
Learning To Model A Driving
Simulator

3D Hierarchical VQVAE for Modelling
Driving Environments

Mattias Xu

Thesis submitted for the degree of
Master in Informatics: Robotics and Intelligent Systems

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2022

Learning To Model A Driving
Simulator

3D Hierarchical VQVAE for Modelling
Driving Environments

Mattias Xu

© 2022 Mattias Xu

Learning To Model A Driving Simulator

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

When developing self-driving cars, using real roads is costly and may
even be dangerous. Therefore, driving simulators are frequently used.
These are mostly hand-coded by domain experts to model the driving
environment. However, learned models within model-based reinforcement
learning algorithms have recently shown great results. A learned model
of driving scenarios may also be beneficial, and this thesis will attempt to
model the driving environment explicitly .

More specifically, we explore using a combination of an autoencoder
and an autoregressive model to model a driving simulator. The data
consists of driving scenarios of 16 frames collected from a driving
simulator.

The implemented autoencoder has good performance and can com-
press 16 frames of video to a latent space. The latent space reduces bits
required to store videos by 98.8% without losing significant information.
Using this latent space, we are able to predict one frame when condition-
ing on eight frames reliably. However, subsequent frames are usually not
predicted well.

i

Contents

I Introduction 1

1 Introduction 2
1.1 Motivation . 2
1.2 Problem Statement . 3

1.2.1 Note on Machine Learning Literature 3

2 Deep Learning Background 5
2.1 Introduction . 5
2.2 Regularization . 7

2.2.1 L2 Regularization and Weight Decay 8
2.2.2 Dataset Augmentation and Noise Injection 9

2.3 Optimization . 10
2.3.1 The Learning Algorithm 11
2.3.2 Backpropagation . 13
2.3.3 Hyperparameter Optimization 13

2.4 Deep Neural Networks . 14
2.4.1 Feedforward Neural Networks 14
2.4.2 Residual Connections 16
2.4.3 Convolutional Neural Networks 16
2.4.4 Recurrent Neural Networks 18
2.4.5 Transformers . 18
2.4.6 Recent Research . 19

3 Methods 21
3.1 Video Prediction . 21
3.2 Autoencoders . 21

3.2.1 Vanilla Autoencoders 21
3.2.2 Variational Autoencoder 22
3.2.3 Vector Quantized Variational Autoencoder 26

3.3 Autoregressive Model . 29
3.3.1 Approaches to Model the Conditional Distribution . 29
3.3.2 PixelSNAIL . 31

ii

II The project 33

4 Experiment Setup 34
4.1 Dataset . 34

4.1.1 Collecting Data from Driving Simulator 34
4.1.2 Training, Validation and Test Set 35
4.1.3 Preprocessing . 35
4.1.4 Latent Representation Dataset 36

4.2 Compressing Video with Hierarchical VQVAE 36
4.2.1 Encoder . 37
4.2.2 Vector Quantizer . 38
4.2.3 Decoder . 38
4.2.4 Hyperparameters . 39

4.3 Autoregressive Prior Model 39
4.3.1 Top Prior Model . 39
4.3.2 Bottom Prior Model 41
4.3.3 Generative Modelling 41

5 Optimization 43
5.1 Choice of Optimizer . 43
5.2 Hierarchical VQVAE . 44

5.2.1 Loss . 44
5.2.2 Hyperparameter Tuning 44
5.2.3 Final Training Run . 46
5.2.4 Loss Curves . 46

5.3 PixelSNAILs . 47
5.3.1 Top-level PixelSNAIL 47
5.3.2 Bottom-level PixelSNAIL 49

6 Results and Discussion 51
6.1 Hierarchical VQVAE . 51

6.1.1 Quantitative Results 51
6.1.2 Qualitative Results . 51

6.2 Top PixelSNAIL . 54
6.2.1 Quantitative Results 54
6.2.2 Qualitative Results . 54

6.3 Bottom PixelSNAIL . 57
6.3.1 Quantitative Results 57
6.3.2 Qualitative Results . 57

6.4 Discussion . 59
6.5 Further Work . 61

7 Conclusion 62

iii

List of Figures

2.1 A deep neural network. Today, deep neural networks with
over a trillion parameters exist [18]. 5

2.2 The green decision boundary is overfitted, while the black
decision boundary is more sensible. 7

2.3 Transformations that can be used for a digit recognizer.
Notice that the images are rotated a maximum of 90 degrees. 9

2.4 Modern forms of data augmentation. 10
2.5 Left: Neural network with 2 hidden layers. Right:

Subnetwork after applying dropout. 10
2.6 Grid search vs random search. Grid search only produces

3 different values, as the y-axis parameter is not important.
In higher dimensions, this failure mode is common. 14

2.7 Different activation functions. From left to right: tanh(x),
sigmoid(x), ReLU(x). 15

2.8 Residual connection. 16
2.9 Visualized filters from the first and final layers of a trained

CNN. 17
2.10 Left: Vanilla RNN cell. Middle: LSTM cell. Right: GRU cell. 18

3.1 An illustration of a convolutional autoencoder. 22
3.2 Resemblance of autoencoder 24
3.3 Latent space of a VAE trained on digits. 25
3.4 Reparameterization trick, allowing gradient to flow 26
3.5 Left: A figure describing the VQ-VAE. Right: Visualization

of the latent code space with a gradient estimation. 28
3.6 VQ-VAE-2 reconstruction with 3 hierarchical latent codes.

hmiddle and hbottom add details and texture to htop. 29
3.7 Left and middle: Visualization of the causal convolution

with its mask. Right: The receptive field has blind spots, so
two different convolutions are used instead. 31

3.8 Yellow pixel indicates the pixel under inspection, purple
pixels indicate pixels with derivative magnitude above
0.001. Left: Gated PixelCNN [51]. Right PixelSNAIL [7] . . . 32

4.1 CARLA [17] high fidelity simulator 35
4.2 Overview of the VQVAE, with two levels 37

iv

4.3 Residual layer . 38
4.4 The PixelSNAIL architecture 40
4.5 Residual layer with gated activation 40
4.6 Attention Block . 41

5.1 Results from 15 runs. 45
5.2 Training and validation loss from VQVAE training. The

validation loss was only calculated at the end of every epoch. 46
5.3 Reconstruction of eight conditioning frames and eight

predicted frames. The last eight frames look static. 47
5.4 Loss curves from the three training runs. 48
5.5 First training run of the bottom-level PixelSNAIL. 49
5.6 Second and final bottom-level PixelSNAIL training run. . . . 50

6.1 Top: Reconstruction given only top encoding. Middle:
Reconstruction given only bottom encoding. Bottom:
Original video. 52

6.2 Three reconstruction examples, where original the original
video is on top. 53

6.3 Top: Decoded top encoding, with eight last frames gener-
ated. Middle: Generated top encoding decoded with its
bottom encoding. Bottom: Original top encoding decoded
with its bottom encoding. 55

6.4 Example with differences in noise and coloring. 56
6.5 Example where generated frames are mostly static. 56
6.6 Three exaples of generated bottom encodings, conditioned

on generated top encodings. 57
6.7 Top: Generated bottom encoding, conditioned on gener-

ated top encoding. Bottom: Generated bottom encoding,
conditioned on its matching top encoding. 58

6.8 Two examples generated by a hierarchical PixelSNAIL. . . . 58

v

List of Tables

5.1 Hyperparameters and their possible values. Learning rates
are drawn from a log uniform distribution, the residual
block number is drawn from a uniform distribution, and
the rest are drawn from an uniform categorical distribution. 45

5.2 Final hyperparameters for the architecture. 46
5.3 Final loss over the datasets. 47
5.4 Top PixelSNAIL hyperparameters. 48
5.5 Bottom PixelSNAIL hyperparameters. 49

6.1 Final loss for the hierarchical VQVAE. 51
6.2 The mean loss over the different datasets for the Top

PixelSNAIL. The loss for a simple sample is the mean of
the 4× 32× 32 512-way classification tasks. 54

6.3 The mean loss over the different datasets for the Bottom
PixelSNAIL. 57

vi

Acknowledgements

During my summer internship at Simula Research Laboraty the founda-
tion of this project was set and the research goals were set together with
my supervisors. I would like to thank Simula Research Laboraty for hav-
ing me and letting me use their facilities.

To my supervisors, Shaukat Ali, Ferhat Ozgur Catak and Jim Tørresen,
thank you for your support and guidance. I would also like to thank all
friends and family, who has assisted me in many ways.

vii

Part I

Introduction

1

Chapter 1

Introduction

1.1 Motivation

Autonomous driving is one of the hottest topics within technology
development. Today, the reality of self-driving cars seems to be quickly
approaching, but many challenges remain. Technical challenges include
mapping, perception, planning etc., but there are also regulatory and
ethical challenges.

Aside from the physical controls, driving is similar to a vision based
video game, where you can see what is happening and have to take
the right actions. Reinforcement learning has had much success in
this area, achieving superhuman abilities, mainly in the classic ATARI
games [46] [47] [3], but also in more advanced games like StarCraft II [65].

A significant reason for the success is unrestricted access to the
environment. These various algorithms learn by repeatedly playing the
games, with no restrictions or consequences. Model-free algorithms
like [47] [58] have dominated many benchmarks, but recent research
on model-based algorithms [30] [21] shows competitive results. Model-
based algorithms utilize a model of the environment to learn optimal
behaviour. These algorithms learn to model the environment, often in a
more compressed space. This approach requires far less interaction with
the actual environment, as exploration can be done in the model.

It is expensive and dangerous to both train and test on real roads,
not to mention slow and ineffective. Thus, less interaction with real
roads is preferred and a model-based approach is advantagoues for self-
driving cars. Simulators like [17] [56], which are hand-coded models
by domain experts to model the environment, are frequently used and
typically based on game engines like Unity or Unreal Engine. These
engines are dependent on advanced computer graphics techniques and
physics simulation, requiring much computation. A learned model in a
compressed space may therefore be advantageous.

Inspired by the model-based reinforcement learning algorithms, this

2

thesis will explore the approach of learning a model that can look into
future states of the environment regarding self-driving cars. Ideally,
a learned model will be a full-fledged replacement for a hand-coded
simulator, using only a fraction of the computational power.

1.2 Problem Statement

The ultimate goal is to create a deep generative model to generate several
frames into the future, given a driving video. In essence, the deep
generative model has to learn to model the driving environment to predict
the future states of the environment.

The methods used in the project are based on state-of-the-art research
in deep learning and deep generative modelling. More specifically, the
VQVAE-2 framework [54] is used. The framework splits the research goal
into two objectives:

1. Design a model to compress driving videos to a lower dimensional
latent space.

2. Design an autoregressive model to generate video frames in the
latent space from the previous step.

With the goal in mind, we will aim to answer the following research
questions:

RQ1: Can a compressed quantized latent space of driving scenarios
be learned and used for modelling?

RQ2: If so, to what extent can we model a driving simulator using
that latent space?

To scope the project, we will collect data through a simulator where
the driving environment will be of limited complexity. The work done in
this thesis is not an attempt to learn a fully-fledged model. However,
it will focus on training a model that generates a few frames, given
previous frames, without considering controls like steering, braking and
acceleration. This is a natural first step. If successful, further research can
be done to work towards a trained model that can generate new frames
conditioned on controls like steering, braking and acceleration.

1.2.1 Note on Machine Learning Literature

Interest in machine learning has grown significantly over the last decade,
which may be the cause of some ”troubling trends” within machine
learning research [39].

3

Often, being first is more important than being thorough. For the
sake of speed, many works of significance are not published through
traditional peer-reviewed journals, but as conference papers or even just
an online open-access archive like arXiv.org. An example where speed
mattered was at the end of 2014 when around five research groups
almost simultaneously submitted papers on arXiv about image captioning
using convolutional neural networks combined with recurrent neural
networks [43][15][66][32][36].

Machine learning research often utilizes comparisons using benchmark
datasets, like ImageNet [12]. This may have caused research to be more
focused on empirical evidence rather than solid theoretical justifications.
Empirical gains are made, but the source of these gains may sometimes
be unknown, making it hard to explain why something should be used.
For instance, the Adam optimizer [35] showed solid empirical results,
and the authors also offered a theorem regarding convergence in convex
cases. However, the theorem is perhaps irrelevant as the paper focuses
on non-convex optimization. Also, the theorem was later proved to be
incorrect [55].

Due to this, it is often hard to explain every choice made in this project,
but theoretical justification will be given where possible

Many terms found in machine learning literature can also be mislead-
ing and imprecise with regard to the original definition. For example, con-
volutions in convolutional neural networks are used to mean a correlation,
while deconvolution is used to mean a transposed convolution. Some terms
are given new names without any new meaning. For example, Step size is
also called learning rate.

As this work is based mainly on machine learning work, the terms
used in machine learning research will be used. When terms are
interchangeable, the most suitable is used based on context, i.e. step
size will be used in the introduction when optimization is presented, but
learning rate will be used later as the context changes.

4

Chapter 2

Deep Learning Background

This chapter provides a brief background, from a computer vision
standpoint, on machine learning and deep neural networks1.

Figure 2.1: A deep neural network. Today, deep neural networks with
over a trillion parameters exist [18].

2.1 Introduction

Many kinds of problems can be solved by a function performing a
mapping, f : X → Y, where X is an input space, and Y is an output space.

For autonomous cars, it is necessary to detect objects on the road.
Here, X can be the space of images, and Y could be the probability of

1For a more in-depth introduction, https://www.deeplearningbook.org/ is recom-
mended.

5

https://www.deeplearningbook.org/

an object being present. This is a trivial task for a human but specifying
a function to map between millions of pixel intensities to probabilities is
challenging by traditional means, and alternative approaches are sought-
after. Instead of manually designing a function, a computer can learn the
mapping f : X → Y.

In 1997, Mithcell [45] provided the following definition of machine
learning:

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with
experience E.

The task T is what we want to learn. Machine learning can be used for
tasks like object classification, image generation and language translation.
These are just a few examples, and machine learning has proved to
perform well at an increasing number of tasks.

In deep learning, the concerning subset of machine learning, the
experience E, usually comes from a training dataset of samples
{(x1, y1), . . . , (xn, yn)}, where (x, y)-pairs are examples of the desired
mapping.

The performance measure P is a quantitative measure that has to be
designed. This is dependent on the task. For example, classification can
use accuracy as a performance measure. As we would like to evaluate
how well the machine learning algorithm performs on data outside of the
training set, a separate test set of data is used for evaluation.

Closely related to the performance measure is the loss function. A loss
function L(y, ŷ) gives a scalar value describing the difference between a
single function output ŷ and the desired output y. Loss functions are
designed such that the lower the loss is, the better the task T is performed.

For example, a measure like accuracy is not desirable to use as a loss
function. On a single sample, the accuracy is either 0 or 1. Accuracy
does not differentiate between a 51% and a 100% confident prediction.
However, a loss like the cross-entropy loss gives a high loss to the 51%
prediction if it is correct, and a higher loss to the 100% prediction if it is
wrong.

Now, we can formulate our goal of learning f as finding the function
with the lowest expected loss over samples drawn from the actual
distribution D of (x, y)-pairs.

f ∗ = arg min
f

E(x,y)∼D[L(f (x), y)] (2.1)

Unfortunately, the true distribution D is not accessible, and it is
impossible to solve the optimization problem above. Instead, the expected
loss can be approximated by taking the average loss over the training
dataset, which leaves the following optimization problem:

6

f ∗ = arg min
f

1
n

n

∑
i=1

L(f (xi), yi) (2.2)

2.2 Regularization

Optimizing 2.2 as an approximation for 2.1 poses some challenges. For
simplicity, consider a function that perfectly maps every xi to yi in the
training set. This leads to a minimal loss, but if the function returns a
constant k for every x not in the training set, a very high loss is expected
for samples outside the training set.

There is a danger of detecting patterns in the noise in the training set,
leading to overfitting. When overfit, the learned function f performs well
on the training set but fails to generalize to all (x, y) ∼ D.

Also, two different functions can achieve the same loss, but one may
generalize better than the other. With this in mind, it is crucial to not
evaluate on training data, but on a test set the model does not directly
optimize for.

Strategies designed to combat this problem are known in machine
learning as regularization. Goodfellow et al. [19] defined regularization
as follows:

Regularization is any modification we make to a learning
algorithm that is intended to reduce its generalization error but
not its training error.

Figure 2.2: The green decision boundary is overfitted, while the black
decision boundary is more sensible.

Source: link

7

https://commons.wikimedia.org/wiki/File:Overfitting.svg

The rest of the subsection will go through some classes and examples of
regularization strategies.

2.2.1 L2 Regularization and Weight Decay

Regularization has been used a long time prior to deep learning. Consider
a linear regression problem where the input is 2-dimensional, and the
target is a scalar. The linear function can look like f (x1, x2) = x1w1 +
x2w2 + b. A common loss function for regression is the mean squared
error (MSE) L(y, ŷ) = (y− ŷ)2. To avoid the parameters w1 and w2 from
being too large and overly emphasizing one input feature, a regularization
strategy of adding a term penalizing large weights is used. What we now
want to minimize is

1
n

n

∑
i=1

(yi − (w1xi,1 + w2xi,2 + b)︸ ︷︷ ︸
loss

+ λ(w2
1 + w2

2))︸ ︷︷ ︸
regularization

(2.3)

where λ is a parameter that tunes the regularization strength. Here, the L2
regularization is used.

This regularization technique can also be used on deep neural net-
works, with the only difference being the much more significant number
of weights. Despite its long history predating neural networks L2 regular-
ization is commonly used to prevent overfitting.

More generally, if a regularization strategy uses some sort of penalty
dependent on the function, the optimization problem can be written as

f ∗ = arg min
f

1
n

n

∑
i=1

L(f (xi), yi) + R(f) (2.4)

This approach avoids large weights by penalizing the L2 norm of the
weights by adding it to the loss function, but there are other ways to avoid
it.

Weight decay is another method to avoid large weights. Here,
the weights are decayed directly during the weight update during
optimization (see next subsection). In [22] they described the weight
update as follows:

wt+1 = βwn − α(
∂L
∂w

)n (2.5)

where β < 1 and α are parameters. The term βwn acts similar to the
L2 regularization, as bigger weights will be reduced more than smaller
weights.2

2L2 regularization is commonly referred to as weight decay, but this is an inaccuracy.
This will be explained in chapter 6.

8

2.2.2 Dataset Augmentation and Noise Injection

A simple way to make a machine learning model generalize better is to
add more data to the training set. Having more unique data samples gives
the model more information about the underlying distribution. However,
it may not be easy to collect more data in practise.

Instead of collecting more data, it is possible to generate fake data in
many cases. With images already in the training set, we can perform
transformations to create new images. Rotating, mirroring, scaling and
translating are examples of transformations that can be used. For text-
based tasks, swapping out words in sentences with synonyms may be
beneficial. It is essential that the transformations do not change the correct
output. For example, rotating an image 180◦ for a digit recognizer would
change the correct output of ”6” and ”9”.

Figure 2.3: Transformations that can be used for a digit recognizer. Notice
that the images are rotated a maximum of 90 degrees.

Source: link

Another form of data augmentation is injecting noise during training
time. This effectively makes the size of the training dataset larger, as noise
is randomly applied, making the same input different every time it is
presented. Another intuitive way to explain the effectiveness is to look
at applying noise as a measure to prevent the neural network from being
too reliant on specific features, as they may be noisy. This is similar to
weight decay.

Sietsma and Dow [60] demonstrated that injecting random noise to
the input improved neural networks’ ability to generalize well and many
regularization techniques is based on random noise. Simply applying
Gaussian noise can be effective, but more modern forms of noise injection
for computer vision tasks include randomly masking out squares of the
image [14] and even randomly combining images and their labels [70] [71].

Noise is not limited to the input. It can also be effectively applied to the
hidden layers, weights [29] and gradients [48]. One of the most commonly
used regularization techniques is dropout [61], which stochastically drops
neurons during training. Every neuron has a probability p of getting
dropped.

Intuitively, you can think of this as preventing specific features from
being dominant, as they can be dropped, but training with dropout can
also be seen as training an ensemble of neural networks. For every training

9

https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/

Figure 2.4: Modern forms of data augmentation.
Source: [70]

sample, parts of the neural network are dropped, and a subnetwork is
trained. During test time, you approximate all subnetworks’ average
output by scaling every weight by the dropout probability p.

Figure 2.5: Left: Neural network with 2 hidden layers. Right: Subnetwork
after applying dropout.

Source: [61]

2.3 Optimization

Looking at equation (2.4), we know that we are looking for the function
that minimizes the loss over a training set, often with a regularization
term. During optimization, the neural network architecture is set, and the
only way the function is changed is by tweaking its parameters/weights,
which will be denoted as θ. Now, the optimization problem is

θ∗ = arg min
θ

n

∑
i=1

L(f θ(xi), yi) + R(θ) (2.6)

Remember that performing the optimization in equation (2.6) is not the
goal. The true goal is to find θ that minimizes the expected loss of the true

10

data distribution. Equation (2.6) is optimized for in the hope that it will
help towards the true goal.

As we can see in equation (2.6) it is possible to evaluate the total loss
(including the regularization term) over the training set for any θ. From
here on out, the loss L denotes the loss over the training set, including
the regularization term if used. As L can be evaluated, optimization
techniques like random search or hill climbing can be used. However,
the high number of parameters makes it very computationally expensive
to guess and check.

2.3.1 The Learning Algorithm

To make optimization more effective, the loss is constrained to be
differentiable, making gradient-based optimization techniques possible.
The gradient of the loss over the training set ∇θL can be computed and
provides the slope along every dimension of θ. This will give us the
direction of the steepest ascent of L. By taking the negative of the gradient,
the direction of the steepest descent is found.

Therefore, by adding a small amount of the negative gradient to θ,
L will decrease, and a better θ is found. The batch gradient descent
algorithm works by alternating between computing ∇θL and applying a
small step in the negative direction of ∇θL.

Instead of computing ∇θL, it can be estimated by calculating the
gradient of the loss over a mini-batch of m samples drawn from the
training set. This is called stochastic gradient descent (SGD).

Algorithm 1 Stochastic Gradient Descent
Require: Initial parameters θ
Require: Step size α

while not converged or stopped do ▷ Training loop
Sample a mini-batch {(x1, y1), ..., (xm, ym)}
Estimate ∇θL ≈ ∇θ[

1
m ∑m

i=1 L(fθ(xi)), yi]
Update parameters θ← θ− α∇θL

end while

The mini-batch size m is typically set to a much lower number than the
number of samples in the training set. As this introduces noise, it requires
more iterations and a smaller step size than batch gradient descent, but
the trade-off is worthwhile.

The computational burden and memory usage is O(m). The standard
error of the mean from n samples is σ/

√
n, so the accuracy of the estimated

gradient is O(
√

m) [19], which means increasing m has a diminishing
return on the accuracy of the estimation.

Remember that the whole training set estimates the true data distribu-
tion, so the batch gradient is not the ”true” gradient. In practice, smaller

11

mini-batches actually increase the model’s performance, measured by
its ability to generalize. Larger mini-batch sizes lead to convergence in
sharper local minima, which is known to generalize poorly. It is believed
that this is due to the higher noise in small mini-batch sizes [33].

Step 1 and 2 in algorithm 1 is used in almost all optimization
algorithms in deep learning, but there are many variations of step 3,
where the update rule is modified. These other methods incorporate
momentum or adaptively change the effective step size, which can
speed up convergence and make setting ϵ easier. Examples are SGD
with momentum, Root Mean Squared Propagation (RSMProp) [25] and
Adaptive Momentum (Adam) [35].

Algorithm 2 Adam
Require: Initial parameters θ
Require: Step size α
Require: Small number to avoid division by 0 ϵ
Require: Exponential decay rates for moment estimates β1, β2 ∈ [0, 1)

Initialize moment vectors and time step:
m← 0
v← 0
t← 0

while not converged or stopped do ▷ Training loop
Increment time step t← t + 1
Sample a mini-batch {(x1, y1), ..., (xm, ym)}
Estimate ∇θL ≈ ∇θ[

1
m ∑m

i=1 L(fθ(xi), yi + R(θ)]
Update moment vectors:

m← β1 ·m + (1− β1)∇θL
mt ← m/(1− βt

1)
v← β2 · v + (1− β2) · (∇θL)2

vt ← v/(1− βt
2)

Update parameters θ← θ− α ·mt/(
√

vt + ϵ)
end while

Adam can be seen as a combination of momentum and RMSprop,
where the m moment vector comes from momentum and the v moment
vector comes from RMSprop. As the gradient can be noisy, m holds a
decaying sum of current and previous gradients and stabilizes the steps
taken. v holds a decaying sum of current and previous gradients squared
and decreases the effective step size in ”steep” directions while increasing
step size in ”shallow” directions.

Notice that the moment vectors are initialized and biased to 0. This is
compensated for by the use of mt and vt.

12

2.3.2 Backpropagation

Both steps 1 and 3 in algorithm 1 are trivial, so what is left in the training
loop is calculating the gradient over the mini-batch. This is done by
applying the chain rule repeatedly.

Consider a 3-layer neural network, where θi are the parameters of the
i-th layer, and xi is the output of the i-th layer. The gradient of the loss
with respect to the parameters can be calculated as follows

dL
dθ3

=
dL
dx3

dx3

θ3

dL
dθ2

=
dL
dx3

dx3

dx2

dx2

dθ2

dL
dθ1

=
dL
dx3

dx3

dx2

dx2

dx1

dx1

dθ1
(2.7)

Notice that the multiplication happens by going backwards through
the layers from the loss. The loss is first calculated by doing a forwards
pass through the network and then the gradients are calculated during a
backwards pass. Hence, the name backpropagation. This requires keeping
the intermediate outputs in memory, but this memory cost is traded with
efficiency.

Essentially, the derivation consists of multiplying Jacobian matrices.
Due to the input dimension often being higher than the output dimension
in deep learning, doing the differentiation in a backward pass has been the
standard.

2.3.3 Hyperparameter Optimization

The hyperparameters λ are the parameters that are set before the training
starts. This includes what optimizer to use, the step size, also known
as learning rate, how deep the neural network is etc. The model
parameters are optimized by training to increase the performance, but the
hyperparameters can also have a significant effect. For example setting the
training step too low might lead to slow convergence, while setting it too
high might lead to divergence.

λ∗ = arg min
λ

[
arg min

θ

n

∑
i=1

L(f θ(xi), yi) + R(θ)

]
(2.8)

Looking at equation (2.8), optimizing hyperparameters is much more
tricky than optimizing the parameters, as it is not possible to evaluate the
loss without finishing training. Still, it has to be done and is of importance.

Bergstra and Bengio [5] compared search algorithms for deciding the
set of hyperparameters to use. They concluded that random search is
a simple, practical and efficient way to find hyperparameters, especially
when λ is of higher dimension.

When evaluating choices of hyperparameters, the test set cannot be
used. Suppose the test set is used to evaluate hyperparameters repeatedly.

13

Figure 2.6: Grid search vs random search. Grid search only produces
3 different values, as the y-axis parameter is not important. In higher
dimensions, this failure mode is common.

Source: [5]

In that case, the hyperparameters can overfit to the test set, and the test
set no longer provides an unbiased evaluation of the final model. To
evaluate the hyperparameters, an additional set of data is required, called
the validation set.

Training is done on the training set, and the hyperparameters are
evaluated on the validation set. Finally, the training set is only used for
evaluating a final model.

An alternative way to do this is k-fold cross-validation. A separate test
is put aside, but the rest of the data is split into k folds. Then, one of the k
folds is selected as the validation set, and the k− 1 folds left over are used
to train the model. Repeat this until every fold has served as the validation
set and use the average performance to evaluate the hyperparameters
selected. This is done to reduce bias and is especially useful when data
is limited.

2.4 Deep Neural Networks

2.4.1 Feedforward Neural Networks

So far, the equations have included an arbitrary function f with parame-
ters θ and only a vague idea of what deep neural networks are has been
given. Deep neural networks (DNN) are very powerful models and can be
tuned to approximate any function to any desired accuracy [27]. They are
deep because they consist of many layers. Despite this, neural networks
are, in essence, simple.

Feedforward neural networks, also known as multilayer perceptrons
(MLP), consists of layers of matrix multiplication followed by an element-
wise non-linearity denoted σ. These layers are called linear, fully

14

connected or feedforward layers. A two-layer feedforward neural
network with input x is a function f (x) = W2σ(W1x), where W1 and W2
are matrices consisting of the weights. Note that the last layer usually is
not followed up by a non-linearity. A bias, b, is often included explicitly.
Several outputs can be computed at once by forming an input matrix,
where each column is an input. If the layer’s input consists of n elements,
the output consists of m elements, and the mini-batch size is 2, the linear
layer will look like this.

σ(WX) = σ

w1,1 w1, ... w1,n b1

...
...

wm,1 wm, ... wm,n bm

x1,1 x2,1
...

...
x1,n x2,n

1 1

 (2.9)

Without the non-linearity, the network would simply be a linear trans-
formation. Among common non-linearities, or activation functions (see
Figure 2.7), are tanh x, sigmoid(x) and the rectified linear unit (ReLU).

tanh(x), sigmoid(x) =
1

1− e−x , ReLU(x) = max(0, x) (2.10)

Figure 2.7: Different activation functions. From left to right: tanh(x),
sigmoid(x), ReLU(x).

Looking at tanh and sigmoid, they both have a small slope at high
absolute values. This causes the vanishing gradient problem, as small
gradients cause small updates, which slows down training. In deep
networks, this problem is compounded through backpropagation, as
multiple small gradients multiplied causes even smaller gradients.

ReLU is commonly used, as it solves this problem, but has its own
drawbacks, like ”the dying ReLU problem” and exploding gradients.
Many activation functions similar to ReLU exist, like leaky ReLU,

15

Gaussian error linear unit [24] (GeLU), exponential linear unit [11] (ELU)
etc.

Today, deep neural network architectures consist of linear layers
like in feedforward neural networks, but also many different layers
serving different purposes. The rest of the section will introduce
residual connections, convolutional layers and self-attention, which are
key building blocks in DNNs for computer vision tasks.

2.4.2 Residual Connections

Increasing the depth of a neural network can increase its performance,
but it also increases the difficulty of training it. To alleviate this problem
with deeper neural networks, He et al. presented the residual learning
framework [23].

Figure 2.8: Residual connection.
Source: [23]

A residual connection is simply a connection that adds the input of a
layer to the output of a layer. This allows for significantly deeper networks
and He et. al even showed no problems in training a network with over
1000 layers. Today, residual connections can be found in almost every
modern neural network architecture.

2.4.3 Convolutional Neural Networks

Convolution neural networks (CNN) are neural networks designed to
handle data with spatial relations, like images. The key part of CNNs
is the convolutional layer (conv layer).

The conv layer works by convolution sliding a set of small learnable
filters over an image to create a new hidden representation of the image,
also called activation map. The idea is that a filter will extract useful features
from a small patch of the image. These same features can also be found

16

in other parts of the image. With only a few weights, useful local features
can be extracted from the whole image.

Recall that images are of size H ×W × C, where H is the height, W is
the width, and C is the channel count. In an RGB image, C = 3, while in
a grayscale image C = 1. The size of the activation map depends on the
conv layer’s 4 parameters. The number of filters, the size of the filters, the
stride of the filters and the amount of zero-padding on the input.

A n × n × c filter produces one channel of the output by starting at
the upper-left most n × n patch of the input. Like in a linear layer with
one output, every patch element is multiplied by a weight and summed.
This produces a single value of one channel of the activation map. Next,
the same filter with the same weights is moved to the right, producing a
new value. As the filter was moved to the right, the new value is placed
to the right of the previous one to maintain spatial correlation. When the
filter cannot move further, it is moved down and starts on a new row. The
same weights are used over and over over the whole input. In practice,
this is done much more efficiently by calculating it all in parallel instead
of sequentially.

Figure 2.9: Visualized filters from the first and final layers of a trained
CNN.

Source: [69]

After one layer, a single ”pixel” in the activation map only detects very
local spatial features, but after several layers, the receptive field increases
and complex features are detected (see Figure 2.9).

A conv layer consisting of 64 filters with size 5× 5× 3 has 64 · (5 · 5 ·
3 + 1) = 4864 parameters including biases. With a stride of 1 and no
zero-padding, the height and width of the output will be slightly reduced,
while the channel count will be the amount of filters. Given a 256× 256× 3
image the conv layer will transform it into an activation map of size
252× 252× 64 using only 4864 parameters. For a linear layer to do the
same, it would require (252 · 252 · 64) · (256 · 256 · 3 + 1) = 799 069 307 904
parameters.

The amount of parameters needed is drastically reduced by assuming
that useful local spatial features exist in the data and is sufficient for
performance.

17

2.4.4 Recurrent Neural Networks

A recurrent neural network (RNN) is an extension of the conventional
neural network that can process sequential data using a recurrence
formula ht = f (ht−1, xt), where ht is the hidden state and xt is the input
at time t. The hidden state can be seen as a summary of all previous input
and is updated using the next input by the neural network f . Then, the
hidden state can be used to produce the output.

The vanilla RNN cell has the following recurrence formula:

ht = tanh(W
(

xt

ht−1

)
) (2.11)

While this is simple, vanilla RNNs have problems learning longer-
term dependencies due to exploding and vanishing gradients during
training [4].

Long Short-Term Memory (LSTM) [26] cells were designed to address
the challenges of the vanilla RNN. The recurrence formula of the LSTM is
more complex but also more powerful than the simple vanilla recurrence.
In addition to the hidden state, LSTM cells also have a memory state and
trainable gates that at each time step decides to what degree the cell should
read from, write to and reset the cell.

A more recent RNN cell, the gated recurrent unit (GRU), was
motivated by the LSTM and was proposed by Cho et al. in 2014 [9].
Similarily to the LSTM, the GRU has gates, but only a reset and update
gate. It also omits the memory cell, making the GRU simpler and
computationally cheaper. An empirical evaluation [10] deemed both
GRUs and LSTMs superior to vanilla RNNs, but they could not decide
which of the two gated units is better.

Figure 2.10: Left: Vanilla RNN cell. Middle: LSTM cell. Right: GRU cell.
Source: link

2.4.5 Transformers

In natural language processing (NLP) and other sequence processing
tasks, RNNs were the conventional approach for a long time. However,
in 2017, Vaswani et al. [64] proposed the Transformer architecture.

18

http://dprogrammer.org/rnn-lstm-gru

Previously, different attention-mechanisms had been used in conjunction
with recurrent units (e.g. [20] [68] [42]), but Vaswani et al. were able to
achieve state of the art results on language translation tasks using attention
without using recurrent units. The Transformer architecture solely uses
self-attention mechanisms, giving the paper the fitting title ”Attention is
All you Need”.

The concept of self-attention works by making every element in a
sequence ”attend” to other parts of the same sequence, which leads to
a better understanding. Intuitively, a word alone has a meaning, but by
looking at the whole sentence, more meaning is given to the word.

The specific type of attention they used is the scaled dot-product
attention. The input consists of Q, K and V , which are the queries, keys
and values of the input embeddings. dk is the key and query dimension.

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (2.12)

The matrices are obtained by multiplying the input embeddings (one
embedding per element in the input sequence), X, with weight matrices.

Q = XWQ K = XWK V = XWV (2.13)

Looking at the i-th row in the output of the attention mechanics, it
will be a weighted sum of the value of all elements in the sequence. The
weighted sum will tell the elements in the sequence how much it should
attend to all of the elements’ values, including itself. Naturally, each
element will attend the most to itself, but also other elements’ values, as
they contain useful information.

The Transformer consists of an encoder consisting of a number of self-
attention blocks followed by a decoder, also consisting of a number of
self-attention blocks. The difference is that the decoder also processes
previous outputs before considering the encoder output. For instance,
to translate ”Just do it” to Spanish, the sentence is first processed by the
encoder blocks and given to the decoder. The decoder outputs ”Solo”.
Then ”Solo” is given as input to the decoder, alongside the same encoder
output, producing ”Solo hazlo”.

Recently, Transformer-based models, like the Vision Transformer
(ViT) [16], have been used in computer vision with compelling perfor-
mance. As Transformers take sequences as input, images are split into
a sequence of fixed-size patches when given as input.

2.4.6 Recent Research

For a long time, CNNs were dominant in computer vision tasks. More
recently, transformer-based models like the ViT has shown great perfor-

19

mance, but interestingly, very recent research has proposed architectures
that differ from traditional CNNs and Transformers.

Tolstikhin et al. [63] argue that CNNs and Transformer-based models
are sufficient for great performance but not necessary. With their
MLP-Mixer architecture, they were able to obtain competitive scores on
benchmarks without using convolutions. As with Transformer-based
models, they used fixed-size patches as input representation. The authors
of ”Patches are all you need?” [1] argues that representing the inputs
as patches might be a key to great performance. Their very simple
ConvMixer architecture achieves great results, using patches as input
representation.

20

Chapter 3

Methods

3.1 Video Prediction

Video prediction is the task of predicting futures frames given past video
frames. Approaches to this are similar to approaches for conditioned
image generation. Generative modelling have different approaches, in-
cluding generative adversial networks [38][44][41], variational autoen-
coders [2][13], autoregressive models [31][67] and flow based [37] models.
These different approaches all have their strengths and weaknesses [6].

The VQVAE framework is chosen because: First, it has the ability to
generate high quality and high resolution output. Second, the training
progress is simple and efficient. Third, it has the ability to conditionally
sample, which is required to model future frames.

The VQVAE framework includes a vector quantized autoencoder and
an autoregressive model named PixelSNAIL. The background and a high-
level view of these models are given in this chapter. Implementation
details of the exact models that are used will be given in the next chapter.

3.2 Autoencoders

3.2.1 Vanilla Autoencoders

Autoencoders are neural networks trained to copy the input. Of course, it
is possible to use an identity function, but this does not produce anything
valuable. Instead, autoencoders are constrained to be unable to copy the
input perfectly by forcing it to compress the input through a bottleneck
layer. This forces autoencoders to learn useful features of the data it is
trained on.

Autoencoders can be viewed as consisting of two neural networks,
an encoder g and a decoder f . Both of these networks are built like
other neural networks with linear layers, convolutions, dropout etc. The
encoder translates the input to a lower-dimensional latent code, while the

21

decoder tries to recover the original input using the latent code. The goal
of the autoencoder is to reconstruct the original input as well as possible,
so we want to find the parameters, θ and ϕ, of the encoder and decoder
that minimizes the loss.

θ∗, ϕ∗ = arg min
θ, ϕ

1
n

n

∑
i=1

L(gϕ(f θ(x)), x) (3.1)

The loss function is a reconstruction loss, telling how well the
reconstruction is. Various loss functions can be used, for example, the
simple mean-squared error. Notice that only inputs are needed for this
kind of training, as the desired output is just the input itself. This makes
the learning process unsupervised. Autoencoders can learn useful features
without the need of labelling of data, which in many cases is expensive.

Figure 3.1: An illustration of a convolutional autoencoder.

3.2.2 Variational Autoencoder

In short, the Variational Autoencoder (VAE) [34] works by encoding the
input to a probability distribution instead of encoding the input into a
fixed latent code pθ(z). The VAE has roots in Variational Bayesian methods,
so it will first be presented as a probability model. Then, a more practical
deep learning point of view will be presented.

Probability Model View

Consider a dataset {x1, . . . , xn} and assume the data is generated from a
process using a randomly sampled latent code z. The generation process
works by sampling zi from a prior distribution pθ(z), and then sampling
xi from a conditional distribution pθ(x|z). However, both the parameters
θ and the sampled latent codes are unknown.

Having a good approximation of the parameters θ makes it possible to
mimic the generation process and generate artificial data that is similar

22

to the real data. Another interesting use case is utilizing the posterior
distribution (equation 3.2) to encode that sample x back into the latent
code z.

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
(3.2)

The optimal parameters can be found by maximizing the probability of
generating real data samples.

θ∗ = arg max
θ

n

∏
i=1

pθ(xi) = arg max
θ

n

∑
i=1

log pθ(xi) (3.3)

pθ(x) =
∫

pθ(x|z)pθ(z)dz (3.4)

However, looking at equation 3.4, the marginal probability is in-
tractable due to the integral. The posterior in equation 3.2 is also in-
tractable for the same reason. To combat these challenges, an approxi-
mation of the posterior, qϕ(z|x), parameterised by ϕ is introduced. This
approximation should be as close as possible to the true posterior and the
Kullback-Leibler divergence (KL-divergence, DKL) is used.

DKL(qϕ(z|x)||pθ(z|x)) =
∫

qϕ(z|x) log
qϕ(z|x)
pθ(z|x)

dz (3.5)

This can be rewritten to equation 3.6.

DKL(qϕ(z|x)||pθ(z|x))
= log pθ(x) + DKL(qϕ(z|x)||pθ(z))−Ez∼qϕ(z|x) log pθ(x|z) (3.6)

Then, this is rearranged to equation 3.7.

log pθ(x)− DKL(qϕ(z|x)||pθ(z|x))
= Ez∼qϕ(z|x) log pθ(x|z)− DKL(qϕ(z|x)||pθ(z)) (3.7)

The left-hand side consists exactly of what should be maximized and is
called the variational lower bound. As DKL is non-negative, the variational
lower bound is a lower bound on pθ(x). By maximizing the variational
lower bound, the probability of generating real samples is maximized, and
the difference between the distributions is minimized. The posterior in the
left hand side is still intractable, so the right hand side can be maximized
instead.

Taking a look, qϕ(z|x) is given x and produces a distribution over
values of z from which x could have been generated from. pθ(x|z) is given
z and produces a distribution over values of x. If neural networks are used
for these distributions, this structure resembles the vanilla autoencoder, as
seen in Figure 3.2.

23

Figure 3.2: Resemblance of autoencoder

Deep Learning View

As with the vanilla autoencoder, the VAE consists of two neural networks.
The encoder qϕ(z|x) is a neural network that is given an input x and
produces parameters for a distribution of the latent code z.

A latent code z is sampled from the encoder distribution qϕ(z|x)
and given to the other neural network, the decoder. Then, the decoder
produces a conditional distribution of x, pθ(x|z). The reconstruction of
the original input will either be a sample or the expected value of pθ(x|z)

The true posterior that qϕ(z|x) tries to approximate is assumed to be a
multivariate Gaussian with a diagonal covariance matrix. Therefore, the
encoder qϕ(z|x) is a neural network that outputs parameters (means and
standard deviations) to a similar Gaussian distribution.

The prior, pθ(z), is set to a unit Gaussian distribution. As we want
the variational lower bound to be maximized, a loss function can be the
negative variational lower bound.

LVAE = −(Ez∼qϕ(z|x) log pθ(x|z)− DKL(qϕ(z|x)||pθ(z))) (3.8)

= −Ez∼qϕ(z|x) log pθ(x|z) + DKL(qϕ(z|x)||pθ(z)) (3.9)

In practice, the left term can be seen as a reconstruction loss. The higher
the probability of the original input, the better the reconstruction. Often, a
loss like MSE is used instead, and the two different losses has to be scaled,
with the scaling α being a hyperparemeter.

LVAE = (α)(x− x̂)2 + (1− α)DKL(qϕ(z|x)||pθ(z)) (3.10)

An argument for using MSE as the reconstruction loss can be that if
distribution pθ(x|z) is a Gaussian with unit covariance matrix, the log of
the Gaussian will simply be a scaled MSE with an added constant. Here,
µ is the mean and expected output from the decoder.

24

log pθ(x|z) = log

(
1√

(2π)k|I|
exp

(
−1

2
(x− µ)T I(x− µ)

))
(3.11)

= c|x− µ|2 + k (3.12)

Figure 3.3: Latent space of a VAE trained on digits.
Left: Only reconstruction loss. Right: Reconstruction loss + DKL

Source: link (edited)

The second term can be seen as a regularizer, where you force the
approximation to stay relatively close to a unit Gaussian. This forces the
approximation to give similar data points similar latent codes and prevent
gaps in the latent space, as seen in Figure 3.3.

With the latent space being close to prior pθ(z), which is set to a unit
Gaussian, it is possible to sample z from a unit Gaussian instead of the
encoder, to make the decoder generate samples that are not seen in the
training set, making the VAE a generative model. Without including the
DKL in the loss, it would not be possible to generate new samples, as most
of the latent space would probably be noise.

Reparameterization Trick

Generating the latent code z involves sampling from a distribution. The
problem is that this is stochastic, and it is not possible to backpropagate
through it. A clever solution is the reparameterization trick, which moves
the source of randomness to an external node.

25

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

In the Gaussian case, z can be obtained by first sampling a random
variable ϵ from a unit Gaussian. Then, z is obtained by equation 3.13,
where σ and σ are obtained from qϕ(z|x) and ⊙ is element-wise
multiplication. This way, the gradient can backpropagate through the
encoder as well.

z = µ + ρ⊙ ϵ (3.13)

Figure 3.4: Reparameterization trick, allowing gradient to flow
Source: Kingma’s NIPS 2015 workshop slides

3.2.3 Vector Quantized Variational Autoencoder

Discrete Latent Code Space

There are two key differences between Vector Quantized Variational
Autoencoders (VQ-VAE) and VAEs. VQ-VAEs encode the input into a
discrete latent code. Oord et al. [50] justify this choice by saying that
discrete representations ”are potentially a more natural fit for many of the
modalities we are interested in. Language is inherently discrete, similarly
speech is typically represented as a sequence of symbols. Images can often
be described concisly by language”.

The other key difference is that in VAEs, the posterior and prior are
typically assumed to be Gaussian. In VQ-VAEs, the posterior and prior
are categorical distributions.

26

The latent code space, also known as the codebook, is defined as e ∈
RK×D, where K is the number of latent codes and D is the dimension of
the latent codes. The K latent codes will be ei ∈ RD, i ∈ 1, . . . , K. The
latent code is sampled from the posterior distribution q(zq|x) defined as

q(z = ek|x) =
{

1, if k = arg minj ||ze(x)− ej||2.
0, otherwise.

(3.14)

The posterior is deterministic, and the encoder output ze(x) is quantized
into zq(x) by nearest neighbour lookups in the codebook. Note that
zq consists of several codebook vectors. For example, a 256 × 256 × 3
image may be compressed into 32× 32× 1 codebook vectors. The prior
distribution is simply a uniform distribution over the codebook.

Training

The loss function (equation 3.15) used to train VQ-VAE is similar to the
VAE loss function, but there are notable differences. Because the prior
is uniform and the posterior is deterministic and categorical, the KL-
divergence is constant and omitted from the loss function.

The reconstruction loss is the same as for the VAE, but the codebook
loss and commitment loss are two new terms.

L(x, x̂) = ||x− x̂||22︸ ︷︷ ︸
reconstruction loss

+ ||sg[ze(x)]− e||22︸ ︷︷ ︸
codebook loss

+β ||ze(x)− sg[e]||22︸ ︷︷ ︸
commitment loss

(3.15)

The codebook is learned through Vector Quantization (VQ). This works
by using a distance measure, commonly the squared l2 error, to move the
latent code ei closer to the encoder output ze(x). This is the codebook loss,
which is solely used for training the codebook. To only train the codebook,
the stopgradient (sg) operator is used. It is defined as the identity function,
but with zero partial derivatives.

The sg-operator is similarly used in the commitment loss to train the
encoder. The commitment loss trains and encourages the encoder to
output ze close to the chosen codebook vector, preventing the encoder
outputs from fluctuating between codebook vectors.

Notice that the nearest neighbour codebook lookup does not have a
gradient. Instead, the gradients from the decoder input zq are simply
copied to the encoder output ze. The idea is that the encoder output should
be close to the codebook vector due to the commitment loss and can be
used to approximate ∇ze ≈ ∇zq.

Hierarchical Latent Code Space

In [54] Razavi et al. proposed the VQ-VAE-2, an improvement of VQ-
VAE. Instead of a single vector quantized code, a hierarchy of vector

27

Figure 3.5: Left: A figure describing the VQ-VAE. Right: Visualization of
the latent code space with a gradient estimation.

Source: [50]

quantized codes of different dimensions is used. The motivation is to
capture the more local information with higher dimensional codes and
the more global information with lower dimensional codes. Compared to
the VQ-VAE, the reconstructions are of higher fidelity.

Another difference is that the codebook loss is removed. Instead, the
codebook is updated by an exponential moving average as described in
equations 5.4. This was proposed as an idea in the original VQ-VAE.
The latent codes are simply an exponential moving average of decoder
outputs.

N(t)
i = γN(t−1)

i + (1− γ)n(t)
i

m(i)
i = γm(t−1)

i + (1− γ)
n(t)

i

∑
j=1

z(t)i,j

e(t)i =
m(t)

i

N(t)
i

(3.16)

Learning the Prior

The prior during training is kept at a uniform categorical distribution.
However, learning prior distributions is now common practice and
improves the performance of latent variable models [8] like the VQ-VAE.
Thus, a prior distribution is learned in a separate process after training the
codebook, encoder and decoder.

In a VAE, new outputs are generated by giving samples from the prior
to the decoder. In VQ-VAE the samples will be closer to what the decoder
were given during training by having a learned prior. The prior is learned

28

Figure 3.6: VQ-VAE-2 reconstruction with 3 hierarchical latent codes.
hmiddle and hbottom add details and texture to htop.

Source: [54]

as an autoregressive model, allowing us to generate new latent codes with
ancestral sampling.

3.3 Autoregressive Model

In a VQ-VAE an image of n × n pixels can be compressed into m × m
codebook vectors, where m < n. The goal of the autoregressive prior
model is to assign a probability distribution p(z), giving the probability
of each latent code z. The latent code can be seen as a sequence of m×m
codebook vectors, making p(z) a joint distribution. It can be written as a
product of conditional distributions over the codebook vectors:

p(z) =
m2

∏
i=1

p(zi|z1, . . . , zi−1) (3.17)

p(zi|z1, . . . , zi−1) is the probability of the i-th codebook vector given
all the previous codebook vectors. A latent code can be generated by
sampling a codebook vector one by one.

The sequence is usually created by raster scanning the latent code,
starting at the top and going through every row one by one.

Optionally, the distribution can also be conditioned on some global
information h, making the conditional distribution p(zi|z1, . . . , zi−1, h).
For generating images, h can, for example, be a class label.

3.3.1 Approaches to Model the Conditional Distribution

These approaches have traditionally been used directly on images, so they
will be described as such. In VQ-VAEs, they are used on latent codes, but
as the latent codes are m × m codebook vectors, you can think of these
codebook vectors as pixels.

29

RNN

Using RNNs to model (this includes other cells like LSTMs and GRUs)
p(zi|z1, . . . , zi−1) is an obvious choice, as we can sequentially feed the
pixels. RNNs, like PixelRNN [49], have been shown to perform great in
autoregressive generative tasks.

A challenge to RNN-based models is that the cells propagate informa-
tion by sending states from one time step to the next, making long-range
dependencies challenging. Also, RNNs are slow to train, as the model has
to be fed pixels sequentially.

Causal Convolutions

An alternative approach uses causal convolutions . Causal convolutions
are a type of convolution where you mask parts of the filters to ensure that
the order of the input sequence is not violated. Convolutions are fast as
you can parallelize computations to a much higher degree compared to
RNNs that are sequential in nature. Note that this only applies during
training. During training, you have all the pixels needed, so you can
parallelize the convolutions, but when generating new latent codes, you
have to sequentially generate one pixel at a time.

While this approach is very fast, the receptive field is small at the start
and grows with the number of convolutional layers, making the long-
range dependencies challenging. The receptive field also has some blind
spots, as illustrated in 3.7. These special CNNs do not perform as well as
RNNs, unless some tricks are used.

To combat the blind spot problem, two different convolutions are used.
One vertical stack is conditioned on rows above, and one horizontal stack
is conditioned on the current row so far, as well as the output from the
vertical stack.

Another trick that is used in [49] is the use of a gated activation unit
instead of the rectified linear unit. The authors reason that multiplicative
units in LSTM/GRU cells may help model more complex interactions.

Self-attention

Auto-regressive models based on self-attention have also shown success.
The Image Transformer [52] is a model similar to the original Trans-
former [64]. For use in autoregressive tasks, the Image Transformer only
consists of the decoder part, as there is no sequence to condition the output
on, expect previous outputs.

A challenge is that self-attention has quadratic complexity with regard
to the input sequence length. A 256× 256 image is a sequence of 65536
pixels, a number higher than any sequence in traditional NLP-tasks.

30

Figure 3.7: Left and middle: Visualization of the causal convolution with
its mask. Right: The receptive field has blind spots, so two different
convolutions are used instead.

Source: [51]

In the Image Transformer Parmar et al. introduce local self-attention to
reduce the computational costs. Local self-attention restricts the sequence
to a local neighbourhood around the query position.

3.3.2 PixelSNAIL

Chen et al. proposed PixelSNAIL [7], an architecture that combines
causal convolutions with self-attention. The authors argue that causal
convolutions provide high bandwidth access in a local context, while
attention only provides a small amount of information, but in a global
context. The different methods complement each other, with causal
convolutions taking care of local features, while attention takes care of the
global ones.

The authors tested this hypothesis by randomly initializing a model
and checking the middle pixel’s sensitivity to other pixels by finding the
gradient with respect to the other input image pixels.

∇x log p(xmiddle| . . .) (3.18)

This suggests that a randomly initialized PixelSNAIL with compara-
ble amount of parameters is able to attain information in a larger context.
However, keep in mind that dependencies with a small gradient magni-
tude may exist, as well as that training can have an effect on the receptive
field.

31

Figure 3.8: Yellow pixel indicates the pixel under inspection, purple
pixels indicate pixels with derivative magnitude above 0.001. Left: Gated
PixelCNN [51]. Right PixelSNAIL [7]

32

Part II

The project

33

Chapter 4

Experiment Setup

Implementations and examples are available at https://github.com/

mattiasxu/master_project_github. The implementations are done in
Python, using the PyTorch [53] deep learning framework. On top of that,
the PyTorch wrapper PyTorch Lightning was used. PyTorch Lightning
removes a lot of boilerplate code and simplifies changing hardware,
checkpointing, logging, running distributed training and more.

4.1 Dataset

4.1.1 Collecting Data from Driving Simulator

As mentioned in the introduction, the goal of this project is to be able
to model a driving environment. A real-world driving environment can
be extremely complex and varied, depending on weather, other people’s
behaviour, location, etc. In addition, collecting data from a real-world
environment can be both time consuming and expensive to collect.

For the project, data from a driving simulator was used. With a
simulator, data is more easily collected, and it is possible to adjust
the environment’s complexity. A driving simulator is a good way to
collect data, both for its simplicity and ability to scale up the problem
quickly. Suppose the model can successfully learn how to model an
easier environment, the simulator can quickly be tuned to produce a more
complex environment, by for example having a bigger variety of weather
conditions.

CARLA (Car Learning to ACT) [17], an open-source simulator, was
used. It is a high fidelity simulator built on the game engine Unreal
Engine 4 (UE4) and features various settings on urban layouts, car models,
buildings, pedestrians and light and weather conditions. CARLA offers a
flexible setup of sensors, like camera, LIDAR and radar. However, this
project will solely focus on images from the car’s point of view and will
only use a single camera sensor collecting video from the front of the car.

34

https://github.com/mattiasxu/master_project_github
https://github.com/mattiasxu/master_project_github

Figure 4.1: CARLA [17] high fidelity simulator

The resolution of the camera was set to 256× 256.
”Town03” will be used, featuring a varied driving environment with

a roundabout, tunnels, highway etc. 11.5 hours of driving was recorded.
In total, 208144 images were shot at an interval of 0.2 seconds. The car
was driven by CARLA’s built-in autopilot, which is hard-coded and drives
randomly around the map.

4.1.2 Training, Validation and Test Set

The dataset was split into training, validation and test sets at a
80%/10%/10% split. The first 80% of the driving went to the training set,
the next 10% went to the validation set, and the last 10% went to the test
set.

Recall that the collected data are images, while video is what we need.
The split was not done randomly, as doing so would break the continuity
of the images. In addition, this split ensures that the validation and test
sets are not too similar to the training set.

With a random split, there may be validation/test samples that are
almost identical to training samples, where the difference is one shifted
frame. Then, 15 out of 16 frames would already be seen in the training set,
and there is a concern that a model will be able to perform well during
validation and testing, even when overfit.

4.1.3 Preprocessing

Every pixel is zero-centred and scaled according to the channel mean and
standard deviation. Mean and standard deviation per input channel are
found across the training set. Every pixel in the images is normalized by
substracting the mean and dividing by the standard deviation.

35

pnormalized[channel] =
p[channel]− µ[channel]

σ[channel]
(4.1)

As the raw data is in image form, they have to be concatenated to
form a video. To take advantage of the continuity of the images, a sliding
window can be used to create video samples of 16 frames. For the training
set, a step size of 1 is used to create as many different video samples as
possible. The images are repeatedly used as the videos contain duplicate
frames. Thus, the process of creating video from images is done on the fly.
Given an index i, the dataset will return image i to i + 15 concatenated. In
total, 166500 video clips are created from the 166515 images in the training
set.

For the validation and test set, the step size of the sliding window is
increased to 8. The model is expected to have similar loss when given
very similar samples, so validation can be sped up by increasing the step
size, without losing much accuracy in the validaiton loss.

4.1.4 Latent Representation Dataset

While the input to the hierarchical VQVAE is in video space, the input to
the two PixelSNAILs is in latent space. Thus, a dataset consisting of latent
codes is needed.

After training the VQVAE, it will be used to create the latent
representation dataset. Every video clip from the video datasets is
encoded by the trained VQVAE and stored in a dataset as pairs of top
and bottom latent codes.

The video dataset created samples on the fly, but this is not possible
with the latent codes. However, the latent codes are of much smaller
size, keeping the dataset at a tractable size. The latent codes are stored
with their IDs, i. e., integers from [0− 511]. When in use, these IDs are
transformed into one-hot encodings.

4.2 Compressing Video with Hierarchical VQ-
VAE

Autoregressive models are not typically used for generating high resolu-
tion, and they are usually benchmarked on images with a resolution of
32 × 32 or 64 × 64. With higher resolutions, these autoregressive mod-
els suffer from the curse of dimensionality. As the VQVAE encoder com-
presses the input to a tractable lower dimension, the autoregressive mod-
els can be used to model the prior distribution of the encodings.

The project’s VQVAE is implemented with the same structure as
VQVAE-2 from Razavi et al. [54], but adjusted for handling video input.

36

Figure 4.2: Overview of the VQVAE, with two levels

Video is essentially a stack of images, making them three-dimensional by
adding an extra time dimension. To deal with this, 2D convolutions are
swapped for 3D convolutions. Figure 4.2 provides a high-level overview
of the model.

The video in the dataset consists of 16 frames of 256× 256 resolution
with three colour channels. Using 8-bit colour channels, the video consists
of 3× 16× 256× 256× 8 bits.

The bottom level encoder encodes the input by reducing the temporal
dimension with a factor of 2 and the spatial dimensions with a factor of 4.
The top level encoder takes this encoding and reduces it further by a factor
of 2. In the end, the two encoding consists of 4× 32× 32 and 8× 64× 64
codebook vectors.

A single decoder takes upsampled top level encodings concatenated
with bottom level encodings and creates the reconstruction.

Depending on the sizes of the codebooks, the reduction in bits required
is greatly reduced. For instance, if the codebook sizes are 512, each
individual code can be represented by log(512) bits. Thus, the total size of
encodings is 4× 32× 32× log(512) + 8× 64× 64× log(512) bits. This is
a 98.8% reduction in bits required.

4.2.1 Encoder

The bottom level encoder starts by reducing the temporal and spatial
dimensions of the input using a convolutional layer, with filters of size
(4, 8, 8), stride of (2, 4, 4) and padding of (1, 2, 2). This gives the desired
temporal reduction of 2 and the spatial reduction of 4.

The receptive field does not increase a lot from this single layer. Ideally,
the receptive field should be sufficient to capture all needed dependencies.

37

As the receptive field of a convolutional network increases linearly with
the number of convolutional layers, a deeper model is needed. The
residual framework from [23] is used to ease the training of the deeper
model.

The output of the convolutional layer is then given to a residual
block. Between each residual connection, the residual layer consists of
ReLU−Conv−ReLU−Conv, as seen in Figure 4.3. The first convolution
outputs a chosen number of channels, while the second convolution takes
the number of channels back.

Figure 4.3: Residual layer

Finally, a last convolutional layer with filter size of 1 is applied to match
the channels to the dimension of the codebook vectors.

The top level encoder is very similar, with the only difference being the
first convolutional layer. The top level encoder uses a convolution with
kernel size of 4, stride of 2 and padding of 1 to reduce all dimensions by 2.

4.2.2 Vector Quantizer

Vectors are quantized by a nearest neighbour lookup in the codebook. The
distance used is simply the Euclidean distance. The codebook consists of a
set of unique codes of a chosen dimension. Each number in the latent code
is initialized by a uniform distribution between 0 and 1. The codebook
acts like a lookup table, where each of the latent codes has a unique bit-
encoded key.

4.2.3 Decoder

The decoder is of a very similar structure to the encoder but in reverse.
The concatenated encoding is first fed into a residual block. Then,
instead of downsampling using a convolution, the decoder upsamples
the encodings using a transposed convolution [59]. To upsample the

38

8× 16× 16 concatenated encoding back to 16× 256× 256, filters of size
(4, 8, 8), stride of (2, 4, 4) and padding of (1, 2, 2) is used.

4.2.4 Hyperparameters

Some parts of the VQVAE are left as hyperparameters to be tuned
to explore the trade-offs of different implementation details without
changing the overall architecture.

Due to the symmetric nature of the encoder and decoder, their
counterparts receive the same parameters. The number of residual
channels, the convolutional channels and the number of residual layers
is kept the same between the two components.

For the vector quantizer, the number of codebook vectors and their
dimension are hyperparameters to be tuned.

4.3 Autoregressive Prior Model

Since the video is decoded into two latent codes, two autoregressive
models are used to model their prior distributions. The top level
autoencoder generates the top latent code, while the bottom level
autoencoder is conditioned on the generated top latent code and generates
the bottom latent code.

The autoregressive models used are the same chosen by the authors
of the VQVAE-2 [54], but adjusted to handle 3D data, which is also done
by replacing 2D convolutions with 3D convolutions. The output is also
adjusted to quantized output. With 512 latent codes, each ”pixel” in
the output has 512 values, containing the log probabilities of being the
corresponding latent vector.

4.3.1 Top Prior Model

The top level autoencoder follows the PixelSNAIL [7] architecture and
uses a combination of convolutions and attention to model the conditional
distribution p(xi|x1, . . . , xi−1).

The ELU activation function is used. In contrast to ReLU, the ELU has
negative values, which allows them to push mean unit activations closer
to zero [11] and has an effect similar to batch normalization [28], which
has shown to smooth the optimization landscape, allowing for faster and
more predictable training [57].

The two main building blocks of the PixelSNAIL are the residual block
and the attention block (Figure 4.6).

The residual block consists of layers where a single residual layer (see
Figure 4.5) consist of ELU - Conv - ELU - Conv - Gated Activation before
the residual connection. The gated activation works by feeding the output

39

Figure 4.4: The PixelSNAIL architecture

Figure 4.5: Residual layer with gated activation

of the first convolution into two separate convolutions with the same
amount of filters. The output of one of the convolutions goes through a
sigmoid activation. It is element-wise multiplied with the output from the
other convolution, making the output a weighted average of this output.
This resembles the gate mechanism found in LSTMs and GRUs.

The attention block consists of a single key-value lookup. 1 × 1
convolutions are used to create the query, key and value. To keep causality
the attention mechanism has to be masked, so that pixels can only attend
to previous pixels.

The rest of the PixelSNAIL architecture consists of more simple ele-
ments, like convolutions, additions and concatenations. The PixelSNAIL
mainly consists of a repeatedly used block (see Figure 4.4), which includes
the residual block and the attention block.

40

Figure 4.6: Attention Block

4.3.2 Bottom Prior Model

Recall that the top level code is supposed to capture more global features,
like background colour, shapes etc., while the bottom level code is of
higher dimension and adds details. Using attention makes sense for the
top level code, as it is of low dimension and captures global features.

Due to the attention’s O(n2) complexity with regards to the input
length, using it on the bottom level encoding is computationally expen-
sive. The bottom encoding is also supposed to only add local details. At-
tention’s advantage is the global access to information, but this is unnec-
essary and not worth the computational cost. Therefore, the bottom level
autoregressive model has a simpler architecture solely based on causal at-
tention.

The bottom prior model is also conditioned on a top level code. The
conditioning works by sending the top level code through a convolutional
block before being added to the bottom prior model input.

4.3.3 Generative Modelling

During training, each output pixel is only dependent on previous pixels
and can be calculated in parallel. However, this operation has to be done
serially when generating an encoding. The first n − 1 pixels have to be
generated before the n-th pixel can be conditioned on them, so a total of
H ×W forward calls has to be done to generate one encoding.

The generation is implemented by using an input of all zeros and
generating the pixels one by one by setting the n-th pixel in the input
to the previous output. To condition on previous frames, the frames are

41

concatenated with zeros to match the input size and given as input. Then,
the model will generate the rest of the pixels one by one.

42

Chapter 5

Optimization

The hardware used in this project comes from Simula Research Laboratory
and their partners’ computing cluster, eX31. Training, hyperparameter
tuning, etc. was done on a single NVIDIA V100 Tensor Core GPU with
32 GB local memory.

5.1 Choice of Optimizer

The optimizer chosen is Adam, as it is known to be forgiving regarding
setting the learning rate. As recommended in [35] the following
parameters will be set to the default settings: β1 = 0.9, β2 = 0.999 and
ϵ = 10−8. Even though Adam is adaptive and forgiving, it is beneficial to
tune the learning rate.

Weight decay

For regularization purposes, weight decay will be used as it is shown
to perform better than L2 regularization [40]. Recall from chapter 2 that
weight decay and L2 regularization are very similar. In fact, weight
decay is commonly mistaken for L2 regularization. Due to this, the Adam
optimizer in many deep learning libraries has an argument called weight
decay that actually is L2-regularization. The source of this may be that
with SGD, L2 regularization and weight decay can be identical.

With SGD, when the regularization term is explicitly added, the update
will be:

θn+1 = θn − α∇θn(L + λ||θ||22) = θn − α∇θn L− 2αλθn (5.1)

SGD with weight decay with no regularization term in the loss function
will update the weights:

θn+1 = βθn − α∇θn L (5.2)

1https://www.ex3.simula.no/

43

https://www.ex3.simula.no/

If β = 1 − 2αλ, the two updates are identical. However, with adaptive
methods, weight decay and L2 regularization will differ. The weights’
magnitude will be penalized differently due to the adaptive gradients
with an adaptive method like Adam. Weight decay penalizes weight
magnitude separately from the steps taken regarding the loss function and
therefore decays all weights by the same factor.

In PyTorch and other frameworks, Adam with weight decay is
available with the AdamW optimizer, while the standard Adam optimizer
only supports L2 regularization.

5.2 Hierarchical VQVAE

5.2.1 Loss

The loss function used will be the version where the codebook is updated
by a different process, so the codebook term seen in Section 3.1.3 is
ommitted.

L(x, x̂) = ||x− x̂||22 + β||ze(x)− e||22 (5.3)

β is set to 0.25 and the codebook is updated with exponential moving
averages with decay factor γ = 0.99 as done in [54].

N(t)
i = γN(t−1)

i + (1− γ)n(t)
i

m(i)
i = γm(t−1)

i + (1− γ)
n(t)

i

∑
j=1

z(t)i,j

e(t)i =
m(t)

i

N(t)
i

(5.4)

5.2.2 Hyperparameter Tuning

The VQVAE has a few hyperparameters to be tuned. In addition to
batch size and learning rate, choices regarding the number of channels
in the encoder and decoder have to be made, while the codebook size and
dimension of the quantizer also has to be decided.

Hypertuning was done with random search on values described in
Table 5.1. 15 runs in total were completed, and each run lasted for two
epochs.

All runs led to a validation loss in the same order of magnitude. Visu-
ally, even the model with the highest loss was able to produce reasonable
reconstructions. This suggests that the model is relatively forgiving with
regarding hyperparameters. However, one hyperparameter has a clear
correlation with the validation loss. A higher codebook size (n embed in

44

Hyperparameter Values
Batch Size 8, 16, 32
Learning Rate [0.01, 0.00001]
Encoder/Decoder Conv Channels 64, 128, 256
Encoder/Decoder Residual Blocks [2, 12]
Encoder/Decoder Residual Channels 8, 16, 32, 64, 128
Codebook Size 64, 128, 256, 512
Codebook Vector Dimensions 32, 64, 128, 256

Table 5.1: Hyperparameters and their possible values. Learning rates
are drawn from a log uniform distribution, the residual block number
is drawn from a uniform distribution, and the rest are drawn from an
uniform categorical distribution.

Figure 5.1) resulted in lower validation loss. This makes sense, as the code-
book size puts a hard representational limit on the encodings. Other than
that, it is hard to find any significant correlation between hyperparameters
and validation loss.

A higher number of channels, residual blocks, and embed dimensions
all increase the complexity and computational cost of the model, but they
do not have a clear correlation to validation loss. This suggests that the
model is capable enough even with a lower amount of parameters, as long
as the codebook size is large enough.

Figure 5.1: Results from 15 runs.

45

5.2.3 Final Training Run

Based on results from hyperparameter optimization described in the
previous subsection, a set of hyperparameters were chosen. The chosen
set was simply the set with the best validation loss. The learning rate was
set to 0.0028 and the batch size was set to 8. The set of hyperparameters
regarding the architecture can be seen in Table 5.2. The final run lasted for

Codebook Size 512
Codebook Vector Dimension 64
Residual Blocks 5
Residual Channels 64
Decoder/Encoder Channels 128

Table 5.2: Final hyperparameters for the architecture.

8 epochs which took 28 hours.

5.2.4 Loss Curves

The final loss over the training and validation set can be seen in Table 5.3
below. The training loss decreased very rapidly at the start of the first
epoch and was left out of Figure 5.2, which was scaled to give a better
look after the initial ”hockey stick” curve.

Figure 5.2: Training and validation loss from VQVAE training. The
validation loss was only calculated at the end of every epoch.

Looking at the loss curves, the training loss is slightly noisy but
converges. The validation loss also converges. It is stable and only slightly

46

Set Training Validation
Loss 0.025 0.026

Table 5.3: Final loss over the datasets.

higher than the training loss, suggesting that the model is regularized well.
However, the validation loss was slightly decreasing for every epoch,
suggesting that some additional performance could be squeezed out if
given more time.

5.3 PixelSNAILs

The two PixelSNAIL models are trained separetly, with the top Pixel-
SNAIL trained first. As these autoregressive models are quite powerful
with many parameters, they take a long time to train and not much hyper-
parameter optimization was done.

As the PixelSNAIL tries to solve a classification problem with 512
classes for every ”pixel”, the negative log likelihood loss is used.

5.3.1 Top-level PixelSNAIL

The first training run was done with the same set of hyperparameters
as described in the PixelSNAIL paper [7]. The model converged during
training (see Figure 5.4), but it was unable to produce anything valuable.
When conditioned on eight frames, the eight next frames were predicted
to simply be a static image.

Figure 5.3: Reconstruction of eight conditioning frames and eight pre-
dicted frames. The last eight frames look static.

The original set of hyperparameters were used on 2D image data. With
higher dimensional video data, the model needs to be more powerful. This
can be done by making the model deeper. The two subsequent training
runs were done with with more powerful models, scaled up by increasing
the number of residual blocks in each SNAIL block. The model-specific
hyperparameters can be seen in Table 5.4.

47

Figure 5.4: Loss curves from the three training runs.

The three models had approximately 34 million, 50 million and 60
million parameters. Looking at Figure 5.4, the scaled-up models were able
to achieve a lower loss. However, going from six to eight residual blocks
did not seem to help and only slowed down the training. The validation
losses follows the training losses in all three cases, being slightly higher
than the training loss.

The two big spikes the 34 million and 60 million parameter models had
can be explained by one or more ”unlucky” minibatches containing many
high loss samples in the start of an epoch.

Table 5.4: Top PixelSNAIL hyperparameters.
Conv Channels 256
Residual Blocks 4/6/8
SNAIL Blocks 5
Key Channels 16
Value Channels 128

The training of the 34 million and 50 million parameter were stopped
after a long period with no improvement. The 60 million parameter model
was stopped early as there was no significant difference between its loss
and the 50 million parameter model loss. As the 50 million parameter
model has a lower computational cost than the 60 million parameter
model while having the same loss, it is selected as the final model to be
used to be combined with the bottom-level PixelSNAIL.

The final run lasted for eight epochs, which took 37 hours.

48

5.3.2 Bottom-level PixelSNAIL

The bottom-level PixelSNAIL does not use the attention mechanism due to
the higher dimension of the bottom-level encoding. Therefore, the model
resembles a deep residual network. When there is no attention block in
the PixelSNAIL, the number of residual blocks and SNAIL blocks decides
how deep the model is. As the bottom-level encoding is more detailed
and higher dimensioned than the top-level encoding, it is assumed that
learning the conditional distribution over the bottom-level encoder is
harder.

As the task is assumed to be difficult, the hyperparameters (see Ta-
ble 5.5) were chosen to make the model as powerful as possible with a
batch size of eight, given the hardware constraints. The bottom-level en-
coding is supposed to add details to the top-level encoding, which makes
the top-level encoding critical for the bottom-level PixelSNAIL. Therefore,
the residual conditioning stack is made quite deep.

In total, the model has 102 million parameters.

Table 5.5: Bottom PixelSNAIL hyperparameters.
Conv Channels 256
Residual Blocks 6
SNAIL Blocks 2
Condition Residual Blocks 8

Figure 5.5: First training run of the bottom-level PixelSNAIL.

During the first training run, the loss quickly spiked (see Figure 5.5).
It is suspected that this is due to exploding gradients during high-loss

49

batches. The loss spiked to almost 4× 1010 and a loss this high has a huge
impact on the weight update. After the exploding gradients, the loss was
not able to recover and got stuck in a local minima.

To handle this problem, the next training run was done with gradient
clipping. All gradients with a norm higher than 0.5 were scaled down to
match this norm.

From Figure 5.6 we can see that the loss was still spiking, but the spikes
were limited in size. After the spikes, the loss was able to go back down
to approximately the same loss before the spike.

Figure 5.6: Second and final bottom-level PixelSNAIL training run.

The final training run lasted for five epochs, which took 38 hours.

50

Chapter 6

Results and Discussion

6.1 Hierarchical VQVAE

It is highly recommended to also look at the examples in video format.
They are provided as GIFs at https://github.com/mattiasxu/master_

project_github.

6.1.1 Quantitative Results

Image quality assessment is a challenge [62] and is a research topic in itself.
This naturally extends to video quality assessment as well.

During training, the VQVAE was optimized to minimize the MSE, a
commonly used metric. In Table 6.1, the MSE over the training, validation
and test set is reported. This metric as a loss has its drawbacks, including
that it tends to result in blurry images. This also applies to video, as will
be shown later.

Note that this metric differs slightly from the training loss reported in
the previous section. Alongside MSE, a commitment loss was included.
The commitment loss was used solely to help the encoder commit to a
codebook vector and not fluctuate between different codebook vectors,
which is not directly related to the video quality. From the differences, we
can see that the commitment loss caused a significant portion of the loss.

Table 6.1: Final loss for the hierarchical VQVAE.

Training Validation Test
MSE 0.018 0.021 0.019

6.1.2 Qualitative Results

In Figure 6.2, three randomly picked video snippets from the test set are
shown frame by frame with their reconstructions below. As the number of

51

https://github.com/mattiasxu/master_project_github
https://github.com/mattiasxu/master_project_github

codebook vectors was chosen to be 512, the latent representation reduces
the number of bits required to represent the image by 98.8% compared to
raw RGB video assuming 8-bit colour channels.

Figure 6.1: Top: Reconstruction given only top encoding. Middle:
Reconstruction given only bottom encoding. Bottom: Original video.

The decoder reconstructs the videos from the 80x smaller than the
latent representation with little distortion, but not perfectly. It is easy to
tell the originals from the reconstructions. The most obvious difference
is the seemingly random noise introduced in parts of the reconstruction.
Notice that the noise does not appear on the road or the markings but on
the background or less common objects. Looking at the two first examples,
minor noise is found the in trees, the roof-like structure, the background
building and the incoming car. The third example has the most noise,
found in the roof of a tunnel.

By zeroing one of the encodings before decoding, the encodings’ role
in the reconstruction can be seen. The top encoding produces some vague
shapes and colouring, as seen in figure 6.1.

The bottom encoding is much more detailed, looking like the original
video, without the colors. It is also in the bottom encoding most of the
noise is introduced. This makes sense, as the bottom encoding is bigger in
dimension and has the hardest task.

52

Figure 6.2: Three reconstruction examples, where original the original
video is on top.

53

6.2 Top PixelSNAIL

6.2.1 Quantitative Results

The negative log likelihood (NLL) loss of the training, validation, and test
set are reported in Table 6.2. The NLL tells us how well the model can
predict the next codebook vector, given all the previous ones. However,
the NLL loss does not directly report how well the model can predict many
steps ahead, which is the actual objective.

Table 6.2: The mean loss over the different datasets for the Top Pixel-
SNAIL. The loss for a simple sample is the mean of the 4× 32× 32 512-way
classification tasks.

Training Validation Test
Mean NLL 1.591 1.764 1.905

This can be done by decoding the original encoding and the generated
encoding and using a video quality measure to quantify the differences.
However, a single number does not give an intuitive sense of how well the
generated encodings are, so this is left out, and the focus is set on looking
at decoded generated encodings.

6.2.2 Qualitative Results

Samples from the test set are used as input, and the generated top
encodings are decoded alone and together with the matching bottom
encoding. Three examples of mixed quality are given.

In Figure 6.3, we can see the generated frames behave nicely and move
a little bit frame by frame. When decoded with the bottom encoding, only
small differences can be seen. There are some additional noisy spots and
some noisy spots are bigger in the generated frames. Other than that, there
are no clear visual differences.

Other samples struggle more. The example given in Figure 6.4
shows that the last four generated frames become more and more faded,
especially in the top part. This produces only subtle differences when
decoded with the bottom encoding. However, you can clearly see that
the top part in the generated frames has a warmer color than the original
decoding. Furthermore, some additional noise can be seen.

In the last example in Figure 6.5, all the frames look similar. However,
when played as a video, the first eight frames move forwards, while the
generated frames quickly become frozen. Even though the generated
frames fail to capture the motion in the video, the video generated with
the bottom encoding looks fine, except for some additional noise.

54

Figure 6.3: Top: Decoded top encoding, with eight last frames generated.
Middle: Generated top encoding decoded with its bottom encoding.
Bottom: Original top encoding decoded with its bottom encoding.

The generated top encodings are of mixed quality. Some generated
encodings predict the movement nicely, while others fail to do so. When
failing, the generated frames can be blurred out, or the same frame can
be predicted repeatedly. Generally, using the generated encoding leads to
more noise and some slight miscoloring. The miscoloring is expected, as
the top encoding is responsible for coloring the video. However, there is
no distinct noise to be seen in the decoded top encodings, yet it results in
more distinct noise in the final output.

When the generated encoding is decoded with the original bottom
encoding, there are no big visual differences between using the generated
top encoding and the original top encoding. Even when the generated
frames are freezing, the decodings look fine.

55

Figure 6.4: Example with differences in noise and coloring.

Figure 6.5: Example where generated frames are mostly static.

56

6.3 Bottom PixelSNAIL

6.3.1 Quantitative Results

The loss of the training, validation, and test set are reported in Table 6.3.
As with the top PixelSNAIL, we will focus on looking at decoded
generated encodings to visually evaluate the results.

Table 6.3: The mean loss over the different datasets for the Bottom
PixelSNAIL.

Training Validation Test
Mean NLL 1.864 1.933 1.987

6.3.2 Qualitative Results

The samples shown from the top PixelSNAIL are also shown here.

Figure 6.6: Three exaples of generated bottom encodings, conditioned on
generated top encodings.

Looking at Figure 6.6, we can see that in all three examples, the bottom
PixelSNAIL fails to generate coherent frames. As the PixelSNAIL is

57

autoregressive, an error will propagate through all subsequent pixels and
frames. A spot gets blurry in the generated frames and spreads to nearby
pixels in the subsequent frames. Notice that it mainly spreads to the right
and downwards due to the bottom PixelSNAIL’s sole reliance on causal
convolutions.

Figure 6.7: Top: Generated bottom encoding, conditioned on generated
top encoding. Bottom: Generated bottom encoding, conditioned on its
matching top encoding.

Figure 6.8: Two examples generated by a hierarchical PixelSNAIL.

Looking at Figure 6.7, there is no visible difference between condition-
ing the bottom PixelSNAIL on a generated top encoding or the matching

58

top encoding.
Given the results from the bottom PixelSNAIL, the hierarchical

PixelSNAIL made by the top and bottom PixelSNAILs also fails to
generate several coherent frames. Figure 6.8 shows frames predicted by
the hierarchical PixelSNAIL.

6.4 Discussion

RQ1: Can a compressed quantized latent space of driving scenarios be
learned and used for modelling?

To use a learned quantized latent space to model driving scenarios, the
latent space needs to be able to capture all relevant parts of the driving
scenario. Even if the latent space introduces some noise when decoded,
it is mostly in parts of the video that is not important for driving. For
example, the roof of tunnels, trees, etc. may be distorted by noise.
While the road the car is driving on is not distorted by noise, some other
important objects may be distorted. For example, an incoming car is very
important, but in the reconstructions, they are slightly distorted, but not
to the extent that a human would not be able to understand what is going
on.

It is promising that the VQVAE performs better when reconstructing
relevant parts, but this feature was not designed explicitly. The model
does not know it is reconstructing driving scenarios, and the loss function
punishes distortion everywhere in the video equally. It is likely that this
is a result of the dataset. Roads and markings are included in every single
training sample, so this is naturally reconstructed well. Things that are less
commonly found in the training set are not reconstructed that well. The
latent space can only capture what is seen in the dataset well. Therefore,
modelling driving scenarios in the latent space is limited to the scenarios
similar to the ones in the dataset.

Another important factor is that the latent space is generalized well.
With an overfit latent space, it would be difficult to use it for modelling,
as a slight devation from samples in the training dataset can cause failure.
The validation and test set losses suggest that the VQVAE is not overfit.
However, when using the bottom and top PixelSNAILs to model the latent
space, the results are not promising.

The top PixelSNAIL produces mixed results, and in some cases, it was
able to model the top latent space well for several frames. The bottom
PixelSNAIL collapses after very few frames, but is at least able to model
the first few frames.

The VQVAE is able to reconstruct the driving scenarios well enough for
the PixelSNAILs to model at least one frame. This suggests that the latent
space can be used to model driving scenarios, but the errors introduced

59

by the PixelSNAILs causes the PixelSNAILs to be unable to model many
frames.

In short, the answer to RQ1 is that a compressed quantized latent space
can be learned and used to model driving scenarios that are constrained
to scenarios that are similar to the ones in the dataset. As the answer to
RQ1 is positive, we can move on to RQ2.

RQ2: To what extent can we model a driving simulator using that latent
space?

As the bottom PixelSNAIL was not able to model many frames ahead,
we are not able to model a driving simulator well using the latent space.
In many cases, we are only able to model one frame of sufficient quality
before the subsequent frames fail. The poor results can be explained for
several reasons.

The results were better when only looking at the top PixelSNAIL, but
the top encodings are much simpler than the bottom encodings. The
bottom encoding has more ”responsibility” and contains more complex
information. The smaller top encoding is responsible for coloring and
perhaps some structuring, which is not as demanding. This is one of
the reasons the bottom PixelSNAIL struggles much more than the top
PixelSNAIL. The bottom encodings may be too complex for the bottom
PixelSNAIL to model well.

Another problem is that the bottom PixelSNAIL can not use the
attention mechanism due to the bigger dimensionality of the bottom
encoding. As a result, the bottom PixelSNAIL has to rely on causal
convolutions that only works well in a local context. Therefore, for the
bottom PixelSNAIL to work, it needs to add local details to the top
encoding that it is conditioned on.

All three models, the VQVAE, the top PixelSNAIL, and the bottom
PixelSNAIL has to work well together to model the driving simulator.
However, the bottom PixelSNAIL does not work well with the top
PixelSNAIL. In Figure 6.7 there are no visible differences between the
bottom encoding conditioned on a flawed top encoding and the bottom
encoding conditioned on the matching top encoding. Given the deep
residual conditioning stack, the bottom PixelSNAIL has the opportunity
to take the top encoding more into use. This means that the bottom
PixelSNAIL learns not to take the top encoding into use, as it does not
provide useful information for the bottom PixelSNAIL to use.

This problem can also stem from the fact that the bottom encoding is
much more complex than the top encoding. Even though the VQVAE does
a good job of encoding and decoding the driving scenarios, the bottom
encoding may have too much responsibility, reducing the usefulness of
the top encoding. Even though the top encoding is of lower dimension, it
could be more useful.

60

6.5 Further Work

Further work can be done to model the driving scenarios more success-
fully.

As discussed, the top encoding may be too simple compared to
the bottom encoding. This problem can be alleviated by forcing more
responsibility on the top encoding when training the VQVAE. For
example, dropout can be heavily applied to the bottom encoding during
training to avoid making the reconstructions overly dependent on the
bottom encoding.

The three different models are dependent on each other, but they are
trained independently. The models may work more coherently if trained
in an end-to-end fashion. This may improve the results as the models
cooperate better. However, this requires more powerful hardware.

If further work is able to model the driving scenarios successfully, a
natural continuation is to gather more diverse data from the driving sim-
ulator. This will make the latent space, and therefore the autoregressive
generative models, able to handle more diverse scenarios. Different maps,
weather conditions, etc. can be used, or even real-world driving data.

61

Chapter 7

Conclusion

The goal of this work was to model future frames in driving scenarios.
This was attempted by learning a compressed latent space and autore-
gressively modelling the latent space. A 3D hierarchical VQVAE, 3D Pix-
elSNAIL with attention, and a 3D PixelSNAIL without attention has been
implemented and trained.

The Hierarchical VQVAE framework shows promising results for
modeling a driving simulator. The 3D hierarchical VQVAE is able to
efficiently compress and decompress the original video. By learning a two-
level hierarchical discrete latent space, we are able to compress video of
3× 16× 256× 256× 8 bits to two latent codes of 4× 32× 32× log(512) +
8× 64× 64× log(512) bits. This is a reduction of 98.8% bits required, and
only some distortion can be seen in the reconstructions, mostly in elements
not seen much in the training set.

The PixelSNAILs fail to model the learned latent space well. The top
PixelSNAIL is in some cases able to model the latent space well. The
bottom encoding has a much bigger effect on the final result, but the
bottom PixelSNAIL is often only able to model one frame of sufficient
quality. Consequently, the final result also often fails after one frame.

To be able to model several frames, further research has to be done.
It is suggested to investigate making the three models cooperate better by
forcing the top latent code to be more useful. This can be done by applying
dropout to the bottom encoding, or training the models end-to-end.

62

Bibliography

[1] Anonymous. “Patches Are All You Need?” In: Submitted to The Tenth
International Conference on Learning Representations. under review.
2022. URL: https://openreview.net/forum?id=TVHS5Y4dNvM.

[2] Mohammad Babaeizadeh et al. Stochastic Variational Video Prediction.
2017. DOI: 10.48550/ARXIV.1710.11252. URL: https://arxiv.org/
abs/1710.11252.

[3] Adrià Puigdomènech Badia et al. Agent57: Outperforming the Atari
Human Benchmark. 2020. arXiv: 2003.13350 [cs.LG].

[4] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term depen-
dencies with gradient descent is difficult”. In: IEEE Transactions on
Neural Networks 5.2 (1994), pp. 157–166. DOI: 10.1109/72.279181.

[5] James Bergstra and Yoshua Bengio. “Random Search for Hyper-
Parameter Optimization”. In: Journal of Machine Learning Research
13.10 (2012), pp. 281–305. URL: http://jmlr.org/papers/v13/
bergstra12a.html.

[6] Sam Bond-Taylor et al. “Deep Generative Modelling: A Compara-
tive Review of VAEs, GANs, Normalizing Flows, Energy-Based and
Autoregressive Models”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (2021), pp. 1–1. DOI: 10 . 1109 / tpami . 2021 .
3116668. URL: https://doi.org/10.1109%2Ftpami.2021.3116668.

[7] XI Chen et al. “PixelSNAIL: An Improved Autoregressive Genera-
tive Model”. In: Proceedings of the 35th International Conference on Ma-
chine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Pro-
ceedings of Machine Learning Research. PMLR, Oct. 2018, pp. 864–
872. URL: https://proceedings.mlr.press/v80/chen18h.html.

[8] Xi Chen et al. Variational Lossy Autoencoder. 2017. arXiv: 1611.02731
[cs.LG].

[9] Kyunghyun Cho et al. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. 2014. arXiv: 1406.
1078 [cs.CL].

[10] Junyoung Chung et al. Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling. 2014. arXiv: 1412.3555 [cs.NE].

63

https://openreview.net/forum?id=TVHS5Y4dNvM
https://doi.org/10.48550/ARXIV.1710.11252
https://arxiv.org/abs/1710.11252
https://arxiv.org/abs/1710.11252
https://arxiv.org/abs/2003.13350
https://doi.org/10.1109/72.279181
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://doi.org/10.1109/tpami.2021.3116668
https://doi.org/10.1109/tpami.2021.3116668
https://doi.org/10.1109%2Ftpami.2021.3116668
https://proceedings.mlr.press/v80/chen18h.html
https://arxiv.org/abs/1611.02731
https://arxiv.org/abs/1611.02731
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1412.3555

[11] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter.
Fast and Accurate Deep Network Learning by Exponential Linear Units
(ELUs). 2016. arXiv: 1511.07289 [cs.LG].

[12] J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image
Database”. In: CVPR09. 2009.

[13] Emily Denton and Rob Fergus. Stochastic Video Generation with a
Learned Prior. 2018. DOI: 10.48550/ARXIV.1802.07687. URL: https:
//arxiv.org/abs/1802.07687.

[14] Terrance DeVries and Graham W. Taylor. Improved Regularization of
Convolutional Neural Networks with Cutout. 2017. arXiv: 1708.04552
[cs.CV].

[15] Jeff Donahue et al. Long-term Recurrent Convolutional Networks for
Visual Recognition and Description. 2016. arXiv: 1411.4389 [cs.CV].

[16] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. 2021. arXiv: 2010.11929 [cs.CV].

[17] Alexey Dosovitskiy et al. CARLA: An Open Urban Driving Simulator.
2017. arXiv: 1711.03938 [cs.LG].

[18] William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers:
Scaling to Trillion Parameter Models with Simple and Efficient Sparsity.
2021. arXiv: 2101.03961 [cs.LG].

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[20] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Ma-
chines. 2014. arXiv: 1410.5401 [cs.NE].

[21] Danijar Hafner et al. Mastering Atari with Discrete World Models. 2021.
arXiv: 2010.02193 [cs.LG].

[22] Stephen Hanson and Lorien Pratt. “Comparing biases for minimal
network construction with back-propagation”. In: Advances in neural
information processing systems 1 (1988).

[23] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015.
arXiv: 1512.03385 [cs.CV].

[24] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units
(GELUs). 2020. arXiv: 1606.08415 [cs.LG].

[25] Geoff Hinton. Overview of mini-batch gradient descent. https://www.
cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.

pdf.

[26] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Mem-
ory”. In: Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780. ISSN: 0899-
7667.

64

https://arxiv.org/abs/1511.07289
https://doi.org/10.48550/ARXIV.1802.07687
https://arxiv.org/abs/1802.07687
https://arxiv.org/abs/1802.07687
https://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1411.4389
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1711.03938
https://arxiv.org/abs/2101.03961
http://www.deeplearningbook.org
https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/2010.02193
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1606.08415
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

[27] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer
feedforward networks are universal approximators”. In: Neural
Networks 2.5 (1989), pp. 359–366. ISSN: 0893-6080.

[28] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. 2015.
arXiv: 1502.03167 [cs.LG].

[29] Kam-Chuen Jim, C.L. Giles, and B.G. Horne. “An analysis of noise
in recurrent neural networks: convergence and generalization”. In:
IEEE Transactions on Neural Networks 7.6 (1996), pp. 1424–1438. DOI:
10.1109/72.548170.

[30] Lukasz Kaiser et al. Model-Based Reinforcement Learning for Atari.
2020. arXiv: 1903.00374 [cs.LG].

[31] Nal Kalchbrenner et al. Video Pixel Networks. 2016. DOI: 10.48550/
ARXIV.1610.00527. URL: https://arxiv.org/abs/1610.00527.

[32] Andrej Karpathy and Li Fei-Fei. Deep Visual-Semantic Alignments for
Generating Image Descriptions. 2015. arXiv: 1412.2306 [cs.CV].

[33] Nitish Shirish Keskar et al. On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima. 2017. arXiv: 1609 . 04836

[cs.LG].

[34] Diederik P Kingma and Max Welling. Auto-Encoding Variational
Bayes. 2014. arXiv: 1312.6114 [stat.ML].

[35] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2017. arXiv: 1412.6980 [cs.LG].

[36] Ryan Kiros, Ruslan Salakhutdinov, and Richard S. Zemel. Unifying
Visual-Semantic Embeddings with Multimodal Neural Language Models.
2014. arXiv: 1411.2539 [cs.LG].

[37] Manoj Kumar et al. VideoFlow: A Conditional Flow-Based Model for
Stochastic Video Generation. 2019. DOI: 10.48550/ARXIV.1903.01434.
URL: https://arxiv.org/abs/1903.01434.

[38] Alex X. Lee et al. Stochastic Adversarial Video Prediction. 2018. DOI:
10.48550/ARXIV.1804.01523. URL: https://arxiv.org/abs/1804.
01523.

[39] Zachary C. Lipton and Jacob Steinhardt. Troubling Trends in Machine
Learning Scholarship. 2018. arXiv: 1807.03341 [stat.ML].

[40] Ilya Loshchilov and Frank Hutter. Fixing Weight Decay Regularization
in Adam. 2017. arXiv: 1710.05101 [cs.LG].

[41] Pauline Luc et al. Transformation-based Adversarial Video Prediction on
Large-Scale Data. 2020. DOI: 10 . 48550 / ARXIV . 2003 . 04035. URL:
https://arxiv.org/abs/2003.04035.

65

https://arxiv.org/abs/1502.03167
https://doi.org/10.1109/72.548170
https://arxiv.org/abs/1903.00374
https://doi.org/10.48550/ARXIV.1610.00527
https://doi.org/10.48550/ARXIV.1610.00527
https://arxiv.org/abs/1610.00527
https://arxiv.org/abs/1412.2306
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1411.2539
https://doi.org/10.48550/ARXIV.1903.01434
https://arxiv.org/abs/1903.01434
https://doi.org/10.48550/ARXIV.1804.01523
https://arxiv.org/abs/1804.01523
https://arxiv.org/abs/1804.01523
https://arxiv.org/abs/1807.03341
https://arxiv.org/abs/1710.05101
https://doi.org/10.48550/ARXIV.2003.04035
https://arxiv.org/abs/2003.04035

[42] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning.
Effective Approaches to Attention-based Neural Machine Translation.
2015. arXiv: 1508.04025 [cs.CL].

[43] Junhua Mao et al. Explain Images with Multimodal Recurrent Neural
Networks. 2014. arXiv: 1410.1090 [cs.CV].

[44] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-
scale video prediction beyond mean square error. 2015. DOI: 10.48550/
ARXIV.1511.05440. URL: https://arxiv.org/abs/1511.05440.

[45] Tom M. Mitchell. Machine learning. McGraw-Hill, 1997.

[46] Volodymyr Mnih et al. “Human-level control through deep rein-
forcement learning”. In: nature 518.7540 (2015), pp. 529–533.

[47] Volodymyr Mnih et al. “Playing atari with deep reinforcement
learning”. In: arXiv preprint arXiv:1312.5602 (2013).

[48] Arvind Neelakantan et al. Adding Gradient Noise Improves Learning
for Very Deep Networks. 2015. arXiv: 1511.06807 [stat.ML].

[49] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu.
Pixel Recurrent Neural Networks. 2016. arXiv: 1601.06759 [cs.CV].

[50] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural
Discrete Representation Learning. 2018. arXiv: 1711.00937 [cs.LG].

[51] Aaron van den Oord et al. Conditional Image Generation with Pixel-
CNN Decoders. 2016. arXiv: 1606.05328 [cs.CV].

[52] Niki Parmar et al. Image Transformer. 2018. arXiv: 1802 . 05751

[cs.CV].

[53] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. 2019. arXiv: 1912.01703 [cs.LG].

[54] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating
Diverse High-Fidelity Images with VQ-VAE-2. 2019. arXiv: 1906.00446
[cs.LG].

[55] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the Convergence
of Adam and Beyond. 2019. arXiv: 1904.09237 [cs.LG].

[56] Guodong Rong et al. LGSVL Simulator: A High Fidelity Simulator for
Autonomous Driving. 2020. arXiv: 2005.03778 [cs.RO].

[57] Shibani Santurkar et al. How Does Batch Normalization Help Optimiza-
tion? 2019. arXiv: 1805.11604 [stat.ML].

[58] John Schulman et al. Trust Region Policy Optimization. 2017. arXiv:
1502.05477 [cs.LG].

[59] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully Convolu-
tional Networks for Semantic Segmentation. 2016. arXiv: 1605.06211
[cs.CV].

66

https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1410.1090
https://doi.org/10.48550/ARXIV.1511.05440
https://doi.org/10.48550/ARXIV.1511.05440
https://arxiv.org/abs/1511.05440
https://arxiv.org/abs/1511.06807
https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1606.05328
https://arxiv.org/abs/1802.05751
https://arxiv.org/abs/1802.05751
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/1904.09237
https://arxiv.org/abs/2005.03778
https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1605.06211

[60] Jocelyn Sietsma and Robert J.F. Dow. “Creating artificial neural
networks that generalize”. In: Neural Networks 4.1 (1991), pp. 67–79.
ISSN: 0893-6080.

[61] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”. In: Journal of Machine Learning Research
15.56 (2014), pp. 1929–1958. URL: http://jmlr.org/papers/v15/
srivastava14a.html.

[62] Lucas Theis, Aäron van den Oord, and Matthias Bethge. “A
note on the evaluation of generative models”. In: arXiv preprint
arXiv:1511.01844 (2015).

[63] Ilya Tolstikhin et al. MLP-Mixer: An all-MLP Architecture for Vision.
2021. arXiv: 2105.01601 [cs.CV].

[64] Ashish Vaswani et al. Attention Is All You Need. 2017. arXiv: 1706.
03762 [cs.CL].

[65] Oriol Vinyals et al. “Grandmaster level in StarCraft II using multi-
agent reinforcement learning”. In: Nature 575.7782 (2019), pp. 350–
354.

[66] Oriol Vinyals et al. Show and Tell: A Neural Image Caption Generator.
2015. arXiv: 1411.4555 [cs.CV].

[67] Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit. Scaling
Autoregressive Video Models. 2019. DOI: 10.48550/ARXIV.1906.02634.
URL: https://arxiv.org/abs/1906.02634.

[68] Kelvin Xu et al. Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention. 2016. arXiv: 1502.03044 [cs.LG].

[69] Jason Yosinski et al. Understanding Neural Networks Through Deep
Visualization. 2015. arXiv: 1506.06579 [cs.CV].

[70] Sangdoo Yun et al. CutMix: Regularization Strategy to Train Strong
Classifiers with Localizable Features. 2019. arXiv: 1905.04899 [cs.CV].

[71] Hongyi Zhang et al. mixup: Beyond Empirical Risk Minimization. 2018.
arXiv: 1710.09412 [cs.LG].

67

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1411.4555
https://doi.org/10.48550/ARXIV.1906.02634
https://arxiv.org/abs/1906.02634
https://arxiv.org/abs/1502.03044
https://arxiv.org/abs/1506.06579
https://arxiv.org/abs/1905.04899
https://arxiv.org/abs/1710.09412

	I Introduction
	Introduction
	Motivation
	Problem Statement
	Note on Machine Learning Literature

	Deep Learning Background
	Introduction
	Regularization
	bold0mu mumu L2L2L2L2L2L2 Regularization and Weight Decay
	Dataset Augmentation and Noise Injection

	Optimization
	The Learning Algorithm
	Backpropagation
	Hyperparameter Optimization

	Deep Neural Networks
	Feedforward Neural Networks
	Residual Connections
	Convolutional Neural Networks
	Recurrent Neural Networks
	Transformers
	Recent Research

	Methods
	Video Prediction
	Autoencoders
	Vanilla Autoencoders
	Variational Autoencoder
	Vector Quantized Variational Autoencoder

	Autoregressive Model
	Approaches to Model the Conditional Distribution
	PixelSNAIL

	II The project
	Experiment Setup
	Dataset
	Collecting Data from Driving Simulator
	Training, Validation and Test Set
	Preprocessing
	Latent Representation Dataset

	Compressing Video with Hierarchical VQVAE
	Encoder
	Vector Quantizer
	Decoder
	Hyperparameters

	Autoregressive Prior Model
	Top Prior Model
	Bottom Prior Model
	Generative Modelling

	Optimization
	Choice of Optimizer
	Hierarchical VQVAE
	Loss
	Hyperparameter Tuning
	Final Training Run
	Loss Curves

	PixelSNAILs
	Top-level PixelSNAIL
	Bottom-level PixelSNAIL

	Results and Discussion
	Hierarchical VQVAE
	Quantitative Results
	Qualitative Results

	Top PixelSNAIL
	Quantitative Results
	Qualitative Results

	Bottom PixelSNAIL
	Quantitative Results
	Qualitative Results

	Discussion
	Further Work

	Conclusion

