
APT Attack Emulation and Data
Labeling

Generating labeled APT host datasets
using CALDERA and Sysmon

Fikret Kadiric

Thesis submitted for the degree of
Master in Programming and System architecture

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2022

APT Attack Emulation and Data
Labeling

Generating labeled APT host datasets
using CALDERA and Sysmon

Fikret Kadiric

© 2022 Fikret Kadiric

APT Attack Emulation and Data Labeling

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Cyber criminals and others seeking to use the cyber domain for malicious
purposes are actively pursuing and attempting to exploit new vulnerabilit-
ies. Cyber attacks are constantly changing and new attacks are developed.
While cyber criminals are trying to attack and breach systems, defenders
on the other hand are attempting to fend off the attackers. The introduc-
tion of Intrusion Detection Systems (IDS) has been a great contribution to
the defense of the cyber domain. These systems can be trained on datasets
containing attack data in order to automatically detect these attacks in the
future.

However, due to challenges regarding labeling and production of attack
data, publicly available labeled host datasets are rare. The situation
becomes even worse when it comes to APT datasets. APT attacks tend to
utilize new vulnerabilities and tools, these attacks are constantly adapting
and evolving over time. As such, APT datasets may quickly become
outdated, leaving defenders to rely on outdated datasets. In order to
keep pace with the evolving attacks and detect these, we need datasets
containing these attacks.

This thesis examines a new approach to generating labeled datasets
through an automated labeling tool developed by the author of this thesis.
Attack data is generated by an adversary emulation tool (CALDERA)
while recording the occurring system changes through System Monitor
(Sysmon). It is found that the labeling tool is capable of generating
fine-grain labeled datasets, applying labels on the attack technique level
directly tied to MITRE ATT&CK. This new approach enables the creation
of new datasets in a convenient and efficient manner, allowing researchers
to create specific datasets if desired. This thesis is a contribution to the
research within the field of cybersecurity.

i

Acknowledgements

First and foremost, I would like to thank and express my gratitude to
my supervisors Gudmund Grov, Espen Hammer Kjellstadli, and Audun
Jøsang for valuable guidance, discussions, providing research ideas, and
giving valuable help in writing this thesis.

Secondly, I wish to thank my classmate Julie L. Gjerstad for scientific
discussions and company during challenging times.

Finally, I would like to thank my friends and loved ones for all their
support, love and motivation. This thesis would never have see the light of
day if it was not for you.

ii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Description . 2
1.3 Research Questions . 3
1.4 Research Methods . 4
1.5 Thesis outline . 5
1.6 Contribution . 6

2 Background 7
2.1 Existing datasets . 7
2.2 Traffic generation using virtualization 9
2.3 Data Labeling . 11
2.4 Windows Event Logs . 11
2.5 Sysmon . 13
2.6 MITRE ATT&CK . 15
2.7 Adversary Emulation . 15

2.7.1 Automated Adversary Emulation 16
2.7.2 CALDERA . 18

3 Architecture and Data Generation 20
3.1 Environment Overview . 22
3.2 Windows Domain . 23

3.2.1 Domain Network . 23
3.3 Sysmon configuration . 24
3.4 Host Configuration . 25
3.5 Attack Data Generation . 25

3.5.1 CALDERA Agent . 25
3.5.2 Executing Attack Scenario 27
3.5.3 APT29 Emulation . 29

3.6 Benign Data Generation . 37
3.6.1 GHOSTS NPC Simulator 37
3.6.2 GHOSTS Timeline . 38

4 Data Collection and Labeling 39
4.1 Data Collection . 39

4.1.1 Collecting Windows Logs 39
4.1.2 Winlogbeat . 40

iii

4.2 Data Processing . 41
4.2.1 Applying labels to logs 43

5 Results 54
5.1 Emulation of APT29 . 54
5.2 Final Dataset . 57
5.3 Labeling Tool . 61

6 Discussion and Related work 63
6.1 Labeling Technique and Approach 63
6.2 Emulation, Dataset, and Framework 64
6.3 Limitations . 67

7 Conclusion and Future Work 68
7.1 Future Work . 69

Appendices 71
.1 Labeled logs related to T1134.002 72

iv

List of Figures

2.1 Attack phases covered by known datasets Myneni et. al [33] 8
2.2 System Audit Policies - Local Security Policy 12
2.3 Sysmon Event Table . 14

3.1 Environment overview . 22
3.2 Deploying agent through CALDERA interface 26
3.3 Agent Tab . 27
3.4 CALDERA Abilities search 27
3.5 CALDERA Adversary Profile 28
3.6 Step 1 CALDERA Operations 29
3.7 Step 2 CALDERA Operations 30
3.8 Step 3 CALDERA Operations 30
3.9 Step 4 CALDERA Operations 31
3.10 Step 5 CALDERA Operations 31
3.11 Step 6 CALDERA Operations 32
3.12 Step 7 CALDERA Operations 32
3.13 Step 8 CALDERA Operations 32
3.14 Step 9 CALDERA Operations 33
3.15 Step 10 CALDERA Operations 33
3.16 Step 11-13 CALDERA Operations 34
3.17 Step 14 and 15 CALDERA Operations 35
3.18 Step 16 CALDERA Operations 35
3.19 Step 17 and 18 CALDERA Operations 35
3.20 Step 19 and 20 CALDERA Operations 36
3.21 Distribution of expected techniques in APT29 emulation plan 36
3.22 GHOSTS Capabilities [45] . 38

4.1 Data processing overview . 42
4.2 Operation Flow Label Tool version 1 44
4.3 One operation in the CALDERA report 45
4.4 Truncated Sysmon logs related to a process injection ex-

ecuted by CALDERA . 46
4.5 Truncated labeled log related EventData1 in Figure 4.4 . . . 47
4.6 Truncated Sysmon logs related to a process injection ex-

ecuted by CALDERA . 48
4.7 Process Tree developed during the execution of T1055.044 . 49

5.1 Successful and failed techniques from the CALDERA report 55

v

5.2 Successful, Failed, and Skipped tactics 56
5.3 Distribution of benign and malicious labels 57
5.4 Distribution of benign, uncertain, and malicious labels . . . 58
5.5 Distribution of tactics across malicious events 59
5.6 Technique label distribution in dataset 60
5.7 Distribution of tactics and techniques from trail emulations . 61

vi

Chapter 1

Introduction

1.1 Context

Cybercriminals are actively pursuing and attempting to exploit vulnerab-
ilities residing within e.g., computer networks, or software. These vulner-
abilities, also called weaknesses, can occur as a result of misconfigurations,
flaws, or user errors to name a few. If successfully exploited, a vulnerability
may give an attacker entry to the network, allowing them to conduct fur-
ther malicious operations. Discovering and mitigating vulnerabilities may
stop most novice hackers, but it is seldom enough to keep a determined
and skilled hacker at bay. A mitigated vulnerability does not necessarily
mean that it cannot be exploited. Advanced hackers may gain access by
exploiting unknown vulnerabilities or flaws that are yet to be discovered,
or by chaining together multiple low priority vulnerabilities. No matter
how secure a system is, it is difficult to guarantee perfect security.

Dealing with advanced persistent threat actors, also called APT,
requires a deeper level of defense and detection. What separates an
APT from most other hackers is their ability to access confidential
information using advanced techniques, with a slower attack process
in order to reach their goals [39]. The attack phase of an APT often
consists of five main phases: reconnaissance, foothold-establishment,
lateral movement/discovery, data exfiltration, and post-exfiltration [1].
Once inside, APTs can blend in with the background “noise” by utilizing
legitimate processes, often combining the use of multiple processes to
perform malicious activities. APTs are usually highly capable and well
funded threat actors, with advanced tools and close to unlimited resources
and time. Ideally, we want to detect these attacks as early as possible,
but as APT attacks are usually more sophisticated and complicated they
often manage to bypass the security mechanisms in place. The goal of an
advanced attacker is not merely to compromise the network and achieve
unauthorized access, but usually includes more specific goals such as:
stealing data and information, or disrupting critical services. These goals
require comprehensive post-compromise work, where the attacker desires
to stay in the network undetected for as long as possible.

1

Intrusion detection systems, also called IDS, are tools that automatically
monitor and analyze the behavior of a computer or a network environment
and report any suspicious activities detected. IDS grants an additional
layer of system security by recognizing patterns that are known to relate
to malicious traffic or directly tied to adversaries. These systems are
generally classified in two distinct ways, either based on their operational
contexts e.g., network or host-based detection, or on how they aim to fulfill
their task e.g., supervised detection or unsupervised detection. Supervised
detection utilizes a training dataset in order to train the IDS to differentiate
between malicious and benign traffic, while unsupervised detection is
trained on the normally functioning system as a baseline for comparison
between expected and unexpected traffic [9]. Research within the field
of intrusion detection systems has flourished over the years. However,
many researchers struggle to find suitable datasets to evaluate and test the
efficiency of their proposed models [27]. Issues regarding privacy concerns,
data labeling, different research objectives, and availability of datasets are
some of the issues described by Nehinbe [35]. Machine learning, which
is widely used in anomaly-based IDS, learns from the provided datasets.
The datasets may either be labeled with e.g, malicious and non-malicious
data, or without labels. From these observations the algorithms used are
able to generalize new observations, thus allowing future observations to
be automatically classified. The importance of correctly labeled datasets for
IDS efficiency evaluations has been highlighted by several researchers e.g.,
Catania et al. [7], and Davis et al. [14].

1.2 Problem Description

While there are multiple publicly available datasets related to network
based traffic, only a few host based datasets exist. One reason for the
lack of endpoint base datasets may be that most malware or cyber attacks
produce network activities, and thus can be detected based on network
traffic. When it comes to APT datasets, the situation becomes even worse.
To the best of our knowledge, there is only one publicly available dataset
[33]. Traditional intrusion detection systems that utilize signature based
detection, may struggle to detect the presence of APTs [33]. These systems
are designed to detect individual and known attack patterns while an
APT attack involves several connected malicious activities. In order to
train intrusion detection systems to detect these attacks, we need datasets
containing APT attack data. As the detection signatures in IDS stem from
previous known attacks, being able to quickly adapt and train the IDS is
crucial to keep pace with the development of new attacks. However, in
order to train the IDS we first need a dataset containing these new attacks.

2

Generating such APT datasets presents multiple challenges [40]:

• Storage and processing problems related to big amounts of data. Due
to the nature of APT attacks occurring over a long period of time, we
need to collect enough data to properly represent this, ideally having
data covering at least several months.

• There is no set path that all APT attacks follow, APT attacks may vary
in terms of e.g., tools, techniques, tactics, and procedures.

• APT attacks are constantly adapting and evolving over time, they also
tend to utilize new vulnerabilities and tools.

• Labeling of APT dataset should include expert knowledge.

• Simulating an APT attack in a realistic manner.

Aside from the challenges directly tied to APT attack data, there are also
several other challenges particularly related to the process of labeling the
datasets [28]:

• The data is generally generated in large volumes, usually making
manual labeling of all lines infeasible.

• A single action may manifest itself in multiple log sources.

• Log lines corresponding to malicious actions may be interrupted by
normal log messages as processes are frequently interleaving.

• Execution of a malicious command may cause manifestations in logs
at a much later time due to delays or dependencies on other events.

Using a training dataset with correctly labeled logs is a crucial aspect
related to the efficiency of the IDS, ideally with labels in greater details
than e.g., "benign" and "malicious".

1.3 Research Questions

Developing and label a dataset containing APT attack data presents
multiple challenges. The main focus of this thesis will be on generating
and applying labels to the logs. This focus can be reflected in the following
research question:

Research Question: What are the possibilities to develop a labeling
tool around CALDERA and Sysmon, to create fine-grain labeled
APT datasets?

This research question is further guided by the following sub questions:

1. How can CALDERA and Sysmon be combined to generate APT
logs??

2. How can labels be applied at the attack technique level?

3. How can benign traffic be integrated in the APT dataset?

3

1.4 Research Methods

This thesis is a study in cyber security, a subfield within the computer
sciences field. Fundamentally the thesis is following a scientific research
method through experimental research design [16]. It is necessary to design
an experiment that generates data in order to evaluate the truth of the
hypothesis. The system around the experiment is controlled to ensure that
only specific inputs of the system are altered to determine the effect. The
following characteristics are exhibited in a good experiment [16]:

• Clear Design - Includes clear explanations of assumptions, proced-
ures to be executed, method used to detect an effect, and the logic
behind choices made.

• Precise - Experiments conducted need to be precise in their defini-
tions and procedures.

• Repeatable - Experiments need to be documented so that they are
repeatable, repeating an experiment number of times should yield
similar results. They must also be documented from the design
through the execution so the experiment may be repeated.

• Reproducible - The documentation of the experiment should allow
for others to follow and reproduce the experiment. This often means
including more information in the documentation, such as personal
beliefs and intentions, and software developed and used.

The experimental design relies on testing the relationship between two
variables. An independent variable is used in order to measure its effect
on the other dependent variable. The dependent variable is an observable
and measurable variable, while the independent variable is the input to
a system that potentially causes an effect on the dependent variable. The
dependent variable is defined and related back to the following hypothesis:

Hypothesis (H): CALDERA and Sysmon can be combined with a
developed automated labeling tool in order to generate fine-grained
labeled APT dataset.

This hypothesis claims that fine-grained labeled APT datasets can be
created by an developed automated labeling tool utilizing CALDERA and
Sysmon. The variable measured will be how specific the labels applied are,
and how successful the tool is at finding the malicious events produced
by CALDERA in Sysmon. Labels of low granularity often only include a
statement if the data is malicious or benign in nature, while specific and
detailed labels (fine-grained) result in a higher label granularity. Higher
label granularity can be achieved by applying labels which can relate the
data back to a specific attack type e.g., tactics and techniques. Labels will
be measured based on their level of granularity.

4

1.5 Thesis outline

This section provides an overview of the thesis chapters and their content:

Chapter 2: This chapter describes the background of the thesis, introducing
the essential topics and tools used in this thesis. It starts with introducing
publicly available datasets related to the research community of Intrusion
detection and prevention systems, before gradually introducing other sub-
jects relevant for this thesis.

Chapter 3: Architecture and Data Generation This chapter describes the
components and configurations within the developed environment, in
which the APT emulations was conducted. Secondly, the process of gen-
erating attack data and the executed emulation is described. Lastly, the
process and tool used in order to generate benign data is described.

Chapter 4: Data Collection and Labeling This chapter describes the pro-
cess of collecting and processing the logs. It gives an insight into how the
developed labeling tool applies fine-grain labels to the logs, and the vari-
ous iterations of the tool leading up to the final version.

Chapter 5: Results This chapter presents the results of the emulation and
the final dataset created with the labels applied.

Chapter 6: Discussion and Related Work This chapter will discuss and
compare the final result of the thesis with related research. Limitations re-
lated to the presented dataset, labeling approach, and developed tool is
also discussed.

Chapter 7: Conclusion and Future Work This chapter will conclude the
thesis based on the discussion, answering the research questions of the
thesis. Suggestions for future work is also presented in this chapter.

5

1.6 Contribution

With the developed labeling tool and approach for applying fine-grain
labels, the research has addressed the following hypothesis:

Hypothesis (H): CALDERA and Sysmon can be combined with a
developed automated labeling tool in order to generate fine-grained
labeled APT dataset.

The research conducted in this thesis has demonstrated the possibilities
of combining CALDERA and Sysmon to generate raw APT attack data.
A developed automated labeling tool capable of applying labels based on
tactics and techniques from MITRE ATT&CK is presented as the main
contribution. Additionally, a labeled APT29 host dataset developed by
combining CALDERA, Sysmon, and the labeling tool is presented. The
developed labeling tool and APT29 host dataset, have have been published
to GitHub Enterprise (UIO) [24], and regular GitHub [25].

6

Chapter 2

Background

2.1 Existing datasets

Most of the current datasets openly available focuses on network con-
nections and transmitted packages, paying little to no attention to what
changes are occurring on the endpoint. However, advanced attackers are
known to exploit zero-day vulnerabilities, thus avoiding detection from
traditional signature-based intrusion detection systems. Once a machine
is infected, numerous operations are being executed on that specific ma-
chine, which cannot be detected in the network data. Endpoint based an-
omaly detection could help defenders overcome the limitations of tradi-
tional signature-based detection, by detecting operations and changes oc-
curring on the endpoint. The most notable and widely used datasets are
the DARPA [13] and KDD Cup 99 datasets. The DARPA evaluation data-
set was created by Lincoln Lab on behalf of DARPA, containing various
information collected through simulating network attacks. The KDD 99
dataset was created by processing the tcpdump portions of the DARPA
dataset. Both of these datasets were considered valuable datasets by ex-
perts, despite being created through a simulation and not from real attack
data. However, these datasets lack endpoint-related information and thus
are only valid for network intrusion research.

There have been some attempts at generating a public dataset for the
Windows operating system, such as the ADFA dataset. This dataset was
generated by recording the system calls performed during a simulated
zero-day attack [12]. This introduced two new datasets to the research
community, namely the ADFA-WD [12] and ADFA-WD:SAA [12] datasets.
The major drawbacks of these datasets are that only basic information
was collected and an insufficient amount of vulnerabilities were used
to generate the malicious activity. The activity was generated using
twelve vulnerabilities and the information gathered consist of DLL file
names and the called function name. The vulnerabilities were all known
vulnerabilities that have been exploited in automated hacking tools, such
as Metasploit [38]. While this dataset is a fine addition to the available
datasets, it is unfortunately incomplete [21].

7

These datasets contain what are considered regular malware attack vec-
tors where the goal is to successfully infect a network or a client. While the
detection of APT involves the identification of long-term attack behavior.
Myneni et al. [33] has attempted to generate a dataset suitable for APT
behavior which considers further post-compromise phases, such as data
exfiltration and lateral movement. Attack data was generated by having
a red team simulate the attack behavior of an APT. Vulnerabilities were
discovered by using various scanning tools, and later exploited through
scripts and known attacking tools e.g., metasploit [38], in order to establish
a foothold within the network. From this foothold, the red team moved
laterally within the network by employing known lateral movement tech-
niques before collecting and exfiltrating data.
The comparison of multiple datasets done by Myneni et al. [33] revealed a
massive lack of data related to the later stages of an advanced attack. As
seen in figure 2.1, most of the datasets only covered the early attack phases,
such as reconnaissance and foothold establishment. Only the DAPT2020
dataset covers data exfiltration, which often is the goal of most advanced
attacks.

Figure 2.1: Attack phases covered by known datasets Myneni et. al [33]

Ideally, we want to detect the attack as soon as possible, but training
for e.g., data exfiltration detection, could allow defenders to interfere with
the exfiltration and potentially stop it, effectively stopping the attacker at
the finishing line. By utilizing virtualization to create the enterprise net-
work, the DAPT2020 dataset bypassed one of the key challenges related to
the sharing of data, namely anonymization, the privacy concerns related to
an organization and their customers. The need for anonymization is com-
pletely removed as there is no real sensitive information in the data, which
would not be the case if the data stemmed from a real-world attack. On
the other side, virtualization has some drawbacks as well. It is hard to
successfully match the complexity and size of any larger corporation. The
traffic considered normal or benign traffic from this network may also devi-
ate from the benign traffic found in real-world networks. A potential lack
of traffic diversity could cause biases in any systems trained on the data.
What is considered normal or malicious behavior is subjected to changes
with the continuous development of new systems and cyber-attacks.

8

Datasets that may be considered representative of realistic data can quickly
become outdated. To constantly generate new datasets, a framework for
generating both benign and attack data is desirable. Despite these potential
drawbacks of virtualization, the DAPT2020 [33] dataset contains unique
and valuable attack data.

2.2 Traffic generation using virtualization

One reason for the lack of publicly available data from real-world captures
arises from the sensitive nature of data. The inspection of data can reveal
sensitive information and even confidential or personal communication.
Due to the strict regulations of sensitive data applied by the General
Data Protection Regulation (GDPR) and governmental law enforcement,
a breach of such information could be catastrophic for both organizations
and third parties involved. Given the sensitive nature of real-world
data, two alternative approaches are being pursued: simulation and
anonymization. Anonymization through sanitation is done by removing
or anonymizing any data that might be considered sensitive information.
Despite the effort, sensitive information can still be leaked by recovering
the scrubbed sensitive information [11]. Even if one could successfully
remove all the sensitive data, training data-driven detection systems on
the data can be problematic. By definition, anomaly based detection looks
for the kind of artifacts that tend to be removed during the anonymization
process [26]. Due to this, researchers are forced to generate their own
datasets, usually through simulated networks and endpoints.

The use of virtualization technology has gained major traction as the
cost of assembling a full-scale physical network with all the components
and endpoints necessary, is not a feasible task for most researchers.
However, generating realistic synthetic datasets is not an easy task, with
multiple problems that have to be addressed. The lack of variation is
a problem commonly found in these synthetic datasets. When training
a system to differentiate between malicious and legitimate action, we
need both benign and attack data. Attack data can be generated through
various methods eg., manually performing the attack, executing malware,
or through scripts and tools. A common strategy used to generate benign
traffic is to execute a series of scripted actions [10] e.g., internal file
transfers, web browsing, file download. These scripts often cover the most
regularly performed actions or protocol activities. But they are seldom
enough to cover the vast range of legitimate actions occurring within the
complex network of larger corporations. By moving the environment onto
a virtualized network, any external influences become eliminated, and
the environment becomes isolated from fluctuations and faults. These
fluctuations and faults commonly occur as a result of the complexity of
modern networks. This removes the variations in the response behavior
of particular services, potentially creating homogeneity and predictable
behavior.

9

The lack of variations results in a clearer separation of benign and malicious
activities, which in turn leads to overoptimistic results from any detection
systems trained on the data [10]. To address this issue, and several
other issues related to data generation through virtualization, Clausen et
al. [10] proposed a new framework for traffic generation by clustering a
series of interacting containers with one another, where each container was
responsible for either hosting a specific service or performing a specific
task. Executing a scenario e.g., a step of an attack, would trigger the launch
of several containers, dynamically launching new containers depending on
the results of an operation. In order to introduce some variation, a series
of sub-scenarios were created. These sub-scenarios consisted of simple
variations of a scenario, such as mixing up the use cases for different
protocols and determining if the specific operations are successful or not.

Most notably was the use of this framework to achieve ground truth,
being able to separate and label the data from different origins with
stronger certainty. The noise of background processing was minimal since
each container was only running a specific piece of software or application
related to a scenario. Data from each container was collected separately
so that the distinction between the traffic’s origin was clear, this could
allow for higher label granularity. Label granularity refers to how specific
a label is. Higher label granularity could be achieved by labeling the data
by the distinct types of attack it represents e.g., host discovery, privilege
escalation, or credential dumping. While benign data could be labeled by
e.g., service, software, or protocol related to the traffic. The impact label
granularity has on machine learning classification has been studied within
the field of image recognition. Studies within this field have shown that
better label granularity can lead to higher accuracy and higher training data
efficiency, which may reduce the amount of training data needed [8]. To
what extent label granularity may affect the training of intrusion detection
systems has not been studied, but it stands to reason that more granular
labels are desirable to distinguish between the different types of activities.

Clausen et al. [10] demonstrated the possibilities of network traffic
generation through containerization, with a particular focus on achieving
ground truth. This was successful largely through the isolation of traffic
scenarios into separate container arrangements. With some modification,
the proposed method for generating labeled datasets by Clausen et al.
[10] could potentially be implemented to generate endpoint-based data-
sets. The primary data collection would have to occur on the endpoint
as the primary goal is to detect changes occurring on the endpoint. How-
ever, we can not completely ignore the network activities since the network
traffic is necessary for correlation purposes. An example of this could be
that an adversary is executing network connection discovery commands on
an endpoint, these could be detected through process command-line para-
meters and process monitoring.

10

In order to trace this attempt further, we would need network data to de-
termine if the adversary attempted to move laterally to another endpoint. If
both these behaviors are observed in correlation with one another, it would
indicate a potential attack with a stronger probability.

2.3 Data Labeling

The process of applying labels to the logs can be approached in various
ways. Perhaps the most superficial approach to labeling logs is to label all
logs generated during a timed interval of an attack as malicious. While
perhaps easily accomplished, this approach is prone to mislabeling the
logs, as benign actions occurring within the timed interval will be wrongly
labeled as malicious. Another aspect is that this approach greatly hinders
the reproducibility of the log data, as benign processes are prone to occur
at random intervals (e.g. benign processes, updates/patches or normal
operation), executing the same attack scenario would result in different
datasets with various random mislabeled benign activities. A training
dataset labeled with this approach would result in an high false positive
(FP) rate, as random benign actions could be detected as malicious actions
[14].

Another possible approach is to use two dataset, one containing only
benign activities while the other contains both benign and malicious
activities. If the same benign actions were performed in both datasets,
any differences found in the dataset containing malicious actions could be
considered malicious. This would reduce the amount of benign actions
being mislabeled compared to the timed interval approach. However, a
single action may manifest itself in different ways in the logs, either due
to delays, dependencies, missing resources or other errors. As benign
background processes are prone to occur at random intervals, deviations
amongst benign actions in the datasets could occur. Therefore, there is still
a possibility of benign actions being mislabeled with this approach.

Some Intrusion Detection Systems (IDS) report individual events as
a deviation of what is considered “normal” activity and flag these as
anomalies. There are also those IDS that focus on multi-step attacks or
support classification of the attacks (e.g., denial of service, reconnaissance,
exploitation attempt etc). In order to differentiate among the anomaly types
and enable attack-type classifications, the training dataset must include
labels that differentiate between types of attacks or attack steps.

2.4 Windows Event Logs

Logs are records of events that occur within a system, these events can be
the results of an operation conducted by a person or by a running process.
In Windows, these events are stored as Windows Event logs in the .EVTX
file format. The information collected, and available in the logs is determ-
ined by the Windows system’s audit policy.

11

Windows uses nine audit policy categories, and 50 subcategories which
allow for a more granular control over what information is logged. These
policies defines the type of system objects that will be monitored (e.g., files,
registry keys, network events), what type of access should be recorded (e.g.,
read, write, permission changes), and who’s accesses should be monitored
(e.g., users, system, all). Depending on what information is to be collected,
the configuration can be found in either the System Access Control List
(SACL) or in the Local Security Policy. The SACL enables the logging of
attempts to access a security object (e.g., files and registry objects), which
can generate audit records when an access attempt fails, succeeds or both.
The Local security policy controls what sorts of events and objects gener-
ate events in the logs, it contains an Audit Policy section and an advanced
Audit Policy section. The advanced audit policy section allows for more
granular audit controls. While enabling an Audit Policy, the policy may be
enabled to log Success events, Failure events, or both, depending on the
policy as some policies only generate success events. Only enabling log-
ging of Failure events for each category is generally not recommended, as
many of the most important events (e.g., changes to critical user account-
s/groups, account lockouts, security setting changes) are Success events.

Figure 2.2: System Audit Policies - Local Security Policy

12

Logs can be collected once the logging mechanisms have been enabled
and configured. Turning on all the logging mechanisms would provide
the most coverage, the drawback of this is the volume of log events. The
generated volume would quickly overwhelm commodity storage systems
and impact the performance of the monitored systems. If the logs are sent
to a centralized log management solution, the volume of logging generated
may impact the network’s performance, particularly if the information
is transmitted across low bandwidth connections. Limiting the volume
generated is thus crucial in order to avoid any unintended side effects
on normal business processes. This may be achieved by configuring the
policies to filter out the majority of irrelevant events, while still maintaining
the ability to detect malicious behavior and collect relevant information
regarding the operations conducted prior to the event. However, deciding
what configuration yields the most coverage while limiting the volume is
no easy task. Ideally we want coverage over events related to the occurring
incident, while filtering out “background noise”. What is considered
relevant events varies depending on the ongoing operation and what
activities are being conducted as a result. If the goal is to detect an data
exfiltration event, monitoring for file creations and modifications as well
as network connections is essential, but enriching this data with account
logon/creation or system events aids greatly when attempting to trace
down the root of the issue. In order to gain the most out of the logs the
correct audit policy configurations must be applied. Start with the Audit
Policy Recommendations from Microsoft [32] is a good starting point, but
further configuration of the policies and perhaps other logging sources may
be necessary to gain the desired coverage.

2.5 Sysmon

While the recommended audit policies grants some visibility of system
activities, tools such as System Monitor (Sysmon) [48] provide even
greater visibility. Sysmon is a highly configurable tool from the Windows
Sysinternals Suite that monitors and logs system activities. It provides
detailed information regarding process creation/termination, driver and
library loads, network connections, file creations, registry changes, process
injections and more. In comparison to the built-in Windows audit logs,
Sysmon is capable of monitoring a wider range of system activities, with
each corresponding event containing significantly more information and
details. The increased information and details is of great help when
detecting and mapping corresponding indicators of compromise. Figure
2.3 contains a complete list of events that Sysmon can record [48].

13

Figure 2.3: Sysmon Event Table

In order to reduce the amount of Sysmon logs generated, administrators
can easily specify what events are to be logged or filtered through the use
of matching rules, or completely disable the logging of specific ID’s. This is
done through the configuration file of Sysmon, allowing administrators to
tailor the logging based on their needs. Since the configuration is done
from one configuration file, users can easily import and share existing
configurations as a starting point.

Threat hunting using Sysmon has been proposed and tested. Mav-
roeidis et al. [30] utilized Sysmon in an automated end-point threat hunting
system. Threats were identified through automatically analyzing Sysmon
logs in order to classify system processes with different threat levels based
on their identified characteristics. Once identified, the threat was presen-
ted through a RDF graph, showing the related system changes and actions.
Threat hunting and malware detection using Sysmon has also been pro-
posed in numerous other systems. A comprehensive list of related work
can be found on GitHub [31]. This shows the extent of possible use-cases
for Sysmon as a log source. Given the amount of use-cases and the use
of Sysmon as a stand alone log source within academic studies [29, 30], it
stands to reason that Sysmon possesses the necessary capabilities to gener-
ate logs with enough coverage to conduct host-based threat and malware
detection.

14

2.6 MITRE ATT&CK

The MITRE ATT&CK framework [43] is a knowledge base and model for
adversary behavior. This framework is designed to reflect the various
attack phases of an adversary and the platforms they are known to target.
The framework consist of the following core components:

• Tactics, denoting short-term, tactical adversary goals during an attack
e.g., Privilege Escalation, or Exfiltration

• Techniques, describing the means by which adversaries achieve
tactical goals e.g, Privilege Escalation through Process Injection, or
Exfiltration Over Web Service

• Sub-techniques, describing more specific means by which adversaries
achieve tactical goals at a lower level than techniques e.g., Dynamic-
link Library Injection, or Exfiltration to Code Repository

• Documented groups/APTs usage of tactics, techniques, and proced-
ures.

• Mapping APTs to specific techniques.

Initially, the framework only covered post-compromise adversary
tactics against Windows systems, but has grown to cover both Linux
and macOS, as well as the tactics leading up to the compromise of an
environment. A visualized representation of the relationship between
tactics, techniques, and sub-techniques can be found in the ATT&CK
Matrix [43]. A key component to accurately emulating an adversary
is knowing how the adversary behaves. This can be achieved through
information on what tactics and techniques the adversary utilizes. Many
threat emulators have their attack models based on the techniques listed in
MITRE ATT&CK [43]. The framework can also be used as a tool to create
adversary emulation scenarios [42] or construct specific adversary profiles.

2.7 Adversary Emulation

The easiest form of adversary emulation comes in the form of executing
small, specific scripts for testing individual techniques and procedures.
Atomic Red Team [5] is an open-source project from Red Canary that
provides this through its collections of scripted cyber attacks. Defenders
can manually execute these scripts, simply by copying them over into the
command-line, as a way to generate indicators of compromise and test if
they are able to detect certain techniques. These are singular tests that allow
defenders to focus on individual ATTACK techniques, giving an easy way
to check their coverage towards the ATTACK-based techniques.

15

With more than 250 techniques within ATT&CK [43], testing for cover-
age on all of these techniques individually is clearly a time-consuming and
labor-intensive task. Some of the techniques are also completely legitim-
ate commands that may be executed during normal operations. Pivot off
only one indication solely, and determining that it is a malicious instance
can be challenging. To confirm that this is indeed a malicious instance,
defenders can look for other techniques that might have been used in con-
junction with the previous detection. A domain admin login by itself does
not mean that the account has been compromised, but if seen in conjunc-
tion with group discovery or credential dumping it might raise a concern.
Atomic red focuses strictly on technique execution which can be valuable
for signature detection development. A more complex tool is necessary for
those seeking to fully emulate an adversary.

2.7.1 Automated Adversary Emulation

In order to generate realistic attack data, the simulated environment,
endpoint, and attack scenarios should be representative of those found
in the real-world. Attacks should be conducted by using the same tools,
techniques, tactics, and procedures as an attacker would use. Datasets
of a post-compromise APT attack differentiates from regular attack data.
These adversaries often utilize a conjunction of multiple techniques and
legitimate processes for malicious purposes. There is a thin line between
normal and abnormal behavior on a system, the key component for APT
detection is the correlations between multiple anomalies detected [33].
Most organizations choose to conduct red team exercises to simulate and
test their defenses in the face of an adversarial attack. During these
exercises, highly-trained security consultants enact attack scenarios by
simulating a realistic cyber-attack, using the same methods and techniques
that adversaries leverage. Unfortunately, red teams can be difficult to
employ, particularly on a regular basis. Conducting red team assessment
is a manual and time-consuming task, the cost of hiring personnel who
possess the right knowledge and skillset is also fairly significant. These
issues of cost, time, and personnel make it difficult for organizations to
incorporate red teaming into their security procedures.

In order to make such assessments more feasible, tools such as Atomic
Red [5], which automates some of the tasks at a technical level, have risen
in popularity. These tools allow the red team operators to focus more on the
tactical level of the attack. Automated adversary emulation aims to extend
this automation to the tactical level as well, effectively leaving the operators
only to construct the attack scenarios. By implementing an automated red
teaming system, the problems of cost, time, and personnel are immediately
addressed. However, this process is not without challenges. The effective-
ness of such a system depends heavily on the automation techniques, how
decisions are made and how the system deals with uncertainties that occur
during execution.

16

Applebaum [2] gives an insight into the complexity of decision making and
emulation techniques, as well as comparing the performance of the differ-
ent techniques. Six automation techniques were chosen to show how an
attacker can choose to execute an operation in a given scenario. Three of
the techniques only consider the immediately possible actions, while the
other three operate using a planning paradigm, where they attempt to plan
for actions to execute in the future. These planning-based strategies chain
together multiple actions to achieve a future goal e.g., in order to achieve
exfiltration, the plan could be to escalate, enumerate the host, and collect
information to exfiltrate. The best possible plan to execute may not always
be clear, as adversaries are often operating with uncertainty in the envir-
onment e.g., what services or endpoints exist within the network, or if the
endpoints are vulnerable to exploits. To combat this the planning-based
agents evaluate the situation by constructing a simulation of the environ-
ment based on knowledge currently available and evaluate possible ac-
tions. Once an action is executed the response is observed and added to
the internal knowledge base of the agent.

A total of six agents, one for each automation technique, were included
in Applebaum’s experiment as attackers. These simulated attackers
leveraged techniques from six different tactics in the MITRE ATT&CK
framework [43]. The core of the MITRE ATT&CK framework, is a set of
high-level tactics that describe the goal of an adversary by classifying the
tactics and techniques commonly used by adversaries. Tactics represent
certain objectives an adversary might have, such as privilege escalation
or exfiltration. Techniques represent various ways to achieve a given
objective, such as exfiltration over alternative protocols for instance
Net/SMB or FTP. The six tactics simulated covered the following post-
compromise behavior: lateral movement, privilege escalation, exploit
execution, credential dumping, host discovery, and account discovery. The
results of each agent were measured based on a percentage of: endpoints
that the adversary established a foothold on, account credential obtained,
endpoints that the adversary was able to execute exfiltration from.

The work done by Applebaum et al. [2] revealed the possibilities
of automated decision techniques, despite the attacker having no prior
knowledge or insight of the network. The planning-based strategies
outperformed the immediate execution ones across all scoring methods.
However, the time spent in order to make a decision was much longer
on the planning-based strategies compared to the immediate-execution
ones. While the planning-based strategies outperformed the immediate
execution ones, there may be time-critical scenarios that necessitate quicker
decision making.

17

2.7.2 CALDERA

One of the open-source tools available for automated adversary emulation
is the tool CALDERA, developed by MITRE [6]. CALDERA offers
an intelligent and automated adversary emulation, intended to test
endpoint security of a Windows system against common post-compromise
adversarial techniques. It comes with a remote access agent, a database,
and server components. The database contains predefined attacks taken
from the ATT&CK framework [43] which can be freely combined to create
custom attacks. Once configured, CALDERA offers a graphical web
interface that allows operators to control and monitor the agents, and give
visual feedback on ongoing operations. Even without further configuration
CALDERA offers several adversaries profiles, which are collections of
several techniques and tactics, designed to create a specific scenario on an
endpoint or network. These predefined scenarios are limited to persistence,
privilege escalation, discovery, command and control communication
using a remote access trojan (RAT), and lateral movement. However,
CALDERA is not limited by these predefined scenarios, the database
that comes with CALDERA allows operations to create customized attack
scenarios in a user friendly manner. Through a dropdown menu operators
can choose the desired tactics and technique, and directly add them to the
desired scenario. These tactics and techniques can be further customized
by editing the commands that are being executed. On the other hand, as
CALDERA is developed for emulating post-compromise techniques, the
attack tactics related to the initial compromise is limited to spear phishing
techniques. CALDERA is thus best suited when the goal is to emulate post-
compromise behavior.

The infrastructure of CALDERA consists of two main components: a
master server, and a remote access tool. The remote access tool is initially
placed on one or multiple endpoints within the network and communicates
with the master server. The master server is responsible for the decision
making process, constantly updating its internal knowledge database with
the information received from the remote access tool. CALDERA uses a
planning-based approach when deciding what actions to take, a plan is de-
veloped based on the current information in its knowledge database. From
the initially compromised endpoint, CALDERA then expands its foothold
onto other endpoints by placing new remote access tools once the endpoint
has been compromised. Once the remote access tool is in place it starts to
communicate back to the master server, by compromising new endpoints
and collecting data from these the master server is able to gradually expand
its knowledge database and map the compromised environment. This de-
cision making process was tested and explained further by Applebaum
et al. [3]. CALDERA was also tested on several small internal networks
within the authors organization, where it was able to detect network mis-
configurations and vulnerabilities.

18

Result from experiments conducted by Applebaum et al. [3] validated the
intelligence component behind CALDERA, showing that the decision en-
gine was able to string multiple actions together to create complex attack
patterns, successfully generating attack artifacts and compromising new
endpoints as it moves through the network.

19

Chapter 3

Architecture and Data
Generation

As an attempt to address the shortcomings of existing datasets, Gharib
et al. [18] presented eleven features necessary for a comprehensive and
wholesome framework for generating IDS/IPS benchmarking datasets.
Although the datasets and studies discussed are mainly regarding network
related attacks, we belive the presented criteria can be applied for host
based datasets. The following characteristics are presented: Complete
Network Configuration, Complete Traffic, labeled Dataset, Complete
Interaction, Complete Capture, Available Protocols, Attack Diversity,
Anonymity, Heterogeneity, Feature Set and Metadata. The following
characteristics can be derived from the work presented by Gharib to suite
a host based data generation framework:

1. Realistic Configuration: In order to capture the real effects of the
attacks in a realistic scenario, the testbed has to be realistically
configured. Ideally, the attacks and systems should be as realistic as
possible to the attacks seen in the wild.

2. Complete Capture: While including all of the occurring operations
on an OS may result in larger log files, having a complete capture
of this is beneficial when calculating the false-positive percentage
of systems trained on the datasets. This involves not removing
part of the traffic which is non-functional or deemed as noise. All
interactions occurring on the system as the result of an attack must be
captured and represented in the dataset. The dataset should represent
complete scenarios (e.g., each step in a kill chain or specific scenario),
and the resulting outcome of these attacks on the system. This also
involves capturing data from other sources, such as network traffic.

3. labeled Dataset: Dataset can be unlabeled, partially-labeled or fully-
labeled. While generating unlabeled datasets may be an easier task,
the value of fully-labeled datasets are greater. Label datasets are
useful beyond just as validation sets, a fully-labeled dataset may
greatly reduce the false positive rate.

20

Higher label granularity also allows for more specific training e.g.,
detecting various stages of an attack or what tactic and technique
are being detected. Partially-labeled involves having a small fully-
labeled dataset and a larger unlabeled dataset, utilizing a semi-
supervised approach when training the system. The desired dataset
is a fully labeled datasets with preferably high label granularity,
including both normal and malicious traffic.

4. Attack Diversity: One common shortcoming of existing datasets is
their lack of attack diversity. This lack of diversity could cause biases
on systems trained on the dataset. Cyber criminals are constantly
changing and developing new attacks, covering all possible attack
scenarios is not a feasible task. Instead, the goal could be to
cover specific attack scenarios or tactics and the techniques within.
One possible solution is a modular approach with multiple smaller
datasets for each specific tactic or scenario, which later can be merged
to a complete dataset. A modular approach allows researchers and
defenders to specifically select the attack data relevant.

5. Anonymity: Another common shortcoming is the privacy issue
which is halting the exchange of datasets stemming from real world
attack data. In order to avoid these issues the datasets are scrubbed
for personal data, this anonymization often leads to valuable artifacts
being removed from the datasets. The privacy issues are removed
from synthetic datasets as these are created in a controlled lab
environment.

6. Heterogeneity: A dataset can be considered homogeneous if the
samples have similar or identical traits or heterogeneous if the
opposite is true. This could be in the form of including multiple
log sources (e.g., network traffic, operating system logs, or network
equipment logs). In the case a of pure host based dataset, this can
arguably be achieved through the inclusion of logs regarding file
systems, AV solution, certificates, processes and call traces. While
homogeneous datasets are useful for analyzing specific types of
detection, a heterogeneous dataset provides a deeper insight into all
aspects of the detection.

The following chapter describes the design and configuration of the
developed environment and the systems within it. Further, it presents the
actions and operations conducted in order to generate both malicious and
benign data.Section 3.1 gives a overview of the environment, while Section
3.2 presents the Windows and network domain within the environment.
Section 3.3 and Section 3.4 describes the configuration of Sysmon and the
hosts present in the environment. Section 3.5 describes how the attack data
was generated, actions taken in order to generate the data, and a detailed
description of the chosen attack simulation. Section 3.6 covers how the
benign data was generated.

21

3.1 Environment Overview

This section will provide an overview of the developed environment and
its components used during this research. The environment consists of
multiple virtual machines (VMs) hosted on a personal machine. Vagrant
[47] is utilized in order to build the computer domain which will act
as the enterprise network, while the CALDERA server is hosted on a
separate Ubuntu VM. Hosting CALDERA on a separate server removes the
potential of having fragments related to the operation of CALDERA within
the developed dataset.

Figure 3.1: Environment overview

Initially, the framework only consisted of a single virtual machine act-
ing as the host, and a Ubuntu server hosting CALDERA.

22

Vagrant [47] and DetectionLab [15] was later introduced in order to develop
a more realistic configuration of an enterprise network , with computer do-
mains, multiple hosts, and a domain controller. The addition of multiple
hosts presents CALDERA with possible targets for lateral movement. This
environment was developed for the purpose of generating raw logs, the
labeling tool is independent of the work environment, but depended on
CALDERA performing the attack. The labeling tool is explained in greater
details in subsection 4.2.1.

3.2 Windows Domain

The Windows domain is mainly built upon the work conducted by Chris
Long and his DetectionLab project [15]. Detectionlab comes pre-configured
with 4 total hosts:

1. Domain Controller: Domain controller on a Windows 2016 server

2. Windows Event Forwarder: WEF, A Windows 2016 server that
manages Windows Event Collection

3. Endpoint Host: A Windows 10 host to simulate a non-server
endpoint

4. Logger: An Ubuntu 16.04 host running Splunk for collecting logs.

This domain was then customized by replacing the logger and event
forwarder (WEF) server with three additional endpoint hosts to serve
as possible targets for lateral movement attacks, the final domain and
environment is illustrated in Figure 3.1. By removing these servers we are
eliminating the possibility of unwanted artifacts in the logs as a result of
the endpoints connecting and transmitting data to the WEF and Logger.
For this experiment, the domain is limited to four endpoints, one domain
controller and one Ubuntu server hosting CALDERA. Given the nature of
this experiment, WEF and Logger servers were deemed redundant.

3.2.1 Domain Network

All Windows-related hosts are hosted on the same private virtual network
with the domain controller to simulate the work environment. Each of
the configured Windows hosts has a preferred predefined IP within the
range of 192.168.56.[106-109], where the domain controller was given the
IP of 192.168.56.102. Some of the payloads used in the experiment are
pre-compiled and configured to to connect back to the static IP address
of 192.168.56.105, CALDERA was hosted on this IP address to avoid any
potential callback issues.

23

3.3 Sysmon configuration

While not strictly necessary, having a Sysmon configuration based on the
use case is recommended as it helps to tune and filter the logs generated
before processing them. Sysmon will quickly fill up the log files with the
default configuration. The built-in filtering abilities of Sysmon are a part of
what makes Sysmon a more sophisticated tool than the built-in windows
audit log feature, it would be unwise not to take advantage of this. By
restricting the log volume and removing irrelevant data, we minimize
possible constraints on the system and network which may occur as a result
of large log files being transmitted and processed.

Applying filters to Sysmon can be done by applying filter conditions
such as: is, is not, contains, contains any, contains all, excludes, excludes
any, excludes all, begin with, end with, less than, more than, image. Used
in conjunctions with the onmatch rule in Sysmon, which states whether
or not the events are to be logged, administrators can create very specific
configurations files, customizable down to any information regarding
the process e.g., hash, filename, IP, filepath, port number, etc. Two
recommended configurations of Sysmon are that of SwiftOnSecurity [41],
or the configuration from Olaf Hartong [36]. Both of these configurations
were studied and found quite similar, effective at filtering out the most
noisy background process while maintaining coverage of known attack
vectors. The major difference in Hartong’s configuration file was the
inclusion of detection based on image loaded (e.g., DLL files), file
deletion/overwrite events, processes accessing other processes and process
tampering. These were disabled by default from SwiftOnSecurity, with the
argument that they could potentially cause high system load. However, it
was found that the inclusion of these, through Hartong’s configuration file,
did not cause high system load on our test-bed. This is mostly likely due to
the detailed filtering in place.

Examining Configuration Files

An experiment was conducted in order to test the system load and coverage
of both the configuration file of SwiftOnSecurity and Olaf Harton. Multiple
different attack scenarios were executed, including operations related to
discovery, command and control, credential dumping, execution, privilege
escalation through process injection and defense evasion. Olaf Hartong’s
configuration file did detect more benign background activities in compar-
ison to the configuration of SwiftOnSecurity, however this was quickly out-
weighed by the additional insight granted from monitoring DLL loading,
process access and tampering. Variations in system load was not noticeable
during the execution, this may be due to the limited timespan of which the
experiment was conducted. Olaf Hartong’s configuration file is chosen as
the desired configuration as this configuration was successful in detecting
several of the malicious operations not detected by SwiftOnSecurity and
the system load was not impacted to an notable extent. The configuration
file from Olaf Hartong is therefor applied.

24

3.4 Host Configuration

All Windows hosts are running Windows 10, Domain Controller is running
on a Windows Server 2016 and the CALDERA server is running on Ubuntu
20.10. Within DetectionLab, Active Directory (AD) is pre-configured and
the hosts have their Windows Audition configurations set through the
group policy (GPO) in AD, including command-line process auditing.

The logging configuration is based on the best practices by Microsoft [32],
which can be expected to be used in realistic configurations. Once new
hosts are added to the domain they are also added to the group which in
return sets their Audition configurations. This process is done automatic-
ally when adding new hosts to the domain through the vagrant configura-
tion. The following steps were applied to each host in order to prepare the
domain:

• Installing Sysmon and applying the configuration file of Olaf Hartong
[36]

• Installing and configuring Winlogbeat to collect and convert EVTX
log files into JSON files. Due to how the tool is developed, the logs
need to be in JSON format in order for the labeling tool to process the
logs.

• Deactivating Windows Defender, optional configuring it to notify
only.

• Installing and configuring the GHOSTS Client agent for simulating
benign user activities.

In addition to this, the CALDERA agent was placed on one single host to
grant CALDERA entry to the work environment. This host will act as the
initial attack vector. Only one host is initially infected in order to simulate
one compromised host in an entire network. CALDERA will attempt to
move laterally from this host in order to infect the rest of the environment.

3.5 Attack Data Generation

Generation of attack data was conducted explicitly through the use of
the adversary emulation tool CALDERA. The generated data is related
to typical post compromise behavior, as one host in the environment is
already infected at the start of the emulation.

3.5.1 CALDERA Agent

A CALDERA agent that communicates back to the server through a
specified HTTP contact was dropped onto the first endpoint. The agent
contacts the server based on the hosting IP of the server and on port 8888.

25

Figure 3.2: Deploying agent through CALDERA interface

The agent is created through the interface of CALDERA, where the user
can specify what operating system the attack target is running. CALDERA
will dynamically build and compile the agent based on the information
supplied. In order to drop the agent on the target host the following code
from CALDERA is manually executed through PowerShell on the target
machine:

1 $server=" ht tp : / / 1 9 2 . 1 6 8 . 5 6 . 1 0 5 : 8 8 8 8 " ;
2 $ur l=" $server/ f i l e /download " ;
3 $wc=New−Object System . Net . WebClient ;
4 $wc . Headers . add (" platform " , "windows") ;
5 $wc . Headers . add (" f i l e " , " sandcat . go ") ; $data=$wc . DownloadData ($ur l) ;
6 $name=$wc . ResponseHeaders [" Content −Di spo s i t ion "] . Substr ing (
7 $wc . ResponseHeaders [" Content −Di spo s i t ion "] . IndexOf (" f i lename=") +9)

. Replace (" ` " " , " ") ;
8 get −process | ? { $_ . modules . f i lename − l i k e "C:\ Users\Publ ic\$name .

exe " } | stop −process − f ; rm − f o r c e "C:\ Users\Publ ic\$name . exe "
−ea ignore ; [io . f i l e] : : Wri teAl lBytes ("C:\ Users\Publ ic\$name .

exe " , $data) | Out−Null ; S t a r t −Process − F i l e P a t h C:\ Users\Publ ic
\$name . exe −ArgumentList "−server $server −group red " −
WindowStyle hidden ;

Listing 3.1: Deploy CALDERA Agent

26

Once the code has been executed the CALDERA agent is fetched from
the CALDERA server and displayed in the agents tab of the interface.

Figure 3.3: Agent Tab

3.5.2 Executing Attack Scenario

Attack scenarios may be executed once a agent has been placed on a
targeted host machine. Through the interface provided by CALDERA, the
attacker may choose to either execute manual commands, choose amongst
a total of 1228 abilities (924 for the windows platform) relating back to
specific tactics and techniques from MITRE ATT&CK, or execute entire
attack scenarios which can be manually created or directly imported from
the adversaries profile of CALDERA.

Figure 3.4: CALDERA Abilities search

27

Figure 3.5: CALDERA Adversary Profile

Some of these smaller scenarios e.g., Figure 3.5, were executed during
the testing and development phase of the project, initially to test the
detection capabilities of Sysmon, and later during the development and
improvements of the labeling tool. Having smaller logs also made
manually inspecting the resulting logs more feasible. With CALDERA
version 4.0.0, MITRE implemented a new plugin which integrates MITRE’s
adversary emulation library [4] with CALDERA. The emulation library
contains fully developed emulations plans for multiple threat groups,
including APT29 [22].

28

3.5.3 APT29 Emulation

The emulation plan of APT29 is developed from publicly available sources,
describing the motivations, objectives and attributed tactics, techniques,
and procedures mapped to MITRE ATT&CK. APT29 is a threat group
that has been attributed to the Russian Foreign Intelligence Service
(SVR), who have been in operation since at least 2008. This group
reportedly compromised the Democratic National Committee starting in
the summer of 2015, and was named as one of the perpetrators of the
cyber espionage campaign that exploited the SolarWinds Orion platform
[46]. The emulation plan chains together techniques into a logical order
that has been observed across previous APT29 operations. The operations
are divided into two distinct scenarios, with a total of 20 steps and 79
operations conducted through CALDERA.

Scenario 1

Scenario one consists of a rapid espionage mission that focuses on gather-
ing and exfiltrating data, before transitioning into stealthier techniques in
order to achieve persistence, further data collection, credential access, and
finally lateral movement.

Step 1 - Initial Breach

It starts with an initial breach, where a user clicks an executable payload
which creates a command and control connection over port 1234 and
spawns a interactive shell for further steps.

Figure 3.6: Step 1 CALDERA Operations

Step 2 - Rapid Collection And Exfiltration:

A one-liner command is executed on the targeted machine, searching the
filesystem for documents and media files. These are then collected and the
content is compressed into a single file. Once the file is ready for transfer it
is exfiltrated over the existing command and control connection. This step
consist of the collection technique T1119, T1005, T1002, and the exfiltration
technique T1041.

29

Figure 3.7: Step 2 CALDERA Operations

Step 3 - Deploy Stealth Toolkit

During this step T1105 - Ingress Tool Transfer is used to deploy a new
payload containing a PowerShell script concealed in a legitimately formed
image file to the targeted machine. T1122 and T1088 are then used
in order to escalate the privileges through user account control (UAC)
bypass, followed by the execution of the new payload. Artifacts of the
privilege escalation are then removed from the Registry utilizing T1112
before initiating the next step.

Figure 3.8: Step 3 CALDERA Operations

Step 4 - Defense Evasion and Further Discovery

T1105 is then used again to upload additional tools through the newly
elevated access, before a new interactive PowerShell shell is spawned.
The tools are then decompressed and placed onto the target for further
usage through the newly spawned shell. Using the Tasklist utility through
PowerShell (T1057), running processes are enumerated in order to discover
and terminate the initial access from step 1, various files associated with the
initial access are also deleted. A PowerShell script is then executed, which
in return performs a wide variety of reconnaissance commands (T1016,
T1033, T1063, T1069, T1083).

30

Figure 3.9: Step 4 CALDERA Operations

Step 5 - Persistence Establishment

Two distinct means of persistent access is established. One through
creating a new windows service (T1031), and the second one by creating a
malicious payload in the Windows Startup Folder (T1060) which executes
when the machine starts up.

Figure 3.10: Step 5 CALDERA Operations

Step 6 - Credential Access

A tool delivered in step 4 is used to access credentials stored in local
web browsers (T1081, T1003). This tool is masqueraded as accesschk.exe
(T1036), which is a legitimate utility tool. Private keys are harvested
leveraging T1552.004, searching for file with common key and certificate
file extensions e.g., .key, .pgp, .gph, .ppk. Password hashes are extracted
and harvested from the Security Account Manager (SAM) database
through the Registry (T1003).

31

Figure 3.11: Step 6 CALDERA Operations

Step 7 - Collection and Exfiltration

This step involves the collection and exfiltration of screenshots (T1113),
data from the victim’s clipboard (T1115), and keystrokes (T1417). These
files are then exfiltrated over the command and control channel (T1041).

Figure 3.12: Step 7 CALDERA Operations

Step 8 - Lateral Movement

Other hosts in the domain are enumerated through the use of LDAP queries
(T1018), before creating a remote PowerShell session onto a secondary
victim (T1021), potential lateral movement targets can be seen in Figure
3.1. A payload is then loaded onto the new victim (T1027) and executed
utilizing the PSExec utility and the credentials stolen (T1078) in Step 6.

Figure 3.13: Step 8 CALDERA Operations

32

Step 9 - Collection

Additional tools are uploaded to the secondary victim (T1105) before
initiating a search for documents and media files on the file system (T1083,
T1119). The files are then collected (T1005), encrypted, and compressed
(T1002, T1022) into a single file (T1074) before exfiltration through the
existing C2 connection (T1041). Files associated with this access are deleted
(T1107) before moving on to the next step.

Figure 3.14: Step 9 CALDERA Operations

Step 10 - Execution of Persistence

In this step, the original victims machine is rebooted, triggering the
established persistence mechanism in step 5. This includes the execution
of the new service (T1035), and the payload in the Windows Startup folder
(T1060).

Figure 3.15: Step 10 CALDERA Operations

Scenario 2

Once step 10 in scenario 1 has been completed CALDERA moves onto
scenario 2 of the emulation. This scenario consist of a stealthier and slower
approach to compromise the initial target, establish persistence, gather
credentials, enumerating and compromising the entire domain.

Step 11 - Initial Breach

Similar to Step 1 in scenario 1, the initial breach of scenario 2 occurs once
a legitimate users clicks a link file payload, which in return executes an al-
ternate data stream (ADS) hidden on another file (T1096).

33

Unlike the payload in step 1, this payload verifies that it is not execut-
ing in a virtualized analysis environment through a series of enumeration
commands (T1497, T1082, T1033, T1016, T1057, T1083) before establishing
persistence through a Windows Registry Run key entry (T1060). Finally,
the ADS executes a PowerShell stager to create a command and control
connection over port 443.

Step 12 - Fortify Access

In this step the access is fortified by modifying the time attributes (T1099)
of the command and control payload, matching it with the time attribute
of a random file found in the System32 directory. Software discovery is
then performed in order to discover registered AV products (T1063) before
querying the Windows Registry (T1012) to find software installed by the
user.

Step 13 - System Enumeration

Local enumeration is performed using various Windows API calls in order
to collect local system information (T1082), network configuration (T1016),
current user context (T1033), and running processes (T1057).

Figure 3.16: Step 11-13 CALDERA Operations

Step 14 - Privilege Escalation

Privileges are elevated by a user account control (UAC) bypass (T1122,
T1088). The elevated access is then used to create and execute code within
a custom Windows Management Instrumentation (WMI) class (T1047).
This code downloads and executes Mimikatz in order to dump credentials
(T1003.001) from the Local Security Authority Subsystem Service (LSASS).

34

Step 15 - Persistence Establishment

Additional persistence is established by creating a WMI event subscription
(T1084) which executes a PowerShell payload when the user signs in.

Figure 3.17: Step 14 and 15 CALDERA Operations

Step 16 - Lateral Movement

Here the native Windows application programming interface (Windows
API) is used to enumerate the domain controller of the environment
(T1018) and the domains security identifier (SID) (T1033). The domain
controller can be seen in Figure 3.1. Once these are discovered, a new
remote PowerShell session to the domain controller (T1028) is created by
using the credentials dumped from step 14 (T1078.002). Mimikatz is then
copied to the domain controller using this new connection in order to dump
the hash of the KRBTGT account.

Figure 3.18: Step 16 CALDERA Operations

Step 17/18 - Collection and Exfiltration

In this step, emails stored in the local email client are harvested (T1114)
and collected (T1005). The collected data is then staged, compressed, and
obfuscated as a GIF file (T1072) by changing the first few bytes used to
recognize filetypes. The file is then exfiltrated through OneDrive (T1048).

Figure 3.19: Step 17 and 18 CALDERA Operations

35

Step 19/20 - Clean up and Execution of Persistence

Clean up is performed by loading and executing the Sdelete binary (T1055)
within PowerShell, making the deleted files associated with the access
nearly unrecoverable. The emulation ends with a reboot of the infected
client, triggering the previously established persistence mechanisms.

Figure 3.20: Step 19 and 20 CALDERA Operations

Emulated Techniques and Tactics

Figure 3.21 illustrates the expected distribution of techniques and tactics
based on the sequence of events from the steps above and information
extracted from MITRE ATT&CK Emulation Library [4].

Figure 3.21: Distribution of expected techniques in APT29 emulation plan

36

The majority of techniques in this emulation are related to the Discovery
tactic, with 13 unique techniques leveraged across 27 individual operations
followed by defense evasion techniques. Lateral movement techniques
is the least represented tactic in this emulation, with only 5 operations
involving lateral movement techniques. However, the distribution of
tactics in the logs may differ from the distribution seen in figure 3.21 as
some tactics will generated multiple log lines related to the same operation
while other will generated fewer log lines.

3.6 Benign Data Generation

The inclusion of benign data in a dataset is crucial when training an
Intrusion Detection/Prevention system. In order to train the system to
differentiate between malicious and benign actions, both must be present in
the training set. Benign data generated, and expect behavior, is tied to what
end user is desired to simulate e.g., average user, administrator, or software
developer. It is expected that administrators will perform more advanced
tasks in comparison to an average end user. Typically an administrator
will perform tasks such as network or host maintenance/configuration, or
executing command line operations. This will manifest itself completely
different in the logs in comparison to the logs generated from an
average user or a software developer. Simulating a benign user can be
accomplished in various ways. The user may be simulated by manually
performing various tasks on the client, running scripts which execute the
desired tasks, or by utilizing automation software. In order to support
the reproducibility of the datasets generated in this thesis an automation
software was chosen to generated the benign data.

3.6.1 GHOSTS NPC Simulator

In order to preserve the reproducibility of the dataset, benign user data
was generated through the GHOSTS (General HOSTS) framework [44]
developed by the Software Engineering Institute (SEI) at Carnegian Mellon
University1. The framework is used to build autonomous non-player
characters (NPC) that can represent an array of possible encounters
through simulation of users, contexts, and situations across computer
networks. With the goal of creating behavior patterns that would
realistically mimic typical human behavior. GHOSTS operates in a similar
manner to CALDERA, utilizing an agent placed onto the targeted machine
in order to execute predetermined commands. GHOSTS consist of two
main parts: a server handling the distribution of tasks and collection of
reports from the clients; and a client responsible for the automation and
execution of tasks. The server is hosted in a Docker container and is further
divided into three parts with individual containers:

• Grafana - Vizualisation tool giving an overview of the clients and
their activity

1https://www.sei.cmu.edu/

37

https://www.sei.cmu.edu/

• API Server - Responsible for managing the clients

• PostgreSQL Database - Responsible for storing the information and
data generated by the clients.

GHOSTS offers the possibility to configure specific timelines which are
used to specify what user actions should be taken at which point in
time. User actions are predefined within the framework, it is however
possible to modify these or develop customized actions if necessary. Figure
3.22 outlines the operational capabilities in GHOSTS. Highlighted in blue
color are the capabilities most likely to generate relevant host based logs.
However, web browsing and e-mail activities will still be present in the logs
as Sysmon detects the outgoing traffic.

Figure 3.22: GHOSTS Capabilities [45]

3.6.2 GHOSTS Timeline

The timeline for generating benign traffic is not tailored to simulate one
specific type of user e.g., administrator, or average user. It will instead
focus on taking advantage of the possible capabilities and user actions
available in GHOSTS and the timeline repository [19]. Since Microsoft
Office user actions requires an valid Microsoft Office license key which
is not present in the Windows VM’s, the capabilities utilized will be web
browsing, terminal commands and e-mail creation/management.

38

Chapter 4

Data Collection and Labeling

4.1 Data Collection

Data collection is done once the emulation has been executed and
completed. The data collected is limited to Sysmon logs, some of the
possible traits covered by Sysmon are:

• Process creating with full command line for both current and parent
processes.

• Process ID and GUID that allow for correlation of events

• Driver and DLL loading.

• Read access of disk and volumes.

• Network connections, including source process, IP address, port
numbers, hostnames, and port names.

• File changes, creations, and modifications.

• Changes in the registry.

4.1.1 Collecting Windows Logs

Windows logs are by default in EVTX format, with an underlying XML
structure. These logs can be extracted either directly through the folder
C:\Windows\System32\winevt\Logs in EVTX format, or through Windows
Event Viewer. Windows Event Viewer allows for the log files to be exported
in either EVTX, XML, Comma Separated (CSV) or plain text (txt) format.
However, the EVTX format is only used by Microsoft and not supported
by other operating systems. Ideally, the logs collected should use a
common representation format to account for information sharing amongst
different components. This is done to ensure that individual components
(e.g., logging, alert-generation, analysis), from different vendors, can work
together. Raw log files are also typically unstructured, making it difficult
for humans to read, and to query the logs for useful information.

39

An alternative format is JavaScript Object Notation (JSON), which is
a highly readable data-interchange format, it is easy for humans to read
and for machines to parse [23]. JSON format has grown quite popular as a
standard format for structured logging, it is both readable and reasonably
compact. JSON format provides a standardized format for structuring data
and most programming languages can parse it. A standardized format is
desired in the case of other operating systems being added as further work
on this thesis.

4.1.2 Winlogbeat

Winlogbeat [Winlogbeat] was introduced to developed environment as
a tool for both log collection and file conversion. Winlogbeat is most
commonly used as a data shipper which sends the collected logs from
clients to a centralized log management solution. Event logs are read using
WindowsAPIs, filtered based on user-configured criteria and then sent to
the configured outputs. Winlogbeat can capture event data from any event
logs running on the system e.g, application, hardware, security or system
events. It is part of the “Beats family” from the Elasticsearch Stack [17].
Beats is a free and open platform for data shippers. The following are the
types of Beats from Elasticsearch:

• Filebeat: Comes with internal modules that simplify the collection,
parsing, and visualization of common log formats.

• Metricbeat: Shipper for Metrics, collects metric information from the
client system e.g, CPU usage, memory, file system, disk and network
IO statistics.

• Packetbeat: Collection and shipper for Network Data.

• Winlogbeat: Collection and shipper for Windows Event Logs from
windows systems.

• Auditbeat: Collection and shipper for Linux audit data, and monitors
the integrity of files.

With the scope of this thesis being Windows Logs and endpoint
detection, Winlogbeat is the only Beat being implemented. The addition
of new Beats is possible for further work. Packetbeat could be utilized for
the collection of detailed network related data, the Sysmon configuration
in place monitors the relevant network connection. In this case, this is
only limited to C2 traffic and data exfiltration. These events will not
go undetected as they can be detected by Sysmon as outgoing network
connections.

A drawback with Winlogbeat is the increase of the log sizes in compar-
ison to CSV log files. JSON files are generally larger than CSV files as more
characters and elements are used to represent the same data. In addition to
this, multiple new fields are added to each event by Winlogbeat.

40

As Winlogbeat essentially is a log shipper, designed to ship logs to a cent-
ralized log management solution, theses fields are added in order to dif-
ferentiate between the different clients sending the logs and for query pur-
poses. A file comparison conducted on log files processed by Winlogbeat
and raw CSV log files revealed that Winlogbeat files are on average 340%
larger. However, compared to an equivalent EVTX file, the JSON files are
on average 53% smaller. The trade-off for a standardized format and ease
of processing is that of file size. The difference in file size can be reduced
by dropping irrelevant fields added by Winlogbeat. Fields can be dropped
through the configuration of Winlogbeat, the drop_field processor in the
configuration file of Winlogbeat specifies which fields to drop.

4.2 Data Processing

Processing of the data begins once the desired emulation has been
completed. Winlogbeat is responsible for extracting the logs generated
by Sysmon and converting these files from .EVTX to .JSON format before
storing these on a specified location. The developed labeling tool queries
for new files in this specific location, if new files are found the tool will start
processing the files. Each line of the file is then read by the tool and labels
are applied. The label process and tool is described in greater detail in the
following subsections.

41

Figure 4.1: Data processing overview

42

4.2.1 Applying labels to logs

As part of the contribution from the research conducted in this thesis, a
tool was developed that can convert raw log files into labeled datasets
which can be used to train machine learning based intrusion detection
systems. This involved labeling each line in the log file stating whether
the action was part of a malicious or benign operation, as well as what
step in the attack chain, in terms of MITRE ATT&CK technique or tactic,
the malicious operation is related to. The efficiency of the IDS is highly
dependent on correctly labeled training data as highlighted by Catania et
al. [7] and Davis et al. [14], as a part of quality assurance the processed
log files were manually reviewed and analyzed. The labeling tool searches
for JSON files created by Winlogbeat from the Sysmon logs in a specified
folder where unprocessed logs are stored. These files are then processed
and the output is saved in a standardized JSON format in a separate folder
containing labeled logs. The tool leverages process relations by matching
the process identifiers (PIDs) of malicious events with PIDs found in
subsequent events, utilizing recursion when processing the log files. A
unique identifier is given to a process once it is created, thus only one
process can be directly tied to a PID. The tool was developed through three
main iterations, the final and complete version is centered around a report
that CALDERA can generate after an emulation. Data from this report is
extracted and leveraged to find the initial process of each operation, and
what ATT&CK tactic and technique the process is related to. Any process
or operation seen in relation to the initial process are considered part of the
ongoing operation and labeled accordingly.

First Iteration

In the first iteration the labeling tool started off with defining two lists
within the program, one containing the Winlogbeat file to be processed,
and one empty list which is gradually filled with labeled logs. This was
done so that the tool could iterate through the Winlogbeat file and move
events found to malicious or benign to the processed list once labeled. The
tool would search for an occurrence of the CALDERA agent by matching
the process name in the events with the name of the agent. This signals
the start of the malicious attack as each attack starts with a command being
executed by the agent. The naming of the agent is specified in CALDERA
and was coded into the tool. Once the executable has been detected, the
process ID (PID) is extracted from the list. This event is then moved from
the unprocessed list onto the processed list and labeled as malicious. When
the first known malicious PID was found, the tool would start searching for
any occurrences of this PID in the following events. If the PID was observed
in any relation to an event, it would be considered malicious and any new
PID’s found in this event would be extracted and considered malicious.
Once the tool had found all events in relation to the initial PID it would
start a new iteration searching for the next known malicious PID. The list
containing unprocessed events shrinks as malicious events are removed

43

from it, causing each subsequent occurrence of recursion to have less events
to search through. The remaining events are labeled as benign and moved
onto the processed list once all malicious events have been analysed.

This worked to an extent, the tool was able to find the malicious events
but it was not able to apply labels based on what technique or tactic they
were related to. Wrongly labeling of benign events also occurred as the
tool did not take into consideration what timestamp the event had. An
PID used for a malicious operation thirty minutes earlier is not necessary
conducting malicious operations at a later time. Additionally, changing
the name of the CALDERA agent would require the tool to be modified in
order to search for the new name. The tool was completely reworked due
to these issues.

Figure 4.2: Operation Flow Label Tool version 1

Second Iteration

During this thesis, MITRE released version 4.0.0 of CALDERA, this version
had the capability to produce an report with information regarding each
operation conducted during the emulation.

The second iteration of the tool leveraged this report to extract the
agent PID, the first child process of the agent for each operation, and
the ATT&CK tactic and technique related to the specific operation. With
this information available, the tool was able to apply fine-grain labels
including what ATT&CK tactic and technique each event was related to.

44

The logic and idea behind the first version was kept as the tool still utilized
iteration and the PID’s to find the malicious events. The tool reads the
CALDERA rapport, extracting information from the AgentMetaData and
AttackMetaData fields. AgentMetaData contains information regarding
the CALDERA agent, such as the PID of the process spawned by the agent
and the PID of the agent itself. The MetaData field contains information
regarding the tactic and technique related to the specific PID, which is used
to apply the labels. Each operation in the CALDERA report is read as an
individual object. Once the information from the object has been extracted
the tool start to process the Winlogbeat file, reading each line from the
file and matching the PID observed with the known malicious PIDs. If
the event is found to be malicious and the PID related to the event is not
currently in the list of malicious PIDs, the tool will add this PID to the list,
which is related back to the specific operation. This event is then labeled
as malicious and the tactic and technique related to the PID is applied. In
the next line of Winlogbeat the tool will now search for both of the PIDs
within the list, repeating the process for any malicious events. Once the
tool reaches the end of the Winlogbeat file, it proceeds to read the next
object from the CALDERA report, replace the list of malicious PIDs with
the new PID and relate the new list to a specific tactic and technique. This
process is repeated until all objects in the report has been searched for in
the Winlogbeat file.

Figure 4.3: One operation in the CALDERA report

CALDERA generates the data presented in figure 4.3 after an attack
emulation has been completed. However, the CALDERA log file only con-
tains the PID of the agent and the initially spawned process. By leveraging
process relations and recursion the tool is able to find all processes linked
to a malicious operation through process relations. The argument for this
approach is that there are no benign actions performed by the CALDERA
agent as the agent is the initial access point of the attack.

45

Therefore it is assumed that any interactions on the environment per-
formed by the agent (e.g., process injection, privilege escalation, file cre-
ation/modification etc), are malicious. If the PID of the agent is observed
in any relation to another process, be it a benign or malicious process, that
specific process is considered part of a malicious action. An example of
this could be the agent performing process injection by executing code in
the address space of a separate process. This can be detected through Sys-
mon [48] with the event ID 8 (Remote Thread Creation Detected).

Figure 4.4: Truncated Sysmon logs related to a process injection executed
by CALDERA

The labeling tool starts off with extracting the PID, technique_name,
and techinque_id found in Figure 4.3. This is placed onto a temporary
"maliciousPID" list within the labeling tool, which is later used to match
the PIDs in the list with PIDs observed in events within the Winlogbeat
file.

46

In Figure 4.4 we observe the resulting Sysmon event from executing the
MITRE ATT&CK technique T1055.004 - Process Injection: Asynchronous
Procedure Call [37], CALDERA utilizes the payload 0cb710_T1055.exe in
order to execute this technique. The information found in this event is also
found in the Winlogbeat file which is being processed. The labeling tool
compares the ProcessId (4576) and ParentProcessId (4656) with the PID in
the "maliciousPID" list, and detects that the ParentProcessId (4656) is in the
"maliciousPID" list. This event is then deemed malicious, and labels are
applied as shown in Figure 4.5.

Figure 4.5: Truncated labeled log related EventData1 in Figure 4.4

The PID 4576 has now been seen in a relation to a malicious PID, as such
this PID is considered malicious and extracted onto the "maliciousPID" list.
This PID is then compared with all PID’s found in subsequent events in
order to find all malicious operations conducted and the next malicious
PID. In EventData2 Figure 4.4, we can observe that PID 4576 spawns a
new process, ProcessId 9076, when executing the process injection payload.
Since PID 4576 is now in the "maliciousPID" list, this event is found to be
malicious and is labeled accordingly. All PIDs found in relation to the first
malicious PID will receive the same labels as the first PID.

47

Figure 4.6: Truncated Sysmon logs related to a process injection executed
by CALDERA

Further, it can be observed in Figure 4.6 that SourceProcessId 9076,
which was found to be malicious by relation to PID 4576 in Figure 4.4,
interacts with the TargetProcessId 5880 (notepad.exe). Since notepad.exe
is the target of a malicious process it is assumed that the following actions
from notepad.exe will be malicious in nature. In this scenario, all of the
event from Figure 4.4 and 4.6 will receive a "isMalicious: True" label,
in addition to a "verdict: Malicious Process Injection: Asynchronous
Procedure Call - T1055.004" label stating what tactic and technique the
event is related to. This is repeated for all processes found in relation to any
of these malicious PIDs, gradually developing a process tree of all processes
spawned or affected in any way by the operation. Figure 4.7 illustrates the
process tree developed from the process relations in Figure 4.4 and 4.6.

48

Figure 4.7: Process Tree developed during the execution of T1055.044

Once the labeling tool has found and labeled all operations related to
Figure 4.3, the tool moves on to the next operation found in the CALDERA
log, extracting the new information and repeating the labeling process.

Final Iteration

With the second iteration of the labeling tool it was now able to find all
processes with an PID relation and apply labels with a high granularity.
There was still an issue with some benign events being wrongly labeled as
a result of the process executing operations at a later time. This issue was
addressed by implementing a function which checks if the malicious event
in Winlogbeat is within the time frame of the malicious operation. Each
operation in the CALDERA log has a agent delegated and finished time
stamp. This was leveraged in order to check if the detected malicious event
is within these two timestamps. In order for this to function as intended
the internal clock of the CALDERA server and the targeted host has to be
synchronized. However, the final event in each malicious operation had the
same timestamp as the agent finished time stamp, resulting in these events
not being correctly labeled. This was addressed by developing a method
for truncating the millisecond part of the timestamps.

Argument for this time based approach is that each operation occurs
within the delegated and finished time stamp. Finished time stamp is
applied once the agent reports back the outcome of the operation. If an
event is found to be malicious, but is outside of the expected operation
time, the label “uncertain +” technique id and tactic is applied in addition
to the “isMalicious: False” verdict. The false verdict is applied since there
is a higher probability that the event is benign than malicious. However,
the additional “uncertain” label indicates that the event may need to be
manually reviewed in order to determine the true nature of it.

49

The tool was also adjusted in order to correctly label Command and
Control traffic as Command and Control. These events received the label
from the PID related to the traffic, scenarios occurred where Command and
Control traffic was labeled as eg., process injection, this was addressed by
checking if the event ID from Sysmon was three (3). Event ID 3 in Sysmon
is Network Connection, if an event is malicious with Event ID 3 and within
the expect time frame it is considered as Command and Control traffic.
Manual inspection after this change showed that all Command and Control
labels were correctly applied during the emulation.

Final Iteration Code Review

The program is developed in C#, it starts by reading the Winlogbeat
and CALDERA json files and storing the data in the Winlogbeats and
maliciousOperations variables. A new instance of the LogLabler class
is created and the variables from Winlogbeats and maliciousOperations
are passed in as arguments. Finally the method for finding and marking
malicious events is called on the logLabeler object and the output is saved
to a file through the SaveJsonToFile() method.

1
2 var Winlogbeats = GetWinlogbeats (@"C:\ Users . . . \ Winlogbeat . j son ") ;
3 var mal ic iousOperat ions = GetMaliciousOperations (@"C:\ Users . . . \

caldera −log . j son ") ;
4 var logLabeler = new LogLabeler (Winlogbeats , mal ic iousOperat ions) ;
5 logLabeler . FindAndMarkAllDescendantMaliciousOperations ()
6 . SaveJsonToFi le (@"C:\ User . . . \ output . j son ")

Listing 4.1: Code snippet from Program.cs

50

Each line of the Winlogbeat file is read and deserialized into a
Winlogbeat object, and each object is added to a list for further processing.
A catch clause is implemented to catch invalid Winlogbeat input which
would have prevented the program from running. This is seen in listing
4.2

1
2 Lis t <Winlogbeat > GetWinlogbeats (s t r i n g path)
3 {
4 IEnumerable <s t r i n g > WinlogbeatReadLines = F i l e . ReadLines (path)

;
5 var Winlogbeats = new Lis t <Winlogbeat > () ;
6 var i = 0 ;
7 foreach (var Winlogbeat in WinlogbeatReadLines)
8 {
9 t r y

10 {
11 i += 1 ;
12 var deser ia l izedWinlogbeat = JsonConvert .

D e s e r i a l i z e O b j e c t <Winlogbeat >(Winlogbeat) ;
13 i f (deser ia l izedWinlogbeat != n u l l) Winlogbeats .Add(

deser ia l izedWinlogbeat) ;
14 }
15 catch (Exception e) {
16 Console . WriteLine (e) ; }
17 }
18 return Winlogbeats ;
19 }

Listing 4.2: Code snippet from Program.cs

Malicious operations are placed onto a list containing the process ID,
tactic and technique related to the malicious operation.

1
2 IEnumerable <MaliciousOperation >? GetMaliciousOperations (s t r i n g

path)
3 {
4 IEnumerable <MaliciousOperation >? malic iousOperat ions =
5 JsonConvert . D e s e r i a l i z e O b j e c t <Lis t <MaliciousOperation >>(

F i l e . ReadAllText (path)) ;
6 return malic iousOperat ions ;
7 }

Listing 4.3: Code snippet from Winlogbeat.cs

51

The constructor of LogLabler takes inn the list of Winlogbeat and ma-
liciousOperations as arguments, as shown in listing 4.5. A new list called
MaliciousPid is created based on the list of maliciousOperations. Inform-
ation regarding the tactic, technique and timestamps of the operations are
added to this list. In line 6, the PID of the process spawned by the agent is
added, line 9 adds the PID of the agent while line 13 adds the parent PID
of the agent. This was done so that all PIDs initially related to a malicious
operation is added to the list of malicious PIDs. This list is later used in or-
der to search for new malicious PIDs and relate these back to specific tactics
and techniques.

1
2 publ ic LogLabeler (L i s t <Winlogbeat > Winlogbeats , IEnumerable <

MaliciousOperation > malic iousOperat ions)
3 {
4 t h i s . Winlogbeats = Winlogbeats ;
5 var operat ions = malic iousOperat ions . S e l e c t (x => new

MaliciousPid (x . pid , x . at tack_metadata . technique_id
,

6 x . at tack_metadata . technique_name , x .
delegated_timestamp , x . f inished_timestamp , x .
agent_metadata)) . ToLis t () ;

7
8 operat ions . AddRange (mal ic iousOperat ions . S e l e c t (x =>

new MaliciousPid (x . agent_metadata . pid ,
9 x . at tack_metadata . technique_id , x . at tack_metadata .

technique_name , x . delegated_timestamp , x .
f inished_timestamp ,

10 x . agent_metadata)) . ToLis t ()) ;
11
12 operat ions . AddRange (mal ic iousOperat ions . S e l e c t (x =>

new MaliciousPid (x . agent_metadata . ppid ,
13 x . at tack_metadata . technique_id , x . at tack_metadata .

technique_name , x . delegated_timestamp , x .
f inished_timestamp ,

14 x . agent_metadata)) . ToLis t ()) ;
15
16 t h i s . mal ic iousPids = operat ions . D i s t i n c t () . ToLis t () ;
17 }

Listing 4.4: Code snippet from LogLabler.cs

The FindAndMarkAllDescendantMaliciousOperations method is re-
sponsible for identifying and labeling all malicious events and contains the
recursion function of the tool. For each malicious PID, find all Winlogbeat
events that match the malicious PID, and mark them as malicious. Then,
find all PIDs in the event and add this to a new list. Once all events related
to the initial list have been found and marked, the initial list is replaced
with the new list and the process is repeated. If malicious events are found
outside of the expected timestamp, a "uncertain" verdict is applied and the
PIDs in the event are not extracted.

52

1
2 publ ic LogLabeler FindAndMarkAllDescendantMaliciousOperations ()
3 {
4 var newMaliciousPids = new Lis t <MaliciousPid > () ;
5 foreach (var pid in t h i s . mal ic iousPids)
6 {
7 i f (pid . pid == n u l l) continue ;
8 foreach (var Winlogbeat in Winlogbeats)
9 {

10 i f (! Winlogbeat . MatchesMaliciousPid (pid)) continue ;
11 i f (Winlogbeat . IsWithinMaliciousOperationTimePeriod (

pid))
12 {
13 Winlogbeat . i s M a l i c i o u s = true ;
14 Winlogbeat . v e r d i c t = " Malic ious " + pid .

technique_name + " − " + pid . technique_id ;
15 }
16 e lse
17 {
18 i f (Winlogbeat . winlog . event_id == " 3 ")
19 {
20 Winlogbeat . i s M a l i c i o u s = true ;
21 Winlogbeat . v e r d i c t = " Malicious , command and

c o n t r o l t r a f f i c " ;
22 }
23 e lse i f (Winlogbeat . Timestamp != n u l l &&

Winlogbeat . Timestamp . Value . TrimMil l iseconds ()
>=

24 mal ic iousPids . S e l e c t (x => x . agentMetadata .
c rea ted) . Min () . TrimMill iseconds ())

25 {
26 Winlogbeat . v e r d i c t = " Uncertain " + pid .

technique_name + " − " + pid . technique_id ;
27 }
28 }
29 newMaliciousPids .Add(new MaliciousPid (Winlogbeat ? .

process ? . pid , pid . technique_id , pid . technique_name
,

30 pid . delegated_timestamp , pid . f inished_timestamp ,
pid . agentMetadata)) ;

31 newMaliciousPids .Add(new MaliciousPid (Winlogbeat ? .
process ? . parent ? . pid , pid . technique_id , pid .
technique_name ,

32 pid . delegated_timestamp , pid . f inished_timestamp ,
pid . agentMetadata)) ;

33 }
34 }
35 t h i s . mal ic iousPids = newMaliciousPids . D i s t i n c t () . ToLis t () ;
36 i f (mal ic iousPids . Count > 0)

FindAndMarkAllDescendantMaliciousOperations () ;
37 return t h i s ;
38 }

Listing 4.5: Code snippet from LogLabler.cs

53

Chapter 5

Results

5.1 Emulation of APT29

CALDERA was successful in emulating most of the attack steps present
in the emulation plan. However, both the environment and the emulation
plan had to be adjusted in order to successfully execute a portion of the
emulation plan. The infrastructure was configured as instructed in the
emulation library [4], but further adjustments were necessary in order to
to produce an successful emulation. Some steps in the emulation requires
knowledge learned from previous steps e.g., host/network discovery,
admin user names etc, while others are dependent on successfully
execution of previous steps e.g., establishing persistence before reboot.
The majority of issues during execution was related to the dependencies
of previous steps. The most critical issue occurred during step 4 shown
in 3.5.3, where CALDERA executes a PowerShell command to download
Sysinternals Suit. Once downloaded, the content is extracted and merged
with an modified Sysnternals Suite containing various executables used in
later phases of the emulation. CALDERA was able to initiate the download
however, it did not allow the download to complete before attempting to
merge these files. Due to this, CALDERA was not able to find multiple
of the executables required in subsequent steps e.g., Step 4 - Defense
Evasion and Further Discovery (3.5.3), Step 5 - Persistence(3.5.3), and Step
6 - Collection and Exfiltration(3.5.3), to name a few. This resulted in a
cascading effect of failing operations. This was addressed by placing the
Sysinternal Suits file at the designated location, CALDERA initiates the
download and attempts to move the file to the designated location. If the
file is already present at the designated location, CALDERA will instead
proceed with merging the malicious payload with the file.

CALDERA was also unable to successfully trigger the persistence
mechanisms in place. These were triggered by rebooting the victim
machine. Once the victim machine was rebooted, the CALDERA agent
would fail to beacon home to the server. The server would assume that
the agent is dead and end the emulation. This problem occurred even
when manually placing the persistence mechanisms and attempting to
trigger these. As of such, the command to reboot the victim machine was

54

completely removed from the emulation plan. Once these modifications
were made, the emulation was able to fully execute with an acceptable ratio
of successful operations, according to the CALDERA report.

Figure 5.1: Successful and failed techniques from the CALDERA report

Figure 5.1 presents the amount of successful and failed techniques
within each tactic found in the emulation plan. The figure is only based
on the report provided by CALDERA. If the agent is able to execute a
command and transmit the resulting data back to the server, it is considered
successful. This is also true in the scenario of an operation being partially
successful. Operation 35 in step 5 (3.5.3) is an example of where the
operation is only partially successful but is reported as successful. The
operation executes the following command in an attempt to establish
persistence:

Set-Location -path "C:\Program Files\SysinternalsSuite";
if (Test-Path -path "readme.ps1") {

. .\readme.ps1;
Invoke-Persistence -PersistStep 2;
write-host "[+] Persistence 2 invoked.";

} else {
write-host "[!] readme.ps1 not found.";
return 1;

}

Readme.ps1 is found and executed, the script calls for multiple executables
within the modified Sysinternals Suits folder. Two of these are not found
in the folder and the execution returns an ItemNotFoundExeption. Since
the agent was able to execute the initial script and some data was returned,
it was considered successful in the report while the operation was in fact
not successful. This report also does not take into consideration which

55

operations in the emulation plan were dropped or skipped. An accurate
number of failed and successful techniques and tactics can be found by
comparing the emulation plan with the executed operations and manually
analyzing the results of each operation.

Figure 5.2: Successful, Failed, and Skipped tactics

Figure 5.2 gives an accurate description of successful, failed, and
skipped techniques. The majority of the techniques not executed are related
to CALDERA skipping these operations. CALDERA may decide to skip
an operation if conditional data is missing from CALDERA’s knowledge
database e.g., failed to update or receive expected output from previous
steps, or as a result of facts learned during previous executions. The
latter option is ruled out as the simulation was executed without using
prior facts. All persistence techniques present in the emulation either
failed or were completely skipped. Persistent establishment in operation
35, step 5, was reported as successful by CALDERA while in fact failing.
This could possibly have impacted CALDERA’s decision to skip the other
persistence establishment operations. Lateral movement techniques also
performed poorly during the simulation, all operations were skipped
despite successfully detecting the other clients and domain controllers
through network discovery techniques. Exfiltration techniques were also
entirely skipped without an clear indication of why this failed. Collection
of files and data prior the exfiltration was completed, staging directories
got created and prepared for exfiltration, but the exfiltration of these files
never occurred.

56

5.2 Final Dataset

Since the dataset is converted into a standardized format it may be
uploaded to a SIEM solution such as Splunk for further analysis. Splunk
was used to manually review the labels produced by the labeling tool. It
is expected that the labeled logs would share similar traits with figure 5.2
regarding the distribution of tactics. The created APT29 datasets consists
of 2,276 events, 868 malicious and 1 406 benign.

Benign and Malicious data distribution

Assuming that process ID’s observed outside the related operation’s time
frame are considered malicious, 49.3% of the datasets will be related to
malicious activities. The label “ uncertain + technique “ is applied to
logs where the process ID was found to be malicious, but the timestamp
did not match the time frame of CALDERA during that operation. As
shown in figure 5.3 there is a clear bias towards malicious logs, realistically
there would only be a fraction of malicious event in comparison to benign
events. This bias occurred as the framework utilized for generating benign
traffic performed poorly and the data collection ended shortly after the
adversary emulation. As a result, benign activities should in this case be
performed manually over a longer time period, this would however hinder
the reproducibility of the dataset as the manual activities would have to
be replicated in a timely manner. Most of the traffic generated through
the GHOSTS framework was related to network activities, while the host
based activities did not execute properly. There was also issues regarding
the loop function of the framework, where it only successfully looped
through the browsing activities while Powershell commands and other
operations which would generated more host based logs only executed
once. Collecting the data at a later time would result in benign activities
of similar nature e.g., network browsing.

Figure 5.3: Distribution of benign and malicious labels

57

Taking into consideration that process ID’s observed outside the
operation time are not determined to be malicious, the label distribution
changes to 38,2% malicious, which is still considered to be bias towards
malicious logs. This is a more accurate description of the distribution as
manually inspecting the log lines labeled as "uncertain" revealed that the
majority of these are in fact benign activities. Out of the 278 events that
received this label, roughly 30 (10.8%) was manually deemed malicious.
Most of these were related back to the execution of scripts, which occurred
shortly after the time frame of the operation. Figure 5.4 is strictly based on
the labels applied from the labeling tool.

Figure 5.4: Distribution of benign, uncertain, and malicious labels

Malicious Logs

Figure 5.5 shows the distribution of techniques based on all malicious
labeled log lines. 32,719% (284/868 malicious events) of malicious labels
applied were related to discovery techniques. This is to be expected as
the emulation successfully executed twelve discovery techniques and the
emulation plan contained a clear majority of discovery related techniques.
While 21,198% (184/868 malicious events) of labels applied were related to
execution techniques, the emulation plan contained one unique execution
tactics. However, this technique was leveraged in multiple steps, execution
of this techniques also resulted in a significantly larger amount of events
in comparison to other techniques. T1059.001 - Command and Script
Interpreter usually involves the execution of scripts or payloads, which
resulted in a significant longer chain of related process ID’s compared
to some discovery techniques which only involved executing a single
PowerShell command. T1059.001 was also used in order to prepare the
payload for other tactics.

58

Figure 5.5: Distribution of tactics across malicious events

Lateral Movement and Exfiltration techniques are absent in the dataset
as CALDERA was not able to successfully execute these operations.
However, events related to Persistence (4,954%, 43/868) are found. As
previously discussed, this tactic was executed and reported as successful
even if the outcome was in fact a failure. The events found related to
this tactic are artifacts from the attempt to establish persistence, which
can still be useful. Privilege-Escalation, Collection, Defensive-Evasion,
and Credential-Access constituted respectively 14,17%, 9,216%, 8,41%,
and 6,682% of the malicious events. All of these tactics did not have
an process ID’s observed outside of the agents operational timestamp,
therefore no events related to these tactics received the “uncertain” label.
Privilege-Escalation operations generated a fair amount of events (14,17%,
123/868) despite only successfully executing two operations. Privilege-
Escalation occurred through a process injection script, which can be
observed loading various DLL’s, interacting with User Account Control
(UAC), and certificates. Command and control traffic label was added in
addition to the techniques and tactics extracted from the CALDERA report,
these events were detected through Sysmon event ID 3 - Network Connect
and applied once a malicious PID contacted the CALDERA server.

Techniques observed in the dataset

A total of 41 variations of techniques labeled is observed when analyzing
the dataset in Splunk. However, there was duplicates as some log lines
are labeled as “uncertain” followed by the technique and technique ID.
A total of nine techniques had additional log lines with this label, a
total of 32 unique techniques were observed during the APT29 emulation.
Techniques related to the Discovery tactic is observed as the third and
fourth most commonly labled techniques. However, the three rarest
techniques are also related to the Discovery tactic. These being Network
Connections Discovery (T1049), Query Registry (T1012), and Software
Discovery (T1518).

59

Figure 5.6: Technique label distribution in dataset

Network Connections Discovery was conducted by executing the
netstat command in the command shell (cmd.exe), which manifested
itself in the logs as a “new process created” without any further traces.
This is expected as the command only returns network connections,
routing tables, and various network statistics without performing any
further operations. However, if the operation had saved the result of
the netstat command in a file or leveraged this information in any other
way, it would be expected to see further traces of the operation in the
logs. Further Network Discovery was conducted utilizing T1016, which
generated similar traces utilizing commands such as ipconfig, arp and
netsh. Distribution of tactic and technique labels is in pair with the
expected distribution based on what operations were successful.

60

5.3 Labeling Tool

The developed labeling tool is able to successfully apply labels with a high
level of granularity. Labels are applied in two distinct ways:

• Adding a data field to each line named “isMalicious:”, which can
either be true or false.

• Adding an additional data field for further specification of malicious
labels named “verdict:”. This field is enriched with the MITRE tactic
and technique ID of the malicious activities related with the event
e.g., “Verdict: Malicious System Information Discovery - T1082”.

Labels applied are directly linked to tactics and techniques found within
MITRE ATT&CK, which can be utilized to develop a labeled dataset
containing all the steps within a kill chain. This could prove valuable
when analyzing and detecting a kill chain, individual phases of the kill
chain can be simulated, labeled and later merged with the other phases in
order to develop a complete dataset. The labeling tool successfully found
all process identifiers (PID’s) related in any manner to the malicious PID’s
extracted from the CALDERA logs. This is true as long as there is a relation
between the PID’s, such as interactions, child/parent/target relations, or
ProcessAccess to name a few. In the scenario where a PID does not have a
relation to a malicious PID or the PID was not captured, it will be labeled
as benign. In order to verify the labeling process multiple other scenarios
were executed with minimal background and benign activities. The time
windows of log collection was also adjusted to only collect logs during
the execution of these scenarios. Verifying the labels on a smaller dataset
did prove to be a more feasible task. Sysmon was also closely monitored
during these trail emulations. Within a time span of roughly thirty minutes,
Sysmon had generated 172 events, while the labeling tool detected 159
malicious events. No suspicious events were labeled as benign, the benign
events found were related to the host sending DNS queries to the domain
controller, which occurred even when the host was idle ahead of time.

Figure 5.7: Distribution of tactics and techniques from trail emulations

61

In figure 5.7 we can observe labels related to Exfiltration tactics, as
previously stated these were skipped in the APT29 emulation plan, but
CALDERA is clearly capable of executing this tactic as well. Evaluating the
tool against other scenarios also verifies that the tool is not directly tied to
the APT29 emulation plan.

Drawbacks

The labeling tool is developed around CALDERA and will not function
properly without the CALDERA report. This is due to the labeling tool
using data from the CALDERA report in order to find the initial malicious
PID’s and relate these back to a specific tactic and technique. In order
for the tool to function without the CALDERA report it would have to be
reverted back to the previous version of it which searched for the process
name of the CALDERA agent in order to extract the malicious PIDs. A time
based approach for applying higher label granularity could substitute the
tactics and techniques extracted from the report, by knowing exactly what
time frames each technique was executed during and labeling malicious
events accordingly.

The tool was not able to perfectly label the logs as it utilizes process
relation, and some events could not be traced back to a malicious PID
or had a blank parent PID. In these scenarios the tool will wrongly label
these events as benign. However, this is a rare occurrence and only a
fraction of events were found to be potentially mislabeled benign after
the last development iteration of the tool. Benign events mislabeled as
“uncertain” since the process performed benign operations at a later time
is present in the APT29 dataset. With a shorter emulation, such as the trail
emulation, this drawback did not have a significant impact. Majority of
the benign events labeled as “uncertain” were related back to T1059.001 -
Command and Scripting Interpreter, with the PID 2388. During a malicious
operation a malicious PID was observed targeting 2388, which resulted in
this PID being added to the malicious PID list. 2388 was later used by the
GHOSTS framework to produce benign events. This PID was observed
outside the expected time frame and is given the “isMalicious: false” data
field however, since the PID had previously been considered malicious the
“verdict” data field receives the “uncertain” label.

Despite these drawbacks the tool was able to successfully label the
majority of malicious events with accuracy and high label granularity.
All events were not found as roughly 30/278 events that received the
"uncertain" label was later found to be malicious. These events did occur
close to the excepted time frame and were mostly related to the execution
of scripts. The tool is considered a viable source for labeling logs, but
refinement is necessary to achieve a perfect score.

62

Chapter 6

Discussion and Related work

This chapter will discuss and compare the final result of the research, and
compare the result with the framework presented by Gharib et al. [18] in
Chapter 3.

6.1 Labeling Technique and Approach

The developed labeling tool automatically applies fine-grain labels to the
logs on two levels. First, it utilizes process relations through Parent, Child,
and Targeted process to develop a process tree containing all the process
ID’s related to specific malicious operations. This malicious operation
is linked to a MITRE tactic/technique through the report generated by
CALDERA which is later used to apply fine-grain labels. The script then
makes use of the time stamp within the logs to verify that the event
occurred within the time period of an operation before applying labels.
The time period of each operation is defined by the CALDERA agent attack
delegated and finished time stamp, which is extracted from the CALDERA
report. A similar time based approach was utilized by Landauer et al [28]
when applying labels to logs. Landauer used an attack log containing
the time frame of the various attacks, and an attack dictionary containing
the expected logs related to each attack, in order to create and apply
labels. The attack dictionary was created by carrying out the attacks in
an idle system, without normal user activities, and collecting the generated
logs. Logs would then be labeled if they matched with the time stamp,
and achieved a sufficiently high similarity with the expected logs. This
approach did however suffer from misclassification when malicious and
normal log lines are similar enough [28]. It is also challenging to guarantee
that no background traffic has been collected during the development of
the attack dictionary. This may potential create further misclassification of
background traffic.

The label approach of Landauer has been further improved upon in
the labeling tool developed in this thesis. Time frames of each operation
are automatically calculated, removing the requirement of creating a
separate file to trace the time frames of each attack. It is also not
necessary to conduct the attacks in an idle system in order to later find the

63

malicious events during the actual simulation. Effectively removing the
possibility of misclassification from benign events related to background
processes and other operations that may have occurred on the host during
the development of the attack dictionary. Malicious events are instead
found by leveraging the process relation of events to effectively map all
processes spawned or affected in any way by the malicious operation. The
granularity of labels applied has also been improved. Labels applied are
fine-grain labels that are directly tied to specific tactics and techniques
within MITRE ATT&CK. Both of the labeling approaches in the developed
tool are conducted automatically by the labeling tool. The only manual
operations necessary when applying labels are the extraction of the
CALDERA report, and the unprocessed logs. The process of generating
attack data is also automated through CALDERA, the attacker only has
to select the desired attack scenario or emulation plan. The labeling tool
is not limited to the chosen emulation plan, this allows the tool to be
utilized in combination with a modular approach, where multiple smaller
attack scenarios can be executed and labeled. This allows researchers to
specifically select the attack data relevant to the subject, or merge these
smaller datasets into a complete dataset. It is also possible to quickly create
new datasets once CALDERA releases new APT emulation plans. Being
able to quickly develop labeled datasets containing new attacks as these
are discovered and implemented into the ATT&CK framework is a valuable
asset.

6.2 Emulation, Dataset, and Framework

The dataset presented in this thesis is a result of the APT29 emulation plan
described in subsection 3.5.3 and the system activities detected through
Sysmon. Artifacts of attack technique that were executed but not success-
ful is present in the dataset. However, this is not the case if the attack was
skipped by CALDERA, skipped tactics are presented in Section 5.1. Com-
pletely skipping specific operations leads to an incomplete dataset. For the
dataset to be complete it is expected that it will contain all of the opera-
tions within the emulation plan. Exfiltration of data and compromising
other hosts with the network is considered a goal of the APT29 emulation
plan, this was not achieved as operations related to both these tactics were
skipped by CALDERA during the emulation. This is likely due to an issue
with the environment used in this thesis, or the version of CALDERA, as
Applebaum et al. [2] demonstrated that CALDERA can successfully ex-
ecute these tactics. CALDERA did not give feedback or error messages
indicating why these tactics were skipped. However, the main contribu-
tion of this thesis is the developed labeling tool and technique, which was
able to successfully apply fine-grain labels as shown in Section 5.2. Failed
or skipped techniques did not impact the effectiveness of the labeling tool,
as it still was able to effectively find malicious events and apply the correct
labels to the events.

64

The decision to skip certain operations affects the attack diversity of the
dataset, which could cause biases in systems trained on the dataset. How-
ever, as the emulation successfully executed several other tactics, which
can be seen by the labels applied in figure 5.6, the dataset created in this
thesis is considered to have an adequate attack diversity. In addition, since
the emulation plan chosen in this thesis involves the execution of several
steps, the dataset is beneficial for the research around multistep attacks,
where the currently available datasets are rare [34]. It is also acknowledged
that the sample size of the dataset is low, 2,276 events where 868 are mali-
cious and 1 406 are benign. It was chosen to end the data collection shortly
after CALDERA had finished the emulation. Collecting the logs at a later
time would result in a larger sample of benign events due to the approach
of only labeling events as malicious if they occurred within the time frame
of an operation. All events occurring after the emulation would be found
benign as all operations had ended.

Myneni et al. [33] presented a APT focused dataset, DAPT 2020,
covering different attack vectors related to the later stages of an advanced
attack e.g. Privilege Escalation, Collection, and Exfiltration. The dataset
includes system event logs, MySQL Access logs, Audit host IDS logs,
Apache access logs, Authentication logs, logs from various services, and
DNS logs. The inclusion of multiple log sources makes DAPT 2020
heterogeneous as the samples have different traits. Mynein et al generated
benign traffic by having regular users perform what is considered routine
business operations throughout a week. This hinders the reproducibility of
DAPT 2020 as the benign traffic within the dataset is almost impossible to
reproduce without a detailed insight to exactly what and when operations
were conducted. Additionally, data in DAPT 2020 is not labeled as the
dataset was tested on a semi-supervised IDS, trained on benign data.

The dataset presented in this thesis may be considered homogeneous
in comparison to the DAPT 2020 dataset, as the dataset only contains
host based logs. However, as the dataset is a pure host based data, it is
made heterogeneous through the inclusion of logs regarding file systems,
certificates, processes, and call traces. Further, the dataset presented is
reproducible as both benign and malicious traffic is generated through
automation software, which can be easily replicated. The dataset can also
be used and tested on supervised intrusion detection systems as it includes
fine-grain labels. However, as shown in Section 5.1, the presented dataset
is missing data related to Persistence, Lateral Movement, and Exfiltration
tactics, all of which are an important aspect of an APT attack.

65

Gharib et al. [18] presented eleven features necessary for a comprehens-
ive and wholesome framework for generating IDS/IPS dataset. Although
the datasets discussed are network based, some of the presented criteria
can be applied to host based datasets. The characteristics derived from the
work presented by Gharib et al are explained in detail under Chapter 3.

1. Realistic Configuration: In order to capture the real effects of the
attacks, the environment in which the attacks are conducted has
to be realistically configured. In regards to a pure host based
datasets, this may include using an up-to-date operating system,
enabling AV solutions/Firewalls/Windows Auditing, configuring
Active Directory, and joining a Domain with other hosts. This
was achieved by adding an Active Directory (AD) environment
with multiple hosts and one domain controller to the framework.
However, in order for CALDERA to work as intended the AV solution
and Firewall had to be disabled. Script execution in PowerShell
was also enabled as multiple operations involved the execution of
scripts through PowerShell. This is not expected from a realistic
environment but was necessary in order to successfully perform the
emulation.

2. Complete Capture: The presented dataset fulfills this in the sense
that no artifacts have been removed from the logs, background
activities and the outcome of attacks are present within the dataset.
However, the dataset does not contain the full kill chain of the APT29
emulation since CALDERA skipped some of the steps within the
APT29 emulation plan.

3. labeled Dataset: The presented dataset has fine-grain labels directly
tied to tactics and techniques within the ATT&CK Matrix, which
was achieved through the contributed labeling tool. However,
the fine-grain labels are only tied to malicious events, the tool is
not able to differentiate between normal user activity (benign) and
background/noise. All events found not to be malicious are labeled
as benign. This is considered acceptable as the main focus of this
thesis is generating APT attack patterns and applying fine-grain
labels to the logs.

4. Attack Diversity: The dataset is considered to fulfill this criterion as it
contains attack data from multiple tactics and techniques within each
tactic. The developed labeling tool in combination with CALDERA,
can apply fine-grain labels to attacks conducted by CALDERA
under the assumption that it has access to the report generated by
CALDERA and that the relation between processes is present in the
logs. Allowing for the creation of a new dataset containing the
desired attack patterns.

5. Anonymity: Issues regarding anonymity of the dataset are com-
pletely removed through virtualization. The data cannot be related
back to any sensitive information.

66

6.3 Limitations

As with any study exploring new fields, this study is subjected to
limitations. The presented automated labeling tool is currently limited
to CALDERA, leveraging the report generated by CALDERA after an
emulation in order to both find and label malicious operations in the raw
dataset. The metadata within this report provides the labeling tool with
the initial malicious process ID, time frame, and tactic/technique of each
operation. The tool is not limited to the testbed designed in this thesis and
should work on Sysmon logs in any environment where CALDERA is used
to generate attack data. The implemented algorithm for finding malicious
events is prone to misclassification due to the nature of interleaving
processes if labels were applied solely based on process relations. This
was addressed by implementing a time-based label approach, which only
labels events as malicious if they are within the expected time frame of
an operation. If timed correctly, benign events may still be misclassified
as certain operations have a longer time frame, between two to three
minutes. This was not found during the manual analysis of the presented
dataset, but it is a possibility. If the process chain would be broken by
e.g., Process Spoofing, malformed data, or parent PID not found, the
subsequent malicious events will go undetected. Process Spoofing was
not tested during any of the conducted experiments and is not a part of
the APT29 emulation plan. Fine-grain labels are limited to the tactics and
techniques within the ATT&CK Matrix, and are only applied to events
found malicious. Regarding the labeling of benign events, the tool is
not able to differentiate between background and normal user generated
events. This was not prioritized as the focus of this thesis was to research
the possibilities of generating labeled APT attack data with the help of
CALDERA. The developed labeling tool is also limited to host logs, as the
implemented algorithm does not work on transmitted network data.

The presented APT29 dataset contains 32 fine-grain attack technique
labels, distributed across 8 known tactics. It is acknowledged that the
dataset is incomplete as it does not contain all of the expected operations
within the APT29 emulation plan. Further, it is acknowledged that
the dataset is imbalanced, with a bias toward malicious events. The
distribution of 65,8% benign and 35.2% malicious events is shown in Figure
5.4. Ideally, only a small portion of the dataset should be malicious as this
is representative of realistic datasets. The time period of the emulation is
considered unrealistic in comparison with real APT attacks. CALDERA
finished the emulation within two hours, while a realistic APT attack is
executed over a longer time period. In an ideal case, the emulation would
be divided and distributed across several weeks with a slower approach,
this was not performed due to time constraints. The presented dataset
can be considered a proof-of-concept for the developed labeling tool and
technique.

67

Chapter 7

Conclusion and Future Work

This thesis has demonstrated a new approach to generating labeled APT
datasets, leveraging CALDERA to generate the attack data and labels,
Sysmon to detect system activities and generate logs, and a presented
labeling tool for creating datasets containing fine-grain attack labels. Once
initially configured, new attack scenarios can be easily executed through
CALDERA, raw logs can then be manually extracted and automatically
labeled by the presented labeling tool. Allowing for new fine-grain labeled
datasets to be created in an efficient and convenient manner. APT29
was emulated in this thesis, an APT29 dataset containing 31 various
technique labels is presented as a proof-of-concept for the suggested
labeling approach.

Research Question: What are the possibilities to develop a labeling
tool around CALDERA and Sysmon, to create fine-grain labeled
APT datasets?

With regard to the research question, this thesis has demonstrated
one possible approach to finding and labeling malicious logs related to
a CALDERA emulated APT attack. Logs were produced by Sysmon,
which was able to detect malicious operations related to events regarding
Process Access/Creation/Termination, Registry activities, Remote Thread
Creations, File Creation/Deletion, Windows Management Instrumentation
(WMI), Network connection, and changes made to the Registry. Call traces,
Command Line Arguments, and process relations are also recorded by
Sysmon, granting a detailed insight into the activities occurring on the host.

The developed labeling tool leverages CALDERA’s capability to gen-
erate an attack report containing meta data about the executed scenario to
automatically find and label the corresponding malicious events. The im-
plemented algorithm is based on process relation, utilizing recursion when
processing the raw log files for process identifiers (PIDs) observed in re-
lation to a previously known malicious process ID—effectively creating a
process tree with PIDs related to the initial operation. These processes and
their actions can then be labeled with the tactic and technique observed in
the operation. Labels applied are directly tied to specific tactics and tech-

68

niques within MITRE ATT&CK, resulting in attack labels of high granu-
larity. The resulting dataset can be used for kill chain, or multistep attack
detection as it can apply labels related to the various attack phases.

The implemented environment presents a use case for combining
CALDERA and Sysmon in order to generate raw APT logs. Benign
traffic is introduced through the General HOSTS (GHOSTS) framework
in an attempt to diversify the resulting dataset while still maintaining
the reproducibility of the generated dataset. The resulting benign data
was however not satisfactory as the automated actions were mainly web
browsing activities.

In conclusion, the research conducted in this thesis demonstrates the
possibilities of using CALDERA and Sysmon to generate raw attack logs.
It has introduced a new labeling tool and approach for applying fine-
grain attack labels to the raw logs, converting them into a fully labeled
dataset. An APT29 dataset is presented, while incomplete and imbalanced,
the dataset provides a proof-of-concept for the presented labeling tool
and technique. The environment created in this thesis is capable of
producing fully labeled attack dataset once new attacks are discovered and
implemented into CALDERA and the ATT&CK framework.

7.1 Future Work

Based on the experiments conducted in this thesis and their results, several
avenues for future work have been found. The developed labeling tool
can be further developed in order to differentiate between background
traffic and benign user actions. GHOSTS allows for a TrackableId to
be implemented into the conducted actions, once the action has been
executed a new entry will be created in the server-side PostgresSQL DB
of GHOSTS, saving information related to this specific event. This can
be leveraged in a similar manner to how malicious processes are found,
through process relations, to find all the related benign processes. Benign
labels of higher granularity can thus be applied as the benign operations
executed can be tied back to the initial PID. However, this would also
require improvements to the GHOSTS timeline to include more variations
of benign user operations.

In order to reduce the occurrences of the “uncertain” label, which
is applied to malicious processes observed outside the operation time
frame, the function can be further developed by calculating the difference
between the time stamps e.g., malicious PID observed ten seconds after the
operation time frame is more likely to be malicious than if observed ten
minutes later. A more advanced and accurate approach is to analyze the
event ID of the last process seen in relation to the PID outside the operation
time frame. If the last operation was a Sysmon Event Id 1 - Process Created,
the following operation conducted by this newly created process can with
higher accuracy be considered malicious if observed outside the operation
time frame. This would require an evaluation score to be applied to the
various Sysmon events ahead of time.

69

Another avenue for future work is to improve the emulation from
CALDERA in order to fully emulate all of the steps within the emulation
plan. The labeling tool should also be tested on other APT plans once these
are implemented into CALDERA. It is also recognized that in order to fully
evaluate the presented APT29 dataset, a machine learning model should be
trained on the dataset and tested. An interesting topic to further improve
this research area could be to replicate the study while capturing both host
and network logs. A study similar to the one presented in this thesis, but
regarding network dataset, was conducted by Julie L. Gjerstad [20]. The
network dataset presented by Julie could be merged with the APT29 host
dataset in order to create a complete dataset containing both network and
host data.

70

Appendices

71

.1 Labeled logs related to T1134.002

CALDERA Agent PID 7816 - Spawns PID 2344

72

PID 2344 - DLL loading and file created

73

PID 2344 - Changes to Certificates

74

PID 2344 - Delete previous created file, registry changes

75

PID 2344 - Changes to registry.

76

PID 2344 - Spawns 7552 which in return spawns 968.

77

Bibliography

[1] Adel Alshamrani et al. ‘A survey on advanced persistent threats:
Techniques, solutions, challenges, and research opportunities’. In:
IEEE Communications Surveys & Tutorials 21.2 (2019), pp. 1851–1877.

[2] Andy Applebaum et al. ‘Analysis of Automated Adversary Emu-
lation Techniques’. In: Proceedings of the Summer Simulation Multi-
Conference. SummerSim ’17. Bellevue, Washington: Society for Com-
puter Simulation International, 2017.

[3] Andy Applebaum et al. ‘Intelligent, automated red team emulation’.
In: Proceedings of the 32nd Annual Conference on Computer Security
Applications. 2016, pp. 363–373.

[4] APT29 emulation plan, retrieved from https://github.com/center-for-threat-
informed-defense/adversaryemulationlibrary.

[5] Atomic-Red-Team. https://redcanary.com/blog/atomic-red-team-testing/.

[6] CALDERA. retrieved from https://www.mitre.org/research/technology-
transfer/open-source-software/caldera.

[7] Carlos A Catania and Carlos Garcıa Garino. ‘Automatic network in-
trusion detection: Current techniques and open issues’. In: Computers
& Electrical Engineering 38.5 (2012), pp. 1062–1072.

[8] Zhuo Chen et al. ‘Understanding the Impact of Label Granularity on
CNN-Based Image Classification’. In: IEEE International Conference on
Data Mining Workshops. 2018.

[9] Clarence Chio and David Freeman. Machine learning and security:
Protecting systems with data and algorithms. " O’Reilly Media, Inc.",
2018.

[10] Henry Clausen, Robert Flood and David Aspinall. ‘Traffic generation
using containerization for machine learning’. In: Workshop Pre-
Proceedings in DYnamic and Novel Advances in Machine learning and
Intelligent Cyber Security (DYNAMICS) (2019).

[11] Scott E Coull et al. ‘Playing Devil’s Advocate: Inferring Sensitive
Information from Anonymized Network Traces.’ In: Ndss. Vol. 7.
2007, pp. 35–47.

[12] Gideon Creech. ‘Developing a high-accuracy cross platform Host-
Based Intrusion Detection System capable of reliably detecting zero-
day attacks.’ PhD thesis. University of New South Wales, Canberra,
Australia, 2014.

78

[13] Robert K Cunningham et al. Evaluating intrusion detection systems
without attacking your friends: The 1998 DARPA intrusion detection eval-
uation. Tech. rep. MASSACHUSETTS INST OF TECH LEXINGTON
LINCOLN LAB, 1999.

[14] Jonathan J Davis and Andrew J Clark. ‘Data preprocessing for
anomaly based network intrusion detection: A review’. In: computers
& security 30.6-7 (2011), pp. 353–375.

[15] DetecionLab, Retrieved from https://detectionlab.network/.

[16] Thomas Edgar and David Manz. Research methods for cyber security.
Syngress, 2017.

[17] ElasticSearch Stack. Beats. Retrieved from https://www.elastic.co/beats/.

[18] Amirhossein Gharib et al. ‘An evaluation framework for intrusion
detection dataset’. In: 2016 International Conference on Information
Science and Security (ICISS). IEEE. 2016, pp. 1–6.

[19] GHOSTS Timeline Repository, retrieved from https://github.com/cmu-
sei/GHOSTS/tree/master/src/Ghosts.Client/Sample%20Timelines.

[20] Julie Lidahl Gjerstad. Generating labelled network datasets of APT with
the MITRE CALDERA framework. University of Oslo. 2022.

[21] Waqas Haider et al. ‘Windows based data sets for evaluation of
robustness of host based intrusion detection systems (IDS) to zero-
day and stealth attacks’. In: Future Internet 8.3 (2016), p. 29.

[22] https://attack.mitre.org/groups/G0016/.

[23] JavaScript Object Notation (JSON). Retrieved from https://www.json.org/json-
en.html.

[24] Fikret Kadiric. MasterThesis-LogLabeler. Version 1.0.0. May 2022. URL:
https://github.uio.no/fikretk/MasterThesis-LogLabeler/tree/main.

[25] Fikret Kadiric. MasterThesis-LogLabeler. Version 1.0.0. May 2022. URL:
https://github.com/Fiik/MasterThesis-LogLabeler.

[26] Kevin S Killourhy and Roy A Maxion. ‘Toward realistic and artifact-
free insider-threat data’. In: Twenty-Third Annual Computer Security
Applications Conference (ACSAC 2007). IEEE. 2007, pp. 87–96.

[27] Robert Koch, Mario Golling and Gabi Dreo Rodosek. ‘Towards
comparability of intrusion detection systems: New data sets’. In:
TERENA Networking Conference. Vol. 7. 2014.

[28] Max Landauer et al. ‘Have it Your Way: Generating Customized
Log Datasets With a Model-Driven Simulation Testbed’. In: IEEE
Transactions on Reliability 70.1 (2020), pp. 402–415.

[29] Tien-Chih Lin, Cheng-Chung Guo and Chu-Sing Yang. ‘Detecting
Advanced Persistent Threat Malware Using Machine Learning-
Based Threat Hunting’. In: European Conference on Cyber Warfare and
Security. Academic Conferences International Limited. 2019, pp. 760–
XX.

79

https://github.uio.no/fikretk/MasterThesis-LogLabeler/tree/main
https://github.com/Fiik/MasterThesis-LogLabeler

[30] Vasileios Mavroeidis and Audun Jøsang. ‘Data-driven threat hunting
using sysmon’. In: Proceedings of the 2nd International Conference on
Cryptography, Security and Privacy. 2018, pp. 82–88.

[31] Michael Haag. Resources for learning about deploying, managing and hunt-
ing with Microsoft Sysmon. Retrieved from https://github.com/MHaggis/sysmon-
dfir.

[32] Microsoft. Audit Policy Recommendations.
Retrieved from https://docs.microsoft.com/en-us/windows-server/identity/ad-
ds/plan/security-best-practices/audit-policy-recommendations.

[33] Sowmya Myneni et al. ‘Dapt 2020-constructing a benchmark dataset
for advanced persistent threats’. In: International Workshop on Deploy-
able Machine Learning for Security Defense. Springer. 2020, pp. 138–163.

[34] Julio Navarro, Aline Deruyver and Pierre Parrend. ‘A systematic
survey on multi-step attack detection’. In: Computers & Security 76
(2018), pp. 214–249.

[35] Joshua Ojo Nehinbe. ‘A critical evaluation of datasets for investigat-
ing IDSs and IPSs researches’. In: 2011 IEEE 10th International Confer-
ence on Cybernetic Intelligent Systems (CIS). IEEE. 2011, pp. 92–97.

[36] Olaf Hartong. Sysmon Configuration File.
Retrieved from https://github.com/olafhartong/sysmon-modular.

[37] Process Injection: Asynchronous Procedure Call,
Retrieved from https://attack.mitre.org/techniques/T1055/004/.

[38] Rapid7. Metasploit Penetration Testing Software.
Retrieved from http://www.metasploit.com.

[39] Saurabh Singh et al. ‘A comprehensive study on APT attacks
and countermeasures for future networks and communications:
challenges and solutions’. In: The Journal of Supercomputing 75.8
(2019), pp. 4543–4574.

[40] Branka Stojanović, Katharina Hofer-Schmitz and Ulrike Kleb. ‘APT
datasets and attack modeling for automated detection methods: A
review’. In: Computers & Security 92 (2020), p. 101734.

[41] SwiftOnSecurity Sysmon Configuration File,
Retrieved from https://github.com/SwiftOnSecurity/sysmon-config.

[42] The mitre corporation, "Adversary Emulation Plans," MITRE ATT&CK
Retrieved from https://attack.mitre.org/resources/adversary-emulation-plans.

[43] The mitre corporation, "MITRE ATT&CK Framework". Retrieved from
https://attack.mitre.org/.

[44] Dustin D Updyke et al. Ghosts in the machine: A framework for
cyber-warfare exercise npc simulation. Tech. rep. CARNEGIE-MELLON
UNIV PITTSBURGH PA, 2018.

[45] Dustin D Updyke et al. Ghosts in the machine: A framework for
cyber-warfare exercise npc simulation. Tech. rep. CARNEGIE-MELLON
UNIV PITTSBURGH PA, 2018.

80

[46] US Government, APT29 ties to SolarWinds.
Retrieved from https://www.whitehouse.gov/briefing-room/statements-releases
/2021/ 04/15/fact-sheet-imposing-costs-for-harmful-foreign-activities-by-the-
russian-government/.

[47] Vagrant, Retrieved from https://www.vagrantup.com/docs.

[48] Windows Sysinternals Suite. System Monitor.
Retrievend from https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon.

81

	Introduction
	Context
	Problem Description
	Research Questions
	Research Methods
	Thesis outline
	Contribution

	Background
	Existing datasets
	Traffic generation using virtualization
	Data Labeling
	Windows Event Logs
	Sysmon
	MITRE ATT&CK
	Adversary Emulation
	Automated Adversary Emulation
	CALDERA

	Architecture and Data Generation
	Environment Overview
	Windows Domain
	Domain Network

	Sysmon configuration
	Host Configuration
	Attack Data Generation
	CALDERA Agent
	Executing Attack Scenario
	APT29 Emulation

	Benign Data Generation
	GHOSTS NPC Simulator
	GHOSTS Timeline

	Data Collection and Labeling
	Data Collection
	Collecting Windows Logs
	Winlogbeat

	Data Processing
	Applying labels to logs

	Results
	Emulation of APT29
	Final Dataset
	Labeling Tool

	Discussion and Related work
	Labeling Technique and Approach
	Emulation, Dataset, and Framework
	Limitations

	Conclusion and Future Work
	Future Work

	Appendices
	Labeled logs related to T1134.002

