
.

Master’s thesis

Virtual LiDAR error
models in point cloud
compression

Branislav Jenco

Programming and System Architecture
60 study points

Department of Informatics
Faculty of Mathematics and Natural Sciences

Spring 2022





Branislav Jenco

Virtual LiDAR error models
in point cloud compression

Supervisor:
Prof. Carsten Griwodz





Abstract

As a common output format of sensors used for scanning real world en-
vironments, point clouds are a ubiquitous representation of 3D geometry.
A relatively inefficient, unordered data structure for this purpose, point
cloud processing and compression has been a target of intense research fo-
cus. Notably, this focus has been predominantly targeted on simple object
scenes, often with uniform sampling and a lack of noise. This is not usu-
ally the case for larger room-scale environments. At the same time, a lot
of focus on point clouds in the deep learning space has been in extracting
semantic information, which necessitates a large amount of training data
which is not present for high density point clouds.

The hypothesis is that compression can be achieved by fitting geometric
primitives to the point cloud in a supervised manner. Such a system
needs datasets with geometric ground truth information and realistic
noise distribution. In this thesis, the noise distribution of room-scale
point clouds is explored and a virtual VLP-16 LiDAR scanner with a
realistic error model is implemented. Existing point cloud compression
approaches are evaluated on noisy room-scale data. The results suggest
that a Gaussian noise applied to the distance between the sample and
sensor is an adequate approximation with the right parameters. The
performance of existing signal processing–based compression approaches
does not significantly degrade on noisy room-scale data, however their
neural network–based counterparts struggle with performance variability.
Exploiting geometric information and advances in deep learning on point
clouds for compression is an important area for further study.
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Chapter 1

Introduction

As computational resources become cheaper and acquisition systems
become more precise and easier to use, there is an increasing focus on
finding better ways to process 3D data acquired from the real world. While
there are several different types of acquisition systems based on different
technologies, they predominantly share a common output format, the point
cloud. Fundamentally, a point cloud coming out of a 3D acquisition system
is a point sampling of the real world.

The crucial difference between a 2D image and a point cloud is the
presence of depth information. In combination with information about
the sensor field of view and other particular properties, this allows us to
reconstruct the x, y and z coordinates of each sample in the resolved image
in relation to the sensor and obtain a 3D scene. By combining scans from
multiple locations, sample density can be improved and occlusion artifacts
can be minimized.

Evolved from geographic surveying, point cloud scans are now ubi-
quitous in the areas of robotics, such as Simultaneous Localization And
Mapping (SLAM) approaches; autonomous vehicles, building information
modelling, predictive maintenance, architecture, modelling etc. However,
point clouds are arguably a rather inefficient and unwieldy representation
of 3D geometry. Therefore, techniques for easier processing and compres-
sion are being developed. With the advent of deep learning in the last ten
years, more and more researchers are trying to apply these techniques to 3D
data to try and achieve advances similar to those in the 2D image domain.

1.1 Motivation

Most existing point cloud datasets focus on objects and avatars, less
so on more complex indoor or outdoor scenes. In particular, most
general-purpose focused research that tries to apply machine learning (ML)
techniques to point clouds also deals with these types of datasets. Outdoor
scenes can be the focus in the autonomous driving field, where real-time
but coarse understanding of the environment is crucial. Indoor scenes
have been explored within the construction and Building Information
Modelling (BIM) fields, but have been mostly limited on traditional (non-
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ML) techniques.
At the same time, most of the effort concentrates on data which is noise-

free and often uniformly sampled, assumptions that usually do not hold
in real-world scans. Even more so, for inside-out scans created using a
light detection and ranging (LiDAR) device, it is much harder to control
the noise characteristics, compared to a controlled environment of an object
scan.

This thesis is a continuation of the work done by Sillerud and
Johanssen, 2019, Boulet-Gilly, 2019 and Hansen, 2020. The central question
is whether we can find geometric primitives in real-world noisy indoor
scene point clouds, in order to simplify the representation and achieve
compression of the geometry data. Supervised approaches to this task
will need a large of training data with ground truths. Currently, the
extent of this data is quite limited, as it is slow to obtain it from the real
world. Existing datasets usually focus on semantic labels and not on
geometry information. The idea of generating point clouds synthetically,
while modelling the real sensor error characteristics is therefore explored.
Specifically, the Velodyne VLP-16 sensor, one of the most commonly used
LiDAR devices, was used as the target device for this purpose. At the same
time, existing point cloud compression approaches needed to be evaluated
on noisy room-scale data, to serve as a benchmark. Finally, extending the
work of predecessors, a geometric fitting pipeline for primitives other than
planes is explored.

1.2 Goals

In light of this, the following goals have been stated for this thesis:

1. Study the error characteristics of the Velodyne VLP-16 LiDAR sensor
in indoor environments

2. Create a pipeline for generating synthetic point clouds with a realistic
error model from virtual environments

3. Evaluate the performance of existing point cloud compression al-
gorithms on noisy indoor scenes

4. Create a compression pipeline using fitting of geometric primitives

1.3 Outline

In Chapter 2, the basic characteristics of point clouds, the different
kinds and the intricacies of their creation or generation are described.
Following is background information on LiDAR sensors and metrics for
quantitatively comparing different point clouds.

Chapter 3 then goes through the wide-ranging related work in this area,
approaches to deep learning on 3D data, simulating virtual sensors, point
cloud compression and public point cloud datasets.
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Afterwards, an overview of the hardware and software tools used in the
thesis is described in Chapter 4. Chapter 5 follows with the description of
building a virtual LiDAR sensor with a realistic error model. This includes
studying the error model of a real VLP-16 sensor and evaluating several
different error models in the virtual scanner, followed by the comparison
of results and discussion. In Chapter 6, point cloud compression using
the PCC Arena framework on noisy room-scale datasets is performed and
evaluated. Likewise, results are presented and discussed.

In Chapter 7, a theoretical exploration and possible directions of inquiry
in the area of geometric primitive fitting are laid out, informed by the work
done in this direction.

Finally, Chapter 8 concludes this thesis and recommends avenues for
future work in this area.

3



4



Chapter 2

Background

2.1 Point clouds

A point cloud is a data structure that is made up of an unordered set of
points, each point usually representing a position in 3D space. When
referring to a point cloud as a result of some 3D data acquisition system,
it can be thought of as a point sampling of the real world (Kaiser, Ybanez
Zepeda and Boubekeur, 2019). That means that each point, or sample, must
have at least three properties associated with it, namely its x, y and z
coordinates. We can therefore more formally define a point cloud P of n
points as

P = {pi | i = 1, . . . , n}, (2.1)

where each point pi is a vector of its three coordinates, as

pi = (xi, yi, zi). (2.2)

Additional properties can be included with each sample, such as custom
labels, RGB color values, texture information, reflectivity or information
about the normal vector of the surface the point lies on.

2.1.1 Types of point clouds

As it is just a set of points, it is a simple data structure for 3D geometry
representation compared to something like a mesh which is defined by
vertices collected into faces that describe surfaces 1. This points to the fact
that a point cloud is more general—it does not have to describe 3D geometry
with surfaces, it could be a collection of particles or something similar.

While it is a very simple data structure, individual point clouds can
significantly vary in their characteristics. These properties are often
dictated by the process with which the point cloud was created and have a
large impact on the kinds of applications that the data can be used for.

1Another often used term is a Computer Aided Design (CAD) model. Used in
manufacturing or construction, CAD models are usually made up of parametrized solids
and boolean operations between them.

5



The type of scene captured by the point cloud is an important
characteristic. Across most applications, we can distinguish three types
of scenes:

• Object scenes, where the goal is to create a highly detailed scan of
an object. In cases where the object is a human, these are sometimes
called avatars. These point clouds represent an outside-in approach,
where one or more sensors scan the object from multiple angles in a
controlled environment. In case of small objects, these can be placed
on a rotating plate to minimize inaccuracies. Capturing both the
correct volume and surface information is essential for these use cases.
Object scenes are also the most common in synthetic point cloud
datasets, usually created by uniformly or randomly sampling a mesh.
An example can be seen on Figure 2.1.

• Outdoor scenes, in which a sensor captures its surrounding en-
vironment, an inside-out approach. Use cases include robotics and
autonomous localization and navigation, but also construction. In
robotics, deriving real-time but coarse understanding of the environ-
ment around the sensor is most valuable, whereas in construction,
accuracy and precision is more important.

• Indoor scenes, where the sensor similarly uses an inside-out approach
to capture the surrounding room or a different environment that is
assumed to be closed around the device. In these types of scenes,
the most important information to be captured is the geometry and
structure of the visible surfaces. When working on indoor and
outdoor scenes, research papers usually hold the Manhattan world
assumption, which states that most surfaces are aligned with the three
principal directions in 3D space (Furukawa et al., 2009). An example
of an indoor scene point cloud is shown on Figure 2.2.

2.1.2 Point cloud properties

The type of scene and the acquisition process then influence properties like:

• Scale, which specifies the relative size of the point cloud. Depending
on the acquisition method, this property is often unknown. When
creating point clouds from RGB images, some kind of reference is
needed to get the correct scale (this can be challenging as the lens
distortion has to be taken into account). Time-of-flight based sensors
are able to infer the correct scale based on the speed of light.

• Density distribution, describing the number of samples per unit of
measure. In synthetic point clouds, often created by sampling a mesh,
the distribution is usually uniform, but this is rarely the case in real
world scans.

• Accuracy distribution, measuring the error compared to the real
scanned environment. This property is usually important in larger
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Figure 2.1: An example of a noise-free object point cloud from the CAPOD
dataset. The point cloud was generated by randomly sampling a 3D mesh.
(Papadakis, 2014)

scenes acquired using light-based sensors, whose accuracy decreases
with distance that the light rays travel.

• Noise distribution, which can be caused by the generation process
or by the noise inherent in the scanned environment. By default,
noise is not present in synthetic scans, unless it is artificially added
based on some predefined distribution. For real-world scans, the
noise comes from the physical characteristics of the sensor, which can
be compounded when multiple scans are merged into one. Moving
objects and presence of fog or rain contribute to noise as well.

• Occlusion, or presence of holes. Unless artificially modeled, this
problem is also not present in synthetic scans2. Holes created
by occlusion are a natural consequence of the fact that the sensor
technology depends on line-of-sight light detection.

Another important property is the storage requirement for storing point
cloud data. This depends on the size and density of the point cloud. For
highly dense point clouds, storage and processing power requirements are
very high as point clouds can be thought of as an inefficient representation
of 3D geometry. The reason is that, while a triangle surface in 3D space
can be most simply described by the coordinates of its three vertices along
with the normal vector, in a point cloud, it is likely represented with a
variable amount of samples that are usually non-uniformly distributed on
the triangle surface.

2One of the uses of adding holes artificially is when training deep learning algorithms
for inpainting applications. Inpainting describes the process of automatically filling missing
data.
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Figure 2.2: An example of an indoor scene point cloud from the Stanford
Large-Scale 3D Indoor Spaces Dataset (Armeni, Sener et al., 2016). The
point cloud is a result of sampling a mesh generated using the Matterport
Camera sensor.

2.1.3 Creating point clouds

A point cloud can be generated from digital assets or from real-world
environments. Digital 3D objects are usually "scanned" by the means of
uniform sampling on a 3D voxel grid. This technique creates point clouds
with a predictable and uniform density distribution and accuracy that is
controlled by the grid scale. Other techniques include simply sampling
the vertices of the object mesh, which creates a sparse point cloud with
high accuracy, but low density in flat areas with low frequency information.
Unless added artificially, point clouds generated from 3D assets are devoid
of noise. A technique employed in this thesis is to take virtual scenes
and simulate a scan with a virtual sensor. This allows for more realistic
modelling of occlusion and noise.

A multitude of acquisition techniques exist for scanning real-world
environments. Small and simple objects can be put on a turntable and
scanned by cameras and laser sensors from all angles in a highly controlled
environment. This creates a dense point cloud with high accuracy.
Purely image-based (photogrammetry) techniques exist as well, such as
the structure-from-motion (SfM) and multiview stereo (MVS) algorithms.
Robotics approaches using visual simultaneous localization and mapping
(also known as SLAM) create fast but low-accuracy point clouds to estimate
the path of a camera through space.

Structured light sensors use a projector to emit a known pattern onto
the scene that is then captured by a camera. The distortions in the pattern
are then used to discern the depth information. This technique was used
in the first generation Microsoft Kinect device and in the Matterport Camera
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(Matterport Pro2 3D Camera 2022). Time-of-flight sensors (also known
as range imaging sensors) measure the distance between the sensor and
points in the environment based on the round-trip time of a light signal
to create samples of points. These can either based on visible or infrared
light such as the later generation Microsoft Kinect or use lasers, in the case
of LiDAR devices, such as the Leica BLK360, Velodyne HDL-32E, HDL-64E
and the sensor used in this thesis, VLP-16 (Bi et al., 2021).

2.2 LiDAR

LiDARs (light detection and ranging) are time-of-flight sensor systems that
are used to scan real-world environments into point clouds by measuring
the round trip time of laser rays emitted from the device that reflect back
from the environment. The generated datasets have applications in e.g.
photogrammetry, digital twin construction or autonomous vehicles.

The simplest LiDAR devices scan the environment using only a
single ray, and have been historically used in land surveying and earth
observation satellites. Probably the most common handheld sensors today
use a rotating mirror to scan the entire environment around the device, in
one or more planes. Solid-state LiDARs without moving parts also exist,
with a field of view similar to a camera (Intel, 2020).

The physical characteristics of a spinning LiDAR dictate that the spatial
resolution quickly decreases with distance and so does the accuracy. The
sensor is scanning one or more strips of vertical space by rotating around
an axis, which means that the density between these strips (orthogonal to
the rotation axis) is especially low. Reflectivity and translucency of the
scanned materials also plays a huge role in the quality of data gathered. The
sensor will fail to detect objects made up of transparent materials and will
have problems with specular surfaces. Diffuse surfaces and retro-reflective
surfaces work best. An obvious limitation of LiDARs is occlusion, where
surfaces that are not directly visible to the sensor cannot be detected.

Because of these issues, creating high-density point clouds with
affordable LiDAR systems today means they must stand still or follow
a highly exact timing along a very well-known movement path and take
several scans of the same environment. However, this technique requires
the addition of an inertial measurement unit (IMU), unless it is already
present in the LiDAR device. For sensors traversing larger distances
outdoors, a GPS unit might need to be used as well. These units have
their own noise distribution and accuracy characteristics that compound
the problem of creating accurate scans.

Merging these scans into a single, larger point cloud, also called
densification, is a challenging task as points in two respective scans
do not have a correspondence. Sequential scanning also requires that
no objects in the scene are moved between the data collection steps.
However a successfully merged high-density point cloud can alleviate the
aforementioned limitations of occlusion, spatial resolution and noise.
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2.3 Point cloud compression

As the use of point clouds increases, the need for a more efficient
representation becomes more and more pressing. In general, data
compression simply means the process of encoding information in a more
efficient manner than the original representation. This can be quantified by
the fact that a compressed representation uses fewer bits to store the data.
Compression can be lossy or lossless. Compressing and decompressing
data always consumes computational resources and this must always be
weighed against the achieved compression ratio.

Compressing point clouds is challenging, as it is a data structure that
is sparse and unstructured yet often needs high-precision. Over the
last decade, research on point cloud compression algorithms expanded
along several axes. First, there exist several algorithms based on a more
traditional signal processing (SP)–based approach. More recently, neural
network (NN)–based algorithms became the focus much like in the image
domain. Second, the research has focused on both static point clouds
and dynamic point clouds with a temporal aspect, especially important
in streaming virtual reality (VR) and augmented reality (AR) applications.
Third, the algorithms differ in how much of the available information they
can work with. Several of the SP–based approaches take into account the
sample color information, whereas the NN–based techniques usually only
work on the coordinate data (Wu, Hsu, Hung et al., 2022).

Point cloud compression algorithms usually adhere to a basic structure
that is composed of three steps:

1. Pre-processing

In the first step, the point cloud might undergo a scaling or
normalization operation, e.g. for the purposes of easier comparison
between different point clouds or datasets. A partitioning step is
sometimes performed to divide the point cloud into smaller blocks.
This might be used to decrease the search space, in the case of neural
network–based algorithms.

2. Redundancy elimination

The second step is usually performed separately for the point
coordinates and for their attributes (if the attributes are handled
at all). The operations here can be divided into transformations
and various types of quantization. Transformations might include
projection onto 2D planes (to then use familiar 2D algorithms), or
employing a tree partitioning data structure like KD-trees or octrees
3. Quantization refers to reducing the number of points in the

3These techniques fall under the umbrella of spatial point cloud partitioning. A KD-
tree is a general space-partitioning data structure operating in a k-dimensional space. A
particular variation used in 3D point clouds, called an octree, is a tree where each node has
eight children. It can be built up from a point cloud by way of recursively subdividing
the 3D space, starting with a single node surrounding all the points of the point cloud.
The subdivision stops when a condition is met, such as the minimal size of a node, or the
minimum number of points that fall into a node.
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cloud along a voxel grid, optionally merging points where necessary,
or interpolating between their attributes. Deep learning based
algorithms usually employ an Autoencoder or Variational Autoencoder,
which integrates the redundancy elimination into a single step.

3. Entropy coding

Finally, the results of the previous step are fed into some kind of
an entropy code that exploits redundancies in data, e.g. arithmetic
coding, where finding frequency of patterns in the data allows for
use of fewer bits to store repetitive symbols. Neural network–based
algorithms usually call this step an entropy bottleneck layer (Jianqiang
Wang, Ding, Z. Li and Ma, 2021).

2.4 Metrics for comparing point clouds

To be able to quantitatively compare point clouds, e.g. for the purposes of
evaluating a compression algorithm, several metrics can be used. For some
use cases, a valid approach would be to project the point clouds onto 2D
images, which are then compared. This however does not work well to
detect geometric distortions. A number of 3D based metrics have therefore
been developed.

2.4.1 Asymmetric chamfer distance

Asymmetric chamfer distance (ACD) is a directional metric that describes
the average of the minimal distances between points from point cloud 1 to
point cloud 2. It is defined as

ACD(P1, P2) =
1

|P1| ∑
pi∈P1

min
pj∈P2

∥pi − pj∥2
2, (2.3)

where P1 represents the set of points in point cloud 1 and P2 represents the
set of points in point cloud 2. pi and pj represent a single sample (point)
from P1 and P2 respectively. Each sample is a vector that consists of the
three x, y and z coordinates.

2.4.2 Chamfer distance

Chamfer distance (CD) is the average of the Asymmetric chamfer distance
(defined in Equation (2.3)) from both directions, defined as

CD(P1, P2) =
1
2
[ACD(P1, P2) + ACD(P2, P1)] . (2.4)

Unlike the Assymetric chamfer distance, the Chamfer distance is symmet-
ric, meaning that the order of point clouds does not matter (CD(P1, P2) =
CD(P2, P1)).
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2.4.3 Hausdorff distance

The Hausdorff distance (HD) is the maximum distance among all pairs of
the nearest points. As such it is very sensitive to outliers (Wu, Hsu, Kuo
et al., 2020). Just like the Chamfer distance, it is symmetric and it is defined
as

HD(P1, P2) = max(max
pi∈P1

(min
pj∈P2

∥pi − pj∥2
2), max

pj∈P2
(min

pi∈P1
∥pi − pj∥2

2)). (2.5)

In other words, for each point in cloud P1, it first computes the minimal
distance between it and all the points in cloud P2. Then, it takes
the maximum of these computed values from all the points in P1 and
subsequently performs the same operation from the other direction.
Finally, it takes the maximum of these two values.

2.4.4 Point-to-plane metrics

The above metrics can be thought of as point-to-point metrics, looking only
at the points by themselves. As noted by Tian et al. (2017), point-to-point
metrics fail to account for the fact that points in a cloud mostly represent
surfaces. This has been alleviated partly by constructing a mesh from one
of the point clouds and measure a point-to-mesh metric, but this approach
is dependent on the technique used to generate the mesh. The authors
therefore propose a middle ground approach called point-to-plane metrics.

The difference between point-to-point and point-to-plane metrics is that
the latter emphasize the errors when a point is straying further from the
assumed surface. This is because instead of just measuring the distance
between two points, they measure it along the normal vectors. This aligns
better with the way humans perceive errors naturally. A requirement of
this approach is to therefore have the normal information present in the
point cloud.

All three of the mentioned point-to-point metrics can be adjusted
to a point-to-plane metrics by incorporating the normal to the distance
measure, as given by

∥pi − pj∥2 · Npi , (2.6)

where Npi is the normal vector of the surface at the location of point pi.

2.5 Point cloud file formats

A point cloud is a relatively simple, essentially columnar, data structure
and over time, several different file formats to encode it have evolved.
These can be divided into ASCII-based and binary file formats.

The simplest way to store a point cloud is to use a plain textfile,
where every line corresponds to one point. Within one line, the individual
properties of the point can be separated by a whitespace or other delimiter.
Usually the first three correspond to the x, y and z values of the
point’s coordinates, with other properties like color, or normal information
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following. If the delimiter is a comma, and a header is added with a name
of each column, it becomes a .csv file, though rarely used for point clouds.

More established formats for 3D computer graphics are also often used
to store point clouds. Formats like .ply, .obj, .x3d have the capability to
store point coordinates, and subsequently which faces the points belong
to, along with texture and other information. To store a point cloud in
these means simply omitting storing any information apart from the point
positions.

Created as a part of the Point Cloud Library (described in Section 4.2),
the .pcd format was created specifically for storing point clouds. It has a
textual and a binary version, with an initial header storing metadata about
the point cloud, with rows of point data following afterwards (The PCD File
Format 2022).
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Chapter 3

Related work

This thesis is part of a larger project and builds on previous work
done by Sillerud and Johanssen (2019), Boulet-Gilly (2019) and Hansen
(2020). Sillerud and Johanssen built a data acquisition system combining
the Velodyne VLP-16 LIDAR sensor with an inertial measurement unit,
which allows them to construct high-density point clouds from multiple
scans using pairwise registration of the scan fragments and pose graphs.
They also systematically measure the errors of their setup, which is
an important step in trying to simulate the sensor behaviour in virtual
environments. Boulet-Gilly explores the possibilities of building more
compact representations of the computationally intensive high-density
point clouds. Compression can be achieved by detecting planes and using
high or low polygon models of the scanned environment along with a
height map. Hansen improved the work of Sillerud and Johanssen (2019)
with Indoor reconstruction++, a framework using sampling and several
variants of the ICP algorithm. He looked at using machine learning
techniques for flat surface segmentation using spherical kernels, combining
it with the height map approach of Boulet-Gilly (2019). Finally, using
autoencoder networks for point cloud compression was explored. The
combined work has also been released as a research paper (Hansen et al.,
2020).

3.1 LiDAR simulation

Applying supervised deep learning methods on point clouds requires a
large amount of labeled training data. Obtaining the necessary volumes of
point clouds with ground truths in the real world is often a tedious and
ineffective process. Researchers have therefore been exploring possibilities
of generating labeled point clouds programmatically. This can be done
by simulating a sensor gathering data from a virtual environment, or by
using generative approaches based on the statistics of real LiDAR point
clouds. As mentioned by Manivasagam et al. (2020), simulating ranging
sensors goes back to the work of NASA and JPL in the 1970s in the field of
aerospace research. The 1990s and 2000s showed a surge of interest in the
context of aerial (often military) applications as first LiDAR sensors became
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available. Since the proliferation of machine learning approaches in the last
ten years, research in this area has been focused on robotics and especially
autonomous driving, spurred also by a higher availability of cheaper and
more robust sensors.

The dichotomy of point cloud simulation versus generation is analog-
ously summarized by Hanke et al. (2017). The authors distinguish two
types of sensor models in the context of LiDAR error simulation:

1. sensor measurement models - based on a physical description of the
measurement process. The goal is to generate low level measurement
data based on the virtual scene.

2. sensor error models - these aim to reproduce statistical characteristics of
errors, i.e. deviations between the perceived and true values, of the
measurement and perception performed by sensors.

Manivasagam et al. (2020) also touch on this area, distinguishing between
physics-based and learning-based simulation. They argue these approaches
can be combined for a better performance and smaller sim-to-real domain
gap.

3.1.1 Sensor measurement models

Simulating LiDAR sensors for point cloud generation can also be thought
of as a synthetic data generation problem. The starting point for this
area of research has been the extensive work done in the domain of
synthetic ground-truth data generation for images, such as in SYNTHIA
(Ros et al., 2016), where authors create a synthetic collection of diverse
urban images with automatically generated labels for use in semantic
segmentation. Another inspiration has been the use of games to obtain
the ground truths (Richter et al., 2016). As 3D open world games and
their engines are essentially simulation packages, they can be used to
generate synthetic visual data of varying quality and with varying amount
of tweaking needing to be done to the game itself. An example of this
is CARLA, a driving simulator based on the Unreal Engine 4, used in
(Dosovitskiy et al., 2017). The simulator has an extensible architecture, so
that subsequent researchers have been able to improve its performance,
accuracy and features.

The general approach of the last several years in the field of robotics and
autonomous driving has been to use a simulation package (like CARLA),
a game engine (like Unreal or Unity) or a video game (most often GTA
V) and apply the method of ray casting for a physical simulation of the
LiDAR sensor. This method is then sometimes augmented by adding
varying degrees of error and noise based on the observations from real
world LiDAR scans.

Hanke et al. (2017) propose a sensor measurement model which utilizes
ray casting in the Vires VTD driving simulator. They also simulate beam
divergence (the phenomenon were laser rays slowly widen as they travel
through space) using multiple rays to sample the area illuminated by a
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laser beam. To simulate dropping returns which are not strong enough,
they apply an intensity threshold and to model the distance noise they
add a white noise to the measured distance which is also affected by the
reflectivity of the material. To compare virtual and real scans, they apply an
overall error, and measure the correlation coefficients on occupancy grids
formed by the point clouds.

In the area of semantic point cloud segmentation, Yue et al. (2018)
try the ray casting approach in the video game GTA V, where they fetch
coordinates of every ray hit, along with the object id and category. On
the other hand, F. Wang et al. (2019) base their work on CARLA, with a
similar ray casting approach. However, neither of these papers explores
the idea of generating noisy point clouds. Fang et al. (2020) acknowledge
that it is not enough to simply render the scene depth without considering
sensor characteristics. They work with a physical model of the Velodyne
HDL-64E S3 sensor which takes into account the incident angle and air
attenuation rate. Their findings suggest that the real sensor has some noise
in the vertical angles that the lasers are pointing at on the order of 1° to 3°.
They approximate this noise by using a Gaussian distribution, setting the
distance noise variance to 0.5 cm and the azimuth angular noise variance
0.05°. Additionally, they simulate missing returns by randomly dropping
some points in the resulting cloud.

The already–mentioned Manivasagam et al. (2020) also utilize ray
casting over the virtual environment, however the authors create an
entirely new simulation package called LiDARsim. To produce realistic
deviations, the authors augment this approach with a deep neural network.
They argue that existing driving simulators like CARLA and AirSim
use handcrafted assets and simplified physics, which results in a large
domain gap. A large part of their work is building 3D static maps and
dynamic object meshes by driving around cities with a vehicle fleet and
accumulating information. A deep neural network is used for simulating a
phenomenon called raydrop. According to their findings, real-world scans
have less points than the virtual ones, because in a virtual environment, all
cast rays that hit something will return. In a real world, atmospheric effects
and other disturbances will make some rays not register in the detector.
The network is trained on the real world data and applied to the synthetic
ones to simulate the raydrop effect. Simulating this effect is also a recurring
theme, found in the work of Fang et al. (2020) and Hanke et al. (2017) under
different names.

In Sobczak et al. (2021), the authors simulate the Velodyne VLP-16
sensor in the Unity game engine, with a familiar method of ray casting.
They utilize a real-world setup with a small robot driving in a labyrinth and
its virtual equivalent. Similarly to other works, they compare the real and
virtual point clouds by removing unnecessary points and simply finding
distances to nearest points between the clouds, which gives them about
6–6.5 mm average distance. This error goes down to 1–2 mm after manually
aligning the point clouds. An interesting consideration not seen in other
research has been the problem of rolling shutter in moving vehicles, which
they simulate in their model. This effect often seen on DSLR cameras is also

17



visible in LiDAR sensors mounted on fast moving vehicles. Additionally,
an unspecified type of noise is added in their simulation.

3.1.2 Sensor error models

Unlike the previous physics-based approaches, the work of Caccia et al.
(2019) explores using generative models on LiDAR scans. Instead of using
a virtual environment and simulating the sensor, the authors use a LiDAR
scan dataset to teach their model how to reconstruct point clouds with
noisy or missing data, or generate entirely new ones. This puts their models
squarely into the aforementioned sensor error model category as described
by Hanke et al. (2017). It builds on the work of B. Li, T. Zhang and Xia
(2016) mentioned in the previous section, also utilizing the 2D point map
representation of a point cloud (described in Section 3.2.3). Instead of object
detection, the authors focus on point cloud generation using variational
autoencoders (VAE) and generative adversarial networks (GAN) as well as
traditional convolutional neural networks (CNNs).

Diverging from the approach of B. Li, T. Zhang and Xia (2016), this
work proposes a different transformation from a point cloud to a 2D grid.
Points are first clustered by their elevation angle into a number of clusters
and then the 360°plane is divided into a different number of bins which
store the average coordinates of the points that fell within. They argue that
this transformation, which they call Cartesian, provides better performance
on noise or incomplete data than the transformation of the predecessors
(which they call Polar). The authors use the KITTI dataset (Geiger et al.,
2013) as their input and the Earth Mover’s Distance as their evaluation
criterion 1.

Anderson et al. (2019) explore creating annotated data from virtual
grassland plots for the purpose of segmenting vegetation from the
ground. The authors state that key disadvantage of existing deep learning
implementations is the dependence on annotated data for supervised
learning. Much like in this thesis, they use the open source 3D creation
suite Blender to create annotated data from grassland. This data is then
sent to PointNet++ (described in more detail in Section 3.2.4) for semantic
segmentation. They find that the main hurdle to overcome is minimizing
the differences between the synthetic and the real domain and they propose
the use of an adversarial framework.

3.2 Deep learning on 3D data

Over the last decade, computer vision has seen advances in tasks such as
object recognition (He et al., 2016), classification (Krizhevsky, Sutskever

1The Earth Mover’s Distance (also known as the Wasserstein metric) measures the
distance between two probability distributions. The term Earth Mover’s Distance comes
from the fact that the metric can be interpreted as the minimum cost of making one
distribution into another—if we think of distributions as piles of dirt, as the cost of moving
dirt between them. The cost then depends on how much dirt has to be moved and how far
away (Rubner, Tomasi and Guibas, 1998).
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and Hinton, 2017) and segmentation (Shelhamer, Long and Darrell, 2017),
achieved with the use deep convolutional neural networks. Applications
of image reconstruction and generation have also been explored with
architectures, such as autoencoders (Rumelhart and McClelland, 1987),
generative adversarial networks (Goodfellow et al., 2014) and other
generative models. In the last several years, approaches using deep
learning on point clouds have been explored from several angles. These
are usually inspired by their already much more established counterparts
in the 2D image domain, generalizing the idea of convolutions to point
clouds. A recent development in this area is applying Transformer
architectures to images and point clouds, which originated in natural
language processing. In these architectures, convolution is replaced by a
self-attention mechanism.

Traditional CNN architectures process two-dimensional, structured,
Euclidean data. However, as Liu et al. (2019) sum up, there are three main
challenges when learning from point clouds:

1. they are unordered sets, thus requiring the learned representation
being permutation invariant

2. they distribute in 3D geometric space, thus demanding the learned
representation being robust to rigid transformation (e.g., rotation and
translation)

3. they form an underlying shape, therefore the learned representation
should be of discriminative shape awareness

While the first point can be resolved by using symmetric functions
(exemplified by the PointNet architecture (Qi, Hao Su, Mo et al., 2017)),
the other two are not yet fully explored. Some of the aformentioned
transformer architectures are able to achieve equivariance under rotations,
translations and permutations (Fuchs et al., 2020). A significant part
of research into machine learning on point clouds is therefore spent on
trying to come up with representations that are more amenable to existing
(whether that’s 2D or graph) ML approaches, while not losing important
spatial information contained in the point set. Central to this effort in many
applications is the extension of the convolution operator to work on these
unordered sets, often using graph theory.

3.2.1 Volumetric representations

The most straightforward way of bridging the 2D-3D divide is to represent
the 3D space with volumetric approaches, effectively voxelizing the input
data (whether that’s point clouds or meshes). This transformation gives
us back the rigid ordered Euclidean structure that is exploited in images,
and 3D convolutions can be applied. However, these representations
are severely constrained by the computational cost of 3D convolution as
well as by the data sparsity and noise characteristics in the inputs. Most
importantly, they are only useful when the volume of shapes and objects
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is important, and not so much the surface description. For detecting
primitives in indoor point clouds, representing entire objects with their
inner volume voxels is very inefficient.

3D ShapeNets by Zhirong Wu et al. (2015) was one of the first
applications of this approach. The authors represent geometric 3D shapes
as a probabilistic distribution of binary variables on a 3D voxel grid and
use a Convolutional Deep Belief Network for Computer Aided Design
(CAD) model classification. As part of their work, they also created the
widely used ModelNet object dataset. To get around the problems with data
sparsity, OctNet by Riegler, Ulusoy and Geiger (2017) uses a hierarchical
partitioning of the space using a set of unbalanced octrees where each leaf
node stores a pooled feature representation. While network operations
such as convolution and pooling have to be reformulated on this new data
structure, the result is a significant reduction in computational and memory
requirements. The network can therefore work on the space with a higher
resolution than traditional voxelization approaches. VoxelNet on the other
hand uses equally spaced 3D voxels, which are encoded using a novel voxel
feature encoding layer, and then uses a Region Proposal Network (RPN) for
final detection (Y. Zhou and Tuzel, 2018).

3.2.2 Multi-view based approaches

To try to avoid the computational cost of moving from 2D to 3D,
earliest approaches to learning on 3D data utilized the traditional CNN
architectures by taking pictures of 3D models to be recognized from several
angles and focused on learning from the resulting images. Hang Su et al.
(2015) outperformed many existing classifiers that directly work on 3D data
by using a fixed set of rendered views of a 3D object. The resulting images
were fed to a traditional CNN pre-trained on the widely available ImageNet
dataset. Subsequently, Qi, Hao Su, Niebner et al. (2016) improved this
approach using improved training data augmentation and a new multi-
resolution filtering component.

Much like the volumetric approaches, multi-view techniques have been
more suited to shape classification tasks in the object scene type as defined
in Section 2.1.1. They work with the idea that the scanned object is fully
detectable from all positions, an assumption which often does not hold in
scanned real-world indoor environments.

3.2.3 2D point map approaches

Another potential path to working effectively with point clouds is to
represent the data structure as a 2D point map and apply traditional CNN
architectures built for image data. In B. Li, T. Zhang and Xia (2016),
the authors tackle the task of detecting bounding boxes in point clouds
captured by the Velodyne HDL-64E sensor. They project the points from
the scan and discretize them into pixels on a 2D point map, which can be
thought of as a cylindrical image projection from the point of view of the
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sensor. In case multiple samples are projected onto the same 2D position,
the nearest sample is used.

Pixels in the resulting image contain two channels (d, z), representing
their original position in the point cloud. The original x and y coordinates
are coupled together in distance d =

√
x2 + y2 to maintain rotation

invariance around z. The network finds points which are on vehicles
(foreground) and which are the background. A bounding box corner
is translated to ensure the CNN works on a smaller range and rotated
to ensure rotation invariance of the encoding. The output feature
maps represent the proposed bounding boxes as a 24-dimensional vector
encoding the positions of the 8 corner points. This approach is adjacent to
research on deep learning on RGBD images, where the depth channel can
be thought of as a range scan.

3.2.4 PointNet architecture

Instead of transforming point clouds into different representations, the
PointNet (Qi, Hao Su, Mo et al., 2017) architecture is made to directly
consume unordered point clouds for use in many different applications.
This architecture needs to be invariant to permutations of the samples and
to rigid motions. In the first stage, it processes each sample independently,
learns point-wise features with shared Multilayer Perceptrons (MLPs) and,
in the second stage, extracts a global feature with max pooling instead of
using the convolution operator. As the authors state, it turns out that the
network learns to summarize an input point cloud by a sparse set of key
points, which roughly corresponds to the skeleton of objects. A limitation
of this approach is that it does not capture local structures that the points
make up.

The authors address this in PointNet++ (Qi, Yi et al., 2017), a hierarchical
neural network that first partitions the set of points into overlapping
local regions and applies the original PointNet network to these regions.
The obtained local features are then grouped into larger units to produce
higher-level features. In other words, PointNet++ is PointNet applied
recursively on a nested partitioning of the input set.

3.2.5 Graph-based approaches

Graph Neural Networks (GNNs) are types of networks that are applied
to data that can be represented as a graph. This might be social network
graphs, molecules and other graphs in biology and chemistry, scene graphs
in computer vision and others. Point clouds by themselves are not a graph
data structure but can converted into one by employing the notion of a point
neighbourhood. Each point in the cloud can be thought of as a vertex in the
graph, and all the points within it is neighbourhood are connected to it.

Most of GNN research then focuses on coming up with efficient ways to
adapt the convolution operation to the graphs. The benefits of using con-
volutions include localization and parameter reduction. Neighbourhood–
based graphs constructed from point clouds exhibit similar locality prop-
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erties as in images—points close to each other have a shared influence
between each other.

As an example, Lei, Akhtar and Mian (2019) use a spherical kernel
for learning on point clouds. A 3D sphere imitates the role of a 2D
convolution kernel in image learning. The spherical kernel is partitioned
into a set of bins each with its own weight matrix. For each target point,
the kernel defines its neighbourhood and thus the points that fall within the
individual partitions of the sphere. Additionally, they use octrees as a data
structure to base the neural network on. This approach was also studied in
more detail in the work of Hansen (2020).

Landrieu and Simonovsky (2018) conclude that LiDAR point clouds
are too massive to employ deep learning methods directly. They take
inspiration from the approach of superpixels used in images, and partition
the point clouds into a graph of superpoints using a global energy model.
The superpoints are geometrically simple, homogeneous shapes which
makes them computationally efficient. At the same time, they can have
varying scale so that they are adaptive to local geometry. Several features
that geometrically determine the local neighbourhood of every point are
computed. The superpoints are connected with superedges with features
describing the relationships between them.

The Transformer architecture has been making strides in the domain of
images and and now point clouds. One of the most important is the work
of Fuchs et al. (2020). The authors use a variant of the self-attention module
present in most Transformer architectures, adapted to 3D point clouds and
graphs, making the module one of the first examples of a layer that is
equivariant under rotations, translations and permutations. According to
the authors, using self-attention in contrast to extending the convolution
operator allows for more natural handling of edge features.

3.3 Point cloud datasets

Several often–used point cloud datasets have been created within the last
decade. In this thesis, the Stanford 2D-3D-Semantics Dataset is used to
evaluate point cloud compression algorithms. It is a large scale dataset
of indoor spaces, spanning 6 indoor areas. The spaces include offices,
hallways, auditoriums and other types of rooms that can be usually
found on a university campus. To acquire this data, researchers used
the Matterport Camera, which uses the structured light approach with 3
light sensors to capture 18 RGB and depth images during a 360°rotation.
Scans were performed at many positions within the areas and combined
together by the camera itself. The outputs from the device are already
reconstructed 3D textured meshes, so in order to get point cloud data, the
authors performed a dense uniform sampling of these meshes (Armeni, Sax
et al., 2017).

The dataset was first presented in Armeni, Sener et al. (2016) as the
Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) in which authors
focused on semantic parsing of the resulting point clouds. As part of
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Armeni, Sax et al. (2017) the dataset was extended with a new area and
more modalities, namely 2D RGB and depth images, as well as the textured
and semantically labeled meshes, and called the Stanford 2D-3D-Semantics
Dataset (2D-3D-S).

Among the most used object datasets for benchmarking point cloud
processing systems, ModelNet and ShapeNet have become almost ubiquit-
ous. ModelNet contains 3D CAD models of various different classes, along
with a reduced dataset of 10 most popular classes. The models have been
manually classified (Zhirong Wu et al., 2015). Similarly, ShapeNet’s goal
was to establish a richly-annotated, large-scale dataset of 3D shapes with
alignment information (Chang et al., 2015).

3.4 Point cloud compression algorithms

Work on point cloud compression (PCC) is similarly lagging behind its
2D image counterparts. As mentioned in Section 2.3, one of the main
differentiators between the techniques is whether they are based on a more
traditional signal processing approach or a neural network approach.

In the area of signal processing–based approaches, Draco is an open
source algorithm from Google, created initially specifically for the browser,
having a C++ based encoder and a C++/JavaScript based decoder. It
has both lossy and lossless modes and can compress point coordinates
as well as any attributes. It first performs a quantization followed by a
KD-tree encoding for the point coordinates and predictive coding for their
attributes. At the end standard entropy coding tools are applied (Wu, Hsu,
Hung et al., 2022). Draco is meant to be used both for point clouds and
meshes and the compression parameters allow for controlling the overall
compression rate as well as individual quantization rates for coordinates,
texture coordinates, point normals and other generic attributes separately
(Draco 3D Graphics Compression 2022).

The Moving Picture Expert Group (MPEG) has also been focusing on
point cloud compression for the past several years. The results of their
efforts include the V-PCC codec, meant for point cloud videos and G-
PCC, for static point clouds. V-PCC (Video Point Cloud Compression)
uses 2D projections, whereas G-PCC (Geometry Point Cloud Compression)
utilizes the octree data structure (MPEG Point Cloud Compression 2022). G-
PCC supports both lossy and lossless compression and shares some of the
structure with Draco. The first step is voxelization based on rounding
floating point numbers to integers. Unlike in Draco, duplicate points in
a voxel are merged. The octree structure then encodes the geometry,
followed by an arithmetic coding (Wu, Hsu, Hung et al., 2022).

Among the NN-based counterparts, GeoCNNv1 by Quach, Valenzise
and Frederic Dufaux (2019) uses shallow 3D convolutional layers and a
3D autoencoder paired with an entropy bottleneck layer. It supports only
lossy compression and works only on the point coordinates, similar to most
of the NN-based algorithms. GeoCNNv1 uses a loss function which is a
weighted sum of the focal loss and the bitrate. The focal loss compensates
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for the fact that in a voxelized point clouds, the vast majority of the voxels
are empty. Their main criticism of SP-based approaches is that tree-based
structures like the octree and KD-tree produce blocky results. GeoCNNv1
was trained on the ModelNet40 dataset and to use different compression
rates, different pre-trained models need to be used (Wu, Hsu, Hung et al.,
2022).

In Quach, Valenzise and Frédéric Dufaux (2020), the previous technique
is improved by using a 3D Variational Autoencoder (VAE) and a deeper
network. Even though its use was criticized in the first version, GeoCNNv2
also uses the octree structure to partition the point clouds into blocks.
These improvements allow for processing bigger point clouds, reducing
the memory requirements and compression time.

Jianqiang Wang, Zhu et al. (2021) introduce PCGCv1 which also uses
a 3D VAE along with layers of an architecture called VoxceptionNet.
These layers are based on several stacked blocks based on the ResNet
architecture. PCGCv1 performs the traditional steps of scaling, voxelization
and partitioning before data is sent to the NN layers. It works only on point
coordinates and was trained on the ShapeNet dataset.

PCGCv1 was improved by Jianqiang Wang, Ding, Z. Li and Ma
(2021) by applying it to the point cloud hierarchically, in a multiscale
approach called PCGCv2. To reduce memory and time requirements,
sparse convolutions on voxels were used. Both PCGCv1 and PCGCv2 use
a similar compression rate control mechanism as GeoCNNv1 (Wu, Hsu,
Hung et al., 2022). The authors recently improved this approach with
SparsePCGC, utilizing sparse tensor processing to reduce the redundancies
that come with voxelized representation of 3D space (Jianqiang Wang,
Ding, Z. Li, Feng et al., 2021).
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Chapter 4

Tools

4.1 Velodyne VLP-16

The specific sensor used in this thesis is the Velodyne VLP-16, recently
renamed to Velodyne Puck (Puck Lidar Sensor, High-Value Surround Lidar
2020). The VLP-16 sensor uses an array of 16 infra-red laser emitters paired
with detectors to measure distances to objects. Figure 4.1 shows the sensor,
with the lasers hidden inside. The laser beams are produced by solid-state

Figure 4.1: The outer shell of the Velodyne VLP-16 (Velodyne Puck). The
sensor can be attached to a tripod or a mount using a screw.

semiconductor laser diodes. The array sits on a rotating head spinning
around the vertical axis, capable of spin rates from 300 RPM to 1200 RPM.
The laser channels are vertically spaced out over a 30° interval (15° up and
down from the normal vector of the rotation axis) in 2° increments, as can
be seen in Figure 4.2. This setup produces a 360° horizontal and 30° vertical
field-of-view (Velodyne LiDAR: VLP-16 User Manual 2019). The lasers do
not fire in a linear sequence, but rather alternate or "hop around" to avoid
interference with each other. The mapping between the laser channel ID
and the vertical angle is provided in Table 4.2.

The manufacturer determines the usable measurement range at about
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Figure 4.2: Velodyne VLP-16 laser channels. Each channel has a unique
ID. The IDs are mapped to the lasers as their vertical angle increases in
an alternating sequence, starting from 0 at the lowest laser channel. The
specific mapping is shown in Table 4.2.

100 meters with beam divergence of about 3.0 mrad (0.18°) in the horizontal
axis and 1.5 mrad (0.09°) in the vertical axis. The actual laser spot itself is
rather a small rectangular area comprised of three smaller bands of light.
The horizontal resolution is determined by the spin rate and ranges from
0.1° at 300 RPM to 0.5° at 1200 RPM. Table 4.1 lists some of the properties of
the VLP-16 relevant for scanning and simulation purposes.

Table 4.1: VLP-16 LiDAR sensor specifications that are relevant for the
simulation purposes (Velodyne LiDAR: VLP-16 User Manual 2019).

VLP-16 Specifications
Wavelength 903 nm
Pulse length 6 ns

Field of view (vertical) 30°(+15°to -15°)
Field of view (horizontal) 360°

Beam divergence (horizontal) 3.0 mrad (0.18°)
Beam divergence (vertical) 1.5 mrad (0.09°)

Range 1 to 100 m
Typical accuracy 3 cm

Because the individual laser channels are stacked on top of each other,
Velodyne provides a list of vertical corrections that can be applied to the
scanned data in order to improve accuracy. These corrections bring the
center of origin to the same value for all the laser channels. The vertical
correction can be applied to z-coordinate of the returned sample (Velodyne
LiDAR: VLP-16 User Manual 2019). The vertical correction values are also
provided in Table 4.2.

4.2 Point Cloud Library

The Point Cloud Library (PCL) is a free library for processing n-D
point clouds and 3D geometry with a BSD license. It is a collection
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Table 4.2: Mapping between the individual lasers in the VLP-16 and the
vertical angles they are pointing at in the laser array, along with the vertical
correction (Velodyne LiDAR: VLP-16 User Manual 2019).

Laser ID Vertical angle Vertical correction (mm)
0 -15° 11.2
1 1° -0.7
2 -13° 9.7
3 3° -2.2
4 -11° 8.1
5 5° -3.7
6 -9° 6.6
7 7° -5.1
8 -7° 5.1
9 9° -6.6

10 -5° 3.7
11 11° -8.1
12 -3° 2.2
14 -1° 0.7
15 15° -11.2

of algorithms that operate on point cloud data, including filtering,
feature estimation, registration, surface reconstruction, model fitting,
segmentation and others. PCL is a modern templated C++ library, built
with performance and efficiency in mind. Under the hood, it uses several
popular open source libraries, such as Eigen (Guennebaud, Jacob et al.,
2010) for mathematical operations, FLANN (Muja and Lowe, 2009) for
fast k-nearest neighbour search and Boost (Schäling, 2014) for efficient
passing of data. PCL is built with robotics applications in mind and
easily integrates with ROS (Robot Operating System) and comes with it’s
own PCD point cloud file format, now widely used. PCL also offers
extensive visualization capabilities using the Visualization Toolkit (VTK)
library (Rusu and Cousins, 2011). In this thesis, PCL was used in several of
the scripts for processing point clouds, fitting planes, clustering points and
other use-cases.

4.3 CloudCompare

CloudCompare is a point cloud processing software with a graphical user
interface that makes it easy to experiment with various operations on
point clouds. Apart from the usual collection of algorithms, it has been
originally designed to perform comparison between two dense 3D points
clouds, such as the ones acquired with a laser scanner (CloudCompare
2021). It is built on the Qt framework and OpenGL and offers fast manual
exploration of point cloud data using the user interface. This was used
throughout the entirety of the work on this thesis, along with its ability to
be programmatically controlled from the command line.
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4.4 Open3D

Open3D is an MIT-licensed open-source library for development of 3D
data software, exposing both data structures and algorithms for easier
processing of this type of data. It can be used from C++ or Python and
is available for Linux, MacOS and Windows (Q.-Y. Zhou, Park and Koltun,
2018). Along with CloudCompare, this library was used in the various
scripts and exploratory analysis of point clouds during writing of this
thesis.

4.5 Indoor reconstruction++

In their master thesis, Sillerud and Johanssen (2019) created an acquisition
system to collect high density point clouds in indoor environments. The
system had three components, the VLP-16 rotating LiDAR, an inertial
measurement unit (the Tinkerforge IMU Brick 2.0) and a simple camera
tripod. The idea was to perform a vertical sweep using the tripod controls
in order to acquire more data from the floor and ceiling area. They captured
the data packets coming from the sensor using custom C++ code with the
use of the VelodyneCapture library (Sugiura, 2022), and combined them
using the rotation data from the IMU.

In order to create higher density point clouds, the scans had to be
performed at multiple positions within an indoor environment and the
individual scans had to be aligned and registered into a single point cloud.
To estimate the translation between different positions, an approach called
odometry was used. This involves continually scanning the environment
as the sensor is moving between two positions, and then performing
pairwise registrations between the acquired point clouds. Because the
point clouds are always quite close together, the registration is fairly
precise. Once each pair of point clouds are registered, the translation
matrices between them are known, and can be composed into the final
estimated translation matrix. This estimation is then optimized using a
pose-graph and finally, used as an initial starting point for the mutual
registration of the point clouds acquired from all the positions (Sillerud
and Johanssen, 2019).

This was was then modified and extended by Hansen (2020) in Indoor
Reconstruction++. Hansen extended the work of Sillerud and Johanssen
(2019) in several important regards:

1. Translated the post-processing code from Python and Open3D to C++
and PCL, unifying the acquisition and post-processing code

2. Optimized the acquisition procedure

3. Moved away from using pose-graphs in lieu of incremental pair-
wise registration using more complex Iterative Closest Point (ICP)
algorithms
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Both works observed the sensor noise to be of roughly Gaussian
distribution. Sillerud and Johanssen (2019) specified the measured error
as two times the standard deviation of the normally distributed noise and
Hansen found that using his acquisition system, the error is about 0.0313 m
for the floor scans and 0.0172 m for the wall scans. Hansen’s work is the
starting point for the initial real-world noise exploration in this thesis.

4.6 BlenSor

BlenSor is a software package for emulating range scanning devices,
integrated into the popular open source 3D content creation program
Blender. It was created at the University of Salzburg and is targeted at
the areas of obstacle detection, tracking, surface reconstruction and object
segmentation. Its goal is to provide a standardized and unified simulation
environment which replaces home-brewed solutions. This lets researchers
focus on the algorithms rather than the surrounding framework. The
package allows simulation of several types of range sensors with a strong
focus on modelling their physical characteristics. This includes rotating
LiDAR sensors, line LiDAR sensors and time-of-flight cameras. Its focus is
mainly offline data creation rather than realtime processing, which means
that BlenSor can simulate scenarios with a higher degree of detail than
what was possible with existing robot simulators at the time of its release.
However, it’s fully tied into Blender’s physics engine, making it easy to
simulate scenes with motion (Gschwandtner et al., 2011).

BlenSor can be downloaded as a binary available for the Ubuntu Linux
distribution and third party releases are also available for Windows and
MacOS. Alternatively, for modifying and extending the package, the source
code can be downloaded from GitHub.

One of the major benefits of BlenSor is its ease of use. The scanning
controls are a part of the regular Blender user interface and can be
controlled directly from the program. Figures 4.3 and 4.4 show the
BlenSor interface in Blender’s 3D viewport and user interface controls,
respectively. The virtual sensor behaves like a camera object in Blender and
its parameters can be changed in the same way. The resulting scans can be
interacted with inside the scene or saved into files in standard point cloud
formats, like .pcd. The entire simulation setup is packaged as a standard
Blender .blend file. This ensures reproducibility and also scalability, as
files can be distributed to multiple hosts or threads, which simulate sub-
intervals in the scanning time interval. Unlike most simulators based on
game engines, BlenSor does not utilize the graphics card.

The rich scripting capabilities of Blender using the Python program-
ming language extend into BlenSor, where parts of the scanning logic can
be easily modified. Prebuilt binaries of the package can be downloaded
from BlenSor’s website and the full source code is available on GitHub.
Building the package directly from the source files allows for modifying the
core parts of scanning code that interacts with Blender, written in C/C++.
Just like Blender, BlenSor is distributed under the GPLv3 license. The
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Figure 4.3: Scanned point cloud rendered within Blender’s viewport.
As shown, the point samples obtained from the scan can be optionally
rendered inside the viewport.

ease of programmatic control and modification was heavily utilized in this
thesis.

Similarly to other range scanning simulation packages, BlenSor utilizes
ray-tracing to model the real sensor data acquisition process. It patches
the Blender codebase to allow for casting several rays simultaneously
for improved performance. Blender constructs a raytree and returns the
distance for each hit along with an identifier for the object with which
the ray collided. BlenSor then approximates light attenuation based on
the distance and adds two error terms. One is the distance bias, which is
constant per laser unit, and a per-ray noise term. Both of these are sampled
from the Gaussian distribution. The error model is described in detail in
Section 5.2. Parameters of these terms can be easily tuned. BlenSor comes
with a fully implemented Velodyne HDL-64E S2 rotating LiDAR sensor.
The properties of this model are used as a starting point for implementing
a VLP-16 sensor model.

BlenSor is well suited for obtaining ground truth data as it returns a
rich collection of data for each sampled point. The returns consist of 12
data points:

• timestamp of the measurement t

• yaw and pitch angles α and ω

• measured distance d

• distance with added noise dnoisy

• clean x, y and z coordinates

• xnoisy, ynoisy and znoisy coordinates with added noise

• objectID of the object that was hit
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Figure 4.4: User interface controls for the scanning configuration. Users can
select the scanner type, rotational speeds, as well as the noise properties
and perform a single scan or a range of scans over a certain duration of
frames. Equivalently, BlenSor can be controlled programmatically from
Python.

4.7 PCC Arena

PCC Arena is a recently released open source benchmark platform for
evaluating point cloud compression algorithms. The framework is built
in Python 3 and takes individual point clouds from specified datasets and
runs them through a set of compression algorithms. After optional pre-
processing steps (which are dependent on the dataset and the algorithm
tested), the point cloud is fed into an encoder which wraps the underlying
compression algorithm. The encoder then saves the compressed file in
a binary representation. Subsequently, a decoder performs the inverse
operation, possibly with some post-processing steps. The processing
steps might include sampling meshes, normalizing each point cloud to its
maximal dimension along the three axes or computing the normals for a
point cloud that does not have them.

Each tested compression algorithm has a set of coding parameters which
are used to control the trade-off between bitrate and quality. The input
and output point clouds and the compressed representation are then fed
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into the performance evaluator to compute the various quantitative metrics.
The platform is modular and easily extensible with new datasets, new
compression algorithms (along with their coding parameters) or new
performance metrics. PCC Arena was first published by Wu, Hsu, Kuo et al.
(2020) and recently expanded in (Wu, Hsu, Hung et al., 2022).

Several metrics are used to evaluate the algorithms, and they can be
split into 3 categories:

• non-visual metrics

First, metrics such as bitrate (defined as the binary size over the
number of points in the reference point cloud) and the encoding and
decoding time are measured

• 3D coordinate-only visual metrics These include the metrics defined
in Section 2.4, like Asymmetric Chamfer Distance (Equation (2.3)),
Chamfer Distance (Equation (2.4)), Hausdorff Distance (Equa-
tion (2.5)) and the Chamfer Distance Peak Signal-to-Noise Ratio, eval-
uated in both the point-to-point and point-to-plane variants. The
latter are the reason for computing the normal information for each
point cloud, as described in Section 2.4.4.

• 3D colored visual metrics

Two metrics focus on colors. Luminance Color Peak Signal-to-Noise
Ratio measures the mean square error of luminance values across all
pairs of nearest points, and Viola et al.’s QoE metric combines the
Chamfer Distance with the L2 distance of histograms of luminance
values between the two point clouds.

• 2D visual metrics

The point clouds are rendered into 2D images from several different
views and image quality metrics such as Peak Signal-to-Noise ratio and
Structural Similarity are computed.

To put the framework to use, the authors used PCC Arena to evaluate a
number of current compression algorithms on several datasets, both mesh-
based and point cloud-based. However, they only focused on object and
avatar datasets, not scenes. These include mesh-based model datasets like
CAnonically Posed 3D Objects Dataset (CAPOD), ModelNet40, ShapeNetCore
and ShapeNetCoreColor as well as two raw point cloud sequence datasets, 8i
and it’s colored version 8iC. The model-based datasets are converted into
point clouds by means of a random sampling on the mesh, collecting the
color and normal information with each point.

Apart from objective metrics, the authors conducted a user study on
the rendered 2D images for perceived image quality. The compression
algorithms considered were divided into two categories:

• Signal processing–based, specifically Draco, G-PCC and V-PCC.

• Neural network–based, specifically GeoCNNv1, GeoCNNv2, PCGCv1
and PCGCv2
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For a detailed description of these algorithms, see Section 2.3 and
Section 3.4.

Several findings are presented in Wu, Hsu, Hung et al. (2022). First,
SP–based algorithms exhibited stable behaviour across different usage
scenarios, and their differences mostly vanish at higher bitrates, when
bandwidth is abundant. Second, NN–based algorithms have the potential
to use lower bitrates with similar results to their SP-based counterparts.
These can save up to 50% bandwidth, but their behaviour was very variable
and at least 10 times slower. Third, NN–based algorithms sometimes
produce artifacts and exhibit catastrophic quality drop. As part of the
study, correlations between the objective and subjective metrics were also
measured, but results proved inconclusive. The authors conclude that
finding better Quality-of-Experience (QoE) metrics is important in future
research. They also suggest further exploration of NN-based algorithms.
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Chapter 5

Simulating VLP-16

The goal in this section is to create a system for simulating virtual room–
scale LiDAR scans with a realistic error model. This necessitates studying
the error characteristics of a real VLP-16 sensor. With these observations in
mind, a virtual scanner with a realistic error model using the BlenSor tool
is created.

BlenSor was chosen for this implementation because of its ease of use
and extensibility. At the same time, its default error model is, while
simplistic, a good first order approximation.

5.1 Collecting error measurements from the real VLP-
16

As mentioned in Section 3.1, existing efforts in the LiDAR simulation area
often work without any artificial noise at all. When added, it is most
often simply sampled from a Gaussian distribution. However, it has been
observed that certain factors can influence this distribution (Kidd, 2017;
Glennie, Kusari and Facchin, 2016). With these considerations in mind, this
section will work with three hypotheses:

1. the aggregated noise distribution is approximately Gaussian

2. the incidence angle1 on the surface affects the noise

3. different laser channels have different noise characteristics

In order to effectively model the error distribution in synthetic scans, a
scanning procedure was followed with the real VLP-16 sensor in an indoor
environment. The goal of this procedure was to collect a sample of the real
error distribution in a situation similar to the majority of indoor scanning
applications—regular rectangular rooms with a ceiling, floor and walls,
with relatively short scanning distances, up to 5 meters.

1The incidence angle is the angle between a ray hitting a particular surface and the
normal vector of that surface. Its value is in the interval (0, 90]°.
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5.1.1 Implementation

In order to collect information about the performance of the individual
laser channels in the stack, the following modifications were done to the
code for the scanning procedure taken from the work of Hansen (2020):

1. the core point cloud class from the PCL library, pcl::PointXYZ, was
switched to pcl::PointXYZL so that a label value can be stored along
each point’s coordinates

2. A vertical correction, as stated in the VLP-16 manual, was added to
the z-coordinate of each return

3. During the scanning procedure, each return sets the label value to the
id of the laser channel it originated from

Having the label data, each point can be mapped to the specific laser
channel, which can be used to test hypothesis 3. For the purposes of
visualization, individual lasers channel identifiers were translated into
values on the RGB color spectrum as can be seen on Figures 5.2 and 5.3.
The recorded point clouds were saved as pcd files.

5.1.2 Procedure

The sensor was placed at distances from 1 to 5 meters away from a vertical
wall (with a 1 meter interval) and a densified scan was performed using
the sweep acquisition technique developed by Sillerud and Johanssen and
improved by Hansen. Such a sweep is depicted in Figure 5.1. The scan

Figure 5.1: Diagram of a single sweep. The sweep was repeated at 1 to
5 meters distance from the wall, in 1 meter increments. For illustration
purposes, only 5 rays (out of 16 in total) are drawn.
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collected a 180°-wide area in front of the sensor. Figures 5.2 and 5.3 show
examples of the full extent of the captured point clouds. Details of the data
acquisition system are described in Section 4.5 and in the respective master
theses, see Hansen (2020) and Sillerud and Johanssen (2019).

Figure 5.2: Full scan of the environment at 5 meter distance from the wall.
The areas in the ceiling and side walls are subsequently removed. Each
point is colored based on the laser channel that was used to obtain it.

Figure 5.3: Full scan of the environment at 1 meter distance from the wall.
The areas in the ceiling are subsequently removed. Each point is colored
based on the laser channel that was used to obtain it.

The densified scans were manually cleaned up and cropped so that
they consist only of points lying on the vertical wall or the horizontal
floor, per each distance measurement. This process was done using the
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get_plane_distances helper program, written in C++ using the Open3D
library. 3 scans were performed at each distance, giving altogether 15 scans
of the floor and 15 scans of the wall. The reason for this split is to test the
differences in performance with high incidence angles, which are present
more often in samples returned from the floor, as opposed to the lower
incidence angles, present in the samples returned from vertical walls facing
the sensor.

The noise distribution was then collected from the cropped scans by
first fitting a plane to the point cloud using the RANSAC algorithm
and then calculating the signed distance from each sample to the plane.
This signed distance can be called the plane residual. Each value has
the corresponding laser channel id associated with it. The procedure is
summarized in Procedure 1.

for distance d in 1...5 meters do
for run r in 1...3 at distance d do

perform sweep scan;
crop to remove everything but the wall;
crop to remove everything but the floor;
for each kind in [wall, floor] do

fit a plane using the RANSAC algorithm;
for each point in point cloud do

get the signed distance between the point and the
plane;

save the distance along with the laser id to a file;
end

end
end

end
Procedure 1: Collecting error data

5.1.3 Results and discussion

Visual observations

Figure 5.4 shows the point cloud for the wall at five meters’ distance. We
can discern that the wall scan seems to have both uniform density and a
uniform distribution of samples and also of the laser channel identifiers
within the points. On the other hand, the floor scan on Figure 5.5 shows
a decreasing density along the horizontal plane away from the sensor
location.

This likely stems from the fact that the further the horizontal plane
extends, the more acute the incidence angle becomes and the likelihood
of a successful return diminishes. At the same time, with roughly linear
acceleration of the vertical sweep, the same number of returns has to be
spread over a larger area the farther the return is.

The laser identifier distribution is also skewed with a bias towards the
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Figure 5.4: Cropped scan of the environment at 5 meter distance from the
wall. Each point is colored based on the laser channel that was used to
obtain it.

Figure 5.5: Top-down view of a cropped scan of the environment at 5 meter
distance from the floor. The sensor was placed on the right, facing left. Each
point is colored based on the laser channel that was used to obtain it.

lower units in the laser stack as we go near the sensor (bluer tones). This
stems from the fact that in the lower extreme of the sweep, only the lasers
channels at the bottom part of the sensor reach the closest parts of the floor.

Another interesting feature is shown when looking at the scanned
plane from the side. Figure 5.6 shows that the points from each laser are
distributed in clusters along the horizontal axis. This can be seen better
when isolating only one of the lasers, seen on Figure 5.7.

This is also apparent in the floor scan (Figures 5.8 and 5.9), which
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Figure 5.6: Side view of the wall scan at 5 meters distance. Each point is
colored based on the laser channel that was used to obtain it.

Figure 5.7: Three-quarter view of the isolated samples obtained by one
of the 16 laser channels when performing a scan of the wall at 5 meters
distance.

especially highlight the fact that the clusters are spread along the direction
of the ray at a particular point in time of the sweep.

Noise distribution

The plane residuals data was computed and aggregated to obtain the noise
distribution statistics, as explained in Section 5.1.2. Figure 5.10 shows the
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Figure 5.8: Side view of the floor scan. The sensor was placed on the right,
facing left.

Figure 5.9: Three-quarter view of the isolated samples obtained by one
of the 16 laser channels when performing a scan of the floor at 5 meters
distance.

violin plots of the noise distribution of all measurements across all sixteen
lasers and at all the distances, data taken for the wall scans and the floor
scans. It is apparent that the error is close to a Gaussian distribution. The

Figure 5.10: Noise distribution comparison between all samples obtained
from the wall scans and the floor scans.

recorded mean was equal to 0.00 m with the standard deviation of 0.014 m
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(rounding to three decimal places) for both surface types, even though the
floor scans have higher extremes.

In the work of Sillerud and Johanssen (2019), the definition of error
was specified to be two times the standard deviation. Compared to the
work of Hansen, 2020, described in more detail in Section 4.5, the numbers
suggest a higher measured error for the wall scans (2 ∗ 0.014 = 0.028 m vs.
0.0172 m) but roughly similar error for the floor scans (2 ∗ 0.014 = 0.028 m
vs. 0.0313 m).

Noise at different distances

In Figures 5.11 and 5.12 we can see the noise distributions at different
distances. While the wall scans distributions are mostly unchanged, it

Figure 5.11: Noise distribution per sensor distance from the wall. Showing
data obtained from the wall scans.

is apparent that the floor scans have a higher variability in how skewed
the distribution is, and also what the extremes are. These two facts suggest
that, at least between the distances of 1 to 5 meters, distance alone does not
affect the noise distribution. It is likely that the higher incidence angle in
the floor scans creates more variability.

Noise of different lasers channels

Noticeably different performance of some of the lasers was not observed
when collecting data. Figures 5.13 and 5.14 show that the performance
varies only slightly. This was surprising as the work of Glennie, Kusari and
Facchin (2016) suggests that laser channels with ID 1, 3 and 5 consistently
perform slightly worse than the other laser channels.
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Figure 5.12: Noise distribution per sensor distance from the wall. Showing
data obtained from the floor scans.

Figure 5.13: Noise distribution per angle of a laser channel. Showing data
obtained from the floor scans.

Noise and incidence angle

In order to observe whether the incidence angle affects the noise distribu-
tion, the angle had to be computed for each sample. This is possible be-
cause the position of the sensor in 3D space is known, as well as the x, y
and z coordinates of each point. Finally, in the case of our error measure-
ments, the important piece of information that is available to us is whether
the point is lying on a vertical wall or horizontal floor. This means that the
surface normal vectors of the returns can be used.

Based on this data, we can make a simple calculation to get the incident
angle:

θ = arccos
(
nsurface · vray

)
, (5.1)
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Figure 5.14: Noise distribution per angle of a laser channel. Showing data
obtained from the floor scans.

where nsurface = [0, 1, 0] when it’s on the wall and nsurface = [0, 0, 1] when
on the floor, respectively. The vector of the laser ray emitted from the
sensor, vray, is given by

vray = psample − psensor, (5.2)

where psample is the position of the sample and psensor is the position of the
scanner in world coordinates.

The incidence angle was computed for a sample of the points and
plotted as seen on Figure 5.15. It is apparent that the spread of values

Figure 5.15: The spread of plane residuals increases with incidence angle
(sample size N = 30000). The second plot shows the means and standard
deviations calculated from the data split into 10 bins.

increases with increasing angle of incidence. At the same time, the number
of points decreases as well. This suggests that a high incidence angle
both diminishes the probability of a successful return and that the noise
increases.

44



5.2 Base error model in BlenSor

The latest version of BlenSor includes simulation of the Velodyne HDL-
32E and HDL-64E sensors, which share the same error model. The core
ray tracing approach used in all the sensor simulations implemented in
BlenSor (rotating LiDAR, line LiDAR and ToF cameras) is the same and
it is explained below. However, the way the rays are cast differs between
the sensor types, as well as their error model. In this section, we focus on
the specifics of the sensor model for rotating LiDAR. The model consists of
four parts, which will be introduced in the following section.

Ray casting approach

BlenSor uses a relatively simple approach to model a rotating LiDAR
casting rays. Each individual scan has a defined start_angle, end_angle
and angle_resolution. These values are used to calculate the number of
vertical lines that the laser will emit rays at. Afterwards, for each line and
each laser, a ray is created with the correct pitch and yaw angle, along with
the timestamp. These rays are then sent to the scanning part of the code.

Modelling light attenuation

As light travels through a medium, its intensity gets reduced. This
reduction is proportional to both the distance travelled and the properties
of the medium. As we only consider applications where the scanner is used
in air, we disregard these parameters, though different mediums could be
modelled. A reduction in light intensity means that the sensor has less
probability that a given return is recorded. As an example, the Velodyne
HDL-64E S2 sensor can detect objects with minimal diffuse reflectivity of
10% at 50 meters and 80% at 120 meters (Gschwandtner et al., 2011). The
decrease in reflected light is compensated in the real sensor by lowering
its threshold, however the relationship is not specified. BlenSor chooses to
implement a linear interpolation based on the given values for each ray:

• objects closer than 50 meters are detected if their reflectivity is above
0% (this is the reflectivity distance parameter seen in Table 5.1)

• objects between 50 and 120 meters are detected if their reflectivity r is
above rmin, where

rmin(dist) = wlower +
(rupper − rlower)× dist

dupper − dlower
, (5.3)

where dist is the distance between the sensor and the potentially returned
sample, rupper and rlower are the maximum and minimum reflectivity
values. dupper and dlower denote the maximum and minimum distance for
which this particular calculation is used.
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Distance bias

As stated by the manufacturer and observed by the authors of BlenSor, the
z-distance of a plane normal to the laser’s z-axis may differ up to 12 cm
for any two lasers (Gschwandtner et al., 2011, p. 6). In other words, the
distance between the laser emitter and the same recorded surface for two
different lasers can vary. Therefore a per-laser distance bias term is added
which remains the same for each rotation, sampled from the Gaussian
distribution. This distance bias somewhat models the clusters of samples
coming from individual laser channels that is visible in the real data in
Figures 5.7 to 5.9.

Per-ray noise

On top of the distance bias, each ray has an added error term that represents
the light beam divergence. This one is also sampled from the Gaussian
distribution. The resulting distance noise from the two terms is stated as

distnoisy(yaw, pitch) = distreal(yaw, pitch) + ϵbias,i + ϵray, (5.4)

where

ϵbias,i ∼ N (0, ωbias), (5.5)
ϵray ∼ N (0, ωray), (5.6)

and distreal(yaw, pitch) is the precise distance between the sensor and the
sample. This value is computed from the yaw and pitch values of the
sensor. ωbias is the customizable parameter that specifies the standard
deviation of the Gaussian noise distribution for the distance bias and ωray
is similarly a customizable parameter that specifies the standard deviation
of the Gaussian distribution for the per–ray noise.

For example, in case of the most developed virtual LiDAR in BlenSor,
the Velodyne HDL-64E, the value of ωbias is set to 0.078 m and the value
of ωray is set to 0.01 m. The distance bias for each laser channel can be
manually randomized and saved for reproducibility, or resampled between
every scan.

The values for the noise Gaussian distribution for the HDL-64E sensor
seem to be too high, which is also apparent in Figure 5.16b when compared
to the clouds from the real sensor (Figure 5.2).

5.3 Implementing the virtual VLP-16 sensor

The already–implemented virtual Velodyne HDL-32E and 64 are bigger
and more complex sensors with 32 and 64 lasers respectively. The first
step was therefore to implement a simulation of our VLP-16 sensor. The
implementation of these virtual sensors is situated in the blendodyne.py
source file. The specifics of various types of sensors are handled in
respective Python files, whereas the core of the raycasting functionality
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is implemented in the underlying C++ code and is common between the
virtual rotating LiDARs, line LiDARs and Time-of-flight cameras.

Parameters for the VLP-16 sensor were added according to the manual
from the manufacturer and in line with the existing sensor types. This
included a list of the vertical angles corresponding to the 16 lasers as seen
in Table 4.2 and setting the angle resolution and rotation speed. After that,
it was necessary to add the VLP-16 model to an enumeration to ensure
it’s possible to select it in Blender’s user interface. The initial values for
the distance bias and per-ray noise were taken from the existing virtual
HDL64E sensor parameters. The parameters are explained in Section 5.2.

Table 5.1: Parameters used for VLP-16 in BlenSor.

VLP-16 Parameters in BlenSor
Rotation speed 5 Hz
Max distance 100 m

Distance bias mean 0.0 m
Distance bias sigma 0.078 m
Per-ray noise mean 0.0 m
Per-ray noise sigma 0.014 m
Reflectivity distance 50 m

The scanning procedure itself was setup using Blender’s Python API.
First, a mesh for the floor or wall is placed into the scene. Then the
sensor itself is created as an object of type Camera, and placed at the
correct distance. The sweep was described using Blender’s animation
system, where at certain keyframes, the rotation angle of the sensor was
set to specific increments. Blender then interpolates a smooth bezier curve
transition between the keyframes. The virtual scanning sweep was set to
start at −60° below the angle when looking straight ahead, and the end
was set to 60° from this angle. The sweep was set to take 4 seconds at 120
frames per second. The procedure can be found in the scan_for_error.py
script.

5.4 Evaluation setup

At the start of each scan, a collection of ray objects is prepared. Their
vertical and horizontal angles are then determined based on the laser
angles and the timestamps. Each return contains the x, y and z coordinate
as well as the distance between the point and the sensor. The coordinates
are in the reference frame of the sensor.

This means that there are two points in the process where noise can
be added. First, in the preparation phase where the angles of the rays are
computed, and second, in the collection phase, where the final x, y and z
coordinates are computed. Because the virtual scanner model sets all the
ray origins at 0, the vertical correction applied when taking real scans is not
necessary.

Five different error models were tested:
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1. No noise

2. Default BlenSor noise from HDL-64E

3. Default BlenSor noise with VLP-16 values

4. Modelling beam divergence

5. Incidence angle effect

No noise

First, virtual scans without any noise added were performed. As the
default BlenSor model is our starting point, this meant setting the distance
bias mean and standard deviation to 0.0 m, as well as the per-ray noise
mean and standard deviation to 0.0 m. An example of a wall scan is shown
on Figure 5.16a and an example of a floor scan is shown on Figure 5.17a.

Base BlenSor error model with default HDL-64E parameters

As a base noise level for comparison, the noise parameters from the existing
Velodyne HDL-64E were used. These include setting ωbias to 0.078 m and
ωray to 0.01 m. Both mean values are set to 0.0 m. An example of a wall
scan is shown on Figure 5.16b and an example of a floor scan is shown on
Figure 5.17b.

Base BlenSor error model with VLP-16 parameters

Results from the previous error model and the data collected in Sec-
tion 5.1.3 then informed the values set to more closely match the VLP-16
performance. The ωbias was set to 0.014 m and ωray kept at 0.01 m. Both
mean values were left unchanged at 0.0 m. An example of a wall scan is
shown on Figure 5.16c and an example of a floor scan is shown on Fig-
ure 5.17c.

Adding beam divergence

Velodyne VLP-16 has a stated horizontal beam divergence of 3.0 mrad
(0.18°) and vertical beam divergence of 1.5 mrad (0.08°). This was modeled
by adding a small amount of noise to the rotation angles of the cast rays
in the preparation step. The noise was uniformly sampled using these
divergence values. Because the divergence noise has to be added in the ray
preparation phase, there is no way to retrieve non-noisy coordinates from
the sensor returns. An example of a wall scan is shown on Figure 5.16d and
an example of a floor scan is shown on Figure 5.17d.

Incidence angle

Finally, the incidence angle information was used to affect the noise
distribution. The principle used was to increase the distribution variance
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as the incidence angle of a particular sample increases. Tuning this
relationship is described in the next section. An example of a wall scan
is shown on Figure 5.16e and an example of a floor scan is shown on
Figure 5.17e.

(a) None (b) Default (c) VLP-16 (d) Divergence (e) Incidence

Figure 5.16: Comparison of the different error models at 5 meter distance.
Scans of the wall shown.

5.5 Results and discussion

Looking at the comparison in Figure 5.18, it as apparent that the default
values for the HDL-64E sensor are too high to effectively model the
distribution for the VLP-16. Decreasing them for the VLP-16 error model
brings the distribution much closer to the real one. The HDL-64E values
can be discounted for our error model.

It is also apparent that modelling the beam divergence provides almost
no discernible difference. This could stem from the fact that the effect will
not be pronounced enough in distances lower or equal to 5 meters. To test
this hypothesis, a virtual scan with a higher distance was performed. The
results in Figure 5.19, where the virtual sensor was place 30 meters away
from the wall, however suggest that this effect is not noticeable even at
these distances.

In order to test whether taking the incidence angle into account is
necessary, in Figure 5.20, a sample of the points was plotted for all the
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(a) None

(b) Default

(c) VLP-16

(d) With divergence

(e) Incidence angle

Figure 5.17: Comparison of the different models at 5 meter distance. Scans
of the floor shown with the sensor pointing left to right.

relevant error models and compared to the real data.
With regards to incidence angle affecting the noise, it is important

to remark that our error metric—the plane residuals—does not take into
account the incidence angle, only the distance between the ideal plane and
the position of the particular sample. This creates a relationship where a
point that was produced by a ray with high incidence with a high distance
error actually has a lower planar residual than a point with low incidence
and a low distance error. The relationship is visualized in Figure 5.21.

This suggests that it is not possible to model this behaviour only by
increasing the variance of the noise as the incidence angle increases. An
interesting approach would be to try and add noise to the resulting x, y and
z coordinates of the returned sample instead, or even add noise specifically
in the direction of the normal of the plane.

For the purposes of our simulation, the VLP-16 with the added effect
of beam divergence was chosen as an appropriate error model. For more
detailed analysis and calibration of the VLP-16, see the work of Kidd (2017)
and Glennie, Kusari and Facchin (2016).

50



Figure 5.18: Different noise distributions for the error models (sample size
N = 100000)

Figure 5.19: Comparison of the VLP-16 noise parameters without and with
the beam divergence noise added at the distance of 30 meters. The effect is
negligible.
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Figure 5.20: The relationship between the incidence angle and the planar
residuals for the various error models. Only the real data show a higher
variance as the incidence angle increases.

Figure 5.21: Relationship between incidence angle and noise for two
samples from the floor. With an identical distance bias, the planar residual
(shown in red) is lower for the noisy sample (in blue) with the higher
incidence angle, even though it is farther from the true sample.
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Chapter 6

Compressing point clouds

An important step in creating a point cloud compression (PCC) algorithm
based on geometry fitting is to evaluate the performance of existing
compression approaches. Point cloud compression was described in more
detail in Section 2.3 and some of the existing algorithms explored in
Section 3.4. Section 4.7 described PCC Arena, a framework for comparing
the performance of point cloud compression algorithms, whether they are
classical (signal processing–based) or neural network–based. However, the
project has focused on datasets of objects or avatars, with highly dense and
noise-free point clouds. In this part of the thesis, PCC Arena is extended
with the focus on room-scale, outward looking scans with noise and
imperfections. As such, performance of existing compression algorithms
on noisy indoor scan data is evaluated. The authors of PCC Arena observe
that the lower quality of the non-avatar objects in their results shows that
the current PCC algorithms may not be general enough for arbitrary object
classes (Wu, Hsu, Hung et al., 2022).

It is therefore useful to test the existing point cloud compression
algorithms on different types of scenes, in this case specifically indoor
environments. Room-scale, outward-looking scans present a very different
challenge to the compression approaches as they are often larger, more
variable in dimensions, noisier, and may include extreme outliers.

In order to test the existing compression algorithms on indoor scene
point clouds, the Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS)
(Armeni, Sener et al., 2016; Armeni, Sax et al., 2017) was used as baseline
for ground truth. Described in Section 3.3, the dataset presents a good
benchmark for indoor environments as it’s created from real-world scenes
filled with objects and clutter. Because the dataset also has a mesh version
of all the scenes, it was possible to use BlenSor with the VLP-16 error
model created in Chapter 5 as a virtual scanner in these environments,
in order to test how occlusions and a realistic LiDAR error model affects
the compression performance. Scans were performed both with the added
noise and without any noise. The reason for this was to compare both
how the noise itself might influence the results, as well as how effects
like occlusion, non-uniform point distribution and the presence of outliers
might influence the results, even without noise present. For further
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comparison, the CAPOD dataset was also used in this part of the project.
CAPOD is an object–based mesh dataset, also used by Wu, Hsu, Hung et al.
(2022), containing 180 meshes of generic objects uniformly distributed into
15 classes.

The hypothesis was that the compression algorithms will perform
worse in the case of noisy indoor environments, compared to the inward–
looking object datasets. Furthermore, the neural network–based al-
gorithms that have been trained on object datasets, are expected to perform
comparatively worse than their traditional counterparts. Much like what
is seen in the object datasets, a higher variance in their performance is also
expected.

6.1 Implementation

To compare the existing compression algorithms on indoor scene datasets
and especially their performance on noisy data, the following procedure
was performed:

1. perform the PCC Arena tests on the CAPOD object dataset with a
subset of the existing point cloud compression algorithms

2. perform the PCC Arena tests on the raw point clouds from the
Stanford Large-Scale 3D Indoor Spaces Dataset

3. create virtual scans of the room meshes from the Stanford 2D-3D-
Semantics Dataset using the VLP-16 scanner in BlenSor, once without
noise and once with the VLP-16 error model noise

4. perform the PCC Arena tests on the point clouds generated from the
previous step

5. evaluate and compare the results

6.1.1 Preparing the CAPOD dataset

The CAPOD dataset introduced by Papadakis (2014) was chosen as a
benchmark because it is a relatively general purpose object dataset. It is
also often used in the PCC Arena paper as a sample when showing the
various performance metrics of the PCC algorithms. Finally, neither of the
NN–based algorithms have been trained on it.

CAPOD is a mesh-based dataset with meshes stored in .obj files.
Before using it in PCC Arena, the meshes had to be converted into point
clouds by the means of random sampling. This was achieved with one
of the utility scripts that come with PCC Arena. The ds_mesh2pc.py
script uses CloudCompare under the hood (described in Section 4.3)
to perform a random sampling of the mesh into 500 000 points. As
mentioned in Section 4.7, normal information is necessary to compute the
point-to-plane metrics. These are generated as part of the same script,
also using CloudCompare under the hood. Finally, the point clouds are
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proportionately scaled to the interval [0, 1024] using their longest axis. This
is done in accordance to the process in the original paper, in order to be
able to fairly compare results across the different datasets. An example of
a point cloud extracted from the CAPOD dataset is shown on Figure 6.1.

Figure 6.1: An example of a point cloud from the CAPOD dataset. The
point cloud was created by sampling a simple mesh model of a plane.

6.1.2 Preparing the raw Stanford Large–Scale 3D Indoor Spaces
Dataset (S3DIS)

The S3DIS dataset already has each room stored as it’s own separate point
cloud that can be used in PCC Arena. Like the previous dataset, the
normal information was computed for S3DIS point clouds using the scripts
available in the PCC Arena repository. The point clouds were subsequently
scaled to the same [0, 1024] interval. An example of a point cloud from this
dataset is shown on Figure 6.2.

6.1.3 Creating the scanned datasets

To create the actual scanned datasets using BlenSor, the Stanford 2D-3D-
Semantics Dataset was used. Unlike its predecessor used in the previous
section, which only consists of point clouds of the individual rooms, this
expanded dataset includes meshes of the entire areas at once. These
were used as virtual indoor environments to be scanned using the VLP-16
implementation in BlenSor created in Chapter 5. In order to scan the area
meshes, suitable positions for the scanner had to be picked. These were
sampled from the collection of positions that the dataset itself was created
from (i.e. the positions that the Matterport Camera was located at when
scanning happened).

Because in a virtual scan there is no need to worry about the
human standing behind the sensor, the scans were performed in the full
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Figure 6.2: An example of a point cloud from the S3DIS dataset. The
point cloud was created from an indoor scan of an office environment.
Bookshelves, chairs and desks can be discerned.

360° horizontal field-of-view. An important consideration with outward-
looking scans is the high likelihood of the presence of outliers. Open doors
and windows in scanned rooms can lead to the scanner picking up samples
from outside of the current room. The scans were performed in each room
inside the 6 large scale area meshes, which means that the laser would
likely scan surfaces outside the room it was in (through open doors). To
create more compact clouds, the points collected from these surfaces were
cropped away. This was done using the raw point cloud data segmented
into individual rooms in Armeni, Sener et al., 2016. By obtaining the
bounding box using this data, the scanned point clouds were cropped.
This is possible because of the shared coordinate system. The procedure
is situated in the s3dis_pipeline.py script. An example of the same room
in its raw and scanned forms is shown in Figure 6.3.

6.1.4 Algorithm selection

A subset of the algorithms used in the PCC Arena paper was used for the
evaluation in this thesis. Namely the Draco and GPCC algorithms, based
on traditional signal processing, and the PCGCv1 and PCGCv2 algorithms,
based on neural networks. The VPCC algorithm is used for point cloud
videos, and was thus not considered. The remaining two algorithms
used by the paper, GeoCNNv1 and GeoCNNv2, were too computationally
expensive to run on the machines available during writing of this thesis and
were therefore also not used. Details of the used algorithms are presented
in Section 3.4.
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(a) Raw

(b) Scan without noise

(c) Scan with noise

Figure 6.3: Example of a room point cloud from the S3DIS dataset, along
with its scanned versions, one without noise and one with noise added.

57



6.1.5 Metric selection

To measure the performance of the compression algorithms, a subset of the
metrics presented in the PCC Arena paper were chosen. These include
the 3D coordinate–only metrics, such as Chamfer Distance (defined in
Equation (2.4)) and Hausdorff distance (defined in Equation (2.5)), as well
as the encoding and decoding times. No color information is picked up by
the VLP-16 sensor, or its virtual equivalent, so metrics which incorporate
this information were not used. No subjective metrics were used either,
though it is an interesting area to be further studied. As observed by
Wu, Hsu, Hung et al. (2022), the correlation between the currently used
objective metrics and subjective metrics is not significant, especially for
object datasets. The point-to-plane versions of the metrics are used as they
are a better measure of visual quality (Tian et al., 2017).

PCC Arena works with the notion of compression rates which describe a
set of parameters for a particular algorithm that determine how much data
is compressed. These format of these paremeters differs for each algorithm.
In signal processing–based ones they often control the quantization
granularity, whereas in the neural network-based ones they specify the
pretrained models to use. The four algorithms were applied to the four
datasets at rates ranging from r1 to r8, where a higher number means
more compression, trading size for quality. The rates for PCGCv1 and
PCGCv2 specifically ranged from r1 to r6 and r1 to r7 respectively. The
parameter values were the default values available in PCC Arena. To add
the aforementioned datasets into the framework, changes had to be made
to the cfgs/datasets.yml configuration file, which was updated with the
paths to the datasets and their versions with normals.

6.1.6 Scaling and compactness

The rooms in the S3DIS dataset have a high variability of shape. While the
majority are offices close to a standard rectangle, there are several long and
narrow hallways, or sprawling auditoriums. An assumption was therefore
initially made that these rooms should be removed from the dataset as they
will have a skewed scale compared to the other rooms when scaled to the
same [0, 1024] interval. Even so, the scaled rooms were scanned and used
in the algorithm evaluation with the possibility of removing them later.

To see if the shape of the room has any bearing on the performance, the
elongation metric of each room was computed from the raw point clouds
in the S3DIS dataset. This metric is borrowed from 2D image processing
where it’s used to determine how compact a convex shape is, by dividing
the width of the shape’s bounding box with it’s height. The closer the
resulting value is to 1.0, the more square it is. The elongation metric for
S3DIS rooms was defined as the length of the shortest axis divided by
the length of the longest axis in the room’s bounding box. All the rooms
can also be thought of as convex shapes. The code for extracting this
information from all the rooms can be found in the get_elongation.ipynb
Jupyter notebook.
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However, no discernible effect of the elongation on algorithm perform-
ance in the chosen metrics was observed. This could be explained by the
fact that the Chamfer and Hausdorff Distance metrics simply aren’t able to
show the effect. The highly elongated rooms are often of two types, either
long hallways with little clutter in them, or big auditoriums, with relatively
uniform clutter made up of chairs or stairs. This means that the structural
elements of the rooms—the walls, floor and ceiling—dominate the metrics,
and the potential error created by the different scales gets lost as noise. As
such, the rooms with the higher elongations were kept in the datasets.

6.2 Results and discussion

Figure 6.4 shows the distributions of point counts in the four studied
datasets. As mentioned in Section 6.1.1 and apparent from the figure, the
CAPOD dataset is sampled at 500 000 points per cloud. On the other hand,
the raw S3DIS dataset has a wide spread of point counts with the median
at about 800 000. The high variability can be explained by the fact that
the individual scenes can differ significantly in their real world scale — the
dataset contains mostly small offices but also several big auditoriums.

The last two datasets, which are a result of the virtual scanning pipeline,
show a smaller spread of counts, but with a higher median. This, on the
other hand, is a consequence of the procedure—each room was scanned
for the same time duration with the same sensor parameters. Even though
the rooms can be different in scale, the number of returns is going to vary
less, as all the rooms are closed off environments. At the same time, the
rooms do not get big enough for the virtual sensor to start missing returns
because of light attenuation as described in Section 5.2.

Figure 6.4: Distributions of the number of points present in the individual
datasets. The CAPOD dataset point clouds are a result of randomly
sampling on the original meshes with a set number of 500 000 points.

A coarse summary of the algorithm performance is shown in Figure 6.5.
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The selected coordinate metrics of Chamfer Distance, Hausdorff Distance
and the encoding and decoding times are shown on a log scale against the
compression rates. At each rate, the median of the values is calculated and
plotted. Several things can be observed from this plot:

1. For the Chamfer Distance metrics, all four algorithms improve their
performance on all datasets when going up the compression rates,
but with the exception of Draco this quickly levels off.

2. At low rates, the NN–based algorithms perform better or comparable
to their SP–based counterparts.

3. For the Hausdorff distance metric, the NN–based algorithms lag
behind, especially compared to GPCC. Worse performance at this
metric, which highlights outliers, suggests that these algorithms are
more likely to produce them.

4. As for decoding and encoding, the SP–based algorithms steadily
increase the needed time as the compression rates go up, as well
as PCGCv1. The times for PCGCv2 seem much less affected by the
selected compression rate. A higher baseline for all the algorithms
can be seen going from CAPOD to S3DIS and even more going to the
scanned datasets. This can be explained by the higher median point
counts in those datasets compared to CAPOD. GPCC’s running time
is the most affected by the selected compression rate.

5. The performance seems generally similar on the S3DIS and scanned
datasets compared to CAPOD when looking at Chamfer Distance,
with NN–based algorithms being slightly more affected in the
Hausdorff Distance metric.

After looking at the coarse metrics, Figure 6.6 offers a more detailed
look at the Chamfer Distance performance, this time on a log-log scale with
the bits per point (bpp) value on the x-axis. bpp is calculated by dividing
the size of the compressed file with the number of points in the original
point cloud. This type of plot represents the rate distortion curve1 of the
different approaches. The bpp values were bucketed into 10 bins of equal
number of samples and their median values were plotted in the figure.

Looking at the plots, we can discern that at lower bpp values, the
NN–based algorithms and GPCC perform quite well, with Draco lagging
behind. GPCC generally outperforms the NN–based algorithms once the
bitrate increases. A significant horizontal offset of the Draco values for
the scanned datasets can also be observed. This can be explained by
the fact that Draco does not merge points occupying the same voxel in
the quantization step (Wu, Hsu, Hung et al., 2022), which, coupled with
the higher median point counts for the scanned datasets, inflates the bpp
values. Apart from this, when comparing values for CAPOD versus the
other datasets, no significant trends can be observed.

1A rate distortion curve describes the tradeoff between the quality and target compression
rate of a compression system.
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Figure 6.5: Coarse view of the metrics per compression rate. The values
shown form the median value at each of the chosen compression rates.
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Figure 6.6: Comparison of the Chamfer distance metric in its point-to-plane
version against the bits per point (bpp) value for the various algorithms on
a log-log scale.

Somewhat more interesting trends can be observed in Figure 6.7, where
the Hausdorff distance is plotted in more detail. These plots were created
in a similar manner to the previous ones, showing a log-log scaled of the
chosen metric against the bpp value, bucketed into 10 bins, with their
medians plotted.

We can see a similar shift for the Draco values as in the previous
plots. The NN–based algorithms perform somewhat worse at this metric
in all datasets, compared to the SP–based ones, however the difference
is especially big in the scanned datasets, implying a higher frequency of
outliers.

Figures 6.8 and 6.9 show the encoding and decoding times plotted
against the bpp metric. Similarly to the previous plots, they show a log-
log scale of the chosen metric against the bpp value, bucketed into 10 bins,
with their medians plotted. GPCC and to a smaller extent, PCGCv1 are
the algorithms where the increasing bpp value means higher running time,
whereas the others are relatively stable. Same shift as in the previous plots
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Figure 6.7: Comparison of the Hausdorff distance metric in its point-
to-plane version against the bits per point (bpp) value for the various
algorithms on a log-log scale.

can be observed for the Draco algorithm.
The results suggest that the performance of the evaluated algorithms is

not significantly affected when presented with room-scale outward looking
datasets. There is a small effect with the NN–based algorithms when
looking at the Hausdorff distance metric, which highlights outliers. This
is in line with the observations by Wu, Hsu, Hung et al. (2022), that the
NN–based algorithms have a higher variance of performance and more
potential for catastrophic failures. On the other hand, the results confirm
the fact that these algorithms perform well at low bpp values. This is the
case even when they have not been trained on room-scale outward looking
datasets. A performance comparison after training them on this type of
dataset would be a interesting direction to study further.

The fact that the SP–based algorithms are quite unaffected by the
different type of scenes and presence of noise could be explained by the
fact that these algorithms perform relatively simple operations on points
themselves, without taking into account any actual geometry information.
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Figure 6.8: Comparison of the encoding time against the bits per point
(bpp) value for the various algorithms on a log-log scale.

A point that is precise and one that is a part of noise is not going to affect
how the algorithms treat that particular point.

Considering the goal of the effort that this thesis is a part of—to create
a point cloud compression system based on geometric primitive fitting,
such a system might be more susceptible to noise and type of scene than
the SP–based algorithms. Presence of noise and occlusion is likely going
to significantly affect the fitting of primitives and potentially lead to errors
more easily. Whether the savings in data needed to be stored in such a
system outweight this tendency remains to be seen. It is also important to
note that using the S3DIS as a baseline for our scanning procedure means
that the scanned datasets have compound error from both the original
dataset acqusition (even though it acquired with the goal was to minimize
error) and the BlenSor error model.
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Figure 6.9: Comparison of the decoding time against the bits per point
(bpp) value for the various algorithms on a log-log scale.
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Chapter 7

Preparation for geometric
primitive fitting

7.1 Background and related work

One of the most efficient ways to represent 3D scenes is to describe them
using simple geometric primitives. This is also the basis of Constructive
Solid Geometry (CSG), where complex objects are made up of Boolean
operations (such as intersection, union, or difference) on simple geometric
primitives. As presented by Kaiser, Ybanez Zepeda and Boubekeur
(2019), simple 3D geometric primitives can be defined as convex symmetric
geometric shapes with a limited set of parameters that completely describe
the size, orientation and position of the shape. The authors categorize these
shapes into 4 categories:

• Planes

The most basic shape that can be defined by its normal vector n and
distance d to the origin of the reference frame.

• Boxes and cuboids

A combination of orthogonal planes. These shapes are defined by
their center position x0, orientation n and the lengths a, b, c of their
edges.

• Spheres, cylinders and cones

These shapes can be defined as rotational sweeps of a specific 2D
curve or line segments along an axis. A sphere can be defined by its
center position x0 and radius r, while the cylinder needs an additional
orientation vector n. The cone adds the parameter α representing the
angle between its axis and the surface.

• Others shapes

Ellipsoids, tori and non-rectangular parallelepipeds and others are
shapes of higher complexity that usually need several additional
parameters on top of the center position x0 and orientation vector n.
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• Superquadrics Superquadrics are a powerful family of parametric
shapes that extend the basic quadric surfaces and solids. They can
describe several types of shapes, like cubes, cylinders, spheres and
others using a relatively simple parametrization. They were first
introduced by Barr (1981) and subsequently used in the context of
describing more complex shapes by Pentland (1986). Superquadrics
can be described implicitly as

|x|r + |y|s + |z|t = 1 (7.1)

where the r, s and t parameters control the overall shape of the solid.

In order to efficiently process massive point clouds, it is important to
try and reduce the size of the data and remove noise. The hypothetical
approach to achieve this explored in this thesis is to find simple geometry
that can be represented more efficiently and is useful for computer graphics
applications (Deschaud and Goulette, 2010). It is natural to start with the
simplest geometric primitives—planes. This is especially useful in indoor
environments, which usually have many planar surfaces. Some of them,
like the floor, walls and ceiling are even almost ubiquitous and generally
follow the Manhattan world assumption. Other objects in the indoor
environment can be approximated by other primitives, notably cylinders
and cones for structural columns, table legs, cups, vases, curtain rails,
segments of power cables or plumbing fixtures. As a step further, furniture
can be approximated by a composition of many different primitives.
Over the last decades, several different approaches to geometric primitive
detection have emerged.

7.1.1 Hough transform

The Hough transform is a parameter space–based technique that uses an
accumulative procedure where each sample of the input data votes for
all the primitives of which they are inliers. The procedure then takes the
maximum of the accumulated votes in the parameter space to determine a
likely candidate for a primitive that best fits the data.

It is named after Paul Hough, who first used it to detect lines in bubble
chamber images (Hough, 1959) and subsequently patented it. Researchers
have since then expanded on it and generalized it to detect a multitude
of primitives in both 2D and 3D data. It is robust to noise and missing
data, which makes it very useful in robotics and other areas that frequently
use low-cost sensors suffering from noise. However, the procedure is
computationally expensive both in terms of processing time and memory
requirements, especially as the number of parameters increases, which is
the case when detecting more complex primitives. In the case of detecting
planes in 3D space, the computation cost of the standard Hough transform
is O(nNθ Nϕ), where n is the number of points in the point cloud, and Nθ

and Nϕ are the number of bins used to discretize angles θ and ϕ, which
represent the orientation of the plane (Araújo and Oliveira, 2020).
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A lot of work has therefore been put into improving the performance
and reducing complexity of the Hough transform, notably the Fast Hough
transform (H. Li, Lavin and Le Master, 1986) which hierarchically divides
the Hough space into squares, and Randomized Hough transform (Kultanen,
Xu and Oja, 1990), which was used to more efficiently detect curves in
images. Kernel-based Hough transform uses an elliptical-Gaussian kernel,
which significantly improves the speed of the voting scheme, making the
technique work in real time (Fernandes and Oliveira, 2008).

In the area of 3D plane detectors, some kind of hierarchical voxelization
of the point cloud is often used, such as in (Hulik et al., 2014), where the
researchers also apply Gaussian smoothing and specific peak extraction
in the parameter space. The Kernel Hough transform was also extended to
3D using octrees on point clouds along with principal component analysis
(PCA) to achieve real-time performance, at the cost of higher sensitivity
to outliers (Limberger and Oliveira, 2015). Rabbani and Heuvel (2005)
optimized the Hough transform to detect cylinders in point clouds. As
the standard approach would lead to a computationally expensive 5-
dimensional Hough space, they decide to split the procedure into two
sequential steps of lower dimensional Hough transforms. While the first
step detects candidates for orientations of cylinders, the second step then
estimates the position and radius.

7.1.2 Random sample consensus

Random sample consensus (RANSAC) is a stochastic method for estim-
ating model parameters. Applications based on this method are usually
iterative, non-deterministic and robust against outliers (Kaiser, Ybanez Ze-
peda and Boubekeur, 2019). The usual algorithm is a two-step procedure.
In the first step, it draws a minimal random sample from the input data
and estimates a model. In the second step, it evaluates all the input data
on the estimated model using an inlier function or another similarity meas-
ure. The steps are repeated and the model with best estimated score is re-
turned. The process can be repeated for finding multiple models. Various
approaches that use this mechanism usually differ in how they evaluate the
estimated models against the entire data set.

This approach does not work well on point clouds that are not
uniformly distributed, a requirement often not met in real world scans.
This leads to poor performance on samples farther away from the sensor,
as they are underrepresented in the resulting point cloud. It is also highly
sensitive to parameter tuning, namely the threshold used in the inlier
function that is highly dependent on the noise level of the point cloud. The
stochastic nature of these techniques makes it hard to produce repeatable
results. The computational complexity of finding a single plane in 3D space
is equal to O(I(E+ nK)) where I is the number of iterations, E is the cost to
estimate a plane from three samples and K is the cost of checking if a sample
satisfies the inlier function on the estimated plane (Araújo and Oliveira,
2020).

Schnabel, Wahl and Klein (2007) use an optimized RANSAC approach
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to detect different simple geometric primitives in point clouds, where only
nearby samples are drawn and sample normals are used to improve the
inlier function. Like the original formulation, this approach can suffer from
detecting spurious planes in presence of noise. To improve the technique,
L. Li et al. (2017) use Normal Distribution Transformation (NDT) cells as
minimal samples in each iteration. NDT cells are another one of many
approaches to subdivide the space occupied by the point cloud into a grid
of cells. The subdivision can be regular, or use octress. A Probability
Density Function (PDF) is computed for each cell, representing the point
distribution. Only cells containing possible coplanar samples are then used
in the RANSAC algorithm.

7.1.3 Region growing

Region-growing (also known as primitive-growing) approaches take a
different direction. The techniques treat the point cloud as a graph, where
samples are treated as the vertices and each sample has a neighbourhood
that defines the samples that are connected to it in the graph. This can
be problematic in many types of point clouds, where there is no a priori
sample neighbourhood information. The algorithms starts by selecting
either a regular or random seed from the sample set and starts a graph
search based on some similarity function. This function can use different
properties of the samples, such as color, normal orientation or distance.
This function depends on the primitive to be detected. Finding good
thresholds for this function is also highly dependent on the type of scene
and the application, a property that makes this technique suffer from
a lot of parameter tuning. Much like with previous approaches, some
applications partition the space into voxel grids and perform the actual
algorithm within the segmented cells.

To avoid scene dependency when choosing parameters for the similar-
ity function, Maalek, Lichti and Ruwanpura (2018) used the Robust PCA
method to the neighbourhood of each sample. This method is however
computationally expensive. Pham et al. (2016) extend the graph-based ap-
proach by considering both global and local planar surfaces, using a global
energy minimization algorithm, making it especially suitable for indoor en-
vironment. Combining region growing with the Hough transform, Leng,
Xiao and Y. Wang (2016) map each sample’s estimated normal to a unit
sphere accumulator, cluster the predominant directions and perform region
growing within these clusters.

7.1.4 Robust statistics

One of the most recent approaches in plane detection is the work done by
Araújo and Oliveira (2020). Conceptually it’s similar to region growing,
however the authors propose an O(n log n) algorithm for detecting planes
that is robust to noise, scalable and does not require parameter tuning.
They achieve this with a planarity test based on robust statistics that easily
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removes outliers. 1

The algorithm consists of three phases:

1. Split phase – detects minimal planar regions in the point cloud and
subdivides it into an octree, where the leaves have at maximum ϵ
samples, experimentally determined to be 0.1% of all samples. On
each of these leaves, they apply their robust planarity test. This test
first estimates a plane (it is point and a normal vector) and then
performs checks to see if the patch passes the test. After going
through all the leaves, the accepted ones move into the growth phase.
Each accepted patch has information about the estimated plane and
the distributions of distances and normal deviations from it for each
point in the patch.

2. Growth phase – a neighbourhood graph of the entire point cloud is
created and, in a breadth-first search manner, neighbouring samples
are tested for an inlier condition and added to the currently grown
patch if they are not a part of any other patch. After this is done,
some patches might belong to the same plane, and they should be
merged.

3. Merge phase – Each pair of planar patches is evaluated and merged
if they pass several merging conditions.

The grow-merge phase is done iteratively, because after merging,
the plane of the merged patch might be re-estimated, along with the
distributions of distances and standard deviations. This stops when all
patches are stable.

As the authors point out, this is an entirely bottom-up solution,
which means local planarity tests are performed, disregarding the global
geometry. This may lead to detection of false planes along low curvature
surfaces.

7.1.5 Local statistics

Some approaches look at the occupancy distributions in the point clouds to
try and estimate primitives using Gaussian Mixture Models or Bayesian
methods (such as in the work of Jenke et al. (2006) and Diebel, Thrun
and Brünig (2006)). These are computationally expensive for larger point
clouds.

7.1.6 Generative modeling

Generative modeling is a form of unsupervised machine learning, where
the goal is to take training samples as input from some distribution and
learn a model that represents that distribution. The end goal for this can be

1The term robust statistics is used to describe statistical approaches that are designed to
be insensitive to outliers. (Huber, 2004, p. 2) An example of this is to work with the median
value, rather than the mean.
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e.g. density estimation, sample generation, debiasing or outlier detection.
Generative models can be a promising approach to use for point cloud data,
where big labelled datasets are not available.

Kingma and Welling (2019) summarize the tradeoffs with generative
models as such:

While generative models can learn efficiently from data, they
also tend to make stronger assumptions on the data than their
purely discriminative counterparts, often leading to higher
asymptotic bias when the model is wrong.

They conclude that in regimes with sufficiently large amounts of data,
discriminative approaches will perform better, but studying the underlying
generative models can be helpful regardless. As an example, Bagautdinov,
Fleuret and Fua (2015) use generative models to evaluate the probability of
target objects being present in the scene in single depth maps.

7.1.7 Shape parsing and parsimonious representation

The general approach of finding geometric primitives in 3D data for
a more compact representation is called shape parsing. An important
idea in detecting shapes from point clouds is parsimony, i.e. trying
to find the minimal number of primitives that best fit the scene at
hand. A more parsimonious representation has the benefit of being a
low dimensional description, and therefore easier for machines to parse.
It is hypothesized that human understanding of complex scenes also
relies on such parsimonious representations using simple shape primitives
(Biederman, 1987). Until recently, the computational power needed to
extract shapes from scenes in this way was prohibitive. Steady rise
in computational resources, along with the new developments in deep
learning, have brought this area back into focus. The idea of parsimonious
representation is central to the approach of point cloud compression by
geometric primitive fitting.

Tulsiani et al. (2017) explore the idea of fitting cuboids as the simplest
possible primitives. To tackle the object assembly problem, i.e. determining
what cuboids approximate a particular object, they use 3D convolutional
neural networks on a volumetric representation of an object point cloud
in an unsupervised manner. On the other hand, Zou et al. (2017)
use a generative recurrent neural network to encode implicit shape
representation. They highlight the lack of good training datasets in this
area and propose a generative method for creating ground truth data.
Paschalidou, Ulusoy and Geiger (2019) build on this research by switching
from cuboids to superquadrics, a family of surfaces that can describe several
types of shapes, like cubes, cylinders, spheres and others using a relatively
simple parametrization. They argue that cuboids are not sufficiently
expressive to model many natural and man-made shapes. This in turn
requires a larger amount of primitives to be used. Most importantly,
superquadrics have a continuous parametrization determining their shape
smoothly, which is amenable to deep learning.
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7.2 Approach and discussion

The approach of using geometric primitive fitting as a means of compres-
sion was in the work of Boulet-Gilly (2019) and Hansen (2020). Boulet-Gilly
(2019) used a region-growing approach to extract planes corresponding to
the floor, ceiling and walls in indoor scene point clouds. Subsequently,
high-frequency detail pertaining to these planes was brought back into the
representation using heightmaps. Hansen (2020) searched for a more gen-
eral and robust way to extract the main planar features using neural net-
works. He also used the S3DIS dataset which has label information for 13
classes, like floor, window, column etc., and trained a deep neural network
with spherical kernels, modified from the work of Lei, Akhtar and Mian
(2019).

This network was used to segment the point clouds into four classes—
floor, walls, ceiling and the rest (interior)—created by partially combining
the original 13 classes from the S3DIS dataset. After inference, a sequential
planar least squares algorithm iteratively fits a planar model to the data
and removes it, to finally arrive at a segmented point cloud. In the end,
height maps are used to retrieve the high frequency data. As an aside,
Hansen (2020) explored using the height maps for point cloud registration
purposes. He also pursued a different approach to compression, using
an autoencoder network, a component used in the neural network–based
algorithms described in Section 3.4.

In light of his work and the contribution of this thesis, the next step
in achieving geometry fitting compression is to look at primitives other
than planes. Cuboids, cylinders and spheres are the next most simple
candidates. As described in Section 7.1, a plane is well defined by its
normal vector and the distance to the reference frame origin. But unlike an
infinite plane, cuboids and the other primitives must be described by their
position, orientation, and additional parameters defining their extents. The
question of composed primitives also arises. A box could be described with
the aformentioned parameters, or with the parameters of its six constituent
planes. The difference between these two representations is that, as a box,
the relationship between the planes is encoded—they have to be at right
angles to each other. On the other hand, six planes can represent other
shapes than a box. As such, the walls, floor and ceiling of rectangular or
near-rectangular rooms could be instead described as a cuboid instead of
six planes.

The main reason for starting with planes for walls, floor and ceiling,
apart from them being the simplest primitive, has been the fact that
existing indoor scene datasets, like the S3DIS dataset, already include this
ground truth. However, these labels are semantic in nature, not geometric.
Nonetheless they have been useful as a starting point with the assumption
that these surface are planar in nature.

Another dataset that was explored during the writing of this thesis is
3D-FRONT, a large-scale, mesh-based collection of synthetic indoor scenes
(Fu, Cai et al., 2021). Unlike the S3DIS dataset, these scenes represent
usual living quarters and combine the structural layout information with
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furniture models from a complementary dataset, 3D-FUTURE (Fu, Jia et al.,
2021). This dataset also obtains semantic ground truths on the structural
elements that could be exploited in a plane extraction system.

Notably, a general geometric fitting approach must deal with two
problems. First, it is the geometry primitive detection, and second, it
is the segmentation of their individual instances. This is similar to the
problems of object detection and object instance segmentation in the image
processing domain. A system that has to deal with these two problems
could work in an iterative fashion:

1. detect a primitive in the point cloud

2. perform fitting to obtain primitive parameters

3. remove the primitive from the point cloud, and repeat until no
primitives are detected

After fitting the individual primitives, their parameters are known and
heightmap extraction can be performed to retrieve high frequency detail.
Realistic error modelling is going to be crucial in this phase. At the same
time, this approach might have to be hierarchical or multi-scale, iteratively
advancing from the largest features to the smallest. As an alternative to
supervised methods, reinforcement learning methods could be employed
as well. A learning agent might use a trial-and-error approach for picking
primitives with a reward function that signifies coverage of the point cloud.
A similar iterative procedure could then be used.

BlenSor could be used to synthetically generate a point cloud dataset
with a realistic error model and geometric ground truths. Each point can be
labeled by the primitive it belongs to. The use of data augmentation is also
possible, by using existing datasets and adding procedurally generated
assets, or combining multiple datasets, similarly to 3D-FRONT and 3D-
FUTURE. The biggest issue in this area is how to avoid encoding biases
in the synthetic data, something that other LiDAR simulation efforts also
highlight (Anderson et al., 2019).
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Chapter 8

Conclusion and future work

This thesis explored the steps necessary to create a point cloud compression
system based on geometric primitive fitting for room-scale LiDAR scenes.
It is a continuation of the work done by Sillerud and Johanssen (2019),
Boulet-Gilly (2019) and Hansen (2020), who focused on creating a high
density point cloud acquisition system using the Velodyne VLP-16 sensor
and subsequently on approaches of plane extraction from these point
clouds.

The premise was that current studies that apply machine learning to
point clouds usually work with rather clean data. This means uniformly
sampled point clouds without any noise. This informed the first part of the
work, where the noise characteristics of the Velodyne VLP-16 as applied to
room-scale environments were studied and a virtual version of the sensor
with a more realistic error model was implemented. This work is important
for eventually training a supervised system for point cloud compression
using geometric primitive fitting.

The contribution of this thesis is three-fold:

1. A survey of the literature was conducted, focused on point cloud
processing specifically in the areas of synthetic data generation,
machine learning and point cloud compression

2. A usable virtual LiDAR system with the focus on realistic error
modelling was created by extending the BlenSor plugin. The error
model used by the system is based on a real Velodyne VLP-16 sensor.

3. Performance of existing point cloud compression approaches was
evaluated on noisy room-scale indoor environment point clouds,
extending the PCC Arena benchmarking framework.

The results suggest that a base Gaussian noise applied to the distance
measurements is a good approximation of the noise characteristics of a
rotating LiDAR sensor. The important aspect of modelling the noise is to
choose the correct mean and standard deviation based on measurements in
the real world. While previous work has noted variance in the performance
of the different laser channels for the VLP-16 sensor, this was not observed.
This could be explained by the fact that the studied point clouds are a
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combination of many different point cloud fragments coming from the
acquisition procedure. For detailed exploration of these characteristics, a
precise calibration study of the sensor is necessary.

Modelling beam divergence has a limited effect in short distance
regimes such as standard indoor scenes. The role of the incidence angle
on the noise distribution should be further studied. Different metrics
other than a plane residual could be used to more accurately discern the
relationship. The specifics of modelling these factors will also depend
on the system used for the virtual sensor. Further work on synthetic
point cloud generation should put generally more focus on noisy and non-
uniformly distributed datasets.

Among the existing point cloud compression approaches, the tradi-
tional signal processing–based ones do well when applied to noisy room-
scale data, comparably to noisy object data. On the other hand, neural
network–based algorithms display higher variance and lower results in the
worst-case Hausdorff distance metric. A good point of comparison would
be to train the neural network–based algorithms on indoor noisy datasets
and evaluate them again.

Interestingly, the evaluated algorithms all rely on a quantization step,
utilizing a 3D autoencoder or variational autoencoder, or performing 3D
convolutions. Future work should focus on better exploiting the point
sets themselves as exemplified by the newer approaches of working on
point cloud data, such as PointNet, graph convolutions and the attention
mechanism.

To achieve the goal of creating a usable system for detecting geometric
primitives, more headway has to be done in this direction. The possible
approaches and work done to further this goal were outlined in Chapter 7.
Future work in this area should focus on creating datasets with geometric
labels using the system explored in this thesis.

The repository with scripts and other programs that were created as
part of this thesis is available at https://github.uio.no/branisj/thesis.
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