CPU Management for Multimedia
Applications: A case study

Martin T. Setek

November 1, 2006

Abstract

This paper is submitted as the final work for obtaining the title Cand. Scient.
at the Dept. of Informatics at the University of Oslo, Norway.

The paper is a case study of working implementations of soft real-time
features for Linux. The problems raised by multimedia applications running
alongside normal applications is discussed. A comparison of the architecture
of modern Linux versus traditional UNIX is given, and the implications for
soft real-time applications are highlighted.

Finally, some contemporary projects that implement various soft real-
time features for Linux are compared in a practical experiment involving
video, and software to support this activity is developed. A workload is
designed, and the use of a sophisticated profiling tool is explained.

Contents

1 Introduction

1.1 Background o
1.2 Problem description and scope
1.3 Objectives

1.3.1 Solution requirements (with rationale)
1.4 Method

Resource management
2.1 Why resource management

Overview of UNIX and Linux

3.1 Introduction
3.2 CPU scheduling in UNIX'.
3.2.1 Swapping
3.2.2 Timing: ticks oo
3.2.3 The CPU scheduling algorithm
3.3 Linux: a UNIX clone
3.3.1 Linux and version numbers,
3.4 Linux 2.4
3.5 Linux 2.6
3.5.1 Thescheduleris O(1)
3.6 System calls related to scheduling in Linux
3.6.1 System calls related to scheduling
3.7 Priorities — From the user level
3.8 Linuxsoft-RT
3.8.1 Preemptible kernel
3.82 Interrupts
3.8.3 Interrupt responses

4 Real-time and Linux
4.1 Introduction
4.2 Standard: POSIX.4 — Soft Real-time
4.3 Why Linux?
4.3.1 Source code availability
4.3.2 Multimedia and RT: several projects
4.4 About patchsets
44.1 Patches

5 The projects
5.1 Vanilla Linux
5.2 Linux with rt-preempt
5.2.1 Configuration of rt-preempt
5.3 Linux with Class-based Resource Kernel Management
5.3.1 Class configuration
5.3.2 Configuration of ckrm
5.4 Linux with CKRM and rt-preempt

6 Test cases — workloads
6.1 Introduction
6.1.1 Actions performed by the workload program
6.2 Case l:ixine/mplayer with xboard
6.3 Case 2: xine/mplayer with two cpuhogs
6.4 Case 3: xine/mplayer with three cpuhogs

7 Measurements
7.1 Measurement tools,
7.1.1 OProfile
7.1.2 A sample flat profile
7.1.3 A sample kernel profile
7.2 Choiceof tool
7.3 Setup of test environment
7.3.1 Selection of workload

8 Conclusion
8.1 Results of the experiments
8.2 Future work

A Configuration file for Linux 2.6.18

B Workload program

33
33
33
34
34
34
34
36

37
37
38
38

39
40
40

42
42
42
43
43
45

46
46
46
48
49
20
o1
o1

53
23
o4

56

94

List of Figures

3.1
3.2
3.3
3.4

7.1

Chart showing the evolution of some descendants of UNIX . . 17
Process priority queues in UNIX 22
Linux 1-1 thread scheduling model 25
Nested interrupt invocations in Linux 2.6 32
The cpuhog program L. 52

Chapter 1

Introduction

1.1 Background

Today, many people use their computers for more than just computing. Ac-
tually, most people seem to use computers for activities that have very little
to do with the term “computing”?, like surfing the web, reading and sending
e-mail, writing documents, playing games, listening to music and watching
movies.

Modern desktop computers have reached a level of performance that most
of the activities just mentioned can be accomplished without machine re-
sources, such as CPU, memory or hard disk speed and capacity being an
issue. Of the activities mentioned, the only one that can make heavy de-
mands on the computer resources is playing some types of games. And these
games mostly make demands on the graphic processing capabilities of the
machine?.

There are even computers that are customized for the purpose of playing
music and movies, so called media centers®. Some media centers can be
used as normal computers, while others are more or less dedicated to their
multimedia purpose. Most of these systems are connected to some kind of
network, usually with Internet access. These machines often don’t resemble
desktop computers at all, but are often connected to television sets and look
like a component of a stereo system.

Some of these computers run Linux, an operating system that is a clone
of another operating system called Unix*. At the time Unix was designed,

Lthe procedure of calculating

2the performance of these games is mostly determined by the GPU on the graphics
card

3also known as Home Theater PC’s

4Unix has been called “the most important operating system you may never use.”

computers were not on the desktop — the weight would break it. The algo-
rithms that were chosen to implement it reflect the fact that computers were
expensive machines that needed to be kept busy. Therefore, the throughput
of the system was important. Yet, the system had users that worked on it
interactively in a timesharing manner. Users don’t like to be kept waiting for
anything. So its response time was also important. The result was a system
that would perform well for the typical mix of tasks at the time — jobs run
interactively and long jobs doing “number crunching”’.

In recent years, the developers of Linux have begun experimenting and
implementing kernel features that reflect the new situation — that many ma-
chines in use are not servers. This includes some features that haven’t been
available before, because they were not in Unix and haven’t been standard
in Unix’s descendants.

One example of this is the adjustable tick rate. On contemporary Linux
systems®, one can configure the rate for the primary timer interrupt before
compiling the kernel. There are three settings at the time of writing: 100H z,
250H z and 1000H z. The slower setting is for servers, because with it the sys-
tem generates less interrupts. This means that the time that would otherwise
be spent on processing them can be used on actual work. This again means
that the throughput improves. The fastest setting is for desktop machines,
because it shortens the time between a event is noticed in a Interrupt Service
Routine (or ISR for short), and the time it is handled in some bottom-half
routine, thereby increasing the responsiveness of the system. The third set-
ting is simply a compromise when one wants a little bit of both (reasonably
good throughput and reasonably good responsiveness).

Another factor that has prompted the inclusion of new features in Linux
and some other descendants of Unix is the growing acceptance of the POSIX
standards. POSIX stands for “Portable Operating System Interface”’.

1.2 Problem description and scope

This thesis will attempt to investigate whether recently developed CPU
scheduling and process handling technology in Linux can help improve sys-
tem performance when multimedia applications are involved and there is
pressure on system resources.

An aspect of multimedia applications that makes it particularly hard to

Sperforming complex and lengthy numerical calculations

62.6 series

"The “X” is silent. Joke aside, the “X” really doesn’t stand for anything in this
abbreviation according to [Gal95]

measure such things is that the definition of “acceptable performance” is a
matter of subjective judgment and expectations.

Take the playback of an audio stream, for example. People have very
different opinions on what is acceptable sound quality. Moreover, the opin-
ions on what is acceptable change according to the scenario and expectations
that the person has. For example, most people don’t expect the same sound
“quality” from a car radio and a home “hi-fi” audio system. Another example
can be taken from the domain of computers. To most people, the perception
of quality will be different for an audio stream that is listened to over the
Internet, and one that is played back on a computer one has physical access
to.

To avoid such difficulties, we will simply try to describe what is observed,
and leave the difficult judgment of what “acceptable quality” is alone.

To limit the scope of the problem, we will focus our attention on video
playback with accompanying sound® on a computer system. Assuming that
an acceptable level of quality for video playback can be achieved, what strat-
egy should one take to utilize the resources on the computer system? In other
words: If the video playback is acceptable, what computer resource allocation
strategy gives other applications running alongside it good performance?

One nice aspect of this way of looking at the problem is that it is decid-
edly simpler to measure the quality of “regular”® computer programs than
of those dealing with video. Most applications deal with tangible results and
their level of performance can be stated in relatively simple terms, like total
running time. For a user of a regular computer program, its run-time per-
formance, correctness and ease of use can be taken as reasonable measures
of quality.

To somehow measure the performance of video playback, one could of
course introduce concepts like the number of dropped frames and then use
this as a measure of performance. But in this case it is only indicative of the
perceived quality. The real judge of video quality will always have to be a
human being.

It is generally understood that multimedia applications benefit from hav-
ing operating system features that specifically support their activities. Be-
cause such applications have specific timing requirements, it is beneficial if
the machine resources are allocated in such a way that takes those require-
ments into account. A model of how this can be done is given in [SN95],
where a source-to-sink model is presented. The idea is that one should be

8when we say video playback, we will assume that it is accompanied by sound as well
from now on
9for lack of a better term

able to control the allocation of all the resources that are used by the multi-
media application from the source (typically disk storage or video and audio
capture equipment) through memory and networks to the sink (typically the
part of the application seen by the user). This control should typically man-
ifest itself as some sort of upper bound on the latency experienced when
accessing the resource.

Unfortunately, systems that let the application exercise this kind of con-
trol are often rather specialized to specific problem domains, or require the
application to be specifically written for the specialized system.

To further limit the scope of the problem, this thesis will study the al-
location of one specific computer resource in the context just described: the
Central Processing Unit (CPU). The reasons for choosing the CPU is primar-
ily because this a resource where some solutions to the resource allocation
problem already exist under Linux. Another reason is that the control over
this resource can be controlled!'? outside the application that requires the al-
location. This is very important, because it means that applications do not
have to be modified or rewritten to take advantage of this feature. This is
somewhat analogous to applications not being explicitly written to support
multitasking as opposed to writing applications using co-operative multitask-

ing'!.

1.3 Objectives

This paper aims to evaluate solutions'? to the problem of running multi-
media applications on Linux when the system is running other applications
alongside the multimedia application. The problem has two aspects:

e The OS should allow allocation of enough CPU to the multimedia ap-
plication for it to perform adequately.

e The OS should give the rest of the resources to the other applications.

The objective is to evaluate possible solutions. For a solution to be a
candidate for evaluation, the requirements mentioned in 1.3.1 must be met,
in addition to the obvious requirement of somehow addressing the issues
discussed in

10to some extent

' Which was quite common in the past. All programs written for MacOS before MacOS
X and Windows before Windows 95 had to use this technique

250ometimes referred to as projects

1.3.1 Solution requirements (with rationale)

1. The solution must be runnable

It is very hard to compare designs when some of them don’t have a
runnable implementation. Many systems that seem good on paper are
never realized, and of those that are, few make it beyond a “proof of
concept” implementation. While systems that lack an implementation
can be interesting from a theoretical point of view, they will not be
considered here. Simply put, the solution must have code that can be
compiled and run, and this step must not involve unreasonable effort!?.

2. The solution must work in an Linux 2.6 environment

This is a further restriction on the “must be runnable” requirement
above. Of all the requirements, this is perhaps the most controversial
one. The reason for it that there is a lot of code that could be a
candidate for evaluation as given in the objectives (see 1.3), but that
is based on some'? version of the Linux 2.4 kernel series.

Running an 2.4 kernel today represents some practical difficulties. Since
the 2.4 series is no longer actively developed, most Linux distributions
have abandoned it in favor of the more modern 2.6 series'®. It is not
trivial to run a 2.4 kernel on a system that has been designed for the
2.6 series. More important is the fact that since the 2.4 kernels are
no longer being developed, support for newer hardware is progressively
getting worse. New device drivers are sometimes only written for the
2.6 series (but then sometimes backported to the 2.4 series). This can
make it problematic or inconvenient to run these kernels on machines
with new hardware.

In any case, basing a solution on a kernel that isn’t being actively
developed (because the developers have moved on) seems like a bad
idea.

3. The solution must not require substantial reprogramming of applica-
tions

This requirement is somewhat fuzzy, but it basically means that one
should be able to take existing and widely used applications and run

13Gitting down and writing a new kernel or doing substantial reprogramming of an
existing one is not considered reasonable

HMoften quite old

15To the author’s knowledge, only Slackware still use the 2.4 kernel

them with the allocations required. If it is necessary to modify the ap-
plication to make use of the CPU allocation feature, then those modi-
fications should be minor and obvious.

4. The solution must be freely available

This requirement is reasonable in the context of a thesis such as this
one. It might not be in another context.

5. The solution should be actively maintained

This is not an actual requirement'®, but solutions that are viable and
useful to a large enough group of people will be maintained by someone.
An actively maintained solution is attractive in the sense that it will
typically be updated to match the developments of the rest of Linux.
If one wants to build other software on top of such a solution, then this
is very important.

Projects that are serious about solving the kind of problems that are
presented in this paper will often have ambitions about becoming a part
of “mainline”!” Linux. This can happen when the code has reached a
level of maturity that it is acceptable to the Linux kernel developers
and that it addresses problems that are of interest to a big enough
group of its users. Getting to be a part of the Linux “mainline” kernel
is a big bonus, because it means that whenever someone make a bugfix
or changes a part of the kernel that affects the project, those people will
make sure that the affected code continues to work. Also, it takes some
effort from the maintainers of a project outside the mainline kernel to
“chase kernels”.

1.4 Method

In order to compare various projects for the particular case that is tested in
this paper, some method of testing must be established. As already men-
tioned in 1.3.1, the various projects will be run in a particular test environ-
ment. In [Jai9l], there is a description of how one should do evaluations
in general, and how to perform evaluations like this one. The method of
evaluation in this case is one of measurement, in the terminology used in
[Jai91].

To perform this measurement, we will be using a monitoring system called
Oprofile. This system will be described further in 7.1.1. Monitoring systems

6since it says should, not must

"This is what one often calls the standard Linux kernel currently being developed

work by letting the system to be studied run normally, and while it is running,
collect information about its behavior.
In [Jai9l], a distinction is made between:

Hardware monitors

This is any equipment that is physically connected to the system, and
can consist of probes, counters, timers, etc. and sometimes also storage
for the results. It can often record data about events or take samples
at regular intervals.

Firmware monitors

Firmware monitors modify the processor microcode to perform moni-
toring functions.

Software monitors

Software monitors typically use trap instructions of some kind to divert
execution at points of interest in the code to a trap-handler. In that
handler, data is collected.

They can also use trace-mode, sometimes called debug-mode, because
the same mechanism is often used by debuggers to single-step through
code. This is a processor mode where the processor generates a excep-
tion after each instruction. The monitor records data in the handler for
the exception. Since such modes make the intervals between instruc-
tions extremely long, this is only useful for answering some type of
questions. Examples are “how many time is a specific point reached”
and “what sequence of instructions is most common”. Note that no
useful timing can be performed in such a mode.

Another mode often used by software monitors is to use an operating
system controlled timer interrupt handler to call it at regular intervals
in which it samples data.

Hybrid
A hybrid monitor is a monitor that uses a combination of hardware

and/or firmware and software to accomplish its goals.

Oprofile fits into the classification of a hybrid system, since it uses hard-
ware features to trigger on events, but then uses software in the handling of
the event itself.

10

Chapter 2

Resource management

2.1 Why resource management

Since Internet connectivity has become commonplace, a lot of software has
become dependent on the computer running for long periods of time online.
Many computers are set up to perform chores at odd hours (e.g. indexing
files or downloading corrections for installed software), under the assumption
that the user(s) are not using the computer at the time. As a consequence
of this, many computers are not switched off even if not in use.

Therefore, there is a situation today where there exist a lot of relatively
powerful computers that are:

e Always on.
e Connected to some network, usually with Internet access.
e Mostly idle.

For the sake of brevity, the following definition® of “job” will be used from
now on:

All the activities involved in completing any project on a com-
puter from start to finish. A job may involve several processes
and several programs.?

In this definition, “project” is to be taken as something the computer
must finish without human involvement. So developing software is not a
“job” in this sense.

Ltaken from the foldoc online dictionary
2this definition is useful because it focuses on work as users perceive it, not how it is
organized by software, as e.g. one or more processes, threads, etc.

11

People have for some time realized that these unused resources can be
tapped into and used to run jobs that are suited for distributed computing
and where additional resources are always needed to cut down the running
time. Examples of such projects are BOINC? that rely on volunteers to install
their software on their computers and thereby donating resources to their
projects, and condor?, which is for sites which have many idle workstations
that they own.

All of these networked machines typically act as clients in a client-server
relationship with some server machines. These servers will usually service
many clients simultaneously and sometimes run several services on the same
host. It is also common that the server runs one service (e.g. a web service),
but acts as a server for several distinct user groups (e.g. a multi-homed web
server).

Increasingly, people are also running peer-to-peer® software on their com-
puters. These programs form ad-hoc networks where each node simultane-
ously act as “client” and “server” in relationship to other nodes. All nodes
in the network contribute bandwidth, disk space and machine resources to
the “system”. Often, such networks will have redundancy as a inherent trait,
and there is no single point of failure. P2P networks are typically used for
file sharing.

In light of this situation, some users will have the need to exercise control
over the use of the machine resources in two different ways:

Reserve resources for some jobs

On servers, there are often many jobs running simultaneously that all
compete for the same resources. However, some jobs might be deemed
more important than others, so that if resources are scarce, the most
important job should be prioritized at the expense of other jobs. The
decision on which job is most important isn’t necessarily technical®.
Therefore, this decision must often be made by human beings.

In the case of workstations, the user may be compelled to do similar
things. For example, a user may require the result of some job as soon
as possible, and therefore wish to arrange things so that this particular
job is preferred without having to stop other jobs that may already be
running.

3http://boinc.berkeley.edu

4http:/ /www.cs.wisc.edu/condor

Soften written as P2P

6In a commercial setting, jobs belonging to the customer that pays the highest fee
might be considered most important

12

Another likely scenario is that some job may run without difficulty
when the machine is lightly loaded”, but may experience problems
when the computer resources are shared with other jobs. An exam-
ple of this is the playback of video. Under normal circumstances on a
lightly loaded workstation, this usually works quite well. However, if
additional jobs are running simultaneously playback becomes “choppy”
with intermittent and abrupt pauses. In such situations, the user will
want to assign enough resources to the video playback job so that it
can run smoothly.

Limit the resources consumed by some jobs

When a server processes requests from clients, it often runs some job
on the behalf of the client. For example, a HTTP® request will often
require processing by several processes. Typically a HT'TP server will
parse the request and then hand it off to a program that will process the
request and use a connection to a DBMS? to retrieve or store data. The
whole job usually ends with a response from the HT'TP server. Faced
with the proposition of serving many such requests at once, administra-
tors might want to limit the resources given to some jobs. Again, which
job(s) should be limited is a decision that may require the judgment of
a human.

At first, it might seem that limiting the access to resources and reserving
resources are two sides of the same coin. This is however not the case.
Reserving resources implies some sort of lower bound or minimum level of
access to machine resources, while limiting the access to resources implies
some sort of upper bound or maximum level of access to machine resources.
In fact, it is perfectly reasonable to both limit and reserve resources for a
particular job.

In applications where multimedia data is to be processed in complicated
ways and where the system doing the processing is distributed, the need for
allocating sufficient resources for processing on each node of the distributed
system arises. Also, in processing of multimedia data, (especially video),
there are timing constraints that don’t work well with the scheduling of pro-
cesses on traditional operating systems. The most commonly used operating
systems today have schedulers that try to maximize throughput — the number
of processes run per unit of time and strive for fairness so that no process

"the concept of system load will be discussed later
8Hypertext Transfer Protocol
9Database Management System

13

can monopolize the processor (or processors in a multiprocessor or multicore
system) at the expense of other processes.

The problem of scheduling processes with strict timing constraints is often
solved by using hard real-time scheduling algorithms as described in [LL73].
Systems that employ such algorithms are typically used when the problem is
such that all deadlines must be met and that any failure to meet such a dead-
line is a catastrophic event, and the system cannot continue to run and must
employ emergency shutdown procedures if necessary. To meet the deadlines
of the processes, the scheduler has to be told about the deadlines, there are
constraints on the possible interdependencies of the running processes, and
system resources are often under-utilized because the system must allocate
them with regard to worst-case utilization. Also, there are few opportunities
(if any) of running other processes once the system is running.

Clearly, in most problems involving the processing of multimedia data,
an occasional deadline miss isn’t catastrophic. In fact, it might not even be
noticeable to the user of the system. The use of hard real-time systems for
such problems would work, but the computer resources would be very under-
utilized. The system would also most likely have to be dedicated to running
only that job, and the user would have to reconfigure the entire system if
some deadline should change.

To accommodate problems where there are timing constraints that need
to be met most of the time, but where an occasional deadline miss isn’t
catastrophic, some operating systems have support for so called soft real-
time scheduling. There doesn’t seem to be any consensus to what exactly
soft real-time scheduling is, other than that it doesn’t give any guarantees
as to deadlines always being met. They also favor some processes (the ones
with the timing constraints) over other processes.

The benefits of using soft real-time operating systems are many. A node
can be set up with some processes scheduled for soft real-time constraints.
While these processes are running, it can run other processes that don’t have
any particular timing constraints'®. Since this setup is unintrusive!! from
the point of view of other processes running on that node, a system can be
distributed in a network where that network isn’t dedicated to that particular
system. Most soft real-time systems also have the possibility of reconfiguring
the soft real-time scheduling dynamically!2.

10The majority of programs are of this type
HExcept that it consumes resources on the node
126.g. by adjusting the priority of the process

14

Chapter 3

Overview of UNIX and Linux

3.1 Introduction

About three decades ago, powerful computer systems were rather expensive
machines that were mostly found in government institutions and industrial
research facilities. The operating systems for these systems were written
with the understanding that the computing resources were scarce and that
the resources would have to be shared among the different people using them.
Therefore, it made sense to share the powerful and expensive machines among
many users in so called timesharing ! systems.

During the late 1980’s and early 1990’s, workstation computers? and later
personal computers reached a level of performance and low cost that made
it feasible to let each user have a workstation at his exclusive disposal while
working a less resource-consuming work, while still having more powerful
machines available for more resource-intensive tasks and for central admin-
istration.

This situation has not really changed that much in the last 10 years. It is
true that there are now a lot of wireless networks available?, and people have
very powerful laptop PC’s at their disposal. But the situation is still that one
has a relatively powerful PC at ones disposal, and that one is (sometimes)
connected to more powerful machines via some network.

In academia, one of the most popular operating system that is in use today
is UNIX, or to be more precise, one of several UNIX-like system. The UNIX
system was developed in 1969 by Dennis Ritchie, Ken Thompson, Doug

Ithe difference between timesharing and multitasking is that timesharing is multitask-
ing for multiple users

23 computer designed to be used by one person at a time with good processing power
and high performance graphics

3which creates some new challenges

15

Mecllroy and Rudd Canaday. It became very popular in universities and some
companies, and was extended and changed in many ways by many people
and businesses, until there were several different variants available. Some
of these variants are still in use and are popular today*. More information
about the history of these systems can be found at [MBKQ96] and http:
//en.wikipedia.org/wiki/UNIX.

Despite the trend of PC’s instead of time-shared servers, when UNIX runs
on a PC it is still in many ways in “timesharing mode”. This is partly due
to the fact that hardware improves much more rapidly than software, but
mostly due to the fact that most users don’t mind running a well designed
“server” OS on their PCs.

The situation becomes somewhat different when users want to run mul-
timedia jobs on their PC’s. But to understand the kind of changes that
are needed for multimedia work, it is necessary to know what UNIX-like
systems traditionally have done with regard to allocating resources to jobs.
This chapter will investigate the strategies taken towards CPU scheduling
in UNIX and some popular descendants (the BSD’s) and the UNIX clone
Linux. Figure 3.1°, shows the history of some of the descendants of Unix. A
more detailed chart can be found in [MBKQ96].

The UNIX CPU scheduler is also interesting because it lays the founda-
tion for many of the concepts and features found in practically all modern
UNIX-like operating systems. Also, it is interesting to note that most of the
problems and solutions that are discussed in [Bac90] are still relevant today.

3.2 CPU scheduling in UNIX

There isn’t really any standard that defines CPU scheduling under UNIX, but
the description in [Bac90] comes close. Also, the description in [Lio96] gives
many useful insights into how the original UNIX operating system behaved
and was designed, even though it describes an older version (6th edition) of
UNIX than [Bac90] does. A very high-level and brief description is also given
in [ThoT8§].

From now on, the scheduler as described in [Bac90] will be referred to
simply as “the UNIX scheduler”, while the CPU scheduler used in Linux 2.6
will be called “the Linux scheduler”. Important differences and similarities
between the two schedulers will be noted where appropriate.

4One common commercial variant is Solaris by Sun Microsystems. Another one is
MacOS X
Staken from http://en.wikipedia.org/wiki/Image:Unix.svg

16

Time
18970 1980 1990 2000 i
FreeBsSD 5.4
: NetBSD 2.0.2)
BSD Family |
OpenBSD 37|

—a=| BSD (Berkeley Software Distribution)
BI Joy — ——— - —
It._mgzo_m (Stanford ca_ﬁaﬁ.m Solaris (SUN) E_
Darwin >
NextStep _w.m_|_
v 1._ — : MacOS X 4
Xenix OS
1Croso

GNU/Hurd 0.2
—z
Minix Linus Torvalds 2.0.2
p.__aﬁm_.._"_ Tanenbaum -

Unix Time-Sharing System (Bell Labs) Ho_

Ken Thompson :
Dennis Ritchie (C Language)) _ HP-UX 11i d._ﬁm_
|.v._ AIX (IBM) 5L _
i UnixWare (Univel/SCO) :.a_
- |RIX (SGI) 6.5

System Il & V Family

Figure 3.1: Chart showing the evolution of some descendants of UNIX

17

The choice of memory management for processes affects the kind of states
a process can be in, and thus affect the decisions made by the CPU scheduler.
UNIX used swapping as its memory management technique for processes at
first, but later most implementations switched over to demand paging for
their process memory management®. This is the memory management tech-
nique that most of today’s machines support and that the various descen-
dants of UNIX use. It is generally seen as being superior to swapping. One
particular advantage is that it makes it possible to run processes that have
a memory image that is larger that the physical memory available.

3.2.1 Swapping

When UNIX was invented, machines had very limited resources compared to
todays computers. Since memory was a very scarce resource’, the code and
data for a typical process would consume a significant portion of memory (on
the PDP-118, a process could take up to 64KB).

UNIX solved the problem of multitasking on such computers by loading
entire processes into memory as they became runnable and sharing the CPU
between these processes. When there were more runnable processes than
there was available memory (a normal situation back then), after running
the in-memory processes for a while, UNIX would choose a process to throw
out, then write the memory image” of that process to a portion of secondary
storage set aside for this purpose (the so-called swap space), and use the
now free memory to load a new process into memory. This technique is
appropriate when memory is scarce, and is still used in such situations by
UNIX-like systems (see [MBKQO96]).

The process of swapping is very expensive, since it has to work a disk
speeds. Therefore, whether a process is swapped in (in memory) or not is an
important factor that the UNIX scheduler takes into account when choosing
which process to run next. Swapped out processes will not be chosen, since
they cannot run from swap space.

3.2.2 Timing: ticks

A very important mechanism that interacts with the way processes are sched-
uled in UNIX is a hardware timer generating interrupts at a constant rate.

6The Berkeley Software Distribution version 4.0 was the first major implementation of
UNIX to use demand paging instead of swapping

"memories on these computers was measured in kilobytes

8one of the first machines UNIX ran on

9this is a bit of a oversimplification, but sufficiently accurate in this context

18

Whenever the timer interrupt occurs, the CPU goes into kernel mode and
after doing some time bookkeeping, follows the step describes in “After an
interrupt has been handled” in 3.2.3. This timer interrupt is always gener-
ated and is what makes the system “preempt processes”!?. The exact rate
of the interrupt can vary, but a rate of about 50H z or 60H z was common®!.
The clock interrupt has the highest priority of all interrupts in the system.
Each occurrence of the timer interrupt is called a “clock tick” or simply a

“tick”.

3.2.3 The CPU scheduling algorithm

The UNIX scheduler is a round robin scheduler with multilevel feedback, which
basically means that it schedules processes by repeating these steps[Bac90]:

1. Pick a process to run from one of several priority queues.
2. Transfer control to it.
3. Preempt the process in one of the cases mentioned in 3.2.3.

4. Feed the preempted process back into one of the priority queues (thus
rescheduling the process).

The UNIX scheduler determines which process is picked to run next by
assigning a priority to each process and choosing the one with the highest
priority. Processes which have the same priority are scheduled in round-robin
order, so that the one that has been waiting the longest for the CPU gets
chosen first (to avoid starvation). If no process is ready to run the system
puts the machine in a “idle state” (how this happens is of course hardware-
dependent), and waits for the next tick to wake it up (unless a different kind
of interrupt wakes it up first).

The decision about which process should get control of the CPU is taken
whenever a process is about to leave kernel mode and is going to continue
execution in user mode. Before control is transferred to user-space code, a
rescheduling flag (called “runrun” in [Lio96]) is checked. If it is set, then
all the “ready to run” processes are examined and the one with the highest
priority is given control of the CPU. Specifically, this happens in one of the
following situations:

Oforcibly taking away CPU control from a process
1 According to [Lio96], this choice was dependent on the power supply

19

After an interrupt has been handled

When some interrupt has happened, control is transferred to the next
highest priority process!?. The previously running process is still in a
“ready to run” state.

The currently running process sleeps

The currently running process needs to wait for some resource to be-
come available, for some slow operation to complete or for some event
to occur. This happens when a process makes a system call. The pro-
cess changes state from “ready to run” to one of the sleeping states.
Control is transferred to the next highest priority process.

A higher priority process is ready to run

A clock tick interrupt has occurred and the currently running process is
ready to resume execution in user mode. During this time, if a process
with a higher priority is ready to run, control will be transferred to it.
The process that had control stays in a “ready to run” state. According
to [Li0o96], this is done by checking a flag before resuming execution in
user mode. If the flag (“runrun”) is set, then the code to find the next
highest priority process is executed. According to [Bac90], this is done
in the interest of fairness.

When the currently running process exits

The currently running process has decided that it is done and has called
exit(2).

In this way, a process will always be ready to run whenever it can make
any progress, and thus be a candidate for getting control of the CPU. But
if there are higher priority processes that are ready to run, they will always
get control of the CPU instead. Therefore, the priority of each process needs
to be changed over time in order to avoid starvation and ensure some degree
of fairness. This is done once every second (or after about 50 or 60 ticks) as
shown in equation 3.4.

Notice that processes are not explicitly given CPU time, but that they are
given execution time implicitly by the continuous adjustment of priorities. At
every tick, the kernel will increment a per-process value as shown in equation
3.1 (in [Li096], it is called p_cpu and lives in struct proc). In this way, the
kernel counts the number of ticks “used” by a particular process.

2there can be more than one — it could also be the same one; in that case it would be
given back control of the CPU

20

CPU_USAGECtick = CPU_USAGECsick—1 + 1 (3.1)

Once every second (which will from now be called the “period”!3), cpu_usage
for all processes is updated as shown in equation 3.2. This rewards inactive
processes, because they will have their priorities raised in every period. This
also avoids starvation, because equation 3.2 gives rise to a geometric sequence
(see 3.3) that exponentially decays toward 0. So a “starving” process with
nice = 0 will eventually be given priority = base_priority (user-level 0),
and since processes at equal priority are run in a round-robin fashion, it is
guaranteed to eventually take control of the CPU.

CPU_USAGEperiod—1
2

(3.2)

CPU-USAGCperiod =

cpu_usage
{ 2pe7"iod }

(3.3)

After cpu_usage has been decayed, the priorities of all processes that are
ready to run are recalculated as shown in equation 3.4. This has the effect
that processes that use many ticks have their priority lowered.

priority = min(127, (cpu_usageperiod + base_priority + nice)) (3.4)

The base_priority of equation 3.4 is an offset that ensures that the priority
of a process never goes below “user level 07, or above the thick line separating
user level and kernel level priorities in figure 3.2.3.

Figure 3.2.3 illustrates the priority queues in UNIX rather well'®. The
processes in the queues above the thick line are assigned priorities statically.
They came to be in one of these queues because they needed to sleep while

in kernel mode.

3.3 Linux: a UNIX clone

Linux is a clone of UNIX created!® by Linus Torvalds and developed with
substantial help from others. While it is not a descendant of UNIX its design
1s taken from UNIX. It is being actively developed today, and runs on many
different machines. It is the system that will be studied in this paper.

13The authors own terminology

Y“processes with nice > 0 can (in theory) starve forever
151t is redrawn from a figure in [Bac90]

16the first version appeared in 1991

21

Highest priority

Swapper

Waiting for disk 10

In uninterruptible sleep

Waiting for buffer

Waiting for Inode

Waiting for terminal input

In interruptible sleep Waiting for terminal output

Waiting for child exit } } }

User level 0

User level 1 1 I |

User level 2

User level 3 } | } —

Preempted

User level 125 —]

User level 126

User level 127

Lowest priority

Figure 3.2: Process priority queues in UNIX

22

3.3.1 Linux and version numbers

Presently, the version numbers for Linux kernels follow this pattern: W.X.Y.Z.
W is the kernel version, X is the patchlevel (also called the major revision
number) , Y is the sublevel (also called the minor revision number). The
kernel version number changes very rarely. The minor revision number is
changed when new drivers or features are implemented. The extraversion
(Z), is incremented when the nature of the changes are bugfixes or security
patches.

Sometimes the extraversion has a string of the form “-string” appended
to it. These letters can have various meanings, but usually identify some
independently developed branch!'” of the kernel source. These branches are
often made to evaluate experimental features or test new code. Sometimes,
code from a branch is accepted into the kernel that Linus Torvalds maintains,
and thus ends up being part of the “official” kernel.

Some Linux distributions maintain the kernel they use in their distribu-
tions — effectively making their own branch. Therefore, the kernels that Linus
Torvalds releases are often referred to as “vanilla” kernels. Sometimes, the
kernels released by Torvalds are also called the “mainline”.

It is customary to refer to a specific series with the kernel version and
major revision number only, as in “W.X".

At this time, the 2.6 series of the kernel is released in a couple of versions:

13

A stable release

This is a version of the kernel that is tested and deemed stable enough
to be of interest to most users. It has a version number as described
above

A prepatch release

This is a set of kernel patches that are being actively tested. Some of
these releases have the string “-rcX” (where X is a number) appended to
the extraversion. This is a so-called “release candidate”, which means
that if it is turns out to be in good condition, it will become the next
stable release.

3.4 Linux 2.4

The Linux 2.4 is a series that started in January 2001, and is being used to
this day. It is mature and can run on a lot of different hardware. It is still

17also called a fork

23

being maintained, but no longer developed. Only bug and security fixes are
added. The Linux 2.4 kernel has a number of notable features'® that are not
found in UNIX, and are not commonly found in UNIX-like systems:

Symmetrical MultiProcessor support (SMP)

The kernel can make use of and run threads on all the CPU’s in a
Symmetrical MultiProcessor system®.

Loadable kernel modules

The kernel can load new code into the address space of the kernel while
running. This code will run in kernel mode, and can call on other kernel
code, just as if it was compiled into the kernel itself. In some cases, it
is also possible for the kernel to unload previously loaded code. The
loading and unloading of modules can be done by “root” via userspace
tools.

kernel support for user threads

Threads in a user application are schedulable entities i a 1-1 (1 kernel
entity per process thread) scheduling model. This is superior®® to sys-
tems that only offer threads as user-space libraries, because in a 1-1
system, a thread can perform a blocking system call without affecting
the progress of other threads in the same process.

The Linux kernel calls all schedulable entities “tasks”. A tasks can
have an address space for itself - such tasks is a “process”. Tasks can
also share an address space, in which case they are called “threads”.
Figure 3.4 illustrates how this works for a single-CPU system. In this
case, process 1 has two threads, while process 2 has only one thread.
To the kernel, it does not usually matter if a task plays the role of one
of several threads in userspace or if it plays the role of the lone “thread”
of a traditional process.

Some of these features affect the way the CPU scheduler works. Support
for SMP has a profound effect on the kernel code and the synchronization
primitives used. Thread support in the kernel also affects many design deci-

sions?!.

¥Many of the features mentioned were available in Linux 2.2 as well

9hasically, a machine with several identical CPU’s that share the bus

20Some people claim that it is also better than a M-N model. See
http://people.redhat.com/drepper/glibcthreads.html for an opinion on this subject

21For example, should each thread have its own unique ID?

24

Process 1 Process 2

User mode

|
|
} Kernel mode
|
|

CPU Userspace thread

Figure 3.3: Linux 1-1 thread scheduling model

25

3.5 Linux 2.6

The Linux 2.6 kernel series has added a number of features and made signif-
icant changes to the way things are done internally in the kernel.

3.5.1 The scheduler is O(1)

This means that evey single time the scheduler runs, its operation has an
upper bound that is a constant. In older versions of Linux, several routines
in the scheduler had a running time bounded by O(n), where n could be the
numbner of tasks on the system. For example after all tasks had used up
their timeslice, all of the tasks (running or not), would be examined so that
their (goodness(), i.e. priority could be recalculated). Now, the execution of
the scheduler must be bounded by (hopefully small) constant.

3.6 System calls related to scheduling in Linux

The Linux kernel provides system calls related to scheduling as described in
3.6.1. Some of these system call are used in the program 4.2

3.6.1 System calls related to scheduling

getpriority ()
Get the nice value for a process, process group or user.

setpriority ()
Sets the nice value for a process, process group or user.

nice()
Increment or decrement the nice value of a process.

sched_getparam()
Get the scheduling parameters for a process. The interpretation of the
parameters depends on whether the process is in the SCHED_FIFO,
SCHED_RR or SCHED_OTHER scheduling policy.

sched_setparam()
Sets the scheduling parameters for a process. The interpretation of the
parameters depends on whether the process is in the SCHED_FIFO,
SCHED_RR or SCHED_OTHER scheduling policy.

26

sched_getscheduler ()
Gets the scheduling policy and scheduling parameters for a process.

sched _setscheduler ()
Gets the scheduling policy and scheduling parameters for a process.

sched_get_priority_min ()
Gets the minimum priority value for a given scheduling policy.

sched_get_priority_max()
Gets the maximum priority value for a given scheduling policy.

sched_rr_get_interval ()
Returns information about the timeslice for a specified process that is
running under the SCHED_RR scheduling policy.

sched_yield ()
The calling task gives up the processor. It is placed last in the queue
corresponding to its static priority.

sched_getaffinity ()
Get the CPU affinity mask for a specified task. The affinity mask is a
bitmask that determines which CPUs the scheduler should be allowed
to schedule the task on (so called “hard processor affinity”).

sched _setaffinty ()
Set the CPU affinity mask.

3.7 Priorities — From the user level

The Linux user can affect the scheduling of a task®? by adjusting its priority.
The process priority concept in Linux comes from UNIX, and is called nice
value. The nice value a task can take on (also sometimes referred to as
“priority”), are values in [—20, 19] — a range of 40 values, where -20 is most
important (least nice) and 19 is least important (nicest). The default nice
value is 0. The larger the value, the “nicer” the task is. FExactly what a
nice value is, is left up to the particular operating system, as long as tasks
with a smaller nice value are deemed more important than those with larger
values. I'll use the term “nice value” instead of “priority”, since there are so

22Gince the Linux scheduler treats threads and processes more or less the same, I'll
use the term task to mean either process or thread. When there is need to differentiate
between the two, I’ll use the terms process and thread explicitly

27

many different (unrelated) things which are called “priority” in Linux and
since nice values as a term is much more intuitive than when viewed as a
priority value — a value of -10 is obviously not as nice as one of 12. The nice
value of a process can be set initially with the user command nice(1) and
changed while it is running with renice(1). These programs use the system
calls getpriority(2) and setpriority(2) to do this.

The book [Gal95] claims that nice values are inefficient for real time pro-
gramming. This may be true, but there’s no discussion of its appropriateness
for soft real-time work.

In addition to the vague concept of nice values, Linux also implements
two additional scheduling policies that are specified by the POSIX.4 stan-
dard - SCHED_FIFO (queue) and SCHED_RR (round robin). POSIX.4 also
has the SCHED_OTHER scheduler, which is usually just a synonym for the
“standard” time sharing scheduler — typically with nice values.

Both SCHED _FIFO and SCHED_RR give a scale of at least 32 priority
values. The programmer can get hold of the maximum and minimum values
in this range with the calls sched_get_priority_max(2) (most important) and
sched_get_priority_-min(2) (least important).

3.8 Linux soft-RT

The 2.6 series of the Linux kernel has support for soft real-time scheduling
of processes using the POSIX.1b%* API?4. Basically, Linux divides tasks into
three categories:

SCHED _FIFO Processes in this category are only preempted by higher
priority processes, when blocking on I/O or when voluntarily giving up
the processor?”. No time-slicing is performed.

SCHED _RR This category is like SCHED _FIFO, except that time-slicing
is done.

SCHED _OTHER The default scheduling policy of Linux. It favors 1/0O
bound (interactive) processes to some degree. It implement the tradi-
tional UNIX scheduling (nice values).

From now on, we will refer to POSIX.1b as POSIX.42%.

23formerly known as POSIX.4

24the sched_setscheduler(2) man-page describes the scheme used by Linux
Zhy calling sched _yield()

26hecause it is easier to type

28

3.8.1 Preemptible kernel

One notable change is that the kernel itself, and not only processes, should be
preemptible. In the older 2.4 series, code in the kernel could call a function
called cli()*” to make sure that no other interrupt handlers on this or any
other CPU could run until a corresponding sti() function was called. In this
way, one could make a critical region for shared data, but with very high
overhead. The mechanism corresponds to having a global lock. This is a
very coarse synchronization mechanism, since even code that in no way is
manipulating the data in question has to wait until the “lock” is released
(the interrupts are enabled).

All of this has been done away with. Now, to protect data against concur-
rent access?®, one needs to use one of many blocking synchronization mech-
anisms that exist in Linux (like various types of semaphores), and in code
where blocking isn’t allowed, one must use spinlocks and exercise control over
interrupts. These two mechanisms are now explained further:

Spinlocks

Spinlocks are a form of locks. As any other locking mechanism, this
means that only one flow of control can ever “hold the lock”, and
all other flows must wait until the holder releases it to have a chance
of getting to “hold the lock”. In many locking implementations for
operating systems made for Single CPU systems, the flows of control
that don’t get the lock, simply get blocked (stop running) until the
lock is released. This makes perfect sense on these systems, because
the flows of control that dont have the lock, cannot make progress until
it is released by the holder. Furthermore, on a single CPU system,
there is only one physical flow of control®, the notion of more than
one such flow is simulated by context switching. So it makes sense to
only simulate the flow that can make progress (the holder of the lock).

On SMP systems, the situation is different. On such systems, there are
several physical flows of control (one per CPU). To make an efficient
system, the operations that need to be made atomic, should be as few
as possible. This means that the critical region for some lock is typically
very short (a couple of instructions). Also, a situation where more than
one physical flow of control wants to execute these instructions at the

2Tthis function (and the corresponding sti() function are named after specific x86 as-
sembler instructions; they work differently, though

28this is an important synchronization principle: “protect data, not code”

29The author’s own terminology — It simply means any instance of code being executed,
no matter what context

29

same time is quite infrequent. Therefore, it will pay off for the physical
flows that don’t get the lock to simply spin in a tight loop and try to
get the lock. This will whaste some CPU cycles, but since the holder
will try to release the lock as soon as it can, it will usually be fewer
cycles than would be wasted if the flow was put to sleep. Putting a
flow to sleep (i.e. context switching and placing it on some queue) can
be quite expensive. Also, when the flow of control is revived (because
the lock was released), the cache on the CPU it is running on is most
likely no longer hot, so it will execute slower for a while. This topic is
discussed further in great detail in [Sch94].

Control over local interrupts

In Linux, the term “local” is used when referring to something that
exist on the particular CPU that some code is executing on. So calling
a function to disable a “local interrupt” means disabling an interrupt
on the CPU that the function is executing on. This is totally unrelated
to the same function executing on a different CPU (which would disable
the interrupt in question on that CPU).

Disabling all of the local interrupts is a way to make sure that the
CPU is only executing on behalf of one context (simulating one flow of
control) as long as the interrupts are disabled. Since the CPU cannot
context switch, the only thing that can mess things up is a flow of
control coming from another CPU. As explained before, this can be
dealt with by using spinlocks. Since disabling interrupts makes that
CPU unable to process them, this technique cannot be used often and
for long periods of time.

There are many other synchronization mechanisms in Linux, but most
of them are variations on blocking semaphores, hardware enforced order-

ing barriers and atomic operations on data. These are discussed further in
[Lov05].

3.8.2 Interrupts

Kernel control paths that are created to service interrupts may be arbitrarily
nested in Linux. This is illustrated in figure 3.8.3.
In Linux, the interrupt handler can be configured to use:

The kernel-mode stack

The interrupt handler can use the kernel-mode stack of the process that
just happened to have the CPU that the interrupt was sent to when
the interrupt occurred.

30

A per-CPU interrupt stack

The interrupt handler can use a stack that is separate from all other
kernel-mode stacks. Each CPU will have one such stack that is exclu-
sively used for interrupts.

Either way, the stack that the interrupt handler(s) run on are quite small
(typically 4 or 8 KB in size), and since the interrupt handlers can nest, it
is imperative that the interrupt handlers use as little stack as possible. The
reason why the stacks are so small is that each task must have one such
kernel-level stack, and this stack must always stay in memory and cannot be
paged out to swapspace. Now, 8 KB doesn’t seem like a lot of memory, but if
a system has, lets say, 10243 tasks (which is large, but not unthinkable, espe-
cially if there are many multithreaded programs running at the same time),
the memory requirements for just the kernel-level stacks is 8MB. Whether
all of these tasks are running or not is irrelevant, because even tasks that
sleep most of the time will have this block of memory resident at all time.
Therefore, the option of using a separate interrupt stack was introduced.

The decision of using the task’s kernel-mode stack for interrupts has some
consequences. One is that an interrupt handler cannot block (and thereby
schedule some other task) in any way, since the data to restore (due to the
nested control paths) is on the kernel stack of the current task. Therefore, the
current task must not change until all interrupt processing has finished and
the outermost interrupt handler is ready to resume the userspace execution
of the current task. For the same reason, the delivery of signals to a task
must wait until the kernel is ready to go back to user mode (see the arrow
in figure 3.8.3). The system needs to know if it has reached nesting level 0
when returning from an interrupt handler. It does this by keeping count of
which level it has reached at any given moment in the current task.

The nesting of control paths is allowed to improve performance, since
the hardware issuing the interrupt and the interrupt controller wait until
the CPU acknowledges the interrupt (while the interrupt handler is running,
new signals on the IRQ line it services are ignored — which could come from
other devices sharing the line). Therfore, the interrupt handler must reenable
interrupts at the earliest possible moment.

3.8.3 Interrupt responses

Based on the appropriate response to an interrupt, one can classify where
the response should be executed.

30an arbitrarily chosen number

31

Possible scheduling and signaling point
g Interruptw 9 9 9P

User mode

Kernel model

Nesting level 0 w Interrupt x w Interrupt z w
Nesting level 1 x Interrupt y X 2
Time
Nesting level 2 y e
Figure 3.4: Nested interrupt invocations in Linux 2.6
Critical

Acknowledging the interrup controller, reprogramming the interrupt
controller, updating data structures shared between interrupting device
and CPU. All of these are critical and must be done immediately in
the handler itself with local interrupts disabled.

Noncritical
Updating data structures that are only used bu the CPU. Must also
complete quickly. Runs within the handler with interrupts enabled.
Deferrable

Copying data from kernel space to user space (run in Softirq’s and
Tasklets)

The interrupt controllers never have their priority values raised or lowered,
which means that the kernel will handle any kind of interrupt all the time
(except when all interrupts are temporarily off). A kernel thread kirqd, tries
to balance interrupts onto CPU’s.

32

Chapter 4

Real-time and Linux

4.1 Introduction

As mentioned earlier, the UNIX operating system didn’t have any kind of
real-time features (soft or hard). Various people and businesses have added
real-time or real-time like features to various variants of UNIX. Most of these
are no longer being used, because a standard for what features a UNIX-like
system should have is given in the various POSIX standards. One of these
standards, POSIX.4, deals with soft real-time features. The book [Gal95]
discusses this standard in great detail.

4.2 Standard: POSIX.4 — Soft Real-time

This standard is a API for C programs, and it specifies the prototypes for
functions, related datatypes and constants. It fits well with the rest of the
POSIX standards and UNIX in general.

The idea is that if one writes a program that uses some of this func-
tionality, then one can recompile the program on a different system which
also supports POSIX .4, ideally without having to change the code at all. In
reality, code may have to be changes somewhat, and not all features of the
standard are supported equally well on all platforms. It is not a complete
standard in the sense that to create substantial programs, one will often have
to rely on mechanisms it doesn’t have.

Even so, it is still a useful basis on which to build programs.

To get an idea of what POSIX.4 offers to programmers, here is a simple
program written by the author, which displays the range of priorities available
to processes in the scheduling classes given in POSIX.4. It was written
because its output was needed when choosing a priority for the video playback

33

application in the test cases. The program is shown in 4.2.

4.3 Why Linux?

It could be argued that this paper is too Linux-centric, and that it should also
have studied the (soft) real-time features offered by other operating systems.
What follows is an explanation of why Linux was chosen.

4.3.1 Source code availability

The source code for the entire system is readily available on the Internet.
This includes the kernel and all programs necessary to build new kernels.

Source code for all programs that run ot top of the kernel is also avail-
able. Although there does exist proprietary software (that comes without
source code) for Linux, it is perfectly normal to not have any such programs
installed. The same is mostly true of device drivers for the kernel. Only in
some rare cases is there a need to use a proprietary driver.

This might not seem like a big deal, but this is a very valuable feature
for programmers and students who want to study the code Another bonus is
that development tools for making userspace applications are also available,
in source code.

4.3.2 Multimedia and RT: several projects

Another reason for choosing Linux was that there are several interesting
projects relating to soft real-time processes and multimedia that are being
actively developed for it. Some of these could even become a part of standard
Linux.

4.4 About patchsets

Since the code for Linux is so accessible to anyone, there exist many exten-
sions for it. These are typically called patchsets, because they are distributes
as sets of “patches”.

34

#define

#include
#include
#include
#include

_GNU_SOURCE

<stdio.h>
<err.h>
<stdlib.h>
<sched.h>

#define NELEM(a) (sizeof(a) / sizeof(xa))

int main(int argc, char *argv[])

{

struct { int value; char #*name; } priority_policy[] =
{ { SCHED_FIFO, "SCHED_FIFQ" },
{ SCHED_RR, "SCHED_RR" 1},
{ SCHED_OTHER, "SCHED_OTHER" 1},
{ SCHED_BATCH, "SCHED_BATCH" } };

int i, min, max;

printf ("policy\t\tmin/lowest\tmax/highest\n");

for (i =0; i<

NELEM(priority_policy); i++) {

min = sched_get_priority_min(priority_policyl[i].value);

if (min

}

= -1) {

warnx ("unable to get minimum priority for policy: %s",
priority_policy[i] .name);

continue;

max = sched_get_priority_max(priority_policyl[i].value);

if (max

}
printf ("

= -1) {

warnx ("unable to get maximum priority for policy: %s",
priority_policy[i] .name);

continue;

hs\t\t%4d\t%kd\n", priority_policyl[i].name, min, max);

return EXIT_SUCCESS;

35

4.4.1 Patches

Traditionally, changes to the kernel source code has been made available via
files that are created by the patch(1)! program.

The basic principle behind this program is that one in general can create
a textual recipe of how to turn one text file into another. Such a recipe is
generated by the companion program, called dif f(1). Its input is (usually)
two texts, and its output is the recipe, called a “dift”. This is typically the
file that is distributed. If one has a “diff” and one of the original files, one
can use them with the patch program to generate the other original file. So if
a developer makes a change to some code (let’s say its the Linux kernel), then
for each modified file, he can generate a “diff” by giving patch the original
files and his updated version. Then he can distribute these “diffs’ . People
can get his changes into their source code by downloading his “diffs”, and
using them with patch and the original files (which they have) to get his
changes. It is also possible to make a “diff” that spans many files. Such a
diff is generated by giving diff two file trees with text files to compare. The
resulting diff is one file that can transform one of the trees into the other.

IThis notation is the standard way to refer to documentation in UNIX. The number in
parenthesis means that documentation for “patch” can be found in section 1 of the UNIX
manual (1 is user commands)

36

Chapter 5

The projects

In this paper, the following solutions were chosen as cases to test and study.
When examining the vast number of solution available on the Internet, there
were not that many that fulfilled all of the criteria given in this paper. The
three project that were selected were picked because they fulfilled all of them.
After some preliminary testing, they all seemed like possible solutions to the
problem at hand. Finally, one additional solution was “generated” by the
author of this paper.

5.1 Vanilla Linux

This is the “standard” (a.k.a. “Vanilla”) Linux kernel that can be down-
loaded from http://www.kernel.org/. The features in this kernel that
we are most interested in testing is the CPU scheduler and its support for
POSIX.4 soft real-time scheduling classes.

Most Linux distributions come with pre-compiled kernels. For the testing
done in this paper, there is a need to compile custom kernels. Since there are
plenty of good instructions on the Internet and in books like [Lov05] on how
to do this, this paper will only specify the configuration parameters used for
each kernel.

A kernel configuration file is quite long. Therefore, the configuration file
for Linux 2.6.18 has been put into appendix A.

Since the other projects are based on this kernel, space has been saved
by only listing the configuration settings that it each project adds, changes
or removes with regard to the configuration found in appendix A, from now
on called the “base config”.

Please note that such a configuration is taylored to a particular PC and its
hardware. Some of the settings will need to be changed to run on a different

37

PC. Which settings this applies to should be fairly obvious from context.

Some features were left out because they are not supported by all the
projects (e.g. Power Managment doesn’t work in rt-preempt) and because
they are not relevant to the workload.

5.2 Linux with rt-preempt

This is a experimental kernel that aims to give Linux hard real-time capa-
bilities by making the kernel as preemptible as possible, thereby reducing
latencies to a minimum. Also, all interrupts and software interrupts (softirqs
and tasklets) are handled by kernel-threads instead. It also incorporates high-
resolution timers that are supported via the system calls for nanosleep(), the
interval timers (getitimer() and setitimer()) and POSIX timers. It is being
developed by some very experienced and capable Linux kernel developers. It
is distributed as a patch to the vanilla Linux kernel.

5.2.1 Configuration of rt-preempt
Uses the base config and the following settings:

e CONFIG_HIGH_RES_TIMERS yes
e CONFIG_NO_HZ yes

e CONFIG_.PREEMPT_RT yes

e CONFIG_.PREEMPT _RCU yes

e CONFIG_VMSPLIT_3G yes

e GENERIC_TIME_VSYSCALL no (since ntp isn’t relevant for this pa-
per)

e CONFIG_BLOCKER yes (in case we want to run pi_test suite)
e CONFIG.-WAKEUP_TIMING yes
e CONFIG.WAKEUP_LATENCT_HIST yes (interesting feature)

These generate warning about increasing overhead and latencies at bootup,
so for our testing purposes they should be disabled.

e CRITICAL_.PREEMPT_TIMING

38

e CONFIG_PREEMPT_OFF_HIST

e CONFIG_CRITICAL_IRQSOFF_TIMING
e CONFIG_INTERRUPT_OFF_HIST

e CONFIG_LATENCY_TRACE

The version used in this paper was: patch-2.6.18-rt7.

5.3 Linux with Class-based Resource Kernel
Management

This project has as its goal to allows root to define classes of applications,
and then allocate resources, such as CPU, memory pages, and disk bandwith.
The project has been in development for over 3 years, and has been
considered for inclusion in mainline Linux.
In the current version (f0.8-2.6.18, the one used in this paper), there is
support for:

e allocating CPU
e limiting the number of tasks a group can spawn
e limiting the rate of calls to fork() that a group can do

e control the numbner of LRU pages used by a group

In this paper, only the CPU allocation feature will be explored.

5.3.1 Class configuration

The CKRM system uses the relatively new configfs special file system (in
Linx since 2.6.14) for the configuration of classes. It makes it possible for
userspace programs to change and view kernel configuration data as files.
Hierarchical structuring of the data is provided by the directories of the
“filesystem”. The filesystem doesn’t have any backing store, but is instead
backed by kernel data structures.

For example, in this paper we need a class (a.k.a. resource group) for
the video application. To create it, one simply creates a directory where the
filesystem has been mounted (/config in our case). The kernel responds by
filling it with some “text files”, where each file controls some aspect of the

39

configuration®. These can then be read and manipulated with standard tools
(such as cat and echo). For example, to make a task a member of a resource
group, write its pid into the members file in the directory for the group in
question.

5.3.2 Configuration of ckrm
Uses the base config and the following settings:
e CONFIG_CPU_RC (no way of not selecting in xconfig)
e CONFIG_RES_GROUPS (for obvious reasons)
e CONFIG_RGCS (User interface for resource groups.. needed Y or M)
e CONFIG_RES_.GROUPS_NUMTASKS (resource group that limits num-

ber of tasks in a group)

e CONFIG_RES_GROUPS_MEM _RC (collects info about phys. memory
usage)

e CONFIG_RES_.GROUP_CPU (obviously)

e CONFIG_VMSPLIT_3G (not relevant, but a choice has to be made -
make it same as in rt-preempt)

5.4 Linux with CKRM and rt-preempt

This “project” came to be based on a crazy idea the author of this paper
had. It seemed that both the ckrm and rt-preempt projects were address-
ing different kernel issues relevant to multimedia applications. Low latency
seemed to be beneficial for video playback, but so did CPU reservation.

What if one could have both? This had to be explored. The patches
for ckrm were applied to a vanilla Linux 2.6.18. Then the patches for rt-
preempt. After fixing some very simple rejects?, a bootable and surprisingly
stable kernel was created. The only problems known to the author, is that
it will hang if one tries to put a task into the POSIX.4 scheduling class
SCHED_RR. This isn’t a big problem, since one has ckrm-classes instead
(which are used in the workload).

Uses the base config and the following settings:

IThis is somewhat analogous to “normal” filesystems automatically adding the entries
“” and “..” in every directory
2patch will generate a reject file when a part of a patch cannot be applied cleanly

40

All the settings from the rt-preempt config

All the settings from the ckrm config
CONFIG_INOTIFY (replaces CONFIG_.DNOTIFY) yes
CONFIG_INOTIFY_USER (see CONFIG_INOTIFY) yes

41

Chapter 6

Test cases — workloads

6.1 Introduction

Three different test cases were conceived and run. A program was written
to automate the process and to measure the time elapsed for each run. The
program, called workload, can be found in B!.
Since it was necessary for a human to look and pay attention to the video
that was played back, the video file was shortened to 5 minutes in length?.
Data for the video file (as reported by mplayer):

VIDEO: MPEG1 320x240 (aspect 2) 29.970 fps 2774.0 kbps (346.8 kbyte/s)
AUDIO: 48000 Hz, 2 ch, s16le, 224.0 kbit/14.58% (ratio: 28000->192000)

6.1.1 Actions performed by the workload program

The workload program will:

e Set up resource group if needed.

Start the profiler (OProfile)

Record the starting time

Launch some instances of xboard or cpuhog

e Launch mplayer or xine with special priorities (see below)

e Take down the xboard or cpuhog instances

!Somehow, the program turned out to be really ugly, but it does the job
2this was found to be sufficiently long as to give meaningful results, but not so long as
to bore the human watching it

42

’ ‘ vanilla ‘ rt-preempt ‘ ckrm ‘ ckrm-rt
Top kernel | poll_idle poll_idle poll_idle poll_idle
function (97.9%) (78,4%) (95.7%) (90.6%)
Elapsed time | 301.94s 301.90s 302.67s 301.06s
Top user | gnuchess gnuchess gnuchess gnuchess
prog (78.15%) (74.02%) (78.01%) (74.72%)

Table 6.1: Summary for case 1 — xine

e Record the ending time
e Stop the profiler
e Read and store the profiling data and elapsed time to some files.

For the kernels that support class based resource management (ckrm and
ckrm-rt7), a resource group called “mm” is created, and the video playback
application (mplayer or xine) is placed in it.

For the other kernels (vanilla 2.6.18 and rt-preempt), the video play-
back application (mplayer or xine) is run in the POSIX.4 scheduling class
SCHED_RR with a priority of 99 (the best priority obtainable in Linux for
this scheduling class).

All other programs (xboard or cpuhog) are run without any special prepa-
ration (SCHED_OTHER, nice value 0) in all cases.

6.2 Case 1l:xine/mplayer with xboard

All the kernels were subjected to having one of xine or mplayer and xboard
run together as just described. Xboard was run so that it would play against
itself for 100 matches (a loong time), and The video was watched and notes
about any playback problems were written down. In this case, there were
none. All kernels had no trouble with this test.. The data for case 1 is shown
in tables 6.1 and 6.2. No surprises here. Everything is going smoothly, the
machine is mostly idle.

6.3 Case 2: xine/mplayer with two cpuhogs

All the kernels were run with one of xine or mplayer and two instances of the
program cpuhog (as shown in 7.1). Again, the video was watched and notes
taken. See tables 6.3 and 6.4.

43

‘ vanilla ‘ rt-preempt ‘ ckrm | ckrm-rt
Top kernel | poll.idle poll_idle poll_idle poll_idle
function (97.9%) (68.2%) (94.8%) (88.7%)
Elapsed time | 300.80s 302.34s 303.35s 305.94s
Top user | gnuchess gnuchess gnuchess gnuchess
prog (77.76%) (74.51%) (77.93%) (74.65%)

Table 6.2: Summary for case 1 — mplayer

‘ vanilla | rt-preempt ‘ ckrm | ckrm-rt
Top kernel | poll_idle poll_idle poll_idle poll_idle
function (91.3%) (92.4%) (87.3%) (81.5%)
Elapsed time | 302.46s 301.90s 314.90s 303.45s
Top user | libc-2.4.s0 libc-2.4.s0 libc-2.4.s0 libc-2.4.s0
prog (59.86%) (57.40%) (60.43%) (56.83%)
Second user | cpuhog cpuhog cpuhog cpuhog
prog (19.80%) (18.58%) (19.42%) (19.33%)
Playback Some skip- | OK Some skip- | OK
problems ping ping

Table 6.3: Summary for case 2 — xine

‘ vanilla ‘ rt-preempt ‘ ckrm ‘ ckrm-rt
Top kernel | poll_idle poll_idle poll_idle poll_idle
function (89.7%) (89.1%) (80.5%) (72.3%)
Elapsed time | 432.27s 302.17s 302.54s s
Top user | libc-2.4.s0 libe-2.4.s0 libc-2.4.50 libc-2.4.s0
prog (63.78%) (57.82%) (59.73%) (58.11%)
Second user | cpuhog cpuhog cpuhog cpuhog
prog (21.12%) (19.11%) (19.67%) (18.98%)
Playback Got stuck! OK OK OK
problems

Table 6.4: Summary for case 2 — mplayer

44

‘ ‘ vanilla ‘ rt-preempt ‘ ckrm ‘ ckrm-rt
Top kernel | poll_idle poll_idle poll_idle poll_idle
function (86.5%) (76.8%) (85.1%) (74.3%)
Elapsed time | 307.40s 304.52s 308.10s 305.34s
Top user | libc-2.4.s0 libc-2.4.s0 libc-2.4.s0 libc-2.4.s0
prog (60.57%) (63.71%) (59.27%) (57.92%)
Second user | cpuhog cpuhog cpuhog cpuhog
prog (19.96%) (20.23%) (20.53%) (18.61%)
Playback Skipping Slow choppy | Choppy OK
problems

Table 6.5: Summary for case 3 — xine

‘ ‘ vanilla ‘ rt-preempt ‘ ckrm ‘ ckrm-rt
Top kernel | poll.idle poll_idle poll_idle poll_idle
function (84.7%) (65.9%) (78.7%) (70.3%)
Elapsed time | 184.94s 302.34s 351.79s 301.87s
Top user | libc-2.4.s0 libc-2.4.s0 libc-2.4.s0 libc-2.4.s0
prog (68.57%) (57.86%) (62.11%) (58.16%)
Second user | cpuhog cpuhog cpuhog cpuhog
prog (22.69%) (19.05%) (20.17%) (19.01%)
Playback Stuck! OK Pauses OK
problems

6.4 Case 3: xine/mplayer with three cpuhogs

All the kernels were run with one of xine or mplayer and three instances of
the program cpuhog (as shown in 7.1). Again, the video was watched and

Table 6.6: Summary for case 3 — mplayer

notes taken. See tables 6.5 and 6.6.

45

Chapter 7

Measurements

7.1 Measurement tools

7.1.1 OProfile

The primary measurement tool that was used for the experiments in this
paper was OProfile
Reasons for choosing OProfile!:

Need a profile of an application and its shared libraries

This applies to all of the test cases used in this paper. Mplayer uses a
lot? of shared libraries. If significant amounts of time is spent in one
of the libraries its using, we don’t want the profiling system to miss it.

Need to capture the performance behavior of entire system
This also applies to the test cases. The overall behavior of the system
is also interesting.

Low overhead during sampling

Although all profiling systems will claim to have a low overhead, the
OProfile system really has quite low overhead because it uses built-in
features in the CPU to do the profiling if they are available. Many
inexpensive and very common CPU’s do have these features.

The particular CPU used in this paper is a “Sempron” made by Advanced
Micro Devices (AMD). It is a budget® variant of AMD’s “Athlon” CPU.

Ipoints slightly paraphrased from the OProfile manual
http://oprofile.sourceforge.net /doc/introduction.html

2try this in the shell “ldd ‘which mplayer”

3Basically, it is cheaper and slower than the “Athlon”

46

This processor has a instruction set compatible with the Intel’s x86 series
of processors®. The reason this is even mentioned here is that the kind of
monitoring that can be done with OProfile is dependent on the particular
model of CPU used. This particular CPU works well with OProfile, since it
has the hardware performance counters that OProfile needs.

When OProfile is using the CPU performance counters (as is the case on
the ” Athlon”), one has the opportunity configure the counters. Under normal
operation of OProfile, the counters are loaded with a value. The counter will
then increment for each event it is programmed to trigger on until the count
loaded is reached. When this happens, a Non-maskable interrupt is triggered.
This is rather nice, since it it means that the interrupt will occur even if
the kernel has disabled all local interrupts. The handler will then record
the event. OProfile will record the instruction pointer and and associate a
counter with that pointer. In this way, the counters are used by OProfile
to sample events. OProfile uses the passing of a clock cycle as the default
event to have the count increased, thereby sampling the program counter at
regular intervals (multiples of clock cycles).

The basic operation of OProfile works like this:

Setup
OProfile needs to know about the image of the currently running kernel
if it is to generate correct profiling data for it.

Clean out

The OProfile system will retain old profiling data and add new data to
it by default. Therefore, one needs to perform this step to get a fresh
profile.

Start the sampling

OProfile needs to be told that it must start to sample events. It starts
up oprofiled (the oprofile daemon), that handles the communication
with the oprofile kernel driver.

Start the application to collect data about
The application (or applications) that should be profiled must run.

Stop the sampling
Oprofiled must be told that it is to stop the sampling.

4Probably the worlds most commonly used instruction set. All programs for all PC’s
use it

47

Generate profiles

Now, various profiles can be generated. Currently, OProfile supports a
flat profile (as shown in 7.1.2), annotated source code profile for tasks
(both C and assembler output), and a profile for the kernel (shown in
7.1.3).

7.1.2 A sample flat profile

Here is some sample output from a profile that ran for 1 minute on a lightly
loaded system (only the first 20 lines are shown). The numbers under the
column “samples” are the number of times a non-maskable interrupt hap-
pened while the instruction pointer was inside the “code” named in the third
column. The second column is the ratio of the samples for that line and the
total number of samples made, expressed as a percentage. For code that is
associated with tasks, there is additional output indented below it.

CPU: Athlon, speed 1102.51 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Cycles outside of halt state) with a \
unit mask of 0x00 (No unit mask) count 100000
CPU_CLK_UNHALT. . . |
samples | hl
558267 84.6943 vmlinux-2.6.18
61829 9.3800 libc-2.4.so0
14650 2.2225 libmad.so0.0.2.1
6199 0.9404 libasound.so0.2.0.0
2668 0.3881 emacs.emacs-21
CPU_CLK_UNHALT. . . |
samples| bl
2540 99.2963 emacs.emacs-21
18 0.7037 anon (tgid:5046 range:0xb7f£5b000-0xb7£5c000)
2542 0.3856 oprofiled
CPU_CLK_UNHALT. . . |
samples| 1A
2538 99.8426 oprofiled
4 0.1574 anon (tgid:4933 range:0xb7£67000-0xb7£68000)
2519 0.3822 Xorg
CPU_CLK_UNHALT. . . |
samples | bl

48

2459 97.6181 Xorg
60 2.3819 anon (tgid:4412 range:0xb7£02000-0xb7£03000)
1419 0.2153 1libglib-1.2.50.0.0.10
1325 0.2010 xmms
CPU_CLK_UNHALT. .. |
samples | bl
1219 92.0000 xmms
106 8.0000 anon (tgid:6937 range:0xb7f7c000-0xb7£7d000)

1301 0.1974 libpthread-2.4.so
1075 0.1631 libfb.so

1014 0.1538 1ibX11.s0.6.2.0
820 0.1244 libxaa.so

765 0.1161 libxmmsmad.so

755 0.1145 nv_drv.so

In this case, the Linux kernel was the busiest part of the system (which
is natural for a lightly loaded system). We see that the busiest userspace
component was the ¢ library (which nearly every program uses in some way).
Right in third place is a library called “mad”. The user was listening to
music with xmms (which is listed further down), but it in turn uses the
“mad” library to decode mp3 data. the first task listed is “emacs” (which
the user was running to type this document). The oprofiled is of course also
running, and therefore shows up in the profile.

7.1.3 A sample kernel profile

This is some sample output for a kernel profile. The first column shows the
number of ticks spent in

10137627 total 3.7940

9956907 poll_idle 311153.3438
93609 __do_softirq 650.0625
11489 handle_IRQ_event 119.6771
5057 schedule 2.8733
3637 nv_nic_irq 5.6828
2633 __copy_to_user_11 23.5089
2277 do_select 1.9495
2253 snd_pcm_period_elapsed 3.3527
2181 sysenter_past_esp 18.0248

49

1843 fget_light 10.4716
1807 unix_poll 8.6875
1719 mmx_copy_page 5.9688
1605 do_sys_poll 1.5199
1148 __d_lookup 3.1196
1134 hrtimer_run_queues 3.3750
1080 number 1.3776
1070 run_timer_softirq 2.3060
1064 __link_path_walk 0.2692
1027 __wake_up 10.6979

7.2 Choice of tool

In the context of the problem described here, OProfile seems like the natural
tool to choose. It can take samples anywhere, including inside the kernel and
the shared object file libraries that are dynamically linked into tasks.

It is also capable of identifying samples in a way that makes it easy to
see where in a particular program or library the sample was taken®.

It imposes a low overhead on the system, because it takes advantage of
particular hardware features. The performance counters do have a weakness,
however. Because of the way the performance counters interact with the way
the CPU executes instructions, the samples are not always 100% accurate
The inaccuracy means that a particular sample can sometimes yield an in-
correct program counter (it can miss by a few instructions). This isn’t a
big problem, since the broader picture is usually what one is interested in
anyway, and the sample will most likely still “point” into the right part of
the system.

A disadvantage of OProfile is that it has no notion of tasks. It only keeps
track of where the instruction pointer has been. This means that if there are
several threads that execute the same code, then this will only show up as
higher numbers for that piece of code. There is no easy way to see counts
per thread.

the name of a component is much better than just giving some address in hex

20

7.3 Setup of test environment

7.3.1 Selection of workload

In [Jai91], one argues that it is important to make the synthetic workload
one constructs representative with regard to how the system will be used “in
the field”. In our case, this is somewhat difficult, because most users know
from experience that running a resource-intensive job while a video is being
played back is a bad idea. Consequently, users modify their behavior, and
simply don’t do such things.

It might sound farfetched that users modify their behavior in this way. It
is however not that uncommon. For example, before buffer-underrun protec-
tion® was common in CD-RW drives, people would stop using their computer
while a CD was being recorded”.

Another problem in selecting representative workload is that most pro-
grams that are CPU-intensive are written in a way that makes it relatively
easy for a scheduler to identify them. They will typically use up their times-
lices many times over (often while doing some hefty calculation in a loop).
On the other hand, a process that mostly sleeps, will only intermittently be
in a runnable state, and are therefore not an issue for the scheduler.

In order to test how the schedulers behaves when there is contention
among tasks to use the processor, there is a need to somehow gererate this
“pressure” on the CPU. The way that was chosen for this workload was to
write a program that would try to defy classification by the scheduler, and
thus not loose priority®.

It turned out that constructing a process with this characteristic (con-
stantly being schedulable with a relatively high priority) was quite easy. The
resulting C program is shown in figure 7.1.

Perhaps surprisingly, only three instances were needed to make the com-
puter this test was conducted on seem very slow and unresponsive.

6So called Burn-proof

If they didn’t, they risked making a rather expensive coaster

8As noted earlier, the Linux 2.6 scheduler will mostly try to punish non-interactive
tasks

51

#include <stdlib .h>
#include <time.h>

#define LOOPS 100000
#define ARRAY SIZE 1000

int myrand(void)

{
}

return rand () % ARRAY SIZE;

int main(int argc, char xargv]|])

{
struct timespec sleeptime = { 0, 1000000 };
int data[ARRAYSIZE];
int i;
/%
x We're sleeping and doing some useless work, in the
x hopes of being mistaken for a interactive process.
*/

for (;5) {
for (i = 0; i < LOOPS; i++)

x usless computation that we think the
x compiler cannot optimize away.

*/
data [myrand ()] *= 4++data[myrand ()];
nanosleep (&sleeptime , NULL);

Figure 7.1: The cpuhog program

52

Chapter 8

Conclusion

8.1 Results of the experiments
The tests show that:

The C library is heavily used

The C runtime library is heavily used because the cpuhog uses it. Here
one of the disadvantages of OProfile is shown. One could assume that
most of the time, cpuhog was calling it, and simply add the two per-
centages up.

Comparable treatment of other programs

It doesn’t seem that any implementation favors the multimedia appli-
cation too much. So the only useful guideline is to look at the playback
problems. From that point of view it would seem that ckrm-rt would
be the preferable choice. It has comparable performance and gives a
better viewing experience than the others.

The OS isn’t busy?

This is perhaps the most troubling result. Why is the idle routine in
the kernel (poll_idle()) executed so frequently, when other applications
can’t run to our satisfaction? Is the data simply wrong, or does the
really CPU really call it that often? OProfile is very consistent in this
— every single invocations of it will give you poll_idle at the top.

Being a real-time application doesn’t matter?

This is troubling too. Even a task that has the maximum priority (99)
in the scheduling class SCHED_RR can experience that other normal

23

programs can with a much lower priority can spoil everything (like
cpuhog does). This should not have happened.

Maybe the profile is right, and timeliness and low latency is much more
important for multimedia than everything else, including CPU scheduling.

8.2 Future work

The problems surrounding the real-time piority in SCHED_RR should be
investigated. So should the high count for (poll-idle).

o4

Bibliography

[Bac90]

[Gal95]

[Jaig1]

[Lio96]

[LL73]

[Lov05]

[MBKQ96]

[Sch94]

[SNOS]

[Tho78]

Maurice J. Bach. The design of the UNIX operating system.
Prentice Hall, 1990.

Bill O. Gallmeister. POSIX.4 — Programming for the real world.
O’Reilly & Associates, INC., first edition edition, January 1995.

Raj Jain. The art of Computer Systems Performance Analysis.
John Wiley & Sons, Inc., 1991.

John Lions. Lions’ Commentary on UNIX 6th Edition with
Source Code. Peer-to-Peer Communications, 1996.

L. C. Liu and James W. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment. Journal of
the Association for Computing Machinery, 20, January 1973.

Robert Love. Linuzr Kernel Development. Novell Press, second
edition edition, 2005.

Marshall Kirk McKusic, Keith Bostic, Michael J. Karels, and
John S. Quarterman. The Design and Implementation of the 4.4
BSD Operating System. Addison-Wesley Longman, 1996.

Curt Schimmel. UNIX Systems for Modern Architectures. Addi-
son Wesley, 1994.

Ralf Steinmetz and Klara Nahrstedt. Multimedia: Computing,
Communications & Applications. Prentice Hall, 1995.

K. Thompson. Unix implementation. 1978.

95

Appendix A

Configuration file for Linux
2.6.18

Automatically generated make config: don’t edit Linux kernel
#version: 2.6.18 Sat Oct 28 13:18:10 2006 CONFIG_X86_32=y
#CONFIG_GENERIC_TIME=y CONFIG_LOCKDEP_SUPPORT=y
#CONFIG_STACKTRACE_SUPPORT=y CONFIG_SEMAPHORE_SLEEPERS=y CONFIG_X86=y
#CONFIG_MMU=y CONFIG_GENERIC_ISA_DMA=y CONFIG_GENERIC_IOMAP=y
#CONFIG_GENERIC_HWEIGHT=y CONFIG_ARCH_MAY_HAVE_PC_FDC=y CONFIG_DMI=y
#CONFIG_DEFCONFIG_LIST="/1ib/modules/$UNAME_RELEASE/.config"

#

Code maturity level options
#

CONFIG_EXPERIMENTAL=y
CONFIG_BROKEN_ON_SMP=y
CONFIG_LOCK_KERNEL=y
CONFIG_INIT_ENV_ARG_LIMIT=32

#

General setup

#

CONFIG_LOCALVERSION=""

CONFIG_LOCALVERSION_AUTO is not set
CONFIG_SWAP=y

CONFIG_SYSVIPC=y

CONFIG_POSIX_MQUEUE=y
CONFIG_BSD_PROCESS_ACCT=y

CONFIG_BSD_PROCESS_ACCT_V3 is not set

o6

CONFIG_TASKSTATS=y
CONFIG_TASK_DELAY_ACCT=y

CONFIG_AUDIT is not set
CONFIG_IKCONFIG=y
CONFIG_IKCONFIG_PROC=y
CONFIG_RELAY=y
CONFIG_INITRAMFS_SOURCE=""

CONFIG_CC_OPTIMIZE_FOR_SIZE is not set
CONFIG_EMBEDDED is not set
CONFIG_UID16=y

CONFIG_SYSCTL=y
CONFIG_KALLSYMS=y

CONFIG_KALLSYMS_ALL is not set
CONFIG_KALLSYMS_EXTRA_PASS is not set
CONFIG_HOTPLUG=y
CONFIG_PRINTK=y

CONFIG_BUG=y

CONFIG_ELF_CORE=y
CONFIG_BASE_FULL=y
CONFIG_FUTEX=y

CONFIG_EPOLL=y

CONFIG_SHMEM=y

CONFIG_SLAB=y
CONFIG_VM_EVENT_COUNTERS=y
CONFIG_RT_MUTEXES=y

CONFIG_TINY_SHMEM is not set
CONFIG_BASE_SMALL=0

CONFIG_SLOB is not set

#

Loadable module support

#

CONFIG_MODULES=y

CONFIG_MODULE_UNLOAD=y
CONFIG_MODULE_FORCE_UNLOAD=y

CONFIG_MODVERSIONS is not set

CONFIG_MODULE_SRCVERSION_ALL is not set
CONFIG_KMOD is not set

#
Block layer

o7

CONFIG_BLK_DEV_IO_TRACE is not set

#
CONFIG_LBD is not set
#
CONFIG_LSF is not set

I0 Schedulers

CONFIG_IOSCHED_NOOP=y

CONFIG_IOSCHED_AS is not set

CONFIG_IOSCHED_DEADLINE is not set
CONFIG_IOSCHED_CFQ=y

CONFIG_DEFAULT_AS is not set

CONFIG_DEFAULT_DEADLINE is not set
CONFIG_DEFAULT_CFQ=y

CONFIG_DEFAULT_NOOP is not set
CONFIG_DEFAULT_IOSCHED="cfq"

#

Processor type and features

#

CONFIG_SMP is not set
CONFIG_X86_PC=y
CONFIG_X86_ELAN is not set
CONFIG_X86_VOYAGER is not set
CONFIG_X86_NUMAQ is not set
CONFIG_X86_SUMMIT is not set
CONFIG_X86_BIGSMP is not set
CONFIG_X86_VISWS is not set
CONFIG_X86_GENERICARCH is not set
CONFIG_X86_ES7000 is not set
CONFIG_M386 is not set
CONFIG_M486 is not set
CONFIG_M586 is not set
CONFIG_M586TSC is not set
CONFIG_M586MMX is not set
CONFIG_M686 is not set
CONFIG_MPENTIUMII is not set
CONFIG_MPENTIUMIII is not set
CONFIG_MPENTIUMM is not set
CONFIG_MPENTIUM4 is not set

H oH HF HHF HHFE HHFEHHFHHEHHEHHFE R

o8

CONFIG_MK6 is not set
CONFIG_MK7=y

CONFIG_MK8 is not set
CONFIG_MCRUSQOE is not set
CONFIG_MEFFICEON is not set
CONFIG_MWINCHIPC6 is not set
CONFIG_MWINCHIP2 is not set
CONFIG_MWINCHIP3D is not set
CONFIG_MGEODEGX1 is not set
CONFIG_MGEODE_LX is not set
CONFIG_MCYRIXIII is not set
CONFIG_MVIAC3_2 is not set
CONFIG_X86_GENERIC is not set
CONFIG_X86_CMPXCHG=y
CONFIG_X86_XADD=y
CONFIG_X86_L1_CACHE_SHIFT=6
CONFIG_RWSEM_XCHGADD_ALGORITHM=y
CONFIG_GENERIC_CALIBRATE_DELAY=y
CONFIG_X86_WP_WORKS_OK=y
CONFIG_X86_INVLPG=y
CONFIG_X86_BSWAP=y
CONFIG_X86_POPAD_OK=y
CONFIG_X86_CMPXCHG64=y
CONFIG_X86_GOOD_APIC=y
CONFIG_X86_INTEL_USERCOPY=y
CONFIG_X86_USE_PPRO_CHECKSUM=y
CONFIG_X86_USE_3DNOW=y
CONFIG_X86_TSC=y

CONFIG_HPET_TIMER is not set

CONFIG_PREEMPT_NONE is not set
CONFIG_PREEMPT_VOLUNTARY is not set
CONFIG_PREEMPT=y
CONFIG_PREEMPT_BKL=y
CONFIG_X86_UP_APIC=y
CONFIG_X86_UP_IOAPIC=y
CONFIG_X86_LOCAL_APIC=y
CONFIG_X86_I0_APIC=y
CONFIG_X86_MCE=y
CONFIG_X86_MCE_NONFATAL=y

CONFIG_X86_MCE_PATHERMAL is not set
CONFIG_VM86=y

HoH OHF H OH HH HH HEH

29

CONFIG_TOSHIBA is not set
CONFIG_I8K is not set
CONFIG_X86_REBOOTFIXUPS is not set
CONFIG_MICROCODE is not set
CONFIG_X86_MSR is not set
CONFIG_X86_CPUID is not set

H OH H H H

Firmware Drivers

CONFIG_EDD is not set
CONFIG_DELL_RBU is not set
CONFIG_DCDBAS is not set
CONFIG_NOHIGHMEM=y

CONFIG_HIGHMEM4G is not set

CONFIG_HIGHMEM64G is not set
CONFIG_PAGE_OFFSET=0xC0000000
CONFIG_ARCH_FLATMEM_ENABLE=y
CONFIG_ARCH_SPARSEMEM_ENABLE=y
CONFIG_ARCH_SELECT_MEMORY_MODEL=y
CONFIG_SELECT_MEMORY_MODEL=y
CONFIG_FLATMEM_MANUAL=y

CONFIG_DISCONTIGMEM_MANUAL is not set
CONFIG_SPARSEMEM_MANUAL is not set
CONFIG_FLATMEM=y
CONFIG_FLAT_NODE_MEM_MAP=y
CONFIG_SPARSEMEM_STATIC=y
CONFIG_SPLIT_PTLOCK_CPUS=4

CONFIG_RESOURCES_64BIT is not set
CONFIG_MATH_EMULATION is not set
CONFIG_MTRR=y

CONFIG_REGPARM=y

CONFIG_SECCOMP=y

CONFIG_HZ_100 is not set

CONFIG_HZ_250 is not set
CONFIG_HZ_1000=y

CONFIG_HZ=1000

CONFIG_KEXEC is not set
CONFIG_PHYSICAL_START=0x100000
CONFIG_COMPAT_VDSO=y

H oH HF H H

60

#
Power management options (ACPI, APM)
#
#

CONFIG_PM is not set

#
ACPI (Advanced Configuration and Power Interface) Support
#
#

CONFIG_ACPI is not set

#
CPU Frequency scaling
#
#

CONFIG_CPU_FREQ is not set

Bus options (PCI, PCMCIA, EISA, MCA, ISA)

CONFIG_PCI=y

CONFIG_PCI_GOBIOS is not set

CONFIG_PCI_GOMMCONFIG is not set
CONFIG_PCI_GODIRECT is not set
CONFIG_PCI_GOANY=y
CONFIG_PCI_BIOS=y
CONFIG_PCI_DIRECT=y

CONFIG_PCIEPORTBUS is not set
CONFIG_PCI_MSI is not set

CONFIG_PCI_DEBUG is not set
CONFIG_ISA_DMA_API=y

CONFIG_ISA is not set

CONFIG_MCA is not set

CONFIG_SCx200 is not set

#

PCCARD (PCMCIA/CardBus) support
#

CONFIG_PCCARD is not set

#

PCI Hotplug Support
#

61

CONFIG_HOTPLUG_PCI is not set

#

Executable file formats

#

CONFIG_BINFMT_ELF=y

CONFIG_BINFMT_AQUT is not set
CONFIG_BINFMT_MISC is not set

#
Networking
#
CONFIG_NET=y

#

Networking options

#

CONFIG_NETDEBUG is not set
CONFIG_PACKET=y
CONFIG_PACKET_MMAP=y
CONFIG_UNIX=y

CONFIG_XFRM=y

CONFIG_XFRM_USER is not set

CONFIG_NET_KEY is not set
CONFIG_INET=y

CONFIG_IP_MULTICAST is not set
CONFIG_IP_ADVANCED_ROUTER is not set
CONFIG_IP_FIB_HASH=y

CONFIG_IP_PNP is not set

CONFIG_NET_IPIP is not set

CONFIG_NET_IPGRE is not set

CONFIG_ARPD is not set

CONFIG_SYN_COOKIES is not set
CONFIG_INET_AH=y
CONFIG_INET_ESP=y
CONFIG_INET_IPCOMP=m
CONFIG_INET_XFRM_TUNNEL=m
CONFIG_INET_TUNNEL=m
CONFIG_INET_XFRM_MODE_TRANSPORT=y
CONFIG_INET_XFRM_MODE_TUNNEL=y
CONFIG_INET_DIAG=y

62

CONFIG_INET_TCP_DIAG=y

#

CONFIG_TCP_CONG_ADVANCED is not set

CONFIG_TCP_CONG_BIC=y

#

H H O H* H H HF H*

HoH OHF H HF HOH HH HH HH HH H H HF

H H H

=+

CONFIG_IPV6 is not set
CONFIG_INET6_XFRM_TUNNEL is not set
CONFIG_INET6_TUNNEL is not set
CONFIG_NETWORK_SECMARK is not set
CONFIG_NETFILTER is not set

DCCP Configuration (EXPERIMENTAL)

CONFIG_IP_DCCP is not set

SCTP Configuration (EXPERIMENTAL)

CONFIG_IP_SCTP is not set

TIPC Configuration (EXPERIMENTAL)

CONFIG_TIPC is not set
CONFIG_ATM is not set
CONFIG_BRIDGE is not set
CONFIG_VLAN_8021Q is not set
CONFIG_DECNET is not set
CONFIG_LLC2 is not set
CONFIG_IPX is not set
CONFIG_ATALK is not set
CONFIG_X25 is not set
CONFIG_LAPB is not set
CONFIG_ECONET is not set
CONFIG_WAN_ROUTER is not set

QoS and/or fair queueing

CONFIG_NET_SCHED is not set

63

Network testing

CONFIG_NET_PKTGEN is not set
CONFIG_NET_TCPPROBE is not set
CONFIG_HAMRADIO is not set
CONFIG_IRDA is not set
CONFIG_BT is not set
CONFIG_IEEE80211 is not set

H oH HF H H H H H

H #*

Device Drivers

**

#

Generic Driver Options

#

CONFIG_STANDALONE=y
CONFIG_PREVENT _FIRMWARE_BUILD=y

CONFIG_FW_LOADER is not set

CONFIG_DEBUG_DRIVER is not set

CONFIG_SYS_HYPERVISOR is not set

Connector - unified userspace <-> kernelspace linker

H O H

CONFIG_CONNECTOR is not set

Memory Technology Devices (MTID)

H H H

CONFIG_MTD is not set

#

Parallel port support

#

CONFIG_PARPORT=y

CONFIG_PARPORT_PC=y

CONFIG_PARPORT_SERIAL is not set

CONFIG_PARPORT_PC_FIFO is not set

CONFIG_PARPORT_PC_SUPERIO is not set
CONFIG_PARPORT_GSC is not set

64

CONFIG_PARPORT_AX88796 is not set
CONFIG_PARPORT_1284 is not set

#
Plug and Play support
#

#

Block devices

#

CONFIG_BLK_DEV_FD=y

CONFIG_PARIDE is not set
CONFIG_BLK_CPQ_DA is not set
CONFIG_BLK_CPQ_CISS_DA is not set
CONFIG_BLK_DEV_DAC960 is not set
CONFIG_BLK_DEV_UMEM is not set
CONFIG_BLK_DEV_COW_COMMON is not set
CONFIG_BLK_DEV_LOOP=y
CONFIG_BLK_DEV_CRYPTOLOOP is not set
CONFIG_BLK_DEV_NBD is not set
CONFIG_BLK_DEV_SX8 is not set
CONFIG_BLK_DEV_UB is not set
CONFIG_BLK_DEV_RAM is not set
CONFIG_BLK_DEV_INITRD is not set
CONFIG_CDROM_PKTCDVD is not set
CONFIG_ATA_OVER_ETH is not set

H OH H H H

H OH H HF H O H H

#

ATA/ATAPI/MFM/RLL support
#

CONFIG_IDE=y
CONFIG_BLK_DEV_IDE=y

#

Please see Documentation/ide.txt for help/info on IDE drives
#

CONFIG_BLK_DEV_IDE_SATA is not set

CONFIG_BLK_DEV_HD_IDE is not set

CONFIG_BLK_DEV_IDEDISK=y

CONFIG_IDEDISK_MULTI_MODE is not set

CONFIG_BLK_DEV_IDECD=y

65

CONFIG_BLK_DEV_IDETAPE is not set
CONFIG_BLK_DEV_IDEFLOPPY is not set
CONFIG_BLK_DEV_IDESCSI is not set
CONFIG_IDE_TASK_IOCTL is not set

IDE chipset support/bugfixes

CONFIG_IDE_GENERIC is not set
CONFIG_BLK_DEV_CMD640 is not set
CONFIG_BLK_DEV_IDEPCI=y

CONFIG_IDEPCI_SHARE_IRQ is not set
CONFIG_BLK_DEV_OFFBOARD is not set
CONFIG_BLK_DEV_GENERIC=y

CONFIG_BLK_DEV_QPTI621 is not set
CONFIG_BLK_DEV_RZ1000 is not set
CONFIG_BLK_DEV_IDEDMA_PCI=y

CONFIG_BLK_DEV_IDEDMA_FORCED is not set
CONFIG_IDEDMA_PCI_AUTO=y

CONFIG_IDEDMA_ONLYDISK is not set
CONFIG_BLK_DEV_AEC62XX is not set
CONFIG_BLK_DEV_ALI15X3 is not set
CONFIG_BLK_DEV_AMD74XX=y
CONFIG_BLK_DEV_ATIIXP is not set
CONFIG_BLK_DEV_CMD64X is not set
CONFIG_BLK_DEV_TRIFLEX is not set
CONFIG_BLK_DEV_CY82C693 is not set
CONFIG_BLK_DEV_CS5520 is not set
CONFIG_BLK_DEV_CS5530 is not set
CONFIG_BLK_DEV_CS5535 is not set
CONFIG_BLK_DEV_HPT34X is not set
CONFIG_BLK_DEV_HPT366 is not set
CONFIG_BLK_DEV_SC1200 is not set
CONFIG_BLK_DEV_PIIX is not set
CONFIG_BLK_DEV_IT821X is not set
CONFIG_BLK_DEV_NS87415 is not set
CONFIG_BLK_DEV_PDC202XX_OLD is not set
CONFIG_BLK_DEV_PDC202XX_NEW is not set
CONFIG_BLK_DEV_SVWKS is not set
CONFIG_BLK_DEV_SIIMAGE is not set
CONFIG_BLK_DEV_SIS5513 is not set

H OH H B H

H oH HF H HF HHF HHFHHFEHHEHHEHHFEH

66

#
#
#
#

CONFIG_BLK_DEV_SLC90E66 is not set
CONFIG_BLK_DEV_TRM290 is not set
CONFIG_BLK_DEV_VIA82CXXX is not set
CONFIG_IDE_ARM is not set

CONFIG_BLK_DEV_IDEDMA=y

#

CONFIG_IDEDMA_IVB is not set

CONFIG_IDEDMA_AUTO=y

#

#
#
#
#

CONFIG_BLK_DEV_HD is not set

SCSI device support

CONFIG_RAID_ATTRS is not set

CONFIG_SCSI=y

#

#
#
#

CONFIG_SCSI_PROC_FS is not set

SCSI support type (disk, tape, CD-ROM)

CONFIG_BLK_DEV_SD=y

#

H OH H H H H H HF R

H oH OHF H HF HH

CONFIG_CHR_DEV_ST is not set
CONFIG_CHR_DEV_0SST is not set
CONFIG_BLK_DEV_SR is not set
CONFIG_CHR_DEV_SG is not set
CONFIG_CHR_DEV_SCH is not set

Some SCSI devices (e.g. CD jukebox) support multiple LUNs

CONFIG_SCSI_MULTI_LUN is not set
CONFIG_SCSI_CONSTANTS is not set
CONFIG_SCSI_LOGGING is not set

SCSI Transport Attributes
CONFIG_SCSI_SPI_ATTRS is not set
CONFIG_SCSI_FC_ATTRS is not set

CONFIG_SCSI_ISCSI_ATTRS is not set
CONFIG_SCSI_SAS_ATTRS is not set

67

H OH H H H HH HFEHHEHHFEHHFEHHEHHEHHEHHEHHEHHEHHEHHEHEHHEHHEHH

H H*

SCSI low-level drivers

CONFIG_ISCSI_TCP is not set
CONFIG_BLK_DEV_3W_XXXX_RAID is not set
CONFIG_SCSI_3W_9XXX is not set
CONFIG_SCSI_ACARD is not set
CONFIG_SCSI_AACRAID is not set
CONFIG_SCSI_AIC7XXX is not set
CONFIG_SCSI_AIC7XXX_OLD is not set
CONFIG_SCSI_AIC79XX is not set
CONFIG_SCSI_DPT_I20 is not set
CONFIG_SCSI_ADVANSYS is not set
CONFIG_MEGARAID_NEWGEN is not set
CONFIG_MEGARAID_LEGACY is not set
CONFIG_MEGARAID_SAS is not set
CONFIG_SCSI_SATA is not set
CONFIG_SCSI_HPTIOP is not set
CONFIG_SCSI_BUSLOGIC is not set
CONFIG_SCSI_DMX3191D is not set
CONFIG_SCSI_EATA is not set
CONFIG_SCSI_FUTURE_DOMAIN is not set
CONFIG_SCSI_GDTH is not set
CONFIG_SCSI_IPS is not set
CONFIG_SCSI_INITIO is not set
CONFIG_SCSI_INIA100 is not set
CONFIG_SCSI_PPA is not set
CONFIG_SCSI_IMM is not set
CONFIG_SCSI_SYMb53C8XX_2 is not set
CONFIG_SCSI_IPR is not set
CONFIG_SCSI_QLOGIC_1280 is not set
CONFIG_SCSI_QLA_FC is not set
CONFIG_SCSI_LPFC is not set
CONFIG_SCSI_DC395x is not set
CONFIG_SCSI_DC390T is not set
CONFIG_SCSI_NSP32 is not set
CONFIG_SCSI_DEBUG is not set

Multi-device support (RAID and LVM)

68

H H H H H H OHF H HE H H

H H O H*

#
#
#

CONFIG_MD is not set

Fusion MPT device support
CONFIG_FUSION is not set
CONFIG_FUSION_SPI is not set
CONFIG_FUSION_FC is not set
CONFIG_FUSION_SAS is not set

IEEE 1394 (FireWire) support

CONFIG_IEEE1394 is not set

I20 device support

CONFIG_I20 is not set

Network device support

CONFIG_NETDEVICES=y

=+

H H H H H* H=

H H H

**

CONFIG_DUMMY is not set
CONFIG_BONDING is not set
CONFIG_EQUALIZER is not set
CONFIG_TUN is not set

ARCnet devices

CONFIG_ARCNET is not set

PHY device support

CONFIG_PHYLIB is not set

Ethernet (10 or 100Mbit)

69

#

CONFIG_NET_ETHERNET=y

CONFIG_MII=y

CONFIG_HAPPYMEAL is not set

CONFIG_SUNGEM is not set

CONFIG_CASSINI is not set

CONFIG_NET_VENDOR_3COM is not set

Tulip family network device support

CONFIG_NET_TULIP is not set
CONFIG_HP100 is not set
CONFIG_NET_PCI=y

CONFIG_PCNET32 is not set

CONFIG_AMD8111_ETH is not set
CONFIG_ADAPTEC_STARFIRE is not set
CONFIG_B44 is not set
CONFIG_FORCEDETH=y

CONFIG_DGRS is not set
CONFIG_EEPR0O100 is not set
CONFIG_E100 is not set
CONFIG_FEALNX is not set
CONFIG_NATSEMI is not set
CONFIG_NE2K_PCI is not set
CONFIG_8139CP is not set
CONFIG_8139T00 is not set
CONFIG_SIS900 is not set
CONFIG_EPIC100 is not set
CONFIG_SUNDANCE is not set
CONFIG_TLAN is not set
CONFIG_VIA_RHINE is not set
CONFIG_NET_POCKET is not set

#
#
#
#
#

H oH HF H H H H HEHHEHHEH K

Ethernet (1000 Mbit)

CONFIG_ACENIC is not set
CONFIG_DL2K is not set
CONFIG_E1000 is not set
CONFIG_NS83820 is not set

H H OHF H HE HH

70

H OH H H H H H R H

H oH OHF H H H H

H H HF

H H H

H oH HF HHF HH HHFEHHFE R

CONFIG_HAMACHI is not set
CONFIG_YELLOWFIN is not set
CONFIG_R8169 is not set
CONFIG_SIS190 is not set
CONFIG_SKGE is not set
CONFIG_SKY2 is not set
CONFIG_SK98LIN is not set
CONFIG_VIA_VELOCITY is not set
CONFIG_TIGON3 is not set
CONFIG_BNX2 is not set

Ethernet (10000 Mbit)

CONFIG_CHELSIO_T1 is not set
CONFIG_IXGB is not set
CONFIG_S2I0 is not set
CONFIG_MYRI1O0GE is not set

Token Ring devices

CONFIG_TR is not set

Wireless LAN (non-hamradio)

CONFIG_NET_RADIO is not set

Wan interfaces

CONFIG_WAN is not set
CONFIG_FDDI is not set
CONFIG_HIPPI is not set
CONFIG_PLIP is not set
CONFIG_PPP is not set
CONFIG_SLIP is not set
CONFIG_NET_FC is not set
CONFIG_SHAPER is not set
CONFIG_NETCONSOLE is not set

71

**+

CONFIG_NETPOLL is not set
CONFIG_NET_POLL_CONTROLLER is not set

**

ISDN subsystem

H H H

CONFIG_ISDN is not set

Telephony Support

H H H

CONFIG_PHONE is not set

#

Input device support
#

CONFIG_INPUT=y

#

Userland interfaces

#

CONFIG_INPUT_MOUSEDEV=y
CONFIG_INPUT_MOUSEDEV_PSAUX=y
CONFIG_INPUT_MOUSEDEV_SCREEN_X=1280
CONFIG_INPUT_MOUSEDEV_SCREEN_Y=1024
CONFIG_INPUT_JOYDEV is not set

CONFIG_INPUT_TSDEV is not set

CONFIG_INPUT_EVDEV is not set

CONFIG_INPUT_EVBUG is not set

#

Input Device Drivers

#

CONFIG_INPUT_KEYBOARD=y
CONFIG_KEYBOARD_ATKBD=y

CONFIG_KEYBOARD_SUNKBD is not set
CONFIG_KEYBOARD_LKKBD is not set
CONFIG_KEYBOARD_XTKBD is not set
CONFIG_KEYBOARD_NEWTON is not set
CONFIG_INPUT_MOUSE=y
CONFIG_MOUSE_PS2=y

72

CONFIG_MOUSE_SERIAL is not set

CONFIG_MOUSE_VSXXXAA is not set

CONFIG_INPUT_JOYSTICK is not set

CONFIG_INPUT_TOUCHSCREEN is not set
CONFIG_INPUT_MISC is not set

Hardware I/0 ports

CONFIG_SERIO=y
CONFIG_SERIO_I8042=y

CONFIG_SERIO_SERPORT is not set
CONFIG_SERIO_CT82C710 is not set
CONFIG_SERIO_PARKBD is not set

CONFIG_SERIO_PCIPS2 is not set
CONFIG_SERIO_LIBPS2=y

CONFIG_SERIO_RAW is not set

CONFIG_GAMEPORT is not set

#

Character devices

#

CONFIG_VT=y

CONFIG_VT_CONSOLE=y

CONFIG_HW_CONSOLE=y

CONFIG_VT_HW_CONSOLE_BINDING is not set
CONFIG_SERIAL_NONSTANDARD is not set

#

Serial drivers

#

CONFIG_SERIAL_8250=y

CONFIG_SERIAL_8250_CONSOLE is not set
CONFIG_SERIAL_8250_PCI=y
CONFIG_SERIAL_8250_NR_UARTS=4
CONFIG_SERIAL_8250_RUNTIME_UARTS=4

CONFIG_SERIAL_8250_EXTENDED is not set

#

Non-8250 serial port support
#

73

CONFIG_SERIAL_CORE=y

CONFIG_SERIAL_JSM is not set
CONFIG_UNIX98_PTYS=y
CONFIG_LEGACY_PTYS=y
CONFIG_LEGACY_PTY_COUNT=256
CONFIG_PRINTER=y

CONFIG_LP_CONSOLE is not set
CONFIG_PPDEV is not set

CONFIG_TIPAR is not set

#
IPMI
#
CONFIG_IPMI_HANDLER is not set

Watchdog Cards

CONFIG_WATCHDOG is not set
CONFIG_HW_RANDOM is not set
CONFIG_NVRAM is not set
CONFIG_RTC=y

CONFIG_DTLK is not set

CONFIG_R3964 is not set

CONFIG_APPLICOM is not set
CONFIG_SONYPI is not set

#
Ftape, the floppy tape device driver
#

CONFIG_FTAPE is not set

CONFIG_AGP=y

CONFIG_AGP_ALI is not set

CONFIG_AGP_ATI is not set

CONFIG_AGP_AMD is not set

CONFIG_AGP_AMD64 is not set

CONFIG_AGP_INTEL is not set
CONFIG_AGP_NVIDIA=y

CONFIG_AGP_SIS is not set

CONFIG_AGP_SWORKS is not set

CONFIG_AGP_VIA is not set

74

CONFIG_AGP_EFFICEON is not set
CONFIG_DRM is not set
CONFIG_MWAVE is not set
CONFIG_PC8736x_GPIO is not set
CONFIG_NSC_GPIO is not set
CONFIG_CS5535_GPIO is not set
CONFIG_RAW_DRIVER is not set
CONFIG_HANGCHECK_TIMER is not set

H oH HF H H H H H

TPM devices

CONFIG_TCG_TPM is not set
CONFIG_TELCLOCK is not set

H H HF B H

#

I2C support

#

CONFIG_I2C=y
CONFIG_I2C_CHARDEV=y

#

I12C Algorithms

#

CONFIG_I2C_ALGOBIT=y

CONFIG_I2C_ALGOPCF is not set
CONFIG_I2C_ALGOPCA is not set

I2C Hardware Bus support

CONFIG_I2C_ALI1535 is not set
CONFIG_I2C_ALI1563 is not set
CONFIG_I2C_ALI15X3 is not set
CONFIG_I2C_AMD756 is not set
CONFIG_I2C_AMD8111 is not set
CONFIG_I2C_I801 is not set
CONFIG_I2C_I810 is not set
CONFIG_I2C_PIIX4 is not set
CONFIG_I2C_NFORCE2=y

CONFIG_I2C_OCORES is not set

H oH HF H H HH HH HEH

75

HoH OHF H OHF H O HH HH HH

H oH HF H H H H HH HEHHEH K

H OH H H R

H O H R

**

CONFIG_I2C_PARPORT is not set
CONFIG_I2C_PARPORT_LIGHT is not set
CONFIG_I2C_PROSAVAGE is not set
CONFIG_I2C_SAVAGE4 is not set
CONFIG_SCx200_ACB is not set
CONFIG_I2C_SIS5595 is not set
CONFIG_I2C_SIS630 is not set
CONFIG_I2C_SIS96X is not set
CONFIG_I2C_STUB is not set
CONFIG_I2C_VIA is not set
CONFIG_I2C_VIAPRO is not set
CONFIG_I2C_V0O0ODO0O3 is not set
CONFIG_I2C_PCA_ISA is not set

Miscellaneous I2C Chip support

CONFIG_SENSORS_DS1337 is not set
CONFIG_SENSORS_DS1374 is not set
CONFIG_SENSORS_EEPROM is not set
CONFIG_SENSORS_PCF8574 is not set
CONFIG_SENSORS_PCA9539 is not set
CONFIG_SENSORS_PCF8591 is not set
CONFIG_SENSORS_MAX6875 is not set
CONFIG_I2C_DEBUG_CORE is not set
CONFIG_I2C_DEBUG_ALGO is not set
CONFIG_I2C_DEBUG_BUS is not set

CONFIG_I2C_DEBUG_CHIP is not set

SPI support

CONFIG_SPI is not set

CONFIG_SPI_MASTER is not set

Dallas’s 1-wire bus

Hardware Monitoring support

76

CONFIG_HWMON is not set
CONFIG_HWMON_VID is not set

#
Misc devices
#
#

CONFIG_IBM_ASM is not set

Multimedia devices

CONFIG_VIDEO_DEV=y
CONFIG_VIDEO_V4L1=y
CONFIG_VIDEO_V4L1_COMPAT=y
CONFIG_VIDEO_V4L2=y

H =

Video Capture Adapters

=+

Video Capture Adapters

CONFIG_VIDEO_ADV_DEBUG is not set
CONFIG_VIDEO_VIVI is not set
CONFIG_VIDEO_BT848 is not set
CONFIG_VIDEO_BWQCAM is not set
CONFIG_VIDEO_CQCAM is not set
CONFIG_VIDEO_CPIA is not set
CONFIG_VIDEO_CPIA2 is not set
CONFIG_VIDEO_SAA5246A is not set
CONFIG_VIDEO_SAA5249 is not set
CONFIG_TUNER_3036 is not set
CONFIG_VIDEO_STRADIS is not set
CONFIG_VIDEO_ZORAN is not set
CONFIG_VIDEO_SAA7134=y
CONFIG_VIDEO_SAA7134_ALSA=y

CONFIG_VIDEO_MXB is not set

CONFIG_VIDEO_DPC is not set

CONFIG_VIDEO_HEXIUM_ORION is not set

H OH H H H HE H HFEHHEHHEHHEHR

77

**

H oH H H H H H HEHHEHHE R K

H OH H H H HHHFEHHEHHEHHEHHEHHAE

H H O R

CONFIG_VIDEQO_HEXIUM_GEMINI is not set
CONFIG_VIDEO_CX88 is not set

Encoders and Decoders

CONFIG_VIDEO_MSP3400 is not set
CONFIG_VIDEO_CS53L32A is not set
CONFIG_VIDEO_TLV320AIC23B is not set
CONFIG_VIDEQ_WM8775 is not set
CONFIG_VIDEQ_WM8739 is not set
CONFIG_VIDEO_CX2341X is not set
CONFIG_VIDEQ_CX25840 is not set
CONFIG_VIDEO_SAA711X is not set
CONFIG_VIDEO_SAA7127 is not set
CONFIG_VIDEQ_UPD64031A is not set
CONFIG_VIDEO_UPD64083 is not set

V4L USB devices

CONFIG_VIDEO_PVRUSB2 is not set
CONFIG_VIDEO_EM28XX is not set
CONFIG_USB_VICAM is not set
CONFIG_USB_IBMCAM is not set
CONFIG_USB_KONICAWC is not set
CONFIG_USB_QUICKCAM_MESSENGER is not set
CONFIG_USB_ET61X251 is not set
CONFIG_VIDEO_OVCAMCHIP is not set
CONFIG_USB_W9968CF is not set
CONFIG_USB_0V511 is not set
CONFIG_USB_SE401 is not set
CONFIG_USB_SN9C102 is not set
CONFIG_USB_STV680 is not set
CONFIG_USB_ZC0301 is not set
CONFIG_USB_PWC is not set

Radio Adapters
CONFIG_RADIO_GEMTEK_PCI is not set

78

E=3

CONFIG_RADIO_MAXIRADIO is not set
CONFIG_RADIO_MAESTRO is not set
CONFIG_USB_DSBR is not set

H =

#
Digital Video Broadcasting Devices
#
#

CONFIG_DVB is not set
CONFIG_VIDEO_TUNER=y
CONFIG_VIDEO_BUF=y
CONFIG_VIDEO_IR=y
CONFIG_USB_DABUSB is not set

#

Graphics support

#

CONFIG_FIRMWARE_EDID=y
CONFIG_FB=y
CONFIG_FB_CFB_FILLRECT=y
CONFIG_FB_CFB_COPYAREA=y
CONFIG_FB_CFB_IMAGEBLIT=y

CONFIG_FB_MACMODES is not set
CONFIG_FB_BACKLIGHT is not set
CONFIG_FB_MODE_HELPERS=y
CONFIG_FB_TILEBLITTING is not set
CONFIG_FB_CIRRUS is not set
CONFIG_FB_PM2 is not set
CONFIG_FB_CYBER2000 is not set
CONFIG_FB_ARC is not set
CONFIG_FB_ASILIANT is not set
CONFIG_FB_IMSTT is not set
CONFIG_FB_VGA16 is not set
CONFIG_FB_VESA is not set
CONFIG_FB_HGA is not set
CONFIG_FB_S1D13XXX is not set
CONFIG_FB_NVIDIA is not set
CONFIG_FB_RIVA=y
CONFIG_FB_RIVA_I2C=y

CONFIG_FB_RIVA_DEBUG is not set
CONFIG_FB_I810 is not set

CONFIG_FB_INTEL is not set

H OH H H H HEH HFEHHEHHE

79

CONFIG_FB_MATROX is not set
CONFIG_FB_RADEON is not set
CONFIG_FB_ATY128 is not set
CONFIG_FB_ATY is not set
CONFIG_FB_SAVAGE is not set
CONFIG_FB_SIS is not set
CONFIG_FB_NEOMAGIC is not set
CONFIG_FB_KYRO is not set
CONFIG_FB_3DFX is not set
CONFIG_FB_V0OODOO1 is not set
CONFIG_FB_CYBLA is not set
CONFIG_FB_TRIDENT is not set
CONFIG_FB_GEODE is not set
CONFIG_FB_VIRTUAL is not set

H oH OHF H HF HHF HHEHHHEHH

#

Console display driver support

#

CONFIG_VGA_CONSOLE=y

CONFIG_VGACON_SOFT_SCROLLBACK is not set
CONFIG_VIDEO_SELECT is not set
CONFIG_DUMMY_CONSOLE=y
CONFIG_FRAMEBUFFER_CONSOLE=y

CONFIG_FRAMEBUFFER_CONSOLE_ROTATION is not set
CONFIG_FONTS is not set
CONFIG_FONT_8x8=y

CONFIG_FONT_8x16=y

#

Logo configuration

#

CONFIG_LOGO is not set

CONFIG_BACKLIGHT_LCD_SUPPORT is not set

#

Sound

#
CONFIG_SOUND=y

#
Advanced Linux Sound Architecture

80

#

CONFIG_SND=y

CONFIG_SND_TIMER=y

CONFIG_SND_PCM=y
CONFIG_SND_SEQUENCER=y

CONFIG_SND_SEQ_DUMMY is not set

CONFIG_SND_MIXER_OSS is not set

CONFIG_SND_PCM_0SS is not set

CONFIG_SND_SEQUENCER_0OSS is not set
CONFIG_SND_RTCTIMER=y
CONFIG_SND_SEQ_RTCTIMER_DEFAULT=y

CONFIG_SND_DYNAMIC_MINORS is not set
CONFIG_SND_SUPPORT_OLD_API is not set
CONFIG_SND_VERBOSE_PROCFS is not set
CONFIG_SND_VERBOSE_PRINTK is not set
CONFIG_SND_DEBUG is not set

#

Generic devices

#

CONFIG_SND_AC97_CODEC=y
CONFIG_SND_AC97_BUS=y
CONFIG_SND_DUMMY is not set
CONFIG_SND_VIRMIDI is not set
CONFIG_SND_MTPAV is not set
CONFIG_SND_SERIAL_U16550 is not set
CONFIG_SND_MPU401 is not set

H OH H R

PCI devices

CONFIG_SND_AD1889 is not set
CONFIG_SND_ALS300 is not set
CONFIG_SND_ALS4000 is not set
CONFIG_SND_ALIb5451 is not set
CONFIG_SND_ATIIXP is not set
CONFIG_SND_ATIIXP_MODEM is not set
CONFIG_SND_AU8810 is not set
CONFIG_SND_AU8820 is not set
CONFIG_SND_AU8830 is not set
CONFIG_SND_AZT3328 is not set

H oH OHF H OHF HH HH HEH HEH

81

H oH HF HHF HH HH HH HEHHEHHEH K

CONFIG_SND_BT87X is not set
CONFIG_SND_CAO0106 is not set
CONFIG_SND_CMIPCI is not set
CONFIG_SND_CS4281 is not set
CONFIG_SND_CS46XX is not set
CONFIG_SND_CS5535AUDIO is not set
CONFIG_SND_EMU10K1 is not set
CONFIG_SND_EMU10K1X is not set
CONFIG_SND_ENS1370 is not set
CONFIG_SND_ENS1371 is not set
CONFIG_SND_ES1938 is not set
CONFIG_SND_ES1968 is not set
CONFIG_SND_FM801 is not set
CONFIG_SND_HDA_INTEL is not set
CONFIG_SND_HDSP is not set
CONFIG_SND_HDSPM is not set
CONFIG_SND_ICE1712 is not set
CONFIG_SND_ICE1724 is not set

CONFIG_SND_INTEL8XO=y

HoH OHF H HF HH HH K H HH HH

H H HF H R

CONFIG_SND_INTEL8XOM is not set
CONFIG_SND_KORG1212 is not set
CONFIG_SND_MAESTR0O3 is not set
CONFIG_SND_MIXART is not set
CONFIG_SND_NM256 is not set
CONFIG_SND_PCXHR is not set
CONFIG_SND_RME32 is not set
CONFIG_SND_RME96 is not set
CONFIG_SND_RME9652 is not set
CONFIG_SND_SONICVIBES is not set
CONFIG_SND_TRIDENT is not set
CONFIG_SND_VIA82XX is not set
CONFIG_SND_VIA82XX_MODEM is not set
CONFIG_SND_VX222 is not set
CONFIG_SND_YMFPCI is not set

USB devices

CONFIG_SND_USB_AUDIO is not set

CONFIG_SND_USB_USX2Y is not set

82

#

Open Sound System

#

CONFIG_SOUND_PRIME is not set

#

USB support

#

CONFIG_USB_ARCH_HAS_HCD=y
CONFIG_USB_ARCH_HAS_QOHCI=y
CONFIG_USB_ARCH_HAS_EHCI=y
CONFIG_USB=y

CONFIG_USB_DEBUG is not set

#

Miscellaneous USB options

#

CONFIG_USB_DEVICEFS=y

CONFIG_USB_BANDWIDTH is not set

CONFIG_USB_DYNAMIC_MINORS is not set
CONFIG_USB_OTG is not set

#

USB Host Controller Drivers

#

CONFIG_USB_EHCI_HCD=y

CONFIG_USB_EHCI_SPLIT_ISO is not set

CONFIG_USB_EHCI_ROOT_HUB_TT is not set
CONFIG_USB_EHCI_TT_NEWSCHED is not set
CONFIG_USB_ISP116X_HCD is not set
CONFIG_USB_OHCI_HCD=y

CONFIG_USB_OHCI_BIG_ENDIAN is not set
CONFIG_USB_OHCI_LITTLE_ENDIAN=y

CONFIG_USB_UHCI_HCD is not set

CONFIG_USB_SL811_HCD is not set

#

USB Device Class drivers

#

CONFIG_USB_ACM is not set

CONFIG_USB_PRINTER is not set

83

#
NOTE: USB_STORAGE enables SCSI, and ’SCSI disk support’
#

#

may also be needed; see USB_STORAGE Help for more information
#

CONFIG_USB_STORAGE=y
CONFIG_USB_STORAGE_DEBUG is not set
CONFIG_USB_STORAGE_DATAFAB is not set
CONFIG_USB_STORAGE_FREECOM is not set
CONFIG_USB_STORAGE_ISD200 is not set
CONFIG_USB_STORAGE_DPCM is not set
CONFIG_USB_STORAGE_USBAT is not set
CONFIG_USB_STORAGE_SDDRO9 is not set
CONFIG_USB_STORAGE_SDDR55 is not set
CONFIG_USB_STORAGE_JUMPSHOT is not set
CONFIG_USB_STORAGE_ALAUDA is not set
CONFIG_USB_LIBUSUAL is not set

H oH OHF H HF HH HH HH

USB Input Devices

H H O R

CONFIG_USB_HID is not set

USB HID Boot Protocol drivers

CONFIG_USB_KBD is not set
CONFIG_USB_MOUSE is not set
CONFIG_USB_AIPTEK is not set
CONFIG_USB_WACOM is not set
CONFIG_USB_ACECAD is not set
CONFIG_USB_KBTAB is not set
CONFIG_USB_POWERMATE is not set
CONFIG_USB_TOUCHSCREEN is not set
CONFIG_USB_YEALINK is not set
CONFIG_USB_XPAD is not set
CONFIG_USB_ATI_REMOTE is not set
CONFIG_USB_ATI_REMOTE2 is not set

H oH OHF H HF HH HH HHFEHHE HH

84

**

H oH HF H H HH HH H OH H H R

H H HF

H H H

H oH HF HHF HHEHHEHHEH

CONFIG_USB_KEYSPAN_REMOTE is not set
CONFIG_USB_APPLETOUCH is not set

USB Imaging devices

CONFIG_USB_MDC800 is not set
CONFIG_USB_MICROTEK is not set

USB Network Adapters

CONFIG_USB_CATC is not set
CONFIG_USB_KAWETH is not set
CONFIG_USB_PEGASUS is not set
CONFIG_USB_RTL8150 is not set
CONFIG_USB_USBNET is not set
CONFIG_USB_MON is not set

USB port drivers

CONFIG_USB_USS720 is not set

USB Serial Converter support

CONFIG_USB_SERIAL is not set

USB Miscellaneous drivers

CONFIG_USB_EMI62 is not set
CONFIG_USB_EMI26 is not set
CONFIG_USB_AUERSWALD is not set
CONFIG_USB_RIO500 is not set
CONFIG_USB_LEGOTOWER is not set
CONFIG_USB_LCD is not set
CONFIG_USB_LED is not set
CONFIG_USB_CYPRESS_CY7C63 is not set
CONFIG_USB_CYTHERM is not set

85

H oH HF O HF B H

H H R

** H = H H H H H H H H H

**

H H HF

CONFIG_USB_PHIDGETKIT is not set
CONFIG_USB_PHIDGETSERVO is not set
CONFIG_USB_IDMOUSE is not set
CONFIG_USB_APPLEDISPLAY is not set
CONFIG_USB_SISUSBVGA is not set
CONFIG_USB_LD is not set
CONFIG_USB_TEST is not set

USB DSL modem support

USB Gadget Support

CONFIG_USB_GADGET is not set

MMC/SD Card support

CONFIG_MMC is not set

LED devices

CONFIG_NEW_LEDS is not set

LED drivers

LED Triggers

InfiniBand support

CONFIG_INFINIBAND is not set

86

EDAC - error detection and reporting (RAS) (EXPERIMENTAL)

H =

CONFIG_EDAC is not set

Real Time Clock

H H HF H*

CONFIG_RTC_CLASS is not set

DMA Engine support

H H O H*

CONFIG_DMA_ENGINE is not set

H# #*

DMA Clients

DMA Devices

#

File systems

#

CONFIG_EXT2_FS=y

CONFIG_EXT2_FS_XATTR is not set
CONFIG_EXT2_FS_XIP is not set
CONFIG_EXT3_FS=y

CONFIG_EXT3_FS_XATTR is not set
CONFIG_JBD=y

CONFIG_JBD_DEBUG is not set
CONFIG_REISERFS_FS is not set
CONFIG_JFS_FS is not set
CONFIG_FS_POSIX_ACL is not set
CONFIG_XFS_FS is not set
CONFIG_OCFS2_FS is not set
CONFIG_MINIX_FS is not set
CONFIG_ROMFS_FS is not set
CONFIG_INOTIFY is not set
CONFIG_QUOTA is not set

H OH HF HHFE HHE H HEH

87

CONFIG_DNOTIFY=y

CONFIG_AUTOFS_FS is not set
CONFIG_AUTOFS4_FS is not set
CONFIG_FUSE_FS is not set

#

CD-ROM/DVD Filesystems

#

CONFIG_IS09660_FS=y
CONFIG_JOLIET=y
CONFIG_ZISOFS=y
CONFIG_ZISOFS_FS=y

CONFIG_UDF_FS is not set

#

DOS/FAT/NT Filesystems

#

CONFIG_FAT_FS=y

CONFIG_MSDOS_FS=y

CONFIG_VFAT_FS=y
CONFIG_FAT_DEFAULT_CODEPAGE=850
CONFIG_FAT_DEFAULT_IOCHARSET="is08859-1"
CONFIG_NTFS_FS is not set

#

Pseudo filesystems

#

CONFIG_PROC_FS=y
CONFIG_PROC_KCORE=y
CONFIG_SYSFS=y

CONFIG_TMPFS=y

CONFIG_HUGETLBFS is not set
CONFIG_HUGETLB_PAGE is not set
CONFIG_RAMFS=y
CONFIG_CONFIGFS_FS=y

#
Miscellaneous filesystems
#
CONFIG_ADFS_FS is not set
CONFIG_AFFS_FS is not set

88

CONFIG_HFS_FS is not set
CONFIG_HFSPLUS_FS is not set
CONFIG_BEFS_FS is not set
CONFIG_BFS_FS is not set
CONFIG_EFS_FS is not set
CONFIG_CRAMFS is not set
CONFIG_VXFS_FS is not set
CONFIG_HPFS_FS is not set
CONFIG_QNX4FS_FS is not set
CONFIG_SYSV_FS is not set
CONFIG_UFS_FS is not set

H OH H H H HE H HFE H HE R

#

Network File Systems

#

CONFIG_NFS_FS=y

CONFIG_NFS_V3=y

CONFIG_NFS_V3_ACL is not set

CONFIG_NFS_V4 is not set

CONFIG_NFS_DIRECTIO is not set

CONFIG_NFSD is not set
CONFIG_LOCKD=y

CONFIG_LOCKD_V4=y
CONFIG_NFS_COMMON=y

CONFIG_SUNRPC=y

CONFIG_RPCSEC_GSS_KRB5 is not set
CONFIG_RPCSEC_GSS_SPKM3 is not set
CONFIG_SMB_FS=y

CONFIG_SMB_NLS_DEFAULT is not set
CONFIG_CIFS=y

CONFIG_CIFS_STATS is not set
CONFIG_CIFS_WEAK_PW_HASH is not set
CONFIG_CIFS_XATTR is not set
CONFIG_CIFS_DEBUG2 is not set
CONFIG_CIFS_EXPERIMENTAL is not set
CONFIG_NCP_FS is not set
CONFIG_CODA_FS=y

CONFIG_CODA_FS_OLD_API is not set
CONFIG_AFS_FS is not set

CONFIG_9P_FS is not set

H OH H H H H

89

#

Partition Types

#

CONFIG_PARTITION_ADVANCED is not set
CONFIG_MSDOS_PARTITION=y

#

Native Language Support

#

CONFIG_NLS=y
CONFIG_NLS_DEFAULT="is08859-15"

CONFIG_NLS_CODEPAGE_437 is not set
CONFIG_NLS_CODEPAGE_737 is not set
CONFIG_NLS_CODEPAGE_775 is not set
CONFIG_NLS_CODEPAGE_850=y
CONFIG_NLS_CODEPAGE_852 is not set
CONFIG_NLS_CODEPAGE_855 is not set
CONFIG_NLS_CODEPAGE_857 is not set
CONFIG_NLS_CODEPAGE_860 is not set
CONFIG_NLS_CODEPAGE_861 is not set
CONFIG_NLS_CODEPAGE_862 is not set
CONFIG_NLS_CODEPAGE_863 is not set
CONFIG_NLS_CODEPAGE_864 is not set
CONFIG_NLS_CODEPAGE_865 is not set
CONFIG_NLS_CODEPAGE_866 is not set
CONFIG_NLS_CODEPAGE_869 is not set
CONFIG_NLS_CODEPAGE_936 is not set
CONFIG_NLS_CODEPAGE_950 is not set
CONFIG_NLS_CODEPAGE_932 is not set
CONFIG_NLS_CODEPAGE_949 is not set
CONFIG_NLS_CODEPAGE_874 is not set
CONFIG_NLS_IS08859_8 is not set
CONFIG_NLS_CODEPAGE_1250 is not set
CONFIG_NLS_CODEPAGE_1251 is not set
CONFIG_NLS_ASCII is not set
CONFIG_NLS_IS08859_1=y

CONFIG_NLS_IS08859_2 is not set

CONFIG_NLS_IS08859_3 is not set

CONFIG_NLS_IS08859_4 is not set

CONFIG_NLS_IS08859_5 is not set

CONFIG_NLS_IS08859_6 is not set

HOH HF HHF HH HHHHHHHEHHEHKEH K

90

CONFIG_NLS_IS08859_7 is not set
CONFIG_NLS_IS08859_9 is not set
CONFIG_NLS_IS08859_13 is not set
CONFIG_NLS_IS08859_14 is not set
CONFIG_NLS_IS08859_15=y

CONFIG_NLS_KOI8_R is not set

CONFIG_NLS_KOI8_U is not set
CONFIG_NLS_UTF8=y

#

Instrumentation Support
#

CONFIG_PROFILING=y
CONFIG_OPROFILE=y
CONFIG_KPROBES=y

#

Kernel hacking

#

CONFIG_TRACE_IRQFLAGS_SUPPORT=y

CONFIG_PRINTK_TIME is not set
CONFIG_MAGIC_SYSRQ=y

CONFIG_UNUSED_SYMBOLS is not set
CONFIG_DEBUG_KERNEL=y
CONFIG_LOG_BUF_SHIFT=14

CONFIG_DETECT_SOFTLOCKUP is not set
CONFIG_SCHEDSTATS=y

CONFIG_DEBUG_SLAB is not set
CONFIG_DEBUG_PREEMPT is not set
CONFIG_DEBUG_RT_MUTEXES is not set
CONFIG_RT_MUTEX_TESTER is not set
CONFIG_DEBUG_SPINLOCK is not set
CONFIG_DEBUG_MUTEXES is not set
CONFIG_DEBUG_RWSEMS is not set
CONFIG_DEBUG_LOCK_ALLOC is not set
CONFIG_PROVE_LOCKING is not set
CONFIG_DEBUG_SPINLOCK_SLEEP is not set
CONFIG_DEBUG_LOCKING_API_SELFTESTS is not set
CONFIG_DEBUG_KOBJECT is not set
CONFIG_DEBUG_BUGVERBOSE=y

CONFIG_DEBUG_INFO is not set

H oH OHF H HF HH HH HH K

91

CONFIG_DEBUG_FS=y

CONFIG_DEBUG_VM is not set

CONFIG_FRAME_POINTER is not set
CONFIG_UNWIND_INFO=y
CONFIG_STACK_UNWIND=y
CONFIG_FORCED_INLINING=y

CONFIG_RCU_TORTURE_TEST is not set
CONFIG_EARLY_PRINTK=y

CONFIG_DEBUG_STACKOVERFLOW is not set
CONFIG_DEBUG_STACK_USAGE is not set
CONFIG_DEBUG_PAGEALLOC is not set

CONFIG_DEBUG_RODATA is not set

CONFIG_4KSTACKS is not set
CONFIG_X86_FIND_SMP_CONFIG=y
CONFIG_X86_MPPARSE=y
CONFIG_DOUBLEFAULT=y

#

Security options

#

CONFIG_KEYS is not set

CONFIG_SECURITY is not set

#

Cryptographic options

#

CONFIG_CRYPTO=y
CONFIG_CRYPTO_HMAC=y

CONFIG_CRYPTO_NULL is not set

CONFIG_CRYPTO_MD4 is not set
CONFIG_CRYPTO_MD5=y
CONFIG_CRYPTO_SHAl=y

CONFIG_CRYPTO_SHA256 is not set
CONFIG_CRYPTO_SHA512 is not set
CONFIG_CRYPTO_WP512 is not set

CONFIG_CRYPTO_TGR192 is not set
CONFIG_CRYPTO_DES=y

CONFIG_CRYPTO_BLOWFISH is not set
CONFIG_CRYPTO_TWOFISH is not set
CONFIG_CRYPTO_SERPENT is not set
CONFIG_CRYPTO_AES is not set

92

CONFIG_CRYPTO_AES_586 is not set
CONFIG_CRYPTO_CASTS5 is not set
CONFIG_CRYPTO_CAST6 is not set
CONFIG_CRYPTO_TEA is not set
CONFIG_CRYPTO_ARC4 is not set
CONFIG_CRYPTO_KHAZAD is not set
CONFIG_CRYPTO_ANUBIS is not set
CONFIG_CRYPTO_DEFLATE=y

CONFIG_CRYPTO_MICHAEL_MIC is not set
CONFIG_CRYPTO_CRC32C is not set
CONFIG_CRYPTO_TEST is not set

H oH HF O HF B H

Hardware crypto devices

CONFIG_CRYPTO_DEV_PADLOCK is not set

Library routines

CONFIG_CRC_CCITT is not set
CONFIG_CRC16 is not set
CONFIG_CRC32=y

CONFIG_LIBCRC32C is not set
CONFIG_ZLIB_INFLATE=y
CONFIG_ZLIB_DEFLATE=y
CONFIG_PLIST=y
CONFIG_GENERIC_HARDIRQS=y
CONFIG_GENERIC_IRQ_PROBE=y
CONFIG_X86_BIOS_REBOOT=y
CONFIG_KTIME_SCALAR=y

93

Appendix B

Workload program

#!/usr/bin/perl

#

workload - Starts a workload for the thesis
#

use strict;
use warnings;

use Config; # for signal numbers
use Time::HiRes qw(gettimeofday);

use Readonly; # Easy read-only variables (much better than "use
constant")

use Cwd;
usage() unless (QARGV == 3);

<player> - video player (mplayer or xine
<other> - chess or cpuhog

<num> - number of chess or cpuhog to run
my ($player, $other, $count) = QARGV;

Readonly my $MOVIE_FILE => $ENV{MOVIE_FILE} || ’/tmp/Lecture-la-5min.mpg’;
Readonly my $RES_GROUP => $ENV{RES_GROPU} || ’mm’;

Readonly my $CPU_SHARE => $ENV{CPU_SHARE} || ’res=cpu,min_shares=80’;
my $workdir = getcwd;

Readonly my $RESULTS_DIR_PREFIX => $ENV{RESULTS_DIR_PREFIX} ||

94

"$workdir/results";
my $video_playback_command = $ENV{VIDEO_PLAYBACK_COMMAND} || $player;

these are used to measure the time used by the workload.
my $start_time = 0;
my $end_time = O;

create measurements dir if it doesn’t exist already
unless (-d $RESULTS_DIR_PREFIX) {
mkdir $RESULTS_DIR_PREFIX or
die "can’t make directory $RESULTS_DIR_PREFIX: $!";

Add /usr/games to path (so that xboard and gnuchess can be started)
$ENV{PATH} .= ’:/usr/games/bin’;

Get signal names and numbers (see perldoc Config)
my %sig_num;
my Osig_name;

unless ($Config{sig_name} && $Config{sig_num}) {
die "No sigs?";

} else {
my Onames = split ’ ’, $Config{sig_name};
@sig_num{@names} = split ’ ’, $Config{sig_num};
foreach (@names) {
$sig_name[$sig_num{$_3}]1 |I= $_;
}
+

init_profiler();
init_workload();
start_profiler();

$start_time = gettimeofday();
run_workload();

$end_time = gettimeofday();
save_results();
cleanup_workload();
cleanup_profiler();

95

Subs

sub usage {
print "workload <mplayer or xine> <chess or cpuhog> <count>\n";
exit 0;

sub run_program {
system(@_) ==
or die "Program exited badly <@_>: $7";

by

sub run_xine {
Argh! xine plays the movie and then dies with a segfault when
told (via. --auto-play=q) to quit after playback!!!
this sub is a ugly workaround: It does not check for errors...x
system(Q@_) ;

Run program passed (with args) as a separate process, return its pid.
sub fork_program {

$| = 1; # just to be safe (see perldoc -f fork)

my $pid = fork;

die "fork was unsuccessful" if (!defined $pid);

if ($pid == 0) {
we’re in the child
exec(Q_)

}

return $pid;

+

fork, register in resource group and *then* run the
program.. Makes sure we are in the correct resource group
before launching the program
sub fork_program_resreg {
$| = 1; # just to be safe (see perldoc -f fork)
my $pid = fork;

die "fork was unsuccessful" if (!defined $pid);

96

if ($pid == 0) {
we’re in the child
register us in the proper resource group
my $fh;
open($fh, ">/config/res_groups/$RES_GROUP/members")
or die "Cannot write to class member file: $!";
print $fh "$$\n"; # add child pid to members
close($fh);
exec(@_) # liftoff!

return $pid;

+

sub have_ckrm {
my $extraver = kernel_version();

return ($extraver eq ’2.6.18-ckrm’) || ($extraver eq ’2.6.18-mongrel’);
+
sub kernel_version {

chomp(my $output = ‘uname -r‘);

return $output;

by

sub run_workload {
let the video playback determine the length of the test

start_other_work($other, $count);

start_video(); # will wait until its done
end the other children in the process group (except ourselves)
{
local $SIG{HUP} = ’IGNORE’;
kill HUP => -$$;
+
by

sub start_video {

97

Bah! The video program xine needs this extra option to
automatically quit after playback: --auto-play=q. And that option
makes it die from a SIGSEGV when done! Therefore we need to give it
special treatment here... Mplayer will ignore the empty argument.
my $is_xine = ($video_playback_command =~ /“xine/) ? 1 : O;

my $quit_option = $is_xine ? ’--auto-play=q’ : ’’;

H H HF R

if (have_ckrm()) {
my $pid = fork_program_resreg($video_playback_command,
$quit_option,
$MOVIE_FILE);
waitpid($pid, 0); # wait for it to finish...
} else {
Set it up to run with RT priority
We can just wait for this one ..
if ($is_xine) {
oops, its xine.. do the ugly thing
run_xine(’chrt’, ’--rr’, 99,
$video_playback_command,
$quit_option,
$MOVIE_FILE);
} else {
run_program(’chrt’, ’--rr’, 99,
$video_playback_command,
$MOVIE_FILE);
}
modify for settings file
$video_playback_command = "chrt --rr 99 $video_playback_command";

}
+

sub start_other_work {
my ($arg, $count) = @_;

my Q@prog;
if ($arg eq ’chess’) {
@prog = (’xboard’, ’-matchGames’, ’100’, ’-iconic’);
} else {
@prog = (’./cpuhog’);
}

Let gnuchess play with itself for a looong time
This process will get killed later.

98

my $i = 0;
my $pid;
while ($i < $count) {
$pid = fork_program(@prog) ;
if (!defined($pid)) {
die "Fork failed: $!'\n";
}
++81i;

b

sub save_results {
create a results dir every time, so that old results never get
overwritten. Append a new number to the name.

my $count = 0;
my $newdir = $RESULTS_DIR_PREFIX . "/measurements-$count";
find next available dir name (slightly dangerous approach)
while (-d $newdir) {
++$count;
$newdir = $RESULTS_DIR_PREFIX . "/measurements-$count";
}

mkdir $newdir or die "Can’t make dir $newdir: $!";

save_usermode_profile($newdir) ;
save_kernelmode_profile($newdir) ;

now save the settings we ran with
my $fh;
open($fh, ">$newdir/settings.txt")
or die "Can’t open new file $newdir/settings: $!";

print $fh "start time: $start_time\n";
print $fh "end time: $end_time\n";
print $fh "elapsed time: ", ($end_time - $start_time),"\n";

print $fh "moviefile: $MOVIE_FILE\n";
print $fh "video playback command: $video_playback_command\n";
if (have_ckrm()) {

print $fh "resource group: $RES_GROUP\n";

99

print $fh "cpu_share: $CPU_SHARE\n";
}
close($fh);
+

sub save_usermode_profile {
my $dir = shift;
my $kernel_version = kernel_version();
my $user_oprof_out = ‘opreport;
my $taskout = $dir . "/tasks-${kernel_version}.oprofile";
my $fh;
open($fh, ">$taskout") or die "Can’t open $taskout: $!";
print $fh $user_oprof_out;
close($fh);

sub save_kernelmode_profile {
my $dir = shift;
my $kernel_version = kernel_version();

my $kernel_oprof_out = ‘readprofile -m /boot/System.map-$kernel_version‘;
my $kernelout = $dir . "/kernel-${kernel_version}.oprofile";
my $fh;

open($fh, ">$kernelout") or die "Can’t open $kernelout: $!";
print $fh $kernel_oprof_out;
close($fh);

sub init_profiler {

mount /boot unless it has already been done
-d ’/boot/grub’ or run_program(’mount’, ’/boot’);

set up OProfile

run_program(’opcontrol’, ’--setup’, "--vmlinux=/boot/vmlinux-" . ‘uname -r‘);

failure is an option here...
system(’opcontrol’, ’--reset’);

sub start_profiler {
run_program(’opcontrol’, ’--start’);

100

sub cleanup_profiler {
failure is an option here...
system(’opcontrol’, ’--shutdown’);

by

sub init_workload {
do we have a class-based resource managment patch?
if (have_ckrm()) {

is the configfs filesystem mounted on /config 7
unless (-d "/config/res_groups") {
mount_configfs();

by

is there a class for the video playback application?
unless (-d "/config/res_groups/$RES_GROUP") {
create it
mkdir "/config/res_groups/$RES_GROUP"
or die "Can\’t make resource group $RES_GROUP: $!"
}

configure the CPU share

my $shares_filename = "/config/res_groups/$RES_GROUP/shares";

my $fh;

open($fh, ">$shares_filename") or die "Cannot open: $shares_filename: $!";
print $fh $CPU_SHARE;

close($fh);

print "Done initalizing the workload\n";

sub cleanup_workload {
if (have_ckrm()) {
rmdir "/config/res_groups/$RES_GROUP" or
die "Cannot remove resouce group $RES_GROUP: $!'"

3

sub mount_configfs {

101

run_program(’/bin/mount’, ’-t’, ’configfs’, ’none’, ’/config’);

3

__END__

=headl NAME

workload - Starts a workload for the thesis

=headl SYNOPSIS

B<workload> <mplayer or xine> <chess or cpuhog> <count>

=headl DESCRIPTION

Looks at the output of ’uname -r’ to determine how to set up the

workload. Stores the measurements obtained in results under a new subdirectory.
Count is the numnber of chess or cpuhogs to run.

=headl DEPENDENCIES

Needs the following CPAN modules:
Readonly

Needs the following programs:
which

mplayer (this can be overridden with the VIDEO_PLAYBACK_COMMAND
environment variable)

=headl BUGS

Error checking is very rudimentary.
=headl AUTHOR

Martin Setek <martitse@ifi.uio.no>

=cut

102

