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Abstract

Combining structured information with language models is a standing
problem in NLP. Building on previous work, we study how lightweight
neural networks, known as adapters, can be used to inject information
from a knowledge graph into two popular pre-trained language models
based on the transformer architecture. The adapters are trained using
the masked language modeling objective over extracted triples from
ConceptNet, a knowledge graph that captures a range of world knowledge
and commonsense concepts and relations. Experiments on three popular
NLP benchmarks believed to require world knowledge and commonsense
reasoning abilities show that the adapter injection does not increase
performance on these tasks. However, probing experiments indicate that
the injected models are better at recovering factual information seen during
training, and that this can be achieved by introducing a small amount
of additional parameters to the overall model. Ablation studies show
that the injected knowledge is distributed equally among the layers in the
underlying model. Furthermore, using the AdapterFusion framework, we
propose and perform initial testing of a two-step learning algorithm that
partitions ConceptNet by predicate type and trains a set of disjoint adapters
that are later combined using an attention mechanism. For reproducibility,
we present a reproduction of the most related previous work and release
our code.1

1https://github.com/SondreWold/Thesis_code
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Chapter 1

Introduction

It should be noncontroversial to state that understanding of language relies
on access to experiences of the world. We use an array of mundane, multi-
modal and factual information in order to navigate the ambiguities that
arise in everyday conversation. Inference based on such knowledge is non-
trivial, even for humans. It is as difficult to make the correct inference as it is
to not make one at all. When faced with pieces of language, either through
speech or written text, we can’t help ourselves: We make assumptions that
go far beyond what is explicitly stated, some more unconscious than others.
Taking any statement at face value, without eliciting any connotations,
seems impossible, almost inhuman.

As modern pieces of language technology primarily consume unstruc-
tured text using machine learning, that is pure linguistic form (Bender and
Koller, 2020), how can a machine, which has no native assumptive mechan-
ism, understand or make inferences based on language in a similar fashion?
For example, how can it infer that only sentence b follows from sentence a
in the example below, and not c? There are no linguistic queues that reveal
that treks in Jotunheimen National Park are a subset of the treks in all of
Norway but not in Sweden.

Recent advancements in Natural Language Processing (NLP) never-
theless increasingly succeed at making these types of inferences. The ex-
planation? Given a large enough corpus, Jotunheimen will appear more
frequently in close proximity with Norway than Sweden. This makes it
less probable that statements mentioning Jotunheimen is related to state-
ments mentioning Sweden, compared to any statement mentioning Nor-
way. What it does not, however, is to make it true.

(1.1) a) Jotunheimen is a great place for trekking.

b) Norway has places which are great for trekking.

c) Sweden has places which are great for trekking.

This poses problems for deployment of pieces of language technology
into domains where the truth of what is produced matter. If the
training material for a language model include frequent mentions of
Swedish tourists to Jotunheimen, the example above quickly becomes
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more challenging. Current models do not have any native mechanism for
encoding and enforcing the knowledge that seems necessary, namely that
Jotunheimen is in Norway. At the same time, there exist multiple sources
that attempt to capture and structure this type of factual knowledge.
Such sources range from domain specific knowledge graphs for medical
information (Shi et al., 2017), more general ontologies like Yago or
ConceptNet (Speer, Chin and Havasi, 2017; Suchanek, Kasneci and
Weikum, 2007) to lexico-semantic networks like WordNet (Miller, 1995).

This work investigates how language models based on the transformer
architecture (Vaswani et al., 2017) can leverage the knowledge encoded
in such resources. Following the work of Lauscher et al. (2020), we try
to achieve this by extracting triples of factual information from Concept-
Net using a random traversal algorithm and translating them into natural
language. The triples are used as the training data for lighweight neural
networks set on the masked language modeling objective. We inject the
trained networks into the large pre-trained language models BERT (Devlin
et al., 2019) and ROBERTA (Y. Liu et al., 2019). We fine-tune and evaluate
the injected models on popular NLP tasks believed to require world know-
ledge. The lightweight neural networks, often referred to as adapters, are
inserted into the root language model without changing the original para-
meters. Consequently, they make for a highly parameter-efficient technique
for transfer learning. What we hope to achieve is to demonstrate that ad-
apters are a viable technique for combining structured information and lan-
guage models that are trained on unstructured data.

Our experiments are based on the following research questions:

(1.2) RQ1 To what extent can adapters be used to inject knowledge into
pre-trained language models?

(a) Can we reproduce the results achieved by Lauscher et al.
(2020)?

(b) How is the injected knowledge distributed? Can we prune
adapters and achieve even better efficiency?

(c) Are the injected models able to reproduce the factual
information seen during adapter training?

RQ2 Can we use adapters to inject knowledge from ConceptNet in
order to increase the performance on popular NLP benchmarks
believed to require the same kind of knowledge?

(a) Can we increase the performance of a base BERT model?
(b) Can we increase the performance of a base ROBERTA

model?

RQ3 Can we deploy the newly introduced AdapterFusion (Pfeiffer,
Kamath et al., 2021) framework on ConceptNet?

(a) Can we partition the ConceptNet knowledge graph by
predicate type, as done with biomedical data in Meng et al.
(2021)?
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(b) Can we use attention over multiple adapters in order to
increase the recall of factual information in a zero-shot
setting over cloze-style statements?

1.1 Overview

Chapter 2 presents the problem of deriving world knowledge from text and
how such information can be encoded in knowledge graphs. Furthermore,
it reviews previous research on knowledge representation and the combin-
ation of structured knowledge with language models. It also provides a
brief introduction to neural networks and how they are used and in NLP,
with a more in-depth focus on recent architectures and the adapter tech-
nique.

Chapter 3 presents a reproduction study of work done by Lauscher et al.
(2020). The results of this reproduction motivates the experiments that fol-
low.

Chapter 4 contains information on the experimental part of this thesis. Ad-
apter modules trained over the ConceptNet (Speer, Chin and Havasi, 2017)
knowledge graph are injected into two popular language models and eval-
uated on three downstream NLP tasks believed to require world know-
ledge and commonsense reasoning capabilities. Furthermore, the chapter
provides an in-depth error analysis using probing experiments to showcase
the effectiveness of the proposed injection method.

Chapter 5 expand on the findings from chapter 4 by experimenting with
new types of adapter setups. By pruning the adapter modules from dif-
ferent transformer layers, we hope to shed light on where and how factual
knowledge is encoded into large pre-trained language models. Using the
AdapterFusion framework (Pfeiffer, Kamath et al., 2021), we also create an
adapter ensemble like model and evaluate its effectiveness over a subset of
the LAMA probe (Petroni et al., 2019).

Chapter 6 summarizes the work put forth in this thesis and presents sug-
gestions for future research.
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Chapter 2

Background

The first section of this chapter introduces the issue of extracting and rep-
resenting world knowledge and commonsense information for language
modeling purposes. Although this work focuses on reasoning that requires
these types of capabilities in particular, recent work on different types of
knowledge injection, like medical domain expertise, is of high relevance.
Section 2.2 and 2.3 introduce neural networks and how they are used for
NLP, with an emphasis on modern architectures and the adapter frame-
work — the method used for knowledge injection in this work. Section
2.4 presents previous work on the combination of external knowledge with
language models. Section 2.5 discusses the problem of evaluating the injec-
ted models and presents three datasets believed to assess world knowledge
and commonsense reasoning capabilities. Together, these sections provide
the theoretical foundation for the experimental part that follows in chapter
3, 4 and 5.

2.1 World knowledge in text

Often, the interpretation of an utterance must be understood using
information external to the utterance itself. An interpretation of the
sentence it is cold today is a function not only of the meaning to be found
in these four words and their compound, but also of the subject’s sensory
perception of temperature. That is, the act of understanding language
requires more than knowledge of the meaning of words. With this
particular example, we can interpret the sentence successfully (we get what
is conveyed by the speaker), but if we are unable to feel whether or not it is
in fact cold today, understanding is limited. This type of knowledge is often
referred to as world knowledge or common sense. Our understanding of
language relies on such knowledge that we have accumulated over time
through multi-modal interaction with the world and by deductions from
implicit observations and facts.

In the case of NLP, we do not focus much on multi-modal information
such as perception of temperature. How would we even represent the
feeling of temperature textually? However, a lot of world knowledge
can be represented using language. If we consider the example from
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the introduction (see 1.1), the knowledge that Jotunheimen is a mountain
range in Norway and not in Sweden can be conveyed as a statement
on the form J is in N and J is not in S. Given this information, our
understanding of the statement Jotunheimen is in Sweden is more meaningful
than it would have been without it. Even though the statement has a
valid semantic interpretation, our understanding of it as false depends on
external knowledge.

In a language model, one sense of a word has a higher probability in
a sequence of words than another based on the frequency of co-existence
between the sequence and this word sense in the training material. Thus, if
an instance of world knowledge never co-exist in a text, that Jotunheimen is
in Norway, there is no way for language models to encode this knowledge.
Even though we have instances that mention both Jotunheimen and
Norway, the fact that the former is in the latter is not made explicit.

Language models are nonetheless able to generate pieces of language
with valid semantic interpretations. But even if we explain their ability to
do so by their capability for understanding meaning of words, embedded
as a probability into vector space, the pieces of language they generate need
not to be easily understood.

This begs the question: can world knowledge be extracted from text?
The ability to expresses something that is both meaningful and true seems
crucial to any notion of human analogous understanding of language. The
models of today are deployed as filtering mechanisms, dialogue systems
and translators. If there is no way of extracting world knowledge from the
training material, this greatly limits such systems.

It is difficult to determine whether or not language models understand
facts of the world or only facts of the words of our language. In order to
illustrate the difference, we ask the reader to consider these two sentences
from Hagoort et al. (2004):

(2.1) a) The present queen of England is divorced

b) The favorite palace of the present queen of England is divorced

Sentence a is meaningful; the semantic content is coherent. It is only
by knowing that the queen of England is in fact married, a fact about the
world, that the sentence can be determined false. Sentence b is different,
however. There are no valid semantic interpretations available to us,
not because the sentence is ungrammatical, but because the predicate is-
divorced typically takes something animate as its argument. A neural
language model can through the use of contextualised embeddings (see
section 2.2 for an explanation) learn that this predicate is typically followed
by active proper nouns or pronouns, which increases the probability that
the particular word denotes a human, and thus generate sentences with a
valid semantic interpretation. What it can not, though, is to infer the truth
value of either sentence or why queen is an valid argument to the predicate
but not palace. Such reasoning would require world knowledge, not just
knowledge about the facts of our language.
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2.1.1 Knowledge graphs

Now that we have some notion of what world knowledge could look like
in text, how do we go about extracting and representing it? Attempts
at structuring facts about the world into both general and more domain
specific systems go way back. In the field of philosophy, questions on
how entities are grouped into categories are often referred to as the topic
manner of ontology — a tradition of thought that predates most others.
The term ontology is also used in the fields of knowledge representation
and semantic technologies, but there the concern is not only on the formal
definition of the groupings but also on the actual implementation of them.
In these fields we also find the terms "knowledge bases" and "knowledge
graphs".

As all these terms have their own specific connotations depending on
which field of study they are employed in, we choose to refer to all attempts
at structuring some related state-of-affair in the world into hierarchical
systems as ontologies. If the ontology is represented as a graph intended
for computational use, we refer to is a knowledge graph. More formally, we
can say that our use of the term knowledge graph refers to a world model
that meets these criteria:

• it must be a collection of symbols that stands for some state-of-the-
affair in the world

• it must organize these symbols in a graph structure

• it must connect these symbols together using relations that provide
some semantic interpretation

• preferably, the knowledge graph must also be mappable to other
graphs within the same domain.

The knowledge graphs relevant for this work are often constructed by
automated solutions, driven by heuristics, and are thus examples of how it
is possible to extract and represent world knowledge from text. Below is an
overview of some existing graphs, both for domain specific knowledge and
for more general world knowledge and commonsense information, with
an emphasis on ConceptNet (Speer, Chin and Havasi, 2017), which is the
graph we use in this work.

Domain specific graphs

The primary benefit of a domain specific knowledge graph is that it enables
inferences from text using knowledge contained in a set of concepts that
is narrower and less polysemous. For example, if the domain is artificial
intelligence, the concept of "model" has another meaning than it does
in everyday conversation and will most likely always point to the same
concept in the ontology.

Below are some examples of domain specific graphs:
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• The Unified Cybersecurity Ontology (UCO), intended to support
information integration and cyber situational awareness (Syed et al.,
2016).

• IDEON, for modeling, analyzing, and managing processes within the
systems engineering enterprise (A. Madni, C. Madni and Lin, 1998).

• The Systematized Nomenclature of Medicine—Clinical Terms, known
as SNOMED CT, a comprehensive medical terminology used for
standardizing the storage, retrieval, and exchange of electronic health
data (Donnelly et al., 2006).

WordNet

The lexical database WordNet links word classes to sets of synonyms
that are in turn linked through semantic relations that determine word
definitions (Miller, 1995). It is perhaps the best known structured resource
for word level semantic information. The motivation for WordNet was to
provide a resource for computational applications that cater to the way
machines consume information, not humans. The original distribution of
WordNet included more than 118,000 different word forms and more than
90,000 word senses, of which 17% of the total were polysemous.

There have been numerous works using WordNet for NLP applications,
as well as multiple extensions, like WordNet::Similarity for semantic
similarities between concepts (Pedersen, Patwardhan, Michelizzi et al.,
2004) and WordNet-Affect for lexical representation of affective knowledge
(Strapparava, Valitutti et al., 2004).

ConceptNet

ConceptNet1 is an online knowledge graph designed to represent the
general knowledge involved in understanding language (Speer, Chin and
Havasi, 2017) and is what we use for our experiments. Compared to
WordNet, ConceptNet provides semantic relations for concepts, not words.
The current iteration, 5.5, is optimized to be used with modern NLP
techniques. The original release in H. Liu and P. Singh (2004) was intended
as a representation of the crowd-sourced knowledge project Open Mind
Common Sense.

The knowledge in ConceptNet is coded as triplets consisting of two con-
cepts and one relation. When combined, they make up an assertion on the
form: (subject, relation, object), where both the subject and the object is a
concept. For example, the assertion that dogs have tails can be represented
by the triple (dog, HasA, tail). Hence, every assertion in ConceptNet can
be seen as a subset on the form Assertion ⊂ C × L× C where C is the set
of all concepts and L is the set of all relations. Relations include RelatedTo,
CapableOf and InstanceOf. A list of all the relations in ConceptNet can be
found in Figure A.1 in the appendix and an illustration of an excerpt can

1https://conceptnet.io/
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semantics
partOf formal system

hasContext
linguistics

relatedTo
language

synonym
logic

relatedTo
axiom

Figure 2.1: An illustration of some concepts found in ConceptNet and their
relation

be seen in Figure 2.1. In total, these relations express over 13 million links
between concepts and thus provide an attempt at structuring the type of
commonsense knowledge that does not necessarily exist explicitly in text.
Later in this work we also use the term "predicate" to refer to the same thing
as relation.

Before we discuss how knowledge graphs such as ConceptNet can be com-
bined with pre-trained language models in order to better their common-
sense reasoning capabilities, we give a brief introduction to neural net-
works and how they are used in NLP. Furthermore, we introduce the ar-
chitecture and workings of recent language models, together with a more
in-depth explanation of adapters — which is the method used for know-
ledge injection in this work.

2.2 Modeling

If you want to classify something in a text, how do you transform and
condition a model on the data? The following section introduces the basic
architecture of a neural network, together with a short presentation of the
general architecture behind pre-trained language models, such as ELMo
(Peters, Neumann, Iyyer et al., 2018), BERT (Devlin et al., 2019), GPT-3
(Brown et al., 2020) and Switch Transformer (Fedus, Zoph and Shazeer,
2022). This section gives a brief introduction of the concepts needed for the
succeeding section on adapters.
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2.2.1 Neural networks

Although the theory behind artificial neural networks is old, their usage
within NLP is fairly recent. Due to advancements in computer hardware
and the publication of large datasets, they have been in widespread use for
the last decade.

The explanations that follow are inspired by those given in Jurafsky and
Martin (2021) 2, and Goldberg (2017).

2.2.2 Feed-forward networks

Neural networks are centered around the idea of the neuron as a computa-
tional unit. The neuron takes some real valued number as input, performs
some computation, and returns a new real number as output. This com-
putation typically involves multiplying the input with a set of weights and
adding a bias term. Thus, the neuron can be formally defined as:

(2.2) z = b + ∑ wixi

Or, in shorthand, using the dot product:

(2.3) z = wx + b

Where w is the weights matrix, x the input matrix and b the bias term.

A neural network then, is the collection of such neurons into connected
layers so that the output of one layer functions as the input to the next. The
first layer, known as the input layer, takes the input vectors, transforms
them and passes them down the network. The last layer, the output layer,
provides the predictions of the network. All other layers are known as
hidden layers. Together, these layers perform a linear transformation:

(2.4) NN(x) = xW + b

x ∈ Rdin , W ∈ Rdin×dout , b ∈ Rdout

If all neurons in one layer are connected to all the neurons in the next
layer, we call the network fully connected, and if all the connections goes
forward in the network, we call it a feed-forward network. An illustration of
a such a network can be seen in Figure 2.2.

Non-linear activation

In order for the model to learn information inherent in the input data, we
must apply some form of non-linear transformation. Without it, we achieve
nothing by scaling from a single computational unit to a full network. We
add this non-linear transformation by applying what is referred to as an

2https://web.stanford.edu/~jurafsky/slp3/
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Figure 2.2: A fully connected feed-forward network with one hidden layer

activation function. A popular variation of such a function is the Rectified
Linear Unit, ReLU for short:

(2.5) f (x) = max(0, x)

Other examples of non-linear activation functions are the sigmoid and the
tanh. When we have linear transformations followed by such activations in
each layer, we can create networks that approximate complex functions –
making predictions on hitherto unseen data possible. An example of such
a network, with one hidden layer and g as an activation function, can be
written formally as:

(2.6) NN1(x) = g(xW + b)

Or with two hidden layers and two activation functions, g1 and g2:

(2.7) NN2(x) = (g2(g1(xW1 + b1)W2 + b2))W3

2.2.3 Modern neural architectures

Albeit sufficient for many applications, the simple feed-forward architec-
ture must often yield for more advanced models. A common architecture in
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Figure 2.3: The original transformer architecture proposed in Vaswani et al.
(2017)

NLP is the Recurrent Neural Network, RNN, with its variations Long Short
Term Memory network (LSTM) (Hochreiter and Schmidhuber, 1997) and
its bidirectional relatives BiLSTM (Schuster and Paliwal, 1997) and GRU
(Cho et al., 2014). Another architecture class, mostly used for image re-
cognition tasks but also with some applications in NLP, is the Convolution
Neural Network, CNN (LeCun et al., 1999).

A third option, which has seen massive uptake in recent years, is the
transformer architecture, which will be the focus for the remaining part of
this section, and also the most relevant architecture for this work.

The transformer

First introduced in Vaswani et al. (2017), the transformer architecture has
become the dominant flavor of artificial neural networks in NLP. The
development has in large been motivated by challenges inherent in the
architecture of its most used predecessor, the RNN.

The RNN generates a sequence of hidden states as a function of
previous states, resulting in a recurrence across iterations that make up the
models internal memory. This enables more context sensitive modeling
than a plain feed forward network; the output of a layer is no longer only a
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function of its current state but also the output of previous states. Although
effective in its predictions, the RNN is not efficient to train. Furthermore,
if the input sequences become too long we encounter the problem of
vanishing gradients which will prevent the weights in the network from
changing enough to encode new information.

In order to model dependencies across the whole sequence without
regard to length and the position of word tokens, we can use an attentive
mechanism. Conceptually, this makes it possible to spread information
across sequences by concentrating on what is relevant in a training instance
while ignoring the rest. The transformer architecture relies entirely on
such mechanisms, making any recurrence and convolutions redundant
(Vaswani et al., 2017).

After the input sequence has been embedded into vector space by
assigning a numerical value for each token and given a positional weight,
we pass the vectors through a special type of attention layer, called self-
attention. This mechanism will encode how important each word is in
relation to other words in the same sentence. This makes it possible for
the model to access other words in an input sentence as it encodes a single
token, providing a notion of context. Formally, the attention is calculated
as a scaled dot product between the vector representing the current query,
often a single word, Q, and the hidden state in the encoder block, K, which
will hold information on all previous words, acting as a memory. This
product is normalized to 1 using a softmax function before being multiplied
by V, which is often the same tensor as K (Vaswani et al., 2017):

(2.8) Attention(Q, K, V) = so f tmax(
QK>√

n
)V

In order for the model to see information from different parts of the
input representations, the attention mechanism is calculated multiple times
for different projections of the keys (K), values (V) and queries (Q) – all in
parallel. This Multi-Head attention calculation is used in three different
ways in the transformer, as can bee seen in Figure 2.3.

2.2.4 Language models

How can we use architectures like feed-forward neural networks and the
transformer to work with language? If we are to solve tasks that involve the
generation of phrases, for example a dialogue system, we want our system
to respond to some context. The way to approach this problem has been
and still is to create a probability distribution over sequences of words.
This way, we can calculate what the most probable next word is to some
textual context.

Although the general approach to modeling language has stayed
somewhat the same, the particular techniques for achieving it have evolved
a lot. The early N-gram modeling technique, for example, estimates the
conditional probability of the next word given the previous N words,
while the more recent WORD2VEC framework (Mikolov et al., 2013) embeds
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Figure 2.4: An illustration of the masked language modeling objective.

each word into vector space by training a neural network on the task of
predicting a word given its context, or vice versa.

A method that has achieved great results in recent years, most
noticeably as a training regimen for large language models, is the masked
language modeling objective (MLM). Popularized in Devlin et al. (2019),
this method masks a percentage of tokens in a sequence and trains a model
on the task of recovering the words beneath the masks. It is primarily the
MLM objective that is relevant for the models used in this work.

The great advantage of MLM over other language modeling objectives
is that it enables the model to be bidirectional, focusing on the both right
and left contexts. After training, the resulting network contain representa-
tions of words commonly refereed to as contextualized embeddings. Fig-
ure 2.4 illustrates this procedure. The most probable word for the masked
token is calculated by applying the softmax function to the scores calcu-
lated by the network for all possible words, which will be equal to length
of the models vocabulary:

(2.9)

σ(Z)i =
eZi

∑K
j=1 ezj

,

where Z is the output of the model, eZi the exponential function applied
to each element of Z and K is the number of words in our vocabulary. The
denominator is the normalization that ensures that all the probabilities add
up to 1. The token with the highest probability is chosen as the correct
word for the mask, and the weights in the model’s network are adjusted
according to the loss calculated between the guessed and actual token.
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The exact workings of masked language modeling is not relevant for
this work. However, the adapters used for knowledge injected use MLM
as their objective when training over the extracted triples from ConceptNet.
As MLM is also the training objective during the models initial pre-training
(see next section), this have the added benefit of not introducing a new
objective during the knowledge injection phase, relying instead on known
patterns.

2.2.5 Pre-trained language models

At the time of writing, the most popular model in NLP is BERT (Devlin et al.,
2019). Trained on the objective of masked language modeling (MLM) and
next sentence prediction (NSP), this framework has become the dominant
flavor of what is refereed to as pre-trained language models. Models
like BERT enable anyone working on NLP to leverage a model trained
on large datasets, such as Wikipedia and CommonCrawl, without having
access to the required resources themselves. The pre-trained models can be
downloaded from publicly available API’s and then further trained on the
specific problem of the end user. This approach is known as fine-tuning.

Architecturally, BERT uses more layers, more attention heads and larger
dimensions for the feedforward-networks in each layer than the original
transformer from Vaswani et al. (2017). It as also bidirectional, making the
representations dependent on both left and right contexts. The base version
released in Devlin et al. (2019) has approximately 110 million tuneable
parameters.

In addition to BERT, we also use the popular ROBERTA (Y. Liu et al.,
2019) model for our adapter injection. While the masking of tokens in
BERT only happens once during data preprocessing, before being fed as
input to the model, the pre-training regimen used in Y. Liu et al. (2019)
duplicate the training data ten times so that each sequence is masked in
ten different ways — a method known as dynamic masking. Furthermore,
ROBERTA also drops the loss values for the NSP tasks, only relying on
dynamic masking for modeling long range dependencies.

In order to use pre-trained language models on a downstream task, we
have to add a classification layer, often referred to as the head, on top of
the model. This layer reduces the output of the language model to the
required dimensions of the specific problem at hand. For masked language
modeling, the classification layer will be a linear transformation from the
size of the last layer in the language model, M, to the length of the models
vocabulary N. For BERTBASE, this will be M = 768 to N = 30522 (Devlin et
al., 2019); and for binary sentiment analysis with the same model it would
be from M = 768 to N = 2.

Interpretability. Although pre-trained language models achieve un-
matched performance on a range of NLP tasks, it is not so easy to inter-
pret what they actually learn during training. Understanding why a model
made or did not make a particular prediction is difficult when the overall
capacity of the model is distributed over 110 million parameters, as in BERT,
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or the 175 billion parameters in GPT-3 (Brown et al., 2020). This has spiked
a research interest into the interpretability of such language models.

One such study, by Rogers, Kovaleva and Rumshisky (2020), system-
atize and presents what over 150 different publications using BERT has
taught us about how transformer-based architectures represent knowledge
and what information they learn. Much of the surveyed work uses a tech-
nique known as probing to assess whether or not BERT actually learns cer-
tain linguistic features or not. Using probing, work by Tenney, Das and
Pavlick (2019) suggest that BERT actually learns parts of the traditional
NLP-pipeline, and even so in-order — starting with POS tagging, parsing,
NER and semantic roles, and finally with co-reference. We rely on this way
of probing in the evaluation of our models in chapter 4 and 5, where we try
to isolate factual knowledge.

As BERT is in short a stack of layers, one can also probe individual layers
in order to quantify where specific types of knowledge are distributed or
most prominent. For example, multiple studies suggest that lower layers
have the most information on linear word order, that middle layers focus
on encoding syntactic information and that the last layers are the most
task-specific (Rogers, Kovaleva and Rumshisky, 2020). As pointed out
earlier, we use masked language modeling as the training objective for
our adapter modules. This suggests that whatever information is acquired
during adapter training should be most prominent in the top layers of the
injected model. Chapter 5 prunes different layers in order to investigate
whether or not our models align with this intuition.

It must also be pointed out that recent studies, such as work by Sinha
et al. (2021), have shown pre-trained language models to be insensitive to
word order. We argue that this challenges the claim that knowledge, at
least the human analogous type, could be represented in a way that makes
it reasonable to talk about layer-specific locations.

2.3 Adapters

The training approach used today, where we fine-tune a pre-trained
model on every downstream task that we want to solve, is inefficient.
Adapters mitigate this by allowing for efficient parameterization and
sharing (Houlsby et al., 2019). Usually, this is done by introducing
lightweight neural networks into transformer-based models and only
adjusting the weights of this network on the downstream task. Thus, the
weights of the original network are untouched, whilst the new adapter
layers, which have few parameters, are fine-tuned and can be extracted
and shared between models.

Although fairly new, this approach have proven effective. For a review
of how adapters are currently being used in NLP, see section 2.4. The
following subsections outline the technicalities of the most popular adapter
architectures and some of their problems.

22



Figure 2.5: The single-task adapter architecture introduced by Houlsby et
al. (2019).

2.3.1 Single-task adapters

In a single-task adapter, for each of the N downstream tasks that we want
to train an adapter for, a pre-trained model like BERT is initialized with
parameters θ0. In addition, a set of new and randomly initialized adapter
parameters φn is introduced (Pfeiffer, Kamath et al., 2021).

The right side of Figure 2.5 shows the general architecture of each
of these adapters. φn is distributed across two feed-forward networks,
denoted as the up and down project in the figure. After passing through
the multi-headed attention layer in the original model, the input vectors
enter the first of these two networks, which has a low-dimensionality
in order to keep the total parameter size of the adapters low. After
this bottleneck, the data is transformed with a nonlinear function before
being projected back into the original dimensionality using the second
network. The nonlinear transformation is typically done with the gaussian
error linear unit (GELU) which weights inputs by their percentile in the
standard gaussion distribution function, rather than by their sign as with
RELU in equation 2.5 (Hendrycks and Gimpel, 2016). Some adapter
implementations also use the SWISH function. Figure 2.6 illustrates their
difference over a small interval.

In practice, as done by Houlsby et al. (2019) and Lauscher et al. (2020),
each adapter module is injected into each transformer layer twice, as
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Figure 2.6: A comparison of popular activation functions for adapters

illustrated by the left side of Figure 2.5. For each adapter, if we let Wd
and Wu be the parameters of the down-projection and up-projection layers
respectively, together with bias terms bd and bu and a nonlinear activation
function, f , we can define each adapter as a function of its input vector X:

(2.10) Adapter(X) = X + f (XWd + bd)Wu + bu

Catastrophic forgetting

A common issue with transfer learning in general is that weights learned
from the new task interfere with the contextual information gained in the
initial large scale training of the model. This phenomenon is known as
catastrophic forgetting.

This problem is pressing in numerous applications of transfer learning,
such as Peters, Neumann, Logan et al. (2019) and Z. Zhang et al. (2019).
As a method of transfer learning, the same goes for adapters. The solution
could either be to apply a normalization technique that dampens this effect,
or, as proposed in R. Wang et al. (2021) to ensure that all original parameters
are kept static at all times by only adjusting the introduced weights, φn —
which is the technique we apt for in chapter 4 and 5.

2.3.2 AdapterFusion

One problem of the single-task approach is that the distinct weights of the
adapters prevent the classification layer from utilizing different sources of
information. Pfeiffer, Kamath et al. (2021) propose a two stage algorithm
that enables sharing of information between adapters trained on different
knowledge tasks, known as AdapterFusion.
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Figure 2.7: The usage of the AdapterFusion technique in Meng et al. (2021).

Here, for a set of N downstream tasks, we train an adapter for every
n ∈ N. This first stage of the algorithm generates a set of adapters, S. In
the second stage we freeze the weights of the original pre-trained model,
θoriginal and the weights of each adapter, φS. Upon fine-tuning on our goal
downstream task, which can be a member of N or not, we then introduce
a new set of parameters γ which through an attention mechanism learns
to combine the knowledge encoded in each of the adapters in S in order
to solve the final task. This approach address the issues of catastrophic
forgetting and parameter sharing between tasks. One can imagine the
AdapterFusion approach as having access to a panel of domain experts, all
with disjoint expertise, and then being tasked with learning when and how
much you should listen any one expert at a given point in time, that is for
each task. For example, if we are to solve an inference task and believe that
knowledge of named entities and sentiment in text might provide added
benefits we can train one adapter on a Named Entity Recogniton (NER)
dataset and one one a sentiment analysis set. When fine-tuning on our
inference task we add an AdapterFusion layer that learns which of the two
adapters are most helpful for each sample in that task.

Figure 2.7 illustrates how Meng et al. (2021) applies this to the medical
domain by training a single-task adapter on distinct partitions of a medical
knowledge graph.

2.3.3 Performance

The usage of a bottleneck in the adapter modules is a trade-off between
performance and parameter efficiency. In order for adapters to be useful at
all, this balance must be favorable.

The single-task adapter used in Houlsby et al. (2019) attain within 0.4%
difference of the performance of a standard full fine-tuning approach on
the GLUE benchmark, only tuning 3.6% of the total parameters. This gives
improvement both in terms of space complexity and the time needed to
fine-tune the model. The performance of the K-adapter model in R. Wang
et al. (2021) even surpasses that of the original model with full fine-tuning.
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Figure 2.8: The difference between the three primary types of knowledge
injection. Figure from Colon-Hernandez et al. (2021).

For an extensive analysis on the efficiency of adapters, see Rücklé et al.
(2021).

2.4 Previous work

As we have now seen both how world knowledge can be represented struc-
turally, for example as a graph, and how modern neural networks can cre-
ate language representations from unstructured text, we now turn to how
previous work have attempted to combine the two. The following section
discusses both how adapters in particular have been used for knowledge
injection, but also other related attempts at the combination of structured
information with language models.

At one point in time, the usage of structured information, such as onto-
logies, knowledge bases and graphs, were upheld by many in the NLP
communtiy to be a vital component to any NLP system, as illustrated by
this quote from Mahesh, Nirenburg et al. (1995):

In the field of natural language processing there is now a
consensus that all NLP systems that seek to represent and
manipulate meanings of texts need an ontology.

Now, the opposite seems to be the consensus. It is the modeling
of the usage of language, not manipulation of concepts, that functions
as the theoretical premise for much of what NLP has achieved the last
decade or so. Representation learning based on observed language use,
for example through tasks like masked language modeling, has proven to
be an effective starting point for a range of downstream NLP tasks (Devlin
et al., 2019).

However, there has been a recent rise in attempts at combining
information from external resources with state-of-the-art neural language
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models, such as the transformer (Vaswani et al., 2017). This has in large
been motivated by the observation that such models tend to "hallucinate
knowledge", that is to generate imprecise constructs (Colon-Hernandez
et al., 2021), and have difficulty recovering factual knowledge (Logan et
al., 2019). Following Colon-Hernandez et al. (2021), we separate previous
attempts into three categories (see Figure 2.8 for a graphical visualization):

• Input-focused injection: modifying the training data by introducing
structured knowledge.

• Architecture-focused injection: altering the model architecture, e.g:
injecting a feed-forward layer trained on a knowledge graph into the
transformer layers (such as adapters).

• Output-focused injection: modifying the output of a model and/or
introduce a custom loss function.

Although fairly recent, the literature on the different types of injection
is already considerable. For a review of approaches in all three categories,
we refer the reader to the survey by Colon-Hernandez et al. (2021), and
continue with a more thorough review of architecture-focused injection at-
tempts, of which many uses the same general approach: to insert variations
of neural networks, trained on a knowledge resource through some learn-
ing objective, into some parts of a language model.

The adapter technique as we have presented it thus far is one example of an
architecture-focused injection and stems from work by Rebuffi, Bilen and
Vedaldi (2017) on the parametrization of residual networks. It was origin-
ally conceived of as a method of preserving domain specificity when faced
with the rise of universal families of neural networks. The approach was
initially developed for image recognition and later introduced in NLP by
Houlsby et al. (2019).

In contrast to the classic full fine-tuning approach, where all the para-
meters of the pre-trained model are adjusted with regard to the down-
stream task, Houlsby et al. (2019) injects variations of the residual adapter
modules from Rebuffi, Bilen and Vedaldi (2017) into the architecture of
BERT. This introduces a new set of trainable parameters to an already large
parameter space. However, it is only the new set of parameters that gets to
fine-tune on the downstream task. Thus, per task, this approach only adds
and adjusts 3.6% of the 110 million scalar values in the base BERT model,
while the standard fine-tuning approach adjusts all of them. Despite this,
the adapter injected method performs comparable to the baseline on the
GLUE benchmark (A. Wang, A. Singh et al., 2018), attaining within 0.4% of
the performance of full fine-tuning.

Whereas Houlsby et al. (2019) introduce adapters into each transformer
layer, all trained on one task, R. Wang et al. (2021) inject different types
of knowledge into separate adapter models: one that captures factual
knowledge obtained from aligned text triplets on Wikipedia and Wikidata,
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Figure 2.9: The adapter architecture proposed in R. Wang et al. (2021).

and one that captures linguistic knowledge obtained via running an off-the-
shelf dependency parser over a subset of the Book Corpus (Zhu et al., 2015).
The adapters are combined with a base ROBERTA model and the resulting
architecture, named K-ADAPTER, demonstrate increased performance on
three knowledge-driven downstream tasks.

The novelty of this approach is that the knowledge-specific adapters
work as outside plug-ins and are not injected inside the layers of the
original. In practice, this means that the input of a given adapter module
is the output of the current layer in the pre-trained model, concatenated
with the output of the former adapter layer. Figure 2.9 shows the
adapter architecture used for the K-ADAPTER model, as compared to the
architecture by Houlsby et al. (2019) in Figure 2.5. We note that we
find the explanation of the specific workings of the adapters in this work
to be somewhat unclear. Furthermore, as the approach is only tested
with ROBERTA as the underlying language model, the evidence for its
effectiveness is not as convincing as those achieved by the architecture in
Houlsby et al. (2019).

Instead of using adapters, it is also possible to integrate the structured
information from a knowledge graph in other ways. Peters, Neumann,
Logan et al. (2019) propose a general method named Knowledge Attention
and Recontextualization (KAR), where they use an entity linker to retrieve
relevant entity embeddings (a vector representation of an entity in a graph)
from WordNet, among others, in order to form knowledge enhanced entity-
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span representations of text. The wordpiece embeddings that the root
language model produces by default is recontextualized by substituting
the multi-headed self-attention mechanism (see section 2.2.3) with a
multi-headed attention between these wordpiece embeddings and the
knowledge enhanced entity span vector returned by the entity linker. KAR
is injected in between two layers in the middle of the stack in BERT.

One of the novelties of this approach is also that the entity linker is
learned using self-supervision on unlabelled data. The overall model,
named KNOWBERT, consequently learns to otimize the loss of the underly-
ing BERT language model, but also the entity linker:

(2.11)
`KnowBert = `bert + `EntityLinker

The evaluation of KNOWBERT, using a perplexity measure and a
factual recall probe on Cloze-style statements, shows that the injection of
knowledge graphs to BERT, such as WordNet, significantly improves the
model’s ability to recall facts. It also shows improvement in performance
for relationship extraction, entity typing and word sense disambiguation.

It is also possible to use architecture-focused injection, such as adapters,
for more domain specific tasks. By partitioning large knowledge graphs in
the biomedical domain into smaller sub-graphs, which are then fed into a
set of respective adapter modules, Meng et al. (2021) apply mixture layers
that combine the knowledge from all the adapters using attention (see
section 2.2 for a more detailed explanation of this framework). In short, the
usage of attention mechanisms enables the model to learn which adapter
to extract knowledge from. Since the sub-graphs used as training data are
disjoint sets, one can imagine having a panel of experts, with no overlap
in knowledge, to draw from. The adapter modules and the mixture layers
are instantiated using the ADAPTERHUB API and the recently proposed
AdapterFusion architecture (Pfeiffer, Kamath et al., 2021; Pfeiffer, Rücklé
et al., 2020). It is this work that inspires the experiments we present in
chapter 5, as outlined in RQ3.

The most relevant work for this thesis is that by Lauscher et al. (2020).
Using the adapter technique introduced in Houlsby et al. (2019), they inject
BERT with knowledge extracted from ConceptNet (Speer, Chin and Havasi,
2017). The injected information, which is on a subject-predicate-object
format, is extracted using a random walk procedure and translated into
natural language. For example, the assertion triple (Christianity,
InstanceOf, Religion) is transformed into the statement: Christianity is
an instance of religion. The adapters are trained on these statements using
the masked language modeling and injected into every transformer layer
in BERT. The original parameters in BERT are kept static during the training
of the adapter.

The overall model is fine-tuned and evaluated on tasks from the GLUE

benchmark (A. Wang, Pruksachatkun et al., 2019; A. Wang, A. Singh et al.,
2018). Although the model is only comparable to the base model on most
tasks, it shows some improvement on the diagnostic set (see section 2.5.1)
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Model/Work Knowledge
source

Injection style Objective

GREASELM

(X. Zhang
et al., 2022)

ConceptNet
(Speer,

Chin and
Havasi, 2017)

Graph neural
network

integration

Question
answering

MOP (Meng
et al., 2021)

UMLS
(Bodenreider,

2004)

Intrinsic
adapters

Biomedical
question

answering,
document

classification
and natural

language
inference.

K-ADAPTER

(R. Wang
et al., 2021)

Wikidata and
Wikipedia

Extrinsic
adapters

Entity typing,
question

answering
and relation
classification

Lauscher
et al. (2020)

ConceptNet
(Speer,

Chin and
Havasi, 2017)

Intrinsic
adapters

NLU tasks

BERT-MK (He
et al., 2020)

UMLS
(Bodenreider,

2004)

Aggregator
blocks

Relation
classification

and entity
typing

SENSEBERT

(Levine et
al., 2020)

Wordnet
(Miller, 1995)

Entity linking Word sense
disambiguation

KNOW-BERT

(Peters,
Neumann,
Logan et
al., 2019)

WordNet
(Miller, 1995)

and Wikipedia

Entity linking Relation
classification

and entity
typing

ERNIE (Z.
Zhang et
al., 2019)

Wikidata Entity linking Relation
classification

and entity
typing

Table 2.1: A tabular summary of previous work at combing external
knowledge with pre-trained language models

30



— where some fine-grained categories require world knowledge in order
to be classified correctly, the same type of information believed encoded
into ConceptNet.

Although there exists additional work that are of high relevance to
the approach we employ later in this thesis, we limit our review of these
by presenting a summary of the already presented work together with
other relevant publications on the combination of structured knowledge
and pre-trained language models. This summary, see Table 2.1, distinguish
previous work by what knowledge source they try to integrate, their
injection style and overall objective. We separate the use of adapters
into intrinsic and extrinsic approaches depending on whether or not the
adapters are injected directly into the model’s layers or residing outside.
We label approaches using some form of mapping between entities in text
and entities in the knowledge source as "Entity linking" — regardless of
how the mapping is injected into the underlying model.

2.5 Evaluation

When we combine external resources with pre-trained language models,
the added information will only make up some percentage of the total
model size. As mentioned, the adapter injection technique used by
Houlsby et al. (2019) increases the total model size with as little as 3.6%.
This poses one key problem with regard to evaluation: How can we
measure that the injection of external information was successful?

As this work attempts to inject world knowledge and commonsense
factual information, we will follow Lauscher et al. (2020), Meng et al. (2021),
R. Wang et al. (2021) and Gajbhiye, Moubayed and Bradley (2021) in using
the task Natural Language Inference (NLI) as an assessment method. The
diagnostic set from GLUE (A. Wang, A. Singh et al., 2018), which relies
on the NLI format, provides fine-grained categories for the evaluation of
world knowledge and commonsense reasoning capabilities. Furthermore,
we also evaluate our models on the tasks of grounded commonsense
inference and question answering — both believed to target the same type
of knowledge.

The following sections present these tasks — focusing on NLI —
together with relevant datasets, challenges and a discussion on their
potential for evaluating our proposed method of knowledge injection.

2.5.1 Natural language inference

Consider the following sentence pair:

(2.12) I was born in March.

My birthday is on Christmas day.

Does the latter follow from or contradict the former? Perhaps neither?
A system that can answer this question, for any two textual fragments,
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solves the task of Natural Language Inference (NLI). Today, NLI is often
a multinomial classification task where models predict the relationship
between two sentences by choosing a label from the well-defined set
{Entailement, Contradiction, Neutral}. However, the task is also commonly
referred to as RTE, Recognizing Textual Entailment, where the challenge is
a binary decision problem, typically predicting whether or not there is
an entailing relationship between the two sentences. The variations and
formal definitions are plentiful, but they all share the same root mission:
to determine whether a natural language hypothesis h can justifiably be
inferred from a natural language premise p (MacCartney and Manning,
2009, p. IV).

It is important to note that NLI is different from other inference tasks,
as it is not strictly targeted at deriving formal conclusions from premises.
Sometimes, upon determining the relationship between the two sentences,
we do not deduce formally, but rather, in an informal sense. This is
what makes it interesting as an evaluation method for our knowledge
injected models. The following two examples, inspired by MacCartney
and Manning (2009), illustrate the difference between these two types of
reasoning:

(2.13) p Several students at the University of Oslo, when asked by a
journalist, said that they would like to have less homework.

h Some students asked by the journalist reported wanting less
homework on their mid-term class evaluations.

(2.14) p All books have at least one page.

h My book has at least one page.

The hypothesis in 2.13 is not a logical implication of the premise, as
what one reports on an official evaluation is not logically determined by
what one has previously said to a journalist. The students can boast about
their lack of need of homework to the journalist whilst reporting something
seemingly contradictory on the evaluation. Hence, the sentences can
have the same truth value at the same time without creating a logical
contradiction. Informally, however, the hypothesis is an entailment of
the premise, as it is reasonable to believe that the students are somewhat
coherent and honest. In the domain of NLI this is often sufficient for
counting as an example of an entailing relation.

In this particular sense, then, the relationship between premise and
hypothesis is judged on the basis of pragmatics. Neither semantics
nor syntax alone can determine the relationship. Consequently, what
is required to solve the task is a combination of lexical inference and
world knowledge. As the world knowledge of any language model (see
section 2.2.4) is limited to what is conferred implicitly through its training
data – constructing a limited context on which meaning can be extracted
– determining this balance must be a pragmatic choice. There are no
linguistic phenomena in the premise that one can apply to the classical
rules of inference in order to arrive at the hypothesis. As pragmatics

32



are somewhat ambiguous by nature, annotation efforts for NLI become
especially challenging, making the process of creating solid datasets to train
and validate models on difficult.

This way of approaching inference follows what is outlined by Mac-
Cartney and Manning (2009). But of course, not all inferences are done in
this informal sense. Most premise/hypothesis pairs are similar to the one
in example 2.14. If we accept that entities in the premise and hypothesis are
co-referent, in this case that the books in p are the same books as in h, we
can use formal rules of inference to conclude that there is an entailing rela-
tionship between the two sentences. We can express this using a universal
quantifier. If P(x) is the predicate "x has more than one page", then:

∀xP(x)
x(2.15)

∴ P(x)

In the popular Pascal RTE challenge sets, starting with Dagan, Glick-
man and Magnini (2005), and later in the MultiNLI (Williams, Nangia and
S. Bowman, 2018), the criterion upon which the nature of a relation is de-
cided was presented to the annotators as the following: for a relation to
be labeled as Entailment, the hypothesis must state something that is def-
initely correct about the situation or event in the premise. Their definition
is closer to the requirement illustrated in example 2.15 than the informal
variants described in MacCartney and Manning (2009). Yet, what counts as
"definitely correct" does not seem to be the same as logically sound.

To conclude: depending on the dataset, both 2.13 and 2.14 might be
annotated as examples of entailment. It is this mix of occasional informal
reasoning, semantics and variability of linguistic expression, not only strict
evaluation of syntactical transformations using rules of inference, that
makes NLI stand out as an inference task (MacCartney and Manning, 2009)
and, for the same reasons, why NLI is a suitable task for evaluating the
effectiveness of our adapter-injected models.

Datasets for NLI

The widespread interest for NLI began with the FraCas test suite and the
Pascal RTE Challenges. Both the FraCas (Cooper et al., 1996) and the
RTE sets, which came out in iterations, starting with Dagan, Glickman
and Magnini (2005), aimed to provide a generic evaluation framework for
testing the inferential capabilities of NLP systems.

Since then, extensive work has been done for monolingual NLI –
especially for English. There are more NLI datasets than what is plausible
to introduce here; however, the two most commonly used datasets today
are the SNLI (S. R. Bowman, Angeli et al., 2015) and MultiNLI (Williams,
Nangia and S. Bowman, 2018). This section briefly presents these two
datasets, as well as some influential contributions utilizing the NLI format
to benchmark language models.
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Premise Gold label Hypothesis
A man inspects
the uniform of a

figure in some East
Asian country.

contradiction
C C C C C

The man is sleeping

A smiling costumed
woman is holding

an umbrella.

neutral
N N C E N

A happy woman
in a fairy costume
holds an umbrella.

A soccer game
with multiple
males playing.

entailment
E E E E E

Some men are
playing a sport.

Table 2.2: Sample sentences from SNLI (S. R. Bowman, Angeli et al.,
2015).The gold label from all five annotators are illustrated with a single
letter denoting the annotation decision, together with the final gold label.

SNLI. The Stanford Natural Language Inference (SNLI) corpus, made
available in S. R. Bowman, Angeli et al. (2015), contains 570k human-
written sentence pairs that are all manually labeled with one of the three
relationship labels: contradiction, entailment and neutral. The annotations
were crowd-sourced by providing annotators with automatically extracted
image captions and then asking them to create three alternate captions: one
that is definitively a true description of the photo, one that might be true
and one that is definitively false. Examples of such sentences can be seen
in Table 2.2.

10% of the dataset was also validated by asking sets of five annotators
to choose a single gold label for the same sentence pair. Examples of
such inter-annotator agreement can also be seen in Table 2.2. The neutral
example in Table 2.2 illustrates that annotators often disagree. In this case,
the hypothesis is clearly not logically deducible from the premise, but the
two are not semantically unrelated either, which might explain why this
particular sample has been annotated with all three gold labels by different
annotators.

MultiNli. A problem with the SNLI was its limited origin of text. This mo-
tivated the need for the Multi-Genre Natural Language Inference corpus,
MNLI, introduced in Williams, Nangia and S. Bowman (2018). This corpus
has a more diverse range of media types, including sentence pairs from
face-to-face conversations, fiction, letters and telephone transcripts. The
annotations were created in a similar fashion as the SNLI , asking crowd-
sourced workers to generate hypotheses based on provided premises. We
use the MNLI as one of the evaluation datasets for our reproduction study
in the next chapter.

The new media types brought with them new linguistic phenomena
that drastically increased the difficulty of the problem. Baseline models
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Premise Predicted label Hypothesis
Boats in daily use
lie within feet of

the fashionable bars
and restaurants.

Entailment There are boats
close to bars

and restaurants

restaurants and use
feet of fashionable

lie the in Boats
within bars daily .

Entailment bars restaurants
are There and
to close boats .

Table 2.3: An original sentence pair from MNLI and a random permutation
of the same pair, both receiving the same predicted label in Sinha et al.,
2021

performed about 15% better on the SNLI than on the MNLI when trained on
both sets (Williams, Nangia and S. Bowman, 2018). Currently, the highest
performing model on the MNLI is ERNIE from Sun et al. (2021), achieving
92.3% accuracy. It is worth mentioning here that recent work by Sinha
et al., 2021 shows that a permutation scheme of the word ordering in the
sentence pairs lifts the accuracy up to 98.7%, i.e there is evidently statistical
irregularities in the MNLI that can explain some of the performance. Table
2.3 shows an example of such a permutation. Challenges such as this
will be discussed further in section 2.5.1 and in the error analysis of our
experiments in chapter 4.

MNLI provides a partition for training, development and testing, with
392,7k, 20k and 20k samples respectively. The development and test sets
are further separated into matched and mismatched sub sets, depending
on whether or not the samples were in- or cross-domain.

The Glue benchmarks. In order to better measure the development in
NLP, A. Wang, A. Singh et al. (2018) introduced GLUE – a benchmark
platform collecting multiple common NLP tasks into a single test suite
with a single overall performance score. Although we never evaluate our
models on the entire suite, we make recurring references to it throughout
this work. After only a year, the tasks in GLUE – of which the MNLI test
sets were a part – proved too easy, motivating the creation of a harder
benchmark, consequently labeled SUPERGLUE (A. Wang, Pruksachatkun
et al., 2019). The pure NLI task, as it has been described here, was removed
from SUPERGLUE, but it persists in an auxiliary diagnostic set which all
model submitters are required to evaluate their models on. This diagnostic
set measures the accuracy of a NLI classifier on fine-grained categories,
like specific linguistic phenomena, world knowledge and commonsense.
The set was introduced in GLUE, but despite the high performance on the
benchmark itself it remained hard to solve. The diagnostic set was therefore
kept unchanged in SUPERGLUE. This indicates that the NLI format might
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Figure 2.10: An extract of an example evaluation of BERT fine-tuned on the
MultiNLI agianst the diagnostic set of GLUE

be suited for more general evaluation, not only as an isolated downstream
task. This will be more thoroughly discussed in the next section.

NLI as a diagnostic tool for NLU

Where the NLP models of the past relied on feature engineering and pre-
defined rules, contemporary models often rely on pre-trained encoders
to represent the meaning of the target text in vector space, making
interpretability harder. Answers to questions like: Does my model handle
negation and co-reference? How does different linguistic quantifiers affect
performance? Why did it fail on this subset? are not easily available.

The most popular way of assessing these models have consequently
been to create benchmarks, like GLUE and SUPERGLUE (A. Wang, Pruk-
sachatkun et al., 2019; A. Wang, A. Singh et al., 2018). As mentioned, these
test suites - with their publicly available leaderboards – evaluates how dif-
ferent models perform on a variety of NLP tasks, such as question answer-
ing, semantic similarity and NLI.

One might argue that this has moved the focus from assessment
of language capabilities over to pure performance – symbolized by an
accuracy score ranking which university groups and large corporations
alike fight to reign. To mediate this, the aforementioned diagnostic set
assesses how well a model handles different linguistic phenomena, not just
an overall accuracy. By running a set of hand-crafted examples up against
an NLI classifier, the goal of the diagnostic phase is to assess sentence
understanding, not displayed performance. The sentences are manually
annotated with the linguistic phenomena that are in play. Thus, NLI
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becomes not just another benchmark but also an important analysis tool.
In a survey paper looking at the overview of different approaches for

evaluating and understanding the reasoning capacities of current NLP
systems, Poliak (2020) concludes that the NLP community should use such
diagnostic tools more rigorously. This call from Poliak emphasizes that it
is not only models trained specifically on NLI training data that should be
diagnosed on such sets: All contemporary language models could benefit
from such an analysis. This can easily be done by using an auxiliary NLI
classifier on top of the model at hand to run against a diagnostic set. This
method can be used to evaluate text generation systems (Falke et al., 2019),
machine translators (Poliak, Belinkov et al., 2018), models for predicting
discourse markers (Kim et al., 2019) and surely many more. That is to say,
there is something about the inference task that makes it especially apt for
evaluating language understanding capabilities, and thus also the world
knowledge and commonsense reasoning abilities that we try to inject into
our models using adapter modules.

Figure 2.10 illustrate how one language model, BERT (Devlin et al.,
2019), performs on one fine-grained cateogry from the GLUE diagnostic
set. The model is first fine-tuned on 40% of the MNLI, with a learning
rate of 4e − 5 and batch size 16. On the original MNLI test set, the model
achieves an overall accuracy of ˜.80. This is a stark contrast to the overall
achieved accuracy of .46 on the diagnostic set. As the figure illustrates,
the model infer well from some linguistic phenomena, such as universal
quantifiers, much like what is communicated in example 2.15, but handles
disjunction poorly – only predicting the correct entailing relationship in .28
of the examples. For a full analysis, using a three-class generalization of
the Matthews correlation coefficient for more accurate evaluation, see the
reproduction study in chapter 3.

This goes to show that high overall performance on traditional held out
test sets, which has been put forth as examples of definitive progress, might
shade challenges in deep learning models, and that we must be careful
about how we use the term understanding (Bender and Koller, 2020). This
observation is key to how we reason about our experiments in chapter 4.

Challenges in NLI

As with any other machine learning task, one might question whether
or not the models we train acquire the knowledge we intend or if
their performance is influenced by confounding variables and statistical
irregularities – which often manifest itself as some form of linguistic
pattern.

For the task of NLI, where inference is based on assessing the
relationship between a premise and a hypothesis, one might think that
ignoring the premise and only conditioning a model on the hypothesis is a
futile effort. However, hypothesis-only baselines, such as the one by Poliak,
Naradowsky et al. (2018), are able to outperform a majority-class classifier.
This suggests that the popular datasets, such as the SNLI and MNLI, contain
linguistic biases that create statistical irregularities.
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(a) XNLI test set (b) MultiNLI dev mismatched set

Figure 2.11: The character lengths of the premises and hypotheses in XNLI

and MNLI

This behavior might be explained by specific wording patterns, such as
a more frequent use of negation terms for the label contradiction or general
vagueness. There is also a difference in sentence length for the premises
and hypothesis in popular datasets such as MNLI (Williams, Nangia and
S. Bowman, 2018) and XNLI (Conneau et al., 2018) – as illustrated in
Figure 2.11 (Gururangan et al., 2018; Poliak, Naradowsky et al., 2018).
Other examples of annotation artifacts include the tendency of entailed
hypotheses to contain gender-neutral references to people and the usage
of purpose clauses in neutral samples (Nie et al., 2020).

The existence of such annotation artifacts could be explained by
the procedure used to create the SNLI and MNLI. The crowd-sourced
annotators unintentionally leave linguistic clues that make it possible
for hypothesis-only baselines to perform much better than expected
(Gururangan et al., 2018). These claims are also supported in Glockner,
Shwartz and Goldberg (2018), where a small, simple dataset intended
to capture various lexical knowledge breaks many state-of-the-art NLU
systems, illustrating that such models fail to generalize, and even more so:
fail to make simple inferences.

2.5.2 Grounded commonsense inference

A limitation of the aforementioned NLI datasets is their primary focus on
linguistic entailment, as seen in example 2.14. Inference from text in day-
to-day life, on the other hand, necessitates understanding about everyday
situations, such as the physical properties of objects. In order to cater to
this and better evaluate a language models abilities, work by Zellers, Bisk
et al. (2018) introduce the the task of grounded commonsense inference —
an attempt at unifying NLI and commonsense reasoning.
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Datasets

Swag. The most popular resource for this task, also introduced in Zellers,
Bisk et al. (2018), is SWAG — consisting of 113k multiple choice questions
about a variety of grounded situations. The samples in SWAG originate
from pairs of temporally adjacent video captions, where the first element
serves as the context for a follow-up scenario. The samples were selected
using adversarial filtering, a novel approach introduced with the dataset.
Details on this filtering mechanism can be found in Zellers, Bisk et al.
(2018).

For our purposes, it suffice to provide a definition on what it means for
a dataset to be adversarial. As defined in Zellers, Bisk et al. (2018, p.3),
"we say that an adversarial dataset for a model f is one on which f will
not generalize, even if evaluated on test data from the same distribution".
The motivation of such a process, of course, is that the procedure will
help remove annotation artifacts which in turn will make the dataset more
challenging for state-of-the-art systems. Although the effect of adversarial
filtering as a means of addressing such artifacts has been questioned (S. R.
Bowman and Dahl, 2021), the results from Zellers, Bisk et al. (2018) at least
indicate that top NLI models struggle more on SWAG than on normal NLI
datasets when compared to humans.

The format of the task itself is based on four follow-up scenarios to
some context, three of which are unlikely to happen or are counterfactual.
The objective for the language model is to choose the correct/most likely
follow-up. For example:

(2.16) A girl is going across a set of monkey bars. She

• jumps up across the monkey bars.

• struggles onto the monkey bars to grab her head.

• gets to the end and stands on a wooden plank.

• jumps up and does a back flip.

(2.17) People are walking next to the camels leading them. A building

• is shown riding the camels.

• is shown in the background.

• with a rifle is leading them.

• is then shown for several clips.

HellaSwag. Examples like the one in 2.5.2 are not easy. However, the
introduction of pre-trained language models like BERT pushed the results
up to near human-level performance on SWAG. Building on the same
ideas, work by Zellers, Holtzman et al. (2019) uses the same adversarial
filtering mechanism to create an even more challenging dataset for the task
of grounded commonsense inference. This dataset, named HELLASWAG,
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provides valuable insight into the commonsense abilities of pre-trained
language models.

The conclusion from Zellers, Holtzman et al. (2019) is that such models
do not demonstrate robust commonsense reasoning, but rather rely on
dataset-specific biases. This might partly explain why the models that
predate the architecture used in BERT struggled on SWAG, while current
systems are above human-level performance. Yes, they do have more
commonsense knowledge as a result of their pre-training, but not enough
to account for such a large improvement. Despite the adversarial filtering,
they nevertheless exploit artifacts, as we also discussed for NLI (see section
2.5.1).

Challenges and use case

Despite these flaws, we use SWAG as one of our evaluation datasets in
chapter 4. We do this so that we can compare our knowledge injected
models with non-injected language models that use the traditional fine-
tuning approach, such as a base instance of BERT or ROBERTA. What we
hope to achieve with this comparison, is some insight into whether or not
the injection of commonsense information, in our case from ConceptNet
(Speer, Chin and Havasi, 2017), improves performance on the grounded
commonsense inference task, or if the injection just interfere with the
distributional knowledge acquired during the base models initial pre-
training — which might be more important for performance if these models
are indeed rapid surface learners, as indicated by Zellers, Holtzman et
al. (2019). Consequently, motivated by RQ2, we are not interested in
performance competitive with the top-performing systems — the current
state-of-the-art result is at 91.71%, but whether or not they perform on par
with non-injected models of the same architecture type.

2.5.3 Question answering

When answering a question, we frequently make use of knowledge
external to the question itself. This need for commonsense reasoning
and world knowledge makes question answering suitable for evaluating
these capabilities in language models. This has motivated the creation of
multiple question answering datasets, many of which are targeted at some
specific domain knowledge, for example within science (Clark et al., 2018;
Tang et al., 2020). Some, as the two presented below, target commonsense
reasoning specifically, making them especially apt for the evaluation of the
models presented in this work.

Datasets

CommonsenseQA. One of the issues with previous question answering
sets that target commonsense reasoning and world knowledge is the over-
all sample size. The Choice of Plausible Alternatives (COPA) (Roemmele,
Bejan and Gordon, 2011), for example, contains only 1000 question answer
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Predicate type Question %
atlocation Where would I not

want a fox? A. hen
house, B. england,
C. mountains, D. ...

47.3

causes What is the hopeful
result of going

to see a play? A.
being entertained,

B. meet, C. sit, D. ...

17.3

hasProperty What is a reason to
pay your television

bill? A. legal,
B. obsolete, C.

entertaining , D. ...

1.2

Table 2.4: An excerpt of some of the questions from Talmor et al. (2019),
together with the predicate for the subgraph used to source the questions,
and the frequency of that type in the dataset. The correct answer is marked
in bold text.

pairs, split evenly between train and test partitions. To meet the need for
large scale set targeted at commonsense, work by Talmor et al. (2019) in-
troduced the COMMONSENSEQA resource — a dataset consisting of 12,247
commonsense questions collected through the use of crowdsourcing. Table
2.4 shows some of these questions.

The dataset is based on ConceptNet (Speer, Chin and Havasi, 2017),
which is also the source material for the knowledge injected into the
models presented in this work. As explained in section 2.1.1, ConceptNet
contains concepts, such as Car, Stockholm and Book, and predicates that can
tie concepts together, such as causes, isA and atLocation. The authors
extracted subgraphs based on predicate type, each containing one source
concept and three target concepts. Crowdsourcing workers were then
asked to write three questions per subgraph (one for each target concept).

Challenges and use case

As COMMONSENSEQA is constructed from the same knowledge source
as the data we inject our models with in chapter 4, one should expect to
see some performance gain on this benchmark, as outlined in RQ2. Table
2.5 shows four general question formats and the commonsense knowledge
category that Talmor et al. (2019) deem necessary in order to answer the
associated question correctly, from a human perspective. However, as is
the issue with SWAG, it is not clear at all whether or not those categories
of commonsense knowledge are actually required in order to choose the
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Category Definition %
Spatial Concept A appears

near Concept B
41

Cause & Effect Concept A causes
Concept B

23

Has parts Concept A contains
Concept B as

one of its parts

23

social It is a social
convention

that Concept
A 15 correlates
with Concept B

15

Table 2.5: Commonsense knowledge categories from Talmor et al. (2019),
their definition and their frequency in the dataset.

correct answers. It might be the case that statistical irregularities and
artifacts prove more useful for solving the task from a computational
perspective.

Despite this criticism, we choose to evaluate our models on COMMON-
SENSEQA. As our injected models are compared to non-injected models of
the same root architectures, BERT and ROBERTA, we argue that our mod-
els will exploit the same artefacts, if any, and that the injected knowledge
should nonetheless increase the performance since many of the same con-
cepts will be seen both during adapter training and fine-tuning and evalu-
ation on COMMONSENSEQA.

2.6 Summary

This chapter presents the problem of world knowledge and commonsense
in text. By using structures like knowledge graphs, we can represent
the relation between concepts, as is done in ConceptNet, and create a
hierarchical structure. Doing this allows language models based on neural
networks to encode structured information using learning objectives like
masked language modeling. Instead of fine-tuning entire models on this
task, we can create light-weight neural networks, called adapters, and use
those to model the information and inject them into larger pre-trained
models. In order to evaluate whether or not this information increases
the world knowledge and commonsense reasoning abilities of the injected
models, we can evaluate their performance on popular NLP datasets
belived to require the same knowledge, such as SWAG (Zellers, Bisk et al.,
2018) and COMMONSENSEQA (Talmor et al., 2019).

Combined, such a pipeline explores the more general problem of com-
bining structured information with neural networks trained in an unsuper-
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vised or self-supervised manner, using adapters as the intermediate struc-
ture. The next chapter studies the feasibility of this approach by reprodu-
cing and analyzing related work by Lauscher et al. (2020).
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Chapter 3

A Reproduction Study of
Retrograph

This chapter reproduces a previous attempt at adapter based knowledge
injection by Lauscher et al. (2020). The first section presents the key
components of the study, name Retrograph 1, while the second section
present experimental results together with an error analysis. The last
section discusses the results and possible directions for future research.
By doing this, we hope to shed light on the effectiveness of adapters as
a method for combining structured information with language models, as
outlined in RQ1 (see point 1.2 in chapter 1).

3.1 Overview

The aim of the Retrograph study is to investigate one approach to
complementing the distributional knowledge in BERT (Devlin et al., 2019).
Specifically, the authors extract information from the ConceptNet (Speer,
Chin and Havasi, 2017) knowledge graph and the Open Mind Common
Sense corpus (P. Singh et al., 2002) and inject it into a pre-trained BERT

model through the use of single-task adapters. The adapters are trained
using the masked language modeling objective and inserted into each
encoder layer twice, as in Houlsby et al. (2019).

Since the information in ConceptNet is stored as triples, the authors
use a random walk procedure to extract and translate these triples into
natural language. Using this procedure, the triples (alcholism, causes,
stigma), (stigma, hasContext, christianity), (christianity, partOf,
religion) are transformed to the sentences: alcoholism causes stigma. stigma
is used in the context of christianity. christianity is part of religion. For more
details on ConceptNet, see section 2.1.1.

The models are evaluated against the full GLUE (A. Wang, A. Singh et
al., 2018) benchmark and compared to the standard uncased base version
of BERT, which as 12 transformer layers and a hidden layer size of 768.
The authors find the overall result of their approach on these tasks to be

1https://github.com/Wluper/Retrograph
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inconclusive. However, they outperform BERT with a substantial amount
on some categories in the diagnostic set (see section 2.5.1). These categories
include samples on the NLI format that are hand-crafted to demonstrate
world knowledge and common sense; the same kind of information
believed to be captured by ConceptNet.

3.1.1 Random walk

Retrograph uses the weighted random walk algorithm from NODE2VEC

(Grover and Leskovec, 2016) in order to extract the subject–-predicate–-object
triples from ConceptNet,. The pseudocode from the original publication on
this algorithm is presented below. The alias method refers to a popular way
of sampling from a discrete probability distribution.2

Algorithm 1 The random walk procedure from Lauscher et al. (2020)

1: procedure NODE2VECWALK(Graph G’ = (V, E, π), Start node u, Length
l)

2: Inititalize walk to [u]
3: for walk_iter = 1 to l do
4: curr = walk[-1]
5: Vcurr = GetNeighbors(curr, G′)
6: s = AliasSample(Vcurr, π)
7: Append s to walk

return walk

In Retrograph, for each node, the authors do two walks with a length
of 15. In total, this gives 2,268,485 walks, inducing a corpus of 34,560,307
synthetic sentences.

3.1.2 Adapters

Using the architecture from Houlsby et al. (2019), the authors introduce an
adapter module in every transformer layer in BERT. Each adapter consists
of two feed-forward neural networks and a residual connection between
these, as described in section 2.3.1. They set the dimensionality of the
bottleneck down-projection to 64, ensuring that the additional parameters
added to the transformer is kept low. The non-linear activation in the
adapter module is done with GELU (Hendrycks and Gimpel, 2016).

The weights of the adapters are initialized at random and then adjusted
using the Adam optimizer (Kingma and Ba, 2015). The natural language
sentences from the random walk are fed into a base BERT model set on
the masked language modeling objective, as in the original pre-training
of the model. Only the weights in the adapters are adjusted, keeping the
distributional information from pre-training intact. See chapter 2.3 for a
more detailed explanation and illustrations of the architecture.

2https://lips.cs.princeton.edu/the-alias-method-efficient-sampling-with-many-discrete-outcomes/
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3.2 Reproduction

3.2.1 Experimental setup

All the reported experiments are run on NVIDIA P100 graphics cards,
using the code provided by the authors. For replicability, we do not train
the adapters from scratch, relying instead on already trained adapters
downloaded directly from a s3 bucket provided by the authors. The pre-
trained BERT model is also downloaded directly from this folder. We also
note that the this model is not an instance of the now popular transformers
library (Wolf et al., 2019), but rather based on the original implementation
from Devlin et al. (2019).

We report results for three models: BERTBASE, CN-100K and CN-150K.
The numbers 100k and 150k refer to the total number of update steps that
the adapters are allowed to complete during training. That is, during
adapter training the duration of the process is determined by update steps
and not by the more common epoch measure. All models are uncased, as
the extracted corpus does not contain any capital letters. It is primarily the
CN-100K model that are of interest in this reproduction, as it is the CN-
100K that the authors report as achieving best results on the most relevant
sections of the evaluation.

The models are evaluated against four datasets: the whole diagnostic
set from GLUE (A. Wang, A. Singh et al., 2018), the test sets from
MNLI (Williams, Nangia and S. Bowman, 2018) and two fine-grained
subcategories of the diagnostic set annotated for world knowledge and
common sense. All models in this reproduction fine-tune on the entire
training set of the MNLI before evaluation, consisting of close to 400k
samples, as this is the downstream format of the diagnostic set as well.
Hence, the whole training procedure has two steps: 1) to train only the
adapter parameters on the extracted triples from ConceptNet and 2) to fine-
tune all parameters on the downstream task.

As in the original Retrograph paper, the downstream system is fine-
tuned using a grid search in the following space of hyperparameters:
learning rate ∈ {2e − 5, 3e − 5}, epochs ∈ {3, 4}, with a batch size of 16
and a maximum length of 128 tokens for input sequences.

The test set of the MNLI is split into a matched and mismatched
partition, indicating whether or not the samples are cross-domain, as the
sentences are sampled from various media types. The evaluation against
the test sets are done on the official web page of the GLUE benchmark3

as the gold labels are kept private. All other scores are calculated by us.
Known discrepancies compared to the original Retrograph study:

• The downstream fine-tuning script from the Retrograph code base
does not set any seed.

• The original study uses a hyperparameter grid search but does not
report which setting caused the best results. For us, a learning rate of
3e-5 for three epochs performs best for all models.

3https://gluebenchmark.com/
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Model MNLI-m MNLI-mm

BERTBASE (Lauscher et al., 2020) 84.6 83.4
CN-100K 84.0 82.8

Table 3.1: Accuracy scores on test sets of MNLI. m and mm refers to the
matched and mismatched sections of the test set respectively.

Model Mean & std.deviation Lauscher et al. (2020)

BERTBASE µ = 36.2, σ = 0.009 34.2
CN-100K µ = 35.4, σ = 0.006 37.8

Table 3.2: Mean MCC scores over three runs on the full diagnostic set from
GLUE (N = 1104) and the single reported score from Retrograph.

• We had to remove a call to the tensorflow method dataset.repeat()
as it caused a never ending loop.

NOTE: Since the sample sizes are so small, the fact that the original
code does not set a seed for the fine-tuning process is problematic and
greatly limits what can be said about the results in comparison to the
original paper. To mediate this effect, we run the best configuration of
hyperparameters three times and report the mean and standard deviation
for CN-100K and BERTBASE in addition to the best performance score.

3.2.2 Matthews correlation coefficient

Due to unbalance in the label distribution, the results on the diagnostic
set are commonly measured with a three-way generalization of Matthews
correlation coefficient, MCC. This measure takes into account true or false
positives and negatives even if the classes are unbalanced. The MCC
returns results in the range [-1,1], where 1 denotes a perfect classification.
For the binary case, the MCC is defined as:

(3.1) MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(RN + FP)(TN + FN)

The results in this paper are calculated using the MCC implementation
from scikit-learn.4 For a more detailed explanation of the MCC, see
Jurman, Riccadonna and Furlanello (2012). The scores for the MNLI are
normal accuracy points.
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Model Mean & std.deviation Lauscher et al. (2020)

BERTBASE µ = 16.4, σ = 0.1210 10.3
CN-100k µ = 17.8, σ = 0.0155 25.6

Table 3.3: Mean MCC scores over three runs on the world knowledge
category from the diagnostic set in GLUE and the single reported score from
Retrograph, N = 134

(a) CN-100K (b) BERTBASE

Figure 3.1: A confusion matrix on world knowledge samples for CN-100K

and BERTBASE

3.2.3 Results

Lauscher et al. (2020) conclude that the overall performance on GLUE are
inconclusive. However, as they receive a difference in performance of up to
20 MCC points compared to a non-injected BERT on some categories on the
diagnostic set, they conclude that the knowledge injection using adapters
as the intermediate structure between the underlying language model and
ConceptNet is effective.

As the main contenders are CN-100K and BERTBASE, we argue that the
higher the difference are between these two, in favor of the former, the more
likely it is that the adapter injection has an effect. Furthermore, we stress
that this difference must also be considered in relation to the sample size of
the test categories.

Table 3.2 shows that our experiments are not consistent with the findings
reported in the Retrograph paper on the full diagnostic set. None of the
models reach the target score — most likely due to the issue of no seeds
— and the difference between CN-100K and BERTBASE is less than in the
original paper. On the full MNLI set, see Table 3.1, the results are more con-
sistent. This is probably due to the size of the test sets, of over 9000 in both
the matched and mismatched partitions.

For samples demonstrating world knowledge, Table 3.3 reveals that

4sklearn.metrics.matthews_corrcoef
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Model Mean & std.deviation Lauscher et al. (2020)

BERTBASE µ = 27.0, σ = 0.0021 29.0
CN-100k µ = 30.2, σ = 0.0238 24.4

Table 3.4: Mean MCC scores over three runs on the common sense category
from the diagnostic set in GLUE, and the single reported score from
Retrograph, N = 150

the difference in performance between the mean scores of CN-100K and
BERTBASE is 1.4 MCC points. In comparison, Lauscher et al. (2020) reports
a difference of 15.6 on the same test. With a set size of 134, this means
that the highest performing version of the CN-100K classifies 11 instances
correctly that the best version of BERTBASE does not. Conversely, BERTBASE

classifies 9 correctly that CN-100K does not. See Table 3.5 for some specific
examples. Hence, CN-100K does not perform consistently better at this
category. If we compare the confusion matrix for each model on this
category, see Figure 3.1, we see that "contradiction" is the most difficult
label to classify for both, and that in general, the two models classify quite
similarly. This is further supported by the low standard deviations for both
set of experiments.

For the commonsense category, we get the inverse difference compared
to Retrograph: CN-100K performs better than BERTBASE, albeit not by
much. This is the opposite of the effect reported in Lauscher et al. (2020).

3.2.4 Discussion

The experiments outlined in this reproduction have all failed to replicate
the results in Lauscher et al. (2020). For the large MNLI dataset the
difference between our experiments and the reported results in the original
paper is not that large, but for the diagnostic sets, where the sample size is
considerably lower, we get something quite different. One would expect
this behavior due to the fact that these experiments did not run on the
same seed as Retrograph, making the fine-tuning non-deterministic. As
mentioned, we reason that this effect scales with the sample size, which
might help explain why the difference between our experiments and theirs
differ more for the smaller categories. That being said, the mean MCC
score over three runs should still give some indication on the models
performance in a way that is statistically valid.

On the world knowledge category, the difference between CN-100K

and BERTBASE is minimal, or if there is an effect, we argue that it cannot be
attributed to the successful injection of knowledge from ConceptNet alone
, as the sample size of the test sets are too low (N=134). Furthermore,
the number of samples that one model classify correctly and the other
does not is close to equal: the number of instances CN-100K classify
correctly but BERTBASE does not is similar to the number of cases BERTBASE
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ID Premise Hypothesis Gold
label

CN100k bert-
base-

uncased

960 The reac-
tion was
strongly

endo-
thermic

The
reaction
media

got very
hot.

entailment entailment neutral

593 The reac-
tion was
strongly

exo-
thermic.

The
reaction
media

got very
cold

cont. cont. neutral

671 Fun fact,
that guy

in the
Ireland
jacket
is on

Saturday
Night
Live
now..

Fun fact,
that guy

in the
Ireland
jacket is
on SNL

now.

entailment entailment cont.

s

Table 3.5: A comparison of three out of the eleven total samples in the
world knowledge category that the CN100K model classified correctly but
BERTBASE did not.
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classify correctly but CN-100K does not. As the MCC score on the
world knowledge samples in particular are so low to begin with (around
0.17), this points towards a somewhat arbitrary difference in classification
between the models. The same goes for the commonsense category.

To conclude: The effect of adapter-based knowledge injection is still
inconclusive and should be explored further. The discrepancy between
the results outlined here and the ones by Lauscher et al. (2020) provides
evidence towards the inconclusiveness of the extent to which the relations
from ConceptNet had any significant effect of the classification capabilities
of BERT. We argue that the discrepancy is also too large to be explained
solely by the unequal seeds between the experiments. As the code
and models were identical, this points to problems in either the adapter
injection method itself, or the methods of evaluation.

These findings motivate more extensive experimentation with different
combinations of pre-trained language models and adapters, as well as
a deeper analysis of how the relations from ConceptNet influence the
underlying language model when faced with other datasets. The next
chapter attempts to meet some of these challenges.
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Chapter 4

Injecting Knowledge Using
Adapters

Building on the work of Lauscher et al. (2020) and R. Wang et al.
(2021), this chapter studies the problem of injecting common sense and
world knowledge into large pre-trained language models. We evaluate
different approaches to solving this on a range of downstream NLP
tasks believed to require commonsense reasoning abilities and world
knowledge. Furthermore, we conduct probing experiments in order to
explore to which extent our models are able to reproduce facts seen during
training. The methods in this chapter all rely on adapter modules as they
are presented in section 2.3.

4.1 Adapters as an injection method

As presented in section 2.3, adapters (Houlsby et al., 2019) mitigate the
need for full scale fine-tuning by allowing for efficient parameterization.
This is done by introducing lightweight neural networks into larger models
and only adjusting the weights of this smaller network on the downstream
task. Adapters can then be shared by only transferring the weights of the
lightweight adapter instead of the entire language model, for example with
the AdapterHub network (Pfeiffer, Rücklé et al., 2020).

Hence, adapters are first and foremost an efficient technique for transfer
learning. Using frameworks, such as AdapterHub, we can easily see
if adding an adapter module trained on dependency parsing yields any
performance gain when combined into an inference pipeline.

In this work, however, we do not study the use of adapters in the
conventional sense; we study the case where adapters are not trained on
any traditional downstream task, but rather used as a tool for knowledge
representation. By encoding structured information from knowledge
graphs into adapter modules and then injecting them into language
models, we hope to determine if adapters are a viable solution to the long-
standing problem of combining structured information and models that are
primarily trained in an unsupervised way. Although still operating within
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the domain of transfer learning, we argue that adapters are a somewhat
unexplored technique to this end.

4.1.1 Experiments

4.1.2 Datasets

Below is a short presentation of the datasets used to evaluate the models in
this chapter. A more thorough explanation of all resources can be found in
section 2.5.

GLUE Diagnostic The diagnostic set from GLUE (A. Wang, A. Singh et
al., 2018) is a manually curated NLI dataset, with examples annotated with
the type of knowledge believed to be required in order to classify the cor-
rect entailment relation between two sentences. For a more detailed ex-
planation of the NLI task, see section 2.5.1.

SWAG This benchmark, introduced in Zellers, Bisk et al. (2018), eval-
uates language models on the task of grounded commonsense inference.
Using a multiple choice format, the task is to judge from a range of op-
tions which scenario is the most likely follow-up from a provided groun-
ded scenario. For example, from the scenario "On stage, a woman takes a seat
at the piano. She" the models must choose between the follow-ups: ("sits
on a bench as her sister plays with the doll.", "smiles with someone as the music
plays.", "is in the crowd, watching the dancers.", "nervously sets her fingers on
the keys."). The dataset was created using adversarial filtering. For a more
detailed explanation of the task, see section 2.5.2.

Commonsense QA Introduced in Talmor et al. (2019), the COMMON-
SENSE QA contains 12,247 multiple choice questions that are sourced from
ConceptNet (Speer, Chin and Havasi, 2017). The questions draw upon
world knowledge external to the particular context of the question. In or-
der for the model to choose the correct answer, it must therefore use exist-
ing knowledge. For example, for the question I’m crossing the river, my feet
are wet but my body is dry, where am I? the models must choose between the
following set of possible options, of which only one is correct: (waterfall,
bridge, valley, bank, island). For a more detailed explanation of the task, see
section 2.5.3.

4.1.3 Experimental setup

All experiments ran on a high performance computing resource made
available by the University of Oslo. The models were implemented using
the PyTorch version of the Huggingface Transformers library (Wolf et al.,
2019). Unless another implementation is specifically specified, the adapters
were implemented using the adapter-transformer library (Pfeiffer, Rücklé et
al., 2020). The models trained and were evaluated on a single NVIDIA
A100 GPU node.
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4.1.4 Baselines

As baselines, we compare our results with primarily two pre-trained
language models: the BERTBASE from Devlin et al. (2019) and the
ROBERTABASE from Y. Liu et al. (2019). These models are two of the
predominant language models in use today for almost all NLP tasks. We
also use these model as the root models for adapter injection.

The Houlsby adapter

For the diagnostic task we also consider the model configuration from the
Retrograph study (see chapter 3) as a baseline. To our knowledge, this
configuration, which can be traced back to work by Houlsby et al. (2019),
has not been deployed on the SWAG and COMMONSENSE QA datasets. It
is therefore a contribution of this work to evaluate such a configuration on
these sets for the first time.

Following Houlsby et al. (2019), we set the size of the adapter modules
to 64. This implies a reduction factor of 12 from the original transformer
layer size in BERTBASE. We use GELU (Hendrycks and Gimpel, 2016) as
the adapter function f. Gradients are calculated and updated using the
Adam optimizer (Kingma and Ba, 2015). We set the learning rate to 1e-
4 with 10000 warm-up steps and weight decay factor of 0.01. We allow
the adapter to train for 100000 optimization steps while freezing all the
original transformer weights. The resulting adapter module is referred to
as CNHOULSBY 100K throughout the remainder of this chapter.

Training the adapter

The adapter model referred to as CNHOULSBY 100K is trained on the same
subset of ConceptNet (Speer, Chin and Havasi, 2017) as in Lauscher et
al. (2020). We use the same corpus file generated from their random
walk procedure (see section 3.1.1). To our knowledge, judging from their
source code 1, this corpus is built from four predicate types: ANTONYMOF,
SYNONYMOF, ISA and MANNEROF. These predicates are extracted
randomly through a tree traversal and then subsequently chained so that
we get blocks of text in natural language on the following format:

(4.1) possible is a synonym of possibility.
possibility is a concept.
concept is a synonym of conception.
conception is a synonym of fertilization.
fertilization is a enrichment.
enrichment is a gift.
gift is a synonym of douceur.

Lauscher et al. (2020) does not motivate the selection of these predicates
in particular. We experiment with different sets of predicates later in this

1https://github.com/Wluper/Retrograph
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Model Adapter Swag ∆ CSQA ∆

BERTBASE 81.05 61.17

ROBERTABASE 83.90 60.36

BERTBASE CNHOULSBY 100K 80.08 −0.97 57.41 −3.76

ROBERTABASE CNHOULSBY 100K 83.34 −0.56 56.26 −4.10

Table 4.1: Results (Accuracy) on SWAG (Zellers, Bisk et al., 2018) and CSQA

(Talmor et al., 2019)

-

Model Adapter Full CS World NE

BERTBASE 37.15 32.74 13.36 27.69

ROBERTABASE 41.18 37.08 14.98 36.92

BERTBASE CNHOULSBY 100K 36.76 29.31 20.09 34.86

ROBERTABASE CNHOULSBY 100K 41.36 39.33 12.71 29.19

Table 4.2: Results (Matthews correlation coefficient, see section 3.2.2) on
the full set and the Common Sense (CS), World Knowledge (World) and
Named Entities (NE) categories of the GLUE diagnostic (A. Wang, A. Singh
et al., 2018)

chapter. The corpus is processed using MLM, parsed line for line with a
MLM probability of 0.15 as in the original BERT paper (Devlin et al., 2019).
We also experiment by training on the corpus by a maximum sequence
length instead of line by line training. However, this did not affect the
performance of the models in any significant way.

4.1.5 Results and discussion

Table 4.1 and 4.2 show the results on the aforementioned datasets. For all
downstream tasks, the models are fine-tuned for 3 epochs with a learning
rate of 3E-5 and batch size of 16. These hyperparameters were found to be
best across all tasks and all models from the following grid search:

LR ∈ {3e− 5, 4e− 5, 5e− 5}
EPOCH = 3
BATCH ∈ {16, 32}
SEED 42

Table 4.1 shows that the injection of the CNHOULSBY 100K adapter had little
effect on the performance of both BERTBASE and ROBERTABASE on the SWAG

task. With a drop in performance of approximately a whole and a half point
respectively, the results indicate that the injection at best only slightly im-
paired the overall performance. However, the deltas might be within the
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standard deviation of the original models if we run the same experiments
multiple times with different seeds. Due to the time complexity of the over-
all experimental pipeline, however, this is not feasible.

For the COMMONSENSE QA set performance dropped significantly.
As the triples from ConceptNet are extracted and translated into natural
language in a rigid way, not at all like the free form we find in longer
fragments of text, such as news article or novels, we can assume that
the form of the multiple choice questions provide a context that makes it
difficult to apply the knowledge encoded in the adapters. However, the five
possible answers to the questions are all short in length, often just a single
token, which intuitively should be easier to classify than the full sentence
alternatives in SWAG.

For the diagnostic set from GLUE (A. Wang, A. Singh et al., 2018),
our experiments give similar results as the Retrograph study (Lauscher et
al., 2020) presented in chapter 3. Since the dataset and the fine-grained
categories are of a low sample size, a high variance is expected. The key
finding is that the CNHOULSBY 100K gives the highest Matthews correlation
coefficient for the world knowledge category when applied to a BERT base
model. For ROBERTA we observe no effect. We also remark that as in
the reproduction study, we get notably higher result for the baseline, the
untouched BERT base model, than what is reported in Lauscher et al. (2020).

The results show that the injection of triples from ConceptNet does
not improve the performance of language models on the SWAG and COM-
MONSENSE QA tasks, at least not with the CNHOULSBY 100K configuration.
Furthermore, due to low sample sizes, the effect observed over the dia-
gnostic set from GLUE is uncertain, although it looks promising for the
world knowledge subcategory.

This is not to say, however, that the injection was unsuccessful. The
next section presents a series of probing experiments, aimed at inspecting
whether or not the specific knowledge encoded into the adapter modules
influence the predictions in a more controlled environment.

4.2 Probes and analysis

One of the aims of this work is to study whether or not the combination
of masked language modeling and adapters is a feasible method for
combining structured information and pre-trained language models. For
this to be the case, we argue that the adapter-injected models must be able
to use the knowledge gained from the adapter training together with what
the models learned during their initial pre-training.

As the parameter spaces of pre-trained models are considerable in size,
one major issue of using adapters in the manner presented in this work
and in Lauscher et al. (2020) is that the modules are too lightweight: their
contribution to the final prediction is a function of their size, proportionate
to the size of the overall model. If we add an adapter with the Houlsby
configuration to a pre-trained BERT base model, the adapter makes up 2.1%
of the total parameters.
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During inference, then, the knowledge from the graph, in our case
ConceptNet, has considerable less influence on the final prediction — and
much of the information extracted using the random walk procedure might
be low frequency concepts, not at all present in downstream tasks, such as
SWAG and COMMONSENSE QA.

Hence, in order to gauge the effect of the method itself, we present here
a series of probing experiments following the work of Petroni et al. (2019)
and Elazar et al. (2021).

4.2.1 LAMA

The LAMA (LAnguage Model Analysis) probe (Petroni et al., 2019) allows
us to examine the factual and commonsense knowledge present in
language models. Facts are presented as statements containing a subject,
predicate and an object, where the object is masked. For example, the
factual knowledge that the author Henrik Ibsen was born in Skien in 1828
is presented as: "Ibsen was born in [MASK] in the year 1828". Following
Jiang et al. (2020), we affirm the existence of a fact in the language model if
the model can predict the object underneath the mask:

(4.2)
ŷ = arg max

y′∈V
PLM

(
y′|x, tr

)
,

where V is the vocabulary of the model and PLM(y′|x, tr) is the
probability that the model predicts the correct object given the other tokens
in the statement (the subject and the predicate). LAMA is built from
multiple knowledge sources, one of which is ConceptNet (Speer, Chin and
Havasi, 2017). A list of all the predicate types can be found in appendix
A.2.

We train an adapter with the Houlsby configuration on the extracted
ConceptNet corpus and also evaluate on the ConceptNet split from LAMA.
Consequently, what we test here is not the model’s ability to generalize on
unseen data, but whether or not it is able to reproduce factual information
extracted from the knowledge graph during adapter training and apply
it on Cloze-style statements that require the same knowledge. Since both
the adapter training and the probe uses the masked language modeling
classification task (see section 2.2.4), this happens under a zero-shot set-
ting on different phrasings of the same subject-predicate-object triples.
For example, one sentence in LAMA derived from the triple communicating
hasSubevent knowledge is presented in the probing dataset as Communic-
ating is for gaining [MASK], while the same triple would be phrased as com-
munication has subevent knowledge in the training corpus for the adapters.

Evaluation metrics

Mean P@K. Following Petroni et al. (2019), we use mean precision at
different values of k as the evaluation metric over the LAMA resource.
Normally, as in information retrieval, we calculate the precision of a
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retrieved collection as the number of relevant documents proportionate to
the total number of retrieved documents:

(4.3) P =
True positive

True positive + False positive

However, we only have one true positive for collections of all sizes.
Thus, the mean precision at various values for k is equal to the whether
or not the correct word is a member of the set of predictions of size k. If
k = 100, we return a precision of 1 if the correct word is one of the 100
predictions.

The mean P@K curves we use in the figures in this section were all
calculated as a macro average over all the predicate types. We iterate
over the entire ConceptNet split of LAMA and count the number of correct
predictions before taking the average over the entire set.

Micro-averaged precision. We also present the micro-averaged precision
for different values of k, where we calculate the mean precision per
predicate type and then average across all predicates. As remarked in Jiang
et al. (2020), when k = 1 this is equal to normal micro-averaged accuracy:

(4.4)
1
|P| ∑

(x,y)∈P
δ(ŷ = y),

where P is the set of predicate types, ŷ the prediction, y the gold label and
δ the boolean value of the equality.

Using the predicate set from Lauscher et al. (2020)

Figure 4.1 shows the mean P@K curves for two language models, with
and without an adapter. The left side of the figure shows the result over
all the predicates used in the ConceptNet split of LAMA (N=29774) . The
injection of the adapter module decreases the performance of both BERT

and ROBERTA for all the different values of k. However, the corpus from
Lauscher et al. (2020) that the adapters trained on only includes one of the
predicates which is also in LAMA. Hence, there is little similarity between
the two sets, and the reproduction of factual knowledge cannot be expected
here.

The right side of Figure 4.1, on the other hand, shows the same models
and adapters, but with a test set restricted only to the ISA predicate —
which is present both in the training corpus and in the test set. In the corpus
from Lauscher et al. (2020), triples with this predicate make up 23% of the
total corpus (N=69843).

Since both resources are extracted from ConceptNet, we check the
overlap between the masked tokens in the object position in LAMA and
the object position in the triplets in the training set for the adapters .The
actual percentage will depend on the random walk procedure, but for the
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Figure 4.1: Mean P@k curve for base models and the Houlsby adapter
configuration. Base 10 log scale for X axis. a) shows the result for all the
predicates in the ConceptNet split of LAMA while b) shows results for the
ISA predicate only
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Figure 4.2: The result of different training configurations on the Concept-
Net split of LAMA (Petroni et al., 2019). The two models, in dark blue and
orange, use BERT base as the root model and the Houlsby configuration for
their adapter, but are trained on different predicate sets of the ConceptNet
graph. The gray line represents a plain BERT model without any adapter
training.

sets used in Figure 4.1 there is a 5.7% overlap between concepts. That
is, approximately five percent of the concepts from LAMA that the models
predict are also in the training corpus in some form, although they might
be included in triples that have a different predicate than what is tested for
each instance in LAMA.

Despite this, the adapter-injected models perform consistently better.
As this performance gain is achieved by adding only 2.1% additional
parameters to the original model, and without adjusting the original
weights at all, we interpret the results as a clear indication that this method
of knowledge injection is effective.

Using a new predicate set

In order to further probe the effectiveness of the proposed method, we
introduce a new corpus (N=99603 triples) — distilled with the same
random walk procedure as in Lauscher et al. (2020), but over a new set
of predicates, namely the same set of predicate types found in LAMA. By
intuition, if the method is effective, the adapter injected models should
score higher on average over all these relations than their non-adapter-
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PREDICATE BERTBASE BERTHOULSBY 100K ∆

HasSubevent 9.1 7.0 −1.1

MadeOf 19.9 22.0 +2.1

HasPrerequisite 16.9 12.7 −4.2

MotivatedByGoal 19.4 20.0 +0.6

AtLocation 15.0 16.1 +1.1

CausesDesire 14.2 25.2 +11

IsA 19.8 19.5 −0.3

NotDesires 12.9 7.7 −5.2

Desires 16.1 14.5 −1.6

CapableOf 18.6 14.4 −4.2

PartOf 19.5 21.7 +2.2

HasA 17.7 20.0 +2.3

UsedFor 16.2 16.4 +0.2

ReceivesAction 14.2 18.6 +4.4

Causes 10.3 10.4 +0.1

HasProperty 9.5 11.3 +1.8

Micro-average 15.6 16.1 +0.5

Table 4.3: Micro-averaged precision for our injected model compared to its
non-injected counterpart over the ConceptNet split from LAMA for k = 1

injected counterparts.
In the first set, we use the same translations from predicate types to

natural language equivalents as Lauscher et al. (2020). For example, ISA
becomes "is a", and SYNONYMOF becomes "is a synonym of". In the
new corpus, we provide additional translations for the new predicate types
that are found in LAMA but were not included in Lauscher et al. (2020).
Below is a list containing some of these; the full list of predicate types with
their translation can be found in appendix A.2.

(4.5)
CAPABLEOF → is capable of

MOTIVATEDBYGOAL → is motivated by

USEDFOR → is used for

MADEOF → is made of

Figure 4.2 compares the result of the Houlsby configuration trained
over our new corpus with that of the set from Lauscher et al. (2020) for

62



different values of k. As can be seen from the P@K curves, models trained
over our predicate set improve the performance on the full ConceptNet
split of the LAMA (N= 29774) probe by up to 6.39% for BERT at large values
of k. For k = 1, where the model must guess the correct masked object "at
first try", we see little difference. This is also clear if we just compare the
micro-averaged precision for the injected model and standard BERT model
over our new corpus, as shown in Table 4.3. The micro-averaged precision
show that performance increases with 0.5, 3.0 and 4.5 percentage points for
k = 1, 10 and 100 respectively (see Table A.1, A.2 and A.3 in the appendix
for fine-grained averages per predicate type for all three values of k).

For this new predicate set, the overlap between the training corpus for
the adapters and the full ConceptNet split of LAMA is 36% on the object
level, meaning that roughly one third of the concepts were seen during
adapter training in some form. This provides empirical evidence for the
success of the knowledge injection. Models are able to reproduce factual
knowledge when queried over the lama probe, even though the phrasing of
the questions in LAMA is different than the strict triplet-style of the training
corpus. Again, it is important to note that this does not suggest that the
models are better able to utilize the injected knowledge on different types of
unseen data that require the same type of knowledge. As the experiments
on SWAG, COMMONSENSEQA and the diagnostic set from GLUE show, this
is unclear and would require an environment where we ensure that the
knowledge required in order to classify each sample correctly was indeed
included in the adapter training.

4.2.2 Error analysis

Although the results in this chapter show that adapters and masked
language modeling can be used to inject structured information, it is not
that clear whether or not the information in ConceptNet actually improves
the more general reasoning capabilities of the models. The results on SWAG,
CSQA and the diagnostic set from GLUE did not show any improvement
over non-injected models. If we assume that the problem is not with
annotation artifacts in these datasets, we hypothesis that this can in large
be explained by problems with our extracted corpus.

Based on manual inspection, which reveals varying data quality, we
argue that examples like the one below are too rigid and too specific in
order to help the models in general tasks like the one listed above.

When evaluating over the LAMA probe, we measure the overlap
between concepts seen during training and concepts present in the
evaluation set. As previously mentioned, we would want to do the same
for SWAG CSQA and GLUE as well. This, however, would require annotation
of concepts involved in each sample for these datasets — an effort beyond
the scope of this work.

(4.6) renin is a protein.
protein is a macromolecule.
macromolecule is a molecule.
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molecule is at atom.
atom is a material.
material is used for build.

Furthermore, as pointed out in Jiang et al. (2020), the distribution of
objects in the LAMA probe is a bit skewed. They observe that for the
relation native_language (not present in our test set) the object French
make up over half of the samples. Figure 4.3 shows the number of samples
per predicate type in our test set, together with the number of unique
objects for each type. Although the ratio between unique objects and total
samples is not that problematic in our set, we see that this motivate the
need for a macro-averaged metric like the one used in Jiang et al. (2020).
If not, we might get results that are either artificially high when the object
that is repeated frequently is also repeated in the corpus used for training
the adapters, or too low when the repeated object is not included in the
training corpus at all or with a low frequency. Figure A.3 and A.4 in the
appendix report the frequency distribution of the ten most common words
per predicate type.

4.3 Summary

The injection of structured information from ConceptNet using adapter
modules with the Houlsby configuration does not increase the performance
on three datasets believed to require commonsense and world knowledge
reasoning capabilities. The exception is for the world knowledge category
of the GLUE diagnostic set, where the adapter increased the accuracy of a
BERT base model with approximately 6 percentage points, as was also the
case in Lauscher et al. (2020).

Despite the methods failure to increase the performance of language
models on such common NLP benchmarks, probing analyses show that
the knowledge injection was successful. Using the ConceptNet split of
the LAMA knowledge probe, we show that our adapter-injected models
perform significantly better on cloze-style statements where the model
must predict a masked token. This indicate that models are able to
reproduce the factual knowledge encoded into the adapters during adapter
training, in spite of the fact that the knowledge is encoded into as little as
2.1% of the total parameter space.

We conclude from this that adapters trained with the masked language
modeling objective are a viable technique for combining structured
information, like that which is found in knowledge graphs, and pre-trained
language models. However, they do not increase the performance on NLP
benchmarks believed to require the same kind of knowledge. This might
explained by discrepancies between what is encoded in the models and the
kind of capabilities required in order to perform well on such benchmarks.

In the next chapter, we try to further improve the result on the LAMA

probe by training multiple adapters and an additional fusion layer (Pfeiffer,
Kamath et al., 2021). We also prune adapter layers in order to study where
the injected knowledge is most influential.

65



66



Chapter 5

On Fusing and Pruning
Adapters

Even though the results in chapter 4 provide evidence for the effectiveness
of adapters for knowledge injection, it is still not clear how the injected
knowledge is distributed in the model and if there are other possible
architectures that are more fit for our specific use case.

In order to meet these challenges, we attempt to further improve
the results on the LAMA probe by training multiple ST-adapters (see
2.3.1) and an additional layer that learns to combine these by using an
attentive mechanism. Inspired by Pfeiffer, Kamath et al. (2021) and
Meng et al. (2021), we implement at two-stage algorithm that decomposes
the ConceptNet knowledge graph by predicate type before initiating a
composition step where the extracted knowledge can be exploited in a
non-destructive manner. To our knowledge, this is a novel approach for
injecting world knowledge into pre-trained language models.

The second half of this chapter studies where the injected knowledge is
most influential in the transformer stack. Inspired by the work of Rücklé et
al. (2021) and Rogers, Kovaleva and Rumshisky (2020), we prune adapter
modules from the encoder layers in BERT (Devlin et al., 2019) in order to
better understand how the amount and location of the injected information
affects the performance over the LAMA probe. In addition, we evaluate how
the pruned models perform over the diagnostic set from GLUE (A. Wang,
Pruksachatkun et al., 2019; A. Wang, A. Singh et al., 2018), comparing them
with the results from chapter 4.

5.1 AdapterFusion

Although there are numerous configurations of adapters, we decide to
experiment with the newly introduced AdapterFusion framework Pfeiffer,
Kamath et al. (2021). We implement the same general approach of a two-
stage learning algorithm and use it in a similar fashion as in Meng et al.
(2021). Although their target domain (biomedical data) is quite different,
we argue that the structure of the more general problem is akin to ours.
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In the first stage, we train one single-task adapter (see section 2.3.1) for
each predicate in a subset of ConceptNet. In the second stage we train a
neural network layer, known as a fusion layer, over the collection of ST-
adapters with a corpus that contains only the same predicates that the ST-
adapters are trained on. What we hope to achieve is perhaps best illustrated
with an analogy: we want to train adapters with disjoint expertise, like a
panel of experts, and a decision maker that learns which expert to pay the
most attention to at any point in time. Our procedure differentiates itself
from that of Pfeiffer, Kamath et al. (2021) in the sense that we also include a
graph partitioning phase inside the first step and thus regard the process of
learning each predicate as a distinct downstream task. The following two
sections elaborate on the learning algorithm, as we have implemented it:

5.1.1 First stage: graph partitioning and ST-adapters

The purpose of the first stage is to create a collection of ST-adapters, each
specified for a specific semantic relation, that we can fuse during the second
stage. By modifying the random walk procedure from Lauscher et al. (2020)
(see section 3.1.1), we limit the traversal to only include subject-predicate-
object triples that have a specified predicate type. In our experiments, we
limit ourselves to training three ST-adapters: one for the predicate type
ATLOCATION, one for ISA and one for USEDFOR. The result of the modified
traversal is thus three distinct, synthetic corpora, each with its own training
and validation split (80-20 split ratio). Below is two excerpts from the
corpus for the ATLOCATION type:

(5.1) article is at newspaper.
newspaper is at subway.
subway is at underground.

(5.2) restrooms is at airport.
airport is at city.
city is at county.
county is at state.
state is at country.
country is at europe.

We train a ST-adapter for each predicate type’s specific corpus using
masked language modeling and inject it into a BERT base model. The
configuration of the adapters are the same as in chapter 4, namely the
hyperparameters from Houlsby et al. (2019). This training procedure is
conducted in sequence, not in parallel: After training one ST-adapter,
we only save the weights of the adapter and commence a new training
procedure with the next predicate type. Hence, formally, the goal of the
training is to learn a set of weights, Φ, for each of the predicate types
n ∈ {1, ..., N} such that

(5.3)
Φn ← arg min

φ
Ln(Dn; Θ0, φ),
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where, as in Pfeiffer, Kamath et al. (2021), Ln is the masked language
modeling loss over predicate type n, Dn is the corpus for that predicate
type and Θ0 is the initial parameters from the root pre-trained language
model, such as BERT.

5.1.2 Second stage: fusion

The goal of the second stage is to introduce a new set of weights, Ψ, that
learn to combine the ST-adapters from the previous stage in order to solve
the target task. For our case, this means that Ψ is trained over a corpus that
contains all three of the predicate types used to train the N ST-adapters.
The general idea is that the fusion weights should learn which of the ST-
adapters are most useful in each instance in the combined corpus. For
example, if it is a triple that includes the ATLOCATION predicate type,
the weights from the ST-adapter for that type should contribute more to
improving the overall training loss than the others: 1

(5.4)
Ψ← arg min

ψ
Lm(Dm; Θ, Φ1, ..., φN , ψ),

where Ψ is the set of weights learned during the second stage fusion
training. The weights in Ψ consist of Key, Value and Query matrices, inser-
ted at each transformer layer. Hence, Ψ learns to combine the ST-adapters
as a dynamic function of the combined corpus where all the predicate types
are present. It does this using a form of attention (see section 2.2.3), where
the output of each ST-adapter at each layer for each time step is used as the
value and key transformations, and the output of the feed-forward layer at
each encoder block serves as the query vector (Pfeiffer, Kamath et al., 2021).

Figure 5.1 illustrates how the different components of our procedure re-
late to each other. In the figure, the bottleneck layer of all the ST-adapters
are set to a reduction factor of 16, which for BERT_base implies a reduc-
tion of the hidden size from 768 to 48. We choose GELU for our activation
function.

5.1.3 Results

Figure 5.2 shows the mean P@K curves (see section 4.2.1) for three models:
1) an unaltered base model, 2) a standard ST-adapter injected model (as in
chapter 4) and 3) one with three ST-adapters and an AdapterFusion layer
on top. The model with a single injected ST-adapter trained its adapter on
the combined corpus — which contains instances from all the tree predicate
types. The AdapterFusion model first trained three separate ST-adapters
on the three aforementioned corpora, one for each predicate type, before
training a fusion layer on the same combined corpus as the single injected

1We implement the fusion layer using the adapter-transformers framework (Pfeiffer,
Rücklé et al., 2020)
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for training an AdapterFusion layer over predicate type specific ST-
adapters.
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Figure 5.2: The result of AdapterFusion compared to the best configuration
from chapter 4 and a standard BERT model. The predicates in this test set
are only those that the Fusion model trained on.

model. All models are evaluated in a zero-shot setting over a custom subset
of the LAMA probe, where only instances from the ConceptNet split with
the relevant predicate types are included (N = 12000).

The curves show that the AdapterFusion model, despite having more
weights, performs worse than both the unaltered base model and the single
ST-adapter model. Following the results from 4, the ST-adapter model
performs best, with up to 5.5 percent improvement for large values of k
compared to the AdapterFusion model.

Error analysis

The performance of the AdapterFusion model might be explained by the
quality of the corpus. Due to the size of ConceptNet and the random
walk procedure from Lauscher et al. (2020), the corpora containing only
one predicate type, which the three ST-adapters used during stage one of
the learning algorithm, are of low quality. As illustrated in examples 5.1
and 5.2, the concept at the object position at line n is used as the subject
at line n + 1. When the pool of examples to draw from is limited due to
the predicate type restriction, these examples become increasingly worse,
with the corpora for usedFor being of the worst quality. It is the beyond the
scope of this work to improve extraction algorithms for knowledge graphs,
but future work should study how these graphs can better be translated
into natural language.

Furthermore, there should also be some quality assurance mechanism
on the graph itself. Consider the statements building is at rooms and
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motel is at shower from the example below, which is an excerpt from
the atLocation corpus. Although it looks like an extraction error, it is
actually a triple present in ConceptNet. As the predicate type atLocation is
asymmetric, it should be possible to guard against such errors by checking
if the reversed statement is also in the graph; if so, something is probably
off and the statement should be discarded.

(5.5) floor is at restaurant.
restaurant is at building.
building is at rooms
rooms is at motel.
motel is at shower

Another problem related to this procedure, also evident in examples
5.1 and 5.2, is that each predicate type from the graph only has one natural
language equivalent: "ATLOCATION → is at". Ideally, this process would
be more dynamic, instead relying on some form of dictionary look up that
adapts to the semantics of the resulting triple. Consider for example the
following extract of the USEDFOR corpus. In the last triple the preposition
in the predicate becomes wrong due to the semantic content that arises
when the subject is an activity and the object a pronoun. A more natural
sounding translation wound change the preposition from of to by. These
tiny details might influence how well the model is able to use the injected
knowledge together with what it learned during its original pre-training,
where such ungrammatical constructs are rare.

(5.6) fishing is used for sport.
sport is used for playing.
playing is used for learning.
learning is used for everyone.

5.2 Pruning

Pre-trained language models are often so large that they are expensive
and slow to fine-tune. This motivates the need for parameter-efficient
methods that are easy to share, such as adapters. The adapter we added
to BERT in chapter 4 increases the total parameter size of 2.1%. While
this is not a substantial increase, we nevertheless contribute to the overall
complexity of the model. Inspired by the work of Rücklé et al. (2021),
the following experiments measure how pruning adapters from a varying
number of transformer layers affect performance. Furthermore, by pruning
the adapter modules that contain injected knowledge from ConceptNet, we
hope to shed light on where this information is distributed in a pre-trained
language model.

5.2.1 Experimental setup

We instantiate a BERT base model and insert a ST-adapter with the
hyperparameters from Houlsby et al. (2019): a reduction factor of 12 from
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Figure 5.3: The result of different pruning strategies on the ConceptNet
split of LAMA (Petroni et al., 2019). Pruning either the first or last
six adapters, shown in blue and green, are considerably worse than not
pruning at all, shown in black. Pruning every other adapter, on the other
hand, improves performance ever so slightly. The figure is enlarged to a
smaller interval on the y-axis in order to make visible the improvement for
k = 10

the layer size in the root model and GELU as the activation function inside
the adapters. We study three different pruning scenarios, inspired by the
insight into the distribution of different types of knowledge presented
in Rogers, Kovaleva and Rumshisky (2020), which argues that the lower
layers have the most information about word ordering, the middle about
syntactic knowledge and the last layers of BERT are the most task-specific.
If the performance drops considerably more when removing adapters from
lower layers compared to higher ones, this might indicate that the injected
information, which serves as our task-specific knowledge, is better encoded
lower in the stack, or vice versa. Consequently, we experiment with the
following pruning configurations:

• First six: Pruning the adapter from the first six layers of the root
model.

• Last six: Pruning the adapter from the last six layers.

• Every other: Pruning the adapters at layer 1, 3, 5, 7 and 9.

5.2.2 Results

Figure 5.3 shows the mean P@K curves for the three different pruning
configurations. Although the effect is perhaps not as large as expected —
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Model Adapter Full CS World NE

BERTBASE 37.15 32.74 13.36 27.69

ROBERTABASE 41.18 37.08 14.98 36.92

BERTBASE CNHOULSBY 100K 36.76 29.31 20.09 34.86

ROBERTABASE CNHOULSBY 100K 41.36 39.33 12.71 29.19

BERTBASE CNALT_DROPS 35.55 20.24 22.98 30.19

Table 5.1: Matthews correlation coefficient results on the full set and the
Common Sense (CS), World Knowledge (World) and Named Entities (NE)
categories of the GLUE diagnostic (A. Wang, A. Singh et al., 2018)

.

all configurations remove up to half of the introduced adapter parameters
— we observe two interesting aspects of the result.

First, that pruning the adapters from either the first six or last six layers
give the same result. This is surprising. Previous research, such as that
of Rogers, Kovaleva and Rumshisky (2020), argues that the final layers of
BERT are the most task-specific. Even though we evaluate our models in a
zero-shot setting, the extracted training corpus from ConceptNet resembles
the cloze-style statements in LAMA. Hence, we expect that the format of the
triples seen during training would be encoded as a more task-specific type
of knowledge, most prominently in the adapter modules injected at higher
layers of the root model. This result contradicts that intuition, indicating
the injected knowledge is instead equally important at the bottom half of
the layers as the top.

This also opposes the results found in Hao et al. (2019), who report that
reverting the weights of a fine-tuned model’s higher layers back to their
original value hurts the model’s performance more than doing the same
with lower layers. As we remove the task-specific information encoded
into the last six layers, we would expect this to be more detrimental for
performance than the removal of the last six.

Second, pruning every other adapter performs on par with or even
slightly better than the model with all 12 adapters intact. We interpret this
as an indication of the injected knowledge being evenly distributed across
the model, which also aligns with the previous point.

As this pruning configuration did not result in a drop in performance
over the LAMA probe, we also evaluate it on the diagnostic set from GLUE

(A. Wang, A. Singh et al., 2018). Table 5.1 compares the every other pruning
configuration with the models from chapter 4. Although it performs
considerably worse on the common sense category, it outperforms all
other configurations on the world knowledge category. The confusion
matrices in Figure 5.4 also show that the pruned model classify the three
different labels in the diagnostic set in a similar manner as its non-pruned
equivalent. The models in Table 5.1 are all trained on the predicate set from
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Figure 5.4: Confusion matrices over the World Knowledge category from
the diagnostic set in GLUE.

Lauscher et al. (2020).
As we remark in chapter 3 and 4, results over the diagnostic set might be

within the expected variance as the sample size of these categories are very
low, and should therefore be taken as empirically motivated indications
only.

5.3 Summary

The purpose of this chapter has been two-fold: firstly, to employ the
two step learning algorithm introduced in Pfeiffer, Kamath et al. (2021)
in a novel way, decomposing the ConceptNet graph into single predicate
corpora; and secondly, to prune adapters from transformer layers in order
to probe where the injected knowledge is distributed.

The experiments using the AdapterFusion approach (Pfeiffer, Kamath
et al., 2021) show that such a two step learning algorithm does not
increase the performance over the LAMA probe. However, as discussed,
the decomposition from a larger corpus to single predicate corpora creates
substantial problems for the the random traversal procedure used in this
work. Consequently, we cannot conclude that the learning algorithm itself
is an unfruitful approach for injecting structured knowledge. The quality
of the single predicate corpora used to train the ST-adapters is low, and we
suggest that future work first look into how to create good quality datasets
from subsets of knowledge graphs that contains fewer nodes than what
is ideal before testing architectures like AdapterFusion. Nevertheless, we
argue that this chapter shows how such an algorithm can be employed for
similar use cases.

The pruning of adapters from different transformer layers show that the
injected information is distributed equally across the model. We interpret
this as indicating that the mlm objective (see section 2.2.4) does not encode
the triples from ConceptNet as task-specific information only, as this would
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manifest itself in lower performance in experiments where the higher levels
are pruned (Rogers, Kovaleva and Rumshisky, 2020). Our experiments
show that pruning from the top or bottom six layers result in close to equal
performance.

Furthermore, our experiments indicate that the performance achieved
in chapter 4, with what is already a highly parameter efficient technique,
can be replicated using even less parameters. The pruning of the adapter
weights from alternating transformer layers achieves comparable results
to non-pruned models over our subset of the LAMA (Petroni et al., 2019)
probe and the world knowledge category from GLUE (A. Wang, A. Singh et
al., 2018). We take this as an indication of the efficiency of adapter injection
as a means of combining structured knowledge and language models.
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Chapter 6

Conclusion

6.1 Summary

This thesis explores the problem of combining structured information with
language models. By using light-weight neural networks, known as ad-
apters, we try to increase the world knowledge of BERT (Devlin et al., 2019)
and ROBERTA (Y. Liu et al., 2019), two popular transformer-based models
used for a range of tasks within NLP. Using the masked language modeling
objective, the adapters learn to encode the information found in Concept-
Net — a knowledge graph capturing a range of commonsense concepts and
the relation between these. The trained adapters are injected into BERT and
ROBERTA and evaluated on three datasets targeting world knowledge and
commonsense reasoning abilities: the diagnostic set from GLUE (A. Wang,
Pruksachatkun et al., 2019; A. Wang, A. Singh et al., 2018), SWAG (Zellers,
Bisk et al., 2018) and COMMONSENSEQA (Talmor et al., 2019). Further-
more, we experiment with different configurations of adapter modules and
evaluate them over the LAMA probe (Petroni et al., 2019). These experi-
ments include a two-stage algorithm using the AdaperFusion framework
(Pfeiffer, Kamath et al., 2021) and an ablation study where we prune adaper
modules from different encoder layers in BERT.

The overall approach of our work is inspired by Lauscher et al. (2020). Con-
sequently, as outlined in RQ1.a (see 1.2), the logical starting point for this
thesis was to reproduce the results achieved there. However, our repro-
duction (see chapter 3) failed to replicate the experimental results achieved
in Lauscher et al. (2020). We conclude that the differences between our ex-
periments and theirs are too large to be explained solely by differences in
experimental setup. As our experiments report both worse performance
for the adapter injected models and better performance for the baselines,
we interpret this as indicating that 1) BERT is actually better at this type of
problems than what is reported in Lauscher et al. (2020), and 2) our adapter
modules do not increase the performance of pre-trained language models
on the diagnostic set from GLUE.

The first point is further supported by the experiments in chapter 4,
where we get to the same conclusion by testing the same baselines on the
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same dataset using another distribution of BERT; where our reproduction
study uses the code and models provided in Lauscher et al. (2020), chapter
4 uses the transformers library Wolf et al. (2019).

We argue, however, based on two key observations, that the second
point is still indecisive. Firstly, it is difficult to say something certain about
the results due to the low sample size of the diagnostic set (N = 1104);
when we further partition the dataset into fine-grained categories (world
knowledge, commonsense), the evaluation happens over as little as 134
and 150 samples. Secondly, that research on the problems of NLI bench-
marks suggest that there are other abilities than having a high level of
world knowledge that make or break performance on such datasets (see
section 2.5.1).

These two observations motivate the need for a more extensive evaluation.
Following the same approach, we expand the experiments from Lauscher
et al. (2020) to the ROBERTA model and two more benchmark datasets:
SWAG and COMMONSENSEQA — both believed to require world know-
ledge and commonsense reasoning abilities.

The experimental results from chapter 4 show that the injected models
do not perform better on these two datasets either. Thus, the conclusion
for RQ2 must be that our adapter modules can not be used to inject
knowledge from ConceptNet (Speer, Chin and Havasi, 2017) for numerical
performance gain. The exception is for the world knowledge category in
the diagnostic set — our implementation of the same model as in Lauscher
et al. (2020) achieves an increase of 6.73 percentage points.

However, as discussed in section 2.5.2 and 2.5.3, SWAG and COMMON-
SENSEQA suffer from the same challenges as the diagnostic set from GLUE.
Consequently, it is still not clear whether or not adapters are a viable tech-
nique for combining structured information with language models — which
is the core issue in this work — just that they do not help with performance
on these datasets.

In order to evaluate the technique itself, not the overall performance
on some downstream task, we use the LAMA probe (Petroni et al., 2019) to
quantitatively measure how much of the knowledge seen during training
our injected models are able to reproduce when faced with Cloze-style
statements. Since both LAMA and the training corpus for our adapter
modules are based on ConceptNet, we quantify the percentage of overlap
between concepts seen during training and testing (in some form or
another). Results show that our injected models perform consistently better
under different scenarios, despite the injected knowledge only making up
about 2.1% of the models total parameter size (see section 4.2). This indicate
that adapters are a viable intermediate between structured information
and language models. Furthermore, chapter 5 shows that the injected
knowledge is distributed equally across the layers in BERT. Pruning
adapters from the bottom half or top half of layers yields the same drop
in performance, while pruning every other layer improves the overall
performance over the LAMA probe by a small margin.

Our conclusion for RQ1 must therefore be that adapters can be used to
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inject knowledge into pre-trained language models, and that the injected
knowledge is distributed equally across layers. The injected models are
able to reproduce the information seen during training when evaluated on
the LAMA probe.

As for RQ3, the experiments with the AdapterFusion framework in
chapter 5 did not improve performance over the LAMA probe when
compared to standard single-task adapter injection and baseline models.
However, due to problems with the decomposition from a larger corpus
to single predicate corpora, and the previous success of Meng et al. (2021)
with a similar approach in the biomedical domain, we conclude that these
results are indecisive, and may prove fruitful in the future.

6.2 Contributions

The main contribution of this thesis is to provide evidence for the effective-
ness of adapters as a way of combining the structured information found
in knowledge graphs with pre-trained language models, as concluded in
RQ1. Furthermore, our negative results from RQ2 also contribute to the
intuition that the inclusion of background knowledge does not necessarily
increase performance on datasets believed to require the same knowledge.
Current pre-trained language models consistently exploit annotation arti-
facts, if present, and as long as the datasets we use to evaluate such mod-
els contains such irregularities, it is intuitive to think that increasing the
models parameter size will result in more performance gain compared to
including more background knowledge.

We also regard our reproduction study of the work by (Lauscher
et al., 2020) as a contribution towards a more rigorous evaluation of
results in NLP in general. Furthermore, we also argue that our use of
the AdaperFusion framework on a knowledge graph like ConceptNet
is a novelty — partitioning the graph by what is essentially the edge
of a directed, cyclic graph and training one single-task adapter on each
predicate type before applying the fusion layer from Pfeiffer, Kamath et
al. (2021). Although the conclusion of RQ3 is that this approach does not
improve the performance over the LAMA probe, we argue that we have
outlined a general technique that might do just this if further developed.

6.3 Future work

Combining structured information with language models is a difficult
problem. If done efficiently, we foresee easier deployment of models
into settings where domain knowledge is crucial. We identify two key
challenges that needs to be addressed in order for the field to move towards
such a goal. We outline these below.

Representation and encoding. In this thesis, the structured information
is in the form of a knowledge graph. The encoding procedure, where we
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go from graph triple to a numerical vector compatible with the architecture
of modern language models, rely on the masked language modeling
objective. We encourage future work to investigate other ways of both
representing and encoding the structured information. In particular, we
think that there might be other learning objectives more apt for encoding
graph objects. Also, we hypothesize that a system able to incorporate
domain knowledge from a database management system, for example a
graph database on the RDF format, would be an appealing solution for
many scenarios as it would enable model developers to deploy a language
model directly over an already existing knowledge source.

We have only considered the scenario where the structured information
is injected into the models weights. This has the obvious benefit of reducing
the number of components in an overall system, as the knowledge injected
model can be shipped as easily as a non-injected one, but there might be
more fruitful ways of combining the two. For example, we consider recent
work by Borgeaud et al., 2021, where the knowledge source is queried as
an ad-hoc resource, to be a promising research direction for this end.

Evaluation. It is not straight-forward to quantitatively assess the know-
ledge capabilities in a language model. While there has been a lot of recent
efforts that attempt to isolate the task of knowledge extraction from more
general inference abilities (Bouraoui, Camacho-Collados and Schockaert,
2020; Elazar et al., 2021; Jiang et al., 2020; Petroni et al., 2019), we argue that
all these rely on short, straight-forward statements, and that future work
should look into ways of achieving the same assessment but over more free-
flowing text. This might mean that we should annotate more NLP datasets
with fine-grained categories, such as in the diagnostic set from GLUE.

As indicated by Jiang et al. (2020), the way we query the models for
knowledge highly influences the outcome. Future work should therefore
also look into methods of making language models more robust to
paraphrases of semantically equivalent statements, or else we might deem
the models less knowledgeable than they really are.
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Appendix A

Figures and tables

(A.1) 1) Asymmetric: AtLocation, CapableOf, Causes, CausesDesire,
CreatedBy, DefinedAs, DerivedFrom, Desires, Entails,
ExternalURL, FormOf, HasA, HasContext, HasFirstSubevent,
HasLastSubevent, HasPrerequisite, HasProperty, InstanceOf,
IsA, MadeOf, MannerOf, MotivatedByGoal, ObstructedBy,
PartOf, ReceivesAction, SenseOf, SymbolOf, and UsedFor

2) Symmetric: Antonym, DistinctFrom, EtymologicallyRelatedTo,
LocatedNear, RelatedTo, SimilarTo, and Synonym

Figure A.1: All predicate types in ConceptNet.
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PREDICATE BERTBASE BERTHOULSBY 100K ∆

HasSubevent 9.1 7.0 −1.1

MadeOf 19.9 22.0 +2.1

HasPrerequisite 16.9 12.7 −4.2

MotivatedByGoal 19.4 20.0 +0.6

AtLocation 15.0 16.1 +1.1

CausesDesire 14.2 25.2 +11

IsA 19.8 19.5 −0.3

NotDesires 12.9 7.7 −5.2

Desires 16.1 14.5 −1.6

CapableOf 18.6 14.4 −4.2

PartOf 19.5 21.7 +2.2

HasA 17.7 20.0 +2.3

UsedFor 16.2 16.4 +0.2

ReceivesAction 14.2 18.6 +4.4

Causes 10.3 10.4 +0.1

HasProperty 9.5 11.3 +1.8

Micro-average 15.6 16.1 +0.5

Table A.1: Micro-averaged precision for our injected model compared to its
non-injected counterpart over the ConceptNet split from LAMA for k = 1
(Petroni et al., 2019)
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PREDICATE BERTBASE BERTHOULSBY 100K ∆

HasSubevent 23.6 18.9 −4.7

MadeOf 51.8 52.8 +1

HasPrerequisite 40.6 38.0 −2.6

MotivatedByGoal 43.5 53.1 +9.6

AtLocation 42.5 43.3 +0.8

CausesDesire 35.7 56.6 +20.9

IsA 49.9 49.2 −0.7

NotDesires 34.4 23.3 −11.1

Desires 34.4 37.2 +2.8

CapableOf 44.4 42.0 −2.4

PartOf 46.0 53.9 +7.9

HasA 39.8 48.7 +8.9

UsedFor 38.1 46.2 +8.1

ReceivesAction 42.4 46.2 +3.8

Causes 31.6 31.2 −0.4

HasProperty 28.0 34.1 +6.1

Micro-average 39.2 42.2 +3.0

Table A.2: Micro-averaged precision for our injected model compared to its
non-injected counterpart over the ConceptNet split from LAMA for k = 10
(Petroni et al., 2019)
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PREDICATE BERTBASE BERTHOULSBY 100K ∆

HasSubevent 40.2 33.2 −7.0

MadeOf 76.0 80.7 4.7

HasPrerequisite 67.3 67.5 −0.2

MotivatedByGoal 74.8 78.2 +3.4

AtLocation 74.4 78.5 +4.1

CausesDesire 69.2 88.3 +19.1

IsA 73.3 78.6 +5.3

NotDesires 54.5 44.8 −9, 6

Desires 64.5 62.9 −1.6

CapableOf 73.7 72.2 −1.5

PartOf 70.7 78.9 +8.2

HasA 67.1 76.3 +9.2

UsedFor 61.3 72.9 +11.6

ReceivesAction 71.8 76.1 +4.3

Causes 55.8 61.2 +5.4

HasProperty 52.5 68.6 +16.1

Micro-average 65.4 69.9 +4.5

Table A.3: Micro-averaged precision for our injected model compared to its
non-injected counterpart over the ConceptNet split from LAMA for k = 100
(Petroni et al., 2019)
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(A.2)
ATLOCATION → is at

CAPABLEOF → is capable of

CAUSES → causes

CAUSESDESIRE → causes desire of

DESIRES → desires

HASA → hasA

HASPREREQUISITE → has prerequisite

HASPROPERTY → hasProperty

HASSUBEVENT → hasSubevent

ISA → is a

LOCATEDNEAR → is located near

MADEOF → is made of

MOTIVATEDBYGOAL → is motivated by

USEDFOR → is used for

PARTOF → partOf

RECEIVESACTION → receives

Figure A.2: All predicate types in the ConceptNet split of the LAMA probing
dataset.
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Figure A.3: Distribution of the top ten objects for the first eight predicate
types of the ConceptNet split in LAMA
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Figure A.4: Distribution of the top ten objects for the last eight predicate
types of the ConceptNet split in LAMA
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Appendix B

Code and reproducibility

B.1 Environment

We list the most relevant packages for our experiments in the table below.
All experiments ran using the seed 42, which is set as the default in our
training scripts. The code for the reproduction study in chapter 3 can be
found at https://github.com/Wluper/Retrograph.

Package Used for Version

adapter-transformers Implementing our adapter modules 2.2.0

transformers Scheduling, modeling and optimization 4.3.3

huggingface-hub Loading of pre-trained language models 0.1.0

torch General ML framework 1.11.0

python Programming environment 3.8.6

datasets Loading and processing datasets 1.15.1

accelerate Thread handling on GPU 0.5.1

Table B.1: Packages used in this thesis
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B.2 Initializing a new adapter and injecting it

The adapter-transformers library (Pfeiffer, Rücklé et al., 2020) makes it
fairly simple to work with adapters together with pre-trained language
models initialized using the transformers (Wolf et al., 2019) library. The
code below shows the sections relevant for the adapter implementation
in the script that runs the masked language modeling objective over the
extracted ConceptNet corpus used in chapter 4. The entire file is located
under src/run_mlm.py in the provided repository (an url can be found in
the abstract).

from t ransformers import (
AutoModelForMaskedLM ,
)

model = AutoModelForMaskedLM . from_pretrained (
args . model_name_or_path ,
conf ig=config ,

)

# a d a p t e r _ c o n f i g h o l d s t h e h y p e r p a r a m e t e r s f o r t h e a d a p t e r modules .
i f args . use_adapter :

adapter_conf ig = AdapterConfig . load (
args . adapter_config ,
n o n _ l i n e a r i t y =args . no n_ l i nea r i ty ,
r e d u c t i o n _ f a c t o r =args . r e d u c t i o n _ f a c t o r

)
model . add_adapter ( args . adapter_name ,

conf ig=adapter_conf ig )
model . t r a i n _ a d a p t e r ( [ args . adapter_name ] )
model . s e t _ a c t i v e _ a d a p t e r s ( args . adapter_name )

i f args . tune_al l_parameters == True :
model . freeze_model ( Fa l se )
# k e e p o r i g i n a l t r a n s f o r m e r w e i g h t s dynamic

.

.

.

unwrapped_model . save_pretra ined (
args . output_dir , save_funct ion= a c c e l e r a t o r . save )
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B.3 Setup of AdapterFusion after ST-adapter training

’ ’ ’
I n v o k e a new Adapt e rFus i on l a y e r o v e r our ST− a d a p t e r s
’ ’ ’
from t ransformers . adapters . composition import Fuse

model = AutoModelForMaskedLM . from_pretrained (
args . model_name_or_path ,
conf ig=config ,
)

i f args . t r a i n _ f u s i o n :
adapters = args . a d a p t e r _ l i s t
adapter_names = [ x . s p l i t ( "/" ) [ 2 ] for x in adapters ]
for adapter in adapters :

model . load_adapter ( adapter , with_head=Fa lse )
ob j = Fuse ( * adapter_names )
model . add_adapter_fusion ( ob j )
model . s e t _ a c t i v e _ a d a p t e r s ( ob j )
model . t r a i n _ a d a p t e r _ f u s i o n ( ob j )

.

.

.

# Save t h e Adap t e rFus i on model
unwrapped_model . save_adapter_fusion ( " ./ adapters/" + " fus ion/" ,
" , " . j o i n ( a d a p t e r _ f u s i o n _ o b j e c t ) )
unwrapped_model . save_pretra ined ( args . output_dir )
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