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Abstract

Generative design provides an iterative process that allows for the optimi-
sation of 3D models. It is used in architecture to effectively explore a wide
range of solutions and enable creativity in the design process. The evolu-
tionary approach used in generative design is imitated by the use of a test
environment or artificial intelligence. A set of rules and constraints is de-
termined for the optimisation to follow. Otherwise, generative design is free
from limitations and assumptions. Principles of beauty can be found every-
where, in nature as well as art and architecture, but also in mathematics and
computational algorithms. It can be represented in ideas of symmetry, pro-
portions and properties like the Golden ratio that can give a sense of order
and consistency.

In this thesis, the different ways generative design could be used to al-
ter and optimise a design in accordance with external factors were explored.
During a generative design process, both practical objectives, as well as aes-
thetical ones, were applied to a frame truss design that represented a stool.
Strength and stability were examples of measurements for usability. The aim
was a stool that was both practical to use and pleasing to the eye through
the use of a multiobjective optimisation strategy. By proving that an opti-
misation that both considered practical and aesthetical objectives could be
used on a simple frame truss design, it was presumed that this method could
be used on more complex designs.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

During the Renaissance, the principles of perfection found in classical aes-
thetics were virtually unchallenged. It was believed that the principles of
perfection applied in nature as well as art. They adhered to the idea that
perfect symmetry depicted in architecture was a reflection of the imperfect
symmetry found in nature [21].

Nature has always been a source of inspiration, and the fields of com-
puter science and artificial intelligence are no exceptions. This is true for
several fields within informatics, especially within Artificial Intelligence and
robotics. Generative design and Evolutionary computation are both areas
where mechanisms inspired by the behaviour of organisms and nature are
utilised. Within Generative design, algorithms can be used to explore differ-
ent variations of a 3D design in the attempt to meet a set of requirements.
This exploration can result in new and innovative solutions to both new and
old problems as the design is evolved and adapted in complex ways to fit its
environment. An example of how generative design can be combined with
classical design can be seen in the Queen Elizabeth II Great Court in the
British Museum in London, show in figure 1.1. The roof is supported on
a rectangular outer boundary and a triangular grid of steel members was
constructed to provide structural stiffness [26].

In this thesis, different methods using generative design to alter and opti-
mise the design of a stool in accordance with external factors were explored.
The design was evaluated both in relation to usability and its design. As an
example of how usability could be evaluated, strength was used as an impor-
tant factor. When it came to the visual elements of the design, mathematical
principles were used as inspiration and for guidance.
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Figure 1.1: Queen Elizabeth II Great Court with a roof made with the use
of generative design [15]

13



CHAPTER 1. INTRODUCTION

1.1 Motivation for the Research

This section covers the motivation for the research done for this thesis as well
as the contribution to the wider field of research. The use of a generative
design process has clear advantages in relation to the structural optimisation
of the design of a stool as many different configurations can be evaluated
consecutively. A well-constructed generative design algorithm can consider
more different configurations and variations than the human brain. The
algorithm will also examine the problem unbiased and thus propose solutions
that can be distinctly unlike traditional solutions to a known problem. This
can result in designs that are very unlike what is expected, but there is
also a possibility that conventional and traditional designs are optimal after
all. New insight and innovative solutions to design can be obtained or old
knowledge can be backed up with knowledge from an unprejudiced algorithm.

The significance of aesthetics is an integral part of generative design where
the aim is to combine aesthetics with function. The main goal of this thesis
was to show how optimising for aesthetics did not have to compromise the
function or the strength of the end product. The aim was to create designs
where not only the practical aspect of design had been considered in the
optimisation process but also aesthetical aspects by applying mathematical
models to the optimisation.

1.2 Research Goals

The primary goal of this thesis was to determine if visually interesting de-
signs were obtainable in a multiobjective optimisation when practical and
aesthetical objectives were combined. This was explored using a generative
design process to adapt and evaluate the 3D design of a stool. The stool
was represented by a frame truss design. Multiple objectives of optimisation
were combined to analyse the influence each objective had on the evaluation
of the stool and how a harmonious stool design could be produced when mul-
tiple objectives were combined. More specific secondary goals were set with
the purpose of investigating the optimisation process further and reaching a
conclusion on whether the primary goal of combining practical objectives of
optimisation with aesthetical objectives gave visually interesting designs.

Primary goal: Investigate if visually interesting 3D designs
could be achieved when simultaneously optimising for both prac-
tical and aesthetical objectives.

14



1.3. THE STRUCTURE OF THE THESIS

When working on the thesis these secondary goals were explored to find
whether the main goal was attainable:

• Goal 1: Determine which objectives were realistic to utilise in the
optimisation process. This included both structural and aesthetical
objectives.

• Goal 2: Assess which objectives could be combined in a multiobjective
optimisation for the generative design process to make a visually inter-
esting design. Which objectives were not compatible was also assessed.

• Goal 3: Apply the objectives of optimisation on a stool represented
by a frame truss. A frame truss design was used as a foundation for
evaluation and could later be evolved to become a larger and more
complex frame truss.

• Goal 4: Explore the effect of each objective on the frame truss as well
as combinations of two or more objectives. This analysis was used as
the last step to analyse whether the main goal was attainable.

1.3 The Structure of the Thesis
This thesis was divided into 8 chapters. Chapter 1 introduced the topic of
the thesis as well as the motivation and goals of the research. The topics ex-
plored and the background was presented in chapter 2. Chapter 3 explored
the relationship between mathematics, art and aesthetics, and the measure-
ments used for the optimisation were defined. Strategies of optimisation were
discussed in chapter 4. The choice of framework used was discussed as well
as two algorithms considered for the optimisation. Each objective of opti-
misation was investigated separately in chapter 5, and the methods used for
the evaluation of each objective were described. Experiments combining the
objectives discussed in chapter 5 were presented in chapter 6. The differ-
ent methods and measurements were compared and the advantages, as well
as the disadvantages of each case, were presented in chapter 7. Chapter 8
concluded the research according to the defined research goals presented and
presented possible future research.

15



CHAPTER 2. BACKGROUND

Chapter 2

Background

In this chapter, the background for the structural optimisation of the stool
was presented. Truss theory and the use of mathematics in architecture and
art were introduced. The strategy of concept seeding was described as well as
multiobjective optimisation. Two different methods for optimisation, Pareto
front optimisation and Weighted fitness optimisation, were described.

Structural optimisation can be described as a method of making a struc-
ture sustain loads in the most optimal way [3]. The structure used for the
optimisation and simulation of the stool design consisted of a truss design.
More specifically a frame truss design was chosen. In this chapter, truss de-
sign theory was presented as well as the two types of truss designs that are
used within engineering: Truss and frame truss.

2.1 Truss Design Theory

A truss is a structure that is mainly utilised within engineering and can be
used for support and to provide structural integrity that distributes external
forces resulting from either tension or compression. The purpose of a truss
is to distribute weight evenly and handle changing stress whilst keeping its
shape. It consists of beams connected by joints to make the whole construc-
tion behave as if it is one object. These joints are also referred to as nodes.
When stress is applied to any part of the truss, it is distributed through the
whole structure as it travels through the beams. This lessens the pressure
on any single beam of the truss and in effect, it makes the overall structure
stronger than each individual component. When constructing a truss beams
can be connected in any shape that can support external stress, but gener-
ally triangular shapes are chosen because of their ability to distribute stress
and not be distorted as they have a stable geometry. A truss will require

16



2.1. TRUSS DESIGN THEORY

Figure 2.1: Example a bridge utilising a frame truss design [12]

less material than a compact structure that can support the same amount
of stress. This makes a truss suitable for supporting considerable amounts
of weight over a large span whilst using less material than a similar compact
structure.

Trusses can have a multitude of different configurations and they are used
for a large variety of purposes. They are commonly used in bridges, towers
and roofs, but also in the frame of bicycles. An example of a truss bridge
that utilises both triangular and rectangular shapes is shown in figure 2.1.

The main benefit of the use of a truss design instead of a solid design is
the reduction in material used compared to the strength achieved. Trusses
can also run over long spans, reduce deflection and support heavy loads.

2.1.1 The Difference Between a Truss and a Frame Truss

The points where two or more edges meet are referred to as joints. A truss has
revolute joints that allow the edges to move in accordance with each other.
Nevertheless, a truss has by definition no rotary moment as the triangular
shapes are used to stiffen the structure and make the truss rigid. The edges
can be contracted and pulled, but they can not be rotated as the truss is
often stiffened by supporting beams forming triangles. When the edges that
form the triangles are removed the truss collapses if stress is applied.

A truss where the joints are rigid is called a frame truss as it constitutes
a rigid frame. This can, for example, be obtained by welding the joints
together. The joints in a frame truss will contribute with rotary moment
as the edges are welded together, and the stress applied might contribute to
bending of the whole frame truss. Because of the welded joints, a frame truss
will not collapse when weight is applied even if it does not contain triangular
shapes that stiffen the structure.

17



CHAPTER 2. BACKGROUND

2.2 Mathematics in Architecture and Art

Mathematics has always been used as a guide to building all types of struc-
tures. Examples of this can be found in both ancient and modern buildings.
It has been used in music, photography, paintings and sculptures. Nature has
been a source of inspiration and patterns and configurations where mathe-
matical principles like symmetry, spirals, geometric figures, fractions and ra-
tios, are present can be found everywhere. These patterns can among others
be described by series like the Fibonacci numbers, recursive systems like the
Lindenmayer system, and fractals where smaller parts resemble the whole.
As an example of this, fractals can be found in crystals made from frost on
cold surfaces and show intricate patterns, and in the Romanesco broccoli
where the shape of the individual parts of the broccoli resembles the shape
of the whole. The concepts from geometry used for the optimisation were
defined in section 3.3.

2.3 Concept Seeding

The concept seeding approach was developed by John Frazer [9] from the late
1960s onwards and was used to capture and codify developed architectural
concepts in a generic form. His theory was that a generative system might
be able “to generate designs that embody the architectural concepts” [10].

This approach requires a concept seed and a set of rules. A concept seed
captures certain architectural ideas but needs further development to become
a design, and rules are set to develop the seed into a design. Then designs
are generated using a generative system.

By making small modifications to the seed, the concept seeding approach
creates a method to explore many different variations of a design. A plethora
of possible variations of the same seed are made and can be evaluated and
compared. With this approach, it is feasible to evaluate numerous differ-
ent variations of the design to obtain the best possible solution or solutions.
Figure 2.2 shows how different variations of stools can embody different ar-
chitectural ideas whilst still evolving from the same origin, the same seed.

2.4 Multiobjective Optimisation

Multiobjective optimisation is an area within optimisation concerned with
choosing the best solution when evaluating multiple objectives simultane-
ously. In multiobjective optimisation problems, “the quality of a solution is

18



2.4. MULTIOBJECTIVE OPTIMISATION

Figure 2.2: Stool designs with classical ornamentation [8]

19



CHAPTER 2. BACKGROUND

defined by its performance in relation to several, possibly conflicting, objec-
tives” [4].

Using an objective function is a method to assign a value to the quality
of a solution based on the objective and give it an evaluation. This is also
called the fitness or the quality of the solution. The purpose of optimisa-
tion is to find the solution with the best fitness for the problem, either by
minimising or maximising the evaluation. During a multiobjective optimi-
sation, multiple objectives are optimised simultaneously to make an optimal
decision. When objectives contradict compromises are made to reach a sat-
isfactory conclusion. This might result in suboptimal results for individual
object functions, while still obtaining an optimal result for the evaluation of
the multiobjective problem.

The fitnesses of a multiobjective optimisation problem can be organised in
a fitness landscape. Fitness landscapes have been used to visualise the distri-
bution of fitness since Sewall Wright introduced it in 1932 [27]. A landscape
consisting of peaks and valleys is used to visualise the fitness of solutions. The
optimal solutions are found at the extremes of the global maximum or mini-
mum. Evolutionary optimisation techniques often utilise strategies made to
avoid getting stuck in local maxima or minima, represented by smaller peaks
or smaller valleys in the fitness landscape.

2.4.1 Pareto Front Optimisation

Through multiobjective optimisation, a set of solutions called the Pareto set
or the Pareto front is found. Each solution to the optimisation problem
is evaluated separately according to a set of objectives. The Pareto set is
the set of solutions that are better than all other solutions in at least one
objective. Their evaluations can not be improved for any single objective
without at the same time negatively affecting the evaluation of any of the
other objectives. The solutions obtained in a Pareto front optimisation “lie
on the edge of feasible regions of the search space” [4] when constraints are
present. The solutions are considered to be of equal quality.

The Pareto set was visualised in figure 2.3 where the optimisation was
represented by the evaluation of two objectives. The solutions were evaluated
by the objectives x and y, which could represent any kind of objective of
optimisation. Each solution to the optimisation problem was represented by
a dot. The Pareto set was represented by red dots and the solutions not in
the Pareto set were represented by blue dots.
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x

y

Figure 2.3: Illustration of the Pareto front (represented by red dots) for a
minimisation problem
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2.4.2 Weighted Fitness Optimisation

By using a method of scaling the fitness evaluation of each objective in mul-
tiobjective optimisation, a single score for the fitness of the optimisation can
be found. This method is called Weighted fitness optimisation or simply
scalarisation. The objectives are given individual importance and weighted
accordingly. Each solution of the optimisation problem is assigned an overall
fitness that is determined by the fitness f of each objective weighted by an
assigned ω ∈ [0, 1]. The weight ω is determined according to the importance
of the trait. Thus the Weighted fitness function for a specific problem is
given by:

g =
n∑

i=1

ωifi

In Weighted fitness optimisation, the choice of good parameters is im-
portant to get a representative result and for the importance of the relevant
evaluations to neither get exaggerated nor overlooked. For each optimisation,
different aspects of the optimisation can be highlighted based on how they
are weighted.

When using Weighted fitness optimisation, it is not possible to get a visual
representation resembling what can be found using Pareto front optimisation.
Nevertheless, this method provides the possibility of evaluating each objective
used for the fitness and analysing its significance in the optimisation.
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Chapter 3

Measurements of Evaluation

In this chapter, the measurements used for evaluation during the multiob-
jective optimisation were introduced and outlined. They consisted of both
mathematical and structural concerns that were related to the design of the
stool. The connection between what can be measured and what can be ex-
perienced concerning the expression of beauty was also investigated.

In chapter 5, the measurements presented in this section were discussed
further in regards to the practical setting of the design of a stool. The stool
was optimised and analysed in relation to each objective.

3.1 The Bridge Between Mathematics and Art

When exploring the relationship between mathematics and art, clear par-
allels can be drawn between how mathematics can be found in nature, art
and architecture. These comparisons are simplifications made to describe
relationships and patterns found in nature. They are not absolute, but as
these theories have been a part of the human perception of beauty they are
an essential part of this discussion.

The Roman architect Vitruvius wrote that “Without symmetry and pro-
portion there can be no principles in the design of any temple” [23] in his
work De architectura that has been regarded as one of the most influential
works on architecture since the Renaissance [16]. According to Vitruvius
buildings embodied the attributes of stability, utility and beauty. This can
be translated to other structures than buildings and has in this case been
utilised for the design of a stool.
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Figure 3.1: An example of a three-legged stool made from wood [25]

3.2 Stool Design

To explore the effect of each objective of optimisation, a stool design was
chosen as it had both a practical function, but it could also have a decorative
one. A stool is a common piece of furniture and has a simple structure to
make the optimisation problem as fundamental as possible. Figure 3.1 shows
an example of a simple stool design.

When defining what a stool is for the purpose of this generative design
process the shape in its most basic form was discussed. It is simply a structure
to sit on that supports weight, but simultaneously stools can differ vastly in
their design. Stools are among the earliest and simplest types of furniture
used for sitting on and they can have a varying number of legs and come in
varying shapes and sizes. A chair has many of the same characteristics as a
stool, but a backrest is usually attached at a ∼ 90◦ angle to the seat and can
also feature armrests.

For the optimisation, the specifications of the design of the stool were set
to be as fundamental as possible. The stool was therefore given a square seat
and four legs. The design could have been chosen in a multitude of different
ways and different configurations of the stool were tested out. However, all
the observations made when it came to the objectives of optimisation that
were explored are also valid for structures with differently shaped seats and
different numbers of legs.

The skeleton of the stool used for the optimisation was based on a truss
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Figure 3.2: Original frame truss of the stool used for optimisation

design, and more specifically a frame truss design was chosen. The benefits
of a frame truss design were discussed in section 2. The stool design used as
a seed or base for optimisation was represented by the frame truss as shown
in figure 3.2. From this point onwards the joints of the truss were referred to
as nodes whilst the beams were referred to as edges. The stool consisted of
edges in the form of the legs and supporting beams to stiffen the structure.
It was proposed that altering the design could make a stronger structure and
thus also a stronger stool.

The stool was chosen to have three layers that each consisted of four
nodes. Only three layers were used to show how different the designs could
end up when different objectives and constraints were applied in the optimi-
sation while still keeping the design relatively simple. This made the design
easier to interpret than if it had more layers and thus more complexity. It
also limited the run time of the optimisation.

The stool consisted of a bottom layer with four nodes that were locked in
their position, a middle layer where the nodes were able to change position
during optimisation and a top layer that made up the rigid seat. Only the
nodes of the middle layer were able to change position in this configuration
whilst the rest of the nodes were kept at the same position. Optimising the
position of the bottom layer nodes was also tested, but this ended up giving
structures where the legs gravitated towards the middle of the stool when
optimising for strength. Choosing a structure where only the nodes in the
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middle layer were moved in the optimisation ensured optimisation according
to the given constraints whilst the overall shape was kept and ensured a
functional stool.

The three layers of the stool were connected with edges. All nodes were
connected with the nodes positioned right above and below them. There were
also edges connecting the nodes diagonally to strengthen the structure by
stiffening the truss. The edges were arranged to contain mirrored symmetry
over the plane that contained one of the nodes of the bottom layer as well as
the opposite node of the bottom layer and was perpendicular to the ground.
It was, however, not symmetrical around the plane that contained the two
other nodes of the bottom layer and was perpendicular to the ground. This
ended up giving an interesting shape that was symmetrical without obviously
being so.

Lastly, the stool needed a seat. Here the seat was set to have a quadratic
form to make the structure of the frame truss as fundamental and simplistic
as possible for the optimisation. It was not explored whether this was the
optimal shape of the seat when it comes to strength and optimising for weight
put on the chair. The width and depth of the seat were chosen to be the
same and the height of the chair was chosen to be twice the width of the
seat.

3.3 Defining Beauty

When looking at beauty in a qualitative setting, defining what makes some-
thing perceived as beautiful is essential. For a better understanding of how
this can be defined, mathematical concepts related to beauty, art and archi-
tecture were described and discussed.

3.3.1 The Golden Ratio

The Golden ratio is one of the most well-established properties of mathe-
matics and was famously discovered by ancient Greek mathematicians as it
appears frequently in geometry. It was found to neither be a whole number
nor a fraction, but rather an irrational number. The Golden ratio is famous
for the way it appears throughout mathematics and in nature in areas such
as proportions, spirals, geometry and architecture amongst others.

The Golden ratio is the ratio between two quantities where the ratio of
the two quantities is the same as the ratio of the sum of the quantities to the
larger one of them. It is uniquely defined by:
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a b

Figure 3.3: A visual representation of the Golden ratio

a+ b

a
=
a

b
:= φ

Where the Golden ratio is represented by φ with the value:

φ =
1 +
√
5

2
= 1.6180 . . .

While other irregular numbers can be quite closely estimated by a frac-
tion, this is not true for the Golden ratio. As an example, π can be estimated
to be 22/7, but it can also be estimated using fractions:

π = 3 +
1

7 + 1
15+ 1

1+ 1
292+···

After only a few steps the added fraction is so small that it does not add
much extra information to the estimation. On the other hand, when the
Golden ratio is estimated in the same way an interesting pattern appears:

φ = 1 +
1

1 + 1
1+ 1

1+···

Thus φ can be written as a continued fraction:

φ = 1 +
1

φ

Which gives:

φ2 = φ+ 1

φ2 − φ− 1 = 0(
φ− 1

2

)2
=

5

4

And thus the Golden ratio is defined as:
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φ =
1±
√
5

2

In fact, two values and not just one can define the irregularity of nature.
The positive value can be used for scaling up and the negative can be used
for scaling down.

The Golden ratio is often seen in nature as well as in geometry. Therefore,
it has been a subject of much interest and it has been studied by mathemati-
cians as far back as by the Ancient Greeks in the 5th century BC who found
that the Golden ratio often showed up in geometry and that many patterns in
nature conformed to the same mathematical laws using fractions and ratios.

A frequent pattern where the Golden ratio is present is the Golden spiral,
a logarithmic spiral with a growth of a ratio of φ. The Fibonacci spiral
where arcs are drawn connecting opposite corners of squares with sides equal
to the sum of the two previous sides is a close approximation to the Golden
spiral. Logarithmic spirals can for example be found in the arrangement of
leaves on the stem of a plant. This is called phyllotaxis and can be generated
from Fibonacci ratios. An example of the Aloe polyphylla plant showing
the property of the Golden spiral can be found in figure 3.4a. The Nautilus
shell, as seen in figure 3.4b, is frequently attributed to the Golden ratio but
is rather an example of a different logarithmic spiral. Clement Falbo argued
that this is clear from just viewing such a shell in his paper The Golden
Ratio—A Contrary Viewpoint [5].

(a) Aloe polyphylla [24]

(b) Nautilus shell [2]

Figure 3.4: Two examples of logarithmic patterns
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Psychologists like Gustav Fechner found that humans preferred rectangles
that were based around the Golden ratio [6]. This theory has been disputed
by Mario Livio amongst others. In his book The Golden Ratio Livio con-
cluded that there is “hardly any formal, accepted description of aesthetic
judgement in mathematics and how it should be applied” [18]. Even though
its role in the human perception of beauty has been contested, the Golden
ratio has interested humans since its discovery and still does. Therefore, it
has been explored further in this thesis.

3.3.2 The Silver Ratio

Closely related to the Golden ratio another mathematical ratio has been
defined, the Silver ratio or the Silver mean. Along with the Golden ratio
and the Bronze ratio, they make up the Metallic ratios. Only the Golden
and the Silver ratio have been discussed in this work. These three ratios are
irrational mathematical constants and are made up of continued fractions.

a a b

Figure 3.5: A visual representation of the Silver Ratio

The Silver ratio is represented by ρ and can be described using a line
that is divided into three parts. Two longer parts of the same length, and
one shorter. The ratio between the whole line and one of the larger segments
is the same as the ratio between one of the larger segments and the smaller
segment as shown in figure 3.5.

The Silver ratio is defined as:

ρ =
2a+ b

a
=
a

b

Which gives:

a

b
=

2a+ b

a
= 2 +

b

a

ρ = 2
1

ρ

ρ2 = 2ρ+ 1

The value of ρ can be found by using:

30



3.3. DEFINING BEAUTY

ρ2 − 2ρ− 1 = 0

And gives only one positive solution:

ρ =
2 +

√
(4 ∗ (−2) ∗ (−1))

2 ∗ 1
= 1 +

√
(2)

ρ = 2.414 . . .

All the metallic ratios are defined by continuous fractions, and the silver
ratio can be defined as:

ρ = 2 +
1

2 + 1
2+ 1

2+···

3.3.3 Equilateral Triangles

As the Golden ratio has been found to not be a good representation of per-
ceived attractiveness, other measurements of attractiveness in triangles have
been suggested. Jay Friedenberg found that the compactness of a triangle was
thought to be more appealing than whether the triangle followed the Golden
ratio in the paper Aesthetic Judgement of Triangular Shape: Compactness
and Not the Golden Ratio Determines Perceived Attractiveness [11].

In his paper, Friedenberg described how few studies investigating the
perception of beauty influenced by the Golden ratio explored its influence on
how triangles are perceived. Through surveys, Friedenberg found that par-
ticipants did not prefer triangles where the ratio of the length of the longest
side to the short side of the triangle followed the Golden ratio as discussed
in section 3.4.5. He found that the participants rather gravitated toward
triangles where the lengths of the sides were of equal lengths. These are
fittingly called equilateral triangles and an equilateral triangle can be found
in figure 3.6. Participants also greatly preferred triangles that pointed up-
wards. Equilateral triangles can be perceived as more compact and stable
and Friedenberg hypothesised that they were preferred because they were
seen as less likely to move or break. This was especially interesting in this
research as triangular shapes played a significant role in the design chosen.
The perception of stability and strength was also compelling to investigate
through equilateral triangles as stability and strength were also used as ob-
jectives in the optimisation.
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60◦60◦

60◦

Figure 3.6: An equilateral triangle

3.3.4 Symmetry

Symmetry can give a sense of harmony and balance and can be found in
everything from nature, mathematics and other natural sciences, as well as
in art. It occurs in many fields within mathematics that are not related to
geometry, like linear algebra, probability and calculus. The opposite of sym-
metry is asymmetry and this occurs when there is an absence of symmetry.

In geometry, an object is symmetrical if it constitutes two or more iden-
tical pieces that are organised in a way that does not alter its overall shape.
Many types of symmetry occur in geometry. An object can for instance be
symmetrical over a line and the two parts are mirrored images of each other.
When an object is rotated about a fixed point without the shape of the object
being changed, it has rotational symmetry. Scale symmetry occurs when an
object does not change shape when expanded or contracted. Fractals are an
example of scale symmetry and were explored further in section 3.3.5.

Humans and many animals are approximately symmetrical over a mir-
roring line through the middle of the body making the left and the right
side almost symmetrical. Whilst the outer part of the body of the animal
tends to be close to symmetrical, the inner part is often asymmetrical as
the organs usually are not arranged in a symmetrical fashion. The famous
drawing The Vitruvian Man, or The proportions of the human body according
to Vitruvius, by Leonardo da Vinci, shows the symmetry and proportions of
the ideal human body. Figure 3.7b shows this drawing and it is thought to
be based on the proportions of the human body described by the architect
Vitruvius in his work De architectura [23]. Da Vinci based the proportions of
his drawing on measurements of male models. An illustration of the Vitru-
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(a) Cesare Cesariano (1521) [1] (b) Leonardo DaVinci (ca 1492) [17]

Figure 3.7: Two versions of the Vitruvian Man

vian Man by Cesare Cesariano from 1521 featured in the illustrated edition
of De architectura can be seen in figure 3.7a.

In the paper Symmetry as an aesthetic factor [21], Harold Osborne wrote
that too much or too obvious symmetry defeats its own purpose". Too appar-
ent symmetry can be perceived as unnatural and manufactured even though
perfect symmetry can be seen as an ideal. Asymmetry can break with what
is expected and can therefore be perceived as interesting, but asymmetry
to a too large degree can give the impression of imbalance. Thus the slight
asymmetry seen in humans and animals alike is what makes them appear
natural.

Osborne also states that when symmetry "is unobtrusively subordinated
to other perceptual stimuli symmetry may enhance the overall aesthetic po-
tentiality of a work; otherwise the aesthetic appeal is annulled" [21]. When
symmetry is a part of the visual without being the main focus it can add to
the overall appeal without taking away from it.

3.3.5 Fractal Geometry

Fractals are a type of symmetry found in mathematical structures that make
them continue indefinitely where their pattern is repeated at different scales.
When zooming in on the pattern the same shapes will appear infinitely mak-
ing them extremely complex whilst still being easy to create. Fractals can
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make visually interesting and beautiful patterns. Patterns resembling frac-
tals are widely found in nature, but as patterns in nature are not infinite
these patterns only appear to be fractals. Examples of this can be found in
snowflakes and crystals, but also in trees, leaves and other plants. Figure 3.8
shows how the Romanesco broccoli has a structure that resembles fractals.

Figure 3.8: Romanesco broccoli with a structure that resembles fractals [14]

A well-known example of fractals is the Mandelbrot set where one can
zoom in indefinitely anywhere on the structure and find interesting and un-
expected shapes and structures. Mandelbrot found that not all geometry can
be described by Euclidean geometry and therefore suggested that there were
other rules that had to be in place to describe “some grossly irregular and
fragmented facets of nature” [19]. Using fractals Mandelbrot constructed
interesting new shapes and it facilitated him to construct landscapes and
maps of countries using geometric shapes that were completely artificial but
appeared to be natural.

3.4 Measurements of Aesthetics
As the overall goal was to optimise the structure based on aesthetical mea-
surability measurements for beauty had to be quantified and defined. In
this thesis, 10 different measurements or objectives for aesthetics have been
defined. These objectives were used for further analysis and discussion to
determine what objectives were realistic to use in the optimisation process.
Beauty is subjective, but the mathematical properties mentioned earlier in
this chapter were used as a foundation for further discussion.
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In Oxford English Dictionary ‘aesthetic’ refers to concern with beauty or
the appreciation of beauty, but it can also mean that something is giving or is
designed to give pleasure through beauty [22]. The origin is the Greek word
aisthētikos, from aisthēta ‘perceptible things’, from aisthesthai ‘perceive’.
Thus the word aesthetic refers to what we as humans perceive as beautiful
and the fact that we appreciate it because it is beautiful.

These are the measurements that were considered alongside the ability to
endure weight in the multiobjective optimisation:

1. Deflection of the seat

2. The shortest total length of edges

3. The maximum length of edges longest edge

4. Golden rectangle for the whole structure

5. Golden triangles

6. Silver triangles

7. The compactness of triangles - Equilateral triangles

8. Stability - The centre of gravity

9. Symmetry over axes

10. Presence of planes

These goals were divided further into two groups: Either they were defined
for the structure as a whole or they were defined for smaller parts that were
added up to make the whole. The total length of edges and the stability
of the structure were objectives defined for the whole structure. When the
length of one of the edges was changed, the length of other edges was changed
as well, and the stability of the structure was dependent on the length and
angles of the edges in that exact composition. Objectives that assessed the
triangles within the design evaluated the parts of the stool individually. Every
triangle was evaluated and the fitnesses of the individual triangles were added
up to provide an overall fitness. It could therefore be assumed that each
triangle had to be quite a good approximation to the shape of the triangle
optimised for. Suboptimal shapes of triangles could still occur as a part
of a structure that had an overall good fitness if the other triangles had
exceptionally good evaluations. For the fitness to be considered a good option
the overall evaluation had to be favourable.
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In this section, the objectives listed have been described and the possi-
ble advantages and disadvantages of each measurement have been discussed.
Table 3.1 assesses what objectives were possible to combine in multiobjec-
tive optimisation for the generative design process. Only the upper part of
the table was used to make it as intelligible as possible as the table was
symmetrical.

1 2 3 4 5 6 7 8 9 10
1 3 3 - 3 3 3 3 3 3

2 3 - 3 3 3 3 3 3

3 - 3 3 3 3 3 3

4 - - - - - -
5 7 7 3 3 3

6 7 3 3 3

7 3 3 3

8 3 3

9 3

10

Table 3.1: Possible combinations of measurements of optimisation

3.4.1 Deflection of the Seat

The deflection of the seat correlated with how much stress the truss could
withstand and was integral for the function of the stool as it directly deter-
mined whether or not the stool was usable. Hence, this criterion was included
in every optimisation.

3.4.2 Minimum Total Length of Edges

To ensure that the chair would not become wider than it was tall or for it to
be challenging to use, it was necessary to limit the width of the frame truss.
One option when limiting the width of the structure was to minimise the
total length of edges. This objective was easily combined with most other
objectives. When it was combined with objectives the impact depended on
how much it was weighted in the overall evaluation of the design.
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3.4.3 Minimising the Length of the Longest Edge

Another method used to limit the growth of the structure was to limit the
length of the longest edge. This gave a similar effect to minimising the total
length of the edges, but instead of minimising the length of every edge this
approach rather ensured that no single edge was particularly long while still
allowing for a wider range when it came to the length of the edges.

3.4.4 Golden Rectangle for the Whole Structure

When the mathematical measures of beauty were looked into, evaluating
whether the structure conformed to the Golden ratio was the first objective
that was considered. This objective was discarded early on in the process as
this factor would only alter the relationship between the height and the width
of the stool. For the truss to be considered to follow the Golden rectangle,
the whole structure had to conform to the Golden rectangle as shown in
figure 3.9. It became evident that this did not make a great change to the
optimisation as it did not have the intended effect.

a

a

b

Figure 3.9: Figure showing a Golden Rectangle

3.4.5 The Golden Triangle

The Golden ratio can not only be used for rectangles but a similar concept in
relation to the Golden ratio was applied to triangles resulting in the Golden
triangle. An isosceles triangle, a triangle where at least two of the sides are
of equal length, is a Golden triangle if the ratio between the shortest side, b,
and the duplicated sides, a, follows the ratio a

b
≈ 1.618 . . . . An example of

the Golden triangle is found in figure 3.10.
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b

a a

Figure 3.10: A triangle based on the Golden Ratio

3.4.6 The Silver Ratio Relating to Triangles

Similarly to the Golden triangle, an isosceles triangle relating to the Silver
ratio can be derived. This triangle was referred to as the Silver triangle and
a figure showing this can be found in figure 3.11. An isosceles triangle is a
Silver triangle if the ratio between the shortest side, b, and the duplicated
sides, a, follows the ratio a

b
≈ 2.414 . . . .

3.4.7 Compactness of Triangles

The compactness of triangles was calculated by determining the closeness to
equilateral triangles. Equilateral triangles have also been related to perceived
strength. Therefore optimisation for this type of triangle was integral to the
optimisation.

3.4.8 Stability

Stability in the structure was considered to be important to make it able to
withstand stress. The stability of an object is determined by the centre of
gravity and can be calculated for any object.
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b

a a

Figure 3.11: A triangle based on the Silver Ratio

3.4.9 Symmetry over Axes

Symmetrical or almost symmetrical forms are often found in nature and as
the design of the original stool was chosen to have a mirrored symmetrical
design both when it came to the placement of the beams and the joints, opti-
mising for symmetry was seen as an intriguing objective for the optimisation.
This objective could easily be combined with other objectives and could then
give designs where symmetry enhanced the rest of the design.

3.4.10 Proximity to Forming a Plane

As the top and bottom layers of the stool were set to fixed positions, the only
nodes that have the ability to move were the four nodes that constituted the
middle layer. Thus the stool could contain a plane formed by these four
nodes. The search for the presence of planes in the different layers of the
stool, and the proximity of layers of the stool to forming planes, was thought
to have the possibility of giving visually interesting designs. This could give a
chair that had sections that had straight lines when seen from specific angles
when the planes were looked at straight ahead, whilst the formation of a
plane would not be evident from different angles. A hidden feature like this
could give a focal point to the stool and be regarded as intriguing.
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In geometry, a plane is a two-dimensional surface that is flat and extends
indefinitely. A plane can be defined uniquely by three points in the plane
that are not on a single line. When four points, A, B, C and D, in three-
dimensional space, are defined, it is possible to determine whether they form
a plane by utilising the method for defining a plane using three points and
determining if the last point is in the plane as well. Using this approach it is
also possible to determine how close the four points are to forming a plane.
This can be done by calculating the distance between the plane defined by
three of the four points and the last point. The method used for calculating
how close the four points are to forming a plane is detailed further.

The general equation for a plane is determined by:

ax+ by + cz + d = 0

Every point (x, y, z) in the plane meet this requirement. For points
(x1, y1, z1) that are not in the plane the shortest distance from the plane
to the point is determined by the equation:

q =

∣∣∣∣ax1 + by1 + cz1 + d√
a2 + b2 + c2

∣∣∣∣
3.4.11 General Notions

Some of the objectives discussed are contradictions. This has been explored
further in chapter 6 and tested to see what factors are not possible to combine.
To determine this, a function was made to combine the objectives to find if
good results were obtainable from different combinations of objectives. If
a good evaluation was not achievable during optimisations combining two
objectives, it was assumed that the objectives were incompatible and could
thus not be used in the same optimisation.
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Chapter 4

Optimisation Strategies

This chapter covers the frameworks and strategies of optimisation that were
considered for the implementation of this thesis. MATLAB was chosen as
a mathematical tool to both visualise and optimise mathematical problems
during the multiobjective optimisation.

In evolutionary programming, common programming languages used are
Python and MATLAB. Both have their advantages and disadvantages which
have been discussed in the first section of this chapter. Here MATLAB
was used, and the library genLib developed by Mats Høvin [13] was used
as it was developed specifically to be a tool for working with generative
design. In this chapter, different methods of solving optimisation problems
in MATLAB were discussed. The Genetic algorithm and Simulated annealing
were described separately. An approach using Weighted fitness optimisation
was used to single out and focus on specific objectives for each optimisation
and to weight them to suit the conditions of each optimisation.

4.1 Choice of Framework

Both MATLAB and Python are good options when it comes to the choice
of programming language for multiobjective optimisation within generative
design. They have most of the same functionality when it comes to appli-
cations concerning optimisation and visualisation. All methods used in this
thesis would be possible to implement in both MATLAB and Python, and
the methods used should therefore be possible to reproduce no matter what
framework is chosen.

Python is a well-known open-source programming language with almost
endless possibilities when it comes to what it is possible to achieve. It has
a simple and concise syntax and is frequently used within evolutionary pro-
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gramming as well as machine learning. With a large community of users
as well as a diverse selection of available frameworks and libraries targeting
almost all possible areas in programming, it is a good first choice of pro-
gramming language for both students and other programmers. Optimisation
algorithms are easy to implement and use in Python.

MATLAB is a programming language based on the programming lan-
guage C and it was designed to analyse data and create models and applica-
tions. It was specifically designed with engineers and scientists in mind and
can be used for machine learning, signal processing, optimisation and mod-
elling to name a few examples. MATLAB has evolved from being a program
to easily manipulate matrices and can now be used for nearly all mathemat-
ical applications. With pop-up graphic windows that support both 2D and
3D views, it is great for visualisation. MATLAB also has a command window
that can be used for executing programs or using an interactive shell and is
a great tool when troubleshooting and testing out new ideas.

One of the most significant disadvantages of using MATLAB is its avail-
ability. MATLAB is only available through an annual or perpetual license
with a fee. Many universities provide licenses for MATLAB for their students
and their employees.

As the genLib library was developed specifically for working with genera-
tive design in MATLAB, this was the determining factor for using MATLAB.
The genLib library was heavily utilised in the development.

4.2 Optimalisation in MATLAB

In MATLAB multiple algorithms for optimisation have already been imple-
mented. The two algorithms that were considered were the Genetic algorithm
and the Simulated annealing algorithm. For this application, both algorithms
were deemed reliable as they gave similar results during testing. Simulated
annealing is considered to be a computationally intensive algorithm. For
optimising a small framework, this should not have a great impact on the
runtime of the optimisation. For larger optimisation problems the differ-
ence between Simulated annealing and the Genetic algorithm would be more
noticeable. Ultimately the Genetic algorithm was chosen.

4.2.1 Genetic Algorithm

The Genetic algorithm is used for optimisation with the objective of evolving
toward a better solution using a process that imitates biological evolution.
The Genetic algorithm was developed by John Holland in the 1960s and
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1970s and “is a model or abstraction of biological evolution based on Charles
Darwin’s theory of natural selection” [28]. It can be used to search for global
minima or maxima for highly nonlinear problems.

To initialise the optimisation, a randomly selected population of solutions
is selected. The members of the population are also called individuals. Each
individual in a generation is evaluated and assigned a fitness accordingly.
Individuals are selected at random to use as parents to produce the children
used for the next generation of individuals. Combining this with mutation
and crossover among the members of the population, the genetic algorithm is
more likely to avoid local minima or maxima. The population will over time
evolve toward an optimal solution for the problem. The greatest advantage
of the Genetic algorithm is the ability to do a search that explores many
different directions simultaneously as the children act as individual entities
[28] and covers a larger search field. This makes it possible to search larger
areas of the fitness landscape. However, weaknesses of this algorithm are the
scalar way individual performance is rewarded [7] and how it tends to be
time-consuming.

4.2.2 Simulated Annealing

The Simulated annealing algorithm can solve unconstrained and bound-
constrained optimisation problems. The algorithm simulates the annealing
process that happens in metals when heated and cooled to alter their physical
properties, and the simulated annealing process emulates the cooling process
of metals where the temperature is controlled carefully [28]. This method
works similarly to the genetic algorithm in the way the current solution is
used to find the next step. Unlike the Genetic algorithm, simulated anneal-
ing only utilises one solution in each step of the optimisation. It also accepts
worse solutions than the current for the next step with a certain probability.
This is done to prevent the algorithm from getting trapped in a local minima
or maxima.
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Chapter 5

Implementation

In this chapter, the implementation of each measurement of evaluation used
for the optimisation of the frame truss design presented in section 3.2 was
described. For each algorithm used examples that demonstrated the effect
they had when applied to the frame truss were shown. Each objective was
implemented alongside the ability to endure weight as well as the physical
constraints described. As can be seen, not all the measurements that initially
seem like a good idea were so in reality. Others performed differently in
practice than how they were thought to work.

5.1 Basic Criteria

The intended outcome of this analysis was a stool that would endure stress
and was possible to sit on comfortably. The criteria in regards to the de-
sign of the stool were defined in section 3.2. Those constraints defined the
practical point of view concerning how the stool looked and was used in the
implementation. The criteria laid down ensured a usable chair.

All measurements presented are in metres. The stool was 0.2 metres tall
and the nodes of each layer were 0.1 metres away from the closest nodes. The
objectives listed were taken into consideration alongside the ability to endure
weight in the form of deflection in the fitness evaluations. The impact of each
objective on the evaluations was exemplified with one or more optimisations.
All factors in the Weighted fitness function apart from the ones that were
relevant to the optimisation were set to zero.
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The Weighted fitness function of the optimisation problem was given as:

g =
n∑

i=1

ωifi = ω1 · deflection+ ω2 · sumEdge+ ω3 ·maxEdge

+ ω4 · goldenTri+ ω5 · silverTri+ ω6 · equiTri+ ω7 · chooseTri
+ ω8 · centreofMass+ ω9 · symmetry+ ω10 · closePlane

(5.1)

The names of the objectives used for the Weighted fitness function and
the descriptions of each objective used in the optimisation:

• Deflection: The sum of the movement of each node of the top layer
in all directions. The absolute values were used to account for the
possibility of one side of the seat moving up when stress was applied.

• sumEdge: The sum of the length of all edges in metres. Each length
was squared and as each edge was < 1 metre this factor did not become
too significant and outweigh the other objectives.

• maxEdge: The length of the longest edge of the frame truss in metres.

• goldenTri: Each triangle was evaluated how far it was from forming
a Golden triangle, and the differences were summed up. This was
represented in metres.

• silverTri: A similar evaluation to the evaluation of goldenTri, but for
Silver triangles.

• equiTri: A similar evaluation to the evaluation of goldenTri and silver-
Tri, but for equilateral triangles.

• chooseTri: Each triangle was evaluated separately and compared to
the type of triangle from the three above it resembled the most. The
differences in metres were summed up.

• centreofMass: The stability of the structure was measured by finding
how far the centre of mass was from the middle of the seat. This was
measured in metres.

• symmetry: Specific nodes of the frame truss were compared in relation
to how far they were from being mirrored symmetries over an imagined
plane. How far the points were from being symmetrical was evaluated
for each direction and summed up. This was measured in metres.
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• closePlane: How close the nodes of the middle layer were to form a
plane. The plane containing three of the four nodes was found and the
distance in metres to the last node was found.

The evaluation of each of the objectives for the original stool was pre-
sented in table 5.1. The objectives of stability, symmetry and closeness to
forming a plane were 0 in the original design as it was designed to contain
mirrored symmetry and all four nodes of the middle layer formed a plane.

Deflection 0 equiTri 0.9941
sumEdge 0.3600 chooseTri 0.9941
maxEdge 0.1414 centreofMass 0
goldenTri 2.9429 symmetry 0
silverTri 12.4971 closePlane 0

Table 5.1: Evaluations of the original stool design

5.2 Handling Physical Constraints
During the optimisation of the practical problem, physical constraints that
would not have been a problem in a purely theoretical case needed to be con-
sidered. Therefore cases that could alter the physical properties fo the truss
and be a problem when building or printing the stool had to be considered.
In the implementation of the stool, the two physical constraints considered
were:

• A minimum angle between edges that shared a node

• A minimum distance between edges that did not share a node

When the constraints were not met a penalty was added to the evaluation
of the stool. This gave designs that did not meet these two restrictions a
worse overall evaluation than they would get otherwise, and thus they were
less likely to be picked than designs that did. Both of these constraints were
used in all optimisations.

5.2.1 The Angle Between Edges That Share a Node

When the angle between two edges that share a node was very small, edges
would either partially or fully overlap. A too-small angle between two edges
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that shared a node could, therefore, make the corner impossible to construct.
To counteract this problem the optimisation was discouraged from choosing
these options. This was done by specifying a limit of 15° for how small the
angle between edges that shared a node could be. Angles smaller than the
limit got a worse evaluation than structures that did not have angles lower
than the limit. Instead of a hard limit where structures with angles smaller
than the limit were discarded, a soft limit was used. A penalty that grew
exponentially based on how small the angle was compared to the limit was
used. This penalty was then added to the evaluation of the structure. As the
total evaluation of the stool would be worse, the chair would be less likely to
be favoured and thus less likely to be chosen.

5.2.2 The Distance Between Edges That Do Not Share
a Node

When edges that did not share a node were too close to one another prob-
lems considering construction would occur. Edges would collide or cross.
There were instances where edges barely intersected, fully collided or sce-
narios where multiple instances of colliding edges happened simultaneously.
Two instances of intersection edges can be seen in figure 5.1. These scenar-
ios were seen as unfavourable to construct as the frame truss could become
challenging or impossible without altering the design of the edges.

One way to solve the problem of crossing edges was by cutting into the
edges before assembling. The edges would then slot into place like a puzzle.
In this case, the calculation of the strength of the stool would be incorrect as
the algorithm calculated the stress applied to the edges according to which
edges and nodes were initialised to be connected. The edges would gain
support by being connected to intersecting edges and thus gain support that
was not considered in the evaluation. The calculated strength of the chair,
as well as the calculated deflection of the seat, would therefore be invalid.

The problem of colliding edges could also be solved by placing a new node
at the intersection point of two edges and dividing the two previous edges
into four new ones. Sebastian Tangen Olsen proposed a method for how to
solve this in his thesis, Optimizing a Quadcopter Frame Prototype With a
Novel Generative Design Framework [20]. This method was, however, not
used in this case as adding new nodes in the points of intersection would add
more complexity to the truss that would need further analysis. The main
focus of this work was the analysis of triangular shapes, and placing new
nodes at the intersection point of two edges would not necessarily result in
the desired triangular shapes. Adding this extra step to the analysis would

49



CHAPTER 5. IMPLEMENTATION

(a) Two edges that intersect (b) Multiple edges intersecting

Figure 5.1: Intersection of edges

also add more complexity to the truss design, and the purpose of the choice
of design was to make it as fundamental as possible. Adding new nodes at
the point of intersection was thus not considered to be a viable option in this
instance.

Instead, a limit for how close the edges that did not share a node were
allowed to be from one another was set. This limit was a soft limit similar
to the one used for the angle between edges that shared a node as shown in
section 5.2.1. A penalty was added to the evaluation that grew exponentially
for distances shorter than the smallest desired distance. The radius of the
edges was set to 3 mm for the truss. To discourage the choice of designs with
overlapping edges the desired minimum distance from the middle of each
beam was set to 10 millimetres.

5.3 Structural Constraints

In this section, the objectives relating to the structural constraints of the stool
were outlined. These objectives were related to the built of the stool and were
related to the physical constraints of the chair that were described in section
5.2. Where physical constraints considered the aspects that make the stool
impossible or challenging to build, the structural objectives considered the
aspects that made the stool impractical or impossible to use for its intended
purpose. This both included the ability to support weight and for the size
to not expand outside the bounds that made it possible to sit on. They
consisted of:

• Deflection of the seat

• Shortest total length of edges
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Figure 5.2: Deflection of the seat

• Maximum length of edges

5.3.1 Deflection of the Seat

To find the durability of the stool or how much weight it could withstand,
the deflection of the seat was calculated using the deflection matrix. This
matrix showed the displacement of each node, and it could be used to find the
displacement of specific nodes. As the seat constituted of the four nodes that
made up the top layer these nodes were the only ones used for this evaluation.
The weight was also applied to these four nodes. Figure 5.2 shows the original
truss design as well as the vectors of the forces applied to the stool in blue
and the same truss with deflection in red. The displacements of the four
nodes that constituted the seat were summed up to give an evaluation of
the displacement of the seat. The stools with less deflection of the seat were
favoured over stools with more deflection.

From experiments where the deflection of the seat was used for the evalu-
ation, the nodes were found to move to make the edges parallel to the applied
forces to counteract the stress applied. An example of this was presented in
figure 5.3.

Figure 5.4 shows three examples of stools that were optimised for weight
placed on all four nodes that constituted the seat. This resulted in stools
of vastly different designs, even though the designs were only optimised for
weight. One common variety of resulting designs from optimisations was
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Figure 5.3: Force placed at an angle

Figure 5.4a 5.4b 5.4c
20N right down 0 0 0

Force applied at an angle 4.8173 · 10−7 1.1662 · 10−6 5.9195 · 10−7

Force applied at an angle 4.5833 · 10−7 1.1541 · 10−6 1.1541 · 10−6

Table 5.2: Evaluations of deflection of the seat for the optimised stools

excessively wide stools that were too wide for comfortable use. Two examples
of wide stools are pictured in figure 5.4b and 5.4c. Other optimisations
resulted in designs that appeared flat when observed from one direction whilst
appearing to be wide when observed from a different direction. An example
of this can be found in figure 5.4a. Table 5.2 shows the deflection for each of
the stools shown in figure 5.4. There was no calculated deflection of the seat
when the weight was placed straight down on all three stools, but when the
weight was placed at an angle on the seat, the narrow stool shown in figure
5.4a gave somewhat better results for deflection than the wider stools shown
in figure 5.4b and 5.4c.
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(a) (b) (c)

Figure 5.4: Three examples showing optimisation for deflection

5.3.2 Minimum Total Length of Edges

It became evident that one of the ways the algorithm would stabilise the
structure and make it withstand more weight was to navigate towards wider
structures. The structure would either expand in all directions or two corners
on opposite sides would expand outwards whilst the two other corners stayed
close to the middle of the structure. This would make the centre of gravity
more centred in the stool thus making it more stable. Even with the positive
effects of a wider stool, this was not an ideal choice for the usability of the
stool.

To counteract for the chair from expanding and becoming too wide, one of
the objectives was to limit the length of the edges of the structure. This was
done by calculating the squares of the length of the edges and summing up
the values. The value was added to the evaluation. Along with the deflection
of the structure, this factor could be used to evaluate the performance of the
chair. When used in combination with other objectives, the shortest length
possible might not be attained, but it would ensure a chair that would not
grow to become excessively wide. Even when only the total length of the
edges and the deflection were used, intriguing shapes emerged as shown in
figure 5.5.

5.3.3 Maximum Length of Edges

A different method used to discourage the choice of stools with wider struc-
tures was proposed. This method only evaluated the length of the longest
edge, ignoring the length of the other edges. Two vastly different designs can
be found in figure 5.6 that illustrate the effect this approach could have on
the overall structure. Figure 5.6a resembled the result from the optimisation
for the total length of edges where the nodes of the middle layer gathered
in the middle of the figure. Nevertheless, this approach tended to result in
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Figure 5.5: Stool optimised for minimising the total length of edges

designs where no edge was extremely short. The result found in figure 5.6b
shows a stool where all the edges ended up being more or less the same length
while the stool still stayed narrow.

5.4 Aesthetical Objectives
As the framework of the stool primarily consisted of triangular shapes, ob-
jectives assessing the three types of triangular shapes discussed previously
were used in optimisation:

• Golden triangle

• Silver triangle

• Equilateral triangle

A strategy that combined the optimisation of these three types of triangles
and optimised each triangle to favour the shape it most resembled was also
proposed.
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(a) (b)

Figure 5.6: Two stools optimised for minimising the length of the longest
edges

The other objectives used for aesthetical optimisation were:

• Stability

• Symmetry over axes

• Presence of planes

5.4.1 Golden Triangle

To optimise for the prevalence of Golden triangles in the stool, each triangle
that was visible from the outside was evaluated and an overall evaluation for
the whole design was made by summing up the individual evaluations. The
method used to determine how close each triangle was to being a Golden
triangle can be found in Algorithm 1. For each triangle, the length of the
edges was found and sorted according to size. The difference between the
ratio of the longest and the shortest edge compared to φ = 1.6180 . . . , was
added to the difference between the length of the longest edge compared to
the length of the second-longest edge. The smaller this number was for a
singular triangle, the closer it was to forming the shape of a Golden triangle.

Two resulting stools from the optimisation for the prevalence of Golden
triangles can be found in figure 5.7. Interestingly, figure 5.7a had edges two
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(a)
(b)

Figure 5.7: Two stools optimised for Golden triangles

Figure 5.7a 5.7b 5.8
Deflection 4.5348 · 10−7 4.3964 · 10−7 4.0030 · 10−7

goldenTri 0.4838 0.6934 0.5939

Table 5.3: Evaluations of the stools presented in figure 5.7

instances of colliding edges whilst figure 5.7b did not have this problem.
This meant that the significance of the evaluation of Golden triangles was
deemed to be greater than the evaluation for edges that did not collide for
the framework in figure 5.7a. To counteract this, either the evaluation of
the prevalence of Golden triangles could be weighted to have less impact on
the total evaluation, or the evaluation of the edges not colliding could be
weighted to have a larger impact on the total evaluation.

The evaluation of the deflection of the seat and the prevalence of Golden
triangles for the optimised stool designs from figure 5.7 along with evaluations
of a stool that weighted the objective for Golden triangles with ω = 10−6 can
be found in table 5.3. Figure 5.7a had a better evaluation for Golden triangles
than figure 5.7b, whilst figure 5.7b had a better evaluation for the deflection
of the seat. The stool in the figure where the Golden ratio was weighted to
become less significant, figure 5.8, had a better evaluation for deflection of the
seat, but an evaluation of Golden triangles that was between the evaluations
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Algorithm 1 How close the triangles were to forming Golden triangles
1: function goldenTriangles
2: for every triangle with corners (a, b, c) in the stool do
3: ~ab← the vector from a to b;
4: ~bc← the vector from b to c;
5: ~ac← the vector from a to c;
6: (a1, b1, c1)← vectors ~ab, ~bc and ~ac sorted from smallest to largest;
7: offset ← abs(c1− b1) + abs(φ− c1/a1);
8: sum_offset ← sum_offset + offset;
9: end for

10: return sum_offset;
11: end function

for this factor for the two other stools. This shows how weighting a factor
in the optimisation differently could result in designs that still had a good
overall evaluation.

5.4.2 Silver Triangle

The method used to find how close each triangle was to forming a Silver
triangle was similar to the one used to find how close each triangle was to
forming a Golden triangle. However, instead of comparing the ratio between
the length of the longest edge and the length of the shortest edge to φ it was
compared to ρ = 2.414 . . . . This implementation has been mapped out in
Algorithm 2.

The two stools presented in figure 5.9 show two resulting designs from the
optimisation for Silver triangles. The two frameworks resembled one another
somewhat as they both had a middle layer node situated far down and the
node diagonally across from it was situated far up on the opposite side of
the stool, making the middle layer of both stools appear tilted. The edges of
figure 5.9b collided in two areas, but figure 5.9a did not have any problem
with colliding edges. Similarly to the stool presented in figure 5.7a, the search
for Silver triangles had more of an impact on the optimisation for figure 5.9b
than the objective of avoiding collision of edges.

Table 5.4 shows the evaluation of the deflection of the seat as well as the
prevalence of Silver triangles along with the evaluations for the design pre-
sented in figure 5.10 where the search for triangles resembling Silver triangles
was weighted with ω = 10−6 and had a design similar to the stool shown in
figure 5.9a. The stool presented in figure 5.9a had a better evaluation for
the deflection of the seat than the stool in figure 5.9b, but the stool in figure
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Figure 5.8: A stool where the evaluation for Golden triangles was weighted
with ω = 10−6

(a) (b)

Figure 5.9: Two stools optimised for Silver triangles
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Algorithm 2 How close the triangles were to forming Silver triangles
1: function silverTriangles
2: for every triangle with corners (a, b, c) in the stool do
3: ~ab← the vector from a to b;
4: ~bc← the vector from b to c;
5: ~ac← the vector from a to c;
6: (a1, b1, c1)← vectors ~ab, ~bc and ~ac sorted from smallest to largest;
7: offset ← abs(c1− b1) + abs(σ − c1/a1);
8: sum_offset ← sum_offset + offset;
9: end for

10: return sum_offset;
11: end function

Figure 5.9a 5.9b 5.10
Deflection 7.5123 · 10−7 8.3023 · 10−7 0
silverTri 3.5197 2.9598 3.2288

Table 5.4: Evaluations of the stools presented in figure 5.9

5.9b had a better score for the prevalence of Silver triangles. However, the
stool in figure 5.9b had colliding edges while the stools from figure 5.9a and
5.10 did not.

Comparing the two unweighted stool designs to the design where the
Silver triangle function was weighted with ω = 10−6, the weighted stool
design had an evaluation for Silver triangles that was between the evaluations
for the unweighted designs. The weighted stool had no deflection of the seat
and was therefore evaluated to be a better design than the stool in figure 5.9a
when only considering these two objectives. Interestingly, the design where
the evaluation of Silver triangles was weighted with such a small factor as
ω = 10−6 had the best overall evaluation. Neither optimisation gained good
evaluations for Silver triangles, and it can be assumed that the framework
was not ideal for the optimisation of Silver triangles.

5.4.3 Equilateral Triangle - Compactness of Triangles

The search for compact triangles, or triangles with the largest possible trian-
gle compared to the length of the edges, was done by searching for triangles
that closely resembled equilateral triangles. In an equilateral triangle, all
three edges are of the same length, and how close a triangle was to forming
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Figure 5.10: A stool where the evaluation for Silver triangles was weighted
with ω = 10−6

an equilateral triangle was calculated by comparing the length of each of the
three edges. The differences were summed up to give an evaluation of each
triangle, and these evaluations were summed up to give an evaluation of the
framework as a whole. The method used can be found in Algorithm 3.

Two examples of stools generated with the purpose of obtaining equilat-
eral triangles can be found in figure 5.11, and the evaluation of the stools
can be found in table 5.5. A stool where the compactness of triangles was
weighted with ω = 10−6 can be found in figure 5.12 and was also used in the
comparison. The same pattern as seen in sections 5.4.1 and 5.4.2 appeared
when optimising for compactness of triangles as well. The stool presented
in figure 5.11a had a better evaluation for compactness of triangles than
the stool in figure 5.11b, but this stool also had edges that collided in the
same way as we saw for figure 5.7a and 5.9b. This stool also had the best
evaluation for deflection of the seat. To avoid this problem, a minimally
worse evaluation had to be tolerated. When compared to the stool where the
compactness of triangles was weighted by ω = 10−6, the evaluation of the
compactness of triangles was worse, but this stool had no deflection of the
seat.

In an ideal stool optimised for compactness for triangles, all edges would
be of the exact same length making all triangles have the exact same size
as well. Even though, none of the stools compared in table 5.5 consisted
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(a) (b)

Figure 5.11: Two stools optimised for equilateral triangles

Algorithm 3 How close the triangles were to forming equilateral triangles
1: function equilateralTriangles
2: for every triangle with corners (a, b, c) in the stool do
3: ~ab← the vector from a to b;
4: ~bc← the vector from b to c;
5: ~ac← the vector from a to c;
6: offset ← abs(~ab− ~bc) + abs(~bc− ~ac) + abs(~ab− ~ac);
7: sum_offset ← sum_offset + offset;
8: end for
9: return sum_offset;

10: end function
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Figure 5.11a 5.11b 5.12
Deflection 3.9704 · 10−7 4.1322 · 10−7 0
equiTri 0.4409 0.5079 0.5304

Table 5.5: Evaluations of the stools presented in figure 5.11

Figure 5.12: A stool where the evaluation for equilateral triangles was
weighted with ω = 10−6.

of only triangles that were of the exact same size all of them came close.
They had all had total evaluations > 0.55 for how close the triangles were
to forming equilateral triangles, meaning all triangles in the three examples
closely resembled equilateral triangles.

5.4.4 Combined Search for Triangles

As the search of the three different types of triangles would conflicd when
used in the same optimisation the next step was to find a way to combine
them in one algorithm. The three objectives were contradictory as they
searched for completely different types of triangles, and a good evaluation
for one type of triangle would give a bad evaluation for the other types. A
method that determined which type of triangle each triangle in the design
resembled the most was thus proposed. The search method was based on the
methods proposed in sections 5.4.1, 5.4.2 and 5.4.3. The smallest evaluation
was chosen for each triangle as this coincided with the type of triangle that
particular triangle resembled the most. The evaluations of each triangle in
the desing were then added up. The method used for the combined search
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(a) (b)

Figure 5.13: Two stools optimised with a combined search for choice triangles
with colliding edges

Figure 5.13a 5.13b 5.14
Deflection 0 0 0
chooseTri 0.2593 0.2229 0.3007
goldenTri 3.9638 3.4657 4.5252
silverTri 11.9254 13.0199 14.0793
equiTri 0.9529 0.8124 0.5899
Total 17.1014 17.5209 19.4951

Table 5.6: Evaluations of the stools presented in figure 5.13

for triangles can be found in Algorithm 4.

This search more often than not gave resulting stools with colliding edges,
and two such examples can be found in figure 5.13. A stool without colliding
edges can be found in figure 5.14. Table 5.6 shows the evaluations of each of
the stools and shows good results for the combined search for triangles for
all designs, but the stool without crossing edges had the worst evaluation.

An evaluation was done for each type of triangle for the whole designs
to get an idea of what triangles this method gravitated towards. Table 5.6
shows how the combined search favoured the shape of equilateral triangles
and moved away from Silver triangles. As the method for equilateral triangles
differs from those used for Golden and Silver triangles, the numbers cannot
be compared directly without further analysis.
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Algorithm 4 How close the triangles were to forming the triangle each
resembled the most
1: function chooseBestTriangle
2: for every triangle with corners (a, b, c) in the stool do
3: ~ab← the vector from a to b;
4: ~bc← the vector from b to c;
5: ~ac← the vector from a to c;
6: (a1, b1, c1)← vectors ~ab, ~bc and ~ac sorted from smallest to largest;
7: offset_goldenTri ← abs(c1− b1) + abs(φ− c1/a1);
8: offset_silverTri ← abs(c1− b1) + abs(σ − c1/a1);
9: offset_equiTri ← abs(~ab− ~bc) + abs(~bc− ~ac) + abs(~ab− ~ac);

10: offset ← the smallest offset of the three above;
11: sum_offset ← sum_offset + offset;
12: end for
13: return sum_offset;
14: end function

Figure 5.14: A stool for optimised for a combined search for triangles with
no colliding edges.
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(a) (b)

Figure 5.15: Two stools optimised for stability

5.4.5 Stability

The stability of the stool can be seen as a structural concern, but it is also
related to the visual aspect of the stool as the appearance of the stool relates
to how the stool is perceived. As discussed in section 3.4.8, the stability of
the stool was determined by the centre of gravity. A stable stool was obtained
by the centre of gravity being placed close to the middle of the stool when
looking straight down at the seat. This was calculated by comparing the
position of the middle point of the middle layer to the position of the middle
of the top layer. For the centre of gravity to be situated in the lower part of
the stool, the largest part of the mass has to be at the bottom of the structure.
To obtain this, the aim was for the middle point of the middle layer to be
placed in the upper half of the frame truss. Therefore, a penalty that grew
exponentially was used when the middle of the middle layer was situated in
the lower half of the frame truss. To make sure that the middle layer did not
move above or below the top or bottom layers of the stool, these variations
got an unfavourably high evaluation making sure these options would not be
favoured. The algorithm used was presented in Algorithm 5.

The two stools obtained from optimisation were presented in figure 5.15
and their evaluation can be found in table 5.7. The stool presented in figure
5.15a had a better evaluation for stability than the stool presented in figure
5.15b. From this evaluation alone the stool found in figure 5.15a was evalu-
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Algorithm 5 The stability of the frame truss
1: function stability
2: M ← centre of the middle layer;
3: T ← centre of the top layer;
4: C ← centre of the structure;
5: B ← centre of the bottom layer;
6: centretoMiddleLayer ← distance from C to M ;
7: if M is between T and C then
8: stability ← centretoMiddleLayer;
9: else if M is between B and C then

10: factor ← 1 + height difference between M and C;
11: stability ← centretoMiddleLayer ∗ factor;
12: else if M is below B or above T then
13: stability ← 1021;
14: end if
15: return stability;
16: end function

Figure 5.15a 5.15b
Deflection 0 0
Stability 1.5482 · 10−7 2.4321 · 10−7

Table 5.7: Evaluations of the stools presented in figure 5.15

ated to be the best of the two, but both these two stools were deemed to be
stable. To what degree was not as important. The primary purpose with the
optimisation for stability was to make sure the stool would not feel unstable
when used and to make sure that the stool would not fall over. This mea-
surement for optimisation was primarily meant to be used in combinations
with other measurements and not separately.

5.4.6 Symmetry Over Axes

The importance of symmetry when quantifying beauty was discussed in sec-
tion 3.3.4. The original design of the frame truss used for the optimisation
contained mirrored symmetry as discussed in section 3.2, and a method for
exploring the symmetry or near symmetry of the framework was proposed.
Algorithm 6 shows the method used to quantify how close the stool was
to symmetrical. The symmetry was measured from the same diagonal as
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(a)
(b)

Figure 5.16: Two stools optimised for symmetry over axes

the edges and nodes of the framework were mirrored symmetries over, and
symmetry over this imaginary line would ensure symmetry for the whole
framework. As only the nodes of the middle layer were allowed to move, the
symmetry was only measured for these four nodes. The placement of each
node was measured from the middle of the stool, and the placement was
compared to the placement of the node diagonally across the stool. The dif-
ferences in position in each direction were summed up to make an evaluation
of how close the stool was to symmetrical.

During optimisation for symmetry over the axes, vastly different designs
appeared and two of these are found in figure 5.16. A different viewpoint
than what has been used previously in this chapter was chosen to highlight
the symmetry of the framework and how dissimilar the two designs were.

5.4.7 Presence of Planes

The method put forwards in section 3.4.10 was used to calculate the presence
of planes contained in the frame truss of the stool. The top and bottom
layers already formed planes, so this method was used to make the middle
layer form a plane as well. The equation for a plane formed by three of the
nodes that constitute the middle layer was found, and the distance from the
plane to the last node of the middle layer was calculated. This was done
for all four nodes of the middle layer, and the smallest distance to the plane
gave the evaluation of how close the four nodes were to forming a plane. The
algorithm used can be found in Algorithm 7.
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Algorithm 6 How far the frame truss is from being symmetrical
1: function symmetryOverMiddle
2: for two points A and B opposite from middle M do
3: (xA, yA, zA)← the vector from point M to point A;
4: (xB, yB, zB)← the vector from point M to point B;
5: x← difference between xA and xB;
6: y ← difference between yA and yB;
7: z ← difference between zA and zB;
8: symmetry ← x+ y + z;
9: end for

10: return symmetryOverMiddle← symmetryOverMiddle + symmetry;
11: end function

(a)
(b)

Figure 5.17: Two points of view of a stool optimised for the presence of planes

Algorithm 7 Using the equation for the distance to the plane to find the
distance from a plane to a point
1: function distancefromPlane
2: ~AB ← the vector from points A to B in the plane;
3: ~AC ← the vector from points A to C in the plane;
4: [a, b, c]← crossproduct( ~AB, ~AC);
5: d ← −(a · x+ b · y + c · z);
6: distancefromPlane ← | (ax1 + by1 + cz1 + d)/(

√
a2 + b2 + c2) |;

7: return distancefromPlane;
8: end function
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(a) (b)

Figure 5.18: Two points of view of a stool optimised for the presence of planes

This optimisation strategy was intended to be used in combination with
other optimisation strategies, along with the strategies used for stability and
symmetry, to obtain more interesting designs. Two stools optimised using
this approach can be found in figure 5.17 and figure 5.18. Both designs were
shown from two different angles to illustrate the effect of a plane and how
this feature could be integrated into a multiobjective optimisation. Other
than this, the two designs were vastly different.

5.4.8 Dialling Function

To combine the objectives of the optimisation and control the impact each
had on the overall evaluation of the design a Weighted fitness function was
used. For the implementation, a function to dial the evaluation of each ob-
jective was proposed. This was done using a function that required variables
corresponding to the importance of each evaluation for that specific optimi-
sation. For each optimisation, weights were set to determine how much each
separate evaluation contributed to the total. All evaluations were weighted
appropriately, and the sum of the weighted evaluations gave the total eval-
uation. This function was essential in the experiments presented in chapter
6.
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Chapter 6

Experiments & Results

In the following experiments, the multiobjective optimisation used in a gen-
erative design process was expanded and new combinations were explored.
The objectives were discussed and assessed individually in chapter 5. All pos-
sible combinations of two objectives were mapped out in table 3.1 in chapter
3, and these combinations were the basis for further exploration.

The experiments were organised by the type of triangle they correlated
to, and the experiments for a combined search of triangles were put as a
separate section. There were multiple interesting ways to organise the exper-
iments, but this method was chosen to investigate the impact of the search
for triangular shapes fully. All of these optimisations took the deflection of
the seat into account as this is the main purpose of a stool as well as the
constraints of a minimum angle between edges that shared a node and a
minimum distance between edges that did not share a node.

Through the optimisation process, the objectives were weighted using
the Weighted fitness function described in chapter 5. The analysis of each
combination explored the impact each objective had on the combined opti-
misation. If a good evaluation of one of the objectives was not attainable
during a multiobjective optimisation, it was presumed that the constraints
were incompatible and could thus not obtain favourable results when com-
bined in the same optimisation. The evaluations can be compared to the
evaluations of the original truss design presented in table 5.1.

These experiments and the combinations explored were not extensive as
the possible combinations were too numerous for it to be feasible to explore
them all. Rather, it was a selection of combinations to get an idea of what was
achievable in the proposed generative design process. Only a selection of the
3D figures showing the stools produced are shown, and the chosen selection
was of stools that had features that were commented specifically. The names
of the objectives in the implementation were the same as in chapter 5.
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TRIANGLES

Figure 6.1: Stool optimised for Golden triangles and stability

6.1 Experiments Based on the Search for Golden
Triangles

The search for the prevalence of Golden triangles was combined with the three
goals of aesthetical optimisation not related to triangles. These optimisations
were run separately as well as combined with the objectives of minimising
the total length of edges and the length of the longest edge.

6.1.1 Golden Triangles & Stability

From the results in table 6.1, it was found that the stool that also optimised
the maximum length of the longes edge gave the best evaluation for the opti-
misation of shapes resembling Golden triangles. The stability was evaluated
to be approximately the same for all optimisations. The total length of edges
was similar in each design although the optimisation that included the total
length of edges interestingly gave the worst evaluation for the total length of
edges. The optimised design using no restrictions of length was presented in
figure 6.1.
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No edge restriction (6.1) sumEdge maxE
goldenTri 0.4514 0.5901 0.3493
Stability 0.0285 0.0208 0.0222

Total length of edges 0.4365 0.4646 0.4415
Max length of edge 0.1736 0.2140 0.1751

Table 6.1: Evaluations for Golden triangles and stability

No edge restriction sumEdge maxE
goldenTri 0.3893 0.5236 0.3900
Symmetry 0.0953 0.0868 0.0728

Total length of edges 0.5201 0.4083 0.4686
Max length of edge 0.2149 0.1618 0.1923

Table 6.2: Evaluations for Golden triangles and symmetry

6.1.2 Golden Triangles & Symmetry

From table 6.2 it was found that the optimisation that did not include any
limitations for the length of the edges and the optimisation that also consid-
ered the maximum length of the edges gave the best evaluations for Golden
triangles. All three designs gave similar evaluations for symmetry.

6.1.3 Golden Triangles & Planes

The optimisation that also optimised for the total length of the edges gave
the best evaluation for triangles resembling Golden triangles according to
table 6.3. However, the search not considering the length of the edges gave
an evaluation for closeness to planes that was considerably better than the
other two optimisations presented in the table.

No edge restriction sumEdge maxE
goldenTri 0.4876 0.3517 0.4429
Planes 0.0089 0.0394 0.0169

Total length of edges 0.3951 0.5428 0.4061
Max length of edge 0.1617 0.2649 0.1618

Table 6.3: Evaluations for Golden triangles and planes
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No edge restriction sumEdge maxE
silverTri 3.1136 3.1615 2.7157
Stability 0.0043 0.0186 0.0337

Total length of edges 0.6397 0.6101 0.7058
Max length of edge 0.2414 0.2414 0.2414

Table 6.4: Evaluations for Silver triangles and stability

6.2 Experiments Based on the Search for Silver
Triangles

As seen in section 5.4.2, the evaluation for Silver triangles generally provided
evaluations that were considerably worse than the evaluations for Golden
and equilateral triangles and it could be assumed that the framework was
not optimal for the optimisation for Silver triangles. The evaluations for
Silver triangles were consistently larger than the other evaluations for the
same design. In some cases, the evaluations would become more than a
hundred times more significant.

The combinations of objectives were then optimised without any limi-
tations when it came to the length of the edges, combined with the total
length of edges, and when combined with the maximum length of the longest
edge. Interestingly, all optimisations for these searches resulted in the same
evaluation for the length of the longest edge, 0.2414 metres. Whether this
was a coincidence or not was uncertain.

6.2.1 Silver Triangles & Stability

The best evaluation for the stability of the stools optimised with regard to
Silver triangles was the optimisation that did not consider the length of the
edges as shown in table 6.4. The best evaluation for Silver triangles was
achieved with the optimisation also considering the maximum length of the
edges, even though this evaluation was about eighty times as significant as
the evaluation for stability for the same design.

6.2.2 Silver Triangles & Symmetry

All three optimisations concerning the search for triangles resembling Silver
triangles combined with symmetry resulted in designs that all had almost
the same evaluations as can be seen in table 6.5. This was interesting as
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Figure 6.2: Stool optimised for Silver triangles and symmetry

No edge restriction (6.2) sumEdge (6.3a) maxE (6.3b)
silverTri 3.2319 3.0872 3.7314
Symmetry 0.0821 0.1181 0.1105

Total length of edges 0.6965 0.6166 0.6291
Max length of edge 0.2414 0.2414 0.2414

Table 6.5: Evaluations for Silver triangles and symmetry

the three stools looked vastly different as seen in figures 6.2 and 6.3. When
analysed manually, the three examples did present a degree of symmetry, but
neither presented perfect mirrored symmetry.

6.2.3 Silver Triangles & Planes

The combined search for the presence of Silver triangles and planes in the
stool gave excellent evaluations for planes as seen in table 6.6. All designs
had planes that were clearly visible when manually analysed. The stool that
produced the best evaluation for the presence of planes was presented in figure
6.4b. This stool had a slight collision of edges as can be seen on the bottom
edges of the stool, meaning that the objective of preventing overlapping edges
was not given enough importance in the multiobjective optimisation to avoid
collisions. The stool presented in figure 6.4a gave the worst evaluation for
planes of the three designs presented in table 6.6, but it was the only design
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(a) (b)

Figure 6.3: Two stools optimised for Silver triangles and symmetry

(a) (b)

Figure 6.4: Two stools optimised for Silver triangles and planes
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No edge restriction (6.4a) sumEdge maxE (6.4b)
silverTri 3.1950 2.8176 2.9030
Planes 0.0100 0.0036 0.0021

Total length of edges 0.6985 0.6823 0.6835
Max length of edge 0.2414 0.2414 0.2414

Table 6.6: Evaluations for Silver triangles and planes

that did not have colliding edges. During manual analysis, this was deemed
to be the most interesting design due to the way the plane slanted.

6.3 Experiments Based on the Search for Equi-
lateral Triangles

The search for stools containing triangles resembling equilateral triangles was
similarly combined with the three other aesthetical objectives not related to
triangles. These searches were also combined with the goals of minimising
the total length of the edges, and with the maximum length of the edges.
These optimisations did not end up resulting in stools that were extremely
wide in any direction. Designs produced tended to bulge out from the middle
on two opposite sides. This was enough to be noticeable, but not enough to
make the stool unusable. Examples of this can be found in figure 6.5.

6.3.1 Equilateral Triangles & Stability

The evaluations of the three designs produced from the optimisation con-
sidering equilateral triangles and stability were presented in table 6.7. All
optimisation strategies produced stable stools that had good evaluations for
all objectives considered. The stool where the length of the longest edge was
optimised produced the best evaluation for stability. This stool did not have
the best evaluation for the length of the longest edge, but the evaluation of
the stability for this stool was almost 50 times better than the evaluation of
stability for the two other stools.

All the three designs produced looked similar, but the optimisation strat-
egy where the total length of the edges was optimised gave the only design
with no colliding edges. This design was presented in figure 6.5a. The design
with the best evaluation for stability was presented in figure 6.5b.
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(a) (b)

Figure 6.5: Two stools optimised for equilateral triangles and stability

No edge restriction sumEdge (6.5a) maxE (6.5b)
equiTri 0.4404 0.4810 0.4795
Stability 0.0166 0.0113 2.2024 · 10−4

Total length of edges 0.4115 0.3929 0.3928
Max length of edge 0.2122 0.1989 0.2013

Table 6.7: Evaluations for equilateral triangles and stability
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No edge restriction (6.6) sumEdge maxE
equiTri 0.4826 0.4825 0.4910

Symmetry 2.0987 · 10−4 9.0759 · 10−4 3.0997 · 10−5

Total length of edges 0.3922 0.3943 0.4013
Max length of edge 0.1996 0.2016 0.2059

Table 6.8: Evaluations for equilateral triangles and symmetry

Figure 6.6: Stool optimised for equilateral triangles and symmetry

6.3.2 Equilateral Triangles & Symmetry

The search for equilateral triangles combined with symmetry gave very sim-
ilar designs for the three optimisations. This could be due to the restrictions
provided by the combination of the search for equilateral triangles and the
desire for symmetry. All the three evaluations represented in table 6.8 show
evaluations for symmetry, resulting in designs that were almost perfectly
symmetrical. All three designs had multiple instances of colliding edges and
this could be the result of the choice of truss design for the foundation along
with the desire for symmetry. The best result for symmetry was obtained
in the optimisation without any restriction to the length of the edges. This
design was also the one with the most overlap of colliding edges and was
presented in figure 6.6.

78



6.4. EXPERIMENTS BASED ON THE COMBINED SEARCH FOR
TRIANGULAR SHAPES

(a) (b)

Figure 6.7: Two stools optimised for equilateral triangles and planes

No edge restriction sumEdge (6.7a) maxE (6.7b)
equiTri 0.5133 0.4602 0.4482
Planes 0.0265 0.0185 0.0143

Total length of edges 0.4208 0.3977 0.3968
Max length of edge 0.2221 0.2012 0.2026

Table 6.9: Evaluations for equilateral triangles and planes

6.3.3 Equilateral Triangles & Planes

Table 6.9 shows the evaluations for the stool optimised for the presence of
planes along with equilateral triangles. The searches that included restriction
of the length of the edges gave somewhat better evaluations for both the
search for equilateral triangles and the search for planes. The two resulting
designs can be found in figure 6.7. Neither design contained any colliding
edges.

6.4 Experiments Based on the Combined Search
for Triangular Shapes

The optimisations using a combined search for triangles as described in sec-
tion 5.4.4, produced vastly different designs. Here each triangle was opti-
mised to get more similar to the triangular shape it resembled the most.
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(a) (b)

Figure 6.8: Two stools optimised for a combined search of triangles and
stability

The searches including other objectives were described and discussed in this
section.

In general, the combined search for triangles gave good evaluations during
the multiobjective optimisation. This could be because this search method
allowed for a larger variety when it came to construction and therefore the
other objectives could be optimised considerably while still having a good
evaluation for triangles.

6.4.1 Combined Search for Triangles & Stability

From the evaluations in table 6.10 it could be concluded that the optimisation
that did not restrict the length of the edges gave the best evaluation for the
search of triangles. Even though this stool had no limitations considering the
length of the edges, the resulting stool was not excessively wide. The stool
also optimising for the maximum length of the edges gave the best evaluation
for stability. These two stools were presented in figure 6.8.

6.4.2 Combined Search for Triangles & Symmetry

From table 6.11 it was discovered that the optimisation that also minimised
the total length of the edges gave the best evaluation for symmetry, whilst
the optimisation that also minimised the length of the longest edge gave the
best evaluation for the combined search for triangles. As seen previously, the
designs where symmetry was used in the optimisation tended to have edges
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No edge restriction (6.8a) sumEdge maxE (6.8b)
Combined triangles 0.2940 0.3606 0.3875

Stability 0.0060 0.0372 0.0022
Total length of edges 0.5095 0.3761 0.4698
Max length of edge 0.2429 0.1800 0.2094

Table 6.10: Evaluations for a combined search of triangles and stability

No edge restriction sumEdge maxE
Combined triangles 0.2636 0.2475 0.1991

Symmetry 0.0269 0.0091 0.0448
Total length of edges 0.3900 0.3810 0.3800
Max length of edge 0.1889 0.1850 0.1821

Table 6.11: Evaluations for a combined search of triangles and symmetry

that collided. All three designs obtained from these optimisations had edges
that collided, although neither had edges that crossed fully. This meant that
the designs did not contain perfect mirrored symmetry.

6.4.3 Combined Search for Triangles & Planes

For the optimisations where the combined search for triangles was combined
with the search for planes, the evaluations were presented in table 6.12. All
three gave good approximations for the presence of planes. The optimisation
considering the length of the longest edge of the stool gave an almost perfect
approximation to a plane and the stool was presented in figure 6.9b. Another
very good approximation of a plane was found in the optimisation that did
not restrict the length of the edges and this stool was presented in figure
6.9a.

6.5 Miscellaneous Combinations of Objectives

From the observations from the multiobjective optimisation process, a couple
of further optimisations were done by using different combinations of objec-
tives. A set of optimisations exploring various combinations were executed
and presented in this section. Some of the combinations were more favourable
than others.
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(a)

(b)

Figure 6.9: Two stools optimised for a combined search of triangles and
planes

No edge restriction (6.9a) sumEdge maxE (6.9b)
Deflection 0 0 0

Combined triangles 0.3664 0.2668 0.2420
Planes 0.0014 0.0223 1.4467 · 10−6

Total length of edges 0.4349 0.3950 0.4024
Max length of edge 0.2223 0.1954 0.1785

Table 6.12: Evaluations for a combined search of triangles and planes
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Figure 6.10: Stool optimised for equilateral triangles, symmetry and planes

Some combinations, whilst not conflicting were deemed to result in de-
signs that were unfavourable in one way or another. This could be because
the combination would result in a design that was seen as uninteresting or
where the combination of goals would diminish the individual features. It
was found that symmetry was not easily combined with the objectives re-
lated to the optimisation of triangles and this objective was thus not used in
further experiments.

6.5.1 Combinations Including Symmetry & Planes

The best evaluations for triangles were found when optimising for equilateral
and Golden triangles. Stability gave interesting results that made the design
appear balanced, and the optimisation for the presence of planes provided
an area of visual interest and added to the attraction of the design.

When the optimisation of stability and planes was combined with the
search for equilateral triangles, the constraint of the distance between edges
that did not share a node had to be weighted much higher than previously
in the attempt to avoid collision of edges. The results tended to look similar
to the previous designs where the search for equilateral triangles was present
as can be seen in figure 6.10. The objective for stability gave a similar effect
to what was observed in designs optimised for symmetry.

Optimisation of stability and planes combined with the search for Golden
triangles tended to provide more varied and interesting results as can be seen
in figure 6.11. The constraint for the distance between edges that did not
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(a) (b)

Figure 6.11: Two stools optimised for Golden triangles, symmetry and planes

share a node had to be weighted higher to avoid collision in these optimisa-
tions as well.

6.5.2 Symmetry Over Axes & Presence of Planes

The combination of symmetry with the presence of planes in the design was
one that was deemed to be uninteresting. As the symmetry of the stool was
found by comparing the placement of the nodes to the placement of the node
diagonally across the plane this combination would result in a stool where the
middle layer would be parallel to both the bottom and top layer similarly to
the original design of the stool. As this would defeat the intended purposes
for both optimisation strategies, this combination was not explored.

6.6 Ability to Assemble
Models of the frame truss design could be 3D printed or constructed using
carbon steel rods. 3D printed models could be printed directly, either with
support that was created manually or by using software that automatically
provided this. The hollow rods made of carbon fibres were light but retained
an incredible strength. The stool was built by connecting carbon fibre rods
cut to the right dimension using generated corner pieces that were 3D printed.
For easy assembly, the carbon steel rods and the corner pieces had to be
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possible to piece together and the corner pieces had to be distinguishable
from each other. The length of the carbon steel pipes also had to be of a
minimum length for two adjacent corners not to merge together and form
one corner. Angles between pipes also had to be large enough for the pipes
to not overlap. This was ensured by implementing the physical constraints
explained in section 5.2.
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Chapter 7

Discussion

In this chapter, the results from the implementation in chapter 5 and the
experiments in chapter 6 were discussed. Methods for improvements were
proposed along with suggestions for better choices of frame truss for specific
objectives. The multiobjective optimisation both provided interesting results
and results that were not deemed to be as favourable.

7.1 Discussion on the Objectives for Triangles

The search for triangles resembling equilateral and Golden triangles generally
resulted in the best evaluations in regard to the optimisation of triangular
shapes although equilateral triangles, in general, gave the best evaluations.
When optimising for triangles resembling Silver triangles poor evaluations
were achieved even when this was the only objective used for the optimisation.
It could be concluded that the chosen foundation for the frame truss design
was not optimal for the search for Silver triangles.

As the Silver triangle is a slimmer triangle than both the equilateral and
Golden triangles, it was proposed that a truss design that facilitated more
for this would provide better evaluations for the optimisation of triangles
resembling Silver triangles. A taller and slimmer design was suggested as an
option as well as a more detailed and complex design where the frame truss
could be altered further to accommodate for slimmer triangles. Other designs
might give better evaluations for this specific objective, and even though it
was not a good choice for the frame truss design presented it should not be
discarded as a viable objective for optimisation.

Through the combined search for triangles, where each triangle was eval-
uated and optimised to look more like the type of triangle it resembled the
most, it was found that this method gravitated toward triangles resembling
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equilateral triangles. The evaluations for triangles resembling equilateral tri-
angles were significantly better than the evaluations for Golden and Silver
triangles. Of the three types of triangles, equilateral and Golden triangles re-
sembled each other the most whilst equilateral and Silver triangles resemble
each other the least. As it seems like the equilateral triangle was the most
ideal shape of a triangle for this truss design, it was less likely for the major-
ity of the triangles to converge towards triangles resembling Silver triangles
than equilateral and Golden triangles. It could be assumed that equilateral
triangles were the most optimal shape of triangle for the foundation chosen.

7.2 Discussion on the Structural objectives

When symmetry was combined with other objectives, especially objectives
for triangular shapes, issues with colliding edges often emerged. As the ob-
jectives for triangles tended to result in structures where two of the nodes of
the middle layer switched sides, good symmetry resulted in collisions of the
edges. To ensure that the edges did not collide, a worse evaluation for sym-
metry had to be tolerated. This gave a design that did not contain perfect
mirrored symmetry but rather approximate symmetry. As this also mirrored
nature better and gave a more lifelike and visually interesting result.

Stability could be combined with most other objectives and gave stools
that were perceived as balanced. This gave a similar harmony to what well-
applied symmetry or approximate symmetry provided. For the purpose of
the optimisation of this frame truss stability could be used for a similar
effect to what was provided by symmetry while not having the disadvantage
of resulting in colliding edges as often.

The optimisation for planes gave interesting structures both when used
alone and when combined with other objectives. The effect was only evident
when a good evaluation was found. Otherwise, the design did not look like it
was optimised for the presence of planes at all. The combination of symmetry
and presence of planes was assumed to give uninteresting results as perfect
evaluations of the two would give planes that were parallel to the seat. When
applied correctly, the objective for the presence of planes was very effective
and provided beautiful results.

7.3 Models of Stools

Models of the stools were made by 3D printing the whole structure as well as
building with carbon steel rods that were assembled using 3D printed corners

87



CHAPTER 7. DISCUSSION

(a) (b)

Figure 7.1: A 3D printed stool from two points of view

as the joints. Both methods were viable, but they gave very different looks
and could also be used for different applications.

When making a model for 3D printing liberties could be taken when
it came to the transitions between connecting edges. The natural looking
design as seen in figure 7.1 was achieved using splines to soften the transition
between the edges. For fully 3D printed designs, the size of the stool was the
main limitation as 3D printers usually do not have the ability to print large
designs and a full-size stool would be too large to print for most 3D printers.
The stool in the example was 20 cm tall. A stool of a large enough size to
be used by an adult person would require a printer that could accommodate
for this or it would have to be printed in multiple pieces that were glued
together. Neither option would be ideal.

Constructing the stool from carbon steel rods did not present the same
limitations when it came to size as carbon steel rods can be bought in almost
any dimension. Figure 7.2 shows a stool made carbon steel rods. The design
of these stools resembled the frame trusses presented throughout this thesis
more closely. The joints were 3D printed, but the size limitation of the printer
was not an issue here as these corners were small. The stool presented was
40 cm tall, but a larger stool could easily be built by scaling the design up
or down.
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(a) (b)

Figure 7.2: A stool made from carbon steel rods from two points of view
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Chapter 8

Conclusion

In this chapter, a conclusion in regards to the generative design process
utilising a frame truss design of a stool was met. The research goals from
chapter 1 were reevaluated and conclusions to the generative design process
utilising multiobjective optimisation were drawn.

8.1 Reevaluation of the Research Goals

The goal of the research was presented in section 1.2 in chapter 1. To conclude
whether the main goal of the thesis was attainable, four secondary goals were
presented and analysed.

In chapter 3, the objectives that were possible to investigate were deter-
mined and their conceived effect was analysed. Not all objectives proposed
were possible to apply to this optimisation problem, but they might be possi-
ble to utilise in other generative design problems where aesthetics is a part of
the optimisation. Table 3.1 assessed what objectives were possible to combine
and also what objectives were not possible to combine.

A frame truss design that depicted a stool was used in the generative
design process and the effect each of the objectives had when applied to
the truss design was explored in chapter 5. Examples of the impact of each
objective were presented by both evaluations of the truss and figures showing
the resulting frame truss designs. In chapter 6 experiments where different
combinations of objectives of optimisation were applied to the frame truss
were conducted, and conclusions were drawn in regards to what combinations
resulted in interesting designs and not. Not all combinations resulted in
interesting designs even though they were theoretically possible to combine.

As all the secondary goals were attainable during the generative design
process, it could be concluded that it was possible to attain visually interest-
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ing 3D designs when simultaneously optimising for practical and aesthetical
objectives.

8.2 Future Work
As it was concluded that it was attainable to produce visually interesting 3D
designs when the aesthetical objectives presented were combined with struc-
tural objectives in a practical optimisation problem. Of the measurements
of aesthetics mapped out in chapter 3, only those pertaining to triangles like
the Golden and Silver ratios were explored along with symmetry and the
presence of planes. This could be expanded to involve additional and more
complex geometrical shapes and other mathematical principles.

To discover more aspects, a method where the edges were allowed to re-
organise for the option of a more beneficial organisation would be interesting
to look into. This could facilitate the multiobjective optimisation to discover
other geometrical shapes than just triangles. Different shapes to the seat and
different numbers of legs could also result interesting designs.

For a larger structure with more beams and joints, the concepts of fractals
and spiral geometry, like Fibonacci spirals and logarithmic spirals, might be
appropriate to apply. Because of the nature of fractal and spiral geometry,
this would require quite a large and detailed structure to work.

The aspect of stability was evaluated, but this resulted in figures where
the mass was more or less evenly distributed. Seeming instability where
designs that look like they would be unstable actually are stable is an aspect
that could have been interesting to explore further. By breaking the rules
set previously, more interesting aspects of optimisation could be discovered.

A deeper analysis of the methods used for calculating how closely a tri-
angle resembled one of the given triangles could be done. The methods used
for comparison of Golden and Silver triangles resembled one another, but
the method for comparison of equilateral triangles was quite different. By
analysing the results further these methods could be altered to correlate bet-
ter and for the evaluations to be compared directly. Future research could
also look into more and improved methods of optimisation that could be
applied to larger and more complex trusses.
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