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Abstract

With the advent of powerful secondary accelerators and heterogeneous
computer architectures, different ways to utilize these processing units
for general-purpose computing were developed. While a secondary
unit such as a GPU was initially designed to excel in a specific area,
frameworks that expose functions for general-purpose use now existed.
These programming models are commonly used to offload general
computations to a secondary processing unit through parallelism. GPUs
are especially proficient at computing multiple independent values in
parallel. In an attempt to abstract upon these parallel programming
models further, several high-level programming models now exist.
This thesis presents and utilizes one such model, namely the Open
Accelerator or OpenACC for short. This thesis evaluates the performance
and productivity impacts of using OpenACC to parallelize algorithms,
using the famous feature extraction and description algorithm SIFT as
an example. Through profiling and analysis, this thesis demonstrates
how portable solutions can be written with high speedup relative to the
programming effort required. The results of this demonstration suggests,
in conjunction with prior study and literature, that high-level parallel
programming models are superior in certain aspects compared to more
traditional lower-level models.
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Sammendrag

Grunnet økende popularitet og beregningskraft på sekundære prosesser-
ingsenheter slik som grafikkkort, har en rekke programmeringsmod-
eller blitt utviklet med hensikten å utvinne noe av denne kraften til
mer generelle beregninger. Selv om et grafikkort originalt er designet
til å tjene et bestemt formål, så gjør disse programmeringsmodellene
det mulig å bruke lavere-nivå metoder for utvinne kortets kraft til
mer generell komputasjon. Måten disse modellene effektivt bruker
sekundære prosesseringsenheter i sammenheng med hovedprosesser-
ingsenheten (CPU), er ved å utnytte avanasert tråd-programmering og
parallelisme. Da de tidligere programmeringsmodellene ofte var mer lav-
nivå, er det nå blitt et større fokus på å designe programmeringmodeller
som er lettere å forstå, og som fungerer på et høyere abstraksjonsnivå.
Denne oppgaven presenterer og demonstrerer bruken av én slik model,
nemlig Open Accelerator, også kalt OpenACC. Oppgaven evaluerer ef-
fekten på både ytelse og produktivitet ved å optimalisere en kjent algo-
ritme som identifiserer og beskriver nøkkeltrekk i bilder som et eksem-
pel. Denne algoritmen heter SIFT, og oppgaven vil demonstrere en par-
allelisert løsning basert på profilering og analyse av den original algorit-
men. Oppgaven forsøker også å vise hvordan man kan skrive løsninger
som både har høy ytelse, og er tilgjengelige for et mangfold av plat-
former samtidig. I kombinasjon med oppgavens resultater og tidligere
forskning på området, merkes det en tendens til at høy-nivå program-
meringsmodeller er bedre eller likeså bra på visse områder enn tradis-
jonelle lav-nivå modeller.
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Chapter 1

Introduction

The process of feature extraction is a key component of most, if not all,
image matching algorithms and software. In the field of computer vision,
being able to efficiently extract and describe keypoints in images remains
important. This extends to more practical cases as well, such as detecting
diseased grapevines in vineyards [44], in unmanned autonomous
vehicles[19], and in 3D reconstruction of images. The features we extract
from an image should ideally be recognizable from multiple angles, be
scale-invariant, and identifiable in most lighting environments. This is
why Lowe’s SIFT[25, 26] is still such a populare feature extractor and
descriptor, with several variants[1, 32, 56] and competing algorithms[3,
18, 47]. Especially in recent years, utilizing the extremely parallel nature
of Graphical Processing Units (GPU’s) to effectively do feature extraction
has been an important topic in the field of computer vision. Conversely,
one such GPU implementation is popsift[12]. This is a faithful
implementation of the original SIFT algorithm which achieves high
speedup using NVIDIA’s CUDA(Compute Unified Device Architecture)
programming model. Another SIFT variant using CUDA is CudaSift[6].
However, my thesis will focus mostly on how parallel programming
models may be used to accelerate algorithms, using SIFT,popsift and the
CUDA framework as points of reference. In addition, I will present and
discuss alternative parallel programming models which may provide
higher degrees of portability than CUDA does. This is both to see the
effect and performance penalty of using another framework than strictly
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just CUDA, and to measure and quantify the impact a higher-level model
has on productivity.

In association with the AliceVision project, found at https://alicevision.org/,
popsift is a key part of the 3D image reconstruction that can be used to
render virtual elements for Mixed Reality(MR). MR is the combination
of real-world environments and virtual elements, and these virtual ele-
ments often act as an extension or an integrated part of the real world.
One important thing to consider when rendering such virtual elements
into the real-world environment is depth. Being able to compute depth
quickly to form a seamless combination of a physical surrounding and
some virtual element is one of the main goals of depth estimation in MR.
Moreover, this process should work in real-time, as anything else will not
result in a successful MR experience. This is where GPGPU and multi-
core CPU parallelization techniques become important. I will explain
what GPGPU is, as well as some concepts surround it, in section 2.3.
While popsift generally achieves extraction of frames and descriptors of
1080p images in real-time with CUDA[12, section 6.2], I want to examine
how other programming models perform in similar scenarios, and if it is
possible to approach the same kind of speeds and speedup.

I will also demonstrate how to optimize sequential algorithms with a
high-level programming model, using a sequential SIFT algorithm as
an example. The alternative programming model I have chosen to use
for my demonstration is OpenACC[41]. I will go into more depth on
the details of this programming model in section 3.1. While considering
alternative frameworks and APIs for my demonstrative implemenation,
the OpenCL1 framework was considered as well. However, the decision
was made to use OpenACC, as it is a more interesting and high-level
approach to offloading and accelerating applications than OpenCL is.
CUDA and OpenCL share many of the same features and programming
paradigms, and are therefore quite alike. On the other side, OpenACC
favours ease of implementation over pure performance[30], except if very
careful manual optimizations are done[17].

1https://www.khronos.org/opencl/
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1.1 Thesis Goals

My thesis will attempt to answer the following two research questions

• RQ1: How much speedup is realistically possible when implement-
ing an algorithm such as SIFT in a high-level programming model
like OpenACC, while still maintaining portability?

• RQ2: What are the overall benefits of using a higher-abstraction
programming paradigm in terms of ease-of-implementation and
productivity?

RQ1 requires profiling and measurements of differing execution speeds
in sequential and parallel implementations of the same algorithm,
as well as some analysis of memory movement and management.
Additionally, when I analyse parallelized solutions, portability should
be prioritized over performance in most cases. Put simply, the optimized
parallel implementation should not make too many platform-specific
optimizations, as to not break the platform portability.

RQ2 will be answered by comparing the amount of code in a faithful
sequential SIFT algorithm with how much code needs to be added
or re-factored when parallelizing with the OpenACC programming
model. Productivity and programming effort will also be analysed and
presented through my own experience with porting and implementing
the algorithm, as well as through study of prior articles and research.

1.2 Thesis Overview

Chapter 2 presents and explains some relevant background information
on the SIFT algorithm, GPGPU and CUDA. Then, chapter 3 explains the
OpenACC parallel programming model in detail. Chapters 4 and 5 deal
with my actual demonstrative implementation, and the methods and
tools i used to parallelize the code.

3



Chapter 2

Background and Relevant
Literature

In this chapter I will first explain the SIFT algorithm and its different
steps, then explore some key differences between CPU and GPU
architecture. Afterwards I will present some concepts of general-purpose
computing on graphical processing units (GPGPU) with examples using
CUDA, while also explaining the CUDA programming model. Lastly, I
will explain my reasoning for wanting to find an alternative framework
suitable for parallel optimization other than CUDA.

2.1 The SIFT algorithm

The Scale-Invariant-Feature-Transform algorithm, or SIFT for short, is an
algorithm originally conceived by David G. Lowe in a 1999 conference
paper[26], and later expanded upon in a scientific article [25]. The
SIFT algorithm handles an extremely important step of most computer
vision and image processing software, namely feature description and
extraction. This process can be explained concisely as identifying points
of interest in an image (keypoints) and then assigning them unique
signatures. These unique signatures are then stored as SIFT feature
descriptors, which are commonly used to recognize the same points of
interest in another image. SIFT aims to be invariant against brightness,
rotation, and scale. Ideally, SIFT will always recognize the same features
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if they are present in two images, no matter how far away, what the
lighting conditions are, or how different the roation is. These qualities are
what makes SIFT such a good feature extractor and descriptor for image
matching

Because of its robustness, and due to not being too computationally
heavy, especially with more modern and improved versions, SIFT
sees use in many different disciplines. Some examples include 3D
reconstruction software[13] with AliceVision, face recognition and
authentication[5, 27], object tracking[58], image processing[19, 24, 44],
and even to detect buildings and urban areas from satelite pictures[51].
The widespread use of SIFT might also explain its ever-growing number
of variations and alternatives, and in our case, SIFT algorithms which
exploit the GPU[6, 12, 16].

In order to understand how to optimize the SIFT algorithm for
parallel computing, knowing its steps is important. The goal of my
demonstration with OpenACC will be to optimize the steps with the
largest bottlenecks, and we therefore need an understanding of where
they may occur.I will put less emphasis on the specific maths and
computations which go into these steps, as the important part is mostly
to see how a parallel programming model may affect the large-scale
execution speeds and memory efficiency when implemented. Figure 2.1
also illustrates the process, somewhat simplifying the process of finding
dominant orientations, as well as feature description.

2.1.1 Upscaling

The first step is to upscale the input image. This upscaling is traditionally
performed through bilinear interpolation 1 with a scale factor of 2. The
upscaled image will be two times larger both in width and height. This
step is to ensure that we make full use of the input image, as it increases
the number of stable keypoints[25, p. 10]. Additionally, it allows for sub-
pixelic refinement of the original image.

1https://en.wikipedia.org/wiki/Bilinear_interpolation
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Figure 2.1: A simplified illustration of the SIFT algorithm
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Figure 2.2: Gaussian blur illustrated. The original image, image blurred
with σ = 5, and image blurred with σ = 11

2.1.2 Creating a Gaussian Pyramid

Gaussian Blur

A common tool in the field of computer vision and image processing, is
the Gaussian blur. Such a blur is commonly achieved by using a Gaus-
sian function to comb over an image, and apply some transformation
to each individual pixel. This transformation usually consists of chang-
ing the value or color of a pixel to that of a weighted average of its eight
neighbours. The result is an image which looks blurred and less detailed,
see Figure 2.2. In the SIFT algorithm, a Gaussian blur is applied in order
to make the detection and extraction of keypoints scale-invariant. The
blur attempts to simulate how an image would look if you zoomed fur-
ther and further out. Logically, it follows that if an image feature is iden-
tifiable and visible even through several Gaussian convolutions, it must
be a stable feature.

Octaves and Levels

After the image has been upscaled, the algorithm will start creating
groups of increasingly blurred images with the same resolution. These
groups are referred to as octaves. Within an octave, the image is blurred
using a Gaussian convolution with a blur factor σ. This blurring occurs
several times, and the differently-blurred images within an octave are
referred to as levels, as they represent different levels of Gaussian blur.
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The first octave has the same resolution as the upscaled input image,
and every subsequent octave is downscaled from the third-last level
of the previous octave, halving its resolution. This process of halving
the resolution is repeated until the image is too small to be useful. This
collection of octaves with levels is called a scale space [23]. The blur
factor σ,the amount of octaves, and the depth of levels may depend on
the implementation, as well as whatever parameters will yield the best
results for specific image resolutions.

2.1.3 Computing the Difference-of-Gaussian (DoG)

In this step, we want to determine how much an image has changed
from one blur level to another, and more importantly where those
changes occur. The most accurate way of determining the per-pixel
differences between two levels would be to use a Laplace-of-Gaussian,
as proposed by Tony Lindeberg [23]. However, Lowe [25] proposes a
more computationally efficient approximation of the Laplacian interest
points; the Difference-of-Gaussian method. This method retains the scale
invariance, as well as the rotational invariance of the original Laplacian
gradient method.

Within our scale space, each DoG is computed with the following

formula:

DoG(x, y, σ) = L(x, y, kiσ)− L(x, y, k jσ) (2.1)

Formula 2.1 states that the Difference-of-Gaussian images are produced
by subtracting the image L with a blur level j from the image L with a
blur level I. These images are adjacent in the scale space, being images of
the same resolution, but with different blur levels.

2.1.4 Detecting keypoints

After all the octaves and their DoGs have been computed, the algorithm
starts looking for potential keypoint candidates. Every pixel in the
DoGs is processed by the algorithm, and potential keypoints are found
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by looking at pixels which are an extremum in its neighbourhood.
An extremum is either an absolute minimum or a maximum. At this
point in the algorithm, adjacent DoG’s are layered on top of each other
to create a 3D space, with the axes being x,y and σ. Therefore a pixel
has 26 neighbours, and if a particular pixel is the extremum of its
neighbourhood, a keypoint search close to it is initiated. The result of the
search will be a keypoint candidate, which may be assigned SIFT Feature
Descriptors if it qualifies as a keypoint. Whether the candidate qualifies
as a keypoint or not is determined by requiring it to pass certain tests.

2.1.5 Computing the keypoint orientations

After identifying keypoints, the dominant orientation of the feature or
features present at the extrememum must be determined. In simple
terms, which way the feature is pointing in the image. This is to make
the descriptors invariant to image orientation. This orientation is
represented as a SIFT feature descriptor, and a keypoint may have
multiple descriptors with different dominant orientations. The dominant
orientation is decided by seeing in which 2D-direction the strongest
luminance/brightness change occurs.

2.1.6 Extracting descriptors

As previously mentioned, a keypoint may have several dominant
orientation, and therefore several SIFT descriptors attached to it. These
descriptors function like a unique identifier for a feature, and they are
composed of 128-element vectors, with either decimal or integer values,
depending on the implementation and further image matching functions
which take the descriptors as input. The next-to-last step in feature
descriptor extraction is to calculate the orientation histograms. These
are grouped around the keypoint as a 16 square grid, with each square
having 8 vectors describing gradient change.

2.1.7 Normalizing descriptors

In the standard SIFT algorithm, the descriptor vectors are normalzied
through the L2 norm to improve image matching with the descriptors.

9



Figure 2.3: SIFT Image matching illustrated. Photos with different angles
from the Zurich dataset

The L2 norm value is a common operation when dealing with vector
computations, and is in short a value which describes the shortest
distance from the space origin to the vector. The value is defined as
the root of the sum of the squares of the components of the vector.
Popsift also implements a newer form of proposed normalization called
RootSIFT[2].

2.1.8 SIFT In Practice: Extracting and Matching

The GPU-implementation of SIFT known as popsift is a key part of a
larger software known as Meshroom, a 3D reconstruction software based
on the AliceVision framework. In this software, SIFT is responsible for
both feature extraction,description, as well as a part of actual image
matching. In the case of meshroom, images are matched together in
order to create a 3D texture based on the images provided. An example
of feature matching with sift can be seen in figure 2.3.

2.2 GPU Architecture

Before I present the core concepts and operations of general-purpose
programming on GPU, I would like to give an overview of GPU
architecture in general. I will be using Nvidia’s Pascal[37] as an example.
I have chosen Pascal as an example because it is relatively new, and it
is the architecture my demonstrative SIFT optimizations are primarily
tested on. Currently, the Pascal architecture has been succeeded by the
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Turing[39], Volta[38] and Ampere[35] architectures.

2.2.1 Latency and Throughput

Regarding GPU architecture, the most important thing to remember
is that GPUs are made with throughput in mind, moreso than latency.
While a CPU might typically only have a core count below 20, GPUs
often have four- or three-digit amount of cores. Naturally, one could
assume that core count is the most important part when considering
performance, but this is not always accurate. In truth, the internal
architecture of the cores, as well as how those cores are arranged matter
just as much. However, it is true that the high core count in a GPU
allows for a high degree of parallelization, which can be much better
performance-wise if utilized correctly.

CPU cores traditionally focus more on low-latency memory access,
and are best suited for sequential compute-heavy processes. On the
other hand, GPU’s are made to put all of its cores to use simultaneously,
favouring parallel code. The main difference in latency lies in how data
is cached, and how large those caches are. CPU’s usually have larger
and faster caches near the cores, and if data is not contained in those
caches, it will be fetched from L3 caches, or from RAM. GPU’s operate
with smaller caches for each cluster of cores commonly called Streaming
Multiprocessors, and a larger cache for shared data. As illustrated
by figure 2.4, Pascal has 20 SM’s and a large L2 Cache in the middle.
Additionally, 2.4 shows how many cores the architecture truly has, with
every green square representing one core, each SM having 128 cores.
Additionally, instead of each core having its own L1 cache, each SM has
two Texture/L1 Caches, colored light-blue in the figure. Each SM also
contains 96KB of shared memory.
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Figure 2.4: A block diagram of the Pascal Architecture, specifically the
GP104 structure. Based on an NVIDIA model
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2.3 GPGPU

2.3.1 Core concepts: GPU vs CPU

General Philosophy

General-purpose programming on a GPU differs greatly from traditional
single-core CPU programming, or even multi-core CPU programming.
Concepts from multi-threaded CPU programming are applicable, but
the scale of the parallelization itself is much larger, with a larger number
of threads or streams working simultaneously. Additionally, GPGPU
usually requires a good knowledge of low-level memory structures
and memory operations. Even CUDA, the largest GPGPU API requires
the programmer to have this deep knowledge. However, attempts[4,
14, 45], have been made to further abstract upon the CUDA standard,
making it more high-level, without sacrificing performance. Thrust[4]
is an example of this, and is also used as an optional feature in popsift.
Similarly a paper by Han&Abdelrahman[14] attempts to abstract the
memory instructions of CUDA to a directive-based model, not unlike
OpenACC[41]

Textures vs Arrays

Textures as the primary representation of data is a core concept of
GPGPU. While the native data layout of CPUs are one-dimensional
arrays, GPUs use two-dimensional arrays called textures instead.
Textures are used as the most basic form of data storage, and are the most
efficient way for the GPU to manipulate data. They essentially replace
traditional CPU arrays. While accessing array data on a CPU is often
done using array indices, on the GPU, data is accessed through texture
coordinates. These are 2-dimensional coordinates which indicates where
a texture pixel, or texel, is located on a texture map. The dimensions of
a texture are typically restricted to maximum values depending on the
GPU chip. Typical values are 2048 or 4096 per dimension.
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Kernels vs Loops

Loops are a very common tool for data manipulation on the CPU. A
standard CPU implementation of a problem might initiate a single loop
to modify the values of an array, even if those values were completely
independent of each other. When a loop is initiated, there also has to be a
loop counter that continually updates as the data is being processed, and
is then used in each loop to access the array at the appropriate indices.
However, this is technically inefficient, and unrolling loops is a common
optimization trick. This is done to reduce loop-initialization overhead
and unnecessary memory operations. Now, in these situations where
the array elements are at distinct memory locations, and there exists no
dependencies between elements, GPU kernels are usually much more
effective.

A kernel in GPGPU represents a block of code that will run in parallel on
multiple processing cores. Kernels are a staple feature of GPU parallel
processing, and is the most important tool for a GPGPU programmer.
In short, kernels are the primary way of executing code on a GPU, but
has some key restrictions when compared to thread-programming on
the CPU. Therefore, this feature is usually best utilized in SIMD (single
instruction, multiple data) scenarios. The larger the amount of data,
e.g. the amount of parallel computations available, the more efficient
a GPU kernel will be relative to a CPU implementation of single- or
nested loops. Oftentimes, the performance will be better than a thread-
based CPU approach as well. However, writing efficient kernels is
usually much harder than writing efficient threads, due to the massively
parallelizable nature of GPU threads.

Precise number calculation

Another key difference between CPU and GPU is the way precise many-
decimal numbers are calculated. While CUDA strives to produce exactly
the same results as a CPU calculation for basic operations, there will still
be some small differences due to a variety of reasons which are hard
to control. This becomes especially relevant when comparing results
between CPU and GPGPU implementations of the same algorithm. Due
to the difference in precision, it is important to maintain a certain margin
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of error for precise decimal values.

2.3.2 History and Hardware Utilization

In the earlier days of computation, specialized processing units aside
from the CPU were not as prevalent. Display adapters and graphics
accelerators did exist, but were nowhere near powerful enough.
Therefore, a lot of programs and programmers today often only utilize
the CPU efficiently, while somewhat neglecting GPU use. However, with
the advancement of both integrated graphics, as well as bigger graphical
processing units such as NVIDIA or AMD graphics cards, there now
existed another powerful processor in many computers. This lead to
the creation of general-purpose programming languages focused on
accelerators with high potential for memory sharing and parallelization,
such as OpenCL[34], OpenMP[8] and CUDA. GPGPU also sees a high
degree of use in HPC situations, where the amount of data points often
reach staggeringly high numbers.

There are a many reasons why we would want to do general computa-
tions on the GPU at all, and one of them is hardware utilization. Logi-
cally, it would be wasteful to not utilize every part of your machine if
possible. If most software left powerful secondary processing units com-
pletely unused, then that clearly diminishes their usefulness. Essentially,
it is a matter of how much value you get out of each part of your ma-
chine. It would probably be beneficial for both consumers and manufac-
turers if their GPU’s were utilized more in general, as it would feel like
that part of your machine is not at any moment a waste.

Of course, we wouldn’t want to over-utilize the GPU for general-purpose
instructions either, hindering its usefulness in graphics and user interface
rendering. Assuredly, a middle ground between almost zero utilization
and some utilization does exist. While it might seem wasteful to not
utilize GPUs more often, general purpose processing on GPU is still a
relatively new concept, with both CUDA and OpenCL having their initial
releases in 2007 and 2009 respectively. Additionally, the circumstances
where the GPU will be more efficient are less common.
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2.3.3 GPU In Tandem With CPU

Heterogeneous architecture also allows for your main processing unit
to be supported by the secondary accelerator. Thus reducing the load
on the CPU, and ideally allowing for parallel processing with both
units. Alternatively, coordinating which unit will be the most optimal
for a certain problem[52] is also a valid option. Another interesting
idea would be to somehow fuse GPU and CPU architecture into a
homogeneous unit on the same chip[57]. While Yang et al. proves that
this approach provides significant speedup (up to 113%), it is mostly a
proof-of-concept, and is unlikely to see popularity.

If a programmer recognizes that a certain problem could be split into
an amount of sub-problems far outweighing the amount of threads a
parallel CPU solution would use, that problem might be suitable for
the GPU instead. Of course, recognizing such a problem is not always
easy, and requires deep knowledge of the problem at hand. However,
if it is recognized as such, the programmer might turn to a parallel
general-purpose computing platform such as CUDA. Depending on
the specifications of the processing units, the performance gain itself
could also be large. Additionally, the program now has the option to
let the CPU work on some other problem instead, while the GPU does
its own work. An instance where this might be particularly useful, is in
programs where I/O operations are done frequently. For example, the
CPU could read something which it sends to the GPU for processing, and
then immediately read the next data, all while the GPU is processing.
This is an example of effectively utilizing both the CPU and the GPU at
the same time.

2.3.4 Performance

Lastly, in some cases, a good GPU implementation with a high-end unit
simply outperforms a traditional CPU implementation. As is the case
with popsift[12] and other GPU implementations[6, 7, 55], they are often
many times faster than CPU implementations done on similarly high-end
CPUs. Regarding the SIFT algorithm, the speedup is due to the nature of
per-pixel image processing. Generally, the larger the problem, the easier
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Figure 2.5: A simple diagram showing how host and device send data
between each other

it is for the GPU to be more efficient. Consequentially, image processing
and feature extraction problems are faster on the GPU, simply because
the amount of calculations that need to be done is immensely high.

Additionally, as illustrated in figure 2.5, while the parallel GPU
operations themselves are quite fast, transferring data between
host and device is not. Therefore, when considering how to attain
maximum performance with GPGPU, the programmer must have a
deep knowledge of the memory spaces and hierarchies which exist in
the different architectures. The most important thing to consider is data
movement between host and device, re-using memory structures where
possible, and generally avoiding unnecessary data movements.

2.4 CUDA For General-purpose Programming

One of the most widely used platforms for general-purpose computing
on GPUs is CUDA[36]. This programming model and computing
platform is developed and maintained by NVIDIA, and is targeted
specifically for their own processing units. CUDA provides extensions
to C, C++ and Fortran, although the list of supported existing languages
is expanding. The reason for CUDA being so dominant on the GPGPU
front, is attributed to the fact that they are the leading developer and
manufacturer of graphics cards, and have been for the last years.

17



Combine this with the fact that they poured resources into developing
the CUDA platform, and it suddenly becomes the biggest alternative for
computing on the GPU. If what you are looking for is the absolute best
performing GPU computing on an NVIDIA graphics card, then CUDA is
your go-to platform. As I alluded to earlier, a good GPU implementation
will sometimes strictly be better, and this is often the case with a well-
implemented CUDA solution.

2.4.1 HPC and Cross-Discipline

GPU computing and CUDA in particular has a lot of different
applications, mostly in high-performance computing(HPC) situations,
as well as many different scientific disciplines. According to NVIDIA
themselves2, CUDA is utilized in a wide range of domains. For example
computational chemistry, bioinformatics, data science, computational
fluid dynamics, as well as weather and climate predictions. With CUDA
already having such a large reportoir of disciplines, and applications for
these fields already developed or in development, it looks like CUDA
is here to stay. Unless a competing GPU manufacturer or some different
group comes up with a platform which is either even easier to use than
CUDA, or has better performance, there is no reason to believe that
CUDA will not continue to be popular. Eventually, as an increasing
number of companies and researchers utilize CUDA for their high-
performance computing, even if a realistic competitor arose, it would
probably take a lot of effort to refactor and re-implement existing CUDA
code. Essentially, the longer CUDA is popular, the harder it will be for
another GPGPU to break through to the mainstream.

2.4.2 CUDA’s Design

Regarding ease of implementation and overall readability, CUDA strikes
a nice balance between readability, abstraction, and implementation. It
is quite readable, and does not require a tremendous amount of effort
to understand and implement. One of the key features of CUDA is its
ability to launch and execute CUDA kernels. Kernels, as mentioned

2https://www.nvidia.com/en-us/gpu-accelerated-applications/
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previously, are an essential part of general-purpose GPU programming.
The reason being that it is here the parallel code itself is written. Code
written in a kernel is executed in parallel by blocks containing threads.
More specifically, when launching a kernel in CUDA, you must specify
the amount of blocks to use, and how many threads you want to utilize
within that block. The platform also allows you direct access to memory
allocation and copying between the GPU and CPU explicitly. In newer
CUDA releases, the Unified Memory 3 feature is also available, which
allows for some more flexibility regarding memory transfers. This is
achieved by making a shared pool of memory between the GPU and
CPU, which data may be allocated to and accessed by both units. I will
talk a bit more about Unified Memory throughout this thesis when
relevant.

2.4.3 CUDA Kernels

Using the examples from the official NVIDIA CUDA C programming
guide4, I will explain some concepts regarding kernels in CUDA. In
CUDA, a kernel can be written as such:

1 // Kernel d e f i n i t i o n
2 __global__ void VecAdd ( f l o a t * A, f l o a t * B , f l o a t * C)
3 {
4 i n t i = threadIdx . x ;
5 C[ i ] = A[ i ] + B [ i ] ;
6 }
7

8 i n t main ( )
9 {

10 . . .
11 // Kernel invocat ion with N threads
12 VecAdd<<<1, N>>>(A, B , C) ;
13 . . .
14 }

Listing 2.1: CUDA kernel definition

In the above snippet, the function "VecAdd" is a CUDA kernel, signified

3https://developer.nvidia.com/blog/maximizing-unified-memory-performance-
cuda/

4https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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by the keyword "__global__". This function now acts as the block of code
which will be executed in every specified thread of the GPU. Invoking
the kernel and starting threads is done through CUDA’s specific
execution syntax on line 12. A CUDA kernel invocation is essentially
just calling the function with parameters, and adding the triple angle
brackets before the parameters. The first angle-bracket parameter is the
amount of blocks per grid, while the second parameter is the amount of
threads each block has. Both values can be either a int value, or a dim3
value. The amount of blocks and threads per block can be assigned 1-,
2- or 3-dimensional values as well. Depending on the problem at hand,
it may be beneficial to not use the same number of dimensions for both
parameters.

2.4.4 Memory Hierarchy

CUDA operates with several different types of memory, most of them
specialized to serve a specific purpose. Accessing and storing data in the
correct memory space is an important part of making efficient CUDA
code. The different types of memory are as follows:

• Registers. Thread-specific and extremely fast memory close to the
cores.

• Shared Memory. Can be used for fast communication between
threads in the same block.

• Texture Memory. Utilizes the texture engine of the GPU, allowing
for fast parallel row and column accesses.

• Constant Memory. Used to store constant values.

• Local Memory. Local memory is a part of every SM, and is used
when registers start spilling data. Local memory is Very slow
compared to the shared memory and registers, and should be
avoided.

• Global Memory. The most general-purpose of the memory spaces,
mostly used for intermittent transfers from host to device if direct
writing is not available, i.e for shared memory, local memory and
the registers. Host-data is then transferred from the global memory
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to a more appropriate memory-space.

2.5 CUDA Drawbacks

2.5.1 Vendor Lock

If CUDA is seemingly so efficient, easy to implement and widely used,
why would we want to look for an alternative to it? Well, CUDA has
one massive drawback. It is entirely vendor-locked behind having an
NVIDIA GPU chip with CUDA support. While it is true that CUDA
offers a good combination of performance and readability compared to
other frameworks, that would not matter if your GPU simply cannot
run CUDA programs. In the example of popsift, porting it to another
programming model would be beneficial, and strengthen its overall
outreach and portability. Having a SIFT implementation that only
supports one type of secondary high-performance accelerator is not
optimal. Therefore, the optimal solution would be to enable users
without CUDA-capable accelerators to use this SIFT solution, without
having to sacrifice any efficiency for users already using the CUDA
implementation.

According to JPR ’s market research report from 2020[43], NVIDIA’s
market share on the discrete GPU market was about 80% in the second
quarter of 2020. In the report, the market shares of the three main GPU
manufacturers are displayed. While Intel here is reported to have a 0%
market share, the other graphic in the report states that Intel has the
majority of the market share on the GPU market overall. However, this
is not especially relevant for us, as this share is largely carried by Intel’s
manufacturing of integrated graphics units, which are usually no where
near powerful enough for efficient GPGPU. We are much more interested
in discrete GPUs, as they are many times more powerful. As illustrated
by the figure in the article, even though Nvidia controls the market with
80% market share, there is still a large portion of users with powerful
(and not powerful) discrete AMD GPUs.
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2.5.2 Ease of Implementation

While I previously praised the relative ease of implementation and
readability of CUDA, when compared to other programming models,
CUDA is quite low-level and difficult to grasp. There are opposing views
on whether or not higher-level abstraction paradigms such as Thrust
actually provide users with an easier to learn model however, at least
relative to the maximum performance they can achieve. Daleiden et
al.[9] asserts that based on their results with the specific task they gave
students, higher-level abstraction paradigms are actually harder to learn.
Of course, the validity of that claim is to be disputed, and only true in the
case of Thrust vs CUDA.

Contrary to the claim that higher-level GPU programming models are
harder to learn, Li et al.[22] suggests that OpenACC is easier to learn, and
a viable parallel solution was produced faster with OpenACC than with
CUDA. However, OpenACC solutions were always slower performance-
wise, with CUDA solutions having 9x shorter execution times[22,
p. 13]. In another article[30], multiple GPU programming standards are
compared to each other in terms of performance, producitvity and more.
Here, they conclude that the programming effort required to implement
certain things in OpenCL is higher than both CUDA and OpenACC.

Altogether, these few examples show that there are simply a lot of
factors at play, both in terms of performance and productivity. However,
it seems plausible that OpenACC is the programming model with
the gentlest learning curve and lowest programming effort required,
although at the cost of performance.

2.6 Parallel Programming On CPU

Achieving the same kind of speeds as a good GPU implementation with
desktop CPUs would be difficult, and probably impossible. GPU’s are
very well suited for exactly such a problem as extraction and description
of image keypoints. This task is so massively parallelizable, making it
hard to think of a multi-threaded CPU implementation that would be
faster, while also remaining faithful to the SIFT algorithm.
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2.6.1 Manycore CPUs

A way to technically make parallel CPU solutions perform at the same
level as parallel GPU solutions would be through the use of manycore
CPUS as a secondary accelerator. The term "manycore" usually refers
to CPUs with core counts in the double digits, but the definition may
also include supercomputers with several thousand cores as well. An
example of a manycore CPU fit for explicit parallelism are the CPUs in
Intel’s Xeon Phi 5 series. These CPUs usually have about 60-70 cores,
depending on the specific series model.

5https://en.wikipedia.org/wiki/Xeon_Phi
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Chapter 3

Framework and Optimization

In this chapter I will present the OpenACC programming model,
which is used as the programming model for my demonstration of
parallelism with SIFT, as well as the most important part of this thesis’s
goal. The goal being to evaluate the performance penalty of porting
CUDA or sequential code to OpenACC, while also analysing its impact
on productivity and readability. First, I will explain the model and its
functionality, as well as how to utilize it efficiently. Then, I will compare
it to some other GPGPU frameworks and models, in order to explain
how OpenACC differs from them, and what advantages it offers. These
advantages might take the form of pure performance gains, easier
implementation, increased readability or increased portability. In this
chapter, i will be evaluating the frameworks mostly based on prior
research, while my own findings will be included more in Chapter 4.

3.1 OpenACC

OpenACC is a directive-based and portable parallel programming
model, developed by Cray, CAPS, NVIDIA and PGI. As I have
mentioned earlier, OpenACC works by annotating C, C++ or Fortran
code with simple directives to initiate massively parallel instructions.
This is either done on the GPU, or a multi-core CPU. This makes the code
highly portable, seeing use on many popular vendors’s GPUs, as well
as CPUs. The fact that only simple directives or annotations are needed,
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makes the model a very high-abstraction programming platform.

Compared to other models, OpenACC has convincing performance-
to-effort ratios[54] and offers increased programmer productivity[15].
However, the actual performance portability across platforms[48] might
be overstated. Brodman&Tu proposes that without platform-specific
adjustments, achieving similar performances across platforms with
OpenACC is difficult. However, their analyses were made using an older
compiler called OpenARC[21].

Similar to CUDA, OpenACC operates with a host (typically the CPU)
and a device (typically the GPU). In OpenACC, the device is commonly
referred to as the accelerator. Figure 3.1 illustrates the OpenACC’s
Abstract Accelerator Model. Although represented as two separate
entities in the model, this is simply an abstraction in order to increase
portability and support. In reality, the accelerator and host may be
the same physical unit. Whether they share memory spaces or not,
OpenACC will treat the host and accelerator with this abstract separation
in mind. In addition, if they are in fact separate architectures with
separate memory spaces, OpenACC will automatically handle most
memory management and data transfers as well. However, when it
comes down to actual programming with OpenACC, one should treat
variables as existing in the same memory space.

To explain how to use OpenACC, I will mostly refer to and comment on
the official "OpenACC Programming and Best Practices Guide"[40].

3.1.1 Analysis

The most important step is almost always pre-analysis and profiling of
the program you want to port to OpenACC. Simple or extensive profiling
through tools such as the NVIDIA Nsight Systems or gprof will reveal if
your problem should be ported or not. Additionally, such profiling tools
are important to use throughout the porting process as well, in order
to handle memory properly, and to gauge how many parallel threads
should be used.

As I’ve previosly mentioned, GPU solutions are only better in certain
specific cases. Oftentimes you’re better off just using a standard CPU
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Figure 3.1: OpenACC’s Abstract Accelerator Model. Based on the model
in the OpenACC Programming Guide
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implementation. However, this is the reason why analysis is important.
For example, if you are working with a large piece of software with
multiple different data-processing scenarios, only some of those
scenarios may be suitable for parallel execution on an accelerator.
Recognizing situations where massive parallelization might result
in higher performance is a paramount skill to have as a GPGPU
programmer.

3.1.2 Directives

At the core of the OpenACC programming model is the directive syntax.
I will be presenting the directive syntax in C/C++, as it is the language
my demonstration is written in. Keep in mind that OpenACC supports
directives in Fortran as well. In C and C++, directives take the form of a
pragma, commonly used to provide hints to the compiler. In that sense,
OpenACC can mostly be interpreted as a set of advanced compiler hints.

1 #pragma acc kerne l s

Listing 3.1: OpenACC pragma

The above example is a directive in OpenACC. First, the #pragma to
indicate a compiler hint, then the sentinal acc which signals that the next
part is acc code. Lastly, the main part of the directive, the construct, in this
case kernels. The construct may also be followed by additional clauses to
the same construct, or a different construct.

The kernels construct signifies to the compiler that the following
block of code, specified by curly brackets {}, should be analyzed for
parallelization by the compiler, and possibly offloaded to the accelerator.
However, this directive relies heavily on the compiler to correctly
analyse and automatically parallelize the block of code. It is up to
the programmer to determine if this code region will benefit from
pallelization or not. An example of the kernels construct may look like
this:

1 #pragma acc kerne l s
2 {
3 f o r ( i =0 ; i <N; i ++)
4 {
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5 y [ i ] = 0 . 0 f ;
6 x [ i ] = ( f l o a t ) ( i +1) ;
7 }
8

9 f o r ( i =0 ; i <N; i ++)
10 {
11 y [ i ] = 2 . 0 f * x [ i ] + y [ i ] ;
12 }
13 }

Listing 3.2: Kernels directive

Another construct is parallel. This construct does not practically do that
much by itself, and is commonly paired with other constructs, such as
the loop construct. Parallel signifies that the specified region of code will
be parallelized across OpenACC gangs. This terminology is unique to
OpenACC, but a gang is essentially a collection of workers that do vector
computations in parallel, while being able to share some data with each
other.

While the kernels construct can be placed before a large block of code
containting multiple loops, the combined parallel loop construct must
be placed directly in front of the loop that should be parallelized. The
difference between the parallel and kernels directives might not be readily
apparent, but the former gives maximum control over to the compiler,
while the latter is an assertion by the programmer that the specified loop
is safe and desirable to parallelize.

1 #pragma acc p a r a l l e l loop
2 f o r ( i =0 ; i <N; i ++)
3 {
4 y [ i ] = 0 . 0 f ;
5 x [ i ] = ( f l o a t ) ( i +1) ;
6 }
7

8 #pragma acc p a r a l l e l loop
9 f o r ( i =0 ; i <N; i ++)

10 {
11 y [ i ] = 2 . 0 f * x [ i ] + y [ i ] ;
12 }

Listing 3.3: Parallel loop directive
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As mentioned earlier, constructs may have clauses which provide
additional instructions. For the loop construct, clauses are used either
to ensure correctness, or to optimize the loop. I will not go into these
clauses in detail, but they will be explained as they are used in my
demonstration.

Routine Directive

In most programs it is necessary to call functions or subroutines from
within regions which are parallelized by acc. However, the compiler
is not able to recognize loops or other parallelizable regions within
that function. To address this, functions which are to be called from
within parallelized loops must have a directive with the routine construct
decorating it:

1 c l a s s f l o a t 3 {
2 publ ic :
3 f l o a t x , y , z ;
4

5 #pragma acc rout ine seq
6 void s e t ( const f l o a t 3 * f ) {
7 x=f −>x ;
8 y=f −>y ;
9 z=f −>z ;

10 }
11

12 } ;

Listing 3.4: Routine directive

Now, the set function will be callable from within a parallel region of
code. Additionally, the function is declared a seq through the directive,
signifying that it is a sequential function.

Atomic Operations

In order to ensure correctness when an element in memory is accessed
across multiple parallel loops, it is important to avoid races whenever
possible. A race condition may occur if that specific value is modified by
one instance of the loop, while another instance is simultaneously trying
to access it. This leads to unpredictable and undefined behaviour, with
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results being different upon each execution of the program. Needless
to say, this is undesirable and should be avoided. In some cases, using
the aforementioned loop directives for correctness will solve this issue,
but another slightly more complex way to do so is by using an atomic
directive. The atomic directive may be followed by one of the following
four clauses:

• Read: ensures that no two loop iterations will read from the region
at the same time.

• Write: ensures that no two loop iterations will write to the region at
the same time.

• Update: a combination of read and write.

• Capture: performs an update, and also saves the value calculated in
that region to be used in the following code.

If neither clause is given, the directive defaults to the update clause.
Example:

1 #pragma acc p a r a l l e l loop
2 f o r ( i n t i =0 ; i <HN; i ++)
3 h [ i ] = 0 ;
4

5 #pragma acc p a r a l l e l loop
6 f o r ( i n t i =0 ; i <N; i ++) {
7 #pragma acc atomic update
8 h [ a [ i ] ] + = 1 ;
9 }

Listing 3.5: Atomic update directive

With the directives and clauses I have mentioned so far, it is possible to
parallelize most problems. However, a common occurrence is that the
program now actually takes longer to execute. The reason for this might
simply be that the problem is not a good fit for massive parallelization,
but the primary reason is likely overhead due to data movement. Put
simply, the program spends more time moving data between host
and accelerator than it does actually solving the problem. In order to
minimize this effect, it is important to give additional information to
the compiler. This information also comes in the form of directives, the
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specifics of which will be discussed in the next section.

3.1.3 Data Locality

In order for the compiler to be safe and robust, it will usually copy
data between devices many more times than necessary. This is because
it is difficult for the compiler to inherently know when and where
data will be needed. Therefore, the compiler cautiously copies over
data frequently, just in case it might be needed. However, human
programmers will always know when and where data should be used,
and we can therefore exploit the data locality of the program. By data
locality, I am referring to data which should remain in either host
or device memory for as long as it is needed. Optimizing reuse and
relocation of data through OpenACC directives is a key component of
attaining higher efficiency with the framework.

Data Construct

To allow data to be shared between multiple parallel regions, the data
construct must be used. This construct may decorate one or more parallel
regions in the same function or alternatively placed at a higher/outer
level to allow data to be shared between multiple functions. Adding a
data region to a previous example:

1 #pragma acc data
2 {
3 #pragma acc p a r a l l e l loop
4 f o r ( i =0 ; i <N; i ++)
5 {
6 y [ i ] = 0 . 0 f ;
7 x [ i ] = ( f l o a t ) ( i +1) ;
8 }
9

10 #pragma acc p a r a l l e l loop
11 f o r ( i =0 ; i <N; i ++)
12 {
13 y [ i ] = 2 . 0 f * x [ i ] + y [ i ] ;
14 }
15 }

Listing 3.6: data directive
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Now, data (the arrays x and y) may be shared between the two parallel
regions. However, this is still not optimal in terms of data movement, so
additional clauses are neccessary. The clauses available to use with the
data construct are:

• Copy: Create space for the listed variables on the device, initialize
the variable by copying data to the device at the beginning of the
region, copy the results back to the host at the end of the region,
and finally release the space on the device when done.

• Copyin: Create space for the listed variables on the device,
initialize the variable by copying data to the device at the beginning
of the region, and release the space on the device when done
without copying the data back the the host.

• Copyout: Create space for the listed variables on the device but do
not initialize them. At the end of the region, copy the results back to
the host and release the space on the device.

• Create: Create space for the listed variables and release it at the end
of the region, but do not copy to or from the device.

• Present: The listed variables are already present on the device, so
no further action needs to be taken. This is most frequently used
when a data region exists in a higher-level routine

• Deviceptr: The listed variables use device memory that has been
managed outside of OpenACC, therefore the variables should
be used on the device without any address translation. This
clause is generally used when OpenACC is mixed with another
programming model.

There also special data clauses for more complex data structures such as
C++ classes or C structs. These directives are slightly more advanced,
and will be explained when I utilize them in my demonstration.

Array Shaping

The final piece of additional compiler info i will be presenting is called
array shaping. This feature allows you to tell the compiler the size and
shape of an array. Array shaping is done through a clause to the data
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construct. In C/C++ you may describe the shape and size of an array
as such: x[start:count], where start is the first element to be copied,
and count signifies the number of elements to copy. For dynamically
allocated arrays, array shaping is exceptionally useful, as those will not
have known sizes or shapes at compile time.

Using the previous examples, we know that both x and y will be filled
with data on the accelerator, therefore neither needs to copy data from
the host. Additionally, we may use the create clause to create space for
the x array on the device, in conjunction with a copyout clause for the
y array. This is because the y-array contains the final values we want to
store in host memory. In code, it would look like this, where N is the x
and y array sizes:

1 #pragma acc data c r e a t e ( x [ 0 :N] ) copyout ( y [ 0 :N] )
2 {
3 #pragma acc p a r a l l e l loop
4 f o r ( i =0 ; i <N; i ++)
5 {
6 y [ i ] = 0 . 0 f ;
7 x [ i ] = ( f l o a t ) ( i +1) ;
8 }
9

10 #pragma acc p a r a l l e l loop
11 f o r ( i =0 ; i <N; i ++)
12 {
13 y [ i ] = 2 . 0 f * x [ i ] + y [ i ] ;
14 }
15 }

Listing 3.7: Array shaping with create and copyout directives

It is technically unneccessary to include the 0 in the create and copyout
clauses, but they are added for readability. OpenACC supports a syntax
where the 0 can be replaced by a blank: create(x[:N]).

There are more advanced features of OpenACC which i will not explain
in detail here, but rather explain them when they are naturally brought
up in my solution.
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3.2 Comparing GPGPU Models

In this section I want to discuss the apparent drawbacks and upsides
with choosing one of the different GPGPU models. Things I will consider
are: performance, portability, ease of implementation and readability.
Portability is the main thing I consider the most important. Second to
portability will be performance, with the expectation that most other
programming models will perform worse than CUDA already does, with
the exception of optimized OpenCL implementations.

3.2.1 Performance Comparison

On the topic of performance, there are not a lot of existing GPU
implementations of SIFT in OpenCL or OpenACC that report speedup.
Most of them are understandably written in CUDA. There are some [7,
31, 55] using OpenCL, and Condello et al. reports that implementing
SIFT on the GPU was slightly inefficient due to the high latency of
global memory. Keep in mind that the article is from 2013, so they did
not have access to the some of the high-end and consumer-available
GPUs we have today. Their testing was done on a NVIDIA’s GTX275
which launched in 2009. Additionally, they discuss trying to use a
tree-based search algorithm similar to a classic CPU implementation
of the Nearest Neighbour Problem, but that approach is not ported to
the GPU. Condello et al. describe the branching nature of those CPU
implementations as being extremely performance-hampering on parallel
code, and the CUDA programming guide [36] advises against threads
that diverge too much.

The other article, Yan[55], is not even really on SIFT, but rather on the
Speeded-Up Robust Feature algorithm (SURF). However, they achieved
a speedup of 37% and 64% over CUDA implementations on a GTX660
and GTX460SE respectively. The GTX660 approach is also on average 22
times faster than its original CPU version.

Another approach to GPU sift is Moren&Göhringer[31]. Their portable
and multi-device OpenCL SIFT implementation has a significant
performance advantage over similar CPU implementations. Their overall
speedup is 2.69 times as fast. Their implementation is also platform-
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independent, theoritically able to be run on CPU’s, GPU’s or other
heterogeneous architectures.

For OpenACC , I was not able to find any existing papers or articles
on a SIFT implementation using OpenACC, not considering Fassold’s
[11] article about the different frameworks and platforms for GPGPU in
general. I attribute this fact simply to OpenACC being relatively new,
having its first stable release of the 2.0 version in 2013 1. This means that I
will have to do some performance testing myself, to find out how useful
OpenACC is for SIFT specifically.

3.2.2 Portability Comparison

Here, I want to discuss the differences in portability of some parallel
programming models. At first glance, I believe it will be much easier to
port an existing algorithm and its code into OpenACC. My reasoning for
this is intertwined with the relative ease of implementation of OpenACC
as well. Annotating code is a lot easier than writing a whole kernel,
as is the case with CUDA and OpenCL. However, I am not convinced
that OpenACC is as simple as just annotating some code either. Porting
or implementing an solution with OpenACC will still require deep
knowledge of not only the GPU architecture, but the behind-the-scenes
memory movement and management these annotations execute as well.
While OpenCL is considered similar to CUDA, I believe that it would
be much harder to completely rewrite several kernels from CUDA to
OpenCL.

In both ease of implementation and readability, OpenACC clearly wins
out in my opinion. Overall, I am convinced that OpenACC will be
the best way to successfully port the SIFT algorithm to other GPUs
and accelerator devices. I am expecting a hit in overall performance
compared to CUDA solutions overall, but hopefully not so much
as to render OpenACC completely unviable as a high-level parallel
progamming option. As mentioned earlier, the main focus will be on
finding a suitable parallel programming model for platform-agnostic
solutions that can be run on other GPUs than only those manufactured

1https://www.openacc.org/sites/default/files/inline-files/OpenACC_2_0_specification.pdf
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by NVIDIA, as well as being able to run on many- or multicore CPUs.

An important thing to keep in mind when writing portable OpenACC
code however, is that when compiling with the NVHPC compiler nvc++
while having an NVIDIA GPU, the compiler will translate OpenACC
directives into CUDA kernels. As most CUDA-ready devices nowadays
have access to Unified Memory, it is important to turn this option
off when compiling. To be brief, this is to ensure a certain degree of
portability, as solutions written and tested with Unified Memory enabled
will probably not work as expected on other architectures. I will explain
this with more detail in section 4.2.

3.3 OpenCL

OpenCL is an open programming standard and interface for multi-
core heterogenous systems, developed and maintained by the Khronos
Group. Khronos is an open, non-profit consortium of over 150
companies. Some other projects maintained by Khronos include the
Vulkan, OpenGL and WebGL renderers, as well as the programming
standard aimed at cross-platform VR and AR development; OpenXR.
As mentioned earlier, OpenCL is functionally and programatically
similiar to CUDA. OpenCL uses kernels, and provides many of the same
extensions. Additionally, OpenCL is far more portable than CUDA.
However, OpenCL requires an even better knowledge of low-level
programming paradigms, as kernels require far more lines of codes to
implement with this interface.

Regarding portability of performance, OpenCL should behave similarly
to OpenACC. Writing catch-all portable code is certainly feasible
and should offer guaranteed correctness, but tweaking solutions for
specific architectures is beneficial for performance. This is indeed
similar to OpenACC, where much of the selling point is the ease-of-
implementation, even though it will still require fine-tuning to the
specific architecture to achieve maximum performance.
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3.4 OpenMP

OpenMP [8] is another extremely popular multi-processor and device
offloading programming model. It is very similar to OpenACC in terms
of implementation, being directive-based as well. Initially, only multi-
thread CPU offloading was possible, but they fairly recently (2013) added
some support for offloading to GPUs and FPGAs as well. While the
two models seems very similar, OpenMP is a bit more general. While
OpenACC allows for intimate management of memory through its
directives, OpenMP directives are mostly used to initiate specific parallel
code execution. Additionally, OpenACC is much more focused on letting
the compiler make optimizations and improvements, even in areas where
the programmer initially didn’t put any directives.

Since i primarily want to focus on the GPGPU and multi-core offloading
aspects of high-level optimization models, OpenMP simply does not fit
well enough for an efficient GPU implementation. While OpenMP might
be more straigthforward [53], OpenACC offers a much more interesting
approach to parallel code execution.
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Chapter 4

Method and Implementation

This chapter aims to outline and explain my OpenACC demonstration.
First an overview of the development environment and hardware specs.
Then, I will present parts of the sequential SIFT implementation i used
as a starting point, and how to offload these parts and computations to
the GPU or multi-core CPU with OpenACC directives. After explaining
the basic implementation, i will present the steps i have taken to further
optimize the directives, using the features and methodology i outlined in
section 3.1. I will be providing code snippets of my implementation and
relevant theory throughout this chapter, which will explain and support
my chosen methods.

4.1 Method

In this section I will discuss some of the design philosophies and
methods of implementation i will be using throughout the parallelization
cycle.

4.1.1 Implementation Cycle

In general, the way I will parallelize and re-write the sequential
implementation follows three steps as outlined in figure 4.1. Firstly, I
will do some basic profiling of the program, focusing on regions where
I suspect there is the biggest room for improvement. Secondly, based on
the basic profiling, I will implement a naive parallel solution which may
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Figure 4.1: The parallel programming porting cycle

or may not achieve speedup. When dealing with a high-level framework
such as OpenACC, i am unlikely to achieve significant speedup through
a naive implementation. Lastly, I will profile the proposed parallel
optimizations, making improvements and tweaks based on the data.
This is the most important step, and requires knowledge of memory
movement, as well as the correct utilities.

4.2 Development Environment

Having a proper development environment is important when
porting a larger algorithm. Therefore, i will very briefly explain what
technologies, i.e languages,frameworks,tools, or standards I used during
the implementation phase.

4.2.1 Language Standards and Tools

The solution is written in C++ standard C++17, using CMake 1 minimum
version 3.14 as a compilation controller, linker and organizer. The parallel
OpenACC solution is written with OpenACC version 2.7+ in mind,
and without the use of CUDA unified/managed memory. This is an

1cmake.org
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extremely important thing to keep in mind when developing with
OpenACC on a CUDA-enabled GPU, as the code will not work properly
on other devices with this option turned on. Disabling managed memory
comes with some extra challenges however, which i will discuss later in
Chapter 6.

4.2.2 Profiling Utilities

I have used a combination of the C++ std::chrono library to measure
elapsed real time, also known as wall time, and NVIDIA Nsight Systems
to profile my parallel optimizations. It is important to note that the
execution speed values from these two tool might not always line
up either, due to a number of factors. The most important one being
overhead due to profiler initialization. Nsight is mostly to profile CUDA
and GPU code, and will not work as well for profiling the sequential
solution.

4.2.3 Debugging Utilites

My main debugging utility is the command line program "compute-
sanitizer" (formerly cuda-memcheck) for GPU code. This utility comes
bundled with the CUDA toolkit. In addition, I also use valgrind for more
basic memory access and movement runtime errors.

4.2.4 GPGPU Compilers

There are two main ways of compiling C++ code with OpenACC
directives enabled: GCC(g++) with offloading capabilities enabled, or
NVIDIA HPC SDK’s nvc++.

GCC

GCC has support for offloading computations to a secondary processor,
providing the programmer with access to both OpenMP and OpenACC
directives. However, i found their implementation to be prone to
errors and more difficult to get running, so i decided to not choose this
compiler.
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Figure 4.2: Example of -Minfo=accel output

NVHPC

The NVHPC compiler is the commercial NVIDIA-supported compiler
for all things HPC and GPGPU-related. For C++, the compiler is called
nvc++, but used to be called pgc++, before the Portland group was
acquired by NVIDIA in 20132. An important feature of the NVCHP
compiler is the abundance of flags you can set. The only strictly
mandatory flag for compiling OpenACC code however, is the "-acc" flag.
From my experience with OpenACC during this thesis, i found the "-
Minfo" flag set to "-Minfo=accel" the most helpful. This flag will display
possible parallelization, your implemented parallelizations and implicit
optimizations that the compiler automatically does with accelerator code.

4.3 Sequential Implementation

The baseline sequential solution i will be partly referring to when
demonstrating parallel optimizations with OpenACC, is a C++
implementation at https://github.com/dbarac/sift-cpp. To reiterate, I
did not write this sequential solution myself, and I am not presenting
the sequential solution as my own. I am simply using it as a baseline to
demonstrate the effects of parallel optimizations.

The solution is faithful to the original algorithm, differing only in the
descriptor normalization and utilization in actual image matching. This
solution is written to closely follow an implementation outlined in the
article called "Anatomy of the SIFT Method" [46].

Since the solution is a faithful implementation, it follows the SIFT steps

2https://www.theregister.com/2013/07/30/nvidia_buys_the_portland_group/

41



exactly, featuring 6 main functions:

• generate_gaussian_pyramid(): Upscales the base image by a
factor of 2 through bilinear interpolation, then applies a blur
with σ = 1.6 with default settings. Then, sigma values are
calculated for the remaining blur levels, and the construction of the
scale space pyramid begins. The gaussian pyramid is stored in a
ScaleSpacePyramid struct.

• generate_dog_pyramid(): Constructs the DoG pyramid from the
original pyramid by subtracting the layers. This pyramid is also
stored in a ScaleSpacePyramid struct.

• find_keypoints(): Loops through the DoG pyramid to find
extremums, and starts testing possible keypoint features. This is
done by refining the keypoint through the contrast and edge-tests
described in the original algorithm.

• generate_gradient_pyramid(): Generates a new scale space
pyramid with the keypoints found in the DoG images layered onto
the input images, containing the surrounding gradient information.

• find_keypoint_orientations(): First, this function checks if any
keypoints are too close to the edge, and discards them if they are.
Then, it loops through the gradient pyramid and accumulates
them in directional bins, which are then smoothed with a 6x
convolve box filter. Finally, the dominant orientation of the feature
is computed.

• compute_keypoint_descriptor(): This function computes the
actual descriptors for the keypoints. The function finds the image
coordinates of the features from the gradient pyramid, and starts
computing the orientation histograms, of which there are 8 in 16
regions surrounding the keypoint feature. Lastly, the orientation
histograms are transformed into feature vectors.

Images are stored as structs containing various information such as
width,height and the actual data. Some member functions to get and set
specific pixels are declared as well.

1 s t r u c t Image {
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2 e x p l i c i t Image ( std : : s t r i n g f i l e _ p a t h ) ;
3 Image ( i n t w, i n t h , i n t c ) ;
4 Image ( ) ;
5 ~Image ( ) ;
6 Image ( const Image& other ) ;
7 Image& operator =( const Image& other ) ;
8 Image ( Image&& other ) ;
9 Image& operator =( Image&& other ) ;

10 i n t width ;
11 i n t height ;
12 i n t channels ;
13 i n t s i z e ;
14 f l o a t * data ;
15 bool save ( std : : s t r i n g f i l e _ p a t h ) ;
16 void s e t _ p i x e l ( i n t x , i n t y , i n t c , f l o a t val ) ;
17 f l o a t g e t _ p i x e l ( i n t x , i n t y , i n t c ) const ;
18 void clamp ( ) ;
19 Image r e s i z e ( i n t new_w, i n t new_h , I n t e r p o l a t i o n method =

BILINEAR ) const ;
20 } ;

Listing 4.1: Image struct

In addition to the Image struct, the Keypoint struct stores information
about the coordinates of a keypoint (including DoG-coordinates). In
addition, a 128-element array is allocated as the container for the actual
descriptor of the keypoint feature.

1 s t r u c t Keypoint {
2 // d i s c r e t e coordinates
3 i n t i ;
4 i n t j ;
5 i n t octave ;
6 i n t s c a l e ; //index of gaussian image i n s i d e the octave
7

8 // continuous coordinates ( i n t e r p o l a t e d )
9 f l o a t x ;

10 f l o a t y ;
11 f l o a t sigma ;
12 f l o a t extremum_val ; //value of i n t e r p o l a t e d DoG extremum
13

14 std : : array < f l o a t , 128> d e s c r i p t o r ;
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15 } ;

Listing 4.2: Keypoint Struct

4.3.1 About Porting popsift Directly

The ideal way to compare an OpenACC implementation of SIFT to
popsift would be to un-CUDAfy the solution, turning it into a sequential
solution, and then use OpenACC to parallelize again. However, this
would take a tremendous amount of programming effort, and I believe
it would not be necessary in order to answer the goals proposed in this
thesis. The largest contributor to the amount of programming effort
required is the inability to use the CUDA texture engine with OpenACC.
Popsift utilizes this feature extensively, and is built from the ground
up with it in mind. I will talk a bit more about the texture engine in
Chapter 6 as well. If my goal was to write a replacement for popsift with
OpenACC, I should either have written a solution from scratch using
popsifts methodology, or rewritten popsift as a sequential solution. Alas,
it seemed like a better idea to instead refocus my efforts on learning
OpenACC through porting an already sequential solution, as well as
studying available research and literature on the topic.

4.3.2 Profiling

To get an idea of which functions takes the longest to execute, I perform
initial profiling on the sequential solution. On a single run-through with
a 1920x1080 sized image containing about 12,000 features, the time spent
in each function was as follows:

Function Time Spent(s) Relative Time Spent(%)
generate_gaussian_pyramid() 2.98 28.27

generate_dog_pyramid() 0.11 1.09
find_keypoints() 0.53 5.05

generate_gradient_pyramid() 2.12 20.00
find_keypoint_orientations() 0.29 2.81

compute_keypoint_descriptor() 4.50 42.66
TOTAL 10.55 100

Table 4.1: Execution Time by Function
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As illustrated by table 4.1, the majority of execution time is spent
computing keypoint descriptors. This is not surprising, considering the
amount of features in an image of that size. Considering the image has
about 12,000 features, and each feature is described by 16 square regions
containing 8 histograms, the total number of computations is about
1.5 million. Similarly, the gaussian pyramid function also has to do an
enormous amount of calculations, especially on the first upscaled image.
To demonstrate paralleization with OpenACC, these are the two regions i
will be optimizing further.

4.4 Parallel Implementation

With a very rough idea of where I should start, I can now begin actually
implementing parallel solutions.

4.4.1 OpenACC Directive-Based Implementation

Gaussian Pyramid

The key part of this step is the actual gaussian blurring of the scaled
images. The gaussian_blur function is by far the most called during the
construction of the scale space and gaussian pyramid. Code listing 4.3 is
a display of my proposed naive parallel optimization using the parallel
loop directive.

In the sequential solution, the primary step of convolving the original
image with the gaussian kernel is done inside two triple-nested loops.
The outer two loops are simply iterating through every pixel in the
current-scale image, while the innermost loop is the actual gaussian
calculation:

1 // convolve v e r t i c a l
2 #pragma acc p a r a l l e l loop independent c o l l a p s e ( 2 ) present (

kernel , img ) copyout ( temps [ : sz ] )
3 f o r ( i n t x = 0 ; x < img . width ; x++) {
4 f o r ( i n t y = 0 ; y < img . height ; y++) {
5 f l o a t sum = 0 ;
6 #pragma acc loop reduct ion ( + : sum)
7 f o r ( i n t k = 0 ; k < s i z e ; k++) {
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8 i n t dy = − c e n t e r + k ;
9 sum += img . g e t _ p i x e l ( x , y+dy , 0 ) * kernel . data [ k

] ;
10 }
11 /* tmp . s e t _ p i x e l _ r o u t i n e ( x , y , 0 , sum , f a i l e d ) ; */
12 temps [ y * img . width + x ] = sum ;
13 }
14 }
15 std : : copy ( temps , temps + sz , tmp . data ) ;

Listing 4.3: Vertical Gaussian Convolution

This is the first of the two convolution loops. There two separate loops
because the gaussian convolution has to happen in both vertical and
horizontal directions. The second loop is also dependent on data from
the first loop. The next loop, which convolves in the horizontal direction,
is mostly identical. As seen in listing 4.3, I have added some OpenACC
directives to initialize parallelization. First, the loop is made parallel
through the parallel and loop directives. These two are the most important
constructs. Then, the independent clause is an additional assertion that
overrides the compiler analysis. This is essentially a guarantee from me
to the compiler that the loop iterations are completely data-independent.
However, that assertion comes with one caveat, which can be seen with
the directive decorating the innermost loop. The reduction clause is used
to reduce the loop into sum before moving on. This is in order to ensure
data correctness when assigning the value in the second loop.

Going back to the outer loop, I have added some additional constructs
and clauses. The collapse construct allows the compiler to flatten the two
first loops, giving it more room for parallelization. The present construct
allows me to signify to the compiler that these values are already present
on the device. These values have been added as unstructured data earlier
in the function:

1 #pragma acc enter data copyin ( img , img . data [ : img . width * img .
height ] )

2 i n t s i z e = std : : c e i l (6 * sigma ) ;
3 i f ( s i z e % 2 == 0)
4 s i z e ++;
5 i n t c e n t e r = s i z e / 2 ;
6 Image kernel ( s ize , 1 , 1 ) ;
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7 #pragma acc enter data copyin ( kernel )
8 f l o a t sum = 0 ;
9 f o r ( i n t k = − s i z e /2; k <= s i z e /2; k++) {

10 f l o a t val = std : : exp ( −( k * k ) / ( 2 * sigma * sigma ) ) ;
11 kernel . s e t _ p i x e l ( c e n t e r+k , 0 , 0 , val ) ;
12 sum += val ;
13 }
14 f o r ( i n t k = 0 ; k < s i z e ; k++) {
15 kernel . data [ k ] /= sum ;
16 }
17 #pragma acc enter data copyin ( kernel . data [ : s i z e ] )

Listing 4.4: Unstructered Data by using the enter data directive

As i briefly mentioned when explaining the OpenACC data directives,
there exists an option for more complex data structures. This directive
comes in the form of the enter data directive that can bee seen in listing
4.4. Whenever this directive appears, the data which is copied or created
on the device stays there until a corresponding exit data directive is used.

Finally, the copyout data clause allows the compiler to allocate space on
the device for the array "temps", which is initially empty before the loop,
as well as knowing its size "sz". Then, when the parallel loop region is
finished, the data which has been stored in the device-side version of
the temps array will be copied back to host memory. I then store the
temporary data in a host array, as the data will be used in the next triple-
nested loop.

For now, this naive implementation will stand, and I will go over the
profiling and optimization in section 4.4.2.

Computing Keypoint Descriptors

As outlined earlier, the description of keypoint features is done in
the compute_keypoint_descriptor() function. In it, the orientation
histograms are computed in a double-nested loop. Finally, the data
from those histograms are transformed into 128-element feature
vectors. While the previous naive implementation of gaussian pyramid
construction didn’t incur any particular speedup or slowdown, this naive
implementation causes the program to slow down significantly.
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Without placing any significant importance on data movement and just
implementing a parallel solution that provides near-identical resuls to
the original, i propose the following naive optimization:

1 //accumulate samples i n t o histograms
2 #pragma acc p a r a l l e l loop independent c o l l a p s e ( 2 ) present (

img_grad ) copy ( histograms [ : N_HIST ] [ : N_HIST ] [ : N_ORI ] )
3 f o r ( i n t m = x _ s t a r t ; m <= x_end ; m++) {
4 f o r ( i n t n = y _ s t a r t ; n <= y_end ; n++) {
5 // f ind normalized coords w. r . t . kp p o s i t i o n and

r e f e r e n c e o r i e n t a t i o n
6 f l o a t x = ( (m* p i x _ d i s t − kp . x ) * c o s _ t
7 +(n* p i x _ d i s t − kp . y ) * s i n _ t ) / kp . sigma ;
8 f l o a t y = ( −(m* p i x _ d i s t − kp . x ) * s i n _ t
9 +(n* p i x _ d i s t − kp . y ) * c o s _ t ) / kp . sigma ;

10

11 // v e r i f y ( x , y ) i s i n s i d e the d e s c r i p t i o n patch
12 i f ( s td : : max( std : : abs ( x ) , s td : : abs ( y ) ) > lambda_desc * (

N_HIST + 1 . ) /N_HIST )
13 continue ;
14 f l o a t gx = img_grad . g e t _ p i x e l _ r o u t i n e (m, n , 0 ) , gy =

img_grad . g e t _ p i x e l _ r o u t i n e (m, n , 1 ) ;
15 f l o a t theta_mn = std : : fmod ( std : : atan2 ( gy , gx ) − t h e t a +4*

M_PI , 2*M_PI ) ;
16 f l o a t grad_norm = std : : s q r t ( gx * gx + gy * gy ) ;
17 f l o a t weight = std : : exp ( −( std : : pow(m* pix_dis t −kp . x , 2 )+

std : : pow( n* p ix_dis t −kp . y , 2 ) )
18 /(2* patch_sigma * patch_sigma )

) ;
19 f l o a t c o n t r i b u t i o n = weight * grad_norm ;
20 update_histograms ( histograms , x , y , contr ibut ion ,

theta_mn , lambda_desc ) ;
21 }
22 }

Listing 4.5: Naive implementation of feature descriptor computation

Code listing 4.5 is the main loop of the feature descriptor computation
function, and has been decorated with OpenACC pragma directives.
Note that many of the constructs used here are the same as the previous
parallel naive solution in listing 4.3. The present clause here states that
an element img_grad should be present on the device. This is assured
by an "enter data copyin" directive earlier in the function. The element
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img_grad is an Image containing the current gradient image being
looped through, depending on the current scale and octave. It is likely
that the entering of img_grad is the biggest cause of slowdown, which I
will look into more in the optimization and profiling section.

Furthermore the copy data clause is used here. This is in order to ensure
that the array histograms (containing the orientation histograms) is
copied into the device with its intial values, which are previously set
to 0. Then, the data in histograms is copied over to the host after being
modified by the calls of update_histogram() in the parallel code. In
addition, since update_histograms is being used in a parallel region, it
must be declared as an acc routine:

1 #pragma acc rout ine
2 void update_histograms ( f l o a t h i s t [ N_HIST ] [ N_HIST ] [ N_ORI ] , f l o a t

x , f l o a t y ,
3 f l o a t contr ib , f l o a t theta_mn , f l o a t

lambda_desc )
4 {
5 * * * t runcated * * *
6 f o r ( i n t k = 1 ; k <= N_ORI ; k++) {
7 f l o a t theta_k = 2*M_PI * ( k−1)/N_ORI ;
8 f l o a t t h e t a _ d i f f = std : : fmod ( theta_k −theta_mn +2*

M_PI , 2*M_PI ) ;
9 i f ( s td : : abs ( t h e t a _ d i f f ) >= 2*M_PI/N_ORI)

10 continue ;
11 f l o a t bin_weight = 1 − N_ORI* 0 . 5 / M_PI* std : : abs (

t h e t a _ d i f f ) ;
12 #pragma acc atomic update
13 h i s t [ i − 1 ] [ j − 1 ] [ k−1] += his t_weight * bin_weight *

c o n t r i b ;
14 }
15 }
16 }
17 }

Listing 4.6: Update Histogram routine function

Another extremely important thing to include in this function is the
atomic update directive. Usually, subroutines are easily handled by
simply adding the routine seq information, so in cases such as these, it
is important to keep data correctness in mind. Without this directive,
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data correctness cannot be assured. This is because several threads will
try to access and write into the histogram-memory, and cause undefined
behaviour.

4.4.2 Optimizing Directives and Data Movement

In this section i will investigate my naive parallel implementations
further, in order to find out where optimizations in data movement
and other general improvements may be done. As outlined earlier, i
will be doing this in three steps. Firstly, i will profile the solution using
Nvidia Nsight Systems. In general, profiling with Nsight Systems is done
through a CLI: "nsys-profile -t cuda,openacc <executable>". This creates a
report which can be opened via an advanced GUI, showing desired trace
information. The -t flag specifies which traces we would like to include in
the report.

Secondly, i will make modifications which i believe will alleviate the
problems shown through profiling. Finally i will evaluate performance
once again through profiling, and decide if the proposed modification
was beneficial to overall performance.

Optimizing Gaussian Pyramid Construction

For this section, I will simply revert all other code than the Gaussian
Pyramid function to sequential code, in order to more clearly understand
the profiling results. Profiling with the nsys CLI and opening the report
in software interface yields the result in figure 4.3.

In this figure, we are presented with several ways to process the results.
Firstly, there are visual boxes representing the different GPGPU API calls
that the program does during execution. On the OpenACC row, the basic
breakdown of API calls is differentiated by color. Red represents memory
management, in our case mostly "exit data" and "enter data". Since I am
compiling for an NVIDIA GPU, those API calls are in turn translated
to CUDA API calls. These are the beige boxes in the CUDA API row.
These CUDA API calls to allocate memory are in turn executed on the
hardware, in the memory row. This execution of API calls is displayed in
turquoise or pink, and is either HtoD(Host to Device) or DtoH(Device to
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Figure 4.3: Results from the Nvida Nsight Systems profiling of the Gaus-
sian Pyramid naive parallel implementation

Host) respectively.

In addition to memory management, figure 4.3 also displays the
initialization of OpenACC compute constructs, and the respective CUDA
API calls to start and execute CUDA kernels. Kernel initialization and
execution is shown here as blue boxes, and the lighter blue above the
CUDA kernels signify how efficient the kernels are. As we can see, in
most cases except for the very short kernels, efficiency is maxed out. For
the smaller and shorter kernels there are certain valleys present, but this
is mostly due to kernel initialization overhead being a larger percentage,
and the results being smoothed out. If I were to zoom further in, we
would see that the sub-optimal efficiency numbers are simply at the
beginning and the end of each kernel execution.

Interpreting the actual data, we see that there is a certain degree of
memory movement overhead between the kernel initializations.
However, the ratio of memory transfer to actual execution time is very
good. The reason is likely the fact that I am intentionally restricting
myself to not have access to the CUDA Unified Memory. This forces
me to properly manage memory from the beginning. Additionally, this
function is quite simple, and the order in which data is transferred is
more or less impossible to change. If possible, I would like to use async
loops here, but the strictness of the SIFT algorithm requires that i first
compute at least the third-to-last image in an octave before moving on to
the next one.
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Remember that in the function, we copy both the base image and its
data into the device, as well as the kernel. An approach where less
data is copied onto the host and back would be preferable. A potential
alternative may be to instead make a host copy of only the data, and pass
that to the loop. This should effectively remove the need for both enter
and exit data directives. However, due to being a sufficiently efficient
function now, I will not make further modifications.

Optimizing Computing Keypoint Descriptors

For this step i am keeping the optimizations done in the previous section,
as they are for the most part entirely separate. In addition, this will
make the profiling process itself take a shorter amount of time. As i
mentioned earlier when outlining the naive implementation of this
function, the parallel solution caused a severe slowdown of about 70
seconds. Profiling will reveal where and why this slowdown occurs.

Figure 4.4: Results from the Nvida Nsight Systems profiling of the Com-
pute Keypoint Descriptors naive implementation

Figure 4.4 is the NVIDIA Nsight Systems report visualized. Compared
to the previous function, it is visibly apparent what is wrong. The
ratio of memory management to actual kernel execution is extremely
skewed towards memory management. Essentially, when the program
is managing memory, it could have been doing something actually
productive. As can be seen on the table at the bottom of the figure, 71
seconds is spent entering data. It is clear that the amount of memory
movement must be lessened somehow. Just for reference, figure 4.5 is the
same code, but compiling with managed/unified memory on. The ratio
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of memory movement vs kernel execution is completely different, and
much more healthy. This is an example of how programming without
managed memory truly is more convenient, albeit for a very specific
architecture.

Figure 4.5: Results from the Nvida Nsight Systems profiling of the Com-
pute Keypoint Descriptors naive implementation with unified memory
enabled

However, as i aim to evaluate what good portable code looks like, i will
not be using unified memory. Additionally, as i suspected earlier when
implementing the parallel solution naively, entering and exiting the
gradient image data is what takes the most time. However, one way to
solve this is to not use the exit data directive directly after the parallel
loop. To assure no data leaks, we still have to delete the data some time
later in the code. By only entering data within the function, and not
exiting it, we keep the data in memory for multiple function calls.

The reason this approach works, and does not lead to some kind of
overflow or duplication of data is due to how the copyin data clause
works. Technically, all data clauses contain a hidden "if_present"
check, stating that if the element being moved is already present at the
destination, it does not need to be moved again. Therefore, this works
even though the compute function is called for each detected keypoint
whose location may be in any of the octaves or levels of the gradient
pyramid. Put simply, the first time a keypoint appears in a certain
gradient image, that gradient image is transferred to the device, where
it stays for the remainder of the program.

1 #pragma acc enter data copyin ( img_grad , img_grad . data [ : sz ] )
2 f l o a t c o s _ t = std : : cos ( t h e t a ) , s i n _ t = std : : s in ( t h e t a ) ;
3 f l o a t patch_sigma = lambda_desc * kp . sigma ;
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Figure 4.6: Results from the Nvida Nsight Systems profiling of the Com-
pute Keypoint Descriptors optimized parallel solution

4 //accumulate samples i n t o histograms
5 #pragma acc p a r a l l e l loop independent c o l l a p s e ( 2 ) present (

img_grad ) copy ( histograms [ : N_HIST ] [ : N_HIST ] [ : N_ORI ] )
6 f o r ( i n t m = x _ s t a r t ; m <= x_end ; m++) {
7 f o r ( i n t n = y _ s t a r t ; n <= y_end ; n++) {

Listing 4.7: Entering data before the main feature descriptor computation
loop

Implementing this optimization step has a drastic effect on the runtime
and overall frequency of memory transfers in comparison to the original
naive implementation. Looking at figure 4.6, we can see that the ratio of
memory movement to kernel execution is at a much more sane level.
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Chapter 5

Results

The results from my parallel optimizations will be presented in this
chapter. Additionally, i will present and explain general considerations
and conditions that might influence the data, such as testing computer
specifications, differences in keypoint amounts in images, as well as
image sizes. Since the optimizations are meant to be as platform portable
as possible, i will present results from executing the program both on a
GPU, as well as a multi-core CPU.

5.1 Testing Environment and Setup

5.1.1 Computer Specs

Name AMD® Ryzen 5 2600x
# Of CPU Cores 6

# Of Threads 12
Base Clock 3.6GHz
L1 Cache 576 KB
L2 Cache 3MB
L3 Cache 16MB

Table 5.1: CPU capabilities of the testing machine

CUDA Compute Capability

An important thing to remember is that since my testing machine has an
NVIDIA GPU, OpenACC will actually offload the code by translating
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Name NVIDIA Corporation GP102 [GeForce GTX 1080 Ti]
# Of CUDA Cores 3584

# Graphics Clock (MHz) 1480
Processor Clock (MHz) 1582

Standard Memory Config 11 GB GDDR5X
Memory Interface Width 352-bit

Memory Bandwidth 11 Gbps

Table 5.2: GPU capabilities of the testing machine

it to CUDA. Therefore, the CUDA compute capabilities and details of
my graphics card is of significance. This info is available in the appendix
table A.1, and is obtained by running the command nvaccelinfo, which is a
utility that is part of the CUDA drivers.

5.2 Time Performance Evaluation

In this section I will present the resulting speedup from my parallel
optimizations compared to the original sequential implementation. I
will only evaluate the timings of the feature extraction and description
step, and ignore the execution time spent on surrounding processes such
as image loading and descriptor output I/O operations. Additionally, i
will not evaluate the timings of actual image matching with the parallel
optimizations, as this is essentially just the extraction and description
step performed two times. Arguably, the image matching itself is an
important part of most processes utilizing SIFT, but it is not the primary
focus of this thesis. Therefore, the only qualitative evaluation I will be
doing is evaluation with regards to the number of feature descriptors
extracted per algorithm in section 5.3.

To evaluate the timings and potential speedup of the parallel optimiza-
tions, I will run both the sequential and parallelized solution through
two sets of images. The first is an excerpt containing nine 640x480 png
images from the Zurich buildings dataset [50], while the second is a col-
lection of nine 1920x1080 jpg images i downloaded from Google Images.
The timings will be computed as the average value of these 9 runs. This
is to ensure that the results are more correct and robust with regards to
images of varying sizes, as well as images containing differing amounts
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of feature keypoints and descriptors. Keep in mind that the timings are
measured as wall-clock time and not CPU time, as our program has a lot
of non-cpu operations as well as a large degree of parallelism.

For the parallel solution, i will be compiling the code into two different
binaries with the nvc++ compiler flags "-acc=gpu" and "-acc=multicore".
This will produce two different binaries which are targeting GPU and
multicore CPU architectures respectively. This is to produce results
which will help me answer RQ1 regarding portability.

5.2.1 Zurich Dataset

Running the three solutions through the Zurich dataset excerpt produces
the results shown in figure 5.1. This is a simple presentation of the
average runtime explained earlier. As expected, the sequential solution
is the slowest, while the GPU and multi-core CPU implementations are
very close in terms of execution speed. Taking into consideration that
we have not made any platform-specific optimizations, the closeness
in speed of the two binaries is an expected result. An additional
consideration here is general program overhead, as the Zurich images
are quite small. Therefore, general program overhead likely plays a factor
when looking at these speeds.

Figure 5.2 is a bit more interesting. First off, my definition of speedup is
as follows:

speedup =
sequential_solution_speed

parallel_solution_speed
(5.1)

The speedup value is used to determine the actual amount of times faster
the parallelized solution is. For example, for the average execution speed
values, the achieved speedup for the GPU version is about 1.57. We want
to compute a speedup value in order to further combine it with other
data, creating more complex data points.

Back to figure 5.2, this graph represents the efficiency of the parallelized
solution on the two different architectures. It is important to note that
this graph does not start at 0 y-value, this is in order to see the differences
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Figure 5.1: Execution times in ms for the Zurich Dataset

in speedup more clearly, as they are quite small. From the graph we
observe that the multi-core binary produces higher speedup at lower
keypoint amounts. However, the GPU-accelerated solution quickly
becomes more efficient at about 2600 keypoints.

5.2.2 Google Images Dataset

Running the three solutions through the images I downloaded from
Google Images, the resulting execution speeds are shown in figure 5.3.
Remember that these images are 1920x1080 resolution, and are therefore
a bit more representative of common SIFT situations, such as video
tracking or image matching. Again, the sequential solution is the slowest,
and the GPU-accelerated solution is slightly faster than the multi-core
one. Keeping some of the results from the previous section in mind, it
is expected that these larger images would be faster on the GPU. This is
due to an overall larger amount of features per image.

In figure 5.4, we see a similar graph to 5.2. The key difference here is
that even the most feature-sparse image in this dataset contains more
keypoints than the most feature-dense in the Zurich dataset. Therefore,
the GPU-solution starts off with being the superior solution in terms
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Figure 5.2: Speedup achieved from the sequential solution compared to
keypoint descriptor amounts (Zurich dataset)

Figure 5.3: Execution times in ms for the Google Images dataset
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Figure 5.4: Speedup achieved from the sequential solution compared to
keypoint descriptor amounts (Google Images dataset)

of speed. Looking at the drawn trend lines, we can see that the GPU-
solution grows slightly faster than the CPU-solution. This trend is likely
to continue, as GPUs generally perform better the larger the problem is.
Another thing that should be considered here is hardware, which i will
discuss more in Chapter 6.

5.3 Number of Feature Descriptors Extracted

In addition to time performance evaluations, i will also evaluate one
qualititative aspect of the optimization demonstration. In order to
compare how many feature descriptors are extracted, i will use an image
from the zurich dataset, and compare the amount of feature descriptors
extracted using the sequential solution, popsift, and the parallel solution.
The image i will use for this can be found in appendix B.1. Additionally,
figure 5.5 is the image with keypoints from the parallel solution drawn
on using the stb_image_write and stb_image libraries.

The different numbers of feature descriptors extracted from the Zurich
building image is shown in table 5.3. Note how the parallel solution
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Figure 5.5: Zurich city building with keypoints drawn

Implementation Descriptors Extracted
popsift 2656

sequential 1817
parallel 1958

Table 5.3: Amount of extracted descriptors per implementation

finds more descriptors than the sequential solution, even though they
are using the same functions and criteria for detecting keypoints. This
difference is likely due to the imprecision in precise decimal values that
inherently occur when computing values on a GPU and transferring
them to the CPU back and forth. In this way, small changes in the
values may allow for some keypoints to pass contrast and edge tests
even though the same keypoints did not pass those tests in the original
algorithm.
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5.4 Evaluating Programming Effort

5.4.1 Quantifying Programming Effort

To answer RQ2 about what the overall advantages of using such a high-
level programming model, I need to quantify the programming effort my
parallel optimizations have had. An easy way to do this is to compare
how many directives, e.g lines of code, i had to write with how many
lines of code are in the sequential implementation already. This will give
me a value which i call parallelEffort, and it is defined as such:

parallelE f f ort =
totalDirectives

totalCode
(5.2)

Thus, the defintion of parallelEffort states how many lines of code are
parallel optimization. This can also be combined with the speedup
value, making it possible to quantify how much speedup per measure of
effort. The resulting number is then a quantifiable property of how much
speedup is gained per unit of effort.

Applying this to my solution, i get the following result:

totalCode = 1130

t o t a l D i r e c t i v e s = 19

p a r a l l e l E f f o r t = 19/1130

p a r a l l e l E f f o r t = 0 .016

speedupPerEffort = 1 . 5 7 / 0 . 0 1 6

speedupPerEffort = 98

Now i want to compare this value to a similar one, using popsifts
code as a base. I measure the speedup of popsift over the sequential
solution to be about 18x using the same zurich excerpt image. I will also
approximate the amount of code that popsift runs through with default
configurations, as well as the lines of code to implement those CUDA
kernels. My very rough estimation of the total code executed in popsift,
excluding kernels, is about 4000. Additionally, i estimate about 1700 lines
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of kernel code. Then, doing the same calculations with popsift:

totalCode = 5700

t o t a l K e r n e l s = 1700

p a r a l l e l E f f o r t = 1700/5700

p a r a l l e l E f f o r t = 0 .298

speedupPerEffort = 18/0.298

speedupPerEffort = 60 .40

Interpreting the results, the initial parallelEffort value states that
about 30% of the executed popsift code is kernel code. Keep in mind
this number is calculated with a rough estimation based on analysis
of the popsift codebase and program flow. Then, computing the
speedupPerEffort value which turns out to be about 60.40.

5.4.2 Productivity Comparison

Additionally, comparing the two values, we can get a rough idea of
how the two models differ in productivity and ease-of-implementation.
Essentially, OpenACC has about 50% more speedup per effort than
CUDA. Of course, this is not an exact value to draw conclusions from
by itself, and there are several factors which might influence how many
lines of code are necessary for a certain problem. Also, not every bit of
optimization comes from parallel code, it may also come from differing
implementations or clever optimizing tricks. In order to glean any
meaningful information from these values, I will have to look at prior
research on productivity with OpenACC, and assess if the findings
support or contradict my own results.

In addition, this is all under the assumption that all lines of code require
the same amount of programming effort to write, which is simply not
true. However, it is simply unfeasible to compute an estimation of
each line of code without conducting extensive producitivity studies
such as Daleiden et. al [9] and Li et al.[22]. Essentially, the computed
speedupPerEffort values should only be treated as a representation of
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how the two frameworks differ, and how we can further investigate this
difference going forward. This discussion and analysis will be done in
section 6.2.
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Chapter 6

Discussion

In this chapter i want to properly discuss and explain my findings based
on the results i have generated in the previous chapter, linking them
up to previous research and studies. I will also discuss how my results
answer the research questions i posed at the beginning of the thesis.
Additionally, I will talk about some broader issues and considerations i
found during the implementation process. Finally, i will be analyzing my
methodology and providing alternatives based on prior findings within
this subject.

6.1 Speedup and Time Performance

It is hard to evaluate the speedup of my parallel optimizations on the
SIFT algorithm compared to other research papers and experiments,
simply because there is not a lot of research on this specific topic.
What we can do however, is look at OpenACC being used to replace
or supplement CUDA or some other framework in other fields of
computation. For example Searles et.al[49] which describes OpenACC
as a parallelization framework for wavefront algorithms, e.g. algorithms
that require the results to be computed in stages. This is not dissimilar
to certain parts of the SIFT algorithm, where a computation in the
construction of the gaussian scale space pyramid depends on images
from the previous octaves. Searles et. al report a whopping 85x speedup
using OpenACC over the associated sequential implementation. In
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addition, this speedup is faster than their results with CUDA, where
they report a speedup of 83.72. Thus, this shows that certain problems
are extremely parallelizable to great effect, or the previous sequential
implementation was extremely slow.

A similar speedup result can be found in a paper[33] on the DS-DMAS
algorithm for photoacoustic image reconstruction. Here, a speedup of
74x is achieved for 1024x1024 images. In it, they also assert that the larger
the image they run through the algorithm is, the larger the GPU speedup
is. This supports my own results, and suggests that this might be true for
other image-processing algorithms than just SIFT.

In another field, namely nuclear physic simulation [28], OpenACC
is used to accelerate the solution of large eigenvalue problems. This
paper presents a translation of OpenMP code into Openacc, and their
speedup ranges from 15-27 for differently size input. Their solution
is written in Fortran OpenACC, and features many GPU-specific
optimizations, as they are targeting them specifically. Two other
OpenACC implementations which report speedup factors on the lower-
end are Otero et.al[42] and Martelli et.al[29], with values of 3.1 and 4.56
respectively.

As we can glean from the papers i have presented above, attaining very
high speedup numbers is possible with OpenACC, but it does require
more fine-tuning to specific architectures. The amount of speedup you
can reach is mostly a matter of how much data movement optimization
and platform-specific fine tuning you are willing to do. If I wanted to
create an implementation that would rival popsift in speed, i would
need to do a lot more optimization. This fact is probably the reason
why my parallel optimizations do not achieve a big speedup like
other implementations. Additionally, I did not make optimizations in
every part of the program, and really only focused on some hotspots.
However, my optimizations were mostly to illustrate how OpenACC will
parallelize data, as well as generate some productivity statistics.

Regarding hardware, the processor i used for testing is no where near
the core amount of something like a Xeon Phi, where the core count is
usually between 60-70, depending on the series. These processors are
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designed with parallel models such as OpenMP in mind, and would be
perfect for OpenACC multicore solutions as well. If i had such hardware
available, I am certain that my multi-core solution would have much
larger speedup. Alas, i have not had the chance to test my solution on
a proper manycore processor.

6.2 Productivity in Abstraction

The push for high-level programming models is fairly recent, with
the Thrust CUDA framework having its 1.0 release in May 20201,
OpenACC’s 2.5 in 2016, while an older model such as OpenMP is still
only from 1997. It seems that the need for productivity and high-level
abstraction in the parallel programming discipline was quickly being
realized by these programming models. It is not surprising that a model
such as CUDA gained popularity, being a good combination of readable,
efficient and customizable.

Additionally, due to rise of the GPU powerhouse known as NVIDIA,
CUDA also benefits as a model due to having support in a wide number
of computers and high-performance workbenches. However, CUDA still
suffers from being a bit too low-level and complicated, as supported by
Li et. al[22]. Also, while CUDA does have a large user base, the truth
remains that only NVIDIA GPUs can run it, limiting its user base ever so
slightly. This is why models such as OpenACC and OpenCL have gained
popularity as well, both for different reasons.

While OpenACC boasts minimal implementations for maximum
performance, the truth is that without careful optimization, high-level
directives are not always as effective as the model would lead you to
believe. Looking at my own results and Daleiden et. al’s study[9], there
is actually quite a learning curve to OpenACC as well. I believe that
programmers might be fooled into thinking that optimizations with
OpenACC will be severely easier, and that might be true in terms of
actual programming effort, but the knowledge required to actually
implement an efficient solution is a hurdle that needs to be cleared.

1https://github.com/NVIDIA/thrust/releases/tag/1.0.0
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My results seem to suggest that there is indeed a benefit to a high-level
programming model however, seeing how my estimated quantification
of speedup per programming effort shows OpenACC being clearly
favoured over CUDA. My demonstration just goes to show that with just
a few lines of code, it is actually possible to optimize a solution, albeit
with a small speedup, in a relatively short amount of time and effort.
Remember that even though the achieved speedup is small, the point
still stands that the speedup-to-effort ratio should be much higher, as is
supported by several other OpenACC implementations as well [15, 28,
33].

6.3 Losing CUDA-Specific Technology

As my development and testing has mostly occurred on an NVIDIA
GPU, the OpenACC directives implicitly translate to CUDA code.
However, the abstraction level that OpenACC provides does not allow
for some more advanced CUDA features to be initiated and executed. If
it did, then the required programming effort would probably rise. The
entire point of OpenACC is to write portable and easy-to-implement
code, and being too specific in your implementation with regards to
target architecture might be a slippery slope.

Consider a simple loop that you want to optimize through OpenACC.
With the current implementation, it is possible to write a single, maybe
two or three lines of codes with directives to very efficiently offload
this loop to an accelerator. Now consider what it would be like if for
every accelerator type, you knew that there are several fine-grained and
detailed ways to optimize the loop. This would result in programmers
creating loads of directives, each targeting their own specific architecture.
In all likelihood, this would lead to better performance portability, but
would absolutely lead to a manyfold increase in programming effort.

6.3.1 Texture Engine

A big reason why popsift[12] is such an efficient SIFT algorithm
has a lot to do with its use of the CUDA texture engine. As I have
explained earlier, a texture is essentially a GPU array, with its default
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configuration being 2-dimensional. This layout of data is such a perfect
fit for SIFT, and image processing purposes in general. After all, in a
CPU implementation, an image will probably be stored as 2-Dimensional
plane with each element containing pixel data anyway. This makes the
translation and representation of images as a CUDA texture very easy.

As OpenACC does not expose the CUDA API directly, and neither
does it implement a directive or API call for texture creation, there
is simply no way to take advantage of this feature with OpenACC.
Therefore we are forced to first create suitable data structures for storing
2-Dimensional planes, and copy these over to the accelerator. Then again,
if what you wanted was to exactly call CUDA APIs through a high-level
model, there are other options available [4, 14].

There are advantages to this limitation as well, one being that you
will not be restricted to storing complex data as textures. Essentially,
this allows the programmer to be a bit more flexible and not spend
programming effort on converting certain complex data structures into
structures which are suitable to be represented with a CUDA texture.

6.3.2 Unified/Managed Memory

In CUDA 6.0, a feature called Unified Memory or Managed Memory
was introduced. The feature aimed to simplify memory management
in CUDA programs. It achieves this by allowing the programmer to
instead allocate data to one shared pool of memory. This memory will
be available for use in both the host and device. Having this feature
enabled has a profound impact on the overall ease-of-implementation
of solutions using CUDA. Where you previously had to allocate
memory on host, transfer over, and then transfer back again, you could
now simply allocate to this shared pool, and access from both units.
Usually, in combination with OpenACC this leads to an even greater
degree of productivity, but in larger and more complex programs, the
combination of the two might be problematic [10, Section 5]. This is due
to complicated allocated data objects that may contain members that
point to static data.

As I have already mentioned throughout the thesis, my implementation
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Figure 6.1: CUDA memory with unified memory
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Figure 6.2: CUDA memory without unified memory
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is written without CUDA unified memory enabled. This means that
I had to be extra careful with handling data to and from the device.
This does result in OpenACC requiring slightly more effort than
strictly necessary for NVIDIA GPU devices, but may also yield higher
performance [10] in some cases. Conversely, using unified memory
without proper understanding of memory spaces and management will
often result in performance loss due to the CUDA API attempting to do
what it thinks is most optimal. However, as Knap&Czarnul[20] states in
their paper, the use of Unified Memory may actually always be beneficial
in some scenarios. These scenarios being multi-image processing with
streams, as well as fluid dynamic simulations. In summary, the main
areas where Unified Memory is more efficient, is when the amount
computation time far outweighs the amount of memory transfers
needed.

Even though i originally wanted to move away from CUDA altogether
due to its vendor lock, the acquisition of the Portland Group by NVIDIA
seems to have pushed yet more emphasis on CUDA in the GPGPU
community. On the NVIDIA forums, there are plenty of cases where
the approved answer to a problem is simply "have you tried turning on
unified memory?". While convenient, I do think that this further corners
the available and currently supported commercial compilers for GPGPU
code through high-level models. Realistically, it seems like the two de
facto frameworks are OpenCL for non-NVIDIA GPUs and CUDA.

72



Chapter 7

Conclusion

This thesis has explained and shown the different steps of the SIFT
algorithm, given background on the CUDA and OpenACC programming
models, and presented and discussed results from an accelerated version
of the SIFT algorithm. I have also discussed and compared several
different parallelization platforms, with portability being the highest
weighted factor. By optimizing the SIFT algorithm with the parallel
programming model OpenACC, this thesis has shown and discussed
the performance potential and productivity potential of high-abstraction
programming paradigms.

I have achieved the goal of RQ1 by analysing accelerated solutions with
regards to not only my own solution, but several other solutions that
accelerate their algorithms with a high-level parallel programming
model. Through the use of profiling utilities I have optimized
computational hotspots and presented the results from the optimization.
By referring to relevant literature and studies, this thesis has explored
how different computational problems have varying degrees of potential
for parallelism. The proposed solution also retains a high degree of
portability, while achieving a speedup factor of about 1.57.

The thesis also achieves the goal of RQ2 by quantifying and comparing
the ease-of-implementation and productivity benefits of using the high-
abstraction programming model OpenACC. This quantification is done
by estimating ease-of-implementation as an equation relating the amount
of total code to the amount of code needed to parallelize. The final
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quantifiable result with the attained speedup included showed that
the speedup per unit of programming effort was about 50% more with
OpenACC than CUDA.

74



Chapter 8

Future work

8.1 Increased Optimization

There are several places in my proposed algorithm where there is room
for improvement, namely the calculation of the gradient scale space
pyramid, and more optimized gaussian pyramid creation and descriptor
computation. If I were to suggest OpenACC as a replacement to CUDA
in popsift, the solution would have to be refined a lot more. However,
I did not write a solution with that goal in mind. However, it would be
interesting to actually provide support for other parallel programming
models other than CUDA in popsift. This would not need to even be
OpenACC specifically, OpenCL and OpenMP are potential candidates
for suitable frameworks.

8.2 Thorough Qualitative Performance Analysis

A more detailed and thorough analysis of the qualitative performance
of my proposed solution is sorely needed. Ideally, this would be similar
to the qualitative analysis in the popsift paper, where correctness
measures such as true correspondence, repeatability rate and number of
correct matches are evaluated. The reason this is not already included
in the thesis is a matter of prioritization, as my main focus was on
the conceptualization of the OpenACC model as well as productivity
measurements.
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8.3 Platform-Specific Optimizations

As I have stated several times in this master thesis, I prioritized
portability over anything, and I therefore had to impose certain
limitations of the actual performance portability of my solution. In
the future, I would like to improve the solution by adding platform-
specific optimizations which take effect when the program is run on a
certain architecture. There are OpenACC API calls that do facilitate this
according to the 2.7 specifications1.

1https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf
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CUDA Driver Version: 11060
NVRM version: Kernel Module 510.47.03
Device Number: 0

Device Name: NVIDIA GeForce GTX 1080 Ti
Device Revision Number: 6.1

Global Memory Size: 11713118208
Number of Multiprocessors: 28

Concurrent Copy and Execution: Yes
Total Constant Memory: 65536

Total Shared Memory per Block: 49152
Registers per Block: 65536

Warp Size: 32
Maximum Threads per Block: 1024
Maximum Block Dimensions: 1024, 1024, 64
Maximum Grid Dimensions: 2147483647 x 65535 x 65535

Maximum Memory Pitch: 2147483647B
Texture Alignment: 512B

Clock Rate: 1607 MHz
Execution Timeout: Yes
Integrated Device: No

Can Map Host Memory: Yes
Compute Mode: default

Concurrent Kernels: Yes
ECC Enabled: No

Memory Clock Rate: 5505 MHz
Memory Bus Width: 352 bits

L2 Cache Size: 2883584 bytes
Max Threads Per SMP: 2048

Async Engines: 2
Unified Addressing: Yes
Managed Memory: Yes

Concurrent Managed Memory: Yes
Preemption Supported: Yes

Cooperative Launch: Yes
Multi-Device: Yes
Default Target: cc61

Table A.1: CUDA Compute Capability of the testing machine

89



Appendix B

Images

Figure B.1: object0001.view01.png

90



Appendix C

Code

C.1 Naive Parallel Gaussian Blur Function
1 // separable 2D gaussian blur f o r 1 channel image
2 Image gauss ian_blur ( const Image& img , f l o a t sigma )
3 {
4 a s s e r t ( img . channels == 1) ;
5 bool f a i l e d = f a l s e ;
6

7 #pragma acc enter data copyin ( img , img . data [ : img . width * img .
height ] )

8

9 i n t s i z e = std : : c e i l (6 * sigma ) ;
10 i f ( s i z e % 2 == 0)
11 s i z e ++;
12 i n t c e n t e r = s i z e / 2 ;
13 Image kernel ( s ize , 1 , 1 ) ;
14 #pragma acc enter data copyin ( kernel )
15 f l o a t sum = 0 ;
16 f o r ( i n t k = − s i z e /2; k <= s i z e /2; k++) {
17 f l o a t val = std : : exp ( −( k * k ) / ( 2 * sigma * sigma ) ) ;
18 kernel . s e t _ p i x e l ( c e n t e r+k , 0 , 0 , val ) ;
19 sum += val ;
20 }
21 f o r ( i n t k = 0 ; k < s i z e ; k++) {
22 kernel . data [ k ] /= sum ;
23 }
24 #pragma acc enter data copyin ( kernel . data [ : s i z e ] )
25
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26 i n t sz = img . width * img . height ;
27 Image tmp ( img . width , img . height , 1 ) ;
28 Image f i l t e r e d ( img . width , img . height , 1 ) ;
29

30 f l o a t * f i l t = new f l o a t [ sz ] ;
31 f l o a t * temps = new f l o a t [ sz ] ;
32

33 #pragma acc p a r a l l e l loop independent c o l l a p s e ( 2 ) present (
kernel , img ) copyout ( temps [ : sz ] )

34 f o r ( i n t x = 0 ; x < img . width ; x++) {
35 f o r ( i n t y = 0 ; y < img . height ; y++) {
36 f l o a t sum = 0 ;
37 #pragma acc loop reduct ion ( + : sum)
38 f o r ( i n t k = 0 ; k < s i z e ; k++) {
39 i n t dy = − c e n t e r + k ;
40 sum += img . g e t _ p i x e l ( x , y+dy , 0 ) * kernel . data [ k

] ;
41 }
42 /* tmp . s e t _ p i x e l _ r o u t i n e ( x , y , 0 , sum , f a i l e d ) ; */
43 temps [ y * img . width + x ] = sum ;
44 }
45 }
46

47 std : : copy ( temps , temps + sz , tmp . data ) ;
48 /* #pragma acc update s e l f ( tmp . data [ : sz ] ) */
49

50 #pragma acc p a r a l l e l loop independent c o l l a p s e ( 2 ) present (
kernel ) copyin ( tmp , tmp . data [ : sz ] ) copyout ( f i l t [ : sz ] )

51 f o r ( i n t x = 0 ; x < img . width ; x++) {
52 f o r ( i n t y = 0 ; y < img . height ; y++) {
53 f l o a t sum = 0 ;
54 #pragma acc loop reduct ion ( + : sum)
55 f o r ( i n t k = 0 ; k < s i z e ; k++) {
56 i n t dx = − c e n t e r + k ;
57 sum += tmp . g e t _ p i x e l ( x+dx , y , 0 ) * kernel . data [ k

] ;
58 }
59 /* f i l t e r e d . s e t _ p i x e l _ r o u t i n e ( x , y , 0 , sum , f a i l e d ) ;

*/
60 f i l t [ y * img . width + x ] = sum ;
61 }
62 }
63 #pragma acc e x i t data d e l e t e ( kernel , kernel . data [ : s i z e ] )
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64 #pragma acc e x i t data d e l e t e ( img , img . data [ : img . width * img .
height ] )

65 std : : copy ( f i l t , f i l t + sz , f i l t e r e d . data ) ;
66 d e l e t e [ ] f i l t ;
67 d e l e t e [ ] temps ;
68 re turn f i l t e r e d ;
69 }

Listing C.1: Gaussian Blur

C.2 generate_gaussian_pyramid
1 ScaleSpacePyramid generate_gaussian_pyramid ( const Image& img ,

f l o a t sigma_min ,
2 i n t num_octaves , i n t

s c a l e s _ p e r _ o c t a v e )
3 {
4 // assume i n i t i a l sigma i s 1 . 0 ( a f t e r r e s i z i n g ) and smooth
5 // the image with s igma_di f f to reach requried base_sigma
6 f l o a t base_sigma = sigma_min / MIN_PIX_DIST ;
7

8 c l o c k _ t t imer = c lock ( ) ;
9 Image base_img = img . r e s i z e ( img . width * 2 , img . height * 2 ,

I n t e r p o l a t i o n : : BILINEAR ) ;
10 f l o a t r e s i z i n g = ( ( f l o a t ) ( c lock ( ) − t imer ) ) /

CLOCKS_PER_SEC ;
11

12 t imer = c lock ( ) ;
13 f l o a t s igma_di f f = std : : s q r t ( base_sigma * base_sigma − 1 . 0 f ) ;
14 base_img = gauss ian_blur ( base_img , s igma_di f f ) ;
15 f l o a t blur_base = ( ( f l o a t ) ( c lock ( ) − t imer ) ) /

CLOCKS_PER_SEC ;
16

17 i f ( base_img . height == 0 || base_img . width == 0 || base_img .
channels == 0) {

18 std : : c e r r << " * * * B lurr ing bad ** * \ n" ;
19 std : : e x i t ( 1 ) ;
20 }
21

22 i n t imgs_per_octave = s c a l e s _ p e r _ o c t a v e + 3 ;
23

24 // determine sigma values f o r blur ing
25 t imer = c lock ( ) ;
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26 f l o a t k = std : : pow( 2 , 1 .0/ s c a l e s _ p e r _ o c t a v e ) ;
27 std : : vector < f l o a t > sigma_vals { base_sigma } ;
28 f o r ( i n t i = 1 ; i < imgs_per_octave ; i ++) {
29 f l o a t sigma_prev = base_sigma * std : : pow( k , i −1) ;
30 f l o a t s igma_tota l = k * sigma_prev ;
31 sigma_vals . push_back ( std : : s q r t ( s igma_tota l * s igma_tota l −

sigma_prev * sigma_prev ) ) ;
32 }
33 f l o a t determine_sigma = ( ( f l o a t ) ( c lock ( ) − t imer ) ) /

CLOCKS_PER_SEC ;
34

35 // c r e a t e a s c a l e space pyramid of gaussian images
36 // images in each octave are h a l f the s i z e of images in the

previous one
37 t imer = c lock ( ) ;
38 ScaleSpacePyramid pyramid = {
39 num_octaves ,
40 imgs_per_octave ,
41 std : : vector <std : : vector <Image>>(num_octaves )
42

43 } ;
44 f o r ( i n t i = 0 ; i < num_octaves ; i ++) {
45 pyramid . octaves [ i ] . reserve ( imgs_per_octave ) ;
46 pyramid . octaves [ i ] . push_back ( std : : move( base_img ) ) ;
47 f o r ( i n t j = 1 ; j < sigma_vals . s i z e ( ) ; j ++) {
48 const Image& prev_img = pyramid . octaves [ i ] . back ( ) ;
49 i f ( prev_img . height == 0 || prev_img . width == 0 ||

prev_img . channels == 0) {
50 std : : c e r r << " * * * Image something wrong ** * \ n" ;
51 }
52 pyramid . octaves [ i ] . push_back ( gauss ian_blur ( prev_img ,

sigma_vals [ j ] ) ) ;
53 }
54 // prepare base image f o r next octave
55 const Image& next_base_img = pyramid . octaves [ i ] [

imgs_per_octave − 3 ] ;
56 base_img = next_base_img . r e s i z e ( next_base_img . width /2 ,

next_base_img . height /2 ,
57 I n t e r p o l a t i o n : : NEAREST) ;
58 }
59 f l o a t s c a l e _ s p a c e = ( ( f l o a t ) ( c lock ( ) − t imer ) ) /

CLOCKS_PER_SEC ;
60 std : : cout << " Resiz ing : " << r e s i z i n g << " BlurBase : " <<
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blur_base << " DetSigma : " << determine_sigma << " ScaleSpace :
" << s c a l e _ s p a c e << "\n" ;

61 re turn pyramid ;
62 }

Listing C.2: Gaussian Pyramid

C.3 Naive Parallel Feature Descriptor Computa-

tion
1 #pragma acc rout ine
2 void update_histograms ( f l o a t h i s t [ N_HIST ] [ N_HIST ] [ N_ORI ] , f l o a t

x , f l o a t y ,
3 f l o a t contr ib , f l o a t theta_mn , f l o a t

lambda_desc )
4 {
5 f l o a t x_i , y _ j ;
6 f o r ( i n t i = 1 ; i <= N_HIST ; i ++) {
7 x_ i = ( i −(1+( f l o a t ) N_HIST ) /2) * 2* lambda_desc/N_HIST ;
8 i f ( s td : : abs ( x_i −x ) > 2* lambda_desc/N_HIST )
9 continue ;

10 f o r ( i n t j = 1 ; j <= N_HIST ; j ++) {
11 y _ j = ( j −(1+( f l o a t ) N_HIST ) /2) * 2* lambda_desc/N_HIST

;
12 i f ( s td : : abs ( y_j −y ) > 2* lambda_desc/N_HIST )
13 continue ;
14

15 f l o a t h is t_weight = (1 − N_HIST* 0 . 5/ lambda_desc * std
: : abs ( x_i −x ) )

16 * ( 1 − N_HIST* 0 . 5/ lambda_desc * std
: : abs ( y_j −y ) ) ;

17

18 f o r ( i n t k = 1 ; k <= N_ORI ; k++) {
19 f l o a t theta_k = 2*M_PI * ( k−1)/N_ORI ;
20 f l o a t t h e t a _ d i f f = std : : fmod ( theta_k −theta_mn +2*

M_PI , 2*M_PI ) ;
21 i f ( s td : : abs ( t h e t a _ d i f f ) >= 2*M_PI/N_ORI)
22 continue ;
23 f l o a t bin_weight = 1 − N_ORI* 0 . 5 / M_PI* std : : abs (

t h e t a _ d i f f ) ;
24 #pragma acc atomic update
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25 h i s t [ i − 1 ] [ j − 1 ] [ k−1] += his t_weight * bin_weight *
c o n t r i b ;

26 }
27 }
28 }
29 }
30

31 void h i s t s _ t o _ v e c ( f l o a t histograms [ N_HIST ] [ N_HIST ] [ N_ORI ] , s td : :
array < f l o a t , 128>& fea ture_vec )

32 {
33 i n t s i z e = N_HIST*N_HIST*N_ORI ;
34 f l o a t * h i s t = r e i n t e r p r e t _ c a s t < f l o a t * >( histograms ) ;
35

36 f l o a t norm = 0 ;
37 f o r ( i n t i = 0 ; i < s i z e ; i ++) {
38 norm += h i s t [ i ] * h i s t [ i ] ;
39 }
40 norm = std : : s q r t ( norm ) ;
41 f l o a t norm2 = 0 ;
42 f o r ( i n t i = 0 ; i < s i z e ; i ++) {
43 h i s t [ i ] = std : : min ( h i s t [ i ] , 0 . 2 f *norm ) ;
44 norm2 += h i s t [ i ] * h i s t [ i ] ;
45 }
46 norm2 = std : : s q r t ( norm2 ) ;
47 f o r ( i n t i = 0 ; i < s i z e ; i ++) {
48 /* f l o a t val = std : : f l o o r ( 5 1 2 * h i s t [ i ]/norm2 ) ; */
49 f l o a t val = ( 5 1 2 * h i s t [ i ]/norm2 ) ;
50 f ea ture_vec [ i ] = std : : min ( val , ( f l o a t ) 255) ;
51 }
52 }
53 void compute_keypoint_descriptor ( Keypoint& kp , f l o a t theta ,
54 const ScaleSpacePyramid&

grad_pyramid ,
55 f l o a t lambda_desc )
56 {
57

58 #pragma acc enter data copyin ( kp )
59 f l o a t p i x _ d i s t = MIN_PIX_DIST * std : : pow( 2 , kp . octave ) ;
60 const Image& img_grad = grad_pyramid . octaves [ kp . octave ] [ kp .

s c a l e ] ;
61

62 f l o a t histograms [ N_HIST ] [ N_HIST ] [ N_ORI] = { 0 } ;
63
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64 i n t h = img_grad . height , w = img_grad . width ;
65 i n t sz = w*h * img_grad . channels ;
66

67 //f ind s t a r t and end coords f o r loops over image patch
68 f l o a t h a l f _ s i z e = std : : s q r t ( 2 ) * lambda_desc *kp . sigma * ( N_HIST

+ 1 . ) /N_HIST ;
69 i n t x _ s t a r t = std : : round ( ( kp . x− h a l f _ s i z e ) / p i x _ d i s t ) ;
70 i n t x_end = std : : round ( ( kp . x+ h a l f _ s i z e ) / p i x _ d i s t ) ;
71 i n t y _ s t a r t = std : : round ( ( kp . y− h a l f _ s i z e ) / p i x _ d i s t ) ;
72 i n t y_end = std : : round ( ( kp . y+ h a l f _ s i z e ) / p i x _ d i s t ) ;
73

74

75 #pragma acc enter data copyin ( img_grad , img_grad . data [ : sz ] )
76

77 f l o a t c o s _ t = std : : cos ( t h e t a ) , s i n _ t = std : : s in ( t h e t a ) ;
78 f l o a t patch_sigma = lambda_desc * kp . sigma ;
79 //accumulate samples i n t o histograms
80 #pragma acc p a r a l l e l loop independent c o l l a p s e ( 2 ) present (

img_grad ) copy ( histograms [ : N_HIST ] [ : N_HIST ] [ : N_ORI ] )
81 f o r ( i n t m = x _ s t a r t ; m <= x_end ; m++) {
82 f o r ( i n t n = y _ s t a r t ; n <= y_end ; n++) {
83 // f ind normalized coords w. r . t . kp p o s i t i o n and

r e f e r e n c e o r i e n t a t i o n
84 f l o a t x = ( (m* p i x _ d i s t − kp . x ) * c o s _ t
85 +(n* p i x _ d i s t − kp . y ) * s i n _ t ) / kp . sigma ;
86 f l o a t y = ( −(m* p i x _ d i s t − kp . x ) * s i n _ t
87 +(n* p i x _ d i s t − kp . y ) * c o s _ t ) / kp . sigma ;
88

89 // v e r i f y ( x , y ) i s i n s i d e the d e s c r i p t i o n patch
90 i f ( s td : : max( std : : abs ( x ) , s td : : abs ( y ) ) > lambda_desc

* ( N_HIST + 1 . ) /N_HIST )
91 continue ;
92 f l o a t gx = img_grad . g e t _ p i x e l _ r o u t i n e (m, n , 0 ) , gy =

img_grad . g e t _ p i x e l _ r o u t i n e (m, n , 1 ) ;
93 f l o a t theta_mn = std : : fmod ( std : : atan2 ( gy , gx ) − t h e t a

+4*M_PI , 2*M_PI ) ;
94 f l o a t grad_norm = std : : s q r t ( gx * gx + gy * gy ) ;
95 f l o a t weight = std : : exp ( −( std : : pow(m* pix_dis t −kp . x ,

2 )+std : : pow( n* p ix_dis t −kp . y , 2 ) )
96 /(2* patch_sigma *

patch_sigma ) ) ;
97 f l o a t c o n t r i b u t i o n = weight * grad_norm ;
98 update_histograms ( histograms , x , y , contr ibut ion ,
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theta_mn , lambda_desc ) ;
99 }

100 }
101

102 // build f e a t u r e vec tor ( d e s c r i p t o r ) from histograms
103 h i s t s _ t o _ v e c ( histograms , kp . d e s c r i p t o r ) ;
104

105 #pragma acc e x i t data d e l e t e ( kp )
106 #pragma acc e x i t data d e l e t e ( img_grad , img_grad . data [ : sz ] )
107 }

Listing C.3: Feature Descriptor Computation
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