
Search Space Traversal in
Co-Optimized Modular Robots

Mia-Katrin Kvalsund

Thesis submitted for the degree of
Master in Informatics: Robotics and Intelligent

Systems
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2022

Search Space Traversal in
Co-Optimized Modular Robots

Mia-Katrin Kvalsund

© 2022 Mia-Katrin Kvalsund

Search Space Traversal in Co-Optimized Modular Robots

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

In Evolutionary Robotics, Evolutionary Algorithms (EAs) are used to
optimize robots. Research has shown that co-optimizing morphology and
control can lead to innovative, animal-like behavior. Additionally, co-
optimizing in Modular Robotics can be used to automatically produce
robots for any task. Even so, it is a definite challenge to design a system
that can evolve morphology and control simultaneously. A common issue
is that of not being able to properly explore the space of possible robots, and
thus not finding the globally best solutions to the task. This is reflected in
the field struggling with early convergence of morphology, rugged search
landscapes, and overall stagnation.

Here, we conduct two different experiments centered around the co-
optimization of morphology and control in modular robots. The first
investigates different controllers, comparing centralized and decentralized
control strategies regarding their effect on morphology and performance.
The second experiment investigates gradual encodings and their effect on
smoothing the search space. In our gradual encodings, modules grow out
gradually instead of being added with full size.

We found that a controller that duplicates control units across the robot
body performs significantly better than other control approaches because
it explores more of the search space. This indicates that decentralization
with duplication can be useful, and possibly decrease early convergence
of morphology, which helps confirm that compressing the search space is
often beneficial. We therefore present this as an argument for duplication
in controllers in general. In addition, we found that while the gradual
encodings did smooth the search space, they led to no better or worse
performance than the baseline. Even though we suggest some instances
where it might still be advantageous, it largely implies that there is no
benefit to these more gradual encodings in a standard EA. Overall, these
two experiments corroborate other research findings that there is a trade-
off between fine-tuning and coarsely exploring in a search, and that the
latter will often be more helpful initially. We hope that future researchers
will benefit from the suggested controller and encoding strategies and our
further insights into their effect on search space traversal.

i

ii

Acknowledgements

I would like to thank my two supervisors, Frank Veenstra and Kyrre Glette,
for encouraging me to follow my interests and helping me to sow them into
a cohesive thesis. You two have been a great support and an inspiration to
work with.

A special thanks to my friends and fellow students, who were equal
parts distractions and discussion partners. Without you guys, I might have
been able to do more work, but been worse off for it.

Lastly, I would like to thank my family and my dog for the love and
support.

This work was performed on the Fox supercomputer resource, owned by
the University of Oslo Center for Information Technology.

iii

iv

Contents

1 Introduction 1
1.1 Research Motivation 1
1.2 Research Questions . 4
1.3 Contributions . 4
1.4 Thesis Outline . 5

2 Background 7
2.1 Introduction . 7
2.2 Evolutionary Algorithms 8

2.2.1 Fitness . 9
2.3 Evolutionary Robotics 10

2.3.1 Co-optimizing morphology and control 11
2.3.2 Encodings . 13
2.3.3 Evolvability . 15
2.3.4 Control . 16
2.3.5 CTRNNs . 18
2.3.6 Material . 20
2.3.7 Simulators and physics engines 20
2.3.8 Reality gap . 21

2.4 Modular Robotics . 23
2.4.1 Classification 24
2.4.2 The modules 26
2.4.3 Control . 28
2.4.4 The use of EA in modular robotics 28

2.5 Concluding statement 30

3 Implementation 31
3.1 Overview of the system 32
3.2 Software and tools . 32

3.2.1 Unity . 32
3.2.2 ML-Agents . 33
3.2.3 The modules 34

v

3.3 Implementation . 36
3.3.1 Robot representation 36
3.3.2 Evolutionary algorithm 40
3.3.3 Fitness function 40

4 Experiment 1 43
4.1 The controllers . 43
4.2 Parameter tuning . 47
4.3 Results . 50

4.3.1 Controller performance 50
4.3.2 Effect on morphology 51
4.3.3 Robustness . 55

4.4 Analysis . 58

5 Experiment 2 61
5.1 Variable scale of modules 62
5.2 The encodings . 62
5.3 Parameter tuning . 65
5.4 Results . 67

5.4.1 Encoding performance 67
5.4.2 Smoothness of landscape 69
5.4.3 Landscape traversal 71

5.5 Analysis . 72

6 Discussion 75
6.1 Summary . 75
6.2 Further discussion . 77
6.3 Limitations and future work 80
6.4 Ethical considerations 82

7 Conclusion 83

A For Conferences 97

vi

List of Figures

3.1 Overview of the system 31
3.2 The EMeRGE module 34
3.3 Examples of well-performing morphologies 35
3.4 Distributions of robot size in populations when vary-

ing initialization parameters 37
3.5 The distribution of number of modules in individuals

in a random population 39
3.6 An evolved cartwheel in 7 frames 41

4.1 The controllers and how they could map to the
modules in a small modular robot 44

4.2 The grids filled for the parameter tuning 48
4.3 The collapsed rows and columns for the sine con-

troller grid search . 48
4.4 The fitness progressions for all four controllers 50
4.5 The final fitnesses for all runs for each controller . . . 51
4.6 The progression of number of modules for all runs . . 52
4.7 Robot size plotted versus fitness 53
4.8 Number of morphology changes that led to better fit

individuals in each generation interval 54
4.9 The explored morphology landscape, controllers . . . 55
4.10 Fitness preservation when applying module removals 57
4.11 Fitness preservation when applying control disabling 58

5.1 Examples of module sizes 61
5.2 Growing of a module illustrated 64
5.3 The grid search for all controllers with the variable

scale encoding . 65
5.4 The grid search for all controllers with the growing

encoding . 66
5.5 The grid search for all controllers with the gradual

encoding . 66
5.6 Fitness progressions for the encodings with controllers 68

vii

5.7 The different mutations’ effects 69
5.8 The morphology landscape exploration by each

controller-encoding pair 73

6.1 Phenotypes in a fitness landscape 78
6.2 The different imagined samplings 78

viii

List of Tables

2.1 A categorization of optimization-use in MR-papers . 29

3.1 Software versions . 32
3.2 The morphology gene mutation rate values 39

4.1 The gene mutation rates for a CTRNN controller . . . 45
4.2 The mutation rate parameters chosen after the sweep 49
4.3 The p-values for the Mann-Whitney U tests, controllers 51

5.1 The morphology gene mutation rate values 63
5.2 The p-values for the Mann-Whitney U tests, encodings 68
5.3 Unique voxels filled for each controller-encoding pair 72

ix

x

Chapter 1

Introduction

1.1 Research Motivation

Evolutionary Robotics offers an exciting view of future robotics:
When generating robots automatically through Evolutionary Algo-
rithms, innovative robots can be found for any task with a bit of com-
putation and ingenuity. With a good model of the environment, we
could automatically produce robots designed to traverse hazardous
areas after natural disasters or walk the surface of an alien planet.
If applied to self-reconfiguring robot bodies, a robot might even be-
come to be seen as a diverse tool that can transform itself into any
shape or function needed by a user.

Evolutionary Algorithms are optimization algorithms that are
inspired by evolution in nature and works in a similar way to
gradually improve a population of solutions. In Evolutionary
Robotics, the algorithms keep a population of robot genomes. The
genome encodes for the robot’s morphology (its body) and its
control. When evaluating a robot genome, it is built into its robot
form, called a phenotype. The optimization progresses by creating
variations on the genomes in the populations and selecting the better
ones to continue optimizing.

With his influential paper from 1994, Karl Sims showed the
first virtual creatures automatically evolved for complex tasks
such as walking, swimming, and following a light source [1].
Their bodies and its control were evolved simultaneously through
co-optimization, allowing natural behaviors to emerge from the
interplay between them. In addition, strange creatures were found,
the likes of which would likely not have been put together by
a human. Sims’ creatures garnered a lot of traction over the
following decades, with inspired researchers continuing to develop

1

increasingly more sophisticated developmental stages [2, 3], control
systems [4, 5], and pipelines for automatic robot creation [6–8].

Roughly at the same time as Sims’ creatures were learning to
walk, the first few papers on Modular Robotics were published
[9–11]. Here, fully separable building blocks, or modules, containing
the functions of a robot are assembled as robot bodies [12]. Because
the modules are only loosely connected through magnets or latches,
modular robots are uniquely suited for quick prototyping of virtual
creatures and autonomous self-reconfiguration and self-assembly.
Combining modular robotics with the co-optimizing of bodies and
control, robots can be found for any task and assembled either by
hand or autonomously. However, combining these approaches have
only been investigated the last decade, and there are still many
challenges to attend to before Sims’ creatures hopefully will be
surpassed.

One of the big problems in Evolutionary Robotics follows from
artificial evolution’s insufficiency at finding the optimal solution
in a search space. The ideal artificial evolution would work like
Darwinian evolution, where small, consecutive steps are taken to
reach some good solution. The middle stages between complex
structures would largely be beneficial [13], leading the search
towards the solution. In reality, artificial evolution does not
experience this smooth and gradual search. The search landscapes
tend to be rugged, in that most mutations are deleterious and the few
beneficial mutations are not necessarily easy to get to [7]. In addition,
landscapes tend to be deceptive, where the road to the destination
sometimes demands the search to traverse regions of lower fitness
in the search space [14].

Meanwhile, mutation in nature is most often non-lethal to the
individual, and populations display both drift and high diversifica-
tion. Although there are many reasons for this, we highlight the con-
cept of evolvability: A population’s ability to produce useful solu-
tions in the future by increasing non-lethal genotypic variation with
latent potential for phenotypic diversity [15–18]. Due to their geno-
typic and phenotypic robustness, they will often undergo fewer phe-
notypic changes on the road to some ideal phenotype, and they are
better able to avoid fitness minima [15, 16, 18]. This robustness and
high degree of a populations’ latent potential for increased pheno-
typic diversity makes it so that evolvable systems are better able to
explore the search space and find optimal solutions [18].

2

Designing Evolutionary Algorithms with increased evolvability
can be done, with for example different types of robot genotypes,
encodings, having different effects on traversal [19]. Recent papers
into varying module length and connection faces also suggests
that module morphology itself has an effect on evolvability and
ultimately performance [20, 21].

Related to this problem of landscape traversal, co-optimizing
morphology and control often experiences premature convergence
of morphology only. When co-optimizing, evolution will settle for
a morphology early on, and continue to optimize the controller.
Although the reason for this is not fully known, Cheney et al.
suggests that because the controller interacts with the environment
through the interface of the body, changes to the body will change
the interface and essentially scramble the function of the controller
[22]. When considering the evolvability of the system, it can be
inferred that there is low morphological evolvability. However, it
can also be that morphologies that are robust to control mutations
are selected for and quickly dominate [23].

This implies that controllers that inherently are less disruptive
when morphological changes are made could increase morpholog-
ical evolvability and therefore diversity. Thus, in modular robots,
for the controller to be robust to morphological changes, control
in a new module would have to be functioning quickly. Remov-
ing a module would also have to reveal a functioning end-effector
module. Perhaps having only a few control units and distributing
them across the modules would lead to these units being optimized
to work in many different modules. In that case, such a controller
would increase morphological evolvability.

Morphological evolvability is very important for co-optimized
modular robots because the promise of reconfiguration is depen-
dent on useful bodies being able to be found. Therefore, with the
goal of studying how and why morphological evolvability and ulti-
mately performance can be increased, we conduct two experiments
centered around the co-optimization of modular robots. These two
experiments investigate respectively the controller and the morphol-
ogy: One attempts to smooth the search landscape by implementing
encodings with more gradual morphological mutations. The other
will investigate different controllers and their effect on morphology,
focusing on our hypothesis of how a controller can increase evolv-
ability.

3

1.2 Research Questions

When co-optimizing morphology and control, morphology often
converges prematurely while the controller continues optimizing.
Our hypothesis is that a controller that duplicates control units
across the robot body will lead to more morphological diversity
and therefore increased fitness. In addition, when co-optimizing,
the choice of centralized or decentralized control strategy is often
complicated by numbers of inputs and outputs. We will investigate
the effects of different controllers. In short, we will seek to answer
these research questions:

1.1 What are the effects of a controller that duplicates control units
across the morphology?

1.2 How can a controller best be designed when co-optimizing
morphology and control?

Often the search landscape in co-optimizing modular robots is
quite rugged, where mutational neighbors can have very varied
performance. In addition, landscapes are deceptive, where the
path to a good solution goes through regions of low fitness.
Our hypothesis is that a more gradual encoding can smooth the
landscape and lead to better performance. When decreasing the
chance for highly detrimental mutations, we hope that we will
achieve more evolvability and ultimately better fitness. From this
hypothesis, we form these research questions:

2.1 How do encodings with different degrees of gradual mutation
affect landscape traversal?

2.2 How do encodings with different degrees of gradual mutation
affect performance?

1.3 Contributions

The main contributions of this thesis are 1) a controller that
duplicates control units across the body (the copy controller),
which causes higher performance and increased morphological
exploration, and 2) a gradual encoding that we show smooth the
landscape, although it does not lead to higher performance. This
points to the importance of sampling, as exemplified by the coarse
sampling of the copy controller and the granular sampling of the

4

gradual encoding. We conclude that coarser samplings lead to
increased morphological exploration, with the caveat that it is less
able to fine-tune. When prioritizing fine-tuning from the start, the
optimization seems to gravitate towards local optima. In addition,
the copy controller helps confirm that controllers that are more
robust to morphological changes will have more morphological
evolvability. This leads to a decrease in premature convergence of
morphology, and therefore advocates for the use of duplication of
control units in general in co-optimizing modular robots.

One article and one poster abstract were produced as a result of
the work on this thesis. As such, they both reuse text and figures
from the thesis. The article, titled "Centralized and Decentralized
Control in Modular Robots and Their Effect on Morphology", was
submitted and accepted for publishing in the proceedings and
an oral presentation at the Conference of Artificial Life (ALIFE).
The poster abstract, titled "Exploring the Effects of Centralized
and Decentralized Control on Morphology and Performance", was
submitted to the Advanced Course and Symposium on Artificial
Intelligence and Neuroscience (ACAIN) and is at the time of writing
under review. They are both included in the appendix.

1.4 Thesis Outline

This thesis consists of seven chapters: Introduction, Background,
Implementation, Experiment 1, Experiment 2, Discussion, and
Conclusion.

In chapter 2, Background, we present relevant topics that
our work is based on. We focus on evolutionary algorithms,
evolutionary robotics, and modular robotics.

In chapter 3, Implementation, an overview of the system will be
presented. The details surrounding the general setup, like software
and tools and the simulations, will be presented. The controllers and
encodings to be investigated are omitted, included instead under the
relevant experiments.

In chapter 4, Experiment 1, the controller experiments will be
presented. This includes the controller’s implementation, their
tuning, all results, and lastly result analysis. This is also the outline
of chapter 5, Experiment 2, concerning encodings.

In chapter 6, Discussion, the results of both experiments will be
discussed as a whole, also with limitations, future work and ethical

5

considerations. Lastly, chapter 7, Conclusion, will conclude and
summarize our findings.

6

Chapter 2

Background

2.1 Introduction

When co-optimizing morphology and control, search algorithms
are used to develop both the body and brain of a robot to solve
some problem. This can be used for single cases but could also be
extended to create autonomous systems where robots are created to
solve user-specified problems. For example, this could be utilized by
construction workers to specify a robot to help with carrying loads,
or rescuers who need a robot to go into a place too dangerous for a
human. In both cases, the size and maneuverability needed would
change from time to time, and so an adaptive robotic system could
be more helpful than a general purpose one.

Following from Karl Sims work on virtual creatures [1], many
researchers have continued developing co-optimized creatures with
varied approaches. One popular approach is using evolutionary
algorithms (EA) that uses a process similar to natural evolution.
Here, a population of robots is evolved, and the most suitable robot
is selected to solve the problem. These algorithms show potential
to create solutions close to those seen in nature. For example,
Sims showed that this method could evolve sinusoidal swimming
motions similar to eels, and later researchers have evolved dog-like
gaits like galloping [24].

While the robots created with this method show a lot of promise,
there are still many issues to investigate. From the research done up
until now it is clear that performance measures, gene encodings, and
material all play a significant role in artificial evolution. There is also
the issue of evolving centralized control when co-optimizing, which
is generally solved by having distributed control instead.

Lastly, when creatures evolved in simulation transfer to reality,

7

both the simulator to reality gap and the unfeasible body plans of
virtual creatures will pose problems. A proposed solution is found
in modular robotics, where building blocks with fixed functionality
are assembled into a robot. Modular robots also have the added
benefit of being easily reconfigured, as their modules are separate
mechatronic systems connected by magnets or similar mechanisms.
Combined with EAs, modular robot assemblies can be evolved that
are more easily transferable to reality.

The following is an overview of evolutionary algorithms and
some key topics in evolutionary robotics, as well as the framework
of modular robotics.

2.2 Evolutionary Algorithms

Evolutionary Algorithms (EA) are stochastic search and optimiza-
tion algorithms inspired by natural evolution. They typically evolve
a population of individuals, solutions to some optimization prob-
lem, over several generations by using operators such as crossover,
mutation, and selection. Crossover combines parents into children,
mutation makes a slight change to the child, and selection keeps part
of the population for reproduction or survival. Populations are ini-
tiated with a random set of individuals or seeded with previously
found/human designed solutions. Central to these algorithms are
being able to formulate the goal of the optimization in a performance
measure.

Any number of things can be optimized with EAs: Programs,
neural networks, strings of numbers, and robot morphologies are
some examples. In all of these, the operators usually must be
balanced to both explore and exploit the search space. Some EAs
have been well defined and tested but are usually suited most to
some particular task: NeuroEvolution of Augmenting Topologies
(NEAT) [25], for example, is used for evolving neural networks.

EA has several subsets of algorithms, like genetic algorithms
(GA), evolutionary strategies (ES), neuroevolution, etc. These
focus on different aspects, like evolutionary operators on strings of
numbers or neural networks [26]. Evolutionary robotics, discussed
below, can employ any of these branches of algorithms.

8

2.2.1 Fitness

The goal of evolution in EAs is usually expressed in some function
we want to maximize that measures an individual’s performance, or
fitness, on some task:

f itness = f (i)

where i is the individual solution. The measured fitness can then be
used to compete in parent and survival selection. For example, in
evolving a robot to walk, the goal could be to locomote as far to the
right as possible. Expressing it instead as a single value, we measure
the displacement of the robot for a standard amount of time as it
locomotes in an environment. This is a common fitness function for
locomotion, found in e.g. [3, 6, 22, 27].

Common problems with the fitness function relate to the function
landscape it produces, and especially how rugged or deceptive it
is. A rugged landscape has low correlation between an individual’s
fitness and its landscape neighbor. A deceptive landscape will have
its global optimum in a difficult location, perhaps in such a way that
gradual improvement in the population is actually instead leading it
away from the true solution [14]. In both cases, the normal operators
will not be enough to mitigate these problems, and many have found
a fix in maintaining diversity.

Many diversity maintenance approaches are inspired by niching
in nature: Individuals in a species might compete mostly with
their own species, within their age group, or within their own
skillset. This is used to create local selection pressure with global
speciation. Note that a measure of similarity between individuals
must be specified, which can be measured on individual’s genotypes
or phenotypes. Though there are many methods for maintaining
diversity, we will look at two that are widely used. These measure
similarity on the phenotype, and are known as quality diversity
methods:

Novelty search is one such approach that discards fitness, and
only awards novelty of behavior through evaluating the sparseness
of behavior space around an individual. What behavior means must
be specified by the user, and in its introductory paper [14], behavior
was in a biped locomotion experiment defined as the displacement
of center of gravity measured each second. This allowed initially
unstable gaits to withstand selection pressure and finally produce
oscillatory gaits [14].

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

9

[28] works in a similar way: A number N of discrete features must be
set that describes an individual, and every creature will, according
to these features, be placed in an N-dimensional map. All creatures
in the map will have offspring that will compete with fitness for the
cell their features map to, leaving a map of only the best individuals
for each cell [28]. Nordmoen et al. shows that MAP-Elites is able
to produce quality on the same level as a single-objective EA and
a multi-objective EA (optimizing for diversity and fitness) when
co-optimizing morphology and control. Additionally, MAP-Elites
produced a higher diversity than the other two. This quality can
make it more suited to avoid early convergence and local maxima
[29].

2.3 Evolutionary Robotics

In Evolutionary Robotics (ER), EAs are applied to evolve robots, in
order to automatically develop a robot for some task. This includes
optimizing parameters of the robot, optimizing a brain for a human
designed body, optimizing a body, or co-optimizing morphology
and control. It is commonly done in simulation, even though this
leads to a famous problem called the reality gap, discussed below.

A significant advantage of using EAs in robotics, is being able
to create robots that are not limited by human ingenuity. In a lot
of cases, researchers have found that EAs can create new, novel
solutions to a problem that human engineers could not think of
themselves, either outcompeting a designed solution as in [30]
and [31], or figuring out a complete morphology and control from
building blocks that were too complicated for researchers to put
together, as in [22].

Additionally, a robot can be evolved for an environment or state
that is not fully understood by a human engineer (given that its
features can be accurately described in a simulation). Robots can be
evolved to adapt to damage, and maybe even self-repair [31]. They
can also evolve to adapt to different environments [32]. Given these
features, evolved robots can be well suited to explore hazardous
areas, where they can adapt to variable terrain and adapt to any
damage they experience.

It is also a viable way to study biology through synthetic
methodology. Researchers periodically comment on how robotics
tends to borrow from biology, but also how ER (and other similar

10

subfields) is suited to study concepts from biology [33–35].

2.3.1 Co-optimizing morphology and control

Some researchers choose to optimize morphology and control at the
same time, meaning that you usually start from only a set of parts,
or a set of instructions. EAs will then shape those into some robot,
demanding only that you can specify the parts, algorithm, and fitting
objective function, therefore requiring comparatively little domain
knowledge.

Motivation

When body and brain are allowed to co-evolve, synergies between
the two can emerge. An example of this is morphological compu-
tation: A sort of pre- and postprocessing the body does that sig-
nificantly simplifies what the brain must do. Some researchers be-
lieve that this can make much smarter designs, with bodies that are
naturally easy to control. Paul, in her 2006 paper [36], introduces a
tensegrity robot (described below) that shows a very high degree of
dynamic coupling, yet proves to be easy to control through evolved
controllers.

Additionally, morphological computation can extend the abilities
of a control system: As an example, Paul also constructs a robot,
the XOR bot, that can display more complex behavior through its
body than its brain is capable of. In the XOR bot, the brain is a
perceptron, which has been proven to not be able to perform XOR,
yet the robot overall has XOR behavior through the dependencies of
its mechanical body. In the same way, Bongard argues in his 2013
article [35] that computation can be outsourced to a body through
smart morphology, which lessens the needed computation in the
robot brain. In short, morphological computation extends or alters
the abilities of the brain.

Another reason, though more philosophical, is the notion that
such embodied design can let general AI emerge. Some researchers
believe that intelligence can be created by continually more and
more complex interactions between the environment and an embod-
ied AI [34, 35]. This is grounded in the argument that an intelligent
agent can be defined as an agent that is compliant with the rules of
its environment (e.g the laws of physics), and is capable of exploiting
those rules to diversify its actions [34].

11

Challenges

In Darwinian evolution, small, incremental steps towards a good
solution is encouraged by more self-replicating (the organism lives
to reproduce). This is what allows for complex structures to emerge,
as initial attempts at something, such as the socket for an eye
forming, is not punished but rather rewarded [13]. In our terms,
this is a smooth search landscape, a much sought-after feature of
artificial evolution [34].

Faina et al. illustrates briefly in their 2013 paper [7] that in co-
optimizing morphology and control, a smooth landscape is seldom
the case. Rather, they describe that their landscape tends to be
deceptive and rugged, in that a mutational step will lead to drastic
changes in performance, and not necessarily lead to an optimum.

An additional challenge is that of early convergence of morphol-
ogy only. As described by Joachimczak et al. [2], and later explored
further by Cheney et al. [22], the morphology will reach its almost
final form relatively early. As such, the rest of an individual’s evolu-
tionary run will be spent on optimizing the controller. While Cheney
et al. stresses that this can be attributed to the algorithm or encoding
used, as previously discussed by other researchers, they also pro-
pose a hypothesis grounded in embodied cognition: Since the con-
trol policy interacts with the environment through the morphology,
any change to this interface will radically change what action is oc-
curring with a given brain. This is similar to how Paul’s XOR bot,
with a slightly different body, no longer performs XOR. In essence,
variation in the morphology scrambles the control. This, in turn,
leads to sudden drops in performance, contributing to the rugged
landscape problem described by Faina et al. and Lehman and Stan-
ley [14].

Lastly, researchers in this field express that progress is stagnating
[22, 24, 27]. Since Karl Sims first started co-evolving morphology
and control in the 90s [1], there has been no results that seem to
significantly surpass his. Although there is steady improvement, co-
optimized robots are not largely more scalable, complex, or more
useful than they were 20 years ago [37].

Lifetime learning

An alternative approach to having to evolve both morphology and
control is that of lifetime learning. Here, a robot is given time after its

12

creation to learn a suitable controller for its morphology, by-passing
the problem of scrambled controllers. Some researchers claim this
is necessary in all cases of co-optimizing morphology and control
(e.g. [38]), but no consensus on this is observed.

Two main branches of lifetime learning are Baldwinian and
Lamarckian. In the latter, learned controllers are inherited from
parents. This provides a stepping-off point for the learning in
the child, leading to faster increase in performance as shown by
Jelisavcic et al [38]. In the Baldwinian case, learning is not explicitly
inherited. Here, learning leads to better fitness for an individual,
which leads to it having children with roughly the same aptitude
for learning. Over time, individuals who can achieve higher fitness
by learning will be selected for and dominate the population [39].
Gupta et al. demonstrate this in their recent paper [40], claiming that
their Baldwinian learning optimizes for morphologies that are easier
to control, shown by how later generations find good controllers
faster.

2.3.2 Encodings

If you were to use a GA to find the value x that minimizes some
function, let’s say x squared, then your individuals’ representation
in your program, its genotype/chromosome, could simply be the
value itself. A mutation could be to add or subtract one unit, and the
evaluation would be done directly on the representation.

As the individuals that are optimized become more advanced,
the need arises for a separation between the representation and the
form to evaluate. Specifically, the genotype is transformed into its
phenotype with some one-way set of rules called an encoding, which
we can express as

phenotype = p(g)

where g is the genome and p is the process of converting the
genotype into the phenotype. The phenotype is then what is
evaluated for fitness, which we can express

f itness = f (p(g))

where f is the function that evaluates the phenotype. While
encoding is a necessity, it will also influence the optimization in
performance and diversity [27, 41].

In the following subsections, four common approaches to encod-
ing are discussed.

13

Direct

Direct encoding is a set of one-to-one mappings for some robotic
system so that one value in the genotype corresponds to one feature
in the phenotype. This is a straightforward approach, which has led
to good results in [6,7,42]. For example, Lipson and Pollack [6] used
direct encoding in order to evolve simple creatures consisting of bars
and actuated bars, with neural networks controlling the actuation.
The genotype was a set of numbers corresponding to the parameters
of the different modules.

Lipson and Pollack’s approach is quite typical for direct encod-
ings and shows a successful approach to it. However, it also il-
lustrates its lack of scalability: When each part of your robot must
explicitly be coded for, complexity has an upper bound that corre-
sponds to your memory limitations, and a search landscape that is
intractable. Following from this, we look at three encodings below
that can be classified as artificial developmental encodings. Inspired
by nature’s own reuse of genes, they have a limited number of genes
that through some system maps to a much more complex phenotype.

Rewriting systems

One such encoding is rewriting systems, or grammatical approaches.
These are characterized by having to define some grammar of one-
to-one mappings while employing this grammar in a system that
allows for recursive re-use of entire parts of the genome. Some
examples of this are Hornby et al. who implemented a grammar
for an L-system [3], and Sims, who used a directed graph of nodes
and connections [1]. Hornby et al. argues that their L-system
representation captures "intrinsic properties of the design space"
in a modular way. This led to mutation being more likely to
lead to fitness increase compared to mutation on a direct encoding.
Additionally, they found that an L-system representation took leaps
and explored more of the search space [43], as was also found by
Veenstra et al. [27].

Generative neural networks

Generative neural networks are neural networks that are evolved
to map some input, for example coordinates as in [24], to some
output, which can be the presence and parameters of a body part
or weight and connection of a neuron. The genotype in this case

14

are then the parameters for the network itself, and the phenotype
will be generated through queries to the network. One example of
this is the evolution of Compositional Pattern Producing Networks
(CPPNs) [44] through the neuroevolution algorithm NEAT [25]
in HyperNEAT [45]. Another is cellular encoding, which grows
a neural network node for node from a grammar tree of node
construction commands, e.g., split node, cut connection, recurse, etc.
Each newly constructed node gets its own copy of the grammar tree
and a position to start executing construction commands from [46].

Cell chemistry approaches

Cell chemistry approaches are encodings that simulate the interac-
tions between cells, and how they modulate development from a
starting point to the complete phenotype. One such encoding is in-
spired by gene regulatory networks (GRN) in nature, as described
by Joachimczak et al. [47] [48]. Their method has cells that perform
cellular division and death through an abstraction of a GRN (a re-
current neural net) and communication between cells modeled after
morphogens.

2.3.3 Evolvability

In order to explain evolvability, the definition from the introduction
is repeated: Evolvability is a population’s ability to produce
useful solutions in the future by increasing non-lethal genotypic
variation with latent potential for phenotypic diversity. To explain
further, evolvability makes a population more evolvable, meaning
it can explore more and often reach higher performance. This
is accomplished through a population having genotypes that can
quickly change to other functional phenotypes, avoiding pitfalls in
the fitness landscape [15–18].

Often, genotypes can change in this way because of indirect
encodings, where several genotypes can map to the same phenotype
[19]. This increases the immediate phenotypic neighborhood of the
population, increasing the possibility of a good phenotype being
discovered in relatively few steps [15, 18]. Systems like this are said
to be phenotypically robust, in that many changes can be applied to
the genome without it influencing the phenotype. This allows for
changes to the genome to build up and ultimately leads to larger
jumps in phenotype space, and thus in the fitness landscape [18].

15

Another facet of evolvability is that of compartmentation, or
modularization, of different co-evolving functions within an indi-
vidual. For example, the compartmentation of organs in animals al-
low for local exploration within an individual without lethal failure
of the global organization of the animal [16, 19]. In this way, an indi-
vidual is robust to genotypic changes within itself, which improves
evolvability by keeping the optimization of different functions sep-
arate [19]. Transferring this to the co-optimization of morphology
and control in robots, we can infer that some robots will have mor-
phologies that are robust to mutations in the controller [23], and vice
versa.

2.3.4 Control

When co-evolving morphology and control, it is common to have
distributed/decentralized control of the body (e.g. [3,7,22,27,38,49]),
though this is not always the case (as in [4, 5]). Decentralized
control is when a body part largely controls itself: A leg will for
example have its own behavior that through just time, or with input,
changes and affects the entire body’s behavior. As opposed to this,
centralized control takes in all sensor inputs and controls the entire
body at once.

Centralized control

Centralized control allows for central processing of sensor informa-
tion and synchronized action output. It is therefore well suited to
task execution. It is also quite common to see centralized control
in nature (animals are a good example), albeit with some decen-
tralized control present as well (for example central pattern gener-
ators (CPGs) being responsible for many activities in animal behav-
ior [33]). When co-optimizing morphology and control, it can be
difficult to have centralized control because of the changing number
of inputs and outputs. However, this does not mean it is not done.

Cheney et al. present one such co-optimized system in his work
on electrophysiological soft robots [4]. Here, robots consist of voxels
placed by a CPPN encoding. These voxels conduct electricity that is
induced by one pacemaker voxel. Although this is simple and open-
loop, it shows a form of centralization of control that does not use a
neural network.

Auerbach and Bongard also use a CPPN encoding, that con-
structs a control network, a continuous time recurrent neural net-

16

work (CTRNN), along with the body [5]. Here, the CPPN encoding
outputs body parts as well the input and output to control that part.
In this way, the centralized control network can grow with the mor-
phology.

In the Baldwinian lifetime learning of Gupta et al., the controller
is erased every generation, and in essence only the morphology is
optimized [40]. Here, they use a centralized control network with no
difficulty because the morphology is finalized when the network is
initialized. They then train the network with reinforcement learning
and use the individuals final fitness from this in selection of the next
generation of morphologies.

Distributed/decentralized control

Rodney Brooks was one of the first to employ a form of distributed
control. In his 1986 paper, he introduced what he called a
subsumption architecture, where he suggested thinking about the
control system as a series of behaviors rather than a series of
modules. For example, instead of leg 1, sensor 1, etc., he wanted
to describe the control system in terms of object avoidance, walking,
and so on. In this way, control is functional at each level, allowing
for removal or addition of a level at any time. In his own words,
"The control system can be viewed as a system of agents each busy
with their own solipsist world" [50].

The later distributed controls would return to module-centered
control in a sense, now in the form of appendages and modules
controlling themselves. In the same way as Brooks, behavior was
modularized and decentralized, though now the other functions
of a creature were typically not fully preserved when adding or
removing behavior. Sims’ virtual creatures of 1994 is a famous
example of this, where each appendage would have a set of neurons
controlling itself [1]. Another person to do this was Stoy, in 2002,
who created control for the modules of a modular robot that would
work in any morphology: The behavior would change according to
the number of connections to other modules [51].

Some recurring and current methods of distributed control are
open-loop wave generators, CPGs and neural network based. They
will be described below.

17

Open-loop wave generators

Open-loop wave generators are a way to produce repeating motion
through cyclic functions, commonly a sine wave with evolved
parameters [3, 7, 41]. They are open-loop in that their only input
tends to be time passed, and the behavior is not affected by anything
that happens to the robot (excluding the passage of time). Examples
of this are Hornby et al in 2001, that produced complex virtual
creatures with each actuated joint being controlled separately by a
simple oscillator. Because it does not adapt to the environment, some
researchers use it more as a simplification as they produce the rest of
the system, rather than the final control system (e.g. [3, 7]).

CPGs

Central Pattern Generator (CPG) is a neural circuit found in living
organisms that produce rhythmic patterns [33]. For example,
they are typically responsible for cyclic activities like walking and
chewing. In some studied organisms, the CPGs appear to function
independently, but can be modulated by neural or sensory input
[33]. Because of this, CPGs can be seen as a more complex alternative
to open-loop wave generators when modeled for robotic systems. In
addition, Ijspeert identifies some beneficial properties of the CPG,
amongst which are that it is well suited for distributed control of for
example modular robots. This has been done in the Roombots [52].
Furthermore, the CPG is robust and can receive drive signals that
have low dimensionality and produce high dimensional output [33].

Neural networks

Distributed control using neural networks will involve giving each
part of some robot its own neural network, whose weights, topology,
or activation functions can be evolved. Here, any type of network
can be used, and we have many examples of these giving good and
complex behaviors, as for example Sims’ virtual creatures [1], the
soft robots of Rieffel et al. [53], and the bar-robots of Lipson and
Pollack [6].

2.3.5 CTRNNs

Continuous time-recurrent neural networks (CTRNNs) will be
explained in further detail, because this is the network that will be

18

used for the controllers in this thesis. They can be used as both
centralized and decentralized control, both of which we do in our
experiments.

CTRNNs are simple neural network models that allow for
memory through recurrent connections. They update based on time
passed, sensor input, and internal state; and do this through a series
of ordinary differential equations.

In particular, the change in neuron potential of neuron i, yi, after
neuron i’s time constant τi is modeled as the differential equation

τi
dyi

dt
= −yi + fi

(
βi + ∑

j∈Ai

wijyj

)

where fi is the activation function for neuron i, βi is the bias of
neuron i, Ai is the set of indices of all input neurons to neuron
i, and wij is the weight for the connection between neuron i and
neuron j. Each neuron potential is updated with the forward Euler
method, which essentially means that the above calculated value
will be added to the previous neuron potential for neuron i when
going from time t to time t + τi. This formula and its explanation is
taken from neat-python’s description of their CTRNN1.

The CTRNN has several properties that makes it suited for
control of biologically inspired robots. They allow for the possibility
of dynamic temporal behavior [54] and can in theory exhibit any
dynamic behavior [55]. They also have possible interpretations as
analogies to biological neural networks [55, 56].

As mentioned, CTRNNs were successfully used by Auerbach and
Bongard when co-optimizing morphology and control in their robots
[5]. It was also used by Randall Beer and his various co-authors
in a series of works related to the goal of investigating a theory on
adaptive behavior [55, 56]. As they viewed CTRNNs and their own
surrounding system through the lens of dynamical systems theory,
it was also important to them that the CTRNN’s behavior can be
analyzed. In their work on novelty search, Lehman and Stanley used
a CTRNN in their bipedal walker experiments [57]. They reasoned
that it was suitable for locomotion because its non-linear dynamics
was often found in gaits from nature.

1https://neat-python.readthedocs.io/en/latest/ctrnn.html

19

https://neat-python.readthedocs.io/en/latest/ctrnn.html

2.3.6 Material

Robots in ER have been built or simulated in many materials, which
have different effects on the control and morphology. Probably most
common is rigid, skeletal robots with actuation and movement in
the joints only (e.g. [1, 3, 14, 27, 41]), which also has many examples
of having been built in real life (e.g. [6, 7, 32, 42, 58]). These
reflect what kind of robots have historically been built up until
now. However, this limitation of material might be part of current
observed stagnation in co-optimizing morphology and control [24].
Thus, we look at two alternatives below: Tensegrity and soft robots.

Tensegrity robots are built from tensegrity (tensile integrity)
structures but include actuated pistons instead of cables and/or
struts. These display a high degree of dynamic coupling, and
can therefore do much morphological computation, as shown by
Paul [36]. They are also robust and have a high strength to
weight ratio. In Nasa’s SUPERball tensegrity robot project, it is
hypothesized that this quality will make it suitable for planetary
exploration, as it can locomote over dangerous terrain, be robust to
unexpected disturbances, and possibly need less landing equipment
[59]. SUPERball is hand designed and uses a human designed
controller. However, Paul argues and demonstrates that because of
the high dynamic coupling, machine learning (and in her case, EAs)
are well suited to find control for tensegrity robots.

In a very different vein, soft robots are constructed with soft ma-
terials. These can be entirely made of soft tissue as in Joachimczak’s
soft bodied animats [47,48], or with both actuated, soft and hard tis-
sue as in Cheney et al.’s voxel-based creatures [22,24,60]. In the 2013
Cheney et al. paper [24], the use of soft robots is motivated by simi-
larity to nature, where organisms tend to have both rigid tissue like
bone, and soft and/or actuated tissue like muscles and fat. These
robotic systems are also very malleable and could prove themselves
to be especially suitable for tight spaces and difficult terrain. How-
ever, controlling them is a definite challenge, as their soft bodies lead
to "near-infinite degrees of freedom" according to Rieffel et al [53].
EAs are therefore very applicable to soft robots [53].

2.3.7 Simulators and physics engines

When choosing a simulator for your experiments, you must consider
many things. Not all simulators can simulate the robot you want to

20

use, and not all sensors are supported. You also must consider if you
want rigidbody dynamics, soft body dynamics, fluid dynamics, and
so on. For some, the integration of ROS, Robot Operating System, is
also quite important to have quick prototyping and deployment of
robots in real life [61].

Some common physics engines are PhysX2, ODE3, Newton
dynamics4, and Bullet physics5. All provide rigidbody dynamics,
while only PhysX and Bullet supports soft body dynamics [61].

A common simulator to use is CoppeliaSim, that is the successor
to V-Rep. It supports programming in multiple languages and with
ROS, and the use of multiple physics engines like Bullet Physics,
ODE, Newton and Vortex Dynamics6.

Mujoco is another much used simulator, recently acquired by
DeepMind and used for their DeepMind Control Suite [62]. It
does not allow for using different physics engines, however its own
physics engine is capable, providing speed and accuracy7. It also
compares favorably to physics engines like PhysX, ODE, Bullet and
Havok when it comes to accuracy and speed on robotic tasks [63].

Perhaps the most used simulator for development of robotics is
Gazebo [61]. It describes itself as a collection of libraries, and allow
for a lot of customizability in terms of physics engines and other
functions8. Especially Gazebo’s ROS integration makes it a popular
alternative [61].

2.3.8 Reality gap

Some ER experiments are done in simulation first, and then they
are later transferred to reality. This often leads to a disparity in
performance between the simulated and physical robot, which is
called "the reality gap". This is caused by some difference between
the simulated system and the real one, for example lack of noise or
inaccurate physics. Consequently, when the optimization exploits
features in the simulation, the solution fails in reality where those
features are not present [35]. Samuelsen et al. shows how the gravity
of this gap affects robots very differently, with performance of five

2https://developer.nvidia.com/physx-sdk
3https://www.ode.org/
4http://newtondynamics.com/
5https://pybullet.org/wordpress/
6https://www.coppeliarobotics.com/features
7https://mujoco.org/
8https://gazebosim.org/features

21

https://developer.nvidia.com/physx-sdk
https://www.ode.org/
http://newtondynamics.com/
https://pybullet.org/wordpress/
https://www.coppeliarobotics.com/features
https://mujoco.org/
https://gazebosim.org/features

evolved robots either staying roughly the same or dropping as much
as 90% [58].

Although the reality gap could be avoided by doing evolution
in real life, doing so can be very time-consuming, not possible in
cases like Jochimczak’s developing animats, and/or induce much
stress on the robotic platform [64]. In their paper on the physical
robotic platform Dyret, Nygaard et al expresses that Dyret must
be built very robust to withstand continued real-life trials. Easy
maintenance must also be a focus, because it will eventually still
break [32]. Veenstra et al. [30] is another example of a successful
application of EAs in real life, where swimming in a robotic knifefish
was found using an evolutionary strategy. However, they were still
constrained by stress on the platform, causing them to opt for a faster
optimization algorithm to minimize overheating of the servos.

Solutions

One early solution to the reality gap was the addition of noise to the
simulated sensors in a robot. Jakobi et al. showed that a realistic
level of noise would result in similar behavior between a simulated
and real Khepera robot [65].

Another branch of solutions is concerned with sampling reality
and using this in simulation. One method samples different readings
for the real life robot, and uses it in a look-up table while optimizing.
Though it works well, it scales poorly [66]. Yet another method
co-evolves simulation parameters and the robot, focusing both
on optimizing the robot and reducing the difference between the
simulated and real performance. It does this by recording each best
individual of a generation in real life and evolving the simulation to
minimize the difference between recording and simulation [67].

Koos et al. saw evolving good behavior and crossing the reality
gap successfully as opposing goals [68]. They therefore proposed
a pareto-based multi-objective evolution of robots, where a robot
was measured on the objective goal, but also on a simulation-to-
reality disparity measure (STR). The STR measure is a model that can
predict the STR disparity based on previous recordings of controllers
on the physical robot [68].

Feasibility

Another approach to crossing the reality gap is designing for
feasibility. This means to choose methods and algorithms that have

22

been shown to cross over better.
Faina et al., among others, suggest modular robots for having

feasible manufacture of co-optimizing morphology and control: If
you feed your EA parts that are already feasible, the following
design and control will likely also be doable [7]. Additionally,
modular robots allow for easier testing of several different solutions
because they can be reconfigured. Because of this, versions that cross
over to reality better can be found and used.

2.4 Modular Robotics

Modular Robotics (MR) concerns robots built from separable mod-
ules or units that encapsulate some function of a robotic system. This
is as opposed to an integrated design with no clear sectional mod-
ularity. The modules contain actuation, computation, energy, and
sensing as needed, as well as some mechanism to connect and trans-
mit to other modules [69].

There are three key reasons to choose a modular robotic system:
Low cost, robustness, and versatility. These are presented below.

The simplest reason is low cost: Because a system is usually made
of only a few types of modules, they can be mass-produced leading
to low cost per module. However, modules usually have redundant
parts, so it is not self-evident that this benefit will be present in real
systems.

These systems can also show robustness because they typically
have high redundancy. Additionally, the promise of self-repair could
mean that a robot can replace or expel a faulty module on its own
[69], or with the help of a human. However, modular robots run
the risk of lacking robustness if their control and between-module
communication depends on a chain of working modules [11].

Finally, modular robots can be versatile, meaning that they
can take many forms to best adapt to a task. Ideally, this
would be done on their own through self-reconfiguration. Ease
of reconfiguration by hand also allows for quick prototyping and
reality gap experimentation.

In their 2000 paper on the modular robot PolyBot, Yim et al.
presents these three benefits, and claims PolyBot proves modular
robots to be versatile [11]. 19 years later, in a review written by
among others Yim, they write that this is still the only claim shown
to be true of modular robots, as modules built by researchers tend to

23

be expensive and lack robustness [69].

2.4.1 Classification

When a modular robot is presented, these are the classifications
usually mentioned: Architecture, system abilities, and module
homogeneity. These will be explained below to have a better
understanding of how people describe modular robots, as well as
some of the capabilities usually associated with MR.

Architecture

Modular robots can be connected in a lattice-, chain-type, or a hybrid
of these two, as well as mobile and truss architecture. Chain-type
modules typically have less connection sites, commonly two as in
the CONRO [51]. This makes their bodies chain- or tree-like, and
often not space-filling. Lattice-types have more connection sites
than two, and often more than one degree of freedom, and make
up a 3D configuration. Hybrids have features of both, for example
the M-TRAN which can be configured in both chain- and lattice-
type structures with its six connection sites per module [70, 71]. A
mobile type can fully disconnect from each other and move around
autonomously, as well as form chain- and lattice-type robots, and
possibly smaller sub-robots. Lastly, a truss architecture consists of
members and nodes [69].

System abilities

Modular robots show promise to be highly autonomous, with re-
searchers theorizing about self-assembly, self-repair, self- reconfigu-
ration, and even self-reproduction [72]. Because of the ease of mass-
manufacture and connecting and disconnecting modules, modular
robots are uniquely suited for these functions.

The most implemented ability is self-reconfiguration [71, 72],
where a modular robot is able to change its configuration without
human intervention, as in the M-TRAN [70] and PolyBot [11]. In
his paper on the ATRON self-reconfigurable modular robot, Chris-
tensen explains that focusing on achieving a specific shape can some-
times be impossible for modules such as the ATRON. Mechanical
constraints in the modules make reaching some positions not feasi-
ble. He proposes instead a system based on attractors, where the

24

modules will configure into a target function rather than a target
shape [31].

Self-repair means to be able to identify and fix a faulty part
of a system, be it a faulty module or other damage. In Chris-
tensen’s ATRON, self-repair comes about as a consequence of self-
reconfiguration: The modules have distributed control that seeks to
inhibit attractor states, which lead to them forming a configuration.
If modules are removed, simulating damage, the attractor states are
no longer inhibited and surrounding modules flood in to repair the
damage autonomously [31].

Self-assembly is for the modular robot to either have such
properties that it can assemble itself when put together, or otherwise
is assembled by an autonomous system. M-Blocks show an ability
to locomote independently using an internal fly-wheel and has
algorithms for finding and assembling at a site [73].

Self-reproduction is for a modular robot to be able to replicate
itself, or to produce another robot. Among the system abilities
mentioned, self-reproduction in particular is the least demonstrated
[72], with the minimal example of Zykov et al. [74] being one of the
few we’ve seen.

Homogeneity

When it comes to module homogeneity, a modular robot system
is said to be homogeneous if all its modules are the same, and
heterogeneous, or n-modular [11], if there are more than one type of
module present. For example, M-TRAN is a homogeneous modular
system which has one part, two semi-cylindrical boxes connected
by a hinge [70]. For a heterogeneous example, the Microtub system
features a total of five modules, which are a camera, rotation,
support, extension, and helicoidal module [75].

The key difference between homogeneous and heterogeneous
modular systems is redundancy. Because homogeneous systems
have only one type of module, that module must contain the sensing,
actuation, and computation needed for the entire robot, leading
to high redundancy. This is a strength, in that it can easily self-
reconfigure, be repaired or self-repair from a supply of that module.
It is also a liability, because every functionality is typically not
used everywhere in the body, causing the maker to have to pay
for parts that are not used [34]. Heterogeneous modular robots do
not have this problem, as modules can be designed with only one

25

functionality and used as needed, leading to no redundancy if that
is wanted.

2.4.2 The modules

The modules in real life modular systems tend to be small, compact,
and feature clever mechanical solutions. They pose an interesting
engineering challenge: As a part of a whole robot, they should
supply actuation, sensing, and computation while remaining as
compact as possible. In addition, they need capabilities to attach
and stay connected to other modules. However, this need for
many functionalities can often lead to feature creep and larger
modules. Below, these key implementation features and challenges
are presented.

Actuators

Modules often contain a type of actuation, with the exceptions
possibly being modules from heterogeneous systems, like a passive
base, and remote actuation sources like electrical fields [69]. Among
homogeneous robots, a popular choice is DC motors [71] providing
rotation between two parts of the module, as in the M-TRAN [70]
and Roombots [52]. Other choices are stepper- and servomotors,
pneumatic actuators, as well as several novel actuation methods, like
the electromagnetic inertia actuation in the M-Blocks.

Sensors and communication

There can be internal and external sensors in a module. Internal
sensors are used to monitor the internal state, like the rotation of the
actuators, e.g., with Hall-effect sensors, or the module orientation
through accelerometers. Sensors to help with docking can also be
beneficial, like LEDs and photosensors, as the inverse kinematics
involved in self-reconfiguration can be inaccurate. External sensors
are used to sense other modules and the environment, the latter of
which is paramount for performing tasks [69].

Communication between modules can be facilitated through a
bus over the connection plate, though this requires a connection.
Wireless options allow for communication without connection,
which can allow for more autonomy in the system, and possibly
more distributed control [69]. Among wireless communication is
infrared, Bluetooth, and Wi-Fi [71].

26

Connection mechanism

The connection mechanism, or docking element, is the part of a
module that allows it to connect to another module. Many modules
use a concept of gender, where a female element can only connect to
a male element and vice versa, as with polarities of magnets. When
gender is not used, the genderless docking element has the added
benefit of allowing more configurations [71].

Connection by magnets is widely used as opposed to other
methods [71], and can be divided into subcategories of permanent
and electromagnetic magnets.

In the case of permanent magnets, they hold the advantage that
a connection does not consume energy. This also means that there
must be a means to disconnect two elements autonomously if the
system is to self-reconfigure/repair/assemble. One solution to this
are the M-Blocks system simply using the force it moves by to break
away. It also avoids gendered elements, as magnets usually call for,
by allowing its magnets to rotate [73].

Electromagnets function in much the same way, except that
power is needed to maintain connection. Advantages of this is easy
disconnecting and being able to change the polarity/gender of the
magnet, receiving the same benefits as genderless elements.

Latches, or hooks and holes, are also used. These have gendered
docking elements, with hooks that come out, driven by a motor, and
latches onto holes on the female connection plate [71]. Latches have
the drawback that they are often weak to misalignment [73].

Challenges

A goal in modular robotics is having smaller, more compact
modules, both because some envision robots built from cell-like
modules (e.g. [9, 34, 76]), and because it gives better general
applicability to different task spaces [69]. The challenges here are
several, the top of which is the current technology in actuators
and power sources, which are the main determiners of size [71].
Another issue is that the smaller modules get, the amount you need
to fill the same space is cubed. As modules increase, stiffness and
strength of the overall robot goes down, since every link can be a
potential weakness. Solutions for this include designing for parallel
connections, as this provides strength that a chain type robot will not
have [69].

27

For homogeneous robots especially, there is the issue of feature
creep. This happens when too many functionalities are added to
a module, leading to expensive modules with a lack of reliability.
Possible solutions to this is to better think of the congregated
robot as a whole when equipping modules, and not adding more
functionalities than is needed for the function of the ensemble [69].

2.4.3 Control

As with ER, modular robots can be controlled in any of the cen-
tralized or decentralized ways listed above. Within homogeneous
modular systems, all modules tend to carry computational elements,
which means that the amount of computation available scales with
the number of modules. This can make control difficult, but a lot of
researchers have found a solution in distributed control [69].

Nordmoen et al. [29] and Faina et al. [7] both use open-loop
wave generators. Sproewitz et al. uses CPGs in every module
to make their Roombots locomote [52]. Christensen uses modules
with distributed evolved artificial neural networks (ANNs) for the
ATRON, that automatically congregate in specified configurations
[31].

Centralized control might be a more practical approach when
it comes to tasks like object manipulation, or the combination of
several behaviors [69]. Self-reconfiguration has for example been
demonstrated to work well when orchestrated by a centralized
control such as for the M-TRAN [70]. Here, the robot was able
to reach a specified configuration through controlled maneuvers,
which contrasts the imperfect swarm-like behavior of Christensen’s
ATRON-controller.

For a combined example, the Microtub modular robot employs
a semi-distributed approach. Here, an overseer centralized system
processes the sensory input of the modules and sends out corre-
sponding commands. At the same time, the modules can react au-
tonomously to stimuli like overheating. These behaviors function
independently of the centralized control [75], very similar to Brooks
subsumption architecture [50] explained above.

2.4.4 The use of EA in modular robotics

EAs can be a powerful tool to find control algorithms and module
configurations for modular robots. As module numbers grow, both

28

Sys. name Paper Year Ctrl Config Co-opt.
CEBOT Kawauchi et al. [9] 1992 EA
Fracta Murata et al. [10] 1994
PolyBot Yim et al. [11] 2000
Crystalline Rus et al. [77] 2001
CONRO Stoy et al. [51] 2002
M-TRAN Murata et al. [70] 2002
Genobot Hornby et al. [43] 2003 EA EA x
Adam Marbach et al. [78] 2004 EA EA x
ATRON Christensen [31] 2006 GA
Swarmbot Groß et al. [79] 2006 SI & EC
RoomBot Sproewitz et al. [52] 2009
SMORES Davey et al. [80] 2012
Microtub Brunete et al. [75] 2012
M-Blocks Romanishin et al. [73] 2013
EDHMoR Faina et al. [7] 2013 EA EA x

Zappetti et al. [76] 2017
EMeRGE Liu et al. [20] 2017 EA EA x
Sambot II Tan et al. [81] 2018
SMORES Tosun et al. [82] 2018
RoboGen Jelisavcic et al. [38] 2019 EA EA

Nordmoen et al. [29] 2020 EA EA x
EMeRGE Moreno et al. [21] 2020 EA EA x

Table 2.1: A categorization of optimization-use in MR-papers. System
name is either the name of the modular robot used, or the system for
developing modular robots. Ctrl: evolved control, Config: evolved
configuration, Co-opt.: Co-optimized control and configuration.

of these tasks can be daunting for a human designer, and even
in manageable systems a solution found by EA can outperform a
human-designed controller, as in [31].

In order to get an overview of the use of EA in MR, notable papers
frequently mentioned in recent papers and MR surveys ([69,71,72]),
as well as papers from this reference list have been chronologically
categorized in table 1. The latest surveys are from 2019, meaning the
development from 2019 to 2022 is likely not covered well.

As we can see from the table, early modular robots tended
to be fully hand-designed, although controllers were sometimes
optimized. This is still a trend. Hornby et al. provided the first
example of co-evolving simple, fixed modules of rods and actuators
[43], while Marbach et al. co-evolved a more typical modular system
a year after [78].

Later researchers have followed up on this work, however there
still has not been much work done on evolving modules. Liu et

29

al. and Moreno et al. both found that different variations on the
module morphology had a significant impact on the evolvability
and performance of evolved configuration and control [20, 21]. This
shows that evolving modules could further aid in the design of
modular robots.

2.5 Concluding statement

The above has been an overview of various topics related to co-
optimizing modular robot systems.

During ER and MRs short lifetime, a lot has been accomplished.
The idea to co-optimize and the first modular systems came to
be in the 90s. Thereafter, many researchers expanded on these
ideas with larger projects, more elaborate developmental stages,
as well as combining ER and MR. The problem of the reality gap
came to be more researched, and researchers started to worry about
diversity maintenance. In the 2010s, quality diversity algorithms
were popularized. Co-optimization in general, but also specifically
applied to MR, gained more traction.

At this point in time, the field is experiencing some stagnation.
Many are investigating what role materials, encodings, and algo-
rithms could play in this. Whatever the solution might be, hopefully
we will work through this stagnation, and something as impressive
as Sims’ 94 work will soon be presented in these fields.

30

Chapter 3

Implementation

Here the implementation of the system we will use to test the
hypotheses is presented. We exclude the implementations of the
controllers and encodings, as these will be discussed in the chapters
about these experiments respectively.

First, we give a general overview of the system, then we present
the software and tools, which are the frameworks we will use.
Lastly, we present the further implementation details, like robot
representation, evolutionary algorithms, and fitness function.

Population

GeneFitness

Sensors

Actions

Termination

Evaluate

Se
lec

t M
utate

EA
loop

Figure 3.1: Overview of the system. The bottom box represents the Python
program, hosting the evolutionary loop, and the top box represents the
Unity executable, responsible for the simulation.

31

3.1 Overview of the system

Our system consists of modular robots simulated in a flat ground
environment and being measured on the task of locomotion. To co-
optimize the morphology and control, an evolutionary algorithm is
used.

The general setup with the simulator can be seen in Figure 3.1.
The simulator used is a Unity executable, which is launched and
communicated with through Python scripts. In order to do this, the
Unity ML-Agents Toolkit is used, explained below.

The Python side keeps a population of genes, which are opti-
mized in an evolutionary loop. When it comes to evaluation, each
robot gene builds a blueprint of its body, which is sent to the Unity
executable. Here, the blueprint is built into its phenotype, a modular
robot configuration using the EMeRGE modules (Figure 3.2). Then,
during the evaluation, the Unity executable continually sends the
robot observations to the Python side, whereupon Python responds
with the controller actions. Lastly, Unity sends the final fitness of the
individual, and the evaluation section is over.

The software versions used can be seen in Table 3.1, and the code
for this thesis can be found on GitHub1.

Software Version
Unity ML-Agents 1.0.7

mlagent_envs 0.27.0

Table 3.1: The software versions used.

3.2 Software and tools

3.2.1 Unity

Unity is a widely used and general-purpose game development
platform. It provides easy development through its graphical user
interface called the Unity Editor. It comes with the Nvidia PhysX
physics engine, but the Havok, MuJoCo, and Bullet physics engines
can also be used. In this project, PhysX is used. It runs in real-
time, allowing changes to be made to the environment and objects in
runtime. Because of its inbuilt realistic rendering engine and other
available sensory data, as well as its available game functionality, it

1https://github.com/UiO-Robotics-and-Intelligent-Systems/master_mkkvalsu

32

https://github.com/UiO-Robotics-and-Intelligent-Systems/master_mkkvalsu

can be used for a wide range of machine learning tasks defined by
the developer. To use the Unity Editor to develop environments, the
Unity ML-Agents Toolkit is used [83].

3.2.2 ML-Agents

The Unity ML-Agents Toolkit2 is an open-source project that enables
easy integration of artificial intelligence in Unity. It is equally
aimed at game developers and AI researchers, with many features to
support reinforcement learning, neuroevolution, and other machine
learning algorithms.

The ML-Agents Toolkit provides a Python API through the two
packages mlagents_envs and mlagents-learn. Because we only used
the mlagents_envs package, we will explain this one further. It
contains the class UnityEnvironment, which allows you to load
and use your Unity executable learning environment in Python
scripts. This class supplies a typical gym interface, with methods
to reset and get observations, and a step method that will move
the simulation forward. The step frequency was set to step 5
times a second, meaning sensor info and control information was
exchanged every 0.2 seconds. The environment can be run in
headless mode, which may cause a decrease in simulation time
due to not having to render, or the desired speed up can be
specified [83]. However, when speeding up our simulations, we
lost determinism in evaluations on the same robot. Because of this,
we regrettably ran our experiments with no speed up. We also
experienced no significant decrease in simulation time from running
in headless mode. In addition to the UnityEnvironment, the side
channel classes EnvironmentParametersChannel and SideChannel,
with accompanying functionalities and classes, allowed for further
communication with the Unity executable. In this way, we were
able to send our robot gene to Unity through a custom defined side
channel.

In order to design an environment using ML-Agents in the Unity
Editor, a scene has to include an instance of the Academy class
and an object with an Agent script. The Agent script will receive
actions and rewards from the Python API [83]. Because ML-Agents
is not specifically meant for co-optimizing morphology and control
in robots, we did have to make some adjustments to the way certain
classes were meant to be used. Specifically, the Agent class is meant

2https://github.com/Unity-Technologies/ml-agents/tree/release_17_docs

33

https://github.com/Unity-Technologies/ml-agents/tree/release_17_docs

Figure 3.2: The EMeRGE module. The left image is an example of a real
EMeRGE module, and the right is our Unity simplification.

to represent the agent object, but instead we used the Agent class
as a spawner and communicator for our modular robots. We found
that this allowed us a lot of freedom over the robot morphology, as
we could spawn the entire robot and adjust it during runtime while
still having deterministic physics. We were also allowed freedom
over the physics, being able to freeze and restart it, as well as adjust
the physics parameters at any point. The physics updates every 0.02
seconds, but this can be adjusted.

3.2.3 The modules

We are using the EMeRGE module [84], see Figure 3.2. It is a simple
module built around one servo motor, so that each module works
like a hinge, and is 8.1 cm tall and circa 6 cm in width and length.
We limited the movement of the servo to be +/-90 degrees from
the neutral position depicted in the figure. It has four connection
faces, one male at the base, and three female on the top and sides.
The male connection face can only connect to the female ones and
vice versa, meaning the robot will have a root module with three
possible child modules, growing outwards in a tree-like structure.
The modules can be rotated at any angle relative to its parent, and
so morphologies can grow in 3 dimensions. Example morphologies
can be seen in Figure 3.3.

In Unity, the modules were modeled as two separate compound
colliders, with the three female plates being one collider, and the
male plate and servo box being the other collider. Each collider
weighed 5 kilos, and together the module weighed 10 kilos and
took up circa 1 cubic meter. All measurements were scaled up

34

Figure 3.3: Examples of well-performing morphologies. Purple and top
left: Copy controller. Yellow and top right: Sine controller. Blue and bottom
left: Decentralized CTRNN controller. Teal and bottom right: Centralized
CTRNN controller.

because this is common among users when using small physics
objects in Unity. On many forums such as Unity Answers and Unity
Forum, users report strange physics behavior in small objects, likely
due to accumulating floating point errors as Unity still uses 32-bit
accuracy as opposed to 64-bit accuracy. While we should have tested
the system in proper scale and made a comparison, due to time
constraints we opted for scaling them up from the start.

The colliders were both physics Rigidbodies and were connected
through two ConfigurableJoint components configured to work like
a hinge. To control the joint target position, the corresponding
JointDrive had to be configured, which meant some manual tuning
as the robot would either have too much force, or not be able to move
at all. Finally, the JointDrive spring value was set to 200, while the
damper was set to 5, and the maximum force was left to its default
of the max 32-bit floating point number, 3.402823e+38. Lastly, the
angular drag of the female connection plate collider was set from
0.05 to 0 to not slow its rotation. Other values were left at default.

The original design for the modules includes infrared proximity
sensors on each face. This was also implemented in our abstraction
of the module, although the workings of the exact sensor model were
not replicated. Instead, sensors here register all distances through a
ray cast, meaning the distances it can register are not capped and
could get very high. For not registering a distance, for example from
being angled towards the sky, a sensor returns -1.

If a module occupies the connection site, the sensor will pick up
the small distance towards the module. This was kept because the
modules will move a little in relation to each other, which a controller

35

might use to detect the presence and behavior of child modules. In
theory, this will allow controllers to change their behavior based
on sensing if they are a leaf module or not. In a system where
connections between modules can break, this could also be used by
the controller to avoid losing modules, but this is not done in this
system.

3.3 Implementation

In this section, general implementation details are given for the
system. In the case of controllers and the experimental encodings,
these are presented in respectively experiment 1 and 2, where they
are relevant. The different encodings will not be used in experiment
1, but all controllers will be used in experiment 2, meaning they
should be read sequentially.

Below, we go through the robot representation and construction,
evolutionary algorithm, and fitness function.

3.3.1 Robot representation

Initialization

The robots are represented as directed trees of nodes in a direct
encoding. Nodes correspond directly to modules in the phenotype.
Constructing a random robot consists of adding child nodes with
a diminishing probability based on the depth. Specifically, the
presence of a child node with current depth d and overall max depth
D is determined by the Boolean expression

Add Node = normal(µ, σ) <
D − d − 1

D

=
exp− 1

2

(
x−µ

σ

)2

σ
√

2π
<

D − d − 1
D

where σ and µ are parameters that determine the normal
distribution, and x is a random number from a uniform distribution
between 0 and 1. As d gets higher, the probability of adding a node
gets smaller.

Note that the µ and σ does not correspond directly to the mean
and standard deviation of the distribution of robot size, however
they give some control over the mean and spread. As seen in

36

0.00

0.05

0.10

0.15
Pe

rc
en

ta
ge

Varying mu
0.65, 0.15
0.6, 0.15
0.55, 0.15
0.5, 0.15
0.45, 0.15

Varying sigma
0.55, 0.15
0.55, 0.25
0.55, 0.35
0.55, 0.45
0.55, 0.55

0 3 6 9 12 15 18 21 24 27
Nr Modules

0.00

0.05

0.10

0.15

Pe
rc

en
ta

ge

Varying start probability
0.5, 0.0
0.6, 0.0
0.7, 0.0
0.8, 0.0
0.9, 0.0

0 3 6 9 12 15 18 21 24 27
Nr Modules

Varying end probability
0.7, -0.2
0.7, 0.0
0.7, 0.2
0.7, 0.4
0.7, 0.6

Figure 3.4: Distributions of robot size in populations when varying
initialization parameters. Robot size is measured as number of nodes,
and the y-axis shows the percentage of robots in a population with this
number of nodes. Top row shows the non-linear decrease using a normal
distribution, bottom row shows the linear decrease.

Figure 3.4, varying the µ gives control of the mean, while also
affecting the spread, and varying σ only affects spread. Additionally,
at initialization a robot is forced to have 3 nodes or more. If it has
less, the robot is reinitialized.

This method of initializing robots gives a similar distribution of
number of nodes in individuals when compared to a linear decrease
in addition probability until the max depth is reached. An example
of this could be the boolean function

Add Module = x < s − (s − e)
d

D − 1

where x is a random number from a uniform distribution between
0 and 1, s is the start probability, e is the end probability, and d is
depth and D is the overall depth. In short, this function linearly
interpolates between the start and end probability using the current
depth.

These two approaches, with different parameters for µ and σ

and s and e, gives distributions as seen in Figure 3.4. While both
approaches could have been used, the non-linear decrease using a
normal distribution gives control over the mean and spread while

37

having an even, normal distribution, thus that was chosen. Different
values for µ and σ were tested, and in the end the distribution seen
in Figure 3.5 was chosen, with µ = 0.75 and σ = 0.35.

Mutation

A direct encoding was chosen in our system when keeping in
mind our experiments. Although good indirect encodings offer
many benefits, like increased search space exploration [27, 43], we
considered it appropriate to use a direct encoding. This makes it
easier to manipulate mutation to be more gradual, as we will later do
in experiment 2. In addition, a part of the goal in experiment 1 is to
test the effects of duplicating control, and so our baseline controllers
should not also duplicate through an indirect encoding.

Because of this use of a direct encoding, mutation is done on each
node in the directed tree using a breadth first approach. Each node
has four different mutation possibilities:

1. Angle: Randomly switch the angle of the module relative to its
parent. Possibilities are 0, 90, 180, and 270 degrees.

2. Remove module: Remove one random child node. This can
remove an entire branch.

3. Add module: Add one child node in a random connection site
at a random angle. The child will as far as possible be initialized
with its parent’s control parameters.

4. Copy branch: If there are both occupied and unoccupied con-
nection sites, one child branch is copied over to another con-
nection site. This mutation was chosen to facilitate symmetry
and large jumps in the search landscape, but is quite volatile
because it can change the robot solution very drastically.

Each node’s mutation probability p is given by the function

p = P/size

where P is the global morphology mutation rate, and size is the
genome’s number of nodes. Dividing the probability is done to
not have larger creatures mutate more than smaller ones. If they
did, larger creatures would be unstable solutions, quickly changing
and disappearing from the search space. When dividing it, the
morphology mutation rate corresponds to the chance of a creature
mutating and ensures all creatures will mutate the same amount.

38

0 3 6.11456 9 12 15 18
Number of Modules, avg: 6.11456

0.00

0.05

0.10

0.15

Pe
rc

en
ta

ge

Figure 3.5: The distribution of number of modules in individuals in a
random population.

We wanted to encourage robots to grow; with more modules,
robots can have diverse solutions with more actuation and power,
meaning they in theory can get further than a smaller creature. As
such, the probabilities between the different mutation options are
slightly biased in favor of adding modules.

The probabilities seen in Table 3.2 are multiplied with the node
mutation rate, leading to an even lower per-gene mutation rate. For
every node, each gene mutation can occur with the probability of
the individual per-gene mutation rate. Therefore, multiple gene
mutations can occur in one node, and multiple node mutations can
occur across the morphology when the mutation operator is called.

Phenotype

Each directed tree is sent to the Unity executable in a string
representation, where it is decoded and constructed. The built
phenotype’s modules correspond directly to the nodes in the
directed tree.

Before starting the evaluation, the robot is pruned breadth-first
of any branches that collide with the robot or the environment.
This means that the genome might have unexpressed modules, that

Mutation rate values
Angle 0.2

Remove module 0.25
Add module 0.3
Copy branch 0.25

Table 3.2: The morphology gene mutation rate values. These are further
scaled by the global morphology mutation rate.

39

with further mutation may come to be expressed. In addition,
unexpressed modules can cause bloating of the genome, as many
modules are added that never physically change the performance. In
this case, bloating of the genome will cause the per-module mutation
rate to drop, meaning robots are stabilized from mutating if the
bloating occurs. It was not a common occurrence in the experiments,
but did occur in some individuals.

3.3.2 Evolutionary algorithm

The evolutionary algorithm used has tournament selection, with
a tournament size of 4, and generational replacement. It is
implemented using the DEAP framework [85].

Generational replacement was chosen because it can sometimes
dislodge a population from early convergence. This happens
because the best genotype will rarely be kept when the population is
mutated, and no elites are kept. Other parameters of the algorithm
are also chosen to keep diversity. Most notably, the tournament
selection size is kept small to increase selection pressure on the
elites, while still being large enough to avoid a noisy evolutionary
progression.

The elite from each generation was saved as a file for later use.
Therefore, when considering the fitness of a run at generation X,
we will not use the elite at generation X, but rather the best elite
found up until generation X. This is done because when conducting
a search for a robot, realistically you would be interested in the most
fit individual and not the last.

Morphology and controller have separate mutation rates that
were found by grid search, further explained in the experiment
sections. The controllers all have separate mutation powers, where
controller parameters are mutated with Gaussian distributions
based on the power.

3.3.3 Fitness function

The task that we measure the modular robots on is locomotion away
from the origin during a set amount of time (100 steps of 0.2 seconds,
roughly equaling 20 seconds in real time). Because this often leads to
robots discovering the immediate optima of the somersault (a well-
known problem [86]) or simply falling over, the robots are given 2
seconds to fall before the evaluation starts. This period is intended

40

Figure 3.6: An evolved cartwheel in 7 frames. The robot initially balances
on its "leg" and "arm" before it gains actuation, whereupon it throws itself
on its "head" and tumbles over.

for the robot to release the potential energy of its spawn position
and come to rest, however the final runs would show that some
morphologies evolved to prolong its falling time with for example
features such as two limbs to balance on (Figure 3.6). In the start
period, the controller is not given input and will not give output.

The fitness function is then

Fitness =
√
(xend − xstart)2 + (yend − ystart)2

where xstart is the x-position after 2 seconds of simulation, and xend
is the x-position when the simulation ends. Likewise for y. The
position of the robot is the position of the root module, always
spawned at the world coordinate origin, which discourages the
misdemeanor of growing tall and falling. The evaluation will stop
early after 4 seconds from start if the robot has not moved in the last
2 seconds.

Due to the scaling of the robots, this fitness should not be
interpreted as meters or centimeters, because one unit corresponds
to the length of one module. The length of one module is circa 6 cm,
and so a score of for example 30 should be interpreted as a score of
1.8 meters.

41

42

Chapter 4

Experiment 1

In experiment 1, we will answer these research questions:

1.1 What are the effects of a controller that duplicates control units
across the morphology?

1.2 How can a controller best be designed when co-optimizing
morphology and control?

In order to address both research questions, we will implement
four different controllers. We will have a baseline controller,
a centralized controller, a decentralized controller, and lastly a
decentralized controller that reuses controls in many different parts
of the body. These will be tested simultaneously in one experiment.
We analyze the controllers’ performance and convergence, as well as
their morphological change during evolution, and robustness in the
face of random perturbations.

First, the controllers will be presented, after which their mutation
rate parameters will be tuned, and then they will be tested on the
task of locomotion. Lastly, we analyze the results.

4.1 The controllers

There are four controllers implemented in this system (Figure 4.1),
each described below. For all of them, the output produced is the
desired angle of a module’s servo.

Three of the controllers use a continuous time recurrent neural
network (CTRNN), which we explain in more detail in the back-
ground. This network was chosen to have the possibility of dynamic
temporal behavior [54], as it has memory through recurrent connec-
tions and can exhibit any dynamic behavior.

43

a b

c d

Sine 1

Sine 1

Sine 1

Sine 1

CTRNN3 1

CTRNN3 1

CTRNN3 1

CTRNN3 1

CTRNN3 1

CTRNN3 1

CTRNN45 15

Figure 4.1: The controllers and how they could map to the modules in a
small modular robot. The arrows with numbers represent inputs (left side
of boxes) and outputs (right side of boxes). a) The sine controller, b) The
centralized CTRNN controller, c) The decentralized CTRNN controller, d)
The copy controller.

We used the CTRNN implementation from the neat-python
library1. neat-python’s CTRNN mutation operators can adjust
weights and biases, change activation and aggregation functions,
and cut away/disable or add/enable connections and nodes. Here,
each gene mutation rate is as seen in Table 4.1, with a mutation
power of 0.2, and this is equal for all our CTRNN controllers. These
rates are then scaled by the controller’s control mutation rate.

In the neat-python library, the CTRNN is implemented as a pure
Python class hierarchy. This is good to avoid package dependencies
and is easy to manipulate from outside but might affect speed.
With large networks, we experienced a considerable increase in
simulation time.

1https://neat-python.readthedocs.io/en/latest/

44

https://neat-python.readthedocs.io/en/latest/

Mutation Prob. Options/limits
Connection add 0.2

Connection delete 0.2
Connection enable 0.01 True False

Node add 0.2
Node delete 0.2

Bias 0.8 [-1.0, 1.0]
Activation 0.2 sin tanh sigmoid

Aggregation 0.1 sum min max mean median product
maxabs

Weight 0.8 [-1.0, 1.0]
Response 0.2 [-1.5, 1.5]

Bias replace 0.1
Response replace 0.1

Weight replace 0.1

Table 4.1: The gene mutation rates for a CTRNN controller. These are
scaled by the per-controller mutation rate. Default values are marked.

Open-loop sine wave generator

The open-loop sine wave generator is a decentralized controller
that performs well because it produces periodic movement through
sine waves, although it has no sensor input. In our case, the sine
wave controller is used to provide a baseline to compare the other
controllers to. The controller is given by the function

y(t) = A ∗ sin(w ∗ t + p) + o

where A is the amplitude, w is the frequency, t is time, p is phase, and
o is offset. y(t) is the controller output at time t that is directly fed to
the servo’s desired angle. The amplitude, phase, and offset mutate
with a Gaussian distribution with a standard deviation of 0.5.

To enable easier synchronization between the modules, the
frequency is fixed in all sine wave controllers and is not allowed
to mutate. We noticed that without this, the sine controller is
susceptible to choose local optima solutions.

The sine wave controller has 3 parameters for each joint, meaning
an average robot of 6 modules will have 18 parameters to optimize
for the controller. When a module is added to the morphology, it is
instantiated with the control parameters of the parent module.

45

Centralized CTRNN

A straightforward approach to using a CTRNN for a modular robot
is to simply gather all sensor outputs and feed them into one big
CTRNN, that then outputs all controller actions. This leads to a fixed
size CTRNN controller.

In initial experiments with the centralized CTRNN controller,
different numbers of inputs and outputs were tested. Initially,
because the system at large is meant for max 50 modules, 50 modules
were allowed in the network. Because this led to very large networks
and very few modules used, the number of modules were gradually
reduced after viewing the trends in size and performance. Because
there was a clear tendency to have a small number of modules, we
chose 15 to be the number of modules that would be controlled.
This allowed the network to be as small as possible while still
accommodating larger creatures at initialization, however it was
very rare to see larger creatures with this controller. When a modular
robot is smaller than 15 modules, the rest of the inputs to the network
is set to 0.

The centralized CTRNN controller will have 45 inputs and 15
outputs. It is initialized with 45 hidden nodes but is only 20%
connected. The order of mapping modules to input and output
follows a depth first ordering of the modules, so that the first three
inputs and first output goes to the root, the second three inputs and
second output goes to its child, and so on.

The centralized CTRNN controller ends up having circa 600
connections and 60 nodes, each with respectively 3 and 5 parameters
to tune, for a total of 2100 parameters. Because of this size, and the
neat-python implementation, the evolution time of robots with this
controller was the bottleneck that decided the number of samples to
use.

Decentralized CTRNN

Foregoing the benefits of a centralized brain, a decentralized
approach leads to less parameters and a less complex optimization.
The decentralized approach consists of each module getting its own
CTRNN controller. It is implemented in the same way as the sine
controller, except CTRNNs are slotted in where previously there
were sine controllers. So likewise, new modules are instantiated
with the control parameters of the parent module.

46

Here, we were able to use a small compact network of 3 inputs
for each sensor and 1 output for the action. With 3 hidden nodes
and enabling all connections from the start, we get 4 nodes and 16
connections, totaling 68 parameters. For an average sized robot with
one of these controllers in every module, this leads to about 400
parameters.

Copy Decentralized CTRNN

The copy decentralized CTRNN controller, or the copy controller for
short, is our alternative to the decentralized approach. It functions
by having each robot keep a list of two CTRNN networks, which
maps to different modules. The networks are the same as in the
decentralized CTRNN controller. At initialization, these networks
are clones, but as the optimization progresses, they will mutate
separately. The modules will then mutate which network they use
for control, theoretically allowing specialization. When a module is
added to the morphology, it will use the same network as its parent
module.

At the start of an evaluation, the networks are copied into
their corresponding modules, hence the name. They then function
independently of each other, and because of different sensor input
such as detecting ground or the presence of child modules, they will
likely behave differently. Nevertheless, it is reasonable to assume
it will not achieve the level of specialization that the decentralized
CTRNN controller can. While this might be a trade-off, we assume
the copy controller will be quicker to achieve a good fitness, and
possibly not be as dependent on number of modules.

This controller, like the centralized CTRNN controller, is the same
no matter the size of the robot. This gives us two controllers with 68
parameters, for a total of 136 parameters. Additionally, each module
can change which controller they use, giving us a further average of
6 parameters.

4.2 Parameter tuning

For each controller, a set of 8 suitable controller mutation rate
parameters were chosen to test along the 8 morphology mutation
rate values. This resulted in a total of 64 pairs to check for each
controller, as seen in Figure 4.2. For the body and the sine and
decentralized CTRNN controllers, higher values were chosen than

47

0.82
0.64
0.48
0.32
0.24
0.16
0.08
0.01

Co
nt

ro
l m

ut
. r

at
e

15 13 14 15 15 15 15 14
13 17 15 16 14 16 15 14
13 13 11 17 16 13 16 16
9 15 13 15 16 12 16 15
10 11 11 14 12 15 13 10
10 10 13 12 10 10 11 12
11 9 11 13 11 11 11 10
6 8 7 9 7 7 11 8

Sine
0.82
0.64
0.48
0.32
0.24
0.16
0.08
0.01

9 10 11 11 10 7 11 6
10 13 10 14 7 8 11 14
12 8 6 10 6 10 15 7
5 6 6 17 8 12 8 9
10 8 11 12 7 6 7 8
10 8 7 6 13 7 7 8
5 6 5 5 6 13 6 11
3 4 4 5 6 7 5 6

Decentralized CTRNN

0.0
1
0.0

8
0.1

6
0.2

4
0.3

2
0.4

8
0.6

4
0.8

2

Morph. mut. rate

0.48
0.32
0.24
0.16
0.08
0.04
0.02
0.01

Co
nt

ro
l m

ut
. r

at
e

14 13 17 17 13 15 13 11
14 15 16 17 15 13 15 17
14 15 20 17 14 17 17 15
18 18 16 20 17 19 15 16
16 14 14 16 17 16 16 14
15 15 16 19 15 15 16 15
14 16 14 16 14 16 17 16
12 11 13 15 14 14 14 14

Centralized CTRNN

0.0
1
0.0

8
0.1

6
0.2

4
0.3

2
0.4

8
0.6

4
0.8

2

Morph. mut. rate

0.48
0.32
0.24
0.16
0.08
0.04
0.02
0.01

11 9 13 9 9 5 9 7
15 18 13 20 15 9 8 10
18 17 8 15 22 14 7 6
11 12 16 13 12 7 5 9
9 9 10 12 20 14 14 17
15 9 16 6 11 8 9 13
9 8 12 21 13 14 5 7
6 8 9 9 9 7 6 17

Copy CTRNN

Figure 4.2: The grids filled for the parameter tuning, values are rounded
average fitness for each mutation rate pair.

0 10 20 30 40 50
Generation

5

10

15

20

25

Fit
ne

ss

Body mutation rates fitnesses

0.01 0.08 0.16 0.24 0.32 0.48 0.64 0.82
Body mutation rate

5

10

15

20

25

Fit
ne

ss

Body mutation rates last fitnesses

0 10 20 30 40 50
Generation

5

10

15

20

25

Fit
ne

ss

Control mutation rates fitnesses

0.82 0.64 0.48 0.32 0.24 0.16 0.08 0.01
Control mutation rate

5

10

15

20

25

Fit
ne

ss

Control mutation rates last fitnesses

Figure 4.3: The collapsed rows (controller mutation rates) and columns
(morphology mutation rates) for the sine controller grid search.

48

for the copy and centralized CTRNN controllers: This was because
the former three divide the mutation rate internally by the number
of modules, while the latter two do not. If it were not divided, a
larger creature would mutate more than a smaller one. This would
make it an unstable solution that quickly changed and disappeared
from the search space. Since the average number of modules is
6 (Figure 3.5), the per-module mutation rate is 0.14 for the largest
sweep value of 0.82. In the morphology mutation, this is further
divided by circa 1/4th for each gene in the module, exact values can
be seen in Table 3.2

Each mutation rate pair was run for 50 generations with a
population size of 50, which totaled 2500 evaluations. This was done
4 times for each of the 64 pairs.

As can be seen in Figure 4.2, the results from the sweep were often
quite even. Only the copy and decentralized CTRNN controllers
saw huge differences between different pairs. Because we suspected
there were a lot of variation in the data, simply picking a well
performing square was likely not a good strategy. As such, the
data in the columns and rows were collapsed to give an idea of
each parameters performance while varying the other, as seen in
Figure 4.3. This gives us a more robust measure of performance
because we have more data for each parameter value and are less
dependent on the other mutation parameter.

Even after collapsing the data, it was not immediately clear which
values to choose. For example, in Figure 4.3 we can tell the controller
mutation rate should be somewhere in the interval 0.48-0.82, but the
differences between these values are not large. Therefore, we settled
on choosing a few of the ones that were contenders after the initial
sweep and run a few more evolutionary runs on those (circa 10 more
runs). A winner would then often be clearer. The final parameters
for all controllers can be seen in Table 4.2.

Controller Morph. rate Controller rate
Sine wave 0.32 0.64

Centralized CTRNN 0.24 0.16
Decentralized CTRNN 0.24 0.48

Copy CTRNN 0.32 0.08

Table 4.2: The mutation rate parameters chosen after the sweep. Note
that for the sine wave and decentralized CTRNN controller, as well as the
morphology, the working mutation rate on one module is divided by the
number of modules in the robot.

49

0 100 200 300 400 500
Generation

5

10

15

20

25

30

Fit
ne

ss

Copy CTRNN
Decentralized CTRNN
Centralized CTRNN
Sine

Figure 4.4: The fitness progressions for all four controllers. The solid
lines are averages, and the shaded areas represent the standard error.
Distributions can be seen in Figure 4.5.

4.3 Results

4.3.1 Controller performance

The final runs were done on populations of 50 individuals for 500
generations, for a total of 25 000 evaluations. This was done for
all controllers 64 times, and the resulting performances can be seen
in Figure 4.4. Additionally, Figure 4.5 shows the distribution of
performances for the different controllers.

In order to get an overview of all significant differences, 6 two-
sided Mann-Whitney U test were performed between all controllers
at generations 50 and 500, a total of 12 tests. The null hypothesis is
that the final performances came from the same distribution, while
the alternative is that they did not, that they are different. An alpha
level of 0.05 was chosen. Because we were conducting multiple
comparisons, Bonferroni correction was used. This gives us an
adjusted alpha level of 0.05 / 12 = 0.00416. The test results can be
seen in Table 4.3.

At generation 50, the sine and centralized CTRNN controllers
were significantly different from the decentralized CTRNN con-
troller (both p < 0.0001). There was no significant difference between
the sine and copy (p > 0.2), sine and centralized CTRNN (p > 0.07),
copy and centralized CTRNN (p > 0.06), and the copy and decen-
tralized CTRNN controllers (p > 0.01).

50

10 20 30 40 50
Fitness

Copy CTRNN

Decentralized
CTRNN

Centralized
CTRNN

Sine

B
ra

in

Figure 4.5: The final fitnesses for all runs for each controller. The
distributions are showed with the underlying points scattered below. A
boxplot is placed over the scattered values, with the mean marked with a
triangle.

At generation 500, the copy controller was significantly different
from the centralized CTRNN, the sine, and the decentralized
CTRNN controllers (respective p-values p < 0.003, p < 0.0004, p
< 0.0002). There was no significant difference between the sine
controller and the centralized and decentralized CTRNN controllers
(both p > 0.1), or between the centralized and the decentralized
CTRNN controllers (p > 0.04).

4.3.2 Effect on morphology

In Figure 4.6, the progressions for number of modules in morpholo-
gies are plotted for all the controllers. Here, we can see that the sine

vs. Gen. 50 Gen. 500
Copy CTRNN Sine 0.22886 0.00037
Copy CTRNN Cen. CTRNN 0.06142 0.0025
Copy CTRNN Dec. CTRNN 0.01642 0.00012
Cen. CTRNN Sine 0.07431 0.10264
Cen. CTRNN Dec. CTRNN 1e-07 0.04559
Dec. CTRNN Sine 1e-06 0.11747

Table 4.3: The p-values for the Mann-Whitney U tests performed between
all the controllers’ best achieved fitnesses. Significant p-values are
marked in bold.

51

10

20

Nr
 M

od
ul

es

Copy CTRNN

Nr
 M

od
ul

es

Decentralized CTRNN

0 200 400
Generation

10

20

Nr
 M

od
ul

es

Centralized CTRNN

0 200 400
Generation

Nr
 M

od
ul

es

Sine

Figure 4.6: The progression of number of modules for all runs. Only
changes in number of modules that led to a more fit individual is shown.

and centralized CTRNN controllers both end up at a lower average
number of modules than the copy and decentralized CTRNN con-
trollers. To confirm if this was significant, as previously 6 two-sided
Mann-Whitney U tests were performed with Bonferroni correction
between the different count distributions. An alpha level of 0.05 was
used, which means that with correction we consider p-values below
0.05 / 6 = 0.0083 as significant.

Here we found that the copy and decentralized CTRNN con-
trollers had no significant difference between them (p > 0.4) and the
sine and centralized CTRNN controllers likewise had no difference
(p > 0.2). However, the copy and decentralized CTRNN controllers
were both different from the sine and centralized CTRNN controllers
(all p < 0.0001).

Qualitatively, we recognize this from looking at the robots. The
sine and centralized controllers had small, effective strategies while
the copy and decentralized CTRNN controller both tended towards
larger morphologies. The sine and centralized CTRNN controllers
would do large, powerful movements, with some modules in the
morphology not moving at all. As opposed to this, the copy and
decentralized CTRNN controllers favored small, rapid movements.
Here, the copy moved most its modules, while the decentralized
CTRNN controller sometimes had unmoving modules. Example

52

20

40
Fit

ne
ss

Copy CTRNN

Fit
ne

ss

Decentralized CTRNN

5 10 15 20
Nr Modules

20

40

Fit
ne

ss

Centralized CTRNN

5 10 15 20
Nr Modules

Fit
ne

ss

Sine

Figure 4.7: The expressed modules of all generation 500 elites plotted
against their fitness.

behaviors can be seen in the accompanying video2.
In Figure 4.7, we see that there seems to be a divide between

larger creatures that get high fitness, and those that get low fitness.
Presumably, this is because falling strategies tend to be larger in
order to get further, but it is also interesting to see that some larger
solutions did quite well. Especially the copy controller did well
with larger morphologies, managing to produce a fitness on par
with the centralized CTRNN and sine controllers with upwards of
10 expressed modules.

When looking into the issue of early convergence of morphology
only, Figure 4.8 was made. It shows shaded areas between the 25
and 75 percentiles of number of beneficial morphology changes in a
run in each interval of 50 generations. It shows that the centralized
CTRNN controller mutates its morphology the least from the very
start and stops mutating much at circa generation 200. The sine and
decentralized CTRNN controllers mutate a little more, especially at
the start, but follow a similar pattern. Compared to this, the copy
controller experiences more beneficial morphology mutations at the
start than the others, and continually throughout the runs. This is
congruent with the slow convergence seen in the fitness progression

2https://www.mn.uio.no/ifi/english/research/groups/robin/research-
projects/cocomo/media/kvalsund_master_thesis.mp4

53

https://www.mn.uio.no/ifi/english/research/groups/robin/research-projects/cocomo/media/kvalsund_master_thesis.mp4
https://www.mn.uio.no/ifi/english/research/groups/robin/research-projects/cocomo/media/kvalsund_master_thesis.mp4

0 - 50 50 - 100 100 - 150 150 - 200 200 - 250 250 - 300 300 - 350 350 - 400 400 - 450 450 - 500
Generations

0

2

4

6

8

M
or

ph
ol

og
y

ch
an

ge
s

Copy CTRNN
Decentralized CTRNN
Centralized CTRNN
Sine

Figure 4.8: Number of morphology changes that led to better fit
individuals in each generation interval. The shaded areas are between
the 25 and 75 percentiles, and the dots are the medians.

figure, Figure 4.4.
To support this, Figure 4.9 was made to show the different

controller’s traversal of the search space. Only the best individuals
in each generation were used to give a sense of how a controller
traversed the morphology space. Here, each module coordinate in a
robot was added together to create a new coordinate representing a
morphology after the following formula:

x1

y1

z1

+

x2

y2

z2

+ ... +

xn

yn

zn

 =

xa

ya

za

 (4.1)

where (xi, yi, zi) is the position of module i at initialization,
n is the number of modules, and (xa, ya, za) is the new abstract
coordinate. Note that different morphologies can map to the same
coordinate, and that the abstract coordinate was rounded to the
nearest integer coordinate in the figure.

These morphology landscape traversal plots suggests that the
copy controller explores more of the landscape and has more dif-
ferent morphologies than the other controllers. The sine and decen-
tralized CTRNN controllers also appear to cover a bit more of the
search space. Compared to these, the centralized CTRNN controller
explores a smaller portion of the morphology landscape. This is es-
pecially noticeable because the sine and centralized CTRNN has the
same mean number of modules. After rounding to the nearest inte-
ger coordinate, the copy controller fills 489 unique voxels, the decen-
tralized CTRNN controller fills 234 voxels, the sine controller fills 214
voxels, and the centralized fills 135. We are more interested in the

54

X Accumulated

-30-25-20-15-10-5 0 5 101520 25 30

Y A
ccu

mula
ted

-30-25-20-15-10-5
051015202530

Z
Ac

cu
m

ul
at

ed

-10
-5
0
5
10
15
20
25
30
35
40
45

(a) Decentralized CTRNN controller

X Accumulated

-30-25-20-15-10-5 0 5 101520 25 30

Y A
ccu

mula
ted

-30-25-20-15-10-5
051015202530

Z
Ac

cu
m

ul
at

ed

-10
-5
0
5
10
15
20
25
30
35
40
45

(b) Copy CTRNN controller

X Accumulated

-30-25-20-15-10-5 0 5 101520 25 30

Y A
ccu

mula
ted

-30-25-20-15-10-5
051015202530

Z
Ac

cu
m

ul
at

ed

-10
-5
0
5
10
15
20
25
30
35
40
45

(c) Sine controller

X Accumulated

-30-25-20-15-10-5 0 5 101520 25 30

Y A
ccu

mula
ted

-30-25-20-15-10-5
051015202530

Z
Ac

cu
m

ul
at

ed

-10
-5
0
5
10
15
20
25
30
35
40
45

(d) Centralized CTRNN controller

0 5 10 15 20 25 30
Fitness

Figure 4.9: The explored morphology landscape by the elites from each
generation for all runs. Each plot has all 64*500=32000 individuals’
abstract morphology position rounded to a voxel coordinate. The axes are
the same to show the relative size of each cluster.

amount of space traversed, rather than the granularity at which a
space was searched, however there is little difference between num-
ber of unique coordinates and number of unique voxels.

4.3.3 Robustness

To test robustness, we considered two typical malfunctions in
modular robots: Modules falling off and modules losing power and

55

becoming passive. The first malfunction will be simulated in one
kinder test, and one quite difficult: The kinder test removes only
one leaf node at a time and notes the fitness change, while the more
difficult test systematically removes each module. To simulate losing
power and becoming passive, each module in turn has its control
disabled.

These three tests are done for each elite from all 256 runs. In
addition, we differentiate between the size intervals 0-5 modules
(small size), 5-10 modules (medium size), and 10+ (larger size).
This is done because larger creatures could respond better to
perturbations, given that one module makes up less of their total
mass.

The results from removing only leaf nodes can be seen in
Figure 4.10a. The copy and sine controllers preserve progressively
more of their fitness the larger the creature, although the sine
controller never reaches the 10+ size range. The decentralized and
centralized CTRNN controllers both appear to preserve roughly the
same fitness percentage at each size range. Especially the small sized
decentralized CTRNN robots and the medium sized sine robots
preserve a lot of their fitness.

The test of removing each module in turn is more volatile than the
last, and the results can be seen in Figure 4.10b. The results are quite
similar to the test above, although now most of the percentages are
lower. Here, we can see that most of the controllers are rendered
unusable after this, except for the medium and large sized copy
controller and the medium sine controller. We see this because the
preserved fitnesses of the others are so low they are likely simply
falling over.

Lastly, the test of disabling each module’s control in turn yielded
slightly more fitness preservation than the other two tests. The
results can be seen in Figure 4.11, and it appears that disabling
control is far less volatile than losing modules. Again, the copy
controller shows more robustness the larger it gets, and notably so
does the rest of the controllers too. The copy and decentralized
CTRNN controllers are by far the most resistant to this malfunction
given their larger sizes, however they both show much worse fitness
preservation than the other two controllers at the small size range.

56

0

10

20

30
Fit

ne
ss

 p
re

se
rv

ed

Cop
y 0

-5

Cop
y 5

-10

Cop
y 1

0+

Dec.
 0-

5

Dec.
 5-

10

Dec.
 10

+

Cen
. 0

-5

Cen
. 5

-10

Sin
e 0

-5

Sin
e 5

-10
0%

20%

40%

60%

80%

100%

Fit
ne

ss
 p

re
se

rv
ed

(a) Removing only leaf modules

0

10

20

30

Fit
ne

ss
 p

re
se

rv
ed

Cop
y 0

-5

Cop
y 5

-10

Cop
y 1

0+

Dec.
 0-

5

Dec.
 5-

10

Dec.
 10

+

Cen
. 0

-5

Cen
. 5

-10

Sin
e 0

-5

Sin
e 5

-10
0%

20%

40%

60%

80%

100%

Fit
ne

ss
 p

re
se

rv
ed

(b) Removing modules

Figure 4.10: Fitness preservation when applying module removals. All
256 elites had one remove perturbation applied, specified in each subfigure,
and their performances measured. Bottom shows the percentage of original
fitness that was preserved, and the top shows the total preserved fitness.

57

0

10

20

30

40

Fit
ne

ss
 p

re
se

rv
ed

Cop
y 0

-5

Cop
y 5

-10

Cop
y 1

0+

Dec.
 0-

5

Dec.
 5-

10

Dec.
 10

+

Cen
. 0

-5

Cen
. 5

-10

Sin
e 0

-5

Sin
e 5

-10

0%

20%

40%

60%

80%

100%

Fit
ne

ss
 p

re
se

rv
ed

Figure 4.11: Fitness preservation when applying control disabling.

4.4 Analysis

Our results have shown that the copy controller performs signif-
icantly better than other controllers when co-optimizing the mor-
phology and control of modular robots. Since it duplicates behav-
iors, modules are more likely to be synchronized. Moreover, when a
new module is added, a working control unit can be inherited that is
already potentially useful. Even though the sine and decentralized
CTRNN controllers had a similar feature of inheriting the parent
module’s control, the copy controller is more likely to be useful since
it is already evolved to work in many different parts of the robot. In
addition, because a control mutation affects multiple modules, it has
an overall larger effect on the behavior of the robot compared to a
mutation in the other controllers. Because of this, the copy CTRNN
approach is less able to fine-tune a single controller compared to the
other approaches and therefore may rely on morphological change
to see a performance increase. This feature would thereby promote
continued morphological diversification compared to the other con-
trollers, as seen in Figure 4.8.

In terms of controller robustness, we have shown that the
copy controller displays a pattern of reliably getting more robust
to perturbations the larger its morphology is. Because the copy
controller only has two networks, it is possible that the controller

58

is using its sensors to detect the presence of children and in that
way modify the networks’ behavior to have more specialization.
In that case, when losing modules, the copy controller will adapt
its behavior to the new morphology. This feature is useful when
there are perturbations to the system, making it robust. This could
also be one of the reasons the copy controller frequently gains high
fitness with large morphologies: The controller is simply robust
to morphology mutations. It is likely therefore we see increased
robustness in the larger morphologies compared to the smaller ones:
The same controllers that would be beneficial when adding modules
would also be beneficial when removing modules. However,
growing larger is favored because it adds force to the robot, allowing
it to get further.

From the fitness progressions, we can see that the sine and
centralized CTRNN controllers converged rather fast compared to
the other two. They also showed a pattern of quickly finding
a final morphology of relatively small size, and then optimizing
the controller. Meanwhile, the other two controllers spent time
developing both and thus converged slower. Because having more
modules means the robot has more potential force, allowing for
more movement and higher fitness overall, the sine and centralized
CTRNN controllers were then at a disadvantage. These results
confirm that there is a trade-off between fine-tuning controllers and
getting a good fitness with a small morphology while losing the
potential of getting a higher fitness and a large morphology.

The distributions of solutions for the controllers vary wildly, as
seen in Figure 4.5. While the sine and centralized CTRNN controllers
had a more solidly high performance, the decentralized CTRNN
controllers both had very flat distributions, stretching from the worst
to the best performances recorded. The lower fitnesses can be
accounted for as robots that grow tall and fall in one direction, as
some of these have been visually confirmed to be. The higher values
of the copy, decentralized, and centralized CTRNN controllers often
had rapid module movements that either led to small jumps or
shuffling behaviors. Because of fixing the sine controller’s frequency,
this strategy was not available to the sine controller, and so its
worse performance must at least be partially attributed to that. Even
though it could have rivalled the others by growing larger, the
CTRNN controllers’ behavior was likely less complicated to evolve.
Still, the sine and centralized CTRNN much more often arrived at

59

very similar local optima, which tended to have the same fitness.
Here, the centralized CTRNN controller had an advantage over the
sine controller because it could optimize further by adding non-
periodic movements.

Because we had the same morphology mutation rate for the
sine and copy controllers, we could expect similar morphological
diversity from these. However, it is clear from our results that
this is not the case. When keeping in mind that some of the more
scalable strategies available to the CTRNN controllers were not
available to the sine controller, it could simply be that there were
less available good morphologies for the sine controller. Even so, the
lack of exploration of morphologies suggest that the sine controller
could be improved. Perhaps using a decentralized copy approach
like the copy controller would have enabled more morphological
diversification during evolution.

Every controller shows increased robustness with larger sizes
when faced with controller perturbation. It is also the least
detrimental perturbation of the ones tested. It is likely that as
opposed to losing mass and actuation, having a dead module is
simply less disruptive. However, it can be argued that because
the morphologies are largely decided early in the runs and survive
through many controller mutations, the morphologies are far more
robust to controller changes than the controllers are to morphology
changes. This further emphasizes the challenge of co-optimizing
morphology and control, where morphologies are side-lined in
the optimization, while also possibly becoming the weak link in
response to damage.

60

Chapter 5

Experiment 2

In experiment 2, we address these research questions:

2.1 How do encodings with different degrees of gradual mutation
affect landscape traversal?

2.2 How do encodings with different degrees of gradual mutation
affect performance?

In order to answer these questions, direct encodings with varying
degrees of gradual mutation will be tested on the task of locomotion
in order to compare their performances. All the encodings will
be tested with all the controllers from experiment 1 to understand
under what circumstances the encodings are useful. In addition, we
will assess the smoothness of mutation in the encodings.

Figure 5.1: Examples of module sizes. These are respectively, from left to
right, 1.9, 1.45, 1.0, 0.55, 0.1.

61

5.1 Variable scale of modules

In order to have more gradual mutation, we introduce being able to
scale the module length, as seen in Figure 5.1. Only the middle box
is scaled in length, and can be any scale above 0.05, although for this
experiment scale is capped at 3.0. When the three female connection
plate are rotated by the servo motor, they rotate relative to the top of
the box no matter the scale.

When the scale of a module is below 1.0, its actuation is removed
and the motion between the top connection site and box goes from
being limited to being locked. This is done because a servo motor
would not realistically be able to fit in a shorter module. In addition,
the connection sites at the sides are removed because they would
collide with the parent module when the module is short. In this
case, the sensors on these connection sites return -1.

Because we are working with variable sizes, the mass change also
had to be modeled. We wanted the mutation of adding length to be
as gradual as possible, and therefore we modeled the mass change
as a linear increase:

m = 1 + 4s

where m is the mass in kilos, and s is the scale of the module. At
scale 1.0, the weight is exactly 5, making the three top connection
sites and the bottom box and connection site together have a mass of
10.

5.2 The encodings

Here, three alterations to the normal direct encoding used in
experiment 1 is presented. They all use the variable scale of modules
as described above, and so the mutation probabilities between
mutation options are now as described in Table 5.1. In addition,
a mutation power had to be introduced for scale, meaning scale
mutates with a normal distribution with a standard deviation of 0.5.

When a robot is initialized, all modules in all encodings have
scale 1.0. This is done so that all encodings will develop from
the same basis and let us more easily compare their performances.
However, the length of modules that gets added through mutation
depends on the encoding used.

Although these encodings are constructed to be gradual, they
all are still allowed the copy branch mutation, which can be very

62

disruptive. This was done because being able to make large jumps
in the search space can introduce more variation. As our algorithm
does not have crossover operators to explore, and struggled with
local optima, we hoped the copy branch mutation could provide
this variation. With these encodings, we hope to instead enable the
robots to climb hills more easily in the landscape, while also letting
them make large alterations to the genome.

It is important to note that if a module with a child mutates to
be shorter than 1.0 in scale, its side children will be removed, and
its top child will remain. This can lead to quite vast changes to the
genome, as a non-leaf node scaling to below 1.0 can cut away many
nodes at once. With the same reasoning as was used for keeping the
copy mutation, this behavior was kept in all the encodings.

Variable scale encoding

The variable scale encoding adds only two aspects to the normal
direct encoding: Modules can now mutate their scale, and added
modules can have any scale between 0.05 and 2.05.

This encoding does not make mutation more gradual, but it
is intended to control for the effect of allowing variable scale. It
might be that simply allowing modules to be longer will have the
effect of walking further because creatures are larger. If this is
the case, we expect to see the variable scale encoding outperform
the normal direct encoding, and we must then compare the more
gradual encoding performances to this one. However, it might also
be that modules become shorter, as this leads to less weight per
servo.

Mutation Fixed scale Variable scale
Angle 0.2 0.15

Remove module 0.25 0.2
Add module 0.3 0.25
Copy branch 0.25 0.2

Scale 0.0 0.2

Table 5.1: The morphology gene mutation rate values for fixed scale
and variable scale encodings. These are further scaled by the global
morphology mutation rate.

63

Figure 5.2: Growing of a module illustrated.

Growing encoding

Further adding on the variable scale encoding, the growing encoding
changes only one thing: Added modules are now 0.05 in scale. They
will be allowed to grow by mutating scale. In an ideal case, a module
will slowly reach full length and gain actuation through consecutive
mutation as seen in Figure 5.2.

This encoding is intended to make the add module mutation less
disruptive: In a small robot, an add module mutation will add a
large amount of mass and movement without giving the robot any
development to adjust. In theory, this mutation slowly introduces
the mass and size until a scale of 1.0 is reached, whereupon it will
gain actuation. It might be the case that this slow change encourages
the addition of modules, and that we will see more modules in robots
of this type of encoding.

Gradual encoding

Finally, the gradual encoding is the most gradual encoding in this
experiment. It builds on the growing encoding by adding several
things:

1. When a module is not fully grown, it is not allowed to add a
child module at the available connection site. Instead, when an
add module mutation occurs, the scale of the module is instead
increased.

2. Only leaf nodes can be removed.

3. When the leaf node to be removed has a scale of over 0.25, it
will not be removed. Instead, its scale will be decreased.

This encoding was made with the intention of reducing the
disruption of both the add module and remove module mutation.

64

0.82
0.64
0.48
0.32
0.24
0.16
0.08
0.01

Co
nt

ro
l m

ut
. r

at
e

13 13 15 17 17 16 14 13
14 15 14 12 17 16 14 12
12 17 17 15 17 13 14 13
10 15 12 15 13 12 16 14
12 16 14 10 14 11 13 13
12 13 11 11 8 11 12 15
8 10 9 8 10 12 10 13
8 10 8 9 9 8 10 9

Sine
0.82
0.64
0.48
0.32
0.24
0.16
0.08
0.01

7 10 6 7 8 7 15 11
12 6 9 8 8 10 9 10
6 10 6 7 8 8 6 7
8 7 7 12 15 7 7 13
7 5 9 13 6 5 16 7
10 5 7 11 7 7 9 8
10 5 9 5 13 5 8 6
4 9 9 9 5 5 7 8

Decentralized CTRNN

0.0
1
0.0

8
0.1

6
0.2

4
0.3

2
0.4

8
0.6

4
0.8

2

Morph. mut. rate

0.48
0.32
0.24
0.16
0.08
0.04
0.02
0.01

Co
nt

ro
l m

ut
. r

at
e

13 16 16 15 11 15 17 18
14 16 17 16 14 19 19 12
16 16 20 18 13 20 17 18
14 17 18 18 15 16 12 16
15 21 22 25 17 11 16 15
14 16 16 17 18 18 13 16
16 15 9 17 14 11 14 14
13 14 17 15 16 13 15 16

Centralized CTRNN

0.0
1
0.0

8
0.1

6
0.2

4
0.3

2
0.4

8
0.6

4
0.8

2

Morph. mut. rate

0.48
0.32
0.24
0.16
0.08
0.04
0.02
0.01

12 8 10 8 6 11 7 6
8 7 10 7 14 10 24 10
7 6 14 10 14 10 14 15
11 19 9 19 24 14 16 15
12 11 18 11 16 7 10 11
5 11 6 9 23 19 18 6
6 10 5 7 12 8 13 10
8 7 11 7 11 7 11 12

Copy CTRNN

Variable

Figure 5.3: The grid search for all controllers with the variable scale
encoding.

It also further encourages modules to grow out: Compared to the
growing encoding, there is a strong bias towards scaling up as both
the 0.25 chance of adding a module and the 0.2 chance of scaling can
lead to a larger module.

5.3 Parameter tuning

As in experiment 1, a grid search will be conducted for each of the
12 new combinations of controllers and encodings. In total there
will be 16 combinations, but the data from experiment 1 will be
reused. Again, 50 generations with a population size of 50 was run 4
times for each of the 64 mutation rate pairs. All the encodings were
tested for the same morphology mutation rates. The results for each
encoding can be seen in Figure 5.3, Figure 5.4, and Figure 5.5.

After collapsing the rows and columns as was also done in the
experiment 1 tuning, it was clear that there were no larger differences
between the normal and the variable scale encodings’ mutation rate
performances. In fact, it appeared that the ideal parameters for each
encoding and controller combination was close or identical to the
normal encoding’s parameters for that controller.

65

0.82
0.64
0.48
0.32
0.24
0.16
0.08
0.01

Co
nt

ro
l m

ut
. r

at
e

17 16 14 16 13 14 14 14
14 11 13 14 14 14 14 13
14 12 14 12 13 15 16 13
11 15 12 13 12 15 13 13
11 12 13 10 11 13 13 12
11 11 12 13 11 13 13 12
7 9 8 11 9 9 11 10
7 7 8 6 7 8 9 7

Sine
0.82
0.64
0.48
0.32
0.24
0.16
0.08
0.01

7 9 9 9 11 7 8 12
10 17 11 9 9 7 14 11
6 13 11 13 12 10 11 15
6 9 15 8 9 6 7 6
7 9 8 13 9 6 8 6
6 7 6 20 11 16 7 10
4 5 6 10 15 7 8 6
6 4 7 6 6 6 6 7

Decentralized CTRNN

0.0
1
0.0

8
0.1

6
0.2

4
0.3

2
0.4

8
0.6

4
0.8

2

Morph. mut. rate

0.48
0.32
0.24
0.16
0.08
0.04
0.02
0.01

Co
nt

ro
l m

ut
. r

at
e

14 13 16 18 16 15 14 15
15 11 18 15 12 14 17 14
14 15 16 16 16 19 16 12
17 15 19 15 14 13 16 21
15 19 13 16 14 17 15 12
14 15 20 18 16 20 20 21
15 14 16 18 14 18 13 18
13 19 13 15 10 12 16 15

Centralized CTRNN

0.0
1
0.0

8
0.1

6
0.2

4
0.3

2
0.4

8
0.6

4
0.8

2

Morph. mut. rate

0.48
0.32
0.24
0.16
0.08
0.04
0.02
0.01

13 15 8 6 7 6 7 7
7 16 10 11 12 16 7 12
11 10 15 10 16 14 6 11
11 12 10 16 18 7 10 7
15 9 12 13 12 18 21 13
10 14 16 15 11 8 24 12
14 12 18 13 7 10 11 8
8 7 8 12 7 4 6 7

Copy CTRNN

Growing

Figure 5.4: The grid search for all controllers with the growing encoding.

0.82
0.64
0.48
0.32
0.24
0.16
0.08
0.01

Co
nt

ro
l m

ut
. r

at
e

12 12 15 18 14 15 13 14
13 12 15 16 16 17 14 13
12 12 13 14 14 18 16 14
12 9 14 12 16 14 14 16
12 11 11 12 16 13 12 18
14 10 11 12 14 13 14 12
9 10 10 10 12 10 12 11
7 7 7 7 10 10 10 8

Sine
0.82
0.64
0.48
0.32
0.24
0.16
0.08
0.01

10 11 9 12 10 9 6 7
11 7 6 10 15 7 9 8
10 8 7 7 7 15 15 11
6 5 13 15 5 6 11 16
5 8 9 6 7 8 6 7
6 16 12 6 12 7 7 11
8 10 6 8 6 7 11 7
5 4 5 8 7 10 5 6

Decentralized CTRNN

0.0
1
0.0

8
0.1

6
0.2

4
0.3

2
0.4

8
0.6

4
0.8

2

Morph. mut. rate

0.48
0.32
0.24
0.16
0.08
0.04
0.02
0.01

Co
nt

ro
l m

ut
. r

at
e

14 12 15 13 10 15 11 12
16 13 15 17 18 12 10 13
15 17 16 18 12 18 10 10
15 15 16 16 19 14 15 14
16 13 17 18 22 15 17 16
13 15 15 14 13 17 13 14
14 14 15 14 17 14 13 14
12 12 15 14 11 13 15 16

Centralized CTRNN

0.0
1
0.0

8
0.1

6
0.2

4
0.3

2
0.4

8
0.6

4
0.8

2

Morph. mut. rate

0.48
0.32
0.24
0.16
0.08
0.04
0.02
0.01

8 9 5 6 6 6 7 6
7 10 10 5 15 10 6 7
16 7 10 12 11 6 14 12
13 19 7 18 14 12 13 16
12 14 20 14 13 16 11 10
10 10 11 12 13 8 13 7
5 11 17 7 7 6 14 10
4 6 8 14 7 10 6 7

Copy CTRNN

Gradual

Figure 5.5: The grid search for all controllers with the gradual encoding.

66

While running a few more runs on parameter contenders could
find the ideal parameters for each encoding, we feared that random
variation could cause a bad set of parameters to be chosen on
accident. If the encoding approaches have no difference between
them as the tuning data suggests, we would then end up comparing
a bad to a good tuning, and not actually investigating the hypothesis.
This is especially a concern compared to in experiment 1 because
the tuning data for the different encodings are so similar amongst
controllers.

With this in mind, we chose to reuse the mutation rates for each
controller from experiment 1, as seen in Table 4.2. We do run the risk
of an encoding having the potential to perform better with a different
set of parameters, however we believe that doing this will facilitate
better comparison.

5.4 Results

5.4.1 Encoding performance

The final runs were done on populations of 50 individuals for 500
generations, for a total of 25 000 evaluations. This was the same
as in experiment 1, which allowed us to reuse the normal encoding
performances for all the controllers. In order to match the sample
size of the new data, which was 32 runs for each controller-encoding
pair, 32 samples were picked from the experiment 1 data for each
controller. The resulting performances of all 512 runs can be seen
Figure 5.6. Examples of evolved phenotypes can be seen in the
accompanying video1.

Although there appears to be few differences at a glance, the copy
and decentralized CTRNN controllers do display some differences
in fitness. However, these controllers also have a lot of variation in
performance, as we saw in experiment 1.

To determine which of the apparent differences were significant,
six two-sided Mann-Whitney U tests were performed between each
encoding with one controller. This results in a total of 24 tests. The
null hypothesis is that there is no difference between the encodings
we test between, and the alternative is that there is. Like in
experiment 1, an alpha level of 0.05 is chosen, that with Bonferroni
correction results in an adjusted alpha level of 0.05 / 24 = 0.00208.

1https://www.mn.uio.no/ifi/english/research/groups/robin/research-
projects/cocomo/media/kvalsund_master_thesis2.mp4

67

https://www.mn.uio.no/ifi/english/research/groups/robin/research-projects/cocomo/media/kvalsund_master_thesis2.mp4
https://www.mn.uio.no/ifi/english/research/groups/robin/research-projects/cocomo/media/kvalsund_master_thesis2.mp4

10

20

30
Fit

ne
ss

Copy

Normal
Variable
Growing
Gradual 5

10

15

20

25
Dec_Ctrnn

Normal
Variable
Growing
Gradual

0 100 200 300 400 500
Generation

5

10

15

20

25

Fit
ne

ss

Cen_Ctrnn

Normal
Variable
Growing
Gradual

0 100 200 300 400 500
Generation

5

10

15

20

Sine

Normal
Variable
Growing
Gradual

Figure 5.6: Fitness progressions for the four different encodings with the
four different controllers.

The tests showed that there were no significant differences
between any of the encodings, as can be seen in the p-values in
Table 5.2. Even with a less conservative correction method than
Bonferroni, it does not seem that we would have found significant
results. Although some of the p-values are lower, like between the
normal and gradual and variable encodings for the decentralized
CTRNN controller, they are not nearly low enough to reject the null
hypothesis. In these cases, we would need to conduct the experiment
again with a larger sample size to say anything with certainty.

Copy Dec. CTRNN Cen. CTRNN Sine
Normal vs gradual 0.877 0.054 0.481 0.587
Normal vs variable 0.605 0.069 0.742 0.577
Normal vs growing 0.365 0.311 0.783 0.056
Gradual vs variable 0.692 0.663 0.292 0.888
Gradual vs growing 0.489 0.814 0.712 0.386
Variable vs growing 0.763 0.394 0.489 0.280

Table 5.2: The p-values for the Mann-Whitney U tests performed for all
the controllers between the different encodings.

68

Cop
y n

orm
al

Cop
y v

ari
ab

le

Cop
y g

row
ing

Cop
y g

rad
ua

l

Dec.
 no

rm
al

Dec.
 va

ria
ble

Dec.
 gr

ow
ing

Dec.
 gr

ad
ua

l

Cen
. n

orm
al

Cen
. v

ari
ab

le

Cen
. g

row
ing

Cen
. g

rad
ua

l

Sin
e n

orm
al

Sin
e v

ari
ab

le

Sin
e g

row
ing

Sin
e g

rad
ua

l
0%

20%
40%
60%
80%

100%
Fit

ne
ss

 p
re

se
rv

ed

(a) The add mutation’s effect

Cop
y n

orm
al

Cop
y v

ari
ab

le

Cop
y g

row
ing

Cop
y g

rad
ua

l

Dec.
 no

rm
al

Dec.
 va

ria
ble

Dec.
 gr

ow
ing

Dec.
 gr

ad
ua

l

Cen
. n

orm
al

Cen
. v

ari
ab

le

Cen
. g

row
ing

Cen
. g

rad
ua

l

Sin
e n

orm
al

Sin
e v

ari
ab

le

Sin
e g

row
ing

Sin
e g

rad
ua

l
0%

20%
40%
60%
80%

100%

Fit
ne

ss
 p

re
se

rv
ed

(b) The remove mutation’s effect

Cop
y n

orm
al

Cop
y v

ari
ab

le

Cop
y g

row
ing

Cop
y g

rad
ua

l

Dec.
 no

rm
al

Dec.
 va

ria
ble

Dec.
 gr

ow
ing

Dec.
 gr

ad
ua

l

Cen
. n

orm
al

Cen
. v

ari
ab

le

Cen
. g

row
ing

Cen
. g

rad
ua

l

Sin
e n

orm
al

Sin
e v

ari
ab

le

Sin
e g

row
ing

Sin
e g

rad
ua

l
0%

20%
40%
60%
80%

100%

Fit
ne

ss
 p

re
se

rv
ed

(c) The scale mutation’s effect

Figure 5.7: The different mutations’ effects on all individuals at genera-
tion 499.

5.4.2 Smoothness of landscape

In the EDHMoR article of Faina et al., the rugged landscape problem
was visualized by varying one evolved robot’s morphology in 80
different ways and plotting the corresponding fitnesses [7]. This
method of checking smoothness when varying one parameter is
especially applicable to our experiment, because we can then directly
check each aspect of the encodings and their effect on the fitness

69

landscape.

We do not, however, have any clear sense of adjacency of
mutations in our system. Although different scales of the same
module are adjacent in terms of morphology, it is difficult to
determine the adjacency of adding, removing, or scaling different
modules in a robot. Smoothness of the landscape is therefore
determined here as the degree of fitness change when applying
mutations. We measure this relative to the normal encoding baseline
and end up with an idea of the relative landscape smoothness when
conducting one mutational step.

In our case, we are interested to see if there is increased
smoothness between encodings when adding and removing a
module. The smoothness of scaling is also relevant to test because
our encodings are based on the assumption that this will not be a
disruptive mutation.

In addition, instead of checking just one creature, all the final
generation individuals from all 512 runs were mutated five times
with respectively only the add module, remove module, and scale
mutation. This way, we can see the average fitness difference
between neighbors. The scale mutation was applied to the normal
encoding individuals to get a baseline for how disruptive it was for a
creature that was evolved without the scale mutation. This will show
us how disruptive it is with no evolution, and if there is a difference
after evolution.

It also needs to be noted that because we are mutating the most
evolved individuals, it is not likely that any of the mutations will
be beneficial. These individuals are results of stabilized runs, and
most of the mutations will have been tried before. We therefore
focus on how much the fitness is preserved after mutation: The
ideal would be that most of the fitness is preserved because that
would mean the change was minimal and gradual. We also consider
the percentage of preserved fitness, because if we just considered
the preserved fitness directly, the high-performing controllers would
unfairly register much more fitness loss.

The results of applying the add module mutation to each
individual from each encoding and controller pair can be seen in
Figure 5.7a. It appears that the variable encodings on average
preserve more of the original individual’s fitness compared to the
normal encoding. In all the controllers, the gradual encoding
preserves more than the others, averaging at 40-50% percent.

70

Interestingly enough, the variable encoding also preserves more
than the normal encoding, with about 10% in each controller. Lastly,
the centralized CTRNN controller in general do not respond well to
the add module mutation, as discussed in experiment 1. There is
an increase in preserved fitness for the gradual encoding, but this is
likely because the gradual mutation sometimes grows the module
instead of adding a new one.

On the opposite end, the remove module mutation was tested
and plotted in the same way in Figure 5.7b. Here we see again that
the most noticeable difference is between the gradual encoding and
the others, which still averages at 40-50% fitness preservation. It
appears the remove module mutation is quite detrimental and not
much difference can be seen between the encodings apart from this.

Lastly, the scale mutation was tested in the same way in
Figure 5.7c. The averages within controllers appear quite even, with
only the variable encoding consistently preserving the most fitness.
On average, around 50% is preserved in most of these encoding-
controller pairs, and it appears that the scale encoding is indeed
the least detrimental one of those investigated here. No obvious
difference can be seen between the encodings evolved with and
without the scale mutation, implying that there is no favoring of
individuals that perform well even after scaling.

5.4.3 Landscape traversal

Like in experiment 1, a plot was made to depict the different
controller-encoding pairs’ exploration of the morphology landscape.
The elite from each generation for all generations and runs were
used for each controller-encoding pair. Using the same method as
in experiment 1, with equation (4.1), all module positions in a robot
was added together to create a new abstract coordinate representing
the morphology. In addition, due to the low degree of information in
the y-axis comparatively, the up direction, and mostly for illustrative
purposes, the y-axis was collapsed in the plot. All 3 dimensions were
used in the accompanying table, Table 5.3, counting unique voxels.

In the table, it is clear that the encodings led to some percent more
morphological diversity than their normal encoding counterparts.
Notably, less so for the copy controller than the others. Although
this is to be expected because modules now can be any length, it is
interesting that there is even an increase in the growing and gradual
encodings compared to the variable encoding. Interestingly, the

71

Controller Encoding Voxels % of normal
Copy normal 208

variable 288 +38 %
growing 309 +49 %
gradual 304 +46 %

Dec CTRNN normal 124
variable 216 +74 %
growing 223 +80 %
gradual 222 +79 %

Cen CTRNN normal 85
variable 119 +40 %
growing 139 +64 %
gradual 172 +102 %

Sine normal 117
variable 177 +51 %
growing 218 +86 %
gradual 207 +77 %

Table 5.3: The unique voxels filled for each controller-encoding pair. The
rightmost column displays how many more percent voxels were filled for
that encoding compared to the controller’s normal encoding.

centralized CTRNN saw a 100% increase in voxels filled with the
gradual encoding, and has a larger cluster in Figure 5.8.

Figure 5.8 shows the exploration spatially. Here we can see
that in the copy and decentralized CTRNN controllers, the variable
encoding seemed to explore quite far outside of the normal cluster.
The decentralized CTRNN controller with the growing encoding
also shows a similar pattern. Because coordinates are added
together, we can tell that these morphologies were quite large.
From observation, this coincides with many large and falling
morphologies being observed with the variable encoding, and the
poorer average performance. It still appears that some of these
robots get a higher fitness, which either indicates effective falling or
ineffective locomotion.

5.5 Analysis

Our findings show that there is no fitness increase with the
different gradual mutations, but that there is likely smoothing of
the fitness landscape. Returning to our hypothesis, we are therefore
unable to confirm that a more gradual mutation might smooth
the landscape and increase fitness. In fact, because performances

72

normal variable growing gradual

copy

dec_ctrnn

cen_ctrnn

sine

0 5 10 15 20 25 30
Fitness

Figure 5.8: The morphology landscape exploration by each controller-
encoding pair. The y-axis is collapsed into the xz-plane. The dotted gray
line differentiate between the different controllers.

between encodings both appeared to be and were statistically
indifferent from each other, these findings suggest that there is no
benefit to these versions of gradual encodings. While some p-values
were low enough to warrant further investigation, especially in the
decentralized CTRNN controller, these trended toward decreasing
fitness instead of increasing it.

Even so, there is a discernible difference in the convergence of the
different encodings in the copy controller (Figure 5.6). While ending
up at roughly the same fitnesses at generation 500, the growing
and gradual encodings both seem to not have converged. This is
especially interesting considering that the copy controller itself is

73

quite slow to converge. If allowed to run for longer, they might have
indeed gained a fitness above the normal encoding. Regarding why
we are only seeing this pattern in the copy controller, there are two
immediate explanations following from experiment 1. The first is
that there is simply a lot of variation in this controller, and had we
performed a statistical test at generation 250, we would have found
no difference. The second explanation is that the copy controller
displays a lot more beneficial morphology mutations, leading to the
gradual morphology encoding being allowed more mutations and
thus more room to have an effect.

From experiment 1, we learned that the amount of beneficial
morphology mutations was quite low. This is also a well-known
trend in co-optimizing morphology and control: The morphology
is rarely the focus of the optimization, as it converges early. When
considering that we found no difference between the encodings,
it appears that the morphology encoding simply did not have
much effect. Especially the sine and centralized CTRNN controllers
showed the least beneficial morphology mutations in experiment
1, and perhaps the most similar performances between encodings
in experiment 2. It can therefore be argued that the effect of the
encodings might not appear because they were reliant on a certain
number of morphology mutations to be selected in order to be
effective. In particular, the growing and gradual encodings relied on
at least 3 beneficial mutations to gain a module with full actuation. In
a system that already did not encourage morphology mutations, this
could lead to stagnation as modules never grew out and the robot
could not change size.

From the results in landscape traversal however, it appears
that some of the encodings exacerbated tendencies of falling.
Especially the variable encoding suffered from this in the copy and
decentralized CTRNN controller, leading to large morphologies with
effective falling behaviors. A possible explanation for this could be
that in the beginning, when most controllers are not yet usable, the
ability to increase size and mass and thus falling speed and length is
selected for. This tendency was already present in all the controllers,
and it could be that the encodings heightened this tendency, leading
to worse average performance. Instead of disproving gradual
encodings overall, this instead points to a different system perhaps
being more suited to study these effects.

74

Chapter 6

Discussion

To sum up our findings, we have two experiments that investigate
controllers and encodings when considering their search space
traversal and effect on performance. This led us to conclude with
the effectiveness of a control strategy using duplication and the
ineffectiveness of gradual encodings in our system. Starting out,
we had two hypotheses, each with two corresponding research
questions. Below, these will be repeated and the answers to them
summarized. Then, we will move onto a general discussion of
our results, their limitations, possible future work, and lastly some
ethical considerations.

6.1 Summary

Hypothesis for experiment 1: A controller that duplicates control
units across the robot body will lead to more morphological
diversity and therefore increased fitness. In addition, we wanted
to investigate different control strategies.

The first research question connected to this is "What are
the effects of a controller that duplicates control units across
the morphology?". Our results show that there was a higher
performance from the copy controller, that duplicated two control
units across the entire body. This simple feature led to a controller
that could not fine tune its behavior and could not rely on controller
placement to decide actions. Instead, it had to rely on morphological
development to optimize, leading to more morphological diversity
found in this controller. It is likely that the evolved controllers
either adopted general strategies that could work in most modules
or had strategies with different expression based on detection of
child modules and therefore placement in the morphology. With the

75

larger robot sizes and more morphological development, ultimately
we saw a significant increase in performance compared to the other
strategies.

The main takeaway from the above point is not simply to
use copy controllers above other controllers, but it is instead
an argument for controllers with duplication in general. With
duplication, we believe the controller evolving to be robust to
morphological changes can happen in other systems as well. Along
with this, duplicated controllers also lead to fewer parameters to
optimize, and a coarser sampling of the fitness landscape that
makes the search space appear smaller. This in turn leads to more
exploration. So far, and to the best of our knowledge, we have not
seen a simple study into controllers with duplication ever be made.
This can be considered an isolated case argument for why copying
and reusing parts of the controller in many parts of the robot can
lead to increased fitness.

The second research question was "How can a controller best be
designed when co-optimizing morphology and control?". This al-
lowed us an open exploration of different strategies of centralized
and decentralized control. As mentioned above, the control strategy
that led to the best performance was the copy controller, but the cen-
tralized CTRNN and the decentralized sine controller approaches
both led to good results with more reliability, as they had less vari-
ation. However, we explore their lack of morphological diversity,
and suggest that the reason for their quick convergence was in fact
premature convergence of morphology. The naive decentralized
CTRNN approach performed the worst, as it both was slow to con-
verge and ended up at no better fitness than the sine and centralized
CTRNN controllers. Because the copy controller is a simple modifi-
cation to the decentralized CTRNN controller, we show that decen-
tralized control on its own is perhaps ineffective, but that it quickly
can become a strategy that competes with other control strategies.
Our hope is that these findings will be of use to researchers design-
ing their control strategies.

Hypothesis for experiment 2: A more gradual encoding can
smooth the landscape and lead to better performance.

The first research question connected to this hypothesis is "How
do encodings with different degrees of gradual mutation affect
landscape traversal?". When applying the different add, remove,
and scale module mutations in a controlled manner on the most

76

evolved individuals, it was found that the more gradual encodings
did for the most part lead to less fitness decrease than the normal
direct encoding. The gradual encoding preserved the absolute most
in both remove and add node mutation. The scale mutation was not
disruptive in any of the encodings. Preserving more fitness indicates
to us that the fitness landscape is smoother, where mutations are less
disruptive and do not lead to large fitness drops. Overall, it appears
that the gradual encoding led to smoother traversal of the landscape.

The second research question is "How do encodings with dif-
ferent degrees of gradual mutation affect performance?" After im-
plementing and testing several encodings with varying degrees of
gradual morphology mutation, we found no significant difference
between them in performance when compared to our baseline direct
encoding. We hypothesize that overall, due to the low degree of mor-
phological development in the system, the different encodings did
not have any effect. These findings are somewhat inconclusive due
to there being some doubt as to whether all controller-encoding pairs
ran to convergence. Consequently, this research question would ben-
efit from being revisited with a system with more morphological de-
velopment and that makes sure evolution plateaus.

6.2 Further discussion

In general, these two experiments present very different methods for
traversing the fitness landscape, which can explain why they did or
did not increase performance. In short, the controller experiments
highlighted the link between coarse sampling and more exploration,
and the encoding experiments showed pitfalls of smoother sampling
and local optima. This will further be explored below.

In Figure 6.1 and Figure 6.2, a comparison is made between the
imagined different samplings of the fitness function,

f itness = f (p(g))

where g is the robot genotype, p is the function to generate a
phenotype from a genotype, and f is the function by which we
evaluate it. In Figure 6.1, we imagine that the x-axis consists of
several more or less unordered phenotypes, as the actual space of
p(g) is so large that it cannot be illustrated. In this specific example,
we imagine an instance where we start in phenotype A, with
controller and morphology A. Close to us in the fitness landscape,

77

A B

Figure 6.1: An imagined scenario of two phenotypes in a fitness
landscape.

A B
Phenotype

1
2

Fit
ne

ss

(a) Baseline

A B
Phenotype

1

2

Fit
ne

ss

(b) Copy controller

A B
Phenotype

1

2
Fit

ne
ss

(c) Gradual encoding

Figure 6.2: The different imagined samplings. The shaded area shows the
reachable space with the mutation rate and granularity of sampling.

there is a more fit phenotype B, with controller and morphology
B. The difference between the morphologies is just the addition of
one module, and the difference in controller is one that can control
morphology A and one that can control morphology B. This is an
isolated case of needing a morphology mutation and needing the
controller to follow suit.

With a normal direct encoding and a normal controller, perhaps a
decentralized sine controller or our centralized CTRNN controller,
the landscape will be sampled like in Figure 6.2a. Between
phenotype A and B, there are some phenotypes that perform quite
poorly, as either the controller is maladjusted to the morphology
or vice versa. On the opposite side of this fitness minimum, there
are phenotypes where the controller and morphology cooperate and
perform better than phenotype A. However, because a search is

78

unlikely to accept traversing this fitness minimum, such a sampling
is ineffective in exploring the space and finding higher fitness.

With the copy controller, the controller space is vastly truncated
because of the relatively few parameters (Figure 6.2b). The sampling
becomes coarser, and the reachable samples through mutation with
the given mutation rate becomes larger. Between morphology A and
B, there is now only a few maladjusted phenotypes, and phenotype
B is reachable within a few generations. In some cases, because
the controller is optimized to work in many different controllers,
controller A is equal to controller B, and phenotype B can be reached
with a simple add node mutation.

On the opposite end, the gradual encoding increases the gran-
ularity of the morphology space sampling. Because modules can
be of any length, there are an infinite number of morphologies be-
tween A and B (when ignoring that floating-point representation is
limited). This has two main effects: 1) Morphologies that lead to
only a minor detriment to performance with the given controller ex-
ists within reach, and 2) the number of steps needed to get to phe-
notype B vastly increases. We imagine this encoding as being able
to reveal stepping stones in the performance valley between pheno-
type A and B (Figure 6.2c) that the search can use to cross, again
lessening the deceptive nature of the search. However, as the start-
ing position might have more solid neighboring phenotypes, the few
solutions attempting to cross the gap might find themselves in un-
stable territory, with most of their mutational offspring dying off to
unusable changes. Because of this, it might simply be that reveal-
ing stepping stones at the cost of increasing the distance will never
work. After assessing this, the gradual encoding approach seems to
have the same issues as the normal encoding in crossing deceptive
landscapes, and it seems not unreasonable that they would gain the
same performance. Even so, because of the smoother sampling, the
gradual encoding should be more able to climb local optima.

Although this example is imagined, it illustrates the importance
of sampling when considering a search’s traversal. When construct-
ing a robotic system to co-optimize, you are defining a morphology
and controller space, that together create the phenotype space. This
will define what robots you can achieve with this system. Further,
the granularity will have a lot to say about the search, and from our
findings it might appear that a coarser sampling will allow better fit-
ness over all because it explores better. This is congruent with the

79

general notion that fewer parameters to optimize will be easier to
optimize. Still, it seems reasonable that once the search arrives at
a good solution, the granularity can be increased in order to locally
explore and find the absolute optimum [27]. This means that it can
be beneficial to switch from the normal encoding to the gradual in
order to climb a hill locally, and to switch from the copy controller
to the naive decentralized CTRNN controller in order to specialize
each controller with the given morphology.

6.3 Limitations and future work

Although the results are promising, they are of course limited
by generalizability: We have tested these concepts in our system,
which itself has many features which may muddle the conclusions.
Additionally, some aspects of how the experiments were conducted
could have been improved. All limitations, and how they could be
amended, as well as other future work will be presented here.

Even though we were able to get a good amount of sample
runs, the number of generations were limited by resources. After
viewing the lack of convergence in the initial experiments, number
of generations were increased from 200 to 500 in the final runs. Even
so, we do not observe full convergence in some of the controller-
encoding pairs. Most notably the copy and decentralized CTRNN
controllers lack convergence in both experiments, with beneficial
changes still occurring and the average fitness still rising.

In experiment 1, this is mostly consequential for the conclusion
that the decentralized CTRNN is statistically on par with the sine
and centralized CTRNN controllers. It might be that, given more
generations, it would prove to rise above them in performance.
Still, from the level of convergence seen, it is unlikely that any
of the conclusions reached would change. It is also worth noting
that the copy controller’s lack of convergence offers the possibility
of gaining even higher performance if the needed computational
resources are available. However, in experiment 2, the lack of
convergence in the copy’s gradual and growing encodings implies
that the conclusion might have changed given more generations.
It might be that this controller in conjunction with the gradual
encodings could produce even higher fitness because of its increased
amount of morphological development. We recognize that this is
a limitation of the experiment, and that further research into these

80

encodings might indeed reveal a statistical difference between them.

As in any such experiment conducted only on one system, these
results would benefit from being verified on a different robotic
system. The EMeRGE modules seemed to be prone to local
optima: Its square corners and large flat surfaces provided pushing,
grabbing, and balancing in a way other modules likely would not.
The balancing especially led to some interesting strategies in order
to still exploit the falling optima (as in the cartwheel showed in
Figure 3.6). In addition, although it was deemed usable for the
purposes of these experiments, the modules were perhaps too strong
in simulation. This created some less realistic jumping behaviors,
especially in the sine controller. This could be fixed with further
tweaking of the weight to force ratio of the modules, perhaps by
using the real module values. All in all, implementing the same
strategies on a different robotic system would help confirm these
findings and support their transferability to other systems. An
option for this could be the RoboGrammar modules [87], that have
far less angular modules that could provide a very different set of
behaviors.

The use of sensors was not the main focus in these experiments,
however further incorporating them and repeating the controller
experiment seems a worthwhile endeavor. Here, more realistic
sensors closer to those described in the original EMeRGE paper
could be implemented [84]. Because the copy controller lacks
the ability to specialize module networks, it might instead have
specialization of modules through detection of placement through
sensors. This would cause the different modules to adopt different
roles, making the system potentially very robust to damage. In an
investigation centered around this controller and its use of sensors,
it could be determined whether this actually occurs. The copy
controller in a modular robot could also be examined through the
view of swarm robotics and determine if it can achieve the benefits
usually associated with swarms.

For more future work, we could study the controllers and
encodings when using a quality diversity algorithm instead of a
standard EA. When considering the landscape traversal discussed
above, we notice that especially the problems discussed in relation to
the gradual encoding would diminish with an algorithm like MAP-
elites [28]. Because it has bigger potential to discover morphological
niches, and because MAP-elites keeps niches no matter how unstable

81

their champion solution are, this algorithm might be what the
gradual encoding needs to excel. In relation to the controllers, it
would be useful to see if the exploration by the copy controller still
dominates when using an algorithm that encourages exploration so
heavily.

6.4 Ethical considerations

In this thesis and the work surrounding it, we hope to contribute to
a future where robotics is a normal part of everyday life. Although
our work is exploring the foundation for which more commercially
available robotics can be built upon, we still feel that because our
aim is tied to this vision, we would be remiss if we did not address
some ethical issues this might lead to.

In particular, a normal concern when it comes to robotics is how
it can replace human workers and lead to unemployment, and thus
economic decline. As tools gain autonomy, human workers can
be replaced with machines. Although the machines will not have
human expertise at first, progress in technology will soon leave even
fairly complicated intellectual work in the hands of a robot. An
example of this happening already is AI automatically producing
code on par with humans [88]. Machines require far less pay and
other goods, and so employers will be encouraged to choose this
option. If this is not handled thoughtfully, it will lead to economic
decline [89] and perhaps economic inequality [90].

Although there are many arguments as to why robotics might in
the future lead to economic decline, there are also theories of how
it can be managed or not happen at all [89, 90]. It is also important
to keep in mind that robots will fill roles we cannot or do not want
humans to have. For example, robots can replace dangerous human
jobs, like rescue work in dangerous areas, deep sea exploration and
maintenance, and so on. And more commonly, robots can be used in
the home to take care of sick or ageing people, allowing these people
an autonomy and mobility they currently cannot have.

In short, with the rise of robotics we are entering a time of rapid
technological change, and it is difficult to see where it might go from
here. It is still important to keep in mind that proper legislation and
other measures might have to be used preemptively to avoid the
new issues presented with automation. Hopefully, robotics will soon
become so advanced that we do have to think about these problems.

82

Chapter 7

Conclusion

Search space traversal and morphological evolvability are still
largely unresolved challenges in co-optimizing morphology and
control. Due to premature convergence of morphology and other
difficulties in properly exploring the search space, the field is
currently experiencing stagnation. Therefore, this thesis had the
goal of determining how and why morphological evolvability
and performance could be increased. In particular, we designed
experiment 1 with the goal of investigating controllers’ performance
and traversal of the morphological landscape, as well as suggesting
the copy controller strategy. We designed experiment 2 with the goal
of investigating how the landscape could be smoothed using gradual
encodings, and if this would lead to a performance increase.

In experiment 1, we found that the copy controller performed
significantly better than the other approaches. Because it only had
two networks to use for all the modules’ control, these networks
had to work in many modules and thus ended up being very
robust to morphological changes. This led to it experiencing more
morphological change and exploring more of the morphological
search space. This suggests that a decentralized approach using
duplication of control units is more suited for control in systems
like ours. While we therefore present the copy controller as a viable
control strategy with beneficial properties, we also suggest that this
indicates the benefits of duplication in controllers at large.

In experiment 2, we found that there was statistically no advan-
tage in performance to encodings with different degrees of gradual
mutation. While they did smooth the landscape, this was not re-
flected in their performance, as we could find no difference between
the baseline encoding and the gradual encodings. We hypothesize
that because there were few beneficial morphology mutations in the

83

system, the encodings had little opportunity to have any effect on
the individual.

Overall, this thesis contributes both the copy controller and
the gradual encoding to the research community. The copy
controller exhibits continued morphological diversification and
higher performance, while also making a case for reuse of control
units in controllers at large. The gradual encoding has no significant
performance increase, but because it does smooth the landscape,
it has potential uses in future work. For example, because of the
increased granularity, it has more opportunity to discover niches,
which could be useful in a quality diversity algorithm like MAP-
elites. However, there would have to be more morphological
development in the system, because if the body is simply not
optimized, this morphology encoding will not be different from a
naive morphology encoding.

In relation to early convergence of morphology, our findings
help confirm that controllers that are more robust to morphological
changes will lead to more morphological evolvability. This further
suggests that designing for such robustness, with duplication or
for example through treating the modules as homogeneous swarm
agents, might be one way to decrease premature convergence of
morphology.

Our findings also highlight the importance of sampling. As
we have seen, coarser samplings lead to increased exploration and
less fine-tuning, while a more granular sampling, from the gradual
encoding or centralized CTRNN controller, causes the search to get
stuck on local optima. As this is congruent with the findings of other
works, we further emphasize that it seems to be more important to
be able to explore than to fine-tune, and that in designing a system
you often must choose between them. However, if a beneficial
behavior is reached, there is potential to switch to fine-tuning by
more gradual search or even switch to a different optimization
strategy like reinforcement learning.

With these conclusions, we hope to contribute to future research
in co-optimized modular robots. For modular robots to live up
their promise of being versatile, reconfigurable tools, it is especially
important that morphology is not sidelined in optimizations, since
reconfigurability is their main draw. Therefore, it is important that
optimization gets better at traversing the fitness landscape, so that
we will see evolvable modular robots with more morphological

84

diversity. As we continue to work on landscape traversal, we hope
to see even more scalable and complex modular robots. It may be
that with the progress of nanorobotics, the groundwork being done
on modular robots now will see its use in small, cell-like modules
that create increasingly large and life-like robotics. Perhaps then,
co-optimized modular robotics will enter mainstream robotics, or
simply be another explored branch of science that we can hopefully
learn something from.

85

86

Bibliography

[1] K. Sims, “Evolving virtual creatures,” in Proceedings of the
21st Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1994, pp. 15–22, 1994.

[2] M. Joachimczak, R. Suzuki, and T. Arita, “Artificial Meta-
morphosis: Evolutionary Design of Transforming, Soft-Bodied
Robots,” Artificial Life, vol. 22, no. 3, 2016.

[3] G. S. Hornby and J. B. Pollack, “Evolving L-systems to generate
virtual creatures,” Computers and Graphics (Pergamon), vol. 25,
no. 6, 2001.

[4] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson, “Unshackling
evolution: Evolving soft robots with multiple materials and a
powerful generative encoding,” SIGEVOlution, vol. 7, p. 11–23,
aug 2014.

[5] J. E. Auerbach and J. C. Bongard, “Evolving complete robots
with cppn-neat: the utility of recurrent connections,” in Pro-
ceedings of the 13th annual conference on Genetic and evolutionary
computation, pp. 1475–1482, 2011.

[6] H. Lipson and J. B. Pollack, “Automatic design and manufac-
ture of robotic lifeforms,” Nature, vol. 406, no. 6799, 2000.

[7] A. Faíña, F. Bellas, F. López-Peña, and R. J. Duro, “EDHMoR:
Evolutionary designer of heterogeneous modular robots,” En-
gineering Applications of Artificial Intelligence, 2013.

[8] M. Hale, E. Buchanan Berumen, A. Winfield, J. Timmis, E. Hart,
G. Eiben, W. Li, and A. Tyrrell, “The are robot fabricator: How
to (re) produce robots that can evolve in the real world,” in
International Society for Artificial Life: ALIFE2019, pp. 95–102,
York, 2019.

87

[9] Y. Kawauchi, T. Fukuda, and M. Inaba, “"a strategy of self-
organization for cellular robotic system (cebot)",” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 3, pp. 1558–1565, IEEE, 1992.

[10] S. Murata, H. Kurokawa, and S. Kokaji, “Self-assembling
machine,” in Proceedings of the 1994 IEEE International Conference
on Robotics and Automation, pp. 441–448, IEEE, 1994.

[11] M. Yim, D. G. Duff, and K. D. Roufas, “PolyBot: a modular re-
configurable robot,” in Proceedings - IEEE International Confer-
ence on Robotics and Automation, vol. 1, 2000.

[12] K. Stoy, D. Brandt, D. J. Christensen, and D. Brandt, Self-
reconfigurable robots: an introduction. Mit Press Cambridge, 2010.

[13] R. Dawkins, The Blind Wathcmaker. Why the Evidence of Evolution
Reveals a Universe without Design. 1996.

[14] J. Lehman and K. O. Stanley, “Evolving a diversity of creatures
through novelty search and local competition,” in Genetic and
Evolutionary Computation Conference, GECCO’11, 2011.

[15] A. Wagner, “The role of robustness in phenotypic adaptation
and innovation,” Proceedings of the Royal Society B: Biological
Sciences, vol. 279, no. 1732, pp. 1249–1258, 2012.

[16] M. Kirschner and J. Gerhart, “Evolvability,” Proceedings of the
National Academy of Sciences, vol. 95, no. 15, pp. 8420–8427, 1998.

[17] F. Veenstra, P. G. de Prado Salas, K. Stoy, J. Bongard, and
S. Risi, “Death and progress: How evolvability is influenced by
intrinsic mortality,” Artificial life, vol. 26, no. 1, pp. 90–111, 2020.

[18] J. Lehman and K. O. Stanley, “Evolvability is inevitable:
Increasing evolvability without the pressure to adapt,” PloS one,
vol. 8, no. 4, p. e62186, 2013.

[19] G. P. Wagner and L. Altenberg, “Perspective: complex adapta-
tions and the evolution of evolvability,” Evolution, vol. 50, no. 3,
pp. 967–976, 1996.

[20] C. Liu, J. Liu, R. Moreno, F. Veenstra, and A. Faina, “The
impact of module morphologies on modular robots,” in 2017
18th International Conference on Advanced Robotics, ICAR 2017,
2017.

88

[21] R. Moreno and A. Faina, “Using evolution to design modular
robots: An empirical approach to select module designs,”
in International Conference on the Applications of Evolutionary
Computation (Part of EvoStar), pp. 276–290, Springer, 2020.

[22] N. Cheney, J. Bongard, V. SunSpiral, and H. Lipson, “On the
difficulty of co-optimizing morphology and control in evolved
virtual creatures,” in Proceedings of the Artificial Life Conference
2016, ALIFE 2016, 2016.

[23] S. Kriegman, N. Cheney, and J. Bongard, “How morphological
development can guide evolution,” Scientific reports, vol. 8,
no. 1, pp. 1–10, 2018.

[24] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson, “Unshackling
evolution: Evolving soft robots with multiple materials and a
powerful generative encoding,” in GECCO 2013 - Proceedings of
the 2013 Genetic and Evolutionary Computation Conference, 2013.

[25] K. O. Stanley and R. Miikkulainen, “Evolving neural net-
works through augmenting topologies,” Evolutionary computa-
tion, vol. 10, no. 2, pp. 99–127, 2002.

[26] A. E. Eiben, J. E. Smith, et al., Introduction to evolutionary
computing, vol. 53. Springer, 2003.

[27] F. Veenstra and K. Glette, “How Different Encodings Affect Per-
formance and Diversification when Evolving the Morphology
and Control of 2D Virtual Creatures,” in The 2020 Conference on
Artificial Life, 2020.

[28] J.-B. Mouret and J. Clune, “Illuminating search spaces by
mapping elites,” arXiv preprint arXiv:1504.04909, 2015.

[29] J. Nordmoen, F. Veenstra, K. O. Ellefsen, and K. Glette, “Quality
and Diversity in Evolutionary Modular Robotics,” in 2020 IEEE
Symposium Series on Computational Intelligence, SSCI 2020, 2020.

[30] F. Veenstra, J. Jørgensen, and S. Risi, “Evolution of fin undula-
tion on a physical knifefish-inspired soft robot,” in Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 157–164,
2018.

[31] D. J. Christensen, “Evolution of shape-changing and self-
repairing control for the atron self-reconfigurable robot,” in

89

Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006., pp. 2539–2545, IEEE, 2006.

[32] T. F. Nygaard, J. Nordmoen, K. O. Ellefsen, C. P. Martin, J. Tørre-
sen, and K. Glette, “Experiences from real-world evolution with
DYRET: Dynamic robot for embodied testing,” in Communica-
tions in Computer and Information Science, vol. 1056 CCIS, 2019.

[33] A. J. Ijspeert, “Central pattern generators for locomotion control
in animals and robots: A review,” Neural Networks, 2008.

[34] R. Pfeifer and J. Bongard, How the body shapes the way we think: a
new view of intelligence. MIT press, 2006.

[35] J. C. Bongard, “Evolutionary Robotics: Taking a biologically
inspired approach to the design of autonomous, adaptive
machines,” 2013.

[36] C. Paul, “Morphological computation. A basis for the analy-
sis of morphology and control requirements,” Robotics and Au-
tonomous Systems, vol. 54, no. 8, 2006.

[37] S. Kriegman, “Why virtual creatures matter,” Nature Machine
Intelligence, vol. 1, no. 10, pp. 492–492, 2019.

[38] M. Jelisavcic, K. Glette, E. Haasdijk, and A. E. Eiben, “Lamar-
ckian Evolution of Simulated Modular Robots,” Frontiers in
Robotics and AI, 2019.

[39] G. HINTON, “How learning can guide evolution,” Complex
Systems, vol. 1, 1987.

[40] A. Gupta, S. Savarese, S. Ganguli, and L. Fei-Fei, “Embod-
ied intelligence via learning and evolution,” arXiv preprint
arXiv:2102.02202, 2021.

[41] F. Veenstra, A. Faina, S. Risi, and K. Stoy, “Evolution and
morphogenesis of simulated modular robots: A comparison
between a direct and generative encoding,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 10199 LNCS,
2017.

[42] G. Lan, M. De Carlo, F. van Diggelen, J. M. Tomczak, D. M.
Roijers, and A. E. Eiben, “Learning directed locomotion in
modular robots with evolvable morphologies,” 2020.

90

[43] G. S. Hornby, H. Lipson, and J. B. Pollack, “Generative
representations for the automated design of modular physical
robots,” IEEE transactions on Robotics and Automation, vol. 19,
no. 4, pp. 703–719, 2003.

[44] K. O. Stanley, “Compositional pattern producing networks: A
novel abstraction of development,” Genetic Programming and
Evolvable Machines, vol. 8, no. 2, 2007.

[45] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-
based encoding for evolving large-scale neural networks,”
Artificial Life, vol. 15, no. 2, 2009.

[46] F. Gruau and U. C. B.-l. I, “Thesis Neural Network Synthesis
Using Cellular Encoding and the Genetic Algorithm,” Synthesis,
1994.

[47] M. Joachimczak, R. Suzuki, and T. Arita, “Fine grained artificial
development for body-controller coevolution of soft-bodied
animats,” in Artificial Life 14 - Proceedings of the 14th International
Conference on the Synthesis and Simulation of Living Systems,
ALIFE 2014, 2014.

[48] M. Joachimczak, R. Suzuki, and T. Arita, “Improving evolv-
ability of morphologies and controllers of developmental soft-
bodied robots with novelty search,” Frontiers Robotics AI, 2015.

[49] E. Samuelsen, K. Glette, and J. Torresen, “A hox gene inspired
generative approach to evolving robot morphology,” in GECCO
2013 - Proceedings of the 2013 Genetic and Evolutionary Computa-
tion Conference, 2013.

[50] R. A. Brooks, “A Robust Layered Control System For A Mobile
Robot,” IEEE Journal on Robotics and Automation, vol. 2, no. 1,
1986.

[51] K. Støy, W. M. Shen, and P. M. Will, “Using role-based control to
produce locomotion in chain-type self-reconfigurable robots,”
IEEE/ASME Transactions on Mechatronics, vol. 7, no. 4, 2002.

[52] A. Sproewitz, A. Billard, P. Dillenbourg, and A. J. Ijspeert,
“Roombots-mechanical design of self-reconfiguring modular
robots for adaptive furniture,” in 2009 IEEE international con-
ference on robotics and automation, pp. 4259–4264, IEEE, 2009.

91

[53] J. Rieffel, F. Saunders, S. Nadimpalli, H. Zhou, S. Hassoun,
J. Rife, and B. Trimmer, “Evolving soft robotic locomotion in
physx,” in Proceedings of the 11th annual conference companion
on genetic and evolutionary computation conference: Late breaking
papers, pp. 2499–2504, 2009.

[54] R. D. Beer, “On the dynamics of small continuous-time recur-
rent neural networks,” Adaptive Behavior, vol. 3, no. 4, pp. 469–
509, 1995.

[55] R. D. Beer, “The dynamics of adaptive behavior: A research
program,” Robotics and Autonomous Systems, vol. 20, no. 2-4,
pp. 257–289, 1997.

[56] R. D. Beer, “The dynamics of brain–body–environment systems:
A status report,” Handbook of Cognitive Science, pp. 99–120, 2008.

[57] J. Lehman and K. O. Stanley, “Improving evolvability through
novelty search and self-adaptation,” in 2011 IEEE congress of
evolutionary computation (CEC), pp. 2693–2700, IEEE, 2011.

[58] E. Samuelsen and K. Glette, “Real-world reproduction of
evolved robot morphologies: Automated categorization and
evaluation,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 9028, 2015.

[59] A. P. Sabelhaus, J. Bruce, K. Caluwaerts, P. Manovi, R. F. Firoozi,
S. Dobi, A. M. Agogino, and V. SunSpiral, “System design
and locomotion of superball, an untethered tensegrity robot,”
in 2015 IEEE international conference on robotics and automation
(ICRA), pp. 2867–2873, IEEE, 2015.

[60] N. Cheney, J. Clune, and H. Lipson, “Evolved electrophysio-
logical soft robots,” in Artificial Life 14 - Proceedings of the 14th
International Conference on the Synthesis and Simulation of Living
Systems, ALIFE 2014, 2014.

[61] J. Collins, S. Chand, A. Vanderkop, and D. Howard, “A review
of physics simulators for robotic applications,” IEEE Access,
2021.

[62] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas,
D. Budden, A. Abdolmaleki, J. Merel, A. Lefrancq, et al.,
“Deepmind control suite,” arXiv preprint arXiv:1801.00690, 2018.

92

[63] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-
based robotics: Comparison of bullet, havok, mujoco, ode
and physx,” in 2015 IEEE international conference on robotics and
automation (ICRA), pp. 4397–4404, IEEE, 2015.

[64] S. Nolfi, J. Bongard, P. Husbands, and D. Floreano, “Evolution-
ary robotics,” in Springer Handbook of Robotics, pp. 2035–2068,
Springer, 2016.

[65] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality
gap: The use of simulation in evolutionary robotics,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 929,
1995.

[66] O. Miglino, H. H. Lund, and S. Nolfi, “Evolving mobile robots
in simulated and real environments,” Artificial life, vol. 2, no. 4,
pp. 417–434, 1995.

[67] J. C. Bongard and H. Lipson, “Nonlinear system identification
using coevolution of models and tests,” IEEE Transactions on
Evolutionary Computation, vol. 9, no. 4, pp. 361–384, 2005.

[68] S. Koos, J. B. Mouret, and S. Doncieux, “Crossing the reality gap
in evolutionary robotics by promoting transferable controllers,”
in Proceedings of the 12th Annual Genetic and Evolutionary Compu-
tation Conference, GECCO ’10, 2010.

[69] J. Seo, J. Paik, and M. Yim, “Modular Reconfigurable Robotics,”
Annual Review of Control, Robotics, and Autonomous Systems,
vol. 2, no. 1, 2019.

[70] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita,
and S. Kokaji, “M-TRAN: Self-reconfigurable modular robotic
system,” IEEE/ASME Transactions on Mechatronics, vol. 7, no. 4,
2002.

[71] A. Brunete, A. Ranganath, S. Segovia, J. P. de Frutos, M. Her-
nando, and E. Gambao, “Current trends in reconfigurable mod-
ular robots design,” 2017.

[72] R. J. Alattas, S. Patel, and T. M. Sobh, “Evolutionary Modular
Robotics: Survey and Analysis,” Journal of Intelligent and Robotic
Systems: Theory and Applications, vol. 95, no. 3-4, 2019.

93

[73] J. W. Romanishin, K. Gilpin, and D. Rus, “M-blocks:
Momentum-driven, magnetic modular robots,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 4288–4295, IEEE, 2013.

[74] V. Zykov, E. Mytilinaios, B. Adams, and H. Lipson, “Self-
reproducing machines,” Nature, vol. 435, no. 7039, pp. 163–164,
2005.

[75] A. Brunete, M. Hernando, E. Gambao, and J. E. Torres,
“A behaviour-based control architecture for heterogeneous
modular, multi-configurable, chained micro-robots,” Robotics
and Autonomous Systems, vol. 60, no. 12, pp. 1607–1624, 2012.

[76] D. Zappetti, S. Mintchev, J. Shintake, and D. Floreano, “Bio-
inspired tensegrity soft modular robots,” in Conference on
Biomimetic and Biohybrid Systems, pp. 497–508, Springer, 2017.

[77] D. Rus and M. Vona, “Crystalline robots: Self-reconfiguration
with compressible unit modules,” Autonomous Robots, vol. 10,
no. 1, pp. 107–124, 2001.

[78] D. Marbach and A. J. Ijspeert, “Co-evolution of configuration
and control for homogenous modular robots,” in Proceedings
of the eighth conference on intelligent autonomous systems (IAS8),
pp. 712–719, IOS Press, 2004.

[79] R. Groß, M. Bonani, F. Mondada, and M. Dorigo, “Autonomous
self-assembly in swarm-bots,” IEEE transactions on robotics,
vol. 22, no. 6, pp. 1115–1130, 2006.

[80] J. Davey, N. Kwok, and M. Yim, “Emulating self-reconfigurable
robots-design of the smores system,” in 2012 IEEE/RSJ interna-
tional conference on intelligent robots and systems, pp. 4464–4469,
IEEE, 2012.

[81] W. Tan, H. Wei, and B. Yang, “Sambotii: a new self-assembly
modular robot platform based on sambot,” Applied Sciences,
vol. 8, no. 10, p. 1719, 2018.

[82] T. Tosun, G. Jing, H. Kress-Gazit, and M. Yim, “Computer-aided
compositional design and verification for modular robots,” in
Robotics Research, pp. 237–252, Springer, 2018.

94

[83] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion,
C. Goy, Y. Gao, H. Henry, M. Mattar, et al., “Unity: A general
platform for intelligent agents,” arXiv preprint arXiv:1809.02627,
2018.

[84] R. Moreno, C. Liu, A. Faina, H. Hernandez, and J. Gomez, “The
emerge modular robot, an open platform for quick testing of
evolved robot morphologies,” in Proceedings of the Genetic and
Evolutionary Computation Conference Companion, pp. 71–72, 2017.

[85] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau,
and C. Gagné, “DEAP: Evolutionary algorithms made easy,”
Journal of Machine Learning Research, vol. 13, pp. 2171–2175, jul
2012.

[86] J. Lehman, J. Clune, D. Misevic, C. Adami, L. Altenberg,
J. Beaulieu, P. J. Bentley, S. Bernard, G. Beslon, D. M. Bryson,
et al., “The surprising creativity of digital evolution: A collec-
tion of anecdotes from the evolutionary computation and ar-
tificial life research communities,” Artificial life, vol. 26, no. 2,
pp. 274–306, 2020.

[87] A. Zhao, J. Xu, M. Konaković Luković, J. Hughes, A. Speilberg,
D. Rus, and W. Matusik, “Robogrammar: Graph grammar for
terrain-optimized robot design,” ACM Transactions on Graphics
(TOG), vol. 39, no. 6, pp. 1–16, 2020.

[88] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser,
R. Leblond, T. Eccles, J. Keeling, F. Gimeno, A. D. Lago, et al.,
“Competition-level code generation with alphacode,” arXiv
preprint arXiv:2203.07814, 2022.

[89] S. G. Benzell, L. J. Kotlikoff, G. LaGarda, and J. D. Sachs,
“Robots are us: Some economics of human replacement,” tech.
rep., National Bureau of Economic Research, 2015.

[90] A. Berg, E. F. Buffie, and L.-F. Zanna, “Robots, growth, and
inequality,” Finance & Development, vol. 53, no. 3, pp. 10–13,
2016.

95

96

Appendix A

For Conferences

Appended are an article and a poster abstract that was created as a
result of this thesis.

Article for the Conference of Artificial Life (ALIFE): "Centralized
and Decentralized Control in Modular Robots and Their Effect on
Morphology". At the time of writing, it is accepted to be published
in the proceedings and for virtual oral presentation. It will change
before publication because the corrections suggested by the peer
reviewers are not fully implemented at the time of thesis delivery.

Poster abstract for the Advanced Course and Symposium on
Artificial Intelligence and Neuroscience (ACAIN): "Exploring the
Effects of Centralized and Decentralized Control on Morphology
and Performance". At the time of writing, it is under review.

97

Centralized and Decentralized Control in Modular Robots and Their Effect on
Morphology

Mia-Katrin Kvalsund1, Kyrre Glette1,2 and Frank Veenstra1

1Department of Informatics, University of Oslo, Norway
2RITMO, University of Oslo, Norway

mia.kvalsund@gmail.com

Abstract

In Evolutionary Robotics, evolutionary algorithms are used
to co-optimize morphology and control. However, co-
optimizing leads to different challenges: How do you opti-
mize a controller for a body that often changes its number
of inputs and outputs? Researchers must then make some
choice between centralized or decentralized control. In this
article, we study the effects of centralized and decentralized
controllers on modular robot performance and morphologies.
This is done by implementing one centralized and two decen-
tralized continuous time recurrent neural network controllers,
as well as a sine wave controller for a baseline. We found
that a decentralized approach that was more independent of
morphology size performed significantly better than the other
approaches. It also worked well in a larger variety of mor-
phology sizes. In addition, we highlighted the difficulties
of implementing centralized control for a changing morphol-
ogy, and saw that our centralized controller struggled more
with early convergence than the other approaches. Our find-
ings indicate that duplicated decentralized networks are ben-
eficial when evolving both the morphology and control of
modular robots. Overall, if these findings translate to other
robot systems, our results and issues encountered can help
future researchers make a choice of control method when co-
optimizing morphology and control.

Introduction
When co-optimizing morphology and control of modular
robots, how do we optimize a controller for a robot that
often changes its number of actuators and sensors? If a
centralized approach is chosen, we must select a method
to deal with disappearing actuators or the addition of new
ones. Furthermore, although distributed control removes the
issues of changing morphology, we must still then facilitate
for global synchronization of the actuators. In this paper,
we implement and discuss a few approaches to control when
co-optimizing morphology and control, and investigate what
effects they have on morphology.

Throughout Evolutionary Robotics’ short history, there
have been many approaches to co-optimizing morphology
and control. Most notably, the work of Karl Sims showed
virtual creatures evolved using a nested graph where body

Figure 1: The EMeRGE module. The left image is an ex-
ample of a real EMeRGE module, and the right is our Unity
simplification.

and control elements were connected (Sims, 1994). Con-
trollers were duplicated as body parts were copied in a
semi-distributed approach. Lipson and Pollack (2000) later
showed a pipeline to transfer such virtual creatures to re-
ality, where they used centralized control. Later, Cheney
et al. (2013, 2014) displayed soft-robots that evolved control
through an indirect encoding using a Compositional Pattern
Producing Network (CPPN). Similarly, Auerbach and Bon-
gard (2011) used a CPPN encoding to generate a morphol-
ogy and weights for a centralized continuous time recurrent
neural network (CTRNN) controller. Both these approaches
have reuse of control elements due to the indirect encodings.

A common problem when co-optimizing morphology and
control is that of early convergence of morphology only. As
described by Joachimczak et al. (2016), and later explored
further by Cheney et al. (2016), the morphology will reach
its almost final form relatively early. Cheney et al. theo-
rize that because the controller interacts with the environ-
ment through the interface of the body, changes to the body
will scramble the control. However, this effect has not been
studied much in modular robots. Decentralized control in
modular robots could potentially make this less of a prob-
lem because adding a new module with the same controller
as its parent could still work without scrambling the overall

Figure 2: Examples of well-performing morphologies. Purple and top left: Copy controller. Yellow and top right: Sine
controller. Blue and bottom left: Decentralized CTRNN controller. Teal and bottom right: Centralized CTRNN controller.

performance.
Modular robotics (MR) concerns robots built from sepa-

rable modules or units that encapsulate some function of a
robotic system (Stoy et al., 2010). This is as opposed to an
integrated design with no clear sectional modularity. The
modules contain actuation, computation, energy, and sens-
ing as needed, as well as some mechanism to connect and
transmit to other modules. They can easily be reconfigured
by hand or by machine, making them highly suited for rapid
prototyping of robot designs.

The field of modular robotics is quite young, with some
of the first notable papers, like the CEBOT (Kawauchi et al.,
1992) and Fracta (Murata et al., 1994) papers, being pub-
lished in the 90s. Modular robots promised easily reconfig-
urable robots that could adapt their form to any use (Yim
et al., 2000). Early systems such as the MTRAN showed
self-reconfiguration into shapes for walking and climbing
(Murata et al., 2002), and Zykov et al. (2005) showed
the first minimal example of self-reproduction in modular
robots. Throughout the 2000s and early 2010s, the focus
was mostly on exploring the promise of reconfiguration and
creating novel mechanical solutions for the modules.

Later Marbach and Ijspeert (2004), inspired by the works
of Sims (1994) and Lipson and Pollack (2000), started to
co-evolve configuration and control. With works like Mar-
bach and Ijspeert’s Adam and EDHMoR (Faı́ña et al., 2013),
researchers started to experiment with the pipeline to cre-
ate modular robots for any task. Evolutionary algorithms
were uniquely suited for optimizing the robots, because the
complexity of control scales exponentially with the num-
ber of modules (Marbach and Ijspeert, 2004). Additionally,
by co-evolving we avoid the limitations and biases a human
designer would bring, hopefully producing more novel and
better adapted solutions (Faı́ña et al., 2013).

Many systems in MR use sine wave generator controllers
when the focus of the research is elsewhere (Faı́ña et al.,
2013; Liu et al., 2017; Veenstra et al., 2017), because they

produce periodical movement with few parameters to opti-
mize. This controller is a good baseline for the behavior of
other controllers, as it is what we minimally expect from a
decentralized controller.

Evolved centralized control is something that is not much
used in MR, as the focus early on was on hand-crafted cen-
tralized reconfiguration systems (Murata et al., 2002). Later
works have also shown centralized control that focus on task
execution and locomotion (Brunete et al., 2012), however
these are not evolved and do not necessarily scale well. It
is still thought that some form of centralized control could
be more suited to task execution (Seo et al., 2019), and so
evolving centralized control should be explored.

Even so, decentralized control has also shown impres-
sive results in task execution. Christensen (2006) showed
an example of a decentralized neural network controller,
which could self-reconfigure and self-repair. Their modules’
swarm-like, imperfect behavior was able to control above
3000 modules in simulation, showing the scalability of good
decentralized control. Another good example of neural net-
work control is Jelisavcic et al.’s (2019) use of CPGs in the
RoboGen modules. While this still results in distributed con-
trol, a CPPN encoding determines the CPG weights and can
still enable module synchronization.

With the goal of investigating centralized and distributed
controllers, we have implemented one centralized and two
decentralized controllers, as well as a sine wave controller
for a baseline. These controllers were implemented on a
chain-type modular robot system, using the EMeRGE mod-
ules. Through measuring performance and morphological
diversity, we evaluate which control approach is better suited
for co-optimizing morphology and control in light of pre-
mature convergence of morphology. We believe that our
approach to decentralized control and our findings of how
centralized control affect morphology can help future re-
searchers and developers better determine which control ap-
proach to implement in their own robotic systems.

CTRNN3 1

CTRNN3 1

CTRNN3 1

CTRNN3 1

CTRNN3 1

CTRNN45 15Sine 1

Sine 1

Sine 1

Sine 1 CTRNN3 1

a b c d

Figure 3: The controllers and how they could map to the modules in a small modular robot. The arrows with numbers
represent inputs (left side of boxes) and outputs (right side of boxes). a) The sine controller, b) The centralized CTRNN
controller, c) The decentralized CTRNN controller, d) The copy controller.

Methods
Our system consists of modular robots simulated in a flat
ground environment and being measured on the task of lo-
comotion. To co-optimize the morphology and controller,
an evolutionary algorithm is used. This, as well as the four
controllers we are investigating, will be presented below.

For this project, an environment and simulated modu-
lar robots were built in Unity with the framework of ML-
Agents1. ML-Agents version 1.0.7 was used. Unity uses the
Nvidia PhysX physics engine, which supports rigid body dy-
namics and updates physics steps every 0.02 seconds. The
default physics engine settings were used.

The Modules
We are using the EMeRGE module (Moreno et al., 2017),
see Figure 1. It is a simple module with one servo motor,
so that each module works like a hinge. It has four connec-
tion faces, one male at the base, and three female on the top
and sides. The male connection face can only connect to the
female ones and vice versa, meaning the robot will have a
root module with three possible child modules, growing out-
wards in a tree-like structure. Example morphologies can be
seen in Figure 2.

The original design for the modules include infrared prox-
imity sensors on each face. This was also implemented in
our abstraction of the module, although the workings of the
exact sensor model was not replicated. Instead, sensors here
register all distances through a ray cast, meaning the dis-
tances it can register is not capped and could get very high.
For not registering a distance, for example from being an-
gled towards the sky, a sensor returns -1. In the event that
a module occupies the connection site, the sensor will pick

1The source code can be found at https://github.com/mia-
katrin/Modbots

up the small distance towards the module. This was kept
because the modules will move a little in relation to each
other, which a controller might use to detect the presence
and behavior of child modules.

The Controllers
There are four controllers implemented in this system (Fig-
ure 3), each described below. For all of them, the output
produced is the desired angle of a module’s servo.

Three of the controllers use a continuous time recurrent
neural network (CTRNN), for which the neat-python library
was used2. This network was chosen in order to have the
possibility of dynamic temporal behavior (Beer, 1995). Here
each node updates based on a differential equation, with
neuron potentials as dependent variables.

neat-python’s CTRNN mutation operators can adjust
weights and biases, change activation and aggregation func-
tions, and cut away/disable or add/enable connections and
nodes. Here, close to default values were used for each gene
mutation rate, and this was equal for all our CTRNN con-
trollers. These rates were then scaled by the controller’s
control mutation rate.

Open-loop sine wave generator The open-loop sine wave
generator is a decentralized controller that performs well be-
cause it produces periodic movement through sine waves,
although it has no sensor input. In our case, the sine wave
controller is used to provide a baseline to compare the other
controllers to. The controller is given by the function

y(t) = A ∗ sin(w ∗ t+ p) + o (1)

where A is the amplitude, w is the frequency, t is time, p is
phase, and o is offset. y(t) is the controller output at time t
that is directly fed to the servo’s desired angle.

2https://neat-python.readthedocs.io/en/latest/

0 3 6.11456 9 12 15 18
Number of Modules, avg: 6.11456

0.00

0.05

0.10

0.15

Pe
rc

en
ta

ge

Figure 4: The distribution of number of modules in indi-
viduals in a random population.

In order to enable easier synchronization between the
modules, the frequency was fixed in all sine wave controllers
and was not allowed to mutate. We noticed that without this,
the sine controller was susceptible to choose local optima so-
lutions. The sine wave controller has 3 parameters for each
joint, meaning an average robot of 6 modules will have 18
parameters to optimize for the controller. When a module is
added to the morphology, it is instantiated with the control
parameters of the parent module.

Centralized CTRNN A straightforward approach to us-
ing a CTRNN for a modular robot is to simply gather all
sensor outputs and feed them into one big CTRNN, that
then outputs all controller actions. This leads to a fixed size
CTRNN controller.

In initial experiments with the centralized CTRNN con-
troller, different numbers of inputs and outputs were tested.
Because there was a clear tendency to have a small amount
of modules, we chose 15 to be the number of modules that
would be controlled. This allowed the network to be as small
as possible while still accommodating larger creatures at ini-
tialisation, however it was very rare to see larger creatures
with this controller. When a modular robot is smaller than
15 modules, the rest of the inputs to the network is set to 0.

The centralized CTRNN controller will have 45 inputs
and 15 outputs. It is initialized with 45 hidden nodes, but
is only 20% connected. The order of mapping modules to
input and output follows a depth first ordering of the mod-
ules, so that the first three inputs and first output goes to the
root, the second three inputs and second output goes to its
child, and so on.

The centralized CTRNN controller ends up having circa
600 connections and 60 nodes, each with respectively 3 and
5 parameters to tune, for a total of 2100 parameters.

Decentralized CTRNN Foregoing the benefits of a cen-
tralized brain, a decentralized approach leads to less param-
eters and a less complex optimization. The decentralized
approach consists of each module getting its own CTRNN
controller. When a module is added, it is instantiated with
the control parameters of the parent module.

Here, we were able to use a small compact network of 3
inputs and 1 output, and with 3 hidden nodes and enabling
all connections from the start, we get 4 nodes and 16 con-
nections, totalling 68 parameters. For an average sized robot
with one of these controllers in every module, this leads to
about 400 parameters.

Copy Decentralized CTRNN The copy decentralized
CTRNN controller, or the copy controller for short, is our al-
ternative to the decentralized approach. It functions by hav-
ing each robot keep a list of two CTRNN networks, which
maps to different modules. The networks are the same as in
the decentralized CTRNN controller. At initialization, these
networks are clones, but as the optimization progresses they
will mutate separately. The modules will then mutate which
network they use for control, theoretically allowing special-
ization. When a module is added to the morphology, it will
use the same network as its parent module.

At the start of an evaluation, the networks are copied into
their corresponding modules, hence the name. They then
function independently of each other, and because of differ-
ent sensor input such as detecting ground or the presence
of child modules, they will likely behave differently. Nev-
ertheless, it is reasonable to assume it will not achieve the
level of specialization that the decentralized CTRNN con-
troller can. While this might be a trade-off, we assume the
copy controller will be quicker to achieve a good fitness, and
possibly not be as dependent on number of modules.

This controller, like the centralized CTRNN controller, is
the same no matter the size of the robot. This gives us two
controllers with 68 parameters, for a total of 136 parameters.
Additionally, each module can change which controller they
use, giving us a further average of 6 parameters.

Evolutionary Algorithm
The evolutionary algorithm used had tournament selection,
with a tournament size of 4, and generational replacement. It
was implemented using the DEAP framework (Fortin et al.,
2012). Generational replacement was chosen because it can
sometimes dislodge a population from early convergence.
This happens because the best genotype will rarely be kept
when the population is mutated and no elites are kept. Other
parameters of the algorithm were also chosen to keep diver-
sity. Most notably, the tournament selection size was kept
small to increase selection pressure on the elites, while still
being large enough to avoid a noisy evolutionary progres-
sion.

Morphology and controller had separate mutation rates
and mutation powers, where all gene values mutated with
a Gaussian distribution based on the mutation power. For
the rates, a parameter sweep was done for each controller
on a grid of 8 values for both controller and morphology
(Figure 5), a total of 64 pairs. Each pair was run for 50 gen-
erations with a population size of 50, which totalled 2500

0.82
0.64
0.48
0.32
0.24
0.16
0.08
0.01

Co
nt

ro
l m

ut
. r

at
e

15 13 14 15 15 15 15 14
13 17 15 16 14 16 15 14
13 13 11 17 16 13 16 16
9 15 13 15 16 12 16 15
10 11 11 14 12 15 13 10
10 10 13 12 10 10 11 12
11 9 11 13 11 11 11 10
6 8 7 9 7 7 11 8

Sine
0.82
0.64
0.48
0.32
0.24
0.16
0.08
0.01

9 10 11 11 10 7 11 6
10 13 10 14 7 8 11 14
12 8 6 10 6 10 15 7
5 6 6 17 8 12 8 9
10 8 11 12 7 6 7 8
10 8 7 6 13 7 7 8
5 6 5 5 6 13 6 11
3 4 4 5 6 7 5 6

Decentralized CTRNN

0.0
1
0.0

8
0.1

6
0.2

4
0.3

2
0.4

8
0.6

4
0.8

2

Morph. mut. rate

0.48
0.32
0.24
0.16
0.08
0.04
0.02
0.01

Co
nt

ro
l m

ut
. r

at
e

14 13 17 17 13 15 13 11
14 15 16 17 15 13 15 17
14 15 20 17 14 17 17 15
18 18 16 20 17 19 15 16
16 14 14 16 17 16 16 14
15 15 16 19 15 15 16 15
14 16 14 16 14 16 17 16
12 11 13 15 14 14 14 14

Centralized CTRNN

0.0
1
0.0

8
0.1

6
0.2

4
0.3

2
0.4

8
0.6

4
0.8

2

Morph. mut. rate

0.48
0.32
0.24
0.16
0.08
0.04
0.02
0.01

11 9 13 9 9 5 9 7
15 18 13 20 15 9 8 10
18 17 8 15 22 14 7 6
11 12 16 13 12 7 5 9
9 9 10 12 20 14 14 17
15 9 16 6 11 8 9 13
9 8 12 21 13 14 5 7
6 8 9 9 9 7 6 17

Copy CTRNN

Figure 5: The grids filled for the parameter tuning, values
are rounded average fitness for each mutation rate pair.

evaluations. This was done 4 times for each pair. Finally,
the data for each morphology mutation rate and each con-
troller mutation rate were collapsed and plotted against each
other. The best performing option was then chosen.

The 8 sweep values were chosen for each controller and
the body based on whether or not they divided the mutation
rate internally. In the body and the sine and decentralized
CTRNN controller, the mutation rate is divided by the num-
ber of modules in order to encourage the use of more mod-
ules. If it were not divided, a larger creature would mutate
more than a smaller one. This would make it an unstable so-
lution that quickly changed and disappeared from the search
space. Since the average number of modules is 6 (Figure 4),
the per-module mutation rate is 0.14 for the largest sweep
value of 0.82. In the morphology mutation, this is further
divided by circa 1/4th for each gene in the module.

Encoding of robots

For the encoding of the robots, a direct encoding is used.
A directed tree is generated from a root node, after which
it is sent to the simulator. The simulator builds the robot
and prunes any branches that collide, prioritising keeping
modules closer to the root. Modules that are not expressed
are still kept in the genome.

The morphology can mutate by adding and removing
modules, as well as changing the angle of modules. There
is a slightly higher chance to get an add module mutation in
order to bias creatures to grow. Additionally, one mutation
will make a module duplicate one child branch to another
connection site. This mutation was chosen to facilitate sym-
metry and larger jumps in the morphology landscape.

0 100 200 300 400 500
Generation

5

10

15

20

25

30

Fit
ne

ss

Copy CTRNN
Decentralized CTRNN
Centralized CTRNN
Sine

Figure 6: The fitness progressions for all four controllers.
The solid lines are averages, and the shaded areas represent
the standard error. Distributions can be seen in Figure 7.

Fitness function
The task that we measured the modular robots on was lo-
comotion away from the origin during a set amount of time
(100 steps of 0.2 seconds, roughly equalling 20 seconds in
real time). Because this often leads to robots discovering the
immediate optima of the somersault, or simply falling over,
the robots were given 2 seconds to fall before the evaluation
started. At the same time, the controller is not given input or
give output. The fitness function is then

Fitness =
√
(xend − xstart)2 + (yend − ystart)2 (2)

where xstart is the x-position after 2 seconds of simulation,
and xend is the x-position when the simulation ends. Like-
wise for y. The evaluation will stop early after 4 seconds
from start if the robot has not moved in the last 2 seconds.

Results
Mutation rate sweep
As can be seen in Figure 5, the results from the sweep were
often quite even. Only the copy and decentralized CTRNN
controllers saw huge differences between different pairs, but
all controllers had only minor differences after collapsing
the data. Therefore, we settled on choosing a few of the
ones that were contenders after the initial sweep, and run a
few more evolutionary runs on those. A winner would then
often be more clear. The final parameters for all controllers
can be seen in Table 1.

Controller performance
The final runs were done on populations of 50 individuals
for 500 generations, for a total of 25 000 evaluations. This
was done for all controllers 64 times, and the resulting per-
formances can be seen in Figure 6. Additionally, Figure 7
shows the distribution of performances for the different con-
trollers.

Table 1: The mutation rate parameters chosen after
the sweep. Note that for the sine wave and decentralized
CTRNN controller, as well as the morphology, the working
mutation rate on one module is divided by the number of
modules in the robot.

Controller Morph. rate Controller rate
Sine wave 0.32 0.64

Centralized CTRNN 0.24 0.16
Decentralized CTRNN 0.24 0.48

Copy CTRNN 0.32 0.08

In order to get an overview of all significant differences, 6
two-sided Mann-Whitney U test were performed between all
controllers at generations 50 and 500, a total of 12 tests. An
alpha level of 0.05 was chosen. Because we were conducting
multiple comparisons, Bonferroni correction was used. This
gives us an adjusted alpha level of 0.05 / 12 = 0.00416.

At generation 50, the sine and centralized CTRNN con-
trollers were significantly different from the decentralized
CTRNN controller (both p < 0.0001). There was no signif-
icant difference between the sine and copy (p > 0.2), sine
and centralized CTRNN (p > 0.07), copy and centralized
CTRNN (p > 0.06), and the copy and decentralized CTRNN
controllers (p > 0.01).

At generation 500, the copy controller was significantly
different from the centralized CTRNN, the sine, and the
decentralized CTRNN controllers (respective p-values p <
0.003, p < 0.0004, p < 0.0002). There was no significant
difference between the sine controller and the centralized
and decentralized CTRNN controllers (both p > 0.1), or be-
tween the centralized and the decentralized CTRNN con-
trollers (p > 0.04).

Effect on morphology
In Figure 8, the progressions for number of modules in mor-
phologies are plotted for all the controllers. Here, we can
see that the sine and centralized CTRNN controllers both
end up at a lower average number of modules than the copy
and decentralized CTRNN controllers. To confirm if this
was significant, as previously 6 two-sided Mann-Whitney
U tests were performed with Bonferroni correction between
the different count distributions. An alpha level of 0.05 was
used, which means that with correction we consider p-values
below 0.05 / 6 = 0.0083 as significant.

Here we found that the copy and decentralized CTRNN
controllers had no significant difference between them (p >
0.4) and the sine and centralized CTRNN controllers like-
wise had no difference (p > 0.2). However, the copy and de-
centralized CTRNN controllers were both different from the
sine and centralized CTRNN controllers (all p < 0.0001).

Qualitatively, we recognise this from looking at the
robots. The sine and centralized controllers had small, ef-

10 20 30 40 50
Fitness

Copy CTRNN

Decentralized
CTRNN

Centralized
CTRNN

Sine

B
ra

in

Figure 7: The final fitnesses for all runs for each con-
troller. The distributions are showed with the underlying
points scattered below. A boxplot is placed over the scat-
tered values, with the mean marked with a triangle.

10

20
Nr

 M
od

ul
es

Copy CTRNN

Nr
 M

od
ul

es

Decentralized CTRNN

0 200 400
Generation

10

20

Nr
 M

od
ul

es

Centralized CTRNN

0 200 400
Generation

Nr
 M

od
ul

es

Sine

Figure 8: The progression of number of modules for all
runs. Only changes in number of modules that led to a more
fit individual is shown.

fective strategies while the copy and decentralized CTRNN
controller both tended towards larger morphologies. The
sine and centralized CTRNN controllers would do large,
powerful movements, with some modules in the morphol-
ogy not moving at all. As opposed to this, the copy and de-
centralized CTRNN controllers favored small, rapid move-
ments. Here, the copy moved most its modules, while the
decentralized CTRNN controller sometimes had unmoving
modules. Example behaviors can be seen in the accompany-
ing video3.

In Figure 9, we see that there seems to be a divide between
larger creatures that get high fitness, and those that get low
fitness. Presumably, this is because falling strategies tend to
be larger in order to get further, but it is also interesting to see

3https://www.mn.uio.no/ifi/english/research/groups/robin/research-
projects/cocomo/media/kvalsund master thesis.mp4

20

40

Fit
ne

ss

Copy CTRNN

Fit
ne

ss

Decentralized CTRNN

5 10 15 20
Nr Modules

20

40

Fit
ne

ss

Centralized CTRNN

5 10 15 20
Nr Modules

Fit
ne

ss
Sine

Figure 9: The expressed modules of all robots plotted
against their fitness.

0 - 100 100 - 200 200 - 300 300 - 400 400 - 500
Generations

0

2

4

6

8

10

M
or

ph
ol

og
y

ch
an

ge
s

Copy CTRNN
Decentralized CTRNN
Centralized CTRNN
Sine

Figure 10: Number of morphology changes that led to
better fit individuals in each generation interval. The
shaded areas are between the 25 and 75 percentiles, and the
dots are the medians.

that some larger solutions did quite well. Especially the copy
controller did well with larger morphologies, managing to
produce a fitness on par with the centralized CTRNN and
sine controllers with upwards of 10 expressed modules.

When looking into the issue of early convergence of mor-
phology only, Figure 10 was made. It shows shaded areas
between the 25 and 75 percentiles of number of beneficial
morphology changes in a run in each interval of 100 gen-
erations. It shows that the centralized CTRNN and sine
controllers stop mutating morphology after 400 generations.
The last two controllers kept mutating all the way up un-
til the end. Interestingly, 72% of the copy controller runs
experienced morphology changes in the 100-200 generation
interval, and more than 50% had morphology changes in the
200-300 interval.

Discussion
Our results have shown that the copy controller per-
forms significantly better than other controllers when co-
optimizing the morphology and control of modular robots.
Since it duplicates behaviors, modules are more likely to
be synchronized. Moreover, when a new module is added,
a working control unit can be inherited that is already po-
tentially useful. Even though the sine and decentralized
CTRNN controllers had a similar feature of inheriting the
parent module’s control, the copy controller is more likely
to be useful since it is already evolved to work in many
different parts of the robot. In addition, because a control
mutation affects multiple modules, it has an overall larger
effect on the behavior of the robot compared to a mutation
in the other controllers. Because of this, the copy CTRNN
approach is less able to fine-tune a single controller com-
pared to the other approaches and therefore may rely on
morphological change to see a performance increase. This
feature would thereby promote continued morphological di-
versification compared to the other controllers, as seen in
Figure 10.

From the fitness progressions, we can see that the sine
and centralized CTRNN controllers converged rather fast
compared to the other two. They also showed a pattern of
quickly finding a final morphology of relatively small size,
and then optimizing the controller. Meanwhile, the other
two controllers spent time developing both and thus con-
verged slower. Because having more modules means the
robot has more potential force, allowing for more movement
and higher fitness overall, the sine and centralized CTRNN
controllers were then at a disadvantage. These results con-
firm that there is a trade-off between fine-tuning controllers
and getting a good fitness with a small morphology while
losing the potential of getting a higher fitness and a large
morphology.

The distributions of solutions for the controllers vary
wildly, as seen in Figure 7. While the sine and central-
ized CTRNN controllers had a more solidly high perfor-
mance, the decentralized CTRNN controllers both had very
flat distributions, stretching from the worst to the best per-
formances recorded. The lower fitnesses can be accounted
for as robots that grow tall and fall in one direction, as some
of these have been visually confirmed to be. The higher val-
ues of the copy, decentralized and centralized CTRNN con-
trollers often had rapid module movements that either led
to small jumps or shuffling behaviors. Because of fixing
the sine controller’s frequency, this strategy was not avail-
able to the sine controller, and so its worse performance
must at least be partially attributed to that. Even though it
could have rivalled the others by growing larger, the CTRNN
controllers’ behavior was likely less complicated to evolve.
Still, the sine and centralized CTRNN much more often ar-
rived at very similar local optima, which tended to have the
same fitness. Here, the centralized CTRNN controller had

an advantage over the sine controller, because it could opti-
mize further by adding non-periodic movements.

Because we had the same morphology mutation rate for
the sine and copy controllers, we could expect similar mor-
phological diversity from these. However, it is clear from
our results that this is not the case. When keeping in mind
that some of the more scalable strategies available to the
CTRNN controllers were not available to the sine controller,
it could simply be that there were less available good mor-
phologies for the sine controller. Even so, the lack of explo-
ration of morphologies suggest that the sine controller could
be improved. Perhaps using a decentralized copy approach
like the copy controller would have enabled more morpho-
logical diversification during evolution.

The centralized CTRNN approach that was implemented
could evolve a network topology that connected to up to
15 modules. This means that evolving larger morphologies
would involve the CTRNN accommodating for more out-
puts. Since the CTRNN in this case would then have even
more parameters to optimize, we would expect the central-
ized CTRNN to converge even quicker. This could poten-
tially be overcome by connecting parts of the neural network
of the centralized CTRNN to the morphology and copying
these parts of the CTRNN when a new module is introduced.
Another possible cause for the rapid convergence seen in
the centralized CTRNN is that the initial experiments to de-
termine the supported number of modules only ran for 100
generations. Although we have no indication that it would,
the centralized CTRNN approach could generate larger mor-
phologies when given different mutation rate values.

The copy and decentralized controllers both had issues
of some number of unexpressed modules being added to
the genome. These were unexpressed because they collided
with other modules or the floor. 2 and 5 out of 64 samples
from respectively the copy and decentralized CTRNN con-
trollers had 10 to 20 unexpressed modules. Since they were
unexpressed, the only effect they had on the individual was
lowering the per-module mutation rate. This meant that the
morphology in both, and the controllers in the decentralized
CTRNN, would mutate less as the number of unexpressed
modules grew. This bloating of the genome would in theory
stabilize them from mutating. The two other controllers did
not have issues with this.

Another issue is that of some pervasive local optima.
Likely due to the angular shape of the EMeRGE modules,
initial populations of robots found success with a single
module dragging itself forward. In an attempt to avoid this,
we constrained the robots to having a limp root module. This
mitigated the problem somewhat, but similar strategies of
using the corners of the female connection plates persisted
all throughout the project. For example, the aforementioned
jumping and shuffling behaviors are likely only possible be-
cause of the module shape.

We wanted our results to be as applicable as possible to

other evolutionary algorithms, and so we kept ours simple.
However, with the persistence of local optima solutions, we
ran the risk of not being able to study the effects of the con-
trollers as they all chose similar optima. Therefore, we tai-
lored our algorithm to keep diversity, for example by having
generational replacement. While using a diversity mainte-
nance method could have minimized the occurrence of lo-
cal optima solutions, it would have been difficult to parse
which results where caused by the controllers and which
were caused by the algorithm. Even so, in future work the
same controller approaches could be tested with diversity
enhancing methods to investigate what different control be-
haviors arise.

It would be useful to measure the different controllers
on tasks or environments that require more sensing. Here,
we would be better able to study different strategies that
emerged, and whether the controllers were as equally
equipped for task execution as they were for locomotion. It
seems probable that the centralized CTRNN would perform
better than the others here. The decentralized approaches
would benefit from communication between modules, and
coupled CPGs such as the ones used by Ijspeert et al. (2007)
could likely work well here.

Lastly, in order to test whether these findings translate
to other robotic systems, the same controller types should
be implemented on a system with different modules and/or
controllers. Since the EMeRGE module’s female connec-
tion plates can be used for effective dragging and jumping,
a less angular option like the RoboGrammar modules (Zhao
et al., 2020) could force the controllers to choose more com-
plicated movements. In addition, the previously discussed
CPGs can be used to achieve periodic motion and would be
a good option to further incorporate the sensors in locomo-
tion.

Conclusion

In this article we implemented and tested four controllers
that were co-optimized along with a modular robot mor-
phology. With testing three decentralized and one central-
ized controller, we got insight into how these can be done
well and different challenges that arises for each approach.
Markedly, we learned that there is significant advantage to
simplify your controller to facilitate for global synchroniza-
tion, as was found when the copy controller out-competed
the decentralized CTRNN controller. The copy approach al-
lows for better new control of added modules, thus more
morphological development, and larger jumps in the search
space. Regarding centralized control, we highlighted the
early convergence of morphology and performance when it
comes to having a complex controller to optimize. Given
that these findings translate to other controller networks and
morphologies, they can aid future choices of control when
co-optimizing morphology and control.

References
Auerbach, J. E. and Bongard, J. C. (2011). Evolving complete

robots with cppn-neat: the utility of recurrent connections. In
Proceedings of the 13th annual conference on Genetic and
evolutionary computation, pages 1475–1482.

Beer, R. D. (1995). On the dynamics of small continuous-time
recurrent neural networks. Adaptive Behavior, 3(4):469–509.

Brunete, A., Hernando, M., Gambao, E., and Torres, J. E. (2012). A
behaviour-based control architecture for heterogeneous mod-
ular, multi-configurable, chained micro-robots. Robotics and
Autonomous Systems, 60(12):1607–1624.

Cheney, N., Bongard, J., SunSpiral, V., and Lipson, H. (2016).
On the difficulty of co-optimizing morphology and control
in evolved virtual creatures. In Proceedings of the Artificial
Life Conference 2016, ALIFE 2016.

Cheney, N., Clune, J., and Lipson, H. (2014). Evolved electrophys-
iological soft robots. In Artificial Life 14 - Proceedings of the
14th International Conference on the Synthesis and Simula-
tion of Living Systems, ALIFE 2014.

Cheney, N., MacCurdy, R., Clune, J., and Lipson, H. (2013). Un-
shackling evolution: Evolving soft robots with multiple ma-
terials and a powerful generative encoding. In GECCO 2013
- Proceedings of the 2013 Genetic and Evolutionary Compu-
tation Conference.

Christensen, D. J. (2006). Evolution of shape-changing and
self-repairing control for the atron self-reconfigurable robot.
In Proceedings 2006 IEEE International Conference on
Robotics and Automation, 2006. ICRA 2006., pages 2539–
2545. IEEE.

Faı́ña, A., Bellas, F., López-Peña, F., and Duro, R. J. (2013).
EDHMoR: Evolutionary designer of heterogeneous modular
robots. Engineering Applications of Artificial Intelligence.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M.,
and Gagné, C. (2012). DEAP: Evolutionary algorithms made
easy. Journal of Machine Learning Research, 13:2171–2175.

Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J.-M.
(2007). From swimming to walking with a salamander robot
driven by a spinal cord model. science, 315(5817):1416–
1420.

Jelisavcic, M., Glette, K., Haasdijk, E., and Eiben, A. E. (2019).
Lamarckian Evolution of Simulated Modular Robots. Fron-
tiers in Robotics and AI.

Joachimczak, M., Suzuki, R., and Arita, T. (2016). Artificial
Metamorphosis: Evolutionary Design of Transforming, Soft-
Bodied Robots. Artificial Life, 22(3).

Kawauchi, Y., Fukuda, T., and Inaba, M. (1992). ”a strategy of self-
organization for cellular robotic system (cebot)”. In Proceed-
ings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, volume 3, pages 1558–1565. IEEE.

Lipson, H. and Pollack, J. B. (2000). Automatic design and manu-
facture of robotic lifeforms. Nature, 406(6799).

Liu, C., Liu, J., Moreno, R., Veenstra, F., and Faina, A. (2017). The
impact of module morphologies on modular robots. In 2017
18th International Conference on Advanced Robotics, ICAR
2017.

Marbach, D. and Ijspeert, A. J. (2004). Co-evolution of configu-
ration and control for homogenous modular robots. In Pro-
ceedings of the eighth conference on intelligent autonomous
systems (IAS8), pages 712–719. IOS Press.

Moreno, R., Liu, C., Faina, A., Hernandez, H., and Gomez, J.
(2017). The emerge modular robot, an open platform for
quick testing of evolved robot morphologies. In Proceed-
ings of the Genetic and Evolutionary Computation Confer-
ence Companion, pages 71–72.

Murata, S., Kurokawa, H., and Kokaji, S. (1994). Self-assembling
machine. In Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, pages 441–448.
IEEE.

Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K.,
and Kokaji, S. (2002). M-TRAN: Self-reconfigurable modu-
lar robotic system. IEEE/ASME Transactions on Mechatron-
ics, 7(4).

Seo, J., Paik, J., and Yim, M. (2019). Modular Reconfigurable
Robotics. Annual Review of Control, Robotics, and Au-
tonomous Systems, 2(1).

Sims, K. (1994). Evolving virtual creatures. In Proceedings of the
21st Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH 1994, pages 15–22.

Stoy, K., Brandt, D., Christensen, D. J., and Brandt, D. (2010).
Self-reconfigurable robots: an introduction. Mit Press Cam-
bridge.

Veenstra, F., Faina, A., Risi, S., and Stoy, K. (2017). Evolution and
morphogenesis of simulated modular robots: A comparison
between a direct and generative encoding. In Lecture Notes
in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 10199 LNCS.

Yim, M., Duff, D. G., and Roufas, K. D. (2000). PolyBot: a modu-
lar reconfigurable robot. In Proceedings - IEEE International
Conference on Robotics and Automation, volume 1.

Zhao, A., Xu, J., Konaković Luković, M., Hughes, J., Speilberg,
A., Rus, D., and Matusik, W. (2020). Robogrammar: Graph
grammar for terrain-optimized robot design. ACM Transac-
tions on Graphics (TOG), 39(6):1–16.

Zykov, V., Mytilinaios, E., Adams, B., and Lipson, H. (2005). Self-
reproducing machines. Nature, 435(7039):163–164.

Exploring the Effects of Centralized and Decentralized Control on Morphology
and Performance

Mia-Katrin Kvalsund1, Kyrre Glette1,2 and Frank Veenstra1

1Department of Informatics, University of Oslo, Norway
2RITMO, University of Oslo, Norway

mia.kvalsund@gmail.com

Abstract

In Evolutionary Robotics, co-optimizing of morphology and
control can be used to develop robots automatically for a
task. However, this complicates the question of whether to
choose a centralized or decentralized controller. Here, we
study the effects of one centralized and three decentralized
neural network controllers on modular robot performance and
morphologies. We found that a decentralized approach that
duplicates networks across the robot body performs signif-
icantly better than the other approaches. It also had more
morphological diversity. If these findings translate to other
robot systems, they can help future researchers design con-
trollers for their co-optimized robots.

Introduction
When co-optimizing morphology and control in robots, re-
searchers are often faced with the question of choosing cen-
tralized or decentralized control. In both approaches, there
are challenges: On the one hand, centralized control may
be better for task execution [1] and sensor inputs can affect
any output. On the other hand, it is difficult to design a con-
troller for a changing number of inputs and outputs, as the
control might not be scalable [1]. A solution can be found
in decentralized control since it grows with the morphology,
however we might lose the benefit of synchronization.

Modular robotics (MR) concern robots built from a few
separable modules that encapsulate some function of a robot,
for example actuation or sensing [2]. Because the mod-
ules are loosely attached through magnets or latches, the
robots are easily reconfigured by hand or machine, which
opens avenues for quick prototyping and autonomous self-
reconfiguration.

In theory, co-optimizing both morphology and control si-
multaneously can allow for solutions that utilizes the body
as a cognitive resource through morphological computation
[3]. In addition, co-optimizing morphology and control in
modular robots can find the optimal configuration of mod-
ules for a given task. This limits the human bias, and more
innovative and natural robots can be found [4].

However, co-optimizing morphology and control tends to
lead to early convergence of morphology, as only the control

Figure 1: Examples of well-performing morphologies.

continues optimizing [5; 6]. A possible explanation for this
is that when the morphology mutates, it scrambles the func-
tion of the controller [5]. This effect has not been studied
much in modular robotics, and it might be that the effect is
less present in a decentralized modular robot: If a controller
is optimized to work well in many modules, the addition of a
module with such a control might be less likely to scramble
the overall behavior. With the successful control systems of
Sims [7] and Auerbach et al. [8], who both reuse parts of
their control systems across the robot through indirect en-
codings, a control system with this behavior might be found
through duplication.

Here, we present our work on co-optimizing central-
ized and decentralized neural network controllers along with
modular robot morphologies. In particular, four controllers
are implemented and tested on the task of locomotion. We
find that a decentralized controller that duplicates control
units into several parts of the robot shows better perfor-
mance and more morphological diversification compared to
the other controllers we investigated.

The Controllers
The following is an explanation of our controllers, their per-
formance, and their effect on robot morphology. The mod-
ules used are the EMeRGE modules [9], with one depth sen-
sor on each of the three connection faces.

0 100 200 300 400 500
Generation

5

10

15

20

25

30

Fit
ne

ss

Copy CTRNN
Decentralized CTRNN
Centralized CTRNN
Sine

Figure 2: The fitness progressions for all four controllers.
The solid lines are averages of the best individuals in each
generation, and the shaded areas represent the standard error.

There are four controllers. Three of them utilize contin-
uous time recurrent neural networks (CTRNNs), for which
the neat-python implementation is used1. This network was
chosen because it can be used to model biological neural
networks [10] and because it allows for temporal dynamic
behavior through recurrent connections [11]. Each node up-
dates based on a differential equation, with neuron potentials
as dependent variables.

The first controller is a decentralized sine controller, that
is implemented by allowing one sine wave with evolvable
parameters to directly control a module’s actuator. This
functions as a baseline of what the other controllers should
be able to achieve. The second controller is the centralized
CTRNN controller, that consists of one CTRNN that takes
in all sensor inputs and outputs all actions. Its inputs are
padded with zeros after the sensor inputs have been added.
The third controller is the decentralized CTRNN controller
where one small CTRNN is put in every module. The fourth
controller is the copy CTRNN controller, which also has one
small CTRNN in every module. However, this controller
only keeps two small CTRNNs and distributes these across
the body, copying them into different modules. Further de-
tails can be found in our paper on this experiment2.

The robots are co-optimized with an evolutionary algo-
rithm in a flat ground environment built in Unity. Perfor-
mance is measured as traversed distance away from the start
position. Each controller’s control and morphology muta-
tion rates were tuned through grid search. The final runs, of
50 individuals run for 500 generations, were done 64 times
for each controller. The significant differences between the
controllers were found with Mann-Whitney U tests using an
alpha level of 0.05 that was Bonferroni corrected.

At generation 50, the only significant difference was be-
tween the sine and centralized CTRNN controllers and the
decentralized CTRNN controller. The former two con-

1https://neat-python.readthedocs.io/en/latest/
2Omitted until publication

trollers had quickly gained fitnesses that were higher than
the latter. At generation 500, the copy controller had a sig-
nificantly higher average fitness than the other three, who
now had no significant differences between them.

In addition, the resulting robot morphologies were inves-
tigated. When comparing robot sizes, measured as each
robot’s number of modules, it was found that the copy and
decentralized CTRNN controllers had significantly larger
sizes compared to the sine and centralized CTRNN con-
trollers. It was also found that the copy controller appeared
to experience more beneficial morphology mutations at later
generations compared to the other controllers. The cen-
tralized CTRNN controller experienced the least beneficial
changes, and settled quickly on small morphologies.

Our findings show that the copy controller performs
significantly better than the other controllers when co-
optimizing the morphology and control of modular robots.
Notably, it has a much better performance than the de-
centralized CTRNN controller, which it is most similar
to, confirming that adding simple duplication of control is
more effective than a naive decentralized approach. At the
same time, the copy controller also outperforms the central-
ized control, which suggests that decentralized control can
achieve benefits that outweigh the benefits of simple cen-
tralized control if done well. Because each control unit in
the copy controller is evolved to work well in many differ-
ently positioned modules, adding modules through mutation
is often successful and results in larger creatures. This is
beneficial because larger creatures have more actuation and
force, and thus the potential to move further.

The copy controller is less able to fine-tune control com-
pared to the other controllers because each change to a con-
trol unit affects multiple parts of the robot. This leads to the
copy controller taking large jumps across the search space,
and relying on morphological mutation to continue optimiz-
ing. Compared to this, the centralized CTRNN controller
is able to fine tune, at the expense of early convergence of
morphology. These findings confirm that there seems to be
a trade-off between being able to fine tune with a small mor-
phology and losing the potential to get a larger fitness with
a larger morphology.

Conclusion
When co-optimizing morphology and control, the choice
of centralized or decentralized controller becomes an is-
sue because of changing inputs and outputs. Through co-
optimizing four controllers, we have found that the one that
duplicates behavior across the robot morphology performs
the best and displays the most morphological diversity. If
this translates to other robotic systems, it suggests that con-
trollers that duplicate behavior can lessen early convergence
of morphology and increase fitness when co-optimizing. It
is our hope that these findings can help researchers choose
control systems when co-optimizing robotic systems.

References
[1] J. Seo, J. Paik, and M. Yim, “Modular Reconfigurable

Robotics,” Annual Review of Control, Robotics, and Au-
tonomous Systems, vol. 2, no. 1, 2019.

[2] K. Stoy, D. Brandt, D. J. Christensen, and D. Brandt, Self-
reconfigurable robots: an introduction. Mit Press Cambridge,
2010.

[3] C. Paul, “Morphological computation. A basis for the anal-
ysis of morphology and control requirements,” Robotics and
Autonomous Systems, vol. 54, no. 8, 2006.

[4] A. Faı́ña, F. Bellas, F. López-Peña, and R. J. Duro,
“EDHMoR: Evolutionary designer of heterogeneous modular
robots,” Engineering Applications of Artificial Intelligence,
2013.

[5] N. Cheney, J. Bongard, V. SunSpiral, and H. Lipson, “On
the difficulty of co-optimizing morphology and control in
evolved virtual creatures,” in Proceedings of the Artificial Life
Conference 2016, ALIFE 2016, 2016.

[6] M. Joachimczak, R. Suzuki, and T. Arita, “Artificial Meta-
morphosis: Evolutionary Design of Transforming, Soft-
Bodied Robots,” Artificial Life, vol. 22, no. 3, 2016.

[7] K. Sims, “Evolving virtual creatures,” in Proceedings of the
21st Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH 1994, pp. 15–22, 1994.

[8] J. E. Auerbach and J. C. Bongard, “Evolving complete robots
with cppn-neat: the utility of recurrent connections,” in Pro-
ceedings of the 13th annual conference on Genetic and evo-
lutionary computation, pp. 1475–1482, 2011.

[9] R. Moreno, C. Liu, A. Faina, H. Hernandez, and J. Gomez,
“The emerge modular robot, an open platform for quick test-
ing of evolved robot morphologies,” in Proceedings of the
Genetic and Evolutionary Computation Conference Compan-
ion, pp. 71–72, 2017.

[10] R. D. Beer, “The dynamics of adaptive behavior: A research
program,” Robotics and Autonomous Systems, vol. 20, no. 2-
4, pp. 257–289, 1997.

[11] R. D. Beer, “On the dynamics of small continuous-time re-
current neural networks,” Adaptive Behavior, vol. 3, no. 4,
pp. 469–509, 1995.

	Introduction
	Research Motivation
	Research Questions
	Contributions
	Thesis Outline

	Background
	Introduction
	Evolutionary Algorithms
	Fitness

	Evolutionary Robotics
	Co-optimizing morphology and control
	Encodings
	Evolvability
	Control
	CTRNNs
	Material
	Simulators and physics engines
	Reality gap

	Modular Robotics
	Classification
	The modules
	Control
	The use of EA in modular robotics

	Concluding statement

	Implementation
	Overview of the system
	Software and tools
	Unity
	ML-Agents
	The modules

	Implementation
	Robot representation
	Evolutionary algorithm
	Fitness function

	Experiment 1
	The controllers
	Parameter tuning
	Results
	Controller performance
	Effect on morphology
	Robustness

	Analysis

	Experiment 2
	Variable scale of modules
	The encodings
	Parameter tuning
	Results
	Encoding performance
	Smoothness of landscape
	Landscape traversal

	Analysis

	Discussion
	Summary
	Further discussion
	Limitations and future work
	Ethical considerations

	Conclusion
	For Conferences

