
Generating labelled network
datasets of APT with the MITRE

CALDERA framework

Julie Lidahl Gjerstad

Thesis submitted for the degree of
Master in Informatics: Information Security

60 credits

Institute for Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2022

Generating labelled
network datasets of APT

with the MITRE CALDERA
framework

Julie Lidahl Gjerstad

© 2022 Julie Lidahl Gjerstad

Generating labelled network datasets of APT with the MITRE CALDERA
framework

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract
Threats in the cyber domain are ever-evolving, and threat actors continue
to refine their techniques and expand their reach. These increasingly so-
phisticated attacks are performed by well-funded and well-organised APT
groups, presenting a challenge for security professionals. To improve the
defence mechanisms to detect these complex threats, the cybersecurity com-
munity requires sufficient data and labelled datasets. However, the number
of publicly available APT datasets is limited, leaving defenders to rely on
outdated datasets that do not reflect the complicated and dynamic threats
we face today.

MITRE ATT&CK is a framework that serves as an industry knowledge
base for characterising malware, attacker campaigns, and how adversaries
engage with systems during an operation. MITRE CALDERA is a tool de-
veloped for professionals to test the security of their systems, containing
tactics and techniques defined in ATT&CK. CALDERA focus on simulating
post-compromise attacks that organisations use to train their defences.

This thesis explores one approach to labelling network datasets. CALDERA
was used to emulate one specific APT group in a controlled and targeted
experiment. The experiment generated network traffic that included a va-
riety of benign, background and malicious characteristics. The labelling
approach is called LabelGen, a script to generate network datasets with
ground truth labels on attack technique level, mapped to MITRE ATT&CK.
Final results and evaluation indicated that the datasets had labels corre-
sponding to relevant attacks. The approach used with LabelGen may be
suitable and adaptable to additional CALDERA simulations. This thesis
contributes to cybersecurity detection, as LabelGen generates labelled and
granular APT network datasets.

Table of contents

List of Figures iv

List of Listings v

1 Introduction 1
1.1 Motivation . 1

1.1.1 Intrusion Detection System 2
1.2 Research question . 4
1.3 Methodology . 4
1.4 Contributions . 5
1.5 Chapter outline . 6

2 MITRE ATT&CK and CALDERA 7
2.1 The MITRE Corporation . 7
2.2 MITRE ATT&CK™ . 8

2.2.1 Background and history 9
2.2.2 Use Cases . 10
2.2.3 The ATT&CK Model . 10

2.3 Advanced Persistent Threats 12
2.3.1 Adversary emulation plans 15

2.4 MITRE CALDERA™ . 16
2.4.1 Architecture and example usage 17
2.4.2 CALDERA terminology 19

3 Background 21
3.1 Simulation . 21
3.2 Capturing network traffic . 21
3.3 Labelling . 22
3.4 Challenges in labelling datasets 22
3.5 Current solutions . 24

3.5.1 APT detection . 27
3.6 Summary and discussion . 27

4 Approach and implementation 28
4.1 General plan . 28
4.2 Network architecture . 29
4.3 APT29 . 31

4.3.1 APT29 EMU plan . 32
4.4 DetectionLab . 35

4.5 GHOSTS . 37
4.6 Approach . 38
4.7 Implementation . 39

4.7.1 LabelGen: implementation of labelling 41
4.8 Summary and discussion . 45

5 Results and evaluation 47
5.1 The datasets . 47
5.2 Manual inspection . 50

5.2.1 Packet statistics . 52
5.3 Evaluating LabelGen . 55

5.3.1 Experimenting with a different attack 55
5.4 Machine Learning . 58
5.5 Proof-of-concept . 60

5.5.1 Implementation of SVM 61
5.6 Summary and discussion . 63

6 Discussion and related work 65
6.1 CALDERA as a framework . 65

6.1.1 Alternative tools for emulation 68
6.2 Labelling network traffic . 68
6.3 LabelGen . 69
6.4 Use of containers/DetGen . 70
6.5 GHOSTS and its alternatives 71
6.6 The environment . 72

7 Conclusion and future work 73
7.1 Summary of results and findings 73
7.2 Future work . 74

List of Figures

1.1 Overview of the whole thesis work. 5

2.1 Part of ATT&CK Matrix for Enterprise, v10.1. 11
2.2 Expanded the tactic "Initial Access", ATT&CK v10.1. 12
2.3 APT attack steps [2]. 13
2.4 Adversary Emulation Plan for APT29 in CALDERA. 17
2.5 Visualisation of the CALDERA infrastructure [5]. 18

3.1 Injection Timing, a widely deployed labelling strategy [62]. . . 25
3.2 Human-guided labelling [62]. 26
3.3 Comparison of current APT anomaly detection methods [2]. . 27

4.1 Phases of the work in this thesis. 28
4.2 Simplified representation of the experiment environment. . . 29
4.3 Architecture of the experiment setup. 30
4.4 Operation flow of APT29 EMU plan [7]. 33
4.5 DetectionLab overview [81]. 36
4.6 Overall workflow of the approach in this thesis. 38
4.7 Responsibilities between the VMs during implementation. . . 39
4.8 CALDERA operation, attack steps 42-48. 40
4.9 Order of implementation. 42

5.1 A snippet of the dataset in CSV format. 49
5.2 Packets related to ATT&CK technique T1036.005. 51
5.3 Confirmed beaconing packet prior to attack step T1036.001. . 51
5.4 Number of packets for each technique 54
5.5 Custom adversary profile created in CALDERA. 56
5.6 Custom adversary plan running in CALDERA. 56
5.7 Corresponding timestamps in the new experiment. 57
5.8 The workflow of ML with feature engineering [140] 60
5.9 Confusion matrix with the new dataset. 63

6.1 APT29 Emulation plan: planned and executed steps. 67

iv

List of Listings

1 processDeclareLabels.py . 43
2 findCaldera.py . 44
3 labelPackets.sh . 45
4 One packet shown in JSON format. 49

v

Acknowledgements
Throughout the writing of this thesis, I received a great lot of support and
guidance. To begin, I want to thank Gudmund Grov, Espen Hammer Kjell-
stadli and Markus Leira Asprusten, my three external supervisors at FFI.
Over the last year and a half working on this master project, they have
demonstrated commitment through close follow-up, a positive mindset and
advice. Furthermore, they have provided me with guidance, motivation and
help to find the tools I needed to choose the right direction and complete this
master thesis.

I would also like to thank Audun Jøsang, my internal supervisor at Uni-
versity of Oslo, for his constructive and honest feedback and words of en-
couragement.

Next, I want to express my gratitude to Fikret Kadiric, my study colleague
working on a similar thesis, for his help and companionship. I value our col-
laboration, especially over the last year. Sharing experiences, knowledge,
approaches and everyday life has been helpful.

Monika and Fredrik, the people closest to me, deserve special recogni-
tion for their love, care and support. I would not have been able to complete
this project, let alone this education, without them.

Julie Lidahl Gjerstad,
May 2022

vi

Chapter 1

Introduction

1.1 Motivation
Cyber threats have gradually shifted their focus from primarily targeting
nation-states, and their connected entities, more towards also including the
private and corporate sectors [2]. These new types of attacks are complex
and are performed by well-funded and organised criminal groups, entitled
Advanced Persistent Threats (APT) [114]. APT groups operate stealthily
and adjust their cyberattacks precisely for each target [114]. Well-funded
adversaries have the resources to develop highly advanced tools and de-
ploy techniques to remain undetected within the target system for extended
periods [2]. Standard defence mechanisms, such as signature-based anti-
virus software and intrusion detection (IDS) and prevention systems (IPS),
rarely succeed in detecting these APT attacks [2]. Information security re-
searchers and organisations focus on implementing machine learning (ML)
in their efforts to detect advanced threat actors [90]. A successful threat de-
tection system should recognise contextual and anomalous behaviour within
large volumes of data. ML algorithms rely heavily on datasets to identify
intricate and sophisticated threats like APT [90]. To train models, the al-
gorithms require realistic data, and many of them require labelled data.
However, there are limited numbers of publicly available, labelled datasets.
Consequently, security researchers frequently rely on the few older ones
that are accessible [27]. These datasets are often generated in virtualised
and isolated environments for specific test cases [111][62]. While this con-
figuration allows for proper control of the gathered data and the network
itself, it hides many of the essential aspects that are necessary to correctly
differentiate between normal and malicious behaviour [2][62].

Clausen et al. [26] raised questions concerning modern datasets, pointing
to the lack of four main characteristics:

• Lack of variance in benign traffic, where the range of sub-activities in
each protocol is limited, leaving uncertainty about whether it repre-
sents real-world usage. Lack of variation in individual protocols leads
to homogeneity at the packet exchange and network flow levels.

1

Chapter 1. Introduction 2

• Lack of ground truth that noticeably defines the malicious behaviour,
preferably with more granular labelling than merely ’malicious’ and
’benign’. Ground truth labels for network traffic are difficult to come
by. This statement is logical, given how difficult - if not impossible - it
is to separate traffic from different origins retrospectively, e.g. back-
ground processes like software updates, authentication traffic and ad-
vertising features.

• Static design, in which the dataset only contains data that is repre-
sentative of the system when it was created, is unavoidable. All cur-
rently available NIDS datasets are created with a fixed testbed of host
machines that contain specific vulnerabilities for the selected attacks.

• Limited size, where the datasets typically contain 5-10 hosts and short
capture periods of little more than 5-6 weeks.

Another challenge with labelling datasets originates from the increasing
use of encrypted traffic. While the cryptographic protocol TLS, or Trans-
port Layer Security, protects the majority of internet traffic, it also protects
malware authors in hiding malicious network connections [51]. Similarly,
attackers are increasingly adopting IP Flux, a technology in which IP ad-
dresses continuously change the mapping to domain names to circumvent
IP blacklisting and monitoring [108]. The examples demonstrate the im-
portance of increasing the capabilities of network security monitoring de-
vices for detecting malicious content hidden in encrypted network traffic
and malware [51].

1.1.1 Intrusion Detection System
Intrusions on a computer system or network are often detected using an
Intrusion Detection System, abbreviated IDS. This device or software au-
tomatically monitors and analyses behaviour and traffic and generates re-
ports if it detects any suspicious activity [79]. IDS is divided into three
major categories:

• Signature-based Detection (SD) compare patterns or strings to known
attacks and reports if detects any patterns that matches entries in
its signature database. This method relies on knowledge assembled
during real and specific attacks, and system vulnerabilities [79].

• Anomaly-based Detection (AD) focuses on identifying activities that
deviate from known or expected behaviour, e.g. network connections,
host or user interactions and behaviour on endpoints. AD relies heav-
ily on high-quality and realistic data to increase its detection capabil-
ities [6]. AD aims to reduce the increasing number of zero-day attacks
[27].

• Stateful Protocol Analysis (SPA) represents an IDS that can recognise
and trace protocol states such as request-response pairing. SPA might
appear similar to AD, but it relies on vendor-developed generic profiles

Chapter 1. Introduction 3

for specific protocols, whereas AD uses pre-loaded network or host-
specific profiles [79].

Both SD and AD have advantages and disadvantages. SD recognise intru-
sions by looking for pre-defined attack patterns and signatures. Accord-
ingly, attackers may encrypt or modify their malware to avoid detection
[79]. SD methods are therefore unable to detect new or tailored attacks,
leading AD to be a better option [84] [72]. AD builds on the assumption
that an attack on a computer system will be noticeably different from reg-
ular system activity, and an intruder will exhibit a pattern of behaviour
different from that of the typical user [15, 117]. Therefore, AD can identify
unknown attacks [79]. However, it is challenging to identify normal user
behaviour, in which AD has the consequence of a higher percentage of false
positives (FP). How to define normal user behaviour in order to distinguish
between benign and malicious activity is a central question within anomaly
detection [15].

In addition to the categories mentioned in the above list, Hybrid IDS em-
ploys multiple methods at the same time, which allows for a more compre-
hensive and accurate detection [79].

We also differentiate IDS based on whether they detect intrusions at the
network or host level. i.e. their scope. A Network Intrusion Detection Sys-
tem (NIDS) captures and analyses network traffic, and a Host-Based In-
trusion Detection System (HIDS) monitor important operating system files
[79]..

Because of the challenges presented, according to [26], there only exist four
publicly available structured datasets for NIDS that incorporate real-world
traffic and attacks [26]. Guerra et al. [62] concluded that all current la-
belling approaches have fundamental flaws in terms of quality, volume and
speed of the generated dataset [62]. Clausen et al. [26] mentioned similar
difficulties .

This thesis will present my approach to creating a labelled dataset to
address the difficulties presented. A controlled experiment was conducted
to generate malicious, benign and background network traffic, directing to
the issues regarding dataset variation. During the experiment, the net-
work traffic was captured in a logfile. A script, LabelGen, was developed
to produce a dataset containing ground truth labels from the network log-
file. The malicious network traffic is labelled according to specific attacks,
providing granularity. LabelGen is my solution to the problem of modern
datasets having insufficiently detailed labels, and the dataset was created
for NIDS using for anomaly detection. This thesis will focus on LabelGen
and the methods I used to label the network logfile and an evaluation of the
labelling to determine its efficiency.

Chapter 1. Introduction 4

1.2 Research question
By conducting a targeted, controlled experiment, the work in this thesis
builds on experimental research [54]. The following research question will
act as a foundation for the work:

Can MITRE CALDERA be used to generate a dataset of APT behaviour
with fine-grained labels that can identify different stages of the attack?

The Hypothesis (H) is that MITRE CALDERA can generate APT network
traffic that can be labelled at a fine-grained level to distinguish attack
stages. The following objectives will further guide the research, describ-
ing what this work expects to accomplish:

1. To be able separate and label APT traffic and benign traffic at an ap-
propriate level of details

2. To distinguish between the respective APT tactics and techniques in
the label to capture the different stages of the attack

3. To combine and capture APT network traffic from Caldera with real-
istic benign traffic in a way that allows for training machine learning-
based detection capabilities

1.3 Methodology
Figure 1.1 illustrates the methodology and structure of the work in this the-
sis. The work can be separated into three different phases. The experiment
phase refers to the targeted, controlled experiment that was conducted,
which builds on theory on experimental research [54]. All variables in the
experiment were supervised and controlled, i.e. the malware was isolated
not to damage real environments, and the hosts on the network were moni-
tored and configured adequately to a confined network with minimal noise.
Additionally, following the phases of the attacks and stopping and ending
the experiment at chosen times are standard practices in experimental re-
search [54]. The red boxes indicate activities related to the attacks that are
simulated, the green refers to the benign activity. A camera in the top of the
experiment phase indicate that the activities in this phase was recorded or
captured. It shows the main steps of the experiment, with start and stop
points for the attacks.

The result of the experiment was a network logfile, which was used in
the labelling in LabelGen, in the processing phase. LabelGen will be de-
scribed in detail later. LabelGen produces three files; one labelled logfile
and two datasets. The labelled logfile is inspected manually for evaluating
LabelGen. The dataset in CSV format, as indicated in Figure 1.1, is used in
an evaluation in a proof-of-concept ML. This process is also done to evaluate
LabelGen and the usability of the datasets that LabelGen created.

Chapter 1. Introduction 5

Figure 1.1: Overview of the whole thesis work.

1.4 Contributions
The main contributions of this thesis are:

• LabelGen1, the script that can label network packets in a network
logfile and produce datasets is described,

• an APT dataset is generated,

• the generated dataset has ground truth labels,

• the malicious labels are on technique level, mapping to specific at-
tacks from MITRE ATT&CK,

• the labelled network logfile is described,

• an evaluation of the CALDERA framework is given,

• an ML model is trained for proof-of-concept validation of LabelGen,

• different methodologies for labelling are discussed,

• automatically labels a network logfile with attack techniques from the
framework CALDERA.

1https://github.com/julielgjerstad/LabelGen

https://github.com/julielgjerstad/LabelGen

Chapter 1. Introduction 6

LabelGen contributes to the field of cybersecurity detection research. La-
belling a network logfile (.pcap) opens up many possibilities for future ap-
plications. Because the logfile is in such a "raw" format, it may be used
for generating flow statistics or be exported to other file types and formats
as desired. During initial research, I did not encounter any work that dis-
cussed labelled logfiles or how the logfile is labelled in LabelGen.

This thesis addresses one of the challenges described in the section 1.1,
in which researchers frequently employ outdated datasets due to the lack
of updated, publicly available ones. CALDERA was utilised for this project,
and it is regularly updated. With the addition of new functionality to
CALDERA, it might be used to generate network traffic for LabelGen. As a
result, LabelGen enables more frequent dataset creation.

1.5 Chapter outline
The rest of the thesis is structured as follows:

Chapter 2: Mitre ATT&CK and CALDERA introduces the MITRE Cor-
poration and the CALDERA framework, as well as Advanced Persistent
Threats (APT) and Adversary Emulation (EMU) plans.

Chapter 3: Simulation, capturing and labelling network traffic presents
simulation, network traffic capture, and labelling as fundamental concepts.
Furthermore, it provides a more detailed description of the challenges pre-
sented in the introduction, as well as the current solutions researchers have
used to address issues.

Chapter 4: Approach and implementation covers the experiment that
was conducted and the approach to labelling. The tools, frameworks, and
concepts are first introduced to provide details for the rest of the chapter.
The subsequent section describes the approach to labelling, followed by the
actual labelling implementation, particularly LabelGen.

Chapter 5: Results and evaluation review the results of the implemen-
tation. LabelGen is evaluated by inspecting the labelled logfile manually
and training a proof-of-concept ML model on one of the datasets. LabelGen
will also attempt to label a second, distinct logfile to determine whether it
is generalisable or highly customised.

Chapter 6: Discussion and related work reflects on the labelling ap-
proach. In the chapter, LabelGen is compared to other methods of labelling.
Additionally, the chapter will review and discuss the experiment, alterna-
tive tools and experiment environment.

Chapter 7: Conclusion and future work summarises the results and
findings, discusses the research question and makes recommendations for
future work.

Chapter 2

MITRE ATT&CK and
CALDERA

This chapter will present a more detailed context for this thesis, beginning
with the MITRE Corporation. MITRE developed the CALDERA frame-
work used in this thesis. The following section covers Advanced Persistent
Threats (APT), which provides background information for CALDERA. Fi-
nally, the section describing CALDERA will detail its purpose, architecture
and usage. This chapter as a whole will address the matters in sufficient
depth to lay the groundwork for the subsequent chapters.

2.1 The MITRE Corporation
The MITRE Corporation hereafter referred to as MITRE, is a not-for-profit
organisation founded in 1958. Initially, the company provided engineer-
ing, and technical guidance to the US federal government [44]. Today, they
work in the public interest across federal, state and local governments in
the United States and industry and academia worldwide. MITRE focuses
on innovative ideas in a variety of fields, including Artificial Intelligence
(AI), quantum information science, cyber threat intelligence, and cyber re-
silience [39].

MITRE works in the public interest, meaning that they have no owners
or stakeholders nor compete with the industry. This position serves as the
foundation for their objectivity, allowing them to be impartial due to the
lack of commercial interests [39].

MITRE’s sole focus is to operate federally funded research and develop-
ment centers (FFRDCs), unique organisations that can assist the United
States government. They contribute with scientific research and analysis,
development and acquisition, along with systems engineering and integra-
tion [41]. MITRE operates multiple FFRDCs, which enables them to share
knowledge across the corporation [39]. Since 2014, MITRE has operated
the National Cybersecurity FFRDC (NFC), which is sponsored by the Na-
tional Institute of Standards and Technology (NIST) [43]. NFC is Amer-

7

Chapter 2. MITRE ATT&CK and CALDERA 8

ica’s first and only FFRDC dedicated to cybersecurity and the advancement
of secure technologies. MITRE seeks to strengthen and expand collabora-
tion between the public and private sectors by designing and implementing
practical cybersecurity solutions by implementing NIST, and other indus-
try standards and frameworks [39]. Through targeted solutions, they work
to improve the organisations’ ability to identify, protect, detect, respond to,
and recover from cyber threats and vulnerabilities [39].

The organisation maintains the CVE Program (The Common Vulnerabil-
ity and Exposures). CVE is a knowledge base that provides a reference
method for publicly known information security vulnerabilities, and expo-
sures [131]. The goal of CVE is to identify, define, and catalogue publicly
disclosed vulnerabilities by publishing CVE Records. This record allows for
communication of consistent descriptions of vulnerabilities to assure that
cybersecurity and information technology professionals are discussing the
same issue and to coordinate efforts to prioritise and address the vulnera-
bilities [31].

MITRE also operates the CWE (Common Weakness Enumeration) List,
a community-created list of software weaknesses and vulnerabilities [129].
CWE seeks to minimise software and hardware vulnerabilities in products
before they are delivered, by educating developers, architects and design-
ers on how to eliminate the most common weaknesses [32]. The system
contains a collection of weaknesses that could make systems, networks or
hardware vulnerable to attacks, i.e. flaws, faults, bugs or errors in imple-
mentation, code, design or architecture. The security community develops
CWE, and its associated classification taxonomy serves as a common lan-
guage for describing CWE Records.

2.2 MITRE ATT&CK™
It is essential to obtain insight into how attackers innovate their tactics,
techniques and procedures (TTPs) in their attempts to circumvent estab-
lished defences. The difficulty of this process has, however, increased [2,
114]. Various obfuscation techniques, such as polymorphism and metamor-
phism, are frequently employed in order to avoid detection. Both strategies
entail changing the logic of the code, with the former causing it to act differ-
ently in certain situations [101] and the last rewrites and outputs a logically
equivalent version of itself during runtime [132]. The purpose is to pre-
vent detection by traditional anti-virus software and not to be identified by
manual and automated code inspections, and analysis [70]. Collaboration
is crucial to the information security community, and it appeared neces-
sary to develop a common taxonomy systematically categorising adversary
behaviour. It would enable researchers and analysts to share experiences,
document and improve the detection of malicious activity [116]. MITRE
developed ATT&CK in response to the need to implement a structured cat-
egorisation and to model adversary behaviour using a common knowledge
base.

Chapter 2. MITRE ATT&CK and CALDERA 9

2.2.1 Background and history
In 2010, MITRE started the FMX (Fort Meade eXperiment) research project,
which focuses on conducting structured and systematic adversary emula-
tion exercises inside a “living lab”. MITRE began analysing data sources
and analytic procedures within FMX in order to detect Advanced Persis-
tent Threats (APT). They studied whether APT could be detected faster us-
ing a "assume breach" mentality, which assumes the adversary is already
present within the system [116]. The purpose of FMX was to investigate the
use of endpoint telemetry data and analytics to improve post-compromise
detection of adversaries operating in an enterprise network. The MITRE
ATT&CK framework served as the foundation for testing the effect of sen-
sors and analytics under FMX [116]. ATT&CK acted as the standard lan-
guage for both the offence and the defence to improve over time [34]. Cat-
egorising observed behaviour across relevant real-world adversary groups
was proven to be effective. Additionally, the information was valuable in
conducting controlled exercises to emulate adversaries within the FMX en-
vironment.

In September 2013, the first ATT&CK model was created. It primarily
targeted Windows Enterprise environments. The framework was used to
document commonly used tactics, techniques and procedures (TTPs) by dif-
ferent APT groups [34]. ATT&CK kept adjusting through internal research
and development until its release in May 2015. The framework comprised
96 techniques organised under nine tactics at the time [116].

With the support and contributions of the cybersecurity community, ATT&CK
has grown tremendously. In 2017, the framework was updated to include
macOS and Linux platforms, and it became known as ATT&CK for Enter-
prise. It covers the techniques implemented throughout the attack life cycle
on enterprise platforms [116].

In 2017, MITRE released ATT&CK for Mobile, which focus on mobile do-
mains [116]. Attackers use the tactics and techniques described in the ma-
trix to gain access to the device or network-based effects on Android and
iOS systems [42]. Because of their varied targets, we now distinguish be-
tween the two sections ATT&CK for Enterprise and ATT&CK for Mobile.

In addition to operating system (OS) domains, ATT&CK for Enterprise
now contains matrices for cloud environments, and container technologies
[40]. Some cloud environments are Amazon Web Services (AWS), Microsoft
Azure and Microsoft Office 365. Malware and network access are common
objectives with OS environments; cloud attacks focus on leveraging native
features in order to access the target victim’s account, elevate privileges,
move laterally, and exfiltrate data [85].

In 2020, ATT&CK for ICS was published, documenting adversary behaviour
against Industrial Control Systems (ICS) [116]. There was a need to anal-
yse effectively, understand, collect and share knowledge about adversary
behaviour in ICS environments [1]. Both ATT&CK for ICS and ATT&CK

Chapter 2. MITRE ATT&CK and CALDERA 10

for Mobile are separate matrices available on the ATT&CK web page [36].

ATT&CK has a mapping of groups, which tracks known adversary groups,
more specifically APTs. Information on these groups are gathered from in-
telligence reports from public and private organisations [116]. Information
about each group can be accessed, including various names used to describe
the group in intelligence reports, as well as observed campaigns and tech-
niques [47]. The mapping of groups and techniques are primarily focused
on APT, but it may also include other advanced groups such as financially
motivated actors [116].

MITRE updates the ATT&CK matrix twice a year, and the most recent
version at the time of writing is v11, released on April 25th, 2022. This
version added new techniques, groups and software for Enterprise, Mobile
and ATT&CK matrices. ATT&CK for Enterprise was extended with 12 new
techniques, examples including Wordlist scanning, DHCP spoofing and de-
bugger evasion [47].

2.2.2 Use Cases
ATT&CK may be a resource when developing threat models, and method-
ologies in the private sector, government, cybersecurity and service com-
munity [35]. ATT&CK describes how attackers can penetrate networks
and move laterally, elevate privileges and circumvent defences from the
perspective of an adversary [38].

Applications for ATT&CK include assisting cyber defenders in develop-
ing analytics that detect adversary techniques or providing analysts and
red-team groups with a common language throughout their respective ar-
eas. ATT&CK allows analysts to more efficiently structure, compare and
analyse threat intelligence. At the same time, red-team groups benefit from
having a shared vocabulary as a foundation for emulating specific threats
and planning operations. ATT&CK can also be used to assess the capabil-
ities of an organisation and drive engineering decisions, e.g. what tools to
use or what kind of logging to implement [35].

2.2.3 The ATT&CK Model
The description of actions that adversaries can take to accomplish objec-
tives, as expressed in a behavioural model, is the foundation of ATT&CK
[116]. It is made up by the following components:

• Tactics, denoting short-term, tactical adversary goals during an at-
tack. All tactics have an identifier on form TAXXXX, e.g. TA0002.

• Techniques, describing the means of how adversaries achieve tac-
tical goals. All techniques have an identifier on form TXXXX, e.g.
T1006.

• Sub-techniques, describing in more detail the specific means in which
adversaries achieve tactical goals. All sub-techniques have an identi-
fier on the form TXXXX.YYY, e.g. T1564.001.

Chapter 2. MITRE ATT&CK and CALDERA 11

Figure 2.1: Part of ATT&CK Matrix for Enterprise, v10.1.

• Documented adversary usage of techniques, mapping to which adver-
sary groups are known to deploy the techniques, platforms and other
metadata.

The ATT&CK Matrix shown in Figure 2.1 depicts the relationship between
these components. The figure displays a section of the Enterprise Matrix
that details six tactics and 64 techniques that an adversary might perform
to compromise and operate within an enterprise network. As previously
mentioned, this matrix is applicable for the platforms Windows, macOS,
Linux, AWS (Amazon Web Services), Microsoft Azure and Office 365, to
name a few.

The ATT&CK version shown in Figure 2.1 is v10.01, captured March
20th, 20221. The figure provides an overview of the TTPs, with tactics
represented as the heading above each column, their respective techniques
in columns below, and a grey space to the right of the column cell where
sub-techniques are available. In total, ATT&CK contains 222 techniques
grouped into 14 different tactics.

Figure 2.2 show eight of the first techniques for the tactic Initial Access
(TA0001). The tactic contains the techniques Drive-by Compromise, Exploit
Public-Facing Application, External Remote Services, Hardware Additions,

1Unless otherwise noted, all matrix images are from this version.

Chapter 2. MITRE ATT&CK and CALDERA 12

Figure 2.2: Expanded the tactic "Initial Access", ATT&CK v10.1.

Phishing, Replication Through Removable Media, Supply Chain Compro-
mise and Trusted Relationship. There are no sub-techniques in the first four
techniques. The Phishing technique (T1566) contains three sub-techniques,
each of which details various phishing methods that adversaries are known
to employ. For example, attackers have performed phishing attacks via
spearphishing attachments, links or spearphishing via Service to gain Ini-
tial Access to an enterprise system.

2.3 Advanced Persistent Threats
We are faced with new attacks and malware daily, and the trend has seen
to shift more towards a stealthier behaviour over the last decades [2]. Slow
and low movements characterise this new class of attacks, which usually
has the goal of exfiltrating or stealing target data while remaining unde-
tected [2]. This class has been given the term Advanced Persistent Threat,
shortened APT. These are organised threat groups and often well-funded by
organisations or national governments that have a goal of attaining infor-
mation about target organisations or governments [2]. National Institute
of Standards and Technology (NIST) describes APT as the following:

"An adversary with sophisticated levels of expertise and signifi-
cant resources, allowing it through the use of multiple different
attack vectors (e.g., cyber, physical, and deception) to generate
opportunities to achieve its objectives, which are typically to es-
tablish and extend footholds within the information technology

Chapter 2. MITRE ATT&CK and CALDERA 13

infrastructure of organisations for purposes of continually exfil-
trating information and/or to undermine or impede critical as-
pects of a mission, program, or organisation, or place itself in a
position to do so in the future; moreover, the advanced persistent
threat pursues its objectives repeatedly over an extended period
of time, adapting to a defender’s efforts to resist it, and with de-
termination to maintain the level of interaction needed to execute
its objectives." [97]

Myneni et al. [90] provide an additional definition by describing the
phrases contained in the APT term: Advanced describe the threat actors’
capabilities in terms of attack tools, expertise and attack methods, which
often are customised to the target and organised into multiple stages. Per-
sistent represent the actor’s determination to achieve the attack objective,
which usually involves the use of evasive techniques to avoid detection.
Threat stands for the potential loss of sensitive data or mission-crucial com-
ponent that the actor represents to the target organisation [90].

Well-funded APT groups create sophisticated, customised tools such as new
types of malware that are not usually detected by signature-based anti-
virus software or IDS and IPS [2]. In order to obtain access to an organi-
sation’s network, this targeted malware is typically distributed via (spear)
phishing emails. Once the malware has reached the target network, it can
exploit vulnerabilities that the group has discovered before infiltrating the
network [2].

We differentiate between APT attacks and traditional types of cyberattacks
[2]. Traditional attacks are usually unspecified and mostly target single
systems, whereas APT attacks target specific organisations, governmen-
tal institutions, and commercial enterprises [23]. Furthermore, traditional
and APT attack approaches differ, with traditional attacks being noisier
and are generally accomplished in a single run. In contrast, APT attacks
consist of repeated attempts, long term persistence, and adapts to remain
undiscovered [23][2]. Targeted attacks are often easier to prevent, whereas
APT attacks require defenders to change their detection systems or meth-
ods since APT uses methods that they have never encountered [23].

APT attacks are well planned and custom-built to increase the probabil-
ity of a successful attack. In order to achieve this, they are often performed
in multiple stages, shown in Figure 2.3.

Figure 2.3: APT attack steps [2].

The Reconnaissance phase marks the initial step of any successful attack.
This phase is important for the attackers, as they gather the necessary in-

Chapter 2. MITRE ATT&CK and CALDERA 14

formation before later launching an attack. The group studies the target
organisation, collecting as much information about the technical environ-
ment and relevant personnel. This is information is often gathered via
open-source intelligence (OSINT), and social engineering techniques [23].

The Establish Foothold phase represents the attackers’ accomplished
entry into their target’s computer or network [2]. The typical way for estab-
lishing a foothold on the target computer is to execute malicious code that
exploits a vulnerability, but obtaining access through social engineering is
also an observed technique [23, 114]. When the exploit successfully exe-
cutes, the intrusion is complete, and they can work further towards their
end goal [23][2].

Lateral movement refers to the phase when the attackers start to move
inside the network to expand their control over the targeted organisation
and discover and collect valuable data [23]. This phase often takes place
over a more extended period to collect as much information as possible.
Lateral movement usually involves "internal reconnaissance, compromis-
ing additional systems in order to harvest credentials and gain escalated
privileges, identifying, and collecting valuable digital assets" [23]. The ac-
tivities are planned to operate quietly and slowly to avoid detection. Fur-
thermore, APT actors may use the same tools as IT administrators, making
them more challenging to detect as they move deeper into the network –
their activities could go undetected or even untraced [23].

Exfiltration/Impediment indicate the phase in which the adversary has
reached their goal of obtaining organisational data and proceeds to trans-
mit it to their C&C (Command&Control) centre. If the attackers’ goal is
to sabotage components, disabling or destroying the critical components is
part of this attack phase [2]. Some literature, including the ATT&CK ma-
trix, split Exfiltration and C&C into separate steps [36].

The fifth and final phase is Post-Exfiltration/Post-Impediment, repre-
senting activities such as continuing to exfiltrate, disabling additional crit-
ical components, or deleting evidence in order to have a clean exit from
the network [2]. This usually involves transporting the stolen data to an
internal staging server, compressing or encrypting it before sending it to
the attackers’ external locations. Traffic from post-exfiltration actions is of-
ten hidden using SSL/TLS or leverages the features of the Tor network [23].

The attack steps described are comparable to the attack steps in Lockheed
Martin Cyber Kill Chain2 identifies. The Cyber Kill Chain is a component of
the Intelligence Driven Defence model for identifying and preventing cyber-
attacks [28]. The model describes the steps that the attacker must complete
to achieve their goal, summarily to Figure 2.3. The steps included in Cyber
Kill Chain are reconnaissance, weaponisation, delivery, exploitation, instal-
lation, C&C and actions on objectives. The reconnaissance and weaponisa-
tion steps are similar to Stage 1 Reconnaissance in Figure 2.3. These steps
include gathering information about the target organisation and preparing
a payload of malware and exploit(s) [28]. Delivery and Installation in Cy-
ber Kill Chain are included in Stage 2 Establish foothold in 2.3, referring

2https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-
chain.html

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

Chapter 2. MITRE ATT&CK and CALDERA 15

to delivery and successful installation of the malware, and hence foothold
on the target. C&C is a separate step in the Cyber Kill Chain, an example
of literature or references that divide C&C and Exfiltration as two steps.
Stage 5 in Figure 2.3 is similar to the final step in Cyber Kill Chain. How-
ever, in this final step of the Cyber Kill Chain, lateral movement and data
exfiltration are included [28]. Figure 2.3 differentiate between these two
steps. There are various methods and models to categorise the steps of an
APT attack, and these were two comparable examples.

APTs are sophisticated, specific and evolving threats, indicating that tra-
ditional countermeasures are necessary, though not sufficient, to protect
against APT [23]. Organisations that have been victims of APT attacks
have suffered significant, if not irreversible, damage [2]. The speed at which
the attack tools and techniques evolve requires solutions that adapt to the
changing behaviour of APTs. Defenders must understand the stages and
strategies involved in the attacks and develop new capabilities that address
the threat actors’ specifications, even if distinct patterns can be recognised.

2.3.1 Adversary emulation plans
Emulating adversaries provides an approach to assessing a network’s re-
silience against advanced attackers, but it is often a manual, time-consuming
and complex process [4]. While some security assessment tools, such as
Metasploit3 can automate specific red team tasks and hence reduce total
time cost, automated adversary emulation (EMU) aims to extend such em-
ulation to the tactical level [4].

MITRE Engienuity’s Center for Threat-Informed Defense (CENTER)4 in-
troduced the first EMU plan in 2017. Each EMU plan focuses on a single
APT and provides a curated summary that captures and describes their
publicly attributed breaches and campaigns based on intelligence reports
and other artefacts [10]. Each EMU plan includes an operational flow that
gives a high-level description of specific threat scenarios observed by the
APT group. The material in the EMU plan is broken down into step-by-
step procedures that defenders can run from start to finish or as individual
tests [120]. Organisations can further adapt the scenarios and behaviours
within each plan to better fit their environment and priorities [121].

The initial EMU plan focused on APT3, signalling the start of CEN-
TER’s mission to improve global threat-informed practice [56]. Since then,
their methodology has involved capturing an adversary’s publicly attributed
techniques, chaining them together into a logical series of actions inspired
by the attacker’s past behaviour [10]. FIN6 was the first group in a public
library of new EMU plans released by CENTER in September 2020, fol-
lowed by APT29 a few months later. According to Jon Baker at CENTER,
the plans require substantial time, expertise, and effort to build [10]. This
process includes:

• cyber threat intelligence (CTI) research;
3https://www.metasploit.com/
4https://ctid.mitre-engenuity.org/

https://www.metasploit.com/
https://ctid.mitre-engenuity.org/

Chapter 2. MITRE ATT&CK and CALDERA 16

• custom tool development where needed;

• TTP analysis;

• ATT&CK mapping;

• test range setup;

• emulation plan development;

• testing and final quality review [10].

In addition, CENTER focused not only on what the attackers do, but also
on how and when they do it. In other words, "how does this threat group
obtain credentials from victims, which tools do they use, and at what stage
of a breach does it happen?" [10]. The team at CENTER identified some
common features for a plan template based on the APT29 plan. The plans
needed to be easily updatable, follow a set of CTI-informed scenarios and
offer a human-readable, command-by-command version for organisations
and teams to follow the implementation. Finally, it must have a machine-
readable form in order to enable the key feature of automated execution or
parsing [10]. CENTER published the EMU plan for menuPass in February
2021 and plans for FIN7 and Carbanak in April 2021 [120]. New plans
will be released in the future, as they have successfully defined a common
methodology with a specific point. Organisations will reduce overall costs
because the EMU plans are consistent and easily accessible [10].

The first set of EMU plans was introduced to CALDERA in February 2021
[29]. At the time, they included APT29 and FIN6, but as CENTER has
continued to improve, EMU plans for menuPass, Carbanak, and FIN7 are
now available. Figure 2.4 shows the EMU plan for APT29 in CALDERA,
first presenting the group with a description from ATT&CK [37]. Next,
the steps in the EMU plan are listed, with an overview of execution order,
names, tactics and techniques. Intelligence reports on APT29 are used to
select and order attacks [10]. Only the first 8 steps of the EMU plan are
shown in Figure 2.4, which involve execution, collection, exfiltration and
discovery tactics. The APT29 EMU plan has 79 attack steps in total.

2.4 MITRE CALDERA™
Red teams play a critical part in assessing the security of a system or net-
work, and their importance cannot be underestimated [5]. These red teams
are usually a group of security specialists who emulate attackers to test
all aspects of an organisation’s security posture [5]. Red teaming requires
staff training, experience and design. It is both costly and time-consuming
to implement.

To address these challenges, MITRE began a research initiative to cre-
ate the framework CALDERA5 [45]. It is a fully automated red teaming
system with adversary emulation capabilities, focusing on post-compromise

5https://caldera.readthedocs.io/en/latest/

https://caldera.readthedocs.io/en/latest/

Chapter 2. MITRE ATT&CK and CALDERA 17

Figure 2.4: Adversary Emulation Plan for APT29 in CALDERA.

activities. CALDERA acts as an automated and intelligent red team, prob-
ing the target network for weaknesses and training defenders [5].

One of the essential aspects of CALDERA regarding this thesis is that it
leverages ATT&CK TTPs to drive atomic activities, which means it com-
prises tactics and techniques that map to ATT&CK [5]. CALDERA can
be customised to add new features or enable various plugins to extend the
framework with functionality, such as simulating human behaviour, adding
encrypted traffic with HTTPS, or running adversary emulation (EMU) plans
[45]. As previously stated, the EMU plans focus on individual APT groups
addressed in ATT&CK.

CALDERA itself is available to run on Linux and macOS operating sys-
tems. Agents can be deployed on computers running Windows, Linux and
macOS, working as targeted or infected hosts. CALDERA requires Python
v3.7+ (with pip3), GoLang 1.17+, Google Chrome browser, 8 GB RAM and 2
CPUs. MITRE has provided documentation for the installation process and
how to get started using CALDERA on its website [45].

2.4.1 Architecture and example usage
Virtual Red Team System (ViRTS) and Logic for Advanced Virtual Adver-
saries (LAVA) are the two main components that comprise CALDERA. ViRTS

Chapter 2. MITRE ATT&CK and CALDERA 18

Figure 2.5: Visualisation of the CALDERA infrastructure [5].

is the software infrastructure used to create and emulate a red team adver-
sary, and LAVA is the logical model used by CALDERA to decide which
actions to take. The CALDERA infrastructure is simplified and illustrated
in Figure 2.5, taken from [5].

The ViRTS infrastructure, referred to as the main framework, is made up
of two parts:

1. The core system, which is the framework code that includes a Com-
mand&Control (C2/C&C) server with a REST API and a web inter-
face. It consists of the master server (ExtroViRTS) and the remote
access tool (RAT) clients (IntroViRTS), which are running on already
infected hosts (IntroViRTS) [5]. These components are shown in the
architecture in Figure 2.5.

2. 2) Plugins that, among other things, provide additional functionality
for collections of TTPs, agents and graphical user interfaces (GUI)
[45, 5].

CALDERA is typically used to run offensive (red) or defensive (blue) op-
erations. The master server (ExtroViRTS) is the C&C server with a web
interface on Linux and macOS platforms. The RAT client (IntroViRTS) is
deployed on the target host, now referred to as an agent. The infected host
or target system establishes contact between its running RAT and the at-
tacker’s master C&C server [45]. The deployment of CALDERA and its
usage can be summarised in the following steps [45]:

• Start the C&C server on the attacker platform;

• Deploy agent on the host to infect by launching the RAT;

Chapter 2. MITRE ATT&CK and CALDERA 19

• Choose an adversary profile that is currently in CALDERA or create
a new one;

• Run an operation (attack) on the infected machine by either selecting
an adversary profile or manually adding commands to execute;

• Examine the operation as it progresses, reviewing successful, failed
or timed out attacks;

• Export the operation results to a CALDERA report that includes de-
tails about the operation, such as the ATT&CK techniques used in
the attacks, the name of the infected host, the commands used in the
attacks, and the attack times.

The RAT continuously reports relevant information about the attacks to the
master server, which updates its internal knowledge base [5]. The LAVA
engine runs on the master server and uses the knowledge to determine
what actions CALDERA should take and which commands to execute on
the agent [5].

2.4.2 CALDERA terminology
CALDERA uses various terminology to describe its functioning. The follow-
ing list is taken from the CALDERA documentation [45][5]:

• Agents: software application that connects back to CALDERA at reg-
ular intervals to obtain instructions. Agent communicates with the
CALDERA server, and each agent is assigned a unique ID called paw.
Sandcat (54ndc47), Manx and Ragdoll are the three agent applica-
tions included in CALDERA.

• Groups: for assembling agents and executing commands in groups.
The group determines if an agent is a "red agent" (offensive) or "blue
agent" (defensive).

• Abilities: a particular ATT&CK tactic/technique to execute on run-
ning agents. Each ability includes the command(s) to run, the plat-
form/executors for the command, payloads and a reference to output
results on the CALDERA server.

• Operations: run abilities on agent groups.

• Adversary profiles: pre-defined threat actors that consist of a group
of abilities (TTPs). Profiles may help determine which abilities should
execute when conducting an operation.

• Planner: specifies which order to run which abilities. The default
configuration is the Atomic planner, running abilities in their atomic
ordering. Batch planner runs all abilities in the adversary profile
once. Buckets planner runs all abilities, grouped by ATT&CK tactics,
in the adversary profile.

Chapter 2. MITRE ATT&CK and CALDERA 20

• Link: a link is created for each agent when an operation is running.
Certain conditions should match to create a link; most importantly,
all link facts and fact requirements should be fulfilled. Depending on
the stealth settings, link commands may be obfuscated. The operation
creates a link chain, which holds all links generated for the operation.

• Fact: an identifiable piece of information about a specific computer.

• Plugins: extensions to CALDERA that introduce new capabilities,
e.g. the ability to mimic human behaviour on agents, adding simu-
lated agents, autonomous incident response and adding HTTPS.

• ViRTS: the software infrastructure used to create and emulate a red
team adversary.

• LAVA: the logical model that CALDERA uses to decide which actions
to perform.

Chapter 3

Background

This chapter presents concepts and approaches that the rest of the thesis
builds on. The principles of simulation, network traffic capture, and la-
belling are defined. Building on this material, one section will provide a
more in-depth review of the challenges that the cybersecurity community
experiences in labelling datasets. The final sections will describe the solu-
tions formed to address these issues.

3.1 Simulation
A simulation is the imitation of an operation; in technical terms, it uses a
model to represent key characteristics or behaviours of the selected system
or process the imitate [11, 137]. The simulation then represents the model’s
progression over time. Simulation is used in various situations, and com-
puters are widely employed to execute simulations [137]. Simulation can be
used to observe the model repeatedly, for example, to determine the real-
world consequences of specific conditions and actions [112]. Additionally,
simulations are often utilised when the real system can be damaged, which
is often the case when generating network datasets [137] [77]. Simulations
are widely used in dataset generation to emulate specific tasks or activities,
such as simulating attacks, and typical behaviour [26][62].

3.2 Capturing network traffic
In a network, computers communicate by exchanging network packets that
are composed of control information (the packet header) and the user infor-
mation (the payload) [26]. The payload, which might be encrypted, trans-
ports data on behalf of an application. The header holds information such
as the transmission protocol layer, IP addresses, and so on that is essential
for proper packet transmission [26]. A packet analyser or a packet sniffer
monitors network traffic by capturing packets as they traverse the network
[124]. This process of collecting and logging traffic is called packet capture,
and the API often used for this process is called pcap [135]. A capture file

21

Chapter 3. Background 22

is usually stored using the file extension .pcap, a format that packet analy-
sers such as Wireshark1 and tcpdump2 can read [136, 26]. IPFIX is another
common format for displaying or storing network logs or information, which
is based on connection summaries or flow statistics [26]. A network flow is
defined by RFC 3697 [18] as a sequence of packets with the same source
and destination IP addresses (IP protocol). The sequences for TCP and
UDP connections are summarised using the same source and destination
ports [26]. This data is typically used to represent a network flow, along
with additional information such as the start and end time of the connec-
tions, as well as the total number of packets and bytes transmitted [26].

3.3 Labelling
In principle, labelling is the process of providing context to data by adding
one or more meaningful and informative tags [13, 62]. The definition of
a label varies per application, and there is no general agreement on what
constitutes a "correct" label [24]. Label granularity or how elaborate a la-
bel should be, is not precisely defined, but several authors agree on some
common characteristics [62]. Almost every labelling process, regardless of
the application of the final dataset, has two goals: accuracy and speed, i.e.,
effectiveness and efficiency [13].

In the context of anomaly detection, the datasets should provide all asso-
ciated behavioural patterns for malicious and normal network traces, which
is referred to as representative labels [62]. When labelling network traces
for regular users, representativeness is crucial because timing patterns,
frequency of use and work cycle must all be accurately represented in the
dataset [62]. Representative labels for malicious network traces could in-
clude the chain of misuse actions or timing patterns of malicious behaviour.
On the other hand, only those portions of a network trace containing the be-
haviour of interest should be given a precise label [62]. If a dataset is mis-
labelled and underrepresented, it will consequently make any model gen-
erated from it perform poorly [62]. Furthermore, assembling, cleaning and
debugging large datasets can in some instances take months, which as led
to an increase in the use of weak labelling or weak supervision [102][125].
Instead of gathering strongly enough labelled data, this approach program-
matically generates weakly labelled data, proving effective when the task
at hand is to label large datasets [102].

3.4 Challenges in labelling datasets
Datasets are essential in order to train and improve the algorithms used
in anomaly-based network-intrusion detection systems (NIDS) [104]. They
are also crucial for evaluating and comparing the performance of the IDS

1https://www.wireshark.org/
2https://www.tcpdump.org/

https://www.wireshark.org/
https://www.tcpdump.org/

Chapter 3. Background 23

[123]. For NIDS, machine learning (ML) algorithms could leverage labelled
or annotated datasets, i.e. traffic traces with known and tagged anomalies
and incidents [113]. The number of detected attacks or false alarms may act
as an evaluation criterion, given a labelled dataset in which each data point
is assigned to the class ’normal’ or ’attack’ [104]. Quality dataset labelling
has emerged as a fundamental aspect in the application of ML models in
NIDS in recent years due to their generalisation capabilities, and increased
computational power [21][20]. The network security field has focused on
the development of NIDS based on ML with the promising goal of achiev-
ing better detection performance [21]. Still, the main issue with developing
better detection potentials in NIDS is the lack of labelled datasets. There
are few publicly available datasets, and the quality of the available ones
varies. Although there is no precise definition of what a quality dataset is
[62], several authors agree that representative and accurate labels are the
two main aspects for determining the quality of a labelled network traffic
dataset [26][107][83]. A representative labelled dataset should provide all
the relevant behavioural patterns for malicious and normal network traces.
This is particularly important when labelling network traces from regular
users, which should include time patterns, frequency of use, and work cycle
[62].

Another challenge with labelling datasets originates from the growing use
of encrypted traffic. The cryptographic protocol TLS, or Transport Layer
Security, currently protects the majority of internet traffic. Malware au-
thors have followed this trend to hide malicious network connections and
evade detection [51] [25]. According Cisco, more than 70% of malware cam-
paigns in 2020 used some sort of encryption to conceal malware, C&C activ-
ity or data exfiltration [25]. Encryption poses some challenges to traditional
means of detection, as the data cannot be inspected, and it is not feasable to
decrypt it [25]. de Lucia et al. [51] propose that ML traffic analysis should
be improved to avoid relying on pattern matching or the payload content
for detecting malicious or suspicious communications.

In recent years, APT groups have become a growing concern in the security
research field [2]. They are highly resourceful, state-sponsored adversary
groups. The most common method of detecting APT activity is anomaly-
based detection, which relies on datasets with realistic attack scenarios [2].
For a detection system to learn both abnormal and normal behaviour in
order to detect APT, supervised ML employing labelled datasets, or semi-
supervised learning, is required [2]. Myneni et al. [90] created a dataset,
DAPT2020, that captures the various aspects of real-world APT attacks, in-
cluding the main phases of an APT attack; reconnaissance, foothold estab-
lishment, lateral movement and data exfiltration. Aside from DAPT2020,
several authors underline that there are currently no publicly available
datasets containing APT datasets [114, 90]. Datasets are critical in the de-
velopment of ML models capable of detecting sophisticated attacks such as
APT [90]. Due to the complexity of the groups, detecting APT is challeng-
ing, and modelling and creating realistic datasets for training and evalua-
tion has become a significant challenge [114].

Chapter 3. Background 24

Because of the challenges presented, there only exist four publicly available
structured datasets for NIDS that incorporate real-world traffic and attacks
[26]. Guerra et al. [62] conducted an in-depth analysis of the present chal-
lenges present in labelling network traffic. They concluded that all current
labelling approaches have fundamental flaws in terms of quality, volume
and speed of the generated dataset [62]. Clausen et al. mentioned similar
difficulties [26]. Guerra et al. further suggested that the network secu-
rity community should address the lack of consistent methods for continu-
ously developing representative datasets, using an accurate and validated
methodology [62].

3.5 Current solutions
The growing complexity of network systems, software, and services, as well
as their rising integration and dependencies, has resulted in new types
of cyberattacks [111]. Malicious behaviour is rapidly evolving, with new
and "better" malware and attacks being introduced every day [2]. Thus,
anomaly detection and IDS require datasets that are up to date, represen-
tative of current trends and attacks, and have low maintenance and mod-
ification costs [62][77]. There currently exists no such perfect dataset, but
multiple studies have proposed methods for improving the challenges de-
scribed in section 3.4. This section will include a few suggested approaches.

In the past years, the practice has been to use the few available datasets
as benchmarks [26, 75, 118]. Some of the datasets are over a decade old.
According to Hindy et al. [68], more than 85% of the published approaches
use the DARPA1998 dataset from over 20 years ago [114]. The lack of suit-
able datasets constitutes one of the biggest challenges for anomaly-based
intrusion detection [104, 27].

From the standpoint of creation, datasets are divided into three categories:
realistic, synthetic and semi-synthetic [114]. Realistic datasets from real-
world situations may be the preferred option. However, this raises concerns
about user privacy, poor scalability, potential harm from attack simulation
in a production environment and lack of labels [114]. The use of synthetic
data has the advantage of data control and network setup, as well as avoid-
ing the issues of managing unknown properties and false alarms caused by
real network noise [114]. However, there are several limitations, such as
a lack of realism, where an absence of noise simplifies the simulated at-
tacks, potentially leading to unrealistically good detection results [26, 114].
Semi-synthetic data is a combination of the two previous categories. Draw-
backs include failure of detection methods in realistic situations and biased
datasets due to following an insufficiently accurate synthetic user model
[114].

Several authors agree that simply having a dataset available is insuffi-
cient to evaluate IDSs; a ground truth that defines harmful behaviour in
a quantifiable way is also required [77, 26, 6]. To address this, Landauer et

Chapter 3. Background 25

Figure 3.1: Injection Timing, a widely deployed labelling strategy [62].

al. [77] outline a few potential labelling strategies to achieve ground truth.
The simplest yet most effective method is to label all traffic generated dur-
ing attack time intervals as malicious [77]. Guerra et al. refers to this
methods as Injection Timing [62], with a descriptive illustration shown in
Figure 3.1. The simulation runs isolated from a production environment so
that no unknown processes can influence the events. Thus, one can consider
all the events that occur outside of the malicious time interval benign. It is
possible to create a labelled dataset with various network traffic behaviours
because of the controlled environment, which adds authenticity to the gen-
erated dataset [62]. Anomalous time frames can be derived from attack
scenario descriptions, making this method easy to implement. However, if
normal events occur during attacks, they will also be labelled as malicious
[77]. In order to acquire correct labels when using Injection Timing, a strict
time control mechanism is required [62]. Garcia et al. [60] and Bhuyan et
al. [14] used the Injection Timing as a labelling method in their work.

Behavioural profiles is another approach for automatically labelling net-
work traffic [62]. Behavioural profiles provide the information to simulate
a specific feature or aspect of the network, often implemented as computer
programs that perform regular activities. The labelling process using this
technique is straightforward; all traffic generated by a profile emulating
normal traffic will is labelled as such, and similarly, with malicious be-
haviour [62].

A third method introduced by Guerra et al. [62] bases the labels on informa-
tion provided by network security tools (NST). This strategy was applied to
create the DARPA datasets in 1998-99 [87] and the KDD99 dataset [127],
which has been used as a benchmark dataset in numerous research [27].
This method relies on network security tools such as sniffers, honeypots or
NIDS. The DARPA and KDD99 datasets used sniffers to capture network
traffic [62].

The methodologies presented so far are all forms of automatic labelling,
in which the datasets originate from controlled and deterministic environ-
ments. These predictable conditions make it easier to distinguish anoma-
lous traffic from regular traffic, hence eliminating the need for expert man-
ual labelling [62]. On the contrary, many authors see humans as an es-

Chapter 3. Background 26

Figure 3.2: Human-guided labelling [62].

sential part of traffic analysis and the labelling process [115, 12, 58, 61].
Human-Guided labelling is a method in which expert users complete the
work, and no user controls the network [62]. Figure 3.2 shows a simplified
representation of the human-guided labelling method, where labels are the
result of human domain expertise with the help of specific tools. A signifi-
cant percentage of network analysis today is performed manually. However,
many of these extensive processes are not published, leaving the research
community with limited knowledge about it [62].

AL is a specific case of ML, an example that supports the widely accepted
view that ML is the preferred approach to labelling network datasets [26].
ML has been used to label data for use in NIDS, allowing them to advance
from simple rule-based systems to intelligent automated decision-making
engines powered by modern ML algorithms [55, 68].

Several studies have explored the issues raised previously regarding in-
creased encryption in malware and malicious traffic. One example showed
that many vendors of security monitor devices have chosen to decrypt traf-
fic content first, and afterwards applying a traditional signature-based de-
tection method [51]. This method introduces a serious breach of confiden-
tiality, effectively disqualifying encryption for ordinary users [51]. An al-
ternative approach is to leverage modern traffic analysis methods, which
previously depended on deep packet inspection (DPI), TLS fingerprinting
and the use of URLs [51]. However, this is insufficient to detect malicious
communication hidden within encrypted TLS traffic.

Information such as inter-packet arrival times, flow direction, TCP head-
ers, TLS handshake fields and frequencies can help predict the application
and data protected within TLS. de Lucia and Cotton demonstrated how
modern traffic analysis methods rely on combining these features with ML
models [51]. They proposed a malicious communication detection mech-
anism using a Support Vector Machine (SVM) and one alternative using
a Convolutional Neural Network (CNN). In the field of ML, SVM is a su-
pervised learning model, and CNN is a Deep Learning algorithm [48][51].
Anderson et al. took a similar approach in [3], utilising ML to decipher TLS
in malware.

Chapter 3. Background 27

Figure 3.3: Comparison of current APT anomaly detection methods [2].

3.5.1 APT detection
When it comes to APT groups and their complexity, it is complicated to
effectively model attacks, detect APT, and create benchmark datasets for
training and assessing IDS [114]. Current APT detection methods are clas-
sified as anomaly based detection and detection by pattern matching [2] .
Anomaly-based detection uses different ML techniques, which need classi-
fiers trained on datasets that include the characteristic and adaptive be-
haviour of APT groups [2]. Figure 3.3 (taken from [2]) depicts a high-level
comparison of various anomaly-based attack defence methods, along with
their learning methods. The figure show that ML remains the most effec-
tive method for detecting APT activity [2], with supervised learning being
the approach commonly used with network traffic.

3.6 Summary and discussion
In conclusion, there has always been a lack of suitable datasets for evalu-
ation in the field of IDS [27]. Detection of malicious network traffic often
requires extensive human labelling and expert knowledge [62]. The dataset
should contain both malicious and benign ground truth labels, allowing for
a more in-depth evaluation of IDS. According to Landauer et al., datasets
with labels that differentiate between different sorts of attacks or attack
steps will be highly valuable for NIDS [77]. This issue is particularly rel-
evant for identifying APT, which is adaptive, intelligent, and persistent.
[2]. This thesis will describe my best efforts at contributing to the field of
APT detection by presenting a dataset consisting of different labelled attack
steps, where the lack of suitable datasets represents a significant challenge
[90] [114].

Chapter 4

Approach and
implementation

This chapter covers the approach to labelling network traffic and its im-
plementation. Illustrations and descriptions are first introduced to give
an overview of the work in this thesis. A description of the network ar-
chitecture follows. The emulated threat actor APT29 is introduced, along
with their emulation plan (EMU) in CALDERA. The subsequent sections
will provide background information on the technologies used in the ex-
periment, DetectionLab and GHOSTS. After the introductory sections have
set the foundation, this chapter presents the main work of this thesis. A
comprehensive section outlining the labelling approach comes before a de-
scription of LabelGen, the script that generates datasets. This chapter ends
with a concluding section.

4.1 General plan
The work in this thesis is divided into three phases; experiment, processing
and evaluation, illustrated by Figure 4.1.

Figure 4.1: Phases of the work in this thesis.

28

Chapter 4. Approach and implementation 29

The experiment phase covers the experiment, which involved simulating
APT29 using CALDERA while generating benign traffic with the frame-
work GHOSTS. The experiment used five virtual machines (VMs) to mimic
an enterprise network. Figure 4.2 illustrates the concept of this arrange-
ment, which DetectionLab built. Each VM has a particular function re-
flected by its various colours. These VMs communicate, as indicated by the
wireless connection symbol and the rounded grey arrows. An additional
black arrow stretches from the red VM (attacker) to the green VM (victim)
to signal the CALDERA attacks.

Figure 4.2: Simplified representation of the experiment environment.

The experiment generated a network logfile (.pcap) and a CALDERA report,
which summarised the attacks. LabelGen used these two files as a basis for
labelling in the processing phase. From the original logfile, LabelGen cre-
ated two datasets and one labelled logfile.

The evaluation phase is discussed in Chapter 5, which will examine the
LabelGen labelled logfile and train a proof-of-concept ML as an assessment.

The implementation of the general plan shown in Figure 4.1 will be cov-
ered later in this chapter. The network architecture will be explained first,
followed by the tools, frameworks, and the APT29 EMU plan.

4.2 Network architecture
As previously mentioned, the experiment involved 5 VMs. They were con-
nected to distinct networks in order to separate the various activities car-
ried out during the experiment. Thus, three networks were created, each
with different purposes. The overall network architecture is depicted in

Chapter 4. Approach and implementation 30

Figure 4.3: Architecture of the experiment setup.

Figure 4.3. It is based on illustrations from [16] that have been simplified
and altered for this project.

Figure 4.3 shows the three networks or interfaces in distinct colours; NAT
Network (green), Host-Only Adapter (blue) and Internal Network (orange).
DetectionLab created the NAT Network and the Host-Only Adapter to pro-
vide a realistic enterprise environment. During the experiment, all of the
VMs were connected to the Host-Only Network, as seen by the blue lines in
Figure 4.3 linking to the virtual switch. The Host-Only network allows for
inter-communication between the VMs. This network carries traffic from
background processes such as event logs and various ARP, MDNS, and NTP
requests. Because the attacker is also connected to this network, it has es-
tablished a foothold in the target network. Presence in the target network
is a requirement for emulating APT29. Because all the VMs on this net-
work can interact, it implies that the attacker VM (Linux) can attack the
victim VM (Windows).

Chapter 4. Approach and implementation 31

The NAT Network supports outbound connections, indicating that it has
Internet connectivity [30]. The NAT Engine on the VirtualBox Host has a
line connecting to Internet, as seen in Figure 4.3. Only Ubuntu (Logger)
and Windows (victim) were connected to this network during the experi-
ment.

Internal networking can construct a software-based network that is only
visible to the connected VMs, and not visible to the host OS or the outside
world [30]. The purpose of the Internal Network was to carry the internal
structure of GHOSTS. This network traffic was not captured, making the
experiment more controlled. Figure 4.3 shows the internal network as an
orange square beneath Windows and Linux. Only these two VMs are linked
to this network and are visible to each other, as indicated by the square. An
orange line linking the two devices accentuates their relation.

Network traffic from the NAT network and the Host-Only Adapter was cap-
tured during the experiment. The NAT network generated benign Internet
traffic, whereas the Host-Only network generated background traffic. The
attacker VM interacted with and attacked the victim VM over the Host-
Only network.

4.3 APT29
APT29 is a Russian Foreign Intelligence Service (SVR)-affiliated threat
group that has been active since at least 2008 [33]. Intelligence reports
have also referred to the group as Cozy Bear, CozyDuke, Dark Halo, The
Dukes, IRON HEMLOCK, IRON RITUAL, NobleBaron, NOBELIUM, Stel-
larParticle, UNC2452, YTTRIUM [33]. Their attacks have often targeted
government networks in Europe and NATO member countries, research
institutes and think tanks [33]. The group has received allegations of
substantial breaches targeting U.S. governments and organisations. Some
examples are the attack the US Democratic National Committee in 2016
[119], attack on the Dutch government ministries in 2017 [71], attacks on
the Norwegian government in 2017 [110], assault on Covid-19 vaccine de-
velopment labs in 2020 [91] and breaching the systems of the Republican
National Committee in 2021 [126]. On April 15, 2021, US and British au-
thorities publicly announced their attribution and accusation toward APT29
and SVR as the attackers behind the SolarWinds supply chain compromise
cyber operation [92][122].

The group is known for their commitment to stealth and use of sophisti-
cated techniques [7]. Reports indicate that they have exploited zero-day
vulnerabilities, a type of attack that exploits previously unknown hard-
ware, firmware or software vulnerabilities [97]. MITRE reports that the
group typically accomplish their goals using custom malware (binaries)
combined with alternative execution methods such as PowerShell and WMI.
Furthermore, depending on the perceived intelligence value of the target,
observed attacks range from a rapid but noisy "smash-and-grab" approach

Chapter 4. Approach and implementation 32

to a "slow-and-deliberate" approach more focused on persistent compromise
and long-term intelligence gathering [57].

APT29 has gained initial access by exploiting public-facing applications,
sending varying levels of targeted email campaigns and supply chain com-
promises [122, 86]. A joint analysis report between the Department of
Homeland Security (DHS) and the Federal Bureau of Investigation (FBI)
state that APT29 mainly focus on exfiltrating and analysing information
to obtain intelligence value. They reportedly set up operational infrastruc-
ture to obfuscate their source infrastructure, host domains and malware
to target organisations. They also establish C&C nodes and gather valu-
able information from their targets [96]. DHS and FBI also inform that the
group leverages links to a malicious dropper within targeted spearphishing
emails. The executed code has then delivered a Remote Access Tools (RAT)
[96].

Infamous for major breaches and their characteristic sophistication has
made the group an ideal object for emulation [52]. In January 2021, MITRE
published the APT29 EMU plan, with public threat intelligence reporting
used as the basis for mapping techniques to ATT&CK [53]. It is available
as a plugin in CALDERA, which made for easy integration with both the
framework and ATT&CK in this work.

4.3.1 APT29 EMU plan
The EMU plan for APT29 combines techniques that the group has been ob-
served using across their operations, forming an Operation Flow. This flow
is shown in Figure 4.4 from [7]. The EMU plan, and hence the operation
flow, is separated into two categories [120]:

• Scenario 1: A scenario with a "smash-and-grab" approach for collec-
tion and exfiltration. A more general scenario in which widespread
phishing attempts are used. After determining whether the target is
valuable, the group deploys stealthier malware for long-term exploita-
tion.

• Scenario 2: A scenario in which a "low and slow" approach is used
to compromise a specific target via spearphishing. A more systematic
scenario aimed at gaining control of the target and, eventually, the
entire domain.

Figure 4.4 depicts these two scenarios, with red and blue lines indicating
the differing approaches. The manner in which the initial compromise is
made is what distinguishes these two scenarios in the figure. The operation
flow is enhanced by the use of illustrative symbols.

The steps and techniques contained in the complete APT29 EMU plan
are listed below, gathered from [120]. It has 20 steps with techniques map-
ping to ATT&CK. The steps are divided into two scenarios, which is noted
in the list.

Chapter 4. Approach and implementation 33

Figure 4.4: Operation flow of APT29 EMU plan [7].

Scenario 1 - "Smash-and-grab"
1. Initial Breach

1.A - User Execution: Malicious File (T1204 / T1204.002)
1.B - Command and Scripting Interpreter: PowerShell (T1086 / T1059.001)

2. Rapid Collection and Exfiltration
2.A - Collection (T1119, T1005, T1002 / T1560.001)
2.B - Exfiltration Over C2 Channel (T1041)

3. Deploy Stealth Toolkit
3.A - Ingress Tool Transfer (T1105)
3.B - Abuse Elevation Control Mechanism: Bypass User Access Con-

trol (T1088 / T1548.002)
3.C - Modify Registry (T1112)

4. Defense Evasion and Discovery

Chapter 4. Approach and implementation 34

4.A - Ingress Tool Transfer (T1105)
4.B - Indicator Removal on Host: File Deletion (T1107 / T1070.004)
4.C - Discovery (T1016, T1033, T1063 / T1518.001, T1069, T1082, T1083)

5. Persistence
5.A - Create or Modify System Process: Windows Service (T1031 / T1543.003)
5.B - Boot or Logon Autostart Execution: Registry Run Keys / Startup

Folder (T1060 / T1547.001)
6. Credential Access

6.A - Credentials from Password Stores: Credentials from Web Browsers
(T1003 / T1555.003)

6.B - Unsecured Credentials: Private Keys (T1145 / T1552.004)
6.C - OS Credential Dumping: Security Account Manager (T1003 /

T1003.002)
7. Collection and Exfiltration

7.A - User Monitoring (T1113, T1115, T1056 / T1056.001)
7.B - Compression and Exfiltration (T1048, T1002, T1022 / T1560.001)

8. Lateral Movement
8.A - Remote Services: Windows Remote Management (T1021 / T1021.006)
8.B - Ingress Tool Transfer (T1105)
8.C - System Services: Service Execution (T1035 / T1569.002)

9. Collection
9.A - Ingress Tool Transfer (T1105)
9.B - Collection and Exfiltration (T1005, T1041, T1002, T1022 / T1560.001)
9.C - Indicator Removal on Host: File Deletion (T1107 / T1070.004)

10. Persistence Execution
10.A - System Services: Service Execution (T1035 / T1569.002)
10.B - Boot or Logon Autostart Execution: Registry Run Keys / Startup

Folder (T1060 / T1547.001)

Scenario 2 - "low and slow"
11. Initial Breach

11.A - User Execution: Malicious File (T1204 / T1204.002)
12. Fortify Access

12.A - Indicator Removal on Host: Timestomp (T1099 / T1070.006)
12.B - Software Discovery: Security Software Discovery (T1063 / T1518.001)
12.C - Software Discovery (T1518 / T1518.001)

13. Local Enumeration
13.A - System Information Discovery (T1082)
13.B - System Network Configuration Discovery (T1016)
13.C - System Owner/User Discovery (T1033)
13.D - Process Discovery (T1057)

14. Elevation
14.A - Abuse Elevation Control Mechanism: Bypass User Access Con-

trol (T1088 / T1548.002)
14.B - OS Credential Dumping: LSASS Memory (T1003 / T1003.001)

Chapter 4. Approach and implementation 35

15. Establish Persistence
15.A - Event Triggered Execution: Windows Management Instrumen-

tation Event Subscription (T1084 / T1546.003)
16. Lateral Movement

16.A - Remote System Discovery (T1018)
16.B - System Owner/User Discovery (T1033)
16.C - Remote Services: Windows Remote Management (T1028 / T1021.006)
16.D - OS Credential Dumping (T1003 / T1003.001)

17. Collection
17.A - Email Collection: Local Email Collection (T1114 / T1114.001)
17.B - Data from Local System (T1005)
17.C - Obfuscated Files or Information (T1027)

18. Exfiltration
18.A - Exfiltration Over Alternative Protocol (T1048 / T1567.002)

19. Clean Up
19.A - Indicator Removal on Host: File Deletion (T1107 / T1070.004)
19.B - Indicator Removal on Host: File Deletion (T1107 / T1070.004)
19.C - Indicator Removal on Host: File Deletion (T1107 / T1070.004)

20. Leverage Persistence
20.A - Persistence Execution (T1085 / T1218.011, T1084 / T1546.003)
20.B - Use Alternate Authentication Material: Pass the Ticket (T1097 /

T1550.001, T1550.003)

Scenario 1 begins with noisy techniques before proceeding to a quick espi-
onage mission for collecting data and exfiltration. In the end, the scenario
transition to stealthier techniques for persistence, more data collecting, cre-
dential access, and lateral movement. The scenario ends when the previ-
ously established persistence method is implemented [120]. Scenario 2 in-
volves compromising the initial target, establishing persistence, obtaining
credentials, and then enumerating and compromising the entire domain in
a stealthier and slower manner [120]. The scenario finishes by executing
the previously established persistence mechanism [120].

4.4 DetectionLab
DetectionLab1 is a tool created for offensive security practitioners to make
testing, analysis, and research more convenient [81]. It is composed of
scripts that automate the construction of an ActiveDirectory environment
[81]. DetectionLab was used to achieve a realistic lab environment and
network infrastructure in this project. The tool includes various endpoint
security tools and recommended practices for logging [82]. DetectionLab is
created by Chris Long, a security engineer at Material Security in the USA.

DetectionLab consists of a Windows 2016 Domain Controller (DC), a Win-
dows 2016 server (WEF), a Windows 10 workstation (Win10) and an Ubuntu

1https://github.com/clong/DetectionLab

https://github.com/clong/DetectionLab

Chapter 4. Approach and implementation 36

Figure 4.5: DetectionLab overview [81].

16.04 (Logger). DC has components such as Sysmon and Osquery, and it
sends logs to WEF. WEF manages, amongst other things, Windows Event
Logs, Microsoft Advanced Threat Analytics (ATA) and Powershell Log Col-
lection. Win10 is a workstation or a host simulating an endpoint. Lastly,
the Logger runs Splunk, and a Fleet server [82]. Figure 4.5 illustrates the
lab setup with the different hosts and services, taken from [81].

Possible use-cases for DetectionLab includes:

• red team members interested to see what kind of logs and forensic
artefacts their tools and methods will generate in a comparable envi-
ronment,

• anyone seeking reference material to automate the installation and
configuration of security tools,

• anyone needing a small staging environment to adjust security tool
configurations.

DetectionLab makes setting up a lab environment more straightforward
and faster through Packet and Vagrant features. Packer is responsible for
producing a "box", a compressed version of each VM. DetectionLab has pre-
built boxes that the user can directly employ, or they can modify or add
custom ones [81]. Vagrant uses Vagrantfiles, which are comparable to Dock-
erfiles. They contain information on the VM, such as the OS, memory and

Chapter 4. Approach and implementation 37

Capability User Action Methods

Web
browsing

Browse
Enter text
Click link or button

Random, specific,
looping

Terminal
commands

Execute cmd commands
Execute PowerShell commands

Random, specific,
looping

Inter-NPC
communication Email creation and management Specific, looping

Office
document
management

Common file formats for word pro-
cessor, spreadsheet, and presenta-
tion documents created and saved
locally or on a network drive

Random, specific,
looping

Table 4.1: Capabilities in the GHOSTS framework from [128].

CPU specifications, network options, and any command scripts that the VM
should run. Similar to how Docker can pull down images, Vagrant can pull
down complete VMs [81].

DetectionLab is vulnerable by design and does not include any operating
system hardening. The developer recommends running it in a virtualised
environment such as VirtualBox or VMware [82].

4.5 GHOSTS
Researchers at Carnegie Mellon University (CMU) Software Engineering
Institute (SEI) in Pennsylvania created the GHOSTS framework2 [128, 69].
It is a technology for simulating complex, realistic non-player characters
(NPCs) that mimics different roles in enterprise networks [128]. GHOSTS
produces "highly authentic, observable network traffic", according to its de-
velopers [128]. The framework allows cybersecurity researchers and pro-
fessionals to construct a varied simulated player experience, e.g. creat-
ing documents, accessing systems, browsing the web, clicking and running
commands [69]. No network activity can be traced back to the GHOSTS
software; instead, activity is carried out by a software agent, represented
via a character [128]. This agent represents what administrators might
regularly encounter in real networks. GHOSTS also allows facilitators to
recreate the scenario with a high level of realism [128]. Table 4.1 provides
a full summary of the frameworks’ capabilities, fetched from [128].

GHOSTS clients (NPCs) are configurable for Windows and Linux operat-
ing systems, and they interact with a RESTful API server. The NPC itself
runs as an executable file, ghosts.exe. The GHOSTS server comprises a
PostgreSQL database, an API server, and a Grafana-based visualisation
tool that gives an overview of the NPCs’ activity [93].

2https://github.com/cmu-sei/GHOSTS

https://github.com/cmu-sei/GHOSTS

Chapter 4. Approach and implementation 38

Figure 4.6: Overall workflow of the approach in this thesis.

4.6 Approach
As described in Section 4.1, the work in this thesis is divided into three
phases. Figure 4.6 provides a more thorough view than Figure 4.1 in Sec-
tion 4.1, putting each of the three stages of experiment, processing, and
evaluation in context. In the figure, the simulation of malicious and benign
activities (red and green squares) to generate network traffic is covered in
the experiment phase. As previously stated, malicious traffic was generated
using the APT29 EMU plan in CALDERA, while benign traffic was gener-
ated using GHOSTS to access the Internet. A small surveillance camera is
placed in the upper right corner of the box denoting the experiment phase
in Figure 4.6. The camera indicates that the experiment is being captured
or recorded.

DetectionLab created two networks in which the VMs were connected dur-
ing the experiment. During the experiment, the VMs had different respon-
sibilities or tasks, which are depicted in Figure 4.7. The networks are dis-
tinguished by two colours, which correspond to the colours used in Section
4.2 to describe the network architecture. The Host-Internal network con-
nects the 5 VMs, allowing them to communicate. The network traffic from
the two networks, Host-Internal Network (blue) and NAT Network (green),
is captured by Ubuntu (Logger). The use of coloured arrows pointing to each

Chapter 4. Approach and implementation 39

Figure 4.7: Responsibilities between the VMs during implementation.

of these networks in the figure emphasise this. During the experiment, two
VMs were passive (DC and WEF), as shown by their grey colouring and the
text "Passive" on the monitor. The main reason they were connected to the
Host-Internal network was to generate background. Linux (attacker), em-
ulating APT29, targets Windows (Victim). In addition to being a victim of
the attack, Windows also executes GHOSTS, as shown by the file ghosts.exe
in its monitor.

The experiment produced a network logfile (.pcap) and a CALDERA re-
port, summarising the attacks that were executed. These two files were
used to label with LabelGen. LabelGen assigned labels to network packets
in the logfile that matched background, benign, or attacker-related activi-
ties or behaviour. LabelGen created two labelled datasets and one labelled
logfile. The implementation of the approaches above will be detailed in the
following section, complementing this overview. LabelGen will be described
in-depth in a dedicated subsection (4.7.1).

4.7 Implementation
The packet analyser tcpdump was used to capture network traffic. The
VM collecting traffic was configured in promiscuous mode, allowing it to
capture from multiple interfaces or networks. The interfaces transporting
DetectionLab and CALDERA traffic were captured, yielding two separate
.pcap files. These files were merged prior to labelling. An internal net-
work facilitated the connection between the GHOSTS application and the
GHOSTS API. This communication would, however, interfere with the rel-

Chapter 4. Approach and implementation 40

Figure 4.8: CALDERA operation, attack steps 42-48.

evant traffic. Hence it was excluded from logging.

In the implementation, the following versions of tools were used:

• CALDERA version 4.0.0-alpha for adversary emulation;

• DetectionLab master branch, commit 4318620a4dd279665fd11ae5
b88217385047fe9d (28.11.21) from GitHub;

• GHOSTS version 6.0.0;

• LinuxLite version 5.6 on the attacker VM;

• Windows 10 version 19H2 on the victim VM;

• Firefox version 98.0.1 on Linux and Windows;

• PyCharm Community Edition, version 2021.3.3.

The VMs were given the following RAM specifications: 1024 MB RAM for
WEF and DC, 2048 MB RAM for Logger, and 2500 MB RAM for Windows
(victim) and Linux (attacker). A laptop with a total of 16 GB powered the
VMs.

Both CALDERA and GHOSTS were run by the attacker VM (Linux), yet
on separate networks, as previously mentioned. The default CALDERA
settings were used, including beaconing from the agent to the server every
30 to 60 seconds and destroying the agent after 90 seconds if the server
became unreachable. CALDERA displays operation results during attacks,
which can be viewed in Figure 4.8. As the figure shows, the majority of
the attacks were successful (green circle), but some were unsuccessful (red

Chapter 4. Approach and implementation 41

circle) and timed out (blue circle). As the experiment progressed, I docu-
mented which steps of the EMU plan were successful, which were ignored
and which failed. The findings are discussed in Chapter 6, Discussion.

The EMU plan’s final step was to shut down the victim VM (Windows),
bringing the experiment to an end. The entire experiment or operation
lasted one hour and produced 1 679 967 network packets. CALDERA can
provide a report that summarises the operation once it is completed. The
report contains information such as the agent’s name, the commands ex-
ecuted, base64 encoding of the command, timestamp of when CALDERA
delivered the command to the agent, and timestamp of when the agent re-
ported having executed the command. Most importantly, data from ATT&CK
is included in this report, specifying which tactic, technique name, and tech-
nique ID each completed attack relates to. The attacks’ time and technique
IDs are used in the labelling.

4.7.1 LabelGen: implementation of labelling
LabelGen is the actual implementation of labelling in this thesis. It is a
Python script that is comparable to a main.py file. Figure 4.9 illustrates
the general flow or logic of LabelGen. The input and output for the vari-
ous steps are displayed, with arrows showing their application and guiding
the program flow. The figure presents the complete procedure in LabelGen,
from the initial definition of variables to the final generation of datasets.

LabelGen requires the definition of specific variables in the beginning; the
logfile to label, the CALDERA report and a comments-file. The latter is a
.txt file that was created because the command for labelling a .pcap file, Ed-
itcap3, allows a limited number of arguments. Therefore, the comments-file
is used throughout LabelGen to save packets and labels for later steps. Be-
fore LabelGen can proceed, additional variables must be provided, includ-
ing the IP addresses of the attacker VM (Linux), the victim VM (Windows),
and three other DetectionLab VMs. These addresses determine whether a
packet belongs in the attack, background, or benign categories.

The algorithm processDeclareLabels.py takes the network logfile and the
defined IP addresses as input. The output from processing and declaring
labels is presented in Figure 4.6. The output is packets with categories
attack, background, benign, and the comments-file. The CALDERA report
and attack packets are then passed to a function that searches for packets
related to CALDERA attacks, findCaldera.py.

The comments-file is the output of findCaldera.py, which is separated
into multiple files in the next step. The comments-file had to be split be-
cause Editcap only accepted a certain number of arguments for labelling
packets. labelPackets.sh takes these comments-files and the original net-
work logfile as input. This function labelled the network packets, i.e. added
frame comments. The function generated a number of small, labelled .pcap
files, which were then merged into a single, labelled logfile. Two datasets
were created from this logfile: one in JSON format and the other in CSV
format.

3https://www.wireshark.org/docs/man-pages/editcap.html

https://www.wireshark.org/docs/man-pages/editcap.html

Chapter 4. Approach and implementation 42

Figure 4.9: Order of implementation.

Chapter 4. Approach and implementation 43

The following pages will present pseudo-code for some of the most essential
steps of LabelGen, namely processDeclareLabels.py, findCaldera.py and la-
belPackets.sh. These functions are invoked from other scripts as per best
practice principles.

Processing the logfile and declaring labels

Listing 1 processDeclareLabels.py
1 input = logfile

2 for packet in logfile:

3 if (packet.ip = attacker ip or victim ip):

4 attack_packets.append(packet)

5 commentsfile.write("-a packet_number:T1071.001")

6 elif (packet.protocol = background protocols) or

7 (packet.ip = background ip)

8 background_packets.append(packet)

9 commentsfile.write("-a packet_number:Background")

10 else:

11 benign_packets.append(packet)

12 commentsfile.write("-a packet_number:Benign")

13 return attack_packets, commentsfile

The pseudocode in Listing 1 iterates through all of the packets in the logfile
from the experiment. The function determines which packets are related to
attacks, background, and benign activity based on their IP addresses and
protocols. If the source and destination IP addresses match the known IP
addresses of the victim and the attacker, the packet is considered part of an
attack, as shown on line 4 in Listing 1. The packet number and the string
"T1071.001" are written in the comments-file to signify C&C communica-
tion. It qualifies as C&C communication because the agent beacons back
to the server, though it could be considered metadata in this thesis. How-
ever, I decided on this labelling method because I do not consider C&C to
be either background or benign operations; it is, according to MITRE, an
attack4. The packets that receive a C&C label are later modified. The pack-
ets are also added to the list attack packets, later used to identify packets
based on CALDERA attack techniques.

If the current packet matches the conditions shown in the elif blocks
on lines 6 and 7 of Listing 1, it is added to the list background packets.
These elif statements capture packets that use protocols known to contain
background information and operations or if their IP addresses match the
DetectionLab Host-Only network.

Finally, the benign traffic associated with GHOSTS and web browsing is
caught in the final else statement on line 10 in Listing 1. The packets that
do not meet the conditions above and therefore execute here may not be
GHOSTS traffic. However, because of the previous statement in which the

4Tactic Command&Control, technique T1071.001, communication over Application Layer
Protocol, Web protocols: https://attack.mitre.org/tactics/TA0011/.

https://attack.mitre.org/tactics/TA0011/

Chapter 4. Approach and implementation 44

packet is background or C&C, the packets that fall in the benign category
are certainly not malicious.

The comments-file contains entries for each packet number and its corre-
sponding traffic label when the code in Listing 1 has run. Each packet has
one line in the comments-file, which is formatted as follows:

-a frame-number:comment, e.g.
-a 1190402:Background
-a 1190403:Benign
-a 3793021:T1071.011

Finding packets with CALDERA attacks

Listing 2 findCaldera.py
1 input = caldera report

2 for step in caldera report:

3 start time = step.agent_reported_time

4 end time = step.run

5 for packet in attack packets:

6 while start time <= packet timestamp <= end time:

7 commentsfile.write("-a packet_number:technique")

8 caldera packets.append(packet)

9 return commentsfile

Listing 2 executes as the subsequent step in LabelGen. The code in the
listing analyses each packet in the list attack packets to identify those as-
sociated with certain attack techniques. The CALDERA report determines
the timing of each attack stage, and the algorithm checks to see if each
packet is within that interval.

There were 59 attack steps in the CALDERA report, with 36 unique tech-
niques. The outer for-loop on line 2 in Listing 2 is therefore executed 59
times. The timestamps agent_reported_time and run from the CALDERA
report represent the time the agent executed the attack, and the time where
the agent submitted execution results, respectively [45]. Accordingly, these
properties define the start and end times of the current attack step. If the
packet’s timestamp falls within this range, the current technique ID is as-
signed to it, and the packet number and technique ID are written to the
comments-file.

When Listing 2 finished, the comments-file contained entries for both at-
tack packets with C&C labels and technique-labels. Some smaller scripts
removed redundant C&C lines to prevent certain packets from being la-
belled twice. As a result, the comments-file comprised CALDERA packets
where applicable, C&C packets elsewhere, and the other background and
benign packets.

Chapter 4. Approach and implementation 45

Labelling the packets

Listing 3 labelPackets.sh
1 #!/bin/bash

2 input=logfile, commentsfiles

3 for file in $commentsfiles; do

4 concatString=""

5 while read line; do

6 concatString += $line

7 done < file

8 editcap $concatString -r logfile n.pcapng

first_packet-last_packet↪→

9 done

10 return n commentsfiles

Listing 3 displays pseudo-code for the labelling done with LabelGen. la-
belPackets.sh is a Bash script that reads lines from smaller comments-files
as input, as demonstrated in Figure 4.6 earlier. It also takes the logfile as
input.

The for-loop reads the smaller comments-files in line 3 of the algorithm.
As indicated on line 6, each line read is concatenated to the string concat-
String. This string is used as the parameter for packet comments when
labelling with Editcap on line 8. Each of the comments-files followed the
same procedure. The following Editcap command was used to label packets
or add frame comments:

editcap -a 1234:Background -a 1235:Background -a 1236:Benign
-r originalLogfile.pcap 1.pcapng 1234-1236

labelPackets.sh generated multiple .pcap files, one for each comments-file.
After this algorithm was completed, the smaller logfiles were merged into
one final, labelled logfile. This .pcap file was converted to JSON and CSV
format datasets using a separate script, including some final adjustments
for the datasets.

4.8 Summary and discussion
This chapter has presented the tools and frameworks that are used in the
conducted experiment and the labelling approach, LabelGen. The exper-
iment generated a logfile, which was labelled in LabelGen using Editcap.
All of the methods in LabelGen are called from other scripts, following best
practise principles. It also contains the declarations of the required vari-
ables, making it simple to maintain.

The initial raw logfile contained 1 679 967 packets, while the labelled
logfile contained 1 679 966. These numbers demonstrate that only one
packet got lost during the the process of running LabelGen. There were
also 1 679 037 packet comments or labels in the final logfile.

Chapter 4. Approach and implementation 46

LabelGen can automatically perform the labelling process when the val-
ues for the logfile, CALDERA report, and IP addresses contain the user’s
specifications. During the labelling, numbers are printed, indicating which
line or file it is currently processing. The script also prints some feedback,
such as telling the user whether the current method ran successfully or not.
In other words, the labelling process is automatic and covers the whole pro-
cess, from identifying packets to creating labelled datasets with the correct
formats.

Chapter 5

Results and evaluation

This chapter presents the labelling results, including the labelled .pcap file
and the two datasets generated with LabelGen. The methods of evaluation
are as follows:

• Manual inspection, which is the main method of evaluation;

• Evaluation of LabelGen by labelling a different logfile;

• Proof-of-concept machine learning model.

This chapter will begin with a description of the datasets. The subsequent
section will be a manual inspection of the labelled logfile. Furthermore,
the generalisability of LabelGen is evaluated with a distinct logfile. This
evaluation will determine whether LabelGen is tailored to the experiment
described in this thesis or if it can also label other logfiles. A trained
proof-of-concept ML model will add to the dataset’s and LabelGen’s evalua-
tion. Finally, there will be a concluding section on whether these generated
datasets could be used in the future to detect an APT attack or these attack
techniques.

5.1 The datasets
The final datasets are in JSON and CSV format. Because the JSON dataset
was exported directly from the logfile, it contains somewhat more informa-
tion than the CSV dataset. For the CSV dataset, the columns to export had
to be specified, resulting in a smaller dataset. Because the dataset would
be utilised for ML later, the following columns were selected for the CSV
dataset:

• frame.number

• frame.encap_type

• frame.time

• frame.time_epoch

• frame.time_
relative

• frame.len

• frame.protocols

• label

47

Chapter 5. Results and evaluation 48

• eth.dst

• eth.src

• eth.type

• ip.hdr_len

• ip.dsfield

• ip.len

• ip.id

• ip.flags

• ip.ttl

• ip.proto

• ip.checksum

• ip.checksum.
status

• ip.src

• ip.addr

• ip.src_host

• ip.dst

• ip.dst_host

• tcp.srcport

• tcp.dstport

• tcp.port

• tcp.stream

• tcp.completeness

• tcp.len

• tcp.seq

• tcp.seq_raw

• tcp.nxtseq

• tcp.ack

• tcp.ack_raw

• tcp.hdr_len

• tcp.flags

• tcp.window_
size_value

• tcp.checksum

• tcp.checksum.
status

• tcp.urgent_
pointer

• tcp.analysis

• tcp.analysis.bytes
_in_flight

• tcp.analysis.push
_bytes_sent

• tcp.payload

• tcp.segment_data

• tcp.segments

• tcp.segments

• tcp.segment.count

• tcp.reassembled.
length

• udp.srcport

• udp.dstport

• udp.port

• udp.length

• udp.checksum

• udp.checksum.status

• udp.stream

• http.connection

• http.request.line

• http.content_type

• http.content_
encoding

• http.user_agent

• http.content_
length_header

• http.host

• http.request

• http.request_
number

• _ws.col.Info

The dataset contains 1 679 966 rows, one for each packet. The field names
containing "frame" refers packets. The label is also a frame comment, as
mentioned previously. The column _ws.col.Info coincide to the informa-
tion column in Wireshark, showing port numbers and POST/GET requests.
Figure 5.1 shows a snippet of the CSV dataset in Excel. The columns
included in the figure are frame.number, frame.encap_type, frame.time,
frame.time_epoch, frame.time_relative, frame.len, frame.protocols, label,
eth.dst and eth.src. The label column shows that the packets are labelled
as background packets.

Listing 4 show an example of a single packet in the JSON dataset. The
majority of the non-essential layer objects are collapsed for illustration pur-
poses.

Chapter 5. Results and evaluation 49

Figure 5.1: A snippet of the dataset in CSV format.

Listing 4 One packet shown in JSON format.
1 {
2 "_index": "packets-2022-03-28",
3 [...]
4 "_source": {
5 "layers": {
6 "pkt_label": {
7 "label": "T1036.005",
8 "label_tree": { ... }
9 },

10 "frame": {
11 "frame.time": "Mar 28, 2022 18:57:37.303315000 CEST",
12 "frame.protocols": "eth:ethertype:ip:tcp:data"
13 [...]
14 },
15 "eth": {
16 "eth.dst": "08:00:27:4b:c7:37",
17 "eth.src": "08:00:27:5d:f0:36",
18 "eth.type": "0x0800",
19 [...]
20 },
21 "ip": {
22 "ip.version": "4",
23 "ip.hdr_len": "20",
24 "ip.ttl": "128",
25 "ip.proto": "6",
26 "ip.checksum": "0x4faa",
27 "ip.src": "192.168.56.104",
28 "ip.dst": "192.168.56.106",
29 [...]
30 },
31 "tcp": {
32 "tcp.srcport": "50424",
33 "tcp.dstport": "8888",
34 [...],
35 },
36 "data": {
37 "data.data": "00",
38 "data.len": "1"
39 }
40 }
41 }
42 }, [next packet]

Chapter 5. Results and evaluation 50

5.2 Manual inspection
While automated inspection approaches such as tools or scripts might speed
up the inspection process, manual inspection will be the primary source of
evaluation in this thesis. Examining the labelled .pcap file and datasets
more closely makes it possible to determine whether LabelGen performed
satisfactorily and whether CALDERA was an appropriate tool choice.

Figure 5.2 shows packets with the comment "T1036.005," which corresponds
to the ATT&CK tactic defensive-evasion, technique Masquerading: Match
Legitimate Name or Location [36]. The Wireshark window to the right
counts seven packets. The command executed for this attack is short; hence
the number of packets is few. To the left in Figure 5.2, the fields agent_-
reported_time and run are marked with red boxes. By looking at the ar-
rows pointing to the first and the last packets in the .pcap file, it is evident
that the timestamps match. It is important to note that the timestamps in
Wireshark are two hours behind the timestamps in the CALDERA report.
The reason for this is that Wireshark maintains timestamps in UTC [59],
whereas network packets are stored in the local time zone of Norway, which
is currently GMT+2. Thus, the evaluation should be based on minute- and
second-numbers. Furthermore, the timing of the last packet and run are
not an exact match. This is because no more packets were sent between the
attacker and the victim throughout the attack time interval, resulting in a
slightly off time stamp. I analysed this further by examining the next pack-
ets in the logfile, which contained neither the IP addresses of the attacker
nor any other ATT&CK labels. To further inspect if the labelling was cor-
rect, a beacon request from the attacker to the victim is presented in Figure
5.3. This packet was sent before the labelled T1036.005 packets that were
shown in the previous figure, Figure 5.2. It should therefore not be labelled
with this technique, but rather as C&C. Figure 5.3 confirms that this is a
C&C packet, as the output in the middle of the figure is decoded, showing
an empty instructions-object.

Manual inspection of benign packets concluded that the traffic originated
on the victim machine’s NAT network and was directed to other IP ad-
dresses. Encryption (port 443) was frequently utilised, indicating that Be-
nign was the accurate label for the packets. Wireshark’s manual inspection
allowed for packet comment filtering and statistics viewing. I could search
for "Benign" and check which IP addresses were involved. The majority of
the addresses were unknown, and the IP address of the victim system run-
ning GHOSTS was by far the most common. A few packets were labelled
as benign that contained system calls such as "BROWSER" between the
DetectionLab VMs. They should instead be labelled as background instead
of benign. I would therefore conclude that some of the benign packets were
mislabelled.

Chapter 5. Results and evaluation 51

Figure 5.2: Packets related to ATT&CK technique T1036.005.

Figure 5.3: Confirmed beaconing packet prior to attack step T1036.001.

Chapter 5. Results and evaluation 52

5.2.1 Packet statistics
Table 5.1 presents the number of packets in each of the categories in the
labelled .pcap file and the datasets. Except for the second to last row in the
table, which counts the number of missing labels, the techniques are sorted
alphabetically. The majority of the packets are labelled as background and
benign, as shown in Table 5.1. In a realistic scenario, attack traffic would
be substantially less than benign or background traffic [90]. This makes
the labelled .pcap file and datasets realistic in that regard. DetectionLab
generated most of these background packets, which would be realistic in
an enterprise environment. Therefore, this traffic was not filtered in an
attempt to create a more balanced dataset. The vast majority of the rows
in Table 5.1 display the CALDERA attack techniques and the number of
packets associated with each approach in the dataset. There is not nec-
essarily a correlation between a low number of packets and a successful
attack. The amount of packets is mostly determined by the attack’s com-
mand or response. The number of packets on row 9 of technique T1036.002,
for example, is 3492. This attack stage involves sending several large files,
as I observed during a manual inspection. As a result, this attack contains
many packets, compared to T1518.001 on row 7 from the bottom, which
only has 6 packets.

Label Technique name No. of packets
Background Background traffic 1 488 521
Benign Benign Internet Browsing 183 037
T1003 Credential Dumping 877
T1007 System Service Discovery 79
T1012 Query Registry 11

T1016 System Network Configuration Discov-
ery 30

T1018 Remote System Discovery 307
T1033 System Owner/User Discovery 47
T1036.002 Masquerading: Right-to-Left Override 3492

T1036.005 Masquerading: Match Legitimate
Name or Location 7

T1041 Exfiltration over C2 Channel 3

T1049 System Network Connections Discov-
ery 26

T1055 Process Injection 906
T1056.001 Input Capture: Keylogging 21
T1057 Process Discovery 123

T1059.001 Command and Scripting Interpreter:
PowerShell 70

T1069 Permission Groups Discovery 27

Chapter 5. Results and evaluation 53

T1070.004 Indicator Removal on Host: File Dele-
tion 30

T1070.006 Indicator Removal on Host:
Timestomp 7

T1071.001 Command & Control: Web Protocols 631
T1082 System Information Discovery 53
T1087 Account Discovery 14
T1112 Modify Registry 8
T1113 Screen Capture 283

T1114.001 Email Collection: Local Email Collec-
tion 14

T1115 Clipboard data 7
T1119 Automated Collection 16

T1134.001 Access Token Manipulation: Token Im-
personation/Theft 45

T1134.002 Access Token Manipulation: Create
Process with Token 8

T1218.011 Signed Binary Proxy Execution:
Rundll32 7

T1518 Software Discovery 10

T1518.001 Software Discovery: Security Software
Discovery 6

T1546.003
Event Triggered Execution: Windows
Management Instrumentation Event
Subscription

10

T1547.009 Boot or Logon Autostart: Shortcut
Modification 28

T1552.004 Unsecured Credentials: Private Keys 11
T1561.001 Disk Wipe: Disk Content Wipe 265
Empty No label 929

Total number of packets: 1 679 966

Table 5.1: Mapping of techniques and the corresponding number of packets
in the labelled network file.

Figure 5.4 visualises the number of packets for each attack strategy to com-
plement the representation of packets per technique presented in Table
5.1. Packet with missing labels, background and benign labels are excluded
from this figure because they distort the proportions. The figure clearly il-
lustrates that the attack T1036.002 had the most packets, which is due to
the fact that this attack transfers huge files, as previously stated.

Chapter 5. Results and evaluation 54

Figure 5.4: Number of packets for each technique

Table 5.2 provides additional statistics. This table shows the distribution
between packets related to attacks, background and benign traffic, includ-
ing packets without a label. Because it may be difficult to determine if the
labelling was satisfactory or not based on the preceding table (5.2), this
table summarises the details. Table 5.2 that the dataset contained 7479
packets related to attacks, accounting for 0.44% of the whole dataset. Back-
ground packets account for 88.60% of the dataset, whereas benign traffic ac-
counts for 10.89%. We can also see how many per cent of the packages were
unlabelled in this table, which was 0.06%. The last column summarises
that 99.93% of the packets were labelled. This value, in my opinion, is
satisfactory, showing that LabelGen labelled the majority of the packets
correctly. After manual inspection, the unlabelled packets were revealed to
be related to ARP queries, ICMP traffic, and other background operations.

Chapter 5. Results and evaluation 55

No. of packets Percentage
Attack 7479 0.44%
Benign 183037 10.89%
Background 1488521 88.60%
Empty label 929 0.06%
Total no. labelled
packets 1 679 037 99.94%

Total no. packets 1 679 966 100%

Table 5.2: Number of packets and percentage of each category.

5.3 Evaluating LabelGen
LabelGen could be used for other network logfiles, as long as the CALDERA
report - in its current format - is the source for labelling on attack tech-
niques. LabelGen is bound to CALDERA but not to the specific experiment
that was conducted in this thesis. Some variables must be adjusted before
LabelGen may be used to label other logfiles. The IP addresses of the ma-
chines that generate background traffic and the IP addresses of the victims
and attackers must be adjusted to match the other experiment. Similarly,
the experiment must be represented in the .pcap file and the CALDERA
report.

5.3.1 Experimenting with a different attack
I conducted another short experiment to evaluate LabelGen, using the same
approach as outlined in Section 4.7. In CALDERA, I created a new adver-
sary profile and included ten attacks from different ATT&CK techniques
that were not included in the APT29 EMU plan. The goal was to test the
approach for a broader spectrum of attacks. The profile can be seen in Fig-
ure 5.5. The attacks shown are related to the tactics execution, privilege-
escalation, defensive-evasion, discovery, exfiltration and persistence are
shown.

The operation flow of the experiment is shown in Figure 5.6. Not all
planned attacks were carried out effectively, as indicated by the various
coloured circles. This was largely due to CALDERA failing to provide the
necessary payloads or Powershell refusing to execute the given command.
The goal of this experiment, however, was to primarily create a dataset to
evaluate LabelGen rather than to carry out the most successful attacks.

Before LabelGen could be utilised, the CALDERA report had to be pre-
processed. Although, in the future, LabelGen should account for insuffi-
cient data.

Chapter 5. Results and evaluation 56

Figure 5.5: Custom adversary profile created in CALDERA.

Figure 5.6: Custom adversary plan running in CALDERA.

Chapter 5. Results and evaluation 57

Figure 5.7: Corresponding timestamps in the new experiment.

Manual inspection
The labelled logfile from this experiment will be analysed in the same way
as the prior manual inspection method. Wireshark will once more be used
to display and document the findings.

The experiment took approximately 30 minutes and produced 193 078
packets. After processing the logfile from the experiment with LabelGen,
the labelled file contained 192 993 packet comments. Similar the figures
in Section 5.2, Figure 5.7 shows the mapping between agent_reported_time
and run, where it is clear that the packet is labelled correctly within the
time frame of the current attack step, T1201. As before, the total number
of packets labelled to each attack can be seen in a table, namely Table 5.3.
This table illustrates that, similar to the results of the original experiment,
the majority of packets are benign and background, whereas attacks are in
the minority. 85 packets were unlabelled, and this was shown in Wireshark
to be ARP and other background processes.

Label Technique name No. of packets Percentage
Background Background traffic 142 571 73.84%

Benign Benign Internet
Browsing 43 990 22.78%

T1055 Process Injection 20 0.01%

Chapter 5. Results and evaluation 58

T1071.001
Boot or Logon Au-
tostart: Shortcut
Modification

87 0.04%

T1106 Native API 5823 3.01%
T1112 Modify Registry 4 0.002%

T1134 Access Token Ma-
nipulation 14 0.007%

T1201 Password Policy
Discovery 10 0.005%

T1204.002 User Execution:
Malicious File 455 0.23%

T1505.002
Server Soft-
ware Component:
Transport Agent

15 0.007%

T1105.003
Server Software
Component: Web
Shell

4 0.002%

Empty No label 85 0.04%
Total labelled: 192 993 99.95%

Total: 193 078 100%

Table 5.3: Mapping of techniques and the corresponding number of packets
in the labelled logfile.

5.4 Machine Learning
Supervised machine learning algorithms requires labelled datasets. In this
thesis, two labelled datasets were created. By training a proof-of-concept
machine learning (ML) model, it could be demonstrated that the datasets
are valuable for later usage with anomaly-based IDS. Anomaly-based IDS
frequently use ML, which involves training a model on labelled data. This
section will first describe the general concepts of ML as an introduction to
the implementation of ML in the next section.

ML is a subset of Artificial Intelligence (AI), which is defined as intelligence
displayed by machines [100, 94]. The field of AI research, according to Legg
et al. [78], is "the study of any system that perceives its environment and
takes actions to increase its probability of achieving its goals".

ML is the study of computer algorithms that can improve themselves auto-
matically through experience and data usage [88]. Heung et al. [67] define
ML as the automated process of discovering patterns in large datasets us-
ing computer-based statistical models. The two primary steps of this pro-
cess, according to Liu et al. [80], are training and testing. By using learn-

Chapter 5. Results and evaluation 59

ing algorithms, the training seeks to learn from known properties. Using
the knowledge learned in the training step, testing attempts to predict the
known properties [80]. Training and testing are in this context referred to
as learning and prediction [80].

ML algorithms create a model based on training data to make predic-
tions or decisions. Without being explicitly programmed, they adopt learn-
ing algorithms to create sample rules [76, 80].

Three major categories or paradigms are frequently used to classify ML
methods, depending on the type of input or responses provided to the learn-
ing system. There are several categories, but the following are the most
widespread:

• Supervised learning: a "teacher" or an expert presents the computer
with example inputs and their expected outputs. By mapping the ex-
ample input-output pairs, the objective is to learn a general rule [105].
Supervised learning is based on labelled datasets, where the learning
algorithm is trained and builds a model that can predict the correct
label for unlabelled, arbitrary input [80]. This is the most frequently
used learning algorithm [64, 89].

• Unsupervised learning: the dataset given to the learning algorithm
has no labels. The aim is that the learning algorithm itself should
find structure and previously unknown patterns in its input [80]. Un-
supervised learning methods include, for example, Neural Networks
and Probabilistic Methods [138].

• Reinforcement learning: a computer program, known as an agent,
should learn behaviour to accomplish a particular goal through trial-
and-error interactions with a dynamic environment [74]. The train-
ing data contains information that is somewhere between supervised
and unsupervised learning [80]. The training data does not indicate
the correct input-output pairs but instead provides an indicator of
whether an action is correct or not. In other words, the program is
provided analogous feedback [74, 80].

Some other types of ML techniques to mention are semi-supervised, self-
learning, deep learning and active learning. However, the techniques listed
above are the categories into which methods are traditionally classified
[134].

Each ML method has its own set of advantages and disadvantages. De-
pending on the dataset, a particular algorithm may perform well on some
datasets while performing poorly on others [80]. It is also important to re-
duce errors caused by the algorithm (bias) and data-related inaccuracies.
By scaling up the algorithm or scaling down the data, one can eliminate
overfitting. On the algorithmic side, the former method decreases bias,
while the latter method reduces variance on the data side [80]. If the train-
ing data is extensive, it can result in high computational costs and cause
the learning algorithm to learn noise or coincidental patterns. The data,
therefore, needs to be scaled down and processed.

Chapter 5. Results and evaluation 60

Figure 5.8: The workflow of ML with feature engineering [140]

The process of extracting attributes, properties or attributes that should
be used in the ML model, based on domain knowledge, is is called feature
engineering or feature selection [133]. Figure 5.8 illustrates that this pro-
cess takes place after the raw data is acquired, resulting in final features
that are subsequently used in the ML modelling. Feature engineering rep-
resents "[..] the act of extracting features from raw data and transforming
them into formats that are suitable for the machine learning model" [140].
Aside from labelling datasets, feature engineering is regarded as one of the
most time-consuming phases of ML, especially when it comes to facilitating
APT detection and IDS approaches [9, 50]. Network data must be pre-
processed because its raw contents are incompatible with automated IDS
approaches [114]. Practitioners agree that datasets need to be revised and
that feature engineering and data cleaning is time-consuming [114][140].
Additionally, datasets often have numerous features which may impact the
performance of the ML algorithms, and they are also likely to be correlated
in some way [114]. Thus, it is necessary to decrease the dimensions of the
dataset by discarding any redundant, respectively irrelevant features [50].

5.5 Proof-of-concept
A basic ML model was trained to evaluate if the created datasets would be
useful for future use in anomaly-based IDS as a proof-of-concept. It should
be emphasised that this section aims to demonstrate and review whether
LabelGen generates suitable datasets. The procedure of feature engineer-
ing should ideally have been more thorough if time constraints were not a
factor.

Support Vector Machine (SVM), a widely used supervised learning model
[65]. SVM is a set of similar supervised learning algorithms for classifi-
cation, and regression [48]. SVM learns by example and assigns labels to
objects, and builds a model that predicts the assigned label [95]. An SVM
algorithm is non-probabilistic, binary and a linear classifier [48]. A lin-
ear classifier will use the object’s characteristics to identify which class or
group the object belongs to through a linear combination, ax + by where a
and b are constants. [139][8]. Given a set of labelled training data, the SVM
learning algorithm builds a model that predicts which of two categories a

Chapter 5. Results and evaluation 61

new example belongs to [48].
SVM is a powerful and robust data classification technique, but it is

not suitable for large datasets. The training complexity of SVM is mainly
dependent on the dataset size [22]. Although it has solid theoretical foun-
dations and substantial classification accuracy, it is unsuitable for large
datasets. If the training data is immense, there will be significant comput-
ing expenditures. In addition, it could also cause the learning algorithm to
learn noise or coincidental patterns [80].

5.5.1 Implementation of SVM
The libraries Pandas1 and scikit-learn2 were used in the implementation of
SVM. These are some of the most popular tools for ML in Python [99]. The
SVM implementation will not be shown in pseudo-code because it follows a
typical pattern that I consider irrelevant to the dataset’s evaluation.

The generated datasets are imbalanced, as this thesis previously presented
in Section 5.2.1, packet statistics. To perform better prediction, an ML al-
gorithm should ideally use a balanced dataset with an even distribution
of labels. Thus, a Pandas script was written to randomly select 3-30 rows
within each label category, dependent on the quantity, to create a more bal-
anced dataset. Admittedly, this dataset is not properly balanced, but given
that several label categories included hundreds of packets, whereas others
contained 3-10, narrowing the distribution to this number is useful.

When it comes to feature engineering, according to Stojanovic et al. [114],
there are commonly three approaches for selecting features: wrapper ap-
proach, filters approach and embedded approaches. The wrapper approach
focuses on searching through the space of possible features, with model
training and cross-validation performed for each subset of features [114].
Similarly, the filter method also searches through the feature subsets, but
it does so before training the model and acts independently of the chosen
learning algorithm [114]. Finally, the embedded approach selects features
throughout the training process and is often tailored to a single learning
algorithm. According to Breiman et al. [17], embedded feature selection is
available for most statistical regression and classification models.

The feature engineering approach in this thesis has been the embed-
ded method. I initially removed columns from the dataset that I perceived
as irrelevant, e.g. ip.checksum.status, ip.completeness, tcp.reassembled,
http.connection and http.user_agent. These columns generally contained
identical values across the dataset, which I presumed would not benefit the
model. Once the dataset was reformed, the feature engineering was carried
out according to the definition of the embedded approach. I experimented
with giving different features to the learning algorithms, adding and re-
moving features to find which combinations gave the best predictions. The
final list of features is listed below:

1https://pandas.pydata.org/
2https://scikit-learn.org/stable/

https://pandas.pydata.org/
https://scikit-learn.org/stable/

Chapter 5. Results and evaluation 62

• frame.time

• frame.len

• frame.protocols

• eth.type

• ip.hdr_len

• ip.len

• ip.flags

• ip.ttl

• ip.proto

• ip.checksum

• tcp.srcport

• tcp.dstport

• tcp.port

• tcp.stream

• tcp.len

• tcp.seq

• tcp.ack

• tcp.flags

• tcp.window
_size_value

• tcp.analysis.bytes
_in_flight

• tcp.analysis.push
_bytes_sent

• udp.srcport

• udp.dstport

• udp.port

• udp.length

• udp.checksum

• udp.checksum.status

• udp.stream

The columns containing IP and MAC addresses are intentionally ex-
cluded from the feature list. These included ip.dst, ip.src, eth.dst and eth.src.
If these features were provided to the model, it might classify packets based
on them, which is undesirable. IP addresses are the easiest properties for
adversaries to change once they are detected [49]. Therefore, if an ML
model is trained on addresses and applied in IDS, the detection would not
be generalisable. Nevertheless, IP addresses associated with the attacks in
this work were controlled. However, because the victim VM generated both
background and attack traffic, its IP address would appear in numerous
columns in the dataset. This led me to the decision to exclude IP addresses
entirely, preferring to concentrate on creating features that would be adapt-
able in the future.

Parameters given to the SVM model were as follows:

clf_svm = SVC(C=10, kernel=’rbf’, gamma=0.0001,
random_state=42)

As seen in the code above, the Radio Basis Function (RBF) was applied
as the kernel. The dataset was scaled down to 500 samples and not nor-
malised. A confusion matrix was plotted with the data from the SVM, which
can be seen in Figure 5.9.

Confusion matrices are often used to define and visualise the perfor-
mance of a classification algorithm [109]. They reflect the number of ex-
pected and actual values, as seen on the names of the X- and Y-axis in Fig-
ure 5.9, "Predicted Label" and "True Label". The model was trained to pre-
dict packets labels, and the confusion matrix displays the predicted label for
each packet on the X-axis and their actual labels on the Y-axis. The number
of places for which the predicted label equals the actual label is represented
by the diagonal elements (top left to bottom right). Off-diagonal elements
represent the elements that were mislabelled by the classifier [106]. This
diagonal line may be seen in Figure 5.9, though most of the data points
were in fact mislabelled as mislabelled by the classifier as T1082. Both

Chapter 5. Results and evaluation 63

Figure 5.9: Confusion matrix with the new dataset.

background and benign packets were mislabelled. However, the diagonal
line on the left side of the figure illustrates that some packets were cor-
rectly labelled, even though the majority were not.

Accuracy is a standard metric for evaluating the classifier’s or the model’s
performance. The accuracy of the model trained in this proof-of-concept
model was 28.80, representing the percentage of true positive and true neg-
ative to all data points. The F1 score, which is often valuable for calculating
accuracy on imbalanced datasets such as this one, is 31.85. This indicates
the predictive performance of the model. This learning model is the most
frequently used

5.6 Summary and discussion
This chapter has presented and evaluated the labelled logfile and the datasets
that LabelGen created. Manual inspection indicated that the majority of
the packets were labelled, with a percentage of 99.94% labelled packets.
LabelGen was further evaluated with a different logfile as input. The re-
sults of evaluation suggests that LabelGen correctly labelled these packets
as well, with a labelling percentage of 99.95%. However, certain packets
were discovered to be mislabelled, which did not reflect in the tables. On

Chapter 5. Results and evaluation 64

one of the datasets, a proof-of-concept ML model was trained, demonstrat-
ing that it was indeed valuable and possible to utilise in ML, despite the
poor final results. This is most likely due to the model itself. Several of the
topics discussed in this chapter will be addressed in the next chapter.

Chapter 6

Discussion and related
work

This chapter will reflect on the work done in this thesis compared to other
approaches and alternatives. The first two topics are CALDERA and la-
belling approaches. LabelGen is discussed next. Following that are some
reflections on an alternative approach considered, namely Docker contain-
ers. Finally, the tools and alternatives for generating benign traffic will be
discussed and how realistic the experiment environment was.

6.1 CALDERA as a framework
CALDERA is primarily designed for autonomous simulation, manual red-
team engagements, and automated incident response [5]. CALDERA was
not developed for the purpose of capturing network traffic from simulated
attacks, which was the focus of this thesis. It has, nevertheless, performed
acceptable for this purpose and has proven to be a viable platform for future
expansion.

The autonomous aspect of CALDERA is intuitive, and MITRE offers
considerable documentation on the framework. The options for attacks to
run are adjustable, in the way that the user can run operations from a
pre-defined adversary profile, just like APT29, or create a new adversary
profile.

The options for attacks are adjustable in that the user can choose to launch
attacks from a pre-defined adversary profile, similar to APT29, or construct
a new adversary profile. Additionally, operations can be executed with-
out an adversary profile by applying individual commands that map to
ATT&CK tactics and techniques. As the agent connects to the C&C server,
the operation (attacks) can be executed manually or automatically. While
the operation is running, the web interface on the CALDERA server up-
dates the operation flow, displaying the executed commands and their out-
put. I found CALDERA to be straightforward and effective as a framework.
However, there are significant drawbacks that apply to the EMU plans.

65

Chapter 6. Discussion and related work 66

There seems to be a discrepancy between what MITRE described the
EMU plans as capable of and what they achieved in practice. Most of the
APT29 EMU plan attacks are attempted, although many fail to execute
due to missing payloads or because they were skipped from the EMU plan.
I could not identify why these attack steps were missed, but I assume it is
related to the LAVA engine in CALDERA, which determines what should
be executed. This was described previously in Section 2.4 about CALDERA.
Several attack steps were reliant on the preceding attack, requiring output
or files provided by the previous attack. Thus, if the first attack failed or
was skipped, that would also be the case for the second attack. Conse-
quently, mainly the basic attacks in the APT29 EMU plan were success-
fully executed, which often comprised short Powershell commands. Fur-
thermore, several of the more complex assaults in the EMU plan failed
because of missing payloads.

During the experiment, I kept a record of which attacks were successful,
unsuccessful, or skipped, as mentioned briefly Section 4.7 Implementation.
The results of this logging are shown in Figure 6.1, as the Excel sheet where
I documented the experiment. Each attack step in the EMU plan, includ-
ing their related ATT&CK tactics and techniques, payloads and whether
or not they were successfully executed, are shown in the figure. A signifi-
cant portion of the attacks that needed payloads was skipped, as shown in
the column to the right, colour-coded after their execution status. This fig-
ure supports my argument regarding the missing payloads. Furthermore,
as seen in Figure 6.1 with yellow rows, I removed attacks 41, 50, 56, and
79 from the EMU plan. Attack 56, in particular, was a difficulty. This at-
tack marks the separation between the two scenarios in the APT29 EMU
plan, which were presented in Section 4.3.1. It included shutting down the
target machine, which destroyed the agent running on it and terminated
the CALDERA agent-server C&C connection. Therefore, the subsequent
attacks would not be executed at all. When the machine restarted, the RAT
that connects the agent to CALDERA would not automatically start; the
C&C connection needed to be initiated manually. This was not reliable, as
the whole plan was supposed to automatically execute from start to finish.
Thus, this step was deleted from the APT 29 EMU plan. I question the
fact that this attack is included in this EMU plan. CALDERA is a tool for
autonomous red-team testing, whilst some of the most impacting plugins
are faulty. It is indeed probable that the EMU plan is not intended to be
performed all at once. To the best of my knowledge, that has never been
stated anywhere.

Overall, I conclude that CALDERA provides a solid foundation for mapping
to the ATT&CK framework, which was the main objective of this master
thesis. Because the ATT&CK taxonomy is widely adopted in the cybersecu-
rity industry [98], I would argue that a dataset with such labels would ben-
efit the community. By mapping to both ATT&CK techniques and groups,
particularly APT29, the datasets would contribute to a common under-
standing. Researchers can collaborate and understand each other’s work
better when they refer to the common taxonomy. Furthermore, CALDERA
has proven to be extensible, allowing for the addition of new attacks and

Chapter 6. Discussion and related work 67

Figure 6.1: APT29 Emulation plan: planned and executed steps.

Chapter 6. Discussion and related work 68

the creation of new adversary profiles. Custom commands are also possible,
suggesting that CALDERA might be used with other frameworks or tools
to launch additional attacks. This way, one can adapt to using various tools
while keeping CALDERA as the foundation. In conclusion, both CALDERA
and the EMU plans are active research projects at MITRE, promising fur-
ther improvements on both products and their integration [45][10].

6.1.1 Alternative tools for emulation
Because of its mappings to ATT&CK techniques, groups and EMU plans,
CALDERA has demonstrated to be a practical choice of tool for simulating
attacks. As MITRE continues to upgrade ATT&CK, the developers work-
ing on CALDERA are likely to update the framework. Frequent updates
are one of the advantages of CALDERA. Other tools, however, could be
employed in this thesis as well. Popular penetration testing tools such as
Metasploit or Cobalt Strike 1 are among the alternatives. Such tools, which
are designed primarily for penetration testing, are frequently employed in
actual malware, according to a threat report from Recorded Future [103].
Cobalt Strike was discovered to be the most commonly used C&C software
by adversaries in 2020 [103]. In addition to C&C, the tool has a wide range
of other attacks, including reconnaissance, keylogging, and the develop-
ment of Trojan horse malware [46]. If traffic from this tool could be cap-
tured, it would be highly beneficial for detection. However, because Cobalt
Strike is closed source and requires a licence, there are certain limitations
[66]. Metasploit is a tool that supports the complete attack scenario and
is frequently used by attackers [63]. Metasploit offers the ability to scan
for and exploit known vulnerabilities, and it has a wide array of attacks.
However, there is no mapping to ATT&CK tactics nor APT groups.

Atomic Red Team2 is a collection of short and convenient tests that
has a mapping to ATT&CK techniques and hence might be used to sim-
ulate attacks. However, it does not provide the same level of continuity as
CALDERA. It would require building a PowerShell module to run the tests
automatically. Nevertheless, CALDERA automated this process with EMU
plans.

6.2 Labelling network traffic
The labelling approach in this thesis was the combination of behavioural
profiles and injection timing. Behaviour profiles employ the behaviour gen-
erated by profiles, which are typically computer programmes, to label datasets
[62]. The behaviour profile for attack traffic, and thus general C&C labels,
were applied to the IP addresses of the victim VM and the attacker VM.
Based on the timestamps in the CALDERA report, the injection timing
approach was also used to label attack traffic on a technique level. This
method of labelling would not qualify as a behavioural profile because it is

1https://www.cobaltstrike.com/
2https://atomicredteam.io/

https://www.cobaltstrike.com/
https://atomicredteam.io/

Chapter 6. Discussion and related work 69

merely based on the timing value [62]. This approach was used for labelling
the widely used public dataset CICIDS2017 [107].

In principle, behavioural profiles and injection timing would not guar-
antee that no mislabelling would occur [55]. Labelling by IP addresses and
the behaviour profiles that these addresses represented proved to be a suit-
able approach in this thesis. Applying labels based on IP addresses might
not be the best approach. Attack traffic can (and often will) blend in with
traffic originating from a supposedly benign IP address, i.e. if the machine
is infected. However, the environment was controlled, and the malware
was isolated in this work. The respective networks assigning IP addresses
to the behavioural profiles were sufficiently controlled to make this method
adequate. The manual inspection also indicated that IP-based labelling
correctly labelled malicious traffic. No malicious characteristics in traffic
labelled "background" or "benign" occurred during the same time as the
attacks, indicating that the behavioural profile combined with timing injec-
tion was a suitable approach to labelling in this thesis.

I decided on a labelling approach in which a network logfile is labelled
and subsequently exported to datasets in CSV and JSON formats. These
datasets include both raw packet data and a label, as previously shown in
Section 5.1. Unlike datasets derived from .pcap files, flow data has been
the data format in several of the publicly accessible datasets that are of-
ten utilised by the cybersecurity community [26] [111]. In my datasets,
I do not consider IPFIX or Netflow to be an appropriate format. IPFIX
summarises the network packets by properties such as ports, protocols or
timeslots [130]. Hence, all the packets between the victim VM and the at-
tacker VM would be compressed into flow data. The CALDERA attacks
use the same TCP and UDP ports for the entire operation, and execute
the attacks sequentially. IPFIX would therefore summarise these packets.
Consequently, most of the CALDERA attacks’ timestamps would be miss-
ing from the flow data. The resulting datasets would not be fine-grained
enough to include labels for each attack technique. Finally, timestamps
and injection timing are the only options for technique-level labelling in
this work, in my opinion.

Nonetheless, because LabelGen generated a labelled .pcap file, its raw
format provides various options for later use. To display statistics or create
IDS detection rules, the file could be exported to IPFIX data. Because .pcap
can be converted to IPFIX but not the other way around, the .pcap format
allows for more flexibility.

6.3 LabelGen
LabelGen was created to label network logfiles from CALDERA. As a re-
sult, it is limited to the framework and highly dependent on the CALDERA
report’s format. The labelling will fail if LabelGen is given a .pcap file and
a technique specification source other than CALDERA. Therefore, I con-

Chapter 6. Discussion and related work 70

clude that LabelGen is not generalisable. Because CALDERA is updated
regularly, the developers will add more attacks when ATT&CK is updated.
LabelGen would successfully label a logfile with a newer CALDERA attack,
such as Log4j, as long as the CALDERA post-attack report follows its cur-
rent format.

In terms of usage, I consider LabelGen to be clear and understandable.
It only needs minor alterations to work with a logfile other than the one
used in this thesis. As per best practice principles, variables that are likely
to change frequently, such as IP addresses and logfiles, are conveniently
assembled.

The purpose of LabelGen has been to investigate whether a concept worked
or not. Based on the results presented in Chapter 5 one might suggest that
the labelling was accurate. LabelGen generated labels for all of the attacks
in the APT29 EMU plan and benign and background labels. I conclude that
the general idea of LabelGen was achieved based on the findings in Chapter
5.

However, the results presented and the labelling approach can not guar-
antee 100% correct labelling. Because manual inspection of each packet is
impractical for files of this size, only a sample of the packets formed the
basis for evaluation.

The developed proof-of-concept ML model also shows that the dataset
can be used to train a more complex model in the future, which might ap-
ply to the NIDS detection approach. However, the feature engineering and
learning algorithms should be improved before being used in real-world sit-
uations.

6.4 Use of containers/DetGen
The framework DetGen created by Clausen et al. [26] was used in the work
by Asprusten et al. in [6] 3. DetGen generates various attacks using Docker
containers, an approach originally discussed for this thesis. We discussed
whether I could extend and improve in [6] by emulating APT attacks in
containers. Container technology could be used to label attack, benign, and
background traffic accurately. The logging and subsequent labelling control
is the main advantage of executing attacks within containers. The contain-
ers isolate the attacks and network traffic, allowing for collecting ground
truth information about the origin of the traffic [26]. Because of the con-
trolled environment, ground truth information implies that one can be cer-
tain which traffic is malicious or not. Additionally, the dataset’s labelling
would gain a higher percentage of accuracy. While ’noise’ is introduced in
some contexts and this thesis’s experiment, such features could be added
to the containers as an option to create a more realistic environment. This
was done by Clausen et al. with DetGen [26].

3My summer internship at FFI, June-August 2021.

Chapter 6. Discussion and related work 71

As initial testing showed, the container approach was not practical for the
experiment conducted. If I labelled traffic from each container as separate
attacks, this required a significant amount of work to add each attack to
different containers. This procedure was far too extensive, resulting in a
loss of context between the various attack steps in the EMU plan.

Because containers only perform their assigned tasks and then stop,
maintaining state between attack steps would be challenging. Attack steps
dependent on input from previous steps would fail to execute. If the same
container executed all the attacks, this approach would be no different from
what I did in the experiment. The IP addresses could be compared to con-
tainers in this case because the networks were carefully regulated to isolate
and control traffic and malware.

Although the CALDERA server can run in a Docker container, the Agent
on the victim machine cannot. As a result, using Docker containers in this
thesis would require a significant effort to get everything functioning prop-
erly, resulting in a trade-off between reward and work.

In addition to running benign and malicious scenarios in Docker con-
tainers, DetGen also addresses the challenges presented in Section 3.4 re-
garding unrealistic network traffic in current datasets. They solved this
problem by adding latency and randomisation to the containerised traffic
[26]. However, because the aim was to have the experiment as automated
as possible, I chose GHOSTS. While writing this thesis, DetGen requires
manual input for the scenarios to execute, which would be time-consuming
and possibly distracting during the experiment. Instead, I wanted to con-
centrate entirely on the experiment and document how this proceeded.
Even though I lost some elements of realism, I would argue that it was
otherwise not that unrealistic to use DetectionLab and GHOSTS to gener-
ate the background and benign traffic. Both tools are developed for use in
experiments, focusing on realism.

6.5 GHOSTS and its alternatives
I had experience with GHOSTS from the work I contributed within [6], and
thus it was chosen as the framework for generating benign traffic. It is rel-
atively simple to determine which tasks the GHOSTS Client (Non-Player
Character, NPC) should perform, and it generates background noise that
adversaries frequently blend in with [93]. On the other hand, more de-
tailed documentation of GHOSTS would be beneficial. This is a weakness
of using GHOSTS because it requires a complex setup. It runs three Docker
containers and requires some prerequisites to function properly.

CALDERA has a human plugin that provides a similar feature to GHOSTS
in terms of simulating benign users. Others have managed to successfully
simulate benign user activity using this plugin [19]. However, I could not
complete his task, which could be due to the CALDERA version, but the
documentation did not guide how to resolve the issue.

Chapter 6. Discussion and related work 72

DetGen could have been used to generate benign traffic as well, but there
were some technical issues with running nested virtualised environments.
Instead, with the GHOSTS approach, the synthetic realism that DetGen
adds was for this experiment actual network congestion.

6.6 The environment
I did some testing on two different virtual machines in preparation for the
experiment. I tried setting up a C&C connection by installing a CALDERA
agent on the victim VM. Windows Defender immediately flagged this on
the victim VM, which I had to turn off to establish a foothold and C&C
contact. For the CALDERA attacks to work, the group policy for allowing to
execute scripts was required, and the firewalls were turned off. Successful
attacks were required to provide the most valuable results for the datasets.
Although such settings are not ideal in real-world situations, this policy
may apply to some organisations or users with higher privileges.

In the DetectionLab setup, Windows Defender is by default disabled.
Because DetectionLab should assist defenders in testing products and ex-
periments, the attacks must work. On the Ubuntu VM (Logger), Detection-
Lab comes with the SIEM tool Splunk that could configure rules to detect
CALDERA events. Since CALDERA was flagged by Windows Defender dur-
ing initial testing, similar rules could be added to Splunk to create event
alerts.

Real environments may experience fluctuations and faults introduced by
the complexity of modern networking. Examples include packet delays
through network congestion, unexpected connection drops or resets, and
out-of-order arrivals. All these factors result in variations in real network
traffic, which is often a missing element in separated or virtualised envi-
ronments [26]. This aspect was also missing in this experiment. However, I
would argue that the focus of this thesis was on creating fine-grained labels
for the dataset rather than creating realistic conditions in its environment.

One important aspect of the experiment was the attacker’s presence in an
enterprise environment. The attacker and victim VMs were supposed to be
on the same network, similar to a real-world attack. They were distinct net-
work entities with different IP addresses. Containerisation, as described in
Section 6.4, would not contribute to a realistic environment. The VMs could
not easily communicate, which was necessary for creating background traf-
fic. DetectionLab was a better option because it automates the creation of
the enterprise environment and the experiment background operations.

It is safe to conclude that the experiment environment in this work was
not realistic. The security mechanisms normally in place were intention-
ally turned off. The objective of this project was to carry out successful
attacks that generated network traffic and produced labelled datasets, and
the created environment for this was built without major changes.

Chapter 7

Conclusion and future
work

This thesis has presented the experiment conducted with CALDERA to
generate an APT network logfile using the EMU plan for APT29. LabelGen
processed the logfile and generated one fine-grained labelled logfile and two
fine-grained labelled datasets. The labelling technique used by Landauer
et al. inspired the labelling approach in LabelGen. The APT attacks were
distinguishable on a technique level. A dedicated chapter presented and
reviewed the labelled files, suggesting that accurate labelling was applied.

This chapter will summarise and analyse the results of this thesis with
the research question. A final section identifies areas for future work.

7.1 Summary of results and findings
Can MITRE CALDERA be used to generate a dataset of APT behaviour
with fine-grained labels that can identify different stages of the attack?

The goal of this thesis was to find out if CALDERA could be used to create
a fine-grained labelled dataset in which the stages of APT attacks could be
identified. The results presented in this thesis suggests CALDERA is ap-
propriate for this purpose.

The EMU plan in CALDERA emulated the adversary group APT29 by at-
tacking a host on a simulated enterprise network in a controlled experi-
ment. The network traffic generated by the activities related to attacks,
background and benign behaviour during the attacks were captured. The
logfile contained 1 679 966 network packets. The resulting logfile proves
that the APT29 EMU plan in CALDERA did successfully generate APT
traffic.

From the logfile, LabelGen created one labelled logfile and two labelled
datasets. LabelGen automates the labelling process, starting with an un-
labelled .pcap file and ending with three labelled files in their respective
formats. The labelled logfile was shown to contain 7479 packets related to

73

Chapter 7. Conclusion and future work 74

the APT29 emulation (0.44%), 1 488 521 packets labelled as background
(88%) and 183 037 packets labelled as benign (≈11%). 929 packets (0.06%)
remained unlabelled. A close examination indicated that the packets la-
belled as APT29 attacks contained traffic or data from CALDERA. Thus,
LabelGen concluded to be able to generate labelled datasets from the APT
logfile.

LabelGen was evaluated by conducing a new experiment and using the
generated logfile as input. Inspection of the labelled files indicated that La-
belGen successfully managed to label packets related to different CALDERA
attacks.

A simple ML model was trained to predict labels on a subset of the labelled
dataset. As a confusion matrix illustrated, and accuracy scores revealed,
the model did not perform satisfactory. It did, however, demonstrate the
principle that the dataset can be used to train a ML for IDS.

According to the findings of this thesis, it could be concluded that CALDERA
can be used to generate a dataset of APT behaviour with fine-grained labels
that can identify stages of the attack. Packet statistics, manual inspection,
proof-of-concept ML all provided indications that CALDERA could generate
APT datasets.

7.2 Future work
Optimisation of LabelGen are among the suggestions for future work. La-
belGen is only capable of reading attack information from the CALDERA
report in the format it was created after the experiment was completed.
Therefore, if multiple hosts are involved in the attacks, or if the report
contains missing values, LabelGen will stop execution. To address these
concerns, future work should include improvements to LabelGen to handle
inconsistent report structures.

LabelGen could function as a framework in future usage. It might be
extended to label from other sources than CALDERA. LabelGen gives the
user a complete labelling process, from providing a raw network logfile, to
three resulting labelled files. This saves time, as the whole process is au-
tomated. Furthermore, because CALDERA is mapped to ATT&CK, any
changes to ATT&CK are eventually reflected in CALDERA. Therefore, La-
belGen would be able to label new CALDERA attacks, which proved to be
one of the main advantages of the framework. With extending the function-
ality of LabelGen it could be a framework for other labelling techniques,
as the behavioural profiles and timing injection methods are included in
the script. LabelGen would be able to label new CALDERA attacks in
the future. This was one of the benefits of using a highly relevant tool
as CALDERA in this thesis.

To properly determine the value of the SVM model, it should be tested with-
out training first. In addition, to thoroughly evaluate the datasets, a more
complex model needs to be trained. Because this thesis only used ML as

Chapter 7. Conclusion and future work 75

a proof-of-concept to demonstrate the potential of the dataset, a more so-
phisticated classifier would most certainly provide a better representation
of the quality of the datasets.

Future work should make use of Docker containers, with a focus on the
DetGen framework. The prospect of extending DetGen with CALDERA is
an interesting option to consider, especially since CALDERA can already
run in a container. Containerising the attacks isolates them and ensures
ground truth labels because each container produces attack traffic with no
background or noise. DetGen was skipped due to time constraints, but it
would undoubtedly be a priority for future work.

The network logs could be integrated with host logs to provide insightful
information. Fikret Kadiric, a student colleague, conducted the same ex-
periment described in this thesis, but collected host logs instead of network
logs [73]. Fikret used Sysmon, a Windows service that monitor and logs
system activities, in combination with CALDERA to generate a labelled
dataset. The logs generated from the attacks are therefore host-based. If
we could merge our datasets together, it would give a bigger overview of
how the attacks interact with the system; more context, information and
data to develop detection capabilities. Combining the two approaches might
make the attack kill chain more evident. Time constraints were again the
reason why this integration did not happen, but it would be an interesting
research topic for future work.

Bibliography

[1] Otis Alexander, Misha Belisle, and Jacob Steele. Mitre att&ck® for
industrial control systems: Design and philosophy, 2020.

[2] Adel Alshamrani, Sowmya Myneni, Ankur Chowdhary, and Dijiang
Huang. A survey on advanced persistent threats: Techniques, solu-
tions, challenges, and research opportunities. IEEE Communications
Surveys & Tutorials, 21(2):1851–1877, 2019.

[3] Blake Anderson, Subharthi Paul, and David McGrew. Deciphering
malware’s use of tls (without decryption). Journal of Computer Virol-
ogy and Hacking Techniques, 14(3):195–211, 2018.

[4] Andy Applebaum, Doug Miller, Blake Strom, Henry Foster, and Cody
Thomas. Analysis of automated adversary emulation techniques. In
Proceedings of the Summer Simulation Multi-Conference, pages 1–
12, 2017.

[5] Andy Applebaum, Doug Miller, Blake Strom, Chris Korban, and Ross
Wolf. Intelligent, automated red team emulation. In Proceedings
of the 32nd Annual Conference on Computer Security Applications,
pages 363–373, 2016.

[6] Markus Asprusten, Julie Gjerstad, Gudmund Grov, Espen Kjell-
stadli, Robert Flood, Henry Clausen, and David Aspinall. A con-
tainerised approach to labelled c&c traffic: Short paper. In Norsk
IKT-konferanse for forskning og utdanning, number 3, 2021.

[7] ATT&CK Evaluations. Apt29 enterprise evaluation 2019.
https://attackevals.mitre-engenuity.org/enterprise/apt29, 2019.
[Online; last updated June 14, 2021], [Last accessed: April 19, 2022].

[8] Sheldon Axler. Linear algebra done right. Springer Science & Busi-
ness Media, 1997.

[9] Sherenaz W Al-Haj Baddar, Alessio Merlo, and Mauro Migliardi.
Anomaly detection in computer networks: A state-of-the-art re-
view. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl.,
5(4):29–64, 2014.

[10] Jon Baker and Forrest Carver. Introducing the all-new adversary em-
ulation plan library, September 2020. [Online; published September
10, 2020], [Accessed: April 5, 2022].

76

BIBLIOGRAPHY 77

[11] Jerry Banks. Discrete event system simulation. Pearson Education
India, 2005.

[12] Anaël Beaugnon, Pierre Chifflier, and Francis Bach. Ilab: An in-
teractive labelling strategy for intrusion detection. In International
Symposium on Research in Attacks, Intrusions, and Defenses, pages
120–140. Springer, 2017.

[13] Jürgen Bernard, Marco Hutter, Matthias Zeppelzauer, Dieter Fell-
ner, and Michael Sedlmair. Comparing visual-interactive labeling
with active learning: An experimental study. IEEE transactions on
visualization and computer graphics, 24(1):298–308, 2017.

[14] Monowar H Bhuyan, Dhruba K Bhattacharyya, and Jugal K Kalita.
Towards generating real-life datasets for network intrusion detec-
tion. Int. J. Netw. Secur., 17(6):683–701, 2015.

[15] Elmarie Biermann, Elsabe Cloete, and Lucas M Venter. A comparison
of intrusion detection systems. Computers & Security, 20(8):676–683,
2001.

[16] Michael Bose. Virtualbox network settings: Complete guide.
https://www.nakivo.com/blog/virtualbox-network-setting-guide/. On-
line; Published: July 16, 2019. Accessed: April 10, 2022.

[17] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J
Stone. Classification and regression trees. Routledge, 2017.

[18] Nevil Brownlee, Cyndi Mills, and Greg Ruth. Traffic flow measure-
ment: Architecture. Technical report, RFC 2722, 1999.

[19] Molly Buchanan, Jeffrey W Collyer, Jack W Davidson, Saikat Dey,
Mark Gardner, Jason D Hiser, Jeffry Lang, Alastair Nottingham, and
Alina Oprea. On generating and labeling network traffic with re-
alistic, self-propagating malware. arXiv preprint arXiv:2104.10034,
2021.

[20] Anna L Buczak and Erhan Guven. A survey of data mining and ma-
chine learning methods for cyber security intrusion detection. IEEE
Communications surveys & tutorials, 18(2):1153–1176, 2015.

[21] Carlos A Catania and Carlos García Garino. Automatic network in-
trusion detection: Current techniques and open issues. Computers &
Electrical Engineering, 38(5):1062–1072, 2012.

[22] Jair Cervantes, Xiaoou Li, Wen Yu, and Kang Li. Support vector
machine classification for large data sets via minimum enclosing ball
clustering. Neurocomputing, 71(4-6):611–619, 2008.

[23] Ping Chen, Lieven Desmet, and Christophe Huygens. A study on ad-
vanced persistent threats. In IFIP International Conference on Com-
munications and Multimedia Security, pages 63–72. Springer, 2014.

https://www.nakivo.com/blog/virtualbox-network-setting-guide/

BIBLIOGRAPHY 78

[24] Zhuo Chen, Ruizhou Ding, Ting-Wu Chin, and Diana Marculescu.
Understanding the impact of label granularity on cnn-based image
classification. In 2018 IEEE international conference on data mining
workshops (ICDMW), pages 895–904. IEEE, 2018.

[25] Cisco. Cisco encrypted traffic analytics. White paper, Cisco, 2021.
Online; accessed May 12, 2022.

[26] Henry Clausen, Robert Flood, and David Aspinall. Traffic gener-
ation using containerization for machine learning. arXiv preprint
arXiv:2011.06350, 2020.

[27] Henry Clausen, Gudmund Grov, and David Aspinall. Cbam: A con-
textual model for network anomaly detection. Computers, 10(6):79,
2021.

[28] Lockheed Martin Corporation. Applying cyber kill
chain®methodology. White paper, Lockheed Martin Corporation,
2015. Online; accessed May 11, 2022.

[29] MITRE Corporation. Automated adversary emulation platform,
2022. Last accessed: 08 May 2022.

[30] Oracle Corporation. Chapter 6. virtual networking.
https://www.virtualbox.org/manual/ch06.html. Online; Last ac-
cessed: May 4th, 2022.

[31] The Mitre Corporation. Common Vulnerabilities And Exposures
(CVE) history. https://cve.mitre.org/about/history.html. Last ac-
cessed: February 23, 2021.

[32] The MITRE Corporation. Common Weakness Enumeration cwe -
about - cwe overview. https://cwe.mitre.org/about/index.html. Last
accessed: May 10, 2022.

[33] The Mitre Corporation. MITRE ATT&CK apt29.
https://attack.mitre.org/groups/G0016/. Last accessed: May 9,
2022.

[34] The Mitre Corporation. MITRE ATT&CK frequently asked ques-
tions. https://attack.mitre.org/resources/faq/. Last accessed: Febru-
ary 24, 2021.

[35] The Mitre Corporation. MITRE ATT&CK getting started.
https://attack.mitre.org/resources/getting-started/. Last accessed:
February 24, 2021.

[36] The Mitre Corporation. MITRE ATT&CK matrix - enterprise.
https://attack.mitre.org/matrices/enterprise/. Last accessed: May 10,
2022.

[37] The Mitre Corporation. MITRE ATT&CK®. https://attack.mitre.org/.
Last accessed: May 10, 2022.

BIBLIOGRAPHY 79

[38] The Mitre Corporation. MITRE ATT&CK® Framework - youtube.
https://www.youtube.com/watch?v=Yxv1suJYMI8. Date: January 25,
2021.

[39] The Mitre Corporation. The MITRE Corporation corporate overview.
https://www.mitre.org/. Last accessed: May 10, 2022.

[40] The Mitre Corporation. The MITRE Corporation matrix - enter-
prise. https://attack.mitre.org/matrices/enterprise/containers/. Last
accessed: May 30, 2021.

[41] The Mitre Corporation. The MITRE Corporation media resources.
https://www.mitre.org/news/media-resources. Last accessed: Febru-
ary 23, 2021.

[42] The Mitre Corporation. The MITRE Corporation mobile - matrix.
https://attack.mitre.org/matrices/mobile/. Last accessed: May 22,
2021.

[43] The Mitre Corporation. The MITRE Corporation national cyber-
security ffrdc. https://www.mitre.org/centers/national-cybersecurity-
ffrdc/who-we-are. Last accessed: February 23, 2021.

[44] The Mitre Corporation. The MITRE Corporation our history.
https://www.mitre.org/about/our-history. Last accessed: February 23,
2021.

[45] The Mitre Corporation. Welcome to caldera’s documentation!
https://caldera.readthedocs.io/en/latest/index.html. Last accessed:
May 10, 2022.

[46] The MITRE Corporation. Cobalt strike, software s0154, 2021. Last
accessed: 17 August.

[47] The MITRE Corporation. Command and control, tactic ta0011, 2021.
Last accessed: 17 August.

[48] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

[49] David Bianco. The pyramid of pain. https://detect-
respond.blogspot.com/2013/03/the-pyramid-of-pain.html, 2013.
[Online; accessed 14-April-2022].

[50] Jonathan J Davis and Andrew J Clark. Data preprocessing for
anomaly based network intrusion detection: A review. computers &
security, 30(6-7):353–375, 2011.

[51] Michael J De Lucia and Chase Cotton. Detection of encrypted ma-
licious network traffic using machine learning. In MILCOM 2019-
2019 IEEE Military Communications Conference (MILCOM), pages
1–6. IEEE, 2019.

BIBLIOGRAPHY 80

[52] Frank Duff. Round 2 of ATT&CK Evaluations is Now
Open. https://medium.com/mitre-attack/attack-evals-round-2-
c3ea383ba55d, May 1, 2019. Accessed: April 7, 2022.

[53] Frank Duff. Att&ck evaluation apt29 emulation plan added to the
emulation plan library, 2021. Last accessed: 01 May 2022.

[54] Thomas Edgar and David Manz. Research methods for cyber security.
Syngress, 2017.

[55] Gints Engelen, Vera Rimmer, and Wouter Joosen. Troubleshooting an
intrusion detection dataset: the cicids2017 case study. In 2021 IEEE
Security and Privacy Workshops (SPW), pages 7–12. IEEE, 2021.

[56] MITRE Engenuity. Center for threat-informed defense - home, 2022.
Last accessed: 01 May 2022.

[57] F-Secure. The dukes: 7 years of russian cyberespionage. Technical
report, F-Secure, 2015.

[58] Xin Fan, Chenlu Li, Xiaoru Yuan, Xiaoju Dong, and Jie Liang. An
interactive visual analytics approach for network anomaly detection
through smart labeling. Journal of Visualization, 22(5):955–971,
2019.

[59] Wireshark Foundation. Wireshark manual, 7.7. time zones.
https://www.wireshark.org/docs/wsug_html_chunked/ChAdvTime-
zones.html. Online; last accessed: May 13, 2022.

[60] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino.
An empirical comparison of botnet detection methods. computers &
security, 45:100–123, 2014.

[61] Nico Görnitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. Toward
supervised anomaly detection. Journal of Artificial Intelligence Re-
search, 46:235–262, 2013.

[62] Jorge Guerra, Carlos Catania, and Eduardo Veas. Datasets are
not enough: Challenges in labeling network traffic. arXiv preprint
arXiv:2110.05977, 2021.

[63] Himanshu Gupta and Rohit Kumar. Protection against penetration
attacks using metasploit. In 2015 4th International Conference on
Reliability, Infocom Technologies and Optimization (ICRITO)(Trends
and Future Directions), pages 1–4. IEEE, 2015.

[64] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H
Friedman. The elements of statistical learning: data mining, infer-
ence, and prediction, volume 2. Springer, 2009.

[65] Mitsuhiro Hatada, Matthew Scholl, et al. An empirical study on flow-
based botnet attacks prediction. National Institute of Standards and
Technology Technical Note, 2111, 2020.

BIBLIOGRAPHY 81

[66] HelpSystems. Adversary simulation and red team operations soft-
ware - cobalt strike, 2021. Last accessed: 17 August 2021.

[67] Brandon Heung, Hung Chak Ho, Jin Zhang, Anders Knudby,
Chuck E Bulmer, and Margaret G Schmidt. An overview and com-
parison of machine-learning techniques for classification purposes in
digital soil mapping. Geoderma, 265:62–77, 2016.

[68] Hanan Hindy, Elike Hodo, Ethan Bayne, Amar Seeam, Robert Atkin-
son, and Xavier Bellekens. A taxonomy of malicious traffic for intru-
sion detection systems. In 2018 International Conference On Cyber
Situational Awareness, Data Analytics And Assessment (Cyber SA),
pages 1–4. IEEE, 2018.

[69] Software Engineering Institute. cmu-sei/ghosts | github, 2021. Last
accessed: 20 August 2021.

[70] Manel Jerbi, Zaineb Chelly Dagdia, Slim Bechikh, and Lamjed Ben
Said. On the use of artificial malicious patterns for android malware
detection. Computers & Security, 92:101743, 2020.

[71] Portswigger John Leyden at The Daily Swig. Who is be-
hind apt29? what we know about this nation-state cybercrime
group. https://portswigger.net/daily-swig/who-is-behind-apt29-what-
we-know-about-this-nation-state-cybercrime-group, July 2020. [On-
line; published July 23, 2020], [Accessed: April 6, 2022].

[72] VVRPV Jyothsna, Rama Prasad, and K Munivara Prasad. A review
of anomaly based intrusion detection systems. International Journal
of Computer Applications, 28(7):26–35, 2011.

[73] Fikret Kadiric. Generating labeled apt host datasets using caldera
and sysmon. Master’s thesis, University of Oslo, 2022.

[74] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore.
Reinforcement learning: A survey. Journal of artificial intelligence
research, 4:237–285, 1996.

[75] H Günes Kayacik, A Nur Zincir-Heywood, and Malcolm I Heywood.
Selecting features for intrusion detection: A feature relevance analy-
sis on kdd 99 intrusion detection datasets. In Proceedings of the third
annual conference on privacy, security and trust, volume 94, pages
1723–1722. Citeseer, 2005.

[76] John R Koza, Forrest H Bennett, David Andre, and Martin A Keane.
Automated design of both the topology and sizing of analog electri-
cal circuits using genetic programming. In Artificial Intelligence in
Design’96, pages 151–170. Springer, 1996.

[77] Max Landauer, Florian Skopik, Markus Wurzenberger, Wolfgang
Hotwagner, and Andreas Rauber. Have it your way: Generating cus-
tomized log datasets with a model-driven simulation testbed. IEEE
Transactions on Reliability, 70(1):402–415, 2020.

BIBLIOGRAPHY 82

[78] Shane Legg, Marcus Hutter, et al. A collection of definitions of intel-
ligence. Frontiers in Artificial Intelligence and applications, 157:17,
2007.

[79] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-
Yuan Tung. Intrusion detection system: A comprehensive review.
Journal of Network and Computer Applications, 36(1):16–24, 2013.

[80] Han Liu, Alexander Gegov, and Mihaela Cocea. Rule based systems
for big data: a machine learning approach, volume 13. Springer,
2015.

[81] Chris Long. Detectionlab introduction. https://detectionlab.network/.
Last accessed: May 9, 2022.

[82] Chris Long. Introduction: Detection lab.
https://medium.com/@clong/introducing-detection-lab-
61db34bed6ae, December 2017. Online; Published: December
11, 2017. Accessed: April 9, 2022.

[83] Gabriel Maciá-Fernández, José Camacho, Roberto Magán-Carrión,
Pedro García-Teodoro, and Roberto Therón. Ugr ‘16: A new dataset
for the evaluation of cyclostationarity-based network idss. Computers
& Security, 73:411–424, 2018.

[84] Mohammad Masdari and Hemn Khezri. A survey and taxonomy of
the fuzzy signature-based intrusion detection systems. Applied Soft
Computing, 92:106301, 2020.

[85] LLC McAfee. McAfee what is the mitre att&ck frame-
work? https://www.mcafee.com/enterprise/en-us/security-
awareness/cybersecurity/what-is-mitre-attack-framework.html.
Last accessed: May 22, 2021.

[86] Microsoft Threat Intelligence Center (MSTIC) and
Microsoft 365 Defender Threat Intelligence Team.
New sophisticated email-based attack from nobelium.
https://www.microsoft.com/security/blog/2021/05/27/new-
sophisticated-email-based-attack-from-nobelium/, 2019. [Online;
published May 27, 2021], [Last accessed: April 19, 2022].

[87] MIT Lincoln Labs. 1998 darpa intrusion detection evalu-
ation dataset, 1998. Available online:https://www.ll.mit.edu/r-
d/ datasets/1998-darpa-intrusion-detection-evaluation-dataset (Last
accessed April 16 2022).

[88] Tom M Mitchell. Artificial neural networks. Machine learning,
45:81–127, 1997.

[89] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT
press, 2012.

BIBLIOGRAPHY 83

[90] Sowmya Myneni, Ankur Chowdhary, Abdulhakim Sabur, Sailik Sen-
gupta, Garima Agrawal, Dijiang Huang, and Myong Kang. Dapt
2020-constructing a benchmark dataset for advanced persistent
threats. In International Workshop on Deployable Machine Learning
for Security Defense, pages 138–163. Springer, 2020.

[91] The National Cyber Security Centre (NCSC). Advisory: Apt29 tar-
gets covid-19 vaccine development. Technical report, The National
Cyber Security Centre (NCSC), 2020.

[92] The National Cyber Security Centre (NCSC). Uk and us call out
russia for solarwinds compromise. https://www.ncsc.gov.uk/news/uk-
and-us-call-out-russia-for-solarwinds-compromise, April 2021. [On-
line; published April 15, 2021], [Accessed: April 6, 2022].

[93] Georgi Nikolov. Simulate user activity with the ghosts framework :
Introduction, April 2020. Last accessed: April 15 2022.

[94] Nils J Nilsson and Nils Johan Nilsson. Artificial intelligence: a new
synthesis. Morgan Kaufmann, 1998.

[95] William S Noble. What is a support vector machine? Nature biotech-
nology, 24(12):1565–1567, 2006.

[96] US Department of Homeland Security (DHS) and the Fed-
eral Bureau of Investigation (FBI). Grizzly steppe – rus-
sian malicious cyber activity. Technical report, US Depart-
ment of Homeland Security (DHS), 2016. Available online;
https://media.defense.gov/2021/Apr/15/2002621240/-1/-1/0/CSA_-
SVR_TARGETS_US_ALLIES_UOO13234021.PDF/CSA_SVR_TAR-
GETS_US_ALLIES_UOO13234021.PDF (Last accessed April 19,
2022).

[97] National Institute of Standards and Technology. Nist computer se-
curity resource center (csrc) - glossary. https://csrc.nist.gov/glossary,
March 2022. [Online; last updated March 10, 2022], [Accessed: April
6, 2022].

[98] Kris Oosthoek and Christian Doerr. Sok: Att&ck techniques and
trends in windows malware. In International Conference on Security
and Privacy in Communication Systems, pages 406–425. Springer,
2019.

[99] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Ma-
chine learning in python. the Journal of machine Learning research,
12:2825–2830, 2011.

[100] David Poole, Alan Mackworth, and Randy Goebel. Computational
intelligence. 1998.

BIBLIOGRAPHY 84

[101] Prem Maurya. Polymorphism in java — GeeksforGeeks.
https://www.geeksforgeeks.org/polymorphism-in-java/, 2020. Ac-
cessed: May 30, 2021.

[102] Alex Ratner, Stephen Bach, Paroma Varma, Chris Ré, and mem-
bers of Hazy Research. Weak supervision: A new programming
paradigm for machine learning. Accessed May 11, 2022.

[103] Recorded Future by Insikt Group. Adversary infrastructure report
2020: A defender’s view. Technical Report CTA-2021-0107, Recorded
Future, 2021.

[104] Markus Ring, Sarah Wunderlich, Deniz Scheuring, Dieter Landes,
and Andreas Hotho. A survey of network-based intrusion detection
data sets. Computers & Security, 86:147–167, 2019.

[105] Stuart Russell and Peter Norvig. Artificial intelligence: a modern
approach. 2002.

[106] scikit-learn developers. Confusion matrix scikit-learn documen-
tation. https://scikit-learn.org/stable/auto_examples/model_selec-
tion/plot_confusion_matrix.html#sphx-glr-auto-examples-model-
selection-plot-confusion-matrix-py, 2022. [Online; Last accessed
14-April-2022].

[107] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. To-
ward generating a new intrusion detection dataset and intrusion traf-
fic characterization. ICISSp, 1:108–116, 2018.

[108] Manmeet Singh, Maninder Singh, and Sanmeet Kaur. Issues and
challenges in dns based botnet detection: A survey. Computers &
Security, 86:28–52, 2019.

[109] Pushpa Singh, Narendra Singh, Krishna Kant Singh, and Akansha
Singh. Diagnosing of disease using machine learning. In Machine
Learning and the Internet of Medical Things in Healthcare, pages
89–111. Elsevier, 2021.

[110] Sunniva Rebekka Skjeggestad, Harald Stolt-Nielsen, Line Tomter,
Ellen Omland, and Anja Strønen. Norge utsatt for et omfat-
tende hackerangrep. https://www.nrk.no/norge/norge-utsatt-for-et-
omfattende-hackerangrep-1.13358988, February 2017. [Online; pub-
lished February 3, 2017], [Accessed: April 6, 2022].

[111] Florian Skopik, Giuseppe Settanni, Roman Fiedler, and Ivo Fried-
berg. Semi-synthetic data set generation for security software evalu-
ation. In 2014 Twelfth Annual International Conference on Privacy,
Security and Trust, pages 156–163. IEEE, 2014.

[112] John A Sokolowski and Catherine M Banks. Principles of modeling
and simulation: a multidisciplinary approach. John Wiley & Sons,
2011.

BIBLIOGRAPHY 85

[113] Anna Sperotto, Ramin Sadre, Frank van Vliet, and Aiko Pras. A
labeled data set for flow-based intrusion detection. In International
Workshop on IP Operations and Management, pages 39–50. Springer,
2009.

[114] Branka Stojanović, Katharina Hofer-Schmitz, and Ulrike Kleb. Apt
datasets and attack modeling for automated detection methods: A
review. Computers & Security, 92:101734, 2020.

[115] Jay Stokes, John Platt, Joseph Kravis, and Michael Shilman. Aladin:
Active learning of anomalies to detect intrusions. Technical Report
MSR-TR-2008-24, March 2008.

[116] Blake E Strom, Andy Applebaum, Doug P Miller, Kathryn C Nickels,
Adam G Pennington, and Cody B Thomas. Mitre att&ck: Design and
philosophy. Technical report, 2018.

[117] Aurobindo Sundaram. An introduction to intrusion detection. Cross-
roads, 2(4):3–7, 1996.

[118] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A
detailed analysis of the kdd cup 99 data set. In 2009 IEEE symposium
on computational intelligence for security and defense applications,
pages 1–6. Ieee, 2009.

[119] Editorial team. Crowdstrike’s work with the demo-
cratic national committee: Setting the record straight.
https://www.crowdstrike.com/blog/bears-midst-intrusion-democratic-
national-committee/, June 2020. [Online; published June 5, 2020],
[Accessed: April 6, 2022].

[120] The Center for Threat-Informed Defense. Adversary emula-
tion library | github. https://github.com/center-for-threat-informed-
defense/adversary_emulation_library, 2021. [Online; Last accessed
8-May-2022].

[121] The MITRE Corporation. Emu plugin | github.
https://github.com/mitre/emu, 2022. [Online; Last accessed 8-
May-2022].

[122] Cybersecurity The National Security Agency (NSA), Infrastruc-
ture Security Agency (CISA), and Federal Bureau of Inves-
tigation (FBI). Russian svr targets u.s. and allied networks.
"https://media.defense.gov/2021/Apr/15/2002621240/-1/-1/0/CSA_-
SVR_TARGETS_US_ALLIES_UOO13234021.PDF", April 2021.
[Online; published April, 2021], [Accessed: April 6, 2022].

[123] Ciza Thomas, Vishwas Sharma, and N Balakrishnan. Usefulness
of darpa dataset for intrusion detection system evaluation. In Data
Mining, Intrusion Detection, Information Assurance, and Data Net-
works Security 2008, volume 6973, pages 164–171. SPIE, 2008.

BIBLIOGRAPHY 86

[124] Ryan Trost. Practical Intrusion Analysis: Prevention and Detec-
tion for the Twenty-First Century: Prevention and Detection for the
Twenty-First Century. Pearson Education, 2009.

[125] Nicolas Turpault, Romain Serizel, and Emmanuel Vincent. Limita-
tions of weak labels for embedding and tagging. In ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 131–135. IEEE, 2020.

[126] William Turton and Jennifer Jacobs. Russia ‘cozy
bear’ breached gop as ransomware attack hit.
https://www.bloomberg.com/news/articles/2021-07-06/russian-state-
hackers-breached-republican-national-committee, July 2021. [On-
line; published July 6, 2021; updated July 7, 2021], [Accessed: April
6, 2022].

[127] University of California, Irvine. Kdd cup 1999 dataset,
1999. Available online:http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html (Last accessed April 16 2022).

[128] D. Updyke, G. Dobson, T. Podnar, B. Earl, and A. Cerini. Technical
report: Ghosts in the machine: A framework for cyber-warfare exer-
cise npc simulation. Technical Report CMU/SEI-2018-TR-005, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, December 2018.

[129] Wikipedia contributors. Common weakness enumeration —
Wikipedia, the free encyclopedia, 2020. Accessed: May 21, 2021.

[130] Wikipedia contributors. Ip flow information export — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?title=IP_-
Flow_Information_Export&oldid=987546541, 2020. [Online; ac-
cessed 10-May-2022].

[131] Wikipedia contributors. Common vulnerabilities and exposures —
Wikipedia, the free encyclopedia, 2021. Accessed: May 21, 2021.

[132] Wikipedia contributors. Metamorphic code — Wikipedia, the free
encyclopedia, 2021. Accessed: May 30, 2021.

[133] Wikipedia contributors. Feature engineering — Wikipedia, the free
encyclopedia, 2022. [Online; accessed 14-April-2022].

[134] Wikipedia contributors. Machine learning — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=Machine_-
learning&oldid=1086035935, 2022. [Online; accessed 10-May-2022].

[135] Wikipedia contributors. Packet analyzer — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Packet_ana-
lyzer&oldid=1085620838, 2022. [Online; accessed 2-May-2022].

[136] Wikipedia contributors. Pcap — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Pcap&oldid=1085247125,
2022. [Online; accessed 2-May-2022].

BIBLIOGRAPHY 87

[137] Wikipedia contributors. Simulation — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Simulation&oldid
=1084588840, 2022. [Online; accessed 13-May-2022].

[138] Wikipedia contributors. Unsupervised learn-
ing — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Unsupervised_learn-
ing&oldid=1083933993, 2022. [Online; accessed 27-April-2022].

[139] Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. Recent ad-
vances of large-scale linear classification. Proceedings of the IEEE,
100(9):2584–2603, 2012.

[140] Alice Zheng and Amanda Casari. Feature engineering for machine
learning: principles and techniques for data scientists. " O’Reilly Me-
dia, Inc.", 2018.

	List of Figures
	List of Listings
	Introduction
	Motivation
	Intrusion Detection System

	Research question
	Methodology
	Contributions
	Chapter outline

	MITRE ATT&CK and CALDERA
	The MITRE Corporation
	MITRE ATT&CK™
	Background and history
	Use Cases
	The ATT&CK Model

	Advanced Persistent Threats
	Adversary emulation plans

	MITRE CALDERA™
	Architecture and example usage
	CALDERA terminology

	Background
	Simulation
	Capturing network traffic
	Labelling
	Challenges in labelling datasets
	Current solutions
	APT detection

	Summary and discussion

	Approach and implementation
	General plan
	Network architecture
	APT29
	APT29 EMU plan

	DetectionLab
	GHOSTS
	Approach
	Implementation
	LabelGen: implementation of labelling

	Summary and discussion

	Results and evaluation
	The datasets
	Manual inspection
	Packet statistics

	Evaluating LabelGen
	Experimenting with a different attack

	Machine Learning
	Proof-of-concept
	Implementation of SVM

	Summary and discussion

	Discussion and related work
	CALDERA as a framework
	Alternative tools for emulation

	Labelling network traffic
	LabelGen
	Use of containers/DetGen
	GHOSTS and its alternatives
	The environment

	Conclusion and future work
	Summary of results and findings
	Future work

