajectory. These are the values labeled by “dSB”
(for de Sitter Bound) in the figures and are obtained by
computing the quantity

min

�j∇Vj
V

�
ð66Þ

over the entire field evolution of each trajectory. The figures
show that all the trajectories satisfy the de Sitter swampland
conjecture with a c ¼ Oð1Þ, except the ones corresponding
to power-law metrics with p ¼ 0 and p ¼ 1, for which
Figs. 4 and 5 show that the de Sitter condition is violated at
some point during the evolution of the fields.
In the same Figs. 4, 5, 8, and 9, we have also provided for

each trajectory in theΩϕ − wϕ phase space themoment in the
cosmic evolution by which the fields have traveled the
Planckian distance Δϕ ¼ 1, where Δϕ is defined by
Eq. (26). These moments, which are marked by colored
dots in the figures, are those beyondwhich the effective field
theory breaks down according to the swampland distance
conjecture; see Sec. II B. The figures show that for the
models studied in the previous sections, the breakdown of
the effective field theory does not happen in the near future as
Ωϕ ∼ 1 at those points, corresponding to the far future.

IV. SOUND SPEED OF LINEAR PERTURBATIONS
AND GRADIENT INSTABILITY

In this section, we investigate constraints that a simple
theoretical analysis of linear cosmological perturbations
may additionally place on our models of multifield dark
energy and their free parameters. Here, we do not intend to
perform a detailed and extensive analysis of the perturba-
tions and restrict ourselves to a regime of linear scales
where certain theoretical approximations significantly sim-
plify the analysis. We provide a rigorous and exhaustive
study of cosmological perturbations in an accompanying
paper [58] where we explore various theoretical features
and observational implications of the models for large-scale
structure surveys.
As shown in [43], in the subhorizon regime, i.e., on

comoving scales k where H2a2 ≪ k2, the cosmological
linear perturbations of the two-field dark energy models
described by the action (1) contain a light mode which
propagates with a sound speed cs given by

c2s ¼
1

1þ 4a2Ω2

M2
eff

; ð67Þ

where Meff is an effective mass given by

M2
eff ¼ a2

�
VNN −Ω2 þR

_ϕ2

2

�
: ð68Þ

FIG. 10. The de Sitter conjecture quantity j∇Vj=V as a function
of the fields r and αθ for the power-law (upper panel) and
hyperbolic (lower panel) field-space metrics, with p ¼ 2 and
β ¼ 600, respectively. The dashed vertical lines show the semi-
equilibrium value req for the r field, and the gray dashed-dotted
vertical line shows r0 ¼ 7 × 10−4 for the power-law metric. We
have set r0 ¼ 0 for the hyperbolic metric. V0 ¼ 2.19H2

0 and m ¼
50H0 in both panels. The horizontal line corresponds
to j∇Vj=V ¼ 1.
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Here, VNN ≡N aN bDaDbV, where N is the normalized
normal vector to the field-space trajectory given by

N a ¼ −
1

Ω
DtT a ¼ −

1

Ω
_ϕa

_ϕ
ð69Þ

and Da is the covariant derivative associated with the field-
space metric Gab. R is the Ricci scalar for Gab.
The linear perturbations also include a heavy mode, and

the expression (67) for the sound speed of the light mode is
valid only on scales larger than the Compton wavelength of
the heavy mode, k2 ≪ M2

effc
−2
s , where the heavy mode can

be integrated out, leading to a well-defined single-field
effective theory. Combining this theoretical constraint on
the scales with the assumption that they are subhorizon, we
can then use Eq. (67) to analytically investigate the
clustering properties of dark energy and the presence or
absence of gradient instabilities for perturbations over the
range

H2a2 ≪ k2 ≪ M2
effc

−2
s : ð70Þ

As argued in [43], since the turning rate Ω can be very
large in our multifield models, Eq. (67) implies that the
sound speed of the light mode can consequently be sup-
pressed when a2Ω2 ≫ M2

eff , and therefore, be considerably
smaller than unity, causing dark energy to cluster on scales
larger than the dark energy sound horizon.7

Let us now focus on the explicit examples of two-field
dark energy models studied in the previous sections, where
the potential is of the form (29) and the field-space metric is
either power-law or hyperbolic, with fðrÞ ¼ rp or
fðrÞ ¼ eβr, respectively. As discussed before, for appro-
priate choices of free parameters, the r field of the models
reaches a semiequilibrium value req at late times during the
cosmic evolution after which it varies slowly with time, i.e.,
_r ∼ 0. It is easy to show that in this limit

VNN ≈ VrrðreqÞ; ð71Þ

_ϕ2 ≈ fðreqÞ_θ2 ≈ 2
fðreqÞ
frðreqÞ

VrðreqÞ; ð72Þ

where we have used the definition (18) for _ϕ2 and the r-
field equation of motion (7). Using these approximations
for VNN and _ϕ2, as well as Eq. (36) for Ω2, we obtain an
approximate analytic form for M2

eff,

M2
eff ≈ a2

�
Vrr −

1

2

fr
f
Vr þR

f
fr

Vr

�




r¼req

; ð73Þ

where the field-space Ricci scalar R is

R ¼ −
1

f

�
frr −

1

2

f2r
f

�
: ð74Þ

Given that

R ¼ −
pðp − 2Þ

2r2
ð75Þ

for the power-law field-space metric, Eq. (73) reduces to
the simple expression

M2
eff ≈ a2m2

�
2 − pþ r0

req
ðp − 1Þ

�
; ð76Þ

which results in the approximate sound speed

c2s ≈
2 − pþ ðp − 1Þ r0

req

2þ p − ðpþ 1Þ r0
req

; ð77Þ

where we have again used Eq. (36) for Ω2. As we discussed
in Sec. III A, for a wide range of parameter values with
desired cosmic evolution, req ≫ r0, which then leads to a
further simplification of the sound speed for power-law
metrics,

c2s ≈
2 − p
2þ p

: ð78Þ

As expected, for p ¼ 0, i.e., the trivially flat field-space
metric, cs ≈ 1, while for the p ¼ 2 case, i.e., the second
(and only other) flat metric, the sound speed is close to
zero, showing that dark energy clusters on subhorizon
scales. We also see that for p > 2 (negative curvature) the
quantity c2s is negative at late times and remains negative in
the future, signaling a gradient instability. The sound speed
squared is always positive for p < 2 (positive curvature).
Note, again, that all these statements are valid only for
parameter values for which req ≫ r0. In the upper panel of
Fig. 11, we show the exact, numerically obtained c2s for two
representative cases of p ¼ 1.8 (for p < 2) and p ¼ 2.3
(for p > 2) as a function of the number of e-folds N, with
N ¼ 0 corresponding to the present time, as well as the
approximate analytic values given by Eq. (77) in combi-
nation with the value of req obtained from Eq. (35).
The figure shows that the exact values of c2s converge to
the analytic approximate values. This is expected as the
analytic values are valid only when the field r has reached
its semiequilibrium value req. The figure shows, however,
that after reaching this value, c2s continues to evolve and
deviates from req, although very slowly. This is because
Eq. (35) for req depends on θ, which increases with time.
This increase in θ then leads to slow changes in req as time

7Note that this sound horizon is not the same as the cosmo-
logical horizon and can be much smaller than that, leading to dark
energy clustering at observable subhorizon scales.
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goes by. We also notice that c2s is always positive for
p ¼ 1.8, while it is negative at late times and in the future
for p ¼ 2.3. Our numerical analysis shows that in both
cases the semiequilibrium values of c2s are in excellent
agreement with the values given by Eq. (77). As for
Eq. (78), however, the values it provides agree with those
given by Eq. (77) only for p ¼ 2.3 and not for p ¼ 1.8. As
expected, this is due to the fact that r0=req is not very small
for the latter case, and therefore, contributes significantly to
c2s ; we have confirmed this numerically. Finally, the
observation that c2s becomes negative at late times for
the p ¼ 2.3 case (and stays negative) implies that this
specific example is plagued by gradient instabilities and
therefore does not provide a theoretically viable cosmo-
logical evolution. In order to see how excluding solutions
with gradient instabilities further constrains the parameter
space of a given model, we add to the exclusion plots of
Fig. 3 a region in light gray which corresponds to parameter

combinations for which the sound speed squared becomes
negative at least once during the cosmic history, i.e., before
the present time. The upper panel of the figure shows that
this happens only for p > 2, which is in agreement with the
approximate Eqs. (77) and (78).
For the hyperbolic field-space metric, we have

R ¼ −
1

2
β2; ð79Þ

which results in

M2
eff ≈ a2m2ð1 − βreqÞ; ð80Þ

where we have set r0 ¼ 0 and again assumed that the r field
is at its semiequilibrium value req. Using this value forM2

eff

and the value of Ω2 given by Eqs. (54) and (67) for the
sound speed gives

c2s ¼
1 − βreq
1þ βreq

: ð81Þ

As discussed in Sec. III B, βreq can be smaller or larger
(although not much larger) than unity. In the latter case of
βreq > 1, Eq. (81) then implies that the hyperbolic metric
leads to a negative c2s for the light mode once r has taken its
semiequilibrium value req. We show in the lower panel of
Fig. 11 two examples of the time evolution of c2s for the
hyperbolic metric. The β ¼ 600 case is an example of
βreq > 1 (as βreq ¼ 2.35) while βreq < 1 for the β ¼ 1500

case (as βreq ¼ 0.93). The figure shows that for the smaller
value of β (i.e., β ¼ 600), c2s becomes negative at some
point in the past and stays negative after that, which is
consistent with the negative semiequilibrium value
(∼ − 0.4) given by Eq. (81). For the β ¼ 1500 case,
however, the sound speed squared is positive for the entire
cosmic history and approaches the (positive) semiequili-
brium value (∼0.036) at a point in the future. It is important
to note that c2s continues to evolve after that point, deviating
more and more from the value shown by the dashed
horizontal line in the figure, and eventually becomes
negative. That is because, as we discussed earlier for
power-law metrics, the semiequilibrium value of c2s shown
in the figure is based on the value of req computed at θ ∼ 0,
and since θ increases with time and Eq. (35) depends on θ,
the value of req also changes with time (although slowly for
a large part of the parameter space) forcing the semi-
equilibrium value of c2s to change as well. The β ¼ 1500
case is therefore an example of cosmological solutions for
which a negative sound speed squared occurs in the future
and the light mode does not show any gradient instabilities
over the cosmic history. Even though the existence of future
gradient instabilities for a cosmological model may mean
that it is theoretically unviable or at least less favored, we

FIG. 11. Time evolution of the sound speed of cosmological
linear perturbations (for the light propagating mode) in terms of
the number of e-folds N for power-law (upper panel) and
hyperbolic (lower panel) field-space metrics with different values
of p and β (N ¼ 0 corresponds to the present time). The solid
curves show the exact, numerically computed values of c2s , while
the corresponding dashed horizontal lines show the analytic
approximations to the quantities computed at the semiequilibrium
values req of the r field, i.e., Eq. (77) for the upper panel and
Eq. (81) for the lower panel. Upper panel: m ¼ 400H0 and
m ¼ 50H0 for p ¼ 1.8 and p ¼ 2.3, respectively, while α ¼
2 × 10−3H2

0 and r0 ¼ 7 × 10−4 for both cases. Lower panel: m ¼
50H0 and m ¼ 400H0 for β ¼ 600 and β ¼ 1000, respectively,
while V0 ¼ 2.19H2

0, α ¼ 1.5H2
0, and r0 ¼ 0 for both cases.

These parameter sets are all marked with letters A, B, C, and
D in Figs. 3 and 7.
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do not make a definite statement here on this and leave the
interpretation of these results to the reader. Similar to the
case of power-law metrics, we show in the exclusion plots
of Fig. 7 how the presence of gradient instabilities (i.e.,
negative values of c2s ) in the past places further theoretical
constraints on the parameter space of a given model with a
hyperbolic field-space metric. This has been shown by the
two light gray regions in both panels of Fig. 7.
Even though we discussed the constraints a negative c2s

can place on our dark energy models and their parameters,
it is important to remember that Eq. (67) and consequently
Eqs. (77) and (81) are approximate and valid only over the
ranges of comoving scales given by the condition (70),
which becomes

H2a2 ≪ k2 ≪ a2m2
�
pþ 2 −

r0
req

ðpþ 1Þ
�

ð82Þ

for power-law metrics and

H2a2 ≪ k2 ≪ a2m2ð1þ βreqÞ ð83Þ

for hyperbolic metrics. This means that if for a set of
parameters no scales satisfy these conditions, then a
negative c2s obtained from Eq. (67) does not exclude that
parameter set. For the scales which do not satisfy the
conditions, our approximate analytic expressions for the
sound speed are not valid, and one then needs to solve the
exact perturbation equations in order to numerically obtain
the sound speed. Given that the terms inside the parentheses
on the right-hand sides of (82) and (83) are of Oð1Þ, it is
effectively the mass parameter m that determines which
modes Eqs. (77) and (81) are valid for. The larger the value
of m, the wider the range of scales for which Eqs. (77) and
(81) hold. In Fig. 12, we show ranges of scales k as a
function of N which satisfy (70) for the examples of
Fig. 11. The solid and dashed curves in each case
correspond, respectively, to the upper and lower bounds
jMeff=csj andHa. The shaded regions then show the values
of k which satisfy (70) at a given time, meaning that
Eq. (67) is valid only for those values of k at that time.8 We
have marked the four cases of Figs. 11 and 12 in the
exclusion plots of Figs. 3 and 7 by letters A and B for the
power-law metrics (corresponding to p ¼ 2.3 and p ¼ 1.8,
respectively) and letters C and D for the hyperbolic metrics
(corresponding to β ¼ 600 and β ¼ 1500, respectively).
We have deliberately chosen one small and one large value
for the parameter m in each case, so that we illustrate the
effect of m on the width of the k range. As both panels of
Fig. 12 demonstrates, the ranges of scales for the

benchmark points B and D (with larger values of m) are
wider compared to those for A and B with smaller values of
m, as expected.

V. CONCLUSIONS

In this paper we have studied in detail cosmological
dynamics of the models of multifield dark energy proposed
in [43], where a number of scalar fields evolve along highly
nongeodesic or “spinning” trajectories in field space. We
have particularly focused on models with two scalar fields,
which we have called r and θ. We have assumed the field r
to be contributing to the potential energy through a simple
quadratic function and a mass parameter of order of tens or
hundreds of the Hubble constant. The other field, θ,
contributes to the potential through a linear function which
breaks the Uð1Þ symmetry of the potential. We have
additionally assumed that the field-space metric Gab is
diagonal with Grr ¼ 1 and Gθθ ¼ fðrÞ, i.e., a function only
of r. Contrary to the simple example presented in [43],
where the field-space metric is assumed to be flat with fðrÞ
of quadratic form r2, here we have allowed the function to
be of a power-law form rp or a hyperbolic form eβr, where
p and β are arbitrary parameters.

FIG. 12. Ranges of scales k for which the approximate analytic
expression (67) for the sound speed of the light mode of
cosmological linear perturbations is valid, i.e., values of k which
satisfy the condition H2a2 ≪ k2 ≪ M2

effc
−2
s . These ranges are

shown as functions of the number of e-folds N, where N ¼ 0
corresponds to the present time. The upper and lower panels
correspond to power-law and hyperbolic metrics, respectively,
and the parameters of the models are set to the same values used
in Fig. 11. These are marked with letters A, B, C, and D in Figs. 3
and 7.

8In drawing the validity regions of Fig. 12, we have assumed
50H2a2 < k2 < 50M2

effc
−2
s .
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Through an extensive phase-space analysis of the cos-
mological equations of motion at the background level, we
have shown that not only do these classes of multifield dark
energy models provide observationally viable cosmological
dynamics, they are also theoretically appealing as the
solutions satisfy a number of quantum-gravity-based con-
jectures (such as the de Sitter and distance swampland
conjectures) for low-energy effective field theories describ-
ing the late-time universe. In particular, we have demon-
strated that, for a well-motivated and large range of initial
values of the fields and their derivatives, the models are
able to provide accelerating solutions consistent with the
present phase of the cosmic evolution, which are largely
independent of the initial conditions. These solutions
behave nearly as attractors even though the equations of
motion in general do not form a closed autonomous
dynamical system. We have illustrated this behavior
through an extensive numerical analysis of models with
different values of parameters for both the potential and the
field-space metrics. We have also derived, for both power-
law and hyperbolic metrics, a large number of approximate
analytic equations, conditions, and expressions for different
quantities, and demonstrated that they agree very well with
the exact numerical results. We have proved, in particular,
that for a wide range of models and parameters, and
independently of initial conditions, the field r quickly
reaches a semiequilibrium value req which changes with
time only slowly after that, allowing us to describe the
entire cosmic history with a set of simple approximate
equations. We have provided approximate (and simple)
analytic forms for this semiequilibrium value req, as well as
the turning rate Ω and the dark energy equation of state wϕ.
We have additionally investigated what constraints vari-

ous theoretical and observational requirements would place
on the models and their free parameters. We have done this
through a combination of analytical and numerical analyses.
We have shown, particularly, that the requirement ofwϕ and
Ωϕ (the dark energy fractional density parameter) being
close to−1 and 0.7 today, respectively, highly constrains the
parameter space of a given model. We have also demon-
strated that the additional requirement that Ω ≫ H at all
times, with H the Hubble expansion rate, which is a
necessary condition for steep potentials to provide viable
cosmic acceleration, further constrains the parameters. This
latter condition is also required for the de Sitter swampland
bounds to be satisfied. Our conclusion therefore is that large
parts of the parameter space exist for both power-law and
hyperbolic field-space metrics which provide cosmological
solutions consistent with both observational viability
requirements and theoretically desired conditions.
Finally, we have briefly analyzed linear cosmological

perturbations in our multifield dark energy models by
focusing on the light mode of the perturbations in the
regime where the scales are (1) subhorizon and (2) larger
than the Compton wavelength of the heavy mode. We have

studied the sound speed of perturbations over this range of
scales through both numerically solving the equations and
approximating analytic expressions for the sound speed.
We have computed these quantities both for power-law and
hyperbolic metrics and for different sets of parameters, and
we have demonstrated that they all agree. We have shown
that for certain choices of parameter values, the sound
speed squared of the light mode becomes negative at some
point in the past or in the future, which implies that the
perturbations are plagued by gradient instabilities. We have
shown how the requirement that such instabilities do not
happen, at least over the cosmic history, further constrains
the parameters of the models.
In summary, we have performed in this paper a detailed

investigation of the dynamical properties of nongeodesic
multifield dark energy models through a combination of
analytical and numerical analyses and by studying, in
detail, a simple but well-motivated and rich class of such
models. We have shown how a combination of observa-
tional and theoretical requirements can easily be satisfied
by the models while constraining their free parameters.
The next step in the analysis of these models is to

investigate them and explore their parameters (1) beyond
the background level and the approximations made about
the cosmological perturbations, (2) by obtaining predic-
tions of the models for different cosmological observables,
and (3) by performing an extensive and rigorous statistical
analysis of the models and exploring their parameter spaces
by confronting them with various observational data. It is
particularly expected, as discussed in this paper and shown
in [43], that these models, in spite of being largely
indistinguishable from the standard ΛCDM model at the
background level, result in dark energy clustering on
subhorizon scales and therefore lead to an enhanced growth
of large-scale structure. This statistical analysis of the
models where dark energy clustering is studied extensively
with the objective of identifying potential observational
signatures is the subject of an accompanying paper [58].
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