
Better Mixed Reality Through
Depth Estimation on Machine

Learning

Simen Røe Fjøsne

Thesis submitted for the degree of
Master in

Informatics: Programming and System
Architecture
60 credits

Department of Informatics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2022

Better Mixed Reality Through
Depth Estimation on Machine

Learning

Simen Røe Fjøsne

© 2022 Simen Røe Fjøsne

Better Mixed Reality Through Depth Estimation on Machine Learning

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Computer depth estimation is an ever-increasing research field in computer

vision because of its use in a variety of different applications: from

autonomous cars that rely on depth to avoid objects, to AR devices that

rely on depth to display virtual objects accurately in the real world. In this

thesis, we will explore stereo depth estimation, a way of estimating depth

using a camera pair.

Today, stereo depth is estimated in two ways: either by block-matching or

with machine learning. This thesis aims to assess whether a combination

of the two approaches is possible, and if it is possible, does it provide any

benefits over existing methods. We design a pipeline that combines a well-

established block-matching algorithm and a state-of-the-art stereo depth

estimation model to address these questions.

The results of our thesis suggest that a combination of block-matching and

machine learning may work with a bit more experimenting, however, more

work needs doing before we can conclude if our approach provides any

benefits versus existing approaches.

i

Contents

1 Introduction 1

1.1 Research Question . 3

1.2 Research Method . 4

1.3 Thesis Outline . 5

2 Background 6

2.1 Block-Matching . 6

2.2 Epipolar Geometry . 11

2.3 Problems With Stereo Matching 13

2.4 Machine Learning . 14

2.4.1 Training a Neural Network 15

2.4.2 Loss Functions . 15

2.4.3 Model Generalization 17

2.4.4 Activation Functions 21

2.4.5 Convolutional Neural Networks 23

2.5 Related Work . 25

3 Design 27

ii

CONTENTS iii

3.1 Datasets . 27

3.2 The Pipeline . 29

3.3 Image Inpainting . 30

3.4 Initialization Module . 35

3.4.1 Feature Extraction . 35

3.4.2 Tile Hypothesis Maps 38

3.4.3 Tile Feature Extraction 40

3.4.4 Computing Matching Cost 41

3.4.5 Initialization of tile hypotheses 42

3.5 Propagation Phase . 43

3.5.1 Warping . 43

3.5.2 Computing Matching Cost 45

3.5.3 Tile Updates . 45

3.5.4 Final Tile Updates . 48

3.6 Loss Function . 48

3.6.1 Initialization Loss . 49

3.6.2 Propagation Loss . 51

4 Implementation 54

4.1 Data Preparation . 54

4.1.1 Custom SceneFlow Dataset Implementation 55

4.1.2 Data Augmentation 56

4.2 Feature Extraction . 58

4.3 Initialization Module . 64

CONTENTS iv

4.3.1 Tile Feature Extraction 64

4.3.2 Matching Cost Computation 64

4.3.3 Tile Hypothesis Initialization 66

4.4 Propagation Module . 67

4.4.1 Warping and Matching Cost Calculation 67

4.4.2 Tile Updates . 68

4.4.3 Final Tile Updates . 70

4.5 Loss Function . 71

4.6 Image Inpainting . 72

4.7 Plane Fitting . 74

4.8 Training Details . 76

5 Evaluation 78

5.1 Inpainting Results . 78

5.2 Training Results . 79

5.3 Performance Results . 80

5.3.1 Peak Signal-To-Noise Ratio 80

5.3.2 Percentage of Erroneous Pixels 82

5.3.3 Root-Mean-Square Error 83

5.3.4 End-Point Error . 85

5.4 Disparity Map and Slant Map Results 86

5.5 Discussion . 86

6 Conclusion and Future Work 95

6.1 Future Work . 95

List of Figures

1.1 Project North Star head-mounted AR display 2

2.1 A left and right image sample from the SceneFlow dataset

[Mayer et al., 2016]. 7

2.2 A ground-truth disparity map (a) from the SceneFlow

FlyingThings3D dataset [Mayer et al., 2016] and its reference

image (b). The colors of the disparity map correlates to

different disparities and are based on the color map (c) from

OpenCV. 8

2.3 Using two cameras, we can calculate the depth of an object

by triangulating its position 12

2.4 Disparity maps computed by the SGM algorithm. (a) uses

the left image as the reference image, while (b) uses the right

as the reference image. 14

2.5 Fully-connected multi-layer perceptron 16

2.6 Low vs. high learning rate. By using a smaller learning rate,

the neural network slowly approaches the local minima.

With a high learning rate, the neural network jumps over the

local minima and never recovers. It diverges towards infinity. 17

2.7 Effects of different learning rates on training. Higher

learning rates leads to divergance. 18

2.8 Trends we can encounter during the training of a neural

network. 19

v

LIST OF FIGURES vi

2.9 Regression model that divides points into a red and blue side

using a regression line . 20

2.10 The sigmoid function along with its derivative. 22

2.11 The ReLU function along with its derivative. 22

2.12 RGB color channels of a 3×3 image 25

3.1 Camera and sensor rig utilized to collect data for the KITTI

2012 and 2015 datasets . 28

3.2 A stereo image pair taken from the SceneFlow FlyingTh-

ings3D dataset [Mayer et al., 2016] 29

3.3 Our stereo network pipeline 31

3.4 Old photo restored by image inpainting 32

3.5 Warped right image using the left image and its disparity map 33

3.6 Use of inpainting before the rest of the pipeline 34

3.7 Feature extraction and initialization of tile hypotheses 36

3.8 Visualization of CNN layer kernels. These are features a

CNN kernel picks up during training. 37

3.9 Higher-level features extracted by deep CNN kernels. From

Lee et al. (2009) . 37

3.10 A 6 × 4 feature map and its corresponding tile features after

extracting 2 × 2 tiles . 38

3.11 Ground-truth slant gradient map of an image in SceneFlow . 39

3.12 2×2 tile features extracted from the 2x downscaled feature

map, and the areas the tiles cover in the original feature map 41

3.13 A block containing weighted layers to the left, a ResNet

block to the right, [Zhang et al., 2020] 46

3.14 Propagation with single tile hypothesis map 49

LIST OF FIGURES vii

3.15 Tile update with multiple tile hypothesis maps 50

4.1 Example of transposed convolution 61

4.2 A 64 × 64 tile. 71

4.3 Results of model with error in propagation loss implement-

ation. 72

4.4 Architecture of image inpainting model [Liu et al., 2018, p. 18] 73

4.5 Warped image . 74

4.6 A plane fitted to a 9×9 point cloud using PyTorch’s least

squares algorithm. The plane isn’t exactly in the correct

position, but we only care about the orientation of the plane,

which seems correct. 77

5.1 Results of inpainting network. 79

5.2 Training and validation loss curves without disparity maps

as input. 80

5.3 Training and validation loss curves with disparity maps as

input. 81

5.4 peak signal-to-noise ratio . 82

5.5 Percentage of pixels with an end-point error greater than 1

pixel . 83

5.6 Percentage of pixels with an end-point error greater than 3

pixel . 84

5.7 Root-mean-square error . 84

5.8 End-point error . 85

5.9 Disparity maps computed by the SGM algorithm. (a) uses

the left image as the reference image, while (b) uses the right

as the reference image. 88

5.10 Final disparity map predictions 89

LIST OF FIGURES viii

5.11 Final slant map predictions 90

5.12 Results after a single epoch, comparing with and without

disparity maps as input. 91

5.13 Results after 39 epochs . 91

5.14 Results after 77 epochs . 92

5.15 Results after 115 epochs . 92

5.16 Slants after first epoch. 93

5.17 Slants after 39 epochs. 93

5.18 Slants after 77 epochs. 94

5.19 Slants after 115 epochs. 94

List of Tables

4.1 Arcitecture of feature extraction U-net. 63

4.2 Arcitechture of a single residual block. 69

4.3 Architecture of tile update network using single tile hypo-

thesis map as input. 69

4.4 Architecture of residual block using two tile hypothesis

maps as input. Note the difference in the number of input

and output channels. 70

4.5 Architecture of residual blocks used for last tile update layers. 71

ix

Preface

First of all, I want to thank my supervisor Carsten Griwodz for his

continued guidance and support throughout the creation of my thesis. I’ve

really appreciated and learned a lot from our weekly meetings.

I also want to thank the University Centre for Information Technology at

the University Of Oslo for letting me use their machine learning cluster and

Simula Research Laboratory for letting me use their eX3 cluster. Without

access to these resources, this thesis might not have been possible.

Lastly, I want to thank my family for their continued support and words of

encouragement throughout my entire course of study.

x

Chapter 1

Introduction

Computer vision is one of the fastest-growing fields in computer sci-

ence due to an increasingly more technological and autonomous world.

Everything from the cameras in our phones, to modern cars, uses some sort

of computer vision software to either track or detect movement, identify

objects, etc. Because of this, the need for efficient computer vision soft-

ware has drastically increased. In this thesis we will take a closer look at

the importance of computer vision, more specifically we will look at the

importance of depth estimation in computer vision. We will carry out this

thesis with mixed reality and augmented reality in mind and will explore

the need for accurate depth perception from this perspective.

Mixed reality (MR) is the merging of virtual elements into the real world

in a way that feels natural for the user. Today it is commonly used in

movie making where special effects transform sets into big open worlds,

also referred to as “movie CGI”. Another application is in Augmented

Reality (AR) where virtual elements are placed into the user’s field of

view through an AR display on devices like smartphones or head-mounted

displays (HMD) like the one in figure 1.1. HMDs, unlike smartphones,

are worn on the user’s head, freeing the user’s hands for interaction with

the virtual objects. This is useful for simulation and training purposes

where interaction between the user and virtual objects may be necessary.

However, this entails that the head-mounted display is accurate enough to

distinguish between physical objects and virtual objects scattered around

in the same scene, which unfortunately isn’t the case with today’s AR

technology.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Project North Star head-mounted AR display

The AR devices of today (both smartphones and HMDs) are capable of

displaying virtual objects in approximately their correct positions in the

physical world, even when the devices are moved around (although it is

still far from perfect). Their main shortcoming is the ability to represent

the dimension of depth, that is, determining if a virtual object should be

obscured by a physical object in the real world. This is one of the main

problems preventing us from utilizing the full potential of AR as a method

for creating realistic models, for instance, used for training purposes (e.g.,

training simulators) or where 3D visualization is essential (e.g., the correct

model of human anatomy). The main objective of this thesis is to explore

how this problem can be solved by trying to build upon current state-of-

the-art computer depth estimation solutions.

More specifically, we will explore stereo depth estimation solutions using

machine learning. Stereo depth estimation is a method where a computer

uses two front-facing cameras shifted horizontally apart from each other,

to estimate depth. This is useful on head-mounted AR displays as the

cameras can be mounted on top of them like shown in figure 1.1, and give

the display accurate real-time depth information. The idea behind using

a stereo camera setup to estimate depth comes from the human ability to

estimate depth using our eyes. With a pair of front-facing eyes, we can pick

up on subtle differences, or the disparity in the positions of objects between

the eyes’ point-of-view. This difference is interpreted by our brain as depth.

This is why we can lose our sense of depth when covering one of our eyes.

The bigger the disparity is between the left and right eye, the closer the

object is. This is easy to verify by holding out a finger in front of our face,

and quickly opening and closing the left and right eyes in an alternating

CHAPTER 1. INTRODUCTION 3

fashion. When moving the finger further away, we can see less disparity

between the left and right eye.

Today there are numerous ways of approaching stereo depth estimation in

computer vision. The traditional approach is to use algorithms based on

single-pixel matching or block-matching (larger areas of pixels, i.e., blocks

of pixels) between left and right image pairs, but in recent years, there have

been breakthroughs in the machine learning field allowing for ML models

to learn and predict accurate depth with the use of one (monocular depth),

two (stereo depth) or even more cameras (multi-view depth). In this thesis,

we will combine the traditional approach with the newer machine learning

approach to find out if there is any benefit to combining the two. In the

next section, we outline our research questions for our thesis, along with

the research method we employ to answer them.

1.1 Research Question

We have the following questions we want to answer:

1. Does block-matching help in any way during the training of a stereo

depth estimation model?

2. Will block-matching improve the results of a model vs. a model

without the use of block-matching?

We believe that using block-matching to extract depth information from

stereo images as a preliminary step to training a neural network, gives the

network enough information about the scene to first of all reduce training

time, while secondly improving the accuracy of the network. In other

words, we want to test if block-matching has any positive impact on a

stereo depth estimation neural network.

In this thesis, we mainly focus on implementing a neural network that

estimates depth from a combination of stereo images and disparity maps

computed by a block-matching algorithm. There are plenty of ways of

estimating depth, for example by using single images (called monocular

depth estimation), or multiple images from different angles (called multi-

view depth estimation). Both of these methods fall outside the scope of this

thesis because we are only interested in stereo depth estimation. There are

CHAPTER 1. INTRODUCTION 4

also numerous stereo depth estimation algorithms that do not use machine

learning, but these also falls outside this thesis’ scope.

1.2 Research Method

Due to the scope of computer science, there are disagreements among

computer scientists on if computer science should be a part of mathem-

atics, engineering, or natural sciences. This disagreement has led to dif-

ferent paradigms with different practices. Eden (2007), introduces three

paradigms: “the rationalist paradigm”, “the technocratic paradigm” and

“the scientific paradigm”. Each of them has its roots in mathematics, engin-

eering, and natural sciences respectively. Alternatively, Comer et al. (1989)

proposes three different paradigms, but also these are rooted in the same

three categories. In our thesis, we choose between the research paradigms

proposed in Comer et al. (1989). They define each paradigm as follows

[Comer et al., 1989, p. 10]:

Theory

The theory paradigm is rooted in mathematics and consists of four steps:

1. Characterize objects of study (define)

2. Hypothesize possible relationships among them (theorem)

3. Determine whether the relationships are true (proof)

4. Interpret results

Abstraction

The abstraction paradigm is rooted in the experimental scientific method

and consists of four stages:

1. Form a hypothesis

2. Construct a model and make a prediction

3. Design an experiment and collect data

4. Analyze results

CHAPTER 1. INTRODUCTION 5

Design

The final paradigm, design, is rooted in engineering and does also consist

of four steps:

1. State requirements

2. State specifications

3. Design and implement the system

4. Test the system

In our thesis, we plan on using the design paradigm. Our thesis involves

machine learning on the topic of computer vision and with this comes the

implementation and testing of a machine learning model where we have

clear-cut requirements and specifications. With this in mind, the design

paradigm seems the most convenient and straightforward paradigm to use

out of the three listed above. We could also argue for using the abstraction

paradigm, as a neural network is in all essence a model. We use “model”

and “neural network” interchangeably throughout this thesis. Machine

learning is also experimental by nature as there are many parameters that

can be tweaked to completely change the results of a model, making the

need to experiment a fundamental and crucial part. With that being said,

we stick to the design paradigm as it is the most familiar and easy to adhere

to out of the three paradigms listed above.

1.3 Thesis Outline

This thesis consists of six chapters, starting with the introduction. In the

current chapter, we’ve presented the motivation and scope for the thesis,

as well as our research question and paradigm. This chapter is followed

by a background section where we lay the foundation for the rest of the

thesis by explaining the core concepts and technologies we will use, along

with related work done on the topic of stereo depth estimation. In the

third chapter, we present our design in detail, explaining each part we plan

to implement. The design is followed by the implementation where we

go into detail about how we implemented the design. In the evaluation

chapter, we present our results and discuss them. We will end the thesis

with a conclusion where we summarize what we did, and how it went, as

well as propose future work related to this thesis.

Chapter 2

Background

Computer vision (CV) is a field in computing where computers extract

visual information from cameras or similar instruments to get an under-

standing of their surroundings. Naturally, computer vision has many

use-cases, from biometric face recognition software in a phone, to CGI in

movies, and self-driving (autonomous) cars. Especially autonomous cars

rely on accurate and fast algorithms to prevent fatal accidents.

In the following sections, we will go through the prerequisite knowledge

needed for later parts of this thesis. In the first part, we explain the basics

of stereo depth estimation with the use of stereo matching. The second part

introduces core machine learning concepts, such as training and validation,

model generalization, and convolutional neural networks. Lastly, we point

to related work done on stereo depth estimation.

2.1 Block-Matching

Throughout the introduction of this thesis, we have stated that we will use

block-matching in combination with machine learning to estimate depth

in stereo images. In this section, we shall explain block-matching, or

the more general case of stereo matching. A stereo matching algorithm

matches similar pixels, or blocks of pixels, between two images. In our

case, we match blocks of pixels between a left-right image pair. The left and

right images are displaced horizontally, causing the pixels to be displaced

between them simultaneously. Figure 2.1 shows the left and right image

6

CHAPTER 2. BACKGROUND 7

(a) Left image (b) Right image

Figure 2.1: A left and right image sample from the SceneFlow dataset

[Mayer et al., 2016].

of a data sample from the SceneFlow dataset [Mayer et al., 2016]. Notice

how the objects in the scene have shifted slightly between the left and right

image. This displacement in pixels is called the disparity. With the disparity,

we can calculate a real depth value for a point using epipolar geometry,

which is further explained in section 2.2. A stereo matching algorithm

either computes the disparity for all pixels, or the disparity for a subset of

pixels. The former is called dense stereo matching, while the latter is called

sparse stereo matching. In this thesis, we will only focus on dense stereo

matching, while sparse stereo matching falls outside this thesis’ scope.

Dense stereo matching algorithms choose one image as the reference image.

For every pixel in the reference image, the algorithm searches for the

corresponding pixel in the other image. This also the case for blocks of

pixels. This search is done along the scan lines which specifies in what

direction the algorithm will search, or scan, for matching pixels. The scan

lines can go in all four cardinal directions as well as diagonally. In stereo

matching algorithms, these scan lines usually go in the horizontal direction,

as they assume that any pixel can only be shifted in that direction. Due

to this assumption, most stereo matching algorithms require all left-right

image pairs to be coplanar, i.e., the images are only displaced horizontally.

This is either done by calibrating both cameras to be coplanar, or through

software by transforming each pixel in both images onto the same image

plane. This is called rectification, something we will not go into detail on

in this thesis. The disparity of each pixel is stored in a disparity map. The

disparity map is a map with the same height and width as the reference

image and contains the disparity of each pixel. Because the disparity

map is represented like this, we can visualize disparity maps as colored

CHAPTER 2. BACKGROUND 8

(a) Disparity map (b) Reference image (left image)

(c) Viridis colormap

Figure 2.2: A ground-truth disparity map (a) from the SceneFlow FlyingTh-

ings3D dataset [Mayer et al., 2016] and its reference image (b). The colors

of the disparity map correlates to different disparities and are based on the

color map (c) from OpenCV.

images. Figure 2.2 illustrates a disparity map, where each pixel contains the

disparity value of each pixel in the reference image. The pixel brightness

corresponds to how far a pixel has shifted between the left and right image.

A brighter pixel corresponds to a bigger disparity value, and thus a bigger

shift between the left and right image.

Scharstein and Szeliski (2002) has proposed a taxonomy of stereo matching

algorithms based on similarities observed in most algorithms. In the paper,

they detail four steps that stereo matching algorithms perform [Scharstein

and Szeliski, 2002, p. 10]:

1. Matching cost computation

2. Cost aggregation

3. Disparity computation/optimization

4. Disparity refinement

Depending on the algorithm, these steps are not always done in this specific

order, and some of the steps may not be needed at all. Matching cost

computation is based on a matching criterion. This criterion is a function

that computes the cost, or the similarity, between pixels. The higher

the matching cost is, the less similar the pixels are. One of the most

common matching criteria for block-matching algorithms is the sum of
absolute differences (SAD) between blocks of pixels. It computes the cost

CHAPTER 2. BACKGROUND 9

between two blocks of pixels by calculating the absolute value between

each corresponding pixel in both blocks, and adding them together:

SAD(vL
x,y, vR

x,y) = Σx,y
∣∣∣vL

x,y − vR
x,y

∣∣∣
1

Here, vL
x,y and vR

x,y are the values of the pixels (or pixel intensities) at the

same position (x, y) in the left and right blocks. Blocks are usually matched

within a certain disparity range. The disparity range determines the number

of pixels in the search direction it looks for a matching block. The range

is usually between 0 and a maximum disparity D. When the costs of all

blocks within the disparity range have been computed, the costs form a

disparity space image (DSI) [Scharstein and Szeliski, 2002, p. 9]. The DSI is

the representation of all matching costs for all pixels within the disparity

range. In this thesis, we refer to the DSI as the cost volume, because it

represents a volume (three dimensions) of cost values at all pixels (x, y) for

all disparities d in the disparity range d ∈ [0, D]. We can think of the DSI,

or cost volume, as a three-dimensional matrix with size (D, H, W), where

D is the maximum disparity and H and W are the height and width of the

reference image.

Depending on the type of algorithm, the next step is the aggregation of

costs over the cost volume. Cost aggregation usually only happens in

local stereo matching algorithms. A local algorithm is different from a

global algorithm in the sense that local algorithms bases themselves on local

windows, small areas of the cost volume. Global algorithms don’t usually

perform cost aggregation, as they instead rely on minimizing a global

cost function to compute disparities [Scharstein and Szeliski, 2002, p. 10].

This makes the global stereo matching algorithms more computationally

expensive than local algorithms, although more accurate. Local algorithms

are usually easier to design and implement as well. The simplest form

of cost aggregation is either by summing or averaging the matching costs

over local windows in the cost volume. These windows may be two-

dimensional, i.e., small regions of size N×M in the height and width

dimension at a fixed disparity d, or three-dimensional by extending the

N×M window into the disparity dimension C×N×M [Scharstein and

Szeliski, 2002, p. 11]. There are also more complex and robust ways of

aggregating the matching costs, but we will not go into further details on

these methods.

CHAPTER 2. BACKGROUND 10

Disparity computation is the step of computing the disparity values based

on the aggregated costs (for local algorithms), or by minimizing a cost

function (for global algorithms). As explained in Scharstein and Szeliski

(2002), disparity computation for local stereo matching algorithms is trivial.

We perform a winner-takes-all optimization over the disparity space and

choose the disparities that lead to the lowest costs. This can be done

by applying an argmin function on the matching cost volume over the

disparity dimension. The function returns the indices in the disparity

dimension that has the lowest cost. In global stereo matching algorithms,

the objective is to minimize a global cost function over the cost volume to

estimate a disparity for each pixel. We will not go into detail on this and

instead refer to Scharstein and Szeliski (2002) for further reading. The final

step of a stereo matching algorithm is to refine the disparities estimated

in the previous step. Disparity refinement is performed to “clean up” the

estimated disparity map by removing wrongful disparity estimates, for

example disparities in occluded regions (this is explained in section 2.3). It

is also a way to estimate sub-pixel disparities, as the disparity computation

step usually only computes the integer disparities for each pixel [Scharstein

and Szeliski, 2002, p. 13].

The stereo matching algorithm we will use in this thesis is the semi-global

matching (SGM) algorithm proposed in Hirschmuller (2008). We shall not

go into great detail on the implementation of the algorithm but instead

give a short overview. Following the four steps outlined in Scharstein

and Szeliski (2002), Hirschmuller (2008) proposes a mutual information

(MI) based matching criterion to compute the cost volume. MI, as its

name suggests, is information present in two random variables. In the

SGM algorithm’s case, these variables are two pixels. The cost aggregation

step is performed as an approximation of a global energy function defined

in the paper [Hirschmuller, 2008, p. 330]. The disparity computation

is performed as a simple winner-takes-all algorithm over the disparity

dimension. Disparity refinement is also performed to refine the estimated

disparities. For a more detailed explanation of the SGM algorithm, we refer

to the aforementioned paper.

We will use the SGM implementation by the open-source computer

vision library OpenCV1, called StereoSGBM. The SGM implementation

by Hirschmuller, is originally a single-pixel stereo matching algorithm.

1https://opencv.org/

https://opencv.org/

CHAPTER 2. BACKGROUND 11

OpenCV’s StereoSGBM implementation is a modified version of the original

implementation that implements block-matching. The differences in

OpenCV’s implementation, and the original implementation is outlined

in the OpenCV documentation [OpenCV, 2021]. The main difference is

the implementation of block-matching instead of single pixel matching.

It also uses a different matching cost criterion than the one proposed in

Hirschmuller (2008).

2.2 Epipolar Geometry

To see how the disparity value of a pixel can be used to infer depth in a

scene, we need to know more about the geometry of a stereo camera setup.

We refer to figure 2.3 below which is a top-down view of a stereo camera

setup where the thick black lines are the camera lenses. Given a point P in

a scene, we can estimate its depth Z if we know the baseline (the distance

between the cameras’ sensors), the focal length (distance from the sensors

to the lenses), and the disparity value of the point. In figure 2.3 the camera

sensors are denoted as S and S′ for the left and right camera respectively.

The focal lengths are the same for both cameras and are denoted as f . The

baseline B is considered as one of the sides in a triangle closed off by the

line from each sensor in the cameras, to the point P. These lines are called

epipolar lines and the enclosed triangle is called the epipolar plane. Because of

the different point-of-views between the left and right camera, P is located

at different locations in each image. These are denoted as X and X′. Note

that we are only considering the horizontal direction, as we assume the

cameras to be calibrated to be coplanar.

In figure 2.3 we can create three different triangles, two smaller triangles at

each camera with heights f , and a triangle enclosed in the epipolar plane.

By dividing the epipolar plane in half with the line Z, we can prove that

the small triangles are geometrically similar to the larger triangles simply

by matching angles. Because of this similarity, the combination of the two

smaller triangles is geometrically similar to the epipolar plane, and thus

the ratios between sides can be expressed as:

B
Z

=
X + X′

f

CHAPTER 2. BACKGROUND 12

Figure 2.3: Using two cameras, we can calculate the depth of an object by

triangulating its position

CHAPTER 2. BACKGROUND 13

As we know, X + X′ is the displacement of the point P between the left and

right image, or the disparity value of the point P. If we replace the term

with d and solve for Z, we get:

B
Z

=
d
f

Z =
B · f

d

With the above equation, we can now get a real depth measure of a pixel

by only needing to know the disparity value, baseline and focal length.

2.3 Problems With Stereo Matching

In the recent decade, the use of deep learning has become more and more

prominent in stereo depth estimation. This is because of the inherent

problems classic stereo matching algorithms suffer from. There are

multiple problems related to stereo matching that machine learning solves.

The biggest problem is occluded areas. With a stereo camera setup like we

have on our head-mounted display (figure 1.1), we capture a scene from

slightly different point-of-views. These cameras pick up mostly the same

points in a scene, but there are some areas one camera sees, that the other

camera doesn’t. These are occluded areas. The most obvious examples

of this are the leftmost side of the left camera and the rightmost side of

the right camera. Using the left camera as a reference, it is impossible to

find all pixels that are outside the view of the right camera. In figure 2.1,

we can see more of the object in the lower-left corner in the left image,

which isn’t there in the right image. These pixels are impossible for stereo

matching algorithms to calculate the disparity for. This is also the case

when comparing the rightmost side of the right image, with the rightmost

side of the left image in figure 2.1. To differentiate the between different

types of occlusions, we call these leftmost and rightmost occlusions.

The other type of occluded areas are areas in one image that are covered

by objects in the other image. Again, we can observe this by looking at the

areas to the left of the large gray box in figure 2.1 (a) with the same area in

2.1 (b). We can clearly see that the right camera has no information about

CHAPTER 2. BACKGROUND 14

(a) Left disparity map (b) Right disparity map

Figure 2.4: Disparity maps computed by the SGM algorithm. (a) uses the

left image as the reference image, while (b) uses the right as the reference

image.

what is behind the gray box, while the left camera has. This means it is

impossible to calculate the disparities in this area. A final problem of stereo

matching algorithms is large texture-less areas. These areas are hard for

algorithms to understand because all pixels have the same pixel intensity.

The algorithm is therefore uncertain about the disparities of these pixels.

This results in speckled areas, areas with spurious disparities. In figure 2.4

we have computed the disparity map of the left and right image from figure

2.1. Here we can clearly see examples of the problems we’ve stated. Note

the leftmost and rightmost occlusions in (a) and (b). We used the left image

as a reference in (a) and the right image as a reference in (b). Also note

the occluded areas to the right of the foreground objects in figure 2.4 (b)

as an example of the other type of occlusion. Lastly, we can observe the

overwhelming amount of speckles in the top-right of the disparity maps,

as well as on the barrel in the foreground. These are most likely errors due

to the problems texture-less areas impose.

2.4 Machine Learning

In this section, we will explain the essential machine learning concepts that

are needed as a prerequisite for the rest of the thesis. First of all, we touch

on the training of neural networks before we introduce the concepts of loss

and activation functions. We will end this section with an introduction to

convolutional neural networks, which are the main building block in any

neural network that has to do with computer vision.

CHAPTER 2. BACKGROUND 15

2.4.1 Training a Neural Network

We begin by explaining the most important step in any neural network,

the training. The training phase of neural networks comprises two parts,

forward propagation, and backpropagation. We refer to figure 2.5 to

explain these concepts. It shows a multi-layer perceptron, what we

traditionally think of when thinking of machine learning and artificial

intelligence. It is a simple directed, acyclic graph (DAG) where the data

flow goes from the input layer, through the hidden layers, and ends in the

output layer. In our example, we have three input neurons and two output

neurons, but in reality, the number of neurons is usually bigger. Each

neuron in the network is represented as a number that is determined by

the neurons from the layer before, and the weights connecting them. Each

edge in the graph is a weight connecting two neurons and is initialized to

random values, usually between 0 and 1. In the forward propagation, data

flows through the graph, from the input neurons to the output neurons

that make a prediction based on the input. The output layer can be

interpreted differently depending on the application of the neural network.

In classification networks, we have an output neuron per class that outputs

a probability of the input being of that class. Lets say the two neurons in the

output layer in figure 2.5 is “cat” and “dog”. If the “cat” node has a value

of 0.9, while the “dog” node has a value of 0.4, the network is 90% sure the

input was a cat, while 40% sure it was a dog. We, therefore, pick “cat” as

the prediction since the network was more confident the input depicted a

cat, than a dog. When the network has made a prediction, the weights of

the network need to be updated based on how correct the prediction was.

This is done during the backpropagation. If the network mislabeled the

input, it may decrease the weights that lead to that prediction. If it labeled

the input correctly, it may increase the weights instead. The combination of

forward propagation and backpropagation over multiple iterations, called

epochs, will create an increasingly accurate neural network.

2.4.2 Loss Functions

Essentially all neural network training boils down to minimizing a function

called the loss function. The loss function takes the predicted labels from

the neural network and compares them to the true labels, which we call the

CHAPTER 2. BACKGROUND 16

Hidden layersInput layer Output layer

Figure 2.5: Fully-connected multi-layer perceptron

ground-truth in this thesis. The loss, or cost, is calculated and is a measure

of how good the predicted values are versus the ground-truth values. A

higher loss implies a worse prediction. To minimize the loss we use an

optimizer. The optimizer determines how the loss function gets minimized

and there are multiple optimizers to choose from, depending on the neural

network and its use-cases. The choice of loss function and optimizer has a

big impact on the neural network. A bad choice of loss function may lead

to the optimizer not optimizing the correct weights, while a bad choice of

optimizer may lead to poor optimization of the weights. We can think of

the relation between the loss function and the optimizer like this: the loss

function determines what weights should be updated, while the optimizer

determines how these weights should be updated.

To control the weight updates during the backpropagation, we use a

parameter called learning rate. This is the rate at which the weights of a

network are updated. By increasing or decreasing the learning rate, we

have more control over the training of the network. Usually, the learning

rate is very small (in the magnitudes ~10−2 and ~10−3) to prevent the

weights from exponentially increasing or decreasing, or exploding as it

CHAPTER 2. BACKGROUND 17

(a) Small learning rate (b) Big learning rate

Figure 2.6: Low vs. high learning rate. By using a smaller learning rate, the

neural network slowly approaches the local minima. With a high learning

rate, the neural network jumps over the local minima and never recovers.

It diverges towards infinity.

is often called. This causes the network to diverge away from the local
minima, the point we would like the network to end up in. In the local

minima, the neural network is at its best. We can think of the learning rate

as the size of the step towards the local minima. The illustrations in figure

2.6 shows the effect of using a small versus a big learning rate. Starting

at the green point with a small learning rate, the neural network slowly

approaches the local minima over time. With a bigger learning rate, it

causes the neural network to jump over the local minima, from there on

it quickly diverges from the local minima jumping back and forth, never

reaching it. It is therefore a necessity to use a small enough learning rate to

keep the neural network from diverging. However, there is also a reason

for not keeping the learning rate too small. With too small of a learning

rate, the convergence towards the local minima becomes longer, increasing

training time. Figure 2.7 illustrates the loss curves using different learning

rates. Ideally, we want a learning rate that finds the local minima as fast as

possible without diverging.

2.4.3 Model Generalization

Although a network may train well and increase its accuracy during

training, we can not be sure if this accuracy holds up to unseen data,

i.e., data that the network hasn’t learned before. We want our neural

network to generalize well to unseen data. After all, a neural network that

is only accurate on the training dataset and inaccurate on everything else

CHAPTER 2. BACKGROUND 18

Figure 2.7: Effects of different learning rates on training. Higher learning

rates leads to divergance.

Source: https://towardsdatascience.com/
understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10

is useless. Generalization is the goal of all neural network training, and

we, therefore, need a way to see if our model generalizes well. To do

this, we can split the dataset into two parts, a training split, which is the

part of the dataset that we use for training, and a validation split. The

validation split is used to validate our neural network against unseen data,

to check if the training has any effect on it. It is therefore important to

not do backpropagation during the validation phase, as the network shall

not have any prior knowledge about the validation set. To check if the

model generalizes well, we can plot the mean loss of all dataset samples as

a function of epochs for both the training and validation split. This leads

to two loss curves, one for the training set and one for the validation set.

Ideally, we want both curves to converge and perfectly overlap each other.

This would mean the neural network is as good on unseen data, as it is on

the training set. Typically we want the loss curves to look something like

the ones in figure 2.8 (a).

We can diagnose a lot about a model by looking at the mean loss over

epochs. Two very important trends to look out for is overfitting and

underfitting. Overfitting is when the validation loss is increasing, while the

training loss is decreasing, as illustrated in figure 2.8 (b). This is a sign

https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10

CHAPTER 2. BACKGROUND 19

(a) Good fitting model

(b) Overfitting model

(c) Underfitting model

Figure 2.8: Trends we can encounter during the training of a neural

network.

Source: https://machinelearningmastery.com/
learning-curves-for-diagnosing-machine-learning-model-performance/

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

CHAPTER 2. BACKGROUND 20

that the neural network is overfitting to the training dataset by learning

features that are very common in the training set, but not common in the

validation set. This causes the network to become biased towards these

features since they result in the smallest loss, and disregard more general

features that might cause a slightly bigger loss. Let’s take figure 2.9 as an

example. It shows a group of points in blue and red colors. We want to train

a neural network that can calculate a line that divides these points into a

blue side and a red side. In this case, the green line fits better than the black

line, as it correctly divides all red points to one side and the blue points to

the other. However, if we introduce a new set of points the network has

never seen before, the green line would most definitely fail as it is way too

specialized towards the specific points shown in figure 2.9. On the contrary,

the black line would be more likely to fit a different set of points, as it is

more generalized. In this case, the green line is overfitted towards that

specific group of points and it shows why generalization is so important.

To prevent overfitting, we usually need to reduce the complexity of our

network. This means reducing the number of weights, forcing the network

to learn only the most important features. We can also use other measures

such as dropout layers. Dropout layers have a random chance of dropping

neurons in a layer (i.e., sets them to 0), features that if not for the dropout

layers the model could become biased towards, and thus overfit on them.

Figure 2.9: Regression model that divides points into a red and blue side

using a regression line

Source: https://en.wikipedia.org/wiki/Overfitting

https://en.wikipedia.org/wiki/Overfitting

CHAPTER 2. BACKGROUND 21

Underfitting is the opposite of overfitting. In this scenario, the network

doesn’t learn enough information from the training set. This results in

models with poor performance. We can identify underfitting with loss

curves that converge slowly and fast (or not converging at all) illustrated

in figure 2.8 (c). The cause of underfitting is usually due to the network

not learning enough information about the dataset. This can be remedied

by increasing the size of the dataset, or increasing the complexity of the

network, i.e., increasing the number of learnable weights.

2.4.4 Activation Functions

A single layer in a neural network is in itself a linear function on the form

f (x) = Wx + b where x is the input to the layer f with weights W and

bias b. More specifically, this is an affine function because the function

does not intercept the origin due to the constant b. A neural network

containing multiple such layers is therefore an affine function in itself

since the combination of multiple affine functions still results in an affine

function. A neural network with only linear layers will always assume that

a change in input will linearly change the output. This assumption is in

most cases wrong and hinders the learning of more complex features. If

the network only learns the linear relations it misses out on more complex

non-linear relations in the input. To introduce non-linearity to a neural

network, we employ what is called an activation function. This function is

applied to most if not all layers in a neural network to break the linear

relation between input and output. They are called activation functions

since they determine what neurons in a layer should activate. With an

activation function ψ(·), we can turn the affine, linear layer f into a non-

linear layer ψ(f).

Another advantage of activation functions is the ability to force neurons to

be within a certain range. Take the logistic sigmoid activation function as

an example:

σ(x) =
1

1 + e−x

Figure 2.10 (a) shows the plot of said function. As we can observe, any

input x that is passed through the sigmoid function is squeezed between

CHAPTER 2. BACKGROUND 22

(a) Sigmoid function (b) Derivative of sigmoid function

Figure 2.10: The sigmoid function along with its derivative.

Source: https://d2l.ai/chapter_multilayer-perceptrons/mlp.html

zero and one. This is useful in a classification network, where the output

labels should be a probability in this range. Other activation functions,

functions similarly, like the hyperbolic tangent, which transforms the input

to the range -1 to 1. The most popular activation function of today

because of its simplicity and computational efficiency is the rectified linear

unit or ReLU. It simply deactivates all neurons with values less than

zero. Every positive number stays the same. See figure 2.11 (a). The

advantage of the ReLU function is that the derivative of the function is

pretty straightforward:

∂

∂x
ReLU‘(x) =

0, x <= 0

1, x > 0

With its simple derivative, it addresses the vanishing gradients problem. The

(a) ReLU function (b) Derivative of ReLU function

Figure 2.11: The ReLU function along with its derivative.

Source: https://d2l.ai/chapter_multilayer-perceptrons/mlp.html

https://d2l.ai/chapter_multilayer-perceptrons/mlp.html
https://d2l.ai/chapter_multilayer-perceptrons/mlp.html

CHAPTER 2. BACKGROUND 23

problem of vanishing gradients is prominent in deep neural networks with

many layers. With certain activation functions that squeeze the input into

small ranges, like the sigmoid and tanh functions, the derivative of large

values is very small. As illustrated in figure 2.10 (b), very small or large

values of x cause very small gradients, or changes to the weights. This can

prevent the neural network from learning entirely.

In this section, we’ve mainly focused on multi-layer perceptrons, but

everything mentioned in the previous sections can be applied to other

types of neural networks as well, like convolutional and recurrent neural

networks.

2.4.5 Convolutional Neural Networks

Multi-layer perceptrons are suboptimal for image processing as it doesn’t

provide any spatial context about an image. In this thesis, we will use

a convolutional neural network (CNN), a network specifically for image

processing. The main building block of a CNN is the convolutional layer.

These layers use a kernel, a window that slides, or convolves, across an

image and output the cross-correlation (sum of products) between the

kernel, and the area it covers into a feature map. Multiple parameters change

how a convolutional layer behaves: the kernel shape, stride, dilation, and

padding. The kernel shape is self-explanatory. It is the shape of the kernel,

both width and height. The kernel does not have to be square-shaped and

can have a different width and height. Kernels are usually small, around

3×3, 5×5, or 7×7, but can be bigger or smaller depending on their use-

cases. Note that the kernel shape directly influences the output shape, as a

3×3 kernel compress a 3×3 area into one pixel. The stride determines how

many pixels the kernel is shifted by after every cross-correlation operation.

With a stride of one, the kernel skips one pixel, meaning it overlaps with

the previous area. The dilation is the space in between each element in the

kernel. A dilation set to two means each element in the kernel is spaced out

with a single space in between. Lastly, the padding parameter is the only

parameter that doesn’t affect the kernel but affects the input image itself.

When padding is applied, a border of pixels is applied around the input

image, most commonly pixels with a value of zero. If we pad an image by

two, it adds a two-pixel wide border of zeros around the entire image. Note

that with padding set to two, it increases the spatial dimensions (width

CHAPTER 2. BACKGROUND 24

and height) of the input image by four, as the border is applied to all

outer edges. All these parameters have an impact on the output shape.

This shape can be calculated with the formula proposed by Dumoulin and

Visin in their guide on convolution arithmetic, ‘‘A guide to convolution

arithmetic for deep learning’’ [Dumoulin and Visin, 2016]:

o =

⌊
i + 2p − k − (k − 1)(d − 1)

s

⌋
+ 1

The output shape o is determined by the input shape i, the padding p, the

kernel size k in the same spatial dimension as i (if i is the width, then k
needs to be the width of the kernel), the dilation d and the stride s. It is

worth knowing this formula as it is important to know the output shapes

of convolutional layers when designing a CNN.

Another property of a convolutional layer is the number of input and

output channels. These properties determine what type of image is

accepted as input to a layer, and how the output of a layer looks. An

image usually comprises one or three channels and each channel contains

some information about each pixel in the image. A grayscale image only

contains one channel that specifies the luminosity of each pixel using a

byte to represent a value between 0 and 255. The higher the pixel value,

the brighter the pixel. On the other hand, an RGB image comprises three

channels, one channel for each of the red, green, and blue values of each

pixel. The mixing of these three channels results in the final color of

the pixel. See figure 2.12. There are also other ways of representing an

image with three channels, like the YUV image format which splits the

image into a luminance channel (Y) that represents the luminosity of each

pixel, and two chrominance channels (U and V, often referred to as Cb and

Cr) for information about the red and blue nuances of the image. The

RGB model is the most widely used. The reason the number of input

channels is important to a convolutional layer is that it applies the kernel

on each channel separately. The number of output channels specifies the

number of channels the output map has. For each output channel, the

convolutional layer creates a separate kernel, i.e., if a convolutional layer

has 16 output channels, 16 different kernels convolves over each input

channel. In this way, we can control the number of learnable parameters, or

weights, since each kernel is an N×M window of weights that is updated

during backpropagation.

CHAPTER 2. BACKGROUND 25

Figure 2.12: RGB color channels of a 3×3 image

Source:
https://www.kdnuggets.com/2019/12/convert-rgb-image-grayscale.html

2.5 Related Work

Stereo depth estimation through stereo matching and machine learning is

one of the most researched fields in computer vision, as the use-cases are

many. In this section, we discuss different machine learning approaches to

calculating stereo depth. Early approaches, like the MC-CNN architectures

proposed in Žbontar and Le Cun (2015a) and Žbontar and LeCun (2015b),

saw the use of convolutional neural networks to estimate the matching

cost of each pixel. With the inception of the large SceneFlow stereo vision

dataset [Mayer et al., 2016], deeper machine learning architectures were

possible. DispNet [Mayer et al., 2016], introduced in conjunction with

the SceneFlow dataset, was the first model to take advantage of the large

dataset. It is a simple autoencoder network comprising an encoder that

downsamples the left and right images into their most important features

and a decoder that upsamples the features to a dense disparity map.

It comprises 26 layers in total, making it far larger than the MC-CNN

architecture with its mere eight layers.

Chang and Chen (2018) introduces a pyramid stereo matching network

(PSMNet), an architecture that downsamples feature maps to different

resolutions using pooling layers and creates a cost volume from the

upsampled features. Gu et al. (2019) proposes the use of cascaded cost

volumes, cost volumes created from a feature pyramid (feature maps at

https://www.kdnuggets.com/2019/12/convert-rgb-image-grayscale.html

CHAPTER 2. BACKGROUND 26

different resolutions). Coarse-resolution disparity maps are predicted from

coarse-resolution cost volumes. The lower resolution disparity maps are

used to predict higher resolution disparity maps. Tankovich et al. (2020)

proposes HITNet, a hierarchical approach of iteratively refining tiles (small

sections of a disparity map) of increasing sizes. In this thesis, we will

implement the HITNet architecture to use in our experiments. The next

chapter goes more in-depth on the architecture of HITNet.

Chapter 3

Design

In the following chapter, we explain our design. We outline the complete

pipeline and go into detail about every part of it. Also, we quickly mention

datasets we plan on using during the training of our model, and give

reasons for why we use them.

3.1 Datasets

In this section, we explain the datasets we will use for our experiments,

and how we plan to use the data as input to the model. The data we feed

into our model will have the largest impact on performance, as bad input

data leads to bad results. That is why we need a good dataset to train

our model. Fortunately, there are multiple stereo vision datasets for our

purposes. The KITTI Vision Benchmark Suite [Geiger et al., 2012; Menze

and Geiger, 2015], the Middlebury stereo datasets [Scharstein et al., 2014],

and the SceneFlow datasets [Mayer et al., 2016] are all datasets used in

stereo vision. Each dataset has its advantages and disadvantages. Both the

KITTI and Middlebury datasets have real-world data, acquired by different

means. The KITTI datasets comprise two versions, a 2012 dataset, and

a 2015 dataset. Both datasets are collected by a camera and sensor rig

mounted to a car. See figure 3.1.

The Middlebury datasets comprise six different versions collected in the

timespan 2002 to 2021. In the latest dataset, Scharstein et al. (2014) acquired

its data from a mobile device on a robot arm. Both of these methods result

27

CHAPTER 3. DESIGN 28

Figure 3.1: Camera and sensor rig utilized to collect data for the KITTI 2012

and 2015 datasets

Source: http://www.cvlibs.net/datasets/kitti/setup.php

CHAPTER 3. DESIGN 29

Figure 3.2: A stereo image pair taken from the SceneFlow FlyingThings3D

dataset [Mayer et al., 2016]

in accurate datasets, but both suffer from the same problem: the dataset

size. When training a model, we want a large dataset with a large variety

of samples to ensure the model generalizes well. Both the KITTI and

Middlebury datasets only contain a handful of samples, which excludes

these datasets as viable training sets. The solution to this problem is to use

another larger dataset for the training of the model while using KITTI and

Middlebury as benchmarks for pretrained models. Lastly, both of these

datasets have leaderboards for different performance metrics. This makes

it easy to find state-of-the-art stereo vision models, and directly compare

the results of our model with theirs.

The dataset we will use for training is the SceneFlow dataset. This

dataset contains over 39000 synthetically generated stereo image pairs

with accompanying ground-truth images split into three different datasets:

Driving, Monkaa, and FlyingThings3D. We will use the latter as it comes pre-

split into a training and validation set. Combined, the FlyingThings3D

dataset contains around 25000 data samples (~21000 training samples

and ~4000 validation samples) making it quite suitable for training. The

disadvantage of using the SceneFlow dataset is that the data is synthetic.

This can lead to our model suffering a performance drop when switching

from the synthetic domain, the to real-world domain. This is not a concern

for us at the moment, but it is worth mentioning if we decide to use our

model for any real-world applications in the future.

3.2 The Pipeline

Before explaining our pipeline, we will explain our reasoning behind it.

The main reason for choosing our pipeline is our need for a state-of-

CHAPTER 3. DESIGN 30

the-art machine learning architecture that we can build upon using the

semi-global matching algorithm. The architecture of choice proposed by

Tankovich et al. (2020), is also one of the fastest performing models on the

KITTI benchmark leaderboards. This is important for applications in mixed

and augmented reality, where real-time performance is crucial for the best

possible user experience. Slow depth estimation leads to low framerates

and stuttering. The HITNet model has an inference time, or prediction

time, of 0.02 seconds which in theory means it can process around 50

frames per second. It achieves this performance due to its small number of

model parameters (weights and neurons) versus other approaches. Even

with the small number of parameters, HITNet still compares to the state-

of-the-art accuracy-wise. The combination of speed and accuracy is what

makes Tankovich et al. (2020) approach appealing to us.

The overview of the pipeline is illustrated in figure 3.3 and is the same

as proposed in Tankovich et al. (2020), with the slight difference where

we use semi-global matching to produce additional disparity maps based

on the left and the right image. We believe that passing additional depth

information as input to our model will result in a more accurate predicted

disparity map. Given the extra depth information, we expect the model to

converge faster, as the initial disparity maps will give the model a “head

start” on the training versus other stereo depth estimation networks that

only use left-right image pairs. The main parts of the HITNet pipeline,

which are also present in our pipeline, are an initialization module and a

propagation module. The upcoming sections is a detailed description of

the entire HITNet model, thus all subsequent sections (excluding section

3.3) is based on Tankovich et al.’s paper ‘‘HITNet: Hierarchical Iterative

Tile Refinement Network for Real-time Stereo Matching’’ [Tankovich et al.,

2020].

3.3 Image Inpainting

In this thesis, we will implement the pipeline as close as possible to the

original HITNet model, but we also want to explore the idea of only using

the left image along with its disparity map as input. This is to alleviate

some of the extra overhead caused by the SGM algorithm. However, with

this, we encounter a problem. In multiple parts of the pipeline, we need to

CHAPTER 3. DESIGN 31

concatenate concatenate

SGM

Initialization module

Propagation module

Figure 3.3: Our stereo network pipeline

CHAPTER 3. DESIGN 32

Figure 3.4: Old photo restored by image inpainting

Source: https://towardsdatascience.com/
how-to-perform-image-restoration-absolutely-dataset-free-d08da1a1e96d

compute the matching cost between pixels in feature maps extracted from

the left and right images. This means we need a way of representing the

right image. A way of doing this, without using the original right image, is

to warp the left image into the right image. This is relatively simple to do,

as we have the left image’s disparity map at our disposal. As explained in

chapter 2, the disparity of a pixel is the length a pixel has moved between

two images in the x-direction. We can therefore recreate the right image

from the left image by using the following relation

xr = xl − d

We can find any pixel (xr, y) in the right image by choosing pixel (xl − d, y)
in the left image. Note that we assume coplanarity between the images.

With a perfect disparity map, this can recreate a perfect representation

of the right image, but with any traditional block-matching algorithm

comes problems relating to occluded areas (discussed in section 2.3). Since

occlusion errors happen in obscured areas in the right image, there is no

way of warping these areas correctly. Our solution to this is to use image

inpainting.

Image inpainting is the process of restoring lost information in images with

https://towardsdatascience.com/how-to-perform-image-restoration-absolutely-dataset-free-d08da1a1e96d
https://towardsdatascience.com/how-to-perform-image-restoration-absolutely-dataset-free-d08da1a1e96d

CHAPTER 3. DESIGN 33

Figure 3.5: Warped right image using the left image and its disparity map

machine learning. It is used to restore old paintings and photographs that

have been worn out over time, and to remove objects from an image, filling

in the missing area with the background. Image inpainting in itself is a big

topic in computer science. Because it falls outside the scope of this thesis,

we shall not go into detail on how image inpainting works. We will instead

use an already established model that we think will do well in our use

case. Our image inpainting model of choice is proposed in Liu et al. (2018).

They propose a model that accurately fills in irregularly shaped holes, holes

that are commonly produced by the SGM algorithm. See figure 3.5 for the

warped left image.

In figure 3.6 we have visualized how the inpainting module will work in

our pipeline. We feed the left image along with its disparity map into

the inpainting network, and pass the output of the network as input to

HITNet (denoted by the three dots at the end of figure 3.6). We will train

the inpainting module separately and treat it like a black box, just like the

SGM algorithm. We will not go into further detail on the model architecture

and instead refer to the original paper Liu et al. (2018) for further reading.

If this approach works, we plan to integrate the image inpainting module

into our pipeline. The module will precede the initialization module in

figure 3.3. The initialization module will in that case take the left image

along with its disparity map, together with the recreated right image as

input.

CHAPTER 3. DESIGN 34

SGM

Inpainting module

Warp

...

Figure 3.6: Use of inpainting before the rest of the pipeline

CHAPTER 3. DESIGN 35

3.4 Initialization Module

This section will cover the first step in the pipeline, which is the extraction

of features from the right and left images, and the initialization of the tile

hypothesis maps at each resolution. Figure 3.7 is a detailed overview of this

module. The colored boxes represent parts of the module that are trainable,

while the circles represent other, non-trainable operations such as feature

matching.

3.4.1 Feature Extraction

We start by explaining what a feature is in the context of computer vision.

This will give a better understanding of the sections to come. Let us

take an image classification network as an example. In a classification

network, we want to classify the thing depicted in an image. Without any

prior knowledge, the network is useless as it will not know the difference

between a dog and a cat. To find these differences, the network needs to

know the features that differentiate them. A cat more likely has pointy

ears, as opposed to a dog that has more rounded ones. Cats have whiskers,

while dogs have large snouts. These are different features that the network

will learn to differentiate cats from dogs. Figure 3.8 shows the weights of

the kernels in a CNN layer. The layer has learned to find low-level features

such as edges. The deeper in the network a convolutional layer is, the more

complex features the kernels will learn. Figure 3.9 shows kernels deeper in

a convolutional neural network that extract higher-level face-like features,

like eyes and noses. The features extracted by CNN kernels are aggregated

into a single image called a feature map. The feature maps are usually passed

into other CNN layers to extract even more complex features.

The feature extraction network in the initialization module (colored green

in figure 3.7) will take the left and right images, along with their disparity

maps computed by the SGM algorithm, and extract features that are

relevant for depth estimation. We will use a single feature extraction

network and pass the left and right samples through it separately. This

leads the network to learn features in both images, and the correlation

between them. It also reduces the number of model parameters versus

having two separate networks for the left and right samples, ultimately

CHAPTER 3. DESIGN 36

Right featuresTile feature
extraction

Feature extraction U-Net

L = 4L = 3L = 2L = 1L = 0

Left RGB image + left initial disparity map

Left tile
features Right tile features

Feature
matching

argmin

Matching cost
volume

concatenate

Initial disparitiesFeature
descriptor

Tile hypothesis
map

Figure 3.7: Feature extraction and initialization of tile hypotheses

CHAPTER 3. DESIGN 37

Figure 3.8: Visualization of CNN layer kernels. These are features a CNN

kernel picks up during training.

Source: https://discuss.pytorch.org/t/why-do-we-want-many-output-channels-
in-a-convolutional-neural-network/8789

Figure 3.9: Higher-level features extracted by deep CNN kernels. From Lee

et al. (2009)

CHAPTER 3. DESIGN 38

resulting in faster training and inference times.

The feature extraction network will be implemented as a five layer U-

net [Ronneberger et al., 2015]. Each layer in the encoder (downsampling

layers) has a skip connection to the respective layer in the decoder

(upsampling layers). At each upsampling step in the decoder, we extract

the feature map ϵL
l and ϵR

l at each resolution l ∈ [0, 4] for the left and

right samples. These feature maps will be used in later steps of the

network. A single layer in the encoder will consist of two convolutions

followed by leaky ReLU activation functions as non-linearities. The first

convolution is a single-strided convolution with a 3×3 kernel, while the

second one uses a 2×2 kernel with stride two to halve the resolution. A

single layer in the decoder will consist of the same 3×3 convolution as in

the encoding layer, but will instead be followed by a double-strided 2×2

transposed convolution to double the resolution of the input feature map.

Each convolution will be followed by a leaky ReLU activation, the same as

in the encoder layers.

3.4.2 Tile Hypothesis Maps

Before we can explain the design for the rest of the initialization module, we

need to explain the concept of tiles and tile hypotheses which are an integral

part of HITNet. As explained in Tankovich et al. (2020), a tile is a local N×M

area in a feature map. A tile is extracted using a N×M convolution that

convolves over the feature map. The extracted tiles are called tile features

and are similar to a feature explained in the previous section, a scaled-

down representation of the tile in the original feature map. See figure 3.10.

Feature map
Tile feature map

Figure 3.10: A 6 × 4 feature map and its corresponding tile features after

extracting 2 × 2 tiles

CHAPTER 3. DESIGN 39

A tile hypothesis is the combination of a tile disparity d, the slant gradients dx

and dy of the tile and a tile feature descriptor p on the form[
d, dx, dy, p

]
The tile disparity is the disparity value for the tile, i.e., the disparity for the

entire N×M area. The slant gradients represent the orientation of the tile. It

can be thought of as the normal vector of the tile (the vector perpendicular

to a plane’s surface). Figure 3.11 shows the slant gradients for each pixel in

the image. The brighter the pixel, the more slanted the surface is. Note the

gradient on the barrel in the bottom right caused by the round shape of the

object.

Figure 3.11: Ground-truth slant gradient map of an image in SceneFlow

The tile feature descriptor is a description tied to a tile hypothesis and

can be used by the neural network to attach additional information to the

tile hypothesis. The tile descriptor is a simple convolutional layer and is

therefore trainable. This means the model itself can attach information

it sees fit. A tile hypothesis is created for each tile in a feature map,

giving us multiple tile hypotheses. All tile hypotheses in a feature map are

aggregated into a single tile hypothesis map. In the propagation module,

the tile hypothesis maps are updated iteratively to increasingly refine each

tile, giving us the final disparity map at the last iteration. This is further

explained in section 3.5.

CHAPTER 3. DESIGN 40

3.4.3 Tile Feature Extraction

The next step in the initialization process is to extract tile features from the

feature maps ϵL
l and ϵR

l for all resolutions l. Tile features are essentially

the same as features explained in section 3.4.1. The extracted tile features

represent a tile in the feature map. The tile feature extraction is done by a

single convolution with kernel 4×4. The convolution convolves over each

ϵL
l and ϵR

l at all resolutions l separately and extracts tile features resulting

in tile feature maps ϵ̃L
l and ϵ̃R

l . Extracting tile features at all resolutions l
will give us different sized tiles based on the resolution the tile feature was

extracted from. This is because when extracting features in the coarsest

resolution feature map, which is 1/16th of the full resolution, we extract

4 · 16 = 64 sized tiles in the original feature map. A larger tile gives the

network information about a greater area in the full-sized feature map

and thus will give the model a much greater spatial context. The model

should therefore be able to identify large objects and large texture-less areas

(which notoriously has been hard for a stereo depth estimation algorithm

to deal with), while also understanding smaller and more detailed areas

from tiles extracted from higher resolutions. The tile feature extraction

is done iteratively for all resolutions, from the coarsest to the finest, and

results in tile feature maps that cover increasingly finer areas in the original

feature map. More specifically, all tile feature maps with resolution l, where

l ∈ [0, 4] (l = 0 is the coarsest and l = 4 is the finest), will cover:

• l = 0: 4×4 tile feature extraction in the W/16 × H/16 feature map

will cover 64×64 pixels in original resolution (4 · 16 = 64)

• l = 1: 4×4 tile feature extraction in the W/8 × H/8 feature map will

cover 32×32 pixels in original resolution (4 · 8 = 32)

• l = 2: 4×4 tile feature extraction in the W/4 × H/4 feature map will

cover 16×16 pixels in original resolution (4 · 4 = 16)

• l = 3: 4×4 tile feature extraction in the W/2 × H/2 feature map will

cover 8×8 pixels in original resolution (4 · 2 = 8)

• l = 4: 4×4 tile feature extraction in the W × H feature map will cover

4×4 pixels in original resolution (4 · 1 = 4)

To make the above list easier to understand, take figure 3.12 as an example.

CHAPTER 3. DESIGN 41

Here we extract 2×2 tile features in a 2x downscaled feature map. The

colored areas in the full resolution feature map is the areas each tile feature

covers.

2x downscaled feature map
Tile feature map

H/4

W/4

Full resolution feature map

H

W

W/2

H/2

Figure 3.12: 2×2 tile features extracted from the 2x downscaled feature

map, and the areas the tiles cover in the original feature map

As explained in Tankovich et al. (2020), we will use different strides when

convolving over the left and right feature maps ϵL
l and ϵR

l (note the lack

of the tilde symbol, meaning the feature maps from the feature extraction

network). This is done to more effectively compute matching cost, while

also keeping the resolution the same. For ϵL
l we use (4, 4) strides (jumping

four pixels ahead in x- and y-direction). For ϵR
l we use (1, 4) strides

(jumping four pixels ahead in the y-direction, but only one in the x-

direction). This results in non-overlapping tiles from the left feature maps

ϵL
l , and overlapping tiles (in the x-direction) from the right feature maps

ϵR
l . Notice in figure 3.7, that the width of the left tile features are a quarter

of the width of the right tile features due to the different strides.

3.4.4 Computing Matching Cost

Matching cost is used to evaluate how well two pixels match each other.

There are many different matching cost functions, for example: sum
of absolute differences (SAD), mean-squared error (MSE) and mean absolute
difference (MD). We will use SAD as is also done by Tankovich et al. (2020).

The sum of absolute differences between two pixels ax,y and bx,y at positions

(x, y) in two different images is expressed mathematically as

SAD(ax,y, bx,y) =
∣∣∣∣ax,y − bx,y

∣∣∣∣
1

CHAPTER 3. DESIGN 42

where ||·||1 is the L1 norm, or the Manhattan distance (absolute value). The

higher the cost, the worse the match.

We want to calculate the matching cost between the newly created left

and right tile feature maps ϵ̃L
l and ϵ̃R

l at all resolutions l. Because of the

difference in the width of the two feature maps, we need to match every

pixel in ϵ̃L
l , with every fourth pixel in the x-direction in ϵ̃R

l . For each pixel

in ϵ̃L
l , we search for the best matching pixel in ϵ̃R

l until a certain limit,

the maximum disparity (as explained in section 2.1). The matching cost

between every left and right tile feature map at every resolution l can be

expressed as

ρ(l, x, y, d) =
∣∣∣∣∣∣ϵ̃L

l,x,y − ϵ̃R
l,4x−d,y

∣∣∣∣∣∣
1

Note the subscripts. In the left tile feature map we index every point (x, y),
while in the right tile fature map we index every point (4x − d, y). The

disparity value d is all disparities d ∈ [0, D] where D is the maximum

disparity.

We will store the matching costs per pixel along the channel dimension,

giving us a three-dimensional matching cost volume with size D ×W × H.

With the cost volume, we want to find the disparity d with the lowest

matching cost for each tile feature. This is done using the winner-takes-

all approach explained earlier. This disparity will become the tile disparity

in the tile hypotheses introduced in section 3.4.2.

3.4.5 Initialization of tile hypotheses

The final step of the initialization module is to initialize the tile hypotheses

for all pixels at all resolutions. As a quick reminder: a tile hypothesis

comprises four parts: a tile disparity d, the slant gradients of the tile dx

and dy, and a learnable feature descriptor p. These are concatenated into a

vector

[
d, dx, dy, p

]
for all pixels in the feature map. From the matching cost function we

CHAPTER 3. DESIGN 43

already have the tile disparity d which we call dinit. The slant gradients dx

and dy are initialized to 0. This is because we don’t know anything about

each tile’s orientation yet. Therefore, all tiles start as front-facing tiles. The

feature vector p is predicted by a simple convolutional layer consisting of

a single 1×1 convolution (to not reduce the spatial dimensions) followed

by a leaky ReLU activation. The output of this layer is p. At the end of

the initialization module, we have an initial tile hypothesis map for all

resolutions l ∈ [0, 4] with tile hypotheses hinit on the form

hinit
l = [dinit, 0, 0, p]

These tile hypotheses will be further refined and updated in the propaga-

tion phase.

3.5 Propagation Phase

The propagation module takes the created tile hypotheses hinit
l from the

initialization module and iteratively refines them into increasingly more

accurate disparity maps. The output of the final layer of the propagation

module is the final prediction of the model. To get to the final prediction,

the tile hypotheses needs to go through a series of warping and tile update

steps which will be further explained in the following sections.

This module iterates over each tile hypothesis map starting at the coarsest

resolution (l = 0), increasing the resolution at each iteration, ending at the

finest resolution (l = 4). At each iteration it uses the refined tile hypothesis

map from the previous iteration, along with the unrefined tile hypothesis

map for the current one. Because of this, the first iteration will be slightly

different, since we only have one single tile hypothesis map to refine. We

refer to figure 3.14 for the single tile hypothesis map case, and figure 3.15

for the multiple tile hypothesis maps case.

3.5.1 Warping

There are three distinct steps during the propagation phase, starting with

the warping step. This step will warp the right features ϵR
l (from the feature

CHAPTER 3. DESIGN 44

extraction network in the intialization module) into an approximated left

feature map using the tile hypothesis map. As we explained in 3.4.5, a tile

hypothesis comprise the tile disparity d and its slant gradients dx and dy.

These represent the geometry of a 4×4 tile in the left feature map. If we

upsample the tile geometry by 4, we get said 4×4 tile from the feature map

ϵL
l at resolution l. To upsample the tile geometry (d, dx, dy) into a 4×4 tile,

we use the equation of a plane. Just like Tankovich et al. (2020), We denote

the resulting local disparity map as d′. The formula for upsampling the tile

disparity is as follows [Tankovich et al., 2020, p. 5]:

d′
i,j = d + (i − c) · dx + (j − c) · dy

where c is the center of the tile and can be computed as c = (t− 1)/2 where

t is the tile size, which in our case is 4. Therefore, c = 1.5. The local indices i
and j are in the range [0, 3] and correspond to each index in the upsampled

4×4 disparity map. This means we calculate the disparity for each pixel

(i, j) separately, based on the tile’s disparity and slant gradients. The

loss function (explained in section 3.6) takes into account a tile’s geometry

(d, dx, dy), meaning the model will learn these parameters over time which

will result in more accurate local disparity maps.

For each upsampled 4×4 disparity map, we warp the corresponding area

in the right feature map into the left feature map, using the assumption that

a pixel in the left feature map is equal to the same pixel in the right feature

map, but shifted by the disparity of that pixel. This is the same assumption

we made in section 3.3 about the image inpainting module, where we also

warp the right image into the left image using the relation

xr = xl − d

Warping all 4×4 tiles in the right feature map into the left feature map, we

get a complete warped right feature map ϵR′
l . The correctness of ϵR′

l will be

based on the correctness of the upsampled disparity map. Thus, when the

tile geometry improves, the warped right feature map improves as well.

CHAPTER 3. DESIGN 45

3.5.2 Computing Matching Cost

In this step, the goal is to build a local cost volume around each tile

hypothesis in the tile hypothesis map using the warped tiles from the

previous step. For every 4×4 tile in the left feature map ϵL
l , we compute the

matching cost of in the corresponding 4×4 tile in the warped right feature

map ϵR′
l . This is done by calculating the absolute differences between each

pixel in the tiles, the same as in section 3.4.4. This results in a cost vector ϕ

[Tankovich et al., 2020, p. 5]

ϕ(ϵL
l , d’) = [c0,0, c0,1, c0,2, ..., c3,3]

where ci,j is the cost computed between corresponding tiles in left feature

map ϵL
l and the warped right feature map ϵR′

l . More specifically

ci,j =
∣∣∣∣∣∣ϵL

l,4x+i,4y+j − ϵR′
l,4x+i−d’i,j,4y+j

∣∣∣∣∣∣
1

Doing this for all tile hypotheses in the tile hypothesis map, we get a cost

vector ϕ for all tile hypotheses. As stated in Tankovich et al. (2020), we

displace each local disparity map d’ with ±1. This is done to “(...) build up

a local cost volume which allows the network to refine the tile hypotheses

effectively” [Tankovich et al., 2020, p. 5]. By displacing the disparity map,

we get two extra cost vectors, creating a local cost volume for each tile

hypothesis

[
ϕ(ϵL

l , d’ - 1), ϕ(ϵL
l , d’), ϕ(ϵL

l , d’ + 1)
]

3.5.3 Tile Updates

In the tile update step we will create a CNN that takes the local cost volume

for each tile hypothesis, along with the tile hypothesis map itself, and

predicts a tile update ∆h for each tile hypothesis, along with a confidence

measure w that is used to judge the correctness of the tile hypothesis. This

step works differently based on the number of tile hypothesis maps used

as input. We refer to figure 3.14 for the single hypothesis map scenario, and

figure 3.15 for the multiple hypothesis map scenario.

CHAPTER 3. DESIGN 46

The tile update network will be implemented as a CNN with ResNet

blocks. ResNet is a network proposed in the paper ‘‘Deep Residual

Learning for Image Recognition’’ [He et al., 2015]. Its main contribution is

the ResNet block (seen in figure 3.13). It utilizes residual connections (also

known as skip connections or shortcut connections) between the input and

output and element-wise adds them at the end of the block. The reason

behind the ResNet block is this: consider two identical blocks, one with

a residual connection and one without, like in figure 3.13. We want the

weighted layers to learn the function f (x). The left block in figure 3.13 has

to learn the entire function f (x), but because of its residual connection, the

residual block (right block) only has to learn the residual function f (x)− x,

hence its name residual block. This makes it easier to train deep neural

networks as it reduces much of the complexity during training.

Figure 3.13: A block containing weighted layers to the left, a ResNet block

to the right, [Zhang et al., 2020]

The tile update network will contain an input layer, a simple 1×1

convolution followed by a leaky ReLU activation. Then follows two

residual blocks implemented the same way as the block in figure 3.13, using

3×3 convolutions and the leaky ReLU function. The last layer is a single

1×1 convolution to reduce the number of input channels to the desired

amount of output channels. This will be how most tile update layers will

be configured with the exception of three final tile updates at the end of the

propagation phase.

As mentioned, tile updates will work differently based on the number of

CHAPTER 3. DESIGN 47

input tile hypothesis maps. It will start of with the coarsest tile hypothesis

map with tile hypotheses that cover 64×64 tiles in the full resolution. In

this part, we explain how tile updates will work in the first iteration when

only one tile hypothesis map is available. After warping the right feature

map ϵR
l into its warped counterpart ϵR′

l and the matching cost is computed,

the tile hypothesis map along with the cost volume is passed into the tile

update module. It will predict updates ∆h for each tile hypothesis h. The

deltas are added together with its tile hypothesis, resulting in a updated

tile hypothesis h′, like so: h′ = h + ∆h. As training goes on, the tile

update network will learn to predict better deltas, due to the loss imposed

on the confidence measure w which is also predicted by the tile update

network. In the single hypothesis map scenario, w isn’t used in any way

other than in the loss function. The output of the tile update module is

an updated tile hypothesis map. This updated tile hypothesis map will

be used during the next iteration, propagating the tile update through all

resolutions, thus giving the current module the name propagation module.

Before we can pass the updated tile hypothesis to the next iteration, the

map has to be upsampled to match the resolution of the next feature maps.

The tile disparities d are upsampled using the plane equation from section

3.5.1. The slant gradients dx and dy and the feature description p will be

upsampled using nearest-neighbor interpolation.

In the remaining iterations, we use two tile hypothesis maps and their

matching cost volumes as input to the tile update network. From

the previous iteration we already have an updated and upsampled

tile hypothesis map hcoarse, and from the current iteration we have a

tile hypothesis map from the intialization module, hinit. For both tile

hypothesis maps, we run the warping step and the matching cost step,

resulting in two cost volumes. Both the upsampled tile hypothesis map

hcoarse and its cost volume, along with the current iteration’s tile hypothesis

map hinit and its cost volume will be passed into the tile update network.

The tile update network will in the case with two tile hypothesis maps,

predict deltas for both maps ∆hcoarse and ∆hinit along with confidence

values wcoarse and winit for each tile hypotheses in the two tile hypothesis

maps. We then compare the confidence measures and choose the tile

hypothesis with the highest confidence. For all the tile hypotheses where

winit ≤ wcoarse, then the updated tile hypothesis map h′ will use the coarse

tile hypotheses and their deltas. If winit > wcoarse we do the opposite. Put

CHAPTER 3. DESIGN 48

differently:

h′ = hinit + ∆hinit, winit > wcoarse

h′ = hcoarse + ∆hcoarse, winit ≤ wcoarse

After the tile update, the updated tile hypothesis map h′ will be upsampled

the same way as previously with a factor of two. This process will then be

repeated until the last tile hypothesis map has been updated.

3.5.4 Final Tile Updates

After the final iteration of the propagation, we will be left with updated

tile hypothesis maps at different resolutions. Before we predict the final

disparity map, we refine the updated tile hypothesis map with tile size 4×4.

This means running a tile update module three times, upsampling the tile

hypothesis map by a factor of two after each time until we reach a tile size

of 1×1. Before these tile refinements, we do not warp or calculate matching

costs for the tile hypothesis map, and will only calculate tile updates and

confidence values based on the tile hypothesis map itself. We use the tile

update module for the single tile hypothesis map scenario.

3.6 Loss Function

To train the model we implement the same loss function as is described in

Tankovich et al. (2020). At its simplest, it is the sum of three different loss

functions imposed on different parts of the network. This is to effectively

train the different parts of the pipeline. The total loss L is defined as

L = Σl Linit
l + Lprop

l + Lslant
l + Lw

l

for all resolutions l. Each part of the equation imposes a loss on four

different parts of the model, initialization loss, propagation loss, slant loss,

and tile update confidence loss. We will now go into more detail on each of

these in the following sections.

CHAPTER 3. DESIGN 49

Tile hypothesis
map

Left featuresRight features

Warp Warped right
features

Feature
matching

Local cost volume
augmented tile
hypothesis map

Tile updates Updated tile
hypothesis map

L = 0

Figure 3.14: Propagation with single tile hypothesis map

3.6.1 Initialization Loss

To train the initialization module, we implement an L1 contrastive loss

[Hadsell et al., 2006]. A contrastive loss aims to train the network to

group neighbors together while pushing non-neighbors apart [Hadsell et

al., 2006]. In this case, the function pulls disparities that cause a matching

cost lower than a margin β towards a loss of zero, while pushing disparities

with matching costs greater than the margin towards an infinite loss. This

will force the feature extraction network in the initialization module to

extract features with a matching cost smaller than the margin to minimize

the loss. In Tankovich et al. (2020) the loss function is defined as:

Linit(dgt, dnm) = ψ
(
dgt)+ max (β − ψ (dnm) , 0)

β > 0 is the margin. The function takes the ground-truth disparities dgt and

dnm which is the non-matching disparity with the lowest cost, defined as

dnm = argmind∈[0,D]/{d|d∈[dgt−1.5,dgt+1.5]}ρ(d)

In simpler terms, dnm is the disparity in the range [0, D], minus the

CHAPTER 3. DESIGN 50

Upsampled tile
hypothesis map

Left featuresRight features

Warp Warped right
features

Feature
matching

Local cost volume
augmented tile
hypothesis map

Tile updates Updated tile
hypothesis map

Tile hypothesis
map

Left featuresRight features

Warp Warped right
features

Feature
matching

Local cost volume
augmented tile
hypothesis map

L = 0

L = 1

Figure 3.15: Tile update with multiple tile hypothesis maps

CHAPTER 3. DESIGN 51

disparities within ±1.5 of the ground-truth disparity dgt, with the lowest

cost ρ. Here, ρ is the cost volume calculated in the initialization phase

(section 3.4.4). ψ is a function that calculates the matching cost for subpixel

disparities. The subpixel cost is calculated as follows

ψ(d) = (d − ⌊d⌋)ρ(⌊d⌋+ 1) + (⌊d⌋+ 1 − d)ρ(⌊d⌋)

ρ is the matching cost volume from the initialization phase and ⌊·⌋ is

the floor operation. The reason behind calculating the matching cost of

the subpixels in the image is because “Ground-truth disparities are given

with subpixel precision, however matching in initialization happens with

integer disparities.” [Tankovich et al., 2020, p. 6]. Notice how the subpixels

are isolated when subtracting the integer disparity ⌊d⌋ from the floating-

point disparity d.

This is done for all cost volumes at all resolutions l. Since the ground-truth

disparities come in full resolution, we downsample them to the correct

resolution using max-pooling with a 2×2 kernel and stride of two. This

will extract the biggest disparity value in all non-overlapping 2×2 areas in

the ground-truth disparity maps. This halves the resolution while keeping

the most dominant disparity values.

3.6.2 Propagation Loss

In the propagation module, loss is imposed on three parts: the disparity

predictions d, the slant prediction dx and dy, and the confidence measure

w. This is done at all resolutions l, just like with the initialization loss.

The only difference is that we upsample d, dx, dy, and w to full resolution

instead of downsampling the ground-truth disparity maps. We upsample

the disparities d with the plane function as described in section 3.5.1, while

using nearest-neighbor upsampling to upsample dx, dy and w. Upsampling

w with nearest-neighbor upsampling is an assumption we make, as there

isn’t a good explanation as to if and how w is upsampled in Tankovich et al.

(2020). The loss imposed on the tile disparities d, which we call propagation

loss from now on, is expressed as:

Lprop(d, dx, dy) = ρ(min(
∣∣∣ddi f f

∣∣∣ , A), α, c)

CHAPTER 3. DESIGN 52

where ddi f f = dgt − d̂ is the difference between the ground-truth disparity

and the predicted disparity d̂, also called the error. We also have three

constants A, α and c. A is a threshold used to truncate
∣∣ddi f f

∣∣, meaning

if
∣∣ddi f f

∣∣ is greater than A, it is cut of at A. In Tankovich et al. (2020),

A is set to one. This means the loss function only takes into account the

predicted disparities with a loss less than one. α and C are parameters

passed to the function ρ below, which is an adaptive and general loss

function that changes based on the values of α and c. The loss function was

proposed by Barron (2017) in his paper ‘‘A General and Adaptive Robust

Loss Function’’. In its simplest form ρ is defined as:

ρ(x, α, c) =
|α − 2|

α

((x/c)2

|α − 2| + 1

)α/2

− 1


We use the same values for α and c as in Tankovich et al. (2020), which is

α = 0.9 and c = 0.1. The function will therefore closely resemble a smooth

L1 loss, which we shall not go into the details on. We refer to Barron (2017)

for examples on how the loss function acts with different values of α and c.

To train the slant gradient predictions dx and dy in the tile update layers,

Tankovich et al. (2020) proposes the following loss function:

Lslant(dx, dy) =

∣∣∣∣∣
∣∣∣∣∣ dgt

x − dx

dgt
y − dy

∣∣∣∣∣
∣∣∣∣∣
1

· X|ddi f f |<B

For both dx and dy we calculate the L1 norm (Manhattan distance) between

the ground-truth slant gradients dgt
x and dgt

y , and multiply it with the

indicator function X

X|ddi f f |<B =

0, ddi f f ≥ B

1, ddi f f < B

This means we only take into account the slant gradients where the

difference
∣∣ddi f f

∣∣ is less than the constant B. To generate the ground-truth

slant gradients dgt
x and dgt

y , we use least-squares fitting to fit a plane in a 9×9

area around each pixel in the ground-truth disparity map. This is done as

a preprocessing step to save time during training because finding the least-

squares fit is a time-consuming operation.

CHAPTER 3. DESIGN 53

The final loss is a simple function imposed on the confidence values w. It

is defined as

Lw(w) = max(1 − w, 0) · X|ddi f f |<C1
+ max(w, 0) · X|ddi f f |>C2

This loss function will train the network to increase the confidence if the

distance
∣∣ddi f f

∣∣ is less than the threshold C1, and decrease the confidence if

the distance is greater than the threshold C2.

As a final note, and as explained in 3.5.4, we will implement three final

tile update layers that refine and predicts the final disparity map. All loss

functions in the propagation module are applied to these with the same

parameters α, c, B, C1, and C2. The only difference is that we remove the

threshold A, setting it as A = ∞. This means we compute the loss of all

disparities (
∣∣ddi f f

∣∣ will never be greater than ∞).

Chapter 4

Implementation

In this section, we will go into the implementation details of this thesis. We

start off by go through how we integrated the SceneFlow dataset into the

training cycle using PyTorch, and explain the data augmentation used on

the dataset. This is followed by the implementation details of the model,

from the initialization phase to the propagation phase. We will also briefly

go through our implementation of the inpainting network we discussed in

the design chapter. Lastly, we will explain the process of plane fitting to

calculate the ground-truth slant maps we needed for the loss function.

4.1 Data Preparation

Data preparation is one of the most important steps in getting an accurate

model that generalizes well. In our experiments, we use the left-right

image pairs of the SceneFlow dataset and two disparity maps computed

by the SGM algorithm based on the stereo image pairs. We, therefore,

have a variety of data defined in different ranges. The RGB images, when

converted to PyTorch tensors are in the range [0, 1]. The disparity maps

are in the range [-1, ∞). This means we need to do some data preparation

before training since neural networks don’t play well with a lot of different

data in very different data ranges. We will in the subsequent subsections

explain our dataset implementation, and how we plan to augment and

preprocess the data before training.

54

CHAPTER 4. IMPLEMENTATION 55

4.1.1 Custom SceneFlow Dataset Implementation

PyTorch comes with many downloadable datasets which are already ready

to use for training. This is not the case for SceneFlow which we intend

to use during our experiments. This requires us to implement our own

custom dataset using PyTorch. Fortunately, this is relatively simple to do.

In PyTorch, a dataset is defined by a Dataset class. We define our custom

dataset as a subclass of Dataset. The subclass needs to implement the

two methods __len__ and __getitem__ as well as a constructor. These are

methods called by a DataLoader, an object that iterates over the dataset,

and batches data samples, making them ready for training. The Dataset

class is mainly responsible for reading the dataset from disk into memory

and performing data augmentation on the data if specified. This is done in

the __getitem__ method. The signature is shown below.

def __getitem__(self, i):

pass

The only argument is an index value that is used to access the i-th sample

in the dataset. We, therefore, need a way of indexing the dataset. We solve

this by adding all file paths to a list in the constructor of the SceneFlow

Dataset class. Due to the size of the SceneFlow dataset, there is no way of

loading all left-right image pairs, along with their ground-truth disparity

maps directly into memory. The next best solution is therefore to load their

disk location in form of file paths into memory, and load the data samples

into memory when they are needed by the DataLoader. The list of file

paths can then be accessed by the index variable passed as an argument

to the __getitem__ method. The __len__ method is self-explanatory, it is

a simple method call that returns the size of the dataset and can be easily

implemented simply by returning the length of the file path list.

The SceneFlow’s “FlyingThings3D” dataset already comes split into a

training and validation dataset. These are split into two different folders

and we can therefore create two different SceneFlow Dataset objects, one

for the training split and one for the validation split. This means we

also need two separate DataLoader objects that iterates over each split

separately. Each DataLoader batch data samples together into mini-batches.

A mini-batch contains multiple data samples that will be processed by the

CHAPTER 4. IMPLEMENTATION 56

neural network in parallel. This saves on training time but comes at the cost

of using more memory. Memory management is important when training

a neural network, as a GPU only has a limited amount of memory it can

use to store the neural network and data samples. We, therefore, need to

set the batch size to a size that the GPUs can handle. In our experiments,

the batch size is set to 8. This means the neural network will process eight

data samples in parallel.

4.1.2 Data Augmentation

We augment the data samples differently based on the dataset split.

For both the training and validation split, we read the stereo RGB

images from disk and convert them to PyTorch tensors using the

torchvision.transforms.ToTensor class. This will convert the RGB im-

ages into tensors in the range [0, 1]. We also normalize the image tensors

using the mean and standard deviation of the training set. The mean and

standard deviation is computed per-channel over the entire training data-

set. We do not include the validation dataset into the calculation, as it

would leak information about the validation set into the training set. This

is called data leaking and is bad because it would give our model informa-

tion about the validation set. We of course want the training and validation

sets completely separated from each other to get the most accurate results

possible. The combined mean µ and standard deviation σ for the red, green

and blue channel for the FlyingThings3D training dataset is

µ = (0.4210, 0.4001, 0.3655)

σ = (0.1909, 0.1764, 0.1613)

Each RGB image is normalized per-channel using µ and σ above. This

will scale all images to have a mean close to zero and standard deviation

close to one. This is applied using the formula where x is the value to be

normalized.

x̄ =
x − µ

σ

In PyTorch we can normalize a tensor per-channel using the torchvision

CHAPTER 4. IMPLEMENTATION 57

library’s transforms.Normalize class. It takes two lists in the constructor,

one list containing the per-channel mean and one list containing the per-

channel standard deviation. This normalization is done on both the

training set and validation set.

For the training set only, we do a random crop of size 320×960 as is also

done in Tankovich et al. (2020). The original size of the SceneFlow images

is 540×960. Note that we refer to the height dimension first, meaning

each image is 540 pixels in height and 960 pixels in width. We do this

because this is how PyTorch expects the order of the image dimensions to

be in. The random crop does two things: it introduces slightly new data

samples every time during training, which is good for the generalization of

the network. It also keeps the width and height dimensions even when

they’re downsampled during the feature extraction. The random crop

is performed using the class transforms.RandomCrop from torchvision.

This constructor expects the crop size.

We do not random crop the validation data, as we want our stereo

depth estimation model to process complete images. For example, when

estimating depth on an AR display, we want a disparity map of the whole

scene, not only for a small crop of the scene. We do however run into

a problem with the width and height dimensions being rounded down

during the feature extraction. The rounding errors propagate through the

network, causing errors and shape mismatches later on. To alleviate this,

we zero-pad the images with a 36 high border at the top of the image. This

is done using the torch.nn.functional.pad() function.

To compute the initial disparity maps we feed into our model, we

use OpenCV’s SGM implementation. cv2.StereoSGBM_create() initial-

izes the algorithm, while the compute() method calculates the disparity

maps. We mostly use the default parameters, with a slightly different

numDisparities and blockSize attributes. We use the following paramet-

ers:

minDisparity=0,

numDisparities=128,

blockSize=5,

P1=0,

P2=0,

CHAPTER 4. IMPLEMENTATION 58

disp12MaxDiff=0,

preFilterCap=0,

uniquenessRatio=0,

speckleWindowSize=0,

speckleRange=0,

mode=cv2.StereoSGBM_MODE_SGBM,

We won’t explain each parameter, for more information we refer to the

OpenCV documentation [OpenCV, 2021].

The computed disparity maps are min-max normalized, i.e., transformed

into the range [0, 1] to be in the same range as the RGB images. OpenCV’s

SGM implementation labels all pixels it couldn’t calculate the disparity for,

with a negative number. We want to preserve this, as it gives the model a

notion on where occluded areas are located. We, therefore, create a bitmask

identifying all valid disparities (disparities ≥ 0) and only normalize these.

We also apply random crop (for the training set) and the zero-padding (for

the validation set) to the disparity maps to keep the dimensions equal with

the RGB images.

4.2 Feature Extraction

As explained in the design chapter, the feature extraction network is a small

U-Net with skip connections between layers. We also want to return the

output of each decoding layer as they are used to extract tile features at

different resolutions. The U-Net architecture is pretty straightforward to

implement in PyTorch. We first needed to define the convolutions we are

going to use in each layer in the encoder and decoder. For the encoder, we

want a convolution that halves the resolution of the input. Tankovich et

al. (2020) implements these layers with strided convolutions. As explained

previously, the stride of a convolution is the number of pixels the kernel

is shifted by when it convolves over the input. The default stride of a

convolution is usually one, meaning the kernel shifts one pixel at a time. To

halve the resolution of the input, Tankovich et al. (2020) uses a 2×2 kernel

with stride 2. This will halve the resolution of the input as it computes

the cross-correlation of all non-overlapping 2×2 areas in the input. We

CHAPTER 4. IMPLEMENTATION 59

can verify this by using convolution arithmetics from Dumoulin and Visin

(2016):

o =

⌊
i + 2p − k − (k − 1)(d − 1)

s

⌋
+ 1

We do not change the padding p or the dilation d and keep them as 0 and 1

respectively. We can therefore simplify the formula

o =

⌊
i − k

s

⌋
+ 1

If we set the kernel size k = 2 and stride s = 2 we get

o =

⌊
i − 2

2

⌋
+ 1

o =

⌊
i
2
− 2

2

⌋
+ 1

o =

⌊
i
2

⌋
− 1 + 1

o =

⌊
i
2

⌋

We observe that the output shape o will be half of the input shape i
floored. Before The 2×2 strided convolution, we apply a 3×3 non-strided

convolution as is done in Tankovich et al. (2020) to increase the complexity

and learnable parameters of the feature extraction network. We do not

want to reduce the spatial dimensions in this convolution, so we add

padding of 1 to keep the input at full resolution. This can be verified

using the formula above as well. Between the convolutions, and after the

final convolution, we apply the leaky ReLU activation function, a variation

of the regular ReLU function, but with a small slope coefficient for the

negative numbers. This coefficient is set to 0.01 in our models. In PyTorch,

the encoder layer is implemented like this:

CHAPTER 4. IMPLEMENTATION 60

def feat_encoder_conv(in_c, out_c):

return nn.Sequential(

nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),

nn.LeakyReLU(0.01),

nn.Conv2d(out_c, out_c, kernel_size=2, stride=2),

nn.LeakyReLU(0.01),

)

torch.nn.Sequential is a class that sequentially executes all layers it

contains when it is called. In this case, it first executes the first convolution,

then the leaky ReLU, then the second convolution, and lastly the final leaky

ReLU. In PyTorch, a convolution is defined using the torch.nn.Conv2d

class. The mandatory parameters of this class are the number of input

channels, output channels, and kernel size. Note that the number of input

channels to the second convolution (out_c) needs to match the number of

output channels of the first convolution. Failing to match these will result

in an error. Also, notice the use of padding and stride.

For the decoding layers, we want to double the resolution of the input.

This is done using transposed convolutions. A transposed convolution, as

its name suggests, is the transposed version of a regular convolution. It is

transposed in the sense that each element in the input map is multiplied

with each element in a kernel that convolves over the output map. The

output of the multiplication is added to each pixel of the output map. See

figure 4.1 for a transposed convolution with a 3×3 kernel over a 2×2 input

map. The kernel has a stride of 3 to more easily show what happens in a

transposed convolution. With a non-strided transposed convolution, the

kernel will overlap. In that case, the results of the multiplication will be

added to the value that is already in the pixel. The transposed convolution

is a way of upsampling an input map to a higher spatial resolution. We

can also use interpolation to upsample feature maps, but a transposed

convolution has the advantage of having a learnable kernel that is updated

during training. This means the transposed convolution can weigh the

input and choose which feature is the most important to include in the

upsampling.

Tankovich et al. (2020) implements the decoder layer similarly to the

encoder layer, with the only difference being the use of a transposed

convolution instead of the double-strided regular convolution. We can

CHAPTER 4. IMPLEMENTATION 61

2 4

1 6

3 1

1 4

2

7

2 8 1

Kernel
Input

6 2

2 8

4

14

4 16 2

12 4

4 16

8

28

8 32 4

3 1

1 4

2

7

2 8 1

18 6

6 24

12

42

12 48 6

Output

Figure 4.1: Example of transposed convolution

implement this in PyTorch like this:

def feat_decoder_conv(in_c, out_c):

return nn.Sequential(

nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),

nn.LeakyReLU(0.01),

nn.ConvTranspose2d(out_c, out_c, kernel_size=2, stride=2),

nn.LeakyReLU(0.01),

)

The only difference is the use of torch.nn.ConvTranspose2d. Note that

the transposed convolution uses the same arguments as the double-strided

convolution in the encoder.

To create our feature extraction U-net using these layers, we need to

implement a PyTorch Module like so:

class FeatureExtractor(nn.Module)

def __init__(self, in_c):

pass

def forward(self, x):

pass

In the constructor, we define each layer of the Module using the functions

CHAPTER 4. IMPLEMENTATION 62

we defined previously. We define the encoder and decoder as two separate

ModuleDict objects, dictionaries that map a Module to a key:

self.encoder = nn.ModuleDict()

self.decoder = nn.ModuleDict()

Consequently, we can define our layers for both the encoder and decoder

like this:

self.encoder.add_module("conv0", feat_encoder_conv(in_c, 16))

...

self.decoder.add_module("conv0", feat_decoder_conv(32, 32))

...

The forward() method is where we implement the logic for the forward

propagation through the feature extraction network. Since we have five

encoding layers that take the output from the previous layer as input, we

program the encoder’s forward pass like this:

def forward(self, x):

d0 = self.encoder.conv0(x)

d1 = self.encoder.conv1(d0)

...

The decoder is a bit more complicated, as we need to implement the skip

connections between the encoder layers and decoder layers. We can do

this by concatenating the output from the same layer in the encoder, with

the input from the previous layer in the decoder. This requires the tensors

to have the same height and width. They are concatenated in the channel

dimension using torch.cat((x, y), dim=1). It looks like this:

...

u3 = self.decoder.conv3(torch.cat((u2, d1), dim=1))

u4 = self.decoder.conv4(torch.cat((u3, d0), dim=1))

CHAPTER 4. IMPLEMENTATION 63

self.decoder.conv4 is the last layer in the decoder and takes the

concatenation of u3, the output of the previous decoder layer, and d0, the

output of the first encoder layer. The output of the forward() function is

a list containing all output maps [u0, u1, u2, u3, u4] which are all of

different resolutions.

Table 4.1 shows the complete architecture of the feature extraction network

with all five encoder and decoder layers. It shows the input of each layer,

along with its output. It also shows the number of input and output

channels (“C in” and “C out”), kernel size (K), padding (P), and stride (S).

It also specifies the activation function used. Note that the kernel, padding,

and stride are defined by two numbers separated by commas. This is to

distinguish between the two convolutions a single layer is comprised of.

The || operator is the concatenation operator. Also note that the number

of input channels of the first encoder layer varies. This is because we

implement two models, an experimental model that accepts an additional

channel due to the extra disparity map, and a control model that only

accepts three-channel RGB images. The number of input and output

channels are the same as is specified in Tankovich et al. (2020). The same

feature extraction network is used to extract features from the left and right

images separately.

Layer name Input Output C in C out K P S Activation

enc_conv0 x d0 4/3 16 3,2 1,0 1,2 Leaky ReLU

enc_conv1 d0 d1 16 16 3,2 1,0 1,2 Leaky ReLU

enc_conv2 d1 d2 16 24 3,2 1,0 1,2 Leaky ReLU

enc_conv3 d2 d3 24 24 3,2 1,0 1,2 Leaky ReLU

enc_conv4 d3 d4 24 32 3,2 1,0 1,2 Leaky ReLU

dec_conv0 d4 u0 32 32 3,2 1,0 1,2 Leaky ReLU

dec_conv1 u0 || d3 u1 56 24 3,2 1,0 1,2 Leaky ReLU

dec_conv2 u1 || d2 u2 48 24 3,2 1,0 1,2 Leaky ReLU

dec_conv3 u2 || d1 u3 40 16 3,2 1,0 1,2 Leaky ReLU

dec_conv4 u3 || d0 u4 32 16 3,2 1,0 1,2 Leaky ReLU

Table 4.1: Arcitecture of feature extraction U-net.

CHAPTER 4. IMPLEMENTATION 64

4.3 Initialization Module

The initialization module does the tile feature extraction and matching cost

computation to initialize our tile hypotheses. In this section we will explain

how these were implemented, starting with the tile feature extraction.

4.3.1 Tile Feature Extraction

In the tile feature extraction phase, we extract tile features from the output

of the feature extraction network, as described in the design chapter. This

is done using a 4×4 convolution with different strides depending on if we

extract tile features from the left, or right feature maps. In the left feature

map, we use 4×4 strides, moving the kernel every fourth pixel in both

height and width directions. This results in a tile feature map that is 1/4

the original feature map resolution in both width and height. For the right

feature maps, we change the stride to 4×1, meaning we convolve over

every pixel in the width-direction, while skipping every fourth pixel in the

y-direction. We use the same convolution to extract tiles from both the left

and right feature maps, so we need to change the strides in between. We

can do this simply by changing the stride attribute of the convolution:

extractor.stride = (4, 4) and extractor.stride = (4, 1). Referring

to table 4.1, we can see that each decoder layer has a different number

of output channels. Due to this, we need to define multiple tile feature

extraction convolutions with input dimensions that match the output

dimension sizes of the decoder layers. We use a torch.nn.ModuleList

and append all convolutions to that list using the append() function. The

convolution in itself is a simple convolution with a 4×4 kernel and one

output channel. The stride is set as we discussed earlier. The tile feature

maps extracted are all appended to lists.

4.3.2 Matching Cost Computation

When the tile features are extracted, we iterate over the lists containing

the tile feature maps and compute the matching costs between each tile

feature map in increasing resolution order, from the lowest resolution to

the highest resolution. Between each left tile feature map and right tile

CHAPTER 4. IMPLEMENTATION 65

feature map, referred to as l_tile and r_tile from now on, we create a

cost volume as a PyTorch tensor:

cost_volume = torch.zeros(

l_tile.shape[0],

self.max_disp,

l_tile.shape[2],

l_tile.shape[3],

device=l_tile.device,

)

torch.zeros() creates a zero-filled tensor with the shape specified by

the arguments. In this case, it will mostly have the same dimensions as

l_tile, except for the channel dimension where we expand it to match the

maximum disparity. Also, note that we specify the device we want to create

the tensor on. We create it on the same device as l_tile, which would be

the GPU. Doing tensor operations on tensors on different devices will lead

to errors.

The cost volume is filled with the costs calculated between every element

in l_tile and r_tile. To do this we need to remember that r_tile is four

times wider than l_tile, therefore we need to compute the cost of between

every pixel in l_tile, and every fourth pixel in r_tile. We can do this by

using Python list slicing, which is a way of accessing lists, or in this case

tensors. The cost computation is done like so:

for d in range(self.max_disp):

...

costs = torch.abs(l_tile - r_tile[:, :, :,

self.max_disp - 1 - d :-d : 4])

...

This line of code calculates the absolute difference element-wise between

l_tile and r_tile, using the formula from section 3.4.4. Notice how

we index r_tile to keep within the disparity range between zero and

the maximum disparity, while skipping every fourth pixel. The r_tile

tensor is multi-dimensional with the shape (B, C, H, W). Since we only care

about matching in the width dimension W, we specify that we want all

CHAPTER 4. IMPLEMENTATION 66

elements over the batch dimension B, the channel dimension C and height

dimension H by using colons. Empty colons select the whole range within

that dimension. We use l_tile as the reference image and search for the

matching pixel in r_tile using the relation

xl = xr + d

where d is iterated through the range [0, self.max_disp). self.max_disp

is set to 320 for our experiments. This means when xl is less than the

maximum disparity, i.e., for the leftmost self.max_disp pixels in l_tile,

we are out of bounds in r_tile. To prevent this, we zero-pad r_tile with

self.max_disp - 1 on the left-hand side. The matching cost of each pixel

at all disparities d is stored in the cost volume at channel index d

cost_volume[:, d, :, :] = costs

When the matching cost has been completed for all disparities, we want

to find the disparities with the lowest matching cost. This is done using

torch.min() on the cost volume over the channel dimension. This returns

both the indices and values with the lowest cost. The indices are used as

the tile disparity for each tile hypothesis, while the values are used in the

tile feature descriptor.

4.3.3 Tile Hypothesis Initialization

Using the tile disparities and lowest matching costs, we construct all initial

tile hypotheses. We reiterate the definition:

hinit =
[
dinit, dx, dy, pinit

]
dx and dy are initialized to 0. The tile feature descriptor pinit is determined

by a simple 1×1 convolution followed by a leaky ReLU activation function.

We also need one tile feature descriptor for each resolution, since the

number of input channels will vary. The number of output channels for

all descriptors is set to 13, as specified in Tankovich et al. (2020). The

feature descriptor takes the left tile feature maps l_tile from the previous

CHAPTER 4. IMPLEMENTATION 67

section as well as the lowest matching costs computed by torch.min().

They are concatenated along the channel dimension before being fed to

the feature descriptor. The tile disparities from the previous section, the

slant gradients dx and dy, and the output of the feature descriptor are

concatenated together along the channel dimension. This results in a tile

hypothesis map for each resolution.

4.4 Propagation Module

The propagation module iterates over all the tile hypothesis maps as well

as the left and right feature maps from the feature extraction network. In

this section, we refer to the tile hypothesis map as hyp, and the left and

right feature maps as l_feat and r_feat. As explained in the design

chapter, there is a slight difference in the first iteration, versus the rest of the

iterations. In the first iteration, we only have access to the lowest resolution

tile hypothesis map and feature maps. We therefore go through both the

single hypothesis case, and the multiple hypotheses case. First, we shall

describe the implementation of the warping and cost calculation function

we use to warp r_feat into l_feat using hyp and calculate the matching

cost between the warped r_feat and l_feat.

4.4.1 Warping and Matching Cost Calculation

To warp r_feat into l_feat, we need to upsample hyp such that their

width and height dimensions match. hyp is one-fourth the resolution of the

feature maps l_feat and r_feat, because each tile hypothesis represents

a 4×4 tile in the feature maps. We upsample hyp to the same resolution

disparity map by using the plane equation

d′
i,j = d + (i − 1.5)dx + (j − 1.5)dy

We implement this with a double for-loop that iterates over the local tile

indices i and j in the range [0, 4). This is done for all tile hypotheses

in hyp. When we upsample a tile hypothesis, we concatenate the local

disparity map to a tensor that contains all 4×4 local disparity map of hyp.

We then use torch.nn.functional.pixel_shuffle() to shuffle all the 4×4

CHAPTER 4. IMPLEMENTATION 68

local disparity maps from the channel dimension and tile them along the

width and height dimensions. This way we get a complete disparity map

containing all 4×4 local disparity maps. With the upsampled disparity

map, we warp r_feat into l_feat. After warping r_feat into a new

feature map r_warped, we compute the matching cost between l_feat and

r_warped using the sum of absolute differences.

As is stated in the HITNet paper, “In order for the network to iteratively

increase the accuracy of the disparity predictions, we provide the network

a local cost volume in a narrow band (±1 disparity) around the planar patch

using in-network image warping allowing the network to minimize image

dissimilarity” [Tankovich et al., 2020, p. 2]. What this means is that we shift

the tile disparities by ±1 before we upsample the tiles, and warp r_feat.

We, therefore, need to upsample and warp three times. We do this in a

for-loop like so:

for delta_d in range(-1, 2):

d = hyp[:, 0, ...] + delta_d

dx = hyp[:, 1, ...]

dy = hyp[:, 2, ...]

upsample and warp

...

At the end of every iteration, we append the cost to a list, that is

consequently returned from the function. The list of costs is used by the

tile update network to predict tile updates.

4.4.2 Tile Updates

A tile update layer comprises an input layer, several residual blocks, and

a final layer. The first layer was implemented as a 1×1 convolution

followed by a leaky ReLU with a slope coefficient of 0.01. Then follows

two residual blocks. Each residual block comprises three 3×3 convolutions

with padding and dilation equal to one. Each convolution is followed

by a leaky ReLU function, both with slope coefficients of 0.01. There is

no activation function following the final convolution. A more detailed

CHAPTER 4. IMPLEMENTATION 69

description of the residual block layers follows in table 4.2. Note that the

dilation factor (D) is listed.

Layer name Input Output C in C out K P S D Activation

res_conv0 x out0 32 32 3 1 1 1 Leaky ReLU

res_conv1 out0 out1 32 32 3 1 1 1 Leaky ReLU

res_conv2 out1 out2 32 32 3 1 1 1 -

Table 4.2: Arcitechture of a single residual block.

Table 4.3 shows how the tile update network looks for the first iteration,

i.e., when only one tile hypothesis map is available. The shaded rows in

the table are two residual blocks of the type in table 4.2.

Layer name Input Output C in C out K P S D Activation

first_layer init_hyp out1 64 32 1 0 1 1 Leaky ReLU

res_blk0 out1 out2 32 32

res_blk1 out2 out3 32 32
-

last_layer out3 update 32 17 1 0 1 1 -

Table 4.3: Architecture of tile update network using single tile hypothesis

map as input.

Note that the number of output channels of the last layer is 17. The tile

update network’s job is to predict deltas for the tile hypotheses, along

with a confidence value that expresses how certain the network is that the

predicted deltas are correct. A single tile hypothesis has a size of 16 in the

channel dimension, therefore the first 16 channels of last_layer are the

deltas, while the last channel contains the confidence values. The deltas are

added together with the input tile hypothesis map init_hyp. The updated

init_hyp is returned as it will be used for the next iteration. Before we start

on the next iteration, however, we need to upsample init_hyp by a factor

of 2. We upsample the tile disparities with the plane equation, while using

torch.nn.functional.interpolate() to upsample the slant gradients dx

and dy and the feature description p with nearest-neighbor interpolation.

In the remaining iterations, we use two different tile hypothesis maps, the

one from the previous iteration called refined_hyp, and the unrefined tile

hypothesis map from the current iteration called init_hyp, created in the

initialization module. We’ve provided the architecture of these tile update

networks in table 4.4. The only difference from the architecture in table 4.3

CHAPTER 4. IMPLEMENTATION 70

is the number of input channels of the first layer, and output channels of the

last layer. This is to account for the extra tile hypothesis map used as input,

as we want to predict deltas and confidence scores for both tile hypothesis

maps. We do this to choose the tile hypotheses and their deltas with the

highest confidence score between init_hyp and refined_hyp. This has

been explained in the design chapter. Once the refined tile hypothesis map

has been selected, and the deltas have been applied, we return the new

refined tile hypothesis map, upsample it, and pass it on to the next iteration.

This is done until all tile hypothesis maps have been refined.

Layer name Input Output C in C out K P S D Activation

first_layer init_hyp || refined_hyp out1 128 32 1 0 1 1 Leaky ReLU

res_blk0 out1 out2 32 32

res_blk1 out2 out3 32 32
-

last_layer out3 update 32 34 1 0 1 1 -

Table 4.4: Architecture of residual block using two tile hypothesis maps as

input. Note the difference in the number of input and output channels.

4.4.3 Final Tile Updates

We also need to implement the three final tile updates that are applied to

the refined 4×4 downsampled tile hypothesis map (i.e., the refined tile

hypothesis map that contains tile hypotheses that cover 4×4 tiles in the

original resolution). We call these post tile updates. For these tile updates,

we include extra residual blocks with dilated convolutions. Table 4.5 shows

how these residual blocks are implemented. Note the use of dilatons. To

predict the tile updates, we use the tile update network defined in table

4.3. The difference is that we use six of the residual blocks defined in table

4.5 instead. The third and final post tile update, predicts the final disparity

map and slant map.

Before going into the implementation details of the loss function, we refer

to figure 4.2. The figure illustrates an enlarged 64×64 tile, to give a better

understanding of how the tiles are refined during the propagation stage. In

the example, we can see artifacts caused by smaller and smaller tile sizes.

With the smallest tile being 4×4. The more these tiles are refined, the more

accurate the disparity map becomes.

CHAPTER 4. IMPLEMENTATION 71

Layer name Input Output C in C out K P S D Activation

res_conv0 x out0 32 32 3 1 1 1 Leaky ReLU

res_conv1 out0 out1 32 32 3 1 1 2 Leaky ReLU

res_conv2 out1 out2 32 32 3 1 1 4 Leaky ReLU

res_conv3 out2 out3 32 32 3 1 1 8 Leaky ReLU

res_conv4 out3 out4 32 32 3 1 1 1 Leaky ReLU

res_conv5 out4 out5 32 32 3 1 1 1 -

Table 4.5: Architecture of residual blocks used for last tile update layers.

Figure 4.2: A 64 × 64 tile.

4.5 Loss Function

The loss function takes the cost volumes computed in the initialization

phase, the tile geometry (d, dx, dy) refined throughout the propagation

phase, and the confidence scores predicted by the tile update networks as

input. We’ve implemented the loss function in two parts, the initialization

loss that uses the initialization cost volumes, and the propagation loss that

use the tile geometry and the confidence scores. We’ve stuck closely to

Tankovich et al. (2020), using max-pooling to downsample the ground-

truth disparity maps in the initialization loss, and upsampling the tile

geometry using the plane equation for the tile disparity, and nearest-

neighbor upsampling for the slant gradients. A small uncertainty however

CHAPTER 4. IMPLEMENTATION 72

(a) Predicted disparity map (b) Ground-truth

Figure 4.3: Results of model with error in propagation loss implementation.

is if the confidence score maps should be upsampled using nearest-

neighbor upsampling or not. We decided to do so, although not implicitly

stated in the paper.

The loss function has a lot of parameters. We used the same parameters

as in Tankovich et al. (2020) as they seemed to work for their model. The

parameters in the initialization loss are set to α = 0.9 and c = 0.1, and the

parameters for the propagation loss are A = B = C1 = 1 and C2 = 1.5.

During the implementation of the propagation loss, we encountered a

small but crucial mistake. In the HITNet paper, it is stated: “For the last

several levels, when only a single hypotheses is available, loss is applied

to all pixels (A = ∞)” [Tankovich et al., 2020, p. 6]. For the last three tile

update layers, they remove the truncation A (i.e., set A = ∞). During

the initial implementation of the propagation loss, we glossed over this

information. As we tested our network, we noticed that it had a hard

time predicting disparities for the foreground objects. As illustrated in

figure 4.3, we can see that the predicted disparity map lacks disparities for

the foreground objects. This was due to the truncation threshold A being

applied to the last three refinement layers. This prevented the model from

learning to refine the disparities of foreground objects. Fixing this error

results in much better disparity maps.

4.6 Image Inpainting

The idea behind image inpainting was to fill in missing pixels of a

warped image. After warping the left image into the right image using

the left image’s disparity map, we would apply the image inpainting

CHAPTER 4. IMPLEMENTATION 73

module proposed by Liu et al. (2018) to recreate the rest. The model was

implemented by following the architecture in figure 4.4. The network uses

partial convolutions during the eight first layers. We used their official

implementation of the convolution found on Github1. We also trained

the network using their custom loss function which is found in the same

Github repository. We will not go into the details of partial convolutions,

as image inpainting is not a part of this thesis’ scope. Instead we refer to

the paper Liu et al. (2018).

Figure 4.4: Architecture of image inpainting model [Liu et al., 2018, p. 18]

We also want to go more in-depth on how we implemented the warping

function to warp the left image into the right image. The left image can be

indexed using a two-dimensional array with an x and y index for the rows

(height) and columns (width) respectively. Here x ∈ [0, H) and y ∈ [0, W)

where H and W is the height and width of the image. We can find the

right image’s pixels in the left image by offsetting the x indices with the

disparity values d of each pixel. This way we can recreate the right image

1https://github.com/NVIDIA/partialconv

https://github.com/NVIDIA/partialconv

CHAPTER 4. IMPLEMENTATION 74

Figure 4.5: Warped image

by filling in every pixel (x, y) in the right image, with the pixel (x + d, y)
in the left image. There is one problem when doing this, that being the

invalid disparities of the disparity map. The SGM implementation in

OpenCV labels all pixels with invalid disparities with a negative number.

We, therefore, need to create a bit-mask from the disparity map, that is true

for all pixels with valid disparities (with d ≥ 0), and false for all pixels with

invalid disparities (with d < 0). This way we can fill in the pixels that have

a valid disparity while keeping the invalid pixels empty. We can clearly

see the bit-mask, or rather the inverse of the bit-mask, by looking at all the

black holes in figure 4.5. These black holes would thereafter be filled in by

the inpainting network.

We trained the image inpainting network separately from the HITNet

model, using the right image as ground-truth. The results of this module

will be presented in chapter 5.

4.7 Plane Fitting

A crucial part of the HITNet model is the ability to predict the slants for

each tile. As a reminder, a tile is represented by the tile disparity d, and

the slant gradients dx and dy. The loss function uses the slant gradients to

impose a loss on them to allow the model to predict better slant gradients.

Because of their use in the loss function, we need ground-truth slant maps

to calculate the cost of the predicted slant maps. As mentioned in chapter

3, we do as is described in Tankovich et al. (2020), fitting a 9×9 plane

CHAPTER 4. IMPLEMENTATION 75

around each pixel in every ground-truth disparity map. Naturally, this has

to be done before training due to the computational cost of fitting a plane

around every pixel in every ground-truth disparity map. The main idea is

to iterate over all ground-truth disparity maps and convert them to their

real three-dimensional coordinates. As it turns out, OpenCV has a function

for exactly this, reprojectImageTo3D(), that takes the disparity map as

input along with the camera’s intrinsic matrix, and projects each pixel in the

disparity map to their real-world coordinate representation. This allows us

to convert a one-dimensional disparity map into a three-dimensional point

cloud with coordinates (x, y, z) for each pixel. The function needs to know

the camera’s focal length and other specifications, which are provided in

the camera intrinsic matrix. This matrix contains information about the

camera, such as its focal length and the principal point. The intrinsic matrix

accepted by reprojectImageTo3D() looks like this


fx 0 cx

0 fx cy

0 0 1


Here, fx and fy are the focal lengths in pixel units, and (cx, cy) is the

principal point. The principal point is the center point of the image plane,

the plane that is captured by the camera. With the SceneFlow dataset,

Mayer et al. has provided the camera intrinsic matrix for their cameras2.

This matrix is shown below.


1050.0 0.0 479.5

0.0 1050.0 269.5

0.0 0.0 1.0


When the ground-truth disparity map has been converted into its three-

dimensional representation, we then needed to divide each 3D map into

9×9 areas that we could fit the planes too. For this part we used PyTorch’s

torch.unfold() function. This function takes a tensor as input and

unfolds the tensor into N×M windows, the size of which is specified by

a parameter. We want to center a 9×9 window around every point. To

achieve this, we first zero-pad the 3D point cloud with a border of 4 pixels.

2The camera intrinsics matrix can be found on their website: https://lmb.informatik.
uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html

https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html

CHAPTER 4. IMPLEMENTATION 76

This is done as we want each 9×9 area to be centered around every pixel.

Without the zero padding, the four outermost edge points would not be

included.

For each 9×9 window, we want to find the least-squares fit of a plane.

PyTorch has a function that does this for us, torch.linalg.lstsq(). Least

squares are often used in data fitting as it minimizes the squares of the

residuals. A residual is the error ŷ − y between the predicted point ŷ and

the actual point y. torch.linalg.lstsq() tries to fit a plane such that

the squares of the residual for all points are as small as possible. It takes

as input two tensors A and b, which represents the same matrices in the

mathematical equation of the least-squares problem

Ax = b

torch.linalg.lstsq() minimizes the residuals ||Ax − b||2F where ||·||F is

the Frobenius norm, or the matrix norm. It finds the x values that results

in the least residual cost. This solution is the gradients, or the normal

vector, of the plane. A is a matrix containing all x and y coordinates in

the point cloud as well as a third column of ones. The vector b contains

the z coordinates of the point cloud. Passing these as arguments to the

least-squares function, we get a solution (x, y, z). We only want the x and y
components, as the HITNet model is only dealing with 2-dimensional tiles,

making the z coordinate redundant. Doing this for all 9×9 windows of a

single disparity map results in a ground-truth slant gradient map. See 3.11,

for an example of a ground-truth slant map. The brighter the pixel, the

more slanted the surface is.

4.8 Training Details

We trained our models using the Adam optimizer algorithm with an initial

learning rate of 4e−4 and weight decay of 1e−6. The learning rate is in

accordance with Tankovich et al. (2020) who also uses the Adam optimizer

with the same learning rate. Tankovich et al. (2020) also uses learning rate

scheduling to decrease the learning rate as it gets further into the training

cycle. Learning rate scheduling is used to decay the learning rate during

training. This can be done in a lot of different ways, but in our case, we use

CHAPTER 4. IMPLEMENTATION 77

Figure 4.6: A plane fitted to a 9×9 point cloud using PyTorch’s least squares

algorithm. The plane isn’t exactly in the correct position, but we only care

about the orientation of the plane, which seems correct.

multi-step learning rate scheduling. This is an algorithm that decays the

learning rate by some factor at certain epochs. We multiply the learning

rate by a factor of 0.1 at the 50th, 75th, and 90th epochs. This means the

learning rate is 4e−4 between the 0th and 29th epoch, 4e−5 between the

30th and 74th epoch, 4e−6 between the 75th and 89th epoch, and 4e−7 from

the 90th epoch and onward. This gradual decrease in learning rate will

shorten the steps the optimizer takes towards the local minima, decreasing

the chance of stepping over it.

We implemented and tested our models on the University Centre for

Information Technology’s (USIT) machine learning infrastructure. The

cluster provided us with Nvidia RTX 2080ti GPUs to do our testing and

debugging on. We switched over to using Simula Research Laboratory’s

eX3 computing cluster when it was time to train our model. This is

due to their more powerful Nvidia A100 GPUs and more robust resource

management between users using the Slurm Workload Manager.

Chapter 5

Evaluation

In this section, we present the results of our thesis and discuss them. We

want to answer the research questions we stated in the introduction to this

thesis. For clarity we restate them here:

1. Does block-matching help in any way during the training of a stereo

depth estimation model?

2. Will block-matching improve the results of a model vs. the same

model without the use of block-matching?

The first question can be answered by looking at the loss curves presented

in the previous chapter. We can get a lot of information about the training

process by inspecting these in more detail. To answer the second question,

we take a look at the performance results. Before going into the results of

our experiments, we will first discuss the results of the inpainting module

we implemented as a possible part of our pipeline.

5.1 Inpainting Results

We shall quickly discuss the results of our image inpainting module,

illustrated in figure 5.1. As is quite obvious, the results of the model are

underwhelming. There may be many reasons for this. The first reason may

be the choice of model. The model might be unsuited for such a tough task

of filling in lots of small and large holes left by the SGM algorithm. The

78

CHAPTER 5. EVALUATION 79

(a) Prediction (b) Ground-truth (right image)

Figure 5.1: Results of inpainting network.

leftmost hole of the warped image, the large black bar, is especially hard

to fill in, as large holes are a common problem for inpainting networks in

general. This is due to the lack of enough context when approaching the

center of the hole. Another problem might have been the warping of the

left image. As is apparent, the warping of the left image into the right

image is not perfect. We could probably see improvements if we tweaked

the parameters of the SGM algorithm to make the computed disparity map

more accurate. The inpainting network is not the main focus of this thesis,

and will instead propose this topic as future work in the next chapter. In the

next sections, we go over the results of our main experiments and discuss

them.

5.2 Training Results

In this section we refer to figures 5.2 and 5.3 which illustrates the loss curves

of the training and validation sets over 115 epochs. Figure 5.2 plots the

loss of the control model, the model that does not accept disparity maps as

input. Figure 5.3 plots the loss of our experimental model, the model that

do accept disparity maps. From the graphs, we can see that both models

improved on the training set, because the training loss, shown in blue, is

decreasing in both models. As shown by the red colored line, the validation

loss is quite a bit higher than the training loss. This is the case for both

models, although the validation loss for the control model (figure 5.2) has a

net decrease even though it is quite volatile for the first 75 epochs or so. For

our experimental model (figure 5.3) we see the same volatility in validation

loss, but instead of a net decrease, we see a net increase. This is a sign

of overfitting. In both cases, we do not see a good model fit, where the

CHAPTER 5. EVALUATION 80

Figure 5.2: Training and validation loss curves without disparity maps as

input.

validation and training loss is about the same.

5.3 Performance Results

In this section we refer to figures 5.4 to 5.8. These illustrate the progress

of the different performance metrics we recorded during the 115 epochs of

training. We also explain what each metric represents.

5.3.1 Peak Signal-To-Noise Ratio

We start by explaining what peak signal-to-noise ratio (PSNR) is before we

explain our results. PSNR is a metric that tells us how noisy an image is

compared to another. It can be used to evaluate compression algorithms on

how good the compressed image is versus the uncompressed image. Since

it measures the noise between images, it is measured in decibels (dB). It is

computed between two images A and B with the following formula

PSNR(A, B) = 20 · log10(MAX)− 10 · log10(MSE(A, B))

CHAPTER 5. EVALUATION 81

Figure 5.3: Training and validation loss curves with disparity maps as

input.

where the MSE is the mean squared error of all pixels between images A
and B with resolutions N×M

MSE(A, B) =
(A − B)2

N · M

Note that we take the log10 of MAX where MAX is the maximum value a

pixel can hold. Since we calculate the PSNR of disparity maps, which are

single-channel images, the max pixel value is 255.

Figure 5.4 illustrates the mean PSNR per epoch for the control model (in

green) and the experimental model (in orange). For PSNR, a higher value

is better. We can see that after the final epoch, the best-performing model

by far is the control model. We can also see that the PSNR is oscillating and

unstable for the first 75 epochs, which was also the case for the loss curves.

However, the control model in green is more stable than the experimental

model in orange. Both stabilize after the 75th epoch mark, which we also

could see in the loss curves.

CHAPTER 5. EVALUATION 82

Figure 5.4: peak signal-to-noise ratio

5.3.2 Percentage of Erroneous Pixels

The percentage of erroneous pixels is a measure of how many disparities of

the predicted disparity map have a greater error than a certain threshold.

In other words, if the error between the predicted disparity d̂ and ground-

truth disparity d,
∣∣∣d̂ − d

∣∣∣ is greater than the threshold, that pixel is

considered erroneous, or bad. In figure 5.5, we plot the percentage of

disparities with an error greater than one, i.e.,
∣∣∣d̂ − d

∣∣∣ > 1. Figure 5.6 plots

the percentage of bad pixels with a greater error than three, i.e.,
∣∣∣d̂ − d

∣∣∣ > 3.

We refer to these figures as bad1 and bad3 respectively. We would expect

the bad3 metric to be smaller than the bad1 metric, as it has a higher error

threshold, and thus more disparities will fall in the category of a “good”

pixel. This metric was proposed by Scharstein and Szeliski (2002) and is

used to give us an idea of how much of the predicted disparity map is

correct within a certain threshold.

We want this metric as small as possible, as it means a bigger percentage

of the predicted disparity map is correct. If we inspect the two figures, we

can see that the disparity maps improve over epochs. What is different

from the PSNR, is that our experimental model (in orange) is better than

the control model (in green), both for the bad1 and bad3 metrics. Although

the difference is small for the bad3 metric, it is quite noticeable for the bad1

metric. We can also see that the control model is more volatile than the

CHAPTER 5. EVALUATION 83

Figure 5.5: Percentage of pixels with an end-point error greater than 1 pixel

experimental model for the first 75 epochs, which has been the opposite

case for the other metrics.

5.3.3 Root-Mean-Square Error

Root-mean-square (RMS) error is the third metric we evaluate our models

by. It gives us the root of the mean error between the predicted disparities

d̂, and the ground-truth disparities d for all disparities in a disparity map.

The formula is given as:

RMS(d̂, d) =

√√√√∣∣∣d̂ − d
∣∣∣2

N

Figure 5.7 shows the plots of RMS between the two models. The

most noticeable thing about the graph is the massive fluctuations in our

experimental model (in orange) for the first 50 epochs before it settles

afterward. We can also see that the control model (in green) has an overall

better score than the experimental model.

CHAPTER 5. EVALUATION 84

Figure 5.6: Percentage of pixels with an end-point error greater than 3 pixel

Figure 5.7: Root-mean-square error

CHAPTER 5. EVALUATION 85

Figure 5.8: End-point error

5.3.4 End-Point Error

As the final performance metric, we use the end-point error (EPE). It is

similar to the root-mean-square error and is a measure of the error between

the predicted disparity map, and the ground truth. The reason for tracking

the end-point error of our models is to more easily compare them with

other state-of-the-art models. The end-point error is simply the absolute

error between the predicted disparity d̂ and the ground-truth disparity d:

EPE(d̂, d) =
∣∣∣d̂ − d

∣∣∣
As is mentioned in Tankovich et al. (2020), we exclude all pixels with

ground-truth values bigger than 192 from the end-point error calculations,

to get more accurate results that are comparable to the original HITNet

model.

If we look at figure 5.8, we can see the change in EPE over epochs. We

can see the same developments that are present in the RMS plot, mainly

that the experimental model is much more inconsistent during the first 50

epochs while stabilizing afterward. Unlike in the RMS plot, we can see that

both models converge towards the same end-point error after a while.

CHAPTER 5. EVALUATION 86

5.4 Disparity Map and Slant Map Results

The figures (a) and (b) in figure 5.10 shows the final prediction of the two

models, and figures (a) and (b) in figure 5.11 shows the final slant maps.

The figures from 5.12 and onward shows how the disparity maps and slant

maps have been refined over the 115 epochs.

By inspecting the final disparity and slant maps and comparing them to

their ground-truth maps, we can see that the control model produces better

disparity maps. This is also evident in the results presented previously. As

for the slant maps, both need further improvements to be viable for the

models. Improvements to the slant maps will further improve the disparity

maps. Due to the subpar slant maps, the accuracy of the disparity maps

suffers the consequences.

We can look at the evolution of these maps from figures 5.12 and onward.

After the first epoch, we can see that our experimental model (disparity

map marked with (a)) is quite a lot better than the control model (disparity

map marked with (b)). However, this changes after a few epochs when the

control model surpasses the experimental model. This is evident from the

disparity maps in figure 5.13 and onward. We can also see that the quality

of the disparity maps in figure 5.14 has worsened versus the disparity maps

in figure 5.13. As for the slant maps, we can notice small improvements

in the slant maps from epoch to epoch, although the results aren’t really

resembling the ground-truth at any point.

5.5 Discussion

As has been observed in all previous plots, both models are very volatile.

The loss curves show a trend of both models overfitting. This may be a

case of a too high learning rate. Recalling back to section 4.8 about the

training details of our networks, we mentioned the use of learning rate

scheduling to decay the learning rate over time. We divided the learning

rate by ten at the 50th, 75th and 90th epoch. These decreases are visible

in figures 5.2 and 5.3. If we observe the graph at these points, we can see

that the graph changes. This is especially noticable in the validation loss

curves. The loss becomes more stable when the learning rate decreases.

CHAPTER 5. EVALUATION 87

This leads us to believe that our initial learning rate of 4e−3 is too high

and should be decreased. The use of a small learning rate is also discussed

in the HITNet paper: “Indeed, empirically we found that using a small

initial learning rate 1e−4 and training for longer achieves the best results on

multiple datasets without showing sign of overfitting” [Tankovich et al.,

2020, p. 12], although in our case, we would benefit from an even lower

learning rate. We also observe that the experimental model (figure 5.3) is

more sensitive to the learning rate, as the validation loss is much more

volatile. The experimental model also overfits almost immediately.

Another observation we’ve made is that the experimental model is better

than the control model in all metrics for the first five epochs. This is an

important observation, as it upholds our idea that disparity maps do have

a positive impact on both the training and accuracy of a neural network.

We explain the decrease in accuracy after the first five epochs as so:

After the five first epochs, the experimental model starts to overfit. It

still improves on the training dataset, while it worsens on the validation

dataset. This is not the case for the control model, as the validation loss still

decreases after the fifth epoch. Since the only difference between the two

models is the SGM algorithm, it is easy to recognize that the problem lies

with the algorithm. We believe the main problem is that the experimental

model becomes too biased toward the disparity maps. We also believe

that the SGM algorithm performs worse overall on the validation set. This

results in a model that after the five first epochs, has understood that the

information in the disparity maps is useful. However, if the disparity

maps are very inaccurate, it doesn’t change the model’s intuition to use the

disparity maps. This is what we believe is happening to the experimental

model on the validation set. The SGM algorithm produces inaccurate

disparity maps of the data samples in the validation set that the model will

heavily rely on. This severely reduces the performance of the model on

unseen data. It is a classic case of overfitting. The reason the experimental

model is doing good for the first five epochs is most likely due to the

weights of the model not being updated to weigh the disparity maps more

than the RGB images. This leads to the model taking into account more

features of the RGB images in its prediction. This is also why the validation

loss is at its lowest for the first five epochs.

A solution to this problem is to control the model’s weights more closely,

CHAPTER 5. EVALUATION 88

(a) Left disparity map (b) Right disparity map

Figure 5.9: Disparity maps computed by the SGM algorithm. (a) uses the

left image as the reference image, while (b) uses the right as the reference

image.

for example by using dropout layers. In our model, the feature extraction

network processes both the RGB image and the disparity map at the

same time (the RGB image is concatenated with the disparity map). By

creating two separate feature extraction networks, one for RGB images and

disparity maps separately, it is easier to fine-tune the feature extraction of

both inputs.

There is also the discussion of if the SGM algorithm is the correct algorithm

for such a solution. The initial disparity maps fed into our experimental

model have been of fairly poor quality, as shown in figure 5.9. A solution

could be to tweak the SGM parameters to improve performance. A

problem with this, however, is that the same parameters are used for

all samples in the SceneFlow dataset. Although the parameters may

improve the disparity maps of some samples, they may also decrease the

disparity map quality of other samples. We, therefore, need to find the

parameters that fit well for any arbitrary left-right image pair, which takes

a lot of trial and error. Another solution is to change the block-matching

algorithm to another algorithm, maybe even a pretrained stereo depth

estimation network. A pretrained network already has found the best

general parameters to use for any arbitrary sample. By swapping the SGM

algorithm with a state-of-the-art stereo depth model, we could also more

easily test if disparity maps as input have any positive effects on disparity

map predictions. The disadvantage of this is that we move away from

classic block-matching algorithms which is what this thesis is about.

CHAPTER 5. EVALUATION 89

(a) With disparity maps

(b) Without disparity maps

(c) Ground-truth

Figure 5.10: Final disparity map predictions

CHAPTER 5. EVALUATION 90

(a) With disparity maps

(b) Without disparity maps

(c) Ground-truth

Figure 5.11: Final slant map predictions

CHAPTER 5. EVALUATION 91

(a) With disparity maps (b) Without disparity maps

(c) Ground-truth

Figure 5.12: Results after a single epoch, comparing with and without

disparity maps as input.

(a) With disparity maps (b) Without disparity maps

(c) Ground-truth

Figure 5.13: Results after 39 epochs

CHAPTER 5. EVALUATION 92

(a) With disparity maps (b) Without disparity maps

(c) Ground-truth

Figure 5.14: Results after 77 epochs

(a) With disparity maps (b) Without disparity maps

(c) Ground-truth

Figure 5.15: Results after 115 epochs

CHAPTER 5. EVALUATION 93

(a) With disparity maps (b) Without disparity maps

(c) Ground-truth

Figure 5.16: Slants after first epoch.

(a) With disparity maps (b) Without disparity maps

(c) Ground-truth

Figure 5.17: Slants after 39 epochs.

CHAPTER 5. EVALUATION 94

(a) With disparity maps (b) Without disparity maps

(c) Ground-truth

Figure 5.18: Slants after 77 epochs.

(a) With disparity maps (b) Without disparity maps

(c) Ground-truth

Figure 5.19: Slants after 115 epochs.

Chapter 6

Conclusion and Future Work

In this thesis, we have explored the idea of using the combination of

block-matching and machine learning to predict accurate disparity maps.

With accurate depth estimation, we could address the problems present in

mixed and augmented reality today, where depth estimation is especially

important. We used a combination of the semi-global matching algorithm,

and the HITNet stereo depth estimation model to test if disparity maps

computed by the SGM algorithm have any positive impact on machine

learning disparity map predictions. We tested this by implementing two

identical models based on Tankovich et al. (2020), one only accepting the

left-right image pair (the control model), and one accepting both the left-

right image pair along with their disparity maps (the experimental model).

We also discussed the possibility of using image inpainting to recreate the

right image. We’ve tested our models and gotten results that lead us to

believe that our approach does not provide any notable benefits to today’s

machine learning approaches. However, solutions to the problems have

been discussed.

6.1 Future Work

We believe there is still research to be done on the topic of this thesis,

proposed in the bullets below:

• There is still room to tweak both the block-matching algorithm and

95

CHAPTER 6. CONCLUSION AND FUTURE WORK 96

the ML model. This includes tweaking the SGM parameters presen-

ted in section 4.1.2 to improve the performance of the block-matching

algorithm. There is also a need to experiment with model hyperpara-

meters such as the learning rate. Testing different optimizing and

learning rate scheduling techniques are also needed. Another idea

is to incorporate new layers such as batch-normalization layers and

dropout layers. We refer to the discussion in section 5.5.

• We also propose the idea of completely replacing the SGM algorithm

with either another classic block-matching algorithm or even another

stereo depth machine learning method to provide the model with

more accurate disparity maps.

• As for the small detour we had with the image inpainting module,

we believe there is still lots of research to be done. Image inpainting

could be especially interesting in conjunction with the topic of stereo

depth estimation, where occlusion errors are a big problem. Filling

in occluded areas using image inpainting seems like an interesting

research topic. We refer to the paper ‘‘Softmax Splatting for Video

Frame Interpolation’’ [Niklaus and Liu, 2020] for further reading.

Bibliography

Barron, J. T. (2017). A General and Adaptive Robust Loss Function. http:

//arxiv.org/abs/1701.03077

Chang, J. R. & Chen, Y. S. (2018). Pyramid Stereo Matching Network.

Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 5410–5418. https://doi.org/10.1109/

CVPR.2018.00567

Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J. &

Young, P. R. (1989). Computing as a discipline (P. J. Denning, Ed.).

Communications of the ACM, 32(1), 9–23. https://doi.org/10.1145/

63238.63239

Dumoulin, V. & Visin, F. (2016). A guide to convolution arithmetic for deep

learning. http://arxiv.org/abs/1603.07285

Eden, A. H. (2007). Three Paradigms of Computer Science. Minds and
Machines, 17(2), 135–167. https ://doi .org/10.1007/s11023- 007-

9060-8

Geiger, A., Lenz, P. & Urtasun, R. (2012). Are we ready for Autonomous

Driving? The KITTI Vision Benchmark Suite. Conference on Computer
Vision and Pattern Recognition (CVPR).

Gu, X., Fan, Z., Dai, Z., Zhu, S., Tan, F. & Tan, P. (2019). Cascade

Cost Volume for High-Resolution Multi-View Stereo and Stereo

Matching. http://arxiv.org/abs/1912.06378

Hadsell, R., Chopra, S. & LeCun, Y. (2006). Dimensionality Reduction

by Learning an Invariant Mapping. 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06), 2,

1735–1742. https://doi.org/10.1109/CVPR.2006.100

He, K., Zhang, X., Ren, S. & Sun, J. (2015). Deep Residual Learning for

Image Recognition. http://arxiv.org/abs/1512.03385

97

http://arxiv.org/abs/1701.03077
http://arxiv.org/abs/1701.03077
https://doi.org/10.1109/CVPR.2018.00567
https://doi.org/10.1109/CVPR.2018.00567
https://doi.org/10.1145/63238.63239
https://doi.org/10.1145/63238.63239
http://arxiv.org/abs/1603.07285
https://doi.org/10.1007/s11023-007-9060-8
https://doi.org/10.1007/s11023-007-9060-8
http://arxiv.org/abs/1912.06378
https://doi.org/10.1109/CVPR.2006.100
http://arxiv.org/abs/1512.03385

BIBLIOGRAPHY 98

Hirschmuller, H. (2008). Stereo Processing by Semiglobal Matching and

Mutual Information. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(2), 328–341. https : / / doi . org / 10 . 1109 /

TPAMI.2007.1166

Lee, H., Grosse, R., Ranganath, R. & Ng, A. Y. (2009). Convolutional deep

belief networks for scalable unsupervised learning of hierarchical

representations. Proceedings of the 26th Annual International Confer-
ence on Machine Learning - ICML ’09, 1–8. https://doi.org/10.1145/

1553374.1553453

Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A. & Catanzaro, B. (2018).

Image Inpainting for Irregular Holes Using Partial Convolutions.

http://arxiv.org/abs/1804.07723

Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A. &

Brox, T. (2016). A Large Dataset to Train Convolutional Networks

for Disparity, Optical Flow, and Scene Flow Estimation. IEEE
International Conference on Computer Vision and Pattern Recognition
(CVPR). http : / / lmb . informatik . uni - freiburg . de / Publications /

2016/MIFDB16

arXiv:1512.02134

Menze, M. & Geiger, A. (2015). Object Scene Flow for Autonomous

Vehicles. Conference on Computer Vision and Pattern Recognition
(CVPR).

Niklaus, S. & Liu, F. (2020). Softmax Splatting for Video Frame Interpola-

tion. http://arxiv.org/abs/2003.05534

OpenCV. (2021). OpenCV: cv::StereoSGBM Class Reference. Retrieved May

10, 2022, from https://docs.opencv.org/4.5.4/d2/d85/classcv_1_

1StereoSGBM.html

Ronneberger, O., Fischer, P. & Brox, T. (2015). U-Net: Convolutional

Networks for Biomedical Image Segmentation. http://arxiv.org/

abs/1505.04597

Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N.,

Wang, X. & Westling, P. (2014). High-Resolution Stereo Datasets

with Subpixel-Accurate Ground Truth. https://doi.org/10.1007/

978-3-319-11752-2_3

Scharstein, D. & Szeliski, R. (2002). A Taxonomy and Evaluation of

Dense Two-Frame Stereo Correspondence Algorithms. International
Journal of Computer Vision, 47(1), 7–42. https://doi.org/10.1023/A:

1014573219977

https://doi.org/10.1109/TPAMI.2007.1166
https://doi.org/10.1109/TPAMI.2007.1166
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/1553374.1553453
http://arxiv.org/abs/1804.07723
http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16
http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16
http://arxiv.org/abs/2003.05534
https://docs.opencv.org/4.5.4/d2/d85/classcv_1_1StereoSGBM.html
https://docs.opencv.org/4.5.4/d2/d85/classcv_1_1StereoSGBM.html
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://doi.org/10.1007/978-3-319-11752-2_3
https://doi.org/10.1007/978-3-319-11752-2_3
https://doi.org/10.1023/A:1014573219977
https://doi.org/10.1023/A:1014573219977

BIBLIOGRAPHY 99

Tankovich, V., Häne, C., Zhang, Y., Kowdle, A., Fanello, S. & Bouaziz, S.

(2020). HITNet: Hierarchical Iterative Tile Refinement Network for

Real-time Stereo Matching. http://arxiv.org/abs/2007.12140

Žbontar, J. & Le Cun, Y. (2015a). Computing the stereo matching cost with

a convolutional neural network. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 07-12-
June(1), 1592–1599. https://doi.org/10.1109/CVPR.2015.7298767

Žbontar, J. & LeCun, Y. (2015b). Stereo Matching by Training a Convolu-

tional Neural Network to Compare Image Patches. http://arxiv.

org/abs/1510.05970

Zhang, A., Lipton, Z. C., Li, M. & Smola, A. J. (2020). Dive into Deep Learning.

https://d2l.ai/

http://arxiv.org/abs/2007.12140
https://doi.org/10.1109/CVPR.2015.7298767
http://arxiv.org/abs/1510.05970
http://arxiv.org/abs/1510.05970
https://d2l.ai/

	Introduction
	Research Question
	Research Method
	Thesis Outline

	Background
	Block-Matching
	Epipolar Geometry
	Problems With Stereo Matching
	Machine Learning
	Training a Neural Network
	Loss Functions
	Model Generalization
	Activation Functions
	Convolutional Neural Networks

	Related Work

	Design
	Datasets
	The Pipeline
	Image Inpainting
	Initialization Module
	Feature Extraction
	Tile Hypothesis Maps
	Tile Feature Extraction
	Computing Matching Cost
	Initialization of tile hypotheses

	Propagation Phase
	Warping
	Computing Matching Cost
	Tile Updates
	Final Tile Updates

	Loss Function
	Initialization Loss
	Propagation Loss

	Implementation
	Data Preparation
	Custom SceneFlow Dataset Implementation
	Data Augmentation

	Feature Extraction
	Initialization Module
	Tile Feature Extraction
	Matching Cost Computation
	Tile Hypothesis Initialization

	Propagation Module
	Warping and Matching Cost Calculation
	Tile Updates
	Final Tile Updates

	Loss Function
	Image Inpainting
	Plane Fitting
	Training Details

	Evaluation
	Inpainting Results
	Training Results
	Performance Results
	Peak Signal-To-Noise Ratio
	Percentage of Erroneous Pixels
	Root-Mean-Square Error
	End-Point Error

	Disparity Map and Slant Map Results
	Discussion

	Conclusion and Future Work
	Future Work

