
Generating Live Interactive Music
Accompaniment Using Machine

Learning

A model for polyphonic multi-track music
generation for practicing improvisation

Benjamin Kløw Askedalen

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture
60 credits

Department of Informatics
The Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2022

Generating Live Interactive
Music Accompaniment Using

Machine Learning

A model for polyphonic multi-track
music generation for practicing

improvisation

Benjamin Kløw Askedalen

© 2022 Benjamin Kløw Askedalen

Generating Live Interactive Music Accompaniment Using Machine
Learning

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Practicing musical instruments can be experienced as repetitive and boring
and is often a major barrier for people to start playing music. With the
addition of digital tools for the composition, production, practice and
sharing of music, it has become much more accessible, and with the
rapid advances in machine learning technology, it is natural that these
techniques are also introduced to musical tools. This project had the goal
of creating the basis for an application that can help musicians practice
improvisation and musical interplay by generating live interactive musical
accompaniment to a human player.

A deep learning model was developed, which uses two Long Short-
Term Memory (LSTM) networks to generate polyphonic accompaniment
for several instruments to one input melody. This compound model
consists of one network trained to generate a fitting chord progression to
the melody, and one network that uses the chord progression along with
the melody to generate polyphonic music.

The model was tested at a very low tempo with live music input
and showed clear signs of adapting to what the user was playing. The
implemented model was not fast enough to test the application at full
speed, so musical analysis was performed on samples of accompaniment to
static melodies, generated by the model. The music generated by the model
was somewhat monotonous, likely due to data imbalance issues, but some
interesting passages generated by the model are described in this thesis.

Additionally, a baseline LSTM model was used to determine whether
the proposed solution was better at generating music than a single,
straight-forward LSTM. The models performed similarly when evaluated
objectively through model accuracy, but through musical analysis it was
concluded that the compound model generated more meaningful and
functional music.

i

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Use case . 2
1.1.2 Research question . 3

1.2 Earlier work . 4
1.3 Research method . 5
1.4 Thesis outline . 5

2 Background 6
2.1 Machine learning . 6
2.2 Supervised learning . 7

2.2.1 Regression . 7
2.2.2 Classification . 8
2.2.3 Challenges with supervised techniques 8
2.2.4 Neural networks . 10

2.3 Reinforcement learning . 14
2.4 Machine learning tools . 15

2.4.1 TensorFlow . 15
2.5 Data formats . 15

2.5.1 MIDI . 16
2.5.2 Chord sequences . 16
2.5.3 Piano rolls . 16

2.6 Validation techniques . 17
2.6.1 Objective methods . 17
2.6.2 Subjective methods . 18

3 Music theory 19
3.1 Western music theory . 19
3.2 Musical terms . 20
3.3 Music theory in this thesis . 25

4 Design 26
4.1 Overview . 26
4.2 Model design . 28

4.2.1 Baseline model . 31
4.3 Data . 33

4.3.1 Key normalization . 33

ii

4.3.2 Chord extraction . 34
4.3.3 Melody extraction . 34
4.3.4 Accompaniment extraction 34

4.4 Application . 35
4.4.1 Model creation application 35
4.4.2 Jamming application 35
4.4.3 Implementation . 36

5 Implementation 37
5.1 Model . 37

5.1.1 Model tuning . 41
5.2 Data . 44

5.2.1 Data preparation . 45
5.3 Application . 49

5.3.1 Machine learning framework 49
5.3.2 Framework for jamming application 49

6 Experiments and results 51
6.1 Objective evaluation . 51

6.1.1 Results . 52
6.1.2 Reproducibility . 54

6.2 Musical analysis . 54
6.2.1 Sample 1 . 55
6.2.2 Sample 2 . 56
6.2.3 Sample 3 . 56
6.2.4 Baseline generated music 57

7 Discussion 59
7.1 Experiment results . 59
7.2 Performance . 60
7.3 Practical use of machine learning 61
7.4 Machine-generated music that matters 62
7.5 Machine-generated art . 63

8 Conclusion 66
8.1 Conclusions . 66
8.2 Future work . 67

8.2.1 Speed performance . 67
8.2.2 Knowledge distillation 67
8.2.3 Qualitative studies . 67
8.2.4 Network structures . 67
8.2.5 Imbalanced data . 68

iii

List of Figures

2.1 Hierarchy of machine learning 7
2.2 The effect of generalizing (left) and overfitting (right).

Source: [26, pp. 20] . 9
2.3 The graph shows the model overfitting over time. Source: [26,

pp. 88] . 9
2.4 The perceptron network with input and output nodes.

Source: [26, pp. 44] . 10
2.5 The multi-layer perceptron with one hidden layer. Source: [26,

pp. 72] . 11
2.6 LSTM cell. Source: [47, pp. 355] 12

3.1 Note names on a piano. 20
3.2 The notes included in the different scales in the key of C. . . 23
3.3 The Circle of fifths. Source: [45] 24

4.1 The solution is split into two separate applications: one that
prepares the MIDI dataset, trains, and exports the models,
and one that uses the models to generate live polyphonic
accompaniment based on notes played by a user. 27

4.2 Input and output shapes of the chord network. 29
4.3 Input and output shapes of the polyphonic network. 30
4.4 Network architecture of the chord network (left) and the

polyphonic network (right). 32

5.1 Training graph of the chord network using the optimized
configuration. The model is overfitting after about ten epochs. 42

5.2 Training graph of the polyphonic network using the optim-
ized configuration. 43

5.3 Example of a piano roll representation 44
5.4 Most commonly occurring scales in the dataset. 47
5.5 Most commonly occurring chords in the dataset. 47
5.6 Histogram of all 128 notes over the whole dataset. 48
5.7 Histogram of each unique note over the whole dataset. . . . 48

6.1 Distribution of the notes generated by the compound model.
A few notes are severely over-represented in the generated
music, more so than in the original data (figure 5.6). 53

iv

6.2 Distribution of the notes generated by the baseline model.
The most common notes are overrepresented, but less so
than in the compound model. 53

v

List of Tables

3.1 Tonal interval names . 21

4.1 Most commonly occurring chords 34

5.1 Configuration used for the compound model. 41

6.1 Objective evaluation results. 52

vi

Preface

This project was carried out as the final part of my master’s degree in
Informatics at the University of Oslo. The project idea was my own and
appeared mainly out of a lifelong passion for music. Combining two of my
biggest interests, music and software development, has made the project
very motivating, and it has been intriguing to learn about music technology
and machine learning.

First and foremost, I would like to thank my supervisor, Carsten
Griwodz, for believing in my project idea and helping me realize it by
continuously following up my progress and arranging outside assistance
when necessary.

I also want to thank Stefano Fasciani from the Department of Musico-
logy at UiO for giving me an introduction to machine learning for music
and guiding me to many resources including books, open source projects
and datasets. This really helped me get started with the project.

Additionally, I would like to thank my fiancé, family and friends for
their continued love and support, and for always believing in me.

Benjamin Kløw Askedalen
Oslo, May 2022

vii

Chapter 1

Introduction

1.1 Motivation

Music has for thousands of years been an important method of communica-
tion and expression in nearly all human cultures. Music is used to describe,
document, and share the human experience and imagination, and has be-
come exceedingly complex to the point where music is both an art and a sci-
ence. During the last 70 years, digital tools have been an increasingly large
part of music production and sharing. Technological advances have helped
us create many new instruments with which to express ourselves, and tools
to help us create and share musical ideas. With the large interest and ad-
vancements in artificial intelligence and machine learning techniques dur-
ing this time, it is only natural that these techniques are being introduced
to music. So far, there have been a few experiments using machine learn-
ing to generate music and aid in music composition or create entire musical
pieces, but there has been little focus on using machine learning technology
as a tool for musicians to practice their craft.

Learning to play or improving one’s skill on an instrument can be
experienced as static, repetitive, and tedious for many people, and is
often the main barrier stopping people from becoming proficient at an
instrument. It is important to practice scales and technique, but for most
musicians it is equally as important to practice listening and playing along
with other musicians. In styles like jazz and blues, there is much emphasis
on the musical interplay and improvisational skills of the performers. To
practice these skills, musicians need to be able to play together with others.

The process of learning any art is very individual. Many digital
tools exists to help with this, especially in music. There are many
digital resources to learn music theory and playing instruments, including
online courses, games that include or simulate playing an instrument, and
interactive music creation tools. There are, however, few digital tools that
focus on interplay and improvisation. As there seems to be no formal
definition of what musical interplay is, we choose to define it broadly as
the process of performing music with an ensemble, and the processes and
communication that enable it.

Improvisation in music is a technique in which one or more musicians

1

play freely without composing the music in advance. Improvisation can
occur in several forms. Some improvisation is completely free, with a
whole ensemble listening to each other and complementing each other
freely, but most improvisation consists of one musician playing over a
previously agreed chord sequence and rhythm. In such improvisation,
the musician usually plays notes and sequences that fit the current key
and chords, but they are also free to experiment and use dissonance to
their advantage in order to create tension or express specific attitudes.
This method of improvisation can be very difficult to learn and requires
years of dedicated practice. One must be aware of the underlying music
theory as well as have a broad vocabulary of motives and sequences
and an understanding of how to utilize them properly. One of the most
common ways to practice improvisation today is to play over recordings of
chord sequences, practicing scales and improvising melodies. However, a
recording is completely static and does not react to the player in any way,
which makes the situation unrealistic, and does not allow the player any
freedom to deviate from the recording or gain an understanding of how
interplay feels. The best way to practice improvisation is to have a band
one can play with, in which musicians interact and listen to each other.

This project was undertaken to create the basis for an application
that musicians can use to practice musical interplay and improvisation
without the need of a full band. While such an application could never
replace the experience of playing with other humans, it could still be an
effective tool to practice these skills. This idea is partially inspired by
similar applications such as Band-in-a-box, Jammer Professional and the
Rocksmith 2014 Session Mode, which allow the user to play freely while
the program adapts in some way to what the user is playing. These tools
are mostly based on static musical rules, and not actual music, which makes
playing with them over time boring and repetitive. This project attempts
to create the basis for a similar experience using machine learning to create
more diverse and interesting sequences and adapt better to what the user
is playing.

1.1.1 Use case

To explain the goals of this project and what the intended use of this solu-
tion is, we have written a simple use case that explains how this solution
would be used in a practical application. This use case describes how
"Steve", a 23-year-old synth player, would use this solution to practice his
improvisational skills.

Steve is at home and wants to practice his improvisational skills. He does
not currently play in a band, and he is tired of playing the same songs over
again. Steve decides to play with the virtual band application. He opens
the application and is met with a starting screen similar to a video game.
Steve has the option to adjust the synth sounds of the playback instruments
and his own playing as he wishes, and he can use custom synths and
instruments in the application. Before he can start a jam session, Steve

2

must decide some initial parameters like tempo, time signature and key. He
enters the jamming screen, which contains informational fields like what
chord is currently playing, what chord comes next, a visual metronome,
and some visual representation of what he is playing. Until Steve starts
playing, all the fields are empty. Steve starts playing a few notes and
finds a sequence that he repeats for a while. The program slowly starts to
accompany him with some piano, and eventually adds more instruments
as it gets more confident. The display shows what chord the virtual band is
playing, and what chord comes next. If Steve does not like the next chord,
he can play something else to make the network change its mind and play
something else.

After about 8-16 bars, the program has settled on a chord sequence that
repeats with minor variations, and Steve starts to experiment more with
what he is playing. If he wants to change the chords being played, he
changes his playing to lead to different chords. He starts to improvise
over the chord sequence, and the program adapts to his playing both
dynamically (loudness/feel) and tonally. Steve continues like this for about
10 minutes, occasionally changing what he is playing, making the virtual
band follow him. After a while, Steve wants to end the session, and starts
to reduce the amount he plays, signalling to the program that he wants the
music to come to a stop. Steve and the application eventually finish the
playing.

Steve liked a lot of the ideas in the music he just played and wants to
save it so he can listen to it later. After the session, he gets the option to
save the session, storing the entire jam session as a MIDI file. Now Steve
can import what he and the virtual band played to other music software,
where he can listen, edit, and use the music in other compositions.

1.1.2 Research question

This thesis explores the use of machine learning techniques to generate live,
interactive music, with the goal of creating the basis for a solution that can
be used by musicians to practice improvisation and interplay. These are
important abilities that can be difficult to practice, either requiring other
musicians to play with, or playing over static recordings many times. This
is challenging for many musicians because it might be difficult to find
others to play with, and playing the same songs gets very tedious over
time.

To help approach this subject in a structured manner, this thesis asks
the following research question:

Is it possible to create a solution for generating live, interactive musical
accompaniment using machine learning techniques, that can be used by
musicians to practice improvisation and interplay?

3

1.2 Earlier work

The area of interactive music generation with machine learning is lacking,
and at the time of writing, only a few articles have been published that have
looked into this. Jiang et al. [20] explored this topic using Reinforcement
Learning (RL) techniques to generate live musical accompaniment and
showed that samples of classical music accompaniment generated by
their model were somewhat preferred to samples generated by a baseline
supervised Recurrent Neural Network (RNN) model. Benetatos et al. [2]
implemented and tested an RNN model that generates a counterpoint
melody to what the user is playing in real time. Video demonstrations
show that the model is able to quickly adapt to what is being played and
plays suitable notes that fit in the context of western classical music.

Garoufis et al. [15] described an interactive system where the user gets
several choices for what chord should be played next and selects one of
them using an Augmented Reality controller, thus deciding the direction
of the chord progression. This system uses a Long Short-Term Memory
(LSTM) network trained on chord progressions of hit songs. Through
qualitative testing, they found that the chosen architecture provided
"relatively satisfying" results, however, the network had issues with long-
term coherence.

Generating chord progressions or harmonies for static melodies has
been attempted with several different techniques, with varying degrees
of success [14, 24, 25]. The most successful method of achieving this
using machine learning techniques seems to be Bidirectional Long Short-
Term Memory (BLSTM) networks, with which Lim et al. [25] and Faitas et
al. [14] achieved better results than other models, both quantitatively and
qualitatively.

A BLSTM network uses both past and future timesteps by analysing
the sequence from both ends simultaneously. In music, the notes or chords
being played often depend on both the previous and next notes. Compared
to uni-directional LSTMs, Faitas et al. [14] experienced that the chord
sequences generated by BLSTM were rated to be much more likely to be
created by a human composer by human subjects. However, it is not
possible to use BLSTM in live music generation, because the input sequence
is created live.

There have also been attempts at generating music using Generative
Adversarial Networks (GANs). Dong et al. [13] designed and tested three
different methods of music generation using GANs, and found that they
had "desirable properties".

Apart from generating accompaniment or chord sequences for a given
melody, there are also projects such as the JamBot by Brunner et al. [5],
which tries to generate meaningful musical sequences from scratch by
selecting randomly from a probability distribution. They use an alternative
network structure that separates chord and music generation. By using
one network for generating a chord sequence, and one for generating
polyphonic accompaniment for that chord sequence, the model is able to
generate music with long-term structures.

4

The model proposed in this thesis is based on the JamBot model
described by Brunner et al. [5]. Due to the model using regular LSTM
networks, it was possible to adapt it to working with live sequential input,
instead of creating an entirely novel approach from scratch. While JamBot
is designed to generate single-track polyphonic musical pieces, our model
generates multi-track accompaniment to a lead melody, so it had to be
adapted to take this melody as input and output several instrument tracks.

1.3 Research method

This project has been performed using the design paradigm, which
as described by Comer et al. [11] consists of iterations of requirement
specification, design, implementation, and testing. This is a highly practical
approach that uses experimentation through trial and error to optimize a
solution. By applying this method, we were able to focus on the practical
implementation and use of the solution rather than the mathematics and
specifics of the machine learning techniques that were applied.

1.4 Thesis outline

This thesis is divided into eight chapters.

Chapter 2 contains background information about the machine learning
techniques, tools, and data formats used and discussed in this thesis and
related work.

Chapter 3 provides a simplified introduction to western music theory, and
contains explanations of musical terms used throughout this thesis.

Chapter 4 describes the solution designed and implemented during this
project.

Chapter 5 describes the implementation process including how we arrived
at the proposed solution.

Chapter 6 contains objective and subjective evaluations of the music
generated by the proposed solution and the simpler baseline model.

Chapter 7 discusses the results from the previous chapter, as well as the
challenges faced in this project and in machine learning research in general.
This chapter also looks into the philosophy of machine generated art.

Chapter 8 summarizes the findings in this thesis and tries to answer the
research question, and suggests future work based on the work performed
in this project.

5

Chapter 2

Background

This chapter includes necessary background information about machine
learning techniques, tools, and data formats, and serves as a reference point
for expressions and terms used throughout the thesis.

2.1 Machine learning

Machine learning (ML) is a set of data analysis techniques that use real data
to automatically improve the accuracy of their output compared to some
ground truth. Machine learning techniques are applied to a vast number of
fields, including business management, autonomously driving cars, speech
recognition and machine translation, among others. Machine learning
encompasses many different techniques used for different purposes. This
chapter will serve as a basic introduction to machine learning, and explains
concepts used in this thesis, mostly focusing on the algorithmic and
practical perspective. If the reader wishes to get a greater understanding
of machine learning algorithms and their use, we recommend reading
Marsland’s book about the topic [26], on which most of the explanations
in this section are based.

Machine learning techniques are generally divided into three different
categories: supervised learning, unsupervised learning, and reinforcement
learning. Supervised learning techniques depend on learning from labelled
data to create a model for meaningful predictions and classifications.
Unsupervised learning techniques are static analysis techniques mostly
used for classifying or finding connections in the data and have very
limited use in music applications. Reinforcement learning techniques use
agents that learn how to correctly interact with their environment by trial
and error. Although there have been attempts at generating music using
reinforcement learning techniques [4, 20], it seems like most research done
in the field of machine generated music has used supervised techniques.
Because of this, supervised techniques will be the primary focus of this
thesis.

6

Figure 2.1: Hierarchy of machine learning

2.2 Supervised learning

Supervised learning consists of algorithms that use already existing,
labelled data to train a model to make accurate predictions for unlabelled
data. The term "prediction" in the context of machine learning is usually
used to describe the output of a model. The prediction does not have
to be about the future. Supervised learning techniques can be applied
to a great number of fields and can be very useful in practical settings.
Most supervised learning techniques are very complicated, and it is usually
impractical to try to fully comprehend the connections made by the model
in order to predict accurately. Because of this, many of the algorithms
work as a sort of "black box" where it is either impossible or impractical
for humans to understand what happens internally.

All supervised learning techniques apply a process of trial and correc-
tion, where the model gets some input, generates some output, calculates
the error, and adjusts its calculations accordingly. These calculations are
adjusted in small increments, so the model is generalized for different in-
put values. The goal is that the model should predict accurately not only
for the dataset it is being trained on, but also real unlabelled data examples.

Supervised learning problems are generally split into two categories:
regression and classification. Some algorithms are mostly suitable for one
of these categories, and some algorithms are frequently used for both. The
algorithms used in this project are based on neural networks, which can be
used for both regression and classification problems.

2.2.1 Regression

Regression problems involve finding connections between attributes to
predict a numerical target attribute. The input of a regression model is
usually a number of numerical attributes, and the model is gradually
adjusted with the goal of finding a generalized function that can predict

7

one numerical attribute as accurately as possible based on the input values.
Regression is used to predict continuous attributes like temperature, price,
or sales. Regression is ultimately about finding the dependencies between
one dependent variable (the output variable), and a set of independent
variables.

Typical algorithms used for regression problems include linear regres-
sion and polynomial regression. Linear regression tries to find a straight
line that fits the training data as well as possible. A linear regression
model can be represented by a simple mathematical formula in the format
y = ax+ b. Polynomial regression tries to find the polynomial function that
fits the data best. This usually involves testing different degrees of polyno-
mials to find the one best suited to the data. More complex problems that
cannot be represented by a function can use for example neural networks
to predict a numerical attribute.

Regression is used for problems like weather forecasts, stock market
prediction, house price prediction etc., where the goal is to predict a
numerical attribute like rainfall, wind speed, stock value or price.

2.2.2 Classification

Classification problems are based on sorting data entries into classes based
on contextual attributes. A classification model takes a number of attributes
as input, and outputs one or more categorical values. There are three
main types of classification: binary classification, multi-class classification
and multi-label classification. Binary classification problems contain two
possible classes, and the output of the model will either be 0 or 1. This
is for example used for spam email detection. Multi-class classification
problems contain several mutually exclusive classes, where the model
predicts a probability value for each class, adding up to 1. We can either
select the class with the highest value or do a probability selection. Multi-
class classification is used for problems like image classification and other
problems where an entry can only belong to one of several classes. Multi-
label classification problems, contrary to the other two types, contain
several classes that are not mutually exclusive. Each entry can be assigned
to several classes/labels, and each class is treated as a separate binary
classification problem. Usually, all the classes that have a value over a
certain threshold are selected. This can for example be used for object
recognition in images where more than one object may appear.

Algorithms normally used for classification problems include logistic
regression, K-nearest neighbours, neural networks, and others. These use
different methods to assign the inputs into classes based on one or more
attributes. The solution presented in this thesis uses neural networks for
multi-class and multi-label classification.

2.2.3 Challenges with supervised techniques

The main challenges with supervised learning are what is referred to as
overfitting and underfitting. Overfitting is when a model makes better

8

Figure 2.2: The effect of generalizing (left) and overfitting (right).
Source: [26, pp. 20]

predictions on the training data than on the real data. This happens
when the model is trained for too long and its predictions are no longer
generalized but specialized to the training data. Underfitting occurs when
the model is not able to make accurate predictions. This is usually because
of a lack of data or too short training period, but it might also occur if the
algorithm is not fit for the problem.

In order to combat the challenges of over- and underfitting it is normal
to split the dataset into three parts: training, validation, and testing. The
training data is the dataset that is used to train the model and is usually
the largest. The validation data is used during training to see whether the
model is overfitting to the training data. If the training accuracy keeps
increasing, but the validation accuracy does not, the model is overfitting.
While the training and validation datasets are used during model design
and parameter optimization, the testing data should not be used until the
final model is finished, to check that the model is not specifically adjusted
to the validation data.

Figure 2.3: The graph shows the model overfitting over time. Source: [26,
pp. 88]

9

2.2.4 Neural networks

The algorithms mostly used for music generation are based on neural
networks, which is a general-purpose method of replicating connections
observed in real data. Neural networks are based loosely on how the
human brain learns, by training neurons to make specific calculations
based on what it has previously observed. Obviously, the human brain
is much more complicated than it is possible to replicate in a modern
computer, but if we simplify this principle, it can be used to make
meaningful predictions based on experience from real data.

The simplest neural network is called the perceptron, which was
invented in 1957 by the psychologist Frank Rosenblatt [36]. Perceptrons
can be explained as a graph of input and output nodes, where all input
nodes are connected to all the output nodes. Each output has an activation
function, which is the same for all inputs, and a weight associated with
each input. These weights are tuned through training on real data. For
each iteration of training, the input values are run through the network,
the activations are calculated, and the resulting outputs are compared with
the expected outputs. Usually, each output node is either fired or not fired
depending on its activation function.

Figure 2.4: The perceptron network with input and output nodes.
Source: [26, pp. 44]

If a node fires when it is not supposed to, or does not fire when it is
supposed to, the weights related to that node are changed. How much
the weights are changed depends on the learning rate. If the weights
are changed too much, it might skip over the optimal weight, and if the
weights are changed too little, the model might get stuck during training in
what is called a "local optimum", where small changes made to the weights
only make the model worse, but a larger change could get better results.
When the model is stuck in a local optimum, the adjustments made to
the weights are so small it never explores outside the bounds of the local
values, making it unable to find more optimal weights.

10

While the perceptron can be effective for simple, linear problems, it has
difficulties tackling more complex problems that are not linearly separable.
Eventually, there were attempts to include a third layer, the "hidden layer",
to the perceptron to help it learn more advanced connections in data.
However, there was no way to calculate the error of the hidden weights
separately from the output weights. If we just calculate the error at the
end, it is not possible to tell whether the hidden layer or the output layer
needs to adjust their weights, or how much. In 1986, Rumelhart, Hinton
and McCelland [37] proposed a method called backpropagation to solve
this issue, and introduced the multi-layer perceptron, which is the basis of
most neural networks today.

Figure 2.5: The multi-layer perceptron with one hidden layer. Source: [26,
pp. 72]

While machine learning encompasses many different techniques, the
most interesting techniques for generating music are currently in the
field of deep learning [4]. Deep learning is a subset of machine
learning techniques that are mainly based on multi-layered artificial neural
networks, including Recurrent Neural Networks (RNNs), Generative
Adversarial Networks (GANs), Convolutional Neural Networks (CNNs)
and other architectures. The most used architecture for music generation
is RNNs, which are able to process sequential data and learn temporal
dependencies.

Recurrent Neural Networks

Traditional neural networks use one static data point as input. This is
typically a set of attributes with numerical values, or a static image. The
data is fed to the network in random order during training, and the model
does not consider the relationship between different points. This type of
network is not able to process sequential data like music. Recurrent Neural
Networks (RNNs) allow the processing of sequences where information
from previous time steps is required to make predictions about the current

11

timestep. RNNs utilize a hidden state that is passed recursively in the
hidden layer of the network for each time-step of the sequence. This allows
the model to take previous data points into account, making it able to
analyse and predict sequential data like text, speech, and music.

However, a shortcoming of RNNs is vanishing gradients; information
is not able to persist for many time steps, only providing "short-term
memory" and not "long-term memory" [18]. This is important in several
applications such as text generation and music composition. A pronoun
might depend on some context in a previous sentence, and a chord might
depend on the entire chord progression and melody leading up to it.

Long Short-Term Memory networks

As a solution to the issue of vanishing gradients, Sepp Hochreiter [18]
proposed the Long Short-Term Memory (LSTM) network, which uses more
advanced network nodes that selectively forget and pick up data. This
approach allows the model to decide what data are important for the rest
of the sequence, ignore the rest, and even remember data just until it is
needed, and then drop it. This approach and variants of it have proven
relatively effective in music generation.

Figure 2.6: LSTM cell. Source: [47, pp. 355]

LSTM cells have three different gates that regulate information flow:
The forget gate is used to decide what information should be thrown

away and what should be kept. The previous data and the current input are
passed through a sigmoid function, giving each number a value between 0
and 1. Values closer to 0 mean that the data should be forgotten, and values
closer to 1 mean that it should be kept. These values are multiplied with
the cell state.

The input gate decides which values should be updated. This is done
by passing the previous and current input through a sigmoid function, to
decide which values are important, and through a tanh function, which
gives them a value between -1 and 1, to regulate the values. These values

12

are then multiplied, so the values with a sigmoid close to 1 are changed a
lot more than the values close to 0. These numbers are added to the cell
state.

The output gate decides what the new hidden state should be. The new
cell state is passed through the tanh function and multiplied by the sigmoid
of the previous hidden state and the current input. Both the new cell state
and the hidden state are passed to the next time step.

Bi-directional LSTM

Bi-directional LSTM is used to improve LSTM performance, adding a
second LSTM that takes the reversed sequence as input. This allows
the model to use both previous and future sequences to predict a single
sequence, which can be very useful in musical chord generation, where
a chord often depends on both what comes before and what comes
after. Based on the results of Faitas et al. [14] and Lim et al. [25],
BLSTM seems to currently be one of the best deep learning techniques
for generating music. However, because it generates a full sequence
simultaneously, it is not possible to generate live interactive music with
BLSTM. BLSTM is dependent on a full sequence that is being analysed from
both ends, whereas an interactive model must predict the next chord and
accompaniment without knowing how the user is going to continue the
sequence, or what chords come after.

Sequence to Sequence Learning

Sequence-to-sequence learning is a technique used to transform a sequence
into a different sequence, using an encoder-decoder architecture. This
technique is often used for machine translation but can also be used to
create chords or harmonic melodies to a melody [14]. Like BLSTM, this
technique requires a full sequence to be generated simultaneously and
cannot be used to generate live music.

Hidden Markov Model

The Hidden Markov Model is another supervised method that can be used
for music generation. It uses the Markov property to predict states based
on indirect observations, and as shown by Lim et al. [25] it can be used
to generate relatively good chord progressions for melodies. However, it
scored much worse than BLSTM in both objective and subjective tests.

Generative Adversarial Networks

Generative Adversarial Networks (GANs) consist of two networks; a
generator and a discriminator, working against each other. The discriminator
is trained to tell whether a sample is from the training data or if it
is generated by the generator, and the generator is trained to fool the
discriminator [16]. To our knowledge, there have currently been no

13

attempts at using GANs for live music generation. This might be because
GANs require a lot of data for training, and it is difficult to obtain enough
data to train a model to work in a live setting.

Embeddings

Embeddings are low-dimensional representations of high-dimensional
vectors, which are used to map the relationships between categories.
The technique was originally introduced by Bengio et al. [3]. The most
common use for embeddings is in text analysis and generation, where the
embedding is trained to map the words in a lower-dimensional space, both
to reduce the data size and to group semantically similar words. Brunner
et al. [5] used this technique to map the relationships between the chords
in their training data, and experienced that their embedding was able to
extract important music theoretical concepts from the data.

2.3 Reinforcement learning

Reinforcement learning is a type of machine learning different from
both supervised and unsupervised learning. While supervised learning
algorithms work on labelled data and unsupervised algorithms work
on unlabelled data, reinforcement learning does not use any prior data,
but lets an agent train a model through exploring, perceiving, and
interpreting its environment, being rewarded/punished for doing things
correctly/incorrectly, with the goal of maximizing its reward over time.
Reinforcement techniques are usually applied when there is no prior data
to train a model with, or when we want to train an optimal model instead
of one relying on existing data, such as Google’s AlphaZero bot [39].

So far, some of the most practical usage of reinforcement learning is in
the field of robotics, where some applications have been successful [22].
There have also been attempts at generating music with reinforcement
learning techniques. Jiang et al. [20] argue that supervised RNNs trained
to minimize loss suffer from two major issues. The first is that there
becomes a mismatch between the conditions in which the models are
trained and used. When training, the model uses an entirely human-made
sequence, but when being used, the model relies on what the model itself
has previously generated, which might cause accumulative deterioration
of the music. The second issue is that the way the problem is modelled is
not representative of the goal. The models minimize the cross-entropy loss
at each step to select the note or chord with the highest probability, while
the coherence and function of each step actually relies on the entire piece.

Reinforcement learning techniques could potentially work very well
for interactively generating musical accompaniment, however, they are
usually much more complex than supervised techniques, and would
require more time and experimentation to achieve. Because of this, and
the fact that there is very little prior research in the field of RL generated
music, this thesis focuses on supervised techniques.

14

2.4 Machine learning tools

Machine learning techniques, especially deep learning, have until recently
been very difficult to implement in real projects. Neural networks can
be very complex, and for most projects it is not possible to implement
and train a model from scratch in a reasonable amount of time. In order
to save time and avoid needing expert knowledge of the mathematics
involved, there are several available frameworks made for machine
learning. Currently, two of the most popular ML frameworks are
TensorFlow [27] and PyTorch [32]. They are both described as great ML
frameworks, and each have strengths and weaknesses when compared.
TensorFlow is developed by Google, while PyTorch is developed by Meta.
Both are Python frameworks. In this project, we ultimately decided to
use TensorFlow, mostly because it seemed to have a more comprehensive
user base and documentation, and because of the high-level API Keras [7],
which allowed us to implement the networks with a higher level of
abstraction than using PyTorch. TensorFlow also seems to be much more
frequently used for music generation, as nearly all similar applications we
have found were implemented using it.

2.4.1 TensorFlow

TensorFlow [27] is a low-level framework for machine learning. It is
developed by Google and is currently the most popular ML framework.
TensorFlow has a large user base and comprehensive documentation,
most likely making it far easier to learn and use than other frameworks.
Additionally, it comes with Keras, which is a high-level API meant for rapid
development.

Keras

Keras [7] is a high-level API for neural networks and is mainly designed
for rapid development. It can handle complex neural networks with its
functional API. Keras is an integrated part of TensorFlow but can also be
used on top of other frameworks. Keras’ simplistic interface allowed us to
implement the networks at a much faster pace without having to simplify
them, which was particularly important to the success of this project.

2.5 Data formats

There are several ways to represent music digitally. Music is usually stored
digitally by converting sound waves to binary numbers. However, this can
be very challenging to work with using ML, as the size of the data is large,
and audio files contain no musical structure. By representing musical notes
in a symbolic format, we can use features in the music, which require a lot
less processing power and storage space. Therefore, this project uses MIDI
and chord sequences extracted from the MIDI music to represent the music
for the models.

15

2.5.1 MIDI

The Musical Instrument Digital Interface (MIDI) is a standard for di-
gital music communication, mainly intended for synchronizing digital in-
struments. The standard was first published by Dave Smith and Chet
Wood [40] in 1981, and the improved version has since been used to di-
gitally represent music of all genres in many different systems. Everything
from synths, digital drum sets, to Digital Audio Workstations (DAWs) use
MIDI as a convenient way to represent musical information and to control
other devices.

MIDI data contains metadata about the song and instrument tracks,
notes, and other events. Each note has a pitch, velocity, start time and end
time. The pitch is what note is being played, and velocity describes how
hard the key was pressed.

Several other projects have also used MIDI to represent the music for
their models. MIDI datasets can be easy to obtain, but they can be very
noisy and require pre-processing [13]. However, as MIDI is relatively easy
to manipulate, this can be automated. Through the MIDI metadata it is also
possible to obtain information about tempo, instrument types and other
events.

2.5.2 Chord sequences

Chord sequences only describe each chord in a song and how long it is
held. It contains no information about melody, rhythm, a chord’s relation
to other chords, or even what notes each chord includes. Chord sequences
have been used by for example Garoufis et al. [15], who used the Mc-Gill
Billboard dataset [6], which contains chord progressions from a number of
pop songs, to train their model. Chords usually help define the structure
of a song and create the foundation and direction of the music. Usually,
chords are predetermined even during improvisation.

2.5.3 Piano rolls

While MIDI is a great format for representing music digitally through
instructions, it is not really suitable as raw input to a neural network.
Because the music is supposed to be quantized to a certain time grid, the
model should output whether each note is being played at each timestep.
MIDI does not organize the notes in timesteps but contains timestamps for
each note.

The most normal method of representing MIDI data in a machine
learning network is the use of the "piano roll" format. This is a 2D matrix
representation of the music that shows the velocity of each note for each
sample. The number of samples is decided by the sample rate, which is
usually given as the number of samples per second or the time between
each sample.

A piano roll can easily be converted into a chroma representation,
which condenses all the notes into the twelve semitones instead of all the

16

separate notes in a MIDI track. This is useful for visualizing the music and
can also be used to reduce the input size of a model. However, it does not
contain information about in which octave each note is being played.

The piano roll representation fits well with RNNs because each sample
can be used as one timestep, and if the data is converted to binary rather
than integer velocity values, the notes are already one-hot encoded. One
issue with this format is that it might require a lot of space, especially at
higher sample rates. However, our model uses 16th notes as timesteps, so
the sample rate is relatively low. This drastically reduces the size of the
data, allowing us to load thousands of songs into memory at once.

2.6 Validation techniques

In order to evaluate the performance of the system, it is possible to
use objective or subjective measurements. Objective methods can help
provide an idea of how well the program works algorithmically, such as
evaluating accuracy on a test dataset, doing cross validation, or looking
at loss. However, humans’ subjective interpretation of music cannot be
measured this way. If the numbers tell us that the algorithm generates
logical passages, this does not necessarily mean they sound good.

2.6.1 Objective methods

To evaluate the accuracy of the predictions, it is normal to split the data
into training, validation, and testing data, with the training data being the
largest set. Doing this can help avoid overfitting of the data by stopping
training when the accuracy on the training set gets better than the accuracy
on the validation set. The test set is used at the very end of the experiment
and tells us whether our model is overfit to the training and validation
datasets. This is the most common way of partitioning the data for training
and evaluation.

The predictions are measured in a confusion matrix, which counts
how many true positives (tp), true negatives (tn), false positives (f p) and
false negatives (f n) the model predicted. In multi-class and multi-label
classification, this is measured for each class or label. From these measures,
we can calculate accuracy, precision and recall as follows:

accuracy =
tp + tn

N

precision =
tp

tp + f p

recall =
tp

tp + f n

where N is the number of predictions
Accuracy tells us how many percent of the predictions were correct.

This lets us easily see whether the predictions are random guesses, or if
the model is actually learning. However, only looking at accuracy can be

17

misleading, and does not tell us anything about what mistakes the model
is making.

Precision measures the proportion of positive predictions that were
correct. If accuracy is 75%, but there were no false positives, precision
will still be 100%. In situations where it is more important to avoid false
positives, low accuracy can be accepted if precision is high.

Recall measures the proportion of positives that were correctly pre-
dicted. If precision is 100%, recall can still be low if many positives were
identified as negatives. Recall is often reduced as precision is increased, be-
cause we often have to accept many false negatives in order to avoid false
positives.

This method of splitting the data and measuring accuracy was used by
Garoufis et al. [15] and Lim et al. [25]. Dong et al. [13] used other calculated
measures to evaluate different attributes.

2.6.2 Subjective methods

Objective methods of evaluation can be useful to see whether the model
is training properly, but it does not actually say anything about the
musical quality. The perception of music is highly subjective, and in order
to evaluate the actual musicality of the generated predictions, we need
subjective evaluations generated by human testers. In other projects this
has been done a number of ways.

Faitas et al. [14] asked participants to evaluate how much they liked the
music and how much it harmonized on a scale from 1 to 5, and whether
it sounded human-made when they had to choose between two different
samples. This form of evaluation separates the quality of the music from
how convincing it is as human music.

Dong et al. [13] had participants listen to samples generated by their
model and rate the samples’ harmony, rhythm, structure, coherence, and
overall rating on 5-point Likert scales. They also separated what they
called "pro users" and "non-pro users" based on their musical background.
Similarly, Garoufis et al. [15] had twelve subjects, both musicians and non-
musicians, test the system and rate the musical coherency and variety on
5-point Likert scales.

In this project, it was not possible to perform subjective testing with
external people. Subjective evaluations of the generated music were
therefore performed through musical analysis. This might help evaluating
the functional harmonic and rhythmic aspects of the music, but we
recognize that it is challenging to be objective in the analysis when
evaluating our own model. Therefore, the results of the musical analysis
are only meant for the purpose of explaining to non-musicians why parts
of the music generated by the model is interesting, and what issues are
observed in the music.

18

Chapter 3

Music theory

This chapter serves as a simplified introduction to western music theory,
which was used in this project to set up the models and analyse the
generated music.

3.1 Western music theory

Music is a broad term used to describe sounds organized in a specific way,
usually with the goal of invoking some feeling or impression in the listener
and/or performer. Music is an art, and thus is not defined by a set of rules
by which all music conforms. There are, however, several tools one might
employ to better understand, analyse, and create music, with the ultimate
goal of understanding how humans react emotionally to music.

Different cultures have since the dawn of human civilization had dif-
ferent approaches to performing, experiencing, and analysing music, with
different focuses and purposes. The European approach to music theory,
commonly called western music theory, has through the past 200 years
become the unofficial international standard for music analysis. Modern
western music theory is based on a twelve-tone scale where the distance
between consecutive notes is equal, called the twelve-tone equal tempera-
ment. This scale was originally based on the harmonic series, in which the
frequency of each note is a multiple of the fundamental frequency being
played. The twelve-tone equal temperament was normalized in western
music during the 18th century and forms the basis of all western musical
analysis today. Other cultures might use different tuning systems, such as
the modern Arab tone system, which is based on a 24-tone equal tempera-
ment. In this thesis, however, the western system is used to explain musical
ideas.

To gain a proper understanding of what we mean by the term "music",
we might refer to the philosophy of music. Whether or not a machine
learning model is able to create musical accompaniment might be very
much dependent on how we define what music is. In the Merriam Webster
online dictionary, music is defined as "vocal, instrumental, or mechanical
sounds having rhythm, melody, or harmony" [29]. This is a very broad
definition, which depending on how we define rhythm, melody, and

19

harmony, may allow any collection of sounds to be called music. While
this definition may be correct for the everyday use of the word, it is
not especially useful when trying to distinguish musical and non-musical
noise.

A different way of viewing the problem is by considering intention.
Maybe any collection of sounds can be music if it is intended as such.
This does however imply that music must be intentional, which is not
necessarily the case. This would certainly mean that a machine, which
cannot have any intention without having thoughts of its own, could
never create music. Then what about automatically generated sounds and
patterns already being used in a large portion of modern music? One
could argue that there is intention in how automatically generated music is
used, and how the algorithms that create the sounds are created, but where
would we draw the line? If we created a hyper-intelligent AI that in turn
created an AI to generate music, would that be music? A different approach
is to consider how the sounds are perceived. If we say that any collection
of sounds perceived as music is music, then the definition of music will
be very individual. One person may hear music where another hears only
noise, and any piece of organized sound can be both music and not music.

For the purpose of this thesis, music will be defined as a set of organized
sounds intended to be heard as music and experienced as music by the
listener. We might say that while the machine itself does not have any
intention, the creator of the program intended the model to generate music,
and as long as the listener perceives it as music, it will be classified as such.

3.2 Musical terms

This section contains explanations of a number of musical terms that will
be used throughout the thesis. Most of these terms are very basic musical
concepts and are fundamental to analysing and describing music.

Note

The term "note" refers to a specific frequency being played for a specific
duration.

Figure 3.1: Note names on a piano.

Tone

"Tone" in the context of western
music usually refers to the pitches’
placement in the 12-tone equal tem-
perament. The tones are named
A to G following the order of the
modal A minor scale, and the tones
in between (black keys) are either
"sharp (#)" or "flat (b)".

20

Intervals

An interval refers to the distance between two notes being played together.
Table 3.1 describes the most used intervals.

Name Example Distance

Minor second C - Db 1
Major second C - D 2
Minor third C - Eb 3
Major third C - E 4
Perfect fourth C - F 5
Tritone C - Gb 6
Perfect fifth C - G 7
Minor sixth C - Ab 8
Major sixth C - A 9
Minor seventh C - Bb 10
Major seventh C - B 11
Octave C - C 12

Table 3.1: Tonal interval names

Chord

A chord is a combination of several notes played together, usually in what
is known as triad formations, meaning they are built up in thirds. The C
major chord, for example, consists of the notes C, E and G. E is one major
third up from C, and G is one minor third up from E. Chords come in
different types that are built up the same way. C major and G major, for
example, both consist of a major third and a minor third.

Different chord types are written differently. Major chords are just
written with the name of the base note (C), minor chords are suffixed with
"m" (Cm), and chords with more than three notes contain the number of
the last step. C7 for example, contains the notes C, E, G and Bb, while C11
contains C, E, G, Bb, D and F. Cmaj7 contains a major seventh interval, so
it has B instead of Bb.

Chords have different functions in the scales. The three most important
chords in a scale are called the tonic, dominant and subdominant. These
are the chords built up of triads from the 1st, 5th and 4th step, respectively.
In the C major scale, the tonic is C, the dominant is G, and the subdominant
is F. These are the most commonly used chords and are closely connected.

Consonance/dissonance

An interval that sounds/feels good and "right" to humans is called
consonant. Typical consonant intervals are the octave, perfect fifth, perfect
fourth and major third. In the harmonic series, the respective frequency

21

ratios of these intervals are 1
2 , 2

3 , 3
4 and 4

5 . Although these ratios are different
in the 12-tone equal temperament system, we still hear them as consonant.

An interval that sounds/feels weird or "bad" to humans is called
dissonant. Dissonance is important in music to create and release tension.
The interval usually considered the most dissonant is the tritone, which has
a ratio of 45

32 .

Harmony

"Harmony" describes how different pitches sound when played together.
Harmony plays a very important part in nearly all music and is used to
create tension and release by combining consonant and dissonant intervals.
Harmony is highly subjective, and changes throughout time and based on
cultural background.

Beat

A beat can generally mean two things: (1) a rhythm being played
continuously (usually by a drummer), or (2) a single step in the rhythm
and tempo being played. Beats are the rhythm being counted. Everything
smaller than one beat are subdivisions.

Tempo

The tempo of a piece of music is the number of beats that occur per minute.
The most commonly used tempos are in the range of 80 bpm to 140 bpm
(beats per minute).

Bar

A bar in music is a short collection of beats making up a unit of time. The
number of beats in a bar is decided by the time signature.

Time signature

The time signature is the number of beats per bar, usually denoted as a
fraction such as 4

4 , 3
4 or 6

8 .

Subdivision

A subdivision is a measure of time shorter than a beat, and is created by
dividing the beat by a certain number, usually in base 2. In most songs, one
beat is what is called a quarter note (because it is one quarter of a bar in 4

4
time), and can be divided into two eighth-notes, four 16th notes, eight 32nd
notes etc. The names of the subdivisions describe how many there are in
one 4

4 bar. It is also possible to divide the beats by other values like three or
five, by which we get subdivisions called "triplets" and "quintuplets".

22

Key signature

The key signature is the starting key or tone of the scale.

Scales and modes

The scale or modality describes the tones that are used in the current
music. The simplest scales are the major and minor pentatonic scales,
which contain five notes. The steps in these scales equal the black keys on
the piano, starting at F# and C#, respectively. Most scales contain 7 notes.
The most used scales in western music are the major scale and the natural
minor scale. These scales are two of the seven diatonic modes traditionally
based on the major scale. Each mode uses the same sequence of notes, but
starting at a different step. For simplicity, this is usually explained using
the C major scale as starting points, because then all the modes only use the
white keys on a keyboard. The first mode is the C major scale, or Ionian.
Starting from D and using only the white keys is D Dorian, starting from E
is E Phrygian, etc. This way we get the Ionian, Dorian, Phrygian, Lydian,
Mixolydian, Aeolian and Locrian modes. The other modes apart from
Ionian and Aeolian are rarely used in popular music and are mostly utilized
in jazz improvisation. In this project, five of the most common scales were

Figure 3.2: The notes included in the different scales in the key of C.

used to normalize the data to the same key. These are major (Ionian), minor
(Aeolian), harmonic minor, melodic minor and the hexatonic blues scale.
The harmonic minor scale is similar to Aeolian, but it has a natural 7th

23

note. The melodic minor scale uses both flat and natural 6th and 7th notes,
and the hexatonic blues scale consists of the minor pentatonic scale with
the tritone included.

Counterpoint

Counterpoint refers to two or more equally dominant melodic lines
that play simultaneously, creating meaningful harmonies while being
rhythmically and melodically independent. It is a phenomenon often
occurring in classical music, and it has been the focus of several previous
attempts at generating music using ML.

Jam

A "jam session" in music is a phenomenon that emerged in the early 20th
century where musicians would improvise together with minimal prior
planning. This allows the musicians to be very free in their playing, often
taking turns soloing and constantly adapting to each other. Jamming is
often used both to practice improvisation and to compose new music. A
large amount of music is created by exploring ideas through jamming.

Circle of fifths

The circle of fifths is a model used in music theory to explain the
relationships between different chords and scales. It contains all the tones
of the 12-tone equal temperament, clockwise in the order that they occur
going upwards in fifths.

Figure 3.3: The Circle of fifths. Source: [45]

24

Monophonic/polyphonic

The term "monophonic" describes music that only plays one note at a time,
and "polyphonic" music plays several notes simultaneously. Most music is
polyphonic; however, an instrument can still be monophonic although it
is playing with others. A monophonic instrument just means that it is not
possible to play several notes simultaneously with that instrument.

Velocity

Velocity describes with how much force a note is being played. It is mostly
used in the MIDI format to describe how hard a note should be played.
This is separate from the volume of the music, as the velocity also affects
how the instrument sounds.

3.3 Music theory in this thesis

In this thesis, some of the simpler concepts from music theory are
used to describe the models and the generated music. Some musical
understanding is required to create an ML model that can generate music.
Understanding concepts like notes, pitches and rhythm is essential to being
able to model them and understand how the models work.

No prior knowledge of music theory is required to read this thesis,
and the terms and concepts that are relevant to this thesis are explained
in the above section. If the reader wants a more in-depth explanation of
western music theory, they are referred to works like Laitz’ The Complete
Musician [23] or McGrain’s Music Notation [28].

25

Chapter 4

Design

This chapter describes the final design of the proposed solution. This
includes an explanation of how the data is pre-processed, how the models
are designed and how the solution was implemented and evaluated.

4.1 Overview

The solution proposed in this thesis is to train two separate LSTM networks
with real music in the MIDI format and use these models to generate
live accompaniment for piano, guitar, bass, and drums to music played
by a user. This accompaniment will be played back to the user in real-
time, simulating the experience of jamming freely with a band. The
accompaniment will mainly adapt to the user’s playing, but a certain level
of listening and adaptation is also required from the performer, as is also
true when playing with other people.

The solution is divided into two parts: training the models and using
the models to generate live music. The first part includes data preparation,
network design and training, and the second part consists of getting live
MIDI-input, generating accompaniment in real-time using the pre-trained
models, and playing it back to the user. The entire solution is depicted
in figure 4.1. First, the dataset is prepared for training the models by
normalizing and extracting the required data from the MIDI music. Then,
the models are created and trained. The chord model is trained first, as the
models use the same chord embedding. The models are exported and used
in the jamming application. Here, a human user plays something on piano,
which is transformed into input for the models. The polyphonic model
is used each timestep to generate the next timestep of polyphonic music,
while the chord model is called periodically to predict the next chord, used
as input for the polyphonic model. The output from the polyphonic model
is processed and split into different digital instruments that play what the
model predicted back to the human user. This cycle continues until the user
stops the session.

In order to be able to implement the networks in the timeframe of
this project, we used a high-level machine learning API, which has some
limitations regarding speed performance, and turned out not to be suitable

26

Figure 4.1: The solution is split into two separate applications: one that
prepares the MIDI dataset, trains, and exports the models, and one that
uses the models to generate live polyphonic accompaniment based on
notes played by a user.

27

for live generation with the implemented models. Therefore, the solution
presented in this chapter is suboptimal in terms of the project’s initial goals.
An interactive version of the application was implemented, but the models
themselves are too slow to be used in a live setting. This project did
not yield a working demo of the intended application, but instead music
samples generated using static melodies were used to control the fitness of
the models. These samples, along with the integration of an application
that works, but only at a very low tempo, serve as a proof of concept and
shows that the proposed network structure and application is feasible for
the purpose of interactively generating musical accompaniment.

4.2 Model design

The proposed solution is a compound model that uses two different
LSTM networks; one to generate a chord sequence for a melody, and one
to generate polyphonic accompaniment based on the melody and chord
sequence. This approach is based on the solution proposed by Brunner et
al. for the JamBot model [5] but adapts the models to generate multi-track
polyphonic accompaniment to a melody instead generating single-track
polyphonic music from scratch. Brunner et al. [5] argue that separating
chord generation and polyphonic music generation into two networks that
use different time intervals achieves better long-term structure because the
chords are used as a structural basis for the music. This is similar to how
chords work in most music. Additionally, by letting the model learn the
relations between different chords and notes instead of using the chords
as rules for what notes to predict, the chords are used more like they are in
real music. In the JamBot model [5], the chord model first generates a whole
chord sequence, and the polyphonic model generates music based on that.
In this project, the models were designed to be executed continuously.
The chord model predicts the next chord, which is used for the next 16
timesteps, and the polyphonic model uses it to generate polyphonic music
for the next 16 timesteps.

The first network (chord network) has two different inputs: the melody
and the initial chord. For each step, the model uses the chords previously
generated, and the continuation of the melody. The melody consists
of one-hot encoded segments of 16 timesteps, which go through a 1D
convolutional layer. Each timestep in the data is one 16th note, and each
chord is held for exactly one bar (16 16th notes), so the model is only called
once for each bar. By running the melody input through a convolution,
the model can use the whole melody of the bar while considering the
order of the timesteps. The chords are mapped using an embedding layer,
allowing the model to map the relations between the chords. This is a
concept often applied in natural language processing and Brunner et al. [5]
is to our knowledge the first to use embeddings to map chords. They
showed that the chord embedding was able to extract a mapping similar
to the circle of fifths, which describes relationships between different scales
and chords in western music theory. This clearly shows that the chord

28

(a) Input shape of the chord network.

(b) Output shape of the chord network.

Figure 4.2: Input and output shapes of the chord network.

embedding is meaningful. The embedded chords and convoluted melody
are concatenated and fed into an LSTM layer with 512 hidden states. Using
a dense layer and a softmax activation, the model outputs a probability
distribution for all 100 chords. The next chord is then selected randomly
from this distribution.

For training the model, we used the Adam optimizer [21], which is
included in TensorFlow, with a learning rate of 0.0001. The model was
trained for 50 epochs, and we selected the epoch with the highest validation
accuracy.

The second network (polyphonic network) also takes the chords and
melody as input, but one 16th note at a time, so each chord is repeated for 16
timesteps. Additionally, the input includes a one-hot encoded counter that
describes the current step in the bar. This tells the model where in the bar it
is, and when the next chord change is, most likely making better transitions
between chords. The chords are run through the same embedding that
was trained in the chord model. The embedding is non-trainable in the
polyphonic network. Contrary to Brunner et al. [5], we did not include
the next chord, because this information is not available as the melody and
chords are generated sequentially. The chord embedding is concatenated
with the one-hot encoded melody and counter and fed into an LSTM layer
with 1024 hidden states. Finally, the model has a dense layer and a sigmoid
activation, giving a value between 0 and 1 for each of the 204 notes. All

29

(a) Input shape of the polyphonic network.

(b) Output shape of the polyphonic network before (top) and after (bottom)
threshold selection.

Figure 4.3: Input and output shapes of the polyphonic network.

30

notes over a certain threshold are played by the computer. The threshold
used was 0.08, which was the value found to generate the best sounding
and most coherent music.

The polyphonic network was also trained using the Adam optimizer
with an initial learning rate of 0.0001. The model was trained for 10 epochs,
and the epoch with the highest validation accuracy was used for objective
and subjective evaluation.

The models are trained and used separately because they operate at
different time intervals. The chord model predicts a chord for every bar,
which is equivalent to 16 timesteps in the polyphonic network. There is
no way to use some of the layers only once every 16 timesteps [5], and
if the model were to predict a chord for every timestep it would either
have a much less meaningful selection of chords, or it would predict the
same chord every timestep. Separating the models allows them to work at
different time intervals.

4.2.1 Baseline model

In order to evaluate whether the addition of chords is better for generating
polyphonic accompaniment than just using a straight-forward LSTM
network, we created a simpler LSTM network that does not integrate
chords, to use as a baseline for the model performance. This network only
contains one LSTM layer with 1024 hidden states, as well as a dense layer
and a sigmoid activation. Our hypothesis was that the baseline model is
too simple to learn the subtle harmonic connections in the music and would
not be able to generate meaningful polyphonic music in the way that the
compound model can.

31

Figure 4.4: Network architecture of the chord network (left) and the
polyphonic network (right).

32

4.3 Data

The data used to train the model is the Lakh MIDI Dataset [34], which
consists of about 180 000 songs in many styles and genres in the MIDI
format. This seems to be the most comprehensive and cleanest dataset of
MIDI music available, and a subset of this dataset was used by Brunner et
al. to train the JamBot model [5]. The MIDI files are processed with Python
using a package called pretty_midi [35]. The data preparation consists of
four steps: normalization, chord extraction, lead melody extraction and
accompaniment extraction.

4.3.1 Key normalization

For the model to be able to learn the relationships between the notes
properly, it is important that the music is normalized to the same starting
key. Depending on the key and scale being played, the notes have
completely different roles and functions, however, the model has no way of
extracting this context out of the samples. This would likely require much
more data, which is not available. If all the songs have the same starting
key, the model is much more likely to make meaningful connections
between the notes, making it able to generate much better music. The
scale of a song is extracted by comparing the most commonly occurring
notes with 60 scales. These scales are the five scales major (Ionian), minor
(Aeolian), harmonic minor, melodic minor and the blues scale, for each of
the 12 starting keys.

As the notes in a song might match more than one of these scales, and
the scales contain varying amounts of notes, the most common scales are
checked first. If the seven most common notes match one of the major
scales, the song is either in major or minor, because they are two of the
diatonic scales and contain the same notes. If so, the program checks
whether the 6th note occurs more frequently than the 1st note, in which
case the song is likely in minor. If the notes do not match any of the diatonic
scales, the seven most common notes are compared with the harmonic
minor scales, which have a natural 7th step. If harmonic minor does not
fit either, the program checks the nine most occurring notes against the
melodic minor scales, which use both flat and natural 6th and 7th steps.
Lastly, if none of the other scales match, the program compares the six most
occurring notes to the hexatonic blues scale, which is a minor pentatonic
scale with a tritone included. The notes contained in each of these scales
are shown in figure 3.2.

Each song is modulated to the same starting key, but they may have
different scales. Songs that do not match any of the scales are removed
from the dataset. The songs are also set to the same tempo by using the first
tempo found in the song’s metadata to set the sample rate when converting
to the piano roll format. This way, one timestep is the same length for all
the songs, based on the actual note values instead of their timestamps. This
method assumes most of the songs are in 4

4 time and do not have tempo
changes.

33

4.3.2 Chord extraction

The chord sequence is especially important to the musical accompaniment,
often even more so than the melody. Instead of using only chord sequences
as input, like JamBot [5], this solution uses a combination of chord
sequences and melodies. This way, it can learn to generate chord sequences
based on a melody and learn voicings and rhythms complementing those
chords.

The model uses chords extracted from the data. The chord schemes are
created by finding the three most occurring notes in each bar. The 99 most
common three note combinations are enumerated in a dictionary, while the
rest are given the label ’UNK’. This is done so that the chords can be used
in the embedding layer in the chord network. Each chord is held for one
bar, which is typical for most music. The ten most occurring chords are
displayed in table 4.1.

Chord Occurrences
C 1 835 301
G 962 911
F 786 590

Am 538 739
Cm 477 943

Csus2 450 175
Csus4 394 112
DFG 277 831
Dm 271 265

CGA 229 818

Table 4.1: Most commonly occurring chords

4.3.3 Melody extraction

The melodies used for training are the instrument tracks included in the
MIDI that are most likely to be a lead or melodic instrument. If several
tracks are potential candidates, one is selected randomly for each song.
The program tries to find a track that is mainly monophonic, plays most
of the time, and is not a bass instrument. The melodies are represented in
the piano roll format, with 60 notes for each timestep. The piano rolls are
binary, so each note is either playing or not playing. As many of the 128
notes in the MIDI format are rarely used, the highest and lowest octaves
are removed before the data is used.

4.3.4 Accompaniment extraction

The polyphonic tracks used as target output for the polyphonic network
are separated into four parts: piano, guitar, bass, and drums. Each part is
selected by finding all the MIDI tracks containing keywords related to the

34

instrument and combining them into one track. The four tracks are then
concatenated into one large track with 204 attributes, which is the target
output of the polyphonic network. The three first instruments have 60
notes each, while the drum track only has 24 notes, as it normally uses
only a few of the notes.

4.4 Application

The solution was implemented using Python. The application was split
into two parts: a model creation application and a jamming application.
The model creation application prepares the data, and creates and trains
the models, and the jamming application uses the models to generate
accompaniment based on live input.

4.4.1 Model creation application

The models were created and trained using the high-level API Keras [7],
with TensorFlow [27] as back end. Although Keras has limitations
regarding speed performance, it drastically reduced the time it took to
implement and test the models. The application makes use of Keras’
functional API, which is used to create a graph containing all layers
in order. The models are easily trained and evaluated using built-in
functionality. Once the models are trained, they are stored as TensorFlow
graphs, and can be loaded back into a different program without having to
re-create or re-train the models.

The model creation, training and evaluation is done by a custom Python
class, which allowed us to easily reuse the code for model creation and
training to test different configurations and model parameters. The same
class also stores the models using Keras’ Model.save() function and creates
the training graphs using the Python library Matplotlib [19]. These graphs
were used to see whether the models were overfitting, and how many
epochs were necessary for training the models.

4.4.2 Jamming application

The jamming application imports the models using Keras’ models.load_model()
function. The models are imported and used by a custom class containing
a function for performing one timestep, which returns the polyphonic out-
put. This function is called periodically by the main application, which
uses the library PYO [1] to receive and process MIDI input from the user,
output sound based on what the polyphonic model generates, and to run
the program loop itself. The PYO library contains a class called Pattern,
which is used to call the models at a constant time interval, corresponding
to one 16th note.

The input played by the user is obtained by using two binary arrays
with length equal to the number of MIDI notes. We use PYO’s MIDI event
handlers to record what notes are being pressed and released in the arrays,

35

and these are used to create the model input. With this method, the notes
played by the user will always be quantized to the 16th note grid, which is
the same grid used as timesteps for the model.

4.4.3 Implementation

The solution was implemented during the course of the master’s project
starting in August 2021. The following chapter describes how the
solution was implemented, in addition to going into more detail about the
algorithms and the applications.

36

Chapter 5

Implementation

This chapter contains descriptions of the development processes and ex-
perimental approach to the project. As the project is design based,
the reader might want to look at the source code. The code used
for creating, training and using the models, as well as preparing the
data, will temporarily be available at Google Disk through this url: ht-
tps://drive.google.com/drive/folders/1we16zbsSCxhgGn3_GPrM9Xqn
Dd4vUhdX?usp=sharing

5.1 Model

We initially experimented with different models and implementations of
neural networks for music generation. The first thing we wanted to
attempt was using a sequence-to-sequence model, often used for machine
translation. However, sequence-to-sequence models take a complete
sequence and transform it into a different sequence, so it cannot work with
live input. In order to generate continuous accompaniment to live input,
the model needs to predict each timestep separately.

We eventually decided to implement a normal LSTM model, even
though earlier work had found that this type of model was too simple
to generate meaningful music with long-term structures. Our plan was
to experiment with adding or removing different layers to find a network
structure that worked better. However, before doing this, some more time
was spent searching for alternative models, during which we found the
project called JamBot [5], which used a somewhat different approach.

JamBot was created to generate new polyphonic music by first gener-
ating a chord sequence with one network, and then generating polyphonic
music with a second network. We decided to try to adapt this model to gen-
erating polyphonic accompaniment to a melody by including the melody
as input to both networks. We experimented with different data formats
and sources like the Million Song Dataset but ended up using a method
similar to Brunner et al. [5], extracting key signatures, scales, and chords
from the MIDI data itself. The results we got for the most common chords
and scales were similar to those of Brunner et al. [5], although we addition-
ally included the melodic and harmonic minor scales in the dataset, and

37

https://drive.google.com/drive/folders/1we16zbsSCxhgGn3_GPrM9XqnDd4vUhdX?usp=sharing
https://drive.google.com/drive/folders/1we16zbsSCxhgGn3_GPrM9XqnDd4vUhdX?usp=sharing
https://drive.google.com/drive/folders/1we16zbsSCxhgGn3_GPrM9XqnDd4vUhdX?usp=sharing

not just the diatonic scales. Additionally, the model was restricted to use
a window of 128 timesteps instead of training over the whole song. This
means that long-term musical structure is not preserved in the same way,
but the model processes the music with a window of eight bars. The ses-
sion is supposed to be continuous and not end after a certain time, so using
the same structure as a normal song would not suffice. It does however im-
plore the exploration of different window sizes, which might have different
results.

After some trial and error, we were able to successfully implement a
model that could generate a chord sequence for an existing melody. At
first, we built the networks with Keras’ sequential model, but this turned
out to be too restricted for our networks. Because the networks had to take
the chords and melody as separate inputs, and concatenated them later,
we ended up using Keras’ functional API, which was much more versatile
than the sequential model.

The model was initially terribly slow, so we spent some time optimizing
the model’s performance, mostly working on the data pipeline. We
initially created batch generators that processed the data simultaneously
as training, so not all the data would have to be loaded into memory. This
later turned out to be a major bottleneck when training, so we took steps to
reduce the size of the data and loading it all into memory before training.

To use the melody as input to the chord model, we initially made it
predict the next chord for each timestep, which meant that in the training
data, each chord was held for 16 timesteps. This seemed like a logical way
to predict the chords because the model would work with live input, and
the chords should depend on the input melody as well as the previous
chords. We also wanted to see if the model was able to select chords for
different time periods depending on the melody. However, this method
caused the model to be very repetitive, often predicting the same chord
for lengthy periods. We tried creating an onset and sustain value for each
chord, describing whether there is a chord change, but this did not yield
better results. Because the model was supposed to generate the next chord
only every 16 timesteps, the model was changed so that each timestep is
one bar. Instead of one 16th note, the model gets a whole bar of the melody,
which is run through a 1D convolutional layer. This allows the model to
preserve the order of the notes while processing the whole bar in a single
timestep. This method seems to work as intended and is also similar to
how Brunner et al. [5] uses their chord model.

The code in listing 1 contains a function that returns the chord network.
The network structure is the same as shown in figure 4.4. The network
has two inputs: the chords and the melody. The shapes of the inputs
reflect the shape of the input data. The network gets the last eight bars,
with one chord and one 16-note melody with 60 one-hot encoded notes,
for each bar. The embedding layer gets the chord input, and outputs a 10-
dimensional vector. The melody is input to a 1-dimensional convolution,
which is concatenated with the chord embedding, and used as input for
the LSTM. The output of the LSTM, with 512 hidden states, is put through
a dense layer, which reduces the output size to 100. Lastly, the softmax

38

1 import tensorflow as tf
2

3 def create_chord_network():
4 #Network inputs
5 chord_input = tf.keras.layers.Input(shape = (8, 1))
6 melody_input = tf.keras.layers.Input(shape = (8, 16, 60))
7 #Chord embedding
8 embedding = tf.keras.layers.Embedding(
9 input_dim = 100,

10 output_dim = 10
11)(chord_input)
12 #1D Convolution
13 conv = tf.keras.layers.Conv1D(
14 filters = 60,
15 kernel_size = 16,
16 input_shape = (16, 60)
17)(melody_input)
18 #Concatenate embedding and convolution
19 concat = tf.keras.layers.concatenate([embedding, conv])
20 #LSTM layer
21 lstm = tf.keras.layers.LSTM(
22 units=512,
23 return_sequences=True
24)(concat)
25 #Dense layer and activation
26 dense = tf.keras.layers.Dense(100)(lstm)
27 output = tf.keras.layers.Activation("softmax")(dense)
28 #Build model
29 chord_network = tf.keras.models.Model(
30 inputs=[chord_input, melody_input],
31 outputs=output
32)
33 return chord_network

Listing 1: Sample code used to create the chord network using Keras’
functional API. Some reshaping steps have been left out for better
readability.

activation gives each output a probability. The graph is turned into a model
with the tf.keras.models.Model class.

The polyphonic network was much faster to implement than the chord
network, as we were more familiar with TensorFlow and Keras, and most
of the data formatting was already done. We still needed to extract the
different instrument parts from the MIDI music, but we were able to do
so fairly quickly. As input the model uses the same training data as
the chord model, and it is trained on the correct chord sequences and
not the ones generated by the chord model. It was a bit challenging to
obtain the instrument tracks as target data for the polyphonic network, but
we eventually created a method that worked relatively well, described in
chapter 5.2.

The code in listing 2 contains a function that returns the polyphonic
network. The structure of this network is also the same as in figure 4.4. This

39

1 import tensorflow as tf
2

3 def create_poly_network(embedding_weights):
4 #Initialize embedding
5 embed_init = tf.keras.initializers.Constant(embedding_weights)
6 #Network inputs
7 chord_input = tf.keras.layers.Input(shape = (128, 1))
8 melody_input = tf.keras.layers.Input(shape = (128, 60 + 16))
9 #Chord embedding with non-trainable weights

10 embedding = tf.keras.layers.Embedding(
11 input_dim = 100,
12 output_dim = 10,
13 embeddings_initializer = embed_init,
14 trainable = False
15)(chord_input)
16 #Concatenate embedding and melody
17 concat = tf.keras.layers.concatenate([embedding, melody_input])
18 #LSTM layer
19 lstm = tf.keras.layers.LSTM(
20 units = 1024,
21 return_sequences = True
22)(concat)
23 #Dense layer and activation
24 dense = tf.keras.layers.Dense(204)(lstm)
25 output = tf.keras.layers.Activation("sigmoid")(dense)
26 #Build model
27 poly_network = tf.keras.models.Model(
28 inputs = [chord_input, melody_input],
29 outputs = output
30)
31 return poly_network

Listing 2: Sample code used to create the polyphonic network using
Keras’ functional API. Some reshaping steps have been left out for better
readability.

network has the same inputs as the chord network, but in a different shape.
Instead of 8 bars, the polyphonic network gets 128 16th notes. Each chord
is repeated 16 times. And instead of 16-timestep segments, the polyphonic
model gets 128 timesteps of melody in order. The shape of the melody
input is equal to the number of notes (60) plus the size of the counter (16).
Like in the chord network, the chord input is used in an embedding layer,
however, the polyphonic network uses the pre-trained embedding from the
chord network. The embedding is concatenated with the melody and used
as input for the LSTM layer with 1024 hidden states. The LSTM output is
put through a dense layer, reducing the size to 204, which is the number of
outputs for the polyphonic network. The sigmoid activation assigns each
output a value between 0 and 1.

After the networks were implemented and tested, the training speed
was optimized in order to be able to test different configurations and
tune the models. We had originally intended to test about 30 different

40

combinations of parameters for the networks and running each test several
times to see what parameters made statistically significant changes to the
accuracy of the polyphonic network, but this would require training the
network several hundred times in order to get enough data. As this turned
out not to be a viable option, we still tested many different configurations
to see what parameters had the biggest effect on accuracy and time.

Near the end of the project, we increased the amount of data from
14 000 from the LMD_Matched dataset used by Brunner et al. [5], to the
130 000 songs of the full Lakh MIDI dataset. Training the models with
the additional data took a lot more time, and it was not possible to train
them as often. Instead we used the experience from testing the models
with different parameters and concluded what parameter values were most
likely to get the best accuracy for the polyphonic network. We also reduced
the size of the training dataset for the polyphonic network, as training this
on all 130 000 songs would have taken too long.

Because we were not able to perform user testing with the generated
music, we decided to use a much simpler LSTM network as a baseline for
the model performance. This way, we could compare both the objective
analysis and the generated music, to see whether the addition of the chord
network actually helps the model generate better music. The baseline
model was easy to implement, as the network structure is very simple.

5.1.1 Model tuning

In order to find the best parameters for training we ran the model with
many different configurations and measured the validation accuracy. We
looked at several measurements to select the best parameters, and tested
different values for initial learning rate, LSTM sizes, training batch sizes
and number of epochs.

After testing several values for each of these parameters, we created a
configuration that balances training speed with accuracy, so the training
does not take too long, while it keeps the best possible validation accuracy
during training. The configuration can be found in table 5.1. In general,
higher LSTM sizes had a large effect on the outcome of the models. The
polyphonic model has many output features, so the LSTM size needs to be
large. However, this also makes the model very slow.

Learning rate LSTM size Batch size Epochs
Chord 0.0001 512 128 50

Polyphonic 0.0001 1024 256 10

Table 5.1: Configuration used for the compound model.

41

Figure 5.1: Training graph of the chord network using the optimized
configuration. The model is overfitting after about ten epochs.

42

Figure 5.2: Training graph of the polyphonic network using the optimized
configuration.

43

5.2 Data

In any machine learning or data analysis project, finding and formatting
data usually takes a considerable amount of time. This project was no
exception, and a lot of time was spent writing and testing scripts to format
and adapt the data to the models. We used the Lakh MIDI Dataset [34],
which was also used by Brunner et al. [5].

The dataset contains about 180 000 MIDI files, many of which are
split into different instrument tracks and contain metadata about the
songs’ notes, tempos, instrument names etc. About 130 000 of the songs
were used for training the chord network, and 60 000 for the polyphonic
network. The polyphonic network was trained on less data because it
would take an unreasonably long time to train the network with the full
dataset. To load the MIDI data into Python we used a utility package
called pretty_midi [35], which contains functions for loading, writing, and
manipulating MIDI. It also has a function for converting the MIDI data to
the piano roll format.

Figure 5.3: Example of a piano roll representation

We tested several formats before deciding to use the piano roll format. First,
we tried using the representation created by Colombo and Gerstner [10],
called BachProp, but their code for transforming the data required an
unavailable Python package. Creating a custom script for converting MIDI
to this format would likely have been a waste of time, so we decided to
avoid that. We attempted to use the raw MIDI as input, but this did not

44

yield any meaningful predictions, as the model would have to predict both
pitch and length for each note, and it would not be quantized to 16th notes,
but just generate notes in a sequence. This issue would also have been the
case with BachProp. We eventually tried using the piano roll format, which
uses more space, but is neatly organized into uniform timesteps, and the
notes are already one-hot encoded. As the pretty_midi [35] package has
a function for converting MIDI to piano roll, this was relatively easy. We
tried doing this with a custom script first, but it was much slower, so we
ended up using the built-in function get_piano_roll in pretty_midi. This
function takes a sample rate, which is the number of milliseconds each
sample (timestep) lasts. We calculated the sample rate based on the tempo
of the song, which is included in the metadata of most songs. This makes
the method relatively accurate for quantizing the songs to 16th notes, but it
does not account for tempo changes during the song, or other subdivisions
such as triplets or quintuplets. These are quantized to a 16th note grid.

5.2.1 Data preparation

The method used to normalize the songs to the same key is the same as
the one used by Brunner et al. [5]. The scales are extracted by creating a
histogram of the chroma representation of the song, which takes all 128
notes condensed into the 12 tones, and creating a scale based on the most
common notes. The scale and key it is matched with is used to determine
the key, and the entire song is modulated to C by adding or subtracting
a specific index to all the notes in the MIDI data. Contrary to Brunner et
al. [5], we used all songs that got assigned a scale using this method, and
not just the diatonic scales. Using only the diatonic scales might make the
music less diverse and functional because the Aeolian minor scale does not
have a dominant chord.

Using this method, about 135 000 of the songs were assigned a scale,
with the majority being assigned the major scale. Many of the songs
got assigned the natural minor scale, but the other scales were very few
compared to major and natural minor. Regardless, the addition of these
scales could help the model learn more interesting relationships it can use
in the music.

The chords used for training the models are extracted from the MIDI
music by creating a histogram of all 12 notes for each bar of each song and
putting the three most common tones of each bar together as a chord. This
method assumes that all the songs are in the 4

4 time signature, which is
probably not the case. The MIDI metadata does not contain information
about the time signature, and this is difficult to extract from just analysing
the notes. By extracting the chords from the actual music, the model uses
actual three-note combinations that occur in the music, and not only chords
from music theory.

The melodies used for training are extracted by for each song creating
piano rolls of all the tracks included in the MIDI file and finding the
track that is most likely playing the melody. This is done by finding all
the tracks in a song that are candidate melodies and selecting randomly

45

from these. The candidates are selected based on a few criteria. Firstly, if
the track metadata includes keywords related to "melody" or "lead", it is
automatically a candidate, and if there are keywords related to "bass", it is
automatically excluded. Otherwise, a track is selected as a candidate if it
plays more than 50% of the time and is mostly monophonic. If none of the
tracks match these criteria, a random polyphonic track that pays more than
50% of the time is selected instead. If that also fails, the song is removed
from the dataset. Only about 5000 songs did not get a melody track using
this method.

To get the target data for the polyphonic network, the instrument tracks,
the metadata of each track in each song is searched for keywords, and
similar instruments are added together. This way, if there are more than
one of each instrument, e.g., Piano 1 and Piano 2, they are combined into
one single track. Finally, the chords, melodies and instrument tracks are
padded with zeros so that the number of steps for each song is divisible
by the number of steps used by the model, which is 8 for the chord model
and 128 for the polyphonic model. The melodies and instruments are also
converted to binary to save space. The data is stored using a binary Pickle
format, which was found to be the quickest way to load the data.

The output of the model is also in the piano roll format, but it con-
tains several concatenated tracks. After the model outputs a timestep,
it is converted back into MIDI by splitting the tracks, creating a Pretty-
MIDI.Instrument object for each track, and using a function found in the
"Examples" module in the pretty_midi package, called piano_roll_to_midi,
to convert the piano roll back into MIDI. The tracks can be combined into
a MIDI track, and exported to a MIDI file, or played as music by a module
like PYO [1].

46

Figure 5.4: Most commonly occurring scales in the dataset.

Figure 5.5: Most commonly occurring chords in the dataset.

47

Figure 5.6: Histogram of all 128 notes over the whole dataset.

Figure 5.7: Histogram of each unique note over the whole dataset.

48

5.3 Application

In the actual implementation of the application, we used TensorFlow [27]
and Keras [7] to implement the models, and the package PYO [1] to
implement the MIDI interface, simple GUI, and sound engine. There
were other options that that were either tested or considered before
implementing the final solution. This section describes the processes and
evaluations of alternative solutions that could be used for implementing
the application.

5.3.1 Machine learning framework

Although we used TensorFlow for implementing the models, there are
other frameworks for machine learning, such as PyTorch [32], scikit-
learn [33], Torch [9] and Theano [43]. Among these, the most relevant to
this project were TensorFlow and PyTorch, largely because they are the
most popular, and thus have the largest user bases and most learning
resources. Scikit-learn is the most mathematically oriented and lowest level
ML Framework in use for Python, but it does not have built-in RNNs, so
that would have to be made manually. This would likely take a lot of
time, and because it would be programmed with Python, it would likely
be slower than using PyTorch or TensorFlow. Torch is the framework
that PyTorch is based on, with both being developed by Meta Platforms,
previously named Facebook. Theano is another ML framework for Python
and can also be used as backend for Keras. However, TensorFlow is the
default backend for Keras, and much more used.

PyTorch is newer than TensorFlow and does not yet have a community
as large, but it is increasing in popularity. Compared to Keras, PyTorch
requires coding on a lower level, making implementation more difficult
and time consuming. In this project, it would not have been feasible to
implement and test the models in the required timeframe using PyTorch.
However, as PyTorch is at a lower level than Keras, it also performs better.
It might be worth implementing the same models using PyTorch to see if
they are able to predict faster.

5.3.2 Framework for jamming application

There are many possibilities for taking live MIDI input and playing music
as output, but most music software is developed using C++. However,
there is a rising interest in music programming with Python, because of
its much more gentle learning curve. Using C++, it is possible to use
the JUCE [41] framework to make an application and a Virtual Studio
Technology (VST) plugin that can be used in Digital Audio Workstations
(DAWs) to record and create music [31]. JUCE is a C++ framework for
creating music applications. It has built-in functionality for using external
sound devices and VST plugin support, and it has a large user community
with many learning resources. Implementing the application in C++ would
require programming on a lower level and making the Keras models work

49

in C++. Initially we decided to use the JUCE framework, but we were not
able to get the Keras models working in C++. This was partially due to
a lack of documentation for the TensorFlow C++ API, and few resources
regarding the use of TensorFlow models with C++. After spending a
considerable amount of time attempting this, we ultimately decided to
implement the application using Python after all.

The main challenges with creating the application using Python were
implementing a MIDI interface and creating audio signals based on the
model outputs. We considered using the package called Pygame [38]
because it contains a MIDI interface and functionality for creating GUI
applications, but ultimately decided to use a module called PYO [1].

PYO [1] is a Python package for Digital Signal Processing (DSP) written
in C. Due to the nature of Python being an interpreted language, it is very
slow when compared to lower-level languages such as C. PYO contains
a Python interface, but the actual operations are already compiled with
C, making it fast enough to process audio signals efficiently. It contains
a built-in MIDI interface and a primitive GUI, making it a good fit for
this application. The main drawback with PYO is that the instrument
sounds must be designed using the provided functions, which might be
very difficult to someone inexperienced with synthesizers and effect chains.

We were able to implement the application with PYO relatively quickly.
The program loop itself is run using a class called Pattern, which executes
a callback function at a constant time interval. The interval is set to the
duration of a 16th note in the tempo the user is playing and calls the models
to generate music. The chord model is called once every 16 timesteps to
generate the next chord, and the polyphonic model is called every timestep
to generate the next timestep of polyphonic music. This method was tested
at a very slow tempo and seemed to work relatively well. The model
showed clear signs of adapting to what the user was playing on a MIDI
keyboard, but it was not possible to evaluate the long-term structure of the
live accompaniment. When ran at higher speeds, the program drastically
slowed down causing lag and stuttering. By testing the performance of all
parts of the process, the bottleneck was found to be the model prediction,
which was too slow, taking up to 1 second to predict a single timestep.

This occurs because Keras is a high-level API intended for rapid
development and is very slow with such a large network. This is one
of the limitations of using Keras to implement ML models. It is not
really made for being able to run predictions live. However, if a different
ML framework were used for implementing the model, it would not
have been possible to complete the implementation in the timeframe of
this project. Instead of evaluating the live model, we can evaluate the
polyphonic accompaniment generated to static melodies, providing a good
view of what issues the model might have regarding musical coherency
and structure.

The speed performance is definitely something that could be fixed in a
later iteration of the project, and we will recommend exploring alternatives
to Keras as well as testing the application using different hardware for
future work.

50

Chapter 6

Experiments and results

In this chapter the performance of the proposed model is analysed both
objectively through measured metrics, and subjectively through musical
analysis.

6.1 Objective evaluation

It can be useful to measure objective evaluation metrics to evaluate whether
the model is able to generalize. While the generated output is not supposed
to be an exact copy of already existing music, objective measurements
can tell a lot about how well the model is learning from the data. Some
of the most used metrics for evaluating model performance are accuracy,
precision, and recall. The three are closely linked together, and describe
how many predictions were correct, and what portion of predictions were
true positives and true negatives.

Using these measures, we can get a general overview of how well the
model is able to discover patterns in the data. It will not say anything about
whether the music generated by the model sounds good to human ears, but
how similar it is to the test data. In order to evaluate the model objectively,
the tests are performed on the test dataset, which has not been used at all
prior to the final testing.

Additionally, it is useful to provide some sort of baseline to compare
our model to. For this purpose, we created a more straight-forward LSTM
network that takes only a melody as input, and outputs polyphonic accom-
paniment, skipping the entire step of chord extraction and embedding.

During training, the compound model got a validation accuracy of
about 8%, and the baseline model got about 7%. This is very low, however,
as the output size of both models is 204, this is much better than using
randomized weights. In most machine learning problems, it is expected to
get a far higher accuracy than 8%, but this is quite good for these models
because of the large output sizes. Additionally, this accuracy metric is
selected automatically by Keras, and does not really reflect how accurate
the model actually is. It does, however, allow us to see when the model
starts overfitting.

51

6.1.1 Results

The models were tested using the dedicated test dataset after the model
was completed. The testing was performed by running the model for
each timestep, performing a binary threshold selection, and comparing the
result with the target output. This was done for both the compound model
and the baseline model. Using this method, the script recorded the number
of true positives, true negatives, false positives, and false negatives. These
values were used to create a confusion matrix and calculate the accuracy,
precision, and recall, which all say different things about the predictions.
The following tables contain the results of the objective testing.

True (prediction) False (prediction)
True (ground truth) 19 759 965 105 488 968

False (ground truth) 40 824 209 3 003 195 786

(a) Confusion matrix for compound model

True (prediction) False (prediction)
True (ground truth) 22 282 393 136 097 047

False (ground truth) 38 301 781 2 972 587 707

(b) Confusion matrix for baseline model

acc. prec. rec.
compound 95.4% 15.8% 32.6%

baseline 94.5% 14.1% 36.8%

(c) Results of objective evaluation.

Table 6.1: Objective evaluation results.

Because the accuracy was calculated differently than during training, we
got a much higher accuracy than the validation accuracy. Using this
method the model gets a very high accuracy, however, this is likely because
at most of the timesteps, nearly all the notes are not activated, which is also
true for the target outputs. This way, the model gets a huge number of
true negatives, which are not as interesting as the true positives, of which
there are relatively few. The results from the objective tests show that the
compound model and the baseline model perform nearly identically. This
is somewhat surprising, but because music is so diverse and complex to
model, this does not say anything about how the music actually sounds to
the human ear. Based on these results, we cannot say for certain that the
models perform differently at all in the objective test, but the tests could be
run several times to see whether the differences are statistically significant.
However, with the current setup this would take several weeks.

Figure 6.2 shows the distribution of the notes generated by both the
compound model and the baseline model. The most commonly occurring
notes are severely over-represented. This effect is more severe in the
compound model than the baseline model.

52

Figure 6.1: Distribution of the notes generated by the compound model. A
few notes are severely over-represented in the generated music, more so
than in the original data (figure 5.6).

Figure 6.2: Distribution of the notes generated by the baseline model. The
most common notes are overrepresented, but less so than in the compound
model.

53

6.1.2 Reproducibility

To be able to reproduce the results of the experiments in this thesis,
all experiments are run with the same seed and the same versions of
the packages containing randomness. Due to the nature of the CUDA
interface used by TensorFlow, it might not be possible to reproduce the
results exactly, but steps have been taken to ensure that the results are as
reproducible as possible.

6.2 Musical analysis

One method of subjectively evaluating the model’s musical performance is
through musical analysis. Originally, we had intended to perform a user
study, letting musicians and non-musicians play with the application and
give feedback through a survey, but as the interactive application does not
currently work at full speed, this was not possible. Therefore, in order to
get some subjective evaluation of the compound model’s performance, we
have performed some musical analysis on three examples generated by the
model. These examples consist of generated polyphonic accompaniment to
static melodies. The accompaniment was generated as if the melodies were
played live, but the melodies were predetermined, and could not adapt
to what the model was outputting. The samples were hand-picked after
listening to several examples of accompaniment generated by the model.
We have tried to select melodies of different styles and tonalities, in order
to see how the model performs on different playing styles. Additionally, we
generated accompaniment to all three selected melodies with the baseline
model in order to compare it subjectively with the compound model.

The music we analysed is available on Google Drive through this link:
https://drive.google.com/drive/folders/1cq6r-5Q9YFQb8jlWyza0bp9oU
MbWC0rh?usp=sharing

The MP3 files were exported using the open source music notation
software MuseScore [30], and the MIDI instrument sounds are from
that software. The input melody is played by an organ sound, and
the instruments generated by the models are played by their respective
instrument sounds. As these are the only MIDI instruments we currently
have available, we were not able to make the instruments sound more
realistic. We did not include the sheet music, as it would require a great
amount of manual editing to make it look presentable, and the reader is
not expected to be able to read sheet music. If the reader wants to view the
raw sheet music, the MIDI files included in the Google Drive folder can be
opened with MuseScore or a similar program.

In these analyses we mainly focused on the functional harmonic and
rhythmic aspects of the music, and we only used the output of the
polyphonic network. Although the chord network generates a chord
progression, this is not necessarily reflected in the outputted music, so it
makes more sense to see what chords are actually playing by looking at
the notes that are played rather than the chord generated by the chord

54

https://drive.google.com/drive/folders/1cq6r-5Q9YFQb8jlWyza0bp9oUMbWC0rh?usp=sharing
https://drive.google.com/drive/folders/1cq6r-5Q9YFQb8jlWyza0bp9oUMbWC0rh?usp=sharing

network. We analysed the music completely unrefined, just as outputted
by the model, by listening to the music and by looking at the sheet music
generated from MIDI by MuseScore. We looked at the melodies from
the model’s point of view, ignoring the original melodies’ actual scales
and time signatures. As the model does not predict dynamic features
like note velocity, onset, or length, this was not considered in the musical
analysis. The music generated is relatively static and straight-forward, and
the dynamic variances are limited to how many notes the instruments play
simultaneously.

In general, the piano and guitar were the most successful parts of the
accompaniment. In the examples analysed here, the bass track mostly
played only C and nothing else, sometimes in rhythms fitting the melody,
and the drum track only had a few hits on different drums.

Overall, we listened to generated music for about 50 different input
melodies before selecting three of the most interesting examples. The
accompaniment generated by the model was generally monotonous, often
staying on the C chord and playing the notes in that chord. This is
also supported by figure 6.2, which shows that a few of the notes are
severely overrepresented in the output accompaniment. The following
musical analysis focuses on the more interesting passages generated by
the model and is not meant to be an accurate general representation of the
accompaniment generated by the model.

6.2.1 Sample 1

The first example is a melody that seems to use the natural minor scale. The
rhythm in the melody track does not fit the 4

4 time signature, because the
original song is in 3

4 time. The main issue with this is that the rhythmic
properties of the melody might not make much sense. However, the
harmonies generated by the model for this track were very interesting.
Listening to the generated music itself, our first thought is that it sounds
somewhat chaotic and dissonant. However, it does not at all sound
randomized, and it is clear that the generated accompaniment tries to
follow the melody. The model struggles to understand that the melody is in
minor, and often plays unfitting major chords. This is likely because most
of the music the model was trained on is in major, and it has not properly
learned the differences between the scales. It is not really a large issue in
this song, as most of the places where the major chord occurs, it does not
really crash with the melody, but fits in a way that is a bit nontraditional
for western music.

In the first eight bars, it is clear that the model struggles to find the right
tones, and mostly stays on a C major chord, which does not fit well with
the melody in C minor. However, in the 14th bar, at about 0:26 in the MP3,
the model changes to a more advanced progression as the melody lands on
a long Eb. The chord sequence played by the model looks like Am, G, Fm,
G, Em and Cm. Apart from the Em chord, which does not fit in a functional
harmonics perspective, this chord progression works very well and utilizes
the leading tones of the 6th, subdominant, and dominant chords, and then

55

back to the tonic. After this, the accompaniment alternates between Cm
and C for a while, before there is a long pause in the melody, in which the
accompaniment plays a rhythm in C. When the melody comes back in, the
piano surprisingly plays the melody as well, before harmonizing in thirds.
After this, the accompaniment settles on a C major chord, and does not play
anything else. It plays some different rhythms, and the piano experiments
a bit with adding some more harmonic tones, but it gets boring after this
point.

This example is interesting because the model was able to generate at
least one very interesting chord progression, and the piano was actually
able to follow the melodic line really well for a while. However, because
the rhythm in the input melody is in a different time signature, it is difficult
to say anything about the rhythm of the accompaniment.

6.2.2 Sample 2

The next melody is in C major, and the original song is in 4
4 , so the rhythms

are correct. The notes in this melody are all in the lower register, which is
interesting because those notes were less represented in the dataset. Like
in the first example, the model seems to struggle initially, and mostly plays
the notes of a C chord. Eventually, after bar 9, about 18 seconds into the
MP3, it starts to experiment with the F chord, alternating between those
two chords following the melody. Then, in bar 17, at about 0:35 in the
MP3, it plays what looks like Dm, Em, and F, and repeats this pattern
along with the melody, and goes back to C as the melody goes up. After
this, the accompaniment continues to alter between C, F and G for a few
bars, fitting the melody very well. Then, however, the accompaniment
seemingly descends into chaos, playing more and more notes and clustered
chords that do not fit the melody. It is still possible to hear that it mostly
plays the same chords, but it adds a lot of notes that sound dissonant.

After the music has been chaotic for a while, in bar 67, at 2:10 in the
MP3, it suddenly modulates to C natural minor, playing Abm and Gm,
which fits well for the melody here, and adds some extra tension to the
music. When the melody goes back to C major, the model struggles to
follow, but eventually lands back in the original scale. After this the music
sounds chaotic and too busy for the rest of the song, because too many
notes are being played at once. The model seems to alternate between C
major and C minor, which in our opinion sounds good, but this is unusual
in western music.

6.2.3 Sample 3

In this example, the guitar plays a significant rhythmical role, and the piano
was able to create a harmony with the lead melody. Interestingly, this
melody is actually in the neighbouring scale F major, which musically is
very similar to C major. F and C major are next to each other in the circle
of fifths, and share all notes except B, which is flat in F major. Apparently,
the method used to extract scales has gotten the scale in this song wrong

56

and modulated the song to the neighbouring scale instead. The reason we
use this example is that it is interesting to see what the model does when
the neighbouring scale is used, and whether it has been able to extract the
relationships of neighbouring scales. Because the melody is in F major, the
dominant chord C is used very frequently in this song, which fits well with
the melody.

In the beginning of the song, the piano quickly begins to play along
with the melody, as well as playing some accompanying notes. The guitar
also joins, playing rhythmically over a C chord. In bar 9, at 0:16 in the
MP3, there is a pause in the melody, and the piano stops playing. Here,
the guitar plays a very interesting rhythm, making space for the incoming
melody. The melody starts playing, and the piano immediately plays a very
fitting harmony, along with playing a Gm chord and over to what can be
interpreted as an F major. The guitar continues to play rhythmically over
the same chords. After this point, it seems like there is originally a time
signature change, so the melody gets skewed. The rhythm is less prominent
after this point, but still present and able to fit the rhythm of the melody.
After this point, the accompaniment mostly alternates between the C and F
chords and gets relatively boring over time. Unlike the previous examples,
the accompaniment did not get noisy and chaotic, but continued with the
same amount of activity.

6.2.4 Baseline generated music

To see whether the compound model was better than a basic LSTM network
for generating polyphonic accompaniment, the baseline model was used to
generate music for the same samples that we already analysed. Listening to
the samples, we quickly noticed that the performance of the baseline model
is much worse than that of the compound model. The generated music
generally does not fit the input melodies at all, other than a few places
where the piano seemingly tries to play the same notes as the melody. The
bass is only present in one of the songs, and the drums do not play anything
at all. The piano and guitar play some chords and small melodies, but
nothing that really fits the input melody.

In sample 1, the piano initially tries to play along with the melody, and
does so relatively well, but after the first eight bars, it starts to play a lot of
notes that do not fit the scale at all. For the rest of the song, the piano plays
chaotically, mostly notes and chords that do not fit at all, and the rhythms
do not seem to follow the melody in any way. The guitar plays a few notes
during the song, but mostly stays quiet. The baseline model was not able
to detect that the song was in the minor key or adapt to the rhythms of the
melody in any way.

The second sample sounds a bit better, but it is still of far worse
quality than the music generated by the compound model. For the first
eight bars, the accompaniment played by the piano actually sounds quite
pleasant, alternating between the chords C, F and G, which fit the melody
really well. However, when the 9th bar arrives, the piano accompaniment
promptly discards all musical coherence, and becomes unpleasant and

57

chaotically dissonant. This continues for the rest of the piece, with some
short moments where the notes coincidentally sound well with the melody.

The third sample was not really any better than the previous two.
However, because the melody was in the neighbouring key of F major, the
model was not confident enough to generate anything more than a few
notes. The piano mostly tries to copy the input melody but plays some
other notes that do not fit the scale at all. The guitar plays a few notes
occasionally, but nearly only the same notes that are in the melody.

58

Chapter 7

Discussion

This chapter contains discussions about the results presented in the
previous chapter and some of the issues regarding the practical use of
machine learning techniques, as well as performance issues encountered
in this project.

7.1 Experiment results

The experiments show that the compound model is capable of generating
interesting and fitting passages accompanying melodies, however, the
most common notes and chords are overrepresented, making most of the
generated music somewhat monotonous. The most interesting samples,
which were analysed in the previous chapter, showed clear signs that the
model was able to make meaningful connections in the training data, which
it used to generate relatively well-sounding music for piano and guitar.

The objective results with the selected metrics did not yield different
results for the compound model and the baseline model. However, because
the differences were very evident in the subjective analysis, this indicates
that the selected metrics do not accurately represent the differences in
the models. In future iterations of the project, it might be necessary to
find other objective metrics to measure the model outputs to evaluate the
performance of the compound model versus the baseline model.

In the subjective musical analysis, the baseline model performed much
worse than the compound model. It is very clear that the model using
chord embeddings and two different networks is able to extract features
from the music better than just a basic LSTM network, which is as
expected. The addition of considering the underlying chords without
explicitly deciding what notes are associated with each chord helps the
model generate much more meaningful and coherent music. Although
the music generated by the compound model does not sound like it was
human-made, and many of the generated notes do not fit the music very
well, the experiment overall was very successful.

The bass and drum tracks generated by the model were not as
successful as the piano and guitar, with only a few notes being played
by these instruments in all the generated samples. This is likely because

59

the bass and drums are mostly monophonic, as opposed to the piano and
guitar, which plays many notes at once. Because of this, there is little data
for each output value of these instruments. The bass and drums might
have gotten much better results if they were generated by a model trained
separately from the piano and guitar. This is something that could be tested
in future work.

Listening to the first sample, which was in C natural minor, the model
seems not to have been able to fully connect the differences in scales, so it
plays many notes from the major scale even though the melody is clearly
in minor. This is likely because the majority of the songs in the dataset are
in major, while only a few songs are in minor. If the number of songs in
major was reduced or there were more songs in minor, it might have been
able to learn the differences better.

The second sample contained sections with many notes that sounded
dissonant and chaotic. This might be reduced by limiting the number of
notes that can be played simultaneously by each instrument, or maybe
having a dynamic threshold that moves according to the overall confidence
of the model.

There are a lot of adjustments that could be made to the model, such as
fine-tuning learning parameters and the threshold value, and as suggested
by Brunner et. al. [5], it would be possible to add more layers to the process,
for example a network guiding the chord generation, helping with long-
term structure on a larger scale. Similarly, it could also be possible to
add another network on the lowest level, which could for example predict
features like velocity, onset or note length, making the music more dynamic
and interesting.

One fault that was observed in both the objective and subjective
experiments, is that a few notes are severely overrepresented in the
accompaniment generated by both models. Compared to the notes in
the original dataset (figure 5.6), the generated notes (figure 6.2) are much
less diverse; just a few notes (C and G) occur much more than any other
notes. This most likely occurs because the classes (notes) are imbalanced
in the original dataset, so the model, which only tries to minimize the
loss function, finds that the loss is lowered when it predicts the most
common class more often. There are ways to mitigate this, but this was
not prioritized in this project. The overrepresentation of the most common
notes occurs in both the compound model and the baseline model, but
it looks somewhat more severe in the compound model. This likely
occurs because the compound model also contains the chord predictions,
and looking at figure 5.5, we see that the chord data is also severely
imbalanced.

7.2 Performance

The main goal of this project was to create the basis for an application that
generates live polyphonic accompaniment to a musician, and the solution
was implemented in a way that would allow the application to work in

60

practice. Due to the time constraints of the project, the main focus was
to implement and train the model to generate accompaniment to a static
melody, which was achieved. The model was implemented in such a
way that it can generate accompaniment to a live player, however, due to
performance issues it was only possible to test this at a very low tempo.
Currently, using the compound model to generate music takes about 0.5
to 1 second per timestep, which is too slow for live music. It should be
able to generate 16th notes with a tempo of at least 120 bpm, meaning
each timestep would need to take less than 0.0625 seconds. Using a more
powerful computer with access to CUDA graphics cards would probably
work, but as this was not available during the project, it was not possible
to test the live application at higher tempos.

This is mainly a limitation with Keras, as it is a high-level API, and
higher levels of abstraction often comes with a performance penalty. Keras
does a lot of the complicated transformations, conversions, and parameter
selections automatically, which is great for reducing implementation time,
but overall, usually results in a sub-optimal model. Additionally, according
to our own observations, the official Keras documentation does little to
guide users to actually use the models after they are trained, which makes
it difficult to employ ML models to a production environment. It seems
to us that TensorFlow and Keras are more geared towards creating and
testing models for research purposes rather than creating practical models
to be used in real life systems. Because machine learning is such a hot topic
of research, it makes sense that this side of the API gets more attention.
We hope that in future updates, Keras and TensorFlow focus more on the
deployment of models, as machine learning becomes a more practical and
production-oriented field.

7.3 Practical use of machine learning

As this thesis is focused much more on the practical implementation of
deep learning techniques rather than the theory and mathematics behind
them, it is natural to discuss the experience of implementing and using
deep learning for practical purposes as a software developer. Although
machine learning techniques have been explored and researched for more
than 50 years, it has mainly been theoretical and experimental. The actual
usage of machine learning techniques has not until quite recently been
feasible in real projects due to the amount of domain knowledge and
time required to implement these techniques, and the processing power
required to efficiently apply deep learning in real situations. For a software
developer without specialization in machine learning algorithms, it would
be impossible to implement a complex machine learning model in a real
project without the use of an ML framework. During the last 20 years,
increasing interest in machine learning and better access to computational
resources has seen the development of several deep learning frameworks
designed to be easy to use for non-experts in the field. They still require
some knowledge of how machine learning works and what types of models

61

fit what types of problems, but there is no need to have expert knowledge
of how deep learning works on a mathematical level.

This project and most other similar projects have used Keras, which
runs on top of TensorFlow. Keras allows developers to create and test
prototypes that would otherwise have taken very long to implement. It is
usually used with Python, a very high-level programming language, and
uses a class-based API to make implementing, adapting, and specializing
a large number of different techniques feasible for real projects. In this
project, having limited prior experience with machine learning, there was
a steep learning curve and much to take into consideration, which made
the development of the models take a lot of time. If we had chosen
any other deep learning framework, we would not have been able to
implement and test the models within the timeframe of this project. In our
opinion, this makes up for the limitation in performance speed, because
if we used a faster framework, there would likely not be any models to
test yet. Compared to PyTorch, there is much less the developer needs
to consider, and a lot of the complicated time-consuming elements are
handled automatically by Keras. However, using TensorFlow without
Keras would likely be much more complicated than using PyTorch.

One way to mitigate the performance issues caused by Keras could
be to create a different model using a technique known as Knowledge
Distillation, [17]. This technique might work well in this scenario, but it
would likely have to be two models, one for each of the networks. A
simpler model could not learn the complex relations between different
chords and the relations between the chords and notes without including
the chord step. As seen by the baseline model, excluding the chords in the
network makes the music generated by the model much less meaningful.
The chord embedding is able to extract important concepts from the music
and utilize that to generate better music.

7.4 Machine-generated music that matters

Among literature describing methods for machine generated music, there
are few that have a clear goal for what they want to achieve with machine
generated music. It seems like the majority of ML models made to
generate music have been made only to see whether it is possible, and
not whether it can be used for anything. Only a few authors such as
Benetatos et al. [2], have a clear reason for why they are creating the
model. Benetatos et al. [2] state that their system "allows a human musician
to improvise a duet counterpoint with a computer agent in real time",
which is very similar to the goal of this project. They also argue that
improvisation is a useful tool for musicians, and that classical musicians
like Bach practiced improvisation regularly. However, counterpoint duets
are a somewhat simpler form of improvisation, in which two melodies with
equal prominence are adapting to each other. In this project, the goal was
to generate musical accompaniment to one lead player.

A case study that tackles some of the issues with current ML music

62

research was written by Strum et al. [42], which refers to Wagstaff’s article
about "ML that matters" [44], showing that this is not only an issue in
machine learning for music, but also for other areas where ML is applied.
Wagstaff [44] points at common issues in machine learning research, such
as lack of follow-through, and the hyper-focus on abstract evaluation
metrics that say nothing about the real-world impact or usefulness of the
models. These issues detach much of the research from the real-world
issues they attempt to solve, and the results are rarely communicated
back to the actual problem domain. This article is 10 years old and has
been cited several hundred times, and a lot of machine learning papers
published since then have focused more on the practical impact of the
research. However, this does not seem to be the case in the domain of
machine generated music.

Strum et al. [42] used two principles derived from Wagstaff [44] to
practically measure the impact and quality of several models for generating
music, by holding a concert with music generated by these models and
getting feedback from both the musicians performing and co-composing
the music, and the audience. The feedback was used to evaluate in what
ways the models can be used efficiently and propose improvements to
the models and their use. Their results are very interesting, and this
approach seems like a good way to evaluate the efficiency of ML-based
music generators.

Initially, we had intended to perform a user study in which musicians
of different skill levels could test the application live and play interactively
with it. Because of performance issues and time constraints, this was
not possible in this project, but it could be done in the future. Based
on the experiment by Strum et al. [42], we would also suggest having
musicians play with the application regularly over time and give feedback
about how it impacts their improvisational skills. This could bring very
valuable information about how the solution works in practice, and what
improvements are required for it to be a useful tool for musicians.

7.5 Machine-generated art

The philosophical question of whether a machine can create art is very
interesting, and in our opinion worth discussing in order to understand
the purpose of artistic expression and impression (not to be confused
with the artistic movements called "expressionism" and "impressionism").
By artistic expression we mean the message that the artist is conveying
through their art, and by impression, we mean the message that the
receiver interprets. In most art forms, these do not have to be the same,
and in many cases, they are not meant to be the same either. The listener’s
life experience might be completely different from that of the artist, and
so the music is interpreted in a completely different way. This does not
mean that the listener is hearing it wrong, but that the same music gives
them a different impression. Neither does it mean that the artist expressed
themselves inaccurately, the message was just interpreted differently than

63

the artist intended.
While this is not a thesis about the philosophy about art and music, we

want to draw some attention to the topic of machine-generated art. The
term "music" has already been defined in the context of this thesis, and
according to this definition, music does not necessarily have to be art. Some
might perceive this as an issue, but it is true for music created by humans
as well. Again, this all depends on definitions, and "art" is not an easy term
to define. There have been attempts at structuring and partially answering
this conversation. In Mark Coeckelbergh’s article about this topic [8], he
splits the question of whether machines can create art into three different
parts, looking at what is meant by "creating", what is meant by "art", and
what is meant by machine-creation in the context of art, especially whether
some or all music created with the help of digital tools fall into this category.

These are all complex questions that can be interpreted many different
ways, and Coeckelbergh [8] gives examples and arguments for and against
many different viewpoints, before concluding that the question of whether
machines can create art itself is misleading, because our experiences and
culture might play a significant role in how we interpret the question,
and it assumes that there is some sort of disconnect between machine and
human, which is not necessarily true. Saying that humans, who we know
can create art, are not machines, implies that our consciousness exists on
a higher plane, and is not just a bio-chemical phenomenon. Although we
may be able to answer this question in thousands of years from now, this
is currently purely a question of belief and speculation and is viewed very
differently in different cultures and religions.

The issue with assigning the concept of art a human-independent
definition is that art is generally considered an entirely human concept
and is mainly used to describe methods of human expression. Art forms
are complex forms of communication, often used to express feelings and
concepts that are too complex to describe with words alone. Art is also
highly subjective, and what some might define as art might not be art
to someone else. Going back to the ideas of expression and impression,
these are equally important in art. A painting hated by everyone except
the artist is still art, just as an accidental paint spill on the sidewalk might
be considered art by some pedestrian. This is obviously a very broad and
open definition of art, and it is not really useful for the purpose of telling
whether something is art or not, because the answer will always be "yes"
or "maybe". However, it might help in answering the question of whether
a machine can create art.

If we consider accidental or unintentional art, this is art that was not
created with the intention of being art, but one or several persons saw it and
associated it with a specific set of feelings or experiences, and called it art.
Someone might even take a picture and post it in an online gallery or print
and hang it on their wall. The person that took the image considers this an
art piece, but there is no expression associated with it, as it was completely
unintentional. The only thing defining it as art is the impression it made on
the person that found it. In such a case, one might argue that this person is
the artist, as they are the one that found it and gave it artistic meaning. The

64

image of a paint spill at the wall in their apartment is an art piece created
by them. However, it is not the image that is considered art, it is the spill
itself. If the paint spill is the art piece, it was created by a non-artist, and
became art only after it was created. In this line of thinking, one might
say that a machine cannot intentionally create art, but a piece created by a
machine can be considered art nonetheless.

We also want to discuss the notion that not all music has to be art.
This is more apparent in other art forms such as painting, architecture,
and carpentry. Painting is used to create complex visual representations
of emotions and thoughts, but it is also used to protect buildings from the
forces of nature. The purpose of a painted wall is often purely practical.
Similarly, a building or a table can serve as purely practical objects, but
architecture and carpentry can also be artistic, sometimes even sacrificing
the usefulness of the object for the purpose of artistic expression. This
might also apply to music, but in a somewhat different way. Music is not a
tangible object with a practical purpose like buildings and furniture, but it
still has purposes other than pure artistry.

The ways in which we listen to music is often of a more practical
nature than recreational, as many people for example listen to music while
writing or working to help them focus and not get distracted by external
sounds or irrelevant thoughts. Music is also used to coordinate manual
labour that requires cooperation and synchronicity, as well as raise morale
among workers. For example in USA, there have been recorded many
such "work songs" created by slave workers in the 19th and early 20th
century, which were used to coordinate work and relieve boredom while
working [12]. While these songs have been recorded and are considered
artistic today, their original purpose was much more practical than artistic.
Another example is the sea shanties used by sailors around the same time
to coordinate complex manual tasks on board large sea vessels [46]. These
types of music have had a substantial impact on musical traditions in the
past century. Music made by slave workers formed the basis of the entire
blues genre and its branches, and sea shanties have been used in television,
video games, and social media.

Our views on art and music change throughout history, and facilitating
the expansion of our ability to communicate complex ideas through art is
important. Artificial intelligence and other digital tools might allow us to
unlock new forms of communication and cooperation in the future. Our
ability to practice, create and share music has drastically improved with
the continued use of digital tools, and the variety of music available to us is
ever increasing. AI-based tools may become very important to musicians
and other artists in the future. Like all other major changes in the history
of art, this is a natural and inevitable development, that in the future, will
most likely be looked at as an improvement for all artistic expression.

65

Chapter 8

Conclusion

8.1 Conclusions

The goal of this thesis was to answer the question "Is it possible to create a
solution for generating live, interactive musical accompaniment using machine
learning techniques, that can be used by musicians to practice improvisation
and interplay?". The project was focused on experimentation and practical
implementation, with the objective of implementing and testing a working
application, which was partially achieved.

The implemented solution is based on a two-network model designed
by Brunner et al. [5], which was adapted to create polyphonic multi-track
accompaniment to a melody rather than generate music from scratch. This
compound model uses two LSTM networks; the chord network, which
trains an embedding layer, a 1-dimensional convolution, and an LSTM
layer to generate a chord progression to the melody, and the polyphonic
network, which uses the embedding trained by the chord network, as well
as a larger LSTM layer to generate polyphonic accompaniment for four
instruments. This model was found to generate a few interesting musical
passages to static input melodies and showed signs of adapting to live
input when tested interactively at a very low tempo. However, much of the
music generated by the model became static and monotonous, which likely
occurs because a few of the classes are over-represented in the training data.

The compound model was compared with a much simpler baseline
LSTM model, which despite performing similarly in objective measure-
ments, generated much less functional and pleasant music compared to
the compound model, according to our own musical analysis.

The results of this thesis indicate that the use of LSTMs for interactive
music generation is feasible and forms the basis for further development
of an ML-based approach to generating live interactive music accompani-
ment. Such an application could be a valuable resource to musicians want-
ing to practice musical interplay and improvisational skills in a way that is
non-repetitive and intriguing.

66

8.2 Future work

This section contains ideas and suggestions for further work based on the
work presented in this thesis.

8.2.1 Speed performance

As the scope of this thesis had to be limited to a realistic amount of work,
we were not able to fully implement and test the application interactively.
Other than implementing a suitable user interface, the last challenge to
get the program to generate musical accompaniment interactively is the
model’s speed performance. Keras is a high-level API, which makes it
slower than other methods. As it uses TensorFlow backend, it is still much
faster than native Python, but there is a lot of unnecessary overhead, and
Keras is not really built for using models in Python applications. In the
future, the models could be implemented using a different, lower-level
framework, which will most likely perform better.

8.2.2 Knowledge distillation

One way of improving model performance is to use a technique known
as Knowledge Distillation (KD). This involves transferring knowledge
from a larger deep learning model to a smaller model more suitable for
deployment. As explained by Hinton et al. [17], a large model is trained to
predict well on the training dataset, while the goal of the training process
is to generalize to new data. It is not possible to train a model to generalize
directly, because that information is usually unavailable. However, it is
possible to train a smaller model to generalize similarly to a larger model,
which will give better results than training the small model on the training
data. Using this strategy it might be possible to create a simpler, distilled
model that generates musical accompaniment.

8.2.3 Qualitative studies

If the performance issues were tackled, it would be interesting to see
qualitative studies on the use of the solution for the intended purpose
of practicing improvisation and musical interplay. Computer-assisted
practice might be one of the next great steps in digital musical tools, and
this could generate feedback and insights that could be very valuable in
developing such tools.

8.2.4 Network structures

It could also be useful to experiment with different network structures, by
for example adding an extra LSTM layer in the networks and spending
more time tuning the model parameters. This could have a large impact
on the music generated by the model. As the proposed solution is largely
based on the JamBot model [5] and indicates that the two-model structure

67

with a chord generator and a polyphonic generator performs better than
the baseline LSTM for generating polyphonic accompaniment, varying
the structure by adding or removing network layers could have positive
effects. However, this would also likely make the model slower, so the
speed performance issues must be resolved first.

8.2.5 Imbalanced data

The main issue of the generated music is that the most commonly occurring
notes are severely overrepresented. This likely occurs because the classes
are imbalanced in the training data, which is a normal issue in machine
learning. There are a few common techniques that are used to tackle this
issue, such as reducing the amount of data with the most common classes,
but this could also make the music less functional, as the reason that these
classes are overrepresented is that they have a very high importance in the
music.

It could be possible to make some sort of probability selection for the
polyphonic output based on the distribution of notes in the original dataset,
as well as limit the number of notes that can be played simultaneously
by each instrument. This might make the model less monotonous while
still being able to generate functional and coherent music. The addition of
a third model looking at the larger structure of the music, as suggested
by Brunner et al. [5], might also help the chord model generate more
meaningful and varied chord progressions, leading to more diverse music.

68

Bibliography

[1] Olivier Belanger. ‘Pyo, the Python DSP Toolbox’. In: Proceedings of
the 24th ACM International Conference on Multimedia. MM ’16. Amster-
dam, The Netherlands: Association for Computing Machinery, 2016,
pp. 1214–1217. ISBN: 9781450336031. DOI: 10.1145/2964284.2973804.
URL: https://doi.org/10.1145/2964284.2973804.

[2] Christodoulos Benetatos, Joseph VanderStel and Zhiyao Duan.
‘BachDuet: A Deep Learning System for Human-Machine Counter-
point Improvisation’. In: Proceedings of the International Conference on
New Interfaces for Musical Expression. Zenodo, June 2020, pp. 635–640.
DOI: 10.5281/zenodo.4813234.

[3] Yoshua Bengio, Réjean Ducharme, Pascal Vincent and Christian
Janvin. ‘A Neural Probabilistic Language Model’. In: J. Mach. Learn.
Res. 3.null (Mar. 2003), pp. 1137–1155. ISSN: 1532-4435.

[4] Jean-Pierre Briot, Gaetan Hadjeres and Francois-David Pachet. Deep
Learning Techniques for Music Generation. 1st. Springer Publishing
Company, Incorporated, 2020. ISBN: 978-3-319-70163-9. DOI: 10.1007/
978-3-319-70163-9.

[5] Gino Brunner, Yuyi Wang, Roger Wattenhofer and Jonas Wiesen-
danger. JamBot: Music Theory Aware Chord Based Generation of Poly-
phonic Music with LSTMs. 2017. arXiv: 1711.07682 [cs.SD].

[6] John Burgoyne, Jonathan Wild and Ichiro Fujinaga. ‘An Expert
Ground Truth Set for Audio Chord Recognition and Music Analysis’.
In: Proceedings of the 12th International Society for Music Information
Retrieval Conference, ISMIR 2011 (Jan. 2011), pp. 633–638.

[7] François Chollet et al. Keras. https://keras.io. 2015.

[8] Mark Coeckelbergh. ‘Can Machines Create Art?’ In: Philosophy &
Technology 30.3 (Sept. 2017), pp. 285–303. ISSN: 2210-5441. DOI: 10 .
1007/s13347-016-0231-5. URL: https://doi.org/10.1007/s13347-016-
0231-5.

[9] R. Collobert, K. Kavukcuoglu and C. Farabet. ‘Torch7: A Matlab-like
Environment for Machine Learning’. In: BigLearn, NIPS Workshop.
2011.

[10] Florian Colombo and Wulfram Gerstner. BachProp: Learning to Com-
pose Music in Multiple Styles. 2018. arXiv: 1802.05162 [cs.SD].

69

https://doi.org/10.1145/2964284.2973804
https://doi.org/10.1145/2964284.2973804
https://doi.org/10.5281/zenodo.4813234
https://doi.org/10.1007/978-3-319-70163-9
https://doi.org/10.1007/978-3-319-70163-9
https://arxiv.org/abs/1711.07682
https://keras.io
https://doi.org/10.1007/s13347-016-0231-5
https://doi.org/10.1007/s13347-016-0231-5
https://doi.org/10.1007/s13347-016-0231-5
https://doi.org/10.1007/s13347-016-0231-5
https://arxiv.org/abs/1802.05162

[11] D. E. Comer et al. ‘Computing as a Discipline’. In: Commun. ACM
32.1 (Jan. 1989), pp. 9–23. ISSN: 0001-0782. DOI: 10.1145/63238.63239.
URL: https://doi.org/10.1145/63238.63239.

[12] The Library of Congress. Traditional work songs. URL: https ://www.
loc . gov / collections / songs - of - america / articles - and - essays /musical -
styles/traditional-and-ethnic/traditional-work-songs/.

[13] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang and Yi-Hsuan Yang.
MuseGAN: Multi-track Sequential Generative Adversarial Networks for
Symbolic Music Generation and Accompaniment. 2017. DOI: 10.48550/
ARXIV.1709.06298. URL: https://arxiv.org/abs/1709.06298.

[14] Andrei Faitas, Synne Engdahl Baumann, Torgrim Rudland Naess,
Jim Torresen and Charles Patrick Martin. ‘Generating Convincing
Harmony Parts with Simple Long Short-Term Memory Networks’.
In: Proceedings of the International Conference on New Interfaces for
Musical Expression (Porto Alegre, Brazil). Zenodo, June 2019, pp. 325–
330. DOI: 10.5281/zenodo.3672980. URL: https ://doi .org/10 .5281/
zenodo.3672980.

[15] C. Garoufis, A. Zlatintsi and P. Maragos. ‘An LSTM-Based Dynamic
Chord Progression Generation System for Interactive Music Perform-
ance’. In: ICASSP 2020 - 2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). 2020, pp. 4502–4506. DOI:
10.1109/ICASSP40776.2020.9053992.

[16] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv:
1406.2661 [stat.ML].

[17] Geoffrey Hinton, Oriol Vinyals and Jeffrey Dean. ‘Distilling the
Knowledge in a Neural Network’. In: NIPS Deep Learning and
Representation Learning Workshop. 2015. URL: http : //arxiv . org/abs/
1503.02531.

[18] Sepp Hochreiter and Jürgen Schmidhuber. ‘Long Short-term Memory’.
In: Neural computation 9 (Dec. 1997), pp. 1735–80. DOI: 10.1162/neco.
1997.9.8.1735.

[19] J. D. Hunter. ‘Matplotlib: A 2D graphics environment’. In: Computing
in Science & Engineering 9.3 (2007), pp. 90–95. DOI: 10.1109/MCSE.
2007.55.

[20] Nan Jiang, Sheng Jin, Zhiyao Duan and Changshui Zhang. ‘RL-Duet:
Online Music Accompaniment Generation Using Deep Reinforce-
ment Learning’. In: Proceedings of the AAAI Conference on Artificial In-
telligence 34.01 (Apr. 2020), pp. 710–718. DOI: 10 . 1609/aaai . v34i01 .
5413. URL: https://ojs.aaai.org/index.php/AAAI/article/view/5413.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2014. DOI: 10.48550/ARXIV.1412.6980. URL: https ://
arxiv.org/abs/1412.6980.

70

https://doi.org/10.1145/63238.63239
https://doi.org/10.1145/63238.63239
https://www.loc.gov/collections/songs-of-america/articles-and-essays/musical-styles/traditional-and-ethnic/traditional-work-songs/
https://www.loc.gov/collections/songs-of-america/articles-and-essays/musical-styles/traditional-and-ethnic/traditional-work-songs/
https://www.loc.gov/collections/songs-of-america/articles-and-essays/musical-styles/traditional-and-ethnic/traditional-work-songs/
https://doi.org/10.48550/ARXIV.1709.06298
https://doi.org/10.48550/ARXIV.1709.06298
https://arxiv.org/abs/1709.06298
https://doi.org/10.5281/zenodo.3672980
https://doi.org/10.5281/zenodo.3672980
https://doi.org/10.5281/zenodo.3672980
https://doi.org/10.1109/ICASSP40776.2020.9053992
https://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1609/aaai.v34i01.5413
https://doi.org/10.1609/aaai.v34i01.5413
https://ojs.aaai.org/index.php/AAAI/article/view/5413
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

[22] Jens Kober, J. Andrew Bagnell and Jan Peters. ‘Reinforcement
learning in robotics: A survey’. In: The International Journal of Robotics
Research 32.11 (2013), pp. 1238–1274. DOI: 10.1177/0278364913495721.
eprint: https://doi.org/10.1177/0278364913495721. URL: https://doi.
org/10.1177/0278364913495721.

[23] Steven G Laitz. The complete musician: an integrated approach to theory,
analysis, and listening. 4th ed. New York, NY: Oxford University Press,
Feb. 2016.

[24] Eui Chul Lee and Min Woo Park. ‘Music chord recommendation
of self composed melodic lines for making instrumental sound’. In:
Multimedia Tools and Applications 76.16 (Aug. 2017), pp. 17255–17271.
ISSN: 1573-7721. DOI: 10.1007/s11042-016-3984-z. URL: https://doi.
org/10.1007/s11042-016-3984-z.

[25] Hyungui Lim, Seungyeon Rhyu and Kyogu Lee. Chord Generation
from Symbolic Melody Using BLSTM Networks. 2017. DOI: 10 .48550/
ARXIV.1712.01011. URL: https://arxiv.org/abs/1712.01011.

[26] Stephen Marsland. Machine Learning: An Algorithmic Perspective,
Second Edition. 2nd. Chapman & Hall/CRC, 2014. ISBN: 1466583282.

[27] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org. 2015.
URL: https://www.tensorflow.org/.

[28] Mark McGrain. Music Notation. en. Berklee guide. Milwaukee, WI:
Hal Leonard Corporation, Aug. 1991.

[29] Merriam-Webster. ‘music’. In: Merriam-Webster.com dictionary. URL:
https://www.merriam-webster.com/dictionary/music.

[30] MuseScore. https://github.com/musescore/MuseScore.

[31] Our technologies. URL: https://www.steinberg.net/technology/.

[32] Adam Paszke et al. ‘PyTorch: An Imperative Style, High-Performance
Deep Learning Library’. In: Advances in Neural Information Processing
Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019,
pp. 8024–8035. URL: http ://papers .neurips .cc/paper/9015- pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf.

[33] F. Pedregosa et al. ‘Scikit-learn: Machine Learning in Python’. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[34] Colin Raffel. ‘Learning-Based Methods for Comparing Sequences,
with Applications to Audio-to-MIDI Alignment and Matching’. PhD
Thesis. Colombia University, 2016. DOI: 10.7916/D8N58MHV.

[35] Colin Raffel and Daniel P. W. Ellis. ‘Intuitive Analysis, Creation and
Manipulation of MIDI Data with pretty_midi’. In: 15th International
Conference on Music Information Retrieval Late Breaking and Demo Papers
(2014).

[36] F. Rosenblatt. The perceptron - A perceiving and recognizing automaton.
Tech. rep. 85-460-1. Ithaca, New York: Cornell Aeronautical Laborat-
ory, Jan. 1957. DOI: 10.1037/h0042519.

71

https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1007/s11042-016-3984-z
https://doi.org/10.1007/s11042-016-3984-z
https://doi.org/10.1007/s11042-016-3984-z
https://doi.org/10.48550/ARXIV.1712.01011
https://doi.org/10.48550/ARXIV.1712.01011
https://arxiv.org/abs/1712.01011
https://www.tensorflow.org/
https://www.merriam-webster.com/dictionary/music
https://github.com/musescore/MuseScore
https://www.steinberg.net/technology/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.7916/D8N58MHV
https://doi.org/10.1037/h0042519

[37] David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams.
‘Learning representations by back-propagating errors’. In: Nature
323.6088 (Oct. 1986), pp. 533–536. ISSN: 1476-4687. DOI: 10 . 1038 /
323533a0. URL: https://doi.org/10.1038/323533a0.

[38] Pete Shinners. PyGame. http://pygame.org/.

[39] David Silver et al. ‘A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play’. In: Science 362.6419
(2018), pp. 1140–1144. DOI: 10 . 1126 / science . aar6404. eprint: https :
/ /www . science . org /doi / pdf / 10 . 1126/ science . aar6404. URL: https :
//www.science.org/doi/abs/10.1126/science.aar6404.

[40] Dave Smith and Chet Wood. ‘The ’USI’, or Universal Synthesizer
Interface’. In: Journal of the Audio Engineering Society (Oct. 1981).

[41] Raw Material Software. JUCE source code. https://github.com/juce-
framework/JUCE.

[42] Bob L. Sturm et al. ‘Machine learning research that matters for music
creation: A case study’. In: Journal of New Music Research 48.1 (2019),
pp. 36–55. DOI: 10.1080/09298215.2018.1515233.

[43] Theano Development Team. ‘Theano: A Python framework for
fast computation of mathematical expressions’. In: arXiv e-prints
abs/1605.02688 (May 2016). URL: http://arxiv.org/abs/1605.02688.

[44] Kiri Wagstaff. ‘Machine learning that matters’. In: Proceedings of the
Twenty-Ninth International Conference on Machine Learning (ICML).
ArXiv, June 2012, pp. 529–536. DOI: 10.48550/arXiv.1206.4656.

[45] Wikipedia contributors. Circle of fifths — Wikipedia, The Free Encyclope-
dia. [Online; accessed 05-May-2022]. 2022. URL: https://en.wikipedia.
org/wiki/Circle_of_fifths.

[46] Stephen Winick. A Deep Dive Into Sea Shanties. Jan. 2021. URL: https:
//blogs.loc.gov/folklife/2021/01/a-deep-dive-into-sea-shanties/.

[47] Aston Zhang, Zachary C. Lipton, Mu Li and Alexander J. Smola. Dive
into Deep Learning. https://d2l.ai. 2020.

72

https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
http://pygame.org/
https://doi.org/10.1126/science.aar6404
https://www.science.org/doi/pdf/10.1126/science.aar6404
https://www.science.org/doi/pdf/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://github.com/juce-framework/JUCE
https://github.com/juce-framework/JUCE
https://doi.org/10.1080/09298215.2018.1515233
http://arxiv.org/abs/1605.02688
https://doi.org/10.48550/arXiv.1206.4656
https://en.wikipedia.org/wiki/Circle_of_fifths
https://en.wikipedia.org/wiki/Circle_of_fifths
https://blogs.loc.gov/folklife/2021/01/a-deep-dive-into-sea-shanties/
https://blogs.loc.gov/folklife/2021/01/a-deep-dive-into-sea-shanties/
https://d2l.ai

	Introduction
	Motivation
	Use case
	Research question

	Earlier work
	Research method
	Thesis outline

	Background
	Machine learning
	Supervised learning
	Regression
	Classification
	Challenges with supervised techniques
	Neural networks

	Reinforcement learning
	Machine learning tools
	TensorFlow

	Data formats
	MIDI
	Chord sequences
	Piano rolls

	Validation techniques
	Objective methods
	Subjective methods

	Music theory
	Western music theory
	Musical terms
	Music theory in this thesis

	Design
	Overview
	Model design
	Baseline model

	Data
	Key normalization
	Chord extraction
	Melody extraction
	Accompaniment extraction

	Application
	Model creation application
	Jamming application
	Implementation

	Implementation
	Model
	Model tuning

	Data
	Data preparation

	Application
	Machine learning framework
	Framework for jamming application

	Experiments and results
	Objective evaluation
	Results
	Reproducibility

	Musical analysis
	Sample 1
	Sample 2
	Sample 3
	Baseline generated music

	Discussion
	Experiment results
	Performance
	Practical use of machine learning
	Machine-generated music that matters
	Machine-generated art

	Conclusion
	Conclusions
	Future work
	Speed performance
	Knowledge distillation
	Qualitative studies
	Network structures
	Imbalanced data

