© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
2019 IEEE/ACM International Conference on Technical Debt (TechDebt)

Identifying Scalability Debt in Open Systems

Geir Kjetil Hanssen

Gunnar Brataas

Antonio Martini

SINTEF Digital T SH:iI;ll" EF Dl\llgltal Department of Informatics
Trondheim, Norway ronb ?@m} " ofrway University of Oslo, Norway
ghanssen@sintef.no gubragsintel.no antonima@jifi.uio.no

Abstract—Architectural technical debt can be generated by
changes in the business and the environment of an
organization. In this paper, we emphasize the change in
scalability requirements due to new regulations. Scalability is
the ability of a system to handle an increased workload. For
complex systems that are abruptly exposed via open interfaces
and hence a greater workload, the scalability requirements
may quickly increase, leading to technical debt. We term this
scalability debt. This paper describes scalability triage, a light-
weight, novel technique for identifying scalability threats as a
form of technical debt. We illustrate this technique with an
open banking case from a large software organization. Open
banking is partly caused by the new European PSD2 regulative
that enforce banks to open interfaces to unknown third-party
actors. Banking systems are well-established, mature systems.
However, with the advent of open banking and PSD2, the
workload may quickly rocket. This leads to tougher scalability
requirements and accumulated architectural debt, despite
previously sound architectural decisions. Using scalability
triage, such risks may be identified fast. It will then be possible
to prevent this form of technical debt with timely
reengineering.

Keywords—agile develop t,
scalability triage, open banking

scalability requirements,

L INTRODUCTION

Architectural technical debt (ATD) can be avoided by an
upfront design or careful maintenance of the system.
However, recent research suggests that part of the ATD
might be unknown and impossible to predict at the time of
major architectural decisions [1]. For example, such ATD
might be accrued by the evolution of requirements and other
business or technological factors that are external to
companies. However, although a few studies on ATD have
been conducted [2], it is still challenging to avoid or timely
tackle ATD that is not accumulated by a strategic decision,
but it is accrued as a result of an external event that is outside
of control for the organization.

In this paper we consider ATD originating from stricter
scalability requirements following an abrupt opening of
interfaces to a system that has previously been under control.
Scalability is defined as the ability of a system to increase its
capacity by consuming more resources. When these (legacy)
systems were designed, scalability was sufficient, but
because of an increased expected workload, scalability
requirements became tougher and this has led to ATD. We
term the presence of ATD related to scalability as scalability
debt, a sub-category of ATD, and define scalability debt as:
“Architectural technical debt originating by tougher
scalability requirements because of substantial changes in the
business (environment)”.

Our goals in this paper are: (1) To advocate for the
necessity to study novel and lightweight approaches to
manage scalability debt in open systems. And, (2) To provide

a first preliminary study of a lightweight analysis method
that can support managing scalability debt in open systems.

The subsequent RQ is: How can we identify, estimate and
prioritize scalability debt in open systems?

We have followed a case where a large banking software
provider, named BankTech in this paper, now are facing
scalability threats caused by new European regulations — the
PSD2 directive which enforce all banks and related financial
institutions to offer APIs to enable third-parties to build new
FinTech solutions. This represents an abrupt change in the
systems external environment. The goal of this new
regulation is to strengthen the open European market and to
enable new and better solutions for the end users. In this
case, it may lead to a much higher pressure on existing
banking systems in cases of many new third-party providers.

Through our case study we have found that such
disruptive changes in the external environment of mature
legacy systems, such as banking systems, may reveal
technical debt in the form of scalability requirements, for
systems, which previously have been well-known and under
control. This control has been based on a very good
overview of who the users are and how- and how-much they
are using the system — this situation is now becoming highly
uncertain and imposes a risk of failing scalability, which
again would be bad for business, and eventually may lead to
substantial fines from regulatory bank organizations.

Our underlying assumption is that scalability analysis
both during design as well as scalability testing is time-
consuming and costly. Especially in a setting where time-to-
market is an important competitive factor, speed is essential.
We therefore need a simple and fast technique where we
capture scalability risks early. This gives focus on the
scalability analysis task and as a result, this overwhelming
task becomes manageable.

We share insights on a light-weight scalability-risk
analysis technique that was developed to identify and
estimate the impact of potential scalability debt fast and to
prioritize necessary changes to the system as early as
possible. We provide insights into the technique and early
results that will guide further investigations.

II. SCALABILITY

Capacity is the maximum workload a system can handle
while still fulfilling its quality thresholds. Scalability is
defined as the ability of a system to increase its capacity by
consuming more resources [3-5]. Capacity and scalability
again build on the following categories of scalability
requirements:

o Planning horizon. Decide how long into the future you
want to explore the scalability of your system, e.g., 2 or 5
years from now on?

This is the accepted version of the publication. The final version is published in
2019 IEEE/ACM International Conference on Technical Debt (TechDebt)
https://doi.org/10.1109/TechDebt.2019.00014

o System boundaries. Specify the services and corresponding
resources within the system boundaries, which should be
included when measuring the quality of the system.

o Operations. Identify unique ways of interacting with the
system, e.g., functions, calls, transactions, queries, and
jobs, such as a payments or balance transaction.

o Quality metrics. Define precisely how to measure a certain
performance quality. A typical metric in our domain is the
90th percentile of response times.

e Quality thresholds. Describe the boundary between
acceptable and non-acceptable quality for each operation,
using a quality metric, e.g., 1 second for the 90th percentile
of response times.

Work. Characterize what is done each time we invoke an
operation and eventually determine resource demands for
this operation. Work is related to the amount of data to be
processed, stored, or communicated. We are interested in
the highest values for the work parameters, which typically
occur towards the end of the planning horizon.

Burstiness. Estimate the fraction of peak load to average
load during a given period. For example, a burstiness of 3
for the hours of a day, means that in the busy hour, the load
is three times the average load during a day.

Load. Describe how often an operation is invoked. For an
open system, load is determined by an arrival rate, e.g.,
transactions per second. In a closed system, load is
captured in terms of the number of end-users and their
average think time. We are interested in the highest load
values, i.e., load in the busiest hour, in the busiest day, in
the busiest week, and in the busiest year in our planning
horizon.

Workload. The product of work and load.

Critical operations. Operations where the product of work
and load has a risk of not fulfilling the quality thresholds.

Resources. Specify cloud and/or hardware resources:
CPUss, disks, and networks. Software license costs are also
part of the resources.

Data consistency. Describe how up-to-date different
replicas should be. Since replication is the key pattern for
achieving scalability, strict consistency requirements will
make it much harder to achieve a given level of scalability.

Unless a system is embarrassingly parallelizable, it will
generally be too costly to make a completely scalable
system. In other words, gold plating is not a good strategy.
When demand for scalability increases and the system is not
designed to support such demands, the system automatically
accrues scalability debt. Scalability requirements have been
mentioned in [6] and [12] when evaluating ATD, although
without referring to specific sub-requirements.

III. OPEN BANKING AND PSD2

Both open banking and PSD2 (Payment Service
Directive 2) are related to “fintech”. The focus of PSD2 is
for the bank to open up their services to third party providers
(TPP). All providers which are authorized by a national
financial body in Europe can become a TPP. PSD2 requires
some open services from all banks, for example, payment
and balance. Open banking is independent of PSD2. Open
banking may go beyond this to also open up other services.
PSD2 will be in effect from March 2019, starting with a six-
months trial period.

It is important to know that TPPs need approval from
customers, not from banks. Many customers have accounts
in several banks. TPPs may offer a great variety of financial
services, for example, financial guides explaining what
money has been spent on. By getting approval from
customers, these TPPs will also get access to customer data.

As part of PSD2, the quality for the TPPs using an open
interface should be the same as for own customers using a
closed interface. This quality requirement applies both to the
response times and to freshness of the data (consistency).
This means that even with high load because of many
customers accepting TPPs, banks still have to provide
acceptable response times. When a new TPP, for example, a
part of Facebook, becomes popular, this may happen quite
fast, in contrast to the quite modest and controllable load
increase which, until now, has been the norm in financial
services. This may therefore lead to abrupt increases in
scalability debt.

IV. CASE AND CONTEXT

BankTech is a PSD2 provider for customers in the
Nordic region. The system that has been scrutinized in this
case, is a large banking system, being used by multiple banks
and financial institutions, serving a large number of users,
initiating a very large number of transactions on a regular
basis with known peak periods such as e.g. paycheck days,
Christmas shopping, etc. The system is naturally highly
business critical where performance, and hereof scalability is
a fundamental quality parameter. Consequently, scalability
debt is of high relevance in this domain and can have a large
impact.

The system can be seen as a typical three-tier solution,
with external interfaces — typically to banks, a middle-layer
offering services for payments, credit cards, fraud detection,
etc. The lower tier is the core system, holding all accounts
and transaction history.

The usage patterns and usage frequencies of the system is
well known today, where new and unknown use via TPPs
being identified as a major challenge that needs to be better
understood and controlled. Hence, the need for a fast
approach to identify potential scalability debt.

V. METHOD

BankTech started a collaboration with the authors in May
2018. At that time, it was evident that a better understanding
was required of the potential impact on existing systems and
that a too high increase in requests via TPPs could challenge
the scalability and potentially become an unacceptable risk.

Given the tight timeline, a lightweight and fast risk
analysis was needed to better identify scalability debt and its
impact emerging from an increased external load to prepare
for the potential increase.

We describe the method that was developed and used
together with BankTech as a novel lightweight approach to
identify scalability debt. The method consists of an analysis
carried out in 3 stages, explained in the following sections.
The descriptions are kept high-level to make them applicable
to other domains and cases.

VI. STAGE 1: SCALABILITY TRIAGE

Scalability debt needs to be identified, estimated and
prioritized. We found that the best way forward was to
prioritize first the areas of the system that would more likely
cause a large impact if affected by scalability debt due to
increased load from external TPPs. The first step would
therefore limit the in-depth analysis of debt and impact to a
prioritized set of operations, instead of analyzing the whole
system and prioritizing the outcome afterwards, which could
turn out to be very time consuming. For this first step, we
used a scalability triage.

A scalability triage is an expert group meeting with the
objective of identifying vulnerable/critical parts of the
system [4]. The concept of a triage is borrowed from
emergency medicine where a doctor quickly determines
whether a person requires immediate treatment or can wait.
In the same manner — for an operation of a system — it
becomes critical if at least one of the following conditions is
true:

1. The operation affects functionality, which already has a
scalability risk.

2. The operation invokes considerable processing, storage, or
communication.

3. We may coarsely classify work and load as small, medium,
and large, and quality thresholds as loose, medium, or
tough. If the relation between them seems nontrivial, we
have a scalability risk.

In this informal step, work, load, and quality thresholds are
not specified in detail but are deliberately kept high-level to
enable discussions among experts. Therefore, considerable

expertise is required.

A team of two researchers and three core roles at
BankTech (solution architect, head of non-functional testing,
and responsible for system development processes) analyzed
an overall architectural model of the system showing existing
and new (TPP) interfaces, various components such as fraud
detection, payments, and the core system, holding the
updated account information. The model also showed new
interface components that are needed to manage PSD2.

We started with a high-level architectural diagram
showing the main parts of the system, their components, and
how they interact. Based on this internal document, we
quickly identified a set of 10 potential operations that may be
initiated by TPPs. Each operation was described in the term
of work, load, and response threshold. Work and load were
classified either as Low (L), Medium (M) or High (H). These
values were identified collectively by a group of experts.
Diverging views were resolved through discussions, leading
to collective expert judgements [7].

Through a scalability triage, estimates were made based
on expert judgements from the internal core roles. Operations
with Work and Load set as H/H were classified as critical.
The team identified three such operations. The reduction
from ten to three operations may seem minor, but in practice,
this reduction turned the problem of identifying debt and
impact by finding more detailed requirements from an
overwhelming exercise into a manageable task. For the three

critical operations, we conducted a more comprehensive
analysis using the scenarios described in the next section.

VII. STAGE 2: ADDRESSING AFFECTED SUBSYSTEMS

Once the three operations that were more likely to
contain dangerous scalability debt were prioritized, we
proceeded to localize the debt with respect to the affected
sub-systems. Several internal subsystems internal to
BankTech will be affected by PSD2. After speaking to
representatives from four of these systems, we got the
following basic insights:

(1) They wait for the PSD2-project to give them
requirements. (2) They expect the initial workload from
PSD2 to be minor, so that they have time to adjust. (3) Some
of the PSD2 workload will simply replace existing workload.
(4) For other PSD2 operations, the workload will increase.
(5) PSD2 workload is uncertain, and to be prepared, they
assumed strict scalability requirements.

As a result, we had to get closer in finding the
requirements, as described in the next section.

VIII. STAGE 3: ESTIMATING IMPACT

The third step was to estimate the impact of the
scalability debt. First of all, if the architecture does not
support the scalability requirements as anticipated, then the
banks may likely incur fines for not complying with the
PSD2 requirements. This can generate quite a lot of interest
(extra-costs) because of the identified scalability debt. The
impact was calculated with different scenarios in mind, as
explained below.

To build a better understanding, BankTech and the
researchers made a simple estimation model in the form of a
spreadsheet containing generic and operation-specific
variables. Examples of generic variables are number of TPP
apps in use per customer, number of accounts in use per
customer, etc. Then — for each of the three critical operations
that were identified — specific estimates for burstiness and
maximum requests were made. These estimates were based
on real BankTech traffic data. These generic and specific
input parameters were then used to calculate expected load
for each operation.

The workload might increase in three ways:

1. More banks as customers, which gives a corresponding
increase in load. BankTech has quite good overview
over this.

2. New TPPs give increased workload on the system of
BankTechs clients. This is harder to estimate.

3. The operations become more demanding, leading to
more work. This was not analyzed.

As the uncertainty is very high — but with potentially
severe consequences, the impact estimation describes three
scenarios; ‘realistic’, ‘possible’, and ‘extreme’:

e Realistic: This reflects the current customer base. When the
predicted number of end-users of BankTech’s customers
start to use TPP solutions, then we will reach the realistic
scenario. This is likely to happen approximately one year
after September 2019, when PSD2 should be in operation.

e Possible: BankTech gets more banks as customers, and in
addition one of the large players, e.g. Facebook, becomes a

TPP. Also, a larger part of the customers use TPP
solutions.

e Extreme: BankTech’s banks get two of the big players in
the market as TPPs. In addition, even more of the
customers will use the TPP solutions.

Our understanding of the existing scalability debt was
developed through a series of 17 short meetings with a
variety of roles in BankTechs organization. The spreadsheet
reflecting this understanding became a very efficient tool to
guide discussions, balance viewpoints, and immediately
show estimates. The evolving spreadsheet also made it
possible to recruit new experts as they found it useful. In the
later meetings, the model sparked discussions on what could
be acceptable levels regarding scalability and performance.
Based on the parameters in the spreadsheet, we estimated
load on the three critical operation for the three different
scenarios. We used coloring to visualize the impact of
scalability debt:

e Green: no or low impact (interest) is estimated to be
generated because of scalability debt

¢ Yellow: some impact is caused by existing scalability debt;
something which should be investigated further.

¢ Red: large impact due to scalability debt; something which
now was outside of the capabilities of the system, but
which could be possible to handle with careful
consideration and good planning.

The resulting spreadsheet was used as a lightweight
documentation of the existing scalability debt and its interest
to be paid, caused by the potential increase in new external
load.

IX. DISCUSSIONS

In this section, we will discuss the process we have done
and the result we have obtained. We also try to flesh out
what can be considered more generalizable than the specific
case analyzed here.

A. The need of a lightweight approach

Based on the open bank case, we gather the following

reflections:

1. Altogether, we have now spent 32 expert BankTech
hours in 17 meetings, so that a bit less than two
BankTech experts attended each meeting, lasting
approximately one hour. This is therefore, a light-weight
and fast technique. Keeping it light-weight makes it
easier to get access to key personnel and to organize
more meetings to evolve the analysis.

2. Initially, we focused on prioritizing the areas that were
more prone to scalability debt by getting a deep
understanding together with one BankTech expert. Later,
we involved more colleagues, before we lately have had
meetings with the affected sub systems. In this way, we
started out with a few internal persons from the case,
then developed the simple model, which got attention
from others, which then was involved to detail estimates.
Through this snowballing-line approach, we have at least
ensured that the key roles and experts have been
involved and that experience covering most aspects of
the solution have been captured and balanced. This
approach enabled us to identify key personnel and
experts along the way, which was initially hard to

identify. We also saw that the analysis gained more
attention and traction over time, especially when we
could trace who had been involved in the organization.

Although we do not have data yet to validate the precision
of the estimates and priorities that were made, we do see
that such a light-weight process gained attention in the
organization from the easy start with one person. After a
short period of time, the results are now being used by
BankTech to guide their preparations to manage scalability
when PSD2 comes into effect.

B. Other aspects of ATD

In this paper, we report a method related to scalability
triage, a lightweight technique assisting primarily on
identification, estimation and prioritization of ATD in the
form of scalability debt. Other aspects of ATD are relevant,
although not covered in this paper, and should be addressed
in future studies:

o Measurement: to gather additional evidence related to the
scalability debt, we are about to compare expected
scalability requirements with actual capabilities.

® Monitoring: the approach described here can be done in an
iterative fashion, following Agile principles. We are
working with the integration of this method with agile
practices [4].

e Prioritization: the scalability triage described here
highlights, which parts of the system have the most risk of
impact due to scalability debt, which helps prioritizing the
parts of the systems to be analyzed and refactored.
However, technical debt prioritization should also involve
the comparison and ranking of scalability debt with respect
to the development of other features or other types of ATD.

e Repayment: the cost of refactoring scalability debt is also
an important parameter to be studied to understand if
scalability debt should be fixed or not.

e Communication and documentation: in this approach, the
main scalability debt documentation was a spreadsheet.
However, the documentation may be improved with the
design of a better tool which would make the triage and its
iteration more efficient.

C. Open Systems generate unpredictable (scalability) debt

Digitalization brings new challenges for software
development, with the transformation of previously
independent applications with locked in data and business
processes. “Open systems” are part of a complex ecosystem
and therefore cannot be considered isolated anymore.
Requirements are shared from many different parties, and the
presence of a collection of heterogeneous applications makes
it hard to plan such a complex landscape of independent
applications upfront. For technical debt, this is a new
challenge, and it might become increasingly difficult to avoid
it with upfront design decisions. Open banking is a large
example, but there are many more, for example, open
systems based on transport data.

During design, functionalities and features get most
attention. However, in this case we show how analysis of
accumulating technical debt (in this case related to
scalability) is the key to avoid a huge impact in the future.
With our scalability triage technique, we report a practical
approach that supports the management of scalability debt. In

addition, our method is lightweight, although based on expert
opinion. In the investigated case, the method was used to do
an analysis over a discrete period, but may also be part of a
continuous development process.

X. STATE OF THE ART

Architectural debt is regarded as sub-optimal
architectural solutions [8]. In practice, there is ATD when the
architectural tradeoff among qualities is not optimal with
respect to business goals. A holistic method to tackle ATD
was proposed by [9] by taking in consideration several
factors affected by the ATD, such as development speed,
defects and other qualities. However, in such a holistic
method, scalability has been taken in consideration as a high-
level factor with an overall score, without proposing an in-
depth analysis. ATD is well known to affect maintainability
and evolvability of a system, as reported in the official
definition of technical debt [10]. Also, several studies are
related to the study of ATD with respect to structural issues
of the code. A quantification for such issues and their impact
on maintainability and evolvability is reported via the study
structural metrics and their negative impact (e.g. [11]).
However, recent research suggests that other qualities might
be affected by ATD, such as performance [12] reusability,
etc. [13]. In addition, scalability has been found to be a
critical quality to be addressed when removing technical debt
before the growth of startups [14]. Declining scalability is
reported as a sign of technical debt [15]. In conclusion,
although scalability is considered a key quality affected by
technical debt, scalability debt has not been studied
explicitly.

A recent study focused on taking scalability as input to
compute the interest of Technical Debt in a cloud-based
architecture using real options [6]. Such an approach is based
on architects monitoring a service and proposing a change in
the architecture based on a suboptimal solution such as the
complexity of such service. Then, the approach computes if
such architectural change is convenient according to value
and cost of refactoring in different paths. In our study, we do
not necessarily refer to cloud-based applications, and we
propose to start from the analysis of the most critical
operations for the business, which aims at identifying and
prioritizing the ATD with respect to the risk of paying the
interest. The subsequent evaluation of the ATD has not been
studied yet, and could involve an approach such as the one
proposed by the authors in [6] if suitable.

XI. CONCLUSIONS AND FURTHER WORK

In this paper, we have studied architectural technical debt
specifically related to scalability, which we call scalability
debt. We presented a case related to open systems (open
banking), where uncertainty causes scalability debt to be
acquired continuously. We argue that, in such systems, a
continuous and lightweight approach to manage scalability
debt is required. We report a lightweight method used in an
open banking organization to identify, estimate and
prioritize scalability debt. Such method consists of three
phases, an initial triage to prioritize the areas with more
likely impact due to scalability debt, a second phase where
the debt is assessed in different affected subsystems and a
third phase where the impact (interest) of the debt is
calculated according to three scenarios. Different thresholds

and colors were used to document and communicate the
scalability debt and its impact to stakeholders. A feature of
the approach is the way it involved experts in the
organization, starting with a few core experts, attracting
more attention and more experts and key roles as the
analysis grows and the risks are being identified. The results
can be taken into consideration by practitioners when
dealing with scalability debt and may be used as starting
point to develop the method presented here further or to
research novel lightweight approaches to manage technical
debt related to other key business qualities.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the Norwegian Research Council under grant #256669
(ScrumScale). We thank BankTech for a generous
cooperation leading to the insights shared in this paper. In
respect for the business critically of scalability debt in
BankTech, exact numbers for scalability requirements are
not shared in this paper.

REFERENCES

[1] A. Martini, J. Bosch, and M. Chaudron, "Investigating Architectural
Technical Debt accumulation and refactoring over time: A multiple-
case study," Information and Software Technology, vol. 67, pp. 237-
253,2015.

[2] T. Besker, A. Martini, and J. Bosch, "Managing architectural technical
debt: A unified model and systematic literature review," Journal of’
Systems and Software, vol. 135, pp. 1-16, 2018.

[3] S. Becker, G. Brataas, and S. Lehrig, Engineering Scalable, Elastic,
and Cost-Efficient Cloud Computing Applications: The CloudScale
Method. Springer, 2017.

[4] G. Brataas, G. K. Hanssen, and G. Rader, "Towards Agile Scalability
Engineering," in International Conference on Agile Software
Development, 2018, pp. 248-255: Springer.

[5] G. Brataas, N. Herbst, S. Ivansek, and J. Polutnik, "Scalability
Analysis of Cloud Software Services," in Autonomic Computing
(ICAC), 2017 IEEE International Conference on, 2017, pp. 285-292.

[6] E. Alzaghoul and R. Bahsoon, "Evaluating technical debt in cloud-
based architectures using real options," in 2014 23rd Australian
Software Engineering Conference, 2014, pp. 1-10: IEEE.

[7]1 M. Jorgensen, B. Boehm, and S. Rifkin, "Software development effort
estimation: Formal models or expert judgment?," IEEE software, vol.
26, no. 2, pp. 14-19, 2009.

[8] Z.Li, P. Avgeriou, and P. Liang, "A systematic mapping study on
technical debt and its management," Journal of Systems and Software,
vol. 101, pp. 193-220, 2015.

[9]1 A. Martini and J. Bosch, "An empirically developed method to aid
decisions on architectural technical debt refactoring: AnaConDebt," in
2016 IEEE/ACM 38th International Conference on Software
Engineering Companion (ICSE-C), 2016, pp. 31-40: IEEE.

[10]P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, "Managing
technical debt in software engineering (dagstuhl seminar 16162)," in
Dagstuhl Reports, 2016, vol. 6, no. 4: Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

[11]R. Kazman ef al., "A case study in locating the architectural roots of
technical debt," in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, 2015, vol. 2, pp. 179-188: IEEE.

[12]U. Eliasson, A. Martini, R. Kaufmann, and S. Odeh, "Identifying and
visualizing Architectural Debt and its efficiency interest in the
automotive domain: A case study," in 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD), 2015, pp. 33-40:
IEEE.

[13]T. Besker, A. Martini, and J. Bosch, "Time to Pay Up: Technical Debt
from a Software Quality Perspective," in CIbSE, 2017, pp. 235-248.

[14]T. Besker, A. Martini, R. E. Lokuge, K. Blincoe, and J. Bosch,
"Embracing Technical Debt, from a Startup Company Perspective," in
2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2018, pp. 415-425: IEEE.

[15]E. Tom, A. Aurum, and R. Vidgen, "An exploration of technical debt,"
Journal of Systems and Software, vol. 86, no. 6, pp. 1498-1516, 2013.

