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Abstract

Malware is an increasingly big problem in the world. Bootkits are a group
of especially advanced and complex malware and are on the rise together
with attack on firmware. Despite this, research efforts in modern UEFI
bootkits have been scarce.

The aim of this thesis is to help fill this hole. The thesis investigates
what modern UEFI bootkits are, how they can be analyzed and in what
ways security can be improved in order to be better prepared for future. A
workflow and lab environment to help debug UEFI and analyze modern
bootkits are outlined and evaluated. A case study of two modern UEFI
bootkits called MoonBounce and ESPecter is also performed.

The results point to hooking and loading of malicious kernel drivers to be
two big techniques used by UEFI bootkits. Additionally, it is found that
the bootkits analyzed manage to bypass several security measures. In the
light of existing research within the field, it is speculated that vulnerabil-
ities in UEFI and a complex supply chain is tightly linked to how bootkits
infect systems in the first place. Several areas for further research are iden-
tified, and a conclusion is made that all the parts of the UEFI ecosystem
has to cooperate more in order to improve. By doing this, the state of se-
curity in the boot process can be improved and we can be better prepared
for the future.
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Chapter 1

Introduction

1.1 Background

We live in a world where the amount of existing malware greatly expands
every year [1]. Lately, the number of attacks seems to be going down a bit,
but they are getting more sophisticated and complex [58]. Ransomware is
dominating the statistics and by far the most common type of malware
[62]. However, there is another group of malware which is seemingly
on the rise - bootkits. According to Grill, bootkits are among the most
advanced and persistent technologies used in modern malware and are
used by several advanced malicious groups [23]. Bootkits has historically
been on the decline, but in more recent years this seems to not be the case
any more after the introduction and adoption of UEFI [63]. In addition to
predictions about UEFI bootkits becoming more widely adopted, several
samples such as MosaicRegressor, Lojax and Hacking Team’s UEFI bootkit
show that this kind of malware is an actual threat again [9, 29, 38, 48].

Despite this, there seems to be little existing research on UEFI bootkits and
security in UEFI. In 2013 soon after UEFI became mainstream, a security
analysis was conducted [11]. There also exists an overview over attacks
on BIOS and Intel ME embedded software from 2014, but this was not
looking at bootkits specifically [45]. Meanwhile, a lot of science has been
conducted on legacy BIOS bootkits. Ways of detecting legacy bootkits dur-
ing the boot process has been suggested, and preventive measures based
on heuristics for dark regions on disk and interrupt hooking has also been
proposed [22, 23]. As such, there seems to exist a gap where little to no
research has been conducted on recent, modern UEFI bootkits. This thesis
attempts to fill parts of this hole.
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1.2 Scope

The main research question this thesis attempts to answer is the question
of what modern UEFI bootkits are and how we can better understand
them. This is a fairly broad and vague research question, and as this thesis
progressed several other research questions were defined to help limit the
scope. These are as follows:

• In what ways can we debug UEFI and the boot process?

• What, if any, are the patterns in modern UEFI bootkits?

• What kind of challenges must future bootkits overcome in order to
remain effective?

• How can we improve security mechanisms of the boot process in
order to be better prepared for future bootkits?

1.3 Contributions

The main contributions of this thesis is to help better answer what modern
bootkits are, provide ways to analyze them and identify patterns in
modern bootkits. The thesis describes a lab environment and workflow
to help analyze the boot process and modern UEFI bootkits. A case study
of two specific, recently discovered UEFI bootkits called ESPecter and
MoonBounce is also performed in order to identify patterns in modern
bootkits. The results of the case study are also used to identify potential
areas for further research in the field and to look at how we can improve
security in the future. Another contribution of this is providing input to
and help stimulate future research. As such, the thesis contributes to help
improving security by being better prepared for new, unknown bootkits
in the future.

1.4 Outline

Chapter 2, 3 and 4 serves as background theory which helps understand
the implementation, analysis and discussion of the results better. Chapter
2 gives an overview over malware, bootkits and malware analysis tech-
niques. Chapter 3 dives into UEFI and the boot process, providing a
technical look into the different stages and components of UEFI. Finally,
chapter 4 gives an overview over exisiting boot security measures, the
cryptography it builds upon as well as existing research on vulnerabil-
ities and what can go wrong.
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Chapter 5 outlines the research methodology of the thesis. It starts with a
broad view and drills down into the details and the choices made. A crit-
ical analysis of the chosen research methodology is then conducted before
finally discussing ethical concerns regarding the research.

Chapter 6, 7 and 8 form the heart of the thesis. Chapter 6 looks at the
implementation of a lab environment and the tools and libraries used to
enable performing the analysis of the bootkit samples. Chapter 7 presents
the data obtained from analyzing the bootkit samples together with data
from existing analyses. These results are then discussed in chapter 8.

Chapter 9 provides a summary and conclusion of the case study. It also
discusses further research possibilities.

Finally, there are two appendixes containing the hashes of the malware
samples analyzed as well as relevant scripts and code.
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Chapter 2

Malware and Malware Analysis

This chapter gives a broad view of what malware is before looking
closer at what rootkits and especially bootkits are. Some of the common
techniques utilized by these types of malware are then explained in more
detail. After this, Windows executables are given a more in-depth look
from a technical perspective since they are fairly central to this thesis.
Finally, a quick overview is given to the field of malware analysis and
the two broad categories of static and dynamic analysis.

2.1 Malware

Malware is software which has a malicious intent. The amount of malware
increases every day, and there exists vast amounts of it at this point [32].
Since there exists so much malware, it helps to classify them in different
categories in order to make better sense of them. There exists many ways
of classifying malware, and covering all of them is out of the scope for this
essay. As an example, (Kirti, and Hiranwal, 2013) provides the following
categories [33]:

Virus Self-replicating malware which infects system files
Worm Self-replication malware with the ability to replicate

over networks
Trojan Malware masquerading as legitimate software

Spyware Malware installed without the user knowing and with
the goal of collecting personal data

Ransomware Malware which encrypts the files of the user and
blackmails them for money to unlock them

Rootkit Malware designed to take control over the operating
system and underlying hardware.

Stealthy malware is a broad category used to describe malware which
tries to hide itself and avoid being detected. This means that stealthy
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malware are often more complex and sophisticated due to the need of
implementing ways of conceal themselves while also having the capability
of performing malicious activity. Two of the more prominent examples of
this are rootkits and bootkits.

2.2 Rootkits

While bootkits are the main focus of this thesis, it is worth looking a bit
closer at rootkits as well. This is because rootkits have a lot of overlap
with bootkits in terms of infection techniques and goals.

Rootkits are a category of stealthy malware which utilizes tools and tech-
niques to gain root access and control over the operating system and un-
derlying hardware. Hooking, DLL injection and direct kernel object ma-
nipulation (DKOM) are three main techniques used by rootkits to achieve
this. [20]. In order to initially gain foothold on a system, vulnerable pro-
cess running as root or vulnerabilities in the kernel itself can be exploited
or the user can be tricked into running malicious code with elevated priv-
ileges. While DLL injection and DKOM are rarely seen in bootkits, hook-
ing is often utilized in both rootkits and bootkits and worth a closer look.

Hooking is a technique where the execution flow of an application is redir-
ected to a section with arbitrary code before being redirected back to the
original execution path. There are many different techniques to achieve
this based on which parts of the system code is being hooked. They all
have in common that pointers to code or parts of the code being pointed
to itself is being overwritten [20]. IAT Hooking is one example of this.
The Import Address Table (IAT) contains pointers to the code of functions
being imported by an application. With this technique, the pointer of a
target function to be hooked is overwritten so that it points to a section
containing arbitrary code instead. At the end of this code section the exe-
cution is redirected back to where the IAT entry originally pointed to and
the execution of the function continues normally.

2.3 Bootkits

Bootkits target the boot process of a computer. By infecting the boot pro-
cess, the malware can perform malicious activities before the operating
system is loaded. In theory this makes bootkits inherently more powerful
than rootkits since they not only have control over what happens before
the operating system is loaded, but also the entire operating system itself.
Two of the infection techniques utilized by bootkits historically is infecting
the Master Boot Record (MBR) or the Volume Boot Record (VBR) [36]. In
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Figure 2.1: An example of IAT Hooking.
Source: https://nagareshwar.securityxploded.com/wp-
content/uploads/2014/03/iat21.png

more contemporary times Unified Extensible Firmware Interface (UEFI)
has replaced BIOS booting, so modern rootkits are mainly targeting UEFI
[49].

On older systems using BIOS booting instead of UEFI, the MBR is a small
piece of bootstrap code with the purpose of locating and reading the first
sector of the boot partition on a system. [26]. By overwriting the MBR with
malicious code, a bootkit infects a system and is able to perform malicious
activity before the bootloader is run. This technique has for example been
utilized by bootkits such as TDL4 in the past [50]. The VBR is the code the
MBR reads. It has the purpose of running bootstrap code to load and start
the bootloader. Much like with MBR infection, bootkits can overwrite the
VBR with malicious code instead of the MBR in order to infect a system.

On modern systems UEFI handles booting and is highly relevant in or-
der to understand modern bootkits better. This is why UEFI is discussed
in detail in chapter 3. Some examples of more recent bootkits are the Thun-
derstrike EFI bootkit on Apple MacBooks which surfaced in 2015 [25].
Other notable samples are MosaicRegressor, Lojax and the UEFI bootkit
developed by Hacking Team [29, 38, 48]. Modern bootkits like these usu-
ally utilizes and unknown infection vector in order to modify a bootloader
or the UEFI firmware itself in some way.

Once a bootkit has infected a system it usually tries to propagate through
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the system in such a way that it has complete control over the operating
system and can perform the malicious activities it wants to. This is usu-
ally achieved by hooking several functions at different stages of the boot
process. These hooks will in turn modify relevant parts of the bootloader,
operating system and memory. A common strategy is to use this technique
of propagating through hooked functions in order to inject a malicious ker-
nel driver into memory. Since this method of infection has a very volatile
nature by staying in memory, bootkits can be difficult to detect.

2.4 The PE File Format

Malware on Windows and UEFI applications are closely related to the
Portable Executable (PE) file format. Because of this, it is important to
look into some details of the file format to better be able to follow the res-
ults and discussion in the thesis.

According to Microsoft, a the PE file format describes the structure of ex-
ecutable, object and library files for the Windows operating system [40].
A PE file consists of a header and sections. The header consists of a MS-
DOS stub, PE signature, COFF file header, optional header as well as a set
of section headers. The sections contains the main data such as program
code, data and resources. An overview over what a PE file can look like
on the disk and when loaded into memory is illustrated in Figure 2.2. The
relevant parts for this thesis are the section headers and the sections them-
selves.

Each section headers contains several fields of data. The most important
ones for this thesis are the name, virtual size, raw data size and charac-
teristics. The name contains a UTF8 encoded string which represents the
name of a section. The raw data size is the size of the data in the section
when stored on the disk, while the virtual size is the actual size of the
data in bytes. Finally, the characteristics contain data about the memory
permissions of the section which denotes if the section will be readable,
writeable or executable.

There are some common section names in PE files. The .text section
usually holds the executable code of the program. A PE file can have
more sections with executable code, but .text is where the first instruction
that will be executed (also known as the entry point) can be found. The
.bss, .data and .rdata sections usually contain data and variables used by
the program. The difference between them is that .bss usually contains
uninitialized data, .data contains initialized data and .rdata contains read-
only data such as constants and strings. The .rdata and .idata sections are
usually where data about imported functions of the executable is found
as well. Finally, the .rsrc section commonly contains resource data such as
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Figure 2.2: Overview of a PE file and how it can be mapped into memory.
Source: https://t1.daumcdn.net/cfile/tistory/19399F33508D2F6E1C

icons. A PE file can include other sections with arbitrary names and does
not have to follow the common conventions outlined above.

2.5 Malware Analysis

Malware analysis is a process where malware is investigated in order to
better determine how it works, how it can be detected and how to meas-
ure and contain the damage it can do [54]. When performing analysis of
a malware sample the main source of data is usually the executable file
itself. There are several tools which can be used to help achieve this, and
these tools leans into either static or dynamic analysis techniques.

Static analysis techniques investigates malware without running it. In the
most basic shape, this can cover looking at the strings and function names
in the executable as well as viewing ELF or PE file headers. Since execut-
able files contain assembly code instructions together with data in differ-
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ent headers, there are tools which can be used to look closer into this to
better understand what the program does.

Dynamic analysis techniques covers techniques where the malware itself
is run to better understand the capabilities of it. It is possible to upload and
run samples in a malware sandbox such as VirusTotal and get information
on what it does on the system [2]. One can also get data about network
traffic, file operations and registry actions through the use of a tool like
Process Explorer for Windows [51]. Finally, another possibility is to at-
tach a debugger to the malware process while running it and step through
the assembly code instructions while investigating what happens with re-
gisters and the memory of the system.

Compiled executables are often stripped. This results in symbols such as
function names, variable names and other semantic data being removed
from the file. Because of this, analyzing stripped executables tend to be
more time consuming since the analyst cannot quickly derive what a func-
tion does or what certain variables are used for based on their names.
When analyzing known, public binaries it is sometimes possible to get a
symbol file from a symbol server provided by the creators of the binaries.
An example of this is Microsoft who has their own symbol server [39]. By
communicating with this symbol server, it is for example possible to get
the symbol file for the Windows bootloader.

The tools used in this thesis and how they relate to these techniques are
discussed in closer detail in chapter 6.
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Chapter 3

UEFI and The Boot Process

This chapter provides an in-depth look into what UEFI is and how it
works. UEFI is a very complex and big topic, so only the relevant parts
needed to follow the results and discussion later in the thesis are touched
upon. UEFI is first explored from a broad view before narrowing down
into the relevant details.

Before looking at UEFI itself, it is important to know that there are two
main specifications. The UEFI specification outlines a firmware interface
between the operating system and the hardware [61]. There are many
ways to implement this interface and to aid with this there exists another
specification called the UEFI Platform Initialization specification. The PI
specification outlines the mainstream way to implement UEFI, but an Ori-
ginal Equipment Manufactorer (OEM) need not follow this specification
to implement UEFI [60]. However, since the vast majority follows the PI
specification this chapter draws heavily from the both of them.

3.1 UEFI Overview

UEFI is an interface between the operating system and the underlying
hardware. The goal of UEFI is to provide a cohesive, scalable environ-
ment, abstract the OS away from the firmware and have a sharable system
partition [61].

UEFI consists of several fundamental elements. These are the system par-
tition, boot services, runtime services. On the top of all of this we have
the bootloader which loads and starts the operating system. All of these
components are illustration in Figure 3.1.

At the bottom we have the underlying hardware. There exists a storage
called the EFI System Partition where an EFI OS Loader is stored among
other files. To speak with the hardware, there are interfaces and drivers.
On the top of this, there are boot services and runtime services. UEFI

10



Figure 3.1: Overview of UEFI components.
Source: UEFI Specification [61]

will eventually run an OS Loader, and it can utilize both kinds of services
to support booting the system. If the OS Loader successfully loads the
operating system, all boot services are terminated and the control of the
system is passed onto the operating system. Even though UEFI is no
longer in control, the operating system will still have access to the runtime
services.

3.2 Booting Sequence

The UEFI specification outlines a booting sequence shown in Figure 3.2.
Here, the platform is initialized, then drivers and applications are loaded.
Finally, the system boots from an ordered list of EFI OS loaders and hands
off responsibility to the OS loaders.

The PI specification provides a more granular implementation of this
which is illustrated in Figure 3.3. Here there are several phases. The
Security (SEC) phase initializes the CPU and the system to the point
where the next phase can be found, validated, installed and run. The
Pre-EFI Initialization Environment (PEI) phase performs early hardware
and memory initialization in order for the next phase to be loaded and
executed. The next phase is the Driver Execution Environment (DXE)
phase, where most of the system is initialized. During this phase, drivers
are loaded to further initialize hardware components such as the CPU,

11



Figure 3.2: The UEFI Booting Sequence.
Source: UEFI Specification [61]

chipset as well to provide software abstractions for central components.
Once the DXE phase has initialized the platform and provided the services
required for booting the operating system, control is handed off to the
Boot Device Selection (BDS) phase. This phase bridges the gap between
the operating system and UEFI itself, and is resonsible for implementing
a platform boot policy. This policy should be implemented according to
the Boot Manager outlined in the UEFI specification. The boot manager
configuration depends on several global variables, and will attempt to
boot the system from an ordered list of boot options. Depending on the
settings, security mechanisms such as secure boot will also be enforced
at this point. The remaining phases consist of loading and booting the
operating system itself before finally running it. None of these phases
are handled directly by UEFI and depend on the operating system being
loaded. As such they are out of scope for this thesis.

3.3 SPI Flash Memory

Before the system turns on and the SEC phases begins, data such as the
UEFI firmware and several global variables are already stored in SPI flash
memory. Serial Peripheral Interface (SPI) is an interface which allows
a primary device such as a processor to communicate with peripheral
devices [13]. These peripheral devices can include clocks, converters,

12



Figure 3.3: The PI Boot Sequence.
Source: UEFI Specification [61]

sensors or most relevant for this thesis, flash memory. In the case of UEFI,
the hardware has certain SPI flash memory where vendors write the UEFI
firmware code, certain global variables and other data before locking it
down. An example of the layout of UEFI data in SPI flash memory is
shown in Figure 3.4. The SPI flash memory contains several sections.
FV_MAIN is the block holding the UEFI firmware code. The Variable Store
contains important global variables used by UEFI. FV_Recovery contains
important recovery code and the remaining memory is often used for
storing important resources.

There are several important global variables used by UEFI during
different stages of the boot process. The most important ones for this
thesis are listed in Figure 3.5. A more extensive list can be found on page
82 of the UEFI specification. Variables with a type of NV are non-volatile.
This indicates that they are stored in SPI flash memory and that the value
of them persists across system resets. Variables with a type of BS are
only accessible while the boot services are running and active. Because
of this, they are not visible to the operating system. The variables with
a type of RT are also available after boot services have been terminated.
Finally, AT-variables are variables which have a time-based authenticated
write access. The variables listed will be referenced in closer detail when
discussing the relevant phases or mechanisms they are used in.
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Figure 3.4: SPI Flash Memory Layout.
Source: UEFI Firmware - Security Concerns and Best Practices [44]

Figure 3.5: Important global variables in UEFI.
Source: The UEFI Specification [61]
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3.4 Security Phase

When a UEFI system powers on, the SEC phase begins. When this
happens, the processor will run the first instruction located 16 bytes below
the top of the address space. The SPI flash memory is mapped at the top of
this address space, and the instruction at 0xFFFFFFF0 will usually contain
a jump to the SEC phase code. This corresponds to the FV_Recovery
section in Figure 3.4, and the top of this section contains the code for the
SEC and PEI phases in addition to recovery code. The flow of both the
SEC and PEI phase is illustrated in Figure 3.6. The SecMain function will
set up the UEFI enviroment just enough for the system to find, validate,
install and then pass control to the PEI phase.

3.5 Pre-EFI Initialization Phase

The PEI phase will run the PEI dispatcher. This dispatcher will dispatch
Pre-EFI Initialization Modules (PEIMs) which are responsible for further
initializing the system. Some examples of this are initializing memory and
describing firmware volume locations. When these tasks are done, control
will be passed to the Initial Program Loader (IPL) for the DXE phase.

3.6 Driver Execution Environment Phase

The DXE phase is responsible for most of the system initialization. The
phase consists of several components where the most important ones are
the DXE foundation, DXE dispatcher and a set of DXE drivers. When
control has been passed to the DXE IPL, it will decompress the FV_Main
section from SPI flash memory into the real memory which has been set up
by the PEI phase. Figure 3.7 show the memory layout and flow of the DXE
phase. The DXE foundation is an implementation of UEFI and is a boot
service image which produces a set of UEFI boot services, UEFI runtime
services and DXE services. The UEFI boot and runtime services provided
are defined in the UEFI specification, while the DXE services consists of
a dispatcher as well as a service to help manage system resources. After
the firmware and DXE foundation have been decompressed into memory,
control is passed to the DXE dispatcher. This component is responsible
for discovering and executing DXE drivers, and these drivers are in turn
responsible for initializing hardware such as the processor, chipset and
platform components. DXE drivers can also provide software abstractions
for system services, console devices and boot devices. The DXE compon-
ents will together initialize the system and provide the services to support
booting the operating system. Once all DXE drivers are dispatched con-
trol is passed to the boot manager which also resides in the decompressed
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Figure 3.6: Memory layout for the SEC and PEI phases.
Source: UEFI Firmware - Security Concerns and Best Practices [44]

firmware in meemory, and this marks the beginning of the BDS phase.

Unlike other phases, the DXE phase continues during the BDS phase as
well. The services provided by the DXE foundation and the DXE drivers
will still be available during the BDS phase. Once the OS Loader calls
the ExitBootServices function defined by the UEFI specification, the boot
services will be terminated. The DXE phase itself is terminated once an
operating system is succesfully booted, but the runtime services are still
allowed to persist.

3.7 Driver Execution Environment Drivers

DXE drivers are drivers which follow the PI specification. Because of
this, they can either be drivers which adhere to the UEFI driver model
defined by the UEFI specification or drivers which does not follow this

16



Figure 3.7: Memory layout for the DXE phase.
Source: UEFI Firmware - Security Concerns and Best Practices [44]
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model. The UEFI driver model specifies a driver model which aims to
help implementing bus and device drivers, and does this through the use
of boot and protocol services. Drivers compliant to the UEFI driver model
does not touch any hardware resources during initialization, but registers
a protocol interface in a handle database. These protocol interfaces are
then used later by the BDS phase to connect drivers to the devices them-
selves. As such, UEFI driver model drivers provides software abstractions
for console and boot devices at its core. The DXE drivers not following
the UEFI driver model will be executed earlier in the DXE phase and will
typically be drivers providing basic services or initialization code for dif-
ferent components. These drivers are required for the DXE foundation to
produce all of the required services.

DXE drivers can also be classified further to distinguish between boot
service drivers and runtime drivers. The runtime drivers are available
both during booting, but also after the operating system takes over con-
trol. If the operating system wants to use runtime services without switch-
ing the processor to physical addressing mode, the SetVirtualAddressMap
runtime service defined by UEFI must be used. The boot service drivers
will be terminated once the OS Loaders call the ExitBootServices function.
Because of this, runtime drivers cannot use any of the UEFI boot service
or DXE services after this point.

DXE drivers are usually stored as DXE images, which in turn are based
on UEFI images. UEFI Images contain executable code meant to run in
UEFI, and utilizes a subset of the PE32+ file format with a modified header.
The header defines if the image is an application, boot service driver or
runtime service driver as well as the architecture, and these values are
shown in Listing 3.1. The image type determines which memory the im-
age will be loaded to into the firmware, and what happens when the entry
of the image exits or returns. The DXE foundation contains a boot service
named LoadImage which is used to load DXE Images into memory. Once
the image has been loaded into memory, the control flow is transferred to
the entry point of the image.

1 // PE32+ Subsystem type for EFI images
2 #define EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION 10
3 #define EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11
4 #define EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12
5

6 // PE32+ Machine type for EFI images
7 #define EFI_IMAGE_MACHINE_IA32 0x014c
8 #define EFI_IMAGE_MACHINE_IA64 0x0200
9 #define EFI_IMAGE_MACHINE_EBC 0x0EBC

10 #define EFI_IMAGE_MACHINE_x64 0x8664
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11 #define EFI_IMAGE_MACHINE_ARMTHUMB_MIXED 0x01C2
12 #define EFI_IMAGE_MACHINE_AARCH64 0xAA64
13 #define EFI_IMAGE_MACHINE_RISCV32 0x5032
14 #define EFI_IMAGE_MACHINE_RISCV64 0x5064
15 #define EFI_IMAGE_MACHINE_RISCV128 0x5128

Listing 3.1: UEFI Image Header Values

3.8 Management Mode

Management Mode (MM) is a secure execution environment provided by
the processor. This is utilized to seperate privileges on the system better,
and to more securely interact with sensitive hardware [43]. This includes
handling power management and critical errors or emergency shutdown
of certain components such as if the processor is overheating. It is also of-
ten used for interacting with a Trusted Platform Module (TPM), which is a
sensitive hardware component discussed in more detail in chapter 4. The
most common implementations of MM aere System Management Mode
(SMM) on the IA32 and IA64 architectures as well ARM TrustZone on
ARM systems. Since this thesis focuses on bootkits for the IA32 and IA64
architectures, SMM is assumed to be the implemented management mode.

SMM is entered by triggering a System Management Interrupt (SMI) on
the system. SMM itself consists of a memory region called SMRAM which
contains SMI handlers and code which has full access and visibility of the
entire address space and devices on the system [44]. SMRAM is not visible
to the operating system in the sense that any attempts to read or write to
it will fail.

SMM is tightly connected to the DXE phase of UEFI in the sense that there
usually exists a DXE driver which sets up SMRAM and launches the SMM
core. Figure 3.8 illustrates this. The SMM core will run the SMM dis-
patcher, which in turn will dispatch SMM drivers found in the firmware
which is already decompressed into memory. SMM drivers are a special
instance of DXE drivers which are loaded into SMRAM, and some of them
may set up SMI handlers. Much like runtime services in UEFI, the hand-
lers and services provided by SMM will persist even after ExitBootServices
has been called by the OS Loader.

3.9 Boot Device Selection Phase

The BDS phase begins when control has been passed to the boot manager
towards the end of the DXE phase. This phase implements the platform
boot policy, and must be compliant with the boot manager defined in the
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Figure 3.8: SMM memory layout.
Source: UEFI Firmware - Security Concerns and Best Practices [44]
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UEFI specification. The main responsibilities of the BDS phase are to ini-
tialize console devices, load device drivers and load and execute bootload-
ers. The boot manager is configured based on certain global variables in
NVRAM. It will first attempt to load UEFI drivers and UEFI applications
based on the options and order defined in the global variables in Figure
3.5.

Bootloaders are a special case of UEFI applications. UEFI applications are
stored as UEFI images just like UEFI drivers. When the boot manager or
another UEFI application loads a new UEFI application, the firmware will
allocate memory to hold the image and copy the sections into the alloc-
ated memory. Finally, it will set the correct memory permissions for code
and data before jumping to the entry point of the application. This can
in many ways be compared to how executable files in Windows are ex-
ecuted. When an application returns from the entry point or calls a boot
service called Exit, the application will be unloaded from memory and ex-
ecution will be transferred back to the boot manager or application which
initiated the loading. Bootloaders are a special case of UEFI applications.
Instead of returning or calling the Exit service, the bootloader can alternat-
ively take control of the system by calling ExitBootServices. Doing so will
terminate all boot services and all responsibility of the system is handed
to the bootloader and the operating system.

UEFI also has a concept of Event Services. The CreateEvent and Cre-
ateEventEx services provided by UEFI can create events. Event services
can be used for several purposes, but the most common ones are to inform
protocol consumers when certain events happen or to call a callback func-
tion when a special service or function in UEFI is called. When creating
an event, an event group defined by a GUID can be chosen which defines
what will trigger an event. Some of these are listed in Listing 3.2. By using
event services, it is for example possible to set up a callback when Exit-
BootServices is called by the OS Loader or when UEFI tries to boot using
legacy boot options.

1 #define EFI_EVENT_LEGACY_BOOT_GUID
2 {0x2a571201 , 0x4966 , 0x47f6 , 0x8b , 0x86 , 0xf3 , 0x1e ,
3 0x41 , 0xf3 , 0x2f , 0x10}
4

5 #define EFI_EVENT_GROUP_DXE_DISPATCH_GUID \
6 { 0x7081e22f , 0xcac6 , 0x4053 , { 0x94 , 0x68 , 0x67 , 0x57 , \
7 0x82 , 0xcf , 0x88 , 0xe5 } \ }
8

9 #define EFI_END_OF_DXE_EVENT_GROUP_GUID \
10 { 0x2ce967a , 0xdd7e , 0x4ffc , { 0x9e , 0xe7 , 0x81 , 0xc , \
11 0xf0 , 0x47 , 0x8, 0x80 } }

Listing 3.2: GUID of certain UEFI Boot Service Events
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When a bootloader successfully loads in the early stages of the operating
system and calls ExitBootServices, UEFI has officially booted the system
and has no responsibility for the later stages. The operating system can
map runtime services to virtual memory for easier use and SMM services
can still be used through interrupts.
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Chapter 4

Boot Security Measures

This chapter gives an overview over the most central boot security
measures. First, an overview is given over the areas of cryptography
which are central to boot security. Next, the boot security measures along
with the hardware enabling them are given an in-depth look.

4.1 Cryptography

Cryptography is an essential aspect of modern boot security. The primary
goal of boot security measures is to ensure that none of the stages of the
boot process have been tampered with by for example malware, and also
to detect when this happen. The main cryptographic primitive used to
achieve this is the concept of digital signatures.

4.1.1 Digital Signatures

Digital signatures are a category of cryptographic primitives which
provides integrity, authenticity and non-repudiation. The components of
a digital signature scheme are illustrated in Figure 4.1. It consists of a sign-
ing algorithm, signing key, verification algorithm and verification key. In
the figure, Alice wants to send a signed message M to Bob. Alice sends
the message together with her signing key through the signing algorithm,
which returns a signature of M. She then sends the message along with this
signature to Bob, who will then pass the message, signature and verifica-
tion key through the verification algorithm. If the verification algorithm
is successful, Bob will know that the signature is valid for the message he
recieved.

A secure digital signature scheme has several properties. First, Bob will
know that the message recieved has not been modified during transmis-
sion or else the verification algorithm would have failed. This means that
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digital signatures provide integrity. Another implication is that if the veri-
fication algorithm succeeds, Bob will know that only Alice could have
signed the message since we assume only she has the signing key. As
such, digital signatures also provide authenticity. Finally, since anyone
can verify the signature and only Alice could have created it we also have
the property of non-repudiation.

Figure 4.1: Illustration of a digital signature scheme.
Source: TEK4500 Lecture Notes on Digital Signatures [59]

4.1.2 Cryptographic Keys

An important aspect of not only digital signatures, but cryptography is
the concept of cryptographic keys and how they should be handled. In
the digital signature scheme, anyone with access to the private key can
create signatures for that party so it is crucial that such keys are stored
and handled securely. Security measures such as secure boot in UEFI build
heavily on digital signatures, and as such it is important to consider where
the private keys connected to these security measures should be stored
and how they should be handled.

4.2 Trusted Platform Module

Trusted Platform Module (TPM) is a standard and technology outlining
a secure cryptographic processor [24]. A TPM provides a secure way of
handling essential cryptographic functions such as generation and storage
of cryptographic keys, encryption, decryption and cryptographic signing.
It is also designed to be resistant against physical tampering. As such, it
works as a root of trust for a system which can provide attestation, authen-
ticate data and provide different security building blocks.

Typically, a hardware-based TPM is controlled through memory mapped
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IO. On IA32 and IA64-based systems, SMM may be used to communic-
ate with the TPM [31]. Since SMM has full visibility over memory and
devices, it can be entered and then used to read and write to the memory
mapped IO of the TPM in order to issue commands and read the results.

Figure 4.2: Overview of the core functionality a TPM provides.
Source: https://upload.wikimedia.org/wikipedia/commons/thumb/b
/be/TPM.svg/1920px-TPM.svg.png

A TPM in itself does not inherently protect against rootkits or bootkits.
It is instead designed to be a root of trust when it comes to security on a
system. By providing a secure way of handling important cryptographic
functions, one can build security measures on top of the technology. With
UEFI, usage of a TPM includes, but is not limited to storing cryptographic
keys, storing NVRAM variables, decrypting bootloaders and supporting
measured boot.

4.3 Secure Boot

Secure Boot is a standard with the goal of ensuring that only software and
drivers trusted by the Original Equipment Manufactorer (OEM) ever get
loaded during boot [41]. It is also a technology meant to prevent bootkit
infection.

Secure Boot is based on digital signatures. The OEM stores a signature
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database, revoked signature database and a key enrollment key database
(KEK) on the system firmware. The signature database and revoked sig-
nature database contains signatures of boot software and drivers, where
the ones that are stored in the revoked database are to no longer be trus-
ted. The KEK database holds the keys which can be used to update the
signature and revoked signature databases. The OEM ensures that the
databases cannot be edited with the exception of updates signed with
valid keys or when a physical user is changing the settings in the firm-
ware menus. The OEM also generates a Platform Key (PK) which can sign
updates to the KEK. Secure boot is primarily configured through NVRAM
variables. Both the KEK and PK are stored in NVRAM as seen Figure 3.5.
Interestingly, the variable deciding if secure boot is on or off is not stored
in NVRAM. Instead, it is set during the early phases of UEFI based on if
the PK is set or not. This means that secure boot is trivial to turn off with
access to modify NVRAM variables.

When the system boots and attempts to load boot software or drivers, the
platform key is used to validate the corresponding signatures in the sig-
nature database. This primarily happens during the DXE and BDS phase
when DXE drivers and UEFI applications such as bootloaders are loaded.
If the boot software or driver is not trusted, the system will attempt to re-
store the firmware to a trusted state. A TPM is usually utilized to handle
storage of the cryptographic keys and performing cryptographic opera-
tions in a secure way. The implication of this is that if a bootkit attempts
to load or modify boot software or drivers, it will not be considered trust-
worthy since it has not been signed by a valid authority. Finally, once the
bootloader has been verified to be trustworthy and loaded, Trusted Boot
takes over.

4.4 Trusted Boot

Trusted Boot is a chain of trust where every component being loaded
will be verified in turn. According to the Microsoft documentation, the
bootloader will verify the signature of the Windows kernel before it is
loaded. Then the Windows kernel will in turn verify the components
it loads such as the startup files, boot drivers and Early Launch Anti-
Malware (ELAM) [42]. If a signature is invalid or considered to not be
trustworthy, Windows will either try to repair it or refuse to load it much
like Secure Boot.
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Figure 4.3: An overview of the boot process.
Source: Rootkits and Bootkits: Reversing Modern Malware and Next
Generation Threats [36]

4.5 Early Launch Anti-Malware

Early Launch Anti-Malware (ELAM) is a technology meant to protect
against malicious third party drivers. ELAM allows a trusted anti-
malware driver to be loaded before any third party driver is loaded. This
means that the ELAM driver can check if the third party drivers being
loaded is to be considered trustworthy or not [42].

4.6 Measured Boot

Measured Boot is way to assess if a client has been infected during the
boot process by a remote server on a network. It works by storing a hash
of crucial part of the boot process such as the bootloader, firmware and
drivers on a TPM. When the boot process is done, a remote server can send
the client a unique key, and the TPM can use this key to sign logs from the
boot process. Finally, the client can send the signed logs and potentially
other relevant data back to the server which will then assess if the client is
healthy or not [42]. If the client is not healthy, it can for example be granted
limited access to the network or none at all. This helps prevent the spread
of infections on systems.

4.7 Existing Vulnerability Research

According to Matrosov, there exists a trend where attackers are increas-
ingly focusing more on firmware and hardware [34]. As the state of secur-
ity in higher levels such as software and operating systems improves, it is
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more natural for attackers to target the lower levels such as UEFI and the
hardware itself. UEFI has a wide attack surface with several components
where security is crucial [44]. Vulnerabilities such as exploiting race con-
ditions to modify the UEFI firmware itself in SPI flash memory has been
utilized by bootkits such as LoJax in the past [48]. There have also been
found vulnerabilities allowing to bypass security measures such as secure
boot [44]. Recently, a lot of vulnerabilities related to SMM in the form
of privilege escalation and memory corruption have also been discovered
[57]. It is outside the scope of this thesis to provide a detailed explanation
of all of these vulnerabilities, but it is important to know that new vul-
nerabilities are still being discovered in UEFI which can allow bootkits to
infect the system.
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Chapter 5

Methodology

This chapter outlines the methodology applied for this research by util-
izing the research onion. When designing a research methodology, there
are many questions to consider. What are the philosophical assumptions
of the researcher? Does the research utilize a qualitative, quantitative or
some other approach? What strategies are used and how is data collected?

The research onion is a tool meant to help describe a research methodo-
logy in a holistic way [52]. It provides a top-down view where the broader
strokes of research philosophy, approach and strategy are discussed first.
At the lower levels, more granular aspects like data analysis methods, time
horizons and details around data collection are discussed. After the entire
methodology has been outlined, ethical concerns of the research are dis-
cussed.

5.1 Research Philosophy

Since the main research question of this thesis is what modern bootkits are,
a big question emerged. Would the research questions lean more towards
interpretivism and qualitative research or positivism and quantitative re-
search? When looking at bootkits from a purely technical perspective, they
are programs consisting of bits which forms functions, variables, data and
more. This leans into a positivist philosophy where there are objective
truths [47].

However, this research ended up choosing an interpretivist philosophy
instead. The details why this ended up being the case is tightly knit to the
research approach, and will be further elaborated in that section. From a
purely philosophical perspective though, malware and bootkits are a cre-
ation of malware authors. This means that bootkits have a human aspect
to them, which leans more into an interpretivist philosophy. The purpose
of interpretivism is also to explore, describe and understand concepts and
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phenomena [47]. The main research question is arguably more aligned to
such a philosophy which is why it was chosen. Traditionally, malware re-
search has often been approached from a more positivist philosophy with
quantitative methods so conducting the research using a different method
also has the potential to provide new perspectives.

Figure 5.1: The Research Onion
Source: https://www.researchgate.net/profile/Hannah_Ayilaran/
publication/310953038/figure/fig15/AS:433229321773062@1480301327855/
The-research-onion-Saunders-Thornhill-Lewis-2009.png&f=1&nofb=1

5.2 Research Approach

Early on during the research process, the idea was take on a positivist
philosophy and employ quantitative methods. A form of this could for ex-
ample be to conduct experiments to see how well security measures would
hold against several UEFI bootkit samples and look for statistical relation-
ships between them.

However, as the research process progressed it was quickly discovered
that a quantitative approach would require many UEFI bookit samples,
and to the knowledge of the author there are few publicly available
samples. This would severely limit the amount of meaningful data and
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conclusions one can draw with quantitative methods. Another concern
was that for the few publicly available bootkit samples available, the infec-
tion vector was unknown and it was only possible to analyze a modified
bootloader or other limited parts of the samples.

By taking on an interpretivist philosophy, a combination of a qualitative
and inductive approach is implied. A qualitative approach is about explor-
ing, describing, detailing and interpreting concepts [19]. This aligns well
with answering the main research question of what bootkits are, and how
we can understand them. Qualitative analysis is also good at providing
depth, and also allows for shaping the research design while the research
is being done [19]. Because of this, a qualitative approach was chosen. By
looking at the data collected, it may also be possible to identify patterns
of modern bootkits. Additionally, it is also possible to explore different
ways of collecting data and use this to identify ways to debug and analyze
modern bootkits. Because of this, the research approach is also inductive
in that the data will be used to create hypotheses.

5.3 Research Strategy

The research strategy chosen is to undertake the research as a case study.
In her book, Pickard argues that the case study is a good strategy when
a holistic, in-depth investigation of a phenomena is required [46]. Typic-
ally, the researcher takes on the role of being a research instrument in a
case study, and it is also a flexible strategy as the design of the study will
develop during the fieldwork. This description fits well with the main re-
search question.

To the author’s knowledge there are no research done specifically on
designing case studies for reverse engineering. There are much research
done on qualitative methods and case studies in general, such as [21, 46].
The design of the case study in this research is grounded in the book "Case
Study Research in Software Engineering: Guidelines and Examples" by
Runeson et al. As there are differences between software engineering and
reverse engineering, all parts are not deemed to be as relevant or applic-
able to this thesis.

The case study is being done to understand what modern UEFI bootkits
are. By examining two modern UEFI bootkit samples in-depth, the goal is
to explore methods to debug UEFI and the boot process and find patterns
and themes to help better understand what modern bootkits are. Addi-
tionally, another goal is to propose what future bootkits must achieve to be
effective. All of this is being done in hopes of identifying interesting areas
where further security research could be conducted and improved. By un-
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derstanding and identifying effective ways of analyzing existing bootkits,
we can also be better prepared for new and unknown bootkits in the fu-
ture.

When selecting a case, the case can be "typical", "critical", "revelatory"
or "unique" [16]. The bootkit samples chosen in this study are Moon-
Bounce and ESPecter. Both are chosen because they are recently dis-
covered bootkits. Case studies often choose atypical or extreme cases to
provoke more interesting findings [21]. While UEFI bootkits can be seen
as atypical cases in the sea of malware, ESPecter and MoonBounce are
chosen as typical and relevant cases within the domain of bootkits. This is
done because choosing typical cases is believed to better answer the main
research question of what modern UEFI bootkits are. In contrast, choos-
ing extreme or atypical cases could easily lead to patterns of more exotic
and eccentric techniques in the bootkits and this would arguably be detri-
mental to answering the research questions.

The case study is neither entirely holistic or embedded. A holistic design
aims to look at each case as a whole picture, while an embedded design
look more closely at certain aspects of the case. In his book, Yin argues that
"the holistic design is more appropriate when there are no logical subunits
to the case" [65]. Both MoonBounce and ESPecter are bootkits, but bootkits
usually go beyond just infecting the boot process. As such, it is possible
to look at more specific parts of the bootkit samples like how they affect
UEFI and the boot process, what they do with the foothold in UEFI as well
as their aim. This case study will focus primarly on how the bootkits infect
UEFI and how they propagate the foothold in UEFI and the boot process
into the kernel and user space. As such, one can argue it is more of an
embedded case study. However, the case study will also look at what the
bootkits do in the kernel and user space from a broad view but will not
analyze these parts in detail. Because of this, there is a holistic aspect to
the case study as well. The risk with an embedded approach is that the
focus on detail can make the research miss important parts of the whole
picture [16]. The weakness of a holistic design is that the researcher may
miss important details [16]. Because of this, elements of both are used in
order to mitigate these shortcomings as much as possible.

Finally, the study is not primarily intended to be a replication study. There
will likely be a lot of overlap with findings in previously performed ana-
lyses of the chosen sample, but the intention is to build upon and add to
these findings more than it is to replicate them. This will mainly be done
by looking at similarities between the samples and identifying patterns.
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Figure 5.2: Overview over chosen research methodology.

5.4 Choices

The data analysis methods chosen is multi-method approach using
elements from both content analysis and grounded theory. In rough
terms, grounded theory is about letting data speak for itself and create
hypotheses. Content analysis on the other hand is about studying existing
documents or programs and examine patterns in them. By reverse
engineering the bootkit samples, it is possible to look at the data and
similarities between the bootkits to form hypothesis about what modern
UEFI bootkits are. Existing analyses can then not only be used for
triangulation, but also for content analysis to help identify even more
potential patterns. As such, the data analysis methods are not purely
grounded theory or content analysis. Instead, elements from both are
used to help answer the research questions as well as possible while also
increasing the validity of the research. In addition to this, a workflow
and lab environment is described and used during the case study. The
empirical data obtained through this will be loosely analyzed in order to
help evaluate strengths and weaknesses of the workflow. By providing
and evaluating a workflow such as this, there is potential for facilitating
further research in the future.

5.5 Time Horizons

Since science can be an infinite process, it is important to have a clear time
horizon. This helps limiting the scope and defining the boundaries of the
research. Naturally, this research is limited by the deadline of the thesis.
This makes it infeasable to collect data over a longer period of time, which
is a factor why a case study of only two specific, modern UEFI bootkit
samples was chosen.
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5.6 Techniques and Procedures

Finally, the data collection techniques have to be addressed. As touched
upon earlier, the main method for data collection is to reverse engineer
the chosen bootkit samples. This is done by using both static and dynamic
analysis techniques. The main emphasis is on how the bootkits modify
UEFI and the boot process as well as which techniques they employ. Data
is also collected from existing analyses. This is done for two purposes.
First, it is possible to use the data from these analyses to check if they
are in line with the data obtained from reverse engineering the samples.
This helps increase the validity of the research. Secondly, the data from
the existing analyses can also provide additional information about what
the bootkits do in the kernel and user space. This can help identify even
more patterns than what can be done through reverse engineering alone.
While this data could potentially be obtained through reverse engineering
as well, it is important to consider that reverse engineering is a very time
consuming process. With the time horizons in mind, this is why data
collection through reverse engineering is chosen to be limited to collecting
data about UEFI and the boot process alone.

5.7 Critical Analysis

It is important to consider the shortcomings of any research methodology.
Case study as a research strategy has been critized for not being able to
generalize from a limited amount of cases, and therefore not being able to
contribute scientifically [21]. In his article "Five Misunderstandings About
Case-Study Research" Flyvbjerg argues that generalisation is possible with
case studies, but that the power of example is even more important. Pick-
ard also reiterates that the purpose of a case study is not to produce gener-
alizations, but instead "allow for transferability of findings based on con-
textual applicability" [46]. Since this thesis is limited to quite a short time
frame and investigates only two cases, a weakness is the ability to pro-
duce generalizations and theoretical knowledge. However, with roots in
the work of Pickard and Flyvbjerg it is argued that the contextual findings
and practical knowledge is just as valuable. Additionally, case studies can
also be used as input in order to facilitate further research which is also
an equally valuable aspect. Because of this, there is value in performing a
case study like this.

Another criticism is the role of the researcher and the possibility of bias.
Flyvbjerg points to the case study being especially vulnerable to verifica-
tion bias as a common criticism against it [21]. Triangulation is often used
in qualitative studies to establish credibility [15]. It is also important to
acknowledge and be aware of the personal bias of the research, since it is
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impossible to remove all subjectivity from a qualitative study. By using
multiple sources of evidence such as other existing analyses of bootkits
and being aware of the personal bias of the researcher, this thesis attempts
to mitigate verification bias and achieve as much credibility as possible.

5.8 Ethical Concerns

When designing the research, ethics was an important concern. Bootkits
and malware as a whole is used for destructive and harmful purposes. By
conducting research on bootkits, it is important to ensure that the research
will not contribute to these purposes. The primary aim of this thesis is to
better understand what modern bootkits are and the state of security in the
boot process. The hope is that this contributes to better defend against the
harm and destruction bootkits bring with them, as well as explore areas
where security measures can be improved or looked further into.

Admittedly, any knowledge uncovered can be utilized by malicious act-
ors as well. However, malicious actors are unlikely to publish any findings
about how their bootkits work and where things can go wrong in security
measures meant to prevent them. They are also the creator of their re-
spective bootkits, which means they likely have much knowledge about
them already. Another important consideration is that new attackers may
gain knowledge. However, this thesis only describes existing bootkits
and ways to analyze them. It does not provide attackers with new, un-
known techniques or vulnerabilities. As such, the research done arguably
provides a lot more value to help secure and defend against bootkits than
it does for attackers to improve offensive capabilities. With all of this in
consideration, it is deemed more ethical to make this knowledge public
since it is likely more valuable to defenders rather than attackers.
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Chapter 6

Implementation

In this chapter the implementation enabling the analysis and data
collection is outlined. In the first section the lab environment is given
a thorough look, and the decisions behind it are discussed. The second
section outlines the specific tools used to analyze, debug and reverse
engineer the malware samples.

6.1 Lab Environment

In order to perform an analysis of UEFI bootkits it is important to have
a solid lab environment. The primary goals of the lab environment are
to minimize the risk of infecting unwanted infrastructure or machines
and to maximize the preciseness and efficiency of debugging and reverse
engineering. One special concern is how to achieve debugging of the boot
process so that both UEFI and the bootloader can be debugged. A diagram
of the proposed lab environment is shown in Figure 6.1.

6.1.1 Analysis Machine

The analysis machine is a virtual machine hosted on cloud infrastructure.
The job of the analysis machine is to be able to perform static analysis of
malware samples and run the victim machine. The analysis machine runs
the virtualized victim machine inside of it to allow for dynamic analysis
of UEFI services and bootloaders. The analysis machine can in theory run
any operating system which supports QEMU, but in this case Linux was
chosen for several reasons. QEMU has functionality to set up a GDB server
which simplifies the process of allowing dynamic analysis of UEFI. Since
the malware samples in question target Windows, running a Linux distri-
bution on the analysis machine also helps minimizing the risk of getting it
infected accidentally. The analysis machine could in theory be a physical
machine, but virtualization is preferred since it helps limiting risk and po-
tential damage. In the worst case where the bootkit being analyzed util-
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Figure 6.1: Lab Environment.

izes potential exploits to escape QEMU and infect the analysis machine,
the damages will generally be more contained if the analysis machine is
virtualized as well.

To connect to the analysis machine, VNC is used. Since VNC is a pretty
insecure protocol, it is tunneled over SSH. Details of how this was set up
is included in Appendix B.

6.1.2 Victim Machine

The victim machine is also a virtual machine, but it is hosted inside the
analysis machine through QEMU. Since the bootkit samples in question
target Windows, Windows 10 is used as the operating system. Security
measures such as Windows Defender and Secure Boot are turned off to
be able to infect the machine and collect as much data as possible. It
is important to stress that this is done because the bootkits analyzed are
known samples, and as such existing security measures are likely to be
able to detect and stop them. New, unknown samples are assumed to
be able to bypass security measures like these. One important detail is
that nested virtualization must be enabled on the cloud infrastructure the
analysis machine is hosted on. If not, it is not possible to run the victim
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machine through QEMU inside the analysis machine. Details for QEMU
installation and setup used for the victim machine are also included in
Appendix B.

6.2 Firmware Implementation

In order to run UEFI in QEMU, Open Virtual Machine Firmware (OVMF)
is used. OVFM is a UEFI implementation intended for usage on QEMU
with KVM as a hypervisor [3]. EDKII is a firmware development envir-
onment for the UEFI and PI specifications [4]. Both OVMF and EDKII are
developed by TianoCore.

There are both advantages and complications with using OVMF in a lab
environment. The advantage is that it is easy to change NVRAM variables
to for example disable secure boot, change the boot order and so on. It
also easily allows for dynamic debugging with GDB, and it is easy to fol-
low their documentation to develop drivers to aid debugging. With both
samples that are analyzed in this thesis, secure boot was disabled by set-
ting the corresponding NVRAM variable in OVMF_VARS.fd.

The complications occur when considering that certain bootkits such as
Lojax function by overwriting the UEFI firmware in SPI flash memory.
Since OVMF and EDKII are open source it is relatively easy to pull their re-
pository and modify the UEFI firmware implementation such that it works
in a way similiar to the bootkit in question. The OVMF wiki contains a
good overview of where code for different UEFI phases can be found [5].
Afterwards, it is possible to build the image so that this firmware is used
[6]. However, this is only a way of simulating the bootkit in OVMF instead
of the UEFI implementation it was built and targeted for. It also requires
a fair amount of static analysis to be performed upfront in order to know
how the firmware has been modified by the bootkit and even more work
to actually write and build an equal functionality into OVMF.

Both the techniques of modifying NVRAM variables and building custom
OVMF firmware to simulate actual bootkits are utilized in this thesis. For
the ESPecter bootkit, secure boot was disabled and a malicious bootloader
was set as the primary bootloader. For MoonBounce, small parts of the
OVMF firmware were changed to simulate what MoonBounce does.

6.3 Tools

The analysis machine has several tools installed to aid static analysis
and UEFI debugging. IDA is the main tool installed for static analysis
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Figure 6.2: Example of an executable file being analyzed in IDA.

and helps to aid with disassembly and decompilation of both malicious
bootloaders, droppers and other components the bootkit in question may
contain. GDB is used for dynamic analysis and EDKII is used to aid
dynamic analysis.

6.3.1 IDA

IDA is the tool used for static analysis of the bootkits. Before running a
bootkit on the victim machine and using dynamic analysis techniques, it
is important to better know where to look and roughly what the bootkit
does. Since an executable file is only bits and bytes, it helps to interpret
them in a more meaningful way. IDA does this by trying to identify what
the format of the executable file is, and then try to interpret the contents
of it. Figure 6.2 shows an example where an EXE file has been opened
in IDA. Important and meaningful information such as the addresses and
content of different segments, executable assembly instructions and func-
tion names are shown among other things. IDA also splits the executable
instructions of functions into smaller nodes to form a graph which helps
visualizing branching in the program.

By disassembling files like this in IDA, it is possible to look at the different
information it interprets in order to better help determine which areas of
UEFI the bootkits target and what they do. It is also possible to do the
same for relevant bootloaders, OS loaders and kernel libraries. After dy-
namic analysis has been performed, IDA are also used to look deeper into
functions and other areas deemed as interesting.
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Figure 6.3: An example program being debugged using GDB with GEF.

6.3.2 GDB

GDB is the primary tool used for dynamic analysis. Unlike static ana-
lysis tools such as IDA, GDB can be attached to processes while they are
running. Through this GDB allows inserting breakpoints at different ad-
dresses or symbols in order to pause execution at specific places in the
code. By doing this, it is possible to examine and change the values in
memory and registers at almost any given point. Another important func-
tionality of GDB is that it allows to execute a single instruction at a time.
This is called stepping and is useful when trying to identify how certain
functions or parts of the code work. Figure 6.3 shows an example where a
program is being debugged using GDB. GDB Enhanced Features (GEF) is
also installed and used to add more functionality to GDB and help visual-
ize the contents of memory and registers better [7].

Another functionality of GDB is that it can connect to a system through
a server. In the lab environment, QEMU starts a GDB server so that the
analysis machine can connect to it. This allows for using GDB to place
breakpoints, step through instructions and examine what happens during
the boot process of the victim machine remotely through the analysis ma-
chine. Listing B.3 in Appendix B shows in further detail how both IDA
and GDB can be used to debug bootloaders and UEFI applications.

40



Chapter 7

Results

This chapter presents the results of analyzing two modern UEFI bootkit
samples. First, the findings from the sample MoonBounce are presented.
Then, results from the other sample called ESPecter are outlined. The
analysis of both samples are for the most part conducted independently,
but the findings are triangulated, validated and further expanded using
existing analyses from both Kaspersky and ESET [30, 55]. The findings of
how the samples were initially discovered as well as what they do once a
malicious kernel driver has been loaded is entirely based on the existing
analyses.

7.1 MoonBounce

MoonBounce is a UEFI bootkit which was originally discovered by
Kaspersky towards the end of 2021 [30]. It was discovered through logs
from firmware scanning software developed by Kaspersky. MoonBounce
mainly consists of a modified UEFI firmware with an implanted segment.
The entire firmware along with the modifications resides in SPI flash
memory. The report from Kaspersky lacks evidence to conclude how the
UEFI firmware was infected in the first place. The report also states that
the modified firmware was only discovered on a single target indicating
that MoonBounce is a highly targeted sample of malware. The segments
of the entire modified firmware are shown in Figure 7.2, where seg005
corresponds to the implanted segment.

The .text segment has three hooked EFI boot services. These services
are the AllocatePool, CreateEventEx and ExitBootServices. As shown in
Figure 7.3, these services have had their first five bytes replaced with a
redirection to a hook dispatcher.

The hook dispatcher is shown in Figure 7.4. The hook dispatcher
essentially acts as a switch which will jump to the corresponding hook
handler for each of the hooked boot services. This is done by first moving
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Figure 7.1: MoonBounce Overview.
Source: https://securelist.com/moonbounce-the-dark-side-of-uefi-
firmware/105468/

the address of the hooked function calling the dispatcher into the RAX
register. Since the first five bytes of the hooked functions will always
be a call to the dispatcher, it instead uses the bytes right after it as a
signature to know which handler it should jump to. As an example, the
sixth and seventh bytes in CreateEventEx is 0x5808 and corresponds to
cmp word ptr [rax+5], 858h.

By placing a breakpoint on the hook dispatcher in GDB, it is found
that the first hook which gets executed is the AllocatePool hook. The
AllocatePool hook is shown in Figure 7.5 and does several things. When
entering the handler, the RAX register holds the address corresponding
to the beginning of the hooked function. The handler first overwrites the
first five bytes of AllocatePool to be 0x48895C2408. In x86-64 assembly,
this correspond to the instruction mov QWORD PTR [rsp+0x8], rbx. This
means that the call to the hook dispatcher in AllocatePool is restored to
what it was before the hook was inserted. The next part of the hook calls
the AllocatePool function which is now unhooked, in order to allocate
a buffer of size 0x4B000 to hold shellcode. The hook then overwrites a
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Figure 7.2: MoonBounce UEFI Firmware Segments.

Figure 7.3: Hooked EFI Boot Services in the MoonBounce implant.

memory address in a later part of the code so that it will hold the address of
the newly allocated shellcode buffer. This is shown in Figure 7.6. Finally,
the AllocatePool hook copies shellcode over into the buffer. The beginning
of this shellcode is shown in Figure 7.7, and is responsible for mapping a
malicious driver into kernel memory and calling it later on.

The next hook called is the CreateEventEx hook. The hook itself is
shown in Figure 7.8, and just like the AllocatePool hook it will restore
the beginning of CreateEventEx to its original state. The hook then
calls the unhooked CreateEventEx. By referencing page 227 of the UEFI
specification, we can determine that the function is called with a type
of EVT_NOTIFY_SIGNAL with a callback to the shellcode in Figure
7.7. The EventGroup parameter points to rbx+3C, which evaluates to
0x1801577d6. The content at this memory address is shown in Figure
7.9 and holds the GUID of the EFI_EVENT_LEGACY_BOOT group.
This GUID is shown in Listing 3.2, and can also be found in the PI
specification. Page 232 of the UEFI specification explains that "If Event
is of type EVT_NOTIFY_SIGNAL, then the event’s notification function is
scheduled to be invoked at the event’s notification task priority level" [61].
This means that in the case where the UEFI boot manager tries to boot a
legacy boot option, the shellcode set up by the AllocatePool hook will be
called. Because of this, MoonBounce covers a wider set of boot options in
order to be more effective.

The last hooked service in the firmware is ExitBootServices. The first
part of the hook restores the original instructions of the beginning of the
hooked service like the two previous hooks and saves the state of several
registers. This is shown in Figure 7.10. The next part of the hook will
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Figure 7.4: The MoonBounce Hook Dispatcher.

search for the byte pattern 0xCB485541. The rax register will contain the
return address of ExitBootServices at this point. The cmp ecx, 0x158878
instruction therefore acts as a loop condition, where a range of 0x158878
bytes after memory pointed to by the return address are searched for
the actual byte pattern. The byte pattern 41 55 48 CB are the last bytes
of a function called OslArchTransferToKernel inside winload.efi. This
file is the intermediate OS loader and is loaded into memory by the
Windows bootloader. This entire part of the hook is shown in Figure 7.11.
As such, the entire ExitBootServices hook sets up a hook at the end of
OslArchTransferToKernel which will redirect execution to some specific
shellcode.

Once the location of the end of OslArchTransferToKernel has been
found, the eax register is set to point to the second last byte of this
function. Following this, 0x229 bytes of shellcode are copied to the address
0x98000. Finally, the last part of the hook overwrites the last instruction of
OslArchTransferToKernel to be a jmp instruction to the shellcode before
execution is passed back the ExitBootServices. All of this is illustrated in
Figure 7.12. As such, the entire ExitBootServices hook sets up a hook in
OslArchTransferToKernel which will redirect execution to the shellcode at
0x98000.

At this point, the boot process will progress and eventually Os-
lArchTransferToKernel will be called. At the end of this, execution is redir-
ected to the shellcode shown in Figure 7.13. The first part of the shellcode
will search nearby memory for the byte pattern 4D 5A 90. This corres-
ponds to the bytes of a DOS Header, which indicate the beginning of a
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Figure 7.5: The AllocatePool Hook in MoonBounce.

PE file. This is done in order to find the location of the kernel in memory,
which is read into memory from the ntoskrnl.exe file.

Following this, several tasks are performed before the shellcode
transfers control back to the original execution path. This is shown in
Figure 7.14. First, the function marked as ResovleKernelAPIFunctions
will hash the function names exported by the ntoskrnl.exe into small
byte strings. ChangeKernelSectionProtections will change the permission
bit of all the sections in ntoskrnl.exe so that each section is executable,
writeable, non-discardable and not paged. Next up, much like in how
shellcode was copied and a hook was set up in OslArchTransferToKernel,
0xCC bytes of shellcode are copied into memory and a hook is set up
in the ExAllocatePool function in the kernel. Unlike the previous hook,
ExAllocatePool is hooked in the beginning of the function rather than at
the end. This is done by storing the first few bytes of ExAllocatePool in a
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Figure 7.6: Memory where the address of the shellcode buffer is written to
in MoonBounce.

buffer and replacing them with a jmp instruction to the address where the
shellcode was copied into memory.

The kernel will continue execution as normally until it calls ExAllocate-
Pool. When this happens, execution is transferred to the shellcode shown
in Figure 7.15. This part of the shellcode first checks if a boolean is set or
not. If the boolean is set, execution will be transferred back to ExAllocate-
Pool and thus ignore the hook. When ExAllocatePool is first called, this
boolean is not set. When this is the case, execution will further be diverted
to the hook handler.

The hook handler is shown in Figure 7.16. The first part of handler code
ensures that the hook was entered from ExAllocatePool. If this is the case,
the function MmMapIoSpace in the kernel is called to map the shellcode
allocated and set up by the AllocatePool hook in UEFI into the virtual ad-
dress space of the kernel. Note that the mov rcx, 0x1122334455667788
instruction was changed to contain the address of the shellcode buffer
earlier. Once this is done, execution is redirected to this shellcode.

The shellcode will map a malicious driver into kernel memory and run it.
At this point, the bootkit has successfully propagated through the entire
boot process and is ready to perform ore typical malware activity. Accord-
ing to the report by KasperSky, the malicious driver will inject a malware
stager into user space and run it [30]. The malware stager will in turn
contact a command and control (C&C) server to download and execute
further malware.
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Figure 7.7: Beginning of the shellcode allocated by MoonBounce.

7.2 ESPecter

ESPecter is another UEFI bootkit discovered by ESET in 2021 [55].
According to ESET, ESPecter was initially discovered on a compromised
machine together with malware running in user space. The roots of
ESPecer are traced all the way back to 2012 where it operated as a legacy
BIOS bootkit and the operations and upgrade into a UEFI bootkit went
unnoticed until 2021. Like MoonBounce, the report from ESET also lacks
evidence of how the system got infected in the first place. ESPecter
consists of a compromised Windows bootloader which works to drop a
malicious kernel driver in order to install further malware. The complete
flow of what happens from UEFI until the kernel driver is dropped is
shown in Figure 7.17. ESPecter utilizes hooking and code relocation in
a fairly similiar way as MoonBounce, so the details of these parts are not
illustrated as deeply as with MoonBounce.

The malicious Windows bootloader has an extra section called .efi, and
the entry point of the bootloader is changed so that code execution be-
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Figure 7.8: The CreateEventEx Hook in MoonBounce.

gins inside this section. ESPecter begins by patching the BmFwVerify-
SelfIntegrity function in the Windows bootloader. To locate this function,
ESPecter will search for certain byte patterns in memory. Depending on
the bootloader version, these patterns will be slightly different. One such
byte pattern is highligted with a red line in Figure 7.19. Once the byte
pattern is located, ESPecter will locate the beginning of the function and
patch bytes with an offset of four bytes from the beginning. In Figure
7.19, these bytes are originally 55 53 56 57 41 55, and are patched to be
B8 00 00 00 00 C3. BmFwVerifySelfIntegrity is a function which verifies
the digital signature of the bootloader. The patches ESPecter applies to
it changes the function so that the instructions mov eax, 0; retn; is ex-
ecuted almost immediately. This returns a value indicating that the digital
signature is valid, so in practice the digital signature is never checked and
the whole integrity check is patched out. A comparison of the original and
patched function is shown in Figure 7.18.
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Figure 7.9: EFI_EVENT_LEGACY_BOOT_GUID bytes in MoonBounce.

Figure 7.10: First part of Exit Boot Services Hook in MoonBounce.

Following this, ESPecter will install a hook in the
Archpx64TransferTo64BitApplicationAsm function. This function is
called when the bootloader has loaded winload.efi into memory. The hook
is set up here because the bootloader will be unloaded from memory after
passing control to winload.efi since the bootloader is a UEFI application.
The hook will allocate a buffer and copy the code from the .efi section in
the bootloader into the buffer. Once this is done, a hook is inserted into
the OslArchTransferToKernel function which diverts code execution back
into code located in the newly relocated code. OslArchTransferToKernel
is called when control is transferred from the OS loader to the kernel.

The OslArchTransferToKernel hook will patch several functions in the
kernel. The SepInitializeCodeIntegrity function is a function which will
check and verify the digital signature of drivers loaded in the kernel,
so ESPecter will first patch this function in order to disable it. Inside
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Figure 7.11: Second part of Exit Boot Services Hook in MoonBounce.

SepInitializeCodeIntegrity there is a variable called CiOptions which will
normally hold data about the integrity of the driver. This variable is
normally set with a mov edi, [rdx] instruction, but ESPecter patches it
to be xor edi, edi. This results in CiOptions always being set to 0, which
effectively disables the entire checking of driver signatures.

Finally, ESPecter hooks the CmGetSystemDriverList function and
patches the MiComputeDriverProtection function. CmGetSystemDriver-
List is called during loading of system drivers, and the hook will set up
a malicious kernel driver. According to the analysis done by ESET, the
patched MiComputeDriverProtection is likely used by some unknown,
further components of ESPecter [55]. Finally, the malicious kernel driver
will work to install a keylogger on the system before the driver deletes
itself.
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Figure 7.12: Third part of Exit Boot Services Hook in MoonBounce.
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Figure 7.13: First part of initialization of ExAllocatePool Hook in
MoonBounce.
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Figure 7.14: Second part of initialization of ExAllocatePool Hook in
MoonBounce.

Figure 7.15: First part of ExAllocatePool Hook in MoonBounce.
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Figure 7.16: Second part of ExAllocatePool Hook in MoonBounce.
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Figure 7.17: ESPecter Overview.
Source: https://www.welivesecurity.com/2021/10/05/uefi-threats-
moving-esp-introducing-especter-bootkit/
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Figure 7.18: Comparison showing how ESPecter patches the bootloader
integrity check.

Figure 7.19: Comparison of how the actual bytes of the bootloader
integrity check is patched by ESPecter.
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Figure 7.20: How ESPecter disables driver signature enforcement in the
Windows kernel
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Chapter 8

Discussion

This chapter discusses the results of the thesis in relation to the research
questions. The workflow and lab environment for analyzing the bootkits
are first discussed. Then the results from analyzing the bootkits are
examined for similiarities, differences and possible patterns of what
makes up modern UEFI bootkits. Finally, the security challenges and
mechanisms are discussed.

8.1 Workflow and Lab Environment

One of the research questions of this thesis is the question of how we can
debug UEFI and the boot process. The workflow and lab environment
outlined in chapter 6 were used for analyzing both ESPecter and Moon-
Bounce. The empirical data collected from doing this points to several
strengths and weaknesses of the approach. Using EDKII and OVMF on
QEMU together with dynamic debugging with GDB makes it possible to
place breakpoints and debug UEFI and the boot process quite well.

The workflow and environment works well in a case such as ESPecter,
where there is only a malicious UEFI application. In a case such as this it
is possible to run QEMU with OVMF without any modifications, place a
breakpoint at the entry point of the malicious bootloader and then run it.
Using macros in EDKII, it is also possible to place predefined breakpoints
at almost any specific place in the UEFI firmware.

On the other hand, a clear weakness with this approach is that it is heav-
ily limited to the OVMF implementation of UEFI. In cases such as Moon-
Bounce where the UEFI firmware itself has been modified, debugging is a
bit more limited. On normal systems the UEFI firmware is locked in the
SPI flash memory and not easily rewritten. If the modified firmware is
not built for OVMF, it is not a trivial task to replace the UEFI firmware of
QEMU either. The solution to this problem is to first perform static ana-
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lysis of the malicious UEFI firmware. Then small, interesting parts of it can
be implemented in OVMF, built and debugged with GDB through QEMU.

As such, the workflow and lab environment provide ways to help debug
UEFI and analyze bootkits, but there are some clear strengths and weak-
nesses with the approach. There exists ways to debug UEFI through a
physical debug ports such as JTAG [53]. Combining this with an easier
way of overwriting SPI flash memory could allow for better debugging
and analysis of malicious UEFI firmware across several different UEFI im-
plementations, so there is a lot of potential for improvement. However,
the lab environment and workflow proposed in this thesis are a good be-
ginning in terms of ways to analyze UEFI bootkits in a virtualized envir-
onment.

8.2 What makes up a modern UEFI bootkit?

The data from analyzing MoonBounce and ESPecter points to several pat-
terns which could possibly be central parts of modern UEFI bootkits. The
biggest similarities between the two samples is that they rely heavily on
hooking services and functions in UEFI, bootloaders, OS loaders and the
kernel. Especially functions responsible for transferring execution to the
next stages of the boot process seem to be hooked. In both cases, these
hooks are set up and used to propagate through the entire boot process
with the end goal of loading and running a malicious driver inside the
kernel. The malicious drivers seem to vary, but in both cases they commu-
nicate with a C&C server in order to install further malware. As such, two
big patterns of modern UEFI bootkits seem to be using hooking to propag-
ate infection through the boot process as well as using this foothold in or-
der to load and execute malicious drivers which in turn will install and
run further malware.

There are also small differences in MoonBounce and ESPecter. Moon-
Bounce infects the system by overwriting and changing the UEFI firm-
ware itself. ESPecter on the other hand infects the system by overwriting
the Windows bootloader with a malicious one, so in this case the UEFI
firmware stays the same. In addition to the existing analyses performed
by Kaspersky and ESET, a couple other were also identified. An inde-
pendent analysis of a legacy version of ESPecter has been performed by
Theodor Arsenij [10]. In addition to this, Binarly also conducted an ana-
lysis of MoonBounce which provides a different perspective than the one
performed by Kaspersky [56]. To the knowledge of the author, an existing
comparison of MoonBounce and ESPecter does not seem to exists. The
analysis by Binarly points to MoonBounce being built to target hardware
of an MSI system from 2014 and also identifies an existing Github repos-
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itory from 2018 containing code with a lot of similarities to MoonBounce.
The analysis by ESET traces certain legacy samples of ESPecter all the way
back to 2012. As such, there exists another interesting similarity between
both ESPecter and MoonBounce where both samples seem to have a his-
tory dating many years. This could indicate that modern UEFI bootkits
which are discovered today are in reality often old, where new functional-
ity are being developed over time.

8.3 Vulnerabilities and Security Mechanisms

The most interesting question emerging from the analysis of both Moon-
Bounce and ESPecter is the question of how the system got infected in the
first place. MoonBounce would at some point modify the UEFI firmware
itself, while ESPecter would overwrite the bootloader. Ideally, security
measure such as locking and protecting writes to SPI flash memory and
secure boot would prevent such infections in the first place but this seems
to not be the case. As such, a big question is how these bootkits manage to
infect systems in the first place.

There are several reasons why this could be. Every year, many new vulner-
abilities are discovered in UEFI [57]. These vulnerabilities span everything
from memory corruption in SMM to DXE, race conditions to privilege es-
calation in different areas. The LoJax sample from 2018 used a race condi-
tion vulnerability in order to bypass write protections in SPI flash [48], and
a vulnerability like this could easily have been utilized by MoonBounce to
overwrite the UEFI firmware in SPI flash memory as well. Earlier research
on UEFI vulnerabilities seem to point to attacks on SMM, NVRAM vari-
ables and Secure boot being the main infection vectors in UEFI [45]. Sev-
eral weaknesses in UEFI have also been pointed to by Bashun et. al [11].
Vulnerabilities allowing to write and change NVRAM variables could for
example have been used by ESPecter in order to turn off secure boot and
allow running the malicious bootloader.

Existing research also points to possible problems with the UEFI eco-
system. Matrosov has pointed out how a complex supply chain of vendors
results in reported vulnerabilities taking almost a year to fix in most cases
[37]. As such, modern UEFI bootkits such as MoonBounce and ESPecter
may not need to rely on zero day vulnerabilities in UEFI. Instead, mod-
ern bootkits may only need to exploit vulnerabilities during the long time
span before they are fixed. If this is the case, a possible implication is that
security measures in UEFI such as secure boot will be far less effective. As
long as new vulnerabilities to bypass security measures are always found
and it takes a really long time to patch them, one could argue that more
efficient patching across the entire supply chain of vendors should be a
bigger focus.
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Figure 8.1: The UEFI supply chain and how vulnerabilities propagate
through it..
Source: UEFI Firmware Vulns Past, Present and Future [35]

On the other hand, ensuring that existing security measures are as secure
as they can be also matters. A lot of work has been proposed in order to
try help limited the amount of new vulnerabilities found in UEFI. Some
of examples of this are using memory safe languages such as Rust, incor-
porating secure coding practices into the development of UEFI and being
more aware of firmware security issues [12, 27, 28, 64]. By limiting the
amount of new vulnerabilities found together with patching discovered
vulnerabilities more efficiently, it will require a lot more effort for UEFI
bootkits to remain effective.

In the light of the patterns discovered in MoonBounce and ESPecter it is
also natural to discuss the issue of how we can better detect when a sys-
tem is infected. If hooking and the loading of malicious drivers in the
kernel are two big patterns, it seems natural that system security could be
improved by detecting this in better ways. A big challenge here is that if
UEFI is already compromised, later mechanisms can easily fall apart since
they can be patched out. The data from analyzing ESPecter shows how
the integrity check of the Windows bootloader and the drivers signature
enforcement were easily patched out. A possible path to better solve this
problem could be heavier use of TPMs and measured boot for integrity
checking. A problem with this is that the system would need to com-
municate with the TPM and verify the results, and checks like this could
probably be patched out the same way.
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By looking at the data and combining it with existing studies and research,
one can make a strong argument that the state of security mechanism of
UEFI, how systems get infected and debugging capabilities form a com-
plex chain of interweaved problems.
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Chapter 9

Conclusion

Throughout this thesis, existing literature has been explored, a lab
environment and workflow for analyzing UEFI bootkits has been and a
case study of two contemporary UEFI bootkits have been conducted. This
chapter brings together all of this work. In the light of the work done, areas
for further research are explored before bringing everything together in a
summary.

9.1 Further Research

The results of this thesis point to a need for further research in many
different areas. First of all, the shortcomings of the lab environment
and workflow point to a need for developing better, easier and more
streamlined methods to debug and analyze a wider variety of UEFI
implementations as well as bootkits. Better analysis methods could
admittedly make it easier for attackers to develop new bootkits by aiding
debugging, but it would not provide them with new, unknown techniques
or vulnerabilities in itself. Secondly, the patterns of hooking and loading
of malicious kernel drivers identified through the case study mean that
exploring ways to detect and stop this in a system where UEFI itself
is already compromised could be useful. Since it is often unknown
exactly how UEFI bootkits manage to bypass security measures and infect
systems, a better way to detect and log this could also be helpful in the
future. Despite this, the most clear and important area for further research
seems to be in the field of firmware and hardware security. There is a
need for ensuring more efficient patching of discovered vulnerabilities
throughout the supply chain of vendors. In addition to this, researching
new ways to limit the amount of vulnerabilities in code and design is also
an important area. Many aspects of this have been explored with higher
level software and software development in general, but further research
into how we can translate these efforts to firmware and hardware could
make a big difference.
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9.2 Summary

This thesis set out to answer several different research questions. Bootkits
are evolving, and instead of targeting legacy BIOS boot it is now more
common to target UEFI. A lab environment and workflow to aid debug-
ging of UEFI and analysis of UEFI bootkits using QEMU, OVMF, GBD and
IDA are proposed. While the approach has some big limitations with be-
ing heavily tied to OVMF, it is a good starting point for analyzing UEFI
bootkits in the future and help provide input for further research.

The case study of ESPecter and MoonBounce uncovered two primary pat-
terns of modern UEFI bootkits. First is a heavy reliance on hooking in or-
der to propagate infection throughout the system. Secondly, this foothold
is used to load and execute malicious drivers inside the kernel of the oper-
ating system in order to facilitate more traditional malicious activity. Both
of these bootkits must have bypassed security measures such as SPI flash
memory protection or secure boot in some way, but it is unknown exactly
how. This data combined with existing research on UEFI security leads
to reasonable speculation that vulnerabilities in UEFI play a big part into
how systems initially get infected. Security measure such as secure boot,
memory protections, measured boot and more are helpful. However, the
problem with the supply chain of vendors means that when vulnerabilit-
ies to bypass security measures are found a long time will pass before they
are patched. Combining this with new vulnerabilities being discovered at
a fairly quick pace every year means that the security measures are not as
effective as they can be. This seems to be an increasingly big challenge for
the future of boot security.

As such, UEFI and modern bootkits form a complex situation with many
moving components. In order to be better prepared for future bootkits
and improve the state of security of UEFI, researchers, vendors, design-
ers, manufacturers, developers and more will need to work more closely
together. By doing this it is not only possibly to improve the security of
every gear of UEFI and boot security by itself, but also to improve the way
everything moves together.
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Appendix A

Malware Hashes

This appendix lists the hashes of the malware samples related to this
thesis. Since it is impractical and unethical to provide the malware
samples themselves, hashes are instead provided to help identify the exact
samples as a fingerprint. This is important so that researchers can know
exactly which variant of the samples were analyzed, but also to help re-
searchers find the samples themselves in case they want to follow the res-
ults of this thesis.

MoonBounce EFI Bootkit (Malicious UEFI Firmware)
D94962550B90DDB3F80F62BD96BD9858 (MD5)

ESPecter EFI Bootkit (Bootloader)
27AD0A8A88EAB01E2B48BA19D2AAABF360ECE5B8 (SHA1)
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Appendix B

Code and Scripts

This appendix contains relevant code and scripts for installation and run-
ning of the lab environment outlined in chapter 6. This is included in order
to aid installation and configuration of a lab environment to help analyze
existing as well as new, unknown bootkits in the future. There already
exists a lot of resources to help setting up each component of such an en-
vironment in isolation. However, to the knowledge of the author a good
single resource synthesizing all these parts together does not exist and is a
contribution of this thesis.

Listing B.1 is based on a guide written by Mark Drake [18]. The commands
will install a desktop environment and set up a VNC server to allow re-
mote desktop control of the machine.

1 # Install VNC and XFCE4
2 sudo apt update
3 sudo apt install xfce4 xfce4 -goodies
4 sudo apt install tightvncserver
5

6 # Set password on VNC server
7 vncserver
8 vncserver -kill :1
9

10 : ’
11 #!/ bin/bash
12 xrdb $HOME/. Xresources
13 startxfce4 &
14 ’
15 nano ~/.vnc/xstartup
16 sudo chmod +x ~/. vnc/xstartup
17

18 # Run VNC server
19 vncserver
20

21 # On machine connecting to host through VNC
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22 # ssh -i [key.pem] -L 59000: localhost :5901 -C -N -l [user] [
host]

Listing B.1: VNC Server Installation (Debian)

Listing B.2 contains the commands used to install and run QEMU with
OVMF as the UEFI implementation. It is based on the instructions from
the QEMU documentation and OVMF wiki [8, 17]. However, running
Windows 10 in QEMU using OVMF is not specifically documented in the
QEMU documentation nor the OVMF wiki and is the result of experiment-
ing with different configurations.

1 # virtio -win.iso obtained from:
2 # https :// www.linux -kvm.org/page/WindowsGuestDrivers/

Download_Drivers
3

4 # windows10.iso is obtained from Microsoft
5

6 # OVMF.fd is built following TianoCore ’s documentation
7 # if you don ’t need to make any custom modifications to the

firmaware , OVMF can be installed through apt:
8 # sudo apt install ovmf
9

10 # Install QEMU
11 sudo apt install qemu
12

13 # Create Drive for QEMU
14 mkdir hda -contents
15

16 # Create QEMU Image
17 qemu -img create win10.img 20G
18

19 # Installation
20 qemu -system -x86_64 -bios OVMF.fd -cpu host -smp 4 -m 2048 \
21 -cdrom windows10.iso \
22 -net nic ,model=virtio -net user \
23 -drive file=win10.img ,format=raw ,if=virtio -vga qxl \
24 -drive file=virtio -win.iso ,index=1,media=cdrom
25

26 # Running
27 qemu -system -x86_64 -s -pflash OVMF.fd \
28 -hda fat:rw:hda -contents \
29 -cpu host -smp 4 -m 2048 \
30 -net nic ,model=virtio -net user \
31 -drive file=win10.img ,format=raw ,if=virtio \
32 -vga qxl -usbdevice tablet \
33 -debugcon file:debug.log \
34 -global isa -debugcon.iobase =0x402

Listing B.2: QEMU Installation (Debian)
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Listing B.3 shows how the Windows bootloader can be debugged with
GDB, and this can be generalized to debug UEFI applications in general.
The approach is based on instructions from the OS Dev wiki [14]. How-
ever, this approach assumes that a DWARF symbol file is available, but
in the case of the Windows bootloader there only exists a PDB file. Since
GDB does not support this format, IDA can be utilized. Microsoft has a
public symbol server, and IDA can talk to this server to resolve symbols
[39]. The addresses of relevant functions can then be obtained in IDA and
used to calculate the addresses to place breakpoints at in GDB.

1 # On UEFI shell in QEMU
2 Shell > fs0;
3 fs0:\> bootmgr.efi
4

5 # In debug.log file , the entry point of the UEFI application
can be found

6 # ... EntryPoint =0 x00346B41000 bootmgr.efi
7

8 # Run GDB on analysis machine
9 gdb

10

11 # In GDB
12 file bootmgr.efi
13 info files
14

15 # This will among other things list the addresses of segments
in the UEFI application:

16 #Entry point: 0x140001000
17 #0x0000000140001000 - 0x0000000140159000 is .text
18 #0x000000014015A000 - 0x000000014019D000 is .data
19 #0x000000014019D000 - 0x00000001401A9000 is .pdata
20

21 # Calculate the actual addresses of sections and functions
needed:

22 # 0x00346B41000 = .text
23 # 0x00346B41000 + 0x14015A000 = .data address
24 # 0x00346B41000 + 0x1401A9000 = .pdata address
25 # 0x00346B41000 + 0x140147300 =

Archpx64TransferTo64BitApplicationAsm address
26

27 # Attach debugger to QEMU
28 target remote localhost :1234
29

30 # Break at Archpx64TransferTo64BitApplicationAsm
31 b *0 x486c88300
32 continue

Listing B.3: Debugging the Windows bootloader with GDB
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