Norwegian poetry generation
and rhyme modelling

Tita Enstad

Thesis submitted for the degree of
Master in Informatics: Language Technology
60 credits

Institute for Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2022

Norwegian poetry generation
and rhyme modelling

Tita Enstad

(©) 2022 Tita Enstad
Norwegian poetry generation and rhyme modelling
http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Computational Creativity is by some seen as the ultimate challenge for Al
Numerous works on the computationally creative task of poetry generation have
been published. However, no contributions on this topic have been made for
Norwegian. In this thesis, we address that gap.

We present NoRSC: Norwegian Rhyme Scheme Corpus, a publicly available
rhyme scheme annotated data set of Norwegian poetry. Using the NoRSC data
set, we train LSTM-based models on rhyme and poetry generation.

We explore combining rhyme models and language models to enhance rhyming
ability in poetry generation. Our poetry generation model can generate a stanza
with any rhyme scheme.

Our poetry generation model is evaluated with human evaluation. We inves-
tigate whether people believe that the generated poetry is written by a human
in a Turing-like test. The evaluators are also asked to score the rhyme in the
generated stanzas.

We received 27 answers to our web forms, and could conclude that our best
poetry generation model achieved high rhyme scores, and was in about half of
the instanced able to imitate a human poet.

Acknowledgements

I would like to thank Lilja @vrelid for being my supervisor these past two years.
I left every biweekly supervision meeting feeling more motivated than I was
before going in.

I would also like to thank Sprakbanken (eng: The Norwegian Language
Bank) for being so helpful with sharing their data, even when I ended up not
using all of it in the end. A special thanks to Magnus who helped me with
several rounds of re-OCR of their older material.

T am also very grateful to Sprakradet (eng: The Language Council of Nor-
way), who awarded me their master’s degree stipend®. It has helped me to be
able to focus on my studies full time.

A special thanks to Petter Mahlum, who helped me with the annotation
of my data set, as well as sharing his knowledge on measuring inter annotator
agreement.

Last of all I would like to thank Markus Sverdvik Heiervang, who has helped
me both with academics and motivation. Thank you for always being by my
side. I would not have been able to finish this work without your continuous
support.

Ihttps://www.sprakradet.no/Vi-og-vart/Stipend/mastergradsstipend- sprak-og-ikt-2021/

https://www.sprakradet.no/Vi-og-vart/Stipend/mastergradsstipend-sprak-og-ikt-2021/

Contents

1 Introduction
1.1 Objectives and research questions
1.1.1 Research questions
1.2 Thesisoutline L

2 Background
2.1 Rhyme and poetry L oo
2.1.1 Rhymeschemes
2.1.2 Rhymepairs
2.2 Poetry generationo
2.2.1 Natural language generation.
2.2.2 Evaluating poetry generation systems
2.2.3 “The great misalignment” in human evaluation for NLP
2.2.4 Intrinsic evaluation oo
2.3 Rhyme modelling oL o
2.3.1 Evaluating rthyme models
2.4 Relevant previous works L oo
2.4.1 “Deep-speare: A joint neural model of poetic language,
meter and thyme” L.
2.4.2 “Learning Rhyming Constraints using Structured Adver-
saries” ..o oL
2.4.3 “Automatic Poetry Generation from Prosaic Text”
2.4.4 “Rapformer: Conditional Rap Lyrics Generation with De-
noising Autoencoders”
2.5 Earlier works on rhyme detection
2.5.1 “Supervised Rhyme Detection with Siamese Recurrent Net-
works” ...
2.5.2 “Using Siamese neural networks to create a simple rhyme
detection system”
2.5.3 Comparison
2.6 SUMIMATY . . .« v v e e e e e e

3 Creating a corpus of rhyme scheme annotated Norwegian po-
etry
3.1 Source COrpuso
3.2 Extracting the poetry oL
3.2.1 Using The National Library of Norway’s search APT . . .
3.3 Data set quality and OCR misreadings

CONTENTS

3.4 Norwegian? data Lo
3.4.1 A short overview of the recent history of the Norwegian
language Lo

30

3.4.2 Language and publication year distribution in the data set 31

3.5 A public domain Norwegian poetry collection
3.6 Pre-processing the data for annotation
3.6.1 Removingnoise o o
3.6.2 Splitting books into poems and poems into stanzas
3.6.3 “Norwegifying” the language
3.7 Annotation
3.7.1 Annotation guidelines oL
3.7.2 Inter-annotator agreement L.
3.8 Challenges e
3.8.1 Choosing adialect
3.8.2 Challenges during annotation
3.9 Presenting NoRSC: Norwegian Rhyme Scheme Corpus
3.9.1 Rhyme scheme statistics
3.10 NoRSC v1.1 e

Rhyme pair collection
4.1 Extracting rhyme pairs from NoRSC
4.2 Graph based approach to collecting rhyme pairs across stanzas:
dense rhyme pairs L Lo
4.2.1 Connected components and consequences of wrong anno-
tationso
4.2.2 Two approaches to repairing the bad components
4.3 Extract rhyme pairs from wiktionary
4.4 Merging Wiktionary and dense rhyme buckets

Rhyme modelling

5.1 Rhyme prediction oo
5.1.1 Baselinemodel
5.1.2 Model training and results
5.1.3 Faults with the model architecture
5.1.4 Improving the model architecture
5.1.5 Example predictions oL,
5.1.6 Discussing and comparing the results
5.1.7 Test set accuracy of the best model

5.2 Rhyme generation oo
5.2.1 Baselinemodel 0.
5.2.2 Training models,
5.2.3 Concluding remarks and examples

Poetry generation

6.1 Model architecture oo
6.1.1 Language model
6.1.2 Generating rhyming stanzas

6.2 Evaluation. o
6.2.1 Approach
6.22 Results o

32

CONTENTS

6.2.3 Rhymeratings L. 68
6.2.4 ’Written by a human’-ratings 69
6.2.5 The relation between rhyme and perceived “written by a
human”™ness Lo 70
6.2.6 Discussing the stanza-based model 73
6.2.7 Controversial stanzas 73
6.2.8 Original stanzas rated 'not written by a human’ 75
7 Conclusion 77
7.1 Summary e 7
7.2 Contributions, limitations and future work 79
Appendices 85
A Repairing the "bad clusters" from rhyme pair graph 86
A.1 Largest connected component 86
A.2 Second largest connected component 91
A.3 Third largest connected component 93
A.4 Fourth connected component 94
A.5 Fifth largest connected component 97
A.6 Sixth largest connected component 100
A.7 Seventh largest connected component 103
A.8 FEighth largest connected component 106
A.9 Ninth largest connected component 109
A.10 Connected component A 114
A.11 Connected component B 114
A.12 Connected component C' L. 116
A.13 Connected component D 120
A.14 Connected component E 121
A.15 Connected component F' 121
A.16 Connected component G L. 123
A.17 Connected component H 123
A.18 Connected component I 127
A.19 Connected component J 129
A .20 Connected component K 129
A .21 Connected component L 131
A.22 Connected component M L. 131
A.23 Connected component N L. 134
A.24 Connected component O 138
A.25 Connected component P oL 139
A .26 Connected component Q) 139
A.27 Connected component R L. 142
B Validation set results for rhyme detection 143
B.1 Validationset 143
B.2 Mirrored validationset oL 146
B.3 Wiktionary test seto oL 147

CONTENTS

C Evaluation instructions for human evaluators 150
C.1 Norwegian instruction 150
C.2 English translation o 0oL 151

List of Figures

3.1
3.2
3.3
3.4

4.1
4.2
4.3

44
4.5
4.6
4.7

4.8

5.1
5.2

6.1
6.2
6.3
6.4

6.5

6.6

6.7

Al
A2

A3
A4
A5

Page scan from the source corpus L. 28
Page scan from the source corpus 28
Example of a book scan from the source dataset 33
Rhyme scheme distribution in the annotated data set 40
Graph illustration of the rhyme scheme ABABAC 42
Graph illustration of “gd” as a “bridge” vertex.. 44
Graph representation of the rhyme pairs; Each vertex is a word,

and each edge isarhyme pair 45
The largest connected components from the rhyme pair graph . . 47
Connected component before clustering 48
Connected component after clustering 48
Words per bucket for the good buckets + manually separated

rhyme bucketso oo 49
Graph representation of all rhyme pairs after manual clustering . 50

Overview of the model architecture of the rhyme detection model 52
Overview of the model architecture for the rhyme generation model 58

Language model architecture 63
Evaluation interface from side-by-side evaluation 67
Frequency of rhyme rating for the stanzas 68
Proportion of stanzas rated 'written by a human’ for each rhyme
score for baseline model00 71
Proportion of stanzas rated 'written by a human’ for each rhyme
score for line-based model 71
Proportion of stanzas rated 'written by a human’ for each rhyme
score for stanza-based model 0oL 72
Proportion of stanzas rated 'written by a human’ for each rhyme
score for original stanzas 72
The largest connected component 87
Post-clustering largest connected component (single vertices omit-
ted) ..o 88
Manual clustering largest connected component 89
2nd largest connected component 90
Post-clustering 2nd largest connected component (single vertices
omitted) 91

LIST OF FIGURES

A.6 Manual clustering 2nd largest connected component 92
A.7 3rd largest connected component 93
A.8 Post-clustering 3rd largest connected component 94
A.9 Manual clustering 3rd largest connected component 95
A.10 4th largest connected component L. 96
A.11 Post-clustering 4th largest connected component 97
A.12 Manual clustering 4th largest connected component 98
A.13 5th largest connected component L. 99
A .14 Post-clustering 5th largest connected component 100
A.15 Manual clustering 5th largest connected component 101
A.16 6th largest connected component 102
A.17 Post-clustering 6th largest connected component 103
A.18 Manual clustering 6th largest connected component 104
A.19 Tth largest connected component 105
A .20 Post-clustering 7th largest connected component 106
A.21 Manual clustering 7th largest connected component 107
A.22 8th largest connected component 108
A .23 Post-clustering 8th largest connected component 109
A.24 Manual clustering 8th largest connected component 110
A .25 9th largest connected component 111
A.26 Post-clustering 9th largest connected component 112
A.27 Manual clustering 9th largest connected component 112
A .28 Connected component A 113
A.29 Post-clustering connected component A 113
A.30 Manual clustering connected component A 114
A.31 Connected component B 115
A.32 Post-clustering connected component B 115
A.33 Manual clustering connected component B 116
A.34 Connected component C' 117
A .35 Post-clustering connected component C' 117
A.36 Manual clustering connected component C'. 118
A.37 Connected component D 118
A .38 Post-clustering connected component D 119
A.39 Manual clustering connected component D 119
A .40 Connected component E 120
A .41 Manual clustering connected component E. 121
A.42 Connected component F' L. 122
A .43 Post-clustering connected component F' 122
A .44 Manual clustering connected component F' 123
A .45 Connected component G 124
A .46 Post-clustering connected component G 124
A .47 Manual clustering connected component G 125
A48 Connected component H L. 125
A .49 Post-clustering connected component H 126
A.50 Manual clustering connected component H 126
A.51 Connected component I 127
A.52 Manual clustering connected component I 128
A.53 Connected component J oL 128
A.54 Manual clustering connected component J 129
A.55 Connected component K 130

LIST OF FIGURES

A.56 Post-clustering connected component K (single vertices omitted) 130

A .57 Manual clustering connected component KX 131
A.58 Connected component L 132
A.59 Post-clustering connected component L (single vertices omitted) 132
A.60 Manual clustering connected component L 133
A.61 Connected component M 133
A.62 Manual clustering connected component M 134
A.63 Connected component N 135
A.64 Post-clustering connected component N (single vertices omitted) 135
A.65 Manual clustering connected component N 136
A.66 Connected component O L. 136
A.67 Post-clustering connected component O (single vertices omitted) 137
A.68 Manual clustering bad connected component O 137
A.69 Connected component P 138
A.70 Manual clustering bad connected component P 139
A.71 Connected component @ 140
A.72 Manual clustering of connected component @ 140
A.73 Connected component R 141
A.74 Post-clustering connected component R (single vertices omitted) 141
A.75 Manual clustering connected component R 142

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1

5.1
5.2
5.3
5.4
5.5

5.6

5.7

6.1

6.2
6.3
6.4

Number of books selected based on different selection criteria . . 27
Year of publication statistics for the different OCR-batches . . . 31
Norwegian language distribution in the dataset 32
Language and publication year distribution for the received re-OCR, 32
Cohen’s kappa between the annotators of the subset 38
Data quantity in the annotated dataset 40
Frequency of the top 10 most frequent rhyme schemes 40

Number of rhyme pairs extracted from different selections and

buckets 51
Dataset split 53
Accuracy on “Rhyme detection with Siamese LSTM” experiments 54
SRN models’ accuracy on mirrored validation sets 55
Commutative SRN models’ accuracy 55
Example word pairs and rhyme predictions from models (correct

predictionsin bold L oL 56
Data set sizes and achieved macro average F1 scores for the dif-

ferent rhyme generation models 60
List of some made up words and their assigned rhyme buckets . . 61

Teacher forcing training data for the sentence jeg liker fisk i like

fish” . . . 63
Number of stanzas evaluated per model 67
Majority rhyme score for the different stanza types 68
Frequency of 'written by a human’-ratings for the different types

of stanzas in side-by-side and standalone evaluation. 69

10

List of Listings

w

Python implementation of counting rhyme pairs for a given rhyme

scheme 44
Python implementation of baseline rhyme detection 53
Simplified pseudocode for line-based stanza generation 64
Simplified pseudocode for stanza-based stanza generation 65

11

Chapter 1

Introduction

In this thesis, we explore the task of poetry generation, a task in the intersection
of computational creativity and natural language processing (NLP). Poetry gen-
eration is, as the name suggests, the task of using computers to generate poetry.
It is usually a goal to create poetry that can pass as poetry written by a human.
This is closely related to the Turing test; if a person believes it is communicating
with another person, when it is in fact communicating with a computer, then
the computer has passed the test (Saygin, Cicekli, and Akman, 2000).

The task of automatically generating poetry has a history that dates back
to the 1960s', and is still researched today. Several papers on poetry gener-
ation have been published in the past five years. The dominating languages
are Chinese (Yi et al., 2018; Yang et al., 2018; Y. Liu, D. Liu, and Lv, 2020)
and English (Lau et al., 2018; Jhamtani et al., 2019; Van de Cruys, 2020), with
occasional papers on poetry generation for other languages, for example Finnish
(Hamaéldinen and Alnajjar, 2019), Italian (Zugarini, Melacci, and Maggini, 2019)
or Russian (Tikhonov and Yamshchikov, 2018).

Another task we explore is rhyme modelling. Rhyme as a literary tool is
ubiquitous in traditional poetry, song lyrics and rap lyrics (Berge, 2016). Rhyme
modelling has been done both as a part of works on poetry and lyric generation
(Lau et al., 2018; Nikolov et al., 2020; Van de Cruys, 2020), and independently
(Haider and Kuhn, 2018).

1.1 Objectives and research questions

The main objective of this thesis is to address obvious gaps in the fields of poetry
generation and rhyme modelling: no publicly available work has been done for
Norwegian (to the best of our knowledge).

Our modelling objective is to investigate whether we can create a Norwegian
poetry generation model that produces poetry of a quality such that

1. it cannot be discerned from poetry written by humans and

2. it rhymes.

Ihttps://en.wikipedia.org/wiki/Hundred_Thousand_Billion_Poems

12

https://en.wikipedia.org/wiki/Hundred_Thousand_Billion_Poems

1.2. THESIS OUTLINE

In order to train such a model, we need rhyme scheme annotated training
data. Thus, our second objective is to collect and annotate a data set of Norwe-
gian rhyming poetry. A significant part of the work on this thesis is the creation
of NoRSC: Norwegian Rhyme Scheme Corpus.

In order to evaluate our poetry generation model, we use human evaluation.
We want to find out if the generated poetry is perceived to be written by a
human (a Turing-like test) and how well it is perceived to rhyme.

1.1.1 Research questions

Our research questions are listed below.

RQ1: Is there a strong enough relation between written Norwegian and spoken
Norwegian to accurately model rhyme based on text data?

RQ2: How consistent are our poetry generation models at generating rhyming
poetry?

RQ3: To what degree is our generated poetry believed to be written by a human?

RQ4: Is there a connection between the generated poetry rhyming and it being
perceived to be written by a human ?

To specify RQ1: for our rhyme modelling, we only use the rhyme relations
extracted from the annotated data set, and no other phonetic information. Thus,
the rhyme models only have access to the words themselves, and the character
sequences that form them. Whether two words rhyme is dependent on the
phonology of the words. To successfully model rhyme based on the character
sequences that make up the words, there has to be a strong relation between
how the words are written and how they are pronounced.

We aim to answer RQ2, RQ3 and RQ4 by analyzing the results of our
human evaluation.

1.2 Thesis outline

In chapter 2 we discuss the poetry genre, rhyme and poetry generation
as an NLP task. We present some recent work that is relevant to our
modelling objectives, describing the data sets, the model architecture and
the evaluation methods.

In chapter 3, we present NoRSC: Norwegian Rhyme Scheme Corpus, a
data set of rhyme scheme annotated Norwegian poetry, as well as the work
that went into creating the data set.

In chapter 4, we describe how we extract rhyme pairs from the NoRSC
data set, and how we can harvest additional pairs with a graph based
approach.

In chapter 5, we use the rhyme pairs from the previous chapter for
rhyme modelling. We train LSTM-based models for two different rhyme
modelling tasks: rhyme detection and rhyme generation.

13

1.2. THESIS OUTLINE

In chapter 6, we design and train LSTM-based poetry generation models
on the NoRSC data set. We evaluate the produced poetry with human
evaluation, where both a Turing-like test and rhyme ratings are performed.

In chapter 7, we summarize our findings, finally address the research
questions and conclude the thesis.

14

Chapter 2

Background

In this chapter, we discuss rhyme and poetry, poetry generation and rhyme
modelling. We explore recent work that is relevant to the topic of our research,
with a focus on the model architecture and the evaluation methods. Here, we
lay the foundation for our work in the coming chapters.

2.1 Rhyme and poetry

Poetry can be divided into fixed form and open form poetry. Fixed form poetry
has rules for structure, such as the number of lines, number of syllables for
each line, stress and/or rhyme. Examples include haikus, sonnets and limericks.
With open form poetry, there are no rules. While open form poetry is most
common today, it is typically in fixed form poetry we find rhyme (Berge, 2016).

2.1.1 Rhyme schemes

Some types of poems have a specified rhyme scheme they have to follow. A
rhyme scheme is the pattern of rhyme in a poem. It is typically annotated with
letters in alphabetical order. For example, the limerick is a five-line poem with
an AABBA rhyme scheme (Jhamtani et al., 2019). See 2.1 for an example of a
rhyme annotated limerick.

There was an Old Man with a beard,
Who said, "It is just as I feared!—
Two Owls and a Hen,

Four Larks and a Wren,

Have all built their nests in my beard!"

(2.1)

> 0w

(Lear, 2008)

All lines annotated with the same letter rhyme with each other. The first,
second and fifth lines are annotated with A, and the third and fourth with B. We
see that the line-ending words (the last word in a line) for the lines annotated
with A rhyme: beard and feared. The same is true for the line-ending words in
the lines annotated with B; hen and wren. Though not all poetry have strict
rhyme scheme rules, all poetry can be annotated with its rhyme scheme, which
is crucial for supervised learning.

15

2.2. POETRY GENERATION

2.1.2 Rhyme pairs

From rhyme scheme annotated data, we can extract rhyme pairs. Rhyme pairs
are pairs of words or word sequences that rhyme. An example of a rhyme pair
is (“cat”, “hat”).

Similarly, negative rhyme pairs are pairs of words or word sequences that do
not rhyme. An example of a negative rhyme pair is (“shoelaces”, “stubborn”).

While the rhyme is often contained in singular words, there are examples
where the rhyme spans several words. In Example 2.2 below, the rhyme pair is
(“sent it”, “meant it”). We call this multiword rhyme.

(2.2) T can’t believe he sent it,
I didn’t think he meant it.

2.2 Poetry generation

Poetry generation is a specific type of the more general task natural language
generation (NLG).

2.2.1 Natural language generation

Natural language generation is the task of using computers to generate (what
appears to be) natural language. There is a vast number of sub-tasks, such as
translation, summarization, question answering and robo-journalism (Gatt and
Krahmer, 2018).

The field of NLP in general has had an influx of new techniques for language
modelling in recent years, which has led to dramatic improvement with regards
to performance. Vaswani et al.’s famous “Attention is all you need” from 2017
introduced the transformer architecture, which revolutionized the field (Gillioz
et al., 2020). This gave way to central contributions in the field like BERT
(Devlin et al., 2019) and GPT (Radford, Narasimhan, et al., 2018; Radford,
J. Wu, et al., 2019; Brown et al., 2020). Transformer based models such as T5
(Raffel et al., 2020) and GPT-3 (Brown et al., 2020) currently dominate NLG,
pushing forward state-of-the-art on multiple tasks.

2.2.2 Evaluating poetry generation systems

For poetry generation, human evaluation is the dominant methodology. The
model is supposed to create something new, so a gold data set simply cannot
exist. Artistic taste is highly subjective, which makes it difficult to reproduce
experiments where the human judges rate how good the generated poetry is.

As mentioned in chapter 1, a Turing-like test is usually performed, to see
if the generated poetry is believed to be written by a human or a computer.
Multiple previous works conduct human evaluation by presenting a generated
and human-written poem side by side, and ask the evaluator to pick out the
human-written/generated poem (Lau et al., 2018; Jhamtani et al., 2019). Other
works evaluate by presenting the poems individually (Van de Cruys, 2020) and
some do both (Nikolov et al., 2020).

16

2.3. RHYME MODELLING

2.2.3 “The great misalignment” in human evaluation for
NLP

Hamaéldinen and Alnajjar (2021) discuss what they call the “Great Misalign-
ment Problem” in human evaluation of NLP methods. They found that out
of 10 randomly selected papers published in the ACL 2020! that use human
evaluation, only 1 of the papers evaluated the model in line with the definition
of the problem the model was supposed to solve.

They conclude that “[in the field of NLP| human evaluation is not conducted
in the same rigorous fashion as in other fields dealing with human questionnaires
such as in social sciences or fields dealing with evaluation of computer systems
such as design science” and that “There is a long way for our field to go from here
in order to establish more sound and reproducible human evaluation practices.”

2.2.4 Intrinsic evaluation

For models that generate poetry based on an input text, evaluation metrics
for machine translation such as BLEU (Papineni et al., 2002) or other ways to
measure content overlap can be used (Nikolov et al., 2020). Human evaluation
is still the preferred evaluation for such task, but intrinsic evaluation can still
give insights, and play a role in model selection.

2.3 Rhyme modelling

Rhyme modelling refers to a number of modelling tasks where the objective is
understand rhyme. Such tasks include:

e rhyme detection: the objective is to predict whether two words rhyme

e rhyme generation: the objective is to generate one or more words that
rhymes with the input word

e rhyme scheme identification: the objective is to tag a stanza with its rhyme
scheme

Training data for rhyme models is typically rhyme scheme annotated text
or a collection of rhyme pairs. While there are papers on rhyme modelling
independent of any NLG system (Haider and Kuhn, 2018; Addanki and D.
Wu, 2013), rhyme modelling is often used as an auxiliary task for NLG systems
to enhance rhyming ability in generation of rhyming text. For example, Lau
et al. (2018) train a rhyme detection model to sample line-ending words as a
part of their larger poetry generation model.

2.3.1 Evaluating rhyme models

Rhyme models can be evaluated by using pronouncing dictionaries. To check if
two words rhyme, one can look up the phonetic representation, and check for
overlap in the last syllable(s) of both words.

Ihttps://wuw.aclweb.org/anthology/events/acl-2020/

17

https://www.aclweb.org/anthology/events/acl-2020/

2.4. RELEVANT PREVIOUS WORKS

For English, there are several public pronouncing dictionaries, such as The
CMU pronouncing dictionary? (over 134,000 words). The most common words
in the English version of Wiktionary have a “Pronunciation”section, where the
word is transcribed with the International Phonetic Alphabet (IPA).

There also exists a pronouncing dictionary for Norwegian, the NLB Pro-
nunciation Lexicon for Norwegian Bokmal?. However, we do not explore the
application of the NLB Pronunciation Lexicon in this thesis.

2.4 Relevant previous works

According to Lau et al. (2018), Greene, Bodrumlu, and Knight (2010) was the
earliest attempt at using statistical modelling for poetry generation. Before
that, poetry generation methods were rule-based, using syllable counting and
rhyme dictionaries (Lau et al., 2018). As explained in section 2.2.1, the field of
NLG has changed dramatically in the past few years. Thus, one could expect
the field of poetry generation to see a similar development, and that recent
models perform much better than traditional, rule-based models. Because of
this, we will focus on research published within the past 5 years. We will also
limit our focus to work that describe models that generate texts that rhyme, as
this is in line with our research objectives.

2.4.1 “Deep-speare: A joint neural model of poetic lan-
guage, meter and rhyme”

Lau et al. (2018) present DEEP-SPEARE; a language model that generates
Shakespearean sonnets. A Shakespearean sonnet (from now on, sonnet) is a
special type of poem that has rules for stress, structure and rhyme. The model
is comprised of three sub-models: a language model, a stress model and a rhyme
model. All sub-models use variants of LSTMs, and they are trained together,
allowing them to influence each other during training.

The rhyme model is a unidirectional LSTM that learns to separate rhyming
and non-rhyming word pairs. Making use of the fact that a quatrain? contains
rhyming pairs, we can sample both positive and negative rhyming pairs by
extracting the last word of each line in a quatrain. For each target word t, there
will be one positive rhyme pair (¢,) and two negative rhyme pairs (¢,y), (¢, 2).
Adding additional negative rhyme pairs by sampling random words from the
vocabulary increased performance.

The set of rhyme pairs for a target word are one instance of training. The
character embeddings for all words are extracted from the shared character
embedder as used by other sub-models. These character embeddings are fed
to the LSTM, outputting word representations u;, u, etc. The loss function is
a margin based loss calculated by using the cosine similarity of the outputted
character-based word representations. The LSTM will thus be trained to output
similar vectors for words that rhyme.

2https://github.com/cmusphinx/cmudict
Shttps://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-52/
4a stanza of four lines in a poem

18

https://github.com/cmusphinx/cmudict
https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-52/

2.4. RELEVANT PREVIOUS WORKS

Training data

The model was trained on an English sonnet corpus extracted from Project
Gutenberg, resulting in 3355 sonnets and 367 000 words. The number of unique
words is not stated, as far as we can see.

Evaluation and results

Each sub-model is evaluated separately on gold data. The rhyme model is
evaluated by extracting phonetic information from the CMU pronouncing dic-
tionary, and comparing produced word pairs. It seems that the model predicts a
high cosine similarity for words that have the same sub-sequences of characters.
This produces false positives such as predicting rhyme for (overgrown, frown)
and (afraid, said), and false negatives such as not predicting rhyme for (never,
endeavour).

The sonnet generator itself is evaluated by humans, both by crowd workers
and expert evaluation. The crowd workers are presented with two poems, one
real and one computer generated, and are asked to point out the computer gen-
erated one. The crowd workers’ accuracy on identifying the computer generated
poem became as low as 53% for the best model.

The expert is asked to rate poems on 4 aspects: meter, rhyme, readability
and emotion, on a scale from 1 to 5, where 5 is the best score. The model received
better scores for rhyme and meter than human poems, though this might not
be that surprising, as human artists tend to break the rules on purpose. The
author sums it up well:

Despite excellent form, the output of our model can easily be dis-
tinguished from human written poetry due to its lower emotional
impact and readability. In particular, there is evidence here that
our focus on form actually hurts the readability of the resulting po-
ems, relative even to the simpler language models.

(Lau et al., 2018)

2.4.2 “Learning Rhyming Constraints using Structured Ad-
versaries”

Jhamtani et al. (2019) present RHYME-GAN;, a Generative Adversarial Network
(GAN) model that learns the rhyming constraints directly from the training
data. The paper aims to combat some of the drawbacks of Lau et al. (2018),
such as the fact that all sonnets are generated by rejection sampling®, and that
the training data must be quatrains where each line-ending word must rhyme
with one and only one of the other line-ending words.

As all GANSs, the model consists of a generator and a discriminator, where
the discriminator is trained to distinguish between real and generated poems,
and the generator is trained to “fool” the discriminator.

The generator generates poems by first generating line-ending words, and
then generating the lines backwards conditioned on the line ending words. The
discriminator takes as input a poem, and outputs the probability that this

5Rejection sampling means to continue to sample values from a probability distribution
(in this case, a language model) until the sampled value is acceptable.

19

2.4. RELEVANT PREVIOUS WORKS

poem is real, i.e. part of the training data, and not generated. On input a
poem of T lines, the discriminator creates a similarity matrix S = RT*7T, to
capture the similarity of the line-ending words in the poem. The line-ending
words are encoded with a character-based LSTM, and the similarity is calculated
by computing the cosine similarity of these character based word embeddings.
Finally, the output signal of the discriminator is a 2D convolutional layer applied
to the similarity matrix S, passed through the sigmoid function.

Training data

The model was trained on two different corpora, the sonnet corpus from Lau et
al. (2018), and a limerick corpus obtained by web scraping. The limerick corpus
contains a train set of 10 400 limericks, and 1300 limericks in the validation and
test sets.

Evaluation and results

Since both DEEP-SPEARE and RHYME-GAN measure rhyme by character se-
quence similarity, one can expect similar problems as mentioned in 2.4.1, though
this is not explicitly mentioned in Jhamtani et al. (2019).

The model is evaluated the same way as the non-expert human evaluation
in Lau et al. (2018), that is, human judges are asked to correctly identify the
computer generated poem when shown one ‘“real” and one generated poem.
Evaluation was done on 150 valid generated poems, where valid means that the
poem has the correct rhyme scheme for its’ type (limerick: AABBA, sonnet:
ABAB or ABBA or AABB). Determining the validity of the poems was done
by extracting phonetic information from the CMU pronuncing dictionary.

For the 150 examples, the human judges had an accuracy of 56%, which is
slightly higher than Lau et al. (2018)’s 53%. Remember that lower accuracy
means that it is more difficult for the human judges to distinguish between
poems written by humans and computer generated ones. However, using pre-
rejection samples from both RHYME-GAN and DEEP-SPEARE, the annota-
tors achieve accuracies of 60% and 81%, showing that RHYME-GAN produces
believable poetry at a much higher frequency than DEEP-SPEARE.

2.4.3 ‘“Automatic Poetry Generation from Prosaic Text”

Van de Cruys (2020) present a model that generates rhyming poems, though
it’s only trained on “normal” prosaic text. The core of the system is a model,
that given an input sentence S;, predicts the next sentence S;y;. It uses an
encoder-decoder architecture with gated recurrent units (GRU), combined with
an attention mechanism.

Each word of the input sentence S; is sent through the decoder and the
hidden state is computed. This hidden state is in turn sent to the decoder,
where the next sentence S;;1 is predicted. The decoder will produce S;;; in
reverse order, so the last word of S;;; is predicted first, enabling end rhyme
constraints.

For the rhyme constraints, Van de Cruys (2020) use the phonetic represen-
tations of words as given by Wiktionary. For every word in the vocabulary of

20

2.4. RELEVANT PREVIOUS WORKS

the model, a set of rhyming words are extracted. In the decoder-encoder ar-
chitecture, a prior probability distribution p,pyme is included the calculations,
ensuring that the predicted sentence will rhyme. Both encoder and decoder
consist of a double GRU layer with 2048 hidden nodes. When producing po-
ems, the model would produce 2000 candidate verses, and choose the best one

based on several criteria. They used a fixed rhyme scheme for all poems: ABAB
CDCD.

Training data
Two models were trained, one for English and one for French. Both were trained
on a 500 million word corpus, with a vocabulary of 15000 words.

Evaluation and results

Van de Cruys (2020) use the evaluation framework presented by Zhang and
Lapata (2014), who suggest these four aspects for human evaluation of computer
generated poetry. Each poem is rated from 1-5 on each aspect, where 5 is best,
and 1 is worst.

e fluency: is the poem grammatical and syntactically well-formed?
e coherence: is the poem thematically structured?
e meaningfulness: does the poem convey a meaningful message to the reader?

e poeticness: does the text display the features of a poem?

The generated poems achieved good scores, above 3/5 across the all the
four aspects. The scores were somewhat higher for the French model than the
English one, but on the question of whether the poem was written by a human,
the English model scored better. For the English model, 59% believed the poems
to be written by a human, but for the French one it was only 45%.

2.4.4 “Rapformer: Conditional Rap Lyrics Generation with
Denoising Autoencoders”

Nikolov et al. (2020) present the RAPFORMER, a transformer-based denoising
autoencoder that produces rhyming rap lyrics. The RAPFORMER takes in any
input text, and will output the same content, but as rap lyrics.

These three steps make up the models algorithm:

1. The content words are extracted from each line of the input text
2. A transformer model builds a rap verse from the content words
3. Line-ending words are substituted with suitable words to create rhyme

For step 1, in addition to extract the context words from the original input
text, the words are shuffled, 20% of the words are dropped, and 20% are re-
placed by synonyms from WordNet Miller (1995). This noise is added to create
variation.

21

2.4. RELEVANT PREVIOUS WORKS

The model in step 2 is a 6-layer transformer encoder-decoder trained on a
corpus of rap lyrics, where it is provided with the content words as described in
step 1, and is trained to reproduce the original verse. This lets the model learn
the latent structures of rap lyrics, given content words.

Step 3 involves using a BERT-base model that has been fine-tuned on the
rap corpus to predict the 200 most likely substitutions for the line-ending word.
Out of these 200, the one that increases rhyme the most is chosen, using the
same notion of “rhyme” as Malmi et al. (2015): the longest overlapping of vowels
between the chosen word and the word it is supposed to rhyme with. This means
that the rhyme may span several words, but also that it accepts words that do
not technically rhyme. The rapper may have more freedom to twist the way a
word is pronounced to make it sound more like a rhyme, which can explain this
choice.

Training data

They use three different data sets to ensure that the model works well for dif-
ferent types of input. The rap data set consist of 60,000 song lyrics from the
lyric website musixmatch®, reserving 2,000 songs for development and testing.
The out-of-domain data sets are the news summaries data set from Hermann
et al. (2015) and a subset of the movie plot summary data set from Bamman,
O’Connor, and Smith (2013). The 50,000 most frequent words in the joint data
sets are used as the vocabulary for the model.

Evaluation and results

The outputted lyrics are measured on rhyme density (RD) (Malmi et al., 2015)
and content word overlap between input and output texts, as well as BLEU
(Papineni et al., 2002) when the model is trained on rap reconstruction.

They also use human evaluation, with three judges with domain knowledge.
For the rap lyrics generated from news text input, the human judges were pre-
sented with 100 generated lyrics, and asked three questions:

1. How much do the lyrics presented resemble rap lyrics? (1 to 5)

2. How well do the lyrics preserve the content of the original news article?
(1 of 5)

3. Do these lyrics look like a song you know? (yes/no)

The RAPFORMER didn’t perform that well, with a mean score of 2.03 for 1,
2.55 for 2 and 8% yes answers for 3.

They also perform two Turing-test-inspired experiments with 100 generated
and original lyrics:

1. The original lyrics and the RAPFORMER lyric are presented side by side,
and the human judge is asked to pick the lyric written by a human.

2. The human judge is presented with a lyric and asked to determine if it is
Al-generated or written by a human.

Shttps://www.musixmatch.com/

22

https://www.musixmatch.com/

2.5. EARLIER WORKS ON RHYME DETECTION

For 1, only 7% of the texts are mislabelled. For 2, 25% of the texts are
mislabelled, which means that the human judges were able to tell real lyrics
apart from generated lyrics 75% of the time.

2.5 Earlier works on rhyme detection

These are not works on poetry generation, but rather rhyme detection. Both
represent words as character vectors and train siamese LSTM-networks to pre-
dict rhyme between two sequences. These kinds of experiments are good indi-
cations of how well written text can represent the phonetics of rhyme in the
respective languages.

2.5.1 “Supervised Rhyme Detection with Siamese Recur-
rent Networks”

This paper from 2018 presents another method for rhyme detection than covered
in the papers in section 2.4. In this paper, Haider and Kuhn train Siamese
Recurrent Networks (SRN) to predict if two sequences rhyme. They describe
their model architecture as three layers of character-based BiLSTMs with 50
hidden units, followed by a dense feed-forward layer. If the model outputs
>(0.5, the two input sequences are predicted to rhyme.

They use 5000 German rhyme pairs, and generate negative rhyme pairs by
shuffling the positive. The character embeddings have a dimension of 100, and
they train for 100 epochs. They train the SRN on positive and negative rhyme
pairs with a 2:3 ratio, and end up with an accuracy of 96%. Similarly, they
train an English version, this time with 10,000 and 30,000 rhyme pairs and end
up with accuracies of 96% and 97%, respectively. See Haider and Kuhn (2018)
for specific details.

2.5.2 “Using Siamese neural networks to create a simple
rhyme detection system”

Minogue (2021) collected rhyme annotated rap lyrics in English from the song
lyric website Genius, and trained a SRN to predict rhyme. They used an equal
number of positive and negative rhyme pairs, 500 000 each, or 1 000 000 in total.
The data was split into train/validation/test sets with the train set being 60%
of the data, the test set 30% and the validation set 10%. The model architecture
is one siamese LSTM layer with 64 hidden units, followed by three dense layers
of decreasing size before the output layer. Minogue end up with an accuracy of
95% on the test set (Minogue, 2021).

2.5.3 Comparison

Minogue (2021) and Haider and Kuhn (2018) receive similar results, with the
difference in accuracy being just 1-2 percentage points. While Haider and
Kuhn (2018) use a lot less data, they have a more complex architecture, with
three bi-LSTM layers. Minogue (2021) on the other hand, has a simpler archi-
tecture, but 100 times more data than Haider and Kuhn (2018).

23

https://genius.com/

2.6. SUMMARY

2.6 Summary

We have seen that many different types of NLP architectures can be used
for poetry generation. Mentioned above are several different types of RNNs
(LSTM, BiLSTM, GRU), transformer-based models, GANs and even reinforce-
ment learning. All articles used some form of human evaluation for their gener-
ated texts, but as they a) did not use the same questions during evaluation and
b) had a different number of examples, different number judges, and different
level of domain expertise for the judges, it is hard to say that one is better than
the others.

We also discussed different ways to model rhyme. Haider and Kuhn (2018)
and Minogue (2021) train Siamese LSTMs for rhyme detection. Some works use
the similarity of character sequence to model rhyme (Lau et al., 2018; Jhamtani
et al., 2019), but evaluate on pronunciation dictionaries, while other use the
pronunciation dictionary directly during generation (Van de Cruys, 2020; Zu-
garini, Pasqualini, et al., 2021). In Nikolov et al. (2020), they measure rhyme as
the longest overlap of vowels, a less strict definition of rhyme than other papers.

24

Chapter 3

Creating a corpus of rhyme
scheme annotated Norwegian
poetry

One goal of this thesis is to create a freely available rhyme scheme annotated
corpus of Norwegian poetry. We call it NoRSC: Norwegian Rhyme Scheme Cor-
pus. In this chapter we describe the source corpus, the pre-processing pipeline,
the annotation process and rhyme scheme statistics.

The data set consists of texts that were already in the public domain, so it
is available for anyone who might want to use it here’.

3.1 Source corpus

The poems for the data set were extracted from the “Public Domain Texts
from NBdigital” corpus? from Sprakbanken, The Norwegian Language Bank at
The National Library of Norway. According to the corpus website, the corpus
is made up of 26.344 books in .txt and .xml formats, that were produced by
running optical character recognition (OCR) on scans of physical books. All
of these texts are in the public domain, which means that unless the authors
willingly renounced their copyright of the text, at least 70 years have passed
since their death (as per Norwegian copyright laws (Andsverkloven, 2018)).

3.2 Extracting the poetry

We downloaded and unpacked the entire source corpus, which consisted of 21.483
files total (for some reason not 26.344 as stated on the corpus website). All files
are named on the same format, with the digibok identifier, year of publication,
language, author name and book title separated by dashes (see example 3.1
below). The book title is cut at 45 characters if it is any longer.

Ihttps://github.com/titaenstad/norwegian_rhyme_scheme_corpus
2https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-34/

25

https://github.com/titaenstad/norwegian_rhyme_scheme_corpus
https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-34/

3.2. EXTRACTING THE POETRY

(3.1) digibok_2009013000029-1894-nob-728-Bugge_Sophus-Bidrag_til
_den_eldste_Skaldedigtnings_Histori.txt

Using a set of heuristics implemented as regular expressions, we extracted
all the books that we believed to contain rhyming texts, based on the file name.
Not only purely poetry, but also songs and psalms were included in our wider
definition of poetry. This is because we wanted to capture as many rhyming texts
as possible. Thus, we extracted all books where the file name matched using the
simple regex seen in example 3.2. The regex matches with strings containing the
words dikt ‘’poem’ written with both k and g, lyrikk 'poetry’ written with both
single and double consonant k, salme ’'psalm’ and sang ’song’. The variations
of the words dikt and lyrikk are to include books where older spelling is used.

(3.2) .x[dDlilg|klt.*|.*x[1L]yrik.*|.*[Ss]lalme.*|.*[Ss]ang.*

This filtering stage resulted in a list of 593 book titles which we were to use
to build our poetry corpus. One caveat of our extraction method is that it will
produce some false positives: since this extraction is based on the filename, and
not only book title, this can result in also extracting books where the author
name matches with the regular expression. In our case, a book by geologist
Ottar Jgsang was included in the extracted set, because his surname contains
the substring sang. Another fault of this extraction method is the possibility
of false negatives: books where the title is longer than 45 characters, and the
latter part of the book title contains any of the wanted words from the regular
expression, are not extracted. Below we describe a refinement of our filtering
using metadata.

3.2.1 Using The National Library of Norway’s search API

After the initial filtering described above we learnt of an API? that can be used
to extract metadata about the books based on the digibok identifier. Using this,
we could extract for example the full book title (if longer that 45 characters)
and year of publication (when this was not included in the filename). However,
the information from the API did not always agree with the information in the
filenames.

We used the API to look up the metadata of the 593 books we had extracted
for our data set to to both a) retrieve the full book title and b) subsequently
match the regex to the book title. This resulted in us narrowing down the
number of books to 587.

After some debugging we also realised that the digibok identifier stored in the
database and in the filenames is not always the same: When fetching metadata
on a book title based on the identifier from the filename, the metadata returned
could contain a different digibok identifier, though the rest of the metadata such
as title and author matches. For our set it is different for 38 of the 593 books.

We further wanted to exclude all books that were not in Norwegian. The
filenames contain a three-letter code? that specify the language the book was
written in. This information is also stored in the database that we access with

Shttps://api.nb.no/, or more specifically https://api.nb.no/catalog/v1/items/URN:
NBN:no-nb_digibok_<code>
4The codes are on ISO 639-3 format, see https://en.wikipedia.org/wiki/IS0_639-3

26

https://api.nb.no/
https://api.nb.no/catalog/v1/items/URN:NBN:no-nb_digibok_<code>
https://api.nb.no/catalog/v1/items/URN:NBN:no-nb_digibok_<code>
https://en.wikipedia.org/wiki/ISO_639-3

3.3. DATA SET QUALITY AND OCR MISREADINGS

Sel. # | Selection procedure # of books
1 Regex on full filename 593
2 Regex on book title (from selection 1) 587
3 Norwegian according to filename (from sel. 2) 451
4 Norwegian according to API metadata (from sel. 3) | 405
5 Norwegian according to API metadata (from sel. 2) | 414

Table 3.1: Number of books selected based on different selection criteria

the API. We wanted to keep all books that have either “nor”, “nob” or “nno”,
because these are the language codes for the various Norwegian varieties.”?

However, when we selected books based on the language codes in the file-
names, we got a different selection that when we selected based on the metadata
information from the API. Selecting purely on filename returns a list of 451
books that are supposedly in Norwegian. But according to the API, 46 of these
books are actually not in Norwegian, but Danish (36) or multi-language (10).
If we remove these, we end up with 405 books. If we select based on the API
from the beginning, we get 414 books, meaning that 9 of the books that are not
Norwegian according to the filenames, are actually Norwegian according to the
API. According to the filenames, 1 is multi-language and 8 are “undefined”. See
table 3.1 for the different results.

We assume that the information in the API is more recent, based on the
fact that 36 books were changed from Norwegian to Danish (see more on this
in section 3.4). Because of this, and because we want to keep the files that are
labelled “undefined”, as the book titles suggest that they are indeed Norwegian,
we decided to go with the selection yielded by the API (selection 5 in table
3.1).5

3.3 Data set quality and OCR misreadings

A manual inspection of the extracted data makes it apparent that the texts
are of pretty bad quality. Due to OCR misreadings there is a lot of noise, and
sometimes it is impossible to understand what the original words are supposed
to be. See example 3.3 for an example of bad quality text.

5¢nor” refers to Norwegian, “nob” to Norwegian bokméal and “nno” to Norwegian nynorsk.

The difference between these is explained later in the chapter.

6We acknowledge that if there are books in the original data set where the book title is
longer than 45 characters, and the latter part of the book title contains any of the wanted
words from the regex, these are not extracted. We did not deem it necessary to make 21 000
API calls to extract more books at the point of this discovery. This was after the annotation
process had started, and we realised that we were not going to be able to annotate more than
a small fraction of the extracted books.

27

3.3. DATA SET QUALITY AND OCR MISREADINGS

Figure 3.1: Page scan from the Figure 3.2: Page scan from the
source corpus source corpus
(3.3) m

min Jfjuftru.
Sorger og (©tgber [temte mn $axpe og gau bon Alang, $ar bet for btg,
jegbigteb Og utjnnebe (©ang’ efter (C)ang.

The only real words that can be recognized are min 'mine’, Sorger ’sorrows’,
og 'and’, for ’for’ and efter ’after’. The words also contain characters that
generally do not belong in Norwegian words, such as “@©)”, “[” and “$”. Other
examples of unusual characters from the data set include Greek letters in the
middle of words, or the German character “§” (probably a misread capital B).

OCR technology has, similarly to other technologies that rely on machine
learning, seen vast improvements in recent years. The open source OCR library
Tesseract for example, has consistently been improving since it was developed
over 30 years ago. Their latest stable release came out in 2021, and it can be
expected that this is much better than in 2015 when the NBDigital corpus was
last updated.”

The Norwegian Language Bank graciously offered to do a re-OCR on the
books that we had selected for our poetry data set. The first batch we received
consisted of 193 books, where all the source scans were printed in Gothic font.
See Figures 3.18 and 3.27 for two examples of what the source scans for this
batch look like. Example 3.4 is the same excerpt of text, from the same book
scan as example 3.3, but read with a newer OCR system.

"https://github.com/tesseract-ocr/tesseract
8https://www.nb.no/items/d799dfad1b1d3a36547061ae93857e5c?page=59
9https://wuw.nb.no/items/02£92e039e7bb56eb69ec83ebc72f ccf ?page=5

28

https://github.com/tesseract-ocr/tesseract
https://www.nb.no/items/d799dfad1b1d3a36547061ae93857e5c?page=59
https://www.nb.no/items/02f92e039e7bb56eb69ec83ebc72fccf?page=5

3.4. NORWEGIAN? DATA

(3.4) Til
min Hustru.
W Ilk.er Errger og Gleeder stemte
Min Harpe og gav den Klang,
Var det for dig, jeg digted
Og nynnede Sang efter Sang.

We observe that the quality of the text is much better, in this iteration most
of the words are intelligible. Another improvement, which is crucial for the way
we want to annotate rhyme, is that now the text is formatted as a stanza, with
the rhyming words at the end of each line. This is also how it is formatted in
the original book scan, which can be seen in figure 3.1. We can easily see that
the 5th and 7th lines rhyme, with the line ending words being Klang (klay)
"chime’ and Sang (say) ’song’.

Even though we observe clear improvements in 3.4, there is still some noise,
such as “W” and “Ilk.er”. There are also examples where the new version is still
mostly gibberish and impossible to comprehend, like example 3.5.

(3.5) »da faar du i Herrens vJoined j
jo Bingwr Mevand »gaj u9
»Da faar jeg 1 ivrneng Tenpel
jo Brug for mit Vievand!
Det er for godt for en Boler,
om end Jan er ndemand
Det er In * en voler
saa svarede Bispen varm;
»det sker ej, medens jeg ejer 5
en b i JoinedJoinedJoined

Figure 3.2 is the original page scan for this bit of text, and we can see that
the pages are so thin that the letters from the other side of the page are visible.
One might believe that this is the reason that the quality of figure 3.5 is so much
worse than figure 3.4. What is interesting is that this text was actually much
better in the original OCR, see example 3.6.

(3.6) “da faar du i Herrens Tempel jo Brug for dit Vievand.”
“Da faar jeg i Herrens Tempel jo Brug for mit Vievand! Det er for godt
for en Voler, om end han er Kongemand!
Det er for godt for en Voler, saa svarede Vispen varm; “det ster ej,
medens jeg ejer en Livsgnist i denne Barm!

Though the formatting of the text is a bit worse with regards to line breaks,
the text looks more or less perfect in example 3.6. There are no unexpected
numbers or asterisks like in example 3.5. Notice the “Joined” on the first and
last lines of example 3.5. This is some noise we believe is created by the OCR
system, as it appears in several of the books from the first batch. These types
of noise in the source data set call for data cleaning before annotation.

3.4 Norwegian? data

Another problem that became apparent during the compilation of our corpus
was that the language used in the first batch was hardly Norwegian, but Danish

29

3.4. NORWEGIAN? DATA

(by today’s standards, that is). In order to understand why that is, some insight
into Norwegian history is needed, which is provided below.

3.4.1 A short overview of the recent history of the Nor-
wegian language

In the period 13801814 (called dansketiden, 'the Danish time’) Norway was in
union with Denmark, or in the latter part (1537-1814) completely under Danish
rule (Njastad, Opsahl, and Scott, 2022; Weidling and Njastad, 2022). During
this period, the written Norwegian language was replaced by Danish. Almost
all printed books were in Danish, and no books were printed in Norway until
1643, 200 years after Johannes Gutenberg invented the printing press (Venés,
Gundersen, and Nordbg, 2022; Lehmann-Haupt, 2020).

Though the written language was Danish, it did not effect the spoken lan-
guage for most people, as most people lived in sparsely populated areas where
they used their different Norwegian dialects. In the cities, the vocabulary and
pronunciation were somewhat influenced by Danish, especially among the higher
classes (Venas and Nordbg, 2022).

Beginning with the rise of the national romanticism and Det nasjonale gjen-
nombrudd ’the national breakthrough’ in the 1840s, several changes were made
to the written language. Asbjgrnsen & Moe collected folktales from around the
country and published them in a language that was close to how people actually
spoke (Venas and Nordbg, 2022).

Henrik Wergeland and Knud Knudsen made efforts to “norwegify”!® the
written language, which was called riksmal. The first official distinction between
Norwegian riksmal and Danish was made when the Ministry of Church and
Education sent out a circular in 1862 that changed the spelling of several words.
In 1866 Retskrivningsregler til Skolebrug 'Spelling rules for use in schools’ was
published by Jonatan Aars, and this and several later versions were used as
the language norm for riksmal until 1907, when the first official spelling reform
came out (Julien, 2021).

In contrast to the approach of norwegifying the already used written lan-
guage (which was essentially Danish), Ivar Aasen wanted to replace it with a
language that was purely Norwegian. In 1853 he presented landsmdl, which was
a written language based mainly on the Norwegian dialects that were closest to
gammelnorsk ’old Norwegian’, the language used in Norway from the beginning
of the viking age to dansketiden (Nordbg and Magergy, 2019; Bull, 2022).

In 1885 the Norwegian parliament decided that landsmal should be equal to
riksméal. Each municipality could decide which language to use in schools, and
in 1907 mandatory exams in both languages were introduced to Norwegian high
schools (Venas and Nordbg, 2022).

In 1929, landsmal and riksmal were renamed to nynorsk 'new Norwegian’
and bokmdal ’book language’. The two written standards have undergone several
reforms in the past century!'!, reflecting the language policy of the time. During
the 1900s, Norwegian language politics were influenced by the vision of samnorsk
"joint Norwegian’: the hypothetical language that was the result of bokmal and
nynorsk melting into one written language. In the language reform of 1938,

0norvagisere: https://snl.no/norvagisering

1 Complete list here: https://snl.no/rettskrivingsreform

30

https://snl.no/norvagisering
https://snl.no/rettskrivingsreform

3.4. NORWEGIAN? DATA

Original OCR | Re-OCR 1 | Re-OCR 2
Median year of publication | 1890 1875 1921
Mean year of publication 1886 1875 1925
Min year of publication 1790 1814 1902
Max year of publication 2005 1905 1981
Total number of books 414 193 138

Table 3.2: Year of publication statistics for the different OCR-batches

several alternative forms were introduced to both nynorsk and bokmal, in an
effort to make the two languages closer. In 1939, it was decided that radical
bokméal was to be used in school books in the Oslo (the Norwegian capital)
school district. During the 1950s this received a lot of backlash, and parents
would correct their children’s school books, as they thought the language used
was vulgar. The samnorsk language policy was later dropped, and officially
removed from Norwegian law in 2002 (Gundersen, 2022; Lars S Viker, 2022).

It is important to note that both bokmal and nynorsk are written standards
for the same language, and that there is no spoken standard for Norwegian.
There are many dialects, and these two written forms do not capture all the
variation in spoken Norwegian. Bokmaél is most similar to Ostlandsk, the di-
alects spoken in Eastern Norway, in and around the capital. Nynorsk is most
similar to some dialects spoken in Western Norway (Lars S. Vikgr, Jahr, and
Berg-Nordlie, 2022; Venas and Skjekkeland, 2022). In Norwegian schools today,
87.3% use bokmal as their primary language, and 11.6% use nynorsk (Stolpe
Foss, 2022).

3.4.2 Language and publication year distribution in the
data set

Now, if we examine the year of publication for all the books we have extracted,
the reason that the language is Danish is obvious. The median year of publica-
tion for the first batch of re-OCR is 1875, and all books are published between
1814 and 1905 (see table 3.2). This is well within the time when Norwegian
riksméal was basically Danish.

Since the original data set contains books published up until 2005, we com-
piled a list of all the books that were published in 1900 or later, and asked
specifically for a re-OCR of these, the intuition being that the language in those
books were closer to contemporary Norwegian. Our list consisted of 165 books,
or 148 if we subtract the ones we had already received re-OCR of. Of these 148,
we received re-OCR for 138. Though these books are newer, the median year
of publication is still 1921, meaning that most books are at least 100 years old.

Another interesting thing to note is the language distribution of the data
set. Conveniently, the language codes mentioned in sections 3.2 and 3.2.1 also
encode nynorsk and bokméal. As can be seen in table 3.3, there are a lot fewer
books written in nynorsk than bokmaél, with 7% of the data set being nynorsk
compared to bokmal making up 92% of the data set. The four books with the

31

3.5. A PUBLIC DOMAIN NORWEGIAN POETRY COLLECTION

Full data set | Pre 1900 | Post 1900
Norwegian bokmal (nob) | 380 242 138
Norwegian nynorsk (nno) | 30 3 27
Norwegian (nor) 4 4 0
Total 414 249 165

Table 3.3: Norwegian language distribution in the data set

Full re-OCR | Pre-1900 | Post-1900
Norwegian bokmal (nob) 300 172 128
Norwegian nynorsk (nno) 20 3 27
Norwegian (nor) 1 1 0
Median year of publication | 1897 1871 1920
Mean year of publication 1896 1872 1922
Min year of publication 1814 1814 1900
Max year of publication 1981 1899 1981
’ Total number of books \ 331 \ 176 \ 155 ‘

Table 3.4: Language and publication year distribution for the received re-OCR

language code “nor” seem to be in bokmal.

If we divide the books into those published before 1900 and after 1900, we
see that the proportion of nynorsk is different. Books in nynorsk make up 16%
of the books published after 1900. The earliest nynorsk book in the data set is
from 1877, which makes sense as the language was “invented” just a couple of
decades earlier.

3.5 A public domain Norwegian poetry collection

In total, 331 books were re-OCRed for our corpus collection. We divided these
into two groups, one consisting of the books published before 1900 and one of
the books published in or after 1900. In table 3.4 the publication year and
language statistics for the full data set and both groups are collected. The pre-
1900 group consists of 176 books, and the post-1900 set 155. For the rhyme
annotation, we will only go forward with the post-1900 group, as we are more
interested in texts that are similar to the Norwegian that is written today. But,
since these texts probably are of better quality than the source corpus, which
we do not know when will be updated, we publish this whole data set so that
anyone may use them. The data set can be found here'2.

2https://github.com/titaenstad/public_domain_poetry

32

https://github.com/titaenstad/public_domain_poetry

3.6. PRE-PROCESSING THE DATA FOR ANNOTATION

Bijornstjerne Bjorason

Lgvtunge apal, som intet vil
over de hgye fjelle?

spretter nar somren stunder til,

venter til neste gang den vil,
alle dens fugler gynger,
vet ikke hva de synger; —

den som har lengtet i tyve ir
over de hgye fjelle, —

den som vet at han ikke ndr,

kjenner seg mindre ar for ar —,
hgrer hva fuglen synger,
som du si trgstig gynger.

Sladrende fugl, hva ville du her
over de igye fielle?

Rede du fant visst bedre der,

videre syn og hgyere trar, —
ville du bare bringe
lengsel, men ingen vinge?

Skal jeg da aldri, aldri nd
over de hgye fjelle?

Skal denne mur mine tanker sli,

sidan med sng-is og redsel sta
stengende der til det siste, —
blive min dgdningkiste?

Ut vil jeg! ut! — 4, si langt, langt, langt
over de hgye fjelle!

Her er 53 knugende, tzrende trangt,

og mitt mot er sa ungt og ranke, —

Dike og sanger

Herre min Gud, godr er ditt hjem, —
la det dog enni stenges,
og jeg fa lov til d lenges!

TONEN
(Av Arne.)

1 skogen smigutten gikk dagen lang,
gikk dagen lang, .

der hadde han hgrt slik en underlig sang,
underlig sang.

Gutten en flgyte av selje skar,
av selje skar, —

og prgvde om tonen derinne var,
derinne var,

Tonen, den hvisket og nevnte seg,
og nevnte seg,

men best som han lydde, den lop sin vei,
den lgp sin vei.

‘Titt nir han sov, den til ham smgg,
den til ham smgg.

Og over hans panne med elskov strpk,
med elskov strok.

Ville den fange og viknet bratt,
og viknet bratt;

men tonen hang fast i den bleke natt,
i den bleke natt.

la det fa stigningen friste,
— ikke mot murkanten briste! N
«Herre min Gud, ta meg derinn,

jeg vet, vi ¢ ta meg derinn;
& gngr' {feg h\;;; Vf‘jlelilect e ti tonen har fiet mitt hele sinn,

kanskje du alc har din dor pa klem? — mit hele sinn.»

Figure 3.3: Example of a book scan from the source data set

3.6 Pre-processing the data for annotation

Before we could go ahead and annotate the rhyme scheme of the poetry, some
manual pre-processing was necessary. First of all, some of the books were not
even poetry books, but books about poets. This is because we selected books
based on a simple regular expression, and the Norwegian word for poem, dikt
‘poem’ is a substring of the word poet, dikter 'poet’. Of the books that did
contain poetry, some of the poetry did not rhyme, but rather followed a more
free structure. Thus, not all the books extracted could be used for rhyme
annotation.

3.6.1 Removing noise

As mentioned previously, as the source files were built from automatically read
book scans, they contain various amount of noise depending on the layout of
the book pages. For example, most books have numbered pages. This means
that page numbers periodically appear in the middle of the text throughout the
source files.

If the book page layout also contains a header and/or a footer, this creates
additional noise. See the book scan in figure 3.3. The page number and the
author name are in the right page header, and the book title and page number
are in the left header. Because the poems run over several pages, this text would

33

3.6. PRE-PROCESSING THE DATA FOR ANNOTATION

appear in the middle of the poems in the text files created from the book scans.
Removing this noise, in addition to the noise of OCR-misreadings, are parts of
the necessary pre-processing for annotation. We did this manually.

3.6.2 Splitting books into poems and poems into stanzas

Another necessary pre-processing task during the creation of our corpus was to
split the books into poems, and poems into stanzas. The word stanza here is
used liberally, the way we split the books may not always be in line with what
the author of the poetry intended. During annotation, there are only so many
lines of pairwise rhymes the annotator can keep track of, so an effort was made
to keep the stanzas short (but still contain lines that rhyme, of course).

This pre-processing step was done by manually going through each book text
file, and adding beginning and end markers on either end of each poem, making
sure that the stanzas and number of line breaks looked alright along the way.
Some cleanup of OCR-misreadings was performed as well. After each book was
processed, it was programmatically split up into poems based on the start and
end markers, and each poem was written to file. In this step we also separate
bokmal and nynorsk poetry. In the cases where a poem in nynorsk appeared
in a book that was marked as bokmaél or vice versa, this was also marked and
sorted out.

3.6.3 “Norwegifying” the language

Some poems still seemed more Danish than Norwegian (recall that the median
publication year of the source poetry is 1920). We want the annotated data
set to be as similar as possible to contemporary Norwegian, and therefore we
include this last pre-processing step: norwegifying the poetry.'3

We use the intuition of a native speaker of Norwegian to identify the words
that are no longer deemed Norwegian, and replace it with the modern Norwegian
equivalent. Then, using the simple search-and-replace function that is available
in modern editors, we replace these words in all files in the data set. Some
examples are efter — etter, mand — mann, mellem — mellom and bliver —
blir.

One problem with this approach is that it will inevitably disturb the rhyme
scheme. One example from the data set is the following stanza:

(3.7) Nu mé deres bundne sans
lgses helt, sa de herefter
kjenne kan mitt rikes krefter,
og kan se dets straleglans.»

Line 2 and 3 of this stanza rhymes, with the line-ending words being herefter
(heeceftor) "henceforth’ and krefter (kceftor) 'forces, powers’. However, the mod-
ern bokmal spelling of the former word is heretter (heeretior) "henceforth’. This
means that modernizing this stanza removes a rhyme. In this case, our assess-
ment is that it is okay that we lose the rhyme, because herefter is definitely
Danish and not Norwegian.

13Because the poetry is no longer protected by copyright laws, this is not problematic
legally, but we acknowledge that this step might be a little bit controversial. After this step,
these texts are no longer the exact same poems that the authors wrote.

34

3.7. ANNOTATION

It is important to note that this step does not mean that we replaced every
word in the texts that were not strictly bokmal. We have replaced most words
that are distinctly Danish, but tried not to alter the poetry too much, especially
line-ending words that may change the rhyme scheme.

Poetry is an art, and a genre of text that does not need to follow strict
spelling and grammar, unlike for example news articles or scientific papers. A
demonstration of this can be seen in the stanza in example 3.8. The words
“elva”, “tali”, “ndr’n”, “dripan” and “me” are not accepted in bokmaél, the
“correct” forms would be elva ’the river’; tdlelig 'bearable’, ndr man *when one’,
drapene ’the drops’ and med ’with’.

(3.8) Ombord i en husbat i «lva
kan livet bli tali bra,
nar’n bare har drapan pa flaska
4 smgre me na og da.

This spelling is of course an artistic choice, but also works as a guidance
for how to pronounce the words when reading this stanza aloud'*, as they are
closer to spoken language.

Though this step is described as a pre-processing step (and ideally should
be), we continued to discover words that needed to replaced during annotation,
and thus it was done simultaneously.

3.7 Annotation

In order to annotate the rhyme scheme of the poems, we created an annotation
script that can be found on github!®. The main annotation effort was performed
by the author, however, to ensure high quality annotations we had two anno-
tators doubly annotate a subset of the data, and measured the inter-annotator
agreement using Cohen’s kappa.

To help the annotators create consistent annotations, annotation guidelines
were created, which the annotators were required to read through before starting
the annotation process. The guidelines further serve to describe the corpus
annotations in more detail and will be distributed along with the corpus. We
present the annotation guidelines below.

3.7.1 Annotation guidelines

For each stanza, the annotator should provide a rhyme scheme code; a string
of characters of the same length as the number of lines in the stanza. The
characters in the rhyme scheme code should correspond to the rhyme scheme of
the stanza. If the first and second line of the stanza rhyme, the first and second
letter of the rhyme scheme code should be the same letter.

For the stanza

14 As some say, poetry should be heard and not read https://www.theguardian. com/books/
booksblog/2006/oct/31/thespokenwordwhypoetrysho

15https://github.com/titaenstad/norwegian_rhyme_scheme_corpus/tree/main/
annotation_tool

35

https://www.theguardian.com/books/booksblog/2006/oct/31/thespokenwordwhypoetrysho
https://www.theguardian.com/books/booksblog/2006/oct/31/thespokenwordwhypoetrysho
https://github.com/titaenstad/norwegian_rhyme_scheme_corpus/tree/main/annotation_tool
https://github.com/titaenstad/norwegian_rhyme_scheme_corpus/tree/main/annotation_tool

3.7. ANNOTATION

(3.9) Den natten bygget vi et drgmmeslott
med hvite saler, blanke marmorflater
det skulle ligge hgyt og sees godt
i sol og luft med apne, lyse gater

A correct rhyme scheme code is ABAB. Examples of incorrect rhyme scheme code
are ABBA, AAAA or AABBA.

Acceptable characters for rhyme scheme code
You may use any of the characters QUERYUOPASDFGHJKLZXCVBM to annotate the
rhyme scheme of a stanza.
Special characters
There are three special characters that are used to annotate lines that for some
reason cannot be annotated for rhyme scheme normally.
T - Title
Used when:
e the line is the title of the poem.

If the data is formatted correctly, this should usually be on the first line of
the first stanza of the poem. Not all poems contain a title.
For the stanza in example 3.10 a correct rhyme scheme code is TABAB.

(3.10) RIDDERSLAG
Vi har en verden & vinne
og ikke en time & miste.
Sa skulle vi famle i blinde
og spikre oss selv en kiste?

I - Info
Used when:

e the line is not a part of the poem itself, but contains information about
the poem.

For the stanza in example 3.11 correct rhyme scheme code is TIABAB.

(3.11) ENGELSKE SOCIALISTER
Etter generalstreiken.
Né& vask deres hender! Ta pa dere jakken,
Mac Donald og Thomas og Henderson!
Na ligger han rolig med kniven i nakken,
den tosk! La ham bare bli liggende sann.

36

3.7. ANNOTATION

N - Noise

Used when:
e the line is not in Norwegian or most words are noisy/unintelligeble
e the line-ending-word contains noise/is not a proper word

For the stanza in example 3.12 a correct rhyme scheme code is NNABBCCB,
because lines 1 and 2 contain too much noise for us to want to include it in our
dataset, even if the line-ending-words are free from noise.

(3.12) fo ©) pndehe s ro 7ft fjerner,
gs er mantdgde fiksidders rov,
og traerne ser man ei for bare skog,
man knuser ngttene med skall og kjerner.
En patriot forteller at han verner
om landets kraft nar bare han er grov,
og vraker andens nektar med en lov
av tankefinkel fra de tomme hjerner.

The definition of rhyme

Sometimes there are stanzas containing word pairs that do not fully rhyme, but
almost. Because the data is fairly old, you might observe examples where the
words would rhyme if you replace the t-sound with the d-sound or other ways to
speak that are similar to old riksmal. Try to annotate the rhyme as accurately
as possible given how the stanza is written.

For the stanza in example 3.13 a correct rhyme scheme code is ABCB.

(3.13) Verden, hvor er du full av géter,
kverner som hav i klippering,
maler din must til lette frader,
knuser din kraft til ingenting]!

It might be tempting to annotate “gater” (gotor) and “frader” (froder) as rhyming,
as they are indeed similar (and this was probably what the author meant as well,
when this was written almost 100 years ago). But, because we want the data
to reflect modern (Pstlandsk) Norwegian, please do not annotate word pairs as
rhyming if they do not rhyme the way you would pronounce it. We do not want
to danify our language.

For the stanza in example 3.14 a correct rhyme scheme code is AABCCB.

(3.14) Her ser du i blest bak det vimrende lgv
i sortmalte linjer: Guds fred med ditt stgv!
hvor sorgen sitt minnekvad satte.
Om enkelt og kluntet, mitt hjerte hvor rikt,
nar livet fortolker de skjgnneste dikt
som hjertene bare kan fatte

Though “rikt” (rizkt) and “dikt” (dikt) do not rhyme 100%, with the “i” being
long in “rikt” and short in “dikt”, the words are similar enough that this should
be accepted as rhyme. As a rule of thumb, using long/short vowels is a lesser
rhyme crime than completely different consonant/vowel sounds.

37

3.7. ANNOTATION

Disagreeing rhyme schemes | Kappa on stanza level | Kappa on line level
6/100 0.926 0.959

Table 3.5: Cohen’s kappa between the annotators of the subset

3.7.2 Inter-annotator agreement

In order to assess whether it is possible to annotate rhyme consistently and in
an objective manner, we have doubly annotated a subset of the data. Because
the whole data set was already annotated by the main annotator, we were able
to select the subset based on rhyme pattern frequencies. We chose 100 stanzas
from the ten most frequent rhyme patterns in the data set, weighted so that the
number of stanzas chosen is proportional to the frequency of the rhyme scheme.

We measure the agreement of the two annotators with Cohen’s kappa. Co-
hen’s kappa is used for categorical annotation, when each item is annotated
with one label from a set of mutually exclusive labels. The formula is used for
calculating agreement between two annotators, and it takes the possibility of
agreement by chance into consideration. It is given as:

Pr(a) — Pr(e)

K== — Pr(e)

(3.15)

where Pr(a) is the observed agreement, and Pr(e) is chance agreement. The
kappa ranges between -1 and 1, where the higher the number the more agree-
ment, and a score of 0 or lower means no agreement. (McHugh, 2012).

We measure agreement on two different levels. One is on stanza level: we let
each stanza be an item, and the rhyme scheme code the label. This means that
the rhyme scheme code for a stanza must be an exact match for the annotators
to agree. The other is at the line level, where each line is an item, and the
rhyme scheme letter for that line is the label. Then the observed agreement
for annotations AABB and AABC will be 3/4, whereas AABB and ABCD will be 1/4.
With the former way of measuring both would be 0.

In table 3.5 the results of the double annotation of the subset are presented.
Out of the 100 stanzas, there were 6 stanzas where the two annotators’ anno-
tations were different. Of these, 3 were examples where the stanza contains
an almost-rhyme, and 3 where examples where the rhyme scheme was wrongly
annotated by the main annotator. One such example is 3.16 below. The rhyme
scheme in this stanza is obviously ABBA, but it was wrongfully annotated with
ABAB by the main annotator.

(3.16) I den falt gnisten av min moders lyse
og varme sjel; og ekteskapets lykke
ble ei alene deres alders-smykke;
men den vil lenge etter dgden lyse.

Still, the Cohens’ Kappa score is very high for both stanza level and line
level agreement. This shows that the annotated data set in general should hold
a relatively high quality, and be mostly correctly annotated according to the

38

3.8. CHALLENGES

guidelines. For future work, doubly annotating more of the data set to further
ensure correct rhyme schemes would be a good idea.

3.8 Challenges

Producing the data set was very time consuming. In particular, the pre-processing
step of splitting books into poems and stanzas took a lot of time, because we
also removed noise during this step. The pre-processing was actually more time
consuming than the annotation itself. Ideally we would have been able to go
through all the books, but we did not. We started with the bokmaéal books,
and therefore the whole produced data set is bokmaél only, though it would be
very interesting to annotate a nynorsk data set in the future. We view the
current annotation effort as a proof-of-concept. Since the annotation guidelines
and source data have been made available, the annotation effort can easily be
extended in the future.

3.8.1 Choosing a dialect

Annotating phonetic information from text, when there is no spoken standard
in Norwegian is a big challenge, and there is arguably no objective truth. A
word pair that rhymes in one dialect may not rhyme in another. Unless the
poetry is obviously written in a specific dialect, such as example 3.8, for the
texts marked with bokmél we assume the @stnorsk dialect that is spoken in
and around the capital. We choose this because it is the dialect that is most
similar to the written bokmal, and the dialect that the annotators speak. More
than half of the population lives in @stlandet, and 40% live in the greater Oslo
area (Thorsnaes, 2021). Thus the chosen dialect should be fairly representative
of spoken Norwegian.

3.8.2 Challenges during annotation

There were two specific cases that proved to be challenging in the annotation
process. One is the case when the stanza consists of more that 6 lines. It took
more than double the time to annotate a long stanza, because you need to keep
track of all the previous lines.

The other case is when there is an almost-rhyme. One would think it would
be pretty straightforward whether or not two words rhyme, but in reality these
edge-cases could sometimes be very challenging to assess. On the one hand, we
want to balance faithfulness to the author’s intention with the purpose of the
corpus creation, which was to provide training data for rhyme modelling. On
the other hand, we do not want our data set to contain incorrect rhymes.

3.9 Presenting NoRSC: Norwegian Rhyme Scheme
Corpus

The final data set can be found here'®. In total 11 books were annotated. This
resulted in 508 poems, 5158 stanzas and 26198 lines of data (see table 3.6).

6https://github.com/titaenstad/norwvegian_rhyme_scheme_corpus

39

https://github.com/titaenstad/norwegian_rhyme_scheme_corpus

3.9. PRESENTING NORSC: NORWEGIAN RHYME SCHEME CORPUS

of books 11

of poems 508
of stanzas 5158
of lines 26198
of lines that potentially rhyme | 25749
of unique line ending words 6990

Table 3.6: Data quantity in the annotated data set

Rhyme scheme ABAB ABCB AABB AABCCB | ABBA
Count | % of total | 1142 | 22% | 749 | 15% | 611 | 12% | 360 | 7% 181 | 3,5%
Rhyme scheme AABBCC | AAA ABAAB AABCBC | ABABCC
Count | % of total | 162 | 3% 152 [2.9% | 73| 1.4% | 70| 1.4% | 58 | 1.1%

Table 3.7: Frequency of the top 10 most frequent rhyme schemes

3.9.1 Rhyme scheme statistics

We calculated rhyme scheme frequencies for the data set excluding the info,
noise and title annotations, as lines annotated with these are not part of the
rhyme. If a stanza of length 5 is annotated TABAB, then we count it as ABAB
and so on. There are 449 lines in these categories, meaning that we have 25749
lines of potential rhymes.

The most frequent rhyme scheme in the data set is ABAB with 1142 stanzas,
or >22% of the stanzas in the data set. After that comes ABCB with 749, or
15% of the stanzas (Table 3.7). There are 490 different rhyme schemes, but 303
of them only appear once, and the “long tail” distribution, typical of linguistic

data, is apparent (see Figure 3.4).

@ABAB. count: 1142

@ABCB, count: 749

00 AABE, count: 611

#MABCCE, count: 360

200 fBEAJ count; 181

L .

Rhyme schemes

Figure 3.4: Rhyme scheme distribution in the annotated data set

40

3.10. NORSC V1.1

3.10 NoRSC vl.1

As discussed in section 3.7.2, some of the stanzas were annotated with the wrong
rhyme scheme. Going through all 5000 stanzas and checking the annotations
is not a viable option. In chapter 4 we extract unique rhyme pairs from the
annotated data set. From the “bad” rhyme pairs we were able to efficiently find
stanzas that have wrong annotations. 133 stanzas were re-annotated to improve
the quality of the corpus. 89 stanzas received a new rhyme scheme code. Both
the original corpus discussed in this chapter, and the new and improved version
can be found on the corpus github!7.

"https://github.com/titaenstad/norwvegian_rhyme_scheme_corpus

41

https://github.com/titaenstad/norwegian_rhyme_scheme_corpus

Chapter 4

Rhyme pair collection

In this chapter, we extract both positive and negative rhyme pairs from the
NoRSC data set, in order to use them for rhyme modelling in the next chapter.
We also discover a graph based method to harvest even more rhyme pairs from
the same number of stanzas. To get even more data, we scrape rhyme buckets
from Wiktionary, from which we are able to construct even more positive and
negative rhyme pairs.

As explained in chapter 2, a rhyme pair is a pair of words or words sequences
that rhyme. Similarly, a negative rhyme pair is a pair of words or word sequences
that do not rhyme. Rhyme pairs are the basis for rhyme modelling in Lau et
al. (2018), Haider and Kuhn (2018) and Minogue (2021), as discussed in chapter
2. We also extract rhyme buckets, sets of words where all words rhyme.

4.1 Extracting rhyme pairs from NoRSC

We extract rhyme pairs from our rhyme annotated data set by combining every
pair of line ending words annotated with the same letter in a stanza. For
instance, from the rhyme scheme code ABAB we get two rhyme pairs. From the
rhyme scheme code AAA we get three rhyme pairs. But how do we find out how
many rhyme pairs we get from an arbitrary rhyme scheme? It is quite simple if
we apply some simple graph theory.

We can view a stanza as a graph: We let each line in the stanza represent a
vertex. The rhyme relation between two lines of poetry is represented as an edge
between the two corresponding vertices. Rhyme is a symmetrical relation, A
rhymes with B means that B rhymes with A. Therefore the graph is undirected.

A-A B C
./ \
A

B

Figure 4.1: Graph illustration of the rhyme scheme ABABAC

42

4.1. EXTRACTING RHYME PAIRS FROM NORSC

This graph can be constructed using only the rhyme scheme code: Let each
symbol in the rhyme scheme code be a vertex. Place an edge between every pair
of vertices with the same symbol. See Figure 4.1 for an example of the rhyme
scheme graph created from the rhyme scheme code ABABAC. There are 6 vertices,
one for each letter in the rhyme scheme code. There are four edges, one for each
rhyme pair that can be constructed from the stanza with the annotation.

Now, in order to find the number of rhyme pairs for any rhyme scheme, we
simply need to count the number of edges in the graph constructed from the
rhyme scheme. Making the graph and counting the edges manually is tedious
and unnecessary, as this can easily be calculated.

We first observe that the rhyme scheme graphs have the following properties:

1. The graph is separated into connected components, the connected sub-
graphs of the larger graph. There is one component for each unique rhyme
scheme symbol.

2. Each component contains as many vertices as occurrences of the rhyme
scheme symbol it represents.

3. Each component is a complete graph; a graph where each vertex has an
edge to every other vertex

Knowing these three facts, we can calculate the number of edges in any
rhyme scheme graph, thereby also calculating the number of rhyme pairs. The
number of edges in the graph would be the same as the sum of the number of
edges in each component. Each component is as we know a complete graph.
To calculate the number of edges in a complete graph, we use the following
equation:

V(V-1)

2

where E is the number of edges, and V is the number of vertices. V(V — 1)
because every vertex has an edge to every other vertex in the graph. The
division by 2 is because the graph is undirected; the edge (A,B) is the same
edge as (B,A).

Now we have all the pieces needed to create algorithm for counting the num-
ber of rhyme pairs for a given rhyme scheme. For each unique rhyme scheme
symbol s, there is a complete graph with the same number of vertices as occur-
rences of s. Summing up the number of edges for each of these complete graphs,
we get the total number of rhyme pairs for the given rhyme scheme. See listing
1 for an implementation of this.

Using the code in listing 1 on our entire annotated data set, we get a total
of 12 627 rhyme pairs. We have no guarantee that these are unique, though. As
seen in table 3.6 in chapter 3, the number of unique line ending words in the
data set is just 27% of the number of potentially rhyming lines. Extracting all
rhyme pairs and removing duplicates, we get 7238 unique rhyme pairs, 57% of
the total number of rhyme pairs.

We also extract negative rhyme pairs. We want to be careful with almost-
rhymes, as we fear that these might confuse an eventual rhyme model. Because
there is a high possibility of almost-rhymes for the stanzas with rhyme codes
such as ABCB, we only use stanzas where the number of symbols in the rhyme
scheme code was equal for all symbols. This was true for 3006 stanzas. For all

E= (4.1)

43

4.2. GRAPH BASED APPROACH TO COLLECTING RHYME PAIRS
ACROSS STANZAS: DENSE RHYME PAIRS

from collections import Counter

def get_number_of_edges(vertices: int) -> int:
return (vertices*(vertices-1))//2

def number_of_rhyme_pairs(scheme: string) -> int:
¢ = Counter(scheme)
return sum(get_number_of_edges(v) for v in c.values())

Listing 1: Python implementation of counting rhyme pairs for a given rhyme
scheme

ga i
/X

bla - ma

Figure 4.2: Graph illustration of “gd” as a “bridge” vertex.

these stanzas, we pair up all line-ending words with different annotations. This
resulted in 22 447 unique negative rhyme pairs.

4.2 Graph based approach to collecting rhyme
pairs across stanzas: dense rhyme pairs

It is possible to extract even more rhyme pairs from the annotated stanzas. We
expect rhyme to be a transitive relation: if A rhymes with B and B rhymes with
C, we expect A and C to rhyme too.

Let us say we have a stanza where “bla”, “g&” and “std” appear as line-ending
words. This gives us 3 rhyme pairs. From another stanza we have the rhyming
words “gd”, “fa” and “ma”; also giving us 3 rhyme pairs. This is a total of 6
rhyme pairs for both stanzas. But because “gd” appear in both stanzas, we can
expect that all five words rhyme.

Viewing the line-ending words as vertices, and the rhyme-relation as edges,
it is clear that the “g&” vertex connects the two stanzas’ graphs. When a word
vertex connects two rhyme groups like this, we call it a bridge word (see Figure
4.2). Now, instead of two graphs with 3 vertices, we have one graph with 5.
In Figure 4.2 the continuous lines are the already existing rhyme pairs, and
the dotted lines represent the added rhyme pairs we get from merging the two
graphs. This is also confirmed by using equation 4.1, we see that one complete

44

4.2. GRAPH BASED APPROACH TO COLLECTING RHYME PAIRS
ACROSS STANZAS: DENSE RHYME PAIRS

Figure 4.3: Graph representation of the rhyme pairs; Each vertex is a word, and
each edge is a rhyme pair

graph of 5 nodes has 10 edges, 4 more than two complete graphs of 3 nodes.
One important property of complete graphs, as seen in equation 4.1, is that the
number of edges increase quadratically as the number of vertices increase.

In Figure 4.3 we see all 7238 rhyme pairs represented as edges in a graph.
The vertices are the unique line-ending words, 6290 in total. This graph is
separated into 1259 connected components. Here the vertices in every connected
component amounts to a “bucket” of words that all rhyme with each other. If we
combine every pair of words for each or these buckets, we get a lot more rhyme
pairs. This is equivalent to adding edges such that every connected component
becomes a complete graph. We call these rhyme pairs dense, because we obtain
them by making a more dense graph out of the rhyme pair graph.

45

4.2. GRAPH BASED APPROACH TO COLLECTING RHYME PAIRS
ACROSS STANZAS: DENSE RHYME PAIRS

4.2.1 Connected components and consequences of wrong
annotations

Of the 1259 connected components, 727 have only two vertices, meaning that
they are simply isolated word pairs. These pairs are already complete graphs,
and we can obviously not get any more rhyme pairs out of them. Of the 532
remaining components, the average number of vertices is 9. In comparison
the average number of lines in a stanza is 5, which means that many rhymes
were connected across stanzas. Note that there is no guarantee that all words
that rhyme have been connected in the same component. This is completely
dependent on there being bridge words that connect rhyme pairs across stanzas.

Upon inspecting the words in each bucket it becomes clear that not all of
these can be used as they are. In section 3.7.2 we discover that 3 out of the
100 doubly annotated stanzas had received a wrong rhyme scheme annotation.
For every wrong rhyme pair, two components are connected that should not
be connected. If two line ending words that are frequently used are wrongfully
annotated to be rhyming, this would connect two very large components that
should not be merged. We can see in Figure 4.3 that the largest components
seem to contain several smaller clusters that are connected by only a few edges.

When only sampling rhyme pairs directly from the stanzas, a few incorrect
rhyme pairs will not impact the data set quality too much. But with dense
rhyme pairs, that is not the case. The largest connected component produced
with our rhyme pair data set contains 227 vertices, making up a bucket of words
with at least 8 different phonetic endings (see Figure 4.4). A complete graph
with 227 vertices has 25 651 edges. If we were to create all possible rhyme pairs
from this single bucket, we would end up with 25 651 word pairs, but most of
them would not actually rhyme.

In order to assess the quality of the derived graph, we manually inspect the
resulting buckets. It seems that all buckets that contain less than 10 words have
no errors. We look over all the larger buckets, and find that 27 buckets contain
words that do not rhyme. 505 of the buckets (of size >2) are good to use as
they are. These 505 “good buckets” have an average size of 6.6, and contain
3327 unique words, 52.9% of the total vocab (aka the number of vertices in the
graph). We construct rhyme pairs by combining all possible pairs of two words
within each bucket. This results in a total of 17 706 unique rhyme pairs. 1941 of
these already exist in the original rhyme pair set. This means that the number
of rhyme pairs was increased with 15 765 dense rhyme pairs.

4.2.2 Two approaches to repairing the bad components

We do not want to lose the words from the “bad” connected components, espe-
cially because all the 9 largest connected components in the rhyme pair graph
are among these. We use two approaches to split these components into the
separate appropriate clusters.

Clustering with HCS algorithm

One approach is to use a graph clustering algorithm to separate the connected
components. We use the Highly Connected Subgraphs (HCS) algorithm from

46

4.2. GRAPH BASED APPROACH TO COLLECTING RHYME PAIRS
ACROSS STANZAS: DENSE RHYME PAIRS

Figure 4.4: The largest connected components from the rhyme pair graph

47

4.2. GRAPH BASED APPROACH TO COLLECTING RHYME PAIRS
ACROSS STANZAS: DENSE RHYME PAIRS

Figure 4.5: Connected component Figure 4.6: Connected component
before clustering after clustering

Hartuv and Shamir (2000), implemented in python by Gert Sluiter!. The algo-
rithm takes an undirected, connected graph as input, and outputs a graph that
has been split into several highly connected graphs. The reasoning for using
this algorithm is that we expect each component to have more edges between
vertices of words that actually rhyme, and fewer edges between vertices of words
that do not rhyme, and were added by accident.

In Figure 4.5, the 7th largest connected component is displayed. Figure 4.6
shows the result of running this component through the HCS algorithm. The
graph has been separated into two components, with words ending in enzor (top
left) and am (bottom right). 29 of the 39 vertices in the original graph have
been separated into single-vertex components (not displayed in the figure).

The results of running each of the 27 “bad” components through the HCS
algorithm is as follows: 6 components were not separated into several graphs.
The other 22 were separated into 70 components of size >1, containing a total of
336 words. 1055 vertices were separated into single-vertex components, meaning
that the corresponding 1055 words could not be used to create more word pairs.
From the 70 word buckets that were extracted, the average number of words is
4.8. For each bucket, rhyme pairs were constructed from all possible word pair
combinations. This resulted in 787 rhyme pairs, where 338 already existed in
the original rhyme pair data set. This means that using the HSC algorithm, the
number of rhyme pairs was increased by 449.

Manual clustering

The other approach is to manually go through each component, and remove the
edges that should not be there. This is approach is motivated by the fact that
the graph clustering algorithm left so many unconnected vertices, and that it
seemed pretty easy to identify the problem edges manually. For example, in the
Tth largest component (Figure 4.5), we removed the edges (“ham”, “lender”) and
(“ham”, “sender”). This left two separated components of 17 and 22 vertices.

Ihttps://github.com/53RT/Highly-Connected- Subgraphs-Clustering-HCS

48

https://github.com/53RT/Highly-Connected-Subgraphs-Clustering-HCS

4.2. GRAPH BASED APPROACH TO COLLECTING RHYME PAIRS
ACROSS STANZAS: DENSE RHYME PAIRS

Number of buckets
5 8 8 28 3 &5 3

B

m m -
345678 910111213141516171819202122232435 272829 31 4353 38 4142 4445464748 4950 59 3
Number of words in bucket

o

Figure 4.7: Words per bucket for the good buckets + manually separated rhyme
buckets

In comparison, using the clustering algorithm we were left with two compo-
nents of 6 and 4 vertices, respectively. The advantage with using the algorithm
is of course that it can be done automatically, but as we have already spent
time manually annotating the data set, we took the time to manually remove
problematic edges from the 27 bad components as well.

From the manual clustering we discovered that it was not only mistakes dur-
ing annotation that led to non-rhyming words being connected in the rhyme pair
graph. There were several problematic edges that were not a result of annota-
tion mistakes. Heteronyms, words that are spelled the same, but have different
meaning and pronunciation, were the source of several problematic edges. One
example is the letter sequence “sort”, that means 'black’ if pronounced sut, but
’kind, type’ if pronounced sot.

A related case is words with multiple possible pronunciations. The word tid
‘time’ can be pronounced both ti: or tiid, even by the same speaker.

The problem edges that resulted from wrong annotations can be separated
into two cases. The first case is from obviously wrong rhyme scheme annotation:
the words in the rhyme pair are not phonetically similar at all. The other is
almost-rhymes, word pairs where the words almost rhymes, but not complete,
and have wrongfully been annotated as rhyming.

In total 106 edges were removed, which separated the 27 graphs into 91
components. The average number of vertices per component is 16.4, and they
contain 1492 words in total. 16 vertices separated into single-vertex components,
and could thus not be used to create more rhyme pairs. All word combinations
from all buckets resulted in 20 183 rhyme pairs. Of these, 1263 already existed
in the original rhyme pair data set. The number of rhyme pairs was increased
by 18 920.

In 11 out of 27 cases, the clusters created by the HCS algorithm agree with
the manual clustering, with regards to the phonetic word endings in the different
clusters and the number of clusters. Generally the HCS algorithm created fewer
clusters than the manual clustering. The clusters also had fewer words, which
in turn yields fewer rhyme pairs. Also here the fact that the number of edges
is quadratic to the number of vertices in a complete graph shows, with the 449
new rhyme pairs from the HCS clustering versus the 18 920 new rhyme pairs
from the manual clustering.

49

4.3. EXTRACT RHYME PAIRS FROM WIKTIONARY

° L J
®
» @ ¥ ® .
L > & ®
& . x = ® = g o
£ ® ® .-.'-*. P s ..
. .
s @ e
. ® R .. ® ._-_7' A
: o e @
Coe v T L% s xe = o *
n 2 ®* E L
L % u e 9 » ® * = %
* & PRI LA, e w® @ e’ @
- " .
® . e ©® b & ® * @ & . -.“ LY & ”ﬁ"_. *"- o ® o 2 .
> @ # a .’.“5.-: ‘.' e uE -\'\4. A ‘4,
® .i.-'* ® ® v;:#_,' g BB LY, By, ¥ _:.".. e @
- [L @ ° @
e =~ F '\"o,,"". L I - ® ¢
-. ® e LI -
o‘-'r-' ® .*.:-:-*'*v_* + : ® 3
v & » PR N S «
o ..:--:-'.- .‘:H 5.# P ‘_.:-* 3 @ ® _?#4-°"
L) LS L ® -
+® o @ * g ® : B T ® ® ¢ - e @
P et e 2t e ey ® 9 Sk
* ® .0 % . e o . e -
[] 2 F! : -
® g v W ':.... [] ; T oy ou @ ® @ ®
DA A R ER »
@ x T s g * w ok, " ® ™ LIPS
* L - [] b
° . @ ® - ® " @ % A e o .
%« P. * ® L I & g u x LA o ®
E ®
¥".. P e ° ‘. L .. ®]
% w @ = s e . 8 2 *oaoon
+ ¥ & @ * @ u @ ”c # &
*og ¥ ® - ”" @ ® @
» ® ® . nd
e = & ® & e .. B
® T e @ L] ®
® g L4 L &
® ®) ® &
® ® ¢ @
[]] d
® ® ® L] @
& ®
@

Figure 4.8: Graph representation of all rhyme pairs after manual clustering

Figure 4.7 shows the size distribution of the buckets produced from the
manual clustering. We see the long tail distribution, the smallest buckets are
most frequent. 166 buckets contain 3 words, and 106 buckets contain 4 words.
There are only 1 or 2 buckets for each size >28.

See appendix A for descriptions and figures of the graph clustering of all
27 “bad” components. Figure 4.8 shows the graph representation of the dense
rhyme pairs: these include the rhyme pairs from the good buckets plus the
rhyme pairs from the manual clustering.

4.3 Extract rhyme pairs from wiktionary

We also extract rhyme pairs from wiktionary, where there is a page called “Cat-
egory:Norwegian rhymes”?, containing links to 33 pages listing words with the

®https://en.wiktionary.org/wiki/Category:Norwegian_rhymes

50

https://en.wiktionary.org/wiki/Category:Norwegian_rhymes

4.4. MERGING WIKTIONARY AND DENSE RHYME BUCKETS

| Selection Pos. rhyme pairs | Neg. rhyme pairs | Unique words
Original pairs from

1 | rhyme scheme 7238 22 447 6290
annotated stanzas

2 | Pair components 727 1454
Good

3 buckets - 2 18 416 4780

4 | HCS + 3 19 203 5116
Manual

5 clustering - 3 38 599 6272

6 | Wiktionary 80 363 849 993 1384

7 | Wiktionary 155 838 7541
and 5 merged

Table 4.1: Number of rhyme pairs extracted from different selections and buckets

same phonetic ending. As these words are already sorted into buckets, we just
need to combine them into pairs. There were in total 1502 unique words in
these 33 buckets, with an average size of 45 words per bucket. By combining all
possible word pairs within each bucket, we got a total of 80 363 rhyme pairs.

Using the wiktionary rhyme groups we could also create negative rhyme
pairs. With the groups (aka connected components) we constructed from our
own annotations, we had no guarantee that two groups of words did not rhyme.
This is not the case with the wiktionary buckets. Because wiktionary differs
between short and long vowels, and we want to avoid marking almost-rhymes as
negative, we first merge 6 pairs of buckets before we begin. From the remaining
27 buckets, we create negative pairs by pairing each word from each bucket with
every other word from every other bucket. This resulted in 877 429 negative
rhyme pairs.

4.4 Merging Wiktionary and dense rhyme buck-
ets

Of the 1384 unique words from the Wiktionary buckets, and 6290 words from the
NoRSC rhyme pairs, 114 words exist in both. As we know, larger buckets give
more rhyme pairs, and we therefore merge the buckets from wiktionary and
NoRSC. We use the good buckets + manually clustered buckets, and simply
iterate over the overlapping words and merge the buckets from both data sets
along the way. This resulted in a total of 612 buckets, with an average size of
10 words per bucket. The median bucket size is 5, due to the large number of
buckets with 3 and 4 words in the good buckets + manually clustered buckets
(see Figure 4.7). The 10 largest buckets contain between 50 and 324 words.
From the merged buckets 155 069 rhyme pairs were constructed. See Table 4.1
for an overview of the number of rhyme pairs and total vocabulary from the
different selections and buckets.

51

Chapter 5

Rhyme modelling

In this chapter we explore two types of rhyme modelling: rhyme prediction and
rhyme generation. Both can technically be called rhyme classification: the first
task is a binary classification task to predict whether two character sequences
rhyme, and the second is to predict which rhyme bucket (aka class) an input
word belongs to. In the former task, we base our model on, and compare our
results to prior work. The latter task is designed by us such that models trained
for this task can be used in poetry generation.

5.1 Rhyme prediction

Inspired by the “Supervised Rhyme Detection with Siamese Recurrent Net-
works” paper (Haider and Kuhn, 2018), we explore how well a siamese recurrent
network (SRN) trained on character vectors performs rhyme detection in Nor-
wegian. We were not able to find the code for Haider and Kuhn’s experiments,
we did however find a blog post titled Using Siamese neural networks to cre-
ate a simple rhyme detection system, demonstrating a very similar experiment
(Minogue, 2021). Haider and Kuhn (2018) gets slightly better results with ac
curacies of 0.96 (German) and 0.97 (English), compared to the 0.95 accuracy
on English data from Minogue (2021). The main differences are that Haider
and Kuhn (2018) use less data, but a more complex model architecture, and
Minogue (2021) use a lot more data, with a simpler model architecture. The
details of both experiments are described in section 2.5 in chapter 2.

function is relu for all layers

activatiol
model o cent output layer which s sigmoid

Word 8—> charjevel —| ™ ;
; - rhyme if output = 0.5
tokenizer LSTM Subtract—» Dense —» Dense —» Dense —» —— prediction = not rhyme if output <= 0.5
word b—p{*PRADINGL____[54 | 5 64 684 3z B n

Figure 5.1: Overview of the model architecture of the rhyme detection model

52

5.1. RHYME PREDICTION

Train set | Validation set | Test set | Total
unique word pairs | 8685 1448 4343 14 476

Table 5.1: Data set split

def last_letters(word: str) -> str:
for i in range(len(word)-1, -1, -1):
if is_vowel(word[i]):
break
return wordl[i:]

def rhymes(word_a: str, word_b: str) -> bool:
return last_letters(word_a) == last_letters(word_b)

Listing 2: Python implementation of baseline rhyme detection

As the code for the experiments from Minogue (2021) is readily available!,
we use this for our rhyme detection model. See Figure 5.1 for an overview of
the model architecture. The model takes in two words as input, and outputs a
number between 0 and 1. If the output is more than 0.5, the prediction indicates
that the words rhyme.

We start out with the original non-dense NoRSC rhyme pairs (selection 1
in Table 4.1). Following Minogue (2021), we employ a 1:1 ratio of positive to
negative pairs, so we do the same. We use all 7238 positive pairs, and randomly
sample the same number of pairs from the larger set of negative rhyme pairs.
This makes up a total of 14 476 word pairs, or 1.4% the number of pairs as in
Minogue (2021). Following Minogue (2021), the data is split into 60% training
data, 10% validation data and 30% test data, keeping the ratio of positive to
negative pairs in each set (see Table 5.1).

5.1.1 Baseline model

We create a very simple baseline model. It is a function that takes in two words,
and predicts rhyme if the substring from and including the last vowel is the same
for both words (see implementation in Listing 2). This simple baseline gets an
accuracy of 0.90 on the test set.

5.1.2 Model training and results

We train our models using the code from Minogue (2021) almost exactly as
is. The only change we make is to add early stopping to the training loop, as
to not waste energy by training the models unnecessarily long (in the original
code the model is trained for 100 epochs). The early stopping callback monitors
validation loss, and has a patience of 5 epochs.

Lcode here: https://github.com/minoguep/rhyme_detection

53

https://github.com/minoguep/rhyme_detection

5.1. RHYME PREDICTION

Validation set accuracy
Model 1 0.94

Model 1.2 | 0.95

Model 2 0.92

Model 3 0.8

Model 3.2 | 0.7

Table 5.2: Accuracy on “Rhyme detection with Siamese LSTM” experiments

The first model, named model 1, is trained with the 1:1 ratio of positive to
negative examples, exactly as in Minogue (2021). The model ends up with an
accuracy of 0.94 on the validation set (see Table 5.2).

Model 1.2 is trained with a 2:3 ratio of positive to negative rhyme pairs, as
in Haider and Kuhn (2018). We use the training set from model 1, but increase
the number of negative rhyme pairs to achieve a 2:3 ratio. This model got an
accuracy of 0.95 on the validation set, one percentage point better than model
1.

We also train a model with the dense rhyme pairs we collected as explained
in chapter 4. Note that the number of unique words is the same, there are just
more positive/negative rhyme relations between the same number of words. We
use the 38 599 rhyme pairs extracted from the good buckets + manual clustering
(selection 5 in Table 4.1). The negative rhyme pair selection is the same as with
models 1 and 1.2 (selection 1 in Table 4.1). In this case, there are more positive
examples than negative, so we use all 22 447 negative pairs, and sample the
same number of positive rhyme pairs, for a total of 44 894 word pairs. As there
is overlap with this set of rhyme pairs and the original, we make sure to remove
all word pairs that are present in the validation set and test set. This gives
us 41 176 word pairs to train the model. This model, which we call model 2,
achieves an accuracy of 0.92 on the validation set, worse than both model 1 and
model 1.2 .

Adding even more data, we use the rhyme pairs from the merged Wiktionary
and manually clustered buckets (selection 7 in Table 4.1), and the negative word
pairs from Wiktionary (selection 6 in Table 4.1). Model 3.1 is trained on a subset
of 40 000 word pairs, and model 3.2 is trained on all 155 838 positive examples,
plus the same number of negative examples, making a total of 311 676 examples.
Both these models perform pretty bad, with a validation set accuracy of 0.81
for the smaller and 0.70 for the larger model. The training is ended after just
6-8 epochs, compared to between 20 and 80 epochs with the other models.

5.1.3 Faults with the model architecture

The siamese LSTM from Minogue (2021) is not commutative, that is model(A,
B) != model(B, A). The reason for this is the Subtract-layer (see Figure 5.1).
This leads to cases where the model gives a different rhyme prediction for a
word pair depending on the order of the items in the pair.

54

5.1. RHYME PREDICTION

Model | Val. set accuracy | Mirrored val. set accuracy
1 0.94 0.93
1.2 0.95 0.94
2 0.93 0.92
3 0.77 0.78
3.2 0.71 0.70

Table 5.3: SRN models’ accuracy on mirrored validation sets

Commutative model | Accuracy
1 0.94

1.2 0.95

2 0.95

3 0.81

3.2 0.7

Table 5.4: Commutative SRN models’ accuracy

We construct the mirrored version of the validation set S as follows:
Smirror - {(w27w1) ‘ (w17w2) S S} (51)

For model 1, the rhyme prediction differs between the original and mirrored
versions for 38 of the 1448 pairs in the validation set. For model 1.2, this number
is 36. For model 2, the predictions for 34 pairs are different when the pairs are
mirrored. Model 3 gets different predictions depending on word order for 306
of the 1448 pairs in the validation set, and for model 3.1 this number is 363.

In Table 5.3 we see the impact on accuracy with the original and mirrored
validation sets. For all models except model 3, the accuracy is 1 percentage point
lower on the mirrored validation set. For model 3 the accuracy is 1 percentage
point higher.

5.1.4 Improving the model architecture

We create a commutative model by adding a layer that performs element-wise
absolute value after the Subtract-layer. The results of re-running the above
experiments with the commutative versions of the models can be seen in Table
5.4. Commutative models 1 and 1.2 get the same accuracy as the original
ones, which is an increase of 1 percentage point on the mirrored validation set.
Commutative model 2 gets a 2 percentage point increase in accuracy compared
to the original one. Commutative model 3 gets a 4 percentage point increase in
accuracy compared to the non-commutative one. Model 3.1 accuracy decreases
by 1 percentage point (Table 5.4). In general, the performance increased slightly
when using a commutative model architecture.

55

5.1. RHYME PREDICTION

Rhyme pair\model | baseline 1 1.2 |2 3 3.2
sagt, sagd NR = Not rhyme | NR | NR | NR | NR | R
vilje, vanilje R = Rhyme R R R R R
tid, svineri NR R NR | R R R
vokser, bukser R R R R R R
ha det, badet R NR | NR | NR | R R
se det, frede NR R R R R R

Table 5.5: Example word pairs and rhyme predictions from models (correct
predictions in bold

5.1.5 Example predictions

We included some example word pairs, and the produced predictions from the
commutative models in Table 5.5.

All models are able to correctly predict that vilje (vilje) 'will’ and wvanilje
(vanilje) 'vanilla’ rhyme. None of them are able to correctly predict not rhyme
for the word pair vokser (vokser) ’grows’ and bukser (bukser) 'pants’. Only the
largest model has an erroneous prediction for the word pair sagt (sakt) ’said’
and sagd (sagd) 'sawed’. The word pair tid (ti:/ti:d) ’time’ and svineri (svineri:)
'mess, filth’ rhymes if the speaker pronounces tid like (tir). Interestingly, only
model 1.2 did not predict rhyme for this word pair. We included two word pairs
containing multiword rhymes, which is not something the models were trained
at. We were positively surpised that all models got the pair se det (sede) ’see
it and frede (frede) 'protect’. The two largest models also got the word pair ha
det (hade) ’good bye, have it” and badet (bade) 'the bathroom’.

5.1.6 Discussing and comparing the results

With the same model architecture, but only 1.4% of the data, the model trained
on the NoRSC rhyme pairs gets a comparable accuracy, just 1 percentage point
below Minogue. With the 2:3 ratio of positive to negative rhyme pairs, the model
achieved the same accuracy as Minogue (2021). We realize that these results,
having been obtained on two different data sets for two different languages,
are not comparable. Even so, it is interesting to compare our results to these
previously obtained using an identical architecture.

The non-commutative version of model 2, utilizing the dense rhyme pairs,
gets worse results than both model 1 and 1.2, which were trained with much
less data. The commutative version achieves the same accuracy as model 1.2,
but we would have expected an increase in performance as the amount of data
was doubled.

The models trained with the merged Wiktionary and dense pairs as the train-
ing data perform worse than the baseline. It seems that learning Wiktionary
rhyme pairs does not improve the models ability to correctly predict the rhyme
pairs in the validation set, rather, more data yield worse results.

We suspect the reason for this is that with the merged Wiktionary and dense
pairs, new words are introduced. Though there is no overlap of rhyme pairs in

56

5.2. RHYME GENERATION

the training sets for models 1, 1.2 and 2 and the validation set, the same words
appear in different pair constellations across the sets. Ideally the models should
learn something about which combinations of characters that create rhymes,
and this should generalize to all words in Norwegian, both seen and unseen.
It seems to be the case that the model having “seen” a word during training
makes it more likely that it will correctly predict rhyme or not rhyme when it
appears in a pair in the validation set. To confirm this, we create a separate test
set, consisting of only the Wiktionay pairs (selection 6 in Table 4.1). Removing
all pairs that appear in the training data of all the models, we now have a test
consisting of words that are mostly unseen for models 1, 1.2 and 2. The baseline
model achieves 0.93 accuracy on this set. On this test set, models 1, 1.2 and 2
all perform below the baseline. Models 3 and 3.2 achieve and accuracies of 0.96
and 0.98, respectively. See Appendix B for the full results.

It seems that our suspicions were correct. Models 3 and 3.2 have definitely
learnt something, as we see both from the example pairs in Table 5.5 and the
accuracy on the Wiktionary pairs. They simply do not perform well on the
validation set.

We did not have the time to explore what the reason for this is in the work
of this thesis, but it is definitely something that we would like to look into in
the future. Having a third rhyme pair data set to use for comparison would be
useful for that purpose.

5.1.7 Test set accuracy of the best model

Finally, the best models are model 1.2 and model 2 with their 0.95 accuracy on
the validation set. They both score 0.96 on the test set.

5.2 Rhyme generation

Now that we have assessed the performance of an LSTM-based rhyme prediction
model, we want to try to create a rhyme generation model. The idea is to train
a model that takes one word as the input, and produces a set of words that
rhymes with the input word. This can then be used to sample rhyming line-
ending words in our poetry generation model, as in Van de Cruys (2020).

We utilize the buckets we extracted as described in chapter 4 for this. We
design an LSTM-based model that takes a character-sequence as input, and
outputs a bucket of words that rhyme with the input words. See Figure 5.2 for
an overview of the model architecture. Thus, for each bucket, there are as many
training examples as there are words in the bucket. The target is the bucket
itself.

Recall that most of the good+manually clustered buckets are very small,
with just 3 to 4 words per bucket (see Figure 4.7). All these 3- and 4-word
buckets will only amount to one example from each bucket for each of the
training, validation and test set. This naturally does not yield very good results.
There is a trade-off between keeping as much data as possible, and not keeping
buckets that are too small to learn from.

As discussed in chapter 4, when creating these buckets from the rhyme
scheme annotations, there is no guarantee that all words that rhyme are con-
nected and put in one bucket. This means we can expect that there are several

57

5.2. RHYME GENERATION

model
- g
char-level f—: E bucket ;
word — tokenizer — Lf;e’.'d > D;Sn;e —» vocah ———» iﬁ:‘;‘g — [Wy, Wo, ..., Wi
* padding size bucket of words
that rhyme

Figure 5.2: Overview of the model architecture for the rhyme generation model

parallel buckets, buckets that represent the same rhyme-ending.

For the practical use of the model, this is not problematic. If the input word
is “hest”, it does not matter much whether the model outputs the bucket {“fest”,
“blest”, “krest”} or {“vest”, “pest”, “lest”}, as long as the output bucket contains
rhyming words.

This will, however, affect model performance. It does not matter whether or
not the words in the predicted bucket rhyme with the input word, the “wrong”
bucket is the wrong bucket. In our experiments, we empirically assess the thresh-
old for bucket size makes sense for a rhyme generation model.

5.2.1 Baseline model

Our baseline is a simple function. For an input word, it loops through the
buckets, and the baseline rhyme-function (as described in Section 5.1.1) is used
to see if the first word in the bucket rhymes with the input word. If they rhyme,
this bucket is returned. If all buckets are looped though without the first word
rhyming, a random bucket is returned.

5.2.2 Training models

As the different models trained have a different number of buckets, and thereby a
different number of classes in the output layer, we can not use one test set across
all models. We create training, validation and test sets for each set of buckets,
and see how the number of buckets affects the models ability to correctly predict
on its test set. The validation set is used for early stopping. All models are
trained for 100 epochs, with a batch size of 64 and early stopping on validation
loss with a patience of 5 epochs. The loss function is binary crossentropy, and the
optimizer is adam. For each set of buckets used, the trained model is compared
to how the baseline model performs on that set.

Dense buckets

The first set of buckets is the entire set of buckets from the good + manually
clustered buckets (described in section 4.2.2). As mentioned above, most of

58

5.2. RHYME GENERATION

these buckets contain only 3 or 4 words. The median bucket size is 5, and the
average bucket size is 8.1.

In order to split this set into training, validation and test sets, we separate the
3- and 4-word buckets from the larger buckets. The words from these 274 buckets
are split into train/validation/test tests with a ratio of 30/30/30, ensuring at
least 1 example from each bucket in each set. The words from the rest of the
buckets, 322 in total, are split into train/val/test sets with a 60/20/20 ratio.
279 of the 596 buckets are not present in the model’s prediction on the test set.
The models macro average F1 score is 0.39 on the test set. Comparably, the
baseline on this set of buckets gets a macro average F1 score of 0.22.

The next set of buckets are the same as the one above, except that all
buckets with fewer than 5 words are excluded. This nearly halves the number
of buckets, as the total number of buckets is now 322. The median bucket size
is 9, and the average bucket size is 12. The words from the buckets are split
into train/validation/test sets with a 60/20/20 ratio, and the model is trained.
This time, only 23 of 322 buckets are excluded from the test set prediction. This
model gets a 0.76 macro average F1 score on the test set. The baseline on the
other hand, achieves a macro average F1 score of 0.29 on this set of buckets.

We also use the same buckets as above, this time removing all with fewer
than 10 words. This again halves the number of buckets, to 147. The median
bucket size is 14.0, and the average bucket size is 18.7. The words from the
buckets are split 70% to the training set, 15% to the validation set and 15%
to the test set. This model gets a 0.95 macro average F1 score on the test set.
Only one bucket is missing from the predictions. The baseline model achieves
a macro average F'1 score of 0.38,

Wiktionary buckets

The next set of buckets is the Wiktionary buckets (described in section 4.3).
The Wiktionary buckets are very different from the good+manually clustered
buckets. There are fewer buckets, and the buckets are much larger. After
removing the 9 buckets that have less than 5 words, we are left with 18 buckets
with an average size of 82.2, and a median size of 48.5 words per bucket.

The words from the buckets are split 70% to the training set, 15% to the
validation set and 15% to the test set. The model trained on these data achieve
a macro average F1 score of 0.91 on the test set predictions, and all buckets are
present. The baseline achieves a macro average F1 score of 0.54.

Merged dense and Wiktionary buckets

With the merged buckets (described in section 4.4), we train three models, one
with all buckets of size >=5, one with all buckets of size >=6, and one with all
buckets of size >=10.

For the set of buckets of size 5 or more, the number of buckets is 331. The
median bucket size is 9.0 and the average bucket size is 15.6. The data is split
60% to the train set and 20% each to the validation and test sets. The model
trained on these buckets achieves a macro average F1 score of 0.91 on the test
set. 13 buckets are missing from the test set predictions. The baseline function
gets a macro average F1 score of 0.33.

99

5.2. RHYME GENERATION

Bucket-set | Number of | Number of Median 2/‘[/2:;06

modelled buckets unique words | bucket size 8
F1 score

Manual 596 4818 5 0.39

clusters

Manual

clusters 322 3890 9 0.76

size > 5

Manual

clusters 147 2751 14 0.95

size > 10

Wiktionary | ¢ 1366 185 0.91

size > 5

Merged 331 5162 9 0.91

size > 5

Merged 283 4922 10 0.94

size > 6

Merged

size > 10 161 4054 15 0.96

Table 5.6: Data set sizes and achieved macro average F1 scores for the different
rhyme generation models

For the buckets of size 6 or more, the number of buckets is 283. The median
bucket size is 10.0 and the average bucket size is 17.4. The data is split 70%
to the train set and 15% each to the validation and test sets. The model got a
0.94 macro average F1l-score on the test set, and 6 buckets were missing from
the test set predictions. The baseline model got a 0.35 macro average F1-score
on the test set.

For the buckets of size 10 or more, the number of buckets is 161. The median
bucket size is 15.0, and the average bucket size is 25.2. The data is split 70%
to the train set and 15% each to the validation and test sets. The model gets a
0.96 macro average F1 score on the test set, with no buckets missing from the
test set predictions. The baseline model gets a macro average F1 score of 0.44
on this set of buckets.

5.2.3 Concluding remarks and examples

In general, we see an increase in performance as the smaller buckets are removed.
All models outperformed the baseline model. The best set of buckets and the
best model seems to be the merged Wiktionary and dense buckets set, with all
buckets that contain less than 10 words removed. With this set of buckets, the
model was able to cover all classes in the test set predictions, and the achieved
macro average F1 score is the best across all models (see Table 5.6)

We tested some nonsensical words to see what other words they are predicted
to rhyme with. See Table 5.7 for the predictions made by the best model. The

60

5.2. RHYME GENERATION

“Word” | Predicted rhyme bucket

gorlang | [trang’, 'vingefang’, opprgrstrang’, ’kjgkkengang’, ’sprang’|
knatt 'vinter-natt’, ‘betatt’, 'satt’, *glatt’, 'fatt’]

pril "halofil’, "bussfil’, "vegetabil’, femmil’, "postill’]

glunn 'munn’, ’blomstergrunn’, ’offerlund’, ’barne-munn’, ’sekund’|
hjal ’sjal’; "kanal’, 'Kal’, ritual’, ’smal’]

plirk ['mystikk’, ’leskedrikk’; ’stikk’, 'politikk’, "forgikk’]

coll ["avindsskjold’, ’gold’, ’protokoll’, ’kold’, "vold’|

Table 5.7: List of some made up words and their assigned rhyme buckets

first five words of each predicted bucket is listed. All words except for “plirk”
seem to have received a suitable word bucket.

61

Chapter 6

Poetry generation

Using the rhyme scheme annotated data set described in chapter 3, and the
poetry generation model described in chapter 5, we here present an LSTM-
based poetry generation model for Norwegian.

6.1 Model architecture

Our model is loosely based on Lau et al. (2018). We also use LSTMs for both
text generation and rhyme modelling. Similarly to Lau et al. (2018), we sample
rhyming line ending words that correspond to a rhyme scheme, and generate the
rest of the stanza-based on those words. However, we do not explicitly model
the stress or pentimeter in the source poetry. The only poetry feature that we
explicitly model is rhyme, the rest we trust the language model to capture, if it
is able to do so. And while Lau et al. (2018) is strictly focused on Shakespearean
sonnets, with a strict rhyme scheme, our model can generate a stanza from any
rhyme scheme.

The input for the poetry generation model is a rhyme scheme, and the output
is a stanza with a rhyme pattern that matches the rhyme scheme. The model
consists of a language model and a rhyme model, and the stanza is generated
using both. We create two slightly different versions of the poetry generation
model, depending on whether the language model is trained on complete stanzas
or on individual lines from stanzas. The rhyme model is identical for both
models, which is the rhyme generation model trained on the dense buckets of
size >= 10 (as described in Section 5.2.2 in the previous chapter).

In order to introduce the poetry generation model, we first describe the
language model below.

6.1.1 Language model

Our language model is an LSTM-based language model for natural language
generation. The model architecture is a sequential model with an embedding
layer, an LSTM layer, and an output layer the size of the vocabulary (see Figure
6.1). For each time step during generation, the input is the word embedding of
a word, and the output is the probability of each word in the vocabulary being
the next word in the sequence.

62

6.1. MODEL ARCHITECTURE

maodel

XEWIJ0S

yuey

LSTM Dense
ing —» vocah ————» Wwordy;

slze size

wordy

o —aaeo3m
=]

Figure 6.1: Language model architecture

X ‘ y
<s> jeg
<s>jeg liker
<s>jeg liker fisk

<s>jeg liker fisk | </s>

Table 6.1: Teacher forcing training data for the sentence jeg liker fisk ’i like fish’

The model is trained using teacher forcing; each instance in the training
data is a sequence of words, and the target is the next word in the sequence.
Thus, for the sentence jeg liker fisk ’i like fish’, with teacher forcing the training
data would be as in Table 6.1. ’<s>’ and ’< /s>’ are special tokens to mark
sequence start and sequence end, respectively.

For a model trained with teacher forcing in this manner, simply inputting
the sequence start token starts generation. If the next predicted token is the
sequence end token, generation stops and the full generated sequence is returned.

As we already mentioned, we train two different language models, a line-
based one and a stanza-based one. For the line-based model, each stanza is
split on line breaks, and training data is constructed for each line. That is, the
sequence start and sequence end markers are placed on either side of each line,
and training data is constructed as in Table 6.1.

For the stanza-based model, the start and end of sequence tokens are placed
on either size of each stanza. Here we introduce another special token, ’<n>’
representing the line break. The idea is that this way, the model will produce
stanzas with a consistent theme throughout the stanza. In contrast to this, the
line-based model can only access the context of each line. To create a stanza
with the line-based model, one has to generate the number of lines wanted in the
stanza separately, which can lead to the content of the lines being completely
unrelated to each other.

An important detail is that our models are trained on reversed data. Instead
of predicting the next word, they predict the previous word. This way, we can
enforce rhyme by first deciding rhyming line ending words, and generate the
rest of the sequences backwards.

63

6.1. MODEL ARCHITECTURE

on input rhyme_scheme:
for each unique symbol in rhyme_scheme:
language_model.generate_line_ending_word() .

for each line ending word w:
rhyme_model.get_bucket (w)

for each symbol in rhyme_scheme:
sample a line_ending word from the correct bucket

Now there is one line-ending-word for each line, and
rhyme relations are according to rhyme_scheme

for each line ending word w:
generate_line(w)
(and reverse line)

return the lines

Listing 3: Simplified pseudocode for line-based stanza generation

Language model training

We reason that for this task, overfitting on the training data is not a problem, as
we want the model to learn the source corpus and produce similar texts. This is
not a model that needs to be able to generalize and be applied to unseen texts.
We therefore train both language models on the entire corpus data, without
splitting it into training and test sets. Both models are trained for 100 epochs,
with a batch size of 256. The optimizer is adam, and the loss function is sparse
categorical crossentropy.

6.1.2 Generating rhyming stanzas

Now that we have described how the language models work, we can go on to
describe the full poetry generation model. Recall from chapter 5 that the rhyme
generation model returns a bucket of rhyming words for any word input.

For the line-based poetry generation model, the basic stanza generation al-
gorithm works as seen in Listing 3. The poetry generation model takes in a
rhyme scheme, and using the rhyme scheme, generates the appropriate number
of rhyming line-ending words using the language and rhyme generation models.
Then, each line is generated backwards, the prompt being the end of sequence
marker and the line-ending word. The generated lines are stacked together and
the result is a stanza following the provided rhyme scheme.

The stanza-based approach is a slightly more complicated. Here the method
for sampling from the language model is modified so that the sequence is re-
turned when the line break token is predicted. The next line ending word is
inserted into the sequence, and it is sent back to the language model to continue

64

6.1. MODEL ARCHITECTURE

on input rhyme_scheme:
for each unique symbol in rhyme_scheme:
language_model.generate_line_ending_word() .

for each line ending word w:
rhyme_model.get_bucket (w)

for each symbol in rhyme_scheme:
sample a line_ending word from the correct bucket

Now there is one line-ending-word for each line, and
rhyme relations are according to rhyme_scheme

stanza_so_far = ""

for each line ending word w:
stanza_so_far += w
g = language_model.generate_line(stanza_so_far)
stanza_so_far += g

return stanza_so_far

Listing 4: Simplified pseudocode for stanza-based stanza generation

generation. In this way, the rhyme scheme is ensured, and the context of the
whole stanza (so far) is available to the language generation model. See listing
4 for pseudocode for the generation function using the stanza-based language
model. The full code for both models can be found on the master thesis github'

A parameter to the poetry generation algorithm that is not shown in the sim-
plified algorithms above is the temperature-parameter. In the language model,
the default is to choose the most likely next word for a given input word during
generation. With temperature, the output probabilities are changed slightly
using a multinomial probability distribution. This ensures higher exploration,
as the choice of the next word is no longer completely deterministic. The higher
the temperature, the more exploration. For our poetry generation models, the
stanzas are produced using a temperature of 0.5. We decided on this value after
experimenting with a couple of different values.

Ihttps://github.com/titaenstad/mester

65

https://github.com/titaenstad/mester

6.2. EVALUATION

6.2 Evaluation

As stated in the introduction, our modelling objectives are to investigate whether
we can create a Norwegian poetry generation model that produces poetry of a
quality such that

1. it cannot be discerned from poetry written by humans and

2. it rhymes.

6.2.1 Approach

As in the previous research explored in chapter 2, we also make use of human
evaluation in order to evaluate the generated poetry. We use both side-by-side
and standalone evaluation. In side-by-side evaluation, the evaluator is presented
with two stanzas, and asked to pick out the one that is written by a human.
In standalone evaluation, the evaluator is presented with one stanza at a time,
and is asked whether or not they believe it is written by a human.

The evaluators are further asked to rate how well each stanza rhymes, on a
scale of 0 to 3. 0 means that the stanza contains no rhyme. 1 means that the
stanza contains some almost-rhyme. 2 means that the stanza has some rhyme,
for example that two lines of the stanza rhyme, but the rest do not. 3 is used
when is it obvious that the stanza was written to rhyme. See Appendix C for
the full evaluation instructions.

We create 4 web forms, to minimize the work load of the evaluation, and this
way get more people to participate. We generate 40 stanzas with each model,
10 stanzas for each form. We use the top 10 most frequent rhyme schemes from
NoRSC, and generate 4 stanzas for each scheme. The models are the baseline
model (the stanza-based language model with no rhyme component), the line-
level poetry generation model and the stanza-level poetry generation model. 5
stanzas from each model are used for side-by-side evaluation, and 5 stanzas are
used for standalone evaluation.

We randomly sample stanzas from the original data set to fill in the hu-
man produced stanzas for the side-by-side evaluation, plus 5 stanzas for the
standalone evaluation. The stanzas from the original data set are tokenized in
the same way as the input data for the poetry generation model, so they look
similar. In total, each form has 15 pairs of stanzas for side-by-side evaluation,
and 20 single stanzas for standalone evaluation. In total, 120 generated stanzas,
and 80 stanzas from the original NoRSC data set are evaluated by humans (see
Table 6.2).

The forms were posted on social media, and were open for 3 days before
they were closed. See Figure 6.2 for an example of how the evaluation interface
looked.

6.2.2 Results

Each form received between 6 and 7 answers. In total, 27 answers to the forms
were submitted. In the following, we examine the results, aiming to answer
some of our research questions.

66

6.2. EVALUATION

Vers 1:

landets fiender og dro

la min unge sestersgnn

der danset n& en brenning som aldri gér til ro
faler han folkets gud i benn

Vers 2:

da som ville dyr

de frader freser
stimler sammen
roper hveser
nicodemus fariseer
er og du en galileer

Hvilket vers er skrevet av et menneske? *

O vers1
QO vers2

Er vers 1skrevet pa rim? *

Rimer ikke O O O O Rimer

Er vers 2 skrevet pa rim? *

Rimer ikke O O O O Rimer

Figure 6.2: Evaluation interface from side-by-side evaluation

Baseline | Line-based | Stanza-based | NoRSC
model model model stanzas
Side-by-side 20 20 20 60
number of stanzas
Stand-alone 20 20 20 20
number of stanzas
Total 40 40 40 80

Table 6.2: Number of stanzas evaluated per model

67

6.2. EVALUATION

70 [Base
[Stanza
0 . Lins
— . Crig
o
3 5
o
e
@ 40
™~
c
5
TR
—
o
=0
. _h_
0 T T T T
0 1 2 3

Rhyme rating

Figure 6.3: Frequency of rhyme rating for the stanzas

Majority score Baseline | Stanza-based | Line-based | NoRSC
model model model stanzas

<1 27 3 1 0

<2 34 9 1 1

<3 38 29 17 17

Total 40 40 40 80

Table 6.3: Majority rhyme score for the different stanza types

6.2.3 Rhyme ratings

We find that the stanzas that got the best overall rhyme rating are the original
NoRSC stanzas. They got an average rhyme rating of 2.63. The second best
stanzas are those generated by the line-based model, with an average rhyme
rating of 2.27. For these stanzas, 3 was the most frequent rating (see Figure
6.3). The stanzas produced by the stanza-based model got an average rhyme
rating of 1.91, and were most frequently rated 2. The baseline model, which
was simply the stanza-based model without the rhyme-component, produced
the least rhyming stanzas, with an average rating of 0.76, and 0 being the most
frequent rhyme rating.

From these data we can conclude that both the line-based and stanza-based
poetry generation models were able to model rhyme better than the baseline
model, but not as well as the original data. The line-based poetry generation
performed significantly better than the stanza-based poetry generation model,
which is surprising, as their rhyme model is identical.

Instead of averaging the rhyme scores, another way to interpret the anno-
tations is by choosing the majority score for each stanza. Applying this to the
stanzas produced by the line-based model, we get that only 1 stanza out of 40
has a majority rhyme score that is less than 2. 17 of the stanzas have a majority

68

6.2. EVALUATION

% of times rated % of times rated)
. . % of times rated
to be written by to be written by .
Stanzas . . to be written by
a human in side- a human in stand- .
. . . a human in total
by-side evaluation | alone evaluation
NoRSC 85.19 82.96 84.63
stanzas
Baseline 19.26 25.19 22.22
model
Line-based | 7 7 48.89 33.33
model
Stanza-based | o\ 11.11 9.26
model

Table 6.4: Frequency of 'written by a human’-ratings for the different types of
stanzas in side-by-side and standalone evaluation

rhyme score less than 3 (see Table 6.3). These numbers are the same for the
original stanzas, but as there are twice as many of these, this means that the
line-based model is about half as good at rhyming as the authors of the original
stanzas.

For the stanza-based model, there are 9 stanzas with a majority score less
than 2, and 29 stanzas with a majority score less than 3. For the baseline model,
34 of 40 stanzas have a majority score less than 3 (Table 6.3.

We reiterate our research question RQ2: How consistent are our poetry
generation models at generating rhyming poetry? And answer it as follows: The
line-based poetry generation model is fairly consistent at generating rhyming
poetry. The baseline model is very consistent at generating poetry that does
not rhyme. The stanza-based poetry generation model is not very consistent.

6.2.4

In Table 6.4 we see the frequency with which the different stanzas have been
rated to be 'written by a human’. Across all models, the generated poetry is
more often rated 'written by a human’ in the standalone evaluation than in the
side-by-side. This was expected, and it is also seen in Nikolov et al. (2020).

In the side-by-side evaluation, the original NoRSC stanzas were rated 'writ-
ten by a human’ 85.19% of the time (see Table 6.4). This means the evaluators
combined got an accuracy of 85.19%, and that they in 14.81% of the cases
annotated a generated stanza as written by human.

In the side-by-side evaluation, model that most often was rated 'written by a
human’ is the baseline model, as 19.26% of the ratings for the stanzas generated
by the baseline model were 'written by a human’. The stanzas generated by the
line-based model were rated to be written by a human 17.78% of the time, and
the stanzas from the stanza-based model 7.41% of the time (see Table 6.4).

In the standalone evaluation, the original NoRSC stanzas were rated 'written
by a human’ in 82.96% of the ratings. This is a slight decrease from the side-by-

"Written by a human’-ratings

69

6.2. EVALUATION

side evaluation. This can indicate that it is easier to decide if a stanza is “real”
if it is presented in a pair.

From the standalone evaluation, the best model is the line-based model. The
stanzas generated by the line-based model are rated ’written by a human’ in
48.89% of the ratings. The next best, with regards to being rated as written
by a human, is the baseline model. Its stanzas were rated to be written by a
human 25.19% of the time. The stanzas generated by the stanza-based model
were rated to be written by a human in 11.11% of the ratings.

It is evident that the none of the models were able to perfectly mimic poetry
written by humans. The best results were obtained by the line-based model in
standalone evaluation, but even here, the evaluators were fooled less than half
of the time.

If we compare our results from side-by-side evaluation to Nikolov et al. (2020),
where the evaluators only mislabelled 7% of the texts, our results look good.
However, if we compare our results to Lau et al. (2018) or Jhamtani et al. (2019),
where the human evaluators mislabelled 47% or 44%, respectively, our results
do not look that good any more. One major difference here is that the evalu-
ators in Nikolov et al. (2020) were experts on the genre, which we can expect
increases their ability to discern real lyrics from ’fake’.

Addressing research question RQ3: To what degree is our generated poetry
believed to be written by a human? We answer: to some degree. We conclude
that we were able to achieve one of two modelling objectives. We were able to
create a poetry generation that rhymes, but the poetry is not indiscernible from
poetry written by humans.

6.2.5 The relation between rhyme and perceived “written
by a human’-ness

In this section we address research question RQ4: Is there a connection between
the generated poetry rhyming and it being perceived to be written by a human
‘?

The stanza-based model scores higher than the baseline model when it comes
to rhyme, but worse when it comes to being rated as written by a human.
Therefore, we cannot conclude that there is a direct connection on model level.
However, if we look at the ratings for each type of stanza, we see another picture.

In Figure 6.4 we see the proportion of stanzas being rated written by a
human /being rated not written by a human for each rhyme score for the baseline
model. We see a clear, linear pattern: the higher the rhyme score, the more
are the stanzas rated 'written by a human’. We see the same pattern for the
line-based model in Figure 6.5.

For the original stanzas, we observe that fewer stanzas are rated to be written
by a human when the rhyme score is 0 (see Figure 6.7). The other three scores
seem to be relatively similar, though, with around 80% of the stanzas being
rated 'written by a human’.

For the stanza based model, we see that the stanzas with rhyme scores 2
and 3 are more frequently annotated to be written by a human than those that
are scored 0 and 1. However, it looks like the score that coincides with the most
“written by a human”-ratings is 2, not 3.

70

6.2. EVALUATION

Baseline model

— 1 Rated human
1 Rated not human

S s ¢
|

% of ratings per rhyme score

L B

o 1 2 3
Rhyme rating

Figure 6.4: Proportion of stanzas rated ’written by a human’ for each rhyme
score for baseline model

Line-based model

— [Rated human
80 4 [Rated not human

% of ratings per rhyme score

gl

Figure 6.5: Proportion of stanzas rated ’written by a human’ for each rhyme
score for line-based model

0 1 2 3
Rhyme rating

71

6.2. EVALUATION

Stanza-based model

— — 1 Rated human
1 Rated not human

100 4

20 A

o [] ’7 ’7

% of ratings per rhyme score

1
Rhyme rating

Figure 6.6: Proportion of stanzas rated ’written by a human’ for each rhyme
score for stanza-based model

Original stanzas

1 Rated human —
g0 4 1 Rated not human

% of ratings per rhyme score

: .

Rhyme rating

Figure 6.7: Proportion of stanzas rated ’written by a human’ for each rhyme
score for original stanzas

72

6.2. EVALUATION

6.2.6 Discussing the stanza-based model

The stanza-based model generally performs worse than expected. It is surprising
that the rhyme scores for the stanza-based model are that much lower than the
line-based model, considering that they use the same rhyme model.

One possible reason for this is a the way the stanza-based poetry generation
model works. Recall section 6.1.2 where we describe the generation algorithm
for the stanza-based model. The line-ending words are sampled from the rhyme
model. These are inserted into the sequence during generation, which are then
sent back to into the language model. Because the line-ending words are selected
solely based on the rhyme model’s probabilities, this can lead to word sequences
that are very unlikely according to the language model.

But this cannot be the only reason. In example 6.1 and 6.2, we see two
stanzas. In both, the last line looks highly ungrammatical, with too many
words bunched together with little to no grammar. But since the stanzas are
generated backwards, we cannot blame this on unlikely words being inserted.
When these lines were generated, no words (except for the very last, the prompt
that started generation) had been inserted. We do not know why this happens.

(6.1) fjellene i storfangst gar og fuglesang
hvis morgenglans er klokkeklang
lukk mitt nordlys jode kastes begynte stamsund flod nsermer sang

(6.2) russlands szere kogleri
jeg kom mine mal til & eie
og det er en gyllen dag sa bred
han fgler taker og av deres kunster
for norges liv
norske norske norske norske norske hunger grgnnes varslet mumler urgrt
urgrt favntak betenk bitterhet slemt karpus grisjka lgvspring bakved 1942

Another thing that is interesting about 6.1, is that though all lines in the
stanza seems to rhyme, it has consistently been rated 2 more often than 3.
It might be the case that if the structure of the poetry is bad, they are not
perceived to rhyme as well. We need to make further experiments before we can
conclude any of these suggestions.

6.2.7 Controversial stanzas

As mentioned, each form received 6-7 answers, meaning that every stanza has
been evaluated by 6-7 different people. Some stanzas have very disagreeing
ratings. For example, there are 25 stanzas where there are at least 3 people
that annotated the stanza to be written to be human, and at least 3 people
that annotated the stanza to not be written by a human. Below are some of
these stanzas:

(6.3) med yndig majestet han gar
som gjorde sinnet blatt av romantikk
vansiret av laster sykdom og sar
plutselig stod stauper igjen for mitt blikk

73

6.2. EVALUATION

(6.4) skurken saulus lgfter armen
atter dette stikk i barmen
denne angst de syner rgde
taus han stirrer pa den dgde

(6.5) nuets underveis
se det er det jovisst
der ligger sa stille mot vest hvor sol gar ned
som klippene og sluttet kvist

(6.6) s& méa de ha vise
kan trenge seg inn
na er den & farvel farvel
a farvel farvel
du som fulgte i somre atten

6.3 was generated by the line-based poetry generation model. 6.4 is from
the original data set. 6.5 was generated by the stanza-based poetry generation
model, and 6.6 was generated by the baseline model.

As for controversial stanzas with regards to rhyme, there are 19 stanzas that
have been given both a score of 0 and a score of 3 in rhyme rating. We list some
of these below:

(6.7) hvor barer med skum over utsteinen slar
og kjolens siste bakker i det kildested
det forste hender med hgstens redsler dgd
hin yngste apall strgr blikke hevet goder ta flyver ned

(6.8) da lyner et lys ned i dypet
en gnistrende sprgyt av ild
det glitrer av blanende bglger
er havet likevel til

(6.9) inn i fjellets flammesky
en lovsangs brus som storm mot sky
fra sinnet pa ny og pa ny
fra sinnet pa ny og pa ny

(6.10) og tross den tross dgdninghaven
over vennens liv er bange
hver gang han synger se ham
den er seirens dag til gry

6.7 was generated by the stanza-based poetry generation model. It received
the rhyme scores [3, 2, 2, 2, 2, 1, 0]. 6.8 is from the NoRSC data set. It received
the rhyme scores [3, 3, 3, 2, 2, 2, 0]. 6.9 was generated by the line-based poetry
generation model, and received rhyme scores of [3, 3, 3, 3, 3, 3, 0]. 6.10 was
generated by the baseline model, and received rhyme scores of [3, 1, 1, 0, 0, 0,
0].

It seems that for most of the controversial stanzas with regard to rhyme
score, there is only one score of 3 or 0, and the rest of the rhyme scores are more
or less in agreement. This is the case for examples 6.8, 6.9 and 6.10. In these

74

6.2. EVALUATION

cases, the cause for the score might have been a mis-click made by one evaluator.
Example 6.7, on the other hand, received all four possible rhyme scores, so it is
not as easy to just dismiss this as mis-clicks. Still, the most frequent score for
this stanza, 2, is the appropriate annotation according to the instructions.

6.2.8 Original stanzas rated 'not written by a human’

There were three stanzas from the NoRSC data set that received more 'not
written by a human’ ratings than 'written by a human’ ones. All these three
were from the side-by-side evaluation, which means that it is not just the quality
of the original stanza, but also the quality of the stanza it was paired with, that
contributes to the ratings.

The stanza in 6.11 was annotated to be written by a human 2 times, and not
written by a human 5 times. The stanza it was paired with, 6.12, was generated
by the line-based poetry generation model. Interestingly, though 6.11 is follows
a solid ABAB rhyme pattern, it received the rhyme ratings [3, 3, 2, 2, 2, 1,
0]. 6.12 also follows the same rhyme pattern, and this was rated slightly higher
with the rhyme scores [3, 3, 2, 2, 2, 1, 1].

(6.11) tillykke med daden dere frelste imperiet
mac donald og thomas og henderson
og jobben var hard dere fortjener en ferie
men fgrst ma dere kysse hr. baldwins hand

(6.12) han er jo
hva var det en guds fiolin
templet du har skjendet med vold og blod
iseer 1 det siste de trenger seg inn

The stanza in 6.13 was annotated written by a human 3 times, and not
written by a human 4 times. It was paired with 6.14, which was generated by
the line-based poetry generation model. The original stanza received perfect
rhyme scores from all evaluators.

(6.13) det folte hver som kom
fra reis igjen og sa seg om
det fglte hver som gikk
i siste avskjedsblikk

(6.14) sjelevingens hvilegren
har baret det ord og det ble igjen
frem stormer egyptens armé
et dryssende stjernegry
fra sinnet pa ny og pa ny
hans veier ble lys for lys og fred

The stanza in 6.15 was annotated written by a human 3 times, and not
written by a human 4 times. It was paired with 6.16, which was generated by
the baseline poetry generation model. This example also demonstrates that a
stanza rhyming does not make seem more like it is written by a person, as 6.15
does not rhyme at all. It makes up for the lack of rhyme by being surprisingly
coherent and grammatical.

(0]

6.2. EVALUATION

(6.15) & vake over fedrelandets lover
& sgrge for at ingenting forlises
er smukt betryggende for folkehellet
men det er skjgnnere med and & vage
a slad med moses tryllestav pa fjellet
skjont nytten ei kan fattes og bevises

(6.16) men se han kommer med venner
pa klippens bryst da lgd
evangeliets herlige bud

76

Chapter 7

Conclusion

7.1 Summary

Chapter 1: Introduction

In this chapter, we briefly presented the fields of poetry generation and rhyme
modelling. We described our motivation, which was to fill an obvious gap in the
field: that no prior research has been done with Norwegian data.

We also presented our main modelling objective, which is to investigate
whether we can create a Norwegian poetry generation model that produces
poetry of a quality such that

1. it cannot be discerned from poetry written by humans and
2. it rhymes.
We presented our four research questions:

RQ1: Is there a strong enough relation between written Norwegian and
spoken Norwegian to accurately model rhyme based on text data?

RQ2: How consistent are our poetry generation models at generating
rhyming poetry?

RQ3: To what degree is our generated poetry believed to be written by
a human?

RQ4: Is there a connection between the generated poetry rhyming and
it being perceived to be written by a human ?

Chapter 2: Background

In this chapter, we discussed poetry and rhyme, poetry generation and rhyme
modelling. We explored previous work related to our modelling objectives, fo-
cusing on data sets, model architectures and evaluation methods. We saw that
various model architectures could be used for poetry generation. All papers
used human evaluation and some variant of the Turing test to evaluate whether
the generated poetry was perceived to be written by a human.

7

7.1. SUMMARY

Chapter 3: Creating a corpus of rhyme scheme annotated
Norwegian poetry

In this chapter, we presented NoRSC: Norwegian Rhyme Scheme Corpus, a data
set of rhyme scheme annotated Norwegian poetry, as well as the work that went
into creating this data set. The final data set consists of 5158 stanzas, or a
total of 26 198 lines of poetry. 100 stanzas were doubly annotated, and the
inter-annotator agreement was shown to be high, with a Cohen’s kappa of 0.96.

Chapter 4: Rhyme pair collection

In this chapter, we described how to extract rhyme pairs from rhyme scheme
annotated poetry. We also discovered a graph based approach to harvest addi-
tional rhyme pairs from the same set of stanzas, so called dense rhyme pairs.

Chapter 5: Rhyme modelling

In this chapter, we used the rhyme pairs from the previous chapter to train
models for two different rhyme modelling tasks: rhyme detection and rhyme
generation. For both tasks, the input words were represented as character vec-
tors. The rhyme detection model is a Siamese LSTM that takes in two words
and predict whether they rhyme. The rhyme generation model is an LSTM-
based model that takes in a word and outputs a set of words that rhyme with
the input word.

The best models for both tasks received high scores, an accuracy of 0.95 for
the best rhyme detection model, and a macro average F1 score of 0.96 for the
best rhyme generation model. The results from the best rhyme detection model
are comparable to previous work with English and German data. We answered
RQ1: there is a strong enough relation between written Norwegian and spoken
Norwegian to accurately model rhyme based on text data.

Chapter 6: Poetry generation

In this chapter, we train our poetry generation models and evaluate them using
human evaluation. The poetry generation model consists of an LSTM-based
language model for text generation, and a rhyme generation model from the
previous chapter. We train two different versions of the language model, a line-
based variant and a stanza-based variant. During generation, line-ending words
are sampled from the rhyme generation model, and the rest of the stanza is
generated with the language model. The baseline poetry generation model is
simply the stanza based language model, with no rhyme model to enforce rhyme.

40 stanzas are sampled from each of the three models, plus 80 from the
original source data set. Half of the generated stanzas are evaluated side-by-
side with a stanza from the source data set. The other half is evaluated standing
alone.

The stanzas are evaluated by volunteers, and each stanza is evaluated by 6-7
different people. For each stanza, the evaluators are asked to rate the quality
of the rhyme on a 0-3 scale, and also if they think it is written by a human.

Our best model, the line-based model, shows a fairly good performance at
producing rhyming poetry, receiving an average rhyme score of 2.27. In com-

78

7.2. CONTRIBUTIONS, LIMITATIONS AND FUTURE WORK

parison, the stanzas from the source data set received an average rhyme score
of 2.63. The stanzas generated by the stanza-based model received mediocre to
low rhyme scores, with an average rhyme score of 1.91. The stanzas generated
by the baseline model received an average rhyme score of 0.76.

From the results of the human evaluation, we answered RQ2: our best
model is fairly consistent at producing rhyming poetry. Our baseline model is
consistent at producing poetry that does not rhyme. Our stanza-based model
is not very consistent.

We answered RQ3: The results from the human evaluation show that none
of our models are able to perfectly mimic real poetry. For the standalone eval-
uation, the best performing model with regards to being perceived as 'written
by a human’ is the line-based model. The stanzas generated by the line-based
model were rated written by a human’ by 48.9% of the evaluators.

Somewhat surprisingly, the baseline model performs better than the other
two in the side-by-side evaluation. When a stanza produced by the baseline
model was paired with a stanza from the original NoRSC data set, 19% picked
the generated stanza to be written by a human. The stanza-based model per-
forms the worst, fooling the evaluators less than 10% of the time across both
side-by-side and standalone evaluation.

Finally, we answered RQ4: there is some connection between the generated
poetry rhyming and it being perceived to be written by a human. On model
level, we could not conclude that there was a connection, as the worst model
on the Turing-like test was the second best with regards to rhyme. However,
examining the results for each model separately, we saw an obvious tendency.
For the stanzas produced by the baseline model, the stanzas produced by the
line-based model, and the stanzas from the original data set, there was a corre-
lation between high rhyme score and stanzas being annotated as written by a
human. For the stanza-based model, the stanzas with the rhyme score 2 were
most often perceived to be written by a human.

7.2 Contributions, limitations and future work

In the work of this thesis, we created the first publicly available data set of
rhyme scheme annotated Norwegian poetry. We are also, to our knowledge, the
first to experiment with using Norwegian data in the field of poetry genera-
tion. Hopefully, this contribution will enable more people to attempt to model
Norwegian poetry.

For future work, we would like to continue the rhyme scheme annotation
to expand the NoRSC data set. We are especially interested in including more
nynorsk material. In this case, we would try to semi-automate the text pre-
processing, as doing it manually was a bit too time consuming. This, as well as
collecting more, newer data would be a big contribution to the field.

In both the rhyme modelling chapter and the poetry generation chapter, we
got some results which we found difficult to explain. The fact that the rhyme
detection models trained on the NoRSC rhyme pairs did not generalize well to
the Wiktionary pairs is definitely something which we would want to find the
reason for. Also, we could not fully explain with certainty why the stanza-based
poetry generation model produced stanzas of such low quality compared to the
line-based and baseline poetry generation models.

79

7.2. CONTRIBUTIONS, LIMITATIONS AND FUTURE WORK

With the time limit and scope of this thesis, we did not have time to delve
that deep into exploring different models, or even spend extended time on hyper-
parameter optimization and experiments with the models we did use. It would
have been interesting to experiment with all the different model architectures
we described in the backgrounds chapter. This work serves as a first experiment
of poetry generation for Norwegian, a baseline that can be improved upon in
future work.

For future work, it would be interesting to include phonetic information from
NLB Pronunciation Lexicon for Norwegian Bokmdl' or other resources could
lift the quality of the rhyme modelling further.

Recent work on poetry and lyric generation make use of pretrained trans-
former models such as T5 (Tian and Peng, 2022; Ram et al., 2021), BART /m-
BART (Ivanova and Uotila, 2021) and GPT (Liao et al., 2019). There has not
been any Norwegian versions of these models publicly available, until a Nor-
wegian GTP-J was released just two weeks before this thesis was submitted?.
Utilizing this model for poetry generation has the potential to greatly improve
the results with regard to the 'written by a human’-ratings.

Ihttps://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-52/
%https://huggingface.co/NbAiLab/nb-gpt-j-6B

80

https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-52/
https://huggingface.co/NbAiLab/nb-gpt-j-6B

Bibliography

Addanki, Karteek and Dekai Wu (2013). “Unsupervised rhyme scheme iden-
tification in hip hop lyrics using hidden Markov models.” In: International
conference on statistical language and speech processing. Springer, pp. 39-50.

“Andsverkloven” (2018). In: URL: https://lovdata.no/lov/2018-06-15-
40/%C2%A711 (visited on 11,/03/2021).

Bamman, David, Brendan O’Connor, and Noah A. Smith (Aug. 2013). “Learn-
ing Latent Personas of Film Characters.” In: Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics: Sofia, Bulgaria, pp. 352
361. URL: https://www.aclweb.org/anthology/P13-1035.

Berge, Bjorn Jonssgnn (2016). “Rimets aktualitet. Rimets funksjoner i nyere
norsk lyrikk.” MA thesis.

Brown, Tom B. et al. (2020). Language Models are Few-Shot Learners. arXiv:
2005.14165 [cs.CL].

Bull, Tove (2022). Ivaar Asen i Store norske leksikon pd snl.no. URL: https:
//snl.no/Ivar_Aasen (visited on 03/24/2022).

Devlin, Jacob et al. (June 2019). “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding.” In: Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers). Association for Computational Linguistics: Minneapolis, Minnesota,
pp. 4171-4186. DOI: 10.18653/v1/N19-1423. URL: https://www.aclweb.
org/anthology/N19-1423.

Gatt, Albert and Emiel Krahmer (2018). “Survey of the state of the art in
natural language generation: Core tasks, applications and evaluation.” In:
Journal of Artificial Intelligence Research 61, pp. 65-170.

Gillioz, Anthony et al. (2020). “Overview of the Transformer-based Models for
NLP Tasks.” In: 2020 15th Conference on Computer Science and Information
Systems (FedCSIS), pp. 179-183. DOI: 10.15439/2020F20.

Greene, Erica, Tugba Bodrumlu, and Kevin Knight (Oct. 2010). “Automatic
Analysis of Rhythmic Poetry with Applications to Generation and Transla-
tion.” In: Proceedings of the 2010 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Computational Linguistics: Cam-
bridge, MA, pp. 524-533. URL: https://www.aclweb.org/anthology/D10-
1051.

Gundersen, Dag (2022). Samnorsk i Store norske leksikon pd snl.no. URL: https:
//snl.no/samnorsk (visited on 03/28,/2022).

81

https://lovdata.no/lov/2018-06-15-40/%C2%A711
https://lovdata.no/lov/2018-06-15-40/%C2%A711
https://www.aclweb.org/anthology/P13-1035
https://arxiv.org/abs/2005.14165
https://snl.no/Ivar_Aasen
https://snl.no/Ivar_Aasen
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.15439/2020F20
https://www.aclweb.org/anthology/D10-1051
https://www.aclweb.org/anthology/D10-1051
https://snl.no/samnorsk
https://snl.no/samnorsk

BIBLIOGRAPHY

Haider, Thomas and Jonas Kuhn (Aug. 2018). “Supervised Rhyme Detection
with Siamese Recurrent Networks.” In: Proceedings of the Second Joint SIGHUM
Workshop on Computational Linguistics for Cultural Heritage, Social Sci-
ences, Humanities and Literature. Association for Computational Linguis-
tics: Santa Fe, New Mexico, pp. 81-86. URL: https://www.aclweb.org/
anthology/W18-4509.

Hamaéldinen, Mika and Khalid Alnajjar (2019). “Let’s FACE it. Finnish Poetry
Generation with Aesthetics and Framing.” In: arXiv preprint arXiv:1910.13946.

Hamiéldinen, Mika and Khalid Alnajjar (2021). The Great Misalignment Prob-
lem in Human Evaluation of NLP Methods. arXiv: 2104.05361 [cs.CL].

Hartuv, Erez and Ron Shamir (2000). “A clustering algorithm based on graph
connectivity.” In: Information Processing Letters 76(4), pp. 175-181. ISSN:
0020-0190. por: https://doi.org/10.1016 /50020 -0190(00) 00142 -
3. URL: https ://www . sciencedirect . com/ science/article/pii/
S0020019000001423.

Hermann, Karl Moritz et al. (2015). “Teaching Machines to Read and Compre-
hend.” In: CoRR abs/1506.03340. arXiv: 1506.03340. URL: http://arxiv.
org/abs/1506.03340.

Ivanova, Sardana and Valter Uotila (2021). Finnish poetry generation using
fine-tuned mBART. URL: https://youtu . be/hux79WvZxYU (visited on
05,/11,/2022).

Jhamtani, Harsh et al. (Nov. 2019). “Learning Rhyming Constraints using Struc-
tured Adversaries.” In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Associa-
tion for Computational Linguistics: Hong Kong, China, pp. 6025-6031. DOI:
10.18653/v1/D19-1621. URL: https://www.aclweb.org/anthology/D19-
1621.

Julien, Marit (2021). Norvagisering i Store norske leksikon pd snl.no. URL:
https://snl.no/norvagisering (visited on 03/28/2022).

Lau, Jey Han et al. (July 2018). “Deep-speare: A joint neural model of poetic
language, meter and rhyme.” In: Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics: Melbourne, Australia, pp. 1948—
1958. poI: 10.18653/v1/P18-1181. URL: https://www.aclweb.org/
anthology/P18-1181.

Lear, Edward (2008). “Book of Nonsense.” In: URL: https://www.gutenberg.
org/files/982/982-h/982-h.htm (visited on 03/28/2022).

Lehmann-Haupt, H. E. (2020). “Johannes Gutenberg.” In: URL: https://www.
britannica.com/biography/Johannes-Gutenberg (visited on 02/21/2022).

Liao, Yi et al. (2019). “Gpt-based generation for classical chinese poetry.” In:
arXiv preprint arXiw:1907.00151.

Liu, Yusen, Dayiheng Liu, and Jiancheng Lv (2020). “Deep poetry: A chinese
classical poetry generation system.” In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 34. 09, pp. 13626-13627.

Malmi, Eric et al. (2015). “DopeLearning: A Computational Approach to Rap
Lyrics Generation.” In: CoRR abs/1505.04771. arXiv: 1505 . 04771. URL:
http://arxiv.org/abs/1505.04771.

McHugh, Mary L (2012). “Interrater reliability: the kappa statistic.” In: Bio-
chemia medica 22(3), pp. 276-282.

82

https://www.aclweb.org/anthology/W18-4509
https://www.aclweb.org/anthology/W18-4509
https://arxiv.org/abs/2104.05361
https://doi.org/https://doi.org/10.1016/S0020-0190(00)00142-3
https://doi.org/https://doi.org/10.1016/S0020-0190(00)00142-3
https://www.sciencedirect.com/science/article/pii/S0020019000001423
https://www.sciencedirect.com/science/article/pii/S0020019000001423
https://arxiv.org/abs/1506.03340
http://arxiv.org/abs/1506.03340
http://arxiv.org/abs/1506.03340
https://youtu.be/hux79WvZxYU
https://doi.org/10.18653/v1/D19-1621
https://www.aclweb.org/anthology/D19-1621
https://www.aclweb.org/anthology/D19-1621
https://snl.no/norvagisering
https://doi.org/10.18653/v1/P18-1181
https://www.aclweb.org/anthology/P18-1181
https://www.aclweb.org/anthology/P18-1181
https://www.gutenberg.org/files/982/982-h/982-h.htm
https://www.gutenberg.org/files/982/982-h/982-h.htm
https://www.britannica.com/biography/Johannes-Gutenberg
https://www.britannica.com/biography/Johannes-Gutenberg
https://arxiv.org/abs/1505.04771
http://arxiv.org/abs/1505.04771

BIBLIOGRAPHY

Miller, George A (1995). “WordNet: a lexical database for English.” In: Com-
munications of the ACM 38(11), pp. 39-41.

Minogue, Paul (2021). Using Siamese neural networks to create a simple rhyme
detection system. URL: https://paulminogue . com/index.php/2021/02/
14/using-a- siamese-neural -network-to-create-a-simple-rhyme-
detector/ (visited on 02/28/2022).

Nikolov, Nikola I. et al. (Dec. 2020). “Rapformer: Conditional Rap Lyrics Gen-
eration with Denoising Autoencoders.” In: Proceedings of the 15th Interna-
tional Conference on Natural Language Generation. Association for Com-
putational Linguistics: Dublin, Ireland, pp. 360-373. URL: https://www.
aclweb.org/anthology/2020.inlg-1.42.

Njastad, Magne, Erik Opsahl, and Ida Scott (2022). Dansketiden i Store norske
leksikon pd snl.no. URL: https://snl.no/dansketiden (visited on 01/19/2022).

Nordbg, Berge and Hallvard Magergy (2019). Gammelnorsk i Store norske lek-
stkon pd snl.no. URL: https://snl.no/gammelnorsk (visited on 03/24,/2022).

Papineni, Kishore et al. (July 2002). “Bleu: a Method for Automatic Evaluation
of Machine Translation.” In: Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics. Association for Computational
Linguistics: Philadelphia, Pennsylvania, USA, pp. 311-318. po1: 10.3115/
1073083.1073135. URL: https://www.aclweb.org/anthology/P02-1040.

Radford, Alec, Karthik Narasimhan, et al. (2018). “Improving language under-
standing by generative pre-training.” In:

Radford, Alec, Jeffrey Wu, et al. (2019). “Language models are unsupervised
multitask learners.” In: OpenAl blog 1(8), p. 9.

Raffel, Colin et al. (2020). “Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer.” In: ArXiv abs/1910.10683.

Ram, Naveen et al. (2021). “Say What? Collaborative Pop Lyric Generation
Using Multitask Transfer Learning.” In: Proceedings of the 9th International
Conference on Human-Agent Interaction, pp. 165-173.

Saygin, Ayse Pinar, Ilyas Cicekli, and Varol Akman (2000). “Turing test: 50
years later.” In: Minds and machines 10(4), pp. 463-518.

Stolpe Foss, Emmie (2022). I av 9 har nynorsk som hovudmdl i skolen. URL:
https://www.ssb.no/utdanning/grunnskoler/statistikk/elevar-i-
grunnskolen/artikler/1-av-10-har-nynorsk-som-hovudmal-i-skolen
(visited on 02/28/2022).

Thorsnees, Geir (2021). Jstlandet i Store norske leksikon pd snl.no. URL: https:
//snl.no/%5C%C3%5C%98stlandet (visited on 03/28/2022).

Tian, Yufei and Nanyun Peng (2022). “Zero-shot Sonnet Generation with Discourse-
level Planning and Aesthetics Features.” In: arXiv preprint arXiv:2205.01821.

Tikhonov, Aleksey and Ivan P. Yamshchikov (Oct. 2018). “Sounds Wilde. Pho-
netically Extended Embeddings for Author-Stylized Poetry Generation.” In:
Proceedings of the Fifteenth Workshop on Computational Research in Pho-
netics, Phonology, and Morphology. Association for Computational Linguis-
tics: Brussels, Belgium, pp. 117-124. pO1: 10.18653/v1/W18-5813. URL:
https://www.aclweb.org/anthology/W18-5813.

Van de Cruys, Tim (July 2020). “Automatic Poetry Generation from Prosaic
Text.” In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics: On-
line, pp. 2471-2480. DOI: 10.18653/v1/2020.acl-main.223. URL: https:
//www.aclweb.org/anthology/2020.acl-main.223.

83

https://paulminogue.com/index.php/2021/02/14/using-a-siamese-neural-network-to-create-a-simple-rhyme-detector/
https://paulminogue.com/index.php/2021/02/14/using-a-siamese-neural-network-to-create-a-simple-rhyme-detector/
https://paulminogue.com/index.php/2021/02/14/using-a-siamese-neural-network-to-create-a-simple-rhyme-detector/
https://www.aclweb.org/anthology/2020.inlg-1.42
https://www.aclweb.org/anthology/2020.inlg-1.42
https://snl.no/dansketiden
https://snl.no/gammelnorsk
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://www.aclweb.org/anthology/P02-1040
https://www.ssb.no/utdanning/grunnskoler/statistikk/elevar-i-grunnskolen/artikler/1-av-10-har-nynorsk-som-hovudmal-i-skolen
https://www.ssb.no/utdanning/grunnskoler/statistikk/elevar-i-grunnskolen/artikler/1-av-10-har-nynorsk-som-hovudmal-i-skolen
https://snl.no/%5C%C3%5C%98stlandet
https://snl.no/%5C%C3%5C%98stlandet
https://doi.org/10.18653/v1/W18-5813
https://www.aclweb.org/anthology/W18-5813
https://doi.org/10.18653/v1/2020.acl-main.223
https://www.aclweb.org/anthology/2020.acl-main.223
https://www.aclweb.org/anthology/2020.acl-main.223

BIBLIOGRAPHY

Vaswani, Ashish et al. (2017). “Attention is all you need.” In: arXiv preprint
arXiw:1706.03762.

Venas, Kjell, Dag Gundersen, and Bgrge Nordbg (2022). Mellomnorsk i Store
norske leksikon pd snl.no. URL: https://snl.no/mellomnorsk (visited on
01/19/2022).

Venas, Kjell and Bgrge Nordbg (2022). Moderne norsk i Store norske leksikon
PG snl.no. URL: https://snl.no/moderne_norsk (visited on 01,/19/2022).

Venas, Kjell and Martin Skjekkeland (2022). Dialekter i Norge i Store norske
leksikon pd snl.no. URL: https://snl.no/dialekter_i_Norge (visited on
02/28/2022).

Vikgr, Lars S (2022). Rettskrivingsreforma av 1938 i Store norske leksikon pd
snl.no. URL: https://snl.no/Rettskrivingsreforma_av_1938#-Gjennomfy
5C%C3%5C%B8ring_og_resultat (visited on 03/28/2022).

Vikgr, Lars S., Ernst Hakon Jahr, and Mikkel Berg-Nordlie (2022). Sprik i Norge
i Store norske leksikon pd snl.no. URL: https://snl.no/spr%5C%C3%5C%
ASk_i_Norge (visited on 02/28/2022).

Weidling, Tor Ragnar and Magne Njastad (2022). Norge under dansk styre -
1537-1814 i Store norske leksikon pa snl.no. URL: https://snl.no/Norge_
under_dansk_styre_-_1537-1814 (visited on 01/19/2022).

Yang, Cheng et al. (2018). “Stylistic chinese poetry generation via unsupervised
style disentanglement.” In: Proceedings of the 2018 conference on empirical
methods in natural language processing, pp. 3960-3969.

Yi, Xiaoyuan et al. (2018). “Automatic poetry generation with mutual rein-
forcement learning.” In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 3143-3153.

Zhang, Xingxing and Mirella Lapata (Oct. 2014). “Chinese Poetry Generation
with Recurrent Neural Networks.” In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Association
for Computational Linguistics: Doha, Qatar, pp. 670-680. por: 10.3115/
v1/D14-1074. URL: https://www.aclweb.org/anthology/D14-1074.

Zugarini, Andrea, Stefano Melacci, and Marco Maggini (2019). “Neural poetry:
Learning to generate poems using syllables.” In: International Conference
on Artificial Neural Networks. Springer, pp. 313-325.

Zugarini, Andrea, Luca Pasqualini, et al. (2021). “Generate and Revise: Re-
inforcement Learning in Neural Poetry.” In: CoRR abs/2102.04114. arXiv:
2102.04114. URL: https://arxiv.org/abs/2102.04114.

84

https://snl.no/mellomnorsk
https://snl.no/moderne_norsk
https://snl.no/dialekter_i_Norge
https://snl.no/Rettskrivingsreforma_av_1938#-Gjennomf%5C%C3%5C%B8ring_og_resultat
https://snl.no/Rettskrivingsreforma_av_1938#-Gjennomf%5C%C3%5C%B8ring_og_resultat
https://snl.no/spr%5C%C3%5C%A5k_i_Norge
https://snl.no/spr%5C%C3%5C%A5k_i_Norge
https://snl.no/Norge_under_dansk_styre_-_1537-1814
https://snl.no/Norge_under_dansk_styre_-_1537-1814
https://doi.org/10.3115/v1/D14-1074
https://doi.org/10.3115/v1/D14-1074
https://www.aclweb.org/anthology/D14-1074
https://arxiv.org/abs/2102.04114
https://arxiv.org/abs/2102.04114

Appendices

85

Appendix A

Repairing the "bad clusters"
from rhyme pair graph

Below are descriptions of the automatic and manual clustering of the 27 "bad"
connected components from the rhyme pair graph described in chapter 4.

A.1 Largest connected component

In Figure A.1 we see the largest connected component, consisting of 227 vertices.

In Figure A.3 we see the result of manually separating the graph in Figure
A.1. 19 edges were removed from the original graph and 2 edges were added,
resulting in 11 connected components of size >1. The components contain
words with the phonetic endings (from left to right, top to bottom) ord, aje,
wit, eece, uir, ut, an:, ui, wer, of and secet. 1 word ("takke") was separated into
a single-vertex component.

9 of the removed edges were derived from obviously wrong rhyme scheme
annotations, the word pairs having little to no phonetic similarity. 2 of the
edges removed contained the word "weret" (veeret) 'been’, ("veert" (veet) in
modern Norwegian). These were removed to seperate them from the more
usual heteronym "wveeret" (veece) ’the weather’. The remaining 6 edges that
were removed were edges between words with the phonetically similar word-
endings u:t - u:d and ut - of.

In Figure A.2 we see the result of running this through the HCS clustering
algorithm. The graph was separated into 8 connected components of size >1,
consisting of 50 vertices in total. 177 vertices were separated into single-vertex
components (not displayed in the figure), and could thus not be used to create
more rhyme pairs.

The clusters contain words with the phonetic endings uir (top center), je
(top right), ur (mid left), an: (mid center), sere (mid right), ut (bottom left),
aer (bottom center) and wit (bottom right). The ord-, of- and eecet-clusters
from the manual clustering were not extracted by the HCS algorithm.

86

A.1l. LARGEST CONNECTED COMPONENT

rommgio-ord

he@kero

quigere

Figure A.1: The largest connected component

87

A.1l. LARGEST CONNECTED COMPONENT

it

& =3

Figure A.2: Post-clustering largest connected component (single vertices omit-

ted)

88

A.1l. LARGEST CONNECTED COMPONENT

dyreg@peie

heiggot

@

Figure A.3: Manual clustering largest connected component

89

A.1l. LARGEST CONNECTED COMPONENT

fo

Figure A.4: 2nd largest connected component

90

A.2. SECOND LARGEST CONNECTED COMPONENT

"
< |
pie

B

Figure A.5: Post-clustering 2nd largest connected component (single vertices
omitted)

A.2 Second largest connected component

In Figure A.4 we see the second largest connected component, consisting of
189 vertices. In Figure A.5 we see the result of running this through the HCS
clustering algorithm. The graph was separated into 8 connected components
of size >1, consisting of 38 vertices in total. 151 vertices were separated into
single-vertex components (not displayed in the figure), and could thus not be
used to create more rhyme pairs. The components contain words ending with
it (top left), ir (top right), i:d (mid left), aler (mid center), g:de (mid right),
eerr (bottom left), eder (bottom center) and ale (bottom right).

In Figure A.6 we see the result of manually separating the graph in Figure
A.4. 16 edges were removed and 2 edges were added, resulting in 10 connected
components of size >1. The components contain words with the phonetic end-
ings ale (top left), seic (top center), gite (top left), gide (mid left), aler (mid
left-center), eder (mid right-center), ir (mid right), i:d (bottom left), it (bottom
center) and ere (bottom right).

1 word ("forblpde") was separated into a single-vertex component. The @:te-
and ere-id clusters were only extracted by the manual clustering, ie they were
not extracted with the HCS algortihm.

Of the 15 removed edges, 9 of were derived from obviously wrong rhyme
scheme annotations, with little similarity in the phonology of the words in the
word pair. 5 of the edges derived from phonologically similar word pairs, with
word pairs of words ending with (gde - gte), (id - it) and (i - id).

91

A.2. SECOND LARGEST CONNECTED COMPONENT

dy

forlhde

de

Figure A.6: Manual clustering 2nd largest connected component

92

A.3. THIRD LARGEST CONNECTED COMPONENT

P
M‘“
Kok \en =

Figure A.7: 3rd largest connected component

The components contain words ending with and .

A.3 Third largest connected component

In Figure A.7 we see the third largest connected component from the graph
representation of the annotated rhyme pairs, consisting of 148 vertices. In Figure
A.8 we see the result of running this through the HCS clustering algorithm. The
graph was separated into 5 connected components of size >1, consisting of 23
vertices in total. The components contain words ending with ento (top left),
ever (top right), e:d (left), et (right), and et: (bottom). 125 vertices were
separated into single-vertex components (not displayed in the figure), and could
thus not be used to create more rhyme pairs.

In Figure A.9 we see the result of manually separating the graph in Figure
A.7. 11 edges were removed from the original graph, resulting in 6 connected
components of size >1. 3 vertices were separated into single-vertex components,

93

A.4. FOURTH CONNECTED COMPONENT

B /é\
Y

Figure A.8: Post-clustering 3rd largest connected component

and could thus not be used to create more rhyme pairs. The components contain
words ending with e:d/e: (top left), et: (top right), ever (mid left), ento (bottom
left), seto (bottom center), and e:t (bottom right).

3 of the removed edges were not phonetically similar and likely a result of
mistakenly annotating the wrong rhyme scheme. 3 of the removed edges were
from multiword rhymes. The edges were ("tente", "det"), ("smerte", "det") and
("bade", "det"), and the target rhymes are ("tente", "sendt det"), ("smerte",
"leert det") and ("bade", "fra det"). The remaining edges that were removed
were between words with the similar phonetic endings €:d - e:t and e:d - ed:.

A.4 Fourth connected component

In Figure A.10 we see the 4th largest connected component from the graph
representation of the annotated rhyme pairs, consisting of 144 vertices.

In Figure A.11 we see the result of running this through the HCS clustering
algorithm. The graph was separated into 5 connected components of size >1,
consisting of 38 vertices in total. The components contain words ending with u:
(top left), or (bottom left), oir (center), urdn/uun (top right) and est (bottom
right). 106 vertices were separated into single-vertex components (not displayed
in the figure), and could thus not be used to create more rhyme pairs.

In Figure A.12 we see the result of manually clustering the graph in Figure
A.10. 11 edges were removed from the original graph, resulting in 8 connected
components. The components contain words ending with ot (top left), or (mid

94

A.4. FOURTH CONNECTED COMPONENT

elveffledd

regignte

Figure A.9: Manual clustering 3rd largest connected component

95

A.4. FOURTH CONNECTED COMPONENT

Figure A.10: 4th largest connected component

96

A.5. FIFTH LARGEST CONNECTED COMPONENT

‘7

Figure A.11: Post-clustering 4th largest connected component

left), u: (bottom left), est (top center), or (mid center), o:d (bottom center),
ucdn/uun (top right), and uigen (bottom right).

6 of the removed edges are between words that do not rhyme at all. 2 of
the removed edges, ("du", "nad") and ("hu", "na"), pair "nd" (no:) with words
ending with #. This is likely due to the word "nu" being replaced with "na"
during the Norwegifying step described in chapter 3. 2 of the edges that were
removed were pairs where "grat" (groit) was paired with a word that ends with
o:d. Grat is written grad in Danish, so this is probably a trace of this. Finally,
the edge ("rad", "fa") was removed. "Rad" can be pronounced both as ro:d and
ro:, so this edge had to be removed to keep the o:d and o: clusters separate.

A.5 Fifth largest connected component

In Figure A.13 we see the 5th largest connected component from the graph
representation of the annotated rhyme pairs, consisting of 92 vertices. In Figure
A.14 we see the result of running this through the HCS clustering algorithm.
The graph was separated into 3 connected components of size >1, consisting of
16 vertices in total. 76 vertices were separated into single-vertex components
(not displayed in the figure), and could thus not be used to create more rhyme
pairs.

In Figure A.15 we see the result of manually separating the graph in Figure
A.13. 5 edges were removed from the original graph, resulting in 3 connected
components of size >1. The components contain words ending with a:k, a:g

97

A5. FIFTH LARGEST CONNECTED COMPONENT

Iy @

Litligflyi-lu

fed

helg@ad
n

mar@da
inghdad ["

Figure A.12: Manual clustering 4th largest connected component

98

A5. FIFTH LARGEST CONNECTED COMPONENT

ne slafiiine

je Ers| i 0 nne
inoe| ne
mansghinnet trell ;‘ t"'

\\\"- e

N e
X

qu !f’_ ii

nebegiAE
treell@ifinng o

evigh@lisdag
kelig8iag
bolg@8lag
sonden L. ag
Il

N e

erf@sdrag

Figure A.13: 5th largest connected component

99

Lo feri@iiag \ra
S dgn
g /

A.6. SIXTH LARGEST CONNECTED COMPONENT

a4

=t

Figure A.14: Post-clustering 5th largest connected component

and mze. 3 of the removed edges were between words that are not phonetically
similar. The other 2 were between words ending with a:k and a:g. 2 vertices
were separated into single-vertex components, and could thus not be used to
create more rhyme pairs.

A.6 Sixth largest connected component

In Figure A.16 we see the 6th largest connected component from the graph
representation of the annotated rhyme pairs, consisting of 68 vertices.

In Figure A.18 we see the result of manually separating the graph in Figure
A.16. 7 edges were removed from the original graph, resulting in 4 connected
components of size >1. One vertex was separated into a single-vertex compo-
nent. The connected components contain words ending with elv (top), omrer
(left), €:1 (center), and €l: (bottom).

3 of the 7 edges removed were simply wrong; ("forfengelighet", "selv"),
("del", "trommer"), ("sjel", "dommer"). 3 of the edges removed contained the
word "selv (sel: paired with words ending with elv. The last edge was ("sjel",
"vell"), where "sjel" has a long vowel, and "vell" a short.

In Figure A.17 we see the result of running this through the HCS clustering
algorithm. The graph was separated into 3 connected components of size >1,
consisting of 11 vertices in total. 57 vertices were separated into single-vertex
components (not displayed in the figure), and could thus not be used to create
more rhyme pairs. Among these are all words ending with elv. The connected

100

A.6. SIXTH LARGEST CONNECTED COMPONENT

hyiiak

4

Figure A.15: Manual clustering 5th largest connected component

101

A.6. SIXTH LARGEST CONNECTED COMPONENT

Jedibell

vint e\dk“ ! &

I al %I skjell |
straf@yeld

osten: 5 450 .

e R
A‘M—
», it

Blogiiner
floiiliper

vesteral@sommer

Figure A.16: 6th largest connected component

102

A.7. SEVENTH LARGEST CONNECTED COMPONENT

Figure A.17: Post-clustering 6th largest connected component

components we see in Figure A.17 contain words ending with ezl (left), el: (cen-
ter) and om:or (right).

A.7 Seventh largest connected component

In Figure A.19 we see the 7th largest connected component from the graph
representation of the annotated rhyme pairs, consisting of 67 vertices. In Figure
A.20 we see the result of running this through the HCS clustering algorithm.
The graph was separated into 4 connected components of size >1, consisting of
19 vertices in total. 48 vertices were separated into single-vertex components
(not displayed in the figure), and could thus not be used to create more rhyme
pairs.

In Figure A.21 we see the result of manually separating the graph in Figure
A.19. 11 edges were removed from the original graph, resulting in 5 connected
components of size >1. 2 vertices were separated into single-vertex components,
and could thus not be used to create more rhyme pairs. The components contain
words ending with em (top), en: (centre), agker (centre right), i:dn (right) and
atm (bottom).

4 of the removed edges (("ranker", "venn"), ("tanker", "ben"), ("anker",
"én") and ("tanker", "menn")) were between words with no phonetic similarity,
and are results of mistakenly writing the wrong rhyme scheme during annota-
tion.

4 of the removed edges were from rhymes that span several words, all con-

103

A.7. SEVENTH LARGEST CONNECTED COMPONENT

vesterai@§ommer

forfeng@jighet

Figure A.18: Manual clustering 6th largest connected component

104

A.7. SEVENTH LARGEST CONNECTED COMPONENT

var-figfiistiden

undgiiiden
ao@ihen
mellog enn oilfien ‘
appggiiten i
embé enn
n \ n
hwi n
pro@ten
hverd. men
\ suviigen
\N\7
b
kS
(R4
At |
i Aot .
villvingignker 4\‘ pEgren
supen
rel rulig8ken
rel ter
edglien
sjogafisben

Figure A.19: 7th largest connected component

105

A.8. EIGHTH LARGEST CONNECTED COMPONENT

r
.
sk
r

B
-1

Figure A.20: Post-clustering 7th largest connected component

taining the word "den". These edges are ("natten", "den"), ("tiden", "den"),
("appetitten", "den") and ("gikten", "den"). The rhymes the pairs stem from
are ("natten", "etterlatt den"), ("tiden", "i den"), ("appetitten", "kvitt den")
and ("gikten", "likt den").

The last 3 edges that were removed were to separate the emn and en: clusters.
These contain hypernyms such as the letter sequence "men", which can be
pronounced men: 'but’ or mem ’injury’.

A.8 Eighth largest connected component

In Figure A.22 we see the 8th largest connected component from the graph
representation of the annotated rhyme pairs, consisting of 62 vertices. In Figure
A.23 we see the result of running this through the HCS clustering algorithm.
The graph was separated into 4 connected components of size >1, consisting
of 16 vertices in total. The connected components contain words ending in a:d
(left), a: (top and right) and a:v (bottom). 46 vertices were separated into
single-vertex components (not displayed in the figure), and could thus not be
used to create more rhyme pairs.

In Figure A.24 we see the result of manually separating the graph in Figure
A.22. The graph is separated into 3 components, ending with a: (top), a:d (left)
and arv (right). This graph contains several words with multiple pronunciations.
"Av" can be pronounced both a: and a:rv. "Glad" is usually pronounced glaz,
but has in this data set been in several rhyme pairs with words ending with

106

A.8. EIGHTH LARGEST CONNECTED COMPONENT

appéiyten

folg

5

Figure A.21: Manual clustering 7th largest connected component

107

A.8. EIGHTH LARGEST CONNECTED COMPONENT

biialia

bisptav fonggprav
ot

Figure A.22: 8th largest connected component

108

A.9. NINTH LARGEST CONNECTED COMPONENT

A

Figure A.23: Post-clustering 8th largest connected component

a:d. "Blad", and "stad" are pronounced both with a: and a:d word endings
depending on the speaker and the context.

9 edges were removed from the original graph, and 3 edges were added. None
of the removed edges were "wrong" per se, but contained the words mentioned
above and thus connected graphs that contain words that do not rhyme. The
added edges were to reconnect separated vertices to their respective components.

A.9 Ninth largest connected component

In Figure A.25 we see the 9th largest connected component from the graph
representation of the annotated rhyme pairs, consisting of 58 vertices. In Figure
A.26 we see the result of running this through the HCS clustering algorithm.
The graph was separated into 9 connected components of size >1, consisting of
10 vertices in total. 48 vertices were separated into single-vertex components
(not displayed in the figure), and could thus not be used to create more rhyme
pairs.

In Figure A.27 we see the result of manually separating the graph in Figure
A.25. 2 edges were removed from the original graph, resulting in 2 connected
components. No vertices were separated into single-vertex components.

The components contain words ending with akt and vt:e. The two removed
edges were ("hytte", "makt") and ("beskytte", "prakt"), which were added as
a result of a mistake during rhyme scheme annotation.

109

A9. NINTH LARGEST CONNECTED COMPONENT

Figure A.24: Manual clustering 8th largest connected component

110

A9. NINTH LARGEST CONNECTED COMPONENT

fong@ipakt svarfrakt

nord|y@prakt ikt

stratfi@yite

stravglinytie

Figure A.25: 9th largest connected component

111

A9. NINTH LARGEST CONNECTED COMPONENT

==

tilb:
Kt
for

Figure A.26: Post-clustering 9th largest connected component

Figure A.27: Manual clustering 9th largest connected component

112

A9. NINTH LARGEST CONNECTED COMPONENT

Figure A.28: Connected component A

&

.

Figure A.29: Post-clustering connected component A

113

A.10. CONNECTED COMPONENT A

fug fry! rik
rik

Figure A.30: Manual clustering connected component A

A.10 Connected component A

In Figure A.28 we see another bad connected component from the annotated
rhyme pair graph, here named A. It consists of 45 vertices. In Figure A.29
we see the result of running this through the HCS clustering algorithm. The
graph was separated into 3 connected components of size >1, consisting of 14
vertices in total. 31 vertices were separated into single-vertex components (not
displayed in the figure), and could thus not be used to create more rhyme pairs.

In Figure A.30 we see the result of manually separating the graph in Figure
A.28. 2 edges were removed from the original graph, resulting in 3 connected
components of size >1. The components contain words ending with ek (left),
&j and ik. No vertices were separated into single-vertex components.

A.11 Connected component B

In Figure A.31 we see another bad connected component from the annotated
rhyme pair graph, here named B. It consists of 45 vertices.

In Figure A.32 we see the result of running this through the HCS clustering
algorithm. The graph was separated into 3 connected components of size >1,
consisting of 12 vertices in total. 33 vertices were separated into single-vertex
components (not displayed in the figure), and could thus not be used to create
more rhyme pairs.

In Figure A.33 we see the result of manually separating the graph in Figure

114

A.11. CONNECTED COMPONENT B

Figure A.31: Connected component B

**

<

Figure A.32: Post-clustering connected component B

115

A.12. CONNECTED COMPONENT C

Figure A.33: Manual clustering connected component B

A.31. 2 edges were removed from the original graph, resulting in 3 connected
components of size >1. The components contain words ending with gst, yst and
st. No vertices were separated into single-vertex components.

A.12 Connected component

In Figure A.34 we see another connected component from the annotated rhyme
pair graph, here named C. It consists of 39 vertices.

In Figure A.35 we see the result of running this through the HCS clustering
algorithm. The graph was separated into 2 connected components of size >1,
consisting of 11 vertices in total. 29 vertices were separated into single-vertex
components (not displayed in the figure), and could thus not be used to create
more rhyme pairs.

In Figure A.36 we see the result of manually separating the graph in Figure
A.34. 2 edges were removed from the original graph, resulting in 2 connected
components. No vertices were separated into single-vertex components. The
components contain words ending in ener (left) and am: (right).

The removed edges are ("ham", "sender") and ("ham", "hender"), results
of a wrongly annotated stanza.

116

A.12. CONNECTED COMPONENT C

Figure A.34: Connected component C'

Figure A.35: Post-clustering connected component C'

117

A.12. CONNECTED COMPONENT C

Figure A.36: Manual clustering connected component C'

Figure A.37: Connected component D

118

A.12. CONNECTED COMPONENT C

=

Figure A.38: Post-clustering connected component D

"
Srer
mod@ikjod
blom: d
rod
; Jod

Figure A.39: Manual clustering connected component D

119

A.13. CONNECTED COMPONENT D

Figure A.40: Connected component

A.13 Connected component D

In Figure A.37 we see another connected component from the annotated rhyme
pair graph, here named D. It consists of 38 vertices.

In Figure A.38 we see the result of running this through the HCS clustering
algorithm. The graph was separated into 3 connected components of size >1,
consisting of 13 vertices in total. The components contain words ending in o:rer
(top), o:d (left) and ¢: (right). 25 vertices were separated into single-vertex
components (not displayed in the figure), and could thus not be used to create
more rhyme pairs.

In Figure A.39 we see the result of manually separating the graph in Figure
A.37. 4 edges were removed from the original graph, resulting in 4 connected
components of size >1. The components contain words ending in ocer (top),
ort (left), o:d (center) and ¢g: (bottom). No vertices were separated into single-
vertex components.

2 of the edges removed were due to a wrongly annotated rhyme scheme,
connecting the word "skjgd" with the words "barer" and "tarer". One edge
connected the phonetically similar "glgd" (glg:d) and "brgt" (bre:t). One re-
moved edge contained the word "brgd", usually pronounced brg:, sometimes
brg:d.

120

A.14. CONNECTED COMPONENT E

Figure A.41: Manual clustering connected component E

A.14 Connected component F

In Figure A.40 we see another connected component from the annotated rhyme
pair graph, here named E. It consists of 29 vertices. In Figure A.41 we see the
result of manually separating the graph in Figure A.40. 2 edges were removed
from the original graph, resulting in 2 connected components of size >1. The
components contain words ending in aic (left) and ok:er (right). No vertices
were separated into single-vertex components

When running E through the HCS algorithm, it was not separated into
smaller connected components.

A.15 Connected component F

In Figure A.42 we see another connected component from the annotated rhyme
pair graph, named F. It consists of 29 vertices. In Figure A.43 we see the
result of running this through the HCS clustering algorithm. The graph was
separated into 2 connected components of size >1, consisting of 9 vertices in
total. 20 vertices were separated into single-vertex components (not displayed
in the figure), and could thus not be used to create more rhyme pairs.

In Figure A.44 we see the result of manually separating the graph in Fig-
ure A.42. 4 edges were removed and one was added, resulting in 2 connected
components of size >1. All removed edges were due to a mistake during rhyme
scheme annotation. The added edge was to connect a separated vertex to its

121

A.15. CONNECTED COMPONENT F

Figure A.42: Connected component F'

Figure A.43: Post-clustering connected component F'

122

A.16. CONNECTED COMPONENT G

forfiiientstrdfidet
spdiinet
forl t
t

Figure A.44: Manual clustering connected component F'

cluster. One vertex, the word "FAR", was separated into a single-vertex com-
ponent. This word comes from the title of a poem, a line that should have been
annotated with T (title) and be separated from the rest of the stanza.

A.16 Connected component ¢

In Figure A.45 we see another connected component from the annotated rhyme
pair graph, here named G. It consists of 28 vertices.

In Figure A.47 we see the result of manually separating the graph in Figure
A.45. 3 edges were removed from the original graph, resulting in 2 connected
components. The connected components contain words ending in vnier (top)
and vn:e (bottom). No vertices were separated into single-vertex components

In Figure A.46 we see the result of running this through the HCS clustering
algorithm. The graph was separated into 3 connected components of size >1,
consisting of 10 vertices in total. 18 vertices were separated into single-vertex
components (not displayed in the figure), and could thus not be used to create
more rhyme pairs. The 3 components contain words ending in vn:e (left), vner
(right) and both vn:e and vnzer (top).

A.17 Connected component H

In Figure A.48 we see another connected component from the annotated rhyme
pair graph, named H. It consists of 27 vertices. In Figure A.49 we see the

123

A.17. CONNECTED COMPONENT H

Figure A.45: Connected component G

g e
e

Figure A.46: Post-clustering connected component G

124

A.17. CONNECTED COMPONENT H

Figure A.47: Manual clustering connected component G

Figure A.48: Connected component H

125

A.17. CONNECTED COMPONENT H

=

Figure A.49: Post-clustering connected component H

Figure A.50: Manual clustering connected component H

126

A.18. CONNECTED COMPONENT I

Figure A.51: Connected component [

result of running this through the HCS clustering algorithm. The graph was
separated into 2 connected components of size >1, consisting of 10 vertices in
total. 17 vertices were separated into single-vertex components (not displayed
in the figure), and could thus not be used to create more rhyme pairs.

In Figure A.50 we see the result of manually separating the graph in Figure
A.48. 2 edges were removed from the original graph, resulting in 2 connected
components of size >1. The components contain words that end with i:s (top)
and i:der (bottom). The two removed edges were ("pris", "lider") and ("vis",
"lider"), which were results of wrongly annotated rhyme schemes. No vertices
were separated into single-vertex components.

A.18 Connected component [

In Figure A.51 we see another connected component from the annotated rhyme
pair graph, named H. It consists of 21 vertices.

In Figure A.52 we see the result of manually separating the graph in Figure
A.51. 7 edges were removed from the original graph, resulting in 2 connected
components of size >1. The components consist of words ending in um (left)
and om (right). Of the removed edges, 6 contain the words "tom" or "om", both
which can be pronounced with both word endings. No vertices were separated
into single-vertex components.

When running H through the HCS algorithm, it was not separated into
smaller connected components.

127

A.18. CONNECTED COMPONENT I

Figure A.52: Manual clustering connected component [

Figure A.53: Connected component J

128

A.19. CONNECTED COMPONENT J

Figure A.54: Manual clustering connected component J

A.19 Connected component J

In Figure A.53 we see another connected component from the annotated rhyme
pair graph, here named J. It consists of 21 vertices.

In Figure A.54 we see the result of manually separating the graph in Figure
A.53. 2 edges were removed from the graph, and one was added, resulting in 2
connected components. The components consist of words ending in a:ve (left)
and aviet (right). No vertices were separated into single-vertex components.

When running J through the HCS algorith, it was not separated into smaller
connected components.

A.20 Connected component K

In Figure A.55 we see another connected component from the annotated rhyme
pair graph, here named K. It consists of 20 vertices.

In Figure A.56 we see the result of running this through the HCS clustering
algorithm. The graph was separated into 2 connected components of size >1,
consisting of 8 vertices in total. 12 vertices were separated into single-vertex
components (not displayed in the figure), and could thus not be used to create
more rhyme pairs.

In Figure A.57 we see the result of manually separating the graph in Figure
A.55. 4 edges were removed from the original graph, resulting in 2 connected
components. The components consist of words ending in am:en (left) and am:e

129

A.20. CONNECTED COMPONENT K

Figure A.55: Connected component K

Figure A.56: Post-clustering connected component K (single vertices omitted)

130

A.21. CONNECTED COMPONENT L

Figure A.57: Manual clustering connected component K

(right). No vertices were separated into single-vertex components.

A.21 Connected component L

In Figure A.58 we see another connected component from the annotated rhyme
pair graph, named L. It consists of 19 vertices. In Figure A.59 we see the
result of running this through the HCS clustering algorithm. The graph was
separated into 2 connected components of size >1, consisting of 8 vertices in
total. 11 vertices were separated into single-vertex components (not displayed
in the figure), and could thus not be used to create more rhyme pairs.

In Figure A.60 we see the result of manually separating the graph in Figure
A.58. The edge ("vunnet", "grunnen") was removed, resulting in 2 connected
components. The components consist of words ending in s#non (left) and un:ot
(right). No vertices were separated into single-vertex components.

A.22 Connected component M

In Figure A.61 we see another connected component from the annotated rhyme
pair graph, here named M. It consists of 19 vertices.

In Figure A.62 we see the result of manually separating the graph in Figure
A.61. 3 edges were removed from the original graph, resulting in 2 connected
components of size >1. The components consist of words ending in atier (left)
and atie (right). No vertices were separated into single-vertex components.

131

A.22. CONNECTED COMPONENT M

Figure A.58: Connected component L

Figure A.59: Post-clustering connected component L (single vertices omitted)

132

A.22. CONNECTED COMPONENT M

fors\ilinen

sjele nen

Figure A.60: Manual clustering connected component L

Figure A.61: Connected component M

133

A.23. CONNECTED COMPONENT N

Figure A.62: Manual clustering connected component M

When running M through the HCS algorithm, it was not separated into
smaller connected components.

Graph 22 was separated into 2 components. It originally had 18 vertices.
Now it has 7.

A.23 Connected component N

In Figure A.63 we see another connected component from the annotated rhyme
pair graph, here named N. It consists of 18 vertices.

In Figure A.65 we see the result of manually separating the graph in Figure
A.63. 3 edges were removed from the original graph, resulting in 3 connected
components of size >1. We see that the graph has been split into clusters
containing words that end with olk, ene and ense. Due to mistakes during
rhyme scheme annotation, the graph containted the edges/rhyme pairs ("tolk",
"tjene"), ("folk", "ene") and ("stene", "ense"), which were removed. No vertices
were separated into single-vertex components.

In Figure A.64 we see the result of running this through the HCS clustering
algorithm. The graph was separated into 2 connected components of size >1,
consisting of 7 vertices in total. 11 vertices were separated into single-vertex
components (not displayed in the figure), and could thus not be used to create
more rhyme pairs. The ense-cluster was not extracted with the HCS algorithm.

134

A.23. CONNECTED COMPONENT N

Figure A.63: Connected component N

i

Figure A.64: Post-clustering connected component N (single vertices omitted)

135

A.23. CONNECTED COMPONENT N

smal sfolk

Figure A.65: Manual clustering connected component N

Figure A.66: Connected component O

136

A.23. CONNECTED COMPONENT N

Figure A.67: Post-clustering connected component O (single vertices omitted)

sondag@iorgen
B qu gen

n
utl n

Figure A.68: Manual clustering bad connected component O

137

A.24. CONNECTED COMPONENT O

helstafile-fare

Figure A.69: Connected component P

A.24 Connected component O

In Figure A.66 we see another connected component from the annotated rhyme
pair graph, here named O. It consists of 15 vertices.

In Figure A.68 we see the result of manually separating the graph in Fig-
ure A.66. 6 edges were removed from the original graph and 3 were added,
resulting in 3 connected components of size >1. No vertices were separated
into single-vertex components. The 3 components contain words that end with
orgen (left), orden (right) and omn (bottom). These three were connected in
Figure A.66 because "garden" ’the farm" and "morgen" 'morning’ have alter-
native pronunciations. "Garden" is usually pronounced go:on, but can also be
pronounced gorden. "Morgen" is usually pronounced mo:on, but can also be
pronounced morgen. Three edges were added to reconnect isolated vertices to
their respective clusters.

In Figure A.67 we see the result of running this through the HCS clustering
algorithm. The graph was separated into 2 connected components of size >1,
consisting of 7 vertices in total. 8 vertices were separated into single-vertex
components (not displayed in the figure), and could thus not be used to create
more rhyme pairs. The orgen-cluster is missing from the HCS-clustered graph,
only the orden- and o:n-clusters are extracted.

138

A.25. CONNECTED COMPONENT P

helstafille-fore

Figure A.70: Manual clustering bad connected component P

A.25 Connected component P

In Figure A.69 we see another connected component from the annotated rhyme
pair graph, here named P. It consists of 14 vertices.

In Figure A.70 we see the result of manually separating the graph in Figure
A.69. One edges were removed from the original graph, resulting in 2 connected
components of size >1. No vertices were separated into single-vertex compo-
nents. The edge that was removed is ("gret", "skape"), which connected the
clusters of words ending with gre and ape.

When running the graph in Figure A.69 through the HCS algorithm, it was
not separated into smaller connected components.

A.26 Connected component ()

In Figure A.71 we see another connected component from the annotated rhyme
pair graph, here named @. It consists of 13 vertices. When running this through
the HCS algorithm, it was not separated into smaller connected components.

In Figure A.72 we see the result of manually separating the graph in Figure
A.71. One edge was removed from the original graph, resulting in 2 connected
components of size >1. No vertices were separated into single-vertex compo-
nents. The edge that was removed is ("rgrer", "fgdes"), which connected the
clusters of words ending with grer and gdes.

139

A.26. CONNECTED COMPONENT @

Figure A.71: Connected component)

gidles

Figure A.72: Manual clustering of connected component @

140

A.26. CONNECTED COMPONENT @

dom! prog

Figure A.73: Connected component R

v

v

Figure A.74: Post-clustering connected component R (single vertices omitted)

141

A.27. CONNECTED COMPONENT R

e

domini@sprog
Figure A.75: Manual clustering connected component R

A.27 Connected component R

In Figure A.73 we see the last connected component from the annotated rhyme
pair graph, here named R. It consists of 13 vertices. In Figure A.74 we see the
result of running this through the HCS clustering algorithm. The graph was
separated into 2 connected components of size >1, consisting of 6 vertices in
total. 7 vertices were separated into single-vertex components, and could thus
not be used to create more rhyme pairs.

In Figure A.75 we see the result of manually separating the graph in Figure
A.73. One edge was removed from the original graph, resulting in 2 connected
components of size >1. No vertices were separated into single-vertex compo-
nents, so all 13 vertices were kept in the manual clustering.

The removed edge is ("tog", "slog"). The letter sequence "tog" can produce
the heteronyms torg ’train’ and tuig ’took’ (old/Danish way to write "tok"
'took’). In the rhyme pair graph in Figure A.73 we see that this edge connects
words ending in o:g (to the left) and uig (to the left). As the "tog"-vertex
has one edge connecting it to the uig cluster, and three connecting it to the
o:g-cluster, the single edge connecting the two clusters was removed.

142

Appendix B

Validation set results for
rhyme detection

B.1 Validation set

Below are the results from the models tested on the validation set.

Model 1
model_name: rhyme_model_1
Val set accuracy

precision recall fl-score support

0 0.92 0.96 0.94 724

1 0.96 0.92 0.94 724

accuracy 0.94 1448
macro avg 0.94 0.94 0.94 1448
weighted avg 0.94 0.94 0.94 1448

Commutative model 1
model_name: rhyme_model_1_symmetric
Val set accuracy

precision recall fl-score support

0 0.95 0.93 0.94 724

1 0.94 0.95 0.94 724

accuracy 0.94 1448
macro avg 0.94 0.94 0.94 1448
weighted avg 0.94 0.94 0.94 1448

Model 1.2
model_name: rhyme_model_23_ratio

143

B.1. VALIDATION SET

Val set accuracy

precision recall fl-score support

0 0.93 0.96 0.95 724

1 0.96 0.93 0.94 724

accuracy 0.95 1448
macro avg 0.95 0.95 0.95 1448
weighted avg 0.95 0.95 0.95 1448

Commutative model 1.2
model_name: rhyme_model_23_ratio_symmetric
Val set accuracy

precision recall fl-score support

0 0.94 0.96 0.95 724

1 0.96 0.94 0.95 724

accuracy 0.95 1448
macro avg 0.95 0.95 0.95 1448
weighted avg 0.95 0.95 0.95 1448

Model 2
model_name: rhyme_model_40k
Val set accuracy

precision recall fl-score support

0 0.96 0.91 0.93 724

1 0.91 0.96 0.94 724

accuracy 0.93 1448
macro avg 0.94 0.93 0.93 1448
weighted avg 0.94 0.93 0.93 1448

Commutative model 2
model_name: rhyme_model_40k_symmetric
Val set accuracy

precision recall fl-score support

0 0.96 0.95 0.95 724

1 0.95 0.96 0.95 724

accuracy 0.95 1448
macro avg 0.95 0.95 0.95 1448
weighted avg 0.95 0.95 0.95 1448

144

B.1. VALIDATION SET

Model 3
model_name: rhyme_model_dw_40k
Val set accuracy

precision recall fl-score support

0 0.91 0.61 0.73 724

1 0.71 0.94 0.81 724

accuracy 0.77 1448
macro avg 0.81 0.77 0.77 1448
weighted avg 0.81 0.77 0.77 1448

Commutative model 3
model_name: rhyme_model_dw_40k_symmetric
Val set accuracy

precision recall fl-score support

0 0.93 0.68 0.78 724

1 0.75 0.95 0.84 724

accuracy 0.81 1448
macro avg 0.84 0.81 0.81 1448
weighted avg 0.84 0.81 0.81 1448

Model 3.1
model_name: rhyme_model_dw_300k
Val set accuracy

precision recall fl-score support

0 0.93 0.46 0.61 724

1 0.64 0.97 0.77 724

accuracy 0.71 1448
macro avg 0.79 0.71 0.69 1448
weighted avg 0.79 0.71 0.69 1448

Commutative model 3.1
model_name: rhyme_model_dw_300k_symmetric
Val set accuracy

precision recall fl-score support

0 0.97 0.40 0.57 724

1 0.62 0.99 0.76 724

accuracy 0.70 1448
macro avg 0.80 0.70 0.67 1448
weighted avg 0.80 0.70 0.67 1448

B.2. MIRRORED VALIDATION SET

B.2 Mirrored validation set

Below are the results from the models tested on the mirrored validation set.

Model 1
model_name: rhyme_model_1
precision recall fl-score support
0 0.92 0.96 0.94 724
1 0.96 0.91 0.93 724
accuracy 0.93 1448
macro avg 0.94 0.93 0.93 1448
weighted avg 0.94 0.93 0.93 1448
Model 1.2
model_name: rhyme_model_23_ratio
precision recall fl-score support
0 0.94 0.95 0.94 724
1 0.95 0.94 0.94 724
accuracy 0.94 1448
macro avg 0.94 0.94 0.94 1448
weighted avg 0.94 0.94 0.94 1448
Model 2
model_name: rhyme_model_40k
precision recall fl-score support
0 0.96 0.89 0.92 724
1 0.89 0.96 0.92 724
accuracy 0.92 1448
macro avg 0.92 0.92 0.92 1448
weighted avg 0.92 0.92 0.92 1448
Model 3
model_name: rhyme_model_dw_40k
precision recall fl-score support
0 0.90 0.63 0.74 724
1 0.72 0.93 0.81 724

146

B.3. WIKTIONARY TEST SET

accuracy 0.78 1448

macro avg 0.81 0.78 0.78 1448

weighted avg 0.81 0.78 0.78 1448

Model 3.1

model_name: rhyme_model_dw_300k

precision recall fl-score support

0 0.94 0.43 0.59 724

1 0.63 0.97 0.76 724

accuracy 0.70 1448

macro avg 0.78 0.70 0.68 1448

weighted avg 0.78 0.70 0.68 1448

B.3 Wiktionary test set

Below are the results from the models tested on the wiktionary test set.

Model: rhyme_model_1
Wiktionary set accuracy

precision recall fl-score support

0 0.78 0.88 0.83 4894

1 0.86 0.76 0.80 4894

accuracy 0.82 9788
macro avg 0.82 0.82 0.82 9788
weighted avg 0.82 0.82 0.82 9788

Model: rhyme_model_1_symmetric
Wiktionary set accuracy

precision recall fl-score support

0 0.85 0.87 0.86 4894

1 0.87 0.85 0.86 4894

accuracy 0.86 9788
macro avg 0.86 0.86 0.86 9788
weighted avg 0.86 0.86 0.86 9788

147

B.3. WIKTIONARY TEST SET

Model: rhyme_model_23_ratio
Wiktionary set accuracy

precision recall fl-score support

0 0.81 0.86 0.84 4894

1 0.85 0.80 0.83 4894

accuracy 0.83 9788
macro avg 0.83 0.83 0.83 9788
weighted avg 0.83 0.83 0.83 9788

Model: rhyme_model_23_ratio_symmetric
Wiktionary set accuracy

precision recall fl-score support

0 0.84 0.91 0.87 4894

1 0.90 0.82 0.86 4894

accuracy 0.87 9788
macro avg 0.87 0.87 0.87 9788
weighted avg 0.87 0.87 0.87 9788

Model: rhyme_model_40k
Wiktionary set accuracy

precision recall fl-score support

0 0.87 0.77 0.82 4894

1 0.80 0.88 0.84 4894

accuracy 0.83 9788
macro avg 0.83 0.83 0.83 9788
weighted avg 0.83 0.83 0.83 9788

Model: rhyme_model_40k_symmetric
Wiktionary set accuracy

precision recall fl-score support

0 0.92 0.77 0.84 4894

1 0.80 0.93 0.86 4894

accuracy 0.85 9788
macro avg 0.86 0.85 0.85 9788
weighted avg 0.86 0.85 0.85 9788

148

B.3. WIKTIONARY TEST SET

Model: rhyme_model_dw_40k
Wiktionary set accuracy

precision recall fl-score support

0 0.94 0.95 0.94 4894

1 0.95 0.94 0.94 4894

accuracy 0.94 9788
macro avg 0.94 0.94 0.94 9788
weighted avg 0.94 0.94 0.94 9788

Model: rhyme_model_dw_40k_symmetric
Wiktionary set accuracy

precision recall fl-score support

0 0.97 0.95 0.96 4894

1 0.95 0.97 0.96 4894

accuracy 0.96 9788
macro avg 0.96 0.96 0.96 9788
weighted avg 0.96 0.96 0.96 9788

Model: rhyme_model_dw_300k
Wiktionary set accuracy

precision recall fl-score support

0 0.98 0.98 0.98 4894

1 0.98 0.98 0.98 4894

accuracy 0.98 9788
macro avg 0.98 0.98 0.98 9788
weighted avg 0.98 0.98 0.98 9788

Model: rhyme_model_dw_300k_symmetric
Wiktionary set accuracy

precision recall fl-score support

0 1.00 0.97 0.98 4894

1 0.97 1.00 0.98 4894

accuracy 0.98 9788
macro avg 0.98 0.98 0.98 9788
weighted avg 0.98 0.98 0.98 9788

149

Appendix C

Evaluation instructions for
human evaluators

The instructions were given in Norwegian. The original Norwegian instructions,
and the English translation are given below:

C.1 Norwegian instruction

Evaluering av Al-genererte vers og rim

Oppgaven din er & bruke din intuisjon til & finne ut hvilke vers som er skrevet av
mennesker, og hvilke som er skrevet av AI. Du blir ogsd bedt om & vurdere i
hvilken grad versene rimer.

Med rim menes enderim, som for eksempel:

Jeg liker vann
Hjerter i brann

Vi bruker en skala fra 0 til 3, der O betyr at verset ikke inneholder enderim,
og 3 betyr at det er tydelig at verset er skrevet pd rim.

1 brukes om noen linjer i verset nesten rimer, som for eksempel:

Jeg vil prate
Dere er smarte

2 brukes om det rimer noe, for eksempel at to linjer i diktet rimer men ellers ikke.
Fgrst er det 15 spgrsmdl der du far se 2 vers side om side. Her er ett vers
AI-generert og ett menneskeskrevet.

Deretter kommer det 20 spgrsmdl hvor du vurderer ett og ett vers uavhengig.

Tusen takk og lykke til!

NB: Versene brukt er skrevet fra &r 1900 til i dag. Det er mulig at noen

150

C.2. ENGLISH TRANSLATION

vers inneholder ordbruk som reflekterer politikk/holdninger som ikke er gjengs i dag.

C.2 English translation

Evaluation of AI-generated and rhyme

Your task is to use your intuition to find out what stanzas are written by humans,
and what are written by AI. You are also asked to evaluate to what

degree the stanzas rhyme.

With rhyme, we mean end-rhyme, as for example:
Jeg liker vann (eng: I like water)
Hjerter i brann (eng: Hearts on fire)

We use a scale from O to 3, where O means that the stanza does not contain end-rhyme,
and 3 means that it is clear that the verse is written in rhyme.

1 is used if some lines in the verse almost rhyme, as for example:
Jeg vil prate (eng: I want to talk)
Dere er smarte (eng: You are smart)

2 is used if it rhymes some, for example if only two lines in the stanza
rhyme but not the other.

First, there are 15 questions where you will see 2 stanzas side by side.

Here one stanza is AIl-generated and one is written by humans.

After that, there are 20 questions where you evaluate one stanza at the time.
Thank you and good luck!

NB: The stanzas used are written from year 1900 to today.

There is a possibility that some stanzas contain words
that reflect politics/attitudes that are not valid today.

151

