
.

Master’s thesis

Exploring Reinforcement
Learning for
End-Diastolic and
End-Systolic Frame
Detection

Magnus Dalen Kvalevåg

60 study points

Department of Informatics
The Faculty of Mathematics and Natural Sciences

Abstract

The thesis explores ways of formulating the problem of detecting the key
cardiac phases from ultrasound videos, i.e., the end diastolic (ED) and end
systolic (ES) phases, as a reinforcement learning (RL) problem, and whether
there are any benefits in doing so. Of particular interest is the design of
the RL reward function. Three reward functions are explored: one based
on a generalization of the performance metric of average absolute frame
difference (aaFD) that is only given to the agent at the end of an episode,
and two based on per-frame phase classification given at every step.
Additionally, two formulations of the RL environment are explored: binary
classification environment (BCE), designed to be a direct reformulation of
a supervised binary classification task, and m-mode binary classification
environment (MMBCE), designed to provide the agent with the ability to
explore the environment using synthetic m-mode imaging. Because of
time constraints, MMBCE was only preliminary explored, yet the results
indicate that the problem is too complex for the current setup and requires
more work before we can draw any conclusions on its feasibility.

Experiments show that an RL agent is able to learn to perform phase
detection even when the reward signal is very sparse. However, the
less sparse reward functions perform better on nearly all metrics. The
best agent predicts the correct number of ED and ES events in ∼ 80%
of the videos on the test set, on which it yields an aaFD score of 1.69.
It is concluded that there are multiple ways of formulating the problem
of phase detection as a reinforcement learning problem, but not all
formulations perform equally well. Reward sparsity and environment
complexity contribute negatively to performance overall. There are also
indications that lower values of the ε -greedy exploration hyperparameter
ε have a regularizing effect on the model, prompting further research.

i

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goal and Research Question 2
1.3 Thesis Structure . 2

2 Background 5
2.1 The Cardiac Cycle . 5
2.2 What is Ultrasound? . 8

2.2.1 Attributes of a Sine Wave 9
2.2.2 Attributes of the Medium 10

2.3 Echocardiography . 12
2.4 Deep Learning . 16

2.4.1 Gradient Descent . 16
2.4.2 Deep Neural Networks 18
2.4.3 Optimization Process 20
2.4.4 Supervised and Unsupervised Learning 21
2.4.5 Reinforcement Learning 21

2.5 Related Work . 29
2.5.1 ED-/ES-Detection . 29
2.5.2 Reinforcement Learning in Medical Imaging 34

3 The Dataset 37
3.1 Echonet-Dynamic Dataset . 37

3.1.1 Getting ED/ES Frame Information 37
3.1.2 Extrapolating Diastole and Systole Labels 39
3.1.3 Normalizing and Removing Invalid Videos 41
3.1.4 Training, Validation, Test Split 43

4 Methodology 45
4.1 Environment Formulation . 45

4.1.1 Binary Classification Environment 45
4.1.2 Reward Function Design 46

4.2 Frameworks and Libraries . 48
4.3 Agent Architecture . 48

4.3.1 Neural Network . 49
4.3.2 Loss Function and Optimizer 49
4.3.3 Distributed Training 50

iii

4.4 Evaluation . 51
4.5 Selection of Hyperparameters 52

4.5.1 Generalized Average Absolute Frame Difference Re-
ward Function . 52

4.5.2 Simple- and Proximity-Based Reward Functions . . . 54
4.6 Incorporating Search . 55

4.6.1 Temporal Search . 55
4.6.2 Spatial Search . 55

4.7 M-Mode Binary Classification Environment 57
4.7.1 Agent Architecture . 61

5 Experiments and Results 63
5.1 Performance Metrics — An Overview 63
5.2 The Impact of Epsilon on Average Absolute Frame Difference 66
5.3 The Impact of Reward Function and Epsilon on Accuracy . . 71
5.4 Learning Curves . 74
5.5 The Impact of Reward Function and Epsilon on Q-Values . . 78
5.6 Inference Speed . 82
5.7 M-Mode Binary Classification Environment Results 82

6 Discussion 85
6.1 On Generalized Average Absolute Frame Difference Reward

Function . 85
6.2 On Simple and Proximity Based Reward Functions 87
6.3 On M-Mode Binary Classification Environment 88
6.4 Weaknesses of Using Average Absolute Frame Difference . . 88
6.5 Lack of Comparison Experiments 88
6.6 Why Use Reinforcement Learning? 89

7 Conclusion 91
7.1 Answers to the Research Questions 91
7.2 Future Work and Research . 92
7.3 Link to Code Repository . 92

iv

List of Figures

2.1 An illustration of the heart. The heart has two sides, each
side having two chambers. Image reproduced from [4],
License: CC BY-SA 3.0, User: Eric Pierce (Wapcaplet). 6

2.2 The cardiac cycle is illustrated with the direction of blood
flow and pressure from and into the atria and ventricles.
Image reproduced from [26], License: CC BY 3.0, User:
OpenStax College. 7

2.3 The Wiggers diagram describes the different phases of
the cardiac cycle and what they represent in different
measurements. Image reproduced from [67], License: CC
BY-SA 4.0, User: adh30 revised work by DanielChangMD
who revised original work of DestinyQx; Redrawn as SVG
by xavax. 8

2.4 A pressure wave moves through a medium by pushing
particles in a medium close together. The particles push
back as the pressure increases, moving the pressure field.
Warning: This image is just a representation of how particles
interact — real particles do not look like this. 9

2.5 The left-most plot shows two basic waves where one has
twice the amplitude. The middle plot shows two basic
waves where one has a higher frequency. The right-most plot
shows two basic waves that have different phases. 9

2.6 Adding two sounds together also adds their frequency
spectrums together. 10

2.7 The overtones make two instruments sound different, even
when playing the same notes. Left: frequency spectrum of
a piano and a clarinet from 150 to 450 hertz. Right: the
same frequency spectrum from 0 to 5000 hertz, in log10 scale.
Both instruments are playing the Am7 chord, which consists
of four notes. These four notes can be seen clearly in the
left image, all having relatively high amplitudes for both
instruments. 10

v

2.8 Even though the rate of packages per second stays the same,
the distance between packages decreases when arriving on
a slower conveyor belt. This is analogous to a sound
wave propagating through a medium where the speed of
sound changes. Even though the frequency is the same, the
wavelength (the length between each top) decreases when it
encounters a lower speed of sound. 11

2.9 In a medium with nonlinearity, higher-pressure parts of
a wave propagate faster than lower-pressure parts. Over
time, the higher-pressure parts will "catch up" to the lower-
pressure parts, and what started as a sine wave will start to
resemble a sawtooth wave. 11

2.10 By measuring the time between sending a signal and
receiving it back from a reflector, we can approximate
how far away the reflector is — given that we know the
approximate speed of sound. 13

2.11 Because of the Huygens-Fresnel principle, we can create
a desired wavefront by creating spherical waves at each
sender element when the imagined wavefront hits it. The
dashed, pink curve represents the imagined desired wave-
front as it approaches the sender elements marked by the
purple rectangle. Each sender element is activated when the
imagined wavefront passes through it, creating new spher-
ical waves, represented by the cyan semi-circles. The gen-
erated spherical waves converge on the same point as the
imagined wavefront. 14

2.12 Imaging along different angles from a common starting
point creates a sector scan. 15

2.13 Left: a still of a sector scan. Right: the corresponding M-
mode image of the video for the indicated blue line. 16

2.14 Visualization of gradient descent of a function that takes a
single parameter x. Nudging x in the opposite direction of
the gradient at the current point minimizes the result of the
function. 17

2.15 Stride affects the distance between subsequent applications
of a filter, visualized here in pink. Left: A stride of 1 moves
the filter one pixel at each application. Right: A stride of 2
moves the filter by two pixels at each application. 19

2.16 Dilation affects the spacing between the parameters in each
filter. Left: A dilation of 1 means that each parameter is
spaced apart by 1 pixel. Right: A dilation of 2 means that
each parameter is spaced apart by 2 pixels. 19

2.17 A visualization of a basic recurrent layer. Each pink square
represents the same computation that takes an input item, x,
and a hidden state h and outputs y. 20

vi

2.18 A figure from [50] that shows a two-dimensional t-SNE
embedding of the representations in the last hidden layer
assigned by DQN to game states experienced while playing
Space Invaders. The points are colored according to the state
values predicted by DQN for the corresponding game states.
The states rendered in the top right, which are of almost full
of enemy ships, and the states rendered in the bottom left,
which are nearly empty, have similar predicted state values
even though they are visually dissimilar, because the agent
has learned that completing a screen leads to a new screen
full of enemy ships. 25

2.19 A figure from [29] showing the median performance of mul-
tiple modified DQN agents compared to human perform-
ance across 57 Atari games. After 200 million frames, all
modifications show an improvement over regular DQN, but
together (Rainbow), they perform significantly better than
any one single improvement. Curves are smoothed with a
moving average of 5 points. 30

2.20 A figure from [29] visualizing an ablation study of the vari-
ous DQN modifications (dashed lines). Dashed lines that
are close to the rainbow line indicate that the corresponding
DQN modification does not add much benefit to the overall
agent or is overshadowed by other modifications. Accord-
ing to the ablation study, the three most important modific-
ations are N-step bootstrapping (multi-step), distributional
Q-learning, and prioritized replay. 31

2.21 Comparison between NMF, LLE, and ISOMAP results for all
99 cases in the apical 4 view, taken from [69]. 32

3.1 The first frames of 15 randomly sampled videos from the
Echonet dataset. 38

3.2 Class imbalance: only the first frame is marked with the
phase of the first end-event (either ED or ES). All others are
marked with the other phase. 39

3.3 The absolute frame difference of all frames in a video
compared to frame 100. Notice that the difference for frame
100 is 0 as it (of course) equals itself. 40

3.4 The same summed absolute frame difference plot as in
figure 3.3, but smoothed using a gaussian blur with a kernel
standard deviation of 5. The dashed lines represent phase-
end events, and the frames in the light blue area are frames
that have their phase labeled. Notice how the labeled
frames’ perimeter only extends 75% towards the peak on
the right side. Also note that the gaussian blur causes the
summed absolute frame difference for frame 100 to no longer
be 0. 40

vii

3.5 The summed absolute frame difference between the first
end-phase event and the frames until the next end-phase
event. This should only be a half cardiac cycle, so there
should be at most one peak. The upper plots show videos
where the end-phase labels only cover one half cardiac cycle,
while the bottom plots show videos with more than one
cardiac cycle and thus have incorrect labels. 41

3.6 A histogram of the different FPS rates of the videos in the
Echonet dataset. Note that the y-axis is on a logarithmic scale
— in fact, almost 80% of the videos have precisely 50 FPS. . 42

3.7 A visualization of the data processing pipeline for the
Echonet-Dynamic dataset, as described in the previous
subsections. First, the ED- and ES-frames from the video
are extracted from the volume tracings data. The frame
with the biggest volume is ED; the other is ES. Next, more
frame labels are extrapolated by looking at the absolute
pixel differences between the ED- or ES-frame and the other
frames of the video. Then, videos are filtered such that
not more than one cardiac cycle is included in the labeled
frames and all videos have 50 FPS. Finally, the videos are
split randomly into three subsets: training, validation, and
testing. 43

4.1 Visualization of the Binary Classification Environment loop.
An agent sees the observation from the current frame and
takes an action, either marking it as diastole or as systole,
and gets back the reward and the observation for the next
frame from the environment. 46

4.2 The effect of N on the size of the dataset. Left: the number
of valid videos (videos with at least N adjacent frames on
either side) for the whole dataset. Right: the change in the
number of valid videos per N for the whole dataset. 47

4.3 A visualization of the simple DQN-Atari-paper-inspired CNN. 49

4.4 An illustration of the distributed RL training system. Each
pink node runs in a separate Python process, and each
blue arrow is an inter-process function call facilitated by
Launchpad. 50

4.5 A region of interest (ROI) is given to the agent, which it can
then move around to explore. 56

4.6 An m-mode image is an intersecting plane in 3D "video space". 57

4.7 Global (to the left) versus local (to the right) translation.
Local translation means that the movement depends on the
direction of the m-mode line. 58

viii

4.8 Moving the synthetic m-mode line up or down using local
translation changes the resulting image very little — it
simply translates it up or down, as indicated by the blue
arrows. To the left: an overview image of a video with the
line added on top. To the right: the resulting synthetic m-
mode image. 58

4.9 The union of 100 randomly sampled m-mode lines. 60

4.10 The network architecture of the m-mode agent. An obser-
vation consists of three parts. Each part is processed inde-
pendently by a neural network before being concatenated
and used to produce the approximated Q-values. 61

5.1 Gaussian KDE of the GaaFD-performance for each model
(ε = 0.1, ε = 0.01, and ε = 0) when using GaaFD as the
reward function. The left plot compares all three models on
the test split. The middle plot compares all three models on
the train split. The right plot shows the difference between
the two as a means to visualize model overfitting. 66

5.2 Gaussian KDE of the GaaFD-performance for each model
(ε = 0.1, ε = 0.01, and ε = 0) when using GaaFD as the
reward function, only accounting for either ED- or ES-events
individually. The upper row compares the performance of
ED and ES for each model. The bottom row shows the
difference in GaaFD-density on the test-set versus the train-
set as a means to visualize model overfitting. 67

5.3 The difference between the number of predicted events and
the number of ground truth events for each model when
using GaaFD as the reward function. Most predictions
produce the same number of predicted events as ground
truth, e.g., the model with ε = 0 produces the correct
number of events 77% of the time, also shown in table 5.1. . 67

5.4 Gaussian KDE of the GaaFD-performance for each model
(ε = 0.1, ε = 0.5, and ε = 1.0) when using Rsimple as the
reward function. The left plot compares all three models on
the test split. The middle plot compares all three models on
the train split. The right plot shows the difference between
the two as a means to visualize model overfitting. 68

5.5 Gaussian KDE of the GaaFD-performance for each model
(ε = 0.1, ε = 0.01, and ε = 0) when using Rsimple as the
reward function, only accounting for either ED- or ES-events
individually. The upper row compares the performance of
ED and ES for each model. The bottom row shows the
difference in GaaFD-density on the test-set versus the train-
set as a means to visualize model overfitting. 68

ix

5.6 Gaussian KDE of the GaaFD-performance for each model
(ε = 0.1, ε = 0.5, and ε = 1.0) when using Rproximity as the
reward function. The left plot compares all three models on
the test split. The middle plot compares all three models on
the train split. The right plot shows the difference between
the two as a means to visualize model overfitting. 69

5.7 Gaussian KDE of the GaaFD-performance for each model
(ε = 0.1, ε = 0.01, and ε = 0) when using Rproximity as the
reward function, only accounting for either ED- or ES-events
individually. The upper row compares the performance of
ED and ES for each model. The bottom row shows the
difference in GaaFD-density on the test-set versus the train-
set as a means to visualize model overfitting. 69

5.8 The difference between the number of predicted events
and the number of ground truth events for each model
when using Rsimple (left) and Rproximity (right) as the reward
function. Most predictions produce the same number of
predicted events as ground truth, e.g., the model with ε =
0.5 and Rsimple as the reward function produces the correct
number of events 80% of the time, which can also be seen in
table 5.2. 70

5.9 Gaussian KDE of the accuracy and balanced accuracy for
each model (ε = 0.1, ε = 0.01, and ε = 0) when using GaaFD
as the reward function. The left plot shows the accuracy. The
right plot shows the balanced accuracy, which accounts more
for class imbalance. 71

5.10 Gaussian KDE of the accuracy for each model (ε = 0.1, ε =
0.01, and ε = 0) when using GaaFD as the reward function
for diastole or systole phase predictions individually. The
left plot shows the accuracy for diastole frame predictions.
The right plot shows the accuracy for systole frame predictions. 71

5.11 Gaussian KDE of the accuracy and balanced accuracy for
each model (ε = 0.1, ε = 0.01, and ε = 0) when using Rsimple
as the reward function. The left plot shows the accuracy. The
right plot shows the balanced accuracy, which accounts more
for class imbalance. 72

5.12 Gaussian KDE of the accuracy for each model (ε = 0.1, ε =
0.01, and ε = 0) when using Rsimple as the reward function
for diastole or systole phase predictions individually. The
left plot shows the accuracy for diastole frame predictions.
The right plot shows the accuracy for systole frame predictions. 72

5.13 Gaussian KDE of the accuracy and balanced accuracy for
each model (ε = 0.1, ε = 0.01, and ε = 0) when using
Rproximity as the reward function. The left plot shows the
accuracy. The right plot shows the balanced accuracy, which
accounts more for class imbalance. 72

x

5.14 Gaussian KDE of the accuracy for each model (ε = 0.1, ε =
0.01, and ε = 0) when using Rproximity as the reward function
for diastole or systole phase predictions individually. The
left plot shows the accuracy for diastole frame predictions.
The right plot shows the accuracy for systole frame predictions. 73

5.15 The learning curves of using GaaFD as the reward function
for different values of the exploration parameter ε. Left:
GaaFD over training time (gradient descent steps). Middle:
Balanced accuracy over training time. Right: The difference
in GaaFD between the validation set and the training set
over training time, positive values indicating overfitting on
the training set. Each point in the curve is calculated on
50 random videos in the validation (or training) set. The
curves have been smoothed using a gaussian filter with a
kernel standard deviation of 4 to reduce noise due to the low
sample size of each data point. The overfitting (right) plot
has also been smoothed using a gaussian filter with a kernel
standard deviation of 50 to ensure that the overall trend is
visible. 74

5.16 The training loss over time for different values of epsilon.
The left plot shows the full y-axis, while the right plot shows
the same plots but with a zoomed-in y-axis. 74

5.17 The training curves of using Rsimple as the reward function
for different values of the exploration parameter ε. Left:
GaaFD over training time (gradient descent steps). Middle:
Balanced accuracy over training time. Right: The difference
in GaaFD between the validation set and the training set
over training time, positive values indicating overfitting on
the training set. Each point in the curve is calculated on
50 random videos in the validation (or training) set. The
curves have been smoothed using a gaussian filter with a
kernel standard deviation of 4 to reduce noise due to the low
sample size of each data point. The overfitting (right) plot
has also been smoothed using a gaussian filter with a kernel
standard deviation of 50 to ensure that the overall trend is
visible. 75

xi

5.18 The training curves of using Rproximity as the reward function
for different values of the exploration parameter ε. Left:
GaaFD over training time (gradient descent steps). Middle:
Balanced accuracy over training time. Right: The difference
in GaaFD between the validation set and the training set
over training time, positive values indicating overfitting on
the training set. Each point in the curve is calculated on
50 random videos in the validation (or training) set. The
curves have been smoothed using a gaussian filter with a
kernel standard deviation of 4 to reduce noise due to the low
sample size of each data point. The overfitting (right) plot
has also been smoothed using a gaussian filter with a kernel
standard deviation of 50 to ensure that the overall trend is
visible. 76

5.19 The GaaFD over training time (gradient descent steps) on the
validation set (solid pink and blue line) and the training set
(dashed pink and blue lines). The GaaFD on the training set
reaches 0, meaning perfect predictions. 76

5.20 The training loss over time for different values of epsilon.
Left: an agent trained using Rsimple. Right: an agent trained
using Rproximity. 76

5.21 Comparison of the training curves using Rsimple versus
Rproximity for different values of of the exploration parameter
ε. The top row shows the GaaFD over training time (gradient
descent steps). The bottom row shows the balanced accuracy
over training time. Each column correspond to one of the
agents, ε = 0.1, ε = 0.5, and ε = 1.0, respectively. 77

5.22 The Q-values for three of the best-predicted videos for each
model trained using RGaaFD. Each column is a different value
of ε, each row is a different video. The x-axis represents time
in the video. 78

5.23 The Q-values for three of the best-predicted videos for each
model trained using Rsimple. Each column is a different value
of ε, each row is a different video. The x-axis represents time
in the video. 79

5.24 The Q-values for three of the best-predicted videos for each
model trained using Rproximity. Each column is a different
value of ε, each row is a different video. The x-axis
represents time in the video. 79

5.25 The Q-values for three of the worst predicted videos for each
model trained using RGaaFD. Each column is a different value
of ε, each row is a different video. The x-axis represents time
in the video. 80

5.26 The Q-values for three of the worst predicted videos for each
model trained using Rsimple. Each column is a different value
of ε, each row is a different video. The x-axis represents time
in the video. 80

xii

5.27 The Q-values for three of the worst predicted videos for
each model trained using Rproximity. Each column is a
different value of ε, each row is a different video. The x-axis
represents time in the video. 81

5.28 A bar chart showcasing the distribution of actions selected
by the agent. The vast majority of actions are that of marking
frames as diastole or systole. To the left are all actions, while
to the right are only movement actions, i.e., marking a frame
as diastole or systole not included. 83

5.29 A density plot of GaaFD for episodes where the agent
performed no other actions than marking frames as diastole
or systole, i.e., no exploration, versus the density plot of
GaaFD for episodes where the agent moved the synthetic m-
mode line in any way at least once. 84

6.1 A single wrongly predicted phase that is corrected right after
creates two incorrect events. 86

xiii

xiv

List of Tables

2.1 Values of the acoustic wave velocity c and acoustic imped-
ance Z of some substances from [59]. 12

3.1 Echonet video general information variables. 38
3.2 Echonet video volume tracing variables 38

4.1 A collection of the most important libraries used in the project. 49
4.2 The actions that an agent can take in the MMBCE formulation. 58

5.1 Performance of agents trained using GaaFD as the reward
function on the test dataset. 64

5.2 Performance of agents trained using Rsimple as the reward
function on the test dataset. 64

5.3 Performance of agents trained using Rproximity as the reward
function on the test dataset. 64

5.4 Performance of the best agent for each explored reward
function on the test dataset. The best agent was selected by
the best GaaFD score. 65

5.5 The compilation time and average elapsed time over 1000
calls for the neural network, on the CPU and the GPU, with
or without IO overhead. 82

5.6 Performance of agents trained on the m-mode binary classi-
fication environment. 83

5.7 The average compilation and run time for predicting the
phase of 128 frames in a video (including IO overhead). . . . 84

xv

xvi

Chapter 1

Introduction

This chapter presents the motivation, goal, and structure of the thesis.
Section 1.1 introduces the problem that the thesis aims to solve and gives
motivation for why it needs to be solved. Section 1.2 states the goal and
research questions of the thesis explicitly. Lastly, section 1.3 gives an
overview of the structure of the rest of the thesis.

1.1 Motivation

Cardiovascular disease is the number one cause of death globally, taking an
estimated 17.9 million lives each year [11]. It is important to make a timely
diagnosis so that patients receive early treatment risk assessment. One
standard tool used for diagnosis is cardiac imaging; non-invasive imaging
of the heart.

In order to obtain images of the heart, clinicians use tools such as
magnetic resonance imaging (MRI), computerized tomography (CT) scans,
or ultrasound. MRI and CT are less routinely used due to being expensive,
having limited availability and a prolonged acquisition time, and using
radiation for CT scans. Furthermore, both MRI and CT scans can not be
performed if the patient has any metal in their body, such as a pacemaker
or metal implants. Ultrasound, on the other hand, is comparatively
inexpensive. It is also more flexible; there even exists handheld devices
that can be carried by hand and brought on-site. Ultrasound does have a
lower imaging quality compared to, for example, MRI [52], and the images
can be challenging to interpret due to ultrasound-specific artifacts. Despite
this, it is still preferable in many cases because of the reasons mentioned
above.

Many heart measurements depend on two key events in the cardiac
cycle: end-diastole (ED) and end-systole (ES). Roughly speaking, ED
is when the heart is the most relaxed, and ES is when it is the most
contracted. Left ventricular ejection fraction is an example of an important
measurement that is calculated from ED and ES frames of the cardiac cycle.

A recent study has reported that the average time taken for manually
annotating ED and ES frames from visual cues from a video of 1 to 3
heartbeats is 26 seconds, with a standard deviation of ±11 seconds [42].

1

Furthermore, because there is not much movement around these frames,
the predicted ED and ES frames may differ between different operators.
It may even differ for the same operator predicting on the same video at
different times. Automating ED/ES frame detection is desirable because it
can help reduce annotation time and create a more robust and deterministic
result.

Machine learning methods show promising results on several tasks
within medical imaging, as is explored in the following chapter. For ED/ES
frame detection, the most recent methods utilize supervised deep learning,
a family of methods in which a computer program is shown examples of
correct predictions and, over time, learns to make the correct predictions
itself. Reinforcement learning (RL) is another family of methods that have
as of yet not been explored for the problem of ED/ES frame detection. RL is
able to outperform humans in complex tasks, such as mastering the board
game Go in 2016 [58] or becoming among the 0.2% best players in the world
in the video game Starcraft II [64]. However, RL can do more than just
play games, and many medical imaging applications also show promising
potential [73].

1.2 Goal and Research Question

The goal of this thesis is to explore the use of RL for automatically detecting
the ED and ES frames from an ultrasound video. It is interesting from a
healthcare perspective because it may open the doors for better automated
tools. Yet, it is arguably more interesting from a research perspective
because RL is not an obvious choice for this task. RL is built for tasks that
require strategic reasoning, but ED/ES frame detection is fundamentally a
classification problem.

We pose the following research questions:

• Is it possible to use reinforcement learning for the task of ED-/ES-
frame detection?

• How does formulating the problem as reinforcement learning
affect the performance of the model?

Of importance to all types of machine learning is formulating the
problem in a way that makes it easier to learn for the computer. That
is, optimizing the inductive bias by incorporating human knowledge into
the algorithm itself. Using RL for ED/ES frame detection may open up
possibilities of seeing the problem from a new perspective, allowing us the
add the right set of inductive bias.

1.3 Thesis Structure

The thesis is organized into seven chapters. The first chapter, Introduction,
(which you are currently reading) states the motivation, goal, and research

2

questions of the thesis. Chapter 2, Background, gives an overiew of
the concepts and technologies used throughout the thesis, as well as a
summarizing previous work on ED-\/ES-frame detection and the use of
RL in medical imaging. Chapter 3, The Dataset, gives an overview of the
data used to train the models, and how it is pre-processed. Chapter 4,
Methodology, steps through the methods used in the thesis, the decisions
taken, and the reasoning behind them. Chapter 5, Experiments and Results,
reports the results, and the impact of various hyperparameters on the
results. Chapter 6, Discussion, discusses the results, methodology, and
weaknesses of the study. Lastly, chapter 7, Conclusion, answers the research
questions asked in chapter 1, and gives potential future paths on which to
continue research.

3

4

Chapter 2

Background

This chapter aims to give an intuition and overview of the concepts and
techonologies used throughout the thesis. Section 2.1 describes the function
and anatomy of the heart, and its stages through the cardiac cycle. Section
2.2 gives a brief introduction to the physics involved in ultrasound. Section
2.3 builds upon the physics of the previous section and describes how
one can use ultrasound to generate images. It also describes two of the
imaging modes for echocardiography: b-mode and m-mode. Section
2.4 describes the basics of machine learning and the different families of
machine learning. Finally, section 2.5 is a survey of previous work on
ED- and ES-frame detection and previous use of reinforcement learning
in medical imaging.

2.1 The Cardiac Cycle

The human heart is situated in the middle compartment of the chest,
between the lungs, and is responsible for keeping the blood flowing by
acting as a pump. Blood is used for transporting oxygen and essential
nutrients throughout the body and carries metabolic waste such as carbon
dioxide to the lungs.

The heart consists of two halves, the left heart and the right heart, as
illustrated in figure 2.1. The left heart pumps newly oxygenated blood from
the lungs out to the rest of the body, and the right heart pumps oxygen-
depleted blood back to the lungs. Each side has two chambers, the atrium
and the ventricle, for a total of four chambers. The upper chambers, the
atria, are where the blood first enters the heart, and the lower chambers,
the ventricles, are where the blood exits the heart. Each chamber also has
valves that are opened and closed during a cardiac cycle to help keep the
blood flowing in one direction [34].

The stages of the cardiac cycle is illustrated in figure 2.2. During a
cardiac cycle, the different chambers are filled at different times. At the
start of a new cycle, the left and right ventricles relax and are filled with
blood from their respective atria. As the ventricles are filled with blood,
the pressure increases, which causes the valves from the atria to close. After
this, the ventricles start contracting, pushing blood out from the heart. This

5

Figure 2.1: An illustration of the heart. The heart has two sides, each side
having two chambers. Image reproduced from [4], License: CC BY-SA 3.0,
User: Eric Pierce (Wapcaplet).

6

causes the ventricle pressure to decrease and the aorta pressure to increase,
and the valve going out of the ventricle is closed. Finally, blood flows into
the atria before the cycle starts over.

Figure 2.2: The cardiac cycle is illustrated with the direction of blood flow
and pressure from and into the atria and ventricles. Image reproduced from
[26], License: CC BY 3.0, User: OpenStax College.

There are multiple ways of finding the ED and ES frames in a cardiac
cycle [45]:

1. Finding the frame with the maximum left ventricle volume (for ED)
and the frame with the minimum left ventricle volume (for ES).

2. Finding the first frame following the closure of the mitral valve (for
ED) and the first frame following the closure of the aortic valve (for
ES).

3. Analyzing a simultaneously acquired electrocardiogram (ECG) sig-
nal.

7

These methods can be visualized in the Wiggers diagram [49], as seen
in figure 2.3, which plots several key events in the cardiac cycle and the
corresponding values of various measurements.

Out of these three, using the ECG signal is the least preferable. This
is because the methods for detecting the ED and ES frame may become
unreliable when given an unconventional ECG signal, such as from
patients with cardiomyopathy or regional wall motion abnormalities [45].
Acquiring an ECG signal also requires applying electrodes to the patient,
which is not ideal in emergency settings.

Figure 2.3: The Wiggers diagram describes the different phases of the
cardiac cycle and what they represent in different measurements. Image
reproduced from [67], License: CC BY-SA 4.0, User: adh30 revised work
by DanielChangMD who revised original work of DestinyQx; Redrawn as
SVG by xavax.

2.2 What is Ultrasound?

In physics, sound can be defined as a phenomenon where energy
propagates through a medium — such as gases, liquids, or solids — by
the mean of mechanical waves. In the special case of ultrasound, the waves
we refer to are longitudinal pressure waves that are, by definition, slightly
above the hearable range of humans (above 20 kHz) [61].

Sound waves push particles together, creating an increase in pressure.
Particles in an area of high pressure move to areas of lower pressure, which

8

creates a chain reaction where a pressure field moves through particles.
This is called wave propagation and is informally illustrated in figure 2.4.
Sound is simply waves of pressure propagating through a medium.

Today, ultrasound form the basis of several advanced technology such
as medical imaging probes, sonar, non destructive testing, and more. This
thesis only covers echocardiography, a technology for imaging the heart
using ultrasound waves.

Figure 2.4: A pressure wave moves through a medium by pushing particles
in a medium close together. The particles push back as the pressure
increases, moving the pressure field. Warning: This image is just a
representation of how particles interact — real particles do not look like
this.

2.2.1 Attributes of a Sine Wave

A basic wave has three attributes: frequency, how fast it vibrates,
amplitude, by how much it vibrates, and phase, where in its cycle a wave
is at a given time [48], as visualized in figure 2.5. Our bodies have evolved
to sense these properties, where frequency determines the pitch of a sound
and amplitude determines the loudness. Sensing phase is a bit more subtle
but aid us e.g. in determining the position of the source, relative to us. The
relative phase between multiple sounds also affect the resulting sound, as
they interfere with each other differently depending on the relative phase.

Figure 2.5: The left-most plot shows two basic waves where one has twice
the amplitude. The middle plot shows two basic waves where one has a
higher frequency. The right-most plot shows two basic waves that have
different phases.

A basic wave means a sine wave in this context. Every sound can be
represented as a sum of sine waves, and every sound can be transformed
into its frequency spectrum through the use of the Fourier transformation
[48]. As seen in figure 2.6, the frequency spectrum of a sine wave is just

9

a single spike. Because of the linear property of the Fourier transform,
adding together two sounds has the same effect as adding their frequency
spectrums.

Real-world sounds are often more complex than the narrow band
sound presented previously. In the nature many acoustic phenomenons
can be described by a broadband spectrum, which is a weighted sum of
many sine waves. When we hear a piano and a clarinet play the same note,
the frequencies with the highest amplitudes are generally the same for both
sounds, but the frequency spectrum is much more complex. Musicians
speak of overtones — it is the overtones that are different for different
instruments playing the same notes. They are referring to the additional
frequencies that can be seen in the frequency spectrum.

Figure 2.6: Adding two sounds together also adds their frequency
spectrums together.

Figure 2.7: The overtones make two instruments sound different, even
when playing the same notes. Left: frequency spectrum of a piano and
a clarinet from 150 to 450 hertz. Right: the same frequency spectrum from
0 to 5000 hertz, in log10 scale. Both instruments are playing the Am7 chord,
which consists of four notes. These four notes can be seen clearly in the left
image, all having relatively high amplitudes for both instruments.

2.2.2 Attributes of the Medium

Another important aspect of sound is the medium through which it
travels. Properties such as the speed of sound, density, attenuation, and

10

nonlinearity affect how a sound wave propagates through its medium
[36]. Speed of sound is how fast a wave propagates through the medium.
Assuming that the frequency stays the same throughout (which is not
always true), the wavelength will be smaller if the sound speed is lower,
as visualized in figure 2.8. Density is how tightly packed the particles are
in the medium when at rest. Acoustic absorption is an energy loss caused
by the viscosity of the propagating medium. The wave energy is then
converted into heat at a molecular level. Attenutation is the reduction of
the energy signal caused by either absorption or scattering. Nonlinearity is
the property where the speed of sound at a point depends on the pressure
at that point. In water, pressure waves propagate faster at higher pressure.
The increased pressure may be caused by the wave itself, in which case the
shape of the wave may change, as visualized in figure 2.9.

Figure 2.8: Even though the rate of packages per second stays the same, the
distance between packages decreases when arriving on a slower conveyor
belt. This is analogous to a sound wave propagating through a medium
where the speed of sound changes. Even though the frequency is the same,
the wavelength (the length between each top) decreases when it encounters
a lower speed of sound.

Figure 2.9: In a medium with nonlinearity, higher-pressure parts of a wave
propagate faster than lower-pressure parts. Over time, the higher-pressure
parts will "catch up" to the lower-pressure parts, and what started as a sine
wave will start to resemble a sawtooth wave.

An important concept is "acoustic impedance," which measures how
much resistance the wave encounters while propagating through the
medium [61]. Acoustic impedance is a function of the speed of sound
and density. When a wave propagates out of one medium and into
another medium with a different acoustic impedance, a fraction of the
energy is reflected. So when one hears a sound being reflected from a
wall, it is because the air that the wave travels through and the wall has
different acoustic impedance. Equation 2.1 shows the relationship between
acoustic impedance, density, and speed of sound, where Z is the acoustic
impedance, and ρ and c are the density and speed of sound of the medium,
respectively. Equation 2.2 is the reflection factor. It determines how much
of the energy is reflected, where Z1 is the acoustic impedance of the original

11

medium, and Z2 is the acoustic impedance of the second medium. When
Z1 and Z2 are equal, no sound is reflected.

Z = ρc (2.1)

RF =
Z2 − Z1

Z2 + Z1
(2.2)

2.3 Echocardiography

Light is a signal that does not penetrate very far into the body, which is
why we cannot simply gaze into each other’s hearts. We could, however,
imagine a universe where light penetrates all the way, giving off no
reflections at all. In this universe, we would not be able to see the heart
either; in fact, we would not be able to see any body at all! To be able to look
inside something based on reflections alone requires a sweet spot where
the signal can penetrate tissue with enough energy while at the same time
being reflected with enough energy so that we can measure it. Arguably,
we are quite lucky with our universe, at least in terms of cardiac imaging,
because sound is such a signal.

Table 2.1: Values of the acoustic wave velocity c and acoustic impedance Z
of some substances from [59].

Substance c (m/s) Z=ρ c (106kg/m2s)
Air (25°) 346 0.000410
Fat 1450 1.38
Water (25°) 1493 1.48
Soft tissue 1530 1.63
Liver 1550 1.64
Blood (37°) 1570 1.67
Bone 4000 3.8 to 7.4
Aluminium 6320 17.0

Table 2.1 lists the speed of sound and acoustic impedance Z of some
substances. Notice how there is a large contrast in acoustic impedance
between air and soft tissue. If there is air between the sound wave
transmitter and the body, most of the energy will be reflected by the skin. To
reduce this effect, ultrasound gel, which has a similar acoustic impedance
to soft tissue, is applied between the body and the sound wave transmitter.
Notice also the difference in acoustic impedance between bone and soft
tissue. This has consequences for what we can image in the body, as bones
such as the ribcage act as shields to the sound waves.

How can we use sound reflections to create images? We can send
out a sound signal and measure the time it takes for a reflection to come
back. The delay between sending and receiving gives information about
the relative distance to various reflectors in the medium from the sound
source, as visualized in figure 2.10. Suppose we know the speed of sound,

12

and assume that the speed of sound is homogeneous in the medium. In
that case, we can approximate the distance that the wave has traveled
by multiplying the delay between sending and receiving by the speed of
sound (equation 2.3). This assumes that waves always travel in straight
lines, which is not always true, but the effect is often negligible in medical
ultrasound use cases.

distance = delay× c (2.3)

Likewise, suppose we want to know the reflected signal for a given
distance away from the transmitter and receiver. In that case, we can
calculate the corresponding delay of a signal traveling that distance and
back by dividing the total distance by the speed of sound (equation 2.4).
When we know the corresponding delay, we can simply look up its value
in the signal through interpolation. To create a whole image, we repeat this
process for every point in the image.

delay =
distance

c
(2.4)

Figure 2.10: By measuring the time between sending a signal and receiving
it back from a reflector, we can approximate how far away the reflector is
— given that we know the approximate speed of sound.

When we only have a single receiver that measures the reflected sound
waves, we can not know the exact location of a given reflector, only the
distance. By utilizing more receivers spread over some area, we get more
information about where the signal originated from, as there will be a
correlation between signals across receivers at the reflecting object.

By utilizing multiple sender elements that can send sound waves
independently of each other, we can shape the wavefront as we wish. For
example, this lets us focus the energy of the sound wave in a specific area
or shape the wavefront to be planar. The Huygens-Fresnel principle states
that every point of a wavefront is the source of a new spherical wavefront.
We can simulate the Huygens-Fresnel [36] principle by imagining a desired
wavefront passing through the sender elements, activating each element
when the wave hits it. Each sender element on its own creates a spherical

13

wavefront, but together they make up the desired imagined wavefront.
Time delays are to sound waves like a lens is to a magnifying glass [61].
An example of this has been visualized in figure 2.11.

Figure 2.11: Because of the Huygens-Fresnel principle, we can create a
desired wavefront by creating spherical waves at each sender element
when the imagined wavefront hits it. The dashed, pink curve represents
the imagined desired wavefront as it approaches the sender elements
marked by the purple rectangle. Each sender element is activated when
the imagined wavefront passes through it, creating new spherical waves,
represented by the cyan semi-circles. The generated spherical waves
converge on the same point as the imagined wavefront.

In reality, an ultrasound probe consists of many elements acting both
as transmitters and receivers. The elements are made out of piezoelectric
material. Piezoelectric materials produce vibrations when given an electric
current and, vice-versa, produce an electric current when exposed to
vibrations. With a transducer, we can independently apply an electric
current to each element to create sound waves with given wavefront
characteristics and read off the electric current generated by reflected
pressure waves [61].

There are multiple modes of ultrasound imaging. The two most
important modes for this thesis are B-mode imaging and M-mode imaging
[61].

In B-mode (as in "Brightness"-mode) imaging, an image is created by
visualizing the amplitude of the reflected signal as the brightness for a
given point. This imaging mode often sends out individual, focused
transmits in multiple directions, creating a sector scan — a fan-like image,
as seen in figure 2.12. Another method is to transmit unfocused plane
waves. A single transmit creates an unfocused image of the scatterers in
the medium. However, multiple transmits in different directions may be
compounded to create an image of comparable quality to those of focused
transmits [51].

B-mode imaging provides images of the whole area of interest, but
because they require multiple transmits, they also take longer to acquire,
as we have to fire each transmit after the other. In extreme cases, this could
pose a problem, given that the heart is an organ that moves quite rapidly. If
we are transmitting too slow, then the heart may have a noticeably different
phase on one side of the sector scan compared to the other. This is not a
significant problem for 2D images as even multiple transmits can be made
and received back in a short period of time, but it does have consequences
for the temporal resolution.

In M-mode (as in "Motion"-mode) imaging, only one direction is

14

Figure 2.12: Imaging along different angles from a common starting point
creates a sector scan.

15

imaged over time instead of a whole sector. This means that it only requires
one transmit per frame, giving it a higher temporal resolution compared to
B-mode imaging, but at the cost of only focusing in a single direction. Each
transmit can be concatenated into an image where the y-axis represents the
amplitudes at different depths, and the x-axis represents time, as seen in
figure 2.13. M-mode imaging lets us see the motion of a focused part of the
heart in a single image.

Figure 2.13: Left: a still of a sector scan. Right: the corresponding M-mode
image of the video for the indicated blue line.

2.4 Deep Learning

2.4.1 Gradient Descent

The most significant deep learning innovations of the last decade have
used a gradient descent technique. Gradient descent takes advantage of
the fact that even if we do not know the true nature of some function, if it is
differentiable, then we can calculate its slope at a given point. This gives us
information about how to update its parameters to maximize or minimize
the result. This is easily visualized when we have a differentiable function
that takes a single parameter x, as seen in figure 2.14. Even though we may
now know the true shape of the function, as represented by the dashed
line, we can calculate its slope. If we nudge x in the opposite direction
of the slope, i.e., reduce x if the slope tends upwards and vice-versa, and
repeat this multiple times, we will eventually reach a minimum where the
slope becomes 0. This iterative process of calculating the gradient at a point
and updating the parameters a small step in the opposite direction is what
is called gradient descent [23].

Gradient descent scales to an arbitrary number of parameters, allowing
us to optimize big models. One example could be a model that performs
some operation on an image. Suppose we want to process each pixel
individually in some parameterizable way at least once. In that case, the

16

Figure 2.14: Visualization of gradient descent of a function that takes a
single parameter x. Nudging x in the opposite direction of the gradient
at the current point minimizes the result of the function.

number of parameters is at least equal to the number of pixels in the image.
If the image is 100-by-100 pixels big, the model will take at least 10 000
parameters. It is no longer possible to visualize this high-dimensional
parameter space as we did in figure 2.14, but the principles still hold, and
gradient descent still works the same way.

The function that we optimize using gradient descent consists of two
parts: a model and a loss function. The job of the model is to perform
the task at hand, and the job of the loss function is to quantify the error
of the model so that we can minimize it. As long as the model and the
loss function are differentiable, we can optimize it using gradient descent.
Not all models and not all loss functions are equally good, however. Some
models may better represent the problem at hand than others, and some
loss functions may produce gradients that are easier to optimize for than
others. One important aspect is the shape of the gradient, whether it
contains a lot of local minima and how steep it is at regions [71].

We may want to optimize some parameters working on a set of images,
for example, when training a model to classify pictures as those of cats or
dogs. These images define a distribution that we want the model to be able
to represent. Because of either memory or computational constraints, there
may be too many pictures in the dataset for the model to try to optimize
for at once. It is common to apply gradient descent on just a subset of the
whole dataset at once, chosen randomly at each iteration. This is called
stochastic gradient descent (SGD), and, perhaps surprisingly, it is often
better at generalizing on the dataset than using gradient descent on the
whole dataset at once [38].

Deep learning algorithms risk simply memorizing the training data if
it has the capacity to do so. Therefore, the performance of a model on the
data it has been trained on is not representative of how it would perform
on unseen data. It is common to split the data into three splits: training
(train), validation (val), and testing (test), where the val and test split are
used for performance evaluation only. When the model performs better
on the training split at the cost of performance on the others, the model
is said to be overfitting. The validation data can be used to monitor the
amount of overfitting over time such that we can select the model and
hyperparameters that generalize best on the unseen data. This runs the
risk of introducing bias towards the validation split, which is why we have

17

the third split, test, used to report the performance of the final model [63].
Another aspect of great importance is to instill inductive bias into the

model; that is, implicit knowledge about the task at hand. Some models
capture implicit knowledge about the problem at hand better than others,
and some relevant models are explored in the following section.

2.4.2 Deep Neural Networks

Neural networks are data-processing models inspired by a simple view of
how our brain’s neurons interoperate. On a high level, neural networks
are often abstracted into a set of layers. When there are multiple such
layers in a neural network, it is often called a "deep" neural network. This
section presents some of the neural network layers referenced throughout
the thesis.

Fully connected layers process the inputs linearly, i.e., each input xi is
multiplied by some weight wij and added with some bias bij, and produce
a given number of outputs yj. This may be written as matrix multiplication,
such that ŷ = wx + b. The shape of the matrix w determines the number of
output neurons it produces.

Multiple fully connected layers can be stacked to create a more complex
network. However, because they are linear operations, they can only
represent linear relationships no matter how many of them are stacked.
To allow the network to represent more complex, non-linear relationships,
we need to add non-linearity to the network. This is usually done using
activation functions. Examples of activation functions are the sigmoid
function, seen in equation 2.5, or ReLU, seen in 2.6.

S(X) =
1

1 + e−x (2.5)

ReLU = max(0, x) (2.6)

Using just two fully connected layers separated by non-linear activation
functions, one could represent any arbitrary function, given that one
includes enough neurons [32]. That does mean that they are the right tool
for every job.

Fully connected layers combine every input with every output. This
does, for example, not take advantage of the spatial locality of images. A
given pixel is often more related to pixels that lie closer to it in an image.
Convolutional layers take advantage of this by applying filters to an image,
with each filter only processing a small part of the image at a time. The
filters are often small matrices that are applied everywhere in an image.

Convolutional layers consist of a set of filters with a width and
height. Other important hyperparameters are the stride and dilation,
which (among other hyperparameters) affect how the filters are applied
to the image. Stride affects the distance in pixels between subsequent
applications of the filters [71]. Dilation affects the spacing between the
parameters in each filter [46]. Stride and dilation is best explained through
visualization, and are illustrated in figures 2.15 and 2.16, respectively.

18

Figure 2.15: Stride affects the distance between subsequent applications of
a filter, visualized here in pink. Left: A stride of 1 moves the filter one pixel
at each application. Right: A stride of 2 moves the filter by two pixels at
each application.

Figure 2.16: Dilation affects the spacing between the parameters in each
filter. Left: A dilation of 1 means that each parameter is spaced apart by 1
pixel. Right: A dilation of 2 means that each parameter is spaced apart by
2 pixels.

19

Another popular layer is the recurrent layer. The recurrent layer is
designed to be efficient at processing sequential data [71]. Recurrent layers
are not part of the methodology of this thesis but have been used in related
work. In short, like convolutional layers apply the same filter at every
position in an image, recurrent layers apply the same computation at every
item in a sequence. Furthermore, it can capture temporal information by
also outputting an internal state that is included in the computation for the
next item in the sequence. Figure 2.17 illustrates this computation. Some
popular implementations of a recurrent layer are LSTM [30] and GRU [13].

Figure 2.17: A visualization of a basic recurrent layer. Each pink square
represents the same computation that takes an input item, x, and a hidden
state h and outputs y.

Like the fully-connected layers, both convolutional and recurrent layers
by itself are linear operations and we need to add non-linearity for them to
be able to approximate arbitrary functions.

2.4.3 Optimization Process

For each iteration of gradient descent, we update the model’s parameters
a small step in the opposite direction to minimize it. It is crucial only to
update them in a small step each time; otherwise, they may overshoot
and, in the worst case, cause the model’s performance to diverge. For
standard SGD, we choose how much to update the parameters using the
hyperparameter α, often a low number between 0 and 1.

Using a low α means that we do not update the parameters too much
when the gradient is steep, but it also means that the parameters are
updated little when the gradient is not very steep. In addition, we may
encounter flat regions of the gradient, which can be hard to move past
regardless of the chosen value of α. For these reasons, more advanced

20

optimizers have been developed, such as ADAM [39].
Machine learning aims to train models that generalize to data samples

outside of the training set. When we optimize a model on given data
distribution, we risk making the model specialize too much on that specific
distribution, earlier defined as overfitting. Regularizers are tools that
attempt to reduce the chance of overfitting [71].

2.4.4 Supervised and Unsupervised Learning

One way of designing the loss function is to define it as the difference
between the predicted values from the model and ground truths labeled
beforehand. Learning methods that use these kinds of loss functions are
generally called supervised learning, as if a "supervisor" tells the model
what the correct answer ought to have been.

When we do not have access to the data’s ground truths, we must define
the loss in other ways. This is called unsupervised learning. An example
of unsupervised learning is manifold learning. Manifold learning tries to
ensure that similar points in the high-dimensional space are projected close
together in the low-dimensional space [72].

2.4.5 Reinforcement Learning

RL allows an agent to learn a strategy, called a policy, that maximizes the
total reward received through interacting with an environment. RL can
leverage time in a way that neither supervised nor unsupervised learning is
able to because it takes future decisions into account when deciding on the
next action. An RL agent can make a decision now that has no immediate
benefit but will lead to a better result in the future.

At the core of RL are markov decision processes (MDP) [60], which can
be described using four elements:

• The state space S

• The action space A

• The transition function P(st+1|st, at)

• The reward function R(st, at)

An RL agent is faced with a sequence of decisions. At each step, it
is presented with the current state st ∈ S of the environment and must
take an action at ∈ A. In an episodic task, the agent’s goal is to maximize
the total reward r it receives during its lifetime, called an episode. The
environment may change after the agent takes an action in a given state,
and how it changes, i.e., what the next state st+1 will be, is determined by
the transition function P(st+1|st, at). How much reward the agent receives
after taking an action in a given state is determined by the reward function
R(st, at). The goal of RL is to find a policy π, a strategy that, if followed,
will yield the most amount of total reward during the lifetime of the agent.

21

In practice, the policy is simply a function that takes in the current state st
and returns the probability of taking an action at: π(a|s) ∈ [0, 1].

The agent’s goal is not to maximize the immediate reward r but rather
the expected return. The return is denoted as Gt and is in its simplest form a
sum of all the future rewards, as seen in equation 2.7. T marks the timestep
where the episode ends.

Gt = rt+1 + rt+1 + rt+2 + . . . + rT (2.7)

However, some tasks are not episodic, which means that they may run
forever. The returns G becomes infinite for environments with limitless
rewards, making the optimization problem intractable. To solve this
problem we include discounting to the returns, as seen in equation 2.8. γ
is the discount rate and is a number in the range [0, 1]. If γ < 1, then
future rewards count for less in the full returns, and as the number of steps
into the future approaches infinity, the corresponding rewards approach
0. Discounting guarantees that non-episodic tasks converge to optimal
solutions while also giving a mechanism for preferring more immediate
rewards compared to future rewards.

Gt = rt + γrt+1 + γ2rt+1 + . . .

=
∞

∑
k=0

γkrt+k+1

= rt + γGt+1

(2.8)

One way to select an action is to predict the following state’s value
after taking that action. For this we could use the state value function
Vπ(St) which estimates the expected return Gt of being in state st, while
following the policy π. Alternatively, we could use the state-action value
function Qπ(st, at) which estimates the expected return of taking action at
in state st, while following the policy π. Both value functions depend on the
policy being followed because the policy decides what actions to take in the
future, which again has consequences for what rewards the agent expects
to receive at subsequent steps. For this setup, the "learning" part of RL
could be considered to be updating a value function towards the "optimal
value function," defined as the value function that uses the optimal policy
when estimating returns. The optimal policy π∗ is one (of the possibly many
policies) that yields the maximum amount of total reward if followed.

Another important aspect of RL is the exploration-exploitation trade-
off: How often should the agent explore the environment versus exploit its
current assumptions about the environment? An agent that never performs
exploration, i.e., always acts greedily, may never discover the optimal
policy. An agent that only ever explores, i.e., only takes random actions,
may end up revisiting the same low-potential states over and over. There
is a balance to be made. One way to induce exploration for an agent is to
force it take a random action a given percentage of the time. This is called
an ε -greedy policy, where ε is the hyperparameter that decides how often
the agent takes a random action instead of what it considers to be the best

22

one. E.g., a value of ε = 0.1 means that the agent takes a random action
10% of the time.

One algorithm for updating the state value function is called temporal
difference learning (TD). In TD, the state value function V(st) is updated
after every step, by comparing the value it expected to see, with a value
that takes the newly observed reward rt+1 into consideration, as seen in
equation 2.9. (rt+1 + γV(st+1)) is called the TD-target, and because it
incorporates the actual observed reward rt+1, it can be considered as a more
up-to-date version of the state value function. (rt+1 + γV(st+1))−V(st) is
called the TD-error. The lower the TD-error is, the better the RL agent is
able to reason the value of states, and as such, we want to minimize it.
We do this by updating the state value by nudging it slightly towards the
TD-target. How far it is nudged at each update is determined by α.

V(st)← V(st) + α[(rt+1 + γV(st+1))−V(st)] (2.9)

To be able to use V(s) for making a decision, the agent needs knowledge
about the transition function P(st+1|st, at). This is because it needs to know
what the next state will be to select the best action to take. Q(s, a) does
not need knowledge about the transition function because it directly learns
the value of taking an action for a given state. TD can be modified to use
the state-action value function instead of the state value function, in which
case it is called Q-learning. In equation 2.10, the target (Q-target), is defined
as the immediate reward of taking action at, plus the discounted value of
taking the best action in the following state.

Q(st, at)← Q(st, at) + α[(rt+1 + γmaxaQ(st+1, a))−Q(st, at)] (2.10)

In TD-learning, the agent must associate each state with its correspond-
ing value as it explores the environment. The same is true for Q-learning,
but it also has to take state-action pairs into account, meaning that it has to
store up to ‖S‖ × ‖A‖ entries. That is fine when the state- and action-space
are small but becomes infeasible when they are too big.

The described way of storing and updating the values is called tabular
methods because we treat the states, or state-action pairs, as entries in a
table. Tabular methods break down when the state space or the action space
becomes very large or even continuous. Creating RL algorithms that can
handle very large or continuous action spaces is challenging [73]. However,
methods exist that can scale RL to handle very large or continuous state
spaces.

Deep Reinforcement Learning

A modified Q-learning algorithm has been shown to be able to play Atari
games simply by looking at the raw pixel values [50]. The state-space thus
consists of the pixel values of the current game screen. A simple Atari game
has 210× 160 = 33600 pixels, and each pixel can be one of 128 colors [50].
In theory there are 12833600 ≈ 1070803 different states. If a computer were

23

able to process 1 000 000 000 such states every second, it would still take
more than 1070785 years to process all of them.

We assume that there exists a way to approximate the value of states
in a much more compressed way. This can be done through function
approximation [60], where instead of storing and updating the value
estimates in a table, such as with tabular methods, they are approximated
using a neural network. This may also allow the agent to generalize state
value or state-action value functions to new not-before-seen states.

Much of today’s research into RL goes into scaling it up to larger state-
spaces. Methods that scale RL by modifying the Q-learning algorithm
are called "action-value methods," but they are not the only ones to do
so. Policy gradient is another popular set of methods that can learn a
parameterized policy directly, without consulting a value function [60].
Policy gradient methods may more naturally model continuous action
spaces as it outputs a distribution of action probabilities instead of the
values of a discrete set of actions. As seen in later chapters, the RL
formulations used in this thesis all use discrete action spaces, and only
action-value methods are considered for this thesis.

Deep Q-Network

The modified Q-learning algorithm was termed deep q-network [50]
(DQN) for its ability to take advantage of recent deep learning advances
and deep neural networks.

The original DQN algorithm takes the raw pixel values from an Atari
game as input, followed by three convolutional layers and two fully
connected layers. The final fully connected layer outputs one value for each
possible action, approximating the expected value of taking each action
given the state, i.e., Q(s, a). An ε -greedy policy then chooses either the
action with the highest approximated value with probability 1 − ε or a
random action with probability ε.

The authors showed how the network is able to reduce the state
space by applying a technique called "t-SNE" to the DQNs’ internal state
representation. t-SNE is an unsupervised learning algorithm that maps
high-dimensional data to points in a 2D or 3D map [44]. As expected,
the t-SNE algorithm tends to map the DQN representation of perceptually
similar states to nearby points. Interestingly, it also maps representations
that are perceptually dissimilar, yet are close in terms of expected rewards,
to nearby points. This indicates that the network is able to learn a
higher-level, but lower-dimensional, representation of the states in terms
of expected reward. This is visualized in figure 2.18.

Using function approximation does have its problems. Naively training
the network by inputting state and returns pairs as the agent generates
them can make the algorithm unstable. There is a strong correlation
between consecutive samples, and if a neural network receives a batch
of very similar input, it might overwrite previously learned knowledge.
Furthermore, an update that increases Q(s, a) often also increases Q(s +
1, a) and therefore also increases the target value, possibly leading to

24

Figure 2.18: A figure from [50] that shows a two-dimensional t-SNE
embedding of the representations in the last hidden layer assigned by
DQN to game states experienced while playing Space Invaders. The
points are colored according to the state values predicted by DQN for the
corresponding game states. The states rendered in the top right, which are
of almost full of enemy ships, and the states rendered in the bottom left,
which are nearly empty, have similar predicted state values even though
they are visually dissimilar, because the agent has learned that completing
a screen leads to a new screen full of enemy ships.

25

oscillations or divergence of the policy. These problems are mitigated by
using experience replay and by using a separate network to generate the
targets in the Q-learning update.

In experience replay, the agent’s experiences over multiple episodes are
stored in a data set called the replay memory. Each experience item is a
tuple consisting of the previous state, selected action, returned reward, and
new state: (st, at, rt, st+1). During training, randomly sampled batches from
the replay memory are used to train the Q-network.

Using a separate network for generating the targets in the Q-learning
update adds a delay between the time an update to Q is made and the time
it affects the targets, making the algorithm more stable and reducing the
chance of oscillations or divergence.

Double Deep Q-Network

Several improvements have been made to DQN over the years. Q-learning
has been shown to produce overly optimistic action values as a result of
using the maximum action value as an approximation for the maximum
expected action value [24]. Double Q-learning attempts to reduce this
overestimation by decomposing the target into an action selector and an
action value estimator. The regular Q-learning target is written as:

rt+1 + γmaxaQ(st+1, a)

This can be rewritten as:

rt+1 + γQA(st+1, argmaxaQB(st+1, a)) (2.11)

Where QA acts as an action value estimator and QB acts as an action
selector. If QA = QB, then this is just the regular Q-learning target. If
we only update the action selector at each update and randomly choose
which of the two Q-functions should be used as the action selector at each
update, the overestimation is reduced. This also applies to DQN, and it has
been shown that using a double DQN results in better policies than using
a regular DQN [25].

Prioritized Replay

By using experience replay, agents are not forced to process transitions
in the exact order that they are experienced. However, because we are
sampling the transitions uniformly from the replay memory, all transitions
are given equal priority. We might benefit from prioritizing transitions that
have a high TD-error magnitude, which acts as a proxy measure of how
"surprising" a transition is to the agent [56].

Prioritizing experience by the magnitude of the TD-error may introduce
a lack of diversity. One of the reasons for this is that an experience
that initially had a low TD-error, but that later becomes large as the
network is trained, will continue to be down prioritized because the TD-
error is only updated when the transition is revisited — and because

26

of its low prioritization, the probability that it will be revisited soon is
low. A stochastic sampling method that interpolates between pure greedy
prioritization and uniform random sampling is introduced to overcome
this challenge.

Another problem with prioritized experience replay is that DQN
minimizes the expected TD-error squared with respect to the network
parameters θ, assuming that the samples in the replay buffer correspond
to the same distribution as seen while exploring. Prioritized experience
replay breaks this assumption, introducing a bias in the calculated gradient.
This is fixed by using importance sampling, such that the less-sampled
experiences are compensated for in the gradient. As the unbiased nature of
the updates is most important near convergence at the end of the training,
the importance sampling is gradually added towards the end, with less
importance sampling included at the start of training.

Prioritized replay is found to speed up an agent’s ability to learn by a
factor of 2.

Dual Deep Q-Network

In the dueling architecture, or Dual DQN, the network that approximates
the Q-function is split into two parts: one for estimating the value of the
current state and one for measuring the so-called advantage of taking an
action in this state [66]. The combination of the state-value estimate and
the advantage yields the Q values:

Q(s, a) = V(s) + A(s, a) (2.12)

However, because the state value function V(s) can be expressed in
terms of the state-action value function Q(s, a) by taking the mean of Q(s, a)
over all actions, then it means that the mean of the advantage function
A(s, a) over all actions equals zero. This is not necessarily the case because
the networks are simply approximations. To fix this issue, the authors
also subtract the mean advantage from the equation. This change loses
the original semantics of V(s) and A(s, a) but results in a more stable
algorithm.

Q(s, a) = V(s) + A(s, a)− ∑a A(s, a)
Nactions

(2.13)

The dueling architecture lets the network train the state-value and
advantage functions separately.

Multi-Step Learning

We look only one step ahead when constructing the target in the Q-learning
update, but this is not a requirement. We could extend it to look N
steps ahead if we wanted to, which is called N-step learning or multi-step
learning [60].

To use multi-step learning we must look at N consecutive experiences
for every update, and sum the appropriately discounted rewards and add

27

it to an appropriately discounted value estimation of the final state in the
sequence. The N-step target for a given state st is given as:

N−1

∑
k=0

γkrt+k+1 + γNmaxa(Q(st+N , a)) (2.14)

If we set N to be 1, the algorithm would equal the standard Q-learning
algorithm. As we increase N, the algorithm would become more and more
similar to the Monte Carlo method, which looks ahead all the way until the
agent hits a terminal state.

rt+1 + γmaxaQ(st+1, a) =
n−1

∑
k=0

γkrt+k+1 + γnmaxa(Q(st+n, a)), iff n=1

(2.15)
The best choice of N usually lies somewhere between 1 and the length

of an episode. This is because bootstrapping works best when it is over
a length of time in which a significant and recognizable state change
has occurred. Another intuition for why multi-step learning improves
performance is that when we look further ahead, we depend less on our
estimates of the future.

Distributional Reinforcement Learning

The Q-function is an approximation of the expected returns, but it is
also possible to approximate the distribution of returns instead [7]. It
makes sense to think about the returns as a distribution, even when
the environment has deterministic rewards, because stochasticity is still
introduced while training through various sources. Firstly, state aliasing,
the conflation of two or more states into one representation, may cause
different amounts of rewards to be observed even though the agent "sees"
the same state. Secondly, because of bootstrapping, target values are
nonstationary while training, and the returns will take on different values
over time. Lastly, approximation errors will make the returns seem
stochastic because we only approximate the true Q-function.

Approximating the distribution of returns instead of the expected
returns results in more stable learning targets.

Noisy Deep Q-Network

Exploration of the environment is often enabled by using an ε -greedy
policy, where ε is gradually reduced. For particularly hard problems,
like the Atari game "Montezuma’s Revenge", this technique becomes
insufficient for exploration [8]. ε -greedy policies explore with a fixed
probability that is the same for every state. An alternative could be to let
the network itself learn when it should explore, and for what states.

NoisyNet-DQN does this by applying learnable parameterized noise to
the value network parameters [17]. This does not only enable it to change
the amount of exploration itself, alleviating the need for hyperparameter

28

tuning, but also to apply different amounts of exploration to different
states.

Rainbow Deep Q-Network

Many of the improvements that has been made to DQN may be comple-
mentary and could be combined into a single algorithm. The Rainbow [29]
algorithm combines six such improvements:

1. Double DQN [25]

2. Prioritized replay [56]

3. Dual DQN [66]

4. Multi-step learning [60]

5. Distributional RL [7]

6. Noisy DQN [17]

The authors show that the combined algorithm performs much better
than each extension alone in terms of both learning speed and overall
performance.

They also performed an ablation study on the Rainbow algorithm to
see how much each extension contributes to its overall performance. The
study concludes that prioritized replay and multi-step learning contribute
the most to the overall performance, as removing them from the algorithm
reduces its performance the most. Distributional Q-learning ranked
directly below, followed by Noisy DQN, and then Dual DQN. The benefit
of using a Double DQN is not apparent, as removing it from the algorithm
does not reduce its performance.

2.5 Related Work

2.5.1 ED-/ES-Detection

One early attempt for detecting the ED and ES frames took advantage of
the rapid mitral valve opening during early diastole [37]. By measuring
the mean intensity variation over time in a small region of interest, one
could capture the mitral valve opening and define the frame corresponding
to peak intensity as ES. This signal was, in some cases, disturbed by early
longitudinal motion of the heart, which led to falsely labeling frames as
ES. In the same paper, the authors introduced another method that took
advantage of the left ventricle deformation during the cardiac cycle. With
this method, ES was defined as the frame with the lowest correlation with
the ED frame. The correlation curve would flatten out because of little
movement around systole, making the predictions more uncertain. The
best results were achieved when using a combination of both methods. For
this, a small time window was selected around ES using the correlation

29

Figure 2.19: A figure from [29] showing the median performance of
multiple modified DQN agents compared to human performance across
57 Atari games. After 200 million frames, all modifications show an
improvement over regular DQN, but together (Rainbow), they perform
significantly better than any one single improvement. Curves are smoothed
with a moving average of 5 points.

30

Figure 2.20: A figure from [29] visualizing an ablation study of the
various DQN modifications (dashed lines). Dashed lines that are close to
the rainbow line indicate that the corresponding DQN modification does
not add much benefit to the overall agent or is overshadowed by other
modifications. According to the ablation study, the three most important
modifications are N-step bootstrapping (multi-step), distributional Q-
learning, and prioritized replay.

31

method, and the mean intensity variation method was used to determine
the final ES frame prediction.

The first method requires the clinician to select multiple landmarks to
define the correct region of interest around the mitral valve. The second
method assumed that the ED frame has already been found to compute the
correlation between it and the other frames. The main disadvantage of this
approach is that it is only semi-automated.

It has become more common to apply end-to-end Machine Learning
(ML) for fully automating tasks like this in recent times. Gifani et al.
(2010) employed manifold learning, an unsupervised learning algorithm
used to map high-dimensional data onto a lower-dimensional manifold.
The authors reduced the dimensionality of each frame down to two
dimensions, followed by analyzing the density between the projected
points to determine the ED and ES frames [21]. This method is based on
the fact that there is no prominent change in ventricular volume during the
three cardiac phases: isovolumetric contraction, isovolumetric relaxation,
and reduced filling. Frames that lay close together, i.e., in dense regions,
are considered part of one of these three phases. The projected points
move very little in these dense regions, and the three points that had the
least movement were selected as representative of three phases. The ED
and ES frames were then found by finding the pair of said frames with the
minimum correlation. The manifold learning algorithm that the authors
used is called Locally Linear Embedding (LLE). In a follow-up paper,
they used Isomap instead [22], which yielded better results. When using
Isomap, they defined the ED and ES frames as the projected points with
the greatest distance between them.

Non-negative Matrix Factorization (NMF) is another unsupervised
learning method that has been employed to reduce the dimensionality of
ultrasound videos [69]. In this work, rank-2 NMF was used to generate two
end-members from a cardiac ultrasound video. The end-members turn out
to be quite similar to the ED and ES frames, and the end-member coefficient
peaks can be used to find ED and ES. NMF was found to give predictions
with less error than LLE and Isomap manifold learning.

Figure 2.21: Comparison between NMF, LLE, and ISOMAP results for all
99 cases in the apical 4 view, taken from [69].

Other methods use either image segmentation or speckle tracking to
track the changes to the left ventricle volume, taking advantage of the fact
that it is most expanded during ED and most contracted during ES [6] [14]
[1]. However, these methods are prone to significant errors due to noise

32

inherent in cardiac ultrasound or discontinuous edges.

A CNN and an RNN were combined to do spatial and temporal
feature extraction to detect the ED and ES frames by Kong et al. in 2016
[40]. The combined network was trained on cardiac MRI data, and it
used a Zeiler-Fergus model [70] for the CNN, and an LSTM [30] for the
RNN. The problem was treated as a regression problem for a function
that monotonically decreases during diastole and monotonically increases
during systole. Thus, the function being regressed is a latent space
representation of the left ventricle volume as it expands and contracts,
and the ED and ES frames can be found by finding the highest peaks and
lowest valleys of the model’s output. This approach was later improved by
swapping out the CNN with a ResNet [15], and then again by swapping
it out for a DenseNet [62], while different choices for the RNN did not
significantly improve the performance of the model.

Instead of treating the model’s output as a function regression, it has
also been treated as a binary classification of either ED or ES [16]. The
authors of this paper argued that treating it as a regression problem forced
the model to learn a function that was not present in the data because the
regressed function does not represent the actual left ventricle volume. They
argued further that, in some cases of pathology, such as in the event of
post-systolic contraction, the volume might not be smallest at the time of
ES. Their model also uses a 3D CNN with a sliding window that does both
spatial and temporal feature extraction on the data before being passed into
an LSTM. A similar architecture has been used for finding the ED frames in
cardiac spectral Doppler imaging [35]. Spectral Doppler is a technique that
outputs a spectrogram representing the blood velocity over time. It thus
has one spatial dimension and one temporal dimension. A CNN with a
sliding window was used to extract spatial and temporal features, followed
by a bidirectional GRU that further connects said features temporally. For
each patch in the sliding window, the model predicts whether it contains
an ED frame and which frame in the patch it is.

The latest model iteration in this sequence of papers reverts to
a regression-based approach, countering the anti-regression argument
by stating that a simple binary classification ignores high-level spatial
and temporally related markers [42]. The authors explore multiple
architectures, but a ResNet50 followed by two layers of LSTM yielded the
best results and is the current state-of-the-art. Lastly, they also provided a
method for benchmarking different architectures by providing their patient
dataset and models to the public and including performance reports on an
independent external dataset.

RL has produced even better results than supervised learning methods
for many tasks, including medical imaging tasks [73]. RL has not yet been
applied to the problem of ED and ES detection, even though it has seen
a similar increase in capabilities as supervising learning has in the last
decade. The following section introduces examples of how RL has been
applied to medical imaging.

33

2.5.2 Reinforcement Learning in Medical Imaging

RL has seen many medical imaging applications in the last decade,
especially in the last five years [73]. One of the main challenges of applying
RL is formulating the problem to fit into the RL framework of states,
actions, and transition and reward function. The reward function is usually
the most difficult to get right out of these four elements.

One way to formulate the problem is as a search through parameter
space. Here, the actions are defined as taking a single step along one of the
parameter dimensions. The reward function could be how much closer the
agent got to the optimal solution after taking a step (the state and transition
function definitions vary depending on the problem). This formulation has
been applied to many different medical imaging problems, including that
of landmark detection.

Landmark detection aims to find a point in an image that represents a
medical landmark. In a 2D image, it can thus be defined by the parameters
[x, y], where the goal is to find the x and y values that correspond to a given
landmark. The state presented to the RL agent will thus be defined in terms
of these parameters, such as a smaller section of the image centered around
the current point. The action space is defined as a change to the parameters,
for example, by increasing or decreasing one of them by some value δ:

A = ±δx,±δy

The reward signal could be to look at the change of distance to the
ground truth landmark after taking an action, which incentivizes the agent
to take steps that take it closer to the landmark:

R(st, st−1, a) = D(xt−1, yt−1)− D(xt, yt)

where D(x, y) returns the distance from the point (x, y) to the ground
truth landmark. If the distance were 10 in the previous state and 8 in the
new current state, the reward would be 10− 8 = 2. If the distance were
4 in the previous state and 7 in the new current state, then the reward (or
penalty, in this case) would be 4− 7 = −3.

This formulation was used for landmark detection in 2D and 3D CT
images in a series of papers by Ghesu et al. [20] [19] [18]. Compared to
other state-of-the-art methods at the time, which performed an exhaustive
search across the input image, an RL agent only has to follow a simple path,
which in the first paper of the series was reported to speed up the detection
by 80 times for 2D data and 3100 times for 3D data [20].

The agent traverses the space by taking a step in one direction, up,
down, left, right, forward, and back for 3D images, until it converges
around a point that is then considered landmark prediction. Convergence
occurs when the agent starts showing oscillating behavior. In the follow-
up papers [19], and [18], a multi-scale approach was used, wherein the
agent searches for the landmark at increasingly fine levels. The first and
largest field of view ensures that the agent has access to sufficient global
context. When the agent converges, the next scale level is used, and the

34

agent continues searching on this finer scale. A final prediction is made
when the agent converges on the finest scale level.

Q-learning is used with a deep CNN as a function approximator,
making it a DQN, similar to the model used in [50]. A different model
is trained at each scale.

In addition to a strong speed-up and ability to detect landmarks
perfectly from the authors’ validation data, the agent can also detect when a
landmark is outside of the present scan. In this case, the agent will attempt
to leave the image space.

Different versions of DQN and landmark detection problem formula-
tion have been explored. Inspired by the work by Ghesu et al., Alansary
et al. explore using a DQN, a Double DQN, a Duel DQN, and a Double
Dual DQN for landmark detection in 3D ultrasound and MRI [3]. The for-
mulation of the problem into state, actions, and reward function remains
mostly the same as in [19] and [18], except that the state also has a buffer
of the last three previously visited states. Including a small history buffer
of previous states increases stability and prevents the agent from getting
stuck in repeating cycles. Both fixed and multi-scale searching strategies
are compared, but the same DQN is shared across all levels in the multi-
scale case. They conclude that a multi-scale search strategy improves the
performance, especially for large or noisy images, while also speeding up
the search process by 4-5 times, but that the choice of deep RL architecture
depends on the environment.

A medical image may consist of multiple different landmarks. Vlontzos
et al. extend the DQN to a collaborative model where multiple agents
share a common CNN but look for different landmarks [65]. This is done
using a shared CNN, followed by K different sets of fully connected layers,
where K equals the number of agents. The fully connected layers learn to
find their respective landmarks, while the CNN is trained on data from all
the agents at once. This collaborative framework acts as an implicit form
of layer regularization to the network and provides indirect knowledge
transfer between agents.

The formulation for treating RL as a search through parameter space
has been applied to other tasks as well, such as image registration [44] [41],
object/lesion localization and detection [47], and more [73].

Image Registration is about aligning two or more images, transforming
them into the same coordinate system, and allowing them to provide
complementary information in combination. If the transformations can
be assumed to be rigid, the set of parameters could consist of simply
translation and rotation, making a total of 6 parameters, or 12 actions, for
3D images [44]. If the transformations have to be non-rigid, then free form
deformations can be used on the image to be registered, such as in the work
by Krebs et al. in 2017 [41]. In their paper, to reduce the number of actions,
they use the first m modes of the PCA as the parameter vector, making a
total of m× 2 actions.

Object/lesion localization and detection apply object localization to
medical imaging. The goal of the algorithm is to find a bounding box
around particular objects in the image. For lesion detection in 3D breast

35

scans, Maicas et al. (2017) used a parameter space consisting of translation
and scale [47]. The agent can take a step along any of the three spatial
dimensions or change the scale of the bounding box, making a total of
eight actions. Additionally, a ninth action was added that acted as a trigger
for when the agent has found a lesion instead of relying on an agent’s
oscillating behavior around the target.

Not all problems fit into this formulation, however. Video summariz-
ation is the task of reducing the length of a video while keeping as much
useful information as possible. Liu et al. (2020) use RL for summarizing 15
to 65 minutes long fetal ultrasound videos. It is difficult to formulate this
problem as a search in parameter space, and therefore the aforementioned
reward function based on distance can not be used. Instead, the authors
design a reward function that tries to encapsulate what it means to have a
good video summarization. The reward function is a sum of three parts:

• Rdet: the likelihood that a selected frame is of a standard diagnostic
plane.

• Rrep: the temporal cohesiveness of the selected frames, incentivizing
selecting continuous video sections.

• Rdiv: the diversity of the frames, incentivizing selecting frames that
are different from each other such that the summarization will be
more representative of the whole session.

The action space consists of only two actions: include the current frame
or do not include the current frame in the video summary. By using this
straightforward action-space formulation, and a set of high-level rewards,
the agent is still able to achieve good performance. The agent’s predicted
summary scores 62.08 in precision and 64.54 in recall compared to a user
annotated summary.

This work serves as inspiration for this thesis and helps guide our RL
formulations for the task of ED-/ES-frame detection.

36

Chapter 3

The Dataset

Only one dataset was used in this thesis. This chapter gives an overview
of the dataset used to train the models, how it is organized and how we
pre-process it.

3.1 Echonet-Dynamic Dataset

The Echonet-Dynamic Dataset [53] is an openly available collection of
10,030, 112-by-112 pixels echocardiography videos for studying cardiac
motion and chamber volumes. Each video has been cropped and masked
to exclude text, ECG- and respirometer-information, and downsampled
from its original size into 112-by-112 pixels using cubic interpolation. All
videos are of the apical-4-chamber view, and each video is from unique
individuals who underwent imaging between 2016 and 2018 as part of
routine clinical care at Stanford University Hospital. Images were acquired
by skilled sonographers using iE33, Sonos, Acuson SC2000, Epiq 5G, or
Epiq 7C ultrasound machines. Each video has been labeled by a registered
sonographer and verified by a level 3 echocardiographer in the standard
clinical workflow.

The dataset consists of three parts: FileList.csv contains general informa-
tion about each video, its variables are listed in table 3.1. VolumeTracings.csv
contains the volume tracings and ED/ES frame index of each video, its
variables are listed in table 3.2. And finally Videos, containing all the ultra-
sound videos in .avi format. Video frame samples can be seen in figure
3.1.

3.1.1 Getting ED/ES Frame Information

To get the ED and ES frames, we have to look at the volume tracings, whose
variables are listed in table 3.2. The volume tracings list the line segments
that define the heart’s volume at a given frame. There are two sets of
line segments for each video, one for ED and one for ES, but which one
is which is not given explicitly. We can find this information by calculating
the volume from the line segments for both frames and comparing them —
the one with the largest volume is ED, and the other one is ES.

37

Table 3.1: Echonet video general information variables.
Variable Description
FileName Hashed file name used to link videos, labels, and annotations
EF Ejection fraction calculated by the ratio of ESV and EDV
ESV End systolic volume calculated by the method of discs
EDV End diastolic volume calculated by the method of discs
FrameHeight Video Height
FrameWidth Video Width
FPS Frames Per Second
NumberOfFrames Number of Frames in the whole video
Split Classification of train/validation/test sets used for benchmarking

Table 3.2: Echonet video volume tracing variables
Variable Description
FileName Hashed file name used to link videos, labels, and annotations
X1 X coordinate of the left-most point of line segment
Y1 Y coordinate of the left-most point of line segment
X2 X coordinate of the right-most point of line segment
Y2 Y coordinate of the right-most point of line segment
Frame Frame number of video on which tracing was performed

Figure 3.1: The first frames of 15 randomly sampled videos from the
Echonet dataset.

38

3.1.2 Extrapolating Diastole and Systole Labels

As is explored in later chapters, we would also like to label the phase of
each frame in the video, not just the frame that ends each phase. When we
only have access to the end-frames of each phase, the first phase will only
have one labeled frame. For example, if the ED frame comes first, then
only the first frame will be labeled diastole as the rest will be systole, as
visualized in figure 3.2.

Figure 3.2: Class imbalance: only the first frame is marked with the phase
of the first end-event (either ED or ES). All others are marked with the other
phase.

We can extract more frames before and after the labeled frames by
exploiting the periodicity of the cardiac cycle. As the heart goes from one
phase-end to the other, the difference between the current frame and the
first phase-end differs more and more. When the opposite end-phase is
reached, the frames will start to differ less. For example, the next frame
with the biggest difference from the ED frame is likely close to the ES frame.
This periodic effect can be seen if we plot the absolute difference between
a frame and the rest of the video, as seen in figure 3.3.

An optimistic approach would be to label all the frames until the
previous or next peak difference. For example, if the first event is ED, we
could label all previous frames until the next peak difference as diastole.
Likewise, if the final event is ES, we could label all following frames until
the next peak difference as diastole. The peak can be found by finding the
first frame whose difference is less than the one preceding it, i.e., when
the difference is no longer increasing. This risks labeling too few frames
if there is a local peak due to noise, but this problem can be mitigated by
smoothing the summed absolute difference values. A gaussian blur with a
kernel standard deviation of 5 was used to smooth the values.

We also risk labeling too many frames, adding wrongly labeled frames,
because there are no guarantees that the peaks directly coincide with the
change of phase. This problem can be mitigated by only including a certain
percentage of frames leading up to the peak. We elect to include 75% of the
frames leading up to the peaks.

An example of a smoothed absolute-difference curve with 75% of
extrapolated frames highlighted is plotted in figure 3.4.

39

Figure 3.3: The absolute frame difference of all frames in a video compared
to frame 100. Notice that the difference for frame 100 is 0 as it (of course)
equals itself.

Figure 3.4: The same summed absolute frame difference plot as in figure
3.3, but smoothed using a gaussian blur with a kernel standard deviation
of 5. The dashed lines represent phase-end events, and the frames in the
light blue area are frames that have their phase labeled. Notice how the
labeled frames’ perimeter only extends 75% towards the peak on the right
side. Also note that the gaussian blur causes the summed absolute frame
difference for frame 100 to no longer be 0.

40

3.1.3 Normalizing and Removing Invalid Videos

When labeling the frames, an assumption is that both events occur within
the same cardiac cycle, though this is not always the case in the dataset. To
filter out videos where the annotated end-phase events go beyond a single
cycle, we again analyze the periodicity using a similar method to the one
used in the previous section.

The summed absolute frame difference should at most have one peak if
the frames are from the same cardiac cycle. If it has two or more peaks, it
suggests that the labeled video contains more than one heartbeat and thus
can not be adequately labeled. There are 19 such videos in total, and these
are filtered out. A set of good and bad video label examples are visualized
in figure 3.5.

Figure 3.5: The summed absolute frame difference between the first end-
phase event and the frames until the next end-phase event. This should
only be a half cardiac cycle, so there should be at most one peak. The upper
plots show videos where the end-phase labels only cover one half cardiac
cycle, while the bottom plots show videos with more than one cardiac cycle
and thus have incorrect labels.

The videos already have the same size of 112-by-112, but the frames-
per-seconds (FPS) differs. Luckily, most videos in the dataset have the same
FPS — almost 80% of the videos have exactly 50 FPS. The smallest FPS is
18, and the highest FPS is 138. See figure 3.6 for a histogram (logarithmic
scale on the y-axis) of the different FPS values.

To normalize the videos with a much smaller FPS than 50, we would
have to add information to them by inserting new frames. However, this
may add unwanted bias to the data, and it is not obvious how to label the
interpolated frames when the video goes from one phase to another. We
would have to remove frames to normalize the videos with a much higher
FPS. Unless the FPS is a multiple of 50, we risk introducing varying FPS to
the video, which may confuse the model. For example, if a video has 75
FPS, we could opt to remove every third frame to make it 50 FPS, but this
would make it seem like the heart moves slightly faster every third frame.

Because the Echonet dataset is so large, we opt to simply filter out all
videos that have an FPS other than 50. Thus, we filter out another 2071
videos, leaving us with 7946 videos.

41

Figure 3.6: A histogram of the different FPS rates of the videos in the
Echonet dataset. Note that the y-axis is on a logarithmic scale — in fact,
almost 80% of the videos have precisely 50 FPS.

42

3.1.4 Training, Validation, Test Split

The dataset has already been split into three parts: one part for training
the algorithm, one part for validation, and one for testing (i.e., presenting
results). The percentage split is approximately 75% for training, 12.5% for
validation, and 12.5% for testing. After filtering out videos as explained in
the previous two sections, the split ratios remain approximately the same.
We opt to continue using this split in this thesis.

A full Echonet-Dynamic dataset pipeline is visualized in figure 3.7.

Figure 3.7: A visualization of the data processing pipeline for the Echonet-
Dynamic dataset, as described in the previous subsections. First, the ED-
and ES-frames from the video are extracted from the volume tracings data.
The frame with the biggest volume is ED; the other is ES. Next, more frame
labels are extrapolated by looking at the absolute pixel differences between
the ED- or ES-frame and the other frames of the video. Then, videos are
filtered such that not more than one cardiac cycle is included in the labeled
frames and all videos have 50 FPS. Finally, the videos are split randomly
into three subsets: training, validation, and testing.

43

44

Chapter 4

Methodology

This chapter steps through the methods used in the thesis, the decisions
taken, and the reasoning behind them. Section 4.1 introduces and describes
the binary classification environment (BCE), and the design of the three
different reward functions RGaaFD, Rsimple, and Rproximity. Section 4.2
gives an overview of the software technologies used to train the models.
Section 4.3 describes the architecture of the agent and neural network,
and how it was optimized and trained. Section 4.4 describes how we
evaluate the models in the Experiments and Results chapter. Section 4.5
describes the hyperparameters used in the experiments and why they
were chosen. Section 4.6 explores different ways of incorporating search
into the environment. Finally, section 4.7 describes the m-mode binary
classification environment (MMBCE), a version of BCE that incorporates
search using a synthetic m-mode image.

4.1 Environment Formulation

As described in section 2.4.5, a markov decision process (MDP), which is
at the core of RL, can be described using four elements: the state space,
the action space, the transition function, and the reward function. The
states and actions dictate what information the agent receives from the
environment and how it can, in turn, interact with the environment. The
transition function defines the effect of actions on the environment. The
reward function defines the goal of the agent.

4.1.1 Binary Classification Environment

BCE is visualized in figure 4.1. After observing the current and adjacent
frames, the agent takes an action predicting that the current frame is either
in the diastole or systole phase and receives a reward dependent on its
prediction before the environment moves the current frame one frame
forward.

More formally, the observation ot at time t is the current frame in
the video prepended by the N previous frames and the N next frames.
The shape of an observation is thus (W, H, 2N + 1). The agent takes the

45

Figure 4.1: Visualization of the Binary Classification Environment loop.
An agent sees the observation from the current frame and takes an action,
either marking it as diastole or as systole, and gets back the reward and the
observation for the next frame from the environment.

observation as-is and takes one of two actions: Mark current frame as diastole
or Mark current frame as systole. After taking an action at, the agent receives
a reward rt+1 and is presented with the next observation ot+1. The current
frame is moved one frame forwards after each action is taken, and the
episode ends when there are no more labeled frames left.

Given that videos from the dataset are 112-by-112, the only two
hyperparameters for this setup are N and the choice of reward function.
Increasing N means that the agent has access to more temporal information
but at the cost of increased computational and memory requirements and a
decrease in the number of videos with enough adjacent frames on either
side. The number of valid videos for a given N and the change in the
number of valid videos is plotted in figure 4.2. As a starting point, N was
selected1 to be 3. This means that an observation has the shape (112, 112, 7),
having 2× 3 + 1 = 7 channels.

4.1.2 Reward Function Design

The standard metric for this task is the average absolute frame difference
(aaFD), as defined in equation 4.1. aaFD measures the precision and
accuracy of predictions by measuring the frame difference between each
ground truth event yt and the corresponding prediction ŷt generated by
the model — a lower aaFD meaning that the model is making fewer errors.
t is the index of a specific event, of which there are N in total.

1Perhaps a bit arbitrarily selected.

46

Figure 4.2: The effect of N on the size of the dataset. Left: the number of
valid videos (videos with at least N adjacent frames on either side) for the
whole dataset. Right: the change in the number of valid videos per N for
the whole dataset.

aaFD =
1
N

N

∑
t=1
|yt − ŷt| (4.1)

One weakness of aaFD is that it is only defined when there are an
equal number of predicted events as there are ground truth events. This
is not always the case, as an imperfect model may predict more or fewer
events. A generalized aaFD (GaaFD1) was considered for a metric instead,
calculated as the average frame difference between each predicted event
and its nearest ground truth event as in equation 4.2, having the property
that it converges towards the true aaFD as the model improves. In equation
4.2 N̂ is the number of predicted events and C(y, ŷ) is the frame difference
between the predicted event to the closest ground truth event of the same
type. For cases where there are more predicted events than there are
ground truth events, GaaFD1 would, as is rational, give a worse score.
However, for cases with fewer predicted events than ground truth events,
GaaFD1 would give a score that does not reflect its inability to predict all
events.

GaaFD1 =
1
N̂

N̂

∑
t=1
|C(y, ŷt)− ŷt| (4.2)

Similarly, we could base it on the ground truth events and take the
distance to the nearest predicted event, GaaFD2, as in equation 4.3, we
get the opposite problem — too many predicted events are not reflected
negatively in the score.

GaaFD2 =
1
N

N

∑
t=1
|yt − C(yt, ŷ)| (4.3)

By combining GaaFD1 and GaaFD2 as in equation 4.4 we mitigate these
problems while maintaining the convergence property.

GaaFD =
1

N + N̂
(

N

∑
t=1
|yt − C(yt, ŷ)|+

N̂

∑
t=1
|C(y, ŷt)− ŷt|) (4.4)

47

Using negative GaaFD (negative because we wish to minimize it) as a
reward function for RL means optimizing the agent directly for our main
metric aaFD. However, it has one final flaw: it is only defined on whole
episodes. This means that the agent has to run an entire episode before
getting a reward, making the reward signal sparse.

Instead, we could frame the problem as a simple classification problem
where the agent must classify individual frames as either ED, ES, or neither.
This allows us to give a reward at each step depending on whether the
prediction was correct or not. One problem with this approach is that there
is a heavy class imbalance because most frames are neither ED nor ES. A
solution to this is to instead predict the phase, either diastole or systole, as
it is trivial to find ED and ES from the phase by finding the frames where it
transitions from one to the other.

From this, we can define a simple reward function Rsimple that gives a
reward of 1 if the predicted phase was correct and −1 if it was incorrect,
as seen in equation 4.5. The information that the agent receives from the
reward signal Rsimple is slightly different from the one defined through
GaaFD, as GaaFD penalizes predictions that are more wrong heavier than
those that are close to the ground truth.

Rsimple(s, a) ,
{

1 if phase(s) = a
−1 if phase(s) 6= a

}
(4.5)

We can make the reward signal more similar to GaaFD by defining it in
terms of the distance to the nearest predicted phase, as seen in equation 4.6,
where d(s, a) is the distance in frames from the current state s to the nearest
frame that has the predicted phase a.

Rproximity(s, a) , −d(s, a) (4.6)

4.2 Frameworks and Libraries

The code to train and run the agent is written in Python because of its ML
and data-processing ecosystem. The main framework for data-processing
is JAX [9]. Other frameworks considered were Tensorflow [2] and PyTorch
[54]. A list of the most important ones can be found in table 4.1.

4.3 Agent Architecture

Deep Q-Network was selected for the RL agent architecture. DQN is a
well-established method for scaling up RL by approximating the expected
returns of an action in a given state using a (deep) neural network. It is also
simple to train distributedly as it is off-policy, enabling us to separate the
algorithm into a learner and multiple agents, as explained in a following
section.

We take advantage of a few additions to the original DQN algorithm:
Prioritized Replay, N-step returns, and Double Q-Learning. An ε -greedy
policy is used for facilitating exploration.

48

Table 4.1: A collection of the most important libraries used in the project.
Library Description
jax Main data-processing framework. Provides autodifferen-

tiation, vectorization, Just-In-Time (JIT) compilation, and
more [9]

gym An interface for defining RL environments [10]
dm-haiku A neural network library for JAX [27]
optax A gradient processing and optimization library for JAX [28]
rlax Building blocks for building RL agents [5]
dm-acme Distributed RL agent implementations and building blocks

[31]
dm-reverb A database for storing and sampling experience replay [12]
dm-launchpad A library for defining and creating distributed systems [68]
Scikit-learn A collection of machine learning algorithms. In this project

it is mostly used for calculating metric [55]

4.3.1 Neural Network

The neural network that approximates the Q-function is inspired by the
original Atari DQN paper [50]. It has two convolutional layers and two
fully connected layers. A ReLU activation layer follows each layer except
for the last one. The first convolutional layer has 16 output channels, a
kernel size of 8-by-8, and a stride of 4. The second has 32 output channels,
a kernel size of 4-by-4, and a stride of 2. The data is flattened before being
passed to the fully connected layers. The first fully connected layer has an
output size of 256. The final layer has two outputs, each representing the
estimated value of taking one of the actions, given the input state. In total
there are 1 621 810 parameters. The network is visualized in figure 4.3.

Figure 4.3: A visualization of the simple DQN-Atari-paper-inspired CNN.

4.3.2 Loss Function and Optimizer

The loss function is the Double Q-Learning loss where the TD-error is
calculated with respect to another Q-network. Because of this, we have
to keep track of two sets of network parameters: one for the selector Q-
network and one for the estimator Q-network. Huber loss [33] is applied to

49

the TD-error such that the L2 loss becomes linear after a certain threshold.
In addition, the loss is weighted with respect to the prioritized replay
importance weights.

The Adam optimizer [39] is used to update the selector parameters, and
the target network parameters are updated to equal the selector parameters
every 100 gradient descent steps.

4.3.3 Distributed Training

As mentioned, DQN lends itself nicely to distributed training. In this
project, this is achieved through a library called Acme [31]. At the center of
Acme is another library called Reverb [12]. Reverb is a database for storing
experience replay samples that lets us insert and sample experiences
independently. If we separate the learning step and the acting step of the
algorithm, Reverb can be used as the communication point between the
two. One or more actors, possibly on different machines, can generate
experience samples and insert them into the Reverb experience replay
database. A learner, also possibly on a different machine, can sample
from it to perform gradient descent. The actors and the learner do not
need to know about each other, except when an actor needs to update its
parameters, in which case it needs to query the learner for the latest trained
parameters. It is also trivial to add one or more evaluators that can run
in parallel and that only need to query the learner for the latest trained
parameters. Inter-process communication is facilitated by a third library
called Launchpad [68].

Figure 4.4: An illustration of the distributed RL training system. Each pink
node runs in a separate Python process, and each blue arrow is an inter-
process function call facilitated by Launchpad.

There is a balance between how fast experience samples should be
added to the experience replay and how fast the learner should sample
them. If the learner samples faster than the actors can generate new
samples, the network will be trained using trajectories generated from
outdated policies. If the actors generate new samples much faster than the

50

learner can sample, then we are wasting computer resources.
Reverb helps maintain this balance through rate limiters. We use a

rate limiter that tries to maintain a specified ratio between insertions and
samples, blocking either the actors from inserting new samples or the
learner from sampling if the ratio differs too much. For example, using
a samples-per-insert ratio of 2 means that, on average, each insertion made
by an actor will be sampled twice. A ratio of 0.5 means that, on average,
each insertion will be sampled half a time — i.e., there are twice as many
insertions as there are samples.

4.4 Evaluation

During training, the updated parameters of the model are continuously
evaluated using GaaFD on 50 videos, randomly selected each time, from
the validation set. Smoothing is applied to the learning curves using a
Gaussian filter with a kernel standard deviation of 10 to compensate for
the low sample size for each point. The best parameters are selected by
finding the parameters that produce the lowest GaaFD during training for
the smoothed GaaFD learning curve.

The primary evaluation metric for the trained model is aaFD. However,
some videos may not receive the same number of predicted events as there
are ground truth events, so aaFD is undefined. Because of this, aaFD is
only reported for videos where it is defined. Additionally, the percentage
of videos with a defined aaFD is reported. The corresponding ground truth
event to each predicted event is chosen to be the closest one, and we can
therefore use GaaFD, as defined in equation 4.4, for calculating aaFD.

It may also be interesting to see the density plots of GaaFD for
all videos and compare the performance of the agent on ED- and ES-
frames individually. The density plots used are an approximation of the
continuous distribution of GaaFD. A histogram may also be used, but
density plots were found to be easier to compare using density plots.
They are created using gaussian kernel estimation (KDE) [57]. The kernel
bandwidth is automatically selected using Scott’s rule, the default selection
method for SciPy’s KDE implementation.

Because the RL problem formulation is similar to a regular binary
classification problem, accuracy and balanced accuracy are also reported.
Accuracy and balanced accuracy are defined on frame phase predictions
instead of end-phase events. Accuracy is simply the percentage of correctly
labeled frames, as defined in equation 4.7, where 1(y = ŷ) is the indicator
function. Given that there is a class imbalance between diastole and systole
frames, balanced accuracy gives a more representative score of the actual
model performance. Balanced accuracy weights systole frames accuracy
higher than diastole frames and is defined in equation 4.8. TP, FP, TN,
and FN stand for "true positives", "false positives", "true negatives", and
"false negatives", respectively. It is also defined as the average between the
sensitivity and the specificity. The balanced accuracy score is also rescaled
such that it gives a score in the range [−1, 1], where 0 means that the

51

model’s predictions are random, and −1 and 1 mean that the predictions
are all incorrect or all correct, respectively.

accuracy(y, ŷ) =
1
N

N

∑
i=0

1(ŷi = yi) (4.7)

balanced-accuracy(y, ŷ) =
1
2
(

TP(y, ŷ)
TP(y, ŷ) + FN(y, ŷ)

+
TN(y, ŷ)

TN(y, ŷ) + FP(y, ŷ
(4.8)

Models are also evaluated on their inference time — how long it takes
to make predictions for a video. To use a trained model, one can use the
Q-network directly, without instantiating a gym environment or using an
ε -greedy policy. The Q-network outputs the expected returns of taking
either action, so picking the action with the highest output is the same as
following a greedy policy. The Q-network can be evaluated on individual
frames or on the video as a whole, where all the frames are combined into a
single batch. Evaluating each frame individually enables incorporating the
model into a pipeline of streaming frames, of which one step is predicting
the current cardiac phase. Evaluating the whole video as a batch is
generally faster as it gets away with less IO overhead of sending data back
and forth between the CPU and the GPU.

Batching the frames of a video may require more JIT compilation with
JAX. This is because, to speed the network up significantly, it is JIT-
compiled to XLA, but JIT-compiled functions require that the shape of the
data remain the same. If the shape of the data is not the same, e.g., if we are
evaluating two videos with a different number of frames as two different
batches, the function will be recompiled, adding overhead. This could be
solved by fixing the batch size to a constant number. For videos with fewer
frames than the batch size or with a number of frames that can not be split
into equal chunks of the batch size, frames filled with zeros can be added.
These extra frames create needless work on the GPU but do not require
recompilation.

Inference time is evaluated using single frame-inference and batched-
frames inference with a batch size of 128 on the CPU and GPU. Addition-
ally, IO overhead is reported by comparing the average processing time
when sending the data to GPU for each call versus pre-placing the data on
the GPU. The average run time is calculated by taking the elapsed time,
averaged over 1000 calls.

Finally, models are evaluated on how long it took to train them in clock
time and the number of SGD steps performed.

4.5 Selection of Hyperparameters

4.5.1 Generalized Average Absolute Frame Difference Reward
Function

Using GaaFD directly as the reward function has the benefit that we are
directly optimizing the agent for the primary performance metric aaFD, as

52

defined in equation 4.1. However, as discussed in section 4.1.2, a weakness
is that it is only defined at the end of an episode, making the reward signal
very sparse. The agent will only get a reward at the last step of an episode,
which, on average, lasts for 50 steps.

To solve for reward-sparsity, we use multistep bootstrapping with a
value of N = 200. An episode is automatically terminated once it reaches
200 steps 2 so this will, in practice, mean that the agent is trained using the
Monte Carlo method.

We also set the discount value γ = 1.0, which means that an agent
tries to maximize all future rewards. A value of γ < 1.0 means that
the calculated returns will be noisier and harder to predict because the
discounted returns calculated for steps earlier in an episode would have
a lower value than those calculated closer to the end.

The expected returns are assumed to be very sensitive to the current
policy as a correctly selected next action’s returns may be jeopardized by
future wrongly selected actions. This would make it hard for the agent
to extract information about which actions were wrong and which were
correct. Because of this, we opt to use very low values of the exploration
parameter ε, as higher values of ε means that actions will be selected at
random more often, making the expected returns harder to predict. Three
values are tested for the exploration hyperparameter ε: ε = 0.0, ε = 0.01,
and ε = 0.1. The agents were allowed to train until they visually reached a
plateau. A full list of the hyperparameters used is listed in table 4.5.1 (most
relevant ones are highlighted).

Hyperparameter Value
Epsilon {0.0, 0.01, 0.1}
Discount 1.0
N (N-step bootstrapping) ∞
Target update period 100
Importance sampling exponent 0.2
Priority exponent 0.6
Number of actors 8
Min replay size 10 000
Max replay size 250 000
Samples per insert ratio 0.5
Optimizer Adam with default parameters
Huber loss parameter 1.0
Learning rate 1−4

Gradient descent steps {100 000, 150 000, 200 000}
Batch-size 128

2Though in the case of BCE, this will never happen because no video has this many
frames.

53

4.5.2 Simple- and Proximity-Based Reward Functions

Using reward functions based on each phase prediction gets around the
reward sparsity problem of using GaaFD as the reward function. Two
more reward functions are explored: a simple reward function Rsimple,
as defined in equation 4.5, and an proximity-based reward function
Rproximity, as defined in equation 4.6. This makes it quite similar to a
supervised regression problem where we want to learn the Q-values given
an observation and an action. The returns only depend on the current
action and not on all the actions in an episode, as we saw with the GaaFD
reward function. As a result, it is assumed that the optimal discounting
factor is γ = 0.0, meaning that the returns are calculated using only the
immediate reward. A discount value of γ > 0.0 would make expected
future returns predictions depend more on the current policy, adding noise
to the target values until the policy converges.

Unless discounting is not zero, there will be no need for bootstrapping,
and we can ignore N-step bootstrapping for these reward functions by
setting N = 1.

Since an action does not affect future states, exploration is not as
important. Instead, we can view the exploration variable ε as affecting
how input/label pairs are sampled. An exploration value of ε = 1.0 means
that actions are sampled uniformly, and a value of ε = 0.0 means that
actions are sampled based on how good it is assumed to be. Three values
are tested for the exploration hyperparameter ε: ε = 0.1, ε = 0.5, and
ε = 1.0. The agents were trained for 200 000 SGD steps. A full list of the
hyperparameters used for experiments with reward functions Rsimple and
Rproximity is listed in table 4.5.2 (most relevant ones are highlighted).

Hyperparameter Value
Epsilon {0.1, 0.5, 1.0}
Discount 0.0
N (N-step bootstrapping) 1
Target update period 100
Importance sampling exponent 0.2
Priority exponent 0.6
Number of actors 8
Min replay size 10 000
Max replay size 250 000
Samples per insert ratio 0.5
Optimizer Adam with default parameters
Huber loss parameter 1.0
Learning rate 1−4

Gradient descent steps 200 000
Batch-size 128

54

4.6 Incorporating Search

Although RL is designed to be able to perform a search through an
unknown state space, in the previous setup, there is no exploration as
previous actions do not affect future actions. Therefore, there is no reason
to believe that RL will outperform a carefully designed supervised learning
approach. By transforming the problem to one that requires search, we will
have a problem not trivially solved by supervised learning but where RL
can shine. Though this may seem like straightening a screw to make it work
with a hammer, there may be unforeseen benefits. Of great importance to
ML is to represent the problem space such that it is easy for an algorithm
to learn from it. Perhaps there is an optimal representation of the problem
of ED-/ES-detection that also happens to require search?

4.6.1 Temporal Search

We could formulate the problem as a search in time where the agent must
learn to move the current frame towards the end-phase event. The agent
sees the current frame and some number of previous and following frames
and can either move the current frame backward or forwards. The agent
can be rewarded with 1 if it moves a step closer to the nearest end-phase
frame and -1 if it moves away from it.

There are a handful of issues with this approach. Issue 1: we would
have to train two different agents: one for ED and one for ES. Issue 2: there
is no terminal state, and the episodes can run forever. Issue 3: there will be
ambiguity in what frame the agent truly predicts as the end-phase because
it will likely show oscillating behavior around the predicted frame. Issue
4: we would have to run multiple agents at different points in the video to
find all end-phase events, and it is not obvious how to do so.

Issue 2 and issue 3 can be partially solved by including a third action
for marking the current frame and ending the episode, though this may still
lead to the agent getting stuck in an endless loop of going back and forth.
We could also keep just the two actions but terminate the episode once the
agent starts showing oscillating behavior, as in [3], as this indicates that
it has found the predicted frame. The problem with this is that the final
predicted frame would be ambiguous as we do not know which of the two
frames the agent oscillates between is the actual predicted frame. However,
using DQN, we could peek at the Q-values and pick the frame where the
expected reward of taking the action with the maximum expected reward
is the lowest. Issue 4 may be solved by starting an agent from each
frame, though this would increase the computational requirements of the
algorithm.

4.6.2 Spatial Search

Instead of searching through the video frames, we could let the agent
search spatially in the video. In this formulation, the agent only has access
to a part of the images while predicting the phase of frames. Like landmark

55

detection tasks, it can move its focus around in the image, the hope being
that it can discover parts of the video, which makes it easier to identify
the correct phase. This can be seen as reducing the space and memory
requirements at the cost of speed, as the agent has to process a smaller part
of the image but may explore multiple steps before making a prediction.

One option is to look at a region of interest (ROI) around a point
that the agent can move. Building upon the simple binary classification
environment described in previous sections, this would add four new
actions: move up, move down, move left, and move right. This is
visualized in figure 4.5. Because we reduce the size of the observations,
we could either trade it for reduced memory usage or for including more
temporal information in terms of included adjacent frames.

Figure 4.5: A region of interest (ROI) is given to the agent, which it can then
move around to explore.

Another option is to take inspiration from m-mode imaging used in
ultrasound. We can define a synthetic m-mode image in terms of a line
in the video, where it shows how the pixels along this line change over
time. A video can be seen as a 3D data cube consisting of width, height,
and time. When using the synthetic m-mode technique, width and height
are replaced by the line, effectively removing one spatial dimension while
keeping the temporal dimension intact. The m-mode can be seen as taking
a 2D slice of the video, as seen in figure 4.6. This synthetic m-mode

56

exploration formulation adds six new actions: move up, move down, move
left, move right, rotate left, and rotate right. M-mode imaging is also a well-
established imaging mode in clinical settings, so this is the method that we
want to explore further.

Figure 4.6: An m-mode image is an intersecting plane in 3D "video space".

Moving the synthetic m-mode line up, down, left, or right is done
relative to its rotation. We call this local translation, different from global
translation, where the movement is independent of the rotation of the
line. Local and global translation is visualized in figure 4.7. Using local
translation is presumed to add some rotational invariance, as the m-mode
line can counteract the rotation of the video itself without changing the
perceived m-mode effects of translation. This also makes the effects of the
up- and down-translations trivial, as seen in figure 4.8 — independent of
rotation, it simply shifts the m-mode image down or up, respectively.

4.7 M-Mode Binary Classification Environment

We formulate the m-mode binary classification environment using a
synthetic m-mode search space scheme. The agent can make one of 8
actions, as listed in table 4.2. The movement magnitude is 1 pixel, and
the rotation is 0.1 radians.

In addition to the current synthetic m-mode image, we also want to give
the agent information about what it would look like if it moved or rotated
the line and a history of the latest actions. An observation thus consists
of the synthetic m-mode image for three different rotations (rotated left,

57

Figure 4.7: Global (to the left) versus local (to the right) translation. Local
translation means that the movement depends on the direction of the m-
mode line.

Figure 4.8: Moving the synthetic m-mode line up or down using local
translation changes the resulting image very little — it simply translates
it up or down, as indicated by the blue arrows. To the left: an overview
image of a video with the line added on top. To the right: the resulting
synthetic m-mode image.

Table 4.2: The actions that an agent can take in the MMBCE formulation.
Name Description
Diastole Mark current frame as diastole
Systole Mark current frame as systole
Up Move the line in its current direction
Down Move the line in the opposite of its current direction
Left Move the line in the negative direction perpendicular to itself
Right Move the line in the positive direction perpendicular to itself
Rotate left Rotate the line to the left
Rotate right Rotate the line to the right

58

not rotated at all, and rotated right) and for three different perpendicular
movements (moved to the left, not moved at all, moved to the right), for
a total of 9 synthetic m-mode images. Up and down line movements are
not included as additional channels because they do not provide as much
information to the agent, as seen in figure 4.8. The synthetic m-mode image
is created by interpolating the line across the video using nearest-neighbor
interpolation. An overview image consisting of the average of the first
50 frames and the current position of the synthetic m-mode line is also
included in the observation. Lastly, we include the last five actions taken as
a one-hot encoded array of shape (5, 8) — 8 being the number of possible
actions. Observations are thus a tuple of:

1. An "overview" image of shape (W, H, 2)

2. A synthetic m-mode image of shape (T, L, 9)

3. An action history array of shape (5, 8)

W and H are the width and height of the video, respectively, and T and
L are the number of frames (amount of temporal information) and length
of the line, respectively.

At the start of an episode, the line is placed randomly within a
bounding box. This is to force the agent to learn to explore instead of
learning to predict the phase from a common starting position. First, the
line is centered, facing upwards. Then it is translated in the direction
it is facing by a random amount, sampled uniformly from the interval
[−0.1H, 0.1H]. Then it is translated perpendicular to the direction it
is facing by a random amount, sampled uniformly from the interval
[−0.1W, 0.1W]. This ensures that the line’s center is never more than 0.1H
units away in the y-direction or 0.1W units away in the x-direction from
the image’s center. Lastly, it is rotated by an angle sampled uniformly from
the interval [−π

2 , π
2] radians. If a line is somehow generated outside of the

video bounds, a new line is generated.
The random starting positions were verified to be reasonable through

visual inspection of a sample of 1 000 lines, as seen in figure 4.9. An
episode ends once the agent has predicted the phase of every frame or for a
maximum of 200 steps. We have to cut the episode off at 200 steps because
the agent may now move indefinitely. Given that the average video length
is 50 frames, 200 steps should give the agent ample time to find the best
synthetic m-mode line position in most cases.

The reward function is the same as in the simple binary classification
environment but with some modifications. With MMBCE, the agent may
move the line out of the bounds of the video. It may also get stuck in an
infinite loop of actions. The agent is determined to be stuck in a loop if
the line ends up in a previously visited position and there are no phase
predictions since then. If the agent moves the line out of bounds or gets
stuck in a loop, the line is moved to a new random position, and the agent
is given a reward of −1.

59

Figure 4.9: The union of 100 randomly sampled m-mode lines.

60

4.7.1 Agent Architecture

We keep the same base architectures as in the simple binary classification
environment, but we also need to accommodate the overview image and
action history array. This is done by concatenating the result of passing all
three arrays through their corresponding neural networks. The synthetic
m-mode and overview images are passed through the Atari DQN-paper-
inspired CNN that is visualized in figure 4.3, but with the final output
layer removed in order to accommodate concatenation. The action-history
array is flattened before being passed into a fully connected layer with 32
outputs, followed by a ReLU activation layer. After concatenating the three
results, they are passed through yet another fully connected layer of 64
outputs and a ReLU activation layer before being passed through a final
fully connected layer with two outputs. The network is visualized in figure
4.10.

Figure 4.10: The network architecture of the m-mode agent. An observation
consists of three parts. Each part is processed independently by a neural
network before being concatenated and used to produce the approximated
Q-values.

61

62

Chapter 5

Experiments and Results

This chapter reports the results and the impact of various hyperparameters.
Section 5.1 gives an overview of the performance metrics for all the trained
models in the experiments. Section 5.2 compares the generalized average
absolute frame difference (GaaFD) performance for models trained using
different values of the exploration hyperparameter ε. Section 5.3 compares
the accuracy metric performance for models trained using different reward
functions and values of ε. Section 5.4 report the learning- and loss curves
of the different models. Section 5.5 dives into the Q-values produced by the
different models and compare them. Section 5.6 reports how long it took
to just-in-time compile and run the BCE neural network on the CPU and
GPU. Finally, 5.7 reports the results of the single MMBCE experiment that
was run.

5.1 Performance Metrics — An Overview

The performance metrics is reported in the following four tables. Tables
5.1, 5.2 and 5.3 presents the performance of agents traines using RGaaFD,
Rsimple and Rproximity, respectively. Lastly, table 5.4 presents a comparison
between the best models for each reward function.

Out of all the trained models, the model trained using Rsimple with a
value of ε = 0.5 performed the best.

63

Table 5.1: Performance of agents trained using GaaFD as the reward
function on the test dataset.

ε = 0.1 ε = 0.01 ε = 0.0
Best model SGD step 167 336 136 996 95 616
GaaFD 5.84 4.59 3.68
GaaFD ED 5.69 4.84 3.74
GaaFD ES 5.83 4.20 3.50
% valid aaFD 63.71% 70.33% 76.63%
aaFD 3.51 2.71 2.43
Accuracy 0.82 0.86 0.88
Accuracy diastole 0.90 0.91 0.94
Accuracy systole 0.69 0.75 0.77
Balanced accuracy 0.58 0.67 0.70

Table 5.2: Performance of agents trained using Rsimple as the reward
function on the test dataset.

ε = 0.1 ε = 0.5 ε = 1
Best model SGD step 6 220 10 960 8 964
GaaFD 2.52 2.46 2.57
GaaFD ED 2.48 2.43 2.52
GaaFD ES 2.47 2.41 2.55
% valid aaFD 79.30% 80.26% 76.95%
aaFD 1.71 1.69 1.69
Accuracy 0.91 0.91 0.91
Accuracy diastole 0.93 0.93 0.93
Accuracy systole 0.87 0.88 0.88
Balanced accuracy 0.80 0.81 0.81

Table 5.3: Performance of agents trained using Rproximity as the reward
function on the test dataset.

ε = 0.1 ε = 0.5 ε = 1
Best model SGD step 107 936 6 880 7 096
GaaFD 2.55 2.56 2.63
GaaFD ED 2.52 2.56 2.67
GaaFD ES 2.50 2.48 2.52
% valid aaFD 78.87% 79.40% 76.95%
aaFD 1.74 1.80 1.71
Accuracy 0.91 0.91 0.91
Accuracy diastole 0.94 0.93 0.93
Accuracy systole 0.86 0.87 0.88
Balanced accuracy 0.80 0.80 0.81

64

Table 5.4: Performance of the best agent for each explored reward function
on the test dataset. The best agent was selected by the best GaaFD score.

RGaaFD Rsimple Rproximity
ε ε = 0.0 ε = 0.5 ε = 0.1
Best model SGD step 95 616 10 960 107 936
GaaFD 3.68 2.46 2.55
GaaFD ED 3.74 2.43 2.52
GaaFD ES 3.50 2.41 2.50
% valid aaFD 76.63% 80.26% 78.87%
aaFD 2.43 1.69 1.74
Accuracy 0.88 0.91 0.91
Accuracy diastole 0.94 0.93 0.94
Accuracy systole 0.77 0.88 0.86
Balanced accuracy 0.70 0.81 0.80

65

5.2 The Impact of Epsilon on Average Absolute Frame
Difference

Lower values of ε yield a better GaaFD score when using RGaaFD as the
reward function. This is best seen in figure 5.1. There is no consistent
difference between GaaFD on ED- or ES-frames individually, but there is
less difference in performance on ES-frames between the training split and
the test split, as seen in figure 5.2. Figure 5.3 shows that lower values of ε
also reduce the mismatch between the number of predicted versus ground
truth events. This was also clearly seen in table 5.1, where a value of ε = 0.0
predicted the correct number of events 77% of the time, while ε = 0.1 and
ε = 0.01 yielded 64% and 70%, respectively. We also see a significant
"bump" when the difference between predicted and ground truth events
is two.

Figure 5.1: Gaussian KDE of the GaaFD-performance for each model (ε =
0.1, ε = 0.01, and ε = 0) when using GaaFD as the reward function. The left
plot compares all three models on the test split. The middle plot compares
all three models on the train split. The right plot shows the difference
between the two as a means to visualize model overfitting.

The choice of ε did not matter as much for agents trained using Rsimple
or Rproximity, compared to those trained using RGaaFD, as seen in figures
5.4 and 5.6. As with RGaaFD, Rsimple and Rproximity showed little consistent
difference in performance between gaaFD on ED- or ES-frame individually,
as seen in figures 5.5 and 5.7. Figure 5.8 further shows that there is little
difference between values of ε for predicting the correct number of events
as the number of ground truth events, both for Rsimple and Rproximity.

66

Figure 5.2: Gaussian KDE of the GaaFD-performance for each model (ε =
0.1, ε = 0.01, and ε = 0) when using GaaFD as the reward function,
only accounting for either ED- or ES-events individually. The upper row
compares the performance of ED and ES for each model. The bottom row
shows the difference in GaaFD-density on the test-set versus the train-set
as a means to visualize model overfitting.

Figure 5.3: The difference between the number of predicted events and the
number of ground truth events for each model when using GaaFD as the
reward function. Most predictions produce the same number of predicted
events as ground truth, e.g., the model with ε = 0 produces the correct
number of events 77% of the time, also shown in table 5.1.

67

Figure 5.4: Gaussian KDE of the GaaFD-performance for each model (ε =
0.1, ε = 0.5, and ε = 1.0) when using Rsimple as the reward function. The left
plot compares all three models on the test split. The middle plot compares
all three models on the train split. The right plot shows the difference
between the two as a means to visualize model overfitting.

Figure 5.5: Gaussian KDE of the GaaFD-performance for each model
(ε = 0.1, ε = 0.01, and ε = 0) when using Rsimple as the reward function,
only accounting for either ED- or ES-events individually. The upper row
compares the performance of ED and ES for each model. The bottom row
shows the difference in GaaFD-density on the test-set versus the train-set
as a means to visualize model overfitting.

68

Figure 5.6: Gaussian KDE of the GaaFD-performance for each model (ε =
0.1, ε = 0.5, and ε = 1.0) when using Rproximity as the reward function.
The left plot compares all three models on the test split. The middle plot
compares all three models on the train split. The right plot shows the
difference between the two as a means to visualize model overfitting.

Figure 5.7: Gaussian KDE of the GaaFD-performance for each model (ε =
0.1, ε = 0.01, and ε = 0) when using Rproximity as the reward function,
only accounting for either ED- or ES-events individually. The upper row
compares the performance of ED and ES for each model. The bottom row
shows the difference in GaaFD-density on the test-set versus the train-set
as a means to visualize model overfitting.

69

Figure 5.8: The difference between the number of predicted events and the
number of ground truth events for each model when using Rsimple (left) and
Rproximity (right) as the reward function. Most predictions produce the same
number of predicted events as ground truth, e.g., the model with ε = 0.5
and Rsimple as the reward function produces the correct number of events
80% of the time, which can also be seen in table 5.2.

70

5.3 The Impact of Reward Function and Epsilon on
Accuracy

Accuracy and balanced accuracy are not the main metrics that we want to
optimize for, but it is helpful to report them to understand better how the
model performs.

The accuracy of the agents trained using RGaaFD show a similar pattern
as with GaaFD, as lower values of ε give better scores. This can be seen in
figure 5.9 as well as in table 5.1. Figure 5.9 also shows this when accounting
for class imbalance through balanced accuracy. All 3 models performs
perform better at classifying diastole frames compared to systole frames,
as visualized in figure 5.10.

Figure 5.9: Gaussian KDE of the accuracy and balanced accuracy for each
model (ε = 0.1, ε = 0.01, and ε = 0) when using GaaFD as the reward
function. The left plot shows the accuracy. The right plot shows the
balanced accuracy, which accounts more for class imbalance.

Figure 5.10: Gaussian KDE of the accuracy for each model (ε = 0.1,
ε = 0.01, and ε = 0) when using GaaFD as the reward function for diastole
or systole phase predictions individually. The left plot shows the accuracy
for diastole frame predictions. The right plot shows the accuracy for systole
frame predictions.

Again, the choice of ε did not matter as much for models trained using
Rsimple or Rproximity with regards to accuracy and balanced accuracy, as seen
in figures 5.11 and 5.13. These models also perform better at classifying
diastole frames compared to systole frames.

71

Figure 5.11: Gaussian KDE of the accuracy and balanced accuracy for each
model (ε = 0.1, ε = 0.01, and ε = 0) when using Rsimple as the reward
function. The left plot shows the accuracy. The right plot shows the
balanced accuracy, which accounts more for class imbalance.

Figure 5.12: Gaussian KDE of the accuracy for each model (ε = 0.1,
ε = 0.01, and ε = 0) when using Rsimple as the reward function for diastole
or systole phase predictions individually. The left plot shows the accuracy
for diastole frame predictions. The right plot shows the accuracy for systole
frame predictions.

Figure 5.13: Gaussian KDE of the accuracy and balanced accuracy for
each model (ε = 0.1, ε = 0.01, and ε = 0) when using Rproximity as the
reward function. The left plot shows the accuracy. The right plot shows the
balanced accuracy, which accounts more for class imbalance.

72

Figure 5.14: Gaussian KDE of the accuracy for each model (ε = 0.1,
ε = 0.01, and ε = 0) when using Rproximity as the reward function for
diastole or systole phase predictions individually. The left plot shows the
accuracy for diastole frame predictions. The right plot shows the accuracy
for systole frame predictions.

73

5.4 Learning Curves

For models trained using RGaaFD, lower values of ε converge faster, as
seen in the training curve in figure 5.15. There is no apparent degradation
in performance over time that would indicate that the models start to
overfit at some point, but the models trained using ε = 0.0 or ε = 0.01
perform slightly better on the training split than on the test split. This is
not apparent for the model trained using ε = 0.1. The loss curves for
all models follow a peculiar pattern where it starts with sinking rapidly
before increasing again, followed by a slight decrease until it (presumably)
converges, as seen in figure 5.16. Interestingly, the model trained using
a value of ε = 0.01 reaches a higher loss than the other two at its peak
following the rapid sinking at the start. Also interesting, the model trained
using the highest value of ε has a loss curve sitting between the other two.

Figure 5.15: The learning curves of using GaaFD as the reward function for
different values of the exploration parameter ε. Left: GaaFD over training
time (gradient descent steps). Middle: Balanced accuracy over training
time. Right: The difference in GaaFD between the validation set and the
training set over training time, positive values indicating overfitting on the
training set. Each point in the curve is calculated on 50 random videos in
the validation (or training) set. The curves have been smoothed using a
gaussian filter with a kernel standard deviation of 4 to reduce noise due to
the low sample size of each data point. The overfitting (right) plot has also
been smoothed using a gaussian filter with a kernel standard deviation of
50 to ensure that the overall trend is visible.

Figure 5.16: The training loss over time for different values of epsilon. The
left plot shows the full y-axis, while the right plot shows the same plots but
with a zoomed-in y-axis.

Lower values of ε yields less overfitting both for models trained using

74

Rsimple and Rproximity, as seen in figures 5.17 and 5.18. In fact, the models
are able to reach perfect accuracy on the training split, at the cost of worse
performance on the test split, as seen in figure 5.19.

Figure 5.17: The training curves of using Rsimple as the reward function for
different values of the exploration parameter ε. Left: GaaFD over training
time (gradient descent steps). Middle: Balanced accuracy over training
time. Right: The difference in GaaFD between the validation set and the
training set over training time, positive values indicating overfitting on the
training set. Each point in the curve is calculated on 50 random videos in
the validation (or training) set. The curves have been smoothed using a
gaussian filter with a kernel standard deviation of 4 to reduce noise due to
the low sample size of each data point. The overfitting (right) plot has also
been smoothed using a gaussian filter with a kernel standard deviation of
50 to ensure that the overall trend is visible.

The loss curves for models trained using Rsimple or Rproximity do not
show the same peculiar pattern as those trained using RGaaFD. They all
decrease quite rapidly at first before slowing down until convergence. The
model trained with the lowest value of ε (ε = 0.1) converges the fastest.
The models trained using Rproximity also converge faster overall.

Models trained using Rproximity consistently perform better at the metric
of GaaFD in later iterations of training. However, this is most apparent long
after the models have already overfitted on the training split. The models
trained using Rsimple have indications of performing better at the metric of
balanced accuracy, though the difference is most apparent in the models
trained using a value of ε = 0.1. Even though Rproximity performs better
at the important metric of GaaFD after overfitting occurs, the best model
overall belongs to the model trained using Rsimple with a value of ε = 0.5.

75

Figure 5.18: The training curves of using Rproximity as the reward function
for different values of the exploration parameter ε. Left: GaaFD over
training time (gradient descent steps). Middle: Balanced accuracy over
training time. Right: The difference in GaaFD between the validation
set and the training set over training time, positive values indicating
overfitting on the training set. Each point in the curve is calculated on
50 random videos in the validation (or training) set. The curves have been
smoothed using a gaussian filter with a kernel standard deviation of 4 to
reduce noise due to the low sample size of each data point. The overfitting
(right) plot has also been smoothed using a gaussian filter with a kernel
standard deviation of 50 to ensure that the overall trend is visible.

Figure 5.19: The GaaFD over training time (gradient descent steps) on the
validation set (solid pink and blue line) and the training set (dashed pink
and blue lines). The GaaFD on the training set reaches 0, meaning perfect
predictions.

Figure 5.20: The training loss over time for different values of epsilon. Left:
an agent trained using Rsimple. Right: an agent trained using Rproximity.

76

Figure 5.21: Comparison of the training curves using Rsimple versus
Rproximity for different values of of the exploration parameter ε. The top
row shows the GaaFD over training time (gradient descent steps). The
bottom row shows the balanced accuracy over training time. Each column
correspond to one of the agents, ε = 0.1, ε = 0.5, and ε = 1.0, respectively.

77

5.5 The Impact of Reward Function and Epsilon on Q-
Values

For DQN, the Q-values dictate what actions are taken. This section plots
the Q-values for each reward function’s best and worst-performing videos
and the value of epsilon used for the reward function. These results are
mainly qualitative but shed light on how the models "reason" about the
frames in a video.

Figures 5.22, 5.23, and 5.24 plot the Q-values of each frame in the 3 best
performing videos for that model for models trained with RGaaFD, Rsimple,
and Rproximity, respectively, and for each value of ε. Likewise, Figures 5.22,
5.23, and 5.23 plots the same, but for the 3 worst performing videos.

The effect of a higher value of ε of agents trained with RGaaFD is that the
values of marking a frame as diastole or as systole grows closer, as seen in
figure 5.22. There is also a noticeable positive spike for systole values in the
middle of the diastole phase, mostly visible for lower values of ε.

The effect of using Rsimple over Rproximity seems to be that Rsimple causes
less noisy Q-values. Interestingly, the spikes in the middle of systole are
also visible for agents trained with Rsimple and Rproximity, though slightly
less than for those trained with RGaaFD.

Figure 5.22: The Q-values for three of the best-predicted videos for each
model trained using RGaaFD. Each column is a different value of ε, each
row is a different video. The x-axis represents time in the video.

78

Figure 5.23: The Q-values for three of the best-predicted videos for each
model trained using Rsimple. Each column is a different value of ε, each row
is a different video. The x-axis represents time in the video.

Figure 5.24: The Q-values for three of the best-predicted videos for each
model trained using Rproximity. Each column is a different value of ε, each
row is a different video. The x-axis represents time in the video.

79

Figure 5.25: The Q-values for three of the worst predicted videos for each
model trained using RGaaFD. Each column is a different value of ε, each
row is a different video. The x-axis represents time in the video.

Figure 5.26: The Q-values for three of the worst predicted videos for each
model trained using Rsimple. Each column is a different value of ε, each row
is a different video. The x-axis represents time in the video.

80

Figure 5.27: The Q-values for three of the worst predicted videos for each
model trained using Rproximity. Each column is a different value of ε, each
row is a different video. The x-axis represents time in the video.

81

5.6 Inference Speed

The inference time is faster on the CPU than the GPU when we include
IO roundtrip time. However, ignoring IO, the network performs extremely
fast on the GPU; processing a batch of 128 frames takes just a little over
a millisecond, producing a framerate of over 125 000 FPS. However, this
is merely considered a "fun fact." A realistic scenario would include IO
roundtrip time. A single frame may be processed on the CPU in 0.80
milliseconds, meaning that it can likely be included as a step in a processing
stream.

Table 5.5: The compilation time and average elapsed time over 1000 calls
for the neural network, on the CPU and the GPU, with or without IO
overhead.

Device # frames Compilation time Average run-time
CPU 128 frames 273.95 ms 29.15 ms

Single frame 205.93 ms 0.80 ms
GPU (including IO) 128 frames 2399.56 ms 34.43 ms

Single frame 418.77 ms 2.88 ms
GPU (pre-placed data) 128 frames 251.10 ms 1.02 ms

Single frame 285.56 ms 0.17 ms

5.7 M-Mode Binary Classification Environment Res-
ults

A single experiment was run using the m-mode binary classification
environment (MMBCE), the result of which can be seen in table 5.6. The
percentage of episodes where the agent actively explores its environment
by moving the synthetic m-mode line is reported in addition to the key
metrics. The agent is said to have explored if at least one of the actions
in the episode moved or rotated the line. The GaaFD is also reported
for episodes where the agent performs some exploration and where it
performs no exploration individually.

The agent trained on the MMBCE performs worse than any agent
trained on the BCE, as seen in table 5.6. It also performs very little
exploration of the environment, where almost 35% of episodes contain
no movement of the synthetic m-mode line at all. Figure 5.28 show the
distribution of actions taken by the agent on the test split. Over 90% of
actions were of marking the current frame as either diastole or systole.

Furthermore, in the episodes where the agent did perform any explora-
tion, the agent performed worse than in the ones it did not move the syn-
thetic m-mode line at all, as visualized in figure 5.29. Table 5.6 reports that
the agent had an average GaaFD score of 5.47 for episodes where it per-
formed exploration versus 3.13 for episodes where the line was still.

Moreover, the MMBCE agent is significantly slower at inference than
the BCE agents, taking multiple seconds to evaluate a full video of 128

82

Table 5.6: Performance of agents trained on the m-mode binary classifica-
tion environment.

Best model SGD step 23 080
GaaFD 4.66
GaaFD ED 4.85
GaaFD ES 4.37
% episodes with exploration 65.22%
% episodes without exploration 34.78%
GaaFD for episodes with exploration 5.47
GaaFD for episodes without exploration 3.13
% valid aaFD 59.29%
aaFD 2.22

Figure 5.28: A bar chart showcasing the distribution of actions selected
by the agent. The vast majority of actions are that of marking frames as
diastole or systole. To the left are all actions, while to the right are only
movement actions, i.e., marking a frame as diastole or systole not included.

83

Figure 5.29: A density plot of GaaFD for episodes where the agent
performed no other actions than marking frames as diastole or systole, i.e.,
no exploration, versus the density plot of GaaFD for episodes where the
agent moved the synthetic m-mode line in any way at least once.

frames. It also takes more than three times as long when running the agent
on the GPU.

Table 5.7: The average compilation and run time for predicting the phase
of 128 frames in a video (including IO overhead).

Device Compilation time Average run time for 128 steps
CPU 389.70 ms 3169.83 ms
GPU 2384.04 ms 9738.50 ms

84

Chapter 6

Discussion

This chapter discusses the results, methodology, and weaknesses of the
study. Section 6.1 discusses the results of the models trained using
RGaaFD and the reasoning behind them. Likewise, section 6.2 discusses
the results of the models trained using Rsimple or Rproximity. Section 6.3
discusses the results of agents trained one the MMBCE environment, and
its shortcomings. Section 6.4 takes a critical look at the key performance
metric for the task of ED-/ES-frame detection, aaFD. Section 6.5 discusses
a weakness of the thesis in a lack of comparison to related work. Finally,
section 6.6 gives an overview of pros and cons of using RL for tasks that
can be solved using supervised learning.

6.1 On Generalized Average Absolute Frame Differ-
ence Reward Function

As seen in table 5.1, the best value of ε when using RGaaFD was 0.0. This is
likely because the learner has access to noisier signals the higher the value
of ε. Recall that the agent only receives a reward at the very end of the
episode, which on average lasts for 50 steps. Any mistake in those 50 steps
will be penalized, and the agent has no way of knowing whether it was
penalized for an action taken under its policy or an action taken randomly.

Further evidence of this can be found in the loss curves in figure 5.16, as
generally, the models with ε ∈ {0.01, 0.1} have a greater loss at the end of
training. A greater loss indicates that the model is more "surprised" by the
data, which could be explained by the fact that when it makes a mistake
through random exploration, the model will not know which action in the
episode was the true culprit.

Another interesting feature of the loss curves is the valleys at the
beginning of training. At the beginning of training, the model has no
knowledge about the data, and any prediction will be random. As the
actors learn which action to pick, the sample data distribution changes,
reflecting the new policies. This in turn creates a change in loss as
the learner "catches up" to the new policy. As the model approaches a
reasonable estimate of the true Q-value Q∗, it will make fewer mistakes,
and the loss will decrease.

85

Peeking inside the machinery of the DQN-agents trained using RGaaFD,
we see a potential cause of the performance discrepancy between the three
models. For every frame, the agent predicts the future returns of marking
a frame as diastole or systole. These predictions are plotted in figures 5.22
and 5.25. The model that uses ε = 0 better differentiates the value of taking
either action for a given state. The models trained with higher values of ε
estimate that there is a smaller difference in values of marking the current
frame as diastole or as systole.

The "spikes" in estimated systole in the middle of diastole returns seen
in 5.22 indicate that these frames are ambiguous to the agent. What this
ambiguity is is hard to tell, but it seems to be consistent. It may be due to
the fact that the heart moves very little in the middle of the diastole phase.
If that is the case, it may be beneficial to increase N, the number of adjacent
frames, for the observations.

As is consistent with previous work on ED-/ES-frame detection, systole
phase is trickier to predict than diastole phase. Not only are there naturally
fewer systole examples, but the frames around ES also change very little.

In figure 5.3 we see a relative increase in videos that have a difference
in the number of predicted and ground truth events equal to 2. This may
be because the model sometimes predicts rogue frames with wrong labels,
perhaps due to noise, which are quickly fixed in the following frames.
This creates two events in rapid succession, as visualized in figure 6.1.
Post-processing the predictions and removing noise will likely decrease the
mismatch between the number of predicted and ground truth events.

Figure 6.1: A single wrongly predicted phase that is corrected right after
creates two incorrect events.

86

6.2 On Simple and Proximity Based Reward Func-
tions

From the learning curves in figure 5.17 and figure 5.18 we see that the agent
is able to learn to make correct predictions much faster than when using
GaaFD as the reward function. This is very likely due to the GaaFD reward
signal being much sparser than Rsimple and Rproximity — Rsimple and Rproximity
simply provides information more efficiently, and with less noise, to the
learner.

Compared to GaaFD, these models also reach their best performance
much faster, though the performance on the validation set visibly degrades
as the model starts to overfit. The exception to this is the model of the agent
that has been trained using ε = 0.1, i.e. the agent that most often greedily
takes actions, which seemingly doesn’t overfit that much.

To explain the fact that the least explorative agent is the one that overfits
the least on the training set it is useful to think of exploration in this case as
a means of sampling the training data. No action affects future states in this
environment, so the agent is not exploring to discover long-term strategies.
It instead provides the learner only with samples of which it believes are
the best and this, perhaps surprisingly, seems to have a regularizing effect.
However, despite the regularization, the agent is still able to achieve perfect
accuracy and GaaFD on the training set, as seen in figure 5.19.

The effect of the reward function is also visible in the learning curves
if we plot them for agents trained with Rsimple and agents trained with
Rproximity together, as in figure 5.21. The blue curves are the performance
of agents trained using Rsimple and the pink curves are the performance of
agents trained using Rproximity. Looking only on the right side of the plots,
i.e. as the agent approaches 200 000 SGD steps, we see a clear pattern. The
upper plots show GaaFD, in which lower values are better, and therefore
Rproximity is the better reward function, at least for agents with ε = 0.1. The
lower plots show balanced accuracy, in which higher values are better, and
in this case Rsimple is definitely the better reward function. So, it would seem
that the reward function that was deliberately designed to be more similar
to GaaFD turned out to get a better GaaFD score, even though it actually
performs worse on a metric based on accuracy. This indicates that an agent
trained using Rproximity reward makes more errors compared to an agent
trained using Rsimple, but the errors are less often severe. However, this is
only when looking at the right side of the plot, where the agent is already
fitted to the training set. If we look at the curve at the point of the lowest
GaaFD score the simple reward function Rsimple outperforms Rproximity. This
is likely due to Rproximity being a more difficult function to estimate, as its
values span multiple values, while Rsimple can only be either 1 or −1.

Compared to the loss curves of agents trained using GaaFD as the
reward, agents trained using Rsimple and Rproximity yield a more familiar-
looking loss curve. The loss curves in figure 5.20 is seen dropping sharply
in the beginning before slowly approaching some minimum. This is likely
because in this case where discounting is 0.0 the value of taking an action

87

does not depend on the current policy, and thus the distribution of returns-
estimations doesn’t change as the policy changes as it did when using
GaaFD as the reward function. Again, the agent with the lowest amount of
exploration, plotted as the pink curve, stands out from the other models,
its loss seeming to decrease faster in the beginning.

There is surprisingly little difference in the shape of the Q-values for the
models trained using Rsimple verus the models trained using Rproximity. This
is further proof that Rproximity does not add significant value to the agent,
perhaps because of the increased complexity.

6.3 On M-Mode Binary Classification Environment

We were not able to create an agent that can explore the environment. There
may still be advantages to this approach, however, given that we are able to
make it work. The presented search can be viewed as a type of focus where
the model only attend to a small part of the state-space at once. This may
produce more efficient networks at the cost of possibly having to perform
inference multiple times per phase prediction.

Its failure may be due to the exploration strategy. Using an ε -greedy
policy may be too inefficient for exploring the combinatorically large search
space of moving the synthetic m-mode line freely before predicting the
phase.

6.4 Weaknesses of Using Average Absolute Frame
Difference

aaFD is the key metric that we report but, as has been shown, it is only
defined when the number of predicted events equal the number of ground
truth events. To report an aaFD score for our models we opt to filter out
all samples where the number of predicted events differ from the number
of ground truth events. Presumably, these videos have wrongly predicted
events because they are more difficult to predict on overall. Thus, filtering
out these is a form of selection bias, where the aaFD is reported only on
the easiest videos. The related papers don’t report this problem, which,
presuming this is the case, is why we must also consider the number
of videos with the correct number of predicted events when comparing
models.

Another weakness of aaFD is that it is sensitive to the FPS of the videos
in the dataset. For videos with higher FPS, aaFD will also be proportionally
higher. Unless this score is normalized, such as by dividing the score on a
video by the video’s FPS, it becomes hard to compare results.

6.5 Lack of Comparison Experiments

Only one other study was found to report their model’s performance on
the Echonet dataset [42]. This is considered a weakness of this project, and

88

getting access to multiple datasets early in the project should have been a
priority. This makes it hard to gain precise insight into the performance of
the methods versus supervised learning methods.

The authors report an average aaFD of 2.30 and 3.49 for ED and ES
events in their paper. Our best model can report an average aaFD of 1.69
overall, but this is only for 80% of the videos, as 20% have an incorrect
number of predicted events compared to ground truth events. The authors
do not report how many, if any, of the videos had an incorrect number of
predicted events.

We could have increased the number of valid results comparison by
training and testing the agents on different datasets, such as MultiBeat
dataset by Lane et al. [42], or the Camus echocardiographic image
segmentation dataset [43].

6.6 Why Use Reinforcement Learning?

In the experiments that use the reward function RGaaFD, we have seen that
the RL agent can learn from a very sparse reward signal. This makes RL
a very general tool that can be used when supervised learning methods
are not applicable. However, there is no such thing as a free lunch, and
bringing in the whole RL machinery for a classification task brings much
complexity.

The methods that have been used in this thesis suffer from low data
efficiency compared to a supervised learning approach. Each sample given
to the learner is of only one of the phases, as only one phase is predicted
at every step. We also applied additional data sampling constraints on the
learner by enforcing that a data item should be sampled 0.5 on average, i.e.,
half of the data is discarded. For the formulations where the agent’s actions
do not affect future actions, such as in BCE with either phase classification
reward function Rsimple and Rproximity, the sampling should arguably be
at least 1. The value of 0.5 for these experiments was due to running
the experiments with RGaaFD first, and it was overlooked in subsequent
experiments.

The environment abstraction for sampling was also a significant
performance bottleneck for the BCE environment. Every new sample had
to be created by stepping through the environment on the CPU. For the
BCU environment, whose next states were completely independent of the
action taken by the actors, this abstraction limited us from batching the
inference on the GPU. Because the environment abstraction is such an
essential part of the RL ecosystem and libraries, we still opted to use it.

A synthetic m-mode version of BCE was included to give RL a fair shot
at proving its usefulness. The search for a synthetic m-mode line to base
future decisions on would be very challenging to solve using supervised
learning, and here RL is assumed to be the best tool for the job. However,
this was a tricky problem, presumably too complex for the current setup,
and the benefits are not all apparent. Even if it did work, its inference
would have been much slower than that of BCE since there would be no

89

way of batching forward passes through the neural network.
However, even though RL may not be the best tool for phase detection,

it is still a promising technology, especially for problems that require
exploration.

90

Chapter 7

Conclusion

This chapter concludes the work of this thesis. Section 7.1 attempts
to answer the original research questions that was posed in section 1.2.
Section 7.2 presents potential future work and research related to this
thesis. Section 7.3 provides a link to the code used in this thesis.

7.1 Answers to the Research Questions

We are now ready to answer the original research questions:

Is it possible to use reinforcement learning for the task of ED-/ES-frame
detection?
Yes, there are multiple ways, but some are more efficient than others.

We explored using the key metric of average absolute frame difference
(aaFD) directly as the reward function, which we called RGaaFD. We also
explored formulating ED-/ES-frame detection as the phase classification
task of marking each frame as either diastole or systole, and designing the
reward function around that. The reward function Rsimple gives a reward of
1 for correct frame phase predictions and −1 for incorrect ones. Likewise,
the reward function Rproximity gives a reward of 1 for correct predictions, but
a negative reward proportional to how far the prediction was from being
the correct phase. Due to reward sparsity, RGaaFD performed the worst,
while Rsimple performed the best. Rproximity, despite being designed to have
similar semantics to aaFD, performed worse than Rsimple.

We also showed that it is possible to incorporate state-space search by
letting the agent explore different synthetic m-mode images from the video.
However, due to the additional complexity, this environment formulation
made the agents perform worse than when using just a simple environment
with no search.

RL is very flexible and allows us to model the problem in many differ-
ent ways, both in terms of reward functions and environment dynamics.

How Does Formulating the Problem as Reinforcement Learning Affect
the Performance of the Model?
We have shown that the design of the reward function matters a lot with re-

91

gards to how the agent learn from and represent the environment. Reward
sparsity degrades performance of the agent. Designing the reward func-
tion to be more similar to the key metric makes the agent perform better on
that metric in the long run. However, more complex reward functions are
harder to learn, so the benefit may not be apparent until long into training,
in which case overfitting may counteract any benefit.

Furthermore, we have shown that the exploration parameter ε is crucial
for achieving a good performance when the reward signal is very sparse.
For the sparse reward function RGaaFD, using a value of ε = 0, i.e. the
agent follows a greedy policy, yielded the best results. For Rsimple and
Rproximity, the difference between different values of ε had little effect on
the performance of the best model but seemed to have a regularizing effect.
The model with the highest performance trained using Rproximity as the
reward function on the test split had almost perfect accuracy on the training
split.

7.2 Future Work and Research

It would be interesting to dive deeper into why using lower amounts
of exploration has a regularizing effect on the model. Perhaps there is
something about the way that the data is sampled in RL that supervised
learning can take advantage of.

In order to get a true comparison between the RL approach and a
supervised learning approach for the problem of ED-/ES-frame detection
we must train a neural network that is as similar as possible to the one we
used as the Q-network. We have proved that it is possible to use RL for this
task, but not whether there are any true benefits.

As a continuation of this work, it would also be interesting to see
whether the performance improves for the RL agents when using more
complex neural networks. Does the RL performance, as presented in this
thesis, scale as the complexity of the Q-network increases?

The synthetic m-mode representation of the ultrasound videos are
interesting because the temporal-to-spatial information ratio is very high,
which is presumed to be advantageous for phase detection. Further
research could be done to make MMBCE work. Policy-gradient methods
may be a better approach than using a DQN because it more naturally
model continuous action spaces.

7.3 Link to Code Repository

All the code used in this thesis can be found in the public Github
repository https://github.com/magnusdk/edesdetect. The repository also
contains videos of agents exploring the environment.

92

https://github.com/magnusdk/edesdetect

Bibliography

[1] Anas A. et al. ‘Automatic Detection of the End-Diastolic and End-
Systolic from 4D Echocardiographic Images’. In: Journal of Computer
Science 11 (Jan. 2015), pp. 230–240. DOI: 10.3844/jcssp.2015.230.240.

[2] Martín Abadi et al. TensorFlow, Large-scale machine learning on hetero-
geneous systems. Nov. 2015. DOI: 10.5281/zenodo.4724125.

[3] Amir Alansary et al. ‘Evaluating reinforcement learning agents for
anatomical landmark detection’. en. In: Medical Image Analysis 53
(Apr. 2019), pp. 156–164. ISSN: 1361-8415. DOI: 10 . 1016 / j . media .
2019 . 02 . 007. URL: https : / /www. sciencedirect . com/science/article /
pii/S1361841518306121 (visited on 11/05/2021).

[4] Atrium (heart). en. Page Version ID: 1081739500. Apr. 2022. URL: https:
/ / en . wikipedia . org / w / index . php ? title = Atrium_ (heart) &oldid =
1081739500 (visited on 15/05/2022).

[5] Igor Babuschkin et al. The DeepMind JAX Ecosystem. 2020. URL: http:
//github.com/deepmind.

[6] U. Barcaro, D. Moroni and O. Salvetti. ‘Automatic computation of left
ventricle ejection fraction from dynamic ultrasound images’. en. In:
Pattern Recognition and Image Analysis 18.2 (June 2008), p. 351. ISSN:
1555-6212. DOI: 10.1134/S1054661808020247. URL: https://doi.org/10.
1134/S1054661808020247 (visited on 31/05/2021).

[7] Marc G. Bellemare, Will Dabney and Rémi Munos. ‘A Distributional
Perspective on Reinforcement Learning’. In: arXiv:1707.06887 [cs,
stat] (July 2017). arXiv: 1707.06887. URL: http://arxiv.org/abs/1707.
06887 (visited on 18/05/2021).

[8] Marc G. Bellemare et al. ‘Unifying Count-Based Exploration and
Intrinsic Motivation’. In: arXiv:1606.01868 [cs, stat] (Nov. 2016). arXiv:
1606.01868. URL: http : / / arxiv . org / abs / 1606 . 01868 (visited on
19/05/2021).

[9] James Bradbury et al. JAX: composable transformations of Py-
thon+NumPy programs. 2018. URL: http://github.com/google/jax.

[10] Greg Brockman et al. ‘OpenAI Gym’. In: arXiv:1606.01540 [cs] (June
2016). arXiv: 1606.01540. URL: http://arxiv.org/abs/1606.01540 (visited
on 05/05/2022).

[11] Cardiovascular diseases. en. URL: https://www.who.int/westernpacific/
health-topics/cardiovascular-diseases (visited on 12/05/2021).

93

https://doi.org/10.3844/jcssp.2015.230.240
https://doi.org/10.5281/zenodo.4724125
https://doi.org/10.1016/j.media.2019.02.007
https://doi.org/10.1016/j.media.2019.02.007
https://www.sciencedirect.com/science/article/pii/S1361841518306121
https://www.sciencedirect.com/science/article/pii/S1361841518306121
https://en.wikipedia.org/w/index.php?title=Atrium_(heart)&oldid=1081739500
https://en.wikipedia.org/w/index.php?title=Atrium_(heart)&oldid=1081739500
https://en.wikipedia.org/w/index.php?title=Atrium_(heart)&oldid=1081739500
http://github.com/deepmind
http://github.com/deepmind
https://doi.org/10.1134/S1054661808020247
https://doi.org/10.1134/S1054661808020247
https://doi.org/10.1134/S1054661808020247
http://arxiv.org/abs/1707.06887
http://arxiv.org/abs/1707.06887
http://arxiv.org/abs/1606.01868
http://github.com/google/jax
http://arxiv.org/abs/1606.01540
https://www.who.int/westernpacific/health-topics/cardiovascular-diseases
https://www.who.int/westernpacific/health-topics/cardiovascular-diseases

[12] Albin Cassirer et al. ‘Reverb: A Framework For Experience Replay’.
In: arXiv:2102.04736 [cs] (Feb. 2021). arXiv: 2102.04736. URL: http://
arxiv.org/abs/2102.04736 (visited on 29/03/2022).

[13] Kyunghyun Cho et al. ‘Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation’. In:
arXiv:1406.1078 [cs, stat] (Sept. 2014). arXiv: 1406.1078. URL: http://
arxiv.org/abs/1406.1078 (visited on 17/05/2021).

[14] Saeed Darvishi et al. ‘Measuring Left Ventricular Volumes in Two-
Dimensional Echocardiography Image Sequence Using Level-set
Method for Automatic Detection of End-Diastole and End-systole
Frames’. In: Research in Cardiovascular Medicine 2.1 (Feb. 2013), pp. 39–
45. ISSN: 2251-9572. DOI: 10 . 5812 / cardiovascmed . 6397. URL: https :
/ /www . ncbi . nlm . nih . gov / pmc / articles / PMC4253755/ (visited on
31/05/2021).

[15] Fatemeh Taheri Dezaki et al. ‘Deep Residual Recurrent Neural Net-
works for Characterisation of Cardiac Cycle Phase from Echocardio-
grams’. en. In: Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support. Ed. by M. Jorge Cardoso et al.
Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2017, pp. 100–108. ISBN: 978-3-319-67558-9. DOI: 10.1007/
978-3-319-67558-9_12.

[16] Adrian Meidell Fiorito et al. ‘Detection of Cardiac Events in Echocar-
diography Using 3D Convolutional Recurrent Neural Networks’. In:
2018 IEEE International Ultrasonics Symposium (IUS). ISSN: 1948-5727.
Oct. 2018, pp. 1–4. DOI: 10.1109/ULTSYM.2018.8580137.

[17] Meire Fortunato et al. ‘Noisy Networks for Exploration’. In:
arXiv:1706.10295 [cs, stat] (July 2019). arXiv: 1706.10295. URL: http :
//arxiv.org/abs/1706.10295 (visited on 18/05/2021).

[18] Florin C. Ghesu et al. ‘An Artificial Agent for Anatomical Landmark
Detection in Medical Images’. en. In: Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2016. Ed. by Sebastien
Ourselin et al. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2016, pp. 229–237. ISBN: 978-3-319-46726-9.
DOI: 10.1007/978-3-319-46726-9_27.

[19] Florin C. Ghesu et al. ‘Robust Multi-scale Anatomical Landmark
Detection in Incomplete 3D-CT Data’. en. In: Medical Image Com-
puting and Computer Assisted Intervention - MICCAI 2017. Ed. by
Maxime Descoteaux et al. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2017, pp. 194–202. ISBN: 978-3-319-
66182-7. DOI: 10.1007/978-3-319-66182-7_23.

[20] Florin C. Ghesu et al. ‘Towards intelligent robust detection of
anatomical structures in incomplete volumetric data’. en. In: Medical
Image Analysis 48 (Aug. 2018), pp. 203–213. ISSN: 1361-8415. DOI: 10.
1016 / j .media . 2018 . 06 . 007. URL: https : / /www . sciencedirect . com/
science/article/pii/S1361841518304092 (visited on 10/05/2021).

94

http://arxiv.org/abs/2102.04736
http://arxiv.org/abs/2102.04736
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://doi.org/10.5812/cardiovascmed.6397
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253755/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253755/
https://doi.org/10.1007/978-3-319-67558-9_12
https://doi.org/10.1007/978-3-319-67558-9_12
https://doi.org/10.1109/ULTSYM.2018.8580137
http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1706.10295
https://doi.org/10.1007/978-3-319-46726-9_27
https://doi.org/10.1007/978-3-319-66182-7_23
https://doi.org/10.1016/j.media.2018.06.007
https://doi.org/10.1016/j.media.2018.06.007
https://www.sciencedirect.com/science/article/pii/S1361841518304092
https://www.sciencedirect.com/science/article/pii/S1361841518304092

[21] Parisa Gifani et al. ‘Automatic detection of end-diastole and end-
systole from echocardiography images using manifold learning’.
eng. In: Physiological Measurement 31.9 (Sept. 2010), pp. 1091–1103.
ISSN: 1361-6579. DOI: 10.1088/0967-3334/31/9/002.

[22] Parisa Gifani et al. ‘Noise reduction of echocardiography images
using Isomap algorithm’. In: 2011 1st Middle East Conference on
Biomedical Engineering. ISSN: 1558-2531. Feb. 2011, pp. 150–153. DOI:
10.1109/MECBME.2011.5752087.

[23] Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning.
MIT Press, 2016.

[24] H. P. van Hasselt (Hado) and Intelligent and autonomous systems.
‘Double Q-learning’. en. In: Advances in Neural Information Processing
Systems. The MIT Press, Dec. 2010. URL: https://ir.cwi.nl/pub/16889
(visited on 15/05/2021).

[25] Hado van Hasselt, Arthur Guez and David Silver. ‘Deep Reinforce-
ment Learning with Double Q-learning’. In: arXiv:1509.06461 [cs]
(Dec. 2015). arXiv: 1509.06461. URL: http://arxiv.org/abs/1509.06461
(visited on 15/05/2021).

[26] Heart. en. Page Version ID: 1085543273. May 2022. URL: https://en.
wikipedia.org/w/index.php?title=Heart&oldid=1085543273 (visited on
15/05/2022).

[27] Tom Hennigan et al. Haiku: Sonnet for JAX. 2020. URL: http://github.
com/deepmind/dm-haiku.

[28] Matteo Hessel et al. Optax: composable gradient transformation and
optimisation, in JAX! 2020. URL: http://github.com/deepmind/optax.

[29] Matteo Hessel et al. ‘Rainbow: Combining Improvements in Deep
Reinforcement Learning’. In: arXiv:1710.02298 [cs] (Oct. 2017). arXiv:
1710.02298. URL: http : / / arxiv . org / abs / 1710 . 02298 (visited on
16/05/2021).

[30] Sepp Hochreiter and Jürgen Schmidhuber. ‘Long Short-term Memory’.
In: Neural computation 9 (Dec. 1997), pp. 1735–80. DOI: 10.1162/neco.
1997.9.8.1735.

[31] Matt Hoffman et al. ‘Acme: A Research Framework for Distributed
Reinforcement Learning’. In: arXiv:2006.00979 [cs] (June 2020). arXiv:
2006.00979. URL: http : / / arxiv . org / abs / 2006 . 00979 (visited on
29/03/2022).

[32] Kurt Hornik, Maxwell Stinchcombe and Halbert White. ‘Multilayer
feedforward networks are universal approximators’. en. In: Neural
Networks 2.5 (Jan. 1989), pp. 359–366. ISSN: 0893-6080. DOI: 10.1016/
0893-6080(89)90020-8. URL: https://www.sciencedirect.com/science/
article/pii/0893608089900208 (visited on 16/05/2022).

95

https://doi.org/10.1088/0967-3334/31/9/002
https://doi.org/10.1109/MECBME.2011.5752087
https://ir.cwi.nl/pub/16889
http://arxiv.org/abs/1509.06461
https://en.wikipedia.org/w/index.php?title=Heart&oldid=1085543273
https://en.wikipedia.org/w/index.php?title=Heart&oldid=1085543273
http://github.com/deepmind/dm-haiku
http://github.com/deepmind/dm-haiku
http://github.com/deepmind/optax
http://arxiv.org/abs/1710.02298
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/2006.00979
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208

[33] Peter J. Huber. ‘Robust Estimation of a Location Parameter’. In: The
Annals of Mathematical Statistics 35.1 (1964). Publisher: Institute of
Mathematical Statistics, pp. 73–101. ISSN: 0003-4851. URL: http : / /
www.jstor.org/stable/2238020 (visited on 26/04/2022).

[34] Paul A Iaizzo. Handbook of cardiac anatomy, physiology, and devices.
Springer Science & Business Media, 2010.

[35] Tollef Struksnes Jahren et al. ‘Estimation of End-Diastole in Cardiac
Spectral Doppler Using Deep Learning’. In: IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control 67.12 (Dec. 2020).
Conference Name: IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, pp. 2605–2614. ISSN: 1525-8955. DOI: 10.1109/
TUFFC.2020.2995118.

[36] Don H. Johnson and Dan E. Dudgeon. Array Signal Processing:
Concepts and Techniques. Anglais. Facsimile édition. Englewood Cliffs,
NJ: Prentice Hall, 1993. ISBN: 978-0-13-048513-7.

[37] Nadjia Kachenoura et al. ‘Automatic detection of end systole within
a sequence of left ventricular echocardiographic images using auto-
correlation and mitral valve motion detection’. eng. In: Annual In-
ternational Conference of the IEEE Engineering in Medicine and Biology
Society. IEEE Engineering in Medicine and Biology Society. Annual Inter-
national Conference 2007 (2007), pp. 4504–4507. ISSN: 2375-7477. DOI:
10.1109/IEMBS.2007.4353340.

[38] Nitish Shirish Keskar et al. On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima. Tech. rep. arXiv:1609.04836.
arXiv:1609.04836 [cs, math] type: article. arXiv, Feb. 2017. DOI: 10 .
48550/arXiv.1609.04836. URL: http://arxiv.org/abs/1609.04836 (visited
on 16/05/2022).

[39] Diederik P. Kingma and Jimmy Ba. ‘Adam: A Method for Stochastic
Optimization’. In: arXiv:1412.6980 [cs] (Jan. 2017). arXiv: 1412.6980.
URL: http://arxiv.org/abs/1412.6980 (visited on 26/04/2022).

[40] Bin Kong et al. ‘Recognizing End-Diastole and End-Systole Frames
via Deep Temporal Regression Network’. en. In: Medical Image
Computing and Computer-Assisted Intervention - MICCAI 2016. Ed. by
Sebastien Ourselin et al. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2016, pp. 264–272. ISBN: 978-3-319-
46726-9. DOI: 10.1007/978-3-319-46726-9_31.

[41] Julian Krebs et al. ‘Robust Non-rigid Registration Through Agent-
Based Action Learning’. en. In: Medical Image Computing and Computer
Assisted Intervention - MICCAI 2017. Ed. by Maxime Descoteaux et
al. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2017, pp. 344–352. ISBN: 978-3-319-66182-7. DOI: 10.1007/
978-3-319-66182-7_40.

96

http://www.jstor.org/stable/2238020
http://www.jstor.org/stable/2238020
https://doi.org/10.1109/TUFFC.2020.2995118
https://doi.org/10.1109/TUFFC.2020.2995118
https://doi.org/10.1109/IEMBS.2007.4353340
https://doi.org/10.48550/arXiv.1609.04836
https://doi.org/10.48550/arXiv.1609.04836
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-46726-9_31
https://doi.org/10.1007/978-3-319-66182-7_40
https://doi.org/10.1007/978-3-319-66182-7_40

[42] Elisabeth S. Lane et al. ‘Multibeat echocardiographic phase detection
using deep neural networks’. en. In: Computers in Biology and Medicine
133 (June 2021), p. 104373. ISSN: 0010-4825. DOI: 10 . 1016 / j .
compbiomed.2021.104373. URL: https://www.sciencedirect.com/science/
article/pii/S0010482521001670 (visited on 12/05/2021).

[43] Sarah Leclerc et al. ‘Deep Learning for Segmentation Using an
Open Large-Scale Dataset in 2D Echocardiography’. eng. In: IEEE
transactions on medical imaging 38.9 (Sept. 2019), pp. 2198–2210. ISSN:
1558-254X. DOI: 10.1109/TMI.2019.2900516.

[44] Rui Liao et al. ‘An Artificial Agent for Robust Image Registration’.
In: arXiv:1611.10336 [cs] (Nov. 2016). arXiv: 1611.10336. URL: http://
arxiv.org/abs/1611.10336 (visited on 12/05/2021).

[45] Mada Razvan O. et al. ‘How to Define End-Diastole and End-
Systole?’ In: JACC: Cardiovascular Imaging 8.2 (Feb. 2015). Publisher:
American College of Cardiology Foundation, pp. 148–157. DOI: 10.
1016/j.jcmg.2014.10.010. URL: https://www.jacc.org/doi/full/10.1016/
j.jcmg.2014.10.010 (visited on 15/05/2021).

[46] Tanvir Mahmud, Md Awsafur Rahman and Shaikh Anowarul Fat-
tah. ‘CovXNet: A multi-dilation convolutional neural network for
automatic COVID-19 and other pneumonia detection from chest X-
ray images with transferable multi-receptive feature optimization’.
en. In: Computers in Biology and Medicine 122 (July 2020), p. 103869.
ISSN: 0010-4825. DOI: 10.1016/j.compbiomed.2020.103869. URL: https:
//www.sciencedirect.com/science/article/pii/S0010482520302250 (vis-
ited on 16/05/2022).

[47] Gabriel Maicas et al. ‘Deep Reinforcement Learning for Active
Breast Lesion Detection from DCE-MRI’. en. In: Medical Image
Computing and Computer Assisted Intervention - MICCAI 2017. Ed. by
Maxime Descoteaux et al. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2017, pp. 665–673. ISBN: 978-3-319-
66179-7. DOI: 10.1007/978-3-319-66179-7_76.

[48] Dimitris G. Manolakis and Vinay K. Ingle. Applied Digital Signal Pro-
cessing: Theory and Practice. Anglais. New York: Cambridge Univer-
sity Press, Nov. 2011. ISBN: 978-0-521-11002-0.

[49] Jamie R Mitchell and Jiun-Jr Wang. ‘Expanding application of the
Wiggers diagram to teach cardiovascular physiology’. In: Advances
in physiology education 38.2 (2014). Publisher: American Physiological
Society Bethesda, MD, pp. 170–175.

[50] Volodymyr Mnih et al. ‘Human-level control through deep reinforce-
ment learning’. en. In: Nature 518.7540 (Feb. 2015). Number: 7540
Publisher: Nature Publishing Group, pp. 529–533. ISSN: 1476-4687.
DOI: 10 . 1038/nature14236. URL: http : / /www .nature . com/articles /
nature14236 (visited on 11/05/2021).

97

https://doi.org/10.1016/j.compbiomed.2021.104373
https://doi.org/10.1016/j.compbiomed.2021.104373
https://www.sciencedirect.com/science/article/pii/S0010482521001670
https://www.sciencedirect.com/science/article/pii/S0010482521001670
https://doi.org/10.1109/TMI.2019.2900516
http://arxiv.org/abs/1611.10336
http://arxiv.org/abs/1611.10336
https://doi.org/10.1016/j.jcmg.2014.10.010
https://doi.org/10.1016/j.jcmg.2014.10.010
https://www.jacc.org/doi/full/10.1016/j.jcmg.2014.10.010
https://www.jacc.org/doi/full/10.1016/j.jcmg.2014.10.010
https://doi.org/10.1016/j.compbiomed.2020.103869
https://www.sciencedirect.com/science/article/pii/S0010482520302250
https://www.sciencedirect.com/science/article/pii/S0010482520302250
https://doi.org/10.1007/978-3-319-66179-7_76
https://doi.org/10.1038/nature14236
http://www.nature.com/articles/nature14236
http://www.nature.com/articles/nature14236

[51] Gabriel Montaldo et al. ‘Coherent plane-wave compounding for
very high frame rate ultrasonography and transient elastography’.
In: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control 56.3 (Mar. 2009). Conference Name: IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, pp. 489–506. ISSN:
1525-8955. DOI: 10.1109/TUFFC.2009.1067.

[52] Ify R Mordi et al. ‘Efficacy of noninvasive cardiac imaging tests in
diagnosis and management of stable coronary artery disease’. In:
Vascular Health and Risk Management 13 (Nov. 2017), pp. 427–437. ISSN:
1176-6344. DOI: 10.2147/VHRM.S106838. URL: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC5701553/ (visited on 12/05/2021).

[53] David Ouyang et al. EchoNet-Dynamic: a Large New Cardiac Mo-
tion Video Data Resource for Medical Machine Learning. en. 2019. URL:
https : / / www . semanticscholar . org / paper / EchoNet - Dynamic %
3A - a - Large - New - Cardiac - Motion - Video - Ouyang - He /
44bfcf2409c0826584c7c409b6a2fcf8c9910c88 (visited on 04/03/2022).

[54] Adam Paszke et al. ‘PyTorch: An Imperative Style, High-Performance
Deep Learning Library’. In: Advances in Neural Information Processing
Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019,
pp. 8024–8035. URL: http ://papers .neurips .cc/paper/9015- pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf.

[55] F. Pedregosa et al. ‘Scikit-learn: Machine Learning in Python’. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[56] Tom Schaul et al. ‘Prioritized Experience Replay’. In: arXiv:1511.05952
[cs] (Feb. 2016). arXiv: 1511.05952. URL: http://arxiv.org/abs/1511.
05952 (visited on 16/05/2021).

[57] David W Scott. Multivariate density estimation : theory, practice, and
visualization. eng. ISBN: 0471547700 Place: New York Series: Wiley
series in probability and mathematical statistics. Applied probability
and statistics. 1992.

[58] David Silver et al. ‘Mastering the game of Go with deep neural
networks and tree search’. en. In: Nature 529.7587 (Jan. 2016).
Number: 7587 Publisher: Nature Publishing Group, pp. 484–489.
ISSN: 1476-4687. DOI: 10.1038/nature16961. URL: http://www.nature.
com/articles/nature16961 (visited on 21/05/2021).

[59] Paul Suetens. Fundamentals of Medical Imaging. 3rd ed. Cambridge:
Cambridge University Press, 2017. ISBN: 978-1-107-15978-5. DOI: 10.
1017/9781316671849. URL: https://www.cambridge.org/core/books/
fundamentals-of-medical-imaging/E9D727DBE7EB6150768A74F655C07BAC
(visited on 03/05/2022).

[60] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning,
second edition: An Introduction. en. Google-Books-ID: uWV0DwAAQBAJ.
MIT Press, Nov. 2018. ISBN: 978-0-262-35270-3.

98

https://doi.org/10.1109/TUFFC.2009.1067
https://doi.org/10.2147/VHRM.S106838
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701553/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701553/
https://www.semanticscholar.org/paper/EchoNet-Dynamic%3A-a-Large-New-Cardiac-Motion-Video-Ouyang-He/44bfcf2409c0826584c7c409b6a2fcf8c9910c88
https://www.semanticscholar.org/paper/EchoNet-Dynamic%3A-a-Large-New-Cardiac-Motion-Video-Ouyang-He/44bfcf2409c0826584c7c409b6a2fcf8c9910c88
https://www.semanticscholar.org/paper/EchoNet-Dynamic%3A-a-Large-New-Cardiac-Motion-Video-Ouyang-He/44bfcf2409c0826584c7c409b6a2fcf8c9910c88
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1511.05952
https://doi.org/10.1038/nature16961
http://www.nature.com/articles/nature16961
http://www.nature.com/articles/nature16961
https://doi.org/10.1017/9781316671849
https://doi.org/10.1017/9781316671849
https://www.cambridge.org/core/books/fundamentals-of-medical-imaging/E9D727DBE7EB6150768A74F655C07BAC
https://www.cambridge.org/core/books/fundamentals-of-medical-imaging/E9D727DBE7EB6150768A74F655C07BAC

[61] Thomas L Szabo. Diagnostic ultrasound imaging: inside out. English.
OCLC: 866931381. 2014. ISBN: 978-0-12-396542-4. URL: http://www.
books24x7.com/marc.asp?bookid=58830 (visited on 22/11/2021).

[62] Fatemeh Taheri Dezaki et al. ‘Cardiac Phase Detection in Echocardi-
ograms With Densely Gated Recurrent Neural Networks and Global
Extrema Loss’. In: IEEE Transactions on Medical Imaging 38.8 (Aug.
2019). Conference Name: IEEE Transactions on Medical Imaging,
pp. 1821–1832. ISSN: 1558-254X. DOI: 10.1109/TMI.2018.2888807.

[63] Jimin Tan et al. A critical look at the current train/test split in machine
learning. Tech. rep. arXiv:2106.04525. arXiv:2106.04525 [cs] type:
article. arXiv, June 2021. DOI: 10.48550/arXiv.2106.04525. URL: http:
//arxiv.org/abs/2106.04525 (visited on 16/05/2022).

[64] Oriol Vinyals et al. ‘Grandmaster level in StarCraft II using multi-
agent reinforcement learning’. en. In: Nature 575.7782 (Nov. 2019).
Number: 7782 Publisher: Nature Publishing Group, pp. 350–354.
ISSN: 1476-4687. DOI: 10.1038/s41586-019-1724-z. URL: https://www.
nature.com/articles/s41586-019-1724-z (visited on 21/05/2021).

[65] Athanasios Vlontzos et al. ‘Multiple Landmark Detection using
Multi-Agent Reinforcement Learning’. In: arXiv:1907.00318 [cs] (July
2019). arXiv: 1907.00318. URL: http://arxiv.org/abs/1907.00318 (visited
on 11/05/2021).

[66] Ziyu Wang et al. ‘Dueling Network Architectures for Deep Rein-
forcement Learning’. In: arXiv:1511.06581 [cs] (Apr. 2016). arXiv:
1511.06581. URL: http : / / arxiv . org / abs / 1511 . 06581 (visited on
16/05/2021).

[67] Wiggers diagram. en. Page Version ID: 1029541282. June 2021. URL:
https://en.wikipedia.org/w/index.php?title=Wiggers_diagram&oldid=
1029541282 (visited on 15/05/2022).

[68] Fan Yang et al. ‘Launchpad: A Programming Model for Distributed
Machine Learning Research’. In: arXiv:2106.04516 [cs] (June 2021).
arXiv: 2106.04516. URL: http://arxiv.org/abs/2106.04516 (visited on
29/03/2022).

[69] Baichuan Yuan et al. ‘Machine learning for cardiac ultrasound time
series data’. In: Medical Imaging 2017: Biomedical Applications in
Molecular, Structural, and Functional Imaging. Vol. 10137. International
Society for Optics and Photonics, Mar. 2017, p. 101372D. DOI: 10 .
1117/12.2254704. URL: https://www.spiedigitallibrary.org/conference-
proceedings - of - spie / 10137/101372D/Machine - learning - for - cardiac -
ultrasound - time - series - data / 10 . 1117/12 . 2254704 . short (visited on
31/05/2021).

[70] Matthew D. Zeiler and Rob Fergus. ‘Visualizing and Understanding
Convolutional Networks’. In: arXiv:1311.2901 [cs] (Nov. 2013). arXiv:
1311.2901. URL: http : / / arxiv . org / abs / 1311 . 2901 (visited on
31/05/2021).

[71] Aston Zhang et al. Dive into Deep Learning. 2020.

99

http://www.books24x7.com/marc.asp?bookid=58830
http://www.books24x7.com/marc.asp?bookid=58830
https://doi.org/10.1109/TMI.2018.2888807
https://doi.org/10.48550/arXiv.2106.04525
http://arxiv.org/abs/2106.04525
http://arxiv.org/abs/2106.04525
https://doi.org/10.1038/s41586-019-1724-z
https://www.nature.com/articles/s41586-019-1724-z
https://www.nature.com/articles/s41586-019-1724-z
http://arxiv.org/abs/1907.00318
http://arxiv.org/abs/1511.06581
https://en.wikipedia.org/w/index.php?title=Wiggers_diagram&oldid=1029541282
https://en.wikipedia.org/w/index.php?title=Wiggers_diagram&oldid=1029541282
http://arxiv.org/abs/2106.04516
https://doi.org/10.1117/12.2254704
https://doi.org/10.1117/12.2254704
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10137/101372D/Machine-learning-for-cardiac-ultrasound-time-series-data/10.1117/12.2254704.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10137/101372D/Machine-learning-for-cardiac-ultrasound-time-series-data/10.1117/12.2254704.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10137/101372D/Machine-learning-for-cardiac-ultrasound-time-series-data/10.1117/12.2254704.short
http://arxiv.org/abs/1311.2901

[72] Nanning Zheng and Jianru Xue. ‘Manifold Learning’. en. In: Statist-
ical Learning and Pattern Analysis for Image and Video Processing. Ed. by
Nanning Zheng and Jianru Xue. Advances in Pattern Recognition.
London: Springer, 2009, pp. 87–119. ISBN: 978-1-84882-312-9. DOI: 10.
1007/978-1-84882-312-9_4. URL: https://doi.org/10.1007/978-1-
84882-312-9_4 (visited on 16/05/2022).

[73] S. Kevin Zhou et al. ‘Deep reinforcement learning in medical
imaging: A literature review’. In: arXiv:2103.05115 [cs, eess] (Mar.
2021). arXiv: 2103.05115. URL: http://arxiv.org/abs/2103.05115 (visited
on 10/05/2021).

100

https://doi.org/10.1007/978-1-84882-312-9_4
https://doi.org/10.1007/978-1-84882-312-9_4
https://doi.org/10.1007/978-1-84882-312-9_4
https://doi.org/10.1007/978-1-84882-312-9_4
http://arxiv.org/abs/2103.05115

	Introduction
	Motivation
	Goal and Research Question
	Thesis Structure

	Background
	The Cardiac Cycle
	What is Ultrasound?
	Attributes of a Sine Wave
	Attributes of the Medium

	Echocardiography
	Deep Learning
	Gradient Descent
	Deep Neural Networks
	Optimization Process
	Supervised and Unsupervised Learning
	Reinforcement Learning

	Related Work
	ED-/ES-Detection
	Reinforcement Learning in Medical Imaging

	The Dataset
	Echonet-Dynamic Dataset
	Getting ED/ES Frame Information
	Extrapolating Diastole and Systole Labels
	Normalizing and Removing Invalid Videos
	Training, Validation, Test Split

	Methodology
	Environment Formulation
	Binary Classification Environment
	Reward Function Design

	Frameworks and Libraries
	Agent Architecture
	Neural Network
	Loss Function and Optimizer
	Distributed Training

	Evaluation
	Selection of Hyperparameters
	Generalized Average Absolute Frame Difference Reward Function
	Simple- and Proximity-Based Reward Functions

	Incorporating Search
	Temporal Search
	Spatial Search

	M-Mode Binary Classification Environment
	Agent Architecture

	Experiments and Results
	Performance Metrics — An Overview
	The Impact of Epsilon on Average Absolute Frame Difference
	The Impact of Reward Function and Epsilon on Accuracy
	Learning Curves
	The Impact of Reward Function and Epsilon on Q-Values
	Inference Speed
	M-Mode Binary Classification Environment Results

	Discussion
	On Generalized Average Absolute Frame Difference Reward Function
	On Simple and Proximity Based Reward Functions
	On M-Mode Binary Classification Environment
	Weaknesses of Using Average Absolute Frame Difference
	Lack of Comparison Experiments
	Why Use Reinforcement Learning?

	Conclusion
	Answers to the Research Questions
	Future Work and Research
	Link to Code Repository

