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Abstract

Not being able to price the illiquidity costs of a portfolio can often be an
expensive gambit for investors. Yet, mathematical models of illiquidity are
rare in the literature. The object of this thesis is to explore the discrete-time
illiquidity framework of both Christodoulou [Chr20] and Schweizer et al. [LPS98]
to understand the impact of illiquidity under various market regimes. Secondly,
we will add the illiquidity framework to unit-linked insurance, and finally, we
will explore if the conclusions of Schweizer et al. [LPS98] hold under a non-linear
supply curve. We found that the illiquidity cost in the model of Christodoulou
[Chr20] was influenced by the length to maturity of the derivative, the size of
the illiquidity parameter ϵ, and the amount of stock purchased. Additionally,
we found that the illiquidity cost was subject to a desaturation point and we
succeeded in expanding the model of Schweizer et al. [LPS98] to a non-linear
supply curve. The results of this thesis apply to a broad class of trading
strategies and our findings can be used to find the behavior and bounds of an
illiquid trading strategy.
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CHAPTER 1

Introduction

Oscar Wilde defined a cynic as “A man who knows the price of everything and
the value of nothing”. The aim of a financial mathematician should then be to
become halfway cynical, since much of the discipline is devoted to finding the
correct market price.

This thesis is taking aim at pricing illiquidity risk. Illiquidity is loosely
speaking when a stock incurs a cost when sold at a particular point. This
can be due to various reasons such as the market being saturated with the
given stock, a liquidity squeeze making money less available etc. The risk of
illiquidity impacts the price of an asset and must somehow be estimated such
that investors are compensated fairly when buying on markets with illiquidity.

Specially, this thesis will investigate hedging methods in incomplete markets,
then move on to summarize important results from the discrete-time model
introduced by Schweizer et al.[LPS98] and expanded on by Christodoulou
[Chr20]. Then we will investigate the behavior of illiquidity given by the model
developed by Christodoulou under various assumptions and lastly we will expand
the model to a non-linear supply curve and see which assumptions of Schweizer
are still valid.

We found an explicit representation of the value process under illiquidity,
created a numerical method to calculate the illiquidity cost, incorporated this
method into a unit-linked policy and finally we managed to expand Schweizer
et al.[LPS98] linear supply curve model into a the non-linear setting.
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CHAPTER 2

Mathematical prerequisites

Before diving into the topic of the paper, we make a short pit stop and equip
ourselves with some useful mathematical concepts.

2.1 Measure theory

We start in the realm of measure theory. Measure theory is a field of mathematics
exploring the concept of a measure. A measure gives a formalization of the
concepts of length, area and volume. Measures form the foundation of probability
theory and integration theory which are corner stones of stochastic equations.

σ-algebra

Let A be a set. The σ-algebra on A, called A, is a non-empty collection of
subsets of A, which satisfy the following three conditions:

1. ∅ ∈ A.

2. If B ∈ A, then Bc ∈ A.

3. If B1, B2, B3, ... ∈ A, and Bc = A \B, then ∪nBn ∈ A.

Then smallest σ-algebra is defined as {Ω, ∅} and the largest is of order 2N

also known as the power set.
See [Dam07].

Measure

Let A be a σ-algebra on a set A. A measure is a function µ : A → [0,+∞] if
and only if it satisfied the following conditions:

1. Null empty set: µ(∅) = 0.

2. σ-additivity: For n ≥ 1, if Bn is a sequence of disjoint subsets in A, then
µ(∪nBn) =

∑
n µ(Bn).

A probability measure is a mapping P : A → [0, 1] for,

1. P(∅) = 0.

2. P(Ω) = 1.

2



2.2. Stochastic analysis

3. For disjoint events Bn of the subsets of A the P (∪∞
n=1Bn) =

∑
n≥1 P (Bn).

See [Dam07].

Discrete probability space

A probability space (Ω,A,P) is discrete if and only if:

1. Ω is finite or countably infinite.

2. The σ-algebra is a collection of subsets of Ω.

3. The probability measure is defined for every subset of Ω st. P (A) =∑
ωA
P (ω) and

∑
ω∈Ω P (ω = 1).

The discrete probability space is the sum of probability measure of singletons.
See [Dup].

Borel σ-algebra

The Borel σ-algebra on R, noted by B(R), is the σ-algebra generated by open
sets in R, or equivalently by open intervals (a, b) of R.

Similarly the Borel σ-algebra on Rn, noted by σ-algebra on Rn, is the
σ-algebra generated by the sets

∏n
i=1(ai, bi) of Rn. See [Dup].

Measurable function

Let (X,A) and (Y,Σ) be two measurable spaces. Where X and Y are two
measurable sets equipped with the σ-algebras A and Σ respectively. A subset
B ∈ Σ, and a function f : X → Y is measurable if

f−1(B) = {x ∈ X|f(x) ∈ B} ∈ A for all B ∈ Σ. (2.1)

See [Dup].

2.2 Stochastic analysis

Stochastic analysis allows one to understand stochastic dynamics and models
which will be important in the later sections.

Stochastic process

A stochastic process describes how a variable changes over time due in part to
some random variation.

Formally speaking: Let T ≠ ∅ be an index set (e.g. T = [0,∞) time interval).
Then a collection of random variables {Xt}t∈T is called a stochastic process
with parameter space T.

Filtration

A filtration is a family of σ-algebras on a measurable space.
Given a (Ω,F , P ) be a probability space. A filtration Fn is an increasing

sequence of σ-algebras of F , such that Ft ∈ F and t1 ≤ t2 → Ft1 ⊆ Ft2 .
See [Dam07].
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2.2. Stochastic analysis

Predictable process

Let (Fn)n∈N be a filtration. The process (Xn)n∈N is a predictable process for
the filtration if X0 is F0 measurable and Xn is Fn−1 measurable for all n > 0.

In other words: By knowing the value of the process at a previous time we
also know its value at a future time such that given Xn+1 ∈ Fn and Xn is a
predictable process we have

E[Xn+1|Fn] = Xn+1. (2.2)

See [Dam07].

Adapted process

The process {Xt}t∈N is adapted to the filtration {Ft}t∈N if the random variable
Xt : Ω → S is a (Ft,A)-measurable function for each t ∈ N with respect to the
measurable space (S,A).

Informally speaking the adapted process cannot see into the future and
cannot reveal more information than the σ-algebra. See [Dam07].

Stopping time

Loosely speaking a stopping time is a rule that decides whether a process
continues or stops on the basis of its present position and past events.

Specifically, let τ be a random variable, which is defined on the filtered
probability space (Ω,F , (Ft)t∈T , P ). τ is called a stopping time when {τ ≤
t} ∈ Ft for all t ∈ T . See [Dam07].

Martingale

A martingale is the mathematical way of describing a fair money game in the
sense that if we play this game and want to estimate how much money we will
have in the future, our best guess is simply how much money we have now. So
the expected value of each game is 0. Mathematically we define it as follows:

A Stochastic process, defined on a filtered probability space
(Ω,F , {⊔}t∈T , P ), Y : T × Ω → S with values in a separable Banach space S is
a martingale if

1. Y is adapted to the filtration F such that for each t ∈ T the random
variable Yt is a Ft-measurable function.

2. For each t, Yt lies in L1 space i.e.

E1(|Yt|) < +∞.

3. For all s and t where s < t and for all F ∈ Fs,

E1([Yt − Ys]1F ) = 0,

where 1F is the indicator function of the event F.

In discrete-time the conditional expected value of the next observation, given
all past observations is equal to the most recent observation i.e.

E(Xn+1|X1, ..., Xn) = Xn. (2.3)

See [Dam07].
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2.2. Stochastic analysis

Super- and Submartingale

A supermartingale is a stochastic process {Xn;n ≥ 1} satisfies the relations

E[|Xn|] < ∞; E[Xn|Xn−1, Xn−2, ..., X1] ≤ Xn−1; n ≥ 1. (2.4)

A submartingale is a stochastic process {Xn;n ≥ 1} satisfies the relations

E[|Xn|] < ∞; E[Xn|Xn−1, Xn−2, ..., X1] ≥ Xn−1; n ≥ 1. (2.5)

See [Dam07].

Local martingale

Given a probability space (Ω,F , P ), let F∗ = {Ft}t≥0 be a filtration on F . Let
X : [0,∞)×Ω → S be a stochastic process with values in S. Then X is called an
F∗-local martingale if there exist a sequence of F∗-stopping time τk : Ω → [0,∞)
such that

1. The τk’s are almost surely increasing: P (τk ≤ τk+1) = 1.

2. The τk diverges almost surely: P (limk→∞τk = ∞) = 1.

3. the stopped process
Xτk

t := Xmin(t,τk)

is an F∗-martingale for every k.

See [Dam07].

Semimartingale

A real valued process X on a filtered probability space (Ω,F , (Ft)t≥0, P ) is a
semimartingale if it can be decomposed as

Xt = Mt +At, (2.6)

where M is a local martingale and A is a càdlàg adapted process of locally
bounded variation. See [Dam07].

Doobs decomposition

Let (Xn,Fn)n∈N be a submartingale. Then the doobs decomposition of Xn is
given by

Xn = X0 +Mn +An, (2.7)

where An =
∑n

k=1 E[Xk −Xk−1|Fk−1] and is a increasing predictable process
and Mn = Xn −X0 −An is a martingale. See [Dam07].
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2.2. Stochastic analysis

Martingale representation theorem

The Martingale representation theorem states that a random variable that
is square integrable functional of a Brownian motion can be expressed as
an itô integral with respect to that Brownian motion. Let {Bt}t≥0 be a
Brownian motion on a filtered probability space (Ω,F , {Ft}t≥0, P ) and let Gt

be a complete and right continuous filtration generated by B. Let X be a square
integrable random variable that is measurable with respect to G∞, then there
exists a predictable process C, which is adapted to Gt such that

X = E[X] +
∫ ∞

0
CsdBs. (2.8)

See [Dam07].

Discrete-time processes

A discrete-time financial model considers financial assets at a finite number of
time points, which may be unrealistic in markets where price changes occur so
frequently that the discrete model cannot follow the moves.

Consider a finite probability space (Ω,F ,P) with a filtration {Fn}1≥n≥N .
The market consist of (d+1) assets, whose prices are positive random

variables S0
n, S

1
n, ..., S

d
n at a time n. These random variables are measurable

with respect to {Fn}1≥n≥N . See [Dam07].

Continuous-time processes

Let (A, δ) be a measurable space, then a continuous-time stochastic process
with a state space (A, δ) is a set (Xt)t∈R+ of random variables on a probability
space (Ω,A,P) with values in (A, δ).

An important precondition for the Black-Scholes model is a continuous-time
process. See [Dam07].

Brownian motion

A Brownian motion is a stochastic process (Bt)t≥0 defined on a probability
space (Ω,A, P ) with the following properties:

1. B0 = 0.

2. The path (t 7→ Bt) is continuous in t with probability 1.

3. The process (Bt)t≥0 has stationary and independent increments.

4. The increment Bt+1 −Bt is normally distributed with mean 0 and variance
1.

Independent increments means that increments of random variables are jointly
independent. While stationary increments means that the distribution of
Bt+1 −Bt = B1 is the same as B1 −B0 = B1.

The Brownian motion is often used to model random stock movements and
drunk people walking. See [Dam07].
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2.2. Stochastic analysis

Geometric Brownian motion

A process St, t ≥ 1 is a geometric Brownian motion (or exponential Brownian
motion) with drift µ and volatility σ if it can be written as

St = S0exp(µt+ σWt), t ∈ R+, (2.9)

where W is a standard Brownian motion.
Note that the law of a geometric Brownian motion is not actually Gaussian.

Instead the random variable St is lognormally distributed with mean µt and
variance σ2t. Such that it is only its relative increments that are stationary and
independent ie.

Stn − Stn−1

Stn−1

,
Stn−1 − Stn−2

Stn−2

, ...,
St1 − St0

St0

, 0 ≤ t0 < t1 < ... < tn, (2.10)

are stationary and independent. This is the same as saying

Stn

Stn−1

,
Stn−1

Stn−2

, ...,
St1

St0

0 ≤ t0 < t1 < ... < tn, (2.11)

furthermore, the log-returns

log( Stn

Stn−1

), log(
Stn−1

Stn−2

), ..., log(St1

St0

) 0 ≤ t0 < t1 < ... < tn, (2.12)

are stationary and independent. Additionally, the law of St

Ss
with s < t is

lognormal distributed with parameters µ(t− s) and σ2(t− s) and the law of
log( St

Ss
),s < t is normally distributed with N (µ(t− s), σ2(t− s))

This process is often used to model stock prices, a prominent application is
the famous/infamous Black-Scholes theory of option pricing. See [Dam07].

Option pricing for geometric Brownian motion

If we consider a European call option with expiration date t = T , at a strike
price K; the payoff will be CT = (S(T ) − K)+. Assume that the stock price
follows a geometric Brownian motion and we work in continuous-time.

The discounted price of an option with expiration date t = n is given by the
discounted expected value

C0 = 1
(1 + r)n

E∗(Sn −K)+, (2.13)

where E∗ is the expected value under a risk-neutral probability measure P .
Under a risk neutral measure the expected value of the stock equals the risk-free
interest rate r, i.e. E(S1) = (1 + r)S0. That is to say that the discounted stock
price is the "fair" price and form a martingale. Another way to write this is

C0 = e−rTE∗(S(T ) −K)+. (2.14)

See [Uni].
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2.2. Stochastic analysis

Risk-neutral measure with respect to S(t)

One often wants to have the price only in terms of the price of the stock and
not by the risk preferences of the people in the market. This is where the risk
neutral measure can help, since it adjusts the current value of the stock such
that it is worth the present value of the expected future returns on that stock.
Formally speaking: Let S(t) = S0e

X(t), where X(t) = µt+σB(t) is a Brownian
motion. We find new values for µ and σ (calling them µ∗,σ∗), where the pricing
is "fair" such that e−rtS(t) forms a martingale and E(S(t)) = ertS0. We have
that E(S(t)) = ertS0, where r = µ+ σ2/2 so we need to have

µ+ σ2/2 = r. (2.15)

This occurs when σ∗ = σ, but changing the drift term µ to

µ∗ = r − σ2/2. (2.16)

Which can be called the risk-neutral drift. In effect we are replacing S(t) by its
risk neutral version such that S∗(t) = S0e

X∗(t), where

X∗(t) = µ∗t+ σB(t) = (r − σ2/2)t+ σB(t), (2.17)

and then

C0 = e−rTE∗(S(T ) −K)+

= e−rTE(S(T )∗ −K)+

= e−rTE(S0e
(r−σ2/2)T +σB(T ) −K)+,

(2.18)

such that the price only depends on the real variance term σ2. See [Uni].

Equivalent measures

Consider a probability space (Ω,F). Two probability measures P and Q are
equivalent on F if

P(A) = 0 ⇔ Q(A) = 0, ∀A ∈ F .

See [NIE].

Rodyn-Nikodym theorem

Rodyn-Nikodym theorem states that P (A) = 0 → Q(A) = 0, ∀A ∈ F only
occurs if and only if there exists an F -measurable mapping ϵ : Ω → [0,∞) such
that ∫

A

dQ(w) =
∫

A

ϵ(w)dP(w),∀A ∈ F . (2.19)

The above can be written as ϵ = dQ/dP , ϵ is called the likelihood ratio between
P and Q or the Radon-Nikodym derivative. Some useful consequences of this
theorem are:

1. For any random variable X on L1(Ω,F ,Q) : EQ[X] = EP [ϵX] and likewise
EQ[ϵ−1X] = EP [X].

8



2.2. Stochastic analysis

2. Assume Q is absolutely continuous w.r.t. P on F and that G ⊆ F , then
the likelihood ratios ϵF and ϵG are connected through ϵG = E[ϵF |G].

3. Assume X is a random variable on (Ω,F ,P) and let Q be another measure
on (Ω,F) with Radon-Nikodym derivative ϵ = dQ/dP on F . Assume now
X ∈ L1(Ω,F , P ) and let G ⊆ F then

EQ[X|G] = EP [ϵX|G]
EP [ϵ|G] ,Q − a.s. (2.20)

See [NIE].

Girsanov’s Theorem

Suppose Bt, 0 ≥ t ≥ T is defined on some probability space (Ω,F , P ) is a
Brownian motion with respect to the filtration (Ft, t ≥ 0), and let (µ(t), t ≥ 0)
be adapted. If there exists

B(t) = B(t) +
∫ t

0
µ(u)du, (2.21)

and

Z(t) = exp(−
∫ t

0
µ(u)dB(u) − 1

2

∫ t

0
µ(u)2du), Z = Z(T ). (2.22)

Suppose that Zt, 0 ≥ t ≥ T is a martingale.
Then under the probability measure P with the Radon-Nikodym density

dP
dP = Z the process (B, t ∈ [0, T ]) is a standard Brownian motion.

Proof: Using the Levy theorem, which states that a continuous martingale
starting at 0 and having quadratic variation equal to t for every t > 0 is a
Brownian Motion. We see that B(0) = B(0) = 0 and the quadratic variation
is ⟨B⟩(t) = t. It remains to show that B is a martingale under P . We defined
Z(t) = eX(t) where

X(t) = −
∫ t

0
µ(u)dB(u) − 1

2

∫ t

0
µ(u)2du. (2.23)

Using the Ito formula

dZ(t) = deX(t) = eX(t)(−µ(t)dB(t)−1
2µ(t)2dt)+1

2e
X(t)µ(t)2dt = −µ(t)Z(t)dB(t).

(2.24)
Which is solved by the stochastic integral

Z(t) = Z(0) −
∫ t

0
µ(u)Z(u)dB(u). (2.25)

So Z(t) is a martingale under P , since E[Z(T )] = Z(0) = 1. We assume further
that the stochastic integral is square-integrable and thus well defined.

From the martingale property we have

Z(t) = E[Z(T )|Ft] = E[Z|Ft] (2.26)

9



2.3. Life insurance mathematics

is the Radon-Nikodym derivative process.
Using the product rule d(XY ) = XdY + Y dX + dXdY we have

d(B(t)Z(t)) =B(t)dZ(t) + Z(t)dB(t) + dB(t)dZ(t)
= −B(t)µ(t)Z(t)dB(t) + Z(t)dB(t) + Z(t)µ(t)dt

+ (dB(t) + µ(t)dt)(−µ(t)Z(t)dB(t))
=(−B(t)µ(t) + 1)Z(t)dB(t).

(2.27)

Now we see that there is no drift dt-term, so B(t)Z(t) is a martingale under P .
Due to the martingale property of B(t)Z(t) under P we have for 0 ≤ s ≤

t ≤ T we have

E[B(t)|Fs] = 1
Z(s)E[B(t)Z(t)|Fs] = 1

Z(s)B(s)Z(s) = B(s). (2.28)

So B under P .
See [NIE].

Black-Scholes Model

The Black-Scholes model describes the behavior of prices in a continuous-time
setting with one risky asset (a stock with price St at time t) and a riskless asset
(with price S0

t at time t).
Suppose the riskless asset is described by the differential equation

dS0
t = rS0

t dt, (2.29)

where r is a non-negative constant. Let S0
0 = 1 and then S0

t = ert

It is assumed that the stock price is determined by the stochastic differential
equation:

dSt = St(µdt+ σdBt), (2.30)

where µ and σ are two constants and (Bt) is a Brownian motion.
We consider an interval [0, T ], where T is the terminal time of the option.

The solution to (2.30) is

St = S0exp(µt− σ2

2 t+ σBt) (2.31)

where S0 is the spot price at time 0.
A limitation of the model is that when used in discrete-time the standard

Black-Scholes hedge is no longer perfect, in the sense that the expected return
of the hedged portfolio only goes to zero in expectation and not almost surely,
such that the hedge is not perfect. See [Dam07].

2.3 Life insurance mathematics

We take a brief detour into the land of life insurance mathematics so that
we have the theoretical tools at hand to calculate the reserve of a unit linked
insurance. Later on we want to use a unit linked insurance with the value
process of christodoulou’s discrete-time framework [Chr20].

10



2.3. Life insurance mathematics

Markov process

A stochastic process X = {Xt}t∈R+ is a Markov process if

P (Xt ∈ B|σ(Xs1 , Xs2 , ..., Xsn)) = P (Xt ∈ B|σ(Xsn)), (2.32)

for all 0 ≤ s1 < s2 < ... < sn ≤ t and B ∈ B(R).
A Markov process is independent of past events given the present, such that

the process Xtn+1 at time tn+1 only remembers its last position Xtn
= in.

See [Bañ22].

Transition probability

A continuous-time Markov chain with transition probabilities is defined as

pij(s, t) = P(Xt = j|Xs = i), s ≤ t, i, j ∈ S, (2.33)

where pij(s, t) is the probability that X will be in state j at time t given that X
was in state i at a previous time s.

Discrete-time Markov chain with transition probabilities. We now evaluate
X = {Xn, n ≥ 0} in discrete-time such that we have pointwise transition rates
i.e

pij(n,m) = P [Xm = j|Xn = i], i, j ∈ S, m ≥ n. (2.34)

This framework is often used to calculate survival probabilities in a life insurance
setting.

See [Bañ22].

Chapman-Kolmogorov equation

Let {Xt}t∈J , be a Markov process and let P (s, t) = {pij(s, t)}i,j∈S be its matrix
of transition probabilities. Then

pij(s, t) =
∑
k∈S

pik(s, u)pk,j(u, t), (2.35)

for all s ≤ u ≤ t and i, j ∈ S with P(Xs = i),P(Xt = j) ̸= 0, where the
following is true

1. pij(s, t) ≥ 0

2.
∑

j∈S pij(s, t) for all i ∈ S

3. pij(s, s) = 1i=j provided that P(Xs = i) ̸= 0

See [Bañ22].

Markov process characterization

A stochastic process X = {Xt}t∈J is a Markov process if and only if

P(Xt1 = i1, ..., Xtn
= in) = P(Xt1 = i1)pi1,i2(t1, t2)pi2,i3(t2, t3)...pin−1,in

(tn−1, tn)
(2.36)

for all t1 < t2 < ... < tn ∈ J, i1, ..., in ∈ S, n ≥ 1. See [Bañ22].
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2.3. Life insurance mathematics

Transition rates

Let X = {Xt, t ∈ J} be a Markov process with finite state space S. The
transition rates µi, µij , i, j ∈ S, j ̸= i are the functions defined by

µi(t) = limh→0,h>0
1 − pii(t, t+ h)

h
, t ∈ J, i ∈ S, (2.37)

and

µij(t) = limh→0,h>0
pij(t, t+ h)

h
, t ∈ J, i ∈ S, i ̸= j, (2.38)

when they exist and are finite. See [Bañ22].

Kolmogorov equations

Assume that X = {Xt, t ∈ J} is regular, i.e. the transition rates µi, µij , t ∈
J, i ∈ S, i ̸= j exist and are continuous with respect to t, then:

1. Backward Kolmogorov equation

d

ds
pij(s, t) = µi(s)pij(s, t) −

∑
k∈S,k ̸=i

µik(s)pkj(s, t) (2.39)

2. Forward Kolmogorov equation

d

ds
pij(s, t) = µj(s)pij(s, t) +

∑
k∈S,k ̸=i

µkj(s)pik(s, t) (2.40)

See [Bañ22].

Discount factor

v : [0,∞) → [0,∞) is the discount factor defined as

v(t) = exp(−
∫ t

0
rudu), t ≥ 0, (2.41)

where r : [0,∞) → R is a deterministic integrable function modelling the interest
rate.

See [Bañ22].

Policy functions in continuous-time

Let ai, aij : [0,∞) → R, i, j ∈ S, i ̸= j be functions of bounded variation. Here
ai(t)= the accumulated payments from the insurer to the insured up to time

t, given that we know that the insured has always been in state i.
aij(t)= the punctual payments which are due when the insured switches

from state i to j at time t.
See [Bañ22].
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2.3. Life insurance mathematics

Policy functions in discrete-time

Let aP re
i , aP ost

ij : N → R, i, j ∈ S be functions. We call them policy functions
and they are defined as follows:

aP re
i = pension payment which is due at time n, given that the insured is at

time n in i,
aP ost

ij = capital benefits which are due when switching from i at time n to j
at time n+1.

See [Bañ22].

Mathematical Reserve

The mathematical reserve is the cost of the insurance for the insurance company
at each time t. It is calculated as the present value of the insurers future
obligations minus the present value of future obligations of the insured. You can
calculate the reserve for various insurance policies. The reserve can be described
in continuous-time and discrete-time where the major difference is that in the
first case we use integrals while in the latter we use sums. See [Bañ22].

Reserve formula in continuous-time

The formula for reserves in continuous-time is given by:

Vi(t, A) = 1
v(t)

∫ ∞

t

(v(s)pij(t, s)daj(s) + v(s)pij(t, s)µjk(s)ajk(s)ds, (2.42)

where the
∫ t

0 daj(s) corresponds to the accumulated liabilities while the insured
is in state j, and

∫ t

0 ajk(s)ds is the accumulated liabilities when the insurer
switches from state j to k.

See [Bañ22].

Reserve formula in discrete-time

The reserve of a stochastic cash flow is given as

Vi(t, A) = 1
v(t) [

∑
j∈S

∑
n≥t

v(n)pij(t, n)aP re
j (n)+

∑
j,k∈S,k ̸=j

∑
n≥t

v(n+1)pij(t, n)pjk(n, n+1)aP ost
jk (n)]

(2.43)
See [Bañ22].

Unit linked policy based on the Black-Scholes model

A unit linked policy is an insurance contract which is linked to the performance
of a stock market or fund. Such that the amount insurers liability corresponds
to some underlying stock.

We consider a regular Markov process X = {Xt, t ∈ [0, T ]}, T ∈ R, T > 0
with a filtration FX generated by X. The state space of X is denoted I (i.e.
the states of the insured).

Additionally, we consider a stochastic process S with the SDE-dynamics

dSt

St
= µ(t, St)dt+ σ(t, St)dWt, S0 > 0, t ∈ [0, T ], (2.44)

13



2.3. Life insurance mathematics

which we assume to have a unique strong solution, such that S is adapted to
the filtration F , i.e. St is a measurable function of Ws, s ≤ t.

Let F = {Ft}t∈[0,T ] be the filtration generated by W. Let Q denote the risk
neutral martingale measure.

Assume now that ai is differentiable almost everywhere with at most a
discontinuity at the end of the contract t = T and let ∆ai(T ) = ai(T ) − ai(T−)
be the jump caused by the discontinuity. Assume also that the functions
fi, gi, hij : [0, T ] × R → R are

∆ai(T ) = fi(T, ST ), âi(t) = gi(t, St), aij(t) = hij(t, St), t ∈ [0, T ],
(2.45)

where âi(t) is the (weak) derivative of ai(t) with respect to time.
The mathematical reserve V +

i (t, St) of the contract linked to the fund S at
time t, given that the insured is in state i at time t, is given by

V +
i (t, St) = 1

v(t) (
∑
j∈F

v(T )pij(t, T )EQ[fj(T, ST ))|Ft]

+
∑
j∈F

∫ T

t

v(s)pij(t, T )EQ[gj(s, ST )|Ft]ds

+
∑

j,k∈F,k ̸=j

∫ T

t

v(s)pij(t, T )µx
jk(s)EQ[hjk(s, Ss)|Ft])ds.

(2.46)

Further assume that S0 > 0, dBt

Bt
= rdt, B0 = 1. The fair value of a European

call option based on the Black-Scholes model is given by

EQ[e−r(T −t)(ST −K)|Ft] = N(A)St −N(B)Ke−rt, (2.47)

where

A =
ln( St

K ) + (r + σ2

2 )t
σ

√
(t)

(2.48)

B = A− σ
√
t (2.49)

and
N =

∫ x

−∞

1√
2π
e− 1

2 u2
du (2.50)

See [Bañ22].

Unit linked insurance in discrete-time

Let aP re
j (n) = fj(n, St) and aP ost

j k(n) = gjk(n, St) where fj , gjkN → R, j, k ∈ S
.

Then the mathematical reserve of a unit linked policy in discrete-time is
given by

V +
i (t, St) = 1

v(t) (
∑
j∈S

∑
n≥t

v(n)pij(t, n)EQ[fj(n, ST )|Ft]

+
∑

j,k∈S,k ̸=j

∑
n≥t

v(n+ 1)pij(t, n)pjk(n, n+ 1)EQ[gjk(n, ST )|Ft])

(2.51)

See [Bañ22].
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2.4. Financial mathematics

The equivalence principle

The equivalence principle is a method to make the present value of a policy null
as seen against the value of a premium or premiums. See [Bañ22].

2.4 Financial mathematics

We will now pass in review important theorems and definitions from financial
mathematics which will be the backbone for many of the later results.

First fundamental theorem of asset pricing

A discrete market, on a probability space (Ω,A, P ) is arbitrage free if, and only
if, there exists at least one risk neutral probability measure that is equivalent
to the original probability measure P.

See [Dam07].

Second fundamental theorem of asset pricing

An arbitrage-free market (S,B) consisting of a collection of stocks S and a
risk-free bond B is complete if and only if there exists a unique risk-neutral
measure that is equivalent to P and has numeraire B.

See [Dam07].

Self Financing Strategy

A trading strategy is said to be self-financing if

dVt = ϕtdBt + ψtdSt. (2.52)

In other words purchasing new assets can only be financed by the sale of assets
in the portfolio and not through outside infusion or withdrawal of money, i.e
the variation in the strategy value are only caused by gains/losses in the asset
price and does not depend on the fluctuations of portfolio weight.

See [Dam07].

Attainable claim

Let X be a contingent claim. X is a non-negative valued, Ft-measurable, random
variable. The contingent claim X is attainable if and only if its expected value
is the same under all equivalent martingale measures.

See [Dam07].

Arbitrage opportunity

An arbitrage opportunity arises if there exist a trading strategy φ such that

V0(φ) = 0 and VT (φ) > 0 and P [VT (φ) > 0] > 0, (2.53)

i.e., there is a strategy such that money is generated out of nothing. See
[Dam07].
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2.4. Financial mathematics

Complete market

A market is complete if every contingent claim is attainable. See [Dam07].

Incomplete market

In an incomplete market perfect risk transfer is impossible. There is no unique
martingale measure in an incomplete market and we have for any given non-
replicable claim an interval of prices that are all compatible with the no arbitrage
condition. An example of an incomplete market is when we have two sources of
randomness (stock and volatility) but only one instrument that we can use to
hedge (stock). There are more states of the world than underlying securities to
hedge them. So that you have a source of risk which cannot be gotten rid of.
See [Dam07].

Pricing in incomplete markets

We have to price the risk somehow in the incomplete market setting. Intuitively,
the more risk you take on the higher the expected return should be in excess
of the risk-free rate. We thus have to find a market price of risk. We can
introduce the concept of market price of volatility risk, which measures the
excess expected return of this unhedgeable risk. We have to create a market
pricing model which contains the market price of risk parameter, such that
the prices of all options are consistent with each other through a ’universal’
measure. See [Dam07].
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CHAPTER 3

Literature review of hedging and
pricing methods in finance

3.1 Hedging options

In this section we give an overview of some methods for pricing and hedging
options by means of a quadratic criterion. The quadratic criterion will then
later be extended to capture illiquidity effects in markets as well. The problem
of pricing and hedging can be described as follows: What price should the seller
of an option charge the buyer at time 0? and having sold the option, how can
the seller insure himself against a random loss at a time T?

To answer these questions it is useful to consider a portfolio strategy of the
form (X,Y ) = (Xt, Yt)0≤t≤T where X is a d-dimensional predictable process
and Y is adapted. Xi

t describes the number of units of asset i held at time t
and Yt is the amount invested in the riskless asset at time t. We can value the
portfolio (Xt, Yt) by

Vt = XtSt + Yt. (3.1)

The cumulative gains in the portfolio up to a time t is Gt(X) =
∫ t

0 XsdSs. It
is assumed that Gt(X) is well-defined and that S is a semimartingale. The
cumulative cost up to a time t is given by

Ct = Vt −
∫ t

0
XsdSs = Vt −Gt(X). (3.2)

The self-financing condition imply that the cumulative cost process C is constant
over time and/or the value process V is given by

Vt = V0 +
∫ t

0
XsdSs = V0 +Gt(X) = C0 +Gt(X) (3.3)

Where C0 is the initial outlay at the start of the strategy. A contingent claim
H is attainable if there exist a self-financing strategy with VT = H P-a.s. H is
then given by

H = H0 +
∫ T

0
XsdSs P-a.s., (3.4)

In a setting of incomplete markets we can give a range of possible prices for
H which are consistent with an arbitrage free market. The risk process of the
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3.1. Hedging options

portfolio φ is defined as

Rt(φ) = E[(CT (φ) − Ct(φ))2|Ft] 0 ≤ t ≤ T. (3.5)

A risk minimizing strategy (RMS) is a strategy with VT (φ) = H that also
minimized the risk process. A formal definition of RMS for a strategy φ is if
for any RMS strategy φ where VT (φ) = VT (φ) P -a.s., we have

Rt(φ) ≤ Rt(φ) P-a.s. for every t ∈ [0, T ]. (3.6)

where φ = X,Y is a perturbation of the portfolio. The intuition behind this
notion of risk minimization is that any small change in the underlying stock
should not be able to create a new risk minimizing strategy. In addition a RMS
is called mean-self-financing if its cost process C(φ) is a P -martingale. It holds
true that any RMS is also mean-self-financing. See [Sch99].

Quadratic hedging

In general a non-attainable contingent claim can by definition not be obtained
by a strategy with final value VT = H that is also self-financing. We can insist
that VT = H by a choice of YT , because Y is adapted. Since this strategy cannot
be self-financing, we have to find a "good" approximation of a self-financing
strategy by minimizing the cost process C. To this end we introduce a quadratic
criterion which measures riskiness when S is a martingale.

See [Sch99].

Locally risk-minimizing strategy

One method of quadratic hedging is local risk-minimization (LRM) in both
discrete and continuous-time. This method is somewhat narrow since it requires
the price process S to be a local P-martingale.

To exclude arbitrage opportunities it is assumed that S has an equivalent
local martingale measure (ELMM) Q, i.e., that there exists a probability measure
Q ∼ P such that S is a local Q-martingale. P is the convex set of all ELMMs
Q for S, thus P is non empty. When S is a local P-martingale we mean that
the measure P is in P.

See [Sch99].

Discrete-time framework

In this scenario trading can only occur at the dates k = 0, 1, ..., T ∈ N. At a
time k, we choose a number of shares Xk+1 being held in the period (k, k + 1]
and the amount of Yk units of riskless asset held in the period [k, k + 1). We
can determine the holdings of Xk+1 at a time k due to the predictability of X.
We further assume that S = (Sk)0,1,...,T is a square-integrable process adapted
to the filtration F = (Fk)0,1,..,T .

The portfolio φk = (Xk, Yk) at time k has as before the value Vk(φ) =
XkSk +Yk. We want to minimize risk locally so we have to consider incremental
cost of switching the portfolio from φk to φk+1. Xk+1 is chosen at time k with
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3.2. Christodoulou’s discrete-time framework for hedging in illiquid markets

a given price Sk. The incremental cost is

Ck+1(φ) − Ck(φ) =(Xk+1 −Xk)Sk + Yk+1 − Yk

=Vk+1(φ) − Vk(φ) −Xk+1(Sk+1 − Sk)
=∆Vk+1(φ) −Xk+1∆Sk+1,

(3.7)

where the difference operator ∆Uk+1 := Uk+1 − Uk for any discrete-time
stochastic process U.

The aim of local risk-minimization is to minimize E[(Ck+1(φ)−Ck(φ))2|Fk]
with respect to time k. Since the Fk-measurable term Vk(φ) does not affect the
conditional variance of the cost given Fk, we can write

E[(∆Ck+1(φ))2|Fk] =V ar[Vk+1(φ) −Xk+1∆Sk+1|Fk]
+ (E[Vk+1(φ) −Xk+1∆Sk+1|Fk] − Vk(φ))2.

(3.8)

Since the first term on the right hand side does not depend on Yk we can
optimize by choosing Yk such that

Vk(φ) = E[Vk+1(φ) −Xk+1∆Sk+1|Fk], (3.9)

which is the same as

0 = E[∆Vk+1(φ) −Xk+1∆Sk+1|Fk] = E[∆Ck+1(φ)|Fk]. (3.10)

Since VT (φ) = H is fixed we can through the use of backwards induction in
the previous equation take the value Vk+1(φ) as given. It remains to minimize
V ar[Vk+1(φ) −Xk+1∆Sk+1|Fk] with respect to the Fk-measurable Xk+1 which
is only achieved if and only if

Cov(Vk+1(φ) −Xk+1∆Sk+1,∆Sk+1|Fk) = 0. (3.11)

We can use the Doobs decomposition of S to write it as a martingale M and
a predictable process A such that M0 = 0 = A0, ∆Ak+1 = E[∆Sk+1|Fk] and
∆Mk+1 = ∆Sk+1 − ∆Ak+1.

We can now rewrite (3.11) as

0 = Cov(∆Ck+1(φ),∆Mk+1|Fk) = E[∆Ck+1(φ)∆Mk+1|Fk]. (3.12)

This is saying that the product of two martingales C(φ) and M must also be a
martingale.

The general statement in discrete-time is thus: A suitable integrable strategy
φ is locally risk-minimizing if and only if its cost process C(φ) is a martingale
and the product of it and the martingale part (here M) is also a martingale.
See [Sch99].

3.2 Christodoulou’s discrete-time framework for hedging in
illiquid markets

This section gives an outline the framework for estimating a locally risk min-
imizing strategy under illiquidity in discrete-time developed by Christodoulou
[Chr20] and some important properties of this strategy.
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3.2. Christodoulou’s discrete-time framework for hedging in illiquid markets

The basic model

We assume that we have a probability space that is filtered (Ω,F ,F, P ) and
a financial market that has d+1 assets. P is the objective measure and
the filtration is F = (Fk)k=0,1,...,T . The indices k = 0, 1, ..., T are discrete-
time points where t0 < t1 < ... < tT . The discounted (marginal) price of d
risky assets is an F-adapted, non-negative d-dimensional stochastic process
S = (Sk)k=0,1,...,T . Sj

k denotes the price of an asset j at time tk. Assume that
the risk-less asset (Y) exists and has a discounted price of 1.

Then we assume that we have a non-negative, d-dimensional supply curve
Sk(x) = (Sk(x)1, ..., Sk(x)d), for xj ∈ Rd, where Sk(x)j = Sj

k(xj) is the j-th
stock price per share at a time k for sale when xj < 0 and to purchase when
xj > 0. The supply curve determines the price that each market participants
has to pay or receive for a illiquidity of size xj at time k. We further assume
that the supply curve is independent of participants past actions and assume
that the supply curve is measurable with respect to the filtration F.

We also assume that the illiquidity costs are non-decreasing in the number
of shares x i.e. for each k and j, then Sk(x)j ≤ Sk(y)j , P-a.s. for xj ≤ yj . For
x ∈ Rd we let |x| be the Euclidean norm. Let ⟨x, y⟩ is the inner product of
x, y ∈ Rd.

Let Lp
T (Rd) be the space of all FT −measurable random variable Z : Ω → Rd

satisfying ||Z||p = E(|Z|p) < ∞. We define ∆Sk = Sk − Sk−1. Lastly, Θd(S)
is the space of all Rd−valued predictable strategies X = (Xk)k=1,2,...T +1 such
that Xk∆Sk ∈ L2,1

T and ∆Xk+1[Sk(∆Xk+1) − Sk(0)] ∈ L1,1
T for k = 1, 2, ..., T .

See [Chr20].

Trading strategy

A trading strategy describes the buying and selling of stocks in a market in at
a time T.

Definition 1 A pair φ = (X,Y ) is called a trading strategy if:

1. Y = (Yk)k=0,1,...,T is a real-valued F-adapted process.

2. X ∈ Θd(S)

3. Vk(φ) = Xk+1Sk + Yk ∈ L1,2
T for k = 0, 1, ..., T

Where Xj
k+1 is the number of shares held in the risky asset Sj

k and Yk is
the units in the non-risky asset in the time interval (k, k + 1]. Vk(φ) is the
marked-to-market value or book value of the portfolio (Xk+1, Yk) at a time k.

Cost and Risk process

A contingent claim H in L1,2
T is defined as

H = XT +1ST + Y T , with XT +1ST , XT +1 ∈ L1,2
T , (3.13)

where both XT +1 and Y T are Ft-measurable random variables. XT +1 is the
quantity of risky assets that the option seller will provide the buyer at the
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expiration date T of the financial contract H. Similarly, Y T is the committed
number of bonds at time T. The total outlay under liquidity costs is

∆Yk + ∆Xk+1Sk(∆Xk+1) = ∆Yk + ∆Xk+1[Sk(∆Xk+1) − Sk(0)], (3.14)

where ∆Yk = Yk − Yk−1 and ∆Xk = Xk − Xk−1 at a time k ∈ 1, 2, ..., T .
The last term in (3.14) is the illiquidity cost stemming from illiquidity, where
Sk(0) = Sk is the marginal price.

(3.14) can be rewritten as the relation

∆Yk+∆Xk+1Sk(∆Xk+1) = ∆Vk(X,Y )−Xk∆Sk+∆Xk+1[Sk(∆Xk+1)−Sk(0)].
(3.15)

Note that a self-financing trading strategy occur when the total outlay is zero
at time k.

To define the cumulative cost of the trading strategy we let Ĉ0(φ) = V0(φ)
be the initial cost and define the cost process under illiquidity Ĉ(φ) =
(Ĉk(φ))k=0,1,...,T by

Ĉk(φ) = Vk(φ) −
k∑

m=1
Xm∆Sm +

k∑
m=1

∆Xm+1[Sm(∆Xm+1) − Sm(0)]. (3.16)

When the cost process is square integrable the quadratic risk process under
illiquidity R̂(φ) = (R̂k(φ))k=0,1,...,T is defined as

R̂(φ) = E[(ĈT (φ) − Ĉk(φ))2|Fk]. (3.17)

A local risk-minimization approach aims to find a locally risk-minimizing strategy
φ = (X,Y ) s.t. VT (φ) = H where XT +1 = XT +1 and YT = Y T

Let C(φ) = (Ck(φ))k=0,1,...,T be the cost process without liquidity cost (i.e.
S(x) = S(0)), defined as

Ck(φ) = Vk(φ) −
k∑

m=1
Xm∆Sm. (3.18)

We then get the following relation

ĈT (φ) − Ĉk(φ) = CT (φ) − Ck(φ) +
T∑

m=k+1
∆Xm+1[Sm(∆Xm+1) − Sm(0)].

(3.19)
Another way to define the risk process is the linear risk process under illiquidity

R̂k(φ) = E[|ĈT (φ) − Ĉk(φ)||Fk]. (3.20)

Still another approach is the quadratic-linear risk process (QLRP) under
illiquidity

Tk(φ) = E[(CT (φ)−Ck(φ))2|Fk]+E[
T∑

m=k+1

i
Xm+1[Sm(

i
Xm+1)−Sm(0)]|Fk],

(3.21)
Which measures the quadratic difference of the cost process and the liquidity
costs linearly. See [Chr20].

21



3.2. Christodoulou’s discrete-time framework for hedging in illiquid markets

Locally risk minimization under illiquidity

The aim for this section is to locally minimize the risk associated with random
fluctuations of the stock price while reducing the liquidity costs brought about
by the strategy. We want to find the current optimal choice of strategy by fixing
the portfolio at past or future times, such that Yk and Xk+1 is only minimized
locally at a time k.

Definition 2 A local perturbation φ′ = (X ′, Y ′) of a strategy φ = (X,Y ) at
a time k ∈ [0, 1, ..., T − 1] is a trading strategy such that Xm+1 = X

′

m+1 and
Ym+1 = Y

′

m+1 for all m ̸= k.
We can define the QLRP as

Tα
k (φ) = E[(CT (φ) − Ck(φ))2|Fk] + αE[∆Xk+2[Sk+1(∆Xk+2) − Sk+1(0)|Fk].

(3.22)
Which we will use to find a local risk minimizing strategy under illiquidity for
some α ∈ R+.

Definition 3 A trading strategy φ = (X,Y ) is called locally risk-minimizing
(LRM) under illiquidity if for any time k ∈ 0, 1, ..., T − 1

Tα
k (φ) ≤ Tα

k (φ′) P-a.s. for any local perturbation at time k. (3.23)

Definition 3 takes into account the liquidity costs only at the current time, since
the risk is only minimized locally. This is well-defined since the cost process is
square-integrable and the liquidity costs are integrable.

The α represent the traders sentiment towards liquidity risk. α > 1 represent
a severe risk aversion towards liquidity risk and α < 1 means a severe risk
aversion to the risk of miss-hedging.

An important property of the local risk-minimizing strategy is that the cost
process is a martingale.

Lemma 1 For a LRM-strategy under illiquidity, the cost process C(φ) is
a martingale. The martingale property of the cost process give us the
representation,

Rk(φ) = E[Rk+1(φ)|Fk]+V ar(∆Ck+1(φ)|Fk) P-a.s. for k = 0, 1, ..., T −1.
(3.24)

Proof:
Fix a date k ∈ [0, 1, ..., T − 1] and define a pair φ′ = (X ′, Y ′) by letting

X ′ = X, Y ′
j = Yj for j ̸= k and

Y ′
k = E[CT (φ) − Ck(φ)|Fk] + Yk. (3.25)

Then Y
′

k is adapted since both of its terms are adapted to the filtration F.
Additionally we have

Vk(φ′) = Vk(φ) + E[CT (φ) − Ck(φ)|Fk]. (3.26)

which adapted to F and so φ′ is a strategy. Indeed from Vk(φ′) we have that
under a local perturbation of φ at date k we have

CT (φ′) − Ck(φ′) = CT (φ) − Ck(φ) − E[CT (φ) − Ck(φ)|Fk], (3.27)
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and

Rk(φ′) =E[(CT (φ) − Ck(φ) − E[CT (φ) − Ck(φ)|Fk])2|Fk]
=V ar[CT (φ) − Ck(φ)|Fk] ≤ E[(CT (φ) − Ck(φ))2|Fk]
=Rk(φ).

(3.28)

However, we assumed that φ is a locally risk-minimizing, so we must have
Rk(φ′) = Rk(φ) P-a.s. so

E[CT (φ) − Ck(φ)|Fk] = E[(CT (φ) − Ck(φ))IFk
] = 0 P-a.s. (3.29)

Then the cost process must be a martingale.

Lemma 2 If C(φ) is a martingale and φ′ is a local perturbation of φ at time
k then

Tk(φ′) =E[Rk+1(φ)|Fk] + E[(∆Ck+1(φ′))2|Fk]
+ αE[(Xk+2 −X ′

k+1)[Sk+1(Xk+2 −X ′
k+1) − Sk+1(0)]|Fk].

(3.30)

Proof:
From Lemma 1 we have that since C(φ) is a martingale and

Rk(φ′) = E[Rk+1(φ)|Fk] + E[(∆Ck+1(φ′))2|Fk], (3.31)

where ∆Ck+1(φ′) = E[CT (φ′) − Ck(φ′)].
In addition since φ′ is a local perturbation and Rk(φ) = Rk(φ′) then

E[(X ′
k+2 −X ′

k+1)[Sk+1(X ′
k+2 −X ′

k+1) − Sk+1(0)]|Fk]
= E[(Xk+2 −X ′

k+1)[Sk+1(Xk+2 −X ′
k+1) − Sk+1(0)]|Fk],

(3.32)

which completes the proof.
Since Rk+1(φ) = Rk+1(φ′) holds for any local perturbation at a time k, we

then get from Lemma 2 that we can minimize over the expression

V ar(∆Ck+1(φ)|Fk) + αE[∆Xk+2 − Sk+1(0)|Fk] at time k. (3.33)

Proposition 1 A trading strategy φ = (X,Y ) is LRM under illiquidity if and
only if the following two properties are satisfied:

1. C(φ) is a martingale.

2. For each k ∈ [0, 1, ..., T − 1], Xk+1 minimizes:

V ar(Vk+1(φ)−(X ′
k+1)∆Sk+1|Fk)+αE[(Xk+2−X ′

k+1)[Sk+1(Xk+2−X ′
k+1)−Sk+1(0)]|Fk],

(3.34)
over all Fk-measurable random variables X ′

k+1 so that X ′
k+1∆Sk+1 ∈ L1,2

T

and (Xk+2 −X ′
k+1)[Sk+1(Xk+2 −X ′

k+1) − Sk+1(0)] ∈ L1
T .

Proof:
First we prove that φ = (X,Y ) is a LRM-strategy under illiquidity. To do

this we need to show that Tk(φ) ≤ Tk(φ′) P-a.s. for any time k ∈ (0, 1, .., T − 1)
and for any local perturbation φ′ of φ at time k.
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3.2. Christodoulou’s discrete-time framework for hedging in illiquid markets

We know that C(φ) is a martingale and φ′ is a local perturbation of φ at
time k then we know from Lemma 2 that

Tk(φ′) =E[Rk+1(φ)|Fk] + E[(∆Ck+1(φ′))2|Fk]
+ αE[(Xk+2 −X ′

k+1)[Sk+1(Xk+2 −X ′
k+1) − Sk+1(0)]|Fk].

(3.35)

From the definition of conditional variance we know

E[(∆Ck+1(φ′))2|Fk] ≥ V ar(∆Ck+1(φ′)|Fk), (3.36)

and so we can evaluate

Tk(φ′) ≥E[Rk+1(φ)|Fk] + V ar(∆Ck+1(φ′)|Fk)
+ αE[(Xk+2 −X ′

k+1)[Sk+1(Xk+2 −X ′
k+1) − Sk+1(0)]|Fk].

(3.37)

For φ′ then X ′
k+2 = Xk+2 and Y ′

k+1 = Yk+1 and so

V ar(∆Ck+1(φ′)|Fk) =V ar(Ck+1(φ′)|Fk)
=V ar(Vk+1(φ′) − (X ′

k+1)∆Sk+1|Fk)
=V ar(Vk+1(φ) − (X ′

k+1)∆Sk+1|Fk).
(3.38)

which yields

Tk(φ′) ≥E[Rk+1(φ)|Fk] + V ar(Vk+1(φ) − (X ′
k+1)∆Sk+1|Fk)

+ αE[(Xk+2 −X ′
k+1)[Sk+1(Xk+2 −X ′

k+1) − Sk+1(0)]|Fk],
(3.39)

and in fact we have

Tk(φ′) ≥E[Rk+1(φ)|Fk] + V ar(Vk+1(φ) − (Xk+1)∆Sk+1|Fk)
+ αE[(Xk+2 −Xk+1)[Sk+1(Xk+2 −X ′

k+1) − Sk+1(0)]|Fk].
(3.40)

However, we defined Tk(φ) as

Tk(φ) =Rk(φ) + αE[∆Xk+2[Sk+1(∆Xk+2) − Sk+1(0)]|Fk]. (3.41)

Since C(φ) is a martingale we can use Lemma 2 to characterize Tα
k (φ) as

Tk(φ) =E[Rk+1(φ)|Fk] + V ar(∆Ck+1(φ)|Fk)
+ αE[∆Xk+2[Sk+1(∆Xk+2) − Sk+1(0)]|Fk].

(3.42)

Then Tk(φ′) ≥ Tk(φ) and thus φ is a LRM-strategy under illiquidity.
Proving the opposite direction we start by assuming that φ is a LRM-

strategy under illiquidity (Tk(φ′) ≥ Tk(φ)) for any perturbation φ′ at time k.
Property (1) is satisfied due to Lemma 1. To show Property (2) is satisfied we
observe that since C(φ) is martingale and φ′ is a local perturbation we have
that equation (3.30) in Lemma 2 holds and since C(φ) is a martingale, equation
(3.41) also holds and Tα

k (φ′) ≥ Tα
k (φ) we have

Tα
k (φ′) =E[Rk+1(φ)|Fk] + E[(∆Ck+1(φ′))2|Fk]

+ αE[(Xk+2 −X ′
k+1)[Sk+1(Xk+2 −X ′

k+1) − Sk+1(0)]|Fk]
≥ Tα

k (φ) = E[Rk+1(φ)|Fk] + V ar(∆Ck+1(φ))|Fk)
+ αE[(Xk+2 −Xk+1)[Sk+1(Xk+2 −X ′

k+1) − Sk+1(0)]|Fk],

(3.43)
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using the definition of conditional variance we have

V ar(∆Ck+1(ϑ′)|Fk) + (E[∆Ck+1(ϑ′)|Fk])2

+ αE[(Xk+2 −Xk+1)[Sk+1(Xk+2 −X ′
k+1) − Sk+1(0)]|Fk]

≥ V ar(∆Ck+1(ϑ)|Fk)
+ αE[(Xk+2 −Xk+1)[Sk+1(Xk+2 −Xk+1) − Sk+1(0)]|Fk].

(3.44)

for any Fk-measurable choice of Y ′
k and X ′

k+1. We can fix X ′
k+1 and pick Y ′

k

such that E[∆Ck+1(φ′)|Fk] = 0 and φ′ is a local perturbation of φ at time k,
we have the inequality

V ar(Vk+1(φ) − (X ′
k+1)∆Sk+1|Fk)

+ αE[(Xk+2 −X ′
k+1)[Sk+1(Xk+2 −X ′

k+1) − Sk+1(0)]|Fk]
≥ V ar(Vk+1(φ) − (Xk+1)∆Sk+1|Fk)
+ αE[(Xk+2 −Xk+1)[Sk+1(Xk+2 −X ′

k+1) − Sk+1(0)]|Fk],

(3.45)

so condition (2) is satisfied and the proof is completed. See [Chr20].

Linear supply curve

The liquidity cost is related to the depth of the limit order book (LOB). In this
scenario assume that the LOB’s ability to recover itself is infinite, so that no
feedback from the hedging strategy is taken into account. The supply curve
Sk(x) = (S1

k(x1), ..., Sd
k(xd)) is given by

Sj
k(xj) = Sj

k + xjϵjkS
j
k (3.46)

where xj is again the illiquiditys size x (of the j-th asset) at time k. S is assumed
to be a non-negative semimartingale price process and ϵk = (ϵk)k=0,1,..,T is a
positive deterministic Rd-valued process, s.t. the price process does not take on
negative values. A 1-dimensional, time independent LOB can be described with
a density function q, where q(x)dx is the bid or ask offers at a given price level
xSk. In addition, F (p) =

∫ p

1 q(x)dx is the quantity available at a price pSk.
So that an order of x = F (p) shares at a time k shifts up the quoted price in
the LOB to Sk(x)+ = g(x)Sk where g(x) solves the equation x =

∫ g(x)
1 q(y)dy,

hence g(x) = F−1(x). Since we in this scenario does not take into account price
impact, the price returns to Sk. The cost of x shares is Sk

∫ g(x)
1 pdF (p) which

should be equal to xSk(x) = xSk + ϵkx
2Sk for a suitable choice of q i.e depth

of the order book.
Such a choice could be

q(x) = 1
2ϵk

(3.47)

which is independent from price. Notice that as ϵk tends to zero the liquidity
cost vanishes. ϵk is thus a measure of illiquidity.

The aim is to construct an optimal strategy satisfying the LRM-criterion
under illiquidity ie. at time k, minimize

V ar(Vk+1(X,Y ) − (X ′
k+1)∆Sk+1|Fk) + αE[

d∑
j=1

ϵkS
j
k+1(Xj

k+2 − (X ′
k+1)j)2|Fk].

(3.48)
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3.3. Schweizer’s bounded mean-variance and substantial risk conditions

for all X ′
k+1 with a chosen Yk so that the cost process C becomes a martingale.

We can expand the above expression as:

V ar[Vk+1(X,Y )|Fk] + V ar[(X ′
k+1)∆Sk+1|Fk] − 2Cov[Vk+1(X,Y ), (X ′

k+1)∆Sk+1|Fk]

+ αE[
d∑

j=1
ϵjk+1S

j
k+1(Xj

k+2)2 − 2(Xj
k+1)((X ′

k+1)j) + ((X ′
k+1)j)2|Fk]

= V ar[Vk+1(X,Y )|Fk] + |(X ′
k+1)|2V ar[∆Sk+1|Fk]

− 2(X ′
k+1)Cov[Vk+1(X,Y ),∆Sk+1|Fk] + α

d∑
j=1

|(X ′
k+1)j |2E[ϵjk+1S

j
k+1|Fk]

− 2α
d∑

j=1
E[ϵjk+1S

j
k+1(X ′

k+1)jXj
k+2|Fk] + α

d∑
j=1

E[ϵjk+1S
j
k+1|Xj

k+2|2|Fk],

(3.49)

where we used the following relation V ar[X − Y ] = V ar[X] + V ar[Y ] −
2Cov[X,Y ].

We introduce the following notation:

A0
k;j = V ar(∆Sj

k+1|Fk), Aϵ
k;j = E[ϵjk+1S

j
k+1|Fk], Ak;j = A0

k;j +Aϵk

k;j ,

b0
k;j = Cov(Vk+1∆Sj

k+1|Fk), bϵ
k;j = E[ϵjk+1S

j
k+1X

j
k+2|Fk], bk;j = b0

k;j + b0
k;j

Dk;j,i = Cov(∆Sj
k+1∆Si

k+1|Fk)

for i ̸= j, for all i, j = 1, ..., d and k = 0, ..., T − 1
For simplicity assume α = 1 then (3.49) can be rewritten by defining the

function Fk : Rd × Ω → R+ as

Fk(c, w) =
d∑

j=1
|cj |2Ak;j(w) − 2

d∑
j=1

cjbk;j(w) +
∑
j ̸=i

cjciDk;j,i(w)

+ V ar(Vk+1|Fk)(w) +
d∑

j=1
E[ϵjkS

j
k+1|Xj

k+2|2|Fk](w).

(3.50)

For a fixed w we can find the gradient of the function Fk. The extreme points,
found by solving grad(Fk) = 0, will be the solution to the linear system of
equations Fkc = bk

Where Fk ∈ Rd×d with Fk;i,j = Dk;i,j for i ̸= j, Fk;i,j = Ak;j for i = j and
bk = (bk;1, ..., bk;d) ∈ Rd. See [Chr20].

3.3 Schweizer’s bounded mean-variance and substantial
risk conditions

Schweizer et. al [LPS98] showed that in a discrete-time non-complete market
we can impose appropriate bounds such that a locally risk-minimizing strategy
with illiquidity cost exists for every square-integrable contingent claim. Such
that one can hedge a contingent claim using square-integrability rather than
other more stringent conditions such as convexity or concavity etc.
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3.3. Schweizer’s bounded mean-variance and substantial risk conditions

Another important result is that one can create a fictitious asset price
process which lies between the bid and ask price processes and if we hedge our
contingent claim by a LRM strategy without illiquidity costs in this fictitious
model, we obtain the exact same LRM strategy with illiquidity costs in the
original model with bid-ask spread. This adds a robustness to the LRM criterion
described earlier.

Consider now the presence of a bid-ask spread in a market due to illiquidity
costs. Such that for some fixed illiquidity parameter ϵk ∈ [0, 1) the bid and ask
prices will be (1 − ϵk)Sk and (1 + ϵk)Sk respectively for one share of a stock at
date k.

Definition 4 Let Γ be the class of all adapted processes x = (xk)k=0,1,...,T

with values in [−1,+1]. For x ∈ Γ, the linear supply curve Sx is defined by
Sx

k = Sk + ϵkxkSk for k = 0, 1, ..., T .
if φ = (X,Y ) is a strategy, the process V x(φ) is defined by

V x
k (φ) = Xk+1S

x
k + Yk k=0,1,...,T. (3.51)

The process Xx is non-negative, since ϵk ∈ [0, 1], adapted and assumed to be
square-integrable.

Jouini/Kallal [EH95] showed that the bid ask processes S− = (1 − ϵk)S and
S+ = (1 + ϵk)S is an arbitrage-free system of bid and ask prices if and only if
there exists a process x ∈ Γ and a probability measure Q equivalent to P such
that Sx is a Q−martingale. Q is then a price system which is compatible with
both the bid and the ask price process and Sx becomes a re-valuation of the
stock, while V x(φ) is the value process of the strategy φ in terms of Sx.

The objective with the rest of this section is to impose suitable bounds on S
and ϵk such that Θ(Sx) = Θ(S) for all x ∈ Γ. Meaning that one strategy can
be used for all reasonable choices of units.

Proposition 2 A strategy φ = (X,Y ) is LRM if and only if it has the following
two properties:

1. C(φ) is a martingale.

2. For each k ∈ [0, 1, ..., T − 1], Xk+1 minimizes

V ar[Vk+1(φ) −X ′
k+1∆Sk+1 + ϵSk+1|Xk+2 −X ′

k+1||Fk]

over all Fk−measurable random variables X ′
k+1 such that X ′

k+1∆Sk+1 ∈
L2(P ) and X ′

k+1Sk+1 ∈ L2(P ).

which is essentially the same definition used in (3.34) by Christodoulou, except
that the investors risk appetite α is exchanged with the illiquidity risk ϵ which
now depends on a variance term instead. The proof follows by similar reasoning
as in Proposition 1 in the previous section, and is therefor omitted.

Definition 5 S has substantial risk if there exist a constant c ≤ ∞ such that

S2
k−1

E[∆S2
k|Fk−1] ≤ c P-a.s. for k = 1, ..., T. (3.52)
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3.3. Schweizer’s bounded mean-variance and substantial risk conditions

The smallest constant satisfying (3.52) we call cSR

This condition provides a lower bound on the conditional variance of
increments of S.

Before moving further we establish which spaces we are working in when S
has substantial risk.

Lemma 5 Assume S has substantial risk. Then:

1. Θ(Sx) ⊇ Θ(S) for every x ∈ Γ, where Θ(S) is the space of all predictable
processes X = (Xk)k=1,..,T +1 such that Xk∆Sk ∈ L2(P ) for k = 1, ..., T
and Γ is the class of all adapted processes x = (xk)k=0,1,...,T in [−1,+1].

2. V x
k (φ) ∈ L2(P ) for k = 0, 1, ..., T , for every x ∈ Γ and for every strategy
φ.

3. Xk+1Sk ∈ L2(P ) for k = 0, 1, ..., T for every X ∈ Θ(X).

4. Ck(φ) ∈ L2(P ) for k = 0, 1, ..., T and for every strategy φ.

Proof:
We have that

Xk∆Sx
k = Xk∆Sk + ϵkxkXk∆Sk + ϵkXkSk−1∆xk, (3.53)

and each x is bounded by 1, 1) then follows from 3) since each Xk∆Sk ∈ L2(P )
in Θ(Sx) is also in Θ(S).

We also have that

V x
k (φ) = Vk(φ) + ϵkxkXk+1Sk, (3.54)

and Vk(φ) = Xk+1Sk + Yk ∈ L2(P ) for k = 0, 1, ..., T. so 2) follows from 3).
We further have a useful relation

∆Ck(φ) = ∆Vk(φ) −Xk∆Sk + ϵkSk|∆Xk+1|
= Xk+1S

x
k + Yk −XkS

x
k − Yk−1

= ∆V x
k (φ) −Xk∆Sx

k .

(3.55)

X ∈ Γ and x is predictable so (3.55) and Vk(ϑ) = Xk+1Sk + Yk ∈ L2(P ) for
k = 0, 1, ..., T makes 4) follow from 2) and 1).

To prove 3) we observe that

E[(Xk+1Sk)2] = E[(Xk+1∆Sk+1)2 S2
k

E[∆S2
k+1|Fk] ] ≤ cSRE[(Xk+1∆Sk+1)2] < ∞

(3.56)
since X ∈ Θ(S) and S has substantial risk so 3) follows. Which completes the
proof.

To prove that Θ(Sx) ⊆ Θ(S) we look at the mean-variance tradeoff process
of Sx

Definition 6 S has bounded mean-variance tradeoff process if for some constant
C > 0

(E[∆Sx
k+1|Fk])2

V ar(∆Sx
k+1|Fk) ≤ c P-a.s. for x = 1, ..., T. (3.57)
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Proposition 4 Assume S has bounded mean-variance tradeoff and substantial
risk. For a fixed x ∈ Γ and assume that there is a constant c > 0 such that

V ar[∆Sx
k |Fk−1] ≥ cV ar[∆Sk|Fk−1] P-a.s. for k = 1, ..., T, (3.58)

then Sj has bounded mean-variance tradeoff and Θ(Sx) = Θ(S)
Proof: We first show that (3.58) implies that Sj has bounded mean-variance

trade off. From (3.57) we know that this will be the case if

(E[∆Sx
k |Fk−1])2 ≤ const.V ar[∆Sk|Fk−1] P-a.s. for k = 1, ..., T. (3.59)

Let cMV T (0) be the lowest possible value satisfying the inequality.
We also have that

∆Sx
k = ∆Sk + xjϵkSk − ϵkx

j
k−1S

x
k−1 = ∆Sk + xjϵjk∆Sx

k + ϵk∆xjSx
k−1 (3.60)

and

E[(∆Sx
k )|Fk−1]2 ≤ 2(1 + ϵk)2E[∆S2

k|Fk−1] + 8ϵ2kS2
k−1

≤ const.E[∆Sk|Fk−1]2 ≤ const.(1 + cMV T (0))V ar[∆Sk|Fk−1],
(3.61)

where we used that ϵk is bounded by 1 and cMV T (0) = E[(∆Sk)2|Fk−1]2

V ar[∆Sk|Fk−1] , and
then (3.52) along with (3.57).

We have from lemma 5 that Θ(Sx) ⊇ Θ(S) so we need only show that
Θ(Sx) ⊆ Θ(S).

First let Sx = Sx
0 +Mx +Ax be the Doob decomposition of Sx then

Xk∆Sx
k = Xk∆Mx

k +Xk∆Ax
k = Xk∆Mx

k +XkE[∆Sx
k |Fk−1], (3.62)

and
V ar[∆Sx

k |Fk−1] = E[(∆Mx
k )2|Fk−1]. (3.63)

Sx has bounded mean-variance tradeoff, (3.57) gives that X ∈ Θ(Sx) if and
only if Xk∆Mx

k ∈ L2(P ) for k = 1, ..., T which will be written as X ∈ L2(Mx)
The same is true for S = S0. When X is predictable and (3.58) holds, then

E[(Xk∆Mk)2|Fk−1)] = X2
kV ar[∆Sk|Fk−1]

≤ 1
c
X2

kV ar[∆Sx
k |Fk−1] = 1

c
E[(Xk∆Mx

k )2|Fk−1],
(3.64)

which means that L2(Mx) ⊆ L2(M), then Θ(Sx) ⊆ Θ(S) since both have
mean-variance tradeoffs which are bounded. This completes the proof.

If one knows x Proposition 4 gives an estimate of (3.58), but we need to
impose additional conditions on S and x such that (3.58) holds uniformly over
all x ∈ Γ.

Proposition 3 If there is a constant δ < 1 such that

2ϵk

√
E[S2

k|Fk−1]
V ar[∆Sk|Fk−1] ≤ δ P-a.s. for k = 1, ..., T. (3.65)
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Then (3.58) holds simultaneously for all x ∈ Γ, with c = 1 − δ. Specifically,
(3.65) holds if S has bounded mean-variance tradeoff and substantial risk and if
ϵk satisfies

4ϵ2k(1 + 2cMV T (0) + 2cSR(1 + cMV T (0)) < 1. (3.66)

Proof: We know that Sx
k = Sk(1 +xkϵk) and leaving aside the Fk−1-measurable

terms from the conditional variance yields

V ar[∆Sx
k |Fk−1] = V ar[∆Sk + xkϵkSk|Fk−1]

= V ar[∆Sk|Fk−1] + V ar[xkϵkSk|Fk−1] + 2Cov[∆Sk, xkϵkSk|Fk−1]

≥ V ar[∆Sk|Fk−1] − 2ϵk
√
V ar[∆Sk|Fk−1]V ar[xkSk|Fk−1],

(3.67)

where we used the Cauchy-Schwarz inequality ie. |Cov(X,Y )|2 ≤
V ar(X)V ar(Y ) → |Cov(X,Y )| ≥ −

√
V ar(X)V ar(Y ) since the variance

is non-negative.
When we assume that xk is bounded by 1, (3.65) gives us

V ar[xkSk|Fk−1] = E[(xkSk)2|Fk−1] − E[xkSk|Fk−1]2

≤ E[x2
kS

2
k|Fk−1] ≤ δ2

4ϵ2k
V ar[∆Sk|Fk−1].

(3.68)

Then (3.58) with c = 1 − δ. We get (3.65) from (3.66) when we take

E[X2
k |Fk−1] = V ar[∆Xk|Fk−1] + (Xk−1 + E[∆Xk|Fk−1])2 (3.69)

and use the following estimate from (3.52)

X2
k−1 ≤ cSRE[∆X2

k |Fk−1] (3.70)

and (3.57)
E[∆X2

k |Fk−1] ≤ V ar[∆Xk|Fk−1](1 + cMV T (0)). (3.71)

Then the statement follows from these inequalities.
Condition (3.65) informally states that illiquidity costs have to be small

enough for the next theorems to hold.
The explicit calculation is as follows: we must show that

E[S2
k|Fk−1]

V ar[∆Sk|Fk−1] ≤ (1 + 2cMV T (0) + 2cSR(1 + cMV T (0))), (3.72)

for the inequality to hold.
We have

E[S2
k|Fk−1]

V ar[∆Sk|Fk−1] ≤ V ar[∆Sk|Fk−1] + (Sk−1 + E[∆Sk|Fk−1])2

V ar[∆Sk|Fk−1]

≤
V ar[∆Sk|Fk−1] + 2S2

k−1 + 2E[∆Sk|Fk−1]2

V ar[∆Sk|Fk−1]

≤ V ar[∆Sk|Fk−1] + 2cSRV ar[∆Sk|Fk−1](1 + cMV T (0)) + 2E[∆Sk|Fk−1]2

V ar[∆Sk|Fk−1] ,

(3.73)
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and

V ar[∆Sx
k |Fk−1] ≥ V ar[∆Sk|Fk−1] − 2ϵk

√
V ar[∆Sk|Fk−1]V ar[xkSk|Fk−1]

= E[∆S2
k|Fk−1] − E[∆Sk|Fk−1]2 − 2ϵk

√
V ar[∆Sk|Fk−1]V ar[xkSk|Fk−1],

(3.74)

then use

V ar[∆Sx
k |Fk−1] ≤ (1 − δ)V ar[∆Sk|Fk−1], (3.75)

such that

(1 − δ)V ar[∆Sk|Fk−1] ≥ E[∆S2
k] − E[∆Sk|Fk−1]2 − δV ar[∆Sk|Fk−1]

≥ V ar[∆Sk|Fk−1](1 + cMV T (0)) − E[∆Sk|Fk−1]2 − δV ar[∆Sk|Fk−1].
(3.76)

Then

E[∆Sk|Fk−1]2 ≥ cMV T (0)V ar[∆Sk|Fk−1], (3.77)

and finally

E[S2
k|Fk−1]

V ar[∆Sk|Fk−1] ≤ V ar[∆Sk|Fk−1] + 2cSRV ar[∆Sk|Fk−1](1 + cMV T (0)) + 2E[∆Sk|Fk−1]2

V ar[∆Sk|Fk−1]

≤ V ar[∆Sk|Fk−1] + 2cSRV ar[∆Sk|Fk−1](1 + cMV T (0)) + 2V ar[∆Sk|Fk−1]cMV T (0)
V ar[∆Sk|Fk−1]

= (1 + 2cMV T (0) + 2cSR(1 + cMV T (0))),
(3.78)

which yields the desired inequality. See [LPS98].

3.4 Solving for the optimal strategy

In this section we prove the existence of a LRM strategy under illiquidity
cost. The method for finding the optimal strategy is to solve for every k in
the conditional variance minimization problem in (2) of Proposition 2 for the
optimal X value. For this section we assume that S is a square-integrable
process.

We define

V x
k (φ) = Xk+1S

x
k + Yk = Vk(φ) + ϵkxXk+1Sk. (3.79)

Theorem 1 Let S have bounded mean-variance tradeoff, substantial risk,
satisfy (118) and

V ar[∆Xk|Fk−1] > 0 P-a.s. for k = 1, ..., T. (3.80)

Then for any contingent claim (XT +1, Y T ) there exist a LRM strategy
φ∗ = (X∗, Y ∗) where X∗

T +1 = XT +1 and Y ∗
T = Y T .
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3.4. Solving for the optimal strategy

Where X∗ can be characterized as follows: There exists a process δ∗ ∈ Γ
such that we can define v ∈ Γ by

vk = sign(X∗
k+1 −X∗

k) + δ∗
kIX∗

k+1=X∗
k

for k = 1, ..., T, 3.1 (3.81)

and

V v
k (φ∗) = Vk(φ) + ϵk(sign(X∗

k+1 −X∗
k) + δ∗

kIX∗
k+1=X∗

k
)Xk+1Sk (3.82)

then

X∗
k = Cov(∆V v

k (φ∗),∆Sv|Fk−1)
V ar[∆Sv|Fk−1] P-a.s. for k = 1, ..., T. (3.83)

We can view Sv as a suitable strategy within the bid-ask range.
Proof:
The proof relies on backward induction to prove the existence of a predictable

process X∗ with X∗
T +1 = XT +1 and satisfying assertions 1), 2) below for

k = 0, 1, ..., T and 3), 4), 5) for k = 1, ..., T :

1. X∗
k+1Sk ∈ L2(P ).

2. W ∗
k = H −

∑T
j=k+1 X

∗
j ∆Sj +

∑T
j=k+1 ϵkjSj |∆X∗

j+1| ∈ L2(P ).

3. There exists an Fk−1−measurable random variable X∗
k with values in

[−1,+1] such that if we define vk by (3.82), then we have

X∗
k =

Cov(E[W ∗
k |Fk] + ϵkvkSkX

∗
k+1, Sk(1 + ϵkvk)|Fk−1)

V ar[Sk(1 + ϵkvk|Fk−1] P-a.s.

4. X∗
k∆Sk ∈ L2(P ).

5. X∗
k minimizes V ar[E[W ∗

k |Fk] −Xk∆Sk + ϵkSk|X∗
k+1 −Xk||Fk−1] for all

Fk−1

When these are established we can define Y ∗ by

Y ∗
k = E[W ∗

k |Fk] −X∗
k+1Sk for k = 0, 1, ..., T. (3.84)

Then Y ∗ is adapted and X∗
k+1Sk + Y ∗

k ∈ L2(P ) by 2). Using 4), φ∗ = (X∗, Y ∗)
does satisfy X∗

T +1 = XT +1 and Y ∗
T = Y T . From the definitions of Y ∗ and W ∗

k ,
Vk(φ∗) = E[W ∗

k |Fk] for all k and C(φ∗) is a martingale. Then using 5) and
Proposition 1 we have that φ∗ is LRM. Indeed, since Y ∗ suggests that

E[W ∗
k |Fk] + ϵkvkSkX

∗
k+1 = V v

k (φ∗),

Then (3.84) is just a restatement of X∗
k in 3). In order to complete the proof

we only need to establish 1)- 5). For that purpose define X∗
T +1 = XT +1, then

if we assume that XT +1ST ∈ L2(P ) and H = XT +1ST + Y T ∈ L2(P ) then
1) and 2) holds for k = T . We now want to show that when 1) and 2) holds
for any k then there exist an Fk−1−measurable random variable X∗

k satisfying
3)-5) for k, which in turn imply the validity of 1) and 2) for k − 1.
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3.4. Solving for the optimal strategy

Assume that 1) and 2) hold for k. Let

sign(x) = sign(x) + 1x=0 =
{

+1 for x ≥ 0
−1 for x < 0

,

sign(x) = sign(x) − 1x=0 =
{

+1 for x > 0
−1 for x ≤ 0

,

(3.85)

and define the function

fk(c, ω) = V ar[E[W ∗
k |Fk] − cSk + ϵkSk|X∗

k+1 − c||Fk−1](ω) (3.86)

and

gk(c, α, ω) =Cov(E[W ∗
k |Fk] + ϵkSkX

∗
k+1G

(α,c)
k , Sk(1 + ϵkG

(α,c)
k )|Fk−1)(ω)

− cV ar[Sk(1 + ϵkG
(α,c)
k )|Fk−1)(ω)

(3.87)

where

G
(α,c)
k ) = αsign(X∗

k+1 − c) + (1 − α)sign(X∗
k+1 − c), (3.88)

where the conditional variance and covariance are calculated with respect to
the distribution of (E[W ∗

k |Fk], Sk, X
∗
k+1) given Fk−1 Schweizer et al. [LPS98]

showed and we will take for granted that we can obtain the existence of
an Fk−1−measurable random variable X∗

k and an Fk−1−measurable random
variable α∗

k with values in [0, 1] such that

fk(X∗
k(ω), ω) ≤ fk(c, ω) P-a.s. for all c (3.89)

and
gk(X∗

k(ω), α∗
k(ω), ω) = 0 P-a.s. (3.90)

If we then define δ∗
k = 2α∗

k − 1, then we have

G
(α∗,X∗

k )
k = sign(X∗

k+1 −X∗
k) + δ∗

k1X∗
k+1=X∗

k
= vk (3.91)

with all that in place we can get X∗
k from 3) by rewriting (3.90) such that 3)

holds for k.
Next we prove that 4) hold for k. Let x be any process in Γ with xk = vk

and define
W x

k = E[W ∗
k |Fk] + ϵkvkSkX

∗
k+1. (3.92)

By 1) and 2) for k, W x
k ∈ L2(P ), we can write X∗

k in 3) as

X∗
k = Cov(W x

k ,∆Sx
k |Fk−1)

V ar[∆Sx|Fk−1] (3.93)

because Fk−1−measurable terms do matter for the conditional variance and
covariance.
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3.4. Solving for the optimal strategy

The Cauchy-Schwarz inequality and Proposition 5 imply that

E[(X∗
k∆Sk)2] ≤ E[ V ar[W

x
k |Fk−1]

V ar[∆Sx
k |Fk−1]E[∆S2

k|Fk−1]]

≥ 1
c
E[E[(W x

k )2|Fk−1]V ar[∆S
2
k|Fk−1]

V ar[∆Sk|Fk−1] ]

≥ 1
c

(1 + cMV T (0))E[(W x
k )2] < ∞

(3.94)

then 4) holds for k. Because S has substantial risk, we can conclude as in
Lemma 3 that X∗

kSk−1 ∈ L2(P ) which establishes 1) for k − 1. While at the
same time we have X∗

kSk = X∗
k∆Sk +X∗

kSk−1 ∈ L2(P ) as required in 5).
That 5) holds for k is then evident. In fact, if Xk is Fk−1−measurable and

satisfies Xk∆Sk ∈ L2(P ) and XkSk ∈ L2(P ), then we have

V ar[E[W ∗
k |Fk] −Xk∆Xk + ϵkSk|X∗

k−1 −Xk||Fk−1](ω) = fk(Xk(ω), ω) P-a.s.
(3.95)

and so 5) for k follows from (3.89). Finally,

W ∗
k−1 = W ∗

k −X∗
k∆Sk + ϵkSk|X∗

k+1 −X∗
k | ∈ L2(P ) (3.96)

due to 2) for k, 4) for k, 1) for k and the square-integrability of X∗
kSk. Then b)

holds for k − 1, and the induction along with the proof is complete.

Theorem 2 Assume Theorem 1 holds. The strategy φ∗ which is LRM for a
price process S with illiquidity costs, is also a strategy which is LRM for a price
process Sv without illiquidity costs, where v is given by (3.81).

Proof:
We first want to show that under no illiquidity costs we have that the

strategy described in Theorem 1, namely φ∗ = (X∗, Y ∗) has the same value
process, cost process and risky stock amount X as a new strategy φ which
will be defined below. With this result in hand we can prove the statement of
Theorem 2.

Consider when ϵk = 0 so there are no illiquidity costs. Recall that the value
and cost process of a strategy φ = (X,Y ) are defined as

V k(φ) = XkSk + Yk for k = 0, 1, ..., T, (3.97)

with X0 = 0 and

Ck(φ) = V k(φ) −
k∑

j=1
Xj∆Sj for k = 0, 1, ..., T, (3.98)

and a contingent claim H which is a Ft-measurable random variable in L2(P )
space.

With these conditions S has bounded mean-variance tradeoff and is a LRM
strategy φ for H. We can then characterize V T (φ) = H P-a.s., C(φ) is a
martingale and so

Xk = Cov(∆V k(φ),∆Sk|Fk−1)
V ar[∆Sk|Fk−1] P-a.s. for k = 0, 1, ..., T. (3.99)
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3.4. Solving for the optimal strategy

When ϵk = 0, the φ∗ strategy from theorem 1 yields V (φ∗) = V (φ) when
X∗ = X. Then when H = XT +1ST + Y T . It is then given that

VT (φ∗) = H = V T (φ) P-a.s., (3.100)

and so
XT = Cov(H,∆ST |Ft−1)

V ar[∆ST |Ft−1] = X∗
T P-a.s., (3.101)

and when ϵk = 0 we have Sv = S.
Furthermore, When Vk+1(φ∗) = V k+1(φ) and X∗

k+1 = Xk+1, the martingale
property of both C(φ∗) and C(φ) yields

E[∆Vk+1(φ∗)|Fk] = X∗
k+1E[∆Xk+1|Fk] = E[∆V k+1(φ)|Fk], (3.102)

so therefore Vk(φ∗) = V k(φ) P-a.s. which implies that X∗
k = Xk. It follows

from backwards induction that this is true for all k = 1, ..., T .
With this in hand we turn to prove the general statement of Theorem 2.
Let φ = (X,Y ) be a LRM for the price process Sv without illiquidity costs

and let
V k(φ) = Xk+1S

v
k + Yk, (3.103)

and

Ck(φ) = V k(φ) −
k∑

j=1
Xj∆Sv

j , (3.104)

which is the value and cost processes when the price process is Sv. We
have that Sv has bounded mean-variance tradeoff by Proposition 3 and its cost
process is a martingale from Proposition 1 and

Xk = Cov(∆V k(φ),∆Sv
k |Fk−1)

V ar[∆Sv
k |Fk−1] P-a.s. for k = 1, ..., T. (3.105)

We have already showed that V v(φ) = V (φ) in the previous paragraphs and
so by (136) we must have that X = X∗ and since ∆Ck(φ) = ∆V v

k −Xk∆Sv
k

we also have that

∆Ck(φ) = ∆V v

k −Xk∆Sv
k = ∆V v

k −Xk∆Sv
k = ∆Ck(φ), (3.106)

then C(φ) = C(φ), and since φ is mean-self financing both C(φ) = C(φ) is a
martingale.

We also have that C(φ∗) is a martingale with the same terminal value as
C(φ) namely,

H −
T∑

j=1
Xj∆Sv

j = H −
T∑

j=1
X∗

j ∆Sv
j , (3.107)

hence Y = Y ∗.
This theorem proves that we can construct a LRM strategy φ∗ for the price

process S including illiquidity cost by re-valuing the stock at a suitable price Sv

within the bid-ask range and then minimize the risk locally for the illiquidity
cost free prices with Sv.

This result is important since it shows that the LRM strategy have a
robustness property under illiquidity costs. See [Sch99].
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3.5. The F-property

3.5 The F-property

This section will define the F-property described by Christodoulou [Chr20]
which will be used to give an exact formula for Xk.

Definition 7 The process St, t ≥ 1 has the F-property if there exists some
δ ∈ (0, 1) such that

det(Fk) − (1 − δ)det(FA
k ) ≥ 0. (3.108)

Note that this is not to be confused with the filtration Fk.
Where FA

k = diag(Ak;1, ..., Ak;d) and we recall that Ak;j = var(∆Sk+1|Fk)+
E[ϵkk+1Sk+1|Fk].

In the 1 dimensional setting Fk becomes

Fk = V ar(∆Sk+1|Fk) + E[ϵkk+1Sk+1|Fk] ≥ 0, (3.109)

which is what we will build on.
Now we will describe properties of the F-property.

Definition 8 S has below bounded mean-variance tradeoff if there exist a
constant C > 0 such that in the 1 dimensional setting which translates into

(E[Sx
k+1|Fk])2

V ar(Sx
k+1) ≥ C P-a.s. for all x = 1, ..., d. (3.110)

Definition 9 S satisfies the F condition if for some constant C > 0 we have√
V ar(∆Sx

k+1|Fk) +
E[Sx

k+1|Fk]√
V ar(Sx

k+1|Fk)
≥ C P-a.s. for all x = 1, ..., d,

(3.111)
uniformly in k and w and if for some C > 0.√

V ar(∆Sx
k+1|Fk)

E[Sx
k+1|Fk] + 1√

V ar(∆Sx
k+1|Fk)

≥ C P-a.s. for all x = 1, ..., d,

(3.112)
uniformly in k and w.

Proposition 4 For S satisfying C ≤ V ar(∆Sx
k+1|Fk) ≤ C for some positive

constants C,C for all x = 1, ..., d then the F property holds. In particular if S
has independent increments then S has bounded mean variance and satisfy the
F property.

Proof:
The claim follows directly from C ≤ V ar(∆Sx

k+1) ≤ C.

Proposition 5 For S having bounded mean variance tradeoff from above and
below then the F condition holds. In particular, if S has independent returns
then S has bounded mean-variance tradeoff and satisfies the F property.

Proof:
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3.5. The F-property

The claim is a direct consequence of S having bounded mean variance
tradeoff from above and below.

We can use the F property to prove the existence of a local risk-minimizing
strategy under illiquidity. In addition we will use backwards induction to give
an explicit representation of the optimal strategy

Theorem 3 Assume S has the F-property and bounded mean variance
tradeoff from below and above. Assume also that the covariance matrix F 0

k

is positive definite at all time k = 0, 1, ..., T − 1. Then for any contingent
claim H = XT +1ST + Y T ∈ L2,1

T with XT +1ST ∈ L1,2
T and XT +1 ∈ L2,d

T ,
there exists a local risk-minimizing strategy φ̂ = (X̂, Ŷ ) under illiquidity with
X̂T +1 = XT +1 and ŶT = Y T . Assume further that the strategy is represented
by

X̂k+1 = F−1
k bk P-a.s. for k = 0, ..., T − 1, (3.113)

Ŷk+1 = E[Ŵk|Fk] − X̂k+1Sk P-a.s. for k = 0, ..., T − 1, (3.114)

where

Ŵk = H −
T∑

m=k+1
X̂m∆Sm. (3.115)

Proof:
The proof relies on a backward induction argument on k = 0, 1, ..., T . Start

by setting X̂T +1 = XT +1 and ŶT = Y T . Fix some k ∈ {0, 1, ..., T − 2} and
assume that at times l = k, ..., T − 2

1. X̂l+2∆Sx
l+2 ∈ L2,1

T and X̂l+2 ∈ L2,1
T

2. |X̂l+2|2Sx
l+1 ∈ L1,1

T ,

3. X̂l+2Sl+2 + Ŷl+1 ∈ L2,1
T , Ŷl+1 ∈ Fl+2,

At time k we want to minimize

V ar(Vk+1(φ) − (X ′
k+1)∆Sk+1|Fk) + αE[

d∑
j=1

ϵkk+1S
x
k+1(Xk+2 −X

′

k+1)2|Fk],

(3.116)
over all X ′

k+1 and show that the following properties are fulfilled.

1. X ′

k+1∆Sx
k+1 ∈ L2,1

T and X
′

k+1 ∈ L2,1
T ,

2. |X ′

k+1|2Sx
k ∈ L1,1

T ,

3. (X ′

k+1)Sk + Y
′

k ∈ L2,1
T , Y

′

k ∈ Fk

The properties 1)-3) ensures that (X̂, Ŷ ) ∈ Θ(S). First define the function
Fk as in (3.50), where all the terms in Fk are integrable. Since Fk is positive
definite then there exist a unique solution to the minimization problem and an
Fk−measurable minimizer X̂k+1 can be created which equal F−1

k bk. Assume
also that Ŷk as in (3.114). Ŷk is Fk−measurable since all of its elements are
Fk−measurable.
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X̂k+1Sk + Ŷk = E[Ŵk|Fk] ∈ L2,1
T follows from H ∈ L2,1

T , the induction
hypothesis

∑T
m=k+2 X̂m∆Sm ∈ L2,1

T and X̂∗
k+1∆Sk+1, which will be shown

below.
First we show that X̂k+1∆Sx

k+1 ∈ L2,1
T . By the inequality

E[|∆Sx
k+1|2|Fk] = V ar(∆Sx

k+1|Fk) + E[|∆Sx
k+1||Fk]2 ≤ CV ar(∆Sx

k+1|Fk)
(3.117)

We then know that for a constant C > 0,

E[(Xk+1∆Sx
k+1|2] ≤ CE[V ar(X̂k+2Sk+1 + Ŷk+1|Fk)

d∑
i=1

|V ar(∆Sx
k+1)|2

|V ar(∆Sx
k+1)

+ E[ϵkk+1S
x
k+1]|2 +

d∑
i=1

(c(ϵkk+1)
|V ar(∆Sx

k+1)|2

|V ar(∆Sx
k+1) + E[ϵkk+1Sx

k+1]|2

+ E[ϵkk+1S
x
k+1]

V ar(∆Sx
k+1)|2

|V ar(∆Sx
k+1) + E[ϵkk+1Sx

k+1]|2 )E[|Xk+2|2|Fk],

(3.118)

holds. We have that both X̂k+2Sk+1 + Ŷk+1 and X̂k+2 are both in L2,1
T .

Christodoulou [Chr20] also showed that

|V ar(∆Sx
k+1)|2

|V ar(∆Sx
k+1) + E[ϵkk+1Sx

k+1]|2 +E[ϵkk+1S
x
k+1]

V ar(∆Sx
k+1)|2

|V ar(∆Sx
k+1) + E[ϵkk+1Sx

k+1]|2 ,

(3.119)
is uniformly bounded in k and w when S has the F-property and bounded mean
variance tradeoff from below and above, which we will take as a given. Then
X̂k+1 ∈ L2,1

T due to (3.114).
The next step is to show that the liquidity costs

E[
d∑

j=1
ϵkk+1S

x
k+1|X̂k+2 − X̂k+1|2|Fk], (3.120)

are integrable.
To construct the optimal strategy according to the LRM-criterion under

illiquidity at time k we need to minimize

V ar(Vk+1(φ) − (X̂k+1)∆Sk+1|Fk)

+ αE[
d∑

j=1
ϵkk+1S

x
k+1(X̂k+2 − (X̂k+1)2|Fk],

(3.121)

for an appropriate minimizer X̂k+1.
When α = 1 we get

V ar(X̂k+2Sk+1 + Ŷk+1 − X̂
′

k+1)∗∆Sk+1|Fk)

+ E[
d∑

x=1
ϵk+1S

x
k+1|X̂k+2 − X̂k+1|2|Fk]

≤ V ar(X̂k+2Sk+1 + Ŷk+1|Fk) + E[
d∑

x=1
ϵk+1S

x
k+1|X̂k+2|2|Fk],

(3.122)
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3.6. 1-dimensional Black-Scholes model

holds when we choose Xk+1 = 0, since

E[
d∑

x=1
ϵk+1S

x
k+1|X̂k+2−X̂k+1|2|Fk] ≤ E[|X̂k+2Sk+1+Ŷk+1|2]+E[

d∑
x=1

ϵk+1S
x
k+1|X̂k+2|2],

(3.123)
where we used that V ar(X) ≤ E[X]2. We have from earlier that
X̂k+2Sk+1 + Ŷk+1 ∈ L2,1

T and Sx
k+1|X̂k+2|2 ∈ L1,1

T , then the illiquidity cost∑d
x=1 ϵk+1S

x
k+1|X̂k+2 − X̂k+1|2 is also in L1,1

T .
So ϵk+1S

x
k+1|X̂k+2 − X̂k+1|2 ∈ L1,1

T . This holds for a deterministic process
ϵk and the marginal price process S are both non-negative by assumption.

The only thing which remains to show is that |X̂k+1|2Sx
k ∈ L1,1

T . When this
is done we can by an induction argument show that the liquidity costs in the
next step are again integrable. From the equality

|X̂k+1|2Sx
k = −|X̂k+1|2∆Sx

k+1 + |X̂k+1|2Sx
k+1, (3.124)

We need to show that |X̂k+1|2∆Sx
k+1 and |X̂k+1|2Sx

k+1 are both in
L1,1

T . Since we already showed that the liquidity costs are integrable and
|X̂k+2|2Sx

k+1 ∈ L1,1
T then the inequality

0 ≤ |X̂k+1|2Sx
k+1 ≤ 2|X̂k+2 − X̂k+1|2Sx

k+1 + 2|X̂k+2|2Sx
k+1, (3.125)

follows. Because ϵk ≥ 0 imply that |X̂k+1|2Sx
k+1 is integrable. The term

|X̂k+1|2∆Sx
k+1 is integrable as well due to the fact that X̂k+1∆Sx

k+1 and X̂k+1

are both in L2,1
T .

Then we must have

E[|X̂k+1|2∆Sx
k+1] ≤ E[|X̂k+1|21{|∆Sx

k+1|≤1}] + E[|X̂k+1∆Sx
k+1|21{|∆Sx

k+1|≥1}

≤ E[|X̂k+1|2] + E[|X̂k+1∆Sx
k+1|2],

(3.126)

and this finally proves and completes the induction step at time k. Finally,
define

ŶT −1 = E[H − X̂T ∆ST |Fk] − X̂TST −1, (3.127)

then ŶT −1 is Ft−1−measurable and X̂TST −1 + ŶT −1 = E[H − X̂T ∆ST |Fk]
belongs to L2,1

T .
For the strategy φ̂ to be LRM we need it also to have a cost process C(φ̂)

has the martingale property. The martingale property of C(φ̂) follows from the
construction of Ŷ since at each time k we have

E[CT (φ̂) − Ck(φ̂)|Fk] = 0. (3.128)

Then φ̂ = (X̂, Ŷ ) is a LRM under illiquidity. See [Chr20].

3.6 1-dimensional Black-Scholes model

Consider the 1-dimensional Black-Scholes model of a geometric Brownian motion
W, that is

St = S0exp(µt+ σWt), (3.129)
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3.7. 1-dimensional value process under illiquidity

which is lognormally distributed. This is a process of i.i.d. random variables and
with bounded mean-variance tradeoff satisfying the F-property. see [Chr20].

3.7 1-dimensional value process under illiquidity

Consider the 1-dimensional case.
We remember that

bk;1 = Cov(Vk+1,∆Sk+1|Fk) + E[ϵkk+1Sk+1Xk+2|Fk],

Fk = (∆Sk+1|Fk) + E[ϵkk+1Sk+1|Fk],

and
Xk+1 = F−1

k bk;1.

The representation of a LRM-strategy φ = (X,Y ) under illiquidity is thus
the following:

Xk+1 = Cov(Vk+1(φ),∆Sk+1|Fk) + E[ϵk+1Sk+1Xk+2|Fk]
V ar(∆Sk+1|Fk) + E[ϵk+1Sk+1|Fk] , (3.130)

and

Vk(φ) = E[H −
T∑

m=k+1
Xm∆Sm|Fk]. (3.131)

See [Chr20].
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CHAPTER 4

New Contributions

We are now ready to present some new results in connection with hedging in
illiquid markets obtained in this master thesis.

We have explicitly derived the value process with illiquidity for a geometric
Brownian motion and developed a numerical program which can calculate the
illiquidity cost for k ∈ [0, T ] under various conditions. We have coupled the
numerical program to a unit linked insurance and investigated the impact of
illiquidity on the reserve. Finally, we have expanded Schweizer et al.’s [LPS98]
framework to include a non-linear supply curve.

4.1 Value process of a geometric Brownian motion

We start by using the two expression (3.130) and (3.131) to deduce an explicit
general formula for the value process under illiquidity with the geometric
Brownian motion.

Expanding (3.131) yields

Vk(φ) =

E[H −
T∑

m=k+1

E[Vm(φ)∆Sm|Fm−1] − E[Vm(φ)|Fm−1]E[∆Sm|Fm−1] + E[ϵmSmXm+1|Fm−1]
E[(∆Sm)2|Fm−1] − E[∆Sm|Fm−1]2 + E[ϵmSm|Fm−1] ∆Sm|Fk].

(4.1)

We highlight several useful calculations below:
We have

E[Sm|Fm−1] = E[S0e
(µm+σWm)|Fm−1]

= E[S0e
(µm+σ(Wm−Wm−1+Wm−1)|Fm−1]

= S0e
(µm+σWm−1)e(σ2/2).

(4.2)

Where we used that W has independent increments and is normally distributed
with N(0,1) such that E[σ(Wm − Wm−1)|Fm−1] = E[e(σ(m−m+1)] = e(σ2/2),
and S0e

(µ(m−1)+σWm−1) is Fm−1 measurable so it can be moved out of the
conditional expectation,
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4.1. Value process of a geometric Brownian motion

Secondly, we also have

E[∆Sm|Fm−1] = E[Sm − Sm−1|Fm−1]

= E[Sm−1( Sm

Sm−1
− 1)|Fm−1]

= E[S0e
(µ(m−1)+σWm−1)(S0e

(µ(m−m+1)+σ(Wm−Wm−1)) − 1)|Fm−1]

= S2
0e

(µm+σWm−1+σ2/2) − S0e
(µ(m−1)+σWm−1).

(4.3)

Thirdly, we have that

E[(Sm)2|Fm−1] = E[S2
0e

(2µm+2σWm)|Fm−1]
= S2

0e
(2µm)E[e(2σWm)|Fm−1]

= S2
0e

(2µm+2σWm−1)E[e(2σ(Wm−Wm−1))|Fm−1]

= S2
0e

(2µm+2σWm−1)e(2σ2),

(4.4)

and

E[(Sm)|Fm−1]2 = (S0e
(µm+σWm−1)e(σ2/2))2 = S2

0e
(2µm+2σWm−1)e(σ2). (4.5)

Finally, we have that

E[SmSm−1|Fm−1] = E[S0e
(µm+σWm)S0e

(µ(m−1)+σWm−1)|Fm−1] = S2
0e

(µ(2m−1)+2σWm−1)e(σ2/2).
(4.6)

We use a backwards induction schema to find an explicit formula:
Take K = T then

VT (φ) = E[H − 0|FT ] = E[H|FT ]. (4.7)

Take K = T − 1 then

VT −1(φ) = E[H−E[VT (φ)∆ST |FT −1] − E[VT (φ)|FT −1]E[∆ST |FT −1] + E[ϵTSTXT +1|FT −1]
E[(∆ST )2|FT −1] − E[∆ST |FT −1]2 + E[ϵTST |FT −1] ∆ST |FT −1].

(4.8)
Take K = T − 2 then

VT −2(φ) = E[H − E[VT (φ)∆ST |FT −1] − E[VT (φ)|FT −1]E[∆ST |FT −1] + E[ϵTSTXT +1|FT −1]
E[(∆ST )2|FT −1] − E[∆ST |FT −1]2 + E[ϵTST |FT −1] ∆ST

− E[VT −1(φ)∆ST −1|FT −2] − E[VT −1(φ)|FT −2]E[∆ST −1|FT −2] + E[ϵT −1ST −1XT |FT −2]
E[(∆ST −1)2|FT −2] − E[∆ST −1|FT −2]2 + E[ϵT −1ST −1|FT −2] ∆ST −1|FT −2].

(4.9)

Take K = T − 3 then

VT −3(φ) = E[H − E[VT (φ)∆ST |FT −1] − E[VT (φ)|FT −1]E[∆ST |FT −1] + E[ϵTSTXT +1|FT −1]
E[(∆ST )2|FT −1] − E[∆ST |FT −1]2 + E[ϵTST |FT −1] ∆ST

− E[VT −1(φ)∆ST −1|FT −2] − E[VT −1(φ)|FT −2]E[∆ST −1|FT −2] + E[ϵT −1ST −1XT |FT −2]
E[(∆ST −1)2|FT −2] − E[∆ST −1|FT −2]2 + E[ϵT −1ST −1|FT −2] ∆ST −1

− E[VT −2(φ)∆ST −2|FT −3] − E[VT −2(φ)|FT −3]E[∆ST −2|FT −3] + E[ϵT −2ST −2XT −1|FT −3]
E[(∆ST −2)2|FT −3] − E[∆ST −2|FT −3]2 + E[ϵT −2ST −2|FT −3] ∆ST −2|FT −3].

(4.10)
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4.1. Value process of a geometric Brownian motion

Note that XT +1 is not defined for time t up to T.
Take K = 0 then

V0(φ) = E[H−
T∑

m=1

E[Vm(φ)∆Sm|Fk−1] − E[Vm(φ)|Fm−1]E[∆Sm|Fm−1] + E[ϵmSmXm+1|Fm−1]
E[(∆Sm)2|Fm−1] − E[∆Sm|Fm−1]2 + E[ϵmSm|Fm−1] ∆Sm|F0].

(4.11)
Writing out VT −1(φ) we get

VT −1(φ) = E[H−E[VT (φ)∆ST |FT −1] − E[VT (φ)|FT −1]E[∆ST |FT −1] + E[ϵTSTXT +1|FT −1]
E[(∆ST )2|FT −1] − E[∆ST |FT −1]2 + E[ϵTST |FT −1] ∆ST |FT −1].

(4.12)
We define some shorthand notation:

E[∆ST |FT −1] = S2
0e

(µT +σWT −1+σ2/2) − S0e
(µ(T −1)+σWT −1), (4.13)

as A.
Then using that the geometric Brownian motion is independent of the value

process we have

E[VT (φ)∆ST |FT −1] = E[VT (φ)|FT −1]E[∆ST |FT −1], (4.14)

such that

VT −1(φ) =

E[H − AE[VT (φ)|FT −1] −AE[VT (φ)|FT −1] + S0e
(µT +σWT −1)e(σ2/2)E[ϵTXT +1|FT −1]

E[S2
T − 2STST −1 + S2

T −1|FT −1] − E[ST − ST −1|FT −1]2 + E[ϵTST |FT −1]
∗ (ST − ST −1)|FT −1].

(4.15)

Use linearity of expectation on

E[S2
T −2STST −1+S2

T −1|FT −1] = E[S2
T |FT −1]−2E[STST −1|FT −1]+E[S2

T −1|FT −1],
(4.16)

and ϵk is assumed to be predicable with respect to Fk so

E[ϵTST |FT −1] = ϵTS0e
(µT +σWT −1)e(σ2/2), (4.17)

which we will call B.
Then

VT −1(φ) = E[H − S0e
(µT +σWT −1)e(σ2/2)E[ϵTXT +1|FT −1]

E[S2
T |FT −1] − 2E[STST −1|FT −1] + E[S2

T −1|FT −1] −A2 +B

∗ (ST − ST −1)|FT −1]

= E[H − S0e
(µT +σWT −1)e(σ2/2)E[ϵTXT +1|FT −1]

S2
0e

(2µT +2σWT −1)e(2σ2) − 2S2
0e

(µ(2T −1)+2σWT −1)e(2σ2) + S2
0e

(2µ(T −1)+2σWT −2)e(σ2/2) −A2 +B

∗ (ST − ST −1)|FT −1]
= E[H|FT −1]

− E[ϵTXT +1|FT −1]
S0e(µT +σWT −1)e( 3

2 σ2) − 2S0e(µ(T −1)+σWT −1) + S0e(µ(T −2)+σWT −2)e2σ2 − CT + E[ϵT |FT −1]
A,

(4.18)
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4.2. Pricing the value process

Where we used that

A2 = E[∆ST |FT −1]2

= (S2
0e

(µT +σWT −1+σ2/2) − S0e
(µ(T −1)+σWT −1))2

= S4
0e

(2µT +2σWT −1+σ2) − 2S3
0e

(µ(2T −1)+2σWT −1+σ2/2) + S2
0e

(2µ(T −1)+2σWT −1 ,

(4.19)

And

S3
0e

(µT +σWT −1)e(σ2) + 2S2e(µ(T −1)+σWT −1) − S0e
(µ(T −2)+σWT −1), (4.20)

which we called CT for m = T .
The general closed formula for Vk(φ) is thus,

Vk(φ) = E[H|Fk]

−
T∑

m=k

ϵm+1E[Xm+2|Fm]
S0eµ(m+1)+σWme

3
2 σ2 − 2S0eµm+σWm + S0eµ(m−1)+2σWm−1e2σ2 − Cm + ϵm+1

∗ (S2
0e

(µm+σWm−1+σ2/2) − S0e
(µ(m−1)+σWm−1)),

(4.21)

In the case where the illiquidity ϵk+1 tends to 0. We can define a trading
strategy φ = (X,Y ) and observe that Vk(φ) = E[H|Fk].

In the case where the illiquidity ϵk+1 → ∞ we have

Xk+1 → E[ Sk+1...STXT +1

E[Sk+1|Fk]...E[ST |FT −1] |Fk]. (4.22)

4.2 Pricing the value process

We can derive a risk-neutral measure to price derivative securities. The
derivation follows the standard method found in [Unk] and the references
therein. The important implication of this derivation is that for any risk neutral
measure the illiquidity cost becomes zero.

Stock price under risk-neutral measure

The stock price is given by

dS(t) = α(t)S(t)dt+ σ(t)S(t)dB(t), t ∈ [0, T ], (4.23)

were both α(t), σ(t) are adapted. Its integral form is,

S(t) = S(0)exp[
∫ t

0
α(u)dB(u) +

∫ t

0
(α(u) − σ2(u)/2)du]. (4.24)

Let R(t) be adapted interest rate, and the discounted process

D(t) = e
−

∫ t

0
R(u)du

, (4.25)

satisfies
dD(t) = −R(t)D(t)dt = −R(t)e−

∫ t

0
R(u)du

, (4.26)
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4.2. Pricing the value process

The discounted stock price is

D(t)S(t) = S(0)exp(
∫ t

0
σ(u)dB(u) +

∫ t

0
(α(u) −R(u) − 1

2σ(u)2)du), (4.27)

and

d(D(t)S(t)) = (α(t) −R(t))D(t)S(t)dt+ σ(t)D(t)S(t)dB(t)
= α(t)D(t)S(t)(µ(t)dt+ dB(t)),

(4.28)

where
µ(t) = α(t) −R(t)

σ(t) , (4.29)

where we have used that (dD(t))(dS(t)) = 0. This can be viewed as the price
of risk in the market.

Using this µ, the Z from earlier and B(t) = B(t) +
∫ t

0 µ(t)dt we have that

d(D(t)S(t)) = σ(t)D(t)S(t)dB(t), (4.30)

which is defined on the measure P with the Radon-Nikodym density Z with
respect to P. Using the Girsanov’s theorem we have that B is a Brownian
motion. From

D(t)S(t) = S(0) +
∫ t

0
σ(u)D(u)S(u)dB(u), (4.31)

we have that (D(t)S(t)) is a martingale under P.
The undiscounted stock price under P is

dS(t) = R(t)S(t)dt+ σ(t)S(t)dB(t). (4.32)

See [Unk].

Pricing through the risk neutral measure

Continuing with the stock model dS(t) = α(t)S(t)dt + σ(t)S(t)dB(t) we can
construct a hedging strategy. Let X(t) be the value of self-financing portfolio
with ∆(t) shares of stock and a differential equation

dX(t) = ∆(t)dS(t)+R(t)(X(t)−∆(t)S(t))dt = R(t)X(t)dt+∆(t)σ(t)S(t)(µ(t)dt+dB(t))
(4.33)

Using equation (4.26) and (4.27) we get

d(D(t)X(t)) = ∆(t)σ(t)D(t)S(t)[µ(t)dt+ dB(t)] = ∆(t)d(D(t)S(t)), (4.34)

Using equation (4.30) we get

d(D(t)X(t)) = ∆(t)σ(t)D(t)S(t)dB(t), (4.35)

such that under the discounted stock portfolio the value D(t)X(t) is a
martingale.

Assume that we have a self-financing portfolio with value (X(t), t ∈ [0, T ]),
hedging the option V (t) such that X(T ) = V (T ). In addition assume that
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4.3. Numerical analysis of illiquidity cost

V (T ) is FT -measurable and assuming the existence of this option. Then as
(D(t)X(t), t ∈ [0, Y ]) is a martingale under P we get

D(t)X(t) = E[D(T )X(T )|Ft] = E[D(T )V (T )|Ft]. (4.36)

If we assume an arbitrage free strategy then the value of the option at time t
should be taken as V (t) = X(t). V (t) under the risk neutral measure is thus
equal to

D(t)V (t) = E[D(T )V (T )|Ft] t ∈ [0, T ], (4.37)

and so
V (t) = E[e−

∫ T

t
R(u)du

V (T )|Ft] t ∈ [0, T ]. (4.38)

See [Unk].

Pricing a European call option

Assume that we have a European call option, which can be expressed as C =
(S(T ) −K)+. We let the contingent claim be the call option H = (S(T ) −K)+

such that

V ∗
k (φ) = E[H −

T∑
m=k+1

Xm∆Sm|Fk] = E[(S(T ) −K)+ −
T∑

m=k+1
Xm∆Sm|Fk],

(4.39)
and so

V ∗
t (φ) = E[e−

∫ T

t
R(u)du

VT (φ)|Ft]

= E[e−
∫ T

t
R(u)du((S(T ) −K)+ −

T∑
m=T +1

Xm∆Sm)|Fk]

= E[e−
∫ T

t
R(u)du(S(T ) −K)+|Fk]

= S(t)N(d+) − e−r(T −t)KN(d−).

(4.40)

Which is the regular Black-Scholes formula. This risk neutral measure makes
the illiquidity cost component of the value process zero. In fact any risk neutral
measure will create a similar situation.

To describe the value process subject to illiquidity costs in a meaningful
way we simply take the expectation under the physical probability measure P
of the European call option such that

Vt(φ) = E[e−
∫ T

t
R(u)du

VT (φ)|Ft]

= E[e−
∫ T

t
R(u)du((S(T ) −K)+ −

T∑
m=T +1

Xm∆Sm)|Fk].
(4.41)

4.3 Numerical analysis of illiquidity cost

We now want to compare the value process Vt(φ) under the risk neutral measure
with the Black-Scholes formula as its solution against the value process subject
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4.3. Numerical analysis of illiquidity cost

to the regular expectation seen below.

Vt(φ) =S(t)N(d+) − e−r(T −t)KN(d−)

−
T∑

m=k

ϵm+1E[Xm+2|Fm]
S0eµ(m+1)+σWme

3
2 σ2 − 2S0eµm+σWm + S0eµ(m−1)+2σWm−1e2σ2 − Cm + ϵm+1

∗ (S2
0e

(µm+σWm−1+σ2/2) − S0e
(µ(m−1)+σWm−1)).

(4.42)

Where

d±((T − t), x) = 1
σ

√
(T − t

(ln( x
K

) + (r ± σ2

2 (T − t)),

N(x) = 1√
2π

∫ x

−∞
e−y2/2dy = 1√

2π

∫ ∞

−x

e−y2/2dy,

µ = r − σ2

2 .

(4.43)

The difference between the two value processes is the illiquidity cost

Vt(φ) − Vt(φ)∗ = −
T∑

m=k

ϵm+1E[Xm+2|Fm]
S0eµ(m+1)+σWme

3
2 σ2 − 2S0eµm+σWm + S0eµ(m−1)+2σWm−1e2σ2 − Cm + ϵm+1

∗ (S2
0e

(µm+σWm−1+σ2/2) − S0e
(µ(m−1)+σWm−1)).

(4.44)

Since ϵk is assumed to be measurable with respect to Ft−1 we can take it out
of the expectation. We further set E[XT |Ft−1] = 1 for simplicity. One could
compute the conditional expectation as

µXT |Y =Ft−1 = E[XT |Y = Ft−1] =
∑

x

xfXT |Y (x|Ft−1),

such that E[XT |Y = Ft−1] is the mean value of X, when Y is fixed at Ft−1.
However since we do not use any empirical data to estimate E[XT |Ft−1] we
just put it to 1 arbitrarily. Indicating that the expected obligated risky stock
to sell at time T is 1 unit. The R-code used to create the following tables and
graphs can be found in Appendices. We will display the illiquidity cost as a
positive value in the following tables.

We used the following parameters to obtain these data from each table
σ = 0.05,K = 1, r = 0.05, S(0) = 1, S(t) = 10.
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4.3. Numerical analysis of illiquidity cost

Time Illiquidity cost
1 1.041116
2 1.041116
3 1.041116
4 1.041116
5 1.041116
6 1.041116
7 1.041116
8 1.041116
9 1.041116
10 1.041116
11 1.041116
12 1.041116
13 1.041116
14 1.041116
15 1.041116
16 1.041116
17 1.041116
18 1.041116
19 1.041116
20 1.041116
21 1.041116
22 1.041116
23 1.041116
24 1.041116
25 1.041116
26 1.041116
27 1.041116
28 1.041116
29 1.041116
30 1.041116
31 1.041116
32 1.041116
33 1.041116
34 1.041116
35 1.041116
36 1.041116
37 1.041116
38 1.041116
39 1.041116
40 1.041116
41 1.041116
42 1.041115
43 1.041110
44 1.040968
45 1.040728
46 1.038900
47 1.034155
48 1.020368
49 1.000000
50 0.000000

Table 4.1: Illiquidity parameter ϵ = 0.1. 48



4.3. Numerical analysis of illiquidity cost

Time Illiquidity cost
1 1.160306
2 1.160306
3 1.160306
4 1.160306
5 1.160306
6 1.160306
7 1.160306
8 1.160306
9 1.160306
10 1.160306
11 1.160306
12 1.160306
13 1.160306
14 1.160306
15 1.160306
16 1.160306
17 1.160306
18 1.160306
19 1.160306
20 1.160306
21 1.160306
22 1.160306
23 1.160306
24 1.160306
25 1.160306
26 1.160306
27 1.160306
28 1.160306
29 1.160306
30 1.160306
31 1.160306
32 1.160306
33 1.160306
34 1.160306
35 1.160306
36 1.160306
37 1.160306
38 1.160306
39 1.160304
40 1.160302
41 1.160297
42 1.160220
43 1.160122
44 1.158324
45 1.157111
46 1.146953
47 1.138065
48 1.109465
49 1.000000
50 0.000000

Table 4.2: Illiquidity parameter ϵ = 0.6. 49



4.3. Numerical analysis of illiquidity cost

Time Illiquidity cost
1 3.547406
2 3.547406
3 3.547406
4 3.547406
5 3.547406
6 3.547406
7 3.547406
8 3.547406
9 3.547406
10 3.547406
11 3.547406
12 3.547406
13 3.547406
14 3.547406
15 3.547406
16 3.547406
17 3.547406
18 3.547406
19 3.547406
20 3.547406
21 3.547406
22 3.547406
23 3.547406
24 3.547406
25 3.547406
26 3.547406
27 3.547406
28 3.547406
29 3.547406
30 3.547406
31 3.547406
32 3.547406
33 3.547406
34 3.547406
35 3.547406
36 3.547403
37 3.547401
38 3.547401
39 3.547394
40 3.547392
41 3.547277
42 3.545802
43 3.526572
44 3.510709
45 3.477497
46 3.384790
47 3.353414
48 2.544754
49 1.000000
50 0.000000

Table 4.3: Illiquidity parameter ϵ = 1. 50



4.3. Numerical analysis of illiquidity cost

Discussion of Table 4.1, 4.2 and 4.3 From the formula and data we observe
that at the final time T = 50 there is no illiquidity cost since the XT +1 in the
illiquidity cost is not defined and taken to be 0. Additionally we assume that
XT = 1 corresponding to having one stock of the risky asset in the portfolio at
time T .

We see that as the illiquidity parameter increases so does the illiquidity cost.
At ϵ = 0.1 and t = 1 the illiquidity cost is 10.41% while at ϵ = 1 and t = 1 the
cost increases to 35.47% of the underlying stock price.

It is also evident that time to terminal plays an important role. The
illiquidity cost remain almost constant between time 1 ≤ t ≤ 39 using all
illiquidity parameters, and the largest change occur in the final steps t ≥ 46.
There seem to be an illiquidity saturation range in which only negligible changes
to the illiquidity cost occur. The illiquidity saturation range always starts at
the t = 1 but ends at different times depending on the illiquidity parameter ϵ
and the length of T .

In our simulation an illiquidity desaturation point with ϵ = 0.1 occurs at
time t = 39 before which the illiquidity saturation range is in effect. For ϵ = 1
the illiquidity desaturation point occurs at t = 35. Pinning down the exact
desaturation point can be done by solving the following equation for t and
finding the maximum value for t:

Maxt(∆t =
E[

∑T
m=t Xm∆Sm|Ft]

E[
∑T

m=t+1 Xm∆Sm|Ft]
), (4.45)

where ∆t is the rate of change in illiquidity cost, which we want to be
approximately zero.

In reserve calculations one often uses the equivalence principle which states
that the value of premiums must be equal to the value of the pay-outs at time
t = 0. If we applied a similar principle to the value of the portfolio, such that
the value of the illiquidity cost should be equal to an illiquidity premium we
would have a type of risk pricing in an illiquid market.

An economic interpretation A stochastic process that moves randomly in a
state space will given enough time visit all possible states. Some of these states
are scenarios where the market is illiquid to some extend. When you are at
the initial time t = 1 there are the most risk associated with illiquidity in the
future, and at the final time t = T there is no more possibility of entering any
further states. This tells us that the illiquidity cost at the final time should be
zero and largest at the initial time, which we see in our model. We see a rapid
decrease in illiquidity cost towards the end, which corresponds to the number
of state spaces decreases towards the final one.

The observed desaturation point can be viewed within the framework of
the Lindy effect. The Lindy effect proposes that the longer something survives
the more likely it is to have a longer remaining life expectancy. In regards to
illiquidity, an asset is Lindy if it has survived a long time without illiquidity,
then the best future prediction is that it is more unlikely that the stock will
experience illiquidity. The desaturation point is then when the stock becomes
"Lindy" and as more time passes it becomes more "Lindy".

One criticism to this proposed explanation is that the illiquidity regime is
constant in each period, so we are not talking about a risk but rather a certainty.
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Following this logic we would expect that there would be a constant decrease
in illiquidity cost till the final time. If we instead see the illiquidity cost as the
cost of uncertainty for future market illiquidity, then we would expect that the
Lindy effect is present and our explanation fits the observed data.

Limitations of the model The model suffers from a number of limitations
that might shift our conclusions. We will list some limitations and the effect on
the model.

The illiquidity parameter is constant in all periods in this model which
is unrealistic since variation certainly exist, especially in the energy market
which is dependent on many factors such as geopolitical conflict, seasonal
variation, global supply chains etc. However, this model can be used to bound
the illiquidity cost associated with a given portfolio, since we can calculate a
maximum and minimum illiquidity cost for the whole period.

This model is in discrete-time and has quite large jumps towards the final
time. The size of the jumps are primarily due to the assumption of the size
of the final XT value, which we arbitrarily choose to be 1 for this example.
However, a jump will still occur for XT > 0 which will be large compared with
the earlier illiquidity costs. This is due to the discrete framework that the
formula is derived in. The most intuitive way to remedy this problem would be
to change from discrete-time to continuous-time. However this would in turn
change the underlying mathematical framework that the explicit formulas are
based on.

The formula is a stochastic formula and the illiquidity cost will change
based on the random walk of the Brownian motion such that for practical
implementation the program should be run thousands of times to establish a
mean and variance on the illiquidity cost in each period. Nevertheless, the
example above does provide a pattern of behavior which each illiquidity cost
run will exhibit.

The formula is time dependent in that illiquidity cost changes quite based
on the length of the time interval. T = 50 was chosen arbitrarily, but higher
values of T would see the initial illiquidity cost increase substantially, even to
the point where it becomes more than the cost of the entire underlying stock.
It is unrealistic that illiquidity costs could be higher than the underlying stock
and so a illiquidity cost limit has to be imposed to prevent this outcome. A
possible solution could be that any illiquidity cost which is higher than the
underlying stock is simply equal to the value of the stock. Which would result
in the stock not being purchased before a certain point in time.

No method for estimating the illiquidity parameter ϵ is given. The size of ϵ
is of crucial importance when estimating the value of the portfolio and the lack
of a method for finding ϵ limits the real world applications of this framework.
A possible solution to estimating ϵ would be to compare a given portfolio in the
market of interest with itself over time to gauge at which times the illiquidity in
the market is high and at which times it is low based on the underlying stocks
prices fluctuation. This method would only provide a rough estimate of the
illiquidity parameter since changes in the price of the stock is not only due to
illiquidity costs, but also due to randomness and other factors.

Historical data is needed to estimate the conditional expectation E[Xt|Ft−1],
which could be done by looking at various stock portfolio on a given market and
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examine how many units of stock on average is being held at various times given
some estimate of illiquidity level relative to the size of the portfolio. Obviously
our choice of E[XT |Ft−1] drives the illiquidity cost in that lower values would
cause the illiquidity cost to reduce substantially, and a higher value would
likewise increase the cost. However, we are more interested in the pattern of
behavior that the illiquidity cost takes under this model which is independent of
the size of E[XT |Ft−1]. Further research could be done to elucidate a realistic
estimate for E[Xt|Ft−1] using the approach outlined above.

Unit linked policy

We decided to use the unit linked policy formula for continuous-time since the
surface of the reserve using the discrete formula became very "blocky" to graph
due to the limited time interval.

The result is thus not strictly mathematically correct, but the graphs do
illustrate the same point in a more aesthetically pleasing way.

Lets assume that ai is almost everywhere differentiable with at most a
discontinuity at the end of the contract t = T and that ∆ai(T ) = ai(T )−ai(T−)
is this jump. Assume also that the functions fi, gi, hij : [0, T ] × R → R are
defined as follows

∆ai(T ) = fi(T, ST ), â(t) = gi(t, St), aij(t) = hij(t, St), t ∈ [0, T ].
(4.46)

The mathematical reserve V +
i (t, St) of the contract with the above policy

functions (fi, gi and hij) linked to the fund S at time t, assuming that the
insured is in state i at time t, is:

V +
i (t, St) = 1

v(t) [
∑
j∈J

v(T )pij(t, T )EQ[fj(T, ST )|Ft]

+
∑
j∈J

∫ T

t

v(s)pij(t, s)EQ[gj(s, Ss)|Ft]ds

+
∑

j,k∈J,k ̸=j

∫ T

t

v(s)pij(t, s)µjk(s)EQ[hjk(s, Ss)|Ft]ds],

(4.47)

where

v(T )
v(t) EQ[fj(T, ST )|Ft],

v(s)
v(t)EQ[gj(s, Ss)|Ft],

v(s)
v(t)EQ[hjk(s, Ss)|Ft],

(4.48)
are the risk neutral prices of European options fj(T, ST ) with terminal time
T, gj(s, Ss) with terminal time s ≥ t and hjk(s, Ss) with s ≥ t respectively.

Let φ be the pay-off function and let H = φ(s, Ss) be the pay-off of an
option at terminal time s. Let price of H with terminal time T be

Uφ
s (t, St) = v(s)

v(t)EQ[φ(s, Ss)|σ(St)], t ∈ [0, s]. (4.49)

where we used that S has the Markov property. See [Bañ22].
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The stochastic reserve is then

V +
i (t, St) =[

∑
j∈J

pij(t, T )Ufj

T (t, St)

+
∑
j∈J

∫ T

t

pij(t, s)Ugj
s (t, St)ds

+
∑

j,k∈J,k ̸=j

∫ T

t

pij(t, s)µjk(s)Uhjk
s (t, St)ds].

(4.50)

We have that the expected value of the contingent claim with illiquidity is
E[H|Ft−1] = VT (φ) and we know the value process at time t = 0 from the
recursive algorithm developed in section (4.1). We let the price of a European
call option at time t be the price of the value process of the European call
option at that time. Such that

Uφ
s (t, St) = v(s)

v(t)EQ[φ(s, Ss)|σ(St)]

= v(s)
v(t)EQ[H|σ(St)]

= v(s)
v(t)E[H −

T∑
m=t+1

Xm∆Sm|σ(St)]

= v(s)
v(t)Vt(φ).

(4.51)

With this formulation we have included the illiquidity cost into the reserve
calculation.

We switched from the risk neutral measure to the measure used in section
(4.2) which is not a risk neutral measure, since that would eliminate the illiquidity
cost as explained earlier.

Pure endowment with and without illiquidity cost

We can describe a unit-linked endowment without illiquidity cost as follows:
Lets consider a contract of T years for a person who is x years old which

pays the maximum between G and the value of the fund ST at terminal time T
upon survival. Such that the pay-off is

H = max(G,ST ) (4.52)

Where G is the guaranteed amount.
Assume that the fund S is modelled by the Black-Scholes model and has

the following policy function

a∗(t) =
{

0, t ∈ [0, T )
max(G,ST ), t ≥ T.

(4.53)

and

∆a∗(T ) = a∗(T ) − a∗(T−) = f∗(T, ST ) = max(G,ST ) = (ST −G)+ +G.
(4.54)
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The price at time t of a European call option is given by

UT (t, St) = v(T )
v(t) EQ[max(G,ST )|σ(St)] = BS(t, T, St, G)+Ge−r(T −t), (4.55)

where BS is shorthand for the Black-scholes price of the option at time t with
terminal T and strike price G. Then the price of the endowment at time t is

Vt(t, St) = px
∗∗(t, T )[BS(t, T, St, G) +Ge−r(T −t)], t ∈ [0, T ]. (4.56)

See [Bañ22]. The unit-linked endowment with illiquidity cost is described
similarly but with the Uφ

s (t, St) as defined in (4.51). Such that we have

UT (t, St) =v(T )
v(t) EQ[max(G,ST )|σ(St)] − v(T )

v(t) E[
T∑

m=t+1
Xm∆Sm|σ(St)]

= BS(t, T, St, G) +Ge−r(T −t) − E[
T∑

m=t+1
Xm∆Sm|σ(St)]e−r(T −t),

(4.57)

Let T = 120 years, G = 1 and let the fund have the following dynamics
σ = 5%, r = 5%.
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Figure 1: Reserve surface of a unit-linked endowment.
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Discussion of Figure 1 The figure describes the reserve surface for the
unit-linked insurance. We see that the larger the value of the fund at the start
of the contract (t = 0), the higher the price of the policy. This is reasonable
since the fund outperforms the guarantee G = 1. When the stock price is low
at the beginning we see that it behaves as a regular endowment which increases
deterministic.
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Figure 2: Reserve surface of a unit-linked endowment with illiquidity cost
included where ϵ = 1 and the final expected stock amount was set at
E[XT |FT −1] = 0.1.

Discussion of Figure 2 The overall behavior of the reserve surface moves
much like the reserve with no illiquidity cost. The significant difference is that
the price level is much lower due to the illiquidity cost. This is most keenly
seen at the beginning of the contract where the reserve becomes negative. A
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lower reserve means that the projected pay-out is lower. A negative price
would indicate the projected pay-out is negative as well, so no costumer would
want to buy such a policy. To compensate for this illiquidity cost an insurer
would have to pay the costumer with an equivalent money pay-out.

Multiple illiquidity parameters

As mentioned earlier the illiquidity parameter ϵ may undergo predictable
periodic changes during the time interval. A real world example of this could
be seasonal change in energy access. One could imagine that solar power
becomes too abundant during summer and is unable to be sold at a positive
price (in fact negative energy prices has been seen in Germany on certain
summer days). The stock of solar companies may experience a certain degree
of illiquidity due to this.
In this section we want to see the effect of 2 illiquidity parameters on the
illiquidity cost.
From time t ∈ [1, x] we have ϵ1, while from t ∈ [x+ 1, T ] we use ϵ2.
In general we have:

Xk+1 = Cov(Vk+1(φ),∆Sk+1|Fk) + E[ϵk+1Sk+1Xk+2|Fk]
V ar(∆Sk+1|Fk) + E[ϵk+1Sk+1|Fk] (4.58)

and

Vk(φ) = E[H −
T∑

m=k+1
Xm∆Sm|Fk] (4.59)

specifically the illiquidity cost is

E[
T∑

m=k+1
Xm∆Sm|Fk] = E[

T∑
m=k+1

Cov(Vk+1(φ),∆Sk+1|Fk) + E[ϵk+1Sk+1Xk+2|Fk]
V ar(∆Sk+1|Fk) + E[ϵk+1Sk+1|Fk] ∆Sm|Fk]

(4.60)
The recursive nature of Xt makes it clear that recursion starts at X18 which
depends on X19 and has ϵ2 associated with it. Then X17 depends on X18 and
X19 with ϵ2 and so on, until we reach X10 which relies on ϵ1, but the rest of
the recursion X11, ..., X19 still depends on ϵ2.
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Time Illiquidity cost
1 1.014692
2 1.014692
3 1.014692
4 1.014692
5 1.014692
6 1.014692
7 1.014692
8 1.014692
9 1.014692
10 1.014692
11 1.014692
12 1.014692
13 1.014692
14 1.014691
15 1.014687
16 1.014665
17 1.014311
18 1.013714
19 1.009810
20 1.000000
21 0.000000

Table 4.4: the following parameters were used ϵ1 = 0.5 for t ∈ [1, 10], ϵ2 = 0.1
for t ∈ [11, 20], σ = 0.05, S(0) = 1, XT = 1, r = 0.05.
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Time Illiquidity cost
1 1.000072
2 1.000072
3 1.000072
4 1.000072
5 1.000072
6 1.000072
7 1.000072
8 1.000072
9 1.000072
10 1.000072
11 1.000072
12 1.000072
13 1.000072
14 1.000072
15 1.000072
16 1.000072
17 1.000072
18 1.000072
19 1.000071
20 1.000000
21 0.000000

Table 4.5: the following parameters were used ϵ1 = 0.5 for t ∈ [1, 10], ϵ2 = 0.1
for t ∈ [11, 20], σ = 0.05, S(0) = 1, XT = 1, r = 0.05.

Discussion of table 4.4 and 4.5 From both table 4.4 and 4.5 we see that
each added recursive link to Xt produce less and less of an effect on the
illiquidity cost. Such that ϵ1 impacts the cost much less than ϵ2. Having the
second half of the time interval be governed by a smaller illiquidity parameter
makes the effect of later increases in the illiquidity parameter negligible.
Another effect that becomes evident is that reducing the length of the time
interval decreases the illiquidity cost substantially as compared with the
previous tables (4.1,4.2 and 4.3).
We observe the familiar desaturation point in both tables like we did in the
table 4.1, 4.2 and 4.3.

Linking a Brownian motion to the illiquidity parameter

In this section we want the illiquidity parameter to depend on a Brownian
motion ϵ = f(Bt) where

f(x) =
{

0.5 when 1(Bt)(−∞,0)

1 when 1(Bt)[0,∞).
(4.61)

Where 1 is the indicator function.
The program used generated the following illiquidity parameter

ϵ = [0.5 1 1 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1]
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which gave the following data:

Time Illiquidity cost
1 1.047070
2 1.047070
3 1.047070
4 1.047070
5 1.047070
6 1.047070
7 1.047070
8 1.047070
9 1.047070
10 1.047070
11 1.047070
12 1.047070
13 1.047070
14 1.047069
15 1.047066
16 1.046982
17 1.045400
18 1.027774
19 1.000000
20 0.000000

Table 4.6: the following parameters were used ϵ = 1 for 1(Bt)(−∞,0], ϵ = 0.5
for 1(Bt)[0,∞], σ = 0.05, S(0) = 1, XT = 1, r = 0.05.

Discussion of Table 6 We see a familiar pattern of a desaturation point at
time t = 14, and a rapid decrease until time t = 20. X20 carries the largest
impact on the illiquidity cost and subsequent terms are contribute much less.
According to this model illiquidity cost is almost independent of the illiquidity
risk at any other time than the last couple of time periods.

Economic interpretation Tying the illiquidity parameter to a Brownian
motion illustrates a market going through random economic shocks in which
the illiquidity shoots up. It also captures the idea that there is a certain
"stickiness" to economic shock, such that when the Brownian motion is highly
positive it becomes less likely that it will become negative and change the
illiquidity parameter in the next period. A real world could the housing crisis
in 2008, which made banks less willing to buy housing derivatives causing a
regime of higher illiquidity in the housing market. [GH20]

4.4 Non-linear supply curves

Let the supply curve Sk(x) = (S1
k(x), ..., Sd

k(xd)) be non-linear. Then

Sj
k(xj) = Sj

k + x2,j
k ϵkS

j
k. (4.62)

is an example of a non linear supply curve.
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We once again assume that S is a non-negative semimartingale price process
and ϵk = (ϵk)k=0,1,..,T is a positive deterministic Rd-valued process, s.t. the
price process does not take on negative values. For the sake of simplicity and
easy of notation we shall consider one asset x at a time k, such that the
non-linear supply curve becomes:

Sx
k (x) = Sk + x2

kϵkSk. (4.63)

The following lemmas, theorems and proofs can also be applied to the case of d
number of assets, but the notation become quite unwieldy.
Returning to Schwiezer et al. [LPS98] we will rework the bounds and check
whether their conclusions can be proven for the non linear supply curve.
Assume S has substantial risk, i.e. there is a constant c < ∞ such that

S2
k−1

E[∆S2
k|Fk−1] ≤ c P-a.s. for k = 1, ..., T. (4.64)

Lemma 3 Assume S has substantial risk. Then:

1. Θ(Sx) ⊇ Θ(S) for every x ∈ Γ.

2. V x
k (φ) ∈ L2(P ) for k = 0, 1, ..., T, for every x ∈ Γ and for every strategy
φ.

3. Xk+1Sk ∈ L2(P ) for k = 0, 1, ..., T, for every X ∈ Θ(S).

4. Ck(φ) ∈ L2(P ) for k = 0, 1, ..., T and for every strategy φ.

Proof:
By definition of Sx, we have

Xk∆Sx
k = XkSk +Xkx

2
kϵkSk −XkSk−1 −Xkx

2
k−1ϵkSk−1

= Xk∆Sk +Xkϵk∆x2
kSk−1 +Xkϵkx

2
k∆Sk,

(4.65)

xk, xk−1 and ϵk are bounded by 1, and we remind ourselves that Θ(Y ) is a
space of all predictable processes X = (Xk)k=1,...,T +1 such that
Xk∆Yk ∈ L2(P ) for k = 1, ..., T . Then 1) follows from 3) since
Xkϵk∆x2

kSk−1 ∈ L2(P ) for k = 0, 1, ..., T and so every Xk∆Sk ∈ L2(P ) is also
in Xk∆Sj

k so Θ(Sx) ⊇ Θ(S)
The definition of V x(φ) is

V x
k (φ) = Xk+1S

x
k + Yk ≤ Vk(φ) +Xk+1x

2
kϵkSk ≤ Vk(φ) +Xk+1Sk, (4.66)

since Vk(φ) = Xk+1Sk + Yk ∈ L2(P ) for k = 0, 1, .., T and xk, ϵk ≤ 1 we have
that 2) follows from 3).
The cost process is defined as

C(φ) = Vk(φ) −
k∑

j=1
xj∆Sj + ϵk

k∑
j=1

Sj |∆xj+1|, (4.67)

which implies that
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∆Ck(φ) = ∆Vk(φ) −Xk∆Sk + ϵkSk|∆Xk+1|
= Xk+1(Sk + ϵkxkSk) + Yk −Xk(Sk + ϵkxkSk) − Yk−1

= xk(Xk+1(Sk + ϵkxkSk) + Yk −Xk(Sk + ϵkxkSk) − Yk−1)
xk

≤ Xk+1Sk +Xk+1ϵkx
2
kSk + Yk −XkSk + ϵkx

2
kSk − Yk−1

xk

= ∆V x
k (φ) −Xk∆Sx

k

xk
,

(4.68)

as xk → 0 then ∆Ck(φ) → ∞. We have to impose the condition that xk

cannot go to zero then the above (4.68) shows that 4) follows from 2) and 1).
3) is proven by the assumption of substantial risk i.e.

E[(Xk+1Sk)2] = E[(Xk+1∆Sk+1)2 S2
k

E[∆S2
k+1|Fk] ] ≤ cE[(Xk+1∆Sk+1)2] < ∞.

(4.69)

Proposition 4 Assume that S has bounded mean-variance tradeoff and
substantial risk. Fix x ∈ Γ and assume that there is a constant C > 0 such that

V ar[∆Sx
k |Fk−1] ≥ cV ar[∆Sk|Fk−1] P-a.s. for k = 1, ..., T. (4.70)

Then Sx has bounded mean-variance tradeoff, and Θ(Sx) = Θ(S).
Proof:
We first show that (4.70) implies that Sx has bounded mean-variance trade off.
This will be the case if

(E[∆Sx
k |Fk−1])2 ≤ cV ar[∆Sk|Fk−1] P-a.s. for k = 1, ..., T. (4.71)

We have that

∆Sx
k = Sk + x2

kϵkSk − Sk−1 − x2
k−1ϵkSk−1

= ∆Sk + ϵk∆x2
kSk−1 + ϵkx

2
k∆Sk.

(4.72)

Then

(∆Sx
k )2 = (∆Sk + ϵk∆x2

kSk−1 + ϵkx
2
k∆Sk)2

= (∆Sk)2x4
kϵ

2
k + 2(∆Sk)2x2

kϵk + (∆Sk)2 + 2∆Sk∆x2
kx

2
kϵk + (∆x2

k)2S2
k−1ϵ

2
k

= S2
kx

4
kϵ

2
k + 2S2

kx
2
kϵk + S2

k − 2Sk−1Skx
2
kx

2
k−1ϵ

2
k − 2SkSk−1x

2
kϵk

− 2SkSk−1x
2
k−1ϵk − 2SkSk−1 + S2

k−1x
4
k−1ϵ

2
k + 2S2

k−1x
2
kϵk + S2

k−1.

(4.73)
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and assuming linearity of expectation, xk, xk−1 ≤ 1 and Sk is measurable w.r.t.
the filtration F we get that

E[(∆Sx
k )|Fk−1]2 ≤ ϵ2kE[S2

k|Fk−1] + 2ϵkE[S2
k|Fk−1] + E[S2

k|Fk−1]
− 2ϵ2kE[Sk|Fk−1]Sk−1 − 2ϵkE[S2

k|Fk−1]Sk−1 − 2ϵkE[S2
k|Fk−1]Sk−1

− 2E[S2
k|Fk−1]Sk−1 + ϵ2kS

2
k−1 + 2ϵkS2

k−1 + S2
k−1

= (1 + 2ϵk + ϵ2k)E[∆S2
k|Fk−1] − 2(1 + 2ϵk + ϵ2k)Sk−1

≤ constant.E[∆S2
k|Fk−1]]

≤ constant.(1 + cMV T (0))V ar[∆Xk|Fk−1],
(4.74)

Where we used that ϵk is bounded by 1, then (4.71) and (4.64).
We had from Lemma 3 that Θ(Sx) ⊇ Θ(S), so we have to show that
Θ(S) ⊇ Θ(Sx). We again let Sx = Sx

0 +Mx +Ax be the Doobs decomposition
of Sx such that

Xk∆Sx
k = Xk∆Mx

k +Xk∆Ax
k = Xk∆Mx

k +XkE[∆Sx
k |Fk−1], (4.75)

and
V ar[∆Sx

k |Fk−1] = E[(∆Mx
k )2|Fk−1]. (4.76)

In this case Sx has bounded mean-variance tradeoff, (4.71) gives that
X ∈ Θ(Sx) if and only if Xk∆Mx

k ∈ L2(P ) for k = 1, ..., T which will be
written as X ∈ L2(Mx) The same is true for X = X0. When X is predictable
and (4.70) holds, then

E[(Xk∆Mk)2|Fk−1)] = X2
kV ar[∆Xk|Fk−1]

≤ 1
c
X2

kV ar[∆Sx
k |Fk−1]

= 1
c
E[(Xk∆Mx

k )2|Fk−1].

(4.77)

This implies that L2(Mx) ⊆ L2(M), then Θ(Sx) ⊆ Θ(S) since both have
mean-variance tradeoffs which are bounded.
This completes the proof.

Proposition 5 If there is a constant δ < 1 such that

2ϵk

√
E[S2

k|Fk−1]
V ar[∆Sk|Fk−1] ≤ δ P-a.s. for k = 1, ..., T. (4.78)

Then (4.70) holds simultaneously for all ϵk, with

c = (1 + ϵ2kk∆x4
kV ar[Sk−1|Fk−1]

V ar[Sk−1|Fk−1] + ϵ2kx
4
kV ar[∆Sk|Fk−1]
V ar[∆Sk|Fk−1]

− 2
√
V ar[∆Sk−1|Fk−1]V ar[ϵk∆x2

kSk−1|Fk−1]
V ar[∆Sk|Fk−1]

− 2
√
V ar[∆Sk−1|Fk−1]V ar[ϵkx2

k∆Sk|Fk−1]
V ar[∆Sk|Fk−1]

− 2
√
V ar[ϵk∆x2

kSk−1|Fk−1]V ar[ϵkx2
k∆Sk|Fk−1]

V ar[∆Sk|Fk−1] ).

(4.79)
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Specifically, (4.78) has bounded mean-variance tradeoff and substantial risk
and if x satisfies

4x2(1 + 2cMV T (0) + 2cSR(1 + cMV T (0)) < 1. (4.80)

Proof:
We know that Sx

k = Sk(1 + x2
kϵk) and leaving aside the Fk−1-measurable terms

from the conditional variance yields

V ar[∆Sx
k |Fk−1] = V ar[∆Sk + ϵk∆x2

kSk−1 + ϵkx
2
k∆Sk|Fk−1]

= V ar[∆Sk|Fk−1] + V ar[ϵk∆x2
kSk−1|Fk−1] + V ar[ϵkx2

k∆Sk|Fk−1]
+ 2Cov[∆Sk, ϵk∆x2

kSk−1|Fk−1]
+ 2Cov[∆Sk, ϵkx

2
k∆Sk|Fk−1]

+ 2Cov[ϵk∆x2
kSk−1, ϵkx

2
k∆Sk|Fk−1]

≥ V ar[∆Sk|Fk−1] + V ar[ϵk∆x2
kSk−1|Fk−1] + V ar[ϵkx2

k∆Sk|Fk−1]

− 2
√
V ar[∆Sk−1|Fk−1]V ar[ϵk∆x2

kSk−1|Fk−1]

− 2
√
V ar[∆Sk−1|Fk−1]V ar[ϵkx2

k∆Sk|Fk−1]

− 2
√
V ar[ϵk∆x2

kSk−1|Fk−1]V ar[ϵkx2
k∆Sk|Fk−1],

(4.81)

where we used the formula V ar(
∑

i Ai) =
∑

i V ar(Ai) + 2
∑

i<j Cov(Ai, Aj)
and the Cauchy-Schwartz inequality.
Use now

V ar[∆Sx
k |Fk−1] ≤ cV ar[∆Sk|Fk−1] (4.82)

and (4.81) such that

cV ar[∆Sk|Fk−1] ≥ V ar[∆Sk|Fk−1] + V ar[ϵk∆x2
kSk−1|Fk−1] + V ar[ϵkx2

k∆Sk|Fk−1]

− 2
√
V ar[∆Sk−1|Fk−1]V ar[ϵk∆x2

kSk−1|Fk−1]

− 2
√
V ar[∆Sk−1|Fk−1]V ar[ϵkx2

k∆Sk|Fk−1]

− 2
√
V ar[ϵk∆x2

kSk−1|Fk−1]V ar[ϵkx2
k∆Sk|Fk−1]

= E[∆S2
k|Fk−1] − E[∆Sk|Fk−1]2

+ ϵ2kk∆x4
kV ar[Sk−1|Fk−1] + ϵ2kx

4
kV ar[∆Sk|Fk−1]

− 2
√
V ar[∆Sk−1|Fk−1]V ar[ϵk∆x2

kSk−1|Fk−1]

− 2
√
V ar[∆Sk−1|Fk−1]V ar[ϵkx2

k∆Sk|Fk−1]

− 2
√
V ar[ϵk∆x2

kSk−1|Fk−1]V ar[ϵkx2
k∆Sk|Fk−1],

(4.83)
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where we used the Cauchy-Schwarz inequality. Then let

c = (1 + ϵ2kk∆x4
kV ar[Sk−1|Fk−1]

V ar[Sk−1|Fk−1] + ϵ2kx
4
kV ar[∆Sk|Fk−1]
V ar[∆Sk|Fk−1]

− 2
√
V ar[∆Sk−1|Fk−1]V ar[ϵk∆x2

kSk−1|Fk−1]
V ar[∆Sk|Fk−1]

− 2
√
V ar[∆Sk−1|Fk−1]V ar[ϵkx2

k∆Sk|Fk−1]
V ar[∆Sk|Fk−1]

− 2
√
V ar[ϵk∆x2

kSk−1|Fk−1]V ar[ϵkx2
k∆Sk|Fk−1]

V ar[∆Sk|Fk−1] ).

(4.84)

Then plugging (4.84) into (4.83) we get

E[∆Sk|Fk−1]2 ≥ cMV T (0)V ar[∆Sk|Fk−1]. (4.85)

Finally, we have

E[S2
k|Fk−1]

V ar[∆Sk|Fk−1] ≤ V ar[∆Sk|Fk−1] + (Sk−1 + E[∆Sk|Fk−1])2

V ar[∆Sk|Fk−1]

≤
V ar[∆Sk|Fk−1] + 2S2

k−1 + 2E[∆Sk|Fk−1]2

V ar[∆Sk|Fk−1]

≤ V ar[∆Sk|Fk−1] + 2cSRV ar[∆Sk|Fk−1](1 + cMV T (0)) + 2E[∆Sk|Fk−1]2

V ar[∆Sk|Fk−1] ,

(4.86)

which completes the proof.
It should be noted that the conditions for c and Lemma 3 are very restrictive,
such that the class of supply curves which satisfy them in a real market may be
very small indeed.
With these properties in place the rest of Schweizer et al. [LPS98] conclusions
follows. Namely Theorem 1 and Theorem 2 highlighted earlier.

Theorem 4 Let S have bounded mean-variance tradeoff, substantial risk,
satisfy (4.78) and

V ar[∆Xk|Fk−1] > 0 P-a.s. for k = 1, ..., T. (4.87)

Then for any contingent claim (XT +1, Y T ) there exist a LRM strategy
φ∗ = (X∗, Y ∗) where X∗

T +1 = XT +1 and Y ∗
T = Y T .

Where X∗ can be characterized as follows: There exists a process δ∗ ∈ Γ such
that we can define v ∈ Γ by

vk = sign(X∗
k+1 −X∗

k) + δ∗
kIX∗

k+1=X∗
k

for k = 1, ..., T, 3.1 (4.88)

and

V v
k (φ∗) = Vk(φ) + ϵk(sign(X∗

k+1 −X∗
k) + δ∗

kIX∗
k+1=X∗

k
)Xk+1Sk (4.89)

then

X∗
k = Cov(∆V v

k (φ∗),∆Sv|Fk−1)
V ar[∆Sv|Fk−1] P-a.s. for k = 1, ..., T. (4.90)
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Proof:
The proof of Theorem 4 is the same as the proof Theorem 1 since the
construction of X∗

k does not depend on the non-supply curve. The exact proof
can be found in section 3.4 on page 31.

Theorem 5 Assume the conditions of Theorem 4. The strategy φ∗ is a LRM
for the price process S inclusive of illiquidity costs is then also the strategy
which is locally risk-minimizing for the price process Sv without illiquidity
costs, where v is given by (4.88)
Proof:
The proof of Theorem 5 with a non-linear supply curve follows exact same
argument as in Theorem 2.
The proof starts by assuming that the illiquidity parameter ϵk is equal to zero
which makes the linear and non-linear supply curve coincide, and the rest
follows by virtue of making the non-linear supply curve obey the same bounds
as the linear supply curve does, namely (4.64), Lemma 3, (4.70), (4.71) and
(4.78). Then the exact same recursive argument can be used on the non-linear
supply curve to show that the LRM strategy φ∗ with illiquidity costs is equal
to the same strategy for the price process Sv without illiquidity costs.
The complete proof can be found in section 3.4 on page 33.
We could use similar arguments on a non linear supply curve of a higher order
polynomial and the theorems would still hold true, however the bounds would
become even more restrictive and you would in all likelihood not be describing
a set of price processes which exist in reality.
The neat thing about this approach is that you only assume that S is
square-integrable along with the bounds, so even though it seems rather
restrictive it might ultimately be less so than other approaches, which must
impose additional conditions on the supply curve such as convexity.

4.5 Conclusion

We found that the illiquidity cost associated with the value process followed a
similar pattern under the various illiquid scenarios. The illiquidity cost is
almost constant until a desaturation point occurs, then the illiquidity cost
decreases rapidly before it reaches zero at the terminal time. In regards to the
size of the illiquidity cost we found that increasing the time interval length and
the illiquidity parameter ϵ both increases the illiquidity cost.
The largest cost components are always the first few expressions following
XT −1 in

Xk+1 = Cov(Vk+1(φ),∆Sk+1|Fk) + E[ϵk+1Sk+1Xk+2|Fk]
V ar(∆Sk+1|Fk) + E[ϵk+1Sk+1|Fk] . (4.91)

Such that XT −2 contributes much more to the cost than XT −3, which
contributes much more to the cost than XT −4 and so on. This is the reason for
the desaturation point, since illiquidity cost terms before a certain time adds
next to nothing to the cost.
The illiquidity cost causes the unit linked policy reserve surface to become
negative at the initial point, for low fond values. In comparison to the reserve
surface of the unit linked policy without illiquidity costs we saw that the whole
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reserve surface was suppressed by the illiquidity cost, in particular at the initial
time.
The model developed by Christodoulou captures many intuitive aspects of
illiquidity such as the time dependence, the illiquidity parameter dependence
and the dependence on the length of the time interval. It would be interesting
to compare the model to data from the energy market and see whether the
model can retrodict the illiquidity parameter of the market in various periods.
Additionally one could expand Christodoulou’s model into a non-linear supply
curve setting using non-linear stochastic calculus.
We found that the framework of Schweizer et al. could be extended to a
non-linear supply curve setting by imposing additional conditions on x in
Lemma 3 and c in Proposition 5.
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R codes

Code for Table 4.1,4.2,4.3

#parameters
T = 50
S0 <- 1
sigma <- 0.05
mu <- r- sigma**2/2
xi <- 0.6
x = 10
K = 1
r = 0.05

X <- rep(0,T)
X[T] <- 1

#Illiquidity formula

for (i in seq((T-1),0,-1)){
Bt = sqrt(t)*cumsum(rnorm(T-1,0,1))
St = S0*exp(mu*i+sigma*Bt+sigma^2/2)
St1 = (S0**2)*exp(2*mu*i+2*sigma*Bt+2*sigma^2)
St2 = (S0**2)*exp(mu*(2*i-1)+2*sigma*Bt+sigma^2/2)
St3 = (S0**2)*exp(2*mu*(i-1)+2*sigma*Bt)
St4 = (S0**2)*exp(mu*(i)+sigma*Bt+sigma^2/2)- S0*exp(mu*(i-1)+sigma*Bt)
St5 = -(S0**4)*exp(2*mu*i+2*sigma*Bt+sigma^2)
-2*(S0**3)*exp(mu*(2*i-1)+2*sigma*Bt+sigma^2/2)
+(S0**2)*exp(2*mu*(i-1)+2*sigma*Bt)
X[i]<- (St[i]*xi[i]*X[i+1]/(St1[i]-2*St2[i]+St3[i]+St5[i]+xi*St[i]))*St4[i]

}

result <- rep(0,T)
result[]=X[T]
result[T] = 0
for (i in seq((T-2),1,-1)){
result[i]=result[i+1]+X[i]

}

#Black-Scholes function
BS <- function(t,T,x,K){
d1 <- (log(x/K)+(r+0.5*sigma*sigma)*(T-t))/(sigma*sqrt(T-t))
d2 <- (log(x/K)+(r-0.5*sigma*sigma)*(T-t))/(sigma*sqrt(T-t))

return(x*pnorm(d1)-K*exp(-r*(T-t))*pnorm(d2))
}

BSE <- function(t,T,x,K){ return(BS(t,T,x,K)+K*exp(-r*(T-t)))}

for (i in seq(0,T,1)){
print(BSE(i,T,x,K)-exp(-r*(T-i))*result[i])
}
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for (i in seq(0,T,1)){
print(BSE(i,T,x,K))

}

Code for Figure 1 and Figure 2

#transition rates
a <- -9.13275
b <- 0.0809438
c <- 0.000011018

#Gompertz-Makeham law
mort <- function(u){
return(exp(a+b*u-c*u^2))

}

#Survival probability: s to t
surv_prob <- function(s,t){
mu <- b/(2*c)
sigma <- sqrt(1/(2*c))
#if(s>t){ return("s>t") }
val <- exp(-sigma*exp(a+(b*b)/(4*c))*sqrt(2*3.14)*
(pnorm((t-mu)/sigma,0,1)-pnorm((s-mu)/sigma,0,1)))
return(val)

}

#model parameters
T = 21
S0 <- 1
sigma <- 0.05
mu <- r- sigma**2/2
xi <- 1
x = 10
sig = 0.05
K = 1
r = 0.05

X <- rep(0,T)
X[T] <- 0.1

#surface for pure endowment

h <- 1/12
time <- seq(0,T,by=h)
n.t <- length(time)-1
fund <- seq(0,2,by=0.1)
surf <- matrix(rep(0,(length(time))*(length(fund))), nrow=length(time))

for(i in 1:length(time)){
for(j in 1:length(fund)){
int1 <- function(s){
result <- rep(0,length(fund))
}
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val <- surv_prob(x0+time[i],x0+s)*mort(x0+s)*
BSE(time[i],s,fund[j],G)
return(val)

}
surf[i,j] <- as.numeric(integrate(int1,time[i],T)[1])

}
}

#surface for pure endowment with illiquidity cost

h <- 1/12
time <- seq(0,T,by=h)
n.t <- length(time)-1
fund <- seq(0,2,by=0.1)
surf <- matrix(rep(0,(length(time))*(length(fund))), nrow=length(time))

for(i in 1:length(time)){
for(j in 1:length(fund)){
int1 <- function(s){
result <- rep(0,length(fund))
result[]=X[T]
result[length(fund)] = 0
for (h in seq((length(fund)-2),1,-1)){
result[h]=result[h+1]+X[h]

}

val <- surv_prob(x0+time[i],x0+s)*mort(x0+s)*
(BSE(time[i],s,fund[j],G)-result[h])
return(val)

}
surf[i,j] <- as.numeric(integrate(int1,time[i],T)[1])

}
}

Code for Table 4.4 and Table 4.5

T = 21
S0 <- 1
sigma <- 0.05
mu <- r- sigma**2/2

sig = 0.05
r = 0.05

X <- rep(0,T)
X[T] <- 1

xi = rep(0,T-1)
v1 = c(1,2,3,4,5,6,7,8,9,10)
v11 = c(11,12,13,14,15,16,17,18,19,20)
v2 = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
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v3 = c(1,1,1,1,1,1,1,1,1,1)
v4 = c(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1)
xi[v1] = v4
xi[v11] = v2

for (i in seq((T-1),0,-1)){
Bt = sqrt(t)*cumsum(rnorm(T-1,0,1))
St = S0*exp(mu*i+sigma*Bt+sigma^2/2)
St1 = (S0**2)*exp(2*mu*i+2*sigma*Bt+2*sigma^2)
St2 = (S0**2)*exp(mu*(2*i-1)+2*sigma*Bt+sigma^2/2)
St3 = (S0**2)*exp(2*mu*(i-1)+2*sigma*Bt)
St4 = (S0**2)*exp(mu*(i)+sigma*Bt+sigma^2/2)- S0*exp(mu*(i-1)+sigma*Bt)
St5 = -(S0**4)*exp(2*mu*i+2*sigma*Bt+sigma^2)
-2*(S0**3)*exp(mu*(2*i-1)+2*sigma*Bt+sigma^2/2)
+(S0**2)*exp(2*mu*(i-1)+2*sigma*Bt)
X[i]<- (St[i]*xi[i]*X[i+1]/(St1[i]-2*St2[i]+St3[i]+St5[i]+xi*St[i]))*St4[i]

}

result <- rep(0,T)
result[]=X[T]
result[T] = 0
for (i in seq((T-2),1,-1)){
result[i]=result[i+1]+X[i]

}

Code for Table 4.6

#parameters
T = 20
S0 <- 1
sigma <- 0.05
mu <- r- sigma**2/2
r = 0.05

X <- rep(0,T)
X[T] <- 1

xi1 <- 1
xi2 <- 0.5

xi <- sqrt(T)*cumsum(rnorm((T-1),0, 1))
xi <- ifelse(xi < 0, xi1,xi2)

#Illiquidity formula

for (i in seq((T-1),0,-1)){
Bt = sqrt(T)*cumsum(rnorm(T-1,0,1))
St = S0*exp(mu*i+sigma*Bt+sigma^2/2)
St1 = (S0**2)*exp(2*mu*i+2*sigma*Bt+2*sigma^2)
St2 = (S0**2)*exp(mu*(2*i-1)+2*sigma*Bt+sigma^2/2)
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St3 = (S0**2)*exp(2*mu*(i-1)+2*sigma*Bt)
St4 = (S0**2)*exp(mu*(i)+sigma*Bt+sigma^2/2)- S0*exp(mu*(i-1)+sigma*Bt)
St5 = -(S0**4)*exp(2*mu*i+2*sigma*Bt+sigma^2)
-2*(S0**3)*exp(mu*(2*i-1)+2*sigma*Bt+sigma^2/2)
+(S0**2)*exp(2*mu*(i-1)+2*sigma*Bt)
X[i]<- (St[i]*xi[i]*X[i+1]/(St1[i]-2*St2[i]+St3[i]+St5[i]+xi*St[i]))*St4[i]

}

result <- rep(0,T)
result[]=X[T]
result[T] = 0
for (i in seq((T-2),1,-1)){
result[i]=result[i+1]+X[i]

}
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