
Occlusion in Augmented Reality

Exploring the problem of rendering
semi-occluded objects in augmented

reality using a model-based approach.

Krzysztof Piotr Kuzma

Thesis submitted for the degree of
Master in Programming and System Architecture

60 credits

Department of Informatics
The Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2022

Occlusion in Augmented Reality

Exploring the problem of rendering
semi-occluded objects in augmented

reality using a model-based approach.

Krzysztof Piotr Kuzma

© 2022 Krzysztof Piotr Kuzma

Occlusion in Augmented Reality

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

For many decades researchers and manufacturers have tried to push
the concept of augmented reality toward a comfortable, beneficial, and
seamless experience. The concept of this technology promised high
usability for fields such as medicine, architecture, and engineering, while
keeping the experience smooth enough to avoid common negative effects
such as nausea and dizziness. One of the most fundamental things towards
realistic AR experience is occlusion by letting our virtual world and
holograms be affected by the real world that surrounds us. In this Master’s
thesis I discover methods to apply occlusion in AR and the computational
challenges that it brings. I focus on mesh-based reconstruction algorithms
and consider generating meshes by getting insight into older algorithms
like Marching Cubes and Poisson, as well as newly developed solutions. I
answer a research question by creating our own mesh-based reconstruction
pipeline: ’Can we develop efficient real-time, mesh-based method to
occlude virtual objects with real objects in an AR scenario?’. I have
concluded that developing such a solution is possible within a reasonable
amount of time using Unity Engine and Marching Cubes, yielding good
results in stereo-camera setup on modern hardware. The performance of
the developed solution was measured using Unity Profiler and custom
measurement tools. The findings indicate that the development of a mesh-
based solution should be heavily based on GPU computational power
and minimize data movement. In addition, AR scene management, the
LoD system, memory pooling, and work time slicing are factors that
affect performance and resource usage. Statistics show that handling
and dispatching the world in larger sectors is significantly better for
performance. The challenge of cached approach and marching cubes
is its memory wastefulness and dealing with moving objects. This can
be improved by developing solutions for smart section discarding, mesh
optimization pass, or different mesh generation algorithms. From the
research, we can conclude that AR technology has cultivated over the
decades and has blossomed in recent years, but many areas, such as
occlusion, require more research.

i

Contents

1 Introduction 1
1.1 What is Augmented Reality 1
1.2 Research Question . 7
1.3 Methodology . 7
1.4 Approach . 9

I The project 10

2 Background and Preparations 11
2.1 Background and Preparations 11

2.1.1 Early Days of Augmented Reality and Computing . . 11
2.1.2 Augmented Reality Today 15

2.2 Choosing the Right Tools . 16
2.3 Design Development . 22

2.3.1 Introduction . 22
2.3.2 Capturing the Reality 22
2.3.3 Tracking and Alignment 29
2.3.4 Storing the Data . 30
2.3.5 Engine and Order of Execution 31
2.3.6 Objectives . 32

3 Development 35
3.1 Conducting the Computations 35

3.1.1 Hardware and Parallelization 35
3.1.2 Mesh Generation Algorithms 39
3.1.3 Memory . 53
3.1.4 Runtime Pipeline . 57

3.2 Optimization Methods . 59
3.2.1 Reconstruction Sectors 59
3.2.2 Timeslicing . 60
3.2.3 Semi-Dynamic Memory and Pooling 61
3.2.4 Frustum Culling and Occlusion Culling 65
3.2.5 Draw Calls and Shaders 67
3.2.6 Level of Detail . 68
3.2.7 Impostor Objects . 70
3.2.8 Other Methods to Consider 71

ii

II Conclusion 74

4 Results 75
4.1 Evaluation . 75

4.1.1 Testing Hardware . 75
4.1.2 Profiling and Quantitative Analysis: Approach 75
4.1.3 Occlusion Reconstruction Prototype 78
4.1.4 Profiling and Analysis 83
4.1.5 Quantitative Analysis 87
4.1.6 Additional Findings 92

5 Conclusion and Future Work 94
5.1 Conclusion . 94
5.2 Possible Improvements and Future Work 95

5.2.1 Accuracy Improvements 96
5.2.2 Scriptable AR Reconstruction Pipeline 97
5.2.3 Caching and Ghosts 98
5.2.4 Afterword . 99

Glossary 101

Acronyms 104

Bibliography 106

iii

List of Figures

1.1 Illustration representing simple shape holograms placed
around a tiger figure, with (bottom) and without (top) occlu-
sion. Distance estimation, size, and positioning perception is
significantly more confusing without occlusion. 3

1.2 Three types of AR are visualized. 4
1.3 Illustration of two depth approaches. The illustration on the

left shows the depth mask in pixels. The illustration on the
right shows the room made of simple meshes that are used
to render the data. 7

2.1 Sutherland’s prototype shown in his 1968 paper. [59] 12
2.2 Illustration of the point cloud scan. To use point cloud for

occlusion, it needs to be covered in a format suitable for 3D
rendering engine: a mesh or depth map. [17] 23

2.3 Illustration representing the working principles of time-of-
flight cameras. ToF cameras are based on infrared pulses
(from illuminators) of a given frequency, which are then
picked up by the camera with a time delay. This information
is used to estimate the distance. [10] 26

2.4 Illustration of the Z-buffer representation. [83] 26

3.1 Part of the code of the GPU marching cubes compute shader. 37
3.2 Part of the code of the AROperations file for dispatching the

marching cube weight update by point cloud. This function
sends rays to GPU for weight buffer update. 38

3.3 Marching cubes and all notable weight configurations[33] . 40
3.4 Representation of the marching squares algorithm (2D), a

sibling algorithm of the marching cubes (3D). 42
3.5 The surface quality of the Marching cubes depends on the

size of the grid. [7] . 43
3.6 Effects of octree depth (6, 8, 10) on the generation of dragon

model. [30] . 45
3.7 Demonstration of the results of the Newcombe et al. algo-

rithm. We are presented with the normal map (left) and the
surface built from four local reconstructions (right). As we
can see, four local reconstructions generated in the process
are merged into a single mesh. [41] 48

iv

3.8 Demonstration of the Newcombe et al. algorithm in the
video. The camera view (bright yellow frame to the left) is
browsing the scene from left to right, generating view frames
that after a certain time result in generated mesh patches. [42] 49

3.9 Comparison of the quality of MLS papers and other mesh
generation techniques in Meerits et al. [35] 52

3.10 Visualization of the AR marching cube reconstruction process. 58
3.11 Diagram pipeline of AR marching cube reconstruction. . . . 58
3.12 The illustration demonstrates the dynamic loading of the

sectors. Green, yellow, and red triangles represent three
levels of detail in reconstructed sectors that are within
the frustum of the cameras. Gray is the active area of
which sectors are loaded and considered for rendering and
marching. The white area is out of range. 60

3.13 The illustration shows an example of the difference between
memory approaches. 63

3.14 The illustration demonstrates the ring buffer approach. . . . 64
3.15 Representation of culling techniques. 65
3.16 Two possible back-face interpretations. Illustration A) does

not render inside faces of a model. Illustration B) does not
render the back faces of the model. 67

4.1 Unity project window of the solution showing the test scene.
Hierarchy of game objects on the left. 76

4.2 One of the prototype scenes in the Unity Editor. This test
does not provide perfect coverage; however, it represents
different surfaces of various thicknesses and angles to
present differences in reconstruction speeds and accuracy.
Objects of interest are colored red. 79

4.3 Camera scanning the environment with rays and returning
point hit position imitating the behavior of scanning devices.
Camera/s activate sectors of the world to be represented
with different accuracy levels if desired. The highest quality
sector is set to red, the middle quality is yellow, and the
lowest quality is green. 80

4.4 Camera scanning the environment with rays, additional
perspective. 80

4.5 AR camera component is necessary to track camera position
and load necessary sectors in cameras frustum. 81

4.6 AR camera component for simple simulation of point-cloud
collection by using pre-existing object models, colliders, and
Unity raycasts. 81

v

4.7 Reconstruction of the environment on the test scene. Some
areas have less cover as the rays are not hitting them.
2 cm accuracy, 10,000 rays per second. Note that the
triangles shown are not affected by the lightning system, but
have colors assigned based on their angle for visualization
purposes. Dark gray and red are testing environment objects
that are scanned to generate a point cloud. 82

4.8 Reconstruction of the environment on the test scene. After
moving the head, some areas not covered by rays need to
be slowly covered. This is normal behavior since the rays
only hit surfaces within the line of sight of the sensor. 2 cm
accuracy, 10,000 rays per second. 82

4.9 Mesh generated for occlusion, example with LoD levels
enabled. Colored yellow area 0.2 cm cubes and green area
0.4 cm cubes. 83

4.10 Results of the reconstruction of an uneven surface with an
accuracy of 2 cm after 20 seconds. No head movements, two
active rendering cameras. 10,000 rays per second. 84

4.11 Reconstruction of an uneven surface with an accuracy of
2 cm after 120 seconds. No head movements, two active
rendering cameras. 10,000 rays per second. Surface coverage
is significantly better. Due to distance and ray spread, lack
of head movements, covering of the whole area takes much
more time. 84

4.12 Graphical artifacts caused by compute buffer overflow
within a single update when using too conservative
memory-saving settings. Left upper corner: area of the cor-
rupted triangles. Right lower corner: stretched corrupted
triangle. 86

4.13 Profiling tool included in Unity Editor. Shows us the details
such as various timings and resource usage. Note that
profiling GPU usage can lead to additional overhead. 87

4.14 Pie chart representing CPU-time usage by important pro-
cesses (ms). AR Scene Main Update is responsible for sec-
tor loading, camera visibility, and render dispatching. The
Late Update of AR Scene updates weights and marches with
a cost as low as 0.013 ms. 4 cubic meters. 87

4.15 Approximate cost of sector computation based on Table 4.1.
8m3 sector can fit 8 of 4m3 sectors inside, therefore optimistic
expectation is 8x reduction of costs for each size. However
we can observe significant diminishing returns as 4m3 sector
is 23.84% of the 8m3 sector cost. Which means that we
receive less than 5x of the computation cost. This is even
more magnified when using chunk size of 1m3 and 2m3. In
this case 1m3 section is almost as expensive as single 2m3

sector. 89

vi

List of Tables

2.1 The table shows the usage of resources from different
programming languages. Value 1.0 is the reference metric
for the most performant language in a given category. [51] . 19

3.1 Computation time of the generation of the dragon model
mesh generation performed by Poisson with different
depths of the octree tree. We can see that as the tree depth
increases, the computation time (in seconds) increases sig-
nificantly. The change in completion time between 7 and 8 is
4.333 times, while 9 and 10 are as high as 5.02. [30] 46

3.2 Performance of Stanford Bunny mesh generation performed
by different methods in Kazhdan et al. [30] 46

4.1 Profiling data of different sector sizes. Due to view frustum,
sectors are set to a setting that will yield very similar area
coverage. Momentary data collected from the 1000 frame
approximate after the beginning of the application. As the
sector size increases, the higher the GPU timings we can
observe. The initial memory allocation was set to 0.8% for
all cases. Ray buffer sizes are not adjusted to chunk size in
this chart, which with growth of Sector structure allocation
results in visible RAM growth. Fluctuations in memory are
caused by varying ray-area coverage in a given sector-size
setting. 88

4.2 Performance and usage of resources of different cube sizes.
60 active sections, 4 m3 section size, 0.4% initial minimal
memory buffer size. 600 frames sample using the Profile
Analyzer tool. Memory picked from 1000th frame form
beginning. 90

4.3 Raycast profile data for prototype components per second
and how it affects performance. Each sector has its own
point queue; in this test, its capacity is equal to the cast
count of the rays. The point-cloud RAM buffer is also set
to 1 million points; it is used for GPU dispatch. This ensures
optimal performance to keep up with the generated point
cloud. 90

vii

4.4 Measurements of different parts of the system in ticks. Per
execution of the operation. Movement of the camera in the
scene. RAM caching enabled. 91

4.5 Comparison of static perspective timings for static perspec-
tive in Figure 4.8. 91

4.6 Comparison of static perspective timings for static perspec-
tive in Figure 4.10. We see some variation in the functions,
which depends on the camera position and the number of
sections loaded. 92

4.7 Different compute buffer timings relevant for clearing.
10,000 samples. 92

4.8 Clear data compute-shader performance using different
thread count per group. 1,000 samples. Operation on 6144
floats. 93

viii

Preface

In recent years, user acceptance for VR and AR has grown, and more prod-
ucts have been released using that technology more efficiently. However,
many aspects of AR are still problematic and could barely be researched
or prototyped for the public. Occlusion is one of the most challenging
problems that we need to solve to receive a highly usable and comfort-
able augmented reality experience. This can include different methods for
representing depth, such as depth maps or meshes, and the generation of
3D models that have been studied for many decades. Early studies were
mainly conducted on the CPU. With modern high-performance hardware,
we can use graphics cards that are excellent at parallelizable tasks. Fur-
thermore, we are able to use many of the existing tools; from sensors to
game engines. In the past, the development of such systems would require
a team of experienced developers with years of development. In this thesis,
we approach the occlusion by reconstructing the environment as meshes to
evaluate if the solution is efficient for real-time execution and what aspects
should be considered while developing own occlusion systems for AR. This
adds many aspects to consider based on mesh generation, world section
management, LoD, processing queues, rendering, point-cloud translation,
and other implementations related to performance.

Special thanks to Carsten Griwodz, my supervisor in this thesis, for the
help and tons of interesting and inspiring conversations on the topics. I
also want to thank all the passionate researchers, students, and developers
who contributed in all the relevant areas of the thesis. All the small bricks
contribute towards creation of the technologies we can witness in this mas-
ter’s thesis. Last but not least, I also want to thank all my awesome and
loyal; friends and family for supporting me throughout the duration of this
thesis.

ix

Chapter 1

Introduction

1.1 What is Augmented Reality

As the world of information technology has cultivated rapidly in recent
decades, ways to interact with technology and receive information natu-
rally started to target as many human senses as possible. With the goal
of immersing users in entirely different realities and environments, vir-
tual reality was developed to mimic realistic sight, head movements, and
body movements. Another direction, augmented reality is meant to project
virtual-world on the real world to complement it and bring more utility
into the real world with minimal delay. The field of AR and virtual reality
has opened many possibilities for the market, not only for entertainment
purposes but also for fields such as training, simulations, and visualiza-
tion.

Augmented reality is one of the most promising technologies of the future.
Over the last few decades, companies have attempted to implement and
sell usable forms of AR and VR. Due to limitations in image and processing
quality, users of AR and VR headsets faced severe discomfort [56]. Progress
in sensor technology, increasing computing power, power efficiency, and
technology to minimize circuit and radiator sizes allow us to make AR
technology more immersive and convenient. However, the AR technology
concept is full of potential for close-to-real-life experience, even with its
many challenges; as it has a wide range of potential usages.

AR technology comes in many different forms. As the name suggests: we
augment reality, and different forms of visual overlays can achieve it. In
contrast to VR, AR combines reality and the virtual world; therefore, it
must capture data from the real environment to add the augmentations.
To explain occlusion in augmented reality, we can refer to Shah et al. paper
’Occlusion in Augmented Reality’ [58]. As we speak of augmented reality,
we can categorize it in three primary forms: video-based, optical-based,

1

and projector-based. Each of the forms has its own characteristics that affect
how occlusion can be implemented and aligned, which I will explain in
further part.

Both the hardware and software aspects of augmented reality still have
much development ahead to fulfill our vision of a technology of superb
usability. Since we are placing the virtual world on top of the real world,
we need to solve the problem of synchronization between the virtual and
the real world. Modern smartphones have sensors such as the gyroscope,
accelerometer, camera, and GPS that allow developers to use them for AR
and VR purposes. For AR, physical markers [54] can help us determine
the location and placement of virtual objects. With the help of these, we
are able to determine direction towards the ground and device rotation,
which results in somewhat accurate and stable placement of holograms.
However, as we progress towards AR development, we recognize that
we need to gather even more information to make our AR more accurate
and effective. One of the features that is significant for AR technology is
the understanding of the surrounding world and the depth of view. Our
human eyes help us to estimate depth and distance well enough for our
personal needs. The physical properties of light and real objects result in
visuals. In our world with Euclidean rules, objects and surfaces closer to us
tend to occlude the objects that are behind them. These objects can become
partially or entirely invisible to us until we remove all obstacles from our
vision.

One of the most challenging parts in AR is rendering holograms occluded,
as they would be just like the real objects. An hologram object closer to
the user should occlude the object further away, regardless of whether that
object is real or virtual. Occlusion is relevant in video- and optical-based
augmented reality to significantly increase immersion and reflection.

2

Figure 1.1: Illustration representing simple shape holograms placed around
a tiger figure, with (bottom) and without (top) occlusion. Distance
estimation, size, and positioning perception is significantly more confusing
without occlusion.

Augmented Reality and Occlusion

Let us explore the following case: we are asked to develop training
solutions for medicine students in augmented reality. With virtual tools,
we are able to connect students and professors, no matter the distance. We
can mix the usage of virtual tools and real equipment such as mannequins
or real medical tools. If both our tools and our subjects are holograms,
students will most probably not face many occlusion issues. If our subjects
are real objects but the tools are virtual, we will face occlusion issues: we
need to estimate which object should be on top of the other and what parts
of holograms should be invisible. Without optical or video sensors, we
cannot determine this. The problem can arise further when some of the
scanned objects are transparent. Furthermore, we need to take into account
the position and perspective of the eyes.

In this case, we face many problems to solve and consider. Some of these
can be potentially hard tasks to determine due to the nature of the real
world and make these data useful in a virtual environment. However, if

3

we do not implement occlusion features for medical use, the AR experience
will suffer significantly. If we use tools such as syringes or endoscopes
and the hidden parts are still visible, the experience will be very confusing
for our sense of depth and can cause dizziness and lead to dangerous
perception errors. The tools we use need to be efficient and comfortable
enough to be used in real-world applications, not making the job harder or
leading to hazards.

Since augmented reality combines the real world and the virtual world,
providing immersive experiences is a challenging task that requires
efficient data collection and processing methods. Computer understanding
of the surrounding world is one of the most important challenges for
robotics, autonomous cars, and VR/AR to increase their potential.

Even though technology is progressing quickly and computing power has
increased significantly in recent decades, in many matters, we are still
bound to hardware affordability and human productivity. Developing
efficient solutions based on algorithms and sensors may still require high
computational power. Connection over long distances can be an inefficient
way to solve this, as wireless connection or long-distance computation
latency can be visible to users. AI and deep learning could be one of
the solutions that can save development time to address the problem of
human-like perception of the environment. However, in this case, the
efficiency of neural network latency and its computational stability can also
be questionable.

Therefore, we need to find out if we are capable of gathering and using
environmental data for occlusion purposes. What methods can we use,
how efficient it is, what things we need to consider, and what trade-offs all
possible solutions can imply.

As a starting point for this thesis, we should consider three types of AR [58]:

Figure 1.2: Three types of AR are visualized.

The three types of AR are the following:

1. Video-based uses camera and processing unit to add virtual world on
top of real world and display it on screen.

4

Examples: Using camera and sensors of a smartphone to display
holograms on the screen. VR headsets with cameras that display
images from installed cameras. Pokemon Go or Invizimals games.

2. Optical-based adds a virtual world on top of the natural world by
projections on glasses or transparent screens.

Examples: Headsets that modify our entire vision to display
holograms such as Project North Star and Microsoft HoloLens.
Glasses that display interfaces on our vision like Google Glass.

3. Projector-based projects virtual world on top of the real world.

Examples: Aquarium projections on floor, where fish and water
interact dynamically with the user trough sensors. Clothing design
applications that project an image on top of actual products for
demonstration purposes.

To display holograms directly onto our view, we use video-based and
optical-based methods, which have the most potential in occlusion.
Therefore, we need to evaluate aspects of these AR display approaches:

Video-Based / Passthrough

+ Potentially easier to align the digital world with the virtual world.
The user’s vision is the same as the one the computer uses.

- Since image is recorded by the cameras, the latency and refresh rate
are applied to non-AR elements, too.

- Fidelity is very dependent on the display device, circuit latency, and
camera quality.

Optical-Based

+ Greater contact with the real world since holograms are projected
only on top of the real view.

- It is harder to align the user view with the hologram view and the
cameras/sensors responsible for depth.

- It is harder to achieve real black and transparency levels.

Taking into account the aspects of all three solutions, I concluded optical-
based approach will be main target for this thesis. Video-based approach
will be secondary target as both are capable of handling occlusion data in
a similar way. The projector-based approach is not a good candidate for
occlusion purposes, as the projected virtual reality is heavily dependent on
the surface on which images are being displayed rather than being heavily
dependent on the user/device viewport.

5

It is also important to mention two main approaches towards occlu-
sion [58]:

1. Depth-based approach is converting the collected data to a depth
mask that can later be injected into the Z buffer. The Z buffer is an
image rendering step that contains depth data to render objects in the
correct order and with correct occlusion. However, this method is
highly image dependent. The cost is based on the number of pixels
from the cameras that we use and the target rendering resolution.
The depth mask on its own gives us a very poor and limited
understanding of surfaces, and the data are limited to the current
perspective of our cameras. This method tends to use multiple
cameras or an IR depth sensor to create a depth mask.

2. Model-based approach is converting the collected data to 3D mesh
data. This means that model generation is performed, which can be
either limited to real-time data or cached for higher accuracy and
temporal stability. Therefore, generated 3D models can be used with
appropriate shaders to occlude holograms. Since we are generating
models and using Vector4 (4-float structure for representing 4
dimensions) data from points of a point cloud, this process can be
more costly than the depth-based approach. The point cloud is a
collection of 3D point coordinates that represent the scanned real-
world surfaces. The cost of the generation process is based on the
target complexity of the meshes and the processing steps. Meshes
generated in this method can be used for physics and other purposes
easily. This method tends to use accurate distance sensors that result
in a point cloud; however, it is also possible to use cameras.

Both of these approaches require very accurate synchronization and
alignment with movement trackers and well-configured equipment. Any
errors can lead to a change in the represented occlusion and user pawn. In
this thesis we will explore an approach towards model-based occlusion,
utilizing the limited resources we have. Note that these approaches can
be combined in a hybrid approach. Since the model-based approach is
expensive as the desired complexity grows and depth-based approach can
be limiting; combining them together to solve a given use case could be
considered.

6

(2.2f, 2.2f)

(2.2f, 0.0f)

Figure 1.3: Illustration of two depth approaches. The illustration on the left
shows the depth mask in pixels. The illustration on the right shows the
room made of simple meshes that are used to render the data.

1.2 Research Question

In this thesis, we want to focus on the rendering, occlusion, and perfor-
mance parts of AR. Model-based occlusion has a lot of potential not only
for semi-occlusion purposes, but also for game logic. Our central research
question is as follows:

Can we develop efficient real-time, model-based reconstruction method to
occlude virtual objects with real object in an AR scenario?

1.3 Methodology

Since the objective of our research is to develop experimental software,
there is no perfect definition of how it should be conducted, as it is
difficult to choose the right methodology for problems in computer science.
Computer science is a very wide range of areas that tend to be connected
with all science fields that developed long before electric computers
existed. However, the core origin of computer science can be disputed
between fields like mathematics or engineering, and thus the usage of
methods for computer science research. Knowledge, methods, and terms
are hard to standardize because it requires common agreement between
scientists and the entire computer industry. Eden et al. examined these
philosophical approaches among computer science scientists [19]. He
describes three different paradigms of computer science: the rationalist
paradigm, the technocratic paradigm and the scientific paradigm. All of the
mentioned paradigms can be applied to this research case, consider varied
nature of AR: which depends on low-end engineering, a potential and
more scientific approach that would consider the problem from Human-

7

Computer-Interaction field perspective.

The rationalist paradigm targets the part of computer science, that is, the
branch of mathematics. All of the following problems and algorithms
are connected to theoretical aspects, like compatibility or programming
languages. Since we are working with concurrency and parallelity to some
extent, it could be possible to use Hoare logic and concurrency proof to
verify the safety and execution of the solution. However, solving these
problems in a purely theoretical way will not directly help us in achieving a
performant prototype in restricted amount of time, in a given environment
with mathematics.

The scientific paradigm implies computer science as a branch of empirical
sciences such as astronomy, economics, and geology. All these fields
are chaotic in nature, and even when they may contain patterns, they
can be highly unpredictable. An important example of computer science
is artificial intelligence and deep learning. Choosing the right models
for AI and training is a fundamental part, but even when we try to
predict all possible scenarios, we can clearly find unwanted behavior.
Object recognition AI tends to misinterpret objects, face-recognition AI
with a restricted training set may fail to recognize the vast majority of
different human appearances. Thus, even if the programs are the result
of mathematics, the different layers of abstraction and interaction can put
them on a par with the mental and cognitive processes. Furthermore,
since we target GPU hardware with floating-point and chaotic IR real-time
point scanning on top of parallelity, the results are highly unpredictable
and mostly nondeterministic. Therefore, this paradigm can be somewhat
important in this thesis, as we are working on a parallel task in which
usability and visual perception depend on user acceptance.

The technocratic paradigm approaches computer science as a branch of
engineering, as we design the architecture of systems, maintenance, and
evolution. We do indeed use computers, as they are useful devices; they
help us with utility. As the word "engineer" is delivered from Latin words
ingeniare (’to create’) and ingenium (’clever’), the field of engineering
establishes a clever link between scientific discoveries (like algorithms and
methodologies in computer science) and practical real-life applications,
such as the problems and issues we are trying to solve. As knowledge
of software engineering is important for system design, optimization, and
structure, it is the most important paradigm in this project.

In conclusion, I have chosen the technocratic paradigm as the main
objective of this master thesis, as we wish to achieve tangible results tested
in practice. Furthermore, it also implies that this master thesis will focus on
designing and experimenting with a model-based occlusion system rather
than explaining the mathematics behind the problem.

8

1.4 Approach

To develop solutions and evaluate the results, I need to specify the goals of
this project. The specification of our goals and approach for this project is
the following:

Functional Goals

• The solution must generate the mesh data to be used for occlusion.

• Data collection required for reconstruction must be performed live or
in advance.

Non-functional Goals

• The solution should run in real-time (a single frame should not
exceed 1000 ms)

• The solution should be efficient enough to reconstruct detail up to 1
cm.

• The solution should be efficient enough to run at least 30 frames per
second (frame time less than 33.33 ms).

• The solution should minimize performance spikes.

• The solution should be easily adaptable by developers.

• The solution should work on x86 platforms as well as mobile ARM
devices that can benefit from AR technology.

Note that these are optimistic assumptions. Completing these goals may
have a positive impact on user experience when using the prototype system
I developed. Developing a solution that is production-ready is not the goal,
as this project serves as an exploration and experimentation attempt in AR-
area.

9

Part I

The project

10

Chapter 2

Background and Preparations

2.1 Background and Preparations

2.1.1 Early Days of Augmented Reality and Computing

Human dreams of pursuing technology and solutions that bring us utility
and entertainment by replacing or expanding our reality began in the
1950s [8]. In 1955 Morthon Heilig built and described his device named
Sensorama, which was meant to be our "cinema of the future."

In 1966, Ivan Sutherland that we can call "the father of augmented reality",
invented a head mounted display [8] that can be considered symbolic
for augmented reality. His 1968 invention was called "The Sword of
Democles", in which he used mechanical and ultrasonic sensors connected
to the head and ceiling of the user to determine the position and rotation
of the head [59]. The solution was far from comfortable for users and the
sensors were limited in the prototype. His idea was adapted and improved
in many years to come, leading to our modern products, such as Project
North Star or Microsoft Hololens, building on the same idea using more
compact technology and also proving more usability.

Back in the day, companies hired humans to perform mathematical
calculations before digital computers were widely available to the public.
Computers started to replace human workers in the 1960s and 1970s, as
they started to simplify and automate many of the everyday tasks. Some
of NASA’s ’human computers’ became programmers and testers using
programming languages like Fortran [60].

Wellner paper from 1993 approaches the gap between the real and virtual
world [80]. Digital tools provide us with a lot of refinement and help, as we
can easily spell check, search, copy/remove/move, and read with text-to-
speech technology. However, we are using paper with our extensive senses,

11

Figure 2.1: Sutherland’s prototype shown in his 1968 paper. [59]

tactile skills, and a certain amount of physical material. Furthermore, in the
modern world, we tend to move towards digitalization, with some possible
trade-offs. This led to a projector-based solution in which users wrote on
the surface of the table with pens and interacted with the fingers. It allowed
the physical objects to mix with the paper and tools displayed by the
projector. In the coming years, we could see the development of products
such as interactive class whiteboards. Considering the complexity of such
task; this field of AR can be considered as one of the least demanding ones
in most common use cases. Having a virtual world through the projector
can be a less demanding task compared to mesh generation, complex
depth perception, and movement detection. However, the computing
power mentioned above in these years would be sufficient even if the
user experience potentially had much room for improvement compared
to AR solutions of our times. Clearly, many ideas for new technologies
have appeared over the years. Some of the ideas seemed good on paper as
they provided solutions to our problems. In the end, even if products were
released, they would have a tendency to be used and rejected because of
essential issues with features and usage. It was either because of design
flaws (ineffective in use, for instance) or the restrictions like computing
power (what is possible to do and what we can afford to do) or because
of the technological restrictions.

Consumer markets have been approached by VR and AR many times. In
1995, Nintendo attempted to release a VR console named Virtual Boy [14,
82]. The console was the first VR, stereoscopic vision console that was ever
created. The console was released in Japan and North America, but it was
never released in Europe or Australia, since Nintendo officially halted its
production in 1996 due to poor sales. To this day, Virtual Boy is the worst

12

selling Nintendo console in the history. The console was equipped with
a 20 MHz processor, 1 MB Dynamic Random Access Memory, and 1 KB
cache. It was equipped with a 384x224 resolution scanner (not a screen)
and a 50 Hz horizontal refresh rate. Furthermore, the console displays
monochromatic images only, with 32 levels of red pixel intensity. Choices
were made based on technological limits and costs. At that time, red LEDs
were significantly cheaper to produce compared to green or blue InGaN
LEDs. Red is on the lower end of the visible spectrum and is closer to the
infrared. This means that producing red light requires more power than
color, such as blue or violet, with higher wavelengths. The lower energy
usage of the screen is beneficial for an affordable device powered by six
AA batteries (or an AC adapter). It is also important to note that the device
did not have advanced tracking hardware. In modern devices that use VR,
AR, and even smartphones, gyroscopes and sensors track the movement,
rotation, and speed of the devices. These data are then used to rotate view
based on the devices/eyes position, making the experience much more
immersive. Virtual Boy’s view was static and game-dependent, and user
movements did not affect the view. Not to forget that the games provided
were 2D just like other Nintendo consoles at these times, trying to make it
more interesting with approaching 3D view through stereoscopic vision.

A brave and innovative idea became an extremely poor product. Poor
screen and technology cause headaches and nausea for users. Taking
everything into account, the specifications of the console were meant
for 2D games and were computationally much slower than the PS1 3D
console released in 1994/1995 worldwide [13]. It is also very important
to consider that immersive stereoscopic visions require two views, which
almost doubles the computing requirements for rendering when compared
to a single-screen display. In conclusion, it was very hard to make VR and
AR tech usable in these times, as the technology we had was not enough
to close the gap between the real world and the virtual world to cheat our
human senses. Even if we had sufficient technology to close this gap and
improve the VR experience to reduce the negative effect, it could hardly be
affordable to customers. In addition, we can consider whether that unique
experience was worth our health, time, and money. Sales of virtual Boy
products can suggest the answer.

One of the later examples starts with the fundamentals that make AR
usable as a technology, described by Drascic et al. [18]. The paper describes
issues, a problem of AR depth perception that makes this technology
actually usable. This paper is very relevant for both video-based and
optical-based AR approaches, as both tend to deal with the issue of depth
sensing. As expected, technology was developing in different directions.
The article described the classification between the real world and the
virtual world as follows; reality, augmented reality (AR), augmented
virtuality (AV), and virtual reality (VR). The mentioned families of reality,
mixed reality (MR), and VR combine different methods for display; direct
view, stereo video, and stereo graphics. Drascic et al. studied the literature

13

and found that some researchers displayed virtual reality on top of the
real one with a monitor, some with headsets with mirrors (like in Project
North Star), while others used cameras to combine virtual world with
real world through cameras. This shows that approaches to AR, AV, or
VR implementations have developed broadly from the early beginnings.
Video-based methods can actually allow us to use the headset both as
AR and VR if developed correctly, whereas optical-based methods are not
suited for displaying VR because of transparency of the screen. In later
chapters of this thesis, I also describe the differences between such video-
based and optical-based methods and what they mean for occlusion.

For correct depth perception, we need to use a calibrated stereo image,
as depth is hard to perceive in stereoscopic projections, leading to
misperception and errors that interfere with usability of an AR system.
One of the interesting issues that appears in experiments is related to the
mechanisms of human eyes. As we focus on real objects, close or distant,
our eyes must adjust to the depth of the object we look at. Using optical-
based systems, even if virtual objects are very far away, our eyes need to
adjust to the location of our display surface located in front of our eyes.
With the video-based approach, our eyes are adjusted to depth of display
surface, which means that the issue is solved, but the focusing instinct in
our eyes is entirely restricted.

More recent studies of AR have been extensively tested in the field of
medicine [55]. The researchers wanted to use screens or headsets as an
additional virtual overlay on top of the real world for tasks such as X-
rays, scans, patient operations, or training. In Rolland et al. [56] compared
video-based and optical-based approaches in the field of medicine. The
most fundamental issues they mention is in fact occlusion, fidelity of
the real-world view, system latency and user acceptance. Many of these
factors could be improved with modern technology with significantly
better tracking, synchronization, refresh rate, and computing power. There
is no perfect solution in this case, possibly regardless of the field in which
the technology is used. Optical-based (see-trough) is harder to synchronize,
but world interaction is more direct; meanwhile, video-based approach
results in easier unification and handling of the views, possibly for the loss
in field of view, latency, and refresh rate of screen. As computing power
and hardware accessibility increased, AR gradually gained traction. One
of the other experiments we can mention is dynamic information exchange
for fast decision making regarding airplane control, displayed on the screen
for purposes such as easier identification of airplanes in poor weather
conditions [55].

Technology and Computations

Although AR research began many decades ago, technological limitations
and the complex nature of human perception were restricting its usability
and development. The features granted by AR as we know today are

14

heavily graphical-based. To better illustrate this with market capabilities
and affordability, consider the following example. One of the most
significant achievements of product releases in the 1990s was the Sony
PlayStation, which brought 3D and 2D graphics to the consumer market
at relatively affordable prices and with ease of use. Simplicity of use and
the price of consoles increased user accessibility to video games. According
to the PS1 technical specification [13], the board was equipped with a 32-
bit CPU running at a frequency of 33.87 MHz and with a 4KB instruction
cache. The console was also equipped with 1 MB of VRAM (Video RAM)
and 2 MB of RAM memory and Extended Data Out chips that provided
lower latency than DRAM. Interestingly enough, this console was not
equipped with Floating Point Unit, where in the modern world floating
points are an essential part of graphic calculations. The lack of FPU
leads to world and vertex coordinates being expressed as integers, total
numbers. This fact led to the characteristic vertex snapping to the closest
integer coordinate, instead of smooth vertex movements, as we know in
modern float computer graphics. Animated models waved and changed
shape unnaturally. This decision could be considered as poor, but affected
prices and thus affected affordability that in any case led to the consoles
big success. PS1 console was able to render resolutions between 256x224
and 640x480 (max colors) and calculated 360,000 polygons per second[12].
When we compare this computing power and memory capability with the
potential needs that AR poses for rendering and occlusion,

A high-end computer setup at these times, equipped with a CPU and
potentially a hardware accelerator (3dfx / Voodoo Graphics), was a less
accessible option, not necessarily available to a wider public or getting close
to the technological needs of AR. In the 1980s, consumer processors were
suited to run at a clock frequency of around 1 MHz [28]. Modern CPUs
are equipped with frequencies ranging between 3 and 5 GHz and ranging
between 2 and 12 physical cores for laptops and workstation computers
for home. In addition to that, both Intel and AMD work on optimization
methods and mechanics that work either by default or can be implemented
by developers for even faster computation. The technology like Intel
Hyper-Threading or Intel Math Kernel Library that commit towards easier
and more efficient parallel/concurrent computing. It clearly demonstrates
that computing capabilities increased thousands of times between the
1990s and 2020s as architecture, hardware (by making smaller nanometer
circuits), and software improved and are still improving. An increase in
computational power for both the GPU and the CPU is necessary to close
the gap between virtual-world accuracy and real-world accuracy.

2.1.2 Augmented Reality Today

Even if the technology had been developing for decades, the mentioned
issues were leading to poor user acceptance that affected not only AR,

15

but the entire VR and MR field in general. Although the first prototype
of the AR headset, The Sword of Democles, was researched in 1968
the VR and AR technology was insignificant on the consumer marked
before 2012 when the Oculus project was successfully funded and other
notable VR/AR products were developed; HTC Vive, Steam Index, Project
Northstar, and HoloLens. This has begun a new era for the fields related to
virtual reality that reach consumers and market users [1]. The VR and AR
possibilities on the marked increased, as user interest and experience has
grown following the improving quality of image, sensors, and computing
power.

Today, AR and VR technology has finally gained significant traction;
but few complex issues related to it remain unsolved. Many issues are
close to impossible to solve, others require more computing power or
technical compromises. We can conclude that making a real-time AR that
is comfortable for users, especially occlusion, was impossible for many
decades of IT. Even if the early AR-related project could start as early as
in the 1960s, technology and computing power were far enough for our
target needs; close to seamless experience that users would be comfortable
with.

2.2 Choosing the Right Tools

To conduct the research, I needed to choose development tools. To simulate
an AR environment, a 3D rendering API is required. The low-level part
of the application needs to take care of tasks such as rendering, collision,
and program logic. Such an application is called a game engine. The
development of a game engine from scratch is very difficult, as it preferably
requires a team of experienced developers to finish it in months or years.
Game engines are programs that require real-time computation, as many
of the calculations need to be done on a frame basis. A frame is a single
image displayed on the screen as a result of rendering.

Virtual worlds are best experienced at framerates reasonable to the
human eye. The more efficient data management, dispatching, and task
parallelization, the more detail or FPS game can achieve. Game logic
is often bound to the amount of FPS an engine is capable of producing.
Another part of the logic like physics calculations may restrict its update to
precisely N per real-time second, which potentially makes mechanics like
slow motion easier to achieve.

Some of the data required for the logic of the game, netcode, and rendering
can be prepared prior to execution to maximize performance. However, the
performance-demanding nature of game engines motivates the use of high-
performance languages or different optimization techniques. However,
its use cases in the industry go far beyond the creation of games. Game

16

engines are also used to create 3D animations, simulations, training
programs, and cinematography. One of the most recognized game engines
on the market for 2022 are [4, 9]

• Unreal Engine

• Unity

• CryEngine

• GameMaker: Studio

• Godot

• Lumberyard

• Frostbite

Each of them has different financial models, use cases, tools, and commu-
nity.

While working on an AR project with limited time and resources, I have
decided to go for the engines with the most software/hardware support
and a large community. The lack of support and developer tools can make
the development time longer, potentially affecting project productivity.
Developing VR and AR for Unity and Unreal Engine is a safe and beneficial
option, and thus they were the main options to be considered while
working on this thesis.

Unreal Engine

Unreal Engine is possibly one of the most popular game engines [9].
Unreal Engine was used in the creation of many popular and historic
game titles, such as Unreal Tournament, Bioshock, and Mass Effect. It
was also used in the production of ’The Mandalorian’, making a gigantic
breakthrough in cinematography by replacing green-screen technology
with realistic environment and reflections directly visible during recording
and rehearsals. The native language for Unreal development is the
high-performance, well-established ahead-of-time language C++. It is
also possible to use graph-based visual scripting methods for script
programming. As a well-supported language, it supports most popular
platforms and technologies such as AR and VR. It is a great pick for big
projects focusing on photo-realism and performance.

Unity Engine

Unity Engine is one of the favorites in the indie game development scene,
as it is one of the easiest game engines to learn [4]. Unity offers a

17

wide range of tools like camera-systems or pararellization systems. Some
solutions like networking are premature when compared to Unreal or
unofficial commercial solutions. However, the Unity developer community
is significant, and libraries are often well documented and come with
many examples thanks to the large community. Unity uses C# language
comparable to Java syntax and C++ utilities. C# can be considered as
one of the most popular and performant just-in-time languages with many
optimization options, syntactic sugar and helpful tools, while being time-
efficient. Even if the code is being compiled at run-time, Unity is not
significantly worse performance-wise when compared to Unreal Engine.
The fact that Unity is performant enough, time-efficient, supports cross-
platform compute shaders, and is supported by most of the hardware that
could be potentially used for testing makes it a very good candidate and
the final pick for this project.

The current Unity versions implement different rendering pipelines with
different goals [71]. Rendering pipelines are sequences of steps that the
engine and graphics APIs need to take to render an entire frame; like
drawing geometry shaders or calculating light and shadows. Over the
years, Unity has used a rendering pipeline called the Standard Rendering
Pipeline (SRP), but a single rendering solution did not meet the specific
needs of all supported platforms. This led to the development of the
Lightweight Rendering Pipeline (LWRP), which was later renamed the
Universal Rendering Pipeline (URP). The goal of URP is to provide
medium- or low-fidelity graphics that will run efficiently on both mobile
phones, consoles, and computers. However, URP suffers from diminishing
returns on performance gains when many lights are used in the default
forward-rendering mode.

The contrast to this lightweight rendering pipeline is the High-Definition
Rendering Pipeline (HDRP), which can compete with Unreal Engine in
terms of high-fidelity graphics and performance. HDRP is much heavier
to compute because of the different passes and buffers required to support
the rendering of high-definition graphics or features like ray tracing. The
impact in frames-per-second (FPS) when moving from URP to HDRP on
high-performance devices is commonly significant. However, HDRP is
much better suited for high amounts of lights and effects and thus will
suffer less from diminishing returns as more lights and objects are added.

URP and HDRP are long-sighted solutions for Unity Engine in constant
development. They are meant to be a replacement for SRP that is in
maintenance mode. If none of the options mentioned is satisfactory as a
fundamental for a given project, Unity also supports the implementation
of a custom rendering pipeline through the Scriptable Rendering Pipeline
API [72]. As we focus on VR/AR field, URP is the most optimal pick. Our
goal is to render and occlude holograms with a good framerate. This means
that features like photorealistic rendering and high-fidelity shaders are not
needed. URP also makes the solution compatible with a larger number of

18

platforms, which is beneficial for AR use cases. This can include: headset
wired to a computer, standalone headsets, or smartphones.

Programming Languages and Runtime

One of the aspects that has a direct impact on runtime performance
and memory usage is programming language and how its environment
compiles the code to the native machine code. In Pereira et al. 2017
[51] paper researchers measured the performance and use of resources
of different programming languages used in the marked. Although the
implementation methods might not be perfect for each language, the
research paper shows data related to energy, time, and memory used while
using various languages.

Language Energy Time Memory
C 1.0 1.0 1.17
Rust 1.03 1.04 1.54
C++ 1.34 1.56 1.34
Java 1.98 1.89 6.01
Pascal 2.14 3.02 1.0
C# 3.14 3.14 2.85
Go 3.23 2.83 1.05
Python 75.88 71.90 2.80

Table 2.1: The table shows the usage of resources from different program-
ming languages. Value 1.0 is the reference metric for the most performant
language in a given category. [51]

The result showed that C, Rust and C++ are on top of energy and time
efficiency, while Pascal, Go, and C were the most memory efficient in
conducted tests. Considering how C++ functions as an AoT (ahead of time)
language, it is highly probable that Unreal will be more efficient than Unity
and will promote better memory management. However, it is clear that
C++ can be more time consuming to program, as there are more high-level
languages.

The Pereira et al. places C# above average in the time list. Since this
paper does not directly mention the C# runtime used, we assume that the
less performant Mono (one of C# interpreter environments) runtime is also
used by Unity Engine. It suggests that Unity programs can be slower when
using Mono runtime than Unreal C++ code. C# is also slower than Java and
significantly faster than Python. The results could potentially be improved
by using a faster C# runtime than Mono; however, other runtimes are
not supported by Unity Engine. Note that C# allows unsafe memory

19

operations in blocks unsafe, allowing memory operations comparable to
C++. To deal with platform compatibility, Unity translates the code into
C++ via IL2CPP, which will be mentioned in the next section.

At the moment of writing, Python is one of the most popular languages
on the market, as many years before. However, none of the most popular
game engines uses Python for their core systems. This state of facts can
be caused by Python runtime performance, as CPU and GPU computing
performance can directly result in a better relation of resources used to FPS
and resolution produced.

Abstraction of Graphic APIs

Since both engines can be deployed to a large number of devices and
architectures, they introduce a significant number of abstraction levels.
Developer freedom is also an important factor when choosing an engine,
as developers should be able to achieve all desired mechanics efficiently.
AR technology can be used for mobile devices, AR/VR headsets, or
other methods. While the Unreal Engine C++ code can be directly
compiled into machine code, C# is a more complicated matter. The
C# JIT (just in time) environment known as Mono is not available on
other platforms than Windows, macOS, and Linux [73]. This problem
required an alternative approach, which led to the development of IL2CPP
(Intermediate Language to C++). IL2CPP translates the code into C++,
which is compiled on any of the target platforms [68]. Since the code is
optimized in the process and the code is compiled ahead of time, it is
possible to notice performance improvements. Furthermore, it is important
to note that each platform uses different graphic APIs. Graphics engines
give a programmable interface to render 2D and 3D applications and
give developers useful tools that can significantly affect rendering times,
computing time, graphical fidelity, and/or shorten development times.

Some of the most known rendering APIs are Microsoft DirectX, Vulkan,
Apple Metal, and OpenGL. DirectX is used as the main graphics API for
Windows x86 operating systems and is not available on other platforms
outside of Microsoft’s ecosystem. On the other end of the spectrum,
we have Metal utilized by macOS and iOS, and can be either an ARM
(commonly used in mobile devices) or x86 system (commonly used for
desktop and mobile computers). One of the most universal and modern
solutions is Vulkan, which supports all major x86 and ARM operating
systems. To achieve compatibility with these platforms, game engines
such as Unity implement a layer of abstraction invisible to developers [67].
Then it translates features such as shaders, compute shaders, and draw
commands to the target API without the developer’s action required. It
also needs to take all differences into account: half-precision floating points
(called ’half’). It is a good option for applications such as mobile computing
and deep learning [26] where it can result in a minor decrease in accuracy,

20

but saves noticeable amounts of memory and computing power. Single-
precision (called ’float’) and double-precision (called ’double’) floating
points can be more common on x86 platforms, where heat and size of
components can be a smaller problem, and higher performance can be
achieved. The compiler makes such usage of the ’half’ type obsolete on
some APIs/platforms (like DirectX), as half is converted to float. While it is
challenging to determine all the possible details about algorithms behind
these abstractions, some are possible to grasp through documentation or
common sense.

Computation Shaders

Since mesh generation pipelines are resource-demanding operations, it is
required to use as many available resources as we can. This is highly
restricted to the hardware we own. However, most computers for use,
such as games, simulations, or VR/AR, have multiple physical cores and a
GPU with different types of computing cores in quantities of hundreds or
thousands [28, 85]. Therefore, parallelism comes as an important element.
Since it may be wise to use algorithms optimized for parallel computation
(like marching cubes), a GPU is capable of much faster computations than
CPU and RAM. Since GPUs are meant for high-complexity floating point
computations common for use like display, computer graphics, games,
physics/chemical/biology simulations, they are commonly equipped with
very high efficiency VRAMs and thousands of shading cores meant for
different purposes. The single shading core alone is significantly slower
than the single CPU core; however, its high quantities make the difference.

As we want to send and process information on the GPU, we must
choose a method to interact with the graphics card. First, we initially
wanted to use CUDA or general-purpose computing APIs ported to C#
from C++. This method would imply very good access to the CUDA
materials. However, CUDA is restricted to Nvidia video cards, and
using AMD/Nvidia compatible options may lead to loss of CUDA-related
features. Another drawback is that these libraries may lead to issues
when testing on all three popular x86 platforms like Windows, Mac OS
X and Linux. In that case, performing reconstruction operations on phones
or consoles might be complicated or even impossible, depending on the
platform.

Due to the low platform and hardware compatibility, it was important to
evaluate what tools and common graphics APIs the Unity libraries have
to offer. Unity supports compute shaders [63] and translates them into the
desired graphics API supported by the target platform. Compute shaders
are used to calculate arbitrary data on the GPU, which are not necessarily
related to graphics [46]. It will also improve the integration of the code
into the Unity ecosystem. Furthermore, it helps us to reduce the amount
of compatibility layers that would be needed to implement to support an

21

ever-changing list of platforms, APIs, and features. Still, it is very probable
that such a solution may be less efficient than native code, as the generality
of Unity abstraction layers might be slightly less efficient than the native
implementations for each specific platform.

2.3 Design Development

2.3.1 Introduction

As we design and implement our system, we need to cover and evaluate
various aspects of software and hardware. These aspects introduce
sensor hardware, sensor data handling, mesh generation algorithms, data
handling methods, and optimization techniques that could be applied.

This section is dedicated towards explanation and evaluation of the thesis
project by developing real-time mesh generation systems.

2.3.2 Capturing the Reality

Before we can render the digital world on top of the real world, the
fundamental requirement is the hardware used to collect data from the
surrounding world. In the virtual world, we can quickly determine the
camera’s distance from an object in our view. Before we can occlude
different objects based on factors such as geometry, distance, and order,
we must collect data that are primarily suitable for the needs of the AR
headset. We can use laser probing, IR probing, or a camera to estimate
the depth of real world scenery and reconstruct it as a mesh or depth mask.
The two approaches will be discussed in Section 3. This section will provide
information on the weaknesses and strengths of different methods needed
to collect various forms of data necessary to perform occlusion.

Environment reconstruction is essential in other fields of information
technology, such as robotics. Boston Dynamics is known for cutting-edge
research and development in the area of autonomous robots. Boston’s robot
"Spot" released in 2020 is an excellent example, as robotics also requires
a perception of their surroundings. Spot can be used for a wide range
of purposes, especially those that could put humans at high risk. Since
the robot must operate under harsh conditions, it had to be supported
by reliable technology that would allow constant operation. To solve this
problem, the robot needs to perform a 3D mapping of the surroundings in
real-time and a processing unit capable of performing all these tasks. The
robot has been equipped with multiple sets of cameras, depth cameras, and
IR sensors, especially at the front [6].

22

One crucial technology to consider for AR is the use of laser range probing,
known as LiDAR. Light detection and probing are technologies that find
good use in devices like 3D scanners, robotics, or autonomous cars (for
recreation of the environment), at least to some extent. The data we receive
are known as point clouds. Although this method can be very accurate in
measurements, LiDAR has some challenges. We can inspect the presence
of LiDAR for environmental reconstruction in the context of self-driving
cars. Although LiDAR appeared to be used in autonomous car prototypes,
companies such as Tesla opted out of this technology [3]. Light probing
does not appear as a part of Spot’s environment awareness either, but can
be installed as an additional module. As for the augmented reality itself,
Microsoft does not use LiDAR in HoloLens either. The accuracy of this
technology proves to be very useful for environment mesh reconstruction
of much higher quality. More accurate and higher-quality mesh generation
can improve the fidelity of our occlusion. However, to do this, we need
to convert our point cloud into meshes or depth data that our rendering
engine can use.

Figure 2.2: Illustration of the point cloud scan. To use point cloud for
occlusion, it needs to be covered in a format suitable for 3D rendering
engine: a mesh or depth map. [17]

23

1. The first point is the high price and maintenance costs of the sensors.
A LiDAR setup can cost hundreds or thousands of dollars. Although
this method might be affordable for prototyping, it can greatly
increase production costs for the end-users. Thus, we need to ask
the following; is it worth it? The answer is; not necessarily in all
cases. Some research papers [35, 41] could suggest that it is possible
to achieve a similar reconstruction quality with stereo cameras or
depth cameras. Optical systems of two or more cameras are cheap,
universal, and scalable. RGB-D cameras can also be a good option.
We can balance camera quality to achieve the desired accuracy based
on the processing power we can supply for reconstruction. It means
that we can use Full HD cameras, or improve them to 4K, or even
combine multiple views. In theory, such a method could allow
developers to adjust the quality of the images. Limiting scan data can
be challenging, but important, when improving performance. Point
clouds appear to suffer from the effect of diminishing returns [84].
A higher probe rate only slightly improves the accuracy of the
reconstruction, but the computational cost scales with the size of the
data set. It is wise to reduce the probes used for model generation, as
the precision granted by additional points may be insignificant to the
computational cost [84]. This process may require an additional step
in the processing of the point cloud, where the data are discarded.
The computational cost depends on the type of mesh generation
algorithm. Algorithms such as Marching Cubes translate the point
data into its own weight system.

2. LiDAR and other optical methods are limited to distance measure-
ments only. Cameras can be used for more AR features than this.
We can use trackers or generate textures that would typically require
dedicated cameras next to LiDAR.

3. In some cases, LiDAR can be ineffective in tracking and distinguish-
ing moving objects. Furthermore, there is little literature on the sub-
ject of detecting moving objects from LiDAR scans [53]. This point is
essential for AR and the mentioned autonomous cars. Our AR device
(headset or phone) is in constant motion. That moment will make the
LiDAR system very noisy and inefficient for occlusion. However, it
is essential to note that LiDAR will be very accurate and effective in
reconstructing the static environment. Correctly used LiDAR or IR
can still result in outstanding accuracy, which is difficult to overcome
by other methods. It can still shine in scenarios where the recognition
of a camera environment would be inaccurate, such as Tesla incidents
with white vehicles [81].

The mesh needs to be reconstructed by an algorithm that can translate the
clouds into mesh or depth information. This operation can be expensive,
inefficient, and subject to GPU optimization as it implies thousands or
millions of points to compute.

24

IR and Cameras

Depth cameras would be a very convenient method to receive information.
Depth information would be enough to allow efficient yet straightforward
occlusion of objects. We can either use multiple cameras to generate a depth
map or use the more accurate method by using depth cameras to do such a
reconstruction.

Depth cameras emit infrared pulses into their environment. Then, infrared
rays return to the camera, whereas other frequencies are filtered out.
Newer IR camera technologies (such as Kinect v2) use Time-of-Flight
technology that is slightly more accurate compared to pattern projection,
recommended for mesh generation purposes [79]. A higher sending
frequency results in a higher scan rate but in a shorter range. The lower
sending frequency results in a scan frame rate, but in a higher range [43].
An AR headset must have a perception of the environment and follow
user interaction. HoloLens, based on upgraded Kinect technology, uses
one depth camera and two infrared illuminators to address this problem.
Short-throw (high infrared frequency, pointed down) offers high accuracy
and frequency tracking of users’ hands and close objects. Long-throw (low-
frequency) is used to map the environment. It also has multiple RGB
cameras used for tracking. However, it is clear that we can receive IR
interference from the elements of the environment, such as the Sun. IR
cameras filter out other wavelengths, but usage of multiple headsets in
the same area can cause interference. The paper by Li et al. [32] proposed
solutions to reduce interference by using different IR wavelengths without
hardware updates.

Spatial mapping (3D reconstruction) of our environment can be challeng-
ing. One of the main drawbacks of RGB-D cameras is their noise. As with
other methods, 3D model generation can suffer from jitter and holes. Re-
searchers at Keio University went several steps further and created an algo-
rithm for mesh generation using data from multiple RGB-D cameras [35].
Their algorithm utilized the marching cube algorithm processed on GPU
for high-quality mesh reconstruction of the environment. Nevertheless,
some concerns arise when we need to use such model data for occlusion,
as jitter and holes affect the quality negatively. This requires methods
or whole reconstruction algorithms that support potential water proofing
(closed meshes, without holes in topology). However, it can sufficiently
decrease the surface quality, and thus the quality of our contours is crucial
for occlusion. The inaccuracy of the IR can be even more visible to moving
objects, such as the hands and fingers of the user, leading to errors in occlu-
sion, as presented in the paper by Gugliermo et al. [25] that might need to
be addressed.

25

Figure 2.3: Illustration representing the working principles of time-of-flight
cameras. ToF cameras are based on infrared pulses (from illuminators) of a
given frequency, which are then picked up by the camera with a time delay.
This information is used to estimate the distance. [10]

Figure 2.4: Illustration of the Z-buffer representation. [83]

Algorithms

As we choose the data collection method, we need to consider them with
algorithms that will efficiently convert them to destination form and the
functionality developers want on the side. As we map the surrounding
world around the dataset, we need to add it to our AR application.

One of the relatively computationally cheap ways is to convert the data
to an occlusion mask added to the Z buffer of the renderer. Depth map
calculation algorithms tend to be somewhat simple and depend on the
camera and target resolution.

26

An even more computationally demanding way to perform the reconstruc-
tion and gain more functionality is a model-based reconstruction of the en-
vironment. Mesh reconstruction implies a relatively complex calculation in
a 3D space, where actions like forming new polygons need to be considered
with neighboring polygons. This can require a search or lookup. When we
can reconstruct our surroundings as a mesh, we may make immersive oc-
clusion while allowing developers and programs to use our reconstruction
for other means. In this way, we can more easily achieve the alignment of
virtual objects with natural objects and many other features.

Along with the data collection method, we need to choose methods and
algorithms to reconstruct our environment. The method based on depth
information calculated with the cameras is known as the depth-based
method for AR occlusion [58]. When using cameras only, algorithms
need to estimate the depth of visible scenes to create a depth map.
These cameras need to be at constant distance from each other, and
their perspective should be according to our AR headset display. It is
possible to achieve an acceptable effective depth map with just a single
camera, using less common methods, such as depth estimation based on
color shift model-based depth estimation [27] or camera movement-based
methods [41]. Unfortunately, these methods may not be practical enough
for large-scale AR or may require special hardware. Color-shift depth
estimation requires a specialized multiple color-filtered apertures (MCA)
camera and fails when different objects are of similar color. We could also
try to implement more complex algorithms and approaches, such as the
proposed 3D reconstruction of the occlusion boundary [31]. By creating
a 3D reconstruction from outlined silhouettes, the researchers achieved
a refined and accurate 2D estimation of the occluding objects used for
rendering using two cameras.

Concluding: An array of at least two cameras (or a single depth camera)
is an easier and more reliable method with fewer disadvantages that can
be problematic for AR applications. When the cameras are in a rigid set-
up and are well configured, computing between two or more perspectives
can be significantly easier. The depth mapping process is suitable for
graphic card processing. Modern GPU libraries like OpenCV allow one
to do it easily by computing stereo correspondence. The efficiency of other
algorithms must be evaluated, as algorithms that are computationally more
complex and demanding do not necessarily result in slightly better results
usable for occlusion.

When the depth map is ready, it needs to blend into the Z buffer of our
rendering engine. The Z-buffer contains the depth information of our
scene, which is essential to display 3D polygons in the correct order and
display a correctly occluded virtual world. Thus far, this method seems
to be more lightweight and more straightforward than the model-based
occlusion approach that we use in our thesis.

27

The second method implies 3D reconstruction and mapping of the real
world. The scans of the natural world have to be converted into meshes
that co-exist with the virtual objects. In this way, we do not need to deal
with methods that require modifying the depth buffer, as the processing
happens in its natural flow as the virtual cameras capture the surrounding
world. This method can be much more challenging than the buffer-based
one, as it implies many operations in a 3D space. On the other hand, it can
be much more convenient when working with LiDAR or infrared cameras.
Furthermore, it is even possible to achieve satisfactory reconstruction
quality with a single monocular camera [41], which is already done by
some mobile AR applications. The most significant benefit of model-based
reconstruction is the functionality and possibilities that are inefficient to
achieve with depth-based occlusion.

Using model-based occlusion will pose challenges to the surface quality
of objects. This issue was presented in some occlusion papers [35]
and Microsoft’s presentation on HoloLens [43]. When we conduct
surface reconstruction by methods like structured light in the IR domain,
it can suffer from inaccuracies, causing jitter on the model’s surface.
Furthermore, missing or corrupted interpretation of the environment
can also be a problem, and our algorithm needs to be efficient enough
to do this reconstruction in real-time. Alex Kipman at the HoloLens
presentation showed 3D mesh reconstruction as a virtual curtain over
the real world, with no sense of what the objects are. The use of
artificial intelligence was considered to build a better understanding of
the surrounding environment, which can be useful in solving some AR
challenges, including occlusion.

The following problems must be addressed with reconstruction algorithms,
assuming that we do not use AI. As the program reconstructs the physical
world in the form of a mesh, it needs to be done using a combination
of several algorithms. As is typical in software development, it can be
difficult to achieve efficient and effective algorithms simultaneously. One
of the most popular reconstruction methods, valued for its flexibility and
simplicity, is the marching cube algorithm. Marching cubes allow us to
do the rebuilding, applying post-processing steps and corrections with the
possibility for parallel and fast computing on the GPU.

As we are conduction reconstruction, deviations and missing information
can cause holes in the model. Although this issue not only causes problems
with occlusion, it can also affect the functionality in the application.
Developers may want to use the mesh for applications, and the model can
be used as a collision in Unity or Unreal Engine for mechanics, such as
physics. To address the holes in our reconstruction, we may need a hole
filling process (called waterproofing) [35, 84]. Hole-filling can be added as
an additional step, done with additional post-processing on the 3D mesh;
however, it can be a very expensive operation to execute. The process of
waterproofing is directly related to how meshes are generated (more about

28

this in the chapter, ’Mesh Generation Algorithms’). Marching cubes do
not "wrap" the surface meshes on top of the points, unlike algorithms like
Poisson. However, the model itself is not without potential holes in the
mesh.

The proposed Poisson algorithm presented in the research paper by Meerits
et al. [35] can be efficient in dealing with both holes and jittery surfaces.
Still, as suggested by the researchers, it tends to oversmooth the surface.
The settings of such an algorithm should be evaluated and calibrated
correctly, as the loss of detail caused by Poisson may be unacceptable when
the mesh is used mainly for occlusion purposes. However, it proves to be a
good option to consider for 3D reconstruction. Mesh generation algorithms
will be explained further in section 3.1.2;

Investigating the articles and technology available today, we can observe
that depth cameras or camera setups are among the most preferred
methods for occlusion in augmented reality. Therefore, the data collected
by the sensors can be calculated on a graphics card for better performance,
as algorithms like marching cubes can easily benefit from the task being
split between hundreds or thousands of shader cores. Good AR occlusion
will require effective tracking of head movements, head location, effective
world reconstruction, and eye-to-screen distance calibration. Depending
on our data collection method, we will need to perform additional data
processing steps, such as stabilizing the jitter (IR), data discarding or
waterproofing, to ensure efficient processing and high quality of occlusion.

2.3.3 Tracking and Alignment

At all times, the position and rotation of the player must be very precisely
aligned with the real world. This is a difficult task, as misalignment and
lag will lead to symptoms such as dizziness and nussea [18].

Tracking methods, we can divide into the following groups, based on Rabbi
et al. [54]:

1. Sensor-based tracking:

(a) Optical tracking: Accurate tracking of controlled environments.
Sensitive to noise and occlusion. Commonly used in VR/AR
headsets like Hololens, HTC Vive Pro or Valve Index.

(b) Magnetic tracking: Cheaper, less accurate than the optical
method. Sensitive to magnetic disturbances.

(c) Acoustic tracking: Slower at tracking, speed of sound waves.
Affected by environment temperature and humidity.

(d) Inertial tracking: Does not require many external references,
making it usable in environments where other methods would

29

not be reliable. The method uses accelerometers and gyrocopes
to track position. Commonly used for smartphones and as
complementary sensors for VR/AR headsets.

2. Vision-based tracking:

(a) Model-based tracking: Can be less robust than marker-based
and has higher computational costs. Relatively cheap hardware.
Markerless tracking. Potentially used by solutions such as HTC
Cosmos.

(b) Marker-based tracking: Cheaper to compute marker-less solu-
tions. Not viable for long distances and large outdoor environ-
ments.

3. Hybrid tracking: Combination of multiple tracking methods. It can
be very complicated and computationally expensive.

The following methods of mounting sensors and cameras:

1. Inside-out tracking: Tracking components are located on the headset
and controllers.

2. Outside-in tracking: Tracking components are fixed to the environ-
ment and track the headset and controllers.

This topic could require additional extensive research that could be
combined with occlusion sensors. Optical IR tracking of VR headsets such
as HTC Vive Pro [5] is proving with high accuracy, inside-out tracking with
accuracy up to a few millimeters in all experiments. The headset uses
two or more IR towers and multiple optical sensors on the headset and
controllers, which are used as reference points to calculate their position
and rotation. However, these systems can be prone to interference [32,
54], ray occlusion, and may not be mobile enough for AR purposes. One
of the cheaper and more reliable solutions is the inertial tracking that is
present in devices such as smartphones. None of the solutions are perfect
for all use cases. Inertial tracking combined with optical tracking or vision-
based tracking method based on environment is one of the popular and
good combinations. Well-developed inertial tracking is inexpensive and
does not require a complicated setup in most situations. Optical-based
setup using IR can be very accurate, more costly solution that can be used,
assuming that we will not face interference with IR environment scanners.
Vision-based tracking can be used for initial orientation synchronization or
tracking without a complicated optical setup.

2.3.4 Storing the Data

Point clouds in the model-based approach need to be buffered and
translated by the desired mesh generation algorithms. We can approach

30

this problem in two different ways:

Live Data Reconstruction
We only display the latest information to perform the reconstruction.
The set of data and the amount of updates are adjusted to computing
capabilities. Old information needs to be overewritten or disposed of.

+ Objects that came to vision temporally are removed from the
occlusion data quickly.

- High temporal instability and holes in the accuracy of rendered
model and accuracy in many cases, as the point-cloud is limited to
the pool of rays produced in a very short period of time.

Cached Data Reconstruction
We can cache information collected to carry out the reconstruction. Data
are collected over a whole period of time or for a specific period of time.

+ High accuracy and temporal stability as the mesh data is cached.

- Moving objects create permanent or long-term objects.

- It can be expensive to store N time of the sensor/model data,
depending on the reconstruction algorithm and implementation.

Taking into account these aspects, the marching cubes algorithm is most
suitable for cached data reconstruction, as it uses a stable array of
weights. The weight values can be increased or reduced using rays.
For high accuracy, live data reconstruction of marching cubes can be a
very challenging task, as the gathered point cloud can be insufficient to
reconstruct a model without significant holes in the model. The holes in
the reconstruction will cause problems with the perception of occlusion and
potential issues for the program logic that uses the mesh data.

This will be further evaluated in results.

2.3.5 Engine and Order of Execution

Each game engine is constructed of many subsystems that give it function-
ality, usability, and make our implementation easily extendable. In unity,
the execution order of the core functionalities is as follows [66]:

1. Physics
Physics updates are executed in fast time interval. This means that the
physics update call can be executed multiple times per frame.

31

(a) Execute FixedUpdate Functions

(b) State Machine Update

(c) Process Animation

2. Input Events

3. Game Logic
Unity executes logic scripts developed by us.

(a) Execute Update Functions

(b) State Machine Update

(c) Process Animation

4. Scene Rendering
Unity dispatches rendering data to execute rendering. The single frame is
being finished.

5. Gizmo and GUI Rendering

6. End Of Frame

While developing AR reconstruction logic, I conduct the dispatching via
the ’Update’ function of the ’Behavior’ script class we can extend. It
helps us to perform tasks per frame, which will help us potentially adjust
the performance of AR systems to desired or available capacity. It also
helps us to benefit from GPU before rendering the part for more efficient
resource usage. By observing the delta time and mean time for single-sector
processing, we can determine how much we should compute. However,
updating a fast amount of data per frame should also suffice to make the
timings stable. Since our tasks are demanding, they can take the majority of
computing power. Therefore we either need to conduct frame smoothing
or make the amount of computations relatively stable during each frame,
and potentially adjust to CPU/GPU loads of other program features.

2.3.6 Objectives

To make the research results objective, transparent and useful to potential
readers, I should define some points that were important to consider in this
project.

Since we are working with computing and performance demanding tasks
the resources will be our main reference point. Our main metrics in
this system are: time elapsed (in milliseconds and ticks), frames-per-
second, frame-time, RAM/VRAM usage with relation to cube size and
points/eight updated per frame. These measurements can be put in tables
or mentioned directly in text. Computer specifications should be noted and
background processes should be minimized. To measure qualitative data,

32

we can use engine profiling tools that can give us access to a large part of
this information [62]. Some specific cases, like code/dataset performance,
may require development of simple, custom measuring tools.

The results of the program and the qualitative methodology give us a
clear indication of whether the solution is more performant in terms of
FPS and memory, but it cannot reflect the actual usability of the solution.
The visual accuracy and fidelity of the algorithm are impossible to measure
with mathematics, as they are qualified by developers and user perception.
Anomalies and spikes in run-time are also hard to plot with a graph and
thus need to be described and explained by analysis. Additional usability
is something else to consider in the process, as such an AR framework can
be used for many different purposes. Pictures of the solution can give the
reader some room for interpretation.

The development of the AR-occlusion system is time consuming. Game
engine tools and APIs help us to achieve the desired results faster than
doing it from scratch in languages like C++. However, to cover all possible
areas, it would require more time or multiple people. Furthermore, the
right hardware equipment can be hard to get, and its software coordination
with the virtual world is a big task to solve, and it was concluded that it is
not a mandatory part of this thesis. Hardware objects will be replaced by
virtual prototype counterparts that mimic the behavior of real hardware.
The scope is mainly focusing on surrounding reconstruction and occlusion
in real-time. Some of the problems that occur and are mentioned in this
thesis will require more research to be effective solved.

The main goal is to test the model-based reconstruction usable for for AR
occlusion. There are many algorithms and solutions to consider. The
conclusion taken was to find a performant solution that is safe to be
finished in the limited time. It is clear that we can go further with the
solution, as the collected data may be useful not only for AR developers but
for any computer science tasks that want to improve program performance
via GPU computing.

The technology, libraries, APIs, and tools that will be used are under
constant development. The features can change quickly over the coming
years. This means that some parts of the thesis and linked web pages may
become in some degree outdated over time. Unfortunately, when working
with specific tools, this is unavoidable. The fundamental knowledge
behind sensors, data-structures remains highly persistent over the decades.
Therefore, for fresh and useful information, it is best to consider scientific
articles, books and grasp some of the newest solutions.

Keeping these points in mind, we will create a working real-time prototype
of AR reconstruction and occlusion. Approaches, observations, and
explanations will be included in the Development section. Quantitative
data and qualitative walk-trough are included in the results section of the

33

thesis. I have also included glossary where I mainly try to describe some of
the significant terms with my own words, and list of acronyms at the end
of the thesis for reading convenience.

34

Chapter 3

Development

3.1 Conducting the Computations

3.1.1 Hardware and Parallelization

Single-chip processing units have been shown to be the most efficient way
to reap performance according to Moore’s law; both for CPU and GPU
technologies [57]. Both the CPU power and the number of cores have
increased significantly in recent years. Manufacturers want to put more
computing power on a single chip, avoiding the problems caused by power
(and therefore thermal aspects), memory, and instruction level parallelism
issues in chip architecture [28]. However, one of the biggest pitfalls
of multicore programming is its complexity. To increase performance,
we want to perform as many tasks as possible on all CPU cores. This
leads to hazards related to memory access or race conditions that require
synchronization or mutex (mutual exclusion). Since operating system
scheduler can interrupt current thread at any time, we either trade security
or speed. For instance, if data to be computed need to be used in incoming
steps, we need to trade off speed to synchronize the jobs with a barrier.
This is a clear trade-off but is essential to avoid race conditions. If we want
to go deeper, we can evaluate interference at the level of atomic operations.
However, considering all the possibilities is close to impossible to cover and
automatically debug. Furthermore, when we develop operations on lower
levels, they start to be quite architecture-specific. Operations like test-
and-set, for instance, which is considered as a single atomic operation, are
present in x86 but may not in ARM instruction set. Python is a very popular
scripting language, which has disappointing support for multithreading
compared to C# or C++ or newer languages like Rust and Go that approach
currency differently than previously mentioned. Meanwhile, most of the
languages have their specific uses, strong and weak sides, and concurrency
still seems to remain one of the harder aspects of programming.

35

GPUs from Nvidia and AMD have clearly outpaced consumer GPUs
in matters floating-point computations. Furthermore, modern GPUs
tend to be equipped with high-speed memory and thousands of cores
specialized in floating-point calculations used for shaders and any massive,
independent computations. However, since GPUs tend to be excellent
at parallelism and independent data, synchronization through barriers
and atomic operations (leading to kernels being stopped by memory wait
states) tend to lead to significant performance penalties [21]. In these
tasks, the CPU still plays an essential role, as it reads the data from drives,
loads them into RAM, and eventually sends them to the GPU to perform
the computation. In the event of rendering, models or textures can be
uploaded to the VRAM before desired frames are rendered. If the graphics
are meant to be displayed on the screen, the merged data can be directly
streamed through video output. Programs intended for the GPU are called
shaders. Shaders intended for specific computations are often named
compute shaders in graphic APIs that allow us to perform rendering and
computations on the GPU.

Further details and comparisons between efficient GPU and single-
threaded mesh generation algorithms can be found in the next section.

The way in which to conduct computations depends on the engine and
the graphical API that we use. In our case, the compute shaders [63] are
managed by Unity Engine. For programming of compute shaders, we use
the HLSL styled language, and the approach is very similar to CUDA or
OpenCL. How do we conduct such computations? Let us demonstrate a
small part of marching cubes compute shader:

36

#pragma kernel CSMain

// We can import functions or values from other files.
#include <Assets/EclipseAR/ComputeShaders/ArrayUtility.cginc>
#include <Assets/EclipseAR/ComputeShaders/MarchingCubes.cginc>

// [...]
// ========= Input Data ========= //
// Size of marching cubes in XYZ dimensions.
int3 _matrix_size;
// Size of cubes, in meters.
float _cube_size;
// Border padding.
float _padding = 0;
// Input weights buffer.
StructuredBuffer<float> _voxels;
// Target tolerance
float _tolerance = 0.5f;
// Level of detail
int _detailReduction = 1;
//[...]
// ========== Output ========== //
// Output verts.
AppendStructuredBuffer<Triangle> _output_verts;
// [...]

[numthreads(8, 8, 8)]
void CSMain(int3 id : SV_DispatchThreadID)
{

if (id.x > _matrix_size.x - _padding) return;
if (id.y > _matrix_size.y - _padding) return;
if (id.z > _matrix_size.z - _padding) return;

float3 cubePosition = float3(id);
int linearIndex = GetMatrixLinearIndex(id);

CubeCorner cube[8];
ReceiveCube(id, cube);
ComputeCube(cubePosition, cube, linearIndex);

}

Figure 3.1: Part of the code of the GPU marching cubes compute shader.

In the code 3.1, the shader code starts with the pragma declarations common
to shaders. The global variables are set before the compute-shader is
dispatched. For the compute shader, the declaration of #pragma kernel is
a requirement. The shader starts with the declared CSMain function. Very
important to note is the attribute above the function numthreads(8, 8, 8),
which defines the number of threads in the group (8 * 8 * 8 in this case),
described in three dimensions. According to that, each thread will receive
an int3 id, which we later use to find the correct cube to be calculated by
the thread. Each of these threads can be computed by different GPU cores.
The more threads in a group, the fewer groups will be executed, which
can improve performance. This means that numthreads(1, 1, 1) will lead to

37

the work of only one core at a time, without the benefits of parallelism.
Note that threads that finished their work earlier than the other threads in
their group may need to wait for the whole group/dispatch to finish and
can be unusable by other processes. In this case, thread groups work like
common concurrency barriers. At the end of each thread’s work, the code
adds triangle data to mesh AppendBuffer, which ensures atomically safe
insert operation for the working cores.

public static void ApplyWeightsToBuffer(ComputeBuffer targetBuffer,
Sector sector, int3 cubeCount,
Vector3 offset = new Vector3())

{
Vector4[] cloud = sector.updates.GetUpdates();
if (cloud.Length == 0) return;

ComputeShader pointsToWeights = ArManager.Singleton.pointsToWeights;
pointsToWeights.SetInts("_matrix_size", cubeCount.x, cubeCount.y,

cubeCount.z, 0);↪→

pointsToWeights.SetFloats("_origin", offset.x, offset.y, offset.z, 0);
pointsToWeights.SetFloat("_cube_size", sector.cubeSize);

ComputeBuffer cloudBuffer = new ComputeBuffer(cloud.Length,
sizeof(float) * 4);↪→

cloudBuffer.SetData(cloud);

int bufferSize = cloud.Length;

pointsToWeights.SetBuffer(0, "_cloud", cloudBuffer);
pointsToWeights.SetBuffer(0, "_weight", targetBuffer);

pointsToWeights.Dispatch
(

0,
bufferSize / 256,
1,
1

);
cloudBuffer.Dispose();

}

Figure 3.2: Part of the code of the AROperations file for dispatching the
marching cube weight update by point cloud. This function sends rays to
GPU for weight buffer update.

In the C# function 3.2, the points queued for update are sent to the
allocated compute buffer. Since the single point is described by XYZ
floating point values and Q describing the potential weight of the point,
we use sizeof(float) * 4. The compute buffer reference is set and its values
are changed to current needs, including the reference to compute buffer
with fresh points. When all values and references are set as desired,
the compute shader is dispatched using the function Dispatch(). This
operation is blocked by default, as the code after dispatch can depend on

38

the data computed on GPU. The first parameter of the function specifies
the kernel number, and the other three specify the amount of groups in
XYZ dimensions. The rule of thumb is to divide by the number of threads
declared in the compute shaders numthreads. In this scenario, the compute
shader that we use declares numthreads(256, 1, 1). Since we are working
with a one-dimensional array of points, we use only the X dimension.
This code could be further optimized to reduce the constant allocation of
memory that garbage collectors need to handle, using valuable processor
time. Furthermore, it is important to note that we cannot dispatch more
than 65535 thread groups in total. In such a situation, the number of
threads in a single group needs to be increased to cover the entire dataset.
For a better understanding, consider the following examples and their
explanations.

Example of thread groups: We want to process 10,000 points. Each point
must be translated into marching cube weights by a single thread. Using
numthreads(1, 1, 1) would make this operation significantly slower than
CPU, as we calculate only one point at a time, as it is calculated by a thread
group with only one thread. Furthermore, it would mean that we need to
dispatch 10,000 threads, leading to an exception, as 65535 is the limit of
groups. Using numthreads(256, 1, 1) results in 256 * 1 * 1 number of threads
in a single thread group. This should result in 256 cores that calculate
the weights for 256 points assigned to them in parallel. In the dispatch
function, we need to calculate the total number of groups to cover the
entire dataset, which is 10,000 / 256. Rounded to the higher positive integer
results in dispatching of 40 thread groups with 256 threads each. Note that
the last group to be executed contains only 16 points to evaluate, which
means that the remaining 240 cores have no work to do and should remain
idle. Therefore, it is wise to use guards with return as in the demonstrated
compute shader core. This prevents the cores from running out of bounds.
It helps to avoid potential problems related to the lookup of an invalid
index when int3 ID can be outside the bounds of the array structure.

Example of thread ID usage: In marching cubes, the weights are
represented in a 3D array. Each cube needs to be evaluated, which means
that we must send a thread for each existing cube. Therefore, all cubes
located in 3D can be numbered by the integer value XYZ. As the threads
receive unique int3 ID within the given range, each becomes dedicated to a
single cube they calculate. Some threads may exceed the 3D marching cube
weight array size because of thread group size, but they will be stopped by
guards that check if their ID does not exceed bounds of the array.

3.1.2 Mesh Generation Algorithms

We have a few different things to consider before we can generate a 3D
model. One of them is that we use triangles or quads. We can approach
the problem of model-based reconstruction in many ways. Reconstruction

39

Figure 3.3: Marching cubes and all notable weight configurations[33]

algorithms and their properties and features, as well as complementing
systems, are the key knowledge toward prototyping and designing new
solutions for the future.

In this section, we cover some of the most significant algorithms that have
been developed in the last decades. We will also look at papers that can be
used for real-time reconstruction purposes and their results as a matter of
quality and time required for computation, if available.

Marching Cubes

Marching Cubes algorithm is one of the most well-known mesh generation
algorithms that was ever created and has been used in vast real-life
appliances such as medical scans or voxel terrains of various complexity
in 3D games. The algorithm was patented on June 5, 1985 and published in
1987 by William Lorensen and Harvey Cline. The patent has expired [15].
This section is based on the Nvidia article published by Geiss in GPU Gems
3 [22], website article ’Polygonising a scalar field’ by Bourke [7], as well as
the original paper published in 1987 by Lorensen et al. [33].

The detailed process of conducting marching cubes can be described in the
following steps:

1. Allocate weight structure and mesh structure.

Any 3D space is represented in weights. Weights can be described

40

as floating or integers, respectively. We allocate enough weights to
cover the designated space volume. In this example, we assume that
each cube covers a volume of 1 cubic centimeter. Each weight is one
corner of a cube. The structure of the mesh depends on the number
of busy cubes and the complexity of the combinations that occur. The
memory aspect is discussed in another section. The weight table of
Marching cubes can be reused and modified as many times as we
need.

2. Pick cube/s for which we want to conduct marching. Grab the 8
weights for the 8 corners of the cube/s.

Most of the weights in the table are shared between multiple cubes for
computation: weight can be one corner for up to 8 cubes. Weights in
far corners of a 3D array are contained in only one cube because array
bounds. This 3D nature of marching cubes table ensures continuity in
the model: all faces are always connected together, waterproof. It also
means that these weights should not be changed whenever marching
is in progress.

3. Check if corner weight values are within surface level.

In marching cubes, we use a value called isosurface or surface level,
which we use to define either if given weight above the value X
should be considered as solid or as part of empty space. We generate
a mesh only between empty and busy spaces. The functionality of
the surface level depends on how well I manage the weight updates.
Too low values may result in more model noise and lower temporal
stability. Too high values can result in parts of the model missing and
appearing as holes.

4. Calculate combination number based on active/inactive weights,
using bit shifting.

As we are finding that if a given weight is above or below surface
level, we mark one of the corresponding 8 bits of an byte or integer as
0 (let us call it negative) or 1 (let us call it positive). If all corners are
positive (combination number 255) or negative (combination number
0), no model will be generated and the cube marching process can be
finished early.

5. Lookup the generated combination number.

Since we are marking one of eight bites for each corner, we have 256
possible triangle combinations for each cube in total. To make the
process easier, we use an array with vertex data for easy generation of
triangles. Looking up the number we received in the marching cube
table, we receive positions of vertices to generate the correct triangles
for the specific cube.

6. Interpolate vertex positions based on weights to smooth the model
(optional).

41

Figure 3.4: Representation of the marching squares algorithm (2D), a
sibling algorithm of the marching cubes (3D).

As we generated the mesh for given cube it is almost ready to be
added to the mesh we are generating. However, the weights can give
us other useful information that can improve the quality of our mesh.
Since weights can be floating points (or integers) and their range can
be described in millions, these data can be used for interpolation.
Interpolation of vertex positions can serve as an excellent way to
smooth the model and reduce the "blocky" appearance of marching
cubes.

7. Insert triangles to the mesh data pool.

Three vertices form a triangle. These data can be inserted into append
mesh array or fixed size array. In this step, we can also generate
triangle-face normals based on vertex positions. This is relevant
for us if we want to apply lighting effects, but less relevant for AR
occlusion purposes.

As mentioned above, marching cubes use a 3D weight table. It makes it a
preferably cached algorithm; we allocate the array once and all changing
operations should be conducted on the same array. It helps to avoid
constant allocation and release of memory, as well as extensive usage of
memset, which can be time-consuming operations in real-time generation
projects.

When marching cubes are used, it is common to use triangles, which is
also the basic topology for meshes in the Unity Engine. The mesh topology
is related to how a model is constructed in terms of the distribution and
connection of the vertices and edges. When using triangles, all mesh data

42

Figure 3.5: The surface quality of the Marching cubes depends on the size
of the grid. [7]

are aligned to 3 vertices to represent all triangles in the model. The more
optimal approach in cases where multiple triangles use the same vertices is
index-based.

More efficient and complicated algorithms have appeared over the years.
As Meerits et al. [35] and Zhang et al. [84] presented a more efficient way to
handle large data sets. After all, a lot of memory and power can go wasted
on unused cubes, and the model topology is bound to the cubic nature
of the algorithm. Furthermore, very detailed marching cubes models can
generate unnecessarily high-number triangles (including not needed back-
faces) that need to be considered when using the mesh for occlusion and
also take up computing power and memory. Marching Cubes, however,
can still be considered a good candidate for this thesis because of their
relatively low complexity and suitability for parallel computing.

Poisson

As the technology was progressing, many more or less competing mesh
generation algorithms appeared in scientific papers. As with many things
in computer science, a single problem can be approached in many different
ways. One of the more well-known is the Poisson reconstruction algorithm
released in 2006 that approaches the problem of surface reconstruction as a
mathematical problem of the Poisson distribution. For this section we will
use Kazhdan et al. papers: ’poisson surface reconstruction’(2006) [30] and
complementary ’screened poisson surface reconstruction’(2013) [29].

The global and local fitting mentioned in the papers are important things to
consider, as we can compute model data on a global or local scale. With a
local scale, we can mean considering only a specific space or neighbors. The
creation, connecting, and interpolation of triangles can occur on different
scales in an algorithm for mesh generation. The global approach can result
in safer and better mesh generation, but at the potential cost of computing
time. Meanwhile, the local approach can be wiser, as we may only be
interested in updating relevant sectors while meanwhile assuring their
quality with minimized overhead caused by unnecessary re-computation.

43

The easiest approach to store and represent the data would be a regular
3D grid structure. However, it is clear that a 3D grid structure can be
both detail-related, memory-related, and computationally impractical as
the number of triangles grows. Therefore, the researchers used the the
adaptive octree approach, where instead of a simple 3D of fixed detail, we
can contain more 3D volumes in a tree-like hierarchy to increase accuracy
on demand. In short: areas with no triangles or low quality will use a single
3D space node. Meanwhile, as the demands for accuracy increase, the data
structure will scale up and split by adding children nodes to a certain limit
to increase possible accuracy. The limit on how detailed our model can be
is based on the depth of the octrees.

The pipeline for Poisson reconstruction can be described briefly as follows:

1. Gather oriented points. Poisson algorithm uses oriented point cloud
points to determine the surface in incoming computations.

2. Calculate indicator gradient and conduct indicator function. To
avoid generating an unbounded vector field of values, researchers
encase the indicator function with a smoothing filter. The process
helps determine the inside and outside of the scanned mesh to make
a waterproof surface.

3. Compute average spacing and implicit surface. In these steps, we
ensure that each sample from the previous step is proportional to its
specific location on the surface. Therefore, we select an isovalue that
is a weighted average based on the values at the sample positions.
This process is rather complicated mathematically and can vary
depending on the implementation.

4. Triangulate mesh. Mesh is triangulated based on data generated
in the previous step. In this step, we need to consider points
globally/locally, which requires octree searches.

The documentation of the CGAL library [52] contains the C++ implemen-
tation of the poisson algorithm. It is worth considering when trying to
understand, experiment and implement Poisson and other reconstruction
algorithms.

It can appear that octree is a clever data structure for mesh generation, since
it reduces the waste of memory by giving us a lot of flexibility. However, it
is a hierarchical data structure that uses linear search and is not suitable
for GPU implementation. Medeira et al. [34] paper published in 2009
proposed a GPU octree using GPU streaming and pararellization methods
for searches.

It is also important to note that such tree traversal, especially geometric
search in octree, can be considered an extremely computationally wasteful
operation in mesh generation, especially if it would be possible to minimize

44

Figure 3.6: Effects of octree depth (6, 8, 10) on the generation of dragon
model. [30]

that by methods like direct lookup. Hence, increasing the depth of the
octrees of algorithms such as Poisson can lead to very long mesh generation
times, as mentioned in Meerits et al. [35] (specific timing examples in the
incoming sectors).

Considering aspects of Poisson and its adaptability, it can be considered as
an algorithm worth mentioning for our case that requires high accuracy,
memory efficiency, and adaptability to hardware computing power. How-
ever, the CPU Poisson demonstrated in the papers will not make real-time

45

Tree Depth Time [sec.] Peak Memory [MB] # of Tris.

7 6 19 21,000
8 26 75 90,244
9 126 155 374,868
10 633 699 1,516,806

Table 3.1: Computation time of the generation of the dragon model mesh
generation performed by Poisson with different depths of the octree tree.
We can see that as the tree depth increases, the computation time (in
seconds) increases significantly. The change in completion time between
7 and 8 is 4.333 times, while 9 and 10 are as high as 5.02. [30]

reconstruction for occlusion purposes possible because of the mentioned
design choices. For comparison, Kazhdan et al. (2006) presented the fol-
lowing table (see Table ??):

Method Time [sec.] Peak Memory [MB] # of Tris.

Power Crust 380 2653 554,332
Robust Cocone 892 544 272,662
FastRBF 4919 796 1,798,154
MPU 28 260 925,240
Hoppe [et al.] 1992 70 330 950,562
VRIP 86 186 1,038,055
FFT 125 1684 910,320
Poisson 263 310 911,390

Table 3.2: Performance of Stanford Bunny mesh generation performed by
different methods in Kazhdan et al. [30]

The run-time demonstrated in seconds concludes that the given CPU-based
algorithms will not suffice. Bigger scenes can be even more complicated
than mentioned Stanford Bunny, and any model needs to be transported
from CPU to GPU and then rendered in each frame. Therefore, efficient,
high-parallelity algorithms suitable for GPU computations are the only
answer to the issue.

For further demonstration of Poisson features, we can consider CGAL,
an open source library designed for geometry computations. In their
user manual for Poisson surface reconstruction [52] authors present a
case study demonstrating algorithm behavior in different use cases as
well as libraries algorithms performance. One of the important things to
consider in algorithms in poisson in its presented form is how memory and
computation power scale with the dataset. This directly affects how well

46

this algorithm will perform memory-wise and in seconds of computation
times. As we can see in 7.1 of the paper; 60 000 points were solved within
15 seconds; meanwhile, 1 800 000 points solved within 478 seconds. In
addition to a 30x increase in both the data set and the computing time,
the statistics show a 6.22% time increase as a scaling cost, suggesting a
well-scaled time complexity. Note that it is clear that a higher number of
points to consider will increase the computational time (more or less) in any
mesh reconstruction algorithm, while it does not directly affect slightly the
quality of the generated mesh. As we can see in Section 7.2 ’Contouring’
and Figure 61.14; with very low point set spacing, the number of points
increases and the reconstruction error is low. However, the computing
time cost is immense for such a small error reduction. Therefore, the best
spot between accuracy and error is desired; between 0.2 and 1 average
spacing, we can see a reasonable balance between reconstruction error
and contouring duration. The interpretation of "reasonable" is hard to
objectively define, as the result is a balance between computational power
that we have, power that our accuracy requires to compute within a given
time frame, and error. Even a large error like 0.76 mm for an average
spacing of 2 can be insignificant for AR display and human eye to notice,
meanwhile relieving a lot of CPU/GPU time and memory. Furthermore,
as suggested in [7.3] and [7.4] due to the nature of the scaling and memory
limitations, it is highly recommended to simplify the point cloud captured
by the sensors.

The Zhou et al. [85] paper presents techniques that allowed reconstructing
the previously mentioned bunny model in 190 ms on the CUDA GPU
instead of 39 s when compared to the CPU. This results in a potential
frame rate of 5.26 FPS, which can be considered as decent when compared
to the CPU algorithms above, and maintaining high-quality surface
reconstruction in reasonable time. Assuming that hardware improves
with each year and we would be able to further develop an improved
world/time slicing to ensure comfortable frame rates; it is an important
option to consider for a potential project on larger scale.

Real-time Reconstruction Using Single-Camera

As technology develops, users want to use AR technology on devices that
are less specialized for it: mobile devices. As mentioned before: using
specialized equipment such as IR-sensors, LiDAR, or multiple cameras to
perceive the depth are common tools for mesh reconstruction. However
not all mobile devices are equipped with LiDAR or similar depth-sensing
technology. However, considering that most modern smartphones have
high-definition cameras, we can use them for depth sensing. Most flagship
phones marked with this number are equipped with multiple cameras
with different fields of view. These additional cameras provide different
features for camera functions but, most of all, additional zoom levels. This

47

compensates for smartphones for the lack of movable camera lenses, but
certain zoom levels still result in a decrease in resolution. This is caused
by the fact that we zoom in on the pixel image instead of using a lens to
manipulate the light, while the resolution stays the same. Theoretically, it
is possible to use these cameras for depth sensing, but the different field
of view, the small spacing, and the lack of standardization between the
phones make it difficult.

Furthermore, since 3D printing technology has been growing in recent
years, users may also be capable of building their own AR solutions
by modifying existing AR displays or creating new AR display devices.
Getting proper stereo cameras or creating our own multi-camera set with
the correct spacing and calibrating it can pose a challenge.

As with the human eye, two optical sensing apparatuses make it easier to
estimate the depth for real-time reconstruction. However, it would clearly
be beneficial if we could conduct real-time reconstruction by using a single
camera; something that is present in most smartphones and is easy to get
from self-crafted AR equipment. In 2010, Newcombe et al. [41] released
paper that proves that real-time reconstruction is possible using camera
movement as a method of estimating depth. It is clear that depth cannot
be accurately estimated from a single image. However, referring to the
human eye; we are still able to estimate depth with one eye closed by
moving our head. Algorithm in Newcombe et al. requires the same; it
requires head movements from the users, which, on the other hand, comes
naturally when using AR and VR. Even if the user were sitting in one place,
the active area can be prepared by the users before AR activity occurs.

Figure 3.7: Demonstration of the results of the Newcombe et al. algorithm.
We are presented with the normal map (left) and the surface built from
four local reconstructions (right). As we can see, four local reconstructions
generated in the process are merged into a single mesh. [41]

The pipeline can be briefly described as follows:

1. Real-time camera pose estimation. We create camera pose estimates

48

and a set of points of view. It is step necessary to create the ’base
mesh’. Note that it is only a single part, a single view that will
become part of the global model after completion. The ’cameras’
work together to ensure good coverage of the world.

2. An ’base surface’ is generated, and ’base mesh’ is polygonised
based on zero level. The algorithm generates a mesh according to
the trajectory of the mesh. This mesh is later modified to wrap around
the real objects in future steps.

3. Selecting the cameras. Cameras with visible surface overlap are
chosen before the next step.

4. Sampling and deforming. As the reference and neighboring camera
frames are sampled by the camera set, the base mesh is deformed to
the correct shape. Due to this process, the mesh surface is guaranteed
to be waterproof.

5. Joining reconstructions into global mesh. After the surface has
been modified, the prepared reconstruction is merged into the global
model. Unnecessary vertices are trimmed. The global model can be
considered waterproof, since the vertices are joined together.

This relatively complicated pipeline can be observed in practice in the
demonstration video[42]. The video also demonstrated the usage of
the reconstructed model for occlusion purposes (in a static scene) with
impressive results.

Figure 3.8: Demonstration of the Newcombe et al. algorithm in the video.
The camera view (bright yellow frame to the left) is browsing the scene
from left to right, generating view frames that after a certain time result in
generated mesh patches. [42]

The paper states that the researchers used a 30Hz camera with 640x480
resolution and 80 grades horizontal field of view the lens. They utilized a

49

Xeon quad-core processor and two GPUs dedicated for variational optical
flow computation and live rendering and storage of reconstructions. Sadly,
the paper does not provide the exact hardware that was used in the
development and testing, but we can conclude that we faced significant
improvements in hardware compared to the one available in 2010 that
could be already multiple years old. Without further testing, it is difficult to
determine whether such a solution would run efficiently enough on mobile
devices. However, it is highly probable that the process could be limited to
only one GPU with the latest technology.

One of the other things to consider about this algorithm is to update the
existing parts of a model. Also, camera sampling and mesh merging
operations can be expensive. The addition of new parts to the mesh buffers
is efficient; however, updating or removing existing parts can be difficult
and expensive. This means that this algorithm would need a modification
to be capable of updating existing sectors, but based on its speed to
generate images, it will be highly inefficient at tracking and removing
dynamics objects from the scene.

We can conclude that the ability to efficiently create high-fidelity, water-
proof reconstructions with just a single camera is a significant leap for AR
mechanics like occlusion and AR physics mechanics.

Multi RGB-D Camera Reconstruction

In Meerits et al. [35] published in 2019, a scientist developed the reconstruc-
tion algorithm with high mesh generation quality and temporal stability.

The process of Meerits et al. pipeline can be briefly described in the
following way:

1. Surface normal estimation. Normals are calculated for each depth
map with the gradient method, as required for the custom Moving
Least Squares algorithm. The gradient method is comparable to the
previously known principal component analysis method, but with
much faster computation times due to time complexity and GPU
parallelization potential. Researchers initially wanted to use mesh
zippers to reduce rendering costs and obtain a waterproof mesh
surface. Since this method does not work very well with GPU
parallelization, a custom algorithm inspired by mesh zippering was
implemented. At the end of this process, we receive normal and point
data.

2. Surface reconstruction and refinement. Method generates mesh
based on the generated point clouds and normal data. This part
includes the steps of initial mesh generation, mesh erosion, and mesh
merging.

50

3. Final mesh generation. At the end, all RGB-D camera meshes are
merged into one single mesh ready to be rendered.

Taking into account the results, using OpenGL 4.5, an Intel Core i7-
5930K 3.5 GHz CPU, 64 GB RAM, and Nvidia GTX 780, they were able
to perform the process in 163 millisecond per frame by utilizing GPU.
They performed the same tasks, parallelizing on CPU was leading to high
computation time of 1.6 seconds. In any of these cases, the results are far
from satisfactory for AR experience in matters of time: 6 FPS for GPU and
0.625 FPS for CPU on 6 cores just for mesh reconstruction if the process
was bound to FPS. If it could be an independent side process, they would
still need to synchronize and share the GPU and CPU time; however, the
updates for the whole perspective could happen even 6 times per second
with less dependent FPS count of AR game engine.

Hardware and software are improving with each year. To evaluate the
new hardware against the hardware used by the researchers in the article,
UserBenchmark comparison tools for demonstration [76]. UserBenchmark
is an online service that collects and analyzes millions of benchmarks
of computer components available to users. The team is made up of
scientists and engineers who provide a service that is meant to serve
users (consumers) and refuse any sponsorship. The statistics shared by
UserBenchmarks explore real-world performance rather than theoretical
power or promises, making it a good source of information we need.

The results in which we are most interested are the following Comparing
to: Intel Core i7-5930K

1. Intel i7 8086K (used for this thesis): 7% lower memory latency, 31%
faster single-core speed, and 26% faster quad-core speed.

2. Intel i7 12700K: 5% higher memory latency, 87% faster single core
speed and 90% faster quad core speed. It also has 12 physical cores,
which is not taken into account.

Note that the data are based on global automated user benchmarks on
different hardware. In addition, it is important to consider technological
changes. Since Intel i7 12700K uses quite young DDR5 memory on the
market, it might not come as a surprise that the memory higher latency of
DDR5 may have an effect.

Comparing to: Nvidia GeForce GTX 780

1. GTX 1080 (used for this thesis): 142% better lighting performance,
147% better reflection handling, and 69% faster multi-rendering.

2. RTX 3080: 401% better lighting performance, 322% better reflection
handling, 336% faster multi-rendering.

51

Assuming a best-case scenario where these numbers directly translate to
the presented mesh generation algorithms, using the following GPUs could
theoretically reduce the frame times between 25% and 75% which increases
the potential amount of updates and AR application features that are
possible to implement. Newer graphics cards also have slightly more video
memory, which increases the potential mesh detail we are able to achieve.
There is no doubt that GPU computational power increased the most and
is still the most effective way to solve issues related to mesh reconstruction.

Meerits compared their mesh generation algorithm with Turk and Levoy
taking 48s and Marras et al. taking 9s. It is a significant time difference
caused by tree indexing where Meerits et al. uses spatial point lookup by
line casting.

Figure 3.9: Comparison of the quality of MLS papers and other mesh
generation techniques in Meerits et al. [35]

This significant difference was due to the time required for the movement
of the data. The algorithm shows high potential for any required
processing effects and reconstruction behavior: It is highly temporally
stable and merges the meshes as a stage, resulting in an acceptable level
of waterproofing. The solution is slightly better than implementations of
pure Poisson and marching cubes and is one of the notable considerations
when developing production-ready solutions for AR.

52

Concluding on the Mesh Generation Algorithms

The search for effective reconstruction algorithms to run in real time is
a challenge. As we can see, over the years, researchers and large and
small companies that invested in AR were able to push the technology to
the edges where it will perform well enough for real-time reconstruction
purposes.

It is clear that technology and solutions must be adjusted to the use cases.
For instance: if our AR will be used for training in a static room, it can
be a great idea to scan it with high-fidelity solutions like poisson with
high number of octaves for detail preservation. However, it is visible that
methods that poisson and competing CPU algorithms, especially those that
use octree tend to be very slow and are not suited for GPU computation,
as they use steps that may be hard to parallelize as they, for instance;
imply linear data traversal. High-fidelity algorithms have tendency to take
seconds to compute even on the best hardware, which makes them near to
impossible to execute in real-time on per-frame basis. This also allows us to
optimize the topology of the rooms to reduce the memory and performance
footprint. Meerits et al. as one of the recent papers were able to achieve
high-quality reconstruction in real-time, but it required the development
of GPU-friendly algorithms inspired by slower algorithms that previously
had to be executed mainly linearly or concurrently.

Occlusion for dynamic objects can be done through more lightweight
approaches like those approached by Meerits et al. and even some of the
older algorithms like marching cubes will do its job. If we can develop self-
configuring optical systems, a depth-based approach or combination is an
option. In this way, we follow the concept of ahead-of-time computations
that slightly improve performance.

3.1.3 Memory

RAM, VRAM or Hybrid Approach for Computations

One of the main questions to consider when doing reconstruction and
rendering is: Where and how the data should be located? The preferred
location and form of the data depend on the problem, the context and
the hardware. Based on the marching cube algorithm and the complexity
of calculations, the most efficient and practical form of data storage are
arrays with a fast lookup and a modification time of O(1). Since our
algorithm is executed on GPU, all necessary data must be ready for
constant modification and execution of the algorithm. Since the constant
transportation of data to or from GPU is bottlenecked by CPU, memory,
PCIe, and GPU bus; it is best performance-wise to hold the data on either
RAM (when computed on CPU) or VRAM (when computed on GPU).

53

This means that hybrid computations will be inefficient, as the computed
data (such as a mesh) still need to be sent to the GPU for rendering. The
engine needs to wait until the data are copied to the GPU, increasing the
frame time. Moreover, since the mesh data are generated in RAM and
sent to VRAM, we need to reserve two times more memory for the same
amount of data. One possibility to consider and test in the future could be
if computing part of the data for low-detail sectors would be efficient to
execute on multiple CPU cores, while the largest data sets are computed
directly on GPU to avoid movement of data amounts that might increase
frame time.

Computations on Low-power Devices

When we execute the marching cubes algorithm, we have a large and
independent amount of data to "march". The generation of a cube is a
relatively simple operation. Thus, as mentioned before; marching cube is
an excellent algorithm in matter of pararellization on GPU excellent for
high amount of required calculations. As technology progresses, both CPU
and GPU technologies will improve; however, it is expected that GPUs will
continue to be slightly ahead in matters of mass computation. However, it
is important to note that it is cheaper to acquire high-capacity RAM than
high-capacity VRAM with a GPU. In current times, it is common to see
the production of GPUs with VRAM size from 4 to 12 GB for consumer
use. This size did not increase significantly over the last generation of
GPUs considering the Nvidia 3000, 2000, 1000, and 900 series. This can be
a big disadvantage, as we need to use up limited VRAM/RAM memory
and GPU/APU power to increase accuracy, while other features of our
application also need to be executed. Memory usage on APU and ARM
processors can be challenging to use for compute shader use because of
the smaller shared memory and architecture designed for smaller device
sizes, reduced heat, and reduced power consumption. This can lead
to no performance gains or even reduced performance on ARM devices
like mobile phones or x86 computers with an APU when compared to
dedicated GPUs. However, due to a chip like Nvidia Tegra [44] we could
increase the computing performance even on mobile devices due to higher
performance graphics chips.

Marching Cubes and Memory

The marching cubes algorithm allows us to store data in a 3D dimensional
weighting matrix. As a result, access to the data is computationally
predictable: access to a 3D array happens in o(1) time. However, the o(1)
notion only tells us that the operation does not scale with the data set.

In reality, the 3D structure behaves like a one-dimensional array since the

54

memory has one-dimensional addressing. To access a specific 3D index (x,
y, z), it must be converted to a 1D array. In most languages, this operation
will still be much cheaper than an operation such as hash-calculation
conducted by the dictionaries required for lookup.

Consider that the player moves in an area of 8m x 2m x 8m.

To find the number of cubes, we use the following formula:

(x/cubesize) ∗ (y/cubesize) ∗ (z/cubesize)

Therefore, to determine the size of the marching cube array for this area,
we use the following.

(x/cubesize + 1) ∗ (y/cubesize + 1) ∗ (z/cubesize + 1)

Note that Y is the height dimension in Unity, unlike other popular pro-
grams such as Unreal Engine, Blender, or Cinema 4D. In addition, note that
we are adding one to each dimension size in the marching cube array. This
is caused by the cubic nature of marching cubes; each cube has 8 corners.
Adding one to each dimension is required, as it gives represented 7 corners
on the cube.

And assuming that we want cube accuracy of 2cm:

(8/0.02 + 1) ∗ (2/0.02 + 1) ∗ (8/0.02 + 1) = 401 ∗ 101 ∗ 401 = 16, 240, 901

This means that our array will require 16,240,901 of the type used for
weights; in this example, it is floating. Single-precision floating points are
stored in 4 bytes of data.

16, 240, 901 ∗ 4 bytes = 64.96MB

This results in a total of 64.96 MB of data for the marching cube array only.

However, we also need to consider the mesh generated by the reconstruc-
tion. Each cube can require up to 9 vertices that are represented in 3D
coordinates (float3). We might also need normals, which add an additional
float3 for each cube.

Cube count calculation:

(x/cubesize) ∗ (y/cubesize) ∗ (z/cubesize) = cubecount
(8/0.02) ∗ (2/0.02) ∗ (8/0.02) = 400 ∗ 100 ∗ 400 = 16, 000, 000

55

Pessimistic mesh size:

cube count ∗ max tris per cube ∗ 3 (triangle size) ∗ 7 (vert pos + normal)
16, 000, 000 ∗ 4 ∗ 3 ∗ 7 = 1, 344, 000, 000 bytes = 1, 344 MB = 1.34 GB

As we can see, 1.34 GB of data can pose an issue, especially considering
that it is for quite small area and, for fact, that VRAM tends to be
smaller than computer RAM. However, removing normals that are mainly
used for demonstration purposes removes 4 bytes per vertice, decreasing
the size by 50% (because of possible 8-byte rounding). Furthermore,
an entirely structured, non-appending approach that would provide
dedicated memory for each triangle would result in doubled or even
tripled memory usage. In the early stages of prototyping, especially with
the structured approach, it was quite common to overfill the computers’
memory on higher accuracy. Furthermore, it leads to paging, leading
to extremely slower computation and a possible program crash. When
calculating on GPU, we should reserve the maximal amount of data our
algorithm will use. For predictable data structure where array memory
resizes is not needed. The possible solution to reduce this significant mark
is explained in the optimization section.

Constantly copying the entirety or even parts of these three data structures
is not optimal if it can be avoided. Let us consider the theoretical speed of
the following specifications:

Theoretical RAM transfer speeds (DDR4):
3200 MHz: 204.8 GBps

PCie theoretical transfer speeds (using the x8 slot):
PCIe 2: 32Gbps
PCIe 3: 63.01Gbps
PCIe 4: 125.44Gbps

Whenever we send the mentioned data to GPU and then back to CPU, then
conduct other draw call operations, it will take more than 2 seconds. This
delay is unacceptable when the player is interacting with the AR world, as
we can expect as low as 0.2 frames per second if it is done on the main
thread. Our goal is far beyond that where stable 30-60 FPS is a comfort-
able range. If the display hardware allows for it, a frame rate of 120 FPS or
higher may make the experience much better for the users.

Considering these numbers and the nature of computer systems, it is
clear that operations should be done mainly on CPU and RAM or GPU
and VRAM. Achieving reconstruction performance requires reduced data
transfer, memory resizing, and good distribution of work management.
Parallel and concurrent computing will be essential, as it reduces the im-
pact of the main engine thread loop completion time on multicore devices.

56

The engine loop computed on the CPU tends to be the main bottleneck that
affects frame-rendering speed, as it computes most of the game logic and
prepares to draw calls while the GPU may remain mainly idle.

Half Type for Weights

Accuracy of the weights is not extremely essential. Since byte is the
minimal measure of memory, we could use byte instead. It would result in
75% less memory usage by using the marching cube compute buffer. Bytes
would result in 256 interpolation states, so with 1 CM accuracy, it would
result in 0.00390625 CM between each step, which could be acceptable
for our use. Sadly, GPUs have memory padding, as they are mainly
meant for high-quantities of parallel floating-point computing and similar
computations. This means that we cannot use byte-sized data types for our
weights. Thus, it would mean that we have two alternative options: bitwise
operations and half-type operations. Bit-wise operation could benefit from
finding the correct int type in the array and shifting/reading its bytes.
This operation may result in an insignificant performance drop, as we
need to calculate the correct indexing and perform bit operations. Half-
type (half-precision floating point) is commonly used for low-performance
devices where shader accuracy is not the main priority. Half uses two
bytes instead of four and would reduce our buffer memory usage by 50%.
However, according to the HLSL documentation, it is converted to floating
in cases such as DirectX GPU devices [36]. This means that results will be
obtained only when the project is built for platforms such as Android or
iOS. Therefore, I decided to follow the standard floating point approach, as
the memory buffer is less than a part of total memory usage.

3.1.4 Runtime Pipeline

Following the information collected and the potential for optimization, the
pipeline to generate our mesh-coded solution can be described as follows.

1. Gather points.

Point-cloud points are gathered in structures and queued for process-
ing in the sector to which they correspond in the 3D space. Points can
also be sorted into all neighboring sectors for improved consistency
if they are close to the borders. This behavior can be replaced by
implementing a border-syncing pass. Pool structures can be lists of
dynamics sizes and are located in RAM. If the pool reaches specified
limits, the oldest points are discarded to avoid memory overflow. In
this step, we can also discard points we don’t need.

2. Sector update call: Translate the point cloud into marching cube
weights

57

Each frame-specific amount of world parts (sectors) need to be
updated. Specific amounts of point-cloud data are queued from
the array into point-cloud compute buffer, so they are sent over to
VRAM. The compute buffer can be persistent and reused for each
run. The compute shader runs a GPU thread for each point cloud
point and translates it into a marching-cubes compute buffer (also
VRAM). Weights are changed based on points proximity to the corner
weight corresponds to. We try to translate as many points as possible
to avoid clogging.

3. Visual update: update meshes by marching.

Another step per frame that needs to be considered and performed
is determining which sectors should be updated visually. By default,
we update a set amount of sectors of different LoD per frame to make
frame times more stable. The sectors are queued in FIFO, ordered
by the integer number of the last update frame. This means that the
oldest updated sectors in our vision are in queue for the marching
cube update.

4. Complementary passes. As the mesh the generated, we can conduct
optional complementary passes that would be useful for application
developers (like sending physics shape to RAM), mesh quality
improvements, or similar.

5. Render into the depth pass.

It can be done as a simple shader that renders compute buffers. We
render only sectors visible to us within a given range.

This pipeline design is the basis for the prototype mesh generation and
occlusion system.

Figure 3.10: Visualization of the AR marching cube reconstruction process.

Figure 3.11: Diagram pipeline of AR marching cube reconstruction.

58

3.2 Optimization Methods

3.2.1 Reconstruction Sectors

Limit draw calls if dataset allows it. Send render calls in batches. Simplify shaders.
Do not try to render empty data.

In the early stages of development, I have prototypes marching cubes
on the CPU. Computing mesh data for an 8x8x4 meter room was taking
several seconds with higher accuracy, like 5 CM per cube. It also means
that the whole mesh had to be sent to GPU and was rendered by the camera
even if some parts were not within cameras sight. When playing, our
location can change; what if we want to walk through a whole building?
Allocating hundreds of square meters of multi-level buildings is very close
to unrealistic. To solve this problem, we should approach this problem
similarly to the concept of "divide and conquer" in algorithm design [23].
Games or procedural shader programs load or/and generate objects based
on camera location, where irrelevant parts/objects are unloaded or cut
from rendering by occlusion culling [22]. the popular game Minecraft to
generate, render, and store its large procedural world using the concept of
chunks, where chunks are square segments of the world aligned in a 2D
grid, loaded based on render distance [39]. We follow this approach by
using cubic sectors of defined size aligned to a 3D grid. The single grid
contains the weight and mesh and is used for the rendering process. In this
way, we work on many memory buffers and are able to remove irrelevant
data from processing and render queues.

In cases where sectors become extremely complex, we need to consider
reducing the sector size or implementing sub-sectors. Subsectors can allow
processing part of the high-accuracy sector to reduce the performance
footprint. However, updating a subsector can be challenging with the
preferred compute buffer types.

Each sector can be represented through Unity GameObject. GameObjects
are more tangible data units that are easily accessible and editable in the
Unity editor. However, instantiating, rendering, and pooling these objects
will have a negative impact on performance. To make the solution easier
to debug and check by other developers, this would require developing an
additional editor tool. In our case, a more direct, but less tangible, approach
in the editor is to directly queue camera visible sectors on the GPU.

These sectors need to be stored in a type of structure in which sector
references are stored. The simplest option is to use a list, as the number of
fragments may vary. However, if we assume that the sector size is 1 square
meter; we need to store 1000 references to cover these 1000 cubic meters.
When our camera is moving, we need to remove all references outside the

59

Field of View

Loaded But Invisible

Unloaded

Figure 3.12: The illustration demonstrates the dynamic loading of the
sectors. Green, yellow, and red triangles represent three levels of detail
in reconstructed sectors that are within the frustum of the cameras. Gray
is the active area of which sectors are loaded and considered for rendering
and marching. The white area is out of range.

rendering distance. This can result in a high overall cost of o (n) for insert,
delete, and find operations [40]. Therefore, the usage of dictionaries is a
better option. Such a dictionary can use the int3 type as a key, where int3
contains three (XYZ) int values that will represent the sector index in three
dimensions. Dictionary operations happen mostly in an expensive o(1)
time; if a dictionary needs resize or insert, the additional operation may
take o(n) time just like to list resize. Since the dictionary relies on hashing,
the hashing of int3 will be more expensive than the hashing of a simple
int, since each value of the class of structure must be included in the hash
operation. However, the o(n) cost of single operations on a large sector set
will make the dictionary more efficient to use in the given case.

Details about work distribution and frustum culling are explained in the
following sections.

3.2.2 Timeslicing

Use the concept of divide and conquer. Segment the data for easier selection and
batching. Adjust the amount of data computed to fit the target frame time.

The camera scripts need to filter out sectors that are unused from the ones
used on each frame while camera movement is significant, as well as to
allocate memory from the pool. Other significant operations that can occur
per frame are point cloud translation and marching of marching cubes.
The heaviest operation of these that needs to be computed over a constant

60

period of time is marching cubes for mesh generation, without counting the
rendering operation at the end of each frame. Users of such AR systems
can purchase, create, and own different hardware configurations that fit
their needs and budget. Games and programs scale with the computational
capabilities of a given device. As we will be working with different
computing power, memory size, and memory speed, we need to adapt
the amount of computation to allow it to finish within an acceptable frame
time. Therefore, we need to manually or automatically specify the number
of sectors computed per frame. Thus, we divide constantly changing scenes
into update batches to adapt to available resources to hit desired frame
rates. In the prototype program, computations occur via the FIFO queue.
The queue is sorted by the time of the last update of each sector and is
sorted using a sorted dictionary of active sectors to be updated in the frame.

3.2.3 Semi-Dynamic Memory and Pooling

Pool memory, avoid constant allocation and disposing. We can also group memory
buffers for future use, such as dynamic memory, to save memory.

As we are programming different algorithms, we tend to allocate our
memory on the stack and heap to perform the necessary computation
jobs. However, when building these systems, the scale of our problem can
change depending on our or users ever changing needs and context. In
many cases, we often do not know the optimal scale of our data structure.
It means that in many cases, we either need to discard some part of data or
allocate a pessimistic amount of memory. Like mentioned in the planning
chapter about memory, in the case of marching cubes, a 3D array of fixed
size is unrealistic and close to impossible in real life settings. The testing
computer used for the development operates on 8GB of VRAM, which
would easily be overfilled with unused memory. Allocating gigabytes of
unused data is wasteful memory management and will not lead to better
performance.

Furthermore, shaders prefer continuous data structure. It means that if
our data buffer is structured, then a cube at any 3D index contains unused
triangles that GPU needs to render. It makes shader rendering much slower
and makes memory management much harder. The empty space in the
structured data buffer is unpredictable, but it is much easier to manage and
update by index. Therefore, I decided to use the append buffer instead,
where we insert triangle data continuously. It also allows us to conduct
memory scaling and memory pooling.

61

Standard Compute Buffer

+ Cheap to update part of the model.

- Requires to allocate a pessimistic amount of memory. Wastefully.

- Terrible shader performance scaling.

- Slower data transfers.

Append Compute Buffer

+ Optimal shader performance scaling.

+ Possibility to scale memory to current needs.

+ Faster data transfers.

- Expensive to carry out updates.

As we conduct parallel marching cubes computations, triangles can be
concurrently inserted into our buffer. The internal buffer count increases as
the new triangles are inserted. If the buffer is already occupied, counter is
set to 0 and the previous model is being overridden. The counter makes us
aware of the total model size; thus, we avoid rendering empty or cluttering
data. This method also does not require one to zero out the memory, since
counter and overriding serve as our data constraints. As the prototype
has developed, this step seems essential to achieve high model accuracy
without overfilling the GPU or RAM memory.

One of the compute buffer types in Unity is Append Buffer, which allows us
to add our triangles to the buffer in sequence, safely as an atomic operation.
This means that the shader will not need to iterate through empty triangles,
as the actual data are aligned in a sequence of a given length. This buffer
allows method allows us to use a more dynamic model of memory. One
of the old concepts used by languages like Java, C# and C++ is dynamic
memory allocation of data structures like lists or dictionaries. Arrays are of
fixed size. Lists and dictionaries scale with demands to reduce memory
usage. If a list does not have enough space to insert an element, the
size of that list doubles. This operation is expensive as we might not
have enough empty space after the reserved memory of the lists to simply
make it longer. Instead, we need to allocate the memory again and free
the old one. This concept can be used in the prototype to significantly
reduce memory usage. However, to make this method support sub-sectors
without allocating multiple compute buffers, we need to constantly switch
between two buffers: one for the completed sector, one for upcoming
updates that are unfinished.

Other costly operations are constant allocation and reallocation. In games,

62

objects, such as particles, that would constantly be instantiated and
disposed of are pooled. Instead, their structures are reinitialized. In some
cases, pooling can have significant effects on performance, memory usage,
and the garbage collection process. Therefore, we can pool the memory
buffers of the marching cube weights and the mesh data.

The algorithm used in the prototype works in the following way: As a
new mesh buffer is required, we allocate them with N bytes of memory, a
minimal amount of buffer allowed. As the count of triangles increases, it
is being cached. If the amount of buffer memory used exceeds M percent,
a new buffer is being allocated. As we will have many mesh data sectors
of different sizes, with the possibility of size shifting; we can benefit from
memory pooling. Instead of constant reallocation, we can pool mesh
buffers instead of disposing of them. As we can have the need for many
sizes of mesh buffers, we create a dynamic list of pools. This practice can
also be applied to marching cubes weight buffers, but the buffers need to
be cleared by the compute shader or rewritten as they enter or leave the
pool.

The drawbacks of this method are a minor performance (used for memory
management and allocation) and the risk of overflow. When the number
of triangles rapidly increases in a single processing, it is possible that the
compute buffer will overflow. When marching cubes are conducted, we do
not know how many triangles the current set-up will produce. Thus, we
need to use the counter of the last computation. The default behavior for
overflow is to overwrite from the beginning, which can result in artifacts
in the model. This issue can be challenging to fix without performance
impact, but its consequences can be seen as low and occasional. The next
update of a given sector assigns a new larger compute buffer, which fixes
the problem. It is an acceptable result.

Allocated Memory
Cube Mesh Data Cube Mesh Data Cube Mesh Data ...

Allocated Memory
Random Order Mesh Data ...

Unallocated

Append Method with Dynamic Memory and Pooling

Structured

Fragment Shader

F. Shader Counter: 8

...

Figure 3.13: The illustration shows an example of the difference between
memory approaches.

63

Unity Compute Shader API allows us to asynchronously fetch data from
GPU. It can be used to store marching cubes data temporarily in RAM
when the data are not needed at a given moment in VRAM (which tends to
be smaller than RAM).

Other option: Append the Buffer as a Ring Buffer

Since we have a requirement for linear memory with preferably linear
alignment of mesh data for the shader to render; the options are quite
limited as we try to balance data predictability, memory, and rendering
performance. Another approach that may make updates of subsectors
easier is the ring buffer approach with append buffer. Instead of using
multiple compute buffers, we can use a ring buffer and cache the data
circularly. This helps us avoid problems where the unpredictable count
of triangles of each sub-sector is not put in a predictable linear space.
However, it has one drawback that we have to solve: data that are put
as a border case, where a sub-sector transitions from buffer end to start.
We have two solutions: these data need to be copied to a new buffer in
linear order or all subsectors after a subsector in the transition need to be
discarded and computed in the incoming update/s.

Allocated Memory
Random Order Mesh Data ...

Unallocated

Append Method as Ring Buffer

F. Shader HeadTail

Allocated Memory
Random Order Mesh Data ...

Unallocated

F. Shader
Head Tail

Figure 3.14: The illustration demonstrates the ring buffer approach.

Append with Round Buffer Approach

+ Optimal shader performance scaling.

+ Possibility to scale memory according to needs.

+ Fast data transfers.

+ Cheap to conduct updates.

64

- Border cases may require two drawing instructions or a specialized
shader (when rendering) and a special buffer exchange approach
(when more memory is needed).

- Subsector updates can only be performed in sequence and one at a
time.

3.2.4 Frustum Culling and Occlusion Culling

Do not compute or render models that are not required at hand.

For optimization of rendering (and computing), we should consider three
computing techniques to reduce wasteful rendering tasks [11]. Graphics
APIs receive draw calls for group or single materials. Some of them can
be out of camera line of sight, hidden behind other virtual objects, or
their parts can be hidden from the cameras sight based on angle. These
methods can give a significant performance boost when applied in specific
cases, and some of them can also be applied to our sector-based computing
approach.

Camera

Rendered
Object

Occlusion Culling

Backface CullingFrustum Culling

Field of View

Near Cutting Plane

Far Cutting Plane

Figure 3.15: Representation of culling techniques.

65

Frustum Culling

One of the steps before computing and rendering an object is to determine
whether it is in the desired viewing range. However, it means that all
objects within the range of the cameras are added to the draw queue. It is
wasteful, as objects on the side and behind the camera that are not within
the camera viewing range (view frustum) are considered in the rendering
process. One of the simplest solutions to this issue is frustration culling
and frustration updates. We consider the camera orientation and calculate
if objects are outside the camera frustum by angle and margin. Sectors
outside of camera viewing points are not the main priority and can wait for
updates. However, they still need to receive and queue point cloud points
for future updates. The program iterates through all active sectors, updates
them if they are within defined limits of the oldest ones, and renders them if
they are within the camera frustum. Furthermore, sectors could be divided
into even smaller subsectors; however, checking if each small subsector is
within the frustum range can be more expensive than considering them in
a draw call.

Occlusion Culling

Occlusion culling is difficult to apply without extensive testing and
development in a context where the scene and models are constantly
changing. Unity’s occlusion culling system [70] pre-bakes its data in the
editor, based on the parameters given by the developer. However, to let the
object occlude any other object, it needs to be marked as static (immovable)
and occluder (object that can hide other objects). Calculations behind
occlusion culling make it hard and expensive to determine if two dynamic
objects are occluding each other in real-time. However, if a dynamic object
(occludee) is hidden behind the static occluder, we are sure that the pre-
baked data give us enough information to determine that the dynamic
object is behind the occluder with the current camera perspective.

Detecting and catching occlusion data is an expensive operation, but allows
us to hide objects entirely hidden by other objects. Therefore, in a real-time
reconstruction setting, this method will be highly inefficient. Therefore,
large-scale occlusion culling cannot be applied in this case to improve
performance and could be a subject of future research.

Back-Face Culling

Back face culling (also known as face-culling [47]) is optimization method
that helps us avoid rendering faces oriented or hidden away from the
camera perspective [2]. If a mesh face is oriented towards cameras looking
directions, it means that it is a back-face invisible to the camera. Back-face

66

Front-Faces

Back-Faces

Visible Faces

Back-Faces

A) B)

Figure 3.16: Two possible back-face interpretations. Illustration A) does not
render inside faces of a model. Illustration B) does not render the back faces
of the model.

culling ’cull’ in Unity is enabled by default, however, in a more simple
way. As the model has, outside and the inside, inside faces are back-
faces that do not need to be rendered. While marching cubes are used,
inward faces are not rendered. The other approach that considers the
backs of the objects faces is harder to perform. To find if a given face is
oriented away from camera perspective, we need to compare the camera
angle with face angle. In our case, we may have millions of triangles to
consider, which can quickly outrun any gains. We also should recall why
this method for optimization can grant considerable gains: lightning and
shadow computations. The rendering of lightning can be an expensive
operation that can make back-face culling methods worth their cost. If our
model is unlit, since we want to use it for occlusion, these operations can
cause it to render slower than optimizing it. Constant back-face culling
computation should be avoided. The cached approach, when the camera is
not moving, could be considered; however, there is no easy straightforward
approach in our case.

3.2.5 Draw Calls and Shaders

Limit draw call if possible. Send render calls in batches. Simplify shaders. Do not
try to render empty data.

One of the most significant issues that can occur while using game engines
is the bottleneck caused by draw calls and scene complexity. To render
objects in Unity Engine we need to have GameObject with behaviors
called Mesh Filter and Mesh Renderer or Skinned Mesh Renderer (used for
rendering character meshes). These objects contain materials that are used
as shaders. When frames are rendered, all necessary data must exist or be
moved to the GPU. Furthermore, materials are dispatched for rendering

67

using material and scene data. The rendering pipeline can be slowed when
each mesh in an object needs to be queued for rendering in separate draw
calls [61]. In some cases, draw calls are resource intensive to the extent
that computing a draw call takes less time than preparing it. Instead, it
is more optimal to compute these data in shared batches, minimizing the
number of draw calls and repetitive computations that are unnecessary.
Unity suggests three optimization methods with the following priorities:
SRP/static batching, GPU instancing, and dynamic batching. Let us begin
with some examples to demonstrate possible problems.

GPU Instancing instead of rendering each object separately, the meshes are
rendered in batches. This method is very effective when we need to render
high counts of nearly identical objects. It is one of the most important
methods for optimization of nature, such as drawing grass, trees, and
stones, which can be the main reason for the bottleneck on the GPU side.
In our case, each rendering segment will be different, but they all use the
same shader instead of GameObjects with rendering components.

Draw Call Batching combines meshes to reduce draw calls. This can also
be done manually using the custom editor tool using Mesh.CombineMeshes.
Objects that never move in a scene can be combined into clusters for easy
dispatch. This method should be balanced with culling techniques, as com-
bined objects can be considered as one single object. Thus, a whole cluster
needs to be visible or occluded at the same time. This method is sadly not
as relevant as we are splitting the mesh into sectors to make computation
and culling management easier.

SRP Batching should be usable in our context as we are using URP, a
scriptable rendering pipeline. However, it is harder to implement directly
as we are making the draw calls directly.

3.2.6 Level of Detail

Adjust complexity of generated model sector based on the distance from the camera.

Various factors affect the performance of the 3D application. Some of them
are factors such as draw calls, shader complexity, and mesh complexity.
We already mentioned that our parallel dispatch of marching cubes is
scaling with the cubic complexity task and memory-wise. Reconstructing
the environment with high accuracy produces a mesh with potentially the
same cubic complexity.

As objects are farther away, our perception of detail diminishes in real life.
When using computer screens or AR/VR headsets, this detail is limited
by the pixel density. The density of pixels will increase as the computing
power of the GPUs increases. At some point, we will reach the limits of our
detail that are perceptible to the human eye. Similarly to FPS, it is hard to

68

determine what the upper limit for a common human truly is, but it is clear
that in both cases a diminishing return occurs. The difference between 30,
60, 120, and 180 Hz displays is visible to users. However, the impact and
notability are reduced as the FPS increases. This suggests that we want to
find the sweet spot between detail and FPS to reduce waste [22].

When making games or simulations, game developers use various tricks to
increase application performance by reducing detail without a significant
impact on user experience. One of the relevant methods for our research is
the level of detail.

The concept behind the LoD technique can be described in the following
way: the farther away a 3D object is from the camera, the less complex the
model is shown [69]. With pre-generated meshes, it often implies multiple
versions of a single 3D model with different amounts of triangles. When
a camera is close to the object, the original model can be viewed. For long
distances, a model with a significantly reduced number of vertices can be
used.

When reconstructing and rendering our surroundings, our data are
categorized into sectors. For further optimization, each sector can be
optimized. Provided that we can increase the computing performance
by displaying less detailed versions of the sector at longer distances, we
need approaches that help us adjust the computations and fidelity with the
distance. Some of the possible solutions can be as follows:

1: Decimate
Simplify the model per-vertex as a post-processing step of model reconstruction.

The decimate is the operation of complexity reduction of a 3D model.
Decimate can be commonly used by graphics designers to produce
simplified models from their sculpts or for LoD variants of their 3D models.

Positives: Possibility of high detail preservation while reducing unneces-
sary model complexity that will affect program performance. Scales well to
the designated goal model detail level. Works with any mesh reconstruc-
tion method.

Drawbacks: Computationally expensive, which may scale very badly.
Decimate approach would need to be executed for each major mesh update.
Requires a new mesh buffer.

2: Weight Matrix Division
Use only every N-th weight while reconstructing mesh via Marching Cubes. The
whole matrix of marching cubes is constructed from weights.

Positives: The very cheap operation, as it is based on ’ No memory cost.
Easy to implement.

69

Drawbacks: Amount of cubes in dimensions must be in even and odd
numbers. Reduction needs to follow this pattern. Mesh holes can occur
very easily.

3: Weight Matrix Condensation
Method: Convert high-fidelity weight-map to a weight map of lower fidelity.

Positives: Lesser chance for mesh holes than in the previous method. We
preserve the cached data.

Drawbacks: Unreliable weight quality upon conversion. Minor memory
requirement increase.

4. Flush
Do not use a high-fidelity weight map, use new point data to generate a new weight
map that is specifically made for a new cube size.

Positives: Reliable and predictable weight quality.

Drawbacks: Requires re-scanning of changed LoD areas. Possible memory
requirement increases.

3.2.7 Impostor Objects

To reduce the rendering overhead caused by 3D objects, we can use a
method commonly called ’impostor objects’. Impostor algorithms often
generate one or more pictures of our 3D object with an alpha layer. These
billboards rotate in the camera direction, and their texture can change based
on the camera position. When an object is very far away, it can be culled in
a way similar to the concept of LoD [20].

This technique gives developers and users the ability to improve perfor-
mance even without affecting the perceived visual fidelity of the environ-
ment. Significant reduction in shader, light, and postprocessing effects on
a 3D object can significantly improve program performance.

This technique for optimization could be very efficient in rendering com-
plex holograms at longer distances. It will not interfere with occlusion
meshes, as they behave like flat 3D objects (quads or planes) rotating to-
wards the camera either by script or by shader. The question is whether
this technique can be applied to occlusion meshes. The billboard nature
of impostors does not grant the accuracy we might desire even on long
distances, as well as taking pictures requires caching. Thus, this option
would only be considerable for very long distances. More practical usage
would be to directly generate a very simplified version of a mesh with very
low number of vertices and simplified shaders, which may work well for
model-based occlusion.

70

3.2.8 Other Methods to Consider

C#: Unsafe Code

Modern languages such as C#, Python, and Java help us with the feature
that we know as managed memory. These languages allocate objects
and variables mainly in the heap. Managed memory in C# like in many
other imply usage of Garbage Collector. When an object or variable drops
all existing references to it, it is detected by the GC and is disposed of.
This helps developers to spare time related to memory management and
potential issues that it can cause; just like segmentation time. However,
as we know, stack memory is better for consistent allocations in terms of
performance. Furthermore, the GC operation is not computationally free.
It leads to overhead that we can cut by managing memory on our own
hand, just like in C or C++ languages that can be significantly faster than
C#, Python and Java. The unsafe code [38] of C# allows us to use features
such as pointers, stack allocation, and unmanaged memory. It can improve
performance of memory operations; however, it leads to memory-related
issues related to memory like segmentation faults that cannot be detected
by the common language runtime.

Unsafe code can be a good option to improve our time- and memory-
demanding systems without using the C++ or C languages. However, it fits
best for an eventual late optimization, as it requires a significant increase
in work compared to potential performance gains. Therefore, we conclude
that it is an important thing to consider in future work.

Engine: Data-Oriented Programming

Data-Oriented Technology Stack (DOTS) is one of the newer additions
to the Unity Engine that is still in development. It is a different writing
paradigm that uses multiples of unity libraries to achieve high logic-data
separation for efficient multithreading and other potential optimization
methods.

1. ECS (Entity-Component-System): Unity was designed mainly for
an object-oriented approach using component-based design. Each
GameObject contains components that define logic. Scripts are
updated using different update functions and event calls. The high
mutual dependencies of the components make them vulnerable to
interference, making it harder to distribute across multiple cores
automatically.

71

ECS approaches this problem with a data-oriented design. Data are
highly aligned memorywise, as it is preferred to use blittable types,
and are to a high degree independent. It makes the job perfect
for distributing computational work across multiple cores, as each
’component’ can theoretically be queued for computing on a different
core [65, 75]. Following the data structuring of ECS can also make
netcode development overall better, as the data are highly separated
from the logic. Each in-game object (entity) contains components
that contain the necessary data. Therefore, systems are designed to
handle logic from all existing components

2. Job System: As the Unity Engine runs mainly on a single thread, the
job system is a library that helps to introduce multithreading safely
and simply without worrying about memory- and order-related
hazards, such as race conditions[77]. Some of the Unity systems use
the job system to improve performance. Note that this system relies
on pararellity rather than concurrency.

3. Burst Compiler: Flexibility of the cross-platform language and JIT
compilation such as C#, Java, or Python does not necessarily result
in the highest possible performance on all possible target platforms.
Burst is a compiler that translates Unity platform-independent code
(C# and.NET) into native code for a given platform. It can greatly
optimize the tasks of the job system, as it is a math and platform-
aware compiler [77].

4. Hybrid Renderer: Is a rendering data collection system that sends
the necessary data for rendering to the scriptable rendering pipeline
used in the project [64]. The system is in active development, but
has the potential to be slightly faster than GameObject rendering.
Determining how fast this renderer is in various cases would require
extensive testing. However, Unity developers tend to report an
increase in rendering performance for the second version of the
hybrid renderer.

DOTS results in a significant performance increase assuming that we have
many components that systems can distribute across multiple cores for
faster computation. Our current system does not contain a significant
amount of entities that can benefit highly from multithreading. Developing
our solution in a data-oriented paradigm can make it less efficient than it is
currently.

ECS paradigm could yield positive results in the future potential branch
of AR, where objects visible in the user’s vision would be detected by
deep learning AI. Meshes could be split based on interpreted objects and
rendered/assumed as separate objects, or used for generation of colliders
/ trigger boxes for enhanced interaction capabilities. Since such AI
operations tend to be heavy and somewhat brute-forced, it is questionable
if such a solution would run on user computers anytime soon.

72

However, it is clear that some CPU computing tasks can be optimized
through job system and burst compilers, but it can also be achieved with
traditional concurrency methods that exist not only in C#, but also in many
JiT or AoT languages such as Java, Go, Rust and C++.

Hybrid GameObject-ECS implementation is possible. Heavy physics-
based games that involve the calculation of dozens, hundreds, or thou-
sands of objects will greatly benefit from DOTS because of the multithread
job distribution. If the developed AR solution is used in practice, develop-
ers can use DOTS to achieve higher performance for their game logic.

73

Part II

Conclusion

74

Chapter 4

Results

4.1 Evaluation

4.1.1 Testing Hardware

In the development and presentation of the testing results of the developed
software, I have used the following computer hardware:

Operating System: Windows 10 Pro 64-bit
Processor: Intel(R) Core(TM) i7-8086K CPU
Motherboard: Asus Prime Z370-A, Rev X.0x
Memory: Corsair DDR4 3200 Mhz, 16 GBytes, dual channel
Drive: Samsung SSD 980 Pro (1TB), M.2 PCIe3

Graphics card: MSI NVIDIA GeForce GTX 1080
Display Memory: 16238 MB
Dedicated Memory: 8079 MB
Shared Memory: 8159 MB

Current Mode: 2560 x 1440 (32 bit) (144Hz)
Native Mode: 2560 x 1440(p) (59.951Hz)

4.1.2 Profiling and Quantitative Analysis: Approach

The main tool used for testing is the Unity Profiler and Profile Analyzer
tools. It gives us the best insight into resource usage, and some of the
solutions developed will be sampled by a self-developed profiling system
developed to probe them correctly. We need to consider a few aspects while
developing our own solution and using Unity Profiler:

75

Figure 4.1: Unity project window of the solution showing the test scene.
Hierarchy of game objects on the left.

1. Warm up. .NET Framework and C# is as mentioned before, a JiT
environment that compiles code as the application runs through the
mono interpreter. The code tends to be cached and ready at the start;
however, this process can be unpredictable for us. Debugging should
be performed a few seconds after starting up. Probed data must be
discarded, as they can be unreliable due to the load caused by the
initial initial drive, RAM, CPU, and GPU usage when the application
instance is initialized. In custom profiler tests, the warm-up interval
is set to 30 seconds.

2. Reduce impact of testing environment. With algorithm, data struc-
ture, Unity experience and Rider IDE we are capable of developing
profiling code that minimizes its impact on the results. We apply sim-
ilar rules to develop the test code. Consider the following examples:

(a) Allocate lists to target probe size. Arrays in C# are of set size.
The lists are of dynamic size. Dynamic resizing of the list is a
costly operation that requires the allocation of a new memory
chunk for a larger internal list array. As the number of probe
data increases, this can lead to inaccuracies. All data structures
should be static and allocated before tests are conducted.

(b) Avoid expensive operations like constant dictionary look-ups
(especially on types with high hash calculation time), using
event systems or comparing Unity objects to null if possible.
Even if some of these operations are relatively inexpensive,
we can try to reduce their usage. Operations with high time
complexity should be avoided.

(c) Comparing Unity objects to null is expensive. C# uses
managed memory by default. If an object loses all references
to it, it is considered an object to be disposed of. The garbage

76

collector detects it, and the memory connected to the object
is freed. Constant GC operations can be very expensive in
themselves due to the automated nature of the process. Unity
uses a modified managed memory approach. Unity objects can
be destroyed, and when they are destroyed, all existing pointers
to the object and all its subcomponents are invalidated (they
become null). This leads to higher cost of compare operations,
as the memory location reference object/s may not be existing
anymore.

3. Large samples, different times. The more samples, the higher chance
we can reduce false premises, reducing the impact of potential noise
like background processing. Sampling of different processes, from
multiple perspectives is wise, as it can affect the results. Tests should
be avoided to be run together in parallel, for this we will use single
comparison to a flag.

4. Both single camera and dual camera performance should be
considered. Target devices can be different; video-based or optical-
based. The number of views is an important factor for the final speed
and the application. It is good to observe how it scales in our game
engine and the rendering pipeline.

For research purposes, different parts of the developed solution will be
tested using the profiling system. This includes fine- and coarse-grained
operations. The tests will also include information and an explanation
of the results and potential background mechanics. This can help us
understand the complexity and costs behind the operations, which are
essential parts for any person who desires to develop their own AR or
simply wants to learn more about GPU compute shaders and performance
for high-performance demands.

Different algorithms tend to run different amounts of times. A high probing
rate is recommended for improved accuracy of the results; therefore,
depending on the algorithm, we will collect between 1,000 and 1,000,000
measurements. Due to the slow trigger rate of some algorithms, some
will require testing in multiple series. The measurements collected are
described in ticks or milliseconds (ms). A tick is the lowest possible
time unit that we can measure; 1 microsecond is adequate to 1,000,000
ticks. According to my measurements the standard measurement cost is as
follows:

Time for Start() and Stop() of the developed timer:

Average: 1.941 ticks, Mode: 2 ticks, Min: 0 ticks, Max: 23 ticks

Time for Unity Debug.Log():

Average: 1555 ticks, Mode: 1520 ticks, Min: 807 ticks, Max: 9637 ticks

77

The time cost for measurement will not be subtracted from the custom
profiler tests. Profile analyzer tests exclude Unity Editor impacts. Calling
Unity debug function is avoided to minimize performance impacts.

Due to limited access to AR headset hardware and correct scanners
and head tracking sensors, a test must be carried out in controlled
environment, inside Unity Editor. Real-world / virtual-world alignment
is not part of this thesis and is a large and time-consuming task. The
components required can be considered expensive and are not required for
the scope of this investigation.

However, Unity Editor resting for AR performance and accuracy will still
give us excellent results to evaluate very efficiently when compared to
practice testing. With a good alignment solution and further calibration,
the solution should be easy to apply in AR headset like Project North Star
or smartphone devices, but it would require development of concurrent
components specialized in reading point cloud stream from an IR/LiDAR
sensor.

4.1.3 Occlusion Reconstruction Prototype

In this thesis, I have developed a prototype solution system to answer
our research question and try to accomplish proposed objectives. GPU
development versions were versioned on GitHub. The development of the
occlusion solution was carried out in three stages.

1. Prototype of Marching Cubes on the CPU on the main thread. At
this stage, reconstruction, even with an accuracy around 4 cm, is not
running in real time. Sending the model from CPU to GPU results
in an unnecessary penalty. Generating and adding mesh took several
seconds for small volumes, and thus development was focused on
the GPU-computed solution.

2. Reconstruction prototype on the GPU, with compute shaders and
LoD features being tested on. It implied a less performant solution
where the data were moving back to the CPU to be moved to the
GPU again.

3. Working prototype of higher fidelity with a wide set of features that
can serve as a proof-of-concept and a basis for future research and
development.

The current solution includes, among others:

1. Prototype components for scanning the environment. In this case,
colliders of the placed models on the scene imitate IR/LiDAR
hardware.

78

2. Point cloud to marching cubes translation shader for sending point
data directly to GPU for weight updates.

3. Interpolated marching cubes algorithm for translating weights to
mesh.

4. Unlit test shader for prototype visualization purposes (used in
screenshots). Unlit flat black shader for AR rendering purposes. In
case of shadow support, lit shader must be used instead.

5. Saving of unused sectors in RAM for storage as an asynchronous
operation. Sectors can be loaded from RAM into GPU again.

6. Sector system that allows rendering only to a specific range and
within sight. LoD system can render reconstruction with various
accuracy to allow users of the system to adjust its performance to the
device and the desired FPS target.

7. Multiple AR camera support, in the case of multiple users or video
sources.

8. A prototype of "melting" and ray penetration of a prototype raycast
depth sensor.

The following figures demonstrate the setup of the main testing scene and
the basic function.

Figure 4.2: One of the prototype scenes in the Unity Editor. This test
does not provide perfect coverage; however, it represents different surfaces
of various thicknesses and angles to present differences in reconstruction
speeds and accuracy. Objects of interest are colored red.

79

Figure 4.3: Camera scanning the environment with rays and returning
point hit position imitating the behavior of scanning devices. Camera/s
activate sectors of the world to be represented with different accuracy levels
if desired. The highest quality sector is set to red, the middle quality is
yellow, and the lowest quality is green.

Figure 4.4: Camera scanning the environment with rays, additional
perspective.

80

Figure 4.5: AR camera component is necessary to track camera position and
load necessary sectors in cameras frustum.

Figure 4.6: AR camera component for simple simulation of point-
cloud collection by using pre-existing object models, colliders, and Unity
raycasts.

81

Figure 4.7: Reconstruction of the environment on the test scene. Some
areas have less cover as the rays are not hitting them. 2 cm accuracy,
10,000 rays per second. Note that the triangles shown are not affected
by the lightning system, but have colors assigned based on their angle for
visualization purposes. Dark gray and red are testing environment objects
that are scanned to generate a point cloud.

Figure 4.8: Reconstruction of the environment on the test scene. After
moving the head, some areas not covered by rays need to be slowly
covered. This is normal behavior since the rays only hit surfaces within
the line of sight of the sensor. 2 cm accuracy, 10,000 rays per second.

82

Figure 4.9: Mesh generated for occlusion, example with LoD levels
enabled. Colored yellow area 0.2 cm cubes and green area 0.4 cm cubes.

4.1.4 Profiling and Analysis

First test was performed in the position demonstrated in Figures 4.10 and
4.11. For this test, I’m using the following settings as main reference:

1. Sector size: 2 square meters

2. Cube size: 0.02 meters (2 cm)

3. Memory resize tolerance: 80%

4. Initial minimal mesh memory buffer size: 0.4%

5. Memory resize multiplier: 2x

6. Cache on RAM: False

7. Camera range (in sectors): 3 forwards, 2 upwards, 1 downwards

8. Camera count: 2

9. IR rays per second: 10,000

10. Rendering resolution (single camera): 1920 x 1080

Profiling results show an increase in memory over time, indicating that the
memory and grouping systems work as intended. When the GPU mesh
memory for the sector is freshly allocated, it is allocated only to the specific
percentage of pessimistic memory amount. The correct configuration is
necessary to balance between avoiding vertex artifacts and wasting GPU
memory. Constant exchange of the GPU mesh buffers might also lead to
CPU/GPU penalty.

83

Figure 4.10: Results of the reconstruction of an uneven surface with an
accuracy of 2 cm after 20 seconds. No head movements, two active
rendering cameras. 10,000 rays per second.

Figure 4.11: Reconstruction of an uneven surface with an accuracy of 2
cm after 120 seconds. No head movements, two active rendering cameras.
10,000 rays per second. Surface coverage is significantly better. Due to
distance and ray spread, lack of head movements, covering of the whole
area takes much more time.

Setting the initial memory reservation value too low results in artifacts (see
4.12). In such a scenario, some triangles are visibly corrupted. This is
caused by the buffer overflow and the GPU starting to write vertex data
from the beginning. There errors only occur when the mesh complexity
increased significantly in a single update, beyond the 100% of buffer size

84

and thus the mesh resize tolerance threshold. In the common case where
the triangle limit exceeds a specific value, the compute buffer is swapped
with a larger one. When the buffer is resized, its new size is defined by
memory resize multiplier. With current settings, the buffer size is doubled.
If a pool of given size is existing and contains unused compute buffer; it is
preferred over allocating a new one. Pool is discarding if there is too many
buffers of given size.

By evaluating 600 frames after 120 seconds of the demonstrated camera
setting (see 4.13) and the early 600 frames, we can better observe the system
mechanics.

Considering the early 600 frames we can better observe how RAM/VRAM
memory is warmed. Profiler shows a similar count of batches and
growing/jumping amount of triangles that can be caused by how we
generate and render our mesh. The beginning shows allocated 390.8 MB
VRAM and 1.42 GB RAM usage. The frames at the end show allocated
600.0 MB VRAM and 2.14 GB RAM usage. This indicates an expected
upward growth as we scan the area. The growth in frame time is not
significant in the scope of 600 frames. The CPU timings during the duration
are: 11.88 ms mean, 23.37 max, and 9.43 min.

The late 600 frames show stable RAM and VRAM memory. GC uses
stable 235.9 MB memory usage. A total of 2.18 GB RAM memory is
used. The profiler also indicates many GC.Allocations (based on the sector
update count, even taking as much as up to 0.02 ms each) related to
constant allocation on the heap. To minimize expensive GC operations,
it is best to allocate dedicated static memory and perform a copy operation
instead. Since C# classes are allocated in heap memory, their children
are also allocated on the heap. However, C# also allows us to use the
unsafe code [38]. In an unsafe context, the keyword allocstack [37] can
be used to allocate referenced types such as arrays on the stack instead
of the heap. Unsafe context and unmanaged memory is a great option
for future optimization. It is worth noting that it requires significantly
more development time and additional testing, as it can cause memory
management issues such as memory leaks.

The highest noticeable timings (including editor) are at 21.42 ms for the
CPU and 18.39 ms for the GPU, with the GPU being slower in some
cases, suggesting CPU and GPU-get or dispatch bottlenecking. Most of
the CPU time is related to Semaphore.WaitForSignal() wait states caused
by Gfx.GetComputeBufferData_Request() operation of ARScene.Update(). The
ARScene.Update() function takes mean 8.75 ms to finish, which is related to
various CPU sector operations and GPU compute shader dispatches that
are awaiting completion. The handling of Update() function of the ray
component takes mean time of 0.40 ms at 10000 rays per second.

The rendering part of the URP takes between a mean time of 2.01 ms. The

85

profiler indicates 223 batches, with 614.2 thousands triangles rendered.
The GPU memory used by the buffer is 0.81 GB. The ARScene.Update()
function takes up to 0.279 ms of the frame time when the ray data need to be
dispatched. The main camera takes 1.04 ms to render 84 draw calls, while
the secondary camera uses 0.908 ms to render 78 draw calls, indicating
that the setup is working correctly. The mean frame time is 13.49 ms and
therefore 74 FPS in the setup presented with two active full HD cameras.
Min frame time is 9.97 ms and max frame time is 21.42 ms. This presents
growth over the early frames, as model complexity builds up.

Figure 4.12: Graphical artifacts caused by compute buffer overflow within
a single update when using too conservative memory-saving settings.
Left upper corner: area of the corrupted triangles. Right lower corner:
stretched corrupted triangle.

86

Figure 4.13: Profiling tool included in Unity Editor. Shows us the details
such as various timings and resource usage. Note that profiling GPU usage
can lead to additional overhead.

4.513

1.01

0.865
1.337

0.515

Ar Scene Updates
Render Camera Stack 1
Render Camera Stack 2
Editor Operation
Other

Figure 4.14: Pie chart representing CPU-time usage by important processes
(ms). AR Scene Main Update is responsible for sector loading, camera
visibility, and render dispatching. The Late Update of AR Scene updates
weights and marches with a cost as low as 0.013 ms. 4 cubic meters.

4.1.5 Quantitative Analysis

Sector Size and Performance

Sector size is an important parameter to balance. It affects the size of
the GPU dispatches and the number of draw calls. Lower sizes result in
more draw calls, but smaller GPU dispatches and a better time distribution.
Larger sizes result in fewer calls to the draw. This part proved to be difficult

87

to test reliably, as changes in sector size require potential adjustment in
range and camera sector loading tolerance. Furthermore, the distance is
defined by the number of sectors that are drawn forward by the camera.
Note that the draw distance data had to be adjusted accordingly to increase
the reliability of the results. From the profiling data shown in Table
4.1 we can conclude that a larger sector size is better suited to cover
larger volumes, as it has the best coverage-to-cost relationship. However,
increasing the size can lead to bottleneck caused by GPU computation
limits, thread count limit, and rendering costs. Therefore, these settings
must be balanced in the AR play area and the desired LoD settings for
longer distances.

The farthest we can go is defined by the memory limit and computational
power we have at hand. With 8m3 and a short reconstruction and rendering
range, we are able to achieve high but very unstable frame rates at 1 cm
cube size, 0.4% initial memory reservation, and 4 sectors in total. The
profiler reports values around 6.51 ms for the CPU and 6.34 ms for the GPU
most of the frames. Occasional spikes note increase of GPU time to values
as high as 46.46 ms and 44.28 ms for CPU. It is caused by hitting memory
limits; 8.54 GB of memory are allocated to buffers only. This means that
the allocated memory for the weight buffers of the meshes and marching
cubes weight buffers exceeds 8GB of dedicated GPU memory, leading to
the usage of slower shared video memory (virtual memory allocated to
RAM, which requires PCIe data movement [16]). In this case, the shared
video memory is 8GB, half of the total system RAM.

Size Sectors CPU Time GPU Time RAM (Total) VRAM (Buffers)

1 m3 5260 424.13 ms 415.06 ms 5.75 GB 4.03 GB
2 m3 631 59.89 ms 59.15 ms 4.82 GB 4.02 GB
4 m3 78 15.19 ms 14.85 ms 5.73 GB 4.89 GB
8 m3 10 8.17 ms 8.05 ms 4.84 GB 4.08 GB

Table 4.1: Profiling data of different sector sizes. Due to view frustum,
sectors are set to a setting that will yield very similar area coverage.
Momentary data collected from the 1000 frame approximate after the
beginning of the application. As the sector size increases, the higher the
GPU timings we can observe. The initial memory allocation was set to 0.8%
for all cases. Ray buffer sizes are not adjusted to chunk size in this chart,
which with growth of Sector structure allocation results in visible RAM
growth. Fluctuations in memory are caused by varying ray-area coverage
in a given sector-size setting.

88

1 2 4 8
0

0.2

0.4

0.6

0.8

1

Sector Size in m3

Es
ti

m
at

ed
m

s
Pe

r
Se

ct
or

Figure 4.15: Approximate cost of sector computation based on Table 4.1.
8m3 sector can fit 8 of 4m3 sectors inside, therefore optimistic expectation
is 8x reduction of costs for each size. However we can observe significant
diminishing returns as 4m3 sector is 23.84% of the 8m3 sector cost. Which
means that we receive less than 5x of the computation cost. This is even
more magnified when using chunk size of 1m3 and 2m3. In this case 1m3

section is almost as expensive as single 2m3 sector.

Cube Size and Resources

Another important part to evaluate is the performance and resource usage
based on the cube size. As we can see in Table 4.2, the VRAM usage
increases by 6-7 times. Variation in memory is related to frame times,
incoming rays, mesh generation, and dynamic mesh allocation. At 1 cm,
the dedicated VRAM is entirely used up, which results in large RAM
reservations for shared video memory. This results in undesired frame-
time spikes up to 107.82 ms. To benefit from smaller cube sizes, a LoD
or shorter loading range needs to be used. The following results present
a significant drawback of marching cubes. Lower cube size increase
the complexity of the model. However, increasing complexity does not
guarantee the best relationship between accuracy and memory usage. For
instance: some flat surfaces might not require thousands or millions of
triangles and could be represented by only a few triangles and look the
same.

Ray Count And Performance

Modern point-cloud scanning devices can reach speeds of millions of
points generated per second. Profiling the ray-cast component will help

89

Cube Size Mean Frame Time Max Frame Time RAM VRAM

1 cm 16.27 ms 107.82 ms 18.32 GB 17.57 GB
2 cm 12.46 ms 20.93 ms 3.88 GB 3.16 GB
4 cm 10.79 ms 20.84 ms 1.23 GB 461.3 MB
8 cm 9.86 ms 20.70 ms 0.86 GB 75 MB

Table 4.2: Performance and usage of resources of different cube sizes. 60
active sections, 4 m3 section size, 0.4% initial minimal memory buffer size.
600 frames sample using the Profile Analyzer tool. Memory picked from
1000th frame form beginning.

us observe the cost of ray-cast operations and potential cost of sending
rays to GPU. As we can observe in Table 4.3, performance scales nearly
linearly with the number of rays. However, subtracting the update times
from the frame times we can conclude that the Update() operation and the
ray-cast physics operations are the main part affecting the performance
significantly. For 1 million rays per second, the profiler reports 37.13 ms,
which is used for conducting the ray-cast operation part of the update
function, which takes 99.82 ms in total. The performance cost of processing
more points with a GPU is not significant when compared to ray-casting
costs. With an improved setup and a LiDAR/IR scanner, managing points
in separate threads can prove to be significantly better performance.

Ray-Casts Per Second Update Time Frame Time

1.000 0.022 ms 11.70 ms
10.000 0.149 ms 12.64 ms
100.000 1.38 ms 16.93 ms
1.000.000 99.82 ms 118.72 ms

Table 4.3: Raycast profile data for prototype components per second and
how it affects performance. Each sector has its own point queue; in this
test, its capacity is equal to the cast count of the rays. The point-cloud
RAM buffer is also set to 1 million points; it is used for GPU dispatch. This
ensures optimal performance to keep up with the generated point cloud.

Quantitative Performance Tests

In addition to profiler measurements, more quantitative measurements
have been collected in some parts of the systems, as previously suggested.
The count of measurements depends on how often given functions are used
during runtime.

90

Measured Functionality Samples Average (ticks) Min (t.) Max (t.)
Apply Weights (1024 thr.) 1000 2497.69 1624 3441
March Cubes (512 thr.) 1000 62.969 22 643
Get Mesh Buffer 100 139.68 31 2987
Pool Mesh Buffer 100 34.4 4 160
Clear Mesh Buffer (128 thr.) 100 18.79 5 38
Pool Weights Buffer 100 91.41 9 2834
Get Weights Buffer 100 55.69 1 324
Clear Weights Buffer 100 42.25 5 75
Cached Sect. RAM to GPU 100 631.56 3 9346
Verify Sector (caching on) 10000 109.494 3 333318
Camera Cal. Sect. (moving) 100 40452.59 19642 161902
Draw Call Sector 10000 87.20 70 2362
Draw Call Get Count 10000 1149 412 95749

Table 4.4: Measurements of different parts of the system in ticks. Per
execution of the operation. Movement of the camera in the scene. RAM
caching enabled.

According to the results, getting the count from the compute buffer leads
to a cost as high as 1149 ticks, with a maximal measured time of 95,649
ticks. Although it is still below 1 ms, it is a high value for the operation
that receives the count of triangles in the append buffer. It may be one of
the most significant impacts on time costs per active sector seen in Figure
4.15. Counting triangles manually is an efficient alternative to consider.
Storing the counters in a shared buffer could make retrieval more efficient
as a single operation. Operations like: applying point cloud, evaluating
sectors for update or unloading, calculating camera sectors, and recovering
sections from RAM back to GPU are quite costly to execute. Some of the
function timings are related to the size and count of sectors. The mentioned
parts of the code could be further evaluated for additional late optimization
possibilities.

Measured Functionality Samples Average (ticks) Min (t.) Max (t.)
Apply Weights (1024 threads) 1000 2521.164 2219 4627
March Cubes (512 threads) 1000 61.56 46 235
Verify Sector (caching off, static) 10000 4.0886 3 24
Camera Calculate Sectors (static) 100 78470.4 62180 99789
Draw Call Sector 10000 79 64 249
Draw Call Get Count 10000 1441.7813 412 36457

Table 4.5: Comparison of static perspective timings for static perspective in
Figure 4.8.

91

Measured Functionality Samples Average (ticks) Min (t.) Max (t.)
Apply Weights (1024 threads) 1000 2466.052 1576 3671
March Cubes (512 threads) 1000 60.364 23 177
Verify Sector (caching off, static) 10000 4.1248 3 22
Camera Calculate Sectors (static) 100 99855.56 78080 125054
Draw Call Sector 10000 81.1228 66 532
Draw Call Get Count 10000 1235.52 412 36561

Table 4.6: Comparison of static perspective timings for static perspective in
Figure 4.10. We see some variation in the functions, which depends on the
camera position and the number of sections loaded.

4.1.6 Additional Findings

Compute Buffer Clearing Methods

Pooling weight buffers requires clearing its contents. To receive a clear
buffer, we can do one of the following: set data, dispatch clearing compute-
shader, or discard data and allocate new buffer. In Table 4.7 we can see
that allocation is slightly more expensive than Dipose and shader-based
clearing. This confirms that pooling and clearing with a compute shader
should improve performance.

Operation Average Ticks Min Ticks Max Ticks

Allocate 70 55 48201
Dispose 5 3 1853
Clear Shader (1024 threads) 4 3 3737

Table 4.7: Different compute buffer timings relevant for clearing. 10,000
samples.

Thread Count and Performance

Thread group count defines the number of GPU threads that can be
dispatched in a single group. As we can observe in Table 4.8, thread
count does not have a significant impact on the timings of a simple
shader. However, with this simple clear compute shader, the number of
data that we can clear depends on the number of threads (up to 1024)
in a single group and the group count limit (up to 65535). Too low
numbers may limit performance due to occupancy; meanwhile, a high
number of threads can cause performance issues if we reach GPU resource
limits. Therefore, the thread count per group should be placed between
the minimal recommended (like 32 threads for Nvidia) and 1024 (max)

92

depending on the target hardware and size of the dataset. A total count
of 512, 256 or 128 should be a reasonable starting point to avoid issues.
Note that the total number of threads should be a multiple of 32.

Operation Average Ticks Min Ticks Max Ticks

1024 (max) 5 3 1796
512 3 3 1717
256 6 3 1774
128 5 3 1843

Table 4.8: Clear data compute-shader performance using different thread
count per group. 1,000 samples. Operation on 6144 floats.

93

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Optical-based and video-based AR technologies are still in significant
development. As we discovered while conducting research for this thesis,
computing power and sensor technologies had to improve significantly to
allow for viable use of VR and AR. However, we still have a long way to
go. The occlusion and management of the scene is one of the topics hardly
mentioned in the scientific papers. Evaluating the research question with
the knowledge collected and the data collected from our prototype:

Can we develop efficient real-time, mesh-based reconstruction method to occlude
virtual objects with real object in an AR scenario?

We can answer the following: Yes, it is possible. It is possible using
Unity Engine, but it requires efficient resource management and heavy
optimization such as world sector management and pararellization
using GPU. It is not efficient to use the CPU for computation of the
high-accuracy model or Z-buffer operations. Modern GPUs are very
efficient at parallelizable tasks, and we can continue to observe significant
improvements over the years. Furthermore, since rendering the data
happens on the GPU, being instructed by CPU; it is most efficient to keep
related thata on GPU if possible to reduce necessary PCIe movement and
memory waste. We observed that updating specific parts of the model can
be challenging, as it would require structuring of the triangle buffers, which
then makes rendering inefficient. Since model-based occlusion is resource-
intensive, it is possible to mix it with a depth-based approach. One of the
issues of scene management worth mentioning is smart detection of which
sections and subsections to update and which section data are outdated
and should be removed. At some point, ray updates will not yield any
significant model reconstruction improvements, and queuing them for
update begins to be a waste of CPU/GPU time and their memory. To avoid

94

ghosts and errors, an approach of removing data about a heavily changed
area could yield a better occlusion experience for heavily cached mesh
generation approaches. The literature on AR based on optical and video
is quite limited, and the field would benefit greatly from further research.

Furthermore, we have achieved most of the objectives of the prototype and
have successfully collected useful data that will help develop AR occlusion
solutions in the game engines.

• Solution runs in real-time.

• Solution is capable of reconstructing details even below 1 cm.

• Solution can run at frame rates above 60 FPS using both cameras, with
accuracy as high as 2 or 1cm in Unity Editor.

• We did not register significant performance spikes.

• The solution should be an easily adaptable fundamentals for developers that
wish to develop own mesh-based occlusion solutions.

• Solution uses Unity compute shaders, so it should work on ARM devices
and consoles.

5.2 Possible Improvements and Future Work

There are many ways to improve the accuracy and performance of our
prototype in the future. Unmanaged memory management, concurrent
point handling, better reconstruction algorithms, and improved sector
management algorithms are great examples. Using CUDA and other
API features for async and batched GPU dispatching could improve
performance at the cost of hardware compatibility. When using the
buffered model approach and model generation, we need to discard
and regenerate some parts of the view as the surroundings change.
This feature should be improved and requires additional research to
improve performance and avoid ghost objects. Additionally, sub-section
computation can be implemented for even smoother computation and
work distribution. The concept has great potential with the ring-buffer
approach using mesh compute buffers, especially with large sector sizes.

Like in many fields of computer vision and algorithms in general; there
are a lot of settings to tweak to find the best spots between fidelity and
performance. This is a very time-consuming and repetitive task for a single
human. Therefore, to find a better solution for the desired range and
fidelity setting, AI and deep learning could be used to adjust the other
attributes to maximize performance.

95

There are no significant papers available that cover handing of the AR/VR
scene, but it remains an significant part when dividing the scene into
sectors for efficient processing and easier management. Furthermore, there
is potential in areas such as Nvidia tensor cores and AI [45], to further
accelerate mesh generation and handle data loading and discarding in a
potentially more efficient way using the latest technology.

It should also be noted that most hardware capable of handling accurate
mesh-based reconstruction is performance-oriented. We cannot achieve
this efficiency with mobile devices and their ARM processors. Like high-
fidelity VR; if we want high refresh rates and high-definition images, we
need to use an x86 computer with a highly efficient graphics card to be
able to render high-quality graphics for two eyes. This requires a cable
connection or hardware that is carried on the user’s back, which slightly
affects the usability. Currently, we cannot efficiently fit high-performance
hardware into AR/VR headsets. Therefore, we need to discover ways to
perform these computations remotely with minimal latency (potentially
using network and 5G wireless communication) and continue developing
more energy- and space-efficient hardware. Wireless input and image
transmission allow us to use higher performance hardware that is less
mobile, opening new possibilities not only for AR/VR but also for fields
such as telemedicine and telesurgery in which we need a latency lower
than 1 ms [50]. Wireless headsets would also greatly benefit from efficient
wireless power transmission. However, efficient and safe wireless power
transmission technologies need to mature [78].

5.2.1 Accuracy Improvements

The point cloud translation compute shader assumes a loss of accuracy of
up to 50% of the cube accuracy used. This means that a precision of 1
cm can result in a deviation of up to 0.5 cm. This deviation is reduced by
configuring and improving the interpolation step of the algorithm. On the
basis of the test, we can observe the steps. It is related to the concurrent
writing and atomicity of the reading, writing operations that can lead
to problems, as each point needs to take the value of the weight and
interpolate it towards the calculated value based on points proximity to
the weight position in the 3D space. Furthermore, interpolation can result
in slower mesh weight modification; more rays need to hit a given area
to augment the model closer to the desired form. This can lead to slower
perceived model generation, but to a more accurate and visually smoother
model. This limitation is related to the nature of Marching Cubes and might
be easier to deal with using other approaches for mesh reconstruction.

Even if Marching Cubes is an old algorithm, we still find uses for it, and
Grosso et al. [24] recently published in 2021 is one of the most potential
methods to significantly improve the quality of marching cubes. It is an
answer to some of the problems of the original algorithm. The dual-

96

marching cubes algorithm presented by the researchers was performed
via CUDA, resulting in significant improved surface quality with great
timings between 3 ms for smaller sets (MRI/CT scans, 384 x 512 x 80)
and 92 ms (fMRI scan, 512 x 512 x 1047) for the largest sets presented.
The algorithm results in nearly interactive computation times while still
providing excellent quality. In addition, it uses pattern simplification,
which can potentially improve the size and complexity of the topology.
However, even such timings can be problematic for real-time mesh
generation, as the algorithm can be visibly slower than the Marching
Cubes; occlusion mesh updates would be slower, but the quality could be
higher. It is worth noting that if we want to achieve frame rates of 120
FPS, our total frame time cannot exceed 8.3 or 16.6 ms for the 60 FPS target.
Operations as high as 3 ms or 92 ms add a significant amount of time to
the frame time, assuming that the frame needs to wait for the operation to
finish. However, it is clearly possible to partially update a sector and divide
the computational time between multiple frames. It is also possible to
experiment with separate GPU dispatches for mesh generation. However,
it is still probable that the dual marching cubes algorithm will be objectively
worse in matters of resource usage and surface quality when compared to
Newcombe et al. and Meerits et al. approaches. The algorithm has issues
with generation of topologically correct surface, unlike standard marching
cubes, due to specific unsafe cube configurations. However, this drawback
may be insignificant for AR occlusion or even collision purposes. The dual
marching cube algorithm is a solution definitely worthy of consideration
as an improvement of marching cubes for our purposes and many others.

5.2.2 Scriptable AR Reconstruction Pipeline

As mentioned in previous chapters, our AR reconstruction and rendering
solution needs to take multiple steps to produce a sector ready to render.
As this solution could be improved in the future, it is a good idea to
make each step of AR reconstruction replaceable or extendable. It would
give developers the ability to extend and test features for reconstruction
and rendering to their own needs, without wasting performance by still
benefiting from sector-management options and LoD. Some of the features
worth mentioning can be shown:

1. Area prediction based on neighboring points.

2. Simplify the mesh to generate better LoDs.

3. Cached calculation for occlusion and backface culling.

4. Generation of impostors for distant objects.

5. Post-processing for physics.

97

These operations can be considered as somewhat heavy and thus can be
implemented as a post-processing step conducted on a desired basis. Note
that the implementation of some of them would require further research.

5.2.3 Caching and Ghosts

Caching the model through the weights of the marching cubes poses a big
problem when occluding moving objects. It works well for static objects;
temporal stability can be improved, as well as model accuracy, no matter
how dense the ray coverage is. Moving objects are harder to distinguish, as
there is no way to verify well enough if objects. This means that the space
that is no longer occupied or has changed will have ghosts that remain
there. There are a couple of possible approaches to solving this problem;
however, it is hard to find a solution without drawbacks.

Interpolate Ray Trajectory and Generate Negative Points
As an object has moved, rays will be able to travel through space. This
value of weights between can be reduced towards 0 to slowly ’melt’ meshes
that are no longer in that space. Unfortunately, this method can affect
the corners of other objects in a negative way and make the mesh more
temporally unstable according to my tests. As rays can pass near the
corners, the negative points can both slow down runtime on the CPU side
visibly and destabilize these corners.

History
Saving N amount of weight history is another option to consider. However,
each frame can cost significant amounts of memory. If, in the worst case,
a square meter with an accuracy of 1 cubic centimeter is used, a single
marching cube array can contain 1.030.301 weights and take around 4 MB
of memory. Using and recomputing these histories can take a significant
amount of processing power and memory.

Taking into account previously mentioned reconstruction algorithms like
Meerits et al. and speed of GPU memory, we are able to use the local
mesh and global mesh approach. In that case, the obsolete sectors can
be discarded. We can compute and store certain meshes locally and then
merge them into a global mesh buffer. However, in the worst case; this
method can use twice as much memory.

Vanish Over Time
We could reduce all weights over time or reduce weights that were not
updated for longer periods of time. This method might be quite effective
in many cases as long as our head is moving and the rays hit all possible
points from time to time. However, it would require one to save the last
update timestamp for weights or weight groups.

98

Dynamic Instead of Cached
We may clear out the memory as mentioned in caching section, however,
we lose the benefits of stability, as it requires us to clear or reallocate
memory for each update.
Change Detection Algorithms
It is possible to create a dedicated algorithm that decides which sectors
of the world will be discarded. This can be done as an algorithm-based
system or as a deep learning AI system. Furthermore, since AR hardware
tends to scan surroundings with short and long passes, the short pass can
be handled by a high-accuracy, non-cached mesh generation algorithm to
cover. This requires further research in the field.

Custom Mesh Generation Algorithms
Creating and implementing custom algorithms that are less prone to
ghost objects, with different approaches to model generation and caching.
Mentioned Meerits et al.[35] paper is one of the best examples of such an
implementation. Another option is to approach the problem in a hybrid
way, combining mesh-based approaches with depth-based approaches.
This would require additional research.

5.2.4 Afterword

There is much work to do in the field of AR occlusion. However, we
can conclude that AR will improve occlusion, tracking, and alignment as
technology improves, and we possibly already are at a point where optical-
based AR experience is sufficient for some work and training.

Per Aspera Ad Astra

99

100

Glossary

Ahead of Time Referring to code compilation; compiling code before the
program is run. AoT languages require longer compilation, but can
result in higher performance. AoT language examples: Rust, C, and
C++.

Compute Shader A Compute Shader is a shader mainly used to compute
any data on the GPU [46].

Concurrency Running computations concurrently, sometimes in parallel,
with potential thread waiting states when mutual exclusion is
needed.

Delta Time In game engines: the interval in seconds from the last drawn
frame to the current frame [66].

Edge A connection between two vertices.

Face A closed set of edges, in which a triangle face has three edges, and a
face quad has four edges.

Fixed Delta Time The interval in seconds at which physics and other fixed
frame rate updates are performed. In Unity it happens in fixed
intervals, n times per second. In Unreal Engine this is an optional
feature known as ’Physics Sub-Stepping’. It can be activated to
make physics calculations more accurate and stable for a cost of
performance [66].

Frame In rendering context: single rendered picture of the graphic
program. The total number of frames rendered by the graphics card
per second is known as FPS.

Frame Time Total time (often noted in microseconds) required to render a
single frame. Frames per second are calculated in the following way:
1000 ms / frame time (ms).

Frustum Culling Frustrum Culling is a feature that disables the rendering
of objects outside the viewing area of the cameras. [70].

101

Just in Time Referring to code compilation; compiling code while the
program is running. Compilation of JiT languages at runtime can
speed up prototyping and testing. JiT language examples: Java,
Python and C#.

Lit Shader Lit shaders are the most common shaders. They have full
shading and lightning support, making them more expensive to
render when compared to Unlit Shaders. [74].

Mesh A polygon mesh is a collection of vertices, edges, and faces that
defines the shape of a polyhedral object. Part of the 3D model.

Model 3D model or a mesh, is a representation of a object or objects in
three dimensions. Models are created from many elements, such as
vertices, triangles, and edges. It can also contain textures and material
data.

Occlusion Culling Occlusion Culling is a feature that disables the render-
ing of objects when the camera does not currently see them because
they are obscured (occluded) by other objects. Occlusion culling is
different from fault culling. Frustum culling only disables the ren-
derers for objects that are outside the camera viewing area but does
not disable anything hidden from view by overdrawing. Note that
when using occlusion culling, you will still benefit from frustum
culling [70].

Pararellity Running computations in parallel, avoiding interference.

Pipeline In programming; refers to the sequence of processing steps that
processing units such as CPU or GPU need to undertake to complete
the designated task. Rendering pipelines like URP and HDRP in
Unity are examples of graphical pipelines. The occlusion process, as
it consists of multiple sequential steps, can also be called a pipeline..

Point Cloud A collection of 3D point coordinates that represent the
scanned real-world surfaces. Look 2.2 for a demonstration..

Quad A closed set of four edges. One of two forms for representing faces
in a 3D model.

Rendering The process of generating 2D or 3D images in the execution of
a computer program.

Rendering Pipeline The Rendering Pipeline is the sequence of steps that
the graphical engine (or a graphics API) takes when rendering
objects [48].

102

Shader A Shader is a program designed to run on some stage of a graphics
processor. Shaders provide the code for certain programmable stages
of the rendering pipeline. They can also be used in a slightly more
limited form for general GPU computation [49].

Spatial Mapping Technique of mapping the real environment, for exam-
ple, for AR purposes..

Topology In computer graphics, term topology relates to the structure
flow of a 3D model. For example: The model can be modeled with
triangles or quads, which all lead to different topologies. Topology
can also refer to how the vertices and edges are distributed in the
model, which can matter in terms of performance and 3D animation..

Triangle Triangle, or tris in short. A closed set of three edges. One of two
forms for representing faces in a 3D model.

Unlit Shader Unlit shaders are more lightweight material shaders in
rendering engines. These shaders can be rendered as Lit Shader;
however, it does not compute shading and light data, making its
appearance unaffected by them. [74].

Vertex (Computer Graphics) A position (usually in 3D space) along with
other information such as color, normal vector, and texture coordi-
nates.

Viewing Frustum Is area of the world visible to the camera. Look 3.15
"field of view", between the near cutting plane and the far cutting
plane..

Viewport A framed area on a display screen for viewing information.

103

Acronyms

AI Artificial Intelligence.

AoT Ahead of Time.

API Application Programming Interface.

APU Accelerated Processing Unit.

AR Augmented Reality.

AV Augmented Virtuality.

CPU Central Processing Unit.

FPS Frames Per Second.

GC Garbage Collector.

GPU Graphical Processing Unit.

HCI Human-Computer Interaction.

HDRP High-Definition Render Pipeline.

HLSL (Microsoft) High Level Shading Language.

IR Infrared.

JiT Just in Time.

LIDAR Light Detection and Ranging.

LoD Level of Detail.

OS Operating System.

RAM Random Access Memory.

SRP Standard Render Pipeline.

104

URP Universal Render Pipeline.

VR Virtual Reality.

VRAM Video Random Access Memory.

105

Bibliography

[1] Adriana Paíno Ambrosio and M. Isabel Rodríguez Fidalgo. “Past,
present and future of Virtual Reality: Analysis of its technological
variables and definitions.” In: Culture and History Digital Journal 9.1
(2020). ISSN: 2253797X. DOI: 10.3989/CHDJ.2020.010.

[2] Ask a Game Dev. Game Optimization Tricks (part 2): Backface Culling.
URL: https : / / askagamedev . tumblr . com / post / 92638684416 / game -
optimization-tricks-part-2-backface-culling.

[3] AutoPilot Review. Elon Musk on Cameras vs LiDAR for Self Driving and
Autonomous Cars. 2019. URL: https://youtu.be/HM23sjhtk4Q.

[4] Andrzej Barczak and Hubert Woźniak. “Comparative Study on
Game Engines.” In: Studia Informatica 2.23 (2020), pp. 5–24. ISSN:
1731-2264. DOI: 10.34739/si.2019.23.01.

[5] Peter Bauer, Werner Lienhart, and Samuel Jost. “Accuracy investiga-
tion of the pose determination of a vr system.” In: Sensors 21.5 (2021),
pp. 1–17. ISSN: 14248220. DOI: 10.3390/s21051622.

[6] Boston Dynamics. Spot specifications. 2021. URL: https : / / support .
bostondynamics.com/s/article/Robot-specifications.

[7] Paul Bourke. Polygonising a scalar field. 2016. URL: http://paulbourke.
net/geometry/polygonise/.

[8] Julie Carmigniani et al. “Augmented reality technologies, systems
and applications.” In: Multimedia Tools and Applications 51.1 (2011),
pp. 341–377. ISSN: 13807501. DOI: 10.1007/s11042-010-0660-6.

[9] Eleftheria Christopoulou and Stelios Xinogalos. “Overview and
Comparative Analysis of Game Engines for Desktop and Mobile
Devices.” In: International Journal of Serious Games 4.4 (2017), pp. 21–
36. DOI: 10.17083/ijsg.v4i4.194.

[10] Cmglee. Time of flight camera principle. 2017. URL: https://commons.
wikimedia.org/wiki/File:Time_of_flight_camera_principle.svg.

[11] Daniel Cohen-Or et al. “A survey of visibility for walkthrough
applications.” In: IEEE Transactions on Visualization and Computer
Graphics 9.3 (2003), pp. 412–431. ISSN: 10772626. DOI: 10.1109/TVCG.
2003.1207447.

106

https://doi.org/10.3989/CHDJ.2020.010
https://askagamedev.tumblr.com/post/92638684416/game-optimization-tricks-part-2-backface-culling
https://askagamedev.tumblr.com/post/92638684416/game-optimization-tricks-part-2-backface-culling
https://youtu.be/HM23sjhtk4Q
https://doi.org/10.34739/si.2019.23.01
https://doi.org/10.3390/s21051622
https://support.bostondynamics.com/s/article/Robot-specifications
https://support.bostondynamics.com/s/article/Robot-specifications
http://paulbourke.net/geometry/polygonise/
http://paulbourke.net/geometry/polygonise/
https://doi.org/10.1007/s11042-010-0660-6
https://doi.org/10.17083/ijsg.v4i4.194
https://commons.wikimedia.org/wiki/File:Time_of_flight_camera_principle.svg
https://commons.wikimedia.org/wiki/File:Time_of_flight_camera_principle.svg
https://doi.org/10.1109/TVCG.2003.1207447
https://doi.org/10.1109/TVCG.2003.1207447

[12] ConsoleDatabase. Sony PlayStation/PSOne. URL: https : / / www .
consoledatabase.com/consoleinfo/sonyplaystation/.

[13] Rodrigo Copetti. Playstation Architecture - A practical analysis by
Rodrigo Coppeti. 2019. URL: https://www.copetti.org/writings/consoles/
playstation/.

[14] Rodrigo Copetti. Virtual Boy Architecture. 2021.

[15] Marching Cubes and Isosurface Ext. Marching Cubes. 2010. URL: https:
//daac.hpc.mil/gettingStarted/Marching_Cubes.html.

[16] Goran Damnjanović. What is shared GPU memory? 2021. URL: https :
//levvvel.com/what-is-shared-gpu-memory/.

[17] Dorit Borrmann, Hassan Afzal, and Jacobs University Bremen
gGmbH. Robotic 3D Scan Repository. URL: http://kos.informatik.uni-
osnabrueck.de/3Dscans/.

[18] David Drascic and Paul Milgram. “Perceptual Issues in Augmented
Reality.” In: Stereoscopic Displays and Virtual Reality Systems III
2653.December 2013 (1996), pp. 123–134. DOI: 10.1117/12.237425.

[19] Amnon H. Eden. “Three paradigms of computer science.” In: Minds
and Machines 17.2 (2007), pp. 135–167. ISSN: 09246495. DOI: 10.1007/
s11023-007-9060-8.

[20] Ellie Harisova. Inside Game Development: Using Impostors. 2020. URL:
https://80.lv/articles/inside-game-development-using-impostors.

[21] Marwa Elteir, Heshan Lin, and Wu Chun Feng. “Performance
characterization and optimization of atomic operations on AMD
GPUs.” In: Proceedings - IEEE International Conference on Cluster
Computing, ICCC (2011), pp. 234–243. ISSN: 15525244. DOI: 10.1109/
CLUSTER.2011.34.

[22] Ryan (NVIDIA Corporation) Geiss. “Generating complex procedural
terrains using the gpu.” In: GPU Gems (2007), pp. 7–37. URL: http :
//www.cse.chalmers.se/edu/year/2013/course/TDA361/Advanced%
20Computer%20Graphics/Generating_Complex_Procedural_Terrains_
Using_t.pdf.

[23] Michael T Goodrich and Roberto Tamassia. Algorithm Design And
Applications. 2015.

[24] Roberto Grosso and Daniel Zint. “A parallel dual marching cubes
approach to quad only surface reconstruction.” In: Visual Computer
38.4 (2022), pp. 1301–1316. ISSN: 01782789. DOI: 10.1007/s00371-021-
02139-w. URL: https://doi.org/10.1007/s00371-021-02139-w.

[25] Simona Gugliermo. “Occlusion handling in Augmented Reality
context.” In: (2019). URL: http://www.diva-portal.org/smash/record.jsf?
pid=diva2%5C%3A1361930&dswid=7954.

[26] Nhut Minh Ho and Weng Fai Wong. “Exploiting half precision
arithmetic in Nvidia GPUs.” In: 2017 IEEE High Performance Extreme
Computing Conference, HPEC 2017 (2017). DOI: 10.1109/HPEC.2017.
8091072.

107

https://www.consoledatabase.com/consoleinfo/sonyplaystation/
https://www.consoledatabase.com/consoleinfo/sonyplaystation/
https://www.copetti.org/writings/consoles/playstation/
https://www.copetti.org/writings/consoles/playstation/
https://daac.hpc.mil/gettingStarted/Marching_Cubes.html
https://daac.hpc.mil/gettingStarted/Marching_Cubes.html
https://levvvel.com/what-is-shared-gpu-memory/
https://levvvel.com/what-is-shared-gpu-memory/
http://kos.informatik.uni-osnabrueck.de/3Dscans/
http://kos.informatik.uni-osnabrueck.de/3Dscans/
https://doi.org/10.1117/12.237425
https://doi.org/10.1007/s11023-007-9060-8
https://doi.org/10.1007/s11023-007-9060-8
https://80.lv/articles/inside-game-development-using-impostors
https://doi.org/10.1109/CLUSTER.2011.34
https://doi.org/10.1109/CLUSTER.2011.34
http://www.cse.chalmers.se/edu/year/2013/course/TDA361/Advanced%20Computer%20Graphics/Generating_Complex_Procedural_Terrains_Using_t.pdf
http://www.cse.chalmers.se/edu/year/2013/course/TDA361/Advanced%20Computer%20Graphics/Generating_Complex_Procedural_Terrains_Using_t.pdf
http://www.cse.chalmers.se/edu/year/2013/course/TDA361/Advanced%20Computer%20Graphics/Generating_Complex_Procedural_Terrains_Using_t.pdf
http://www.cse.chalmers.se/edu/year/2013/course/TDA361/Advanced%20Computer%20Graphics/Generating_Complex_Procedural_Terrains_Using_t.pdf
https://doi.org/10.1007/s00371-021-02139-w
https://doi.org/10.1007/s00371-021-02139-w
https://doi.org/10.1007/s00371-021-02139-w
http://www.diva-portal.org/smash/record.jsf?pid=diva2%5C%3A1361930&dswid=7954
http://www.diva-portal.org/smash/record.jsf?pid=diva2%5C%3A1361930&dswid=7954
https://doi.org/10.1109/HPEC.2017.8091072
https://doi.org/10.1109/HPEC.2017.8091072

[27] Y.-S. Ho et al. “Advances in Multimedia Information Processing -
PCM 2015: 16th Pacific-Rim Conference on Multimedia Gwangju,
South Korea, September 16-18, 2015 Proceedings, Part II.” In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 9315.September 2016
(2015). ISSN: 16113349. DOI: 10.1007/978-3-319-24078-7.

[28] Sanders Kandrot and Jason Edward. CUDA by Example: An In-
troduction to General Purpose Graphical Processing Unit. 2010. ISBN:
9780131387683.

[29] Michael Kazhdan and Hugues Hoppe. “Screened poisson surface
reconstruction.” In: ACM Transactions on Graphics 32.3 (2013), pp. 1–
13. ISSN: 07300301. DOI: 10.1145/2487228.2487237.

[30] T. Kimura et al. “Bilateral simultaneous epididymal leiomyoma: a
case report.” In: Hinyokika kiyo. Acta urologica Japonica 44.12 (1998),
pp. 901–903. ISSN: 00181994.

[31] V. Lepetit and M. O. Berger. “Handling occlusion in augmented
reality systems: A semi-automatic method.” In: Proceedings - IEEE
and ACM International Symposium on Augmented Reality, ISAR 2000
February 2000 (2000), pp. 137–146. DOI: 10.1109/ISAR.2000.880937.

[32] Lianhua Li et al. “Multi-camera interference cancellation of time-
of-flight (TOF) cameras.” In: Proceedings - International Conference on
Image Processing, ICIP 2015-Decem.September (2015), pp. 556–560.
ISSN: 15224880. DOI: 10.1109/ICIP.2015.7350860.

[33] William E. Lorensen and Harvey E. Cline. “Marching cubes: A high
resolution 3D surface construction algorithm.” In: Proceedings of the
14th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 1987 21.4 (1987), pp. 163–169. DOI: 10.1145/37401.37422.

[34] Daniel Madeira, Esteban Clua, and Thomas Lewiner. “GPU octrees
and optimized search.” In: Proceedings of the 8th Brazilian Symposium
on Games and Digital Entertainment (2009), pp. 73–76.

[35] Siim Meerits, Vincent Nozick, and Hideo Saito. “Real-time scene
reconstruction and triangle mesh generation using multiple RGB-
D cameras.” In: Journal of Real-Time Image Processing 16.6 (2019),
pp. 2247–2259. ISSN: 18618219. DOI: 10.1007/s11554-017-0736-x.

[36] Microsoft. HLSL - Scalar Types. 2021. URL: https://docs.microsoft.com/
en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-scalar.

[37] Microsoft. unsafe (C# Reference). 2022. URL: https : / /docs .microsoft .
com/en-us/dotnet/csharp/language-reference/keywords/unsafe.

[38] Microsoft. Unsafe Code. 2022. URL: https ://docs .microsoft . com/en-
us/dotnet/csharp/ language- reference/ language- specification/unsafe -
code#229-stack-allocation.

[39] Minecraft Wiki. Chunk. URL: https : / /minecraft . fandom . com/wiki /
Chunk.

108

https://doi.org/10.1007/978-3-319-24078-7
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1109/ISAR.2000.880937
https://doi.org/10.1109/ICIP.2015.7350860
https://doi.org/10.1145/37401.37422
https://doi.org/10.1007/s11554-017-0736-x
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-scalar
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-scalar
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/unsafe
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/unsafe
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code#229-stack-allocation
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code#229-stack-allocation
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code#229-stack-allocation
https://minecraft.fandom.com/wiki/Chunk
https://minecraft.fandom.com/wiki/Chunk

[40] Net-informations. “C# Dictionary Versus List Lookup Time.” In: ().
URL: http://net-informations.com/faq/general/dictionary-list.htm.

[41] Richard A. Newcombe and Andrew J. Davison. “Live dense recon-
struction with a single moving camera.” In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recogni-
tion (2010), pp. 1498–1505. ISSN: 10636919. DOI: 10.1109/CVPR.2010.
5539794.

[42] Richard A. Newcombe and Andrew J. Davison. Live dense reconstruc-
tion with a single moving camera. 2010. DOI: 10 . 1109 / CVPR . 2010 .
5539794. URL: https://youtu.be/CZiSK7OMANw.

[43] Next Reality. How The HoloLens 2 Works, Explained By Microsoft’s Alex
Kipman - YouTube. 2019. URL: https://www.youtube.com/watch?v=
S0fEh4UdtT8&feature=emb_rel_end.

[44] Nvidia. “NVIDIA ® Tegra ® X1 NVIDIA’S New Mobile Superchip.”
In: Nvidia White Papers (2015), pp. 1–41.

[45] Nvidia. “NVIDIA A100 Tensor Core GPU.” In: White Paper (2020),
pp. 20–21. URL: https://images.nvidia.com/aem-dam/en-zz/Solutions/
data-center/nvidia-ampere-architecture-whitepaper.pdf.

[46] OpenGL. Compute Shader. URL: https://www.khronos.org/opengl/wiki/
Compute_Shader.

[47] OpenGL. Face Culling - OpenGL Wiki. URL: https://www.khronos.org/
opengl/wiki/Face_Culling.

[48] OpenGL. Rendering Pipeline. URL: https://www.khronos.org/opengl/
wiki/Rendering_Pipeline_Overview.

[49] OpenGL. Shader. URL: https://www.khronos.org/opengl/wiki/Shader.

[50] Imtiaz Parvez et al. “A survey on low latency towards 5G: RAN, core
network and caching solutions.” In: IEEE Communications Surveys and
Tutorials 20.4 (2018), pp. 3098–3130. ISSN: 1553877X. DOI: 10 . 1109/
COMST.2018.2841349. arXiv: 1708.02562.

[51] Rui Pereira et al. “Energy efficiency across programming languages:
How do energy, time, and memory relate?” In: SLE 2017 - Proceedings
of the 10th ACM SIGPLAN International Conference on Software Lan-
guage Engineering, co-located with SPLASH 2017 (2017), pp. 256–267.
DOI: 10.1145/3136014.3136031.

[52] Gaël Guennebaud Pierre Alliez, Laurent Saboret. CGAL 5.4 - Poisson
Surface Reconstruction. 2022. URL: https://doc.cgal.org/latest/Poisson_
surface_reconstruction_3/index.html.

[53] Gheorghii Postica, Andrea Romanoni, and Matteo Matteucci. “Ro-
bust moving objects detection in lidar data exploiting visual cues.”
In: IEEE International Conference on Intelligent Robots and Systems 2016-
November (2016), pp. 1093–1098. ISSN: 21530866. DOI: 10.1109/IROS.
2016.7759185. arXiv: 1609.09267.

109

http://net-informations.com/faq/general/dictionary-list.htm
https://doi.org/10.1109/CVPR.2010.5539794
https://doi.org/10.1109/CVPR.2010.5539794
https://doi.org/10.1109/CVPR.2010.5539794
https://doi.org/10.1109/CVPR.2010.5539794
https://youtu.be/CZiSK7OMANw
https://www.youtube.com/watch?v=S0fEh4UdtT8&feature=emb_rel_end
https://www.youtube.com/watch?v=S0fEh4UdtT8&feature=emb_rel_end
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://www.khronos.org/opengl/wiki/Compute_Shader
https://www.khronos.org/opengl/wiki/Compute_Shader
https://www.khronos.org/opengl/wiki/Face_Culling
https://www.khronos.org/opengl/wiki/Face_Culling
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Shader
https://doi.org/10.1109/COMST.2018.2841349
https://doi.org/10.1109/COMST.2018.2841349
https://arxiv.org/abs/1708.02562
https://doi.org/10.1145/3136014.3136031
https://doc.cgal.org/latest/Poisson_surface_reconstruction_3/index.html
https://doc.cgal.org/latest/Poisson_surface_reconstruction_3/index.html
https://doi.org/10.1109/IROS.2016.7759185
https://doi.org/10.1109/IROS.2016.7759185
https://arxiv.org/abs/1609.09267

[54] Ihsan Rabbi and Sehat Ullah. “A Survey on Augmented Reality
Challenges and Tracking.” In: Acta Graphica 24.1-2 (2013), pp. 29–46.
ISSN: 0353-4707. URL: http://hrcak.srce.hr/file/150828.

[55] Jennifer Preece Helen Sharp Yvonne Rogers. “6.2.17 Augmented
and Mixed Reality.” In: Interaction Design, Beyond Human-Computer-
Interaction, 4th Edition. 2015.

[56] Jannick P. Rolland and Henry Fuchs. “Optical Versus Video See-
Through Head-Mounted Displays in Medical Visualization.” In:
Presence: Teleoperators and Virtual Environments 9.3 (2000), pp. 287–309.
ISSN: 10547460. DOI: 10.1162/105474600566808.

[57] Nadathur Satish, Narayanan Sundaram, and Kurt Keutzer. “Opti-
mizing the use of GPU memory in applications with large data sets.”
In: 16th International Conference on High Performance Computing, HiPC
2009 - Proceedings December (2009), pp. 408–418. DOI: 10.1109/HIPC.
2009.5433185.

[58] Manisah Mohd Shah, Haslina Arshad, and Riza Sulaiman. “Occlu-
sion in augmented reality.” In: Proceedings - ICIDT 2012, 8th Interna-
tional Conference on Information Science and Digital Content Technology
2 (2012), pp. 372–378.

[59] SUTHERLAND IE. “Head-Mounted Three Dimensional Display.”
In: 33.pt 1 (1968), pp. 757–764. DOI: 10.1145/1476589.1476686.

[60] Clive Thompson. The Gendered History of Human Computers. 2019.
URL: https://www.smithsonianmag.com/science-nature/history-human-
computers-180972202/.

[61] Unity. Optimizing draw calls. URL: https://docs.unity3d.com/2022.1/
Documentation/Manual/optimizing-draw-calls.html.

[62] Unity. Profiler. 2022. URL: https://docs.unity3d.com/Manual/Profiler.
html.

[63] Unity Docs. Compute Shaders. URL: https://docs.unity3d.com/Manual/
class-ComputeShader.html.

[64] Unity Docs. “DOTS Hybrid Renderer.” In: (). URL: https : / / docs .
unity3d.com/Packages/com.unity.rendering.hybrid@0.4/manual/index.
html.

[65] Unity Docs. Entities. URL: https://docs.unity3d.com/Packages/com.
unity.entities@0.16/manual/index.html.

[66] Unity Docs. ExecutionOrder. URL: https://docs.unity3d.com/Manual/
ExecutionOrder.html.

[67] Unity Docs. “Graphics API Support.” URL: https://docs.unity3d.com/
Manual/GraphicsAPIs.html.

[68] Unity Docs. IL2CPP. URL: https://docs.unity3d.com/Manual/IL2CPP.
html.

[69] Unity Docs. “Level of Detail (LOD) for meshes.” URL: https://docs.
unity3d.com/Manual/LevelOfDetail.html.

110

http://hrcak.srce.hr/file/150828
https://doi.org/10.1162/105474600566808
https://doi.org/10.1109/HIPC.2009.5433185
https://doi.org/10.1109/HIPC.2009.5433185
https://doi.org/10.1145/1476589.1476686
https://www.smithsonianmag.com/science-nature/history-human-computers-180972202/
https://www.smithsonianmag.com/science-nature/history-human-computers-180972202/
https://docs.unity3d.com/2022.1/Documentation/Manual/optimizing-draw-calls.html
https://docs.unity3d.com/2022.1/Documentation/Manual/optimizing-draw-calls.html
https://docs.unity3d.com/Manual/Profiler.html
https://docs.unity3d.com/Manual/Profiler.html
https://docs.unity3d.com/Manual/class-ComputeShader.html
https://docs.unity3d.com/Manual/class-ComputeShader.html
https://docs.unity3d.com/Packages/com.unity.rendering.hybrid@0.4/manual/index.html
https://docs.unity3d.com/Packages/com.unity.rendering.hybrid@0.4/manual/index.html
https://docs.unity3d.com/Packages/com.unity.rendering.hybrid@0.4/manual/index.html
https://docs.unity3d.com/Packages/com.unity.entities@0.16/manual/index.html
https://docs.unity3d.com/Packages/com.unity.entities@0.16/manual/index.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/GraphicsAPIs.html
https://docs.unity3d.com/Manual/GraphicsAPIs.html
https://docs.unity3d.com/Manual/IL2CPP.html
https://docs.unity3d.com/Manual/IL2CPP.html
https://docs.unity3d.com/Manual/LevelOfDetail.html
https://docs.unity3d.com/Manual/LevelOfDetail.html

[70] Unity Docs. Occlusion Culling. URL: https://docs.unity3d.com/Manual/
OcclusionCulling.html.

[71] Unity Docs. Render Pipelines Introduction. URL: https://docs.unity3d.
com/Manual/render-pipelines-overview.html.

[72] Unity Docs. Scriptable Render Pipeline introduction. URL: https://docs.
unity3d.com/Manual/scriptable-render-pipeline-introduction.html.

[73] Unity Docs. Scripting Restrictions. URL: https : / / docs . unity3d . com/
Manual/ScriptingRestrictions.html.

[74] Unity Docs. Shading models in Universal Render Pipeline. URL: https :
//docs.unity3d.com/Packages/com.unity.render-pipelines.universal@14.
0/manual/shading-model.html.

[75] Unity Learn. Entity-Component-System. URL: https://learn.unity.com/
tutorial/entity-component-system#5c7f8528edbc2a002053b67b.

[76] User Benchmark. User Benchmark. URL: https://www.userbenchmark.
com/page/about.

[77] Ajay Venkat. Unity Job System and Burst Compiler: Getting Started. 2020.
URL: https://www.raywenderlich.com/7880445-unity- job-system-and-
burst-compiler-getting-started#toc-anchor-004.

[78] Yan Wang et al. “A view of research on wireless power transmission.”
In: Journal of Physics: Conference Series 1074.1 (2018). ISSN: 17426596.
DOI: 10.1088/1742-6596/1074/1/012140.

[79] Oliver Wasenmüller and Didier Stricker. “Comparison of kinect v1
and v2 depth images in terms of accuracy and precision.” In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 10117 LNCS (2017),
pp. 34–45. ISSN: 16113349. DOI: 10.1007/978-3-319-54427-4_3.

[80] Pierre Wellner. “Interaction with Paper on the Digital Desk.” In: Cacm
36.7 (1993), pp. 87–96.

[81] Danny Yadron and Dan Tynan. No Title. 2016. URL: https : / /www .
theguardian.com/technology/2016/jun/30/tesla-autopilot-death- self-
driving-car-elon-musk.

[82] Matt Zachara and José P. Zagal. “Challenges for success in stereo
gaming: A virtual boy case study.” In: ACM International Conference
Proceeding Series January 2009 (2009), pp. 99–106. DOI: 10 . 1145 /
1690388.1690406.

[83] Zeus. Z buffer. 2009. URL: https://commons.wikimedia.org/wiki/File:
Z_buffer.svg.

[84] L. Y. Zhang, R. R. Zhou, and L. S. Zhou. “Model reconstruction
from cloud data.” In: Journal of Materials Processing Technology 138.1-
3 (2003), pp. 494–498. ISSN: 09240136. DOI: 10.1016/S0924-0136(03)
00127-4.

[85] Kun Zhou et al. “Highly parallel surface reconstruction.” In: Microsoft
Research Asia (2008), p. 10. URL: https://www.microsoft.com/en-us/
research/publication/highly-parallel-surface-reconstruction/.

111

https://docs.unity3d.com/Manual/OcclusionCulling.html
https://docs.unity3d.com/Manual/OcclusionCulling.html
https://docs.unity3d.com/Manual/render-pipelines-overview.html
https://docs.unity3d.com/Manual/render-pipelines-overview.html
https://docs.unity3d.com/Manual/scriptable-render-pipeline-introduction.html
https://docs.unity3d.com/Manual/scriptable-render-pipeline-introduction.html
https://docs.unity3d.com/Manual/ScriptingRestrictions.html
https://docs.unity3d.com/Manual/ScriptingRestrictions.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@14.0/manual/shading-model.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@14.0/manual/shading-model.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@14.0/manual/shading-model.html
https://learn.unity.com/tutorial/entity-component-system#5c7f8528edbc2a002053b67b
https://learn.unity.com/tutorial/entity-component-system#5c7f8528edbc2a002053b67b
https://www.userbenchmark.com/page/about
https://www.userbenchmark.com/page/about
https://www.raywenderlich.com/7880445-unity-job-system-and-burst-compiler-getting-started#toc-anchor-004
https://www.raywenderlich.com/7880445-unity-job-system-and-burst-compiler-getting-started#toc-anchor-004
https://doi.org/10.1088/1742-6596/1074/1/012140
https://doi.org/10.1007/978-3-319-54427-4_3
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
https://doi.org/10.1145/1690388.1690406
https://doi.org/10.1145/1690388.1690406
https://commons.wikimedia.org/wiki/File:Z_buffer.svg
https://commons.wikimedia.org/wiki/File:Z_buffer.svg
https://doi.org/10.1016/S0924-0136(03)00127-4
https://doi.org/10.1016/S0924-0136(03)00127-4
https://www.microsoft.com/en-us/research/publication/highly-parallel-surface-reconstruction/
https://www.microsoft.com/en-us/research/publication/highly-parallel-surface-reconstruction/

	Introduction
	What is Augmented Reality
	Research Question
	Methodology
	Approach

	I The project
	Background and Preparations
	Background and Preparations
	Early Days of Augmented Reality and Computing
	Augmented Reality Today

	Choosing the Right Tools
	Design Development
	Introduction
	Capturing the Reality
	Tracking and Alignment
	Storing the Data
	Engine and Order of Execution
	Objectives

	Development
	Conducting the Computations
	Hardware and Parallelization
	Mesh Generation Algorithms
	Memory
	Runtime Pipeline

	Optimization Methods
	Reconstruction Sectors
	Timeslicing
	Semi-Dynamic Memory and Pooling
	Frustum Culling and Occlusion Culling
	Draw Calls and Shaders
	Level of Detail
	Impostor Objects
	Other Methods to Consider

	II Conclusion
	Results
	Evaluation
	Testing Hardware
	Profiling and Quantitative Analysis: Approach
	Occlusion Reconstruction Prototype
	Profiling and Analysis
	Quantitative Analysis
	Additional Findings

	Conclusion and Future Work
	Conclusion
	Possible Improvements and Future Work
	Accuracy Improvements
	Scriptable AR Reconstruction Pipeline
	Caching and Ghosts
	Afterword

	Glossary
	Acronyms
	Bibliography

