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Abstract

The theory of multi-view geometry concerns the reconstruction of a landscape
from multiple images.

We will analyze the reconstruction of P2 from n images, for n = 2, 3, 4. A
reconstruction of P2 consists of finding a surface S ⊆ (P1)n and a birational
map α from S back to P2, when S is embedded into P2n−1 using the Segre
embedding. When n = 2, then S = (P1)2 and α is a projection from a specific
point q on S in P3. When n = 3 and n = 4, then S ⊂ (P1)n, and α is a
projection from the span ⟨C⟩, restricted to S, where C is a curve in S in P2n−1.

As we will see, when the number of images used to reconstruct P2 increases,
there is less ambiguity in the reconstruction. We will analyze the ambiguity for
n = 2, 3, 4 images.
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CHAPTER 1

Introduction

Multi-view geometry is the geometry of multiple images. The theory concerns
how to reconstruct a 3-dimensional (3D) landscape from 2D images of the
landscape. When taking an image, we obtain a projection from a 3D space to a
2D plane. Thus, from multiple images, we obtain multiple projections.

In this thesis, we will study 1D images of the 2D plane. The images are
obtained by projections from points in the plane. The question is whether we
can reconstruct the plane from these images. We will consider the reconstruction
of the projective plane and get:

Problem. Can we reconstruct the projective plane P2 based on 1D images
from camera centers in P2?

We are interested in finding a unique reconstruction of P2. The reconstruction
is based on 1D images from different camera centers qi ∈ P2, i.e. projections
πqi : P2 → P1. We will consider n camera centers, for n = 2, 3, 4. By
composing an image from each camera center, we can identify points in (P1)n
that corresponds to points in P2.

Definition 1.0.1. A reconstruction of P2 is obtained, if we can find:

i) a surface S ⊆ (P1)n birationally equivalent to P2, where S consists of
identified points in (P1)n from each 1D image, and

ii) an inverse birational map α : S 99K P2.

It may be tedious to determine S based on identified points in (P1)n, thus we
can embed identified points into P2n−1 using the Segre embedding, and search
for S and α in P2n−1. When embedded into P2n−1 S = ⟨S⟩ ∩ (P1)n, where ⟨S⟩
is the span of S, i.e. the intersection of all projective subspaces containing S.

When n = 2, then S = (P1)2, as P2 and P1 × P1 are birationally equivalent.
To find α we embed S into P3, where the image of S is the quadric Q in P3.
Then, α is the projection from the point q ∈ Q, where q is the image of the line
between the two camera centers q0, q1 ∈ P2, i.e. q = p(q0q1). The projection
from any point on the quadric is birational to P2, thus to find α we need to find
the specific q = p(q0q1).

When n = 3, then S ⊂ (P1)3. To find S we want to identify enough points
in (P1)3, such that they span a P6 when embedded into P7, as the image of
S spans a P6 in P7. To find α in P7, we search for a curve C of degree 3 that
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1. Introduction

spans P3. However, there are two different classes of curves of degree 3 that
spans P3. Thus to find α we need to find the right class. The map α will be
the projection from ⟨C⟩ = P3, restricted to S.

When n = 4, then S ⊂ (P1)4. To find S we want to identify enough points
in (P1)4, such that they span a P10 when embedded into P15, as the image of S
spans a P10. To find α in P15, we search for a curve C of degree 8 that spans
P7. Then, α will be the projection from P7 ⊃ C, restricted to S.

For n = 3 and n = 4, as S ⊂ (P1)n is strictly contained, we need to identify
enough linearly independent points to determine S in P2n−1. If we cannot
identify sufficiently many linearly independent points, we cannot uniquely
reconstruct P2. However, we might identify some points or a curve in P2n−1,
that corresponds to points or curves in P2. We call these critical configurations of
points. We will classify different critical configurations and study the information
we obtain regarding P2 in these cases.

We find that the reconstruction of P2 might be ambiguous for both n = 2 and
n = 3, even after S is identified in P2n−1. For n = 2, there exists a birational
map to P2 from every point on the quadric in P3, α may be any of these maps.
Hence, it is crucial to find the exact point q = p(q0q1) to reconstruct the P2

we started out with. For n = 3, α is the projection from the span of a curve
of degree 3 in P6. But such a curve may belong to either of two classes. Thus,
to uniquely reconstruct the P2 we started out with, it will be crucial to find
a curve of the right class. For n = 4, if we can find S, there is no ambiguity.
Thus, n = 4 is the least amount of images required to uniquely reconstruct P2.

1.1 Outline

In Chapter 2 we consider some useful results regarding the Segre embedding,
divisors, the Picard group and the Chow ring.

In Chapter 3, we consider the reconstruction of P2 from two projections,
where each projection is an image from a camera center qi ∈ P2. As S = P1 ×P1,
the problem of reconstruction is reduced to finding α. We describe the birational
map between the projective plane P2 and the image of S when embedded into
P3. Thereafter, we study the correspondence between curves in P2 and curves
in the image of S in P3.

In Chapter 4 we consider the reconstruction of P2 from three projections,
where each projection is an image from a camera center qi ∈ P2. In this chapter,
we are looking for the surface S ⊂ P1 × P1 × P1 birationally equivalent to P2,
and the inverse birational map α from S to P2. To determine S in P7 we need
to identify enough points so that they span a hyperplane of P7. If they do not,
the reconstruction will be ambiguous. Lastly, we end the chapter by classifying
different critical configurations of points and study the information we obtain
about P2 in these cases.

In Chapter 5 we consider the reconstruction of P2 from four projections,
where each projection is an image from a camera center qi ∈ P2. In this chapter,
we are looking for the surface S ⊂ P1 × P1 × P1 × P1 birationally equivalent to
P2, and the inverse birational map α from S to P2. To determine S in P15, we
want to identify enough points so that they span P10. The chapter ends with a
classification of different critical configurations, cases where the points do not
span P10, and study the information we obtain about P2 in these cases.

2



1.2. Prerequisites

1.2 Prerequisites

We will assume familiarity with algebraic geometry at the level of [Har77]. The
thesis is self-contained, presenting the definitions and results we need.

1.3 Further questions

We have yet to describe how to find the curve C that is necessary for finding α
in P2n−1. Although relevant, this will not be discussed in this thesis.

Further, we have studied a reconstruction of the projective plane P2 based
on 1D images. An interesting generalization would be to study a reconstruction
of the projective space P3 based on 2D images. However, such a generalization
is not included.

3



CHAPTER 2

Preliminaries

In this chapter we first recall some useful results regarding the Segre embedding,
then we move on to describing divisors, the Picard group and the Chow ring.

2.1 The Segre embedding

The Segre map σn,m is a map from the product of two projective spaces Pn×Pm
into the projective space P(nm+n+m), i.e.

σn,m : Pn × Pm → P(n·m)+n+m (2.1)

Given the homogeneous coordinates [x] = (x0 : · · · : xn) and [y] = (y0 : · · · : ym)
in each projective space Pn and Pm respectively, the Segre map becomes

σn,m
(
[x], [y]

)
=

(
x0y0 : · · · : xiyj : · · · : xnym

)
(2.2)

where xiyj represents any coordinate such that 0 ≤ i ≤ n and 0 ≤ j ≤ m.
The double indexing in (2.2) makes it possible to represent the coordinates

of all points in the image of σn,m as entries in a (n+ 1) × (m+ 1)-matrix. This
is shown in (2.3), where we denote the matrix as M .

M = (x0 : · · · : xn)t(y0 : · · · : ym) =

x0y0 x0y1 . . . x0ym
...

... . . . ...
xny0 xny1 . . . xnym



=

t00 t01 . . . t0m
...

... . . . ...
tn0 tn1 . . . tnm

 (2.3)

All entries ti,j in (2.3) are homogeneous coordinates in the projective space
P(nm+n+m), indexed by pairs (i, j) with 0 ≤ i ≤ n and 0 ≤ j ≤ m.

Definition 2.1.1 (Closed embedding). A morphism ι : X → Y is a closed
embedding if X is isomorphic to the image ι(X) which is closed in Y .
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2.2. Divisors

Proposition 2.1.2 ([EOa], Proposition 5.20). The Segre map σn,m is a closed
embedding of the product Pn × Pm into Pnm+n+m. The image, usually denoted
Sn,m, of σn,m is the locus where the 2 × 2-minors of the matrix M vanish. Sn,m
will therefore be a projective variety called a Segre variety.

In more generality, the Segre map extends to an embedding of multiple
projective spaces, by repeated application of Proposition 2.1.2 above.

Pn1 × · · · × Pnk → P((n1+1)...(nk+1))−1

2.2 Divisors

Let C be a non-singular curve in P2. For each line Li ∈ P2, the intersection
C ∩ Li is equal to a finite number of points on C. We can obtain the number
of intersection points by the following theorem.

Theorem 2.2.1 ([Har77], Theorem 7.7-Corollary 7.8 (Bézout’s theorem)). Let
Y, Z be two distinct curves in P2 of degree u, v respectively. If Y ∩ Z contains
finitely many points, then Y ∩ Z = {P0, . . . Pr} will be the intersection points
of Y and Z and consists of u · v points, counting with multiplicities.

Let d be the degree of C. Then from Theorem 2.2.1, we know that C ∩ Li
will contain exactly d points, when counting with multiplicities. Thus,

C ∩ Li =
∑

ajPj (2.4)

where Pj ∈ C represents the intersection points and aj ∈ Z is the number of
multiplicities of each point. In fact, Equation (2.4) is called a divisor on C.

Definition 2.2.2 (Divisor). A divisor D of a variety X is a finite formal sum of
irreducible subvarieties Yi ⊆ X of codimension 1, i.e.

D =
∑

aiYi (2.5)

where ai ∈ Z. The divisor D is an effective divisor if all ai ∈ D are non-negative
in Equation (2.5).

We define Div (X) as the group of divisors Di of X.

Div(X) =
⊕
i∈I

Di = {
∑

aiYi | ai ∈ Z, Yi ⊆ X}

Then in Equation (2.4), for each Li in P2, we obtain a new divisor on C.
Such that Div(C) contains the group of all divisors of C.

The group Div(X) is extensive and quite unmanageable. Therefore, we
often consider the quotient group Div (X)/ ∼, i.e. the group of divisors of X
modulo linear equivalences. See [Har77, pp. 129–149] for more details.

In fact,

Proposition 2.2.3 ([EOa], Proposition 15.14). When X is a non-singular
variety, the map ρ :

(
Div (X)/ ∼

)
→ PicX is an isomorphism.

5



2. Preliminaries

2.3 Picard group

In this section we describe the Picard group of (P1)n, by considering the Picard
group for n = 4. This will be of particular relevance to the content in Chapter 5.
The theory and approach however is entirely equivalent for n = 2 and n = 3,
that will be of relevance in Chapter 3 and Chapter 4 repectively.

We use a similar definition as [EOb, p. 222]

Definition 2.3.1 (Picard group). The Picard group of non-singular varieties X,
denoted as Pic (X), is the group of isomorphism classes of invertible sheaves
(or line bundles) on X. It has tensor product as the group operation and the
structure sheaf as the identity.

Consider the projections πi from P1 × P1 × P1 × P1 to each P1

P1 × P1 × P1 × P1

P1 P1 P1 P1

π0
π1 π2

π3

Figure 2.1: Projections πi from P1 × P1 × P1 × P1 to each of the P1’s

We let

h0 = π∗
0([pt]), h1 = π∗

1([pt]), h2 = π∗
2([pt]), h3 = π∗

3([pt]) (2.6)

where π∗
i is the inverse image of πi, such that π∗

i sends the class of a point in
P1 to the class of a threefold in P1 × P1 × P1 × P1. We have

h0 = π∗
0([pt]) =

[
{pt} × P1 × P1 × P1]

h1 = π∗
1([pt]) =

[
P1 × {pt} × P1 × P1]

(2.7)
h2 = π∗

2([pt]) =
[
P1 × P1 × {pt} × P1]

h3 = π∗
2([pt]) =

[
P1 × P1 × P1 × {pt}

]
where each hi is of codimension 1, as it is isomorphic to P1 × P1 × P1. Thus,
h0, h1, h2, h3 are divisors of P1 × P1 × P1 × P1. The class of the hyperplane
section in the Segre embedding is given by

h0 + h1 + h2 + h3

We are interested in the Picard group of the domain and codomain of π∗,
i.e. Pic (P1) and Pic (P1 × P1 × P1 × P1) respectively. That is

π∗
i : Pic (P1) → Pic

(
P1 × P1 × P1 × P1)

[D] 7→π∗
i [D]

The Picard group of P1 × P1 × P1 × P1 is given by

Pic
(
P1 × P1 × P1 × P1)

=Z ⊕ Z ⊕ Z ⊕ Z = ⟨h0, h1, h2, h3⟩

such that ⟨h0, h1, h2, h3⟩ forms a basis, where each hi represents a family of
lines in P1 × P1 × P1 × P1. The Picard group includes any multiple of the free

6



2.4. The Chow ring

module generated by ⟨h0, h1, h2, h3⟩. That is, any linear combination of this
free module with integer coefficients, i.e.

a0h0 + a1h1 + a2h2 + a3h3 (2.8)

for ai ∈ Z.
As the elements of the Picard group are divisors and spanned by

⟨h0, h1, h2, h3⟩, each element represents a class of a threefold.
A threefold in P1 ×P1 ×P1 ×P1 has a multi degree of the form (a0, a1, a2, a3),

where each ai represents the corresponding ai in Equation (2.8). To determine
the multi degree of a threefold in P1 × P1 × P1 × P1, we intersect the class of
the threefold with hihjhk for i, j, k = 0, 1, 2, 3 and i ≠ j ̸= k. Here hihjhk
represents the class of a curve isomorphic to P1. By intersecting the class of a
threefold with h1h2h3, h0h2h3, h0h1h3 and h0h1h2 separately, we obtain each
component of the multi degree, i.e. a0, a1, a2 and a3 respectively.

The Picard group of the blow-up of P2 in four points

The Picard group of the blow-up of P2 in four points, i.e. Γp, is generated by

Pic
(

Γp
)

= ⟨L, e0, e1, e2, e3⟩

Such that any element of the Picard group will be a linear combination of these
generators with integer coefficients, i.e.

βL+ α0e0 + α1e1 + α2e2 + α3e3

for αi, β ∈ Z.
We have a map from Γp

ϕ→ P1 × P1 × P1 × P1 such that

ϕ∗ : Pic
(
P1 × P1 × P1 × P1)

→ Pic
(

Γp
)

hi 7→ (L− ei)

where (L − ei) represents a line in the blow-up of P2 that intersects the
exceptional divisor ei. The blow-down of (L − ei) will be a line in P2 going
through the point qi.

The class of a hyperplane section in Pic
(

Γp
)

is given by

3∑
i=0

(L− ei) = (L− e0) + (L− e1) + (L− e2) + (L− e3)

= 4L− e0 − e1 − e2 − e3

2.4 The Chow ring

In chapter Chapter 4 we consider the Segre embedding of P1 × P1 × P1 in P7,
where the image V = ψ(S) in P7 is a divisor of the image of U = ψ(P1 ×P1 ×P1)
in P7, as V is of codimension 1 in U . Therefore, to find the class of V we study
the Picard group of U .

However, in Chapter 5 we consider the Segre embedding of P1 ×P1 ×P1 ×P1

in P15, where the image V = Ψ(S) ⊂ P15 no longer is a divisor of the image

7



2. Preliminaries

U = Ψ(P1 ×P1 ×P1 ×P1) ⊂ P15, as V is of codimension 2 in U . Thus, we turn
to the Chow ring of U , that includes the Picard group of U .

The Chow ring of U considers all codimensions of U , such that CH1(U)
represents the elements in the Chow ring of codimension 1, modulo linear
equivalences, and thereby corresponds to the Picard group of U . Further,
CH2(U) represents the elements in the Chow ring of codimension 2, modulo
linear equivalences. CH3(U) represents the elements of the Chow ring of
codimension 3, modulo linear equivalences. And lastly CH4(U) represents the
elements in the chow ring of codimension 4, modulo linear equivalences.

As stated above CH1(U) = Pic(U), thus the elements are classes generated
by

⟨h0, h1, h2, h3⟩

where we regard each element hi as in Equation (2.7).
It can be shown that the elements of CH2(U) are classes generated by

⟨h0h1, h0h2, h0h3, h1h2, h1h3, h2h3⟩

i.e. the classes are spanned by products of two classes in CH1(U). Each element
hihj is given by

h0h1 = [{pt} × {pt} × P1 × P1]
h0h2 = [{pt} × P1 × {pt} × P1]
h0h3 = [{pt} × P1 × P1 × {pt}]
h1h2 = [P1 × {pt} × {pt} × P1]
h1h3 = [P1 × {pt} × P1 × {pt}]
h2h3 = [P1 × P1 × {pt} × {pt}]

In CH3(U), the elements are classes generated by

⟨h0h1h2, h0h1h3, h0h2h3, h1h2h3⟩

i.e. the classes are spanned by products of three classes in CH1(U). Each
element hihjhk is given by

h0h1h2 = [{pt} × {pt} × {pt} × P1]
h0h1h3 = [{pt} × {pt} × P1 × {pt}]
h0h2h3 = [{pt} × P1 × {pt} × {pt}]
h1h2h3 = [P1 × {pt} × {pt} × {pt}]

Lastly, there is only one element in CH4(U), that is

⟨h0h1h2h3⟩

which is the class of a single point in P1 × P1 × P1 × P1, thus h0h1h2h3 = 1.
Thus, the Chow ring of U is the polynomial ring in the four variables

h0, h1, h2, h3 modulo the ideal representing the relations h2
0 = h2

1 = h2
2 = h2

3 = 0,
i.e.

CH
(
U

)
= Z[h0, h1, h2, h3]

(h2
0, h

2
1, h

2
2, h

2
3)
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2.5. Intersection products

All subsets CHi(U) ⊂ CH(U) are closed under addition, that is hi+hj ∈ CH1(U)
for hi, hj ∈ CH1(U). Further, the intersection hihj of two elements hi, hj in the
Chow ring of codimension a and codimension b respectively, will be an element
of Chow ring of codimension a+ b.

The Chow ring of the blow-up of P2 in four points

In the Chow ring of Γp the relations are LL = 1, Lei = Lej = 0, eiej =
0, eiei = −1, such that

CH ( Γp ) = Z[L, e0, e1, e2, e3](
LL− 1, Lei, Lej , eiej , eiei + 1

)
2.5 Intersection products

A curve in P1 × P1 × P1 × P1 is a variety of dimension 1. We are not able to
determine the degree of the curve as easily. P1 for instance, is isomorphic to
various curves of different degrees, in different projective spaces, e.g. a conic
in P2 is isomorphic to P1. Thus, both the embedding of the curve and the
projective space the curve is embedded into, are crucial to determine the degree
of the curve.

Consider the Segre embedding

Ψ : P1 × P1 × P1 × P1 → P15

Let P1 × {pt} × {pt} × {pt} be a curve embedded into P15 with the Segre
embedding. We can calculate the degree of such a curve by using the theory
above.

The class of a curve in P1 × P1 × P1 × P1 will be a linear combination of
the generators in CH3(U), i.e.

3∑
i,j,k=0

αijkhihjhk = a012h0h1h2 + a013h0h1h3 + a023h0h2h3 + a123h1h2h3

(2.9)

Thus, a curve in P1×P1×P1×P1 has a multi degree (a012, a013, a023, a123), where
each aijk represents the corresponding aijk in Equation (2.9). By intersecting
the class of the curve with h3, h3, h1 and h0 separately, we obtain a012, a013,
a023 and a123 respectively.

To obtain the degree of a curve C in the Segre embedding, we intersect the
class of the curve [C] with the class of the hyperplane section h0 + h1 + h2 + h3.

[C] · (h0 + h1 + h2 + h3) =(a012h0h1h2 + a013h0h1h3 + a023h0h2h3 + a123h1h2h3)
· (h0 + h1 + h2 + h3)

=(a012 + a013 + a023 + a123) · h0h1h2h3

=(a012 + a013 + a023 + a123)

since h2
i = 0 for i = 0, 1, 2, 3 and h0h1h2h3 = 1. Thus the degree of the curve

C in the Segre embedding is (a012 + a013 + a023 + a123).

9



2. Preliminaries

Further, we can study the class of a surface S ⊂ P1 × P1 × P1 × P1 when
embedded into P15. A surface will be of codimension 2 in U , so we consider
CH2(U). The generators of CH2(U)

⟨h0h1, h0h2, h0h3, h1h2, h1h3, h2h3⟩

Then, the class of S will be a linear combination of these generators with integer
coefficients, i.e.

3∑
i,j=0

αijhihj = α01h0h1 + α02h0h2 + α03h0h3 + α12h1h2 + α13h1h3 + α23h2h3

(2.10)

Thus, a surface in U will have a multi degree of six components
(α01, α02, α03, α12, α13, α23), where each aij represents the corresponding aij in
Equation (2.10). By intersecting the class of a surface with h2h3, h1h3, h1h2,
h0h3, h0h2 and h0h1 separately, we obtain each component of the multi degree,
that is α01, α02, α03, α12, α13 and α23 respectively.

To determine the degree of a surface S in U , we intersect the class of S with
the intersection of two hyperplane sections.

[V ] · (h0 + h1 + h2 + h3)2 = 2 · (α01 + α02 + α03 + α12 + α13 + α23) · h0h1h2h3

= 2 · (α01 + α02 + α03 + α12 + α13 + α23)

since h2
i = 0 for i = 0, 1, 2, 3 and h0h1h2h3 = 1. Thus, the degree of a surface

S in the Segre embedding is 2 · (α01 + α02 + α03 + α12 + α13 + α23).

10



CHAPTER 3

Reconstruction from two camera
centers

We will reconstruct P2 from two projections πqi
: P2 → P1, where each projection

is an image from a camera center qi ∈ P2 for i = 0, 1. We will refer to the two
camera centers as the points q0, q1 in P2 from now on.

In this case, S = P1 ×P1 as P2 and P1 ×P1 are birationally equivalent. Thus,
the problem related to finding a reconstruction of P2 is reduced to finding α. We
will, in addition to finding α, describe the birational map between the projective
plane P2 and the image of S, when S is embedded into P3. As we will see, the
map α is the projection from a point q = p(q0q1) on S in P3. However, finding
q will be difficult, as any point on S in P3 will have a birational correspondence
to a P2.

Then, we will study the correspondence between curves in P2 and curves
in the image of S in P3. In particular, the correspondence between degrees of
curves in P2 and bidegrees of curves in the image of S in P3.

3.1 A rational map from P2 to P1 × P1

In this section we want to find a rational map from P2 to P1 × P1. First, we
construct the map p from P2 to P1 × P1. Then, we show that p is a rational
map, and find that it is in fact birational. Lastly, we consider the closure of
the graph of p, and recognize the correspondence to the blow-up of P2 in two
points.

Construction

In P2, the equation a0x0 + a1x1 + a2x2 = 0 represents a line, which we denote
by the coordinates (a0 : a1 : a2).

Given two points q0, q1 ∈ P2, where q0 = (1 : 0 : 0) and q1 = (0 : 1 : 0). The
variety of lines in P2 through qi is isomorphic to P1, for a fixed i = 0, 1. To see
this, consider the lines m0 = (1 : 0 : 0) and m1 = (0 : 1 : 0). Since mi is a line
in P2 it will be isomorphic to P1, and in particular the maps

p0 : (0 : x1 : x2) 7→ (−x2 : x1)
p1 : (x0 : 0 : x2) 7→ (−x2 : x0)

are isomorphisms between mi and P1.

11



3. Reconstruction from two camera centers

Now, for any line l ̸= mi in P2 passing through qi, consider the mapping

l → l ∩mi

which is well-defined as any two lines in P2 intersect in a single point.
It also has an inverse map, given by

q → qiq

for any point q ∈ mi and qi ∈ {q0, q1}. Hence, the variety of lines through a
fixed point qi in P2 is isomorphic to P1.

For any point r ∈ P2, where r ̸= q0, q1, consider the lines q0r and q1r. By
the previous discussion, this defines a map

p : P2 \ {q0, q1} → P1 × P1

as depicted in Figure 3.1 below.

q1q0

r

Figure 3.1: Lines to r through q0 and q1

Given a point r = (x0 : x1 : x2) we want to compute where r is mapped.

p
(
(x0 : x1 : x2)

)
= (u0 : v0) × (u1 : v1)

Firstly, we need to find the equation for the line li = qir, for i = 0, 1.
Consider the line l0 with coordinates (a0 : a1 : a2). By definition, both q0

and r are points on l0. Thus, we obtain the two equations

a0 · 1 + a1 · 0 + a2 · 0 = 0
a0x0 + a1x1 + a2x2 = 0

⇒ a1x1 = −a2x2

a1

a2
= −

x2

x1

which yields the solution (a0 : a1 : a2) = (0 : −x2 : x1).
Similarly, we can find the coordinates of the line l1 = (b0 : b1 : b2), by solving

the two equations

b0 · 0 + b1 · 1 + b2 · 0 = 0
b0x0 + b1x1 + b2x2 = 0

12



3.1. A rational map from P2 to P1 × P1

⇒ b0x0 = −b2x2

Again, which yields the solution (b0 : b1 : b2) = (−x2 : 0 : x1).
Hence, by our identifications

li 7→ li ∩mi
pi7−→ P1

we have found the map

p : (x0 : x1 : x2) 7→ (−x2 : x1) × (−x2 : x0)

Birational equivalence

First, we define a rational map, and use the same definition as in [EOa, p. 130].

Definition 3.1.1 (Rational map). A rational map between two varieties X and
Y , consists of an open subset U ⊆ X and a morphism f : U → Y . A rational
map is usually indicated by a broken arrow, i.e. f : X 99K Y .

As p is defined on the open subset U = P2 \ {q0, q1}, the map is only a
morphism from U . However, by Definition 3.1.1 p is a rational map between P2

and P1 × P1. Thus, we write p as

p : P2 99K P1 × P1

The line defined by x2 = 0 in P2 is in fact the fiber of the point (0 : 1)×(0 : 1)
in P1 × P1. Thus, p is not injective at any point on the line x2 = 0 in P2.

On the other hand, when x2 ̸= 0, then p is injective. Furthermore, p
is an isomorphism between the two subsets U ′ = P2 \ {q0q1} ⊆ P2 and
V ′ = p(U ′) ⊆ P1 × P1, where U ′ ensures x2 ̸= 0.

To see that p : U ′ → V ′ is an isomorphism, we need to exhibit a map
q : V ′ → U ′ such that q ◦ p = idU ′ and p ◦ q = idV ′ . That is, we want to show
that the inverse map p−1 is well-defined on V ′.

Let us consider the point (u0 : v0) × (u1 : v1) ∈ V ′, i.e. where u0, u1 ≠ 0.
We have that

p−1(
(u0 : v0) × (u1 : v1)

)
= p−1(

(u0u1 : v0u1) × (u0u1 : u0v1)
)

= (u0v1 : v0u1 : −u0u1) (3.1)

since u0, u1 ̸= 0. As u0u1 ≠ 0, the fibre (u0v1 : v0u1 : −u0u1) is a well-defined
point in U ′ ⊆ P2.

Similarly, given a point (x0 : x1 : x2) ∈ U ′ i.e. any point such that x2 ̸= 0.
We obtain

p
(
(x0 : x1 : x2)

)
= (−x2 : x1) × (−x2 : x0)

As x2 ≠ 0, the image (−x2 : x1) × (−x2 : x0) is contained in V ′. Hence,
p(U ′) = V ′, p−1 is well-defined on V ′ and p : U → V ′ is an isomorphism.

■

Definition 3.1.2 (Birational Map). A rational map that has a rational inverse
is called a birational map. Two varieties X and Y are said to be birationally
equivalent if there exists open sets U ⊆ X, V ⊆ Y and an isomorphism
ϕ : U → V between them.

13



3. Reconstruction from two camera centers

We want to prove that P2 and P1 × P1 are birationally equivalent using the
map p, previously shown to be rational.

We choose the open subsets U ′ = P2 \{q0q1} ⊆ P2 and V ′ = p(U ′) ⊆ P1 ×P1.
To see that p is an isomorphism between U ′ and V ′, we refer to our previous

discussion.
■

Now, the inverse birational map q, where q : V ′ ≃−→ U ′ is an isomorphism,
is in fact the map α. In Section 3.2, we will embed P1 × P1 into P3, where the
image of P1 ×P1 becomes the quadric Q in P3. Then, α becomes the projection
from the point q = (0 : 1) × (0 : 1) ∈ Q in P3 back to P2, where q is the image
of the line x2 = 0 in P2. This is illustrated in Figure 3.2.

P3

P1 × P1 Q ⊆ P3

P2

σ1,1

α πq=α
p

Figure 3.2: The birational correspondence between P2 and P1 × P1.

However, given only the quadric Q, we cannot uniquely determine α, since
for every point on Q there is a corresponding birational map to a P2.

The graph of the rational map

We now want to study W , the complement of p(U) in P1 × P1, i.e. the points
in P1 × P1 which are not in the image of p. As previously shown, p is an
isomorphism between U ′ and V ′. i.e.

p : U ′ → V ′ = {(u0 : v0) × (u1 : v1) | u0 ̸= 0 ∧ u1 ̸= 0}

Thus, we only need to consider points on the form (0 : v0) × (u1 : v1) and
(u0 : v0) × (0 : v1). Howevever, if (0 : v0) × (u1 : v1) ∈ p(U), then u1 = 0 as
well. As the point where u0 = u1 = 0 is in the image of p, we exclude the point
where both u0 and u1 are equal to zero.

Thus, the points in the compliment of p(U) are (u0 : v0)×(u1 : v1) satisfying
exactly u0 = 0 or u1 = 0. Then, if u0 = 0, then u1 can be anything except 0.
Similarly, if u1 = 0, then u0 can be anything except 0. So we have

W =
(

(0 : 1) × P1 ∪ P1 × (0 : 1)
)

\ {(0 : 1) × (0 : 1)}

which are two lines, i.e. two copies of P1 with the exception of the point
(0 : 1) × (0 : 1), representing the intersection of the two lines.

Definition 3.1.3 (Graph). If ϕ : X → Y is a morphism between varieties, the
graph is the subset Γϕ = {(x, ϕ(x)) | x ∈ X} of the product X × Y .

We have the rational map,

p : P2 99K P1 × P1
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3.1. A rational map from P2 to P1 × P1

such that p is a morphism between the open subsets U of P2 and V of P1 × P1.
Consider the graph Γp of the morphism p : U → V . As the subsets U and

V are open, the graph will be an open subset of P2 × P1 × P1 and we therefore
look at the closure Γp.

By considering the closure of the graph Γp, we have an object that maps
surjectively onto both P2 and P1 × P1 through the canonical projections πP2

and πP1×P1 of the product P2 × P1 × P1.
We denote a general point in P2 ×P1 ×P1 by (x0 : x1 : x2) × (u0 : v0) × (u1 :

v1).
Moreover, the polynomials in the product topology must be polyhomogen-

eous i.e. that the polynomials are homogeneous with respect to each factor.

Γp

P2 × P1 × P1

P2 P1 × P1
πP2 πP1×P1

p

Thus, we want to know which points in Γp are sent to P2\U , i.e q0 = (1 : 0 : 0)
and q1 = (0 : 1 : 0), and which points are sent to P1 × P1 \ V , i.e. the lines
(0 : 1) × P1 and P1 × (0 : 1). We denote by αP2 and αP1×P1 the canonical map
from Γp to P2 and P1 × P1 respectively.

Consider the two equations u1x0 + v1x2 = 0 and u0x1 + v0x2 = 0, which are
well-defined in the product as they are homogeneous in the three factors, with
tridegrees (1, 0, 1) and (1, 1, 0) respectively. Now, for any (x0 : x1 : x2) ∈ U , we
have

p
(
(x0 : x1 : x2)

)
= (−x2 : x1) × (−x2 : x0)

and hence

Γp ⊆ Z+(u1x0 + v1x2) ⇒ Γp ⊆ Z+(u1x0 + v1x2)

Γp ⊆ Z+(u0x1 + v0x2) ⇒ Γp ⊆ Z+(u0x1 + v0x2)

Hence, Γp ⊆ Z+(u1x0 + v1x2, u0x1 + v0x2).
By definition of closure, the variety Γp is irreducible. Further, we see from

the defining equations that Z+(u1x0 + v1x2, u0x1 + v0x2) is irreducible.
Then, we can utilize Krulls Hauptidealsatz, to compute the dimension of

Z+(u1x0 + v1x2, u0x1 + v0x2). Firstly, we see that the variety Z+(u1x0 + v1x2)
is of dimension dimP2 × P1 × P1 − 1 = 4 − 1 = 3. Secondly, since
Z+(u1x0 + v1x2, u0x1 + v0x2) ⊇ Γp is non-empty, it must be of dimension:

dimZ+(u1x0 + v1x2, u0x1 + v0x2) = dimZ+(u1x0 + v1x2) − 1 = 3 − 1 = 2

Next, we compute the dimension of Γp. As Γp is a dense open subset of its
closure Γp, we have dim Γp = dim Γp. Moreover, dim Γp = dimP2 \ {q0, q1} = 2.

Then as,
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3. Reconstruction from two camera centers

i) both Γp and Z+(u1x0 + v1x2, u0x1 + v0x2) are irreducible and closed

ii) Γp ⊆ Z+(u1x0 + v1x2, u0x1 + v0x2)

iii) dim Γp = 2 = dim Z+(u1x0 + v1x2, u0x1 + v0x2)

they must be equal, by definition of dimension.

Fibres of the projection from the closure of the graph

If we look at points (1 : 0 : 0) × (u0 : v0) × (u1 : v1) ∈ Γp = Z+(u1x0 +
v1x2, u0x1 + v0x2).

As x1 = x2 = 0, we obtain

0 = u1x0 + v1x2 = u1

0 = u0x1 + v0x2 = 0

Thus,

α−1
P2

(
(1 : 0 : 0)

)
= (1 : 0 : 0) × P1 × (0 : 1) ∈ P2 × P1 × P1

as u0 and v0 can be anything.
Similarly,

α−1
P2

(
(0 : 1 : 0)

)
= (0 : 1 : 0) × (0 : 1) × P1 ∈ P2 × P1 × P1

Then, we want to look at the fibres of the morphism αP1×P1 .
First, consider

α−1
P1×P1

(
(0 : 1) × (0 : 1)

)
which corresponds to (x0 : x1 : x2) × (0 : 1) × (0 : 1) ∈ Γp = Z+(u1x0 +
v1x2, u0x1 + v0x2). These equations imply x2 = 0, which yields that the fibre
equals

α−1
P1×P1

(
(0 : 1) × (0 : 1)

)
= (x0 : x1 : 0) × (0 : 1) × (0 : 1) ∈ P2 × P1 × P1

which is a line in P2 × P1 × P1. When projecting this line down to P2 using αP2

we obtain the line (0 : 0 : 1) i.e. the line through the points q0 and q1.
Further, if we look at the inverse mapping of (u0 : v0) × (0 : 1), for u0 ̸= 0,

we get

(x0 : x1 : x2) × (u0 : v0) × (0 : 1) ∈ Z+(u1x0 + v1x2, u0x1 + v0x2)

which, corresponds to

α−1
P1×P1

(
(u0 : v0) × (0 : 1)

)
= (1 : 0 : 0) × (u0 : v0) × (0 : 1) ∈ P2 × P1 × P1

Hence, the fibre of the missing line (u0 : v0) × (0 : 1) is a line in P2 ×P1 ×P1,
which is in fact the same line as the fibre of (1 : 0 : 0) under the projection αP2 .

A similar statement is true for the fibre of the line (0 : 1) × (u1 : v1) for
u1 ̸= 0.

α−1
P1×P1

(
(0 : 1) × (u1 : v1)

)
= (0 : 1 : 0) × (0 : 1) × (u1 : v1) ∈ P2 × P1 × P1
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3.1. A rational map from P2 to P1 × P1

The first line C0 = (1 : 0 : 0) × (u0 : v0) × (0 : 1) is mapped from the closure
of the graph Γp to q0 and the second line C1 = (0 : 1 : 0) × (0 : 1) × (u1 : v1) is
mapped from the Γp to q1.

Since the two lines (1 : 0 : 0)× (u0 : v0)× (0 : 1) and (0 : 1 : 0)× (0 : 1)× (u1 :
v1) differ in the first coordinates (1 : 0 : 0) ̸= (0 : 1 : 0), C0 and C1 have no
common points in the closure of the graph Γp. Thus, they will not intersect.

In fact, what we just studied, corresponds to the mathematical concept
called blowing up, where C0 and C1 in this case corresponds to the exceptional
divisors of q0 and q1 respectively.

Definition 3.1.4 (Blowing up). Blowing up or blow-up is a type of geometric
transformation which replaces a subspace of a given space with all the directions
pointing out of that subspace.

By blowing up of P2 in the two points q0 and q1, we can extend the rational
map p : P2 99K P1 ×P1 into a morphism between the blow-up of P2 and P1 ×P1.

The theory related to blowing up does in fact originate from examples similar
to this, where the points outside the domain and codomain of a rational map
as well as the associated fibers, are the topic of interest.
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3. Reconstruction from two camera centers

3.2 An embedding of P1 × P1 into P3

We have a map from P1 × P1 to P3 given by

σ1,1 : P1 × P1 → P3

(u0 : v0) × (u1 : v1) 7→ (u0u1 : u0v1 : v0u1 : v0v1) (3.2)
7→ (y0 : y1 : y2 : y3)

The map σ1,1 is a closed embedding called the Segre embedding, see
Section 2.1 for more details. According to Proposition 2.1.2, the image
S1,1 = σ1,1(P1 × P1) is equal to the hypersurface Z+(y0y3 − y1y2), obtained by

y0y3 = u0u1v0v1 = y1y2

This hypersurface is known as the quadric in P3. As σ1,1 is a closed embedding,
the quadric Z+(y0y3 − y1y2) ⊆ P3 is isomorphic to P1 × P1.

3.3 The image of P2 in P3

First, we have the rational map p from P2 to P1 × P1, such that P2 and P1 × P1

are birationally equivalent. Then, we have the Segre embedding σ1,1 from
P1 ×P1 into P3, where the image Z+(y0y3 − y1y2) = σ1,1(P1 ×P1) is isomorphic
to P1 × P1.

We compose these two maps, to consider the image of P2 in P3. The
coordinates in P3, when mapped from P2 are given by

y0 = u0u1 = (−x2)(−x2) = x2
2

y1 = u0v1 = (−x2)(x0) = −x0x2

y2 = v0u1 = (x1)(−x2) = −x1x2

y3 = v0v1 = (x1)(x0) = x0x1

where every monomial yi is of degree 2.
Hence, the composition of the two maps is given by

P2 p
99K P1 × P1 σ1,1−→ P3

(x0 : x1 : x2) 7→ (−x2 : x1) × (−x2 : x0) 7−→ (x2
2 : −x0x2 : −x1x2 : x0x1)

Then, to reconstruct P2, the surface S = P1×P1 we want to find is isomorphic
to the quadric, i.e. S ∼= Z+(y0y3 − y1y2).

3.4 Lines in the quadric

We are now interested in the lines on the quadric in P3. We denote coordinates
in P3 by (y0 : y1 : y2 : y3).

Recall that the image of the Segre embedding σ1,1 will be the quadric
Z+(y0y3 − y1y2) ⊆ P3.

Consider the matrix representation of the point (y0 : y1 : y2 : y3)

M1 =
(
y0 y1
y2 y3

)
18



3.4. Lines in the quadric

Whenever the determinant of M1 det(M1) is equal to zero the point
(y0 : y1 : y2 : y3) will be on the quadric Z+(y0y3 − y1y2). This is for example
the case when either a column or a row in M1 is equal to zero.

For instance, by a linear transformation of the first row of M1 by adding a
multiple of the second row, we obtain the matrix M ′

1

M ′
1 =

(
y0 + 2y2 y1 + 2y3

y2 y3

)
We can easily see that the determinant of M1 and M ′

1 are equal.
In general, adjusting a matrix by using linear combination of the rows, will

make the determinant of the modified matrix unchanged.
Using this matrix representation, we will show that fixing one of the

coordinates of a point in P1 × P1 under the Segre embedding, yields lines
in the quadric.

Consider the closed embedding P1 × P1 → P3 in Equation (3.2). The point
(u0 : v0) × (u1 : v1) is sent to (u0u1 : u0v1 : v0u1 : v0v1). Which can be
represented as the matrix (

u0u1 u0v1
v0u1 v0v1

)
(3.3)

Notice that u0 and v0 are mutual factors in the first and second row respectively.
Thus, if we fix u0 and v0, then these can be extracted from the matrix, such
that (

u0u1 u0v1
v0u1 v0v1

)
= u0

(
u1 v1
0 0

)
+ v0

(
0 0
u1 v1

)
proving that the image of the line (u0 : v0) × (u1 : v1), for a fixed u0, v0 in
P1 × P1 is in fact a line in the quadric. In fact, we get P1 versions of this line,
by varying the fixed point u0, v0 in P1 × P1.

Consider Equation (3.3) once again. Notice that u1 and v1 are mutual
factors in the first and second column respectively. If we now fix u1 and v1,
then this time u1 and v1 can be extracted from the matrix, such that(

u0u1 u0v1
v0u1 v0v1

)
= u1

(
u0 0
v0 0

)
+ v1

(
0 u0
0 v0

)
proving that similarly, the image of the line (u0 : v0) × (u1 : v1), for a fixed
u1, v1 in P1 × P1 is a line in the quadric. Again, we get P1 versions of this line,
by varying the fixed point u1, v1 in P1 × P1.

Hence, we see that lines contained in the quadric in P3, are exactly those
going through pair of points on the form A = (u1 : v1 : 0 : 0), B = (0 : 0 : u1 : v1)
and A = (u0 : 0 : v0 : 0), B = (0 : u0 : 0 : v0).

Thus, there are two families of lines in the quadric, generated by either of
the factors in P1 × P1, by fixing one of the coordinates and varying the other.
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3. Reconstruction from two camera centers

3.5 The pullback from P1 × P1

Consider our rational map P2 99K P1 × P1.
Previously, we looked at points in P2 and P1 × P1, and studied the fibers of

these points in the closure of the graph Γp. Now we want to consider curves,
and in particular lines, in P1 × P1, and are interested in the inverse mapping of
such a curve in P2, factoring through Γp.

Lines in P1 × P1

Since P1 × P1 has dimension 2, a line in P1 × P1 is a subvariety of dimension 1,
which in this case corresponds to codimension 1 = 2 − 1 i.e. a hyperplane.

Hence, a line can be described by

Z+
(
f(u0, v0;u1, v1)

)
where f(u0, v0;u1, v1) is a bihomogeneous polynomial of degree 1.
Since 1 = deg f(u0, v0;u1, v1) = bideg f(u0, v0) + bideg f(u1, v1)
we must have that

{bideg f(u0, v0),bideg f(u1, v1)} = {0, 1}

Hence, a line looks like something on the form

uu0 + vv0 + wu1 + zv1 = 0

for constants a, b, c, d where either a = b = 0 or c = d = 0. We will denote
these cases by (0 : 0) × (c : d) and (a : b) × (0 : 0) respectively.

The pullback of lines

Consider a line in P1 × P1, for instance (a : b) × (0 : 0), i.e. the locus of points
on the form (−b : a) × (u1 : v1), where u1, v1 are arbitrary.

To find the inverse mapping of this line we factor through the closure of the
graph.

Then, independent of the choice of c and d, the points in the preimage of
this line in P2 × P1 × P1 becomes (x0 : x1 : x2) × (−b : a) × (u1 : v1).

This is a hyperplane represented by the equation (0 : 0 : 0) × (a : b) × (0 : 0).
For each choice of u1 and v1 we get a point in P2 × P1 × P1.

To intersect the hyperplane with the closure of the graph, we consider the
system of equations.

u1x0 + v1x2 = 0
−bx1 + ax2 = 0

Further, we want to find values for x0, x1 and x2 such that the equations
are equal to zero. We let x2 = bu1, then

u1x0 + v1(bu1) = 0 ⇒ x0 = −bv1

−bx1 + a(bu1) = 0 ⇒ x1 = au1
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3.5. The pullback from P1 × P1

so we get (x0 : x1 : x2) = (−bv1 : au1 : bu1).
Thus, the inverse mapping of the line (a : b) × (0 : 0) becomes the locus of

the points (−bv1 : au1 : bu1) in P2.
Consider the equation of a line a0x0 + a1x1 + a2x2. We are interested in

the choice of a0, a1, and u0 that will satisfy the equation

a0(−bv1) + a1(au1) + a2(bu1) = 0

So the inverse of the line (a : b) × (0 : 0) in P1 × P1 is the line in P2 with
coordinates (0 : b : −a).

Similarly, we can find the inverse mapping in P2 of the line (0 : 0) × (c : d)
in P1 × P1. This turns out to be the line with coordinates (d : 0 : −c).

The pullback of general polynomials

Now, consider a bihomogenous polynomial equation f(u0, v0;u1, v1) = 0 in
P1 × P1. E.g.

u4
0u

2
1 + v4

0v
2
1 = 0 (3.4)

To find the preimage of this equation under the rational map p : P2 99K
P1 × P1 we will again factor through the closure of graph of p.

To do this we consider the preimage of f(u0, v0;u1, v1) = 0 under the
projection αP1×P1 i.e. the hypersurface Z+(f) in P2 × P1 × P1, intersected with
the closure of the graph Γp.

Hence, consider the equation system

f(u0, v0;u1, v1) = u4
0u

2
1 + v4

0v
2
1 = 0

u1x0 + v1x2 = 0
u0x1 + v0x2 = 0

We will solve the equations in the the open affine chart D+(v0u1).
Thus, we may assume v0 = 1 and u1 = 1, and thereby solve the equations

above for v1 and u0 and obtain

v1 = −x0

x2

u0 = −x2

x1

Then, we can substitute the above results into Equation (3.4)(
−x2

x1

)4
+

(
−x0

x2

)2
= 0

f(x0, x1, x2) = x6
2 + x2

0x
4
1 = 0

to obtain one homogeneous polynomial in the variables of P2. Hence by
projecting down to P2 using αP2 we obtain a homogeneous polynomial in
P2 which equals the closure of the preimage p−1(

f(u0, v0;u1, v1) = 0
)
.
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3. Reconstruction from two camera centers

In addition we can prove that when the original equation f is irreducible,
then the same holds for f .

Now, we will prove that equation f has singularities in the points q0 and q1.
To do this we introduce the Jacobian criterion in the projective case.

Theorem 3.5.1 ([EOa], Proposition 8.15). Let X = Z+(F1, . . . , Fr) ⊆ Pn be a
closed algebraic set, and let

J =
(
∂Fi
∂fzj

(p)
)

Then the the rank of J does not depend on the choice of representative for p.
Moreover X is non-singular at p if and only if rank J = n− dimX.

To see this, we consult our example. Hence, we consider the Jacobian Matrix

J =
[
∂f
∂x0

= 2x0x
4
1

∂f
∂x1

= 4x2
0x

3
1

∂f
∂x2

= 6x5
2

]
= 0

Solving these equations yields

x2 = 0 ∧ (x0 = 0 ∨ x1 = 0)

i.e. q0 = (1 : 0 : 0) or q1 = (0 : 1 : 0). Since both of the points are on the
curve f(x0, x1, x2) = 0, they are singular.

Lemma 3.5.2. The equation f will always be singular in the points q0 and q1.

Next, we compare the degree of the curves f(u0, v0;u1, v1) and f(x0, x1, x2).
Denote by m,n the bidegrees of the equation f(u0, v0;u1, v1). E.g. in the

example

f(u0, v0;u1, v1) = u4
0u

2
1 + v4

0v
2
1

the bidegrees equal

m = 4 , n = 2 , m+ n = 6
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3.5. The pullback from P1 × P1

The multiplicities

Now, we are interested in the multiplicities and the associated connection to
the bidegree.

Recall our homogeneous polynomial in the variables of P2

f(x0, x1, x2) = x6
2 + x2

0x
4
1 = 0

Generally we have

fx0=1 = f(1, x1, x2)
= f0(x1, x2) + f1(x1, x2) + f2(x1, x2) + f3(x1, x2) . . .

where the f i’s represents homogeneous polynomials of degree i in f ∈ P2.
Here f0(x1, x2) represents the constant polynomial, f1(x1, x2) represents the
polynomial of degree 1, f2(x1, x2) represents the polynomial of degree 2, and
so on. In such a representation, the degree of the first non-zero polynomial
represents the multiplicity of the root in a given point.

As x0, x1 and x2 are the homogeneous coordinates of P2, one of the
coordinates must be different from zero. In the above case, x0 represents
this coordinate. We let x0 = 1. Thus

x6
2 + x4

1 = 0 (3.5)

The only integer solution is such that x1 = x2 = 0. In this case we are on the
point q0 = (1 : 0 : 0).

In Equation (3.5) the fi’s ̸= 0 when i = 4, 6. Which means that the
multiplicity of the point q0 = (1 : 0 : 0) ∈ P2 is 4.

Similarly, if we instead let x1 = 1, then

x6
2 + x2

0 = 0

The only integer solution of this equation is x0 = x2 = 0. Which means we are
on q1. Now, the fi’s ̸= 0 is when i = 2, 6 ̸= 0, all other fi’s are equal to zero.
Thus, the multiplicity of the point q1 = (0 : 1 : 0) ∈ P2 is 2.

Thus, the curve f(x0, x1, x2) ∈ P2 have multiplicity equal to 4 and 2 when
on the two points q0 and q1 respectively. These multiplicities are in fact identical
to the bidregree of the curve we started out with f(u0, v0;u1, v1) ∈ P1 × P1, i.e.
bidegree (4,2).

As it turns out, this will (almost) always be the case. First we will consider
the case where this is true. Then, we will come back to when we need to be more
careful with the correspondence between the bidregree of a curve in P1 ×P1 and
the multiplicity of points on the curve in the preimage. Figure 3.3 illustrates a
curve f(u0, v0;u1, v1) ∈ P1 × P1 with bidegree (4,2).

If we fix (u0 : v0) = (a : b), then f(a, b;u1, v1) has two zeros. This can
be illustrated in Figure 3.3, by studying the line (a : b) × (u1 : v1) and count
the number of intersections between this line and the curve. Similarly, if we
instead fix (u1 : v1) = (c : d), the degree of the curve will be 4. And in a similar
manner, we can observe this by studying the line (u0 : v0) × (c : d) and count
the number of intersections between this line and the curve.

Generally, as we know, the preimage of lines in P1 × P1 are lines in P2.
But as we saw, the preimage of some of the lines are in fact contracted
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3. Reconstruction from two camera centers

Figure 3.3: Curve with bidegree (4,2) in P1 × P1

to points in P2. For instance, the preimage of the line (u0 : v0) × (0 : 1)
is (u0 : 0 : 0) ∼= (1 : 0 : 0) = q0, and similarly the preimage of the line
(0 : 1) × (u1 : v1) is (0 : u1 : 0) ∼= (0 : 1 : 0) = q1.

Thus, the two lines (u0 : v0) × (0 : 1) and (0 : 1) × (u1 : v1) in P1 × P1,
with degree 4 and 2 respectively, corresponds to the points q0 and q1 in P2,
with multiplicity 4 and 2 respectively. This is illustrated in Figure 3.4, where
the curve f(x0 : x1 : x2) passes though the points q0 and q1, 4 and 2 times
respectively.

Figure 3.4: Curve with passing through q0 and q1 in P2.

Once again, we can consult the curve f(u0, v0;u1, v1) ∈ P1 × P1, but this
time rather study where the two lines (u0 : v0) × (0 : 1) and (0 : 1) × (u1 : v1)
intersect, namely (0 : 1) × (0 : 1). As we have seen earlier, the fiber of this
point corresponds to a line in the closure of the graph. When projected down
to P2 we obtained the line (0 : 0 : 1) i.e. the line through the points q0 and q1,
denoted q0q1. Hence, the number of intersections between f(x0, x1, x2) and the
line q0q1 in P2, with the exception of q0 and q1, is determined by the number
of times f(u0, v0;u1, v1) intersects the point (0 : 1) × (0 : 1) in P1 × P1.
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3.5. The pullback from P1 × P1

We started out by considering a curve in P1 ×P1 and its associated bidegree,
and used the bidegree to find the multiplicities of certain points in the preimage
in P2. Instead, it is possible to do this reversed, by considering the multiplicities
of certain points in P2, and using these to determine the associated bidegree of
curve in the image in P1 × P1.

Now, let us consider the case when the correspondence between the bidregree
of a curve and the multiplicity of points in the preimage, may not be straight
forward.

Consider a curve f ′(x0, x1, x2) in P2 of degree 4, that passes through the
point q0 twice, the point q1 once, and in addition intersects the line q0q1 in one
more point. Since q0q1 is intersected once outside q0 and q1, f(u0, v0;u1, v1)
passes through (0 : 1) × (0 : 1) one time. Further, when fixing (u0 : v0) for any
a and b, f(u0, v0;u1, v1) will intersect (a : b) × (u1 : v1) once. Similarly, when
fixing (u1 : v1) for any c and d, f(u0, v0;u1, v1) will intersect (u0 : v0) × (c : d)
two times. Thus, the bidegree of f(u0, v0;u1, v1) in P1 × P1 is (3, 2). As we
know, f ′(x0, x1, x2) only intersects q0 twice and q1 once. Thus, we need to be
aware when a curve in P1 ×P1 intersects with (0 : 1) × (0 : 1) and when a curve
in P2 intersects with q0q1 at any other point than q0 and q1.
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3. Reconstruction from two camera centers

Bidregrees in P1 × P1

Let f(x0, x1, x2) be a curve of degree d in P2, with multiplicity a in point q0
and b in point q1. Then, the number of intersection points between f(x0, x1, x2)
and the line q0q1 will be f(x0, x1, x2) ∩ q0q1 = a+ b+ c, where c is the number
of intersection points not in q0 and q1.

Theorem 3.5.3 ([EOa], Theorem 11.5 (Bezout’s theorem)). Let Z1, . . . , Zn be
hypersurfaces in Pn with only finitely many points in common. Then

degZ1 · · · degZn =
∑
p

µp(Z1, . . . , Zn).

According to Bézout, the number of points in f(x0, x1, x2) ∩ q0q1, counted
with multiplicities, is equal to the product of the degrees of f(x0, x1, x2) and
q0q1. As q0q1 is a line, it is of degree 1. Thus, the number of intersection points
is equal to d. If d > a + b, then f(x0, x1, x2) intersects q0q1 at more points
than q0 and q1. Thus, if d = a + b, then the curve will only intersect q0q1
in q0 and q1. As mentioned, the multiplicities of f(x0, x1, x2) in q0 and q1 in
P2 is denoted a and b. We denote the corresponding bidregree of the curve
f(u0, v0;u1, v1) ∈ P1 × P1 as (α, β).

q0 q1

q

C0 C1

C0 C1

Figure 3.5: Blow up of q0, q1 ∈ P2 and two lines in P1 × P1

Consider Figure 3.5, in P2 the multiplicity of q0 and q1 is a and b respectively.
Since f(x0, x1, x2) is of degree d, the curve intersects each line in P2 d times.
By subtracting the multiplicities of q0 and q1 we get the number of times
f(x0, x1, x2) intersects the line outside q0 and q1.

When d ≥ a + b we have two possible cases of different bidegrees of
f(u0, v0;u1, v1) ∈ P1 × P1.

Let α denote the first bidegree, β the second and δ the number of times the
curve intersects C = (0 : 1) × (0 : 1).

To see the relationship between a, b, d and α, β, δ we have that

α = a+ (d− (a+ b)) = d− b

β = b+ (d− (a+ b)) = d− a
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3.5. The pullback from P1 × P1

δ = d− (a+ b) = d− a− b

To prove this, consider two lines A0 and A1, each going through q0 and q1
respectively, as depicted below in Figure 3.6.

q0 q1

q

C0 C1

C0 C1

A0 A1

A0 A1

A1

A0

Figure 3.6: Blow up of q0, q1 and lines in P2 and lines in P1 × P1

As before, f(x0, x1, x2) is a curve of degree d. In the figure, we see that A0
intersects q0q1 in q0. As a result, f(x0, x1, x2) intersects the line A0 everywhere
but q0, (d−a) times. Similarly, A1 intersects q0q1 in q1. Therefore, f(x0, x1, x2)
will intersect A1 everywhere but q1, (d − b) times. Further, f(x0, x1, x2) will
intersect q0q1 everywhere but q0 and q1,

(
d− (a+ b)

)
times.

Now, let us consider the bidegrees in P1 × P1. A0 will be mapped to a line
in P1 × P1 parallel with C1, where C1 is the image of q1. Since, A0 intersects
the curve (d− a) times in P2, outside q0, this is also the case in P1 ×P1. Hence,
the second bidegree of the curve in P1 ×P1 is (d−a). A similar argument yields
that the first bidegree must equal (d− b).

Additionally, we can calculate that the curve must pass through the point
(0 : 1) × (0 : 1) exactly (d− a− b) times, as the line C0, with bidegree (d− b),
has exactly a intersections outside of the point (0 : 1) × (0 : 1), which stems
from the multiplicity of the curve in the point q0.

■
Hence, knowing either a, b, d or α, β, δ we can compute the other three

unknowns, using that the equations
α = a+ (d− (a+ b)) = d− b

β = b+ (d− (a+ b)) = d− a

δ = d− (a+ b) = d− a− b
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3. Reconstruction from two camera centers

imply

a = (d− b) − (d− a− b) = α− δ

b = (d− a) − (d− a− b) = β − δ

d = (d− b) + (d− a) − (d− a− b) = α+ β − δ
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CHAPTER 4

Reconstruction from three camera
centers

We will reconstruct P2 from three projections πqi : P2 → P1, where each
projection is an image from a camera center qi ∈ P2 for i = 0, 1, 2. We will refer
to the camera centers as the points q0, q1, q2 in P2 from now on.

To reconstruct P2, we want to find the surface S ⊂ P1 ×P1 ×P1 birationally
equivalent to P2, and the inverse birational map α from S to P2. We consider
P1 × P1 × P1 in its Segre embedding in P7. In this chapter, we will first show
that the image of S in P7 is S = (P1)3 ∩P6. Then, we will show that the map α
is a projection from P3 restricted to S, such that P3 ∩ S is a curve C of degree
3 where ⟨C⟩ = P3.

To determine S in P7 we need to identify enough points so that they span a
hyperplane of P7, i.e. P6. As we will see, even though we find enough points to
span P6, the reconstruction of P2 is ambiguous.

Further, there are cases where we do not find enough points to determine S
in P7. We call these critical configurations. We will classify different critical
configurations and study the information we obtain of P2 in such cases.

4.1 A rational map from P2 to P1 × P1 × P1

Consider the points q0, q1, q2 ∈ P2, where q0 = (1 : 0 : 0), q1 = (0 : 1 : 0) and
q2 = (0 : 0 : 1).

The variety of lines in P2 through qi is isomorphic to P1, for a fixed i = 0, 1, 2.
Hence, by choosing a point r ∈ P2, and considering the lines rqi we obtain a
map from p : P2 → P1 × P1 × P1 defined similarly as the case for two points.

The map p can be described explicitly by

p : P2 → P1 × P1 × P1

(x0 : x1 : x2) 7→ (−x2 : x1) × (−x2 : x0) × (−x1 : x0)

so that p fits into the diagram in Figure 4.1.
From discussion in Section 3.1, we see that p is a morphism between the

open subset U = P2 \ {q0, q1, q2} and P1 × P1 × P1. Then by Definition 3.1.1,
we recognize p as a rational map from P2 to P1 × P1 × P1, i.e.

p : P2 99K P1 × P1 × P1
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4. Reconstruction from three camera centers

P1 × P1 × P1

P2 P1 × P1

π0×π1
p

p

Figure 4.1: Correspondence between rational maps from P2 into P1 × P1 × P1

and P1 × P1.

4.2 An embedding of P1 × P1 × P1 into P7

We have a map from P1 × P1 × P1 to P7 given by

ψ : P1 × P1 × P1 → P7

(u0 : v0) × (u1 : v1) × (u2 : v2) 7→ (u0u1u2 : u0u1v2 : · · · : v0v1v2) (4.1)
7→ (y0 : y1 : y2 : y3 : y4 : y5 : y6 : y7)

The map ψ is a closed embedding called the Segre embedding, see Section 2.1,
where the image U = ψ(P1 × P1 × P1) is closed and isomorphic to P1 × P1 × P1.

Moreover, the image U as a variety in P7 satisfies the following relations

y0y7 = (u0u1u2)(v0v1v2) = u0u1u2v0v1v2

y1y6 = (u0u1v2)(v0v1u2) = u0u1u2v0v1v2

y2y5 = (u0v1u2)(v0u1v2) = u0u1u2v0v1v2

y3y4 = (u0v1v2)(v0u1u2) = u0u1u2v0v1v2

in addition to

y0y3 = u2
0u1u2v1v2 = y1y2

y4y7 = u1u2v
2
0v1v2 = y5y6

y0y5 = u0u
2
1u2v0v2 = y1y4

y2y7 = u0u2v0v
2
1v2 = y3y6

y0y6 = u0u1u
2
2v0v1 = y2y4

y1y7 = u0u1v0v1v
2
2 = y3y5

Thus, the image U of ψ is contained in the twelve hypersurfaces

Z+(y0y7 − y1y6)
Z+(y0y7 − y2y5)
Z+(y0y7 − y3y4)
Z+(y1y6 − y2y5)
Z+(y1y6 − y3y4)
Z+(y2y5 − y3y4)
Z+(y0y3 − y1y2)
Z+(y4y7 − y5y6)
Z+(y0y5 − y1y4)
Z+(y2y7 − y3y6)
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Z+(y0y6 − y2y4)
Z+(y1y7 − y3y5)

Hence, also in their intersection.

Lemma 4.2.1. The image U of ψ equals the intersection of the twelve
hypersurfaces U∗ =

⋂
Z+(ai).

Proof. We will begin with the observation U ⊆ U∗, since U is contained in
each of the twelve separate hypersurfaces. Thus, together with U∗ ⊆ U , it is
sufficient to conclude U∗ = U .

Hence, we move on to prove U∗ ⊆ U , which is equivalent to U∗ ∩D+(yi) ⊆
U ∩D+(yi) ∀i, since {D+(yi)} make up an open cover of P7.

The twelve hypersurfaces are symmetric in terms of the yi, and we may
therefore without loss of generality prove U∗ ∩D+(y0) ⊆ U ∩D+(y0).

We will prove that for y = (y0 : y1 : · · · : y7) ∈ U∗ ∩ D+(y0), we have
ψ ◦ ψ−1

0 (y) = y and hence have

U∗ ∩D+(y0) ⊆ ψ
(
ψ−1

0 (D+(y0))
)

= ψ
(
D+(u0v0w0)

)
= U ∩D+(y0) (4.2)

To see ψ ◦ ψ−1
0 (y) = y note that

ψ ◦ ψ−1
0

(
(y0 : y1 : · · · : y7)

)
= ψ

(
(y0 : y4) × (y0 : y2) × (y0 : y1)

)
= (y3

0 : y2
0y1 : y2

0y2 : y0y1y2 : y2
0y4 : y0y1y4 : y0y2y4 : y1y2y4)

Now, the crucial observation is that since y ∈ U∗, we have

y1y2 = y0y3 ⇒ y0y1y2 = y2
0y3

y1y4 = y0y5 ⇒ y0y1y4 = y2
0y5

y2y4 = y0y6 ⇒ y0y2y4 = y2
0y6

y1y6 = y0y7 ⇒ y1y2y4 = y0y1y6 = y2
0y7

Hence

ψ ◦ ψ−1
0 (y) = (y3

0 : y2
0y1 : y2

0y2 : y0y1y2 : y2
0y4 : y0y1y4 : y0y2y4 : y1y2y4)

= (y3
0 : y2

0y1 : y2
0y2 : y2

0y3 : y2
0y4 : y2

0y5 : y2
0y6 : y2

0y7)
= (y0 : y1 : y2 : y3 : y4 : y5 : y6 : y7) = y

since y0 ̸= 0 for y ∈ U∗ ∩D+(y0) ⊂ D+(y0).
Hence, U∗ ∩D+(y0) ⊆ U ∩D+(y0), from Equation (4.2), and by symmetry

we obtain U∗ ∩D+(yi) ⊆ U ∩D+(yi) which is sufficient to prove U = U∗. ■

Notice that

(y0y7 − y1y6) + (y1y6 − y2y5) = (y0y7 − y2y5)
(y1y6 − y2y5) + (y2y5 − y3y4) = (y1y6 − y3y4)
(y0y7 − y1y6) + (y1y6 − y2y5) + (y2y5 − y3y4) = (y0y7 − y3y4)

Therefore, the following three hypersurfaces

Z+(y0y7 − y2y5), Z+(y1y6 − y3y4), Z+(y0y7 − y3y4) (4.3)
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are redundant. Thus, when disregarding the three hypersurfaces in Equa-
tion (4.3), the nine remaining hypersurfaces are linearly independent.

In fact, by using Hilbert’s Nullstellensatz, we show that there is a redundancy
in the nine hypersurfaces as well, as U can be expressed as the intersection of
only 8 hypersurfaces.

Theorem 4.2.2 ([EOa], Theorem 1.12 (Hilbert’s Nullstellensatz)). For ideals
a,b we have the equivalence

Z+(b) ⊆ Z+(a) ⇔
√

a ⊆
√

b

We will prove that the hypersurface Z+(y1y6−y2y5) contains the intersection
of the eight remaining hypersurfaces. We will prove this explicitly by showing
(y1y6 − y2y5)2 ∈ u, where u is the ideal generated by the eight remaining
polynomials.

Proof. This can be done in the quotient ring modulo u, by considering

y2
1y

2
6 + y2

2y
2
5 = y0y1y6y7 + y2y3y4y5, by y1y6 = y0y7 and y2y5 = y3y4

= y1y2y4y7 + y0y3y5y6, by y2y4 = y0y6 used in both directions
= y0y2y5y7 + y1y3y4y6, by y0y5 = y1y4 used in both directions
= 2y1y2y5y6, by y1y6 = y0y7 and y2y5 = y3y4

Hence we have

y2
1y

2
6 + y2

2y
2
5 = 2y1y2y5y6 =⇒ (y1y6 − y2y5)2 = 0

in the quotient ring, and we may conclude

(y1y6 − y2y5)2 ∈ u ⇒ (y1y6 − y2y5) ∈
√

u ⇒ (y1y6 − y2y5) ⊆
√

u

Thus, the hypersurface Z+(y1y6 − y2y5) is redundant. ■

Now, it is rather simple to see that the remaining hypersurfaces are all
necessary i.e. that none contain the entire intersection of the remaining seven,
due to the observation that each monomial appear only once in the eight
different ideals.

That is, we may consider the points xij ∈ P7 on the form (0 : · · · : 1 : · · · :
1 : · · · : 0), where the i-th and j-th index are 1. Now, for the ideal (yiyj − ykyl),
we may consider the points xij and xkl, and finish by noting that

xij ̸∈ Z+(yiyj − ykyl) , xij ∈ Z+(ax)

since the monomial yiyj does not appear in any of the other ideals, and for
any other monomial yayb(xij) = 0.

We summarize this discussion in the result below

Lemma 4.2.3. U can be written as the intersection of exactly eight of the twelve
hypersurfaces, but no fewer than eight.
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4.3 The image of P2 in P7

Then, we have the image rational map p from P2 into P1 × P1 × P1, i.e.

p : P2 → P1 × P1 × P1

(x0 : x1 : x2) 7→ (−x2 : x1) × (−x2 : x0) × (−x1 : x0)

and the Segre embedding ψ from P1 × P1 × P1 into P7, i.e.

ψ : P1 × P1 × P1 → P7

(u0 : v0) × (u1 : v1) × (u2 : v2) 7→ (u0u1u2 : u0u1v2 : · · · : v0v1v2)
7→ (y0 : y1 : y2 : y3 : y4 : y5 : y6 : y7)

The coordinates in P7, when mapped from P2 is given by

y0 = u0u1u2 = (−x2)(−x2)(−x1) = −x1x
2
2

y1 = u0u1v2 = (−x2)(−x2)(x0) = x0x
2
2

y2 = u0v1u2 = (−x2)(x0)(−x1) = x0x1x2

y3 = u0v1v2 = (−x2)(x0)(x0) = −x2
0x2

y4 = v0u1u2 = (x1)(−x2)(−x1) = x2
1x2

y5 = v0u1v2 = (x1)(−x2)(x0) = −x0x1x2

y6 = v0v1u2 = (x1)(x0)(−x1) = −x0x
2
1

y7 = v0v1v2 = (x1)(x0)(x0) = x2
0x1

where every monomial yi is of degree 3.
Hence, the composition of the two maps is a map from P2 → P7 given by

ψ ◦ p : P2 → P7

(x0 : x1 : x2) 7→ (−x1x
2
2 : x0x

2
2 : x0x1x2 : −x2

0x2 : x2
1x2 : −x0x1x2 : −x0x

2
1 : x2

0x1)

Now, it becomes natural to wonder what the image V = ψ ◦ p(P2) looks like.
This V will in fact be the surface S we are looking for, when S ⊂ P1 × P1 × P1

is embedded into P7.
Clearly it is contained in U , as the mapping factors through P1 × P1 × P1,

but we expect it to have dimension dimP2 = 2, unlike U , which have dimension
dimU = 3.

By observation, we also have V ⊆ Z+(y2 + y5), and we will prove that this
is sufficient to determine V .

Lemma 4.3.1. V , that is the image of P2 in P7, fulfils V = U ∩ Z+(y2 + y5).

Proof. We have already shown V ⊆ U ∩ Z+(y2 + y5), and what remains is
therefore demonstrating U ∩ Z+(y2 + y5) ⊆ V .

To prove this, we only consider the case y0 ̸= 0, i.e. within D+(y0) as the
others are analogous.

Hence, consider the point y = (y0 : · · · : y7) ∈ U ∩ Z+(y2 + y5) ∩ D+(y0),
we will prove that y ∈ (ψ ◦ p)(P2) = V .

We already know that the preimage of y in P1 × P1 × P1 equals

ψ−1(
(y0 : · · · : y7)

)
= (y0 : y4) × (y0 : y2) × (y0 : y1) = z
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However, to take into account that ψ(z) ∈ Z+(y2 +y5), we have the equation

y2
0y2 + y0y4y1 = 0 ⇒ y0y2 + y1y4 = 0

which is equivalent to saying (y0 : y1) = (−y4 : y2).
Hence,

z = (y0 : y4) × (y0 : y2) × (−y4 : y2) = p−1(
(y2 : y4 : −y0)

)
which proves that

y = (ψ ◦ p)(y2 : y4 : −y0) ∈ (ψ ◦ p)(P2) = V

and finally V = U ∩ Z+(y2 + y5). ■

Thus, the surface S we are looking for, to reconstruct P2, is S ∼= V =
U ∩ Z+(y2 + y5).
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4.4 The class of the image of P2

In this section we want to determine the class of the image of P2 in P1 ×P1 ×P1.
The notation and theory in this section is based on results in Chapter 2. See
this chapter for more details.

Let the image of P2 in P1 × P1 × P1 be

S = p(P2) ⊆ P1 × P1 × P1

= ψ−1(V )

As S is of codimension 1 in P1 × P1 × P1, S is a divisor. The class of S, can
be represented as [S] = a0h0 + a1h1 + a2h2, where ⟨h0, h1, h2⟩ is the basis for
the Picard group Pic (P1 × P1 × P1) = Z ⊕ Z ⊕ Z and a0, a1, a2 ∈ Z.

To determine the class [S], we consider the intersection of [S] and classes
hihj for i ̸= j, where each hihj represents the class of a curve going through
qi and qj . Recall that h0h1 = [{pt} × {pt} × P1], h0h2 = [{pt} × P1 × {pt}]
and h1h2 = [P1 × {pt} × {pt}]. First, we intersect [S] with the class of curves
represented by h0h1, to obtain

[S] · h0h1 = (a0h0 + a1h1 + a2h2) · h0h1

= a2 · h0h1h2

= a2

As h2
i = 0 and h0h1h2 = 1. Here a2 corresponds to the number of intersection

points between S and a curve of class h0h1.
To determine a2, we consider this intersection in S. Each class h0, h1, h2

have restrictions to S, where hi restricted to S is (L− ei). Thus, we get

[S] · h0h1 = h0|S · h1|S = (L− e0) · (L− e1)
= L2 − Le1 − Le0 + e0e1

= 1

Hence, the number of intersection points between S and curves of class h0h1
in P2 is a2 = 1. In a similar manner, we find that a0 = 1 and a1 = 1. Thus, the
class of S is given by [S] = h0 + h1 + h2.

To obtain the degree of a surface of class [S] = h0 + h1 + h2 in the Segre
embedding, we intersect [S] with the class of the intersection of two hyperplane
sections, i.e.

[S] · (h0 + h1 + h2)2 =(h0 + h1 + h2) ·
(
h0h1 + h0h2 + h1h0 + h1h2 + h2h0 + h2h1

)
=6 · h0h1h2

=6

Thus, the degree of the surface V = ψ(S) in the Segre embedding is 6.

Intersection of two surfaces

Now, if we are to look at two separate blow-ups of P2 of three different points,
we obtain two different images, S0 and S1, when mapped into P1 × P1 × P1.
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However, the class of both surfaces will still be (h0 + h1 + h2). Thus, their
intersection, a subvariety of dimension 1, will have class

[S]0 · [S]1 = (h0 + h1 + h2) · (h0 + h1 + h2)
= h0h1 + h0h2 + h1h0 + h1h2 + h2h0 + h2h1

= 2 · (h0h1 + h1h2 + h2h0)

Thus, we have calculated the class of the intersection of two different blow-
ups of P2, S1 and S2, in P1 × P1 × P1. Now, we want to study the intersection
of two such blow-ups when embedded into P7. Recall that

S1 = ψ−1(V1), S2 = ψ−1(V2)

In P7 we assume V1 to be equal to the image V we found in Lemma 4.3.1,
i.e V1 = U ∩Z+(y2 + y5). Then, we let V2 be a blow-up of three other points in
P2 given by

V2 = U ∩ Z+(a0y0 + a1y1 + a2y2 + a3y3 + a4y4 + a5y5 + a6y6 + a7y7)

for some ai ∈ k. To explain that the expression is linear, the class of ψ−1(V2)
equals the class of ψ−1(V1), namely (h0 + h1 + h2), such that the degree of V2
in P7 equals 6 as well. Implying that the hypersurface U is intersected with
to obtain V2, is of the same degree as Z+(y2 + y5), i.e. degree 1. Thus, it is a
hyperplane as well.

As above, we want to consider the intersection of the two separate blow-ups
of P2 in P1 × P1 × P1, when embedded into P7. Thus,

V1 ∩ V2 = U ∩ Z+(y2 + y5) ∩ Z+(a0y0 + a1y1 + · · · + a7y7) (4.4)

An intersection of two blow-ups when embedded into P7 will in general be
of codimension 4 + 1 + 1 = 6 and thus be a curve in P7.

We can calculate the degree of the curve in P7 by intersecting the class of the
intersection of the two blow-ups in P1 × P1 × P1 with the class of a hyperplane
section (h0 + h1 + h2). Thus,

[S0] · [S1] · (h0 + h1 + h2) = 2 · (h0h1 + h1h2 + h2h0) · (h0 + h1 + h2)
= 2 · (h0h1h2 + h0h1h2 + h0h1h2)
= 6

Thus, V1 ∩ V2 will in general be a curve in P7 of degree 6.

The pullback of the class of V

As V is a hyperplane section of U and the class of a hyperplane section is given
by (h0 + h1 + h2), then the corresponding class in the blow-up of P2 in three
points is given by

(L− e0) + (L− e1) + (L− e2) = 3L− e0 − e1 − e2

As h0, h1, h2 corresponds to (L − e0), (L − e1), (L − e2). A curve of class
3L− e0 − e1 − e2 will in P2 represent a cubic curve through the points q0, q1, q2.
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L is both the class of a line in P2 and the class of the image of a line in
V . Thus, we can find α, first by identifying curves of class A = H − L in P7,
and then project from the span of a curve of this class. Given the class of a
hyperplane section 3L− e0 − e1 − e2, we obtain the class A by subtracting L,
i.e.

A = (3L− e0 − e1 − e2) − L = 2L− e0 − e1 − e2

Further, the degree of the curve of class A in P7 will be

(3L− e0 − e1 − e2) · (2L− e0 − e1 − e2) = 6L2 + e2
0 + e2

1 + e2
2 = 3

As it turns out, the curve of class 3L− e0 − e1 − e2 will span P3. Thus, α will
be the projection from ⟨A⟩ = P3 restricted to V .

For similar discussion, see Chapter 5.
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4.5 Critical configurations as hyperplane sections

In this section, we want to study curves in the blow-up of P2 in q0, q1, q2.
We are interested in identifying curves that can be mapped to cubic curves
in P2 going through q0, q1, q2, i.e. curves in the blow-up satisfying the class∑3
i=1(L− ei) = 3L− e0 − e1 − e2.
Every curve is associated to a class. If a curve is reducible, i.e. a union of

different components, then the class of the curve is equal to the sum of the
classes of all components. As we want to study curves of class 3L− e0 − e1 − e2,
we will consider both irreducible and reducible curves. To be a reducible curve
of this class, the sum of all component classes must add up to 3L− e0 − e1 − e2.
We call each unique composition of 3L− e0 − e1 − e2 a partition.

Definition 4.5.1. A partition of a class C is a unique decomposition of C, such
that each component itself is a class of a curve.

Before we begin to study partitions of 3L− e0 − e1 − e2, we will comment on
the possibilities of singularities of curves of different degrees. This is important,
as it restricts the number of possible partitions.

An application of Bézout’s theorem lets us determine the maximal number
of singular points that an irreducible plane curve can have. We can determine
the number by using the following proposition.

Proposition 4.5.2 ([EOa], Proposition 12.7). An irreducible curve C of degree
d cannot have more than

(
d−1

2
)

singular points.

As a result, neither lines nor conics can contain singular points. However a
cubic curve on the other hand may have one singularity, and the multiplicity of
this point cannot exceed 2. Thus, an irreducible curve of class 3L− e0 − e1 − e2
can at most have one singularity. Reducible curves of this class will have no
singularities.

Partitions of class 3L − e0 − e1 − e2

In this section, we start by describing some of the partitions of class
3L − e0 − e1 − e2. In the end of the section we list all partitions of this
class in a summarizing table, i.e. Table 4.1.

In total, when including symmetric classes, there are 55 unique partitions of
class 3L−e0 −e1 −e2 in the blow-up of P2 in three points. By symmetric classes,
we refer to obtaining different types of a specific partition, by rearranging e0, e1
and e2 in the expression for the given partition.

We describe the partitions in the order determined by the number of
components in each partition. We start with the partition consisting of one
single component, the irreducible curve.

Partition consisting of one component

The only partition consisting of one component is the irreducible curve of class
3L− e0 − e1 − e2. The class represents cubic curves going through the points
q0, q1, q2 exactly one time, see Figure 4.2.
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q0

q1

q2

Figure 4.2: Cubic curve going through q0, q1, q2 in P2 exactly once.

Partition consisting of two components

By rearranging the elements of class 3L− e0 − e1 − e2, we can find one of the
partitions consisting of two components, each being its own class, i.e.

3L− e0 − e1 − e2 = (3L− 2e0 − e1 − e2) + e0

The curve is still of degree three, but is now a combination of two components,
i.e. a cubic curve and the exceptional divisor e0, that is a blow-up of the point
q0. From the expression, we see that the curve goes through q0 twice and further
q1 and q2 once, see Figure 4.3.

q0

q1

q2

Figure 4.3: Nodal curve in P2

By symmetry, we can find two other types of this class, that is by rearranging
e0, e1 and e2 in the expression above.

Partition consisting of three components

We continue to combine a quadratic curve with other elements to obtain a curve
of class 3L− e0 − e1 − e2.
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3L− e0 − e1 − e2 = (2L− e0 − e1) + (L− e0 − e2) + e0

which is a quadratic curve going through q0, q1, a line going through q0 and q2
and the exceptional divisor e0, see Figure 4.4.

q0 q1

q2

Figure 4.4: Curve in P2 of partition containing three components

By symmetry, there will be 6 partitions of this combination, given that we
change the position of the points q0, q1, q2.

Partition consisting of four components

3L− e0 − e1 − e2 = (L− e0 − e1) + e0 + L+ (L− e0 − e2)

This curve is a combination of a line going through q0, q1, a line going through
q0, q2, an arbitrary line L ∈ P2 and the exceptional divisor e0, that is a blow-up
of q0, see Figure 4.5.

L

q0

q2

q1

Figure 4.5: Curve in P2 of partition containing four components

By symmetry, there will exist in total 3 different partitions of this
combination.

Partition consisting of five components

3L− e0 − e1 − e2 = (L− e1) + (L− e0 − e2) + e1 + (L− e0 − e1) + e0
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This curve is a combination of a line going through q1, a line going through
q0, q1, a line going through q0, q2 and the two exceptional divisors e0, e1. The
two exceptional divisors are blow-ups of q0, q1 respectively. See Figure 4.6.

q0

q2

q1

Figure 4.6: Curve in P2 of partition containing five components

By symmetry, we can obtain in total 6 different partitions of this combination.

Partition consisting of six components

If we consider a curve that contain all three lines, and that each line goes
through two of the three points q0, q1, q2. That is

3L− e0 − e1 − e2 = (L− e0 − e1) + e1 + (L− e0 − e2) + e2 + (L− e1 − e2) + e0

Here, the curve in the blow-up is a combination of six components, i.e. the lines
q0q1, q0q2 and q1q2, and the exceptional divisors e0, e1 and e2, that are blow-ups
of q0, q1, q2 respectively. There is no symmetric variation of this partition.

Given the combination of the lines q0q1, q0q2 and q1q2, the curve will now
have a multiplicity of 2 in each point q0, q1, q2, see Figure 4.7.

q2

q1q0

Figure 4.7: Curve in P2 of partition containing six components

Summary

In Table 4.1 we summarize the partitions of class (3L− e0 − e1 − e2). We only
consider the 18 different partitions, where the symmetric variations of each
partition is disregarded. The order of the partitions in the table are based on
the number of components in each partition.
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Table 4.1: All partitions

Number of Partitioncomponents
1 (3L− e0 − e1 − e2)
2 (3L− 2e0 − e1 − e2) + e0
2 (2L− e0 − e1 − e2) + L
2 (2L− e0 − e1) + (L− e2)
2 (2L− e0) + (L− e1 − e2)
3 (2L− e0 − e1 − e2) + (L− e0) + e0
3 (2L− e0 − e1) + (L− e0 − e2) + e0
3 (L− e0 − e1) + (L− e2) + L
3 (L− e0) + (L− e1) + (L− e2)
4 (L− e0 − e1) + e0 + L+ (L− e0 − e2)
4 (L− e0 − e1) + (L− e2) + e0 + (L− e0)
4 (L− e0 − e1) + (L− e2) + (L− e2) + e2
4 (2L− e0 − e1 − e2) + e1 + e0 + (L− e0 − e1)
5 (L− e1) + (L− e0 − e2) + e1 + (L− e0 − e1) + e0
5 (L− e0 − e1) + (L− e0 − e1) + (L− e2) + e0 + e1
5 (L− e0 − e1) + (L− e0 − e2) + (L− e0) + e0 + e0

6 (L− e0 − e1) + (L− e0 − e2) + (L− e1 − e2) + e0 + e1 + e2
6 (L− e0 − e1) + (L− e0 − e2) + (L− e0 − e2) + e0 + e0 + e2

Degree of partitions of class 3L − e0 − e1 − e2 when mapped into
P5

In Section 4.4 we found that two different blow-ups when embedded into P7

intersect in a curve of degree 6. When two hyperplane sections are intersected,
i.e. (h0 + h1 + h2)2, we end up in P5. Thus, the curve of degree 6 is an
intersection of two blow-ups is in P5.

In Section 4.5, we found 18 unique partitions of the class 3L− e0 − e1 − e2
in the blow-up of P2, when the symmetric variations are disregarded. Here, we
are interested in the degree of curves of these partitions in P5. We will focus on
the same 6 partitions as we did in Section 4.5, but summarize the results for all
partitions in upcoming tables.

To determine the degree of each component of a partition in P5, we intersect
each component of a partition with the class 3L− e0 − e1 − e2. The degree of a
curve in a partition is equal to the sum of the degree of each component. Here,
curves of each partition must necessarily be of degree 6, as 6 is the degree of
the curve we started out with in P5.

We start by calculating the degree of the partition consisting of only one
component.

The degree of the partition containing one component

We intersect the partition with the class of the curve, that is

(3L− e0 − e1 − e2) ·
(

(3L− e0 − e1 − e2)
)

= (9L2 + e2
0 + e2

1 + e2
2)
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= (9 − 1 − 1 − 1)
= 6

as L2 = 1, e2
i = −1 and the product of two non-identical element are equal

to zero. Thus, this partition, consisting of only one element, corresponds to a
curve of degree 6 in P5.

In Table 4.2 below, we list the only partition that consists of one component
and the degree of this component.

Table 4.2: Partition with 1 component and degree of the component (c)

Partition Deg(c)
(3L− e0 − e1 − e2) 6

The degree of a partition with two components

We continue to intersect each partition with the class 3L− e0 − e1 − e2, that is

(3L− e0 − e1 − e2) ·
(

(3L− 2e0 − e1 − e2) + e0

)
= 5 + 1

= 6

This partition corresponds to a curve in P5 of degree 6, where each component
has degree 5, 1 respectively.

In Table 4.3 below, we summarize the degrees of each component in the
partitions that consists of two components.

Table 4.3: Partitions with 2 components and the degree of each component (ci)

Partition Deg(c1) Deg(c2)
(3L− 2e0 − e1 − e2) + e0 5 1
(2L− e0 − e1 − e2) + L 3 3

(2L− e0 − e1) + (L− e2) 4 2
(2L− e0) + (L− e1 − e2) 5 1

The degree of a partition with three components

(3L− e0 − e1 − e2) ·
(

(2L− e0 − e1) + (L− e0 − e2) + e0

)
= 4 + 1 + 1

= 6

The partition corresponds to a curve in P5 of degree 6, where each component
has degree 4, 1, 1 respectively.

In Table 4.4 below, we summarize the degrees of each component in the
partitions that consists of three components.
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Table 4.4: Partitions with 3 components and degree of each component (ci)

Partition Deg(c1) Deg(c2) Deg(c3)
(2L− e0 − e1 − e2) + (L− e0) + e0 3 2 1
(2L− e0 − e1) + (L− e0 − e2) + e0 4 1 1

(L− e0 − e1) + (L− e2) + L 1 2 3
(L− e0) + (L− e1) + (L− e2) 2 2 2

The degree of a partition with four components

(3L− e0 − e1 − e2) ·
(

(L− e0 − e1) + e0 + L+ (L− e0 − e2)
)

= 1 + 1 + 3 + 1

= 6

The partition corresponds to a curve in P5 of degree 6, where each component
has degree 1, 1, 3, 1 respectively.

In Table 4.5 below, we summarize the degrees of each component in the
partitions that consists of four components.

Table 4.5: Partitions with 4 components and degree of each component (ci)

Partition Deg(c1) Deg(c2) Deg(c3) Deg(c4)
(L− e0 − e1) + e0 + L+ (L− e0 − e2) 1 1 3 1

(L− e0 − e1) + (L− e2) + e0 + (L− e0) 1 2 1 2
(L− e0 − e1) + (L− e2) + (L− e2) + e2 1 2 2 1

(2L− e0 − e1 − e2) + e1 + e0 + (L− e0 − e1) 3 1 1 1

The degree of a partition with five components

(3L− e0 − e1 − e2) ·(
(L− e1) + (L− e0 − e2) + e1 + (L− e0 − e1) + e0

)
= 2 + 1 + 1 + 1 + 1

= 6

The partition corresponds to a curve in P5 of degree 6 with five components,
where each component has degree 2, 1, 1, 1, 1 respectively.

In Table 4.6 below, we summarize the degrees of each component in the
partitions that consists of five components.

Table 4.6: Partitions with 5 components and the degree of each component (ci)

Partition Degree of
c1 c2 c3 c4 c5

(L− e1) + (L− e0 − e2) + e1 + (L− e0 − e1) + e0 2 1 1 1 1
(L− e0 − e1) + (L− e0 − e1) + (L− e2) + e0 + e1 1 1 2 1 1
(L− e0 − e1) + (L− e0 − e2) + (L− e0) + e0 + e0 1 1 2 1 1
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The degree of a partition with six components

(3L− e0 − e1 − e2) ·
(

(L− e0 − e1) + e1 + (L− e0 − e2) + e2 + (L− e1 − e2) + e0

)
= 6

The partition corresponds to a curve in P5 of degree 6 with six components,
where each component is of degree 1.

In Table 4.7 below, we list the partitions that consist of six components,
and the belonging degree of each of the components.

Table 4.7: Partitions with 6 components and the degree of each component (ci)

Partition Degree of
c1 c2 c3 c4 c5 c6

(L− e0 − e1) + e1 + (L− e0 − e2) + e2 + (L− e1 − e2) + e0 1 1 1 1 1 1
(L− e0 − e1) + (L− e0 − e2) + (L− e0 − e2) + e0 + e0 + e2 1 1 1 1 1 1

Can two different blow-ups be mapped to the same curve in P5?

In this section we want to study the preimage of the intersection of two surfaces
in P7. In Section 4.4 we found that the intersection of two such surfaces is a
curve of degree 6 in P5.

We will examine whether two different partitions of the class 3L−e0 −e1 −e2,
i.e. two blow-ups of P2, can be mapped to the same curve of degree 6 in P5.

P7

P1 × P1 × P1 P1 × P1 × P1

Γp Γp

ψ ψ

ω ω

Figure 4.8: Two blow-ups of P2 in three points

When we consider the preimage of such a curve in P5, the map will pull
back to two different blow-ups of P2, each blow-up corresponding to a curve of
degree 3 in P2 going through three points, q0, q1, q2 and q′

0, q
′
1, q

′
2 respectively.

Thus, the preimage will correspond to curves in the blow-up of P2 of class
(3L− e0 − e1 − e2) and (3L′ − e′

0 − e′
1 − e′

2) respectively. These classes behave
similarly, as both correspond to curves going through three points in P2. Thus,
there are 18 partitions of each such class, if we omit the symmetric partitions.

We are interested in studying different partitions of (3L− e0 − e1 − e2) that
becomes the same intersection curve in P5 when embedded into P7. Thus, we
study the 18 partitions corresponding to the classes of the two blow-ups, to
examine whether we can obtain the intersection curve in P5, by intersecting
different partitions.

We want to find partitions that can be matched, and the necessary conditions
for two partitions to be matched are defined below.
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4. Reconstruction from three camera centers

Definition 4.5.3 (Matching partitions).

i) The partitions have the same number of components

ii) The partitions consists of components of the same degrees

iii) The intersection between the components in each partition must be
equal in both partitions that are matched.

When we search for possible matches, as both classes of the two blow-ups are
identical up to variable change, we only consider the partitions corresponding
to the class 3L− e0 − e1 − e2 that we found in Section 4.5.

By studying each table in Section 4.5, we can find possible candidates of
matching that satisfies both condition 1 and 2. Then subsequently, we can
check whether the last condition is met. We start by studying the tables in
succeeding order based on the number of components in a partition. As there
is only one partition in Table 4.2, we skip this table.

Possible matches in partitions with two components

In Table 4.3, we can observe that partition number 2 and partition number 4
are possible candidates to be matched, i.e.

partition #1: (3L− 2e0 − e1 − e2) + e0

partition #4: (2L− e0) + (L− e1 − e2)

They are possible candidates as both partitions consist of two components, and
in each partition there is one component of degree 1 and the other is of degree
5.

We can study the intersection points between the components in each of the
partitions. We start with partition number 1.

(3L− 2e0 − e1 − e2) · e0 = −2e0 = 2

As we can see, there are two intersection points. Thus, the cubic curve with a
singularity in q0 intersects the exceptional divisor e0 twice in partition number
1. This is visualized in the dual graph in Figure 4.9 below. In a dual graph,
each node represents a curve of some class, corresponding to a component
ci of a partition. Inside each node, in addition to ci, there is a number
representing the degree of the related curve. The lines between the nodes
represents the intersections between the curves, and the number associated to
each line represents the number of times the curves intersect. Two separate
lines between the same two nodes, represents two different intersection points
between the curves.

Further, we can consider the intersection points of the components of
partition number four, that is (2L− e0) + (L− e1 − e2).

(2L− e0) · (L− e1 − e2) = 2L2 = 2

Also here, the two components intersect exactly twice. The quadratic curve
intersect with the line going through q0, q1 in two different points. This is
visualized in the dual graph in Figure 4.10 below.
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4.5. Critical configurations as hyperplane sections

c1: 5 c2: 1

1

1

Figure 4.9: Dual graph of (3L− 2e0 − e1 − e2) + e0

c1: 5 c2: 1

1

1

Figure 4.10: Dual graph of (2L− e0) + (L− e1 − e2)

Thus, both partitions have the same number of intersection points, and the
intersection between the components in each partition seems to be identical, as
is visualized in the dual graphs Figure 4.9 and Figure 4.10. Thus, they meet all
three necessary conditions for matching.

Possible matches in partitions with three components

In Table 4.4 partition number 1 and 3 are two partitions that may be matched,
i.e.

partition #1: (2L− e0 − e1 − e2) + (L− e0) + e0

partition #3: (L− e0 − e1) + (L− e2) + L

Both partitions have three components, and each partition has one component
of degree 1, a second component of degree 2 and a third component of degree 3.

We can study the intersection points between the components in each of the
partitions. We start with partition 1.

(2L− e0 − e1 − e2) · (L− e0) = 2L2 + e2
0 = 1

(2L− e0 − e1 − e2) · e0 = −e2
1 = 1

(L− e0) · e0 = −e2
1 = 1

As we can see, each of the components intersects each of the other components
exactly once. This is visualized in the dual graph in Figure 4.11 below.

Further, we can consider the intersection points of the components of
partition 3

(L− e0 − e1) · (L− e2) = L2 = 1
(L− e0 − e1) · L = L2 = 1

(L− e2) · L = L2 = 1
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c1: 3 c2: 2

c3: 1

1

1 1

Figure 4.11: Dual graph of (2L− e0 − e1 − e2) + (L− e0) + e0

Also here, each of the components intersects each of the other components
exactly once. Thus, the two partitions satisfies the three necessary conditions.

c1: 3 c2: 2

c3: 1

1

1 1

Figure 4.12: Dual graph of (L− e0 − e1) + (L− e2) + L

From the study of intersection points above, and also visualized in the dual
graphs Figure 4.11 and Figure 4.12, the two partitions have identical intersection
points. Thus, they meet all three necessary conditions for matching.

Possible matches in partitions with four components

In Table 4.5 partition number 1 and 4 are two possible matches. Both partitions
have four components, and three of the components is of degree 1 and one
component is of degree 3.

partition #1: (L− e0 − e1) + e0 + L+ (L− e0 − e2)
partition #4: (2L− e0 − e1 − e2) + e1 + e0 + (L− e0 − e1)

We can study the intersection points between the components in each of the
partitions. We start with partition 1, that is (L−e0 −e1)+e0 +L+(L−e0 −e2)

c1 · c2 = (L− e0 − e1) · e0 = −e2
0 = 1

c1 · c3 = (L− e0 − e1) · L = L2 = 1
c1 · c4 = (L− e0 − e1) · (L− e0 − e2) = L2 + e2

0 = 0
c2 · c3 = e0 · L = − = 0
c2 · c4 = e0 · (L− e0 − e2) = −e2

0 = 1
c3 · c4 = L · (L− e0 − e2) = L2 = 1
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4.5. Critical configurations as hyperplane sections

As we can see, the four components intersect with two of the other components
exactly once. The line q0q1 and the line q0q2 do not intersect in P5. Further, the
arbitrary line L does not intersect the exceptional divisor e0. This is visualized
in the dual graph in Figure 4.13 below.

c1: 1 c2: 1

c3: 3 c4: 1

1

1 1

1

Figure 4.13: Dual graph of (L− e0 − e1) + e0 + L+ (L− e0 − e2)

Then, we study the intersection points between the components in partition
number 4, i.e. (2L− e0 − e1 − e2) + e1 + e0 + (L− e0 − e1).

c1 · c2 = (2L− e0 − e1 − e2) · e1 = −e2
1 = 1

c1 · c3 = (2L− e0 − e1 − e2) · e0 = −e2
0 = 1

c1 · c4 = (2L− e0 − e1 − e2) · (L− e0 − e1) = 2L2 + e2
0 + e2

1 = 0
c2 · c3 = e1 · e0 = − = 0
c2 · c4 = e1 · (L− e0 − e1) = −e2

1 = 1
c3 · c4 = e0 · (L− e0 − e1) = −e2

0 = 1

Also here, all components intersect with two of the other components, exactly
once. The quadratic curve going through all three points q0, q1, q2 and the line
going through q0 and q1 do not intersect in P5. In addition, the two exceptional
divisors e0, e1 do not intersect either. This is visualized in the dual graph in
Figure 4.14 below.

c1: 1 c2: 1

c3: 3 c4: 1

1

1 1

1

Figure 4.14: Dual graph of (2L− e0 − e1 − e2) + e1 + e0 + (L− e0 − e1)

From the study of intersection points above, and also visualized in the dual
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graphs Figure 4.13 and Figure 4.14, the two partitions have identical intersection
points. Thus, they meet all three necessary conditions for matching.

Further, we have another possible match in Table 4.5, that is partition
number 2 and 3. Both of the partitions have four components, and both have
two components of degree 1 and two components of degree 2.

partition #2: (L− e0 − e1) + (L− e2) + e0 + (L− e0)
partition #3: (L− e0 − e1) + (L− e2) + (L− e2) + e2

We look at the intersection points between the components in each of the
partitions. We start with partition 2, i.e. (L−e0 −e1)+(L−e2)+e0 +(L−e0).

c1 · c2 = (L− e0 − e1) · (L− e2) = L2 = 1
c1 · c3 = (L− e0 − e1) · e0 = −e2

0 = 1
c1 · c4 = (L− e0 − e1) · (L− e0) = L2 + e2

0 = 0
c2 · c3 = (L− e2) · e0 = − = 0
c2 · c4 = (L− e2) · (L− e0) = L2 = 1
c3 · c4 = e0 · (L− e0) = −e2

0 = 1

Again, all components intersect two of the other components exactly once. Here,
as we can see, the line q0q1 and the line going through q0 do not intersect in P5.
Further, the line going through q2 do not intersect the exceptional divisor e0.
This is visualized in the dual graph in Figure 4.15 below.

c1:1 c2:2

c3:1 c4:2

1

1 1

1

Figure 4.15: Dual graph of (L− e0 − e1) + (L− e2) + e0 + (L− e0)

Then, we study the intersection points between the components in partition
3, i.e. (L− e0 − e1) + (L− e2) + (L− e2) + e2.

c1 · c2 = (L− e0 − e1) · (L− e2) = L2 = 1
c1 · c3 = (L− e0 − e1) · (L− e2) = L2 = 1
c1 · c4 = (L− e0 − e1) · e2 = − = 0
c2 · c3 = (L− e2) · (L− e2) = L2 + e2

2 = 0
c2 · c4 = (L− e2) · e2 = −e2

2 = 1
c3 · c4 = (L− e2) · e2 = −e2

2 = 1

Also here, all components intersect with two of the other components, again
exactly once. This time, the line q0q1 and the exceptional divisor e0 do not
intersect in P5. Further, the two lines both going through q2 do not intersect.
This is visualized in the dual graph in Figure 4.16 below.
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c1:1 c2:2

c3:2 c4:1

1

1 1

1

Figure 4.16: Dual graph of (L− e0 − e1) + (L− e2) + (L− e2) + e2

From the calculation of intersection points, and also visualized in the dual
graphs Figure 4.15 and Figure 4.16, partition number two and three have the
same intersection points. Thus, they meet all three necessary conditions for
matching.

Possible matches in partitions with five components

In Table 4.6, all three partitions that consist of five components are in fact all
possible matches. That is, all three partitions have five components and each
partition have four components of degree 1 and one component of degree 2.

partition #1: (L− e1) + (L− e0 − e2) + e1 + (L− e0 − e1) + e0

partition #2: (L− e0 − e1) + (L− e0 − e1) + (L− e2) + e0 + e1

partition #3: (L− e0 − e1) + (L− e0 − e2) + (L− e0) + e0 + e0

We consider the intersection points between the components in each of the
partitions. We start with the first partition, i.e. (L− e1) + (L− e0 − e2) + e1 +
(L− e0 − e1) + e0.

c1 · c2 = (L− e1) · (L− e0 − e2) = L2 = 1
c1 · c3 = (L− e1) · e1 = −e2

1 = 1
c1 · c4 = (L− e1) · (L− e0 − e1) = L2 + e2

1 = 0
c1 · c5 = (L− e1) · e0 = − = 0
c2 · c3 = (L− e0 − e2) · e1 = − = 0
c2 · c4 = (L− e0 − e2) · (L− e0 − e1) = L2 + e2

0 = 0
c2 · c5 = (L− e0 − e2) · e0 = −e2

0 = 1
c3 · c4 = e1 · (L− e0 − e1) = −e2

1 = 1
c3 · c5 = e1 · e0 = − = 0
c4 · c5 = (L− e0 − e1) · e0 = −e2

0 = 1

As we can see, in P5, each component intersects two other components exactly
once. The line through q1 intersects both the line q0q2 and the exceptional
divisor e1. In addition, the line q0q2 intersects the exceptional divisor e0.
Further, the exceptional divisor e1 also intersects the line q0q1. Lastly, the line
q0q1 intersects the exceptional divisor e0. This is visualized in the dual graph
in Figure 4.17 below.
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c1:2 c2:1

c3:1 c4:1

c5:1

1

1

1

1

1

Figure 4.17: Dual graph of (L− e1) + (L− e0 − e2) + e1 + (L− e0 − e1) + e0

Then we study the intersection points between the components in partition
number 2, i.e. (L− e0 − e1) + (L− e0 − e1) + (L− e2) + e0 + e1.

c1 · c2 = (L− e0 − e1) · (L− e0 − e1) = L2 + e2
0 + e2

1 = −1
c1 · c3 = (L− e0 − e1) · (L− e2) = L2 = 1
c1 · c4 = (L− e0 − e1) · e0 = −e2

0 = 1
c1 · c5 = (L− e0 − e1) · e1 = −e2

1 = 1
c2 · c3 = (L− e0 − e1) · (L− e2) = L2 = 1
c2 · c4 = (L− e0 − e1) · e0 = −e2

0 = 1
c2 · c5 = (L− e0 − e1) · e1 = −e2

1 = 1
c3 · c4 = (L− e2) · e0 = − = 0
c3 · c5 = (L− e2) · e1 = − = 0
c4 · c5 = e0 · e1 = − = 0

In P5, as component number one and two are equal, the intersection between
them is equal to -1. Further, both of these components intersect each of the
three other components exactly once. Thus, the line q0q1 intersects the line
going through q2, the exceptional divisor e0 and the exceptional divisor e1. This
is visualized in the dual graph in Figure 4.18 below.

c1,c2:1 c3:2

c4:1 c5:1

-1

2

2 2

Figure 4.18: Dual graph of (L− e0 − e1) + (L− e0 − e1) + (L− e2) + e0 + e1
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Then we study the intersection points between the components in partition
number 2, i.e. (L− e0 − e1) + (L− e0 − e2) + (L− e0) + e0 + e0.

c1 · c2 = (L− e0 − e1) · (L− e0 − e2) = L2 + e2
0 = 0

c1 · c3 = (L− e0 − e1) · (L− e0) = L2 + e2
0 = 0

c1 · c4 = (L− e0 − e1) · e0 = −e2
0 = 1

c1 · c5 = (L− e0 − e1) · e0 = −e2
0 = 1

c2 · c3 = (L− e0 − e2) · (L− e0) = L2 + e2
0 = 0

c2 · c4 = (L− e0 − e2) · e0 = −e2
0 = 1

c2 · c5 = (L− e0 − e2) · e0 = −e2
0 = 1

c3 · c4 = (L− e0) · e0 = −e2
0 = 1

c3 · c5 = (L− e0) · e0 = −e2
0 = 1

c4 · c5 = e0 · e0 = e2
0 = −1

Now, component number four and five are equal, thus the intersection
between them is equal to -1. Also here, both component four and five intersect
each of the other three components exactly once. Hence, the exceptional divisor
e0 intersects the line q0q1, the line q0q2 and the line going through q0. This is
visualized in the dual graph in Figure 4.19 below.

c1:1 c2:1

c3:2 c4,c5:1

2
2

2

-1

Figure 4.19: Dual graph of (L− e0 − e1) + (L− e0 − e2) + (L− e0) + e0 + e0

By the calculation of intersection points between the components in each
partition, and thus as visualized in Figure 4.17, Figure 4.18 and Figure 4.19,
we can conclude that the first partition does not match the two remaining
partitions, as they differ in some of the intersection points. However, partition
number two and three have similar intersection points. Thus, they meet all
three necessary conditions for matching.

Possible matches in partitions with six components

Lastly, in Table 4.7 both partitions are possible matches. That is, both partitions
have six components and all components in each partition is of degree 1.

partition #1: (L− e0 − e1) + e1 + (L− e0 − e2) + e2 + (L− e1 − e2) + e0
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partition #2: (L− e0 − e1) + (L− e0 − e2) + (L− e0 − e2) + e0 + e0 + e2

We consider the intersection points between the components in each of the
partitions. We start with the first partition, i.e. (L− e0 − e1) + e1 + (L− e0 −
e2) + e2 + (L− e1 − e2) + e0.

c1 · c2 = (L− e0 − e1) · e1 = −e2
1 = 1

c1 · c3 = (L− e0 − e1) · (L− e0 − e2) = L2 + e2
0 = 0

c1 · c4 = (L− e0 − e1) · e2 = − = 0
c1 · c5 = (L− e0 − e1) · (L− e1 − e2) = L2 + e2

1 = 0
c1 · c6 = (L− e0 − e1) · e0 = −e2

0 = 1
c2 · c3 = e1 · (L− e0 − e2) = − = 0
c2 · c4 = e1 · e2 = − = 0
c2 · c5 = e1 · (L− e1 − e2) = −e2

1 = 1
c2 · c6 = e1 · e0 = − = 0
c3 · c4 = (L− e0 − e2) · e2 = −e2

2 = 1
c3 · c5 = (L− e0 − e2) · (L− e1 − e2) = L2 + e2

2 = 0
c3 · c6 = (L− e0 − e2) · e0 = −e2

0 = 1
c4 · c5 = e2 · (L− e1 − e2) = −e2

2 = 1
c4 · c6 = e2 · e0 = − = 0
c5 · c6 = (L− e1 − e2) · e0 = − = 0

In this partition, all components are lines and all lines intersect exactly once
with two of the other lines. In regard to three of the lines, each line goes through
two of the points q0, q1, q2. These three lines do not intersect with each other,
they only intersect with the exceptional divisors associated with the points they
go through.

Thus, the line q0q1 intersects the exceptional divisors e0 and e1. Further,
q0q2 intersects the exceptional divisors e0 and e2. Lastly, q1q2 intersects the
exceptional divisors e1 and e2. This is visualized in the dual graph in Figure 4.20
below.

c1:1 c2:1

c3:1 c4:1

c5:1c6:1

1

1 1

1
1

1

Figure 4.20: Dual graph of (L−e0 −e1)+e1 +(L−e0 −e2)+e2 +(L−e1 −e2)+e0

We continue to study the intersection points between the components in
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partition number 2, i.e. (L−e0 −e1)+(L−e0 −e2)+(L−e0 −e2)+e0 +e0 +e2.

c1 · c2 = (L− e0 − e1) · e1 = −e2
1 = 1

c1 · c3 = (L− e0 − e1) · e2 = − = 0
c1 · c4 = (L− e0 − e1) · (L− e1 − e2) = L2 + e2

1 = 0
c1 · c5 = (L− e0 − e1) · (L− e0 − e2) = L2 + e2

0 = 0
c1 · c6 = (L− e0 − e1) · e0 = −e2

0 = 1
c2 · c3 = e1 · e2 = − = 0
c2 · c4 = e1 · (L− e1 − e2) = −e2

1 = 1
c2 · c5 = e1 · (L− e0 − e2) = − = 0
c2 · c6 = e1 · e0 = − = 0
c3 · c4 = e2 · (L− e1 − e2) = −e2

2 = 1
c3 · c5 = e2 · (L− e0 − e2) = −e2

2 = 1
c3 · c6 = e2 · e0 = − = 0
c4 · c5 = (L− e1 − e2) · (L− e0 − e2) = L2 + e2

2 = 0
c4 · c6 = (L− e1 − e2) · e0 = − = 0
c5 · c6 = (L− e0 − e2) · e0 = −e2

0 = 1

In this partition there are two double components, i.e. component number
two and three are equal, and component number four and five are equal. The
intersection between the equal components are -1. In total, there are four
components that are different from each other. Each of these components
intersects each of the other three components exactly once. This is visualized
in the dual graph in Figure 4.21 below.

c1:1 c2,c3:1

c4,c5:1 c6:1

2

-1

-1

4 2

Figure 4.21: Dual graph of(L−e0 −e1)+(L−e0 −e2)+(L−e0 −e2)+e0 +e0 +e2

By the calculation of intersection points between the components in both
partition, and as visualized in Figure 4.20 and Figure 4.21, we can conclude that
the partitions do not match, as they differ in most of the intersection points.
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4. Reconstruction from three camera centers

4.6 Reconstruction of P2

In this section we want to investigate if we can reconstruct P2. First, we consider
the image of the blow up of P2 in the three points q0, q1, q2 when embedded
into P7, and consider the preimage of this surface. As before, the blow up of P2

is denoted by Γp. Then we consider the preimage of Γp in P2. As we will see,
there are two possible reconstructions of Γp in P2. Consequently, we might end
up with a different image than we started with. This means that there exists a
Cremona transformation.

Definition 4.6.1 ([Har77], p. 30). A Cremona transformation is a birational
map of P2 into itself, i.e. τ : P2 99K P2.

We have a map

τ : P2 \ {q0, q1, q2} → P2 \ {q0, q1, q2}
(x0 : x1 : x2) 7→ (x1x2 : x0x2 : x0x1)

where the transformation becomes an isomorphism of coordinate axis that
is undefined on the three fundamental points q0 = (1, 0, 0), q1 = (0, 1, 0) and
q2 = (0, 0, 1), and maps each coordinate axis onto the unique point not contained
in that axis.

Recall the map

ψ ◦ p : P2 → P7

(x0 : x1 : x2) 7→ (−x1x
2
2 : x0x

2
2 : x0x1x2 : −x2

0x2 : x2
1x2 : −x0x1x2 : −x0x

2
1 : x2

0x1)

where p is the rational map from P2 to (P1)3 and ψ is the Segre embedding
from (P1)3 to P7, such that V = ψ ◦ p(P2) in P7.

In Section 4.3 by Lemma 4.3.1, we found that V = U ∩Z+(y2 + y5), i.e. the
image of P1 ×P1 ×P1 intersected with a hyperplane of P7. Thus, V is a surface
of dimension two in P7.

The rational map p from P2 to P1 × P1 × P1, factors through ω ◦ α−1
P2 . Here

αP2 represents the blow down from Γp to P2 and ω represents the morphism
from Γp to P1 × P1 × P1, thus S = ω(Γp) ⊂ P1 × P1 × P1. This is visualised in
Figure 4.22 below.

Γp

P2 P1 × P1 × P1 P7

ω

p

α−1
P2

ψ

Figure 4.22: Composition of the maps from P2 to P7

As ω and ψ are morphisms, the image of Γp in P7 is isomorphic to V . Thus,
we can reconstruct Γp from V .

The pull back from P7 to Γp is given by

(ψ ◦ ω)−1 : P7 → Γp
(ψ ◦ ω)−1(V ) = Γp
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4.6. Reconstruction of P2

Then, it remains to map Γp back to P2, we have the morphism

αP2 : Γp → P2

αP2(Γp) = P2

where each exceptional divisor e0, e1, e2 in Γp are contracted to the corresponding
point in P2, q0, q1, q2 respectively.

Identification of 7 points in P7

Recall that the surface in P7 birationally equivalent to P2 is V = U∩Z+(y2 +y5).
Here Z+(y2 + y5) is one specific hyperplane of P7. However, most hyperplane
sections will be isomorphic to Z+(y2 + y5).

In general, 7 points is enough to span a hyperplane in P7, i.e. P6, as long
as they are linearly independent. Assume we are able to identify 7 linearly
independent points in U in P7, and thereby obtain the hyperplane Z+(y2 + y5)
of P7. By intersecting the hyperplane with U , we find the surface V in P7.

Given the divisor (3L − e0 − e1 − e2), there exists 6 different classes that
alone represents a line in P6, i.e. (L− e0 − e1), (L− e0 − e2), (L− e1 − e2), e0,
e1, e2. Each of these classes will only intersect with two of the other classes in
P6, that is (L− ei − ej) · ei = 1 and (L− ei − ej) · ej = 1 for every i ≠ j and
i, j = 0, 1, 2.

Thus,

(L− ei − ej) · (L− ej − ek) = 0 for i, j, k = 0, 1, 2
ei · ej = 0 for i, j = 0, 1, 2

This is important as neither of the exceptional divisors ei intersect in Γp.
As every other line L− ei − ej and every other exceptional divisor intersect,

we obtain a hexagon in P7. Such a hexagon is one of the possible partitions of
3L− e0 − e1 − e2 with six components, that we considered in Section 4.5.

The hexagon consists of two sets of triple lines, see figure Figure 4.23, where
the two set of triple lines are separated by red and blue colors respectively. As
the curve is visualized by a dual graph the lines are depicted as nodes, and the
intersection points as lines between the nodes.

However, without the distinction of name and color on each line, it will be
impossible to distinguish between the two sets of triple lines.

Given the surface V ⊆ P7, there are two ways to map the surface back to
P2, i.e. we can blow down either set of three lines. Thus, the reconstruction of
P2 is ambiguous.

To see how this is possible, consider the six lines in V ⊆ P7 as mentioned
above, and consider the two maps from V ⊆ P7 to P2 as in Figure 4.24, where
we either multiply with the class L or the class (2L− e0 − e1 − e2).

Only three of the lines in P7 are mapped to lines in P2. To see how the two
maps affects each line, we calculate the degree of the image in P2 by intersecting
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4. Reconstruction from three camera centers

c1 c2

c3 c4

c5c6

c1

c3

c5

c2

c4

c6

αP2 ◦ (ψ ◦ π)−1 αP2 ◦ (ψ ◦ π)−1

Figure 4.23: Dual graph of (L−e0−e1)+e1+(L−e0−e2)+e2+(L−e1−e2)+e0 in
P7 mapped back to P2, where c1 = (L−e0−e1), c2 = e1, c3 = (L−e0−e2), c4 =
e2, c5 = (L− e1 − e2), c6 = e0.

V ≃ Γp ≃ Γp′

P2 P2

·(L) ·(2L−e0−e1−e2)

p
τ

p′

Figure 4.24: Two blow-downs from V ⊆ P7 that are isomorphic to Γp.

it with both L and C = 2L− e0 − e1 − e2 respectively, i.e.

C · ei = 1 for i = 0, 1, 2
C · (L− ei − ej) = 0 for i, j = 0, 1, 2

L · ei = 0 for i = 0, 1, 2
L · (L− ei − ej) = 1 for i, j = 0, 1, 2

Thus, by mapping all six lines with the left map in Figure 4.24, only
(L− e0 − e1), (L− e0 − e2) and (L− e1 − e2) become lines in P2, as they obtain
degree 1 in P2. The exceptional divisors ei on the other hand, becomes points
as they obtain degree 0 in P2. This is visualized in Figure 4.25 below.
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4.6. Reconstruction of P2

q0 q2

q1

l1 = q0q2

l0 = q0q1
l2 = q1q2

Figure 4.25: The curve consisting of the three lines l0 = q0q1, l1 = q0q2, l2 =
q1q2 combined with nodes in q0, q1, q2 in P2

On the other hand, by mapping the lines to P2 with the right map, now
the exceptional divisors ei becomes the lines in P2, and the lines L − ei − ej
becomes points.

Thus, there is a possibility that we start out with the blow-up of P2 in three
points, then embed it into P7 where the image is a surface V , and when we
blow it back down we obtain a different P2 than the one we started out with.

This is indeed a Cremona transformation as discussed above, i.e.

τ : P2 99K P2

where τ = (ψ ◦ ω) ◦ α−1
P2 . Thus, even though we have identified 7 linearly

independent points, we might not be able to uniquely reconstruct P2.

Identification of 6 points in P7

There is however no guarantee that we can find 7 linearly independent points.
Assume that of the points we identify, only 6 of them are linearly independent
points. These points will then span a P5.

We have that a P5 is the intersection of two hyperplanes in P7. When P5 is
intersected with U we obtain, as previously found, a curve of degree 6 in P7.

As we have seen, this curve may consist of anywhere from 1 to 6 components.
In Section 4.5, we saw that if the curve consists of either 2, 3, 4 or 5 components
there may be two possible partitions of the class 3L − e0 − e1 − e2 in Γp. In
addition, the curve with 6 components that we discussed above, can be its own
match, by varying the lines and the exceptional divisors. Thus, the preimage
of the curves may not be unique, as we may obtain a different curve than the
curve we started out with.

In addition, for each of these possibilities, as we saw in the previous section
there will be two ways to map it back down to P2 from Γp. This is depicted in
Figure 4.26 below.

Consider the possible matches of partitions containing two components, i.e.

(3L− 2e0 − e1 − e2) + e0

(2L− e0) + (L− e1 − e2)
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4. Reconstruction from three camera centers

V0 ∩ V1 ⊆ P5

V0 V1

P2 P2 P2 P2

ι1ι0

·(L)
·(2L−e0−e1−e2)

·(2L−e0−e1−e2)
·(L)

Figure 4.26: Two blow-downs from each V0, V1 into P2.

Both partitions are classes of curves, where one component is of degree 1
and the other is of degree 5 in P5. As mentioned, they are mapped back to
different curves in P2. The first is mapped to the nodal cubic that goes through
all three points, with a multiplicity of two in q0, combined with a node in q0.
The second partition is mapped to the conic going through point q0, combined
with a line going through the two remaining points.

Then, in addition, each of these curves in P7 will be mapped back to P2 in
two different ways, by the two maps described in the previous section. To see
how these maps affect the curves in P2 we calculate the degree of each component
in P2 by intersection each component with both L and C = 2L− e0 − e1 − e2
respectively, i.e.

(2L− e0 − e1 − e2) ·
(

(2L− e0) + (L− e1 − e2)
)

= 3 + 0 = 3

L ·
(

(2L− e0) + (L− e1 − e2)
)

= 2 + 1 = 3

(2L− e0 − e1 − e2) ·
(

(3L− 2e0 − e1 − e2) + e0

)
= 2 + 1 = 3

L ·
(

(3L− 2e0 − e1 − e2) + e0

)
= 3 + 0 = 3
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CHAPTER 5

Reconstruction from four camera
centers

We will reconstruct P2 from four projections πqi : P2 → P1, where each
projection is an image from a camera center qi ∈ P2 for i = 0, 1, 2, 3.

To reconstruct P2, we want to find the surface S ⊂ P1 × P1 × P1 × P1,
birationally equivalent to P2, and the inverse birational map α from S to P2.
We consider (P1)4 in its Segre embedding in P15. In this chapter, we will show
that the image of S in P15 is S = (P1)4 ∩ P10. Thus, to determine S we need to
identify enough points in (P1)4 so that they span P10 in P15. As we will show,
the map α is the projection from P7 restricted to S, such that P7 ∩ S is a curve
C of degree 8, where ⟨C⟩ = P7 in P10.

However, there are cases where we do not find enough points to determine
S in P15. Consequently, we can not unambiguously reconstruct P2. We call
these critical configurations. So in addition to finding S and α, we will classify
different critical configurations and study the information we obtain of P2 in
such cases.

5.1 A rational map from P2 to P1 × P1 × P1 × P1

Now we want to construct a map given the four points q0, q1, q2, q3 ∈ P2, where
q0 = (1 : 0 : 0), q1 = (0 : 1 : 0), q2 = (0 : 0 : 1) and q3 = (1 : 1 : 1).

Recall the map from P2 into P1 × P1 × P1, given by

p : P2 → P1 × P1 × P1

(x0 : x1 : x2) 7→ (−x2 : x1) × (−x2 : x0) × (−x1 : x0)

It remains to find the coordinates of the last P1 satisfying x0 = x1 = x2 = 1.
As a line in P2 is given by u0x0 + u1x1 + u2x2 = 0, we get u0 = −u1 − u2. By
rewriting the equation of the line we get

(−u1 − u2)x0 + u1x1 + u2x2 = 0
u1(x1 − x0) + u2(x2 − x0) = 0

u1(x1 − x0) = u2(x0 − x2)

Such that u1 = (x0 − x2) and u2 = (x1 − x0).
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5. Reconstruction from four camera centers

Thus, a map from P2 into P1 × P1 × P1 × P1 can be described explicitly by

p : P2 → P1 × P1 × P1 × P1

(x0 : x1 : x2) 7→ (−x2 : x1) × (−x2 : x0) × (−x1 : x0) × (x0 − x2 : x1 − x0)

where (x0 − x2 : x1 − x0) is undefined when x0 = x1 = x2, as is the case at
point q3 = (1 : 1 : 1).

By discussion in Section 3.1, we see that p is a morphism between the open
subset P2 \ {q0, q1, q2, q3} and P1 × P1 × P1 × P1. Then by Definition 3.1.1, we
recognize p as a rational map from P2 to P1 × P1 × P1 × P1, i.e.

p : P2 99K P1 × P1 × P1 × P1

5.2 An embedding of P1 × P1 × P1 × P1 into P15

We have a map from P1 × P1 × P1 × P1 to P15 given by

Ψ : P1 × P1 × P1 × P1 → P15

(u0 : v0) × (u1 : v1) × (u2 : v2) × (u3 : v3) 7→


u0u1u2u3 : u0u1u2v3 : u0u1v2u3 : u0u1v2v3 :
u0v1u2u3 : u0v1u2v3 : u0v1v2u3 : u0v1v2v3 :
v0u1u2u3 : v0u1u2v3 : v0u1v2u3 : v0u1v2v3 :
v0v1u2u3 : v0v1u2v3 : v0v1v2u3 : v0v1v2v3


7→ (y0 : y1 : y2 : y3 : y4 : y5 : y6 : y7 : · · · : y15)

The map Ψ is a closed embedding called the Segre embedding, see Section 2.1,
where the image U = Ψ(P1 × P1 × P1 × P1) is closed and isomorphic to
P1 × P1 × P1 × P1.

5.3 The image of P2 in P15

Then, we have the rational map p from P2 into P1 × P1 × P1 × P1, i.e.

p : P2 → P1 × P1 × P1 × P1

(x0 : x1 : x2) 7→ (−x2 : x1) × (−x2 : x0) × (−x1 : x0) × (x0 − x2 : x1 − x0)

and the Segre embedding ψ from P1 × P1 × P1 × P1 into P15, i.e.

Ψ : P1 × P1 × P1 × P1 → P15

(u0 : v0) × (u1 : v1) × (u2 : v2) × (u3 : v3) 7→(u0u1u2u3 : u0u1u2v3 : u0u1v2u3 : u0u1v2v3 :
u0v1u2u3 : u0v1u2v3 : u0v1v2u3 : u0v1v2v3 :
v0u1u2u3 : v0u1u2v3 : v0u1v2u3 : v0u1v2v3 :
v0v1u2u3 : v0v1u2v3 : v0v1v2u3 : v0v1v2v3)

Thus, when mapped from P2 the coordinates in P15 become

y0 = u0u1u2u3 = (−x2)(−x2)(−x1)(x0 − x2) = −x0x1x
2
2 + x1x

3
2

y1 = u0u1u2v3 = (−x2)(−x2)(−x1)(x1 − x0) = −x2
1x

2
2 + x0x1x

2
2

y2 = u0u1v2u3 = (−x2)(−x2)(x0)(x0 − x2) = x2
0x

2
2 − x0x

3
2
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5.3. The image of P2 in P15

y3 = u0u1v2v3 = (−x2)(−x2)(x0)(x1 − x0) = x0x1x
2
2 − x2

0x
2
2

y4 = u0v1u2u3 = (−x2)(x0)(−x1)(x0 − x2) = x2
0x1x2 − x0x1x

2
2

y5 = u0v1u2v3 = (−x2)(x0)(−x1)(x1 − x0) = x0x
2
1x2 − x2

0x1x2

y6 = u0v1v2u3 = (−x2)(x0)(x0)(x0 − x2) = −x3
0x2 + x2

0x
2
2

y7 = u0v1v2v3 = (−x2)(x0)(x0)(x1 − x0) = −x2
0x1x2 + x3

0x2

y8 = v0u1u2u3 = (x1)(−x2)(−x1)(x0 − x2) = −x0x
2
1x2 + x2

1x
2
2

y9 = v0u1u2v3 = (x1)(−x2)(−x1)(x1 − x0) = −x3
1x2 + x0x

2
1x2

y10 = v0u1v2u3 = (x1)(−x2)(x0)(x0 − x2) = −x2
0x1x2 + x0x1x

2
2

y11 = v0u1v2v3 = (x1)(−x2)(x0)(x1 − x0) = −x0x
2
1x2 + x2

0x1x2

y12 = v0v1u2u3 = (x1)(x0)(−x1)(x0 − x2) = −x2
0x

2
1 + x0x

2
1x2

y13 = v0v1u2v3 = (x1)(x0)(−x1)(x1 − x0) = −x0x
3
1 + x2

0x
2
1

y14 = v0v1v2u3 = (x1)(x0)(x0)(x0 − x2) = x3
0x1 − x2

0x1x2

y15 = v0v1v2v3 = (x1)(x0)(x0)(x1 − x0) = x2
0x

2
1 − x3

0x1

where every monomial yi is of degree 4.
Hence, the composition of the two maps is a map from P2 → P15 given by

Ψ ◦ p : P2 → P15

(x0 : x1 : x2) 7→
(
(−x0x1x

2
2 + x1x

3
2) : (−x2

1x
2
2 + x0x1x

2
2) : · · · : (x2

0x
2
1 − x3

0x1)
)

= (y0 : y1 : · · · : y15)

Now, we want to know what V = Ψ ◦ p(P2) of P15 looks like. Clearly V is
contained in U , as the map factors through P1 × P1 × P1 × P1, but we expect
it to have dimension dimV = dimP2 = 2, unlike U , which is of dimension
dimU = 4.

From the expression of each coordinate yi above, we obtain the following
relations

y4 + y10 = 0
y5 + y11 = 0

y3 + y4 + y6 + y7 = 0
y1 + y4 + y5 − y8 = 0

−y5 + y12 + y14 + y15 = 0

that give the hyperplanes of P15,

Z+(y4 + y10)
Z+(y5 + y11)
Z+(y3 + y4 + y6 + y7) (5.1)
Z+(y1 + y4 + y5 − y8)
Z+(−y5 + y12 + y14 + y15)

By observation, V is a subset of each hyperplane listed above. We claim
that these five hyperplanes are sufficient to determine V .
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5. Reconstruction from four camera centers

Lemma 5.3.1. V , i.e. the image of P2 in P15, fulfils

V =U ∩ Z+(y4 + y10) ∩ Z+(y5 + y11) ∩ Z+(y3 + y4 + y6 + y7)
∩ Z+(y1 + y4 + y5 − y8) ∩ Z+(−y5 + y12 + y14 + y15)

For easier notation we write V = U ∩ P10
1 .

If this is true, V spans a space of dimension

dim(P15) − 1 − 1 − 1 − 1 − 1 = 10

where we subtract five dimensions, one for each hyperplane. Thus, V would
span a P10.

Proof. Clearly, V is a subset of U and of each of the five hyperplanes in
Equation (5.1). Thus, we only need to show that

U ∩ P10
1 ⊆ V

The coordinates of the inverse image Ψ−1 from P15 to P1 ×P1 ×P1 ×P1 are
given by

(y0 : y8) × (y0 : y4) × (y0 : y2) × (y0 : y1) (5.2)

And when mapped from P2 the coordinates of P1 × P1 × P1 × P1 is given by

(−x2 : x1) × (−x2 : x0) × (−x1 : x0) × (x0 − x2 : x1 − x0) (5.3)

where these all are written in terms of the three coordinates of P2.
To show that U ∩ P10

1 ⊆ V , we want the coordinates of the inverse image
Ψ−1(V ) in P1 × P1 × P1 × P1 to be written in terms of three coordinates only,
such that the surface can be mapped back to P2. From Equation (5.2) and
Equation (5.3), we observe that

y0 = −x2, y8 = x1, y4 = x0

To be able to map V ⊂ P15 back to P2 we want to obtain the following
coordinates of the inverse image Ψ−1(V )

(y0 : y8) × (y0 : y4) × (−y8 : y4) × (y0 + y4 : y8 − y4)

For this to be true, the following relations must be satisfied

(y0 : y2) = (−y8 : y4) ⇒ y0y4 + y2y8 = 0 (5.4)

and

(y0 : y1) =
(
(y0 + y4) : (y8 − y4)

)
) ⇒ y1y0 + y1y4 − y0y8 + y0y4 = 0 (5.5)

To prove Equation (5.4) and Equation (5.5), we consider the case y0 ̸= 0,
i.e. the open D+(y0). We consider a point of the variety U intersected with
these five hyperplanes, i.e. x = (y0 : · · · : y15) ∈ U ∩ P10

1 .
We already know that the preimage of x equals

Ψ−1(
(y0 : · · · : y15)

)
= (y0 : y8) × (y0 : y4) × (y0 : y2) × (y0 : y1) = z
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5.4. The class of the image of P2

However, we must take into account that Ψ(z) ∈ Z+(y4 + y10), Z+(y5 +
y11), Z+(y3 + y4 + y6 + y7), Z+(y1 + y4 + y5 − y8), Z+(−y5 + y12 + y14 + y15).

Thus, we need to consider these relations when looking at the preimage. First,
we consider y4 +y10 = 0. With a change of coordinates into Ψ−1(

(y0 : · · · : y15)
)

we obtain

y3
0y4 + y2

0y2y8 = 0
y0y4 + y2y8 = 0

which is equivalent to (y0 : y2) = (−y8 : y4). Thus Equation (5.4) is satisfied.
Further, we consider the relation y1 + y4 + y5 − y8 = 0. By change of

coordinates, we obtain

y3
0y1 + y3

0y4 + y2
0y1y4 − y3

0y8 = 0
y0y1 + y0y4 + y1y4 − y0y8 = 0

which is equivalent to (y0 : y1) =
(
(y0 + y4) : (y8 − y4)

)
). Thus Equation (5.5)

is satisfied.
Thus, we obtained exactly what we wanted. Now, z can be written as

z = (y0 : y8) × (y0 : y4) × (−y8 : y4) × (y0 + y4 : y8 − y4)

which proves that

x = Ψ(z) = (Ψ ◦ p)
(
(y4 : y8 : −y0)

)
⊆ (Ψ ◦ p)(P2) = V

By symmetry, we need only to consider the case D+(yi) for i = 0. For which
we exhibit the inverse morphism.

When considering the remaining D+(yi) for i ̸= 0, we might need to replace
the hyperplanes used above with some of the other hyperplanes in P10

1 to
determine the coordinates of the last two P1’s, but in the case of D+(y0), we
are done. Thus, we can argue that V = U ∩ P10

1 . ■

Hence, the surface S that we need to reconstruct P2 is S ∼= V = U ∩ P10
1 .

5.4 The class of the image of P2

In this section, we want to determine class of the surface V . In addition we will
also determine the degree of U and V in P15. The notation and theory in this
section is based on results in Chapter 2. See this chapter for more details.

First, we want to determine the degree of U in P15, where U is the Segre
embedding of P1 × P1 × P1 × P1 into P15. To calculate the degree of a space,
we intersect the class of the space with the class of a hyperplane section, until
the dimension is reduced to zero. In general, when the dimension is reduced to
zero, the number of intersection points will represent the degree of the space.
Thus, to find the degree of U , we intersect U with four hyperplane sections.

The class of a hyperplane section is given by (h0 + h1 + h2 + h3). Thus,
to calculate the degree of U , we calculate the class of the intersection of four
hyperplane sections, given by (h0 + h1 + h2 + h3)4. That is

(h0 + h1 + h2 + h3)4 =α · h0h1h2h3

=α
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5. Reconstruction from four camera centers

where α, in addition to being the coefficient of h0h1h2h3 in (h0 +h1 +h2 +h3)4,
represents the number of intersection points, and thereby the degree of U ⊂ P15.
Thus, the degree of U is α = 4! = 24.

Then, we want to determine the class of V and the degree of V in P15. In
Section 2.5, we showed that the class of a surface S is given by

[S] =
3∑

i,j=0
αijhihj (5.6)

for i ̸= j. Further, we showed that to find the degree of a surface in the Segre
embedding, we intersect the class of the surface with the intersection of two
hyperplane sections, i.e.

[S] · (h0 + h1 + h2 + h3)2 = 2 · (α01 + α02 + α03 + α12 + α13 + α23) · h0h1h2h3

= 2 · (α01 + α02 + α03 + α12 + α13 + α23)

Thus, the degree of the surface is given by 2 · (α01 +α02 +α03 +α12, α13 +α23).
In Section 4.4 we described that each class h0, h1, h2, h2 have restrictions to

V , such that hi|S= (L− ei). Thus,

a23 = [V ] · h0h1 = h0|S ·h1|S= (L− e0) · (L− e1) = 1

In fact, we find that each αij = 1 for all i ̸= j. Then, as every αij = 1 in
Equation (5.6), we can determine the class of the surface V , i.e.

[V ] =
3∑

i,j=0
hihj = h0h1 + h0h2 + h0h3 + h1h2 + h1h3 + h2h3

And the degree of the surface V is 2 · (1 + 1 + 1 + 1 + 1 + 1) = 12.
We can verify that deg V = 12 in a different way. Recall that the class of

a hyperplane section in Pic
(

Γp
)

is given by (4L − e0 − e1 − e2 − e3). Thus,
when we restrict the intersection of two hyperplane sections to V , we find that
the degree of V is 12, i.e.

[V ] · (h0 + h1 + h2 + h3)2 = (4L− e0 − e1 − e2 − e3)2

= 12
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5.5 Intersection of ⟨V ⟩ and ⟨V ′⟩

In this section we want to study the intersection of two surfaces V and V ′

in U and the span of this intersection in the span of U , i.e. P15, where
⟨V ∩ V ′⟩ = ⟨V ⟩ ∩ ⟨V ′⟩. The notation and theory in this section is based on
results in Chapter 2.

Recall the result in Lemma 5.3.1, where we found that

V = U ∩ Z+(y4 + y10) ∩ Z+(y5 + y11)∩Z+(y3 + y4 + y6 + y7)
∩Z+(y1 + y4 + y5 − y8) ∩ Z+(−y5 + y12 + y14 + y15) (5.7)

As in the lemma, we use V = U ∩ P10
1 for easier notation. The span of V is the

span of U intersected with five linearly independent hyperplanes, and

dim ⟨V ⟩ = dim P15 − 5 = 10

As V = U ∩ P10
1 , then ⟨V ⟩ = P10.

Then, consider another surface V ′, that is isomorphic to the blow up of P2

in four different points. Thus, V ′ will be equal to U intersected with 5 other
hyperplanes, i.e.

V ′ = U ∩ Z+(a0y0 + · · · + a15y15) ∩ Z+(a0y0 + · · · + a15y15)
∩ Z+(a0y0 + · · · + a15y15) ∩ Z+(a0y0 + · · · + a15y15) ∩ Z+(a0y0 + · · · + a15y15)

where each Z+(a0y0 + · · · + a15y15) represents a hyperplane of P15 that is
linearly independent of the other four hyperplanes. For easier notation we write
V ′ = U ∩ P10

2 , where P10
2 represents the intersection of these five hyperplanes.

Now, the span of V ′ is the span of U intersected with five linearly independent
hyperplanes. Thus, ⟨V ′⟩ = P10

2 . If the hyperplanes that determines V ′ are equal
to the hyperplanes that determines V , then V = V ′.

Classification by dimension of the intersection

V and V ′ are both of codimension 2 with respect to U . Thus, V intersected
with V ′ will at most be of codimension 2 + 2 = 4. However, if the intersection
is of codimension 2, then V = V ′.

As both ⟨V ⟩ and ⟨V ′⟩ is a P10, then both is of codimension 5 in P15. Thus,
the span of V intersected with the span of V ′ is at most of codimension 5+5 = 10,
i.e. ⟨V ⟩ ∩ ⟨V ′⟩ = P5. Thus, the intersection may of ⟨V ⟩ and ⟨V ′⟩ may range
from a P5 to a P10.

Now, consider the class of each surface V and V ′. Both surfaces is of class

[V ] =
3∑

i,j=0
hihj = h0h1 + h0h2 + h0h3 + h1h2 + h1h3 + h2h3

By considering the sum of the class of V and V ′, we get

[V ] + [V ] =
3∑

i,j=0
hihj +

3∑
i,j=0

hihj

= 2 · (h0h1 + h0h2 + h0h3 + h1h2 + h1h3 + h2h3) (5.8)
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5. Reconstruction from four camera centers

Then, consider the class of a hyperplane section in P15, i.e. (h0+h1+h2+h3).
If we intersect the class of two hyperplane sections, we obtain

(h0 + h1 + h2 + h3)2 =2h0h1 + 2h0h2 + 2h0h3 + 2h1h2 + 2h1h3 + 2h2h3

=2 · (h0h1 + h0h2 + h0h3 + h1h2 + h1h3 + h2h3)

which is the exact same result as in Equation (5.8). Thus, 2 · [V ], the sum of the
class of V and V ′, is precisely the class of the intersection of two hyperplane
sections.

This means that the span of V and the span of V ′ must be contained in
the intersection of two hyperplanes in P15. The intersection of two linearly
independent hyperplanes is a P13.

Let us consider P15 where V, V ′ ⊆ P15. As the span of V and the span of V ′

are both equal to a P10, there are five hyperplanes that contains each surface
V, V ′. We pick two hyperplanes such that each hyperplane contains both V
and V ′. Then, the intersection of these hyperplanes will contain the span of
both V and V ′.

We can now reconsider the intersection of the span of V and V ′. As the
span of both V and V ′ being contained in the intersection of two hyperplanes,
the codimension of the intersection can at most be of codimension 3 + 3 = 6.
Thus, span of V and V ′ will intersect in no less than a space of dimension
dimP13 − 6 = 7, i.e. P7. Thus, we can disregard the possibility of intersecting
in P5 or P6. We will examine each of the possibilities from P10 to P7 below.

Intersection of ⟨V ⟩ and ⟨V ′⟩ is a P10

If the span of V intersected with the span of V ′ is a P10, then V = V ′.
As both ⟨V ⟩ and ⟨V ′⟩ are equal to a P10 and

⟨V ⟩ ∩ ⟨V ′⟩ = P10
1 ∩ P10

2 = P10

Thus, P10
1 = P10

2 and thereby V = V ′. Then, the intersection of V and V ′ is
given by V ∩ V ′ = P10

1 ∩ U .

Intersection of ⟨V ⟩ and ⟨V ′⟩ is a P9

If the intersection of ⟨V ⟩ and ⟨V ′⟩ is a P9, then the span of V and the span
of V ′ will both contain this P9. The intersection of V and V ′ is given by
V ∩ V ′ = P9 ∩ U .

In this case, ⟨V ∩ V ′⟩ is a hyperplane of P10. The class of a hyperplane
section, denoted by H, is given by

4L− e0 − e1 − e2 − e3

i.e. a class of quartic curves going through q0, q1, q2, q3 in P2.

Intersection of ⟨V ⟩ and ⟨V ′⟩ is a P8

If the intersection of ⟨V ⟩ and ⟨V ′⟩ is a P8, then the span of V and the span
of V ′ will both contain this P8. The intersection of V and V ′ is given by
V ∩ V ′ = P8 ∩ U .
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In this case, ⟨V ∩ V ′⟩ equal the intersection of two hyperplanes. The class
of the intersection of two hyperplane sections is given by

(4L− e0 − e1 − e2 − e3)2

By Bezout, the intersection will either contain a component or consists of some
finite number of points equal to the degree of V .

If the intersection contain a component, we can write the class of each
hyperplane section as

H = A+B

where A represents the class of the common component that the two classes
share and B represents the class of the residual part after A is subtracted. Then,
each hyperplane section can be written as

H1 = (A+B1), H2 = (A+B2)

where H1, H2 are curves of class H, A is a curve of class A representing the
common component in each hyperplane section, and B1, B2 are curves of class
B. As Bi represents different curves of the class B, we call each Bi the variable
component. Further, for A′ to be a common component of two hyperplane
sections in P8, there needs to be at least two different curves of class B, such
that dim |B| = dim |H −A′| ≥ 2.

Then, V ∩ V ′ either contains a component of class A or it is equal to 12
points, as deg V = 12.

Intersection of ⟨V ⟩ and ⟨V ′⟩ is a P7

If the intersection of ⟨V ⟩ and ⟨V ′⟩ is a P7, then the span of V and the span
of V ′ will both contain this P7. The intersection of V and V ′ is given by
V ∩ V ′ = P7 ∩ U .

In this case, ⟨V ∩ V ′⟩ is equal to the intersection of three hyperplanes. The
class of the intersection of three hyperplane sections is given by

(4L− e0 − e1 − e2 − e3)3

The intersection will either contain a component or consists of some finite
number of points, strictly less than the degree of V . If the intersection contains
a component, each hyperplane section can be written as

H1 = (A+B1), H2 = (A+B2), H3 = (A+B3)

where A is a curve of class A, representing the common component in each
hyperplane section, and Bi representing three different curves of class B,
being the residual part of the hyperplane section Hi after A is subtracted.
Further, for each A′, there needs to be at least three different curves of class
B, for A′ to be a common component of three hyperplane sections. Thus,
dim|B′| = dim|H −A′| ≥ 3.

Then, V ∩ V ′ either contains a component A or consist of strictly less than
12 points.
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The span of A

For each possible common component A, we are interested in finding the
projective span of this component.

We use the dimension of the vector space of B to determine the span of A.
The dimension of the vector space is equal to the number of linearly independent
hyperplane sections Hi that contains the common component A. That is, the
number of linearly independent curves Bi of class B such that A+Bi = Hi for
each hyperplane section Hi containing A.

As we need n + 1 vectors to span a projective space of dimension n, the
dimension of the projective space of B, denoted dim |B| is one less than the
dimension of the vector space of B.

We obtain the dimension of the vector space by the following formula(
n+ d

n

)
−

(
n+ a0 − 1

n

)
−

(
n+ a1 − 1

n

)
− · · · −

(
n+ aj − 1

n

)
(5.9)

where n represent the dimension of space Pn, d represent the degree of the curve
and a0, a1, . . . , aj represents the multiplicity of the curve in points q0, q1, . . . , qj ,
respectively.

We subtract
(
n+ai−1

n

)
for each point qi we impose conditions on. For ai = 1

we subtract 1 linear condition for restricting the curve to the associated point.
For ai ≥ 2, the curve is singular in the associated point, such that

(
n+ai−1

n

)
represents the number of partial derivatives of order ai − 1 that vanish in the
point.

For ai = 2, there are three first order partial derivatives in three variables,
i.e. fx0 , fx1 and fx2 . By Clairaut’s theorem we know that fx0x1 = fx1x0 . Thus,
for ai = 3, there are six second order partial derivatives in three variables, i.e.
fx0x0 , fx0x1 , fx0x2 , fx1x1 , fx1x2 and fx2x2 . For ai = 4 there are ten third order
partial derivatives, and so on.

Example 5.5.1. Let H represents the class of quartic curves in P2 with no linear
conditions, i.e. H = 4L. We get A = 0, as there is no restrictions on these
curves, such that Bi = Hi. Then, the number of linearly independent quartic
curves is given by (

4 + 2
2

)
= 15

i.e. the dimension of the vector space is 15, while the dimension of the projective
space is 14.

In the example above, there are no linear conditions imposed. However
in this chapter, we are studying quartic curves in P2 that are required to go
through the four points q0, q1, q2, q3. If a curve is reducible, as in the case of
H = A+ B, then every component of the curve may not go through all four
points, or some of the components may go through some of points more than
once. We take a closer look at the latter, in the next example.

Example 5.5.2. Now H = 4L − e0 − e1 − e2 − e3 and represents the class of
quartic curves in P2 going through the points q0, q1, q2, q3. Let A = e0, then
B = 4L− 2e0 − e1 − e2 − e3, where a curve of class B goes through the point
q0 twice. Thus, the number of linearly independent quartic curves in this class
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is given by(
4 + 2

2

)
−

(
2 + 1

2

)
−

(
2 + 0

2

)
−

(
2 + 0

2

)
−

(
2 + 0

2

)
= 15 − 3 − 1 − 1 − 1 = 9

Such that the dimension of the vector space is 9, and the projective dimension
is 8.

Now we can use the number of hyperplane sections that contains A to
determine the projective span of A = Hi −Bi. As the span of V is equal to a
P10, we intersect the span of V with all hyperplanes that contains A. This will
result in the projective span of A.

Example 5.5.3. Returning to the example of A = e0, where we found that there
were nine hyperplane sections containing A. Then the projective span of A
equals P1 as we reduce the dimension of P10 by nine hyperplanes.

By using similar computations, the projective span of all possible candidates
for the common component A can be found in column 3 in Table 5.1 below.

Table 5.1: Hyperplane section of class H = A+B, span of A, degree of curves
in class A and intersection points of curves Bi and Bj of class B

Common Variable Span of A Degree of A Bi ∩Bj = B2
component A component B

e0 4L− 2e0 − e1 − e2 − e3 P1 1 9
e0 + e1 4L− 2e0 − 2e1 − e2 − e3 P3 2 6
e0 + e0 4L− 3e0 − e1 − e2 − e3 P4 2 4
e0 + e1 + e2 4L− 2e0 − 2e1 − 2e2 − e3 P5 3 3
e0 + e1 + e2 + e3 4L− 2e0 − 2e1 − 2e2 − 2e3 P7 4 0
L− e0 − e1 3L− e2 − e3 P2 2 7
L− e0 3L− e1 − e2 − e3 P3 3 6
L 3L− e0 − e1 − e2 − e3 P4 4 5
L+ e0 3L− 2e0 − e1 − e2 − e3 P6 5 2
2L− e0 − e1 − e2 − e3 2L P4 4 4
2L− e0 − e1 − e2 2L− e3 P5 5 3
2L− e0 − e1 2L− e2 − e3 P6 6 2
2L− e0 2L− e1 − e2 − e3 P7 7 1
2L 2L− e0 − e1 − e2 − e3 P8 8 0
3L− e0 − e1 − e2 − e3 L P7 8 1
3L− e0 − e1 − e2 L− e3 P8 9 0

Returning to the classification of intersection

Recall, when the intersection of the span of V and V ′ is either a P8 or a P7, the
intersection is equal to either two or three hyperplanes respectively. In both
cases, each hyperplane section can be written as

Hi = A+Bi
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where A represents the common component in the hyperplane section and Bi
represents the variable component in each hyperplane section.

Common components in P8

When the intersection of the span of V and V ′ is a P8, the class B needs to
contain at least two independent curves. Thus, there are at least two linearly
independent hyperplane sections of class H that contain a common component.
If it is spanned by at least two hyperplanes, the dimension of |B| must be
greater than or equal to 1.

As the span of A in Table 5.1 is at most P8 for each A, then |B| must be
at least 1 for all A. Thus, the intersection of two quartic curves in P2 going
through q0, q1, q2, q3 may share any of the common components of class A in
Table 5.1.

Common components in P7

When the intersection of the span of V and V ′ is a P7, there are at least
three independent curves of class B. Thus, there are at least three linearly
independent hyperplane sections of class H that contain a common component.
If it is spanned by at least three linearly independent hyperplanes, the dimension
of |B| must be greater than or equal to 2.

As the span of A in Table 5.1 is at most P8 for each A, then |B| must be
at least 2 for all A. Thus, the intersection of two quartic curves in P2 going
through q0, q1, q2, q3 may share any of the common components of class A in
Table 5.1.

In Table 5.1, we see that there are two decompositions of hyperplane sections,
where the span of A is a P8. In these cases, the residual part of class B cannot be
a variable components in P7, as we need at least three different hyperplanes in
P7. If these two decompositions are disregarded, the remaining decompositions
of hyperplane sections contain at least three linearly independent curves of class
B.

Thus, the intersection of three quartic curves in P2 going through q0, q1, q2, q3
may share one of the common components A in Table 5.1, provided that the
span of A is at most P7.
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Intersections of hyperplanes with common components

In this section we want to study the cases where the intersection of the span of
V and the span of V ′ consist of a common component. That is, they intersect
in either P8 or P7.

If the span of V and V ′ intersect in P8 ( P7), the intersection consists of two
(three) hyperplane sections that share a common component A, and where the
residual components Bi of each hyperplane section varies. However, B1 and B2
(B1, B2 and B3) may share some common points. Thus, the intersection of the
span of V and V ′ may consist of a common component A and some intersection
points in B1 ∩B2 (B1 ∩B2 ∩B3).

First we study the possible common components A. For each A in Table 5.1
we choose a curve of this class and determine the degree of the curve in the
intersection, i.e. either P8 or P7.

Consider the example of the common component of class A = e0 and the
variable component of class B = 4L− 2e0 − e1 − e2 − e3. Below, we describe
how we obtain the degree of A and the number of intersection points in B in
both P8 and P7.

Similar computations are used on the remaining decompositions in Table 5.1,
and can be found in column 4 and 5 in Table 5.1.

Example 5.5.4. We let A = e0. If the intersection equals either P8 or P7, then
a curve of such a class is a line. In general, to obtain the degree of the curve,
we intersect the class A with the class of a hyperplane section. Thus,

e0 · (4L− e0 − e1 − e2 − e3) = −e2
0 = 1

i.e. the degree of a curve in class A = e0 is 1. When we map the curve back to
P2 we obtain one single point q0.

Above we studied the common component A of the hyperplane section, now
we want to study the residual part of the hyperplane section, i.e curves of class
B, such that B = H −A.

In P8 (P7), we need at least two (three) curves of class B, i.e. the dimension
of the vector space of B must be at least 2 (3).

First consider P8. The number of intersection points of two arbitrary curves
of class B is B2. We return to our previous example to calculate the intersection
in P8.

Example 5.5.5. In P8, the number of intersection points of two arbitrary curves
of class B is given by B2 such that

(4L− 2e0 − e1 − e2 − e3)2 = 16L2 + 4e2
0 + e2

1 + e2
2 + e2

3

= 16 − 4 − 1 − 1 − 1
= 9

Thus, the number of intersection points of two curves of class B = 4L− 2e0 −
e1 − e2 − e3 is 9.

Then consider P7, the number of intersection points of three arbitrary curves
of class B is strictly less than B2 and they do not need to intersect at all. Thus,
in P7 we do not obtain the actual number of intersection points, only that the
range of intersection points is between 0 and B2 − 1.
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Again, we return to our previous example, now to calculate the intersection
in P7.

Example 5.5.6. In P7, the number of intersection points of three arbitrary
curves of class B is strictly less than B2. Thus, the number of intersection
points of three curves of class B = 4L− 2e0 − e1 − e2 − e3 is less than 9.
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5.6 Reconstruction

In this section we want to study the reconstruction of P2. The reconstruction
is based on image points captured by 1D images from four camera centers in
P2. By composing an image from each camera center, we can identify points
in P1 × P1 × P1 × P1 that corresponds to points in P2. If these points span a
P10 when embedded into P15, i.e. the span of V , it will be possible to uniquely
reconstruct P2. If we cannot identify enough linearly independent points, such
that they span a P10, the reconstruction will be ambiguous. However, we might
identify some points or a curve in P10, that corresponds to points or curves
in P2, we call these critical configurations of points. We will classify different
critical configurations in Section 5.7.

A birational map from P2

The four points q0, q1, q2, q3 ∈ P2 represents the positions of the camera centers
in P2. Each camera captures 1D images of P2 from different angles, such that
an image is represented by a P1.

We distinguish between scene points, that represents points in P2, and image
points, that represents points on each image P1 of scene points in P2. When
composing these images we obtain

P1 × P1 × P1 × P1

All points in P1 × P1 × P1 × P1 are denoted quadruple points, as each
quadruple point can be projected down to four image points, one image point
in each P1.

If one image point in each P1 represents the same scene point in P2, the
point in P1 × P1 × P1 × P1 is denoted a quadruple image point. We denote the
set of all quadruple image points as S. Thus, S represents the blow-up of P2 in
q0, q1, q2, q3 embedded into P1 × P1 × P1 × P1.

Let x = (x0 : x1 : x2) be any scene point in P2 apart from the four
camera centers. Then each image will contain the image point (ai : bi) for all
i = 0, 1, 2, 3.

By composing the images, the scene point x can be identify as a quadruple
image point in P1 × P1 × P1 × P1, and will be of the form

(a0 : b0) × (a1 : b1) × (a2 : b2) × (a3 : b3)

In fact, there exists a biratonal map from P2 to S sending each scene
point, except the points representing the camera centers, unambiguously to one
quadruple image point, i.e.

p : P2 99K S

where U = P2 \ {q0, q1, q2, q3} and V = S \ {e0, e1, e2, e3} such that ϕ : U → V
is an isomorphism.

As p is a biratonal map, there exists an inverse map. Then, the inverse map
from S to P2 will be a birational map as well. We denote the inverse map α.

Definition 5.6.1. α is the birational map from S to P2, taking quadruple image
points in V ⊂ S to unique scene points in U ⊂ P2.
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Thus, once we have S and α we are able to reconstruct the P2, as stated in
Chapter 1. We rephrase the definition slightly, and get

Definition 5.6.2. The reconstruction of P2 from these four images consist of
finding the surface S, that contain all quadruple image points, and finding the
rational map α, that takes quadruple image points in S to unique scene points
in P2.

The hard part of the reconstruction is finding S. If we cannot find S based
on the quadruple image points in P1 × P1 × P1 × P1, we embed these points
into P15. When embedding P1 × P1 × P1 × P1 into P15, then S = V . Recall the
previous definition of V = U ∩ P10

1 , where P1 × P1 × P1 × P1 ∼= U ⊂ P15 and
P10

1 is the span of V .
Assume we identify n quadruple image points in P1 × P1 × P1 × P1. If these

quadruple image points span a P10, when embedded into P15, we can easily
find V by intersecting the P10 with U . Once we have found the surface V ∼= S,
then there exists a unique reconstruction of P2. However, to reconstruct P2, it
remains to find the inverse rational map α.

As it turns out, α can be realized as the restriction of a projection. The
rational map from P10 to P2 is a projection from P7 ⊂ P10.

πP7 : P10 99K P2

We project from P7, as the family of hyperplanes of P10 containing P7 is
given by

{H | H ⊆ P7} ≃ P2

By restricting the rational map πP7 to V , we obtain a birational map
isomorphic to α, i.e.

πP7 |V : P10 99K P2

∼=

α : V 99K P2

Consider the line L ∈ P2. Then, assuming that P2 ∩ P7 = ∅, the span
⟨P7, L⟩ = P9, that is a hyperplane. Thus, each hyperplane that contains P7 will
intersect P2 in a line.

Consider the point p ∈ P2. Again assuming P2 ∩ P7 = ∅, such that the span
is ⟨P7, p⟩ = P8. Thus, each intersection of two hyperplanes, i.e. a P8, that
contains P7 will intersect P2 in a point.

By intersecting P8 with V , the intersection will either be 12 points or contain
a component. Assuming the latter case, we choose P7 ⊂ P8 such that P7 is
the span of the curve C = (V ∩ P8) \ {p} where p is a single point. Then, we
disregard C, such that each point p ∈ (V ∩ P8) \ C is sent to a unique scene
points in P2. Thus, by projecting from P7 and restricting the projection to V ,
we obtain a one-to-one correspondence between points in (V ∩P8) \C and scene
points in P2. In a similar manner, we obtain the same result if P8 ∩ V equals
12 points, where we subtract 11 points instead of C.

The reconstruction of P2 is illustrated in the diagram in Figure 5.1, where
the inverse birational map α back to P2 is given by the projection from P7 ⊂ P10

restricted to V , denoted πP7 |V .
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5.6. Reconstruction

P15

P10

P1 × P1 × P1 × P1

S V

P2

πP7
≃

α
πP7 |V

p

Figure 5.1: Reconstruction of P2

We want to find a P7 ⊂ P8, such that P8 ∩ V is equal to C plus one single
point. Then, C will act as the common component of the two hyperplane sections
that represent P8 when intersected. Further, we know that each hyperplane
containing P7 will intersect P2 in a line.

Thus, we are looking for hyperplane sections of class H = A+ L, where L
is the class of a line. Then, the curve C will be of the following class

(4L− e0 − e1 − e2 − e3) − L = (3L− e0 − e1 − e2 − e3)

In Table 5.1, there is exactly one composition that satisfies

H = (3L− e0 − e1 − e2 − e3) + L

In Table 5.1 we see that B2 = 1 for this given class, representing that two
lines of class L intersect in exactly one point in P2. This coincides with the
result that each P8 containing P7 will intersect V in one single point outside C.

We can determine the degree of the curve C in P15 by intersection the class
of the curve with the class of a hyperplane section, i.e.

(3L− e0 − e1 − e2 − e3) · (4L− e0 − e1 − e2 − e3) = 8

Thus, the curve is of degree 8 in P15. This information can also be attained in
Table 5.1.

Hence, to find the projection from P15 to P2 we need to identify a curve C
of degree 8 that spans P7, such that the intersection of V and P8 in addition to
C is one single point. It is not necessarily easy to find such a curve. A closer
study on how to find a curve that will satisfy the conditions above, is left for
another time.

The curve C when projected down to P2 will be a curve of class 3L− e0 −
e1 − e2 − e3, i.e. a cubic curve going through all four camera centers.

Identification of camera centers in P1 × P1 × P1 × P1

If we identify a quadruple image point that corresponds to a camera center in
P2, it is possible to detect the position of the scene point solely based on the
information from the points in P1 × P1 × P1 × P1.
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5. Reconstruction from four camera centers

Assume we identify n quadruple image points in P1 × P1 × P1 × P1 that
all represent one camera center. Then for each quadruple image point, the
coordinates from three image points will be fixed, while the coordinates from
the fourth image point will likely vary.

The quadruple image points representing the camera center located in q0
will be given by

(a1
0 : b1

0) × (a1 : b1) × (a2 : b2) × (a3 : b3)
(a2

0 : b2
0) × (a1 : b1) × (a2 : b2) × (a3 : b3)

...
(an0 : bn0 ) × (a1 : b1) × (a2 : b2) × (a3 : b3)

When mapped into P15, these quadruple image points will be points on a line
of class e0. The preimage of e0 in P2 is the point q0.

In a similar matter, by evaluating fixed coordinates of quadruple points in
P1 × P1 × P1 × P1, we are able to detect the other camera centers as well.
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5.7. Critical configurations

5.7 Critical configurations

We need to identify at least 11 points in P15 to span P10. However, if the
identified quadruple image points span something less than P10, the surface V
containing these points is not unique. We can still study the intersection of the
span of these points and V . In such cases, we say there is a critical configuration
of points. In this section, we will classify different critical configuration.

Assume now that we have identified n quadruple image points in P1 × P1 ×
P1 × P1, where n > 12. We embed the quadruple image points into P15 and
determine the span of the points.

Let us first consider the case where the span of these n points is isomorphic
to P10. In this case, these n points must all be on a surface V , as the span of a
surface is isomorphic to P10. If all points lie on two surfaces V and V ′, then
V = V ′.

Then by intersecting the span of these n points with U , we obtain the surface
V . Thus, we have uniquely reconstructed the surface P2 that contain these n
points, as V is isomorphic to P2.

Then, consider the case where the span of n points is isomorphic to P9,
i.e. the points are all in the same hyperplane. In this case there might be two
reconstructions, as it is possible that the span V ∩V ′ intersect in P9. To be able
to reconstruct P2 unambiguously, we need to identify more quadruple image
points such that the span of all identified points when embedded into P15 is
P10, and thereby obtain a unique reconstruction.

Then, consider the case where the span of n points is isomorphic to either
P8 or P7, i.e. an intersection of either two or three hyperplanes. As we know,
there is a possibility that the span of V ∩ V ′ is isomorphic to P8 or P7. Thus, if
we identify n points that is either isomorphic to P8 or P7, there might be two
possible reconstruction of P2.

Further, as we have identified more than 12 points, some of these points
must lie on a curve, where such a curve will be a common component in the
two or three hyperplane sections.

In Table 5.1, there are in total 16 options of classes of hyperplane sections
that contains a common component. Out of these 16 alternatives, we can
disregard the common component of the following classes (e0), (e0+e1), (e0+e0),
(e0 + e1 + e2) and (e0 + e1 + e2 + e3), as we are able to recognize these as the
camera centers in P2 from P1 × P1 × P1 × P1, and thereby reconstruct these
points without embedding them into P15.

We are left with 11 possible common components. For each common
component in P15 we are able to determine the degree of the curve. If the
degree in P15 is unique, then based on this degree, we can identify the class of
the curve in the preimage P2, as we can see in Table 5.1.

However, as there are three cases where curves of two different classes in
P15 is of the same degree, as seen in Table 5.1.

This will lead to even greater problems, as there are two options for
reconstruction for each of the two surfaces V and V ′. Thus, again the
reconstruction of P2 is ambiguous. We will go through these three cases
below.
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5. Reconstruction from four camera centers

Classes in P2 of quartic curves in P15

Curves of classes L and 2L− e0 − e1 − e2 − e3 are all of degree 4 in P15. Thus,
the preimage of a quartic curve in P15 may either be an arbitrary line in P2 or
a conic that goes through all four camera centers in P2.

In column 3 in Table 5.1 we find the span of each common component. As
the span of both A = L and A = 2L − e0 − e1 − e2 − e3 are P4, there exist
6 linearly independent hyperplane sections that contain each class A. Here
we are considering the cases where the span of n points either equals P8 and
P7, thus we need at most 3 linearly independent hyperplanes. As we cannot
uniquely reconstruct the preimage of a quartic curve in P15, there is a critical
configuration in both P8 and P7.

If the span of V and V ′ intersect in P8, then for each surface V and V ′ there
are two possibilities, the reconstruction is either

• L + 5 points

• 2L− e0 − e1 − e2 − e3 + 4 points

The number of additional points is attained in column 5 in Table 5.1, i.e. B2.
If the span of V and V ′ intersect in P7, then for each surface V, V ′ there

are two possibilities, the reconstruction is either

• L + k points, where 0 ≥ k < 5

• 2L− e0 − e1 − e2 − e3 + k points, where 0 ≥ k < 4

As there are three hyperplanes that intersect in P7, the number of additional
intersection points must be strictly less than when there are two hyperplanes
that intersect. Thus, in P7 the number of additional intersection points is
strictly less than B2, found in column five in Table 5.1.

Classes in P2 of curves of degree 5 in P15

The degree of class L+e0 and 2L−e0 −e1 −e2 are both 5 in P15. The preimage
of a curve of degree 5 in P15 may either be an arbitrary line and the point q0
that represents one of the camera centers in P2, or a conic that goes through
three of the camera centers in P2.

In column 3 in Table 5.1 we find the span of each common component A.
The span of A = L + e0 is P6 and the span of A = 2L − e0 − e1 − e2 is P5,
i.e. there exist 4 and 5 respectively, linearly independent hyperplane sections
that contains each associated class. As need at most 3 linearly independent
hyperplanes, both common components are possible in each P8 and P7. As we
cannot uniquely reconstruct the preimage of a curve of degree 5 in in P15, there
is a critical configuration in both P8 and P7.

If the span of V and V ′ intersect in P8, then for each surface V, V ′ there
are two possibilities, the reconstruction is either

• L+ e0 + 2 points

• 2L− e0 − e1 − e2 + 3 points
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5.7. Critical configurations

The number of additional points is attained in column 5 in Table 5.1, i.e. B2.
If the span of V and V ′ intersect in P7, then for each surface V, V ′ there

are again two possibilities, the reconstruction is either

• L+ e0 + k points, where 0 ≥ k < 2

• 2L− e0 − e1 − e2 + k points, where 0 ≥ k < 3

As before, in P7 the number of additional intersection points that is derived
from the variable components, are strictly less than B2 attained in column five
in Table 5.1.

Classes in P2 of curves of degree 8 in P15

The degree of class 2L and 3L− e0 − e1 − e2 − e3 are both 8 in P15. Thus, the
preimage of a curve of degree 8 in P15 may either be an arbitrary conic in P2,
or a cubic curve that goes through all camera centers in P2.

In column 3 in Table 5.1 we find the span of each common component A.
The span of A = 2L is P8 and the span of A = 2L− e0 − e1 − e2 is P7, i.e. the
number of linearly independent hyperplane section that contains each associated
class is 2 and 3 respectively. As need 3 linearly independent hyperplanes in P7,
then A = 2L is not a possible common component in P7. However, in P8 both
common components are a possibility. Thus, there is a critical configuration in
P8.

If the span of V and V ′ intersect in P8, then for each surface V, V ′ there
are two possibilities, the reconstruction is either

• 2L + 0 points

• 3L− e0 − e1 − e2 − e3 + 1 points

The number of additional points is attained in column 5 in Table 5.1, i.e. B2.
If the span of V and V ′ intersect in P7, then for each surface V, V ′ we

can uniquely reconstruct the preimage of a curve of degree 5 in P15. The
reconstruction is

• 3L− e0 − e1 − e2 − e3 + 0 points

As before, in P7 the number of additional intersection points that is derived
from the variable components are strictly less than B2. We find this number in
column five in Table 5.1, here B2 = 1.
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