
Risk in stochastic control and
reinforcement learning

Johannes Vincent Meo
Master’s Thesis, Spring 2022

This master’s thesis is submitted under the master’s programme Mathematics, with
programme option Mathematics for applications, at the Department of Mathematics,
University of Oslo. The scope of the thesis is 60 credits.

The front page depicts a section of the root system of the exceptional Lie group E8,
projected into the plane. Lie groups were invented by the Norwegian mathematician
Sophus Lie (1842–1899) to express symmetries in differential equations and today
they play a central role in various parts of mathematics.

Abstract

This thesis dives into the theory of discrete time stochastic optimal control
through exploring dynamic programming and reinforcement learning. The main
goal of this thesis is to closely investigate risk-sensitive control, and to look into
some of the methods used in dynamic programming and reinforcement learning
in order to find risk-sensitive policies. We give a comparison of the different
risk-sensitive methods considered in this thesis and provide results that, under
some assumptions, guarantee that we are able to find risk-sensitive policies for
a class of optimal control problems.

i

Acknowledgements

First of all, I would like to thank my supervisors, Christian Agrell and Kristina
Rognlien Dahl. Thank you Kristina for giving me an interesting project and for
the guidance you provided the first months of my work on this thesis before you
passed on the torch to Christian, which I would like to thank for all the help,
feedback and supervision you have given me this past year. I would also like
to thank Nikolai Thode Opdan for reading through this thesis and providing
helpful comments. A thanks is also in need to my friends and my fellow students
sitting at the eleventh floor in NHA that have all contributed to making my
time at Blindern the last years a pleasant experience. A final thanks goes to
my family, Filip, Margrethe and Axel, for their love and support, and to Julia
for always being by my side.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures v

List of Tables vii

Listings viii

Symbols and notation ix

1 Introduction 1
1.1 Structure of the thesis . 2
1.2 Our contributions . 3

2 Preliminaries 7
2.1 Basic probability theory . 7
2.2 Some real analysis . 10

3 Introduction to dynamic programming 12
3.1 What is a dynamic programming problem? 12
3.2 The dynamic programming algorithm 14
3.3 State augmentation and other reformulations 17
3.4 Deterministic systems and the shortest path problem 22
3.5 Stochastic systems with imperfect state information 29

4 Abstract dynamic programming 39
4.1 The abstract dynamic programming model 39
4.2 Consequences of monotonicity and contracion assumptions . . 43
4.3 Finding policies . 51

5 Infinite horizon dynamic programming 57
5.1 Stochastic shortest path problems 57
5.2 Discounted problems . 68

iii

Contents

6 Reinforcement learning 74
6.1 A short introduction to finite MDPs and reinforcement learning 75
6.2 Some reinforcement learning algorithms 77
6.3 Similarities between reinforcement learning and dynamic

programming . 78

7 Risk-sensitive control 86
7.1 Motivation for risk-sensitive control 87
7.2 Model-based risk-sensitive control 87
7.3 Model-free risk-sensitive control 113
7.4 Comparison of risk-sensitive control methods 131

8 Concluding remarks 135

Appendices 137

A Code 138

Bibliography 164

iv

List of Figures

3.1 A graph representation of a deterministic finite-state system 24
3.2 The flipped deterministic finite-state system 25
3.3 The two candidates for shortest path 27
3.4 Possible travelling routes . 28
3.5 Shortest travelling routes . 29

4.1 Graph of the shortest path problem 52

5.1 A simple SSP. Same coloured paths originating at the same node
depict the possible transitions from the given node under a specific
control. The black lines depict the transitions for control u1, while
orange shows the same for control u2. Node C is introduced for
technical reasons only. 65

6.1 The evolution of Q-values and running average of simulated costs
using Q-learning, as well as theoretical values and mean of sampled
values. 80

6.2 The evolution of Q-values and running average of simulated costs
using SARSA, as well as theoretical values and mean of sampled
values. 81

6.3 Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate
policies for Q-learning. The height has been cut at y = 250. 82

6.4 Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate
policies for SARSA. The height has been cut at y = 250. 83

6.5 Bar plot showing distribution of policies created with Q-learning
and SARSA. Legend notation explanation: A1B1C1 denotes the
policy taking action 1 in each state. 84

7.1 Illustrating the effect of β when using exponential utility function. 95
7.2 Illustrating the effect of k when using exponential utility function. 96
7.3 Value of target function for the policies considerd in Example 7.2.17.

The black line shows where the target function for policy µ1 and
µ3 intersects. Code to produce figure can be found in Listing A.11. 110

v

List of Figures

7.4 An augmented version of the SSP in Figure 5.1. Same coloured
paths originating at the same node depict the possible transitions
from the given node under a specific control. The black lines depict
the transitions for control u1, while orange shows the same for
control u2. 111

7.5 The evolution of Q-values and running average of simulated costs
using Q̂-learning, as well as the mean of the sampled values. 119

7.6 The evolution of Q-values and running average of simulated costs
when weighting TD-rewards using κ = 0.5, as well as the mean of
the sampled values . 120

7.7 The evolution of Q-values and running average of simulated costs
when weighting TD-rewards using κ = 0.15, as well as the mean of
the sampled values. 121

7.8 The evolution of Q-values and running average of simulated costs
when weighting TD-rewards using κ = −0.5, as well as the mean
of the sampled values. 122

7.9 The evolution of Q-values and running average of simulated costs
and risk using the error states method with a risk bound of ω = 0.1
for the policy, as well as the mean of the sampled values. 123

7.10 The evolution of Q-values and running average of simulated costs
and risk using the error states method with a risk bound of ω = 0.2
for the policy, as well as the mean of the sampled values. 124

7.11 Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate
policies for Q̂-learning. The height has been cut at y = 250. 125

7.12 Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate
policies when weighting TD-rewards. The height has been cut at
y = 250. 126

7.13 Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate
policies when weighting TD-rewards. The height has been cut at
y = 250. 127

7.14 Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate
policies when weighting TD-rewards. The height has been cut at
y = 250. 128

7.15 Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate
policies for error states method. The height has been cut at y = 250. 129

7.16 Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate
policies for error states method. The height has been cut at y = 250. 130

7.17 Bar plot showing distribution of policies created with the different
risk-sensitive RL methods introduced in this chapter with the
parameter values we have considered in this example, as well as
distribution of ξ values used to generate final policy for error states
method. Legend notation explanation: A1B1C1 denotes the policy
taking action 1 in each state. 131

vi

List of Tables

5.1 Optimal value function and Q-values for SSP depicted in Figure 5.1 68

6.1 Q-values estimated by Q-learning and SARSA for SSP depicted in
Figure 5.1. 83

7.1 Optimal value under different risk-sensitive optimality conditions
for the SSPs depicted in Figures 5.1 and 7.4. The J∗(s) values for
error state is the actual expected cost function values of the policy
found to be optimal by the method. 112

7.2 Optimal policy under different risk-sensitive optimality conditions
for the SSPs depicted in Figures 5.1 and 7.4. 112

7.3 Expected discounted cost for the optimal policies found under
different risk-sensitive optimality conditions for the SSPs depicted
in Figures 5.1 and 7.4. 112

7.4 Optimal policy under different risk-sensitive optimality conditions
for the SSPs depicted in Figures 5.1 and 7.4. 124

vii

Listings

A.1 ssp_ex; Implementation of SSP considered in Example 5.1.9 . . 138
A.2 ex_SSP.json; JSON-file defining SSP implemented by Listing A.1 141
A.3 ssp_DP.py; Implementation of value iteration and policy

iteration used to solve SSP problem in Example 5.1.9 142
A.4 ssp_rl_algs.py; Implementation of RL algorithms used to solve

SSP problem in Example 6.3.1 143
A.5 ex_SSP_es.json; JSON-file defining SSP with error state

implemented by Listing A.1 . 148
A.6 ssp_minimax.py; Code to run minimax to solve SSP problem

in Example 7.2.18 . 150
A.7 ssp_exp_utility.py; Code to run VI and PI using exponential

utility function to solve SSP problem in Example 7.2.18 151
A.8 ssp_error_states.py; Code to run VI and PI using error states

notion of risk to solve SSP problem in Example 7.2.18 152
A.9 ssp_rs_rl.py; Implementation of risk-sensitive RL algorithms

used to solve SSP problem in Example 7.3.5 154
A.10 exp_utility.py; Generating plots for Example 7.2.4 162
A.11 suboptimality_error_states.py; Generating plots for Exam-

ple 7.2.17 . 163

viii

Symbols and notation

ω Scenario space.
F σ-algebra.
P Probability measure.
X Random variable.
E[·] Expected value.
α Discount factor.
γ Learning rate.
X State space (it should be clear from the context whether X is a

random variable or a state space).
U Control/Action space.

U(x) Set of controls feasible at state x.
D Disturbance space.
Z Observation space.
V Observation disturbance space.
R Reward space.
Φ Set of error states.
f Function determining dynamics of control problem.
g Cost/reward-function.

pij(u) Probability of transitioning from state i to state j under control
u.

π A policy.
π∗ An optimal policy.
µ A stationary policy.
M Set of stationary policies.
Jπ The cost/reward function of a policy π.
Jπ,N N-stage cost function of policy π.
J∗ The optimal cost/reward function.
G Sum of future discounted rewards.
Qπ Q-function of policy π.
R(X) Set of real-valued functions with a state space X as its domain.
B(X) Space of bounded real-valued functions with a state space X as

its domain.
H(x, u, J) Mapping giving cost/reward-to-go of applying control u in state

x when J is the cost-to-go function.
Tµ Bellman operator for the stationary policy µ.
T Bellman operator.

ix

CHAPTER 1

Introduction

The theory of stochastic optimal control is concerned with finding the optimal
way to control a system in order to optimize some given objective. A rule that,
given any state of the system, tells the controller which action to take is called a
policy. Many different kinds of tasks and problems that are seemingly unrelated
can be formulated as a stochastic optimal control problem. Some examples are
a driver driving home, a portfolio manager trying to maximize the return for
her clients, a robot trying to figure out how to walk or someone trying to beat
Stockfish in chess. What all of these examples have in common is that there is
some controller, either the driver, the portfolio manager, the robot or the chess
player that needs to figure out what action to take in order to reach their goal.

Today, there exists several methods used to solve stochastic optimal control
problems. One such method is dynamic programming that was developed in
the 1950s by the mathematician Richard Bellman. The theory of dynamic
programming centres around finding what is called the Bellman equation for the
problem at hand and the solution of the equation. Dynamic programming is still
considered one of the optimal ways to solve optimal control problems. However,
in order to use the dynamic programming methods a lot of information about
the underlying dynamics of the system needs to be known, or at least in some
way estimated.

Another approach that copes with the strict assumptions of dynamic
programming is reinforcement learning, which is considered to be one of the
three main branches of machine learning. Reinforcement learning, as the
name suggests, relies on learning in order to find policies. The learning in the
reinforcement learning context often comes from trial-and-error which can be
done in e.g., a simulation or in a real-world environment.

Traditionally, the goal in stochastic optimal control is to find the policy that
most often results in the controller achieving the optimal value for his objective,
e.g., a chess player would like to find the strategy that results in him winning
the game. However, sometimes the optimal policy can come with unwanted
side-effects. Take a portfolio manager, in order to maximize the possible return
she should invest only in risky-assets as they, on average, result in the highest
return. But, she would then be prone to a non-zero probability of the whole
portfolio losing all of its value. Risk-sensitive optimal control tries to handle
this problem by finding methods that allow us to discover policies that has a
less risky behaviour, while still having acceptable performance.

In this thesis we consider stochastic optimal control by introducing the
theory of dynamic programming and reinforcement learning. Towards the end

1

1.1. Structure of the thesis

of the thesis we take a look at risk-sensitive optimal control and introduce
different methods that approach the problem of finding risk-averse policies
differently. We prove the existence of optimal policies for some of these methods
by using abstract dynamic programming theory. Our introduction of theory is
throughout this thesis complemented with several examples in order to give the
reader a better understanding of the different topics.

1.1 Structure of the thesis

This thesis is structured in the following way:
In Chapter 2 we present some preliminary theory related to probability

theory and real analysis. This theory is needed as a theoretical backbone in
order to prove the results in the chapters that follow. The parts of this chapter
that is most important for the rest of the thesis is the definition of a contraction,
given in Definition 2.2.7, and Banach’s fixed point theorem, which is given in
Theorem 2.2.8.

Then, in Chapter 3 we give an introduction to dynamic programming for
the case where we have a finite time horizon. The most important result from
this chapter is Theorem 3.2.1, which gives conditions for when the dynamic
programming algorithm manages to find an optimal policy. The remainder of
the chapter looks at how different kinds of problems can be reformulated into
the regular dynamic programming problem, and thus solved using the dynamic
programming algorithm. The theory of this chapter is complemented with many
self-made examples solving concrete problems.

We then proceed with Chapter 4, where we zoom out a bit from the
concrete setting of Chapter 3 and take a look at the theory of abstract dynamic
programming. Here, we introduce a more general framework that is more
rigorous that what we presented in the preceding chapter. We introduce two
important properties, namely monotonicity and contraction. These properties
are sufficient for a model in order to guarantee some nice properties for the
problem described by the model. We also present some general solution methods
for dynamic programming problems that depends on the theory introduced in
the chapter in order to guarantee convergence.

In the subsequent chapter, Chapter 5, we consider dynamic programming
problems where we have an infinite time horizon. By using the abstract dynamic
programming theory presented in Chapter 4 we are able to, under some given
assumptions, provide new proofs for some results that guarantee convergence for
the solution methods in the context of infinite horizon dynamic programming.
We also include a numerical example in this chapter, illustrating that the
solution methods in fact work.

The following chapter, Chapter 6, gives a brief introduction to reinforcement
learning and Markov decision processes. We present the two classical tabular
methods, Q-learning and SARSA. We test their performance with a numerical
example where we try to use these methods to find the optimal policy for
the same problem that we solved in the numerical example in Chapter 5.
This chapter also contains a section where we try to explain that dynamic
programming and reinforcement learning really just are two different names for
the same thing, which is optimal control for sequential decision problems.

2

1.2. Our contributions

Chapter 7 is concerned with risk-sensitive optimal control, and is the
highlight of this thesis. Here we introduce several methods that all try to
solve the same problem: finding policies that are not blind to the underlying
risk of the optimization problem we are trying to solve. Three of the methods
we present are model-free, while the three other methods rely on a model of
the underlying dynamics in order to find a solution. For the three model-based
methods we prove that, given some assumptions, the general solution methods
introduced in Chapter 4 also converge to an optimal solution for these methods.

This thesis ends with the concluding remarks in Chapter 8. Here we give
a short summary of the work done in this thesis, as well as setting out some
ideas for possible further work based on the theory covered in this thesis.

For several of the examples given in this thesis we have done computations
and simulations numerically using Python. The code used is listed in
Appendix A.

1.2 Our contributions

Here we give a brief overview of some of the contributions we have made in
this thesis. The parts of the thesis that is listed below is marked with an † in
the text. The theory and the methods presented in this thesis that is based
on previous work by other authors are clearly marked and referenced, either at
the beginning of the relevant chapter or section, or where the result or method
is presented. The writings in this thesis is influenced by our understanding of
the theory, and we take full responsibility for any mistakes that may be in this
work.

Our main contributions are the following:

Example 2.1.8: We created this example with the intention of using the
probability measures and the stochastic variable X in, among others,
Example 3.2.2.

Example 3.2.2: This example is inspired by exercise 1.2 in [Ber17]. We have
changed the cost function g, reduced N to 3 and use another distribution
for wk, which depend on the probability measures found in Example 2.1.8.
We have also a more restrictive control space U(x).

Example 3.3.1: The example considered here is inspired by exercise 3.3
in [Ber17]. We introduce forecasting in the problem considered in
Example 3.2.2.

Example 3.4.1: Here we represent a deterministic version of the DP problem
from Example 3.2.2 as a graph.

Example 3.4.2: In this example we demonstrate how to use the forward DP
algorithm in order to solve the deterministic version of the DP problem
considered in Example 3.2.2, which is depicted in the graph created in
Example 3.4.1.

Example 3.4.3: We show how to convert a shortest path problem to a DP
problem. The example is inspired by exercise 2.3 in [Ber17], but we have
used a different graph.

3

1.2. Our contributions

Example 3.5.1: Here we consider a version of Example 3.3.1 where we have
imperfect state information. The idea behind this example is inspired by
exercise 4.10 in [Ber17], and the sufficient statistic used in the example is
influenced by the proposed solution of exercise 4.10, which can be found
in [Ber].

Example 4.1.5: This example illustrates the connections between the abstract
DP theory introduced in Chapter 4 and what we considered in Chapter 3
by reformulating the DP problem from Example 3.2.2 using the abstract
formulation.

Proof of Proposition 4.2.1 (v): We write out a detailed proof of Proposi-
tion 4.2.1 (v), where we use the same techniques as the proof of Proposi-
tion 4.2.1 (iv) given in [Ber18].

Lemma 4.2.3: This lemma is proving a result that is necessary for the proof of
Proposition 4.2.2, but which is kind of intuitive. This result is therefore
claimed to hold in the proof of Proposition 4.2.2 presented in [Ber18],
but as we are aiming to write out a more detailed proof of the result we
introduce Lemma 4.2.3 and its proof.

Lemma 4.2.4: A lemma proving a result necessary for the proof of Proposi-
tion 4.2.2. The same result is claimed to hold in [Ber18] without a proof,
but as we would like to provide some more details, we state it as a separate
lemma and provide a proof.

Proof of Proposition 4.2.2: The proof presented in this thesis follows the proof
from [Ber18] and a section looking at the optimality over nonstationary
policies in the same book, but we have written out several details compared
with the original proof.

Example 4.2.5: This example is taken from example 2.1.1 in [Ber18], but we
have written it out in more detail.

Example 4.2.6: Here we illustrate the importance of the contraction property
with an original example.

Example 4.3.2: Example showing how to find a lookahead policy on a graph
similar to the one considered in Example 3.4.3.

Proof of Proposition 4.3.3: Here we present a more detailed proof than the
original given in [Ber18].

Example 4.3.4: Here we use the value iteration algorithm to find the optimal
policy for the shortest path problem associated with the graph used in
Example 4.3.2.

Example 4.3.7: Find the optimal policy for the shortest path problem
connected with the graph used in Example 4.3.4, but now using policy
iteration.

Proposition 5.1.4 Prove that the model for an infinite horizon stochastic
shortest path problem that we consider in Section 5.1 is monotone.

4

1.2. Our contributions

Proof of Proposition 5.1.5: We provide a new proof for Proposition 5.1.5,
which is proven in [Ber19]. Our new proof utilises the abstract DP theory
introduced in Chapter 4.

Proof of Proposition 5.1.6 We give an alternative proof of Proposition 5.1.6
by using the abstract DP theory. The result and its original proof is given
in [Ber19].

Proof of Proposition 5.1.7: Here a proof of Proposition 5.1.7 that relies on
the abstract DP theory is given. The last part of the proof, concerning
convergence of the VI algorithm, follows the proof of the same result from
[Ber19].

Proof of Proposition 5.1.8: An original proof of Proposition 5.1.8 that uses
the abstract DP theory is given. The result itself is taken from [Ber19]
where another, more direct, proof is provided.

Example 5.1.9: In this example we implement VI and PI, and use the
algorithms to find the optimal value function and optimal policy for a
SSP. We then confirm that the values found computationally are correct.

Proof of Proposition 5.2.1: Here we write out the proof of Proposition 5.2.1
in more detail than what is done in the original proof given in [Ber19].

Proposition 5.2.2: This result ensures that the infinite horizon discounted cost
model indeed is monotone.

Example 6.3.1: This example tests the performance of SARSA and Q-learning
on the SSP considered in Example 6.3.1.

Example 7.2.1: In this example we apply minimax to the St.Petersburg
Paradox.

Proposition 7.2.2: Result showing that the minimax target function satisfy
the monotonicity property.

Proposition 7.2.3: This result tells us that the minimax target function is a
contraction.

Equation (7.8): In the preceding equations we showed the relationship between
the exponential utility function, and the sum of the expected cost and
the variance of the cost, by writing out the Taylor polynomial.

Example 7.2.4: This example show how the utilization of an exponential utility
function change the behaviour of a controller for the St. Petersburg
Paradox.

Proposition 7.2.5: Proposition showing that the target function for the
exponential utility function is monotone.

Proposition 7.2.6: This result shows that the exponential utility function
model we use is a contraction.

Corollary 7.2.7: Corollary giving guarantees for when we are able to find
unique optimal risk-averse or risk-seeking policies.

5

1.2. Our contributions

Definition 7.2.12: Defining an operator used to finding the value function of a
policy for the error states target function.

Proposition 7.2.13: Result guaranteeing that the operator defined in Defini-
tion 7.2.12 has a fixed point given some assumptions.

Proposition 7.2.14: This Proposition shows that the operator defined in
Definition 7.2.12 has a unique fixed point for a broad range of problems.

Proposition 7.2.15: This result tells us that the mapping used in the operator
defined in Definition 7.2.12 is monotone.

Example 7.2.16: In this example we use the error states method in order to
find risk-sensitive policies for the St. Petersburg Paradox.

Example 7.2.17: This example illustrates how the error states method not
necessarily always finds the true optimal policy.

Example 7.2.18: Here we use several model-based methods numerically to find
risk-sensitive optimal policies for the SSP considered in Example 5.1.9.

Example 7.3.5: In this example we implement and test numerically several
model-free methods by trying to estimate optimal risk-sensitive policies
for the SSP considered in Example 5.1.9.

6

CHAPTER 2

Preliminaries

2.1 Basic probability theory

In this section we introduce some basic probability theory. This theory is
necessary for understanding dynamic programming and stochastic control,
which is introduced in later chapters. For a more comprehensive book on the
topic, readers are encouraged to read [Wal12] or [Øks03]. For more on measure
theory, and measures in general, [Lin17] has a good introduction to the topic,
while [Fol99] is a great book on the same subject.

A probability space is a triple (Ω,F , P). We can think of Ω as a set that
consists of every possible event in our probability space, and is often called the
scenario space. Ω can in general be finite, countable or uncountable. F is a
σ-algebra, which is a family of subsets of Ω, while P is a probability measure.
We now take a look at the formal definition of the components of a probability
space.

Definition 2.1.1 (σ-algebra). Let Ω be a set. A σ-algebra, F , is a family of
subsets of Ω that satisfies

i) ∅ ∈ F .

ii) A ∈ F =⇒ Ac ∈ F .

iii) A1, A2, . . . ∈ F =⇒
⋃
i∈NAi ∈ F .

We say that a set A is measurable if A ∈ F . For the remaining of this
chapter, we let Ω denote a set, and F be a σ-algebra consisting of subsets of Ω.
A tuple (Ω,F) is then called a measurable space. The only thing that remains
for the measurable space to become a probability space is a probability measure
defined on the σ-algebra.

Definition 2.1.2 (Probability measure). Let (Ω,F) be a measurable space. A
function P : F → [0, 1] is called a probability measure on the measure space if
it satisfies that

i) P (A) ≥ 0 for all A ∈ F .

ii) P (Ω) = 1.

7

2.1. Basic probability theory

iii) If A1, A2, . . . ∈ F are pairwise disjoint, i.e., Ai ∩Aj = ∅ when i 6= j, then

P

(⋃
i∈N

Ai

)
=
∑
i∈N

P (Ai).

Let P be a probability measure on the measurable space (Ω,F). We can
then go on to define a (real valued) random variable on the probability space
(Ω,F , P).

Definition 2.1.3 (Random variable). Let (Ω,F , P) be a probability space, and
(E, E) a measurable space. A function X : Ω→ E is called a random variable if

X−1(A) = {ω ∈ Ω: X(ω) ∈ A} ∈ F for all A ∈ E .

If we let E = R, and let E be the Borel σ-algebra on R (the σ-algebra generated
by all open sets in R), then we call X a real random variable.

In other words, a (real valued) random variable is a function on the
probability space that has R as its codomain, where the preimage of any
interval (−∞, x] is measurable, and thus in F . We now look at how we define
the expectation of a random variable with respect to a measure P .

Definition 2.1.4 (Expectation). Let (Ω,F , P) be a probability space and let X
be a random variable on this space. The expectation E[X] of X is then

E[X] =
∫

Ω
XdP,

which is the Lebesgue integral (see e.g. [Lin17]) over Ω with regard to the
probability measure P .

The last bit of theory we need to consider is the definition of a distribution.
The following definition is inspired by [Øks03].

Definition 2.1.5 (Distribution). Let (Ω,F , P) be a probability space and let
X : Ω→ R be a (real valued) random variable on this probability space. The
random variable then induces a probability measure denoted µX on its codomain
R called the distribution of X. The distribution of X is defined as

µX(A) = P (X ∈ A) = P ({ω ∈ Ω: X(ω) ∈ A}), for all A ⊂ R.

That is, the distribution µX is a way to measure the probability of subsets
A ⊂ R, even though our original measure P is only defined on sets Ã ∈ F ,
where Ã ⊂ Ω.

Definition 2.1.6 (Conditional probability). Let (Ω,F , P) be a probability space,
and assume that A,B ∈ F with P (B) > 0. The conditional probability of A
given B is then defined as

P (A | B) = P (A ∩B)
P (B) .

The following well known theorem is taken from [Wal12].

8

2.1. Basic probability theory

Theorem 2.1.7 (Bayes theorem, [Wal12]). Let Ω be a scenario space and
A1, . . . , An ⊂ Ω be pairwise disjoint and measurable sets with

⋃n
i=1Ai = Ω

and P (Ai) > 0, i = 1, . . . , n. We then, for any B ⊂ Ω with P (B) > 0, have

P (Ak|B) = P (B|Ak)P (Ak)∑n
i=0 P (B|Ai)P (Ai)

, k = 1, . . . , n.

Example 2.1.8 (Probability theory). †
Consider the following example: We have a scenario space Ω = {ω1, ω2, ω3}.

A σ-algebra F on Ω is then

F = {Ω, {ω1, ω2}, {ω1, ω3}, {ω2, ω3}, {ω1}, {ω2}, {ω3}, ∅},

which is called the discreet σ-algebra, since it contains every possible subset of
the scenario space Ω. Another σ-algebra that contains less information is e.g.
the trivial σ-algebra G = {Ω, ∅}. G is in fact the smallest possible σ-algebra
of subsets of Ω. We have that (Ω,F) is a measurable space. We can then go on
to define some probability measures (Definition 2.1.2) on this measurable space.
Consider the examples below:

• P ({ω1}) = 1
3 , P ({ω2}) = 1

3 , P ({ω3}) = 1
3 ,

• Q({ω1}) = 0, Q({ω2}) = 1, Q({ω3}) = 0,

• R({ω1}) = 1
2 , R({ω2}) = 1

2 , R({ω3}) = 0,

We see that P,Q and R all satisfy the conditions for being a probability measure
(Definition 2.1.2). Thus, (Ω,F , P), (Ω,F , Q) and (Ω,F , R) are valid probability
spaces. We can then define a random variable (Definition 2.1.3) X on these
spaces. Let

X(ω1) = −1, X(ω2) = 0, X(ω3) = 1.

Notice that X is a well defined random variable on all of our probability spaces.
However, let us now calculate the expected value of X on the different spaces.
Let Eµ[X] denote the expectation of a random variable X with regard to a
probability measure µ. We then have that

EP [X] =
∫

Ω
XdP =

3∑
i=1

X(ωi)P (ωi) = −11
3 + 01

3 + 11
3 = 0,

EQ[X] =
∫

Ω
XdQ =

3∑
i=1

Q(ωi)P (ωi) = −1 · 0 + 0 · 1 + 1 · 0 = 0,

ER[X] =
∫

Ω
XdR =

3∑
i=1

R(ωi)P (ωi) = −11
2 + 01

2 + 1 · 0 = −1
2 .

Note that even though we calculated the expected value of the same random
variable, we did not get the same result for the different probability measures.

9

2.2. Some real analysis

2.2 Some real analysis

This chapter gives a brief introduction to some concepts from real analysis
that are relevant for the topics of this thesis. The introduction in this chapter
is based on the book [Lin17]. We start by defining a metric space and then
proceed with defining the notion of a normed space. We begin by defining a
metric.

Definition 2.2.1 (Metric [Lin17]). A metric on a non-empty set V is a function
d : V × V → R such that:

(i) For all u,v ∈ V with u 6= v, we have d(u,v) > 0.

(ii) If u = v we have d(u,v) = 0.

(iii) We have d(u,v) = d(v,u) for all u,v ∈ V .

(iv) For arbitrary u,v,w ∈ V the inequality d(u,v) ≤ d(u,w) +d(w,v) holds
true.

We are then ready to define a metric space.

Definition 2.2.2 (Metric space [Lin17]). Let X be a non-empty set. A metric
space is then a tuple (X, d) where d is a metric on X.

Then we proceed with defining a normed space.

Definition 2.2.3 (A norm and normed space [Lin17]). Let V be a vector space
over R. A function ‖·‖ : V → R is then called a norm on V if

(i) ‖u‖ ≥ 0 with equality if and only if u = 0.

(ii) ‖αu‖ = |α|‖u‖ for all α ∈ R and all u ∈ V .

(iii) ‖u + v‖ ≤ ‖u‖+ ‖v‖ for all u,v ∈ V .

We then call the pair (V, ‖·‖) a normed space.

The next proposition ensures that a normed space always has a metric
induced by its norm.

Proposition 2.2.4 (Norm implies metric [Lin17]). If (V, ‖·‖) is a real normed
space, then the function

d(u,v) = ‖u− v‖ (2.1)

is a metric on V .

We then want to introduce the well known Banach’s Fixed Point Theorem,
but we then need the idea of complete spaces. To introducing this concept we
need the following definition.

Definition 2.2.5 (Cauchy sequence [Lin17]). Let (X, d) be a metric space and
let {xn} be a sequence in this metric space. The sequence is then called a
Cauchy sequence if for each ε > 0 there is an N ∈ N such that d(xn, xm) < ε
for all n,m ≥ N.

Then we define the notion of complete metric spaces.

10

2.2. Some real analysis

Definition 2.2.6 (Complete metric space [Lin17]). We say that a metric space
(X, d) is complete if all Cauchy sequences converge.

The last definition we need before introducing Banach’s Fixed Point Theorem
is the one of contractions. We will later in Chapter 4 see that contractions are
essential for the theory in this thesis.

Definition 2.2.7 (Contraction [Lin17]). Let (X, d) be a metric space. We then
say that a function f : X → X is a contraction if there exist some contraction
factor α ∈ (0, 1) such that

d(f(x), f(y)) ≤ αd(x, y) for all x, y ∈ X.

We are then ready to introduce Banach’s Fixed Point Theorem.

Theorem 2.2.8 (Banach’s Fixed Point Theorem [Lin17]). Let (X, d) be a metric
space and f : X → X a contraction on this metric space. Then there exist some
unique point a ∈ X, called the unique fixed point of f , such that for all x0 ∈ X,
we have that the sequence

x0, x1 = f(x0), x2 = f(x1), . . . , xn = f(xn−1), . . .

converges to a.

We then go on to look at the notions of bounded and compactness.

Definition 2.2.9 (Compact space [Lin17]). Let (V, ‖·‖) be a normed space. A
subset K of the normed space (V, ‖·‖) is then called a compact set if every
sequence {un} in K has a subsequence {unk} converging to a point u in K.
The space (V, ‖·‖) is itself compact if V is a compact set.

Then we proceed to define boundedness for a subset of a normed space
under the metric induced by the norm.

Definition 2.2.10 (Bounded [Lin17]). Let A be a subset of a normed space
(V, ‖·‖). We then say that A is bounded if there exists a number M ∈ R such
that d(u,v) ≤M for all u,v ∈ A, where the metric d is the one induced by the
norm of the normed space (2.1).

The next proposition ensures that a compact set K in a normed space always
is closed and bounded. We leave out the proof, but see [Lin17] for a proof of
the same result but for general metric spaces.

Proposition 2.2.11 (Compact set in normed space [Lin17]). Let K be a compact
subset of a normed space (V, ‖·‖). Then K is closed and bounded.

11

CHAPTER 3

Introduction to dynamic
programming

The following introduction to dynamic programming is based on [Ber17].

3.1 What is a dynamic programming problem?

In dynamic programming (DP), we look at problems where decisions are made
in stages, and where each action influences our cost. It is this cost that we
would like to optimize. At each stage of the process, we have an idea of what
outcome our choice of action will lead to, but not necessarily with certainty.
We will also at each stage need to consider the long-time effect of our action, as
we would like to minimize the total cost over all the decisions we make. Our
basic model consists of an underlying discrete-time dynamic system, and an
additive cost function. In this chapter we only consider problems where the
time horizon is finite.

A dynamic programming system has the following form

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1, (3.1)

where k indexes the discrete time, xk is what we call the state of the system, uk
is the control variable to be chosen at time k, wk is a random parameter, which
we can think of as noise, N is our time horizon, while fk is the function that
describes the evolution of our state variable. We let xk ∈ Xk, uk ∈ Uk, wk ∈ Dk

and call Xk the state space, Uk the control space, while Dk is called the
disturbance space. Note that all of these spaces in general depends on the
discrete time k. The distribution of the random parameter value wk depend
on the state xk and the control uk, i.e. wk ∼ Pk(·|xk, uk). However, the
random noise wk in our model is independent of the previous disturbances
w0, . . . , wk−1. The fact that wk is independent of previous disturbances and
that xk+1 = fk(xk, uk, wk), implies that xk+1 only depends on the state xk, the
control uk and the noise wk. This property is called the Markov property. We
can also introduce constraints on the control that depend on the current state
e.g., the maximal capital we can invest (a control uk) depends on the current
state of our capital (the state xk). We denote the constrained subspace of the
control space that is available in state xk by U(xk) ⊂ Uk.

As mentioned above, we are also talking about a cost in dynamic
programming problems. This cost is additive, so if the cost at time k is given

12

3.1. What is a dynamic programming problem?

by gk(xk, uk, wk), and if we add a terminal cost gN (xN), which is deterministic
given xN , at the end of the process we end up with a total cost of

gN (xN) +
N−1∑
k=0

gk(xk, uk, wk). (3.2)

Note again that the cost function depends on a random parameter wk, therefore
we have that the cost in general is a random variable (Definition 2.1.3) as well.
Thus, we try to minimize the expected cost and not the cost directly. The
expected cost is given by

E

[
gN (xN) +

N−1∑
k=0

gk(xk, uk, wk)
]
. (3.3)

We have two notions for minimizing this cost: Closed-loop and open-loop
minimization. In open-loop minimization we choose all our controls u0, . . . , uN−1
immediately at time 0, while in closed-loop minimization we wait until time
k before we select our control uk. Thus, we are able to take the current, and
passed states, (xk, xk−1, . . . , x0) into consideration when making a decision
about control uk.

In closed-loop optimization we are not interested in finding the specific
numerical values, but a strategy for finding these values that depend on the
current state of the system and the time k. In other words, we want to find
functions µk : Xk → Uk such that for any state xk we have that µk(xk) is the
value we should choose as our control uk. We call a sequence π = {µ0, . . . , µN−1}
a policy. Then, for any policy we have that the expected cost is

Jπ(x0) = E

[
gN (xN) +

N−1∑
k=0

gk(xk, µk(xk), wk)
]
, (3.4)

where the expectation is over the random variables xk and wk. For a given
initial state x0 we want to minimize the value Jπ(x0) over all policies π that are
valid for our problem. For a policy to be valid we need uk = µk(xk) ∈ Uk(xk).
A policy that satisfies this criterion is called admissible.

We call a policy π∗ that satisfies

Jπ∗(x0) = min
π∈Π

Jπ(x0)

an optimal policy, denoted π∗. Here Π denotes the set of all admissible policies
π. Another point of interest is the optimal cost function J∗(x0) that assigns
each initial state x0 the optimal cost, i.e.

J∗(x0) = min
π∈Π

Jπ(x0).

Discrete-state problems

Sometimes, the natural domain for our state variable xn is the integers. If
this is the case and we are looking at the system Equation (3.1) where the
probability distributions Pk(wk|xk, uk) are known, then we can look at the
transition probabilities

pi j(u, k) = Pk({w|fk(i, u, w) = j}|xk = i, uk = u)

13

3.2. The dynamic programming algorithm

for each state. Thus we have two different ways to describe our problem. The
transition probability pi j(u, k) tell us what the probability for the next state
being j is, given that the current state is i and that the control we are choosing
is u at time k.

Concerning specification of spaces

We will in this chapter not specify what kind of spaces Xk, Uk and Dk are,
since we for a rigorous treatment would need an underlying probability space
(Ω,F ,P) for each policy, and the cost function needs to be a random variable
(Definition 2.1.3) on that space. In order for this to hold we may need
measurability assumptions on fk, gk and µk as well as additional structure
on Xk, Uk and Dk. A particular example taken from [Ber17] where the above
difficulties are resolved is when the spaces Dk are countable and where we for
every admissible policy have that the expected value of the cost is finite. In
this situation, we can write the cost function as

Jπ(x0) = E
x1,...,xN

[
gN (xN) +

N−1∑
k=0

g̃k(xk, µk(xk))
]
, (3.5)

with
g̃k(xk, µk(xk)) = E

wk
[gk(xk, µk(xk), wk)|xk, µk(xk)] ,

where the last expectation is with respect to Pk(·|xk, µk(xk)), which is a
probability measure (Definition 2.1.2) on the countable set Dk. We can then
choose the Cartesian product X̃0× X̃1×· · ·× X̃N as our basic probability space
(Section 2.1), where X̃0 = {x0} and

X̃k = {xk ∈ Xk|xk = fk−1(xk−1, µk−1(xk−1), wk−1), xk−1 ∈ X̃k−1, wk−1 ∈ Dk−1}.

Thus, X̃k is the set of all states xi that are reachable by time k ∈ {0, . . . , N −1}
with the policy {µ0, . . . , µN−1}. Then, since X̃0 is finite and Dk is countable
for each k, we have that X̃k is countable for each k as well. We then have a
probability distribution on the Cartesian product of the spaces X̃k induced by
the dynamics of the system, xk+1 = fk(xk, µk(xk), wk), the first state x0, the
probability distributions Pk(·|xK , µk(xk)) and the policy {µ0, . . . , µN−1}. This
Cartesian product is, as mentioned above, countable and the expected value in
Equation (3.5) is with respect to this distribution.

3.2 The dynamic programming algorithm

A important principle of dynamic programming is the principle of optimality.
The principle states that if π∗ = {µ∗0, µ∗1, . . . , µ∗N−1} is an optimal policy, and
if we by following the policy have a positive probability of state xi occuring
at time i, then we have that the policy π̂∗i = {µ∗i , µ∗i+1, . . . , µ

∗
N−1} is optimal

for minimizing the ’cost-to-go’ from time i, which means that the policy π̂∗i
minimizes

E

[
gN (xN) +

N−1∑
k=i

gk(xk, µk(xk), wk)
]
.

14

3.2. The dynamic programming algorithm

This is quite intuitive, since if the policy is optimal from the initial state x0 it
should choose the optimal action at each time step, including our time i and
all time steps after i. The principle of optimality implies that we can solve a
dynamic programming problem backwards, since we can start by finding the
optimal policy for the tail subproblem of length 1. That is to find the policy
that minimizes

E [gN (xN) + gN−1(xN−1, µN−1(xN−1), wN−1)] .

We can then go on to solve the tail subproblem of length 2 where we include the
N − 2 term and so on. This way of solving a dynamic programming problem is
called The dynamic programming algorithm, and the following theorem from
[Ber17] guarantees that the algorithm finds the optimal policy π∗.

Theorem 3.2.1 ([Ber17, p. 25]). For every initial state x0 ∈ X0, the optimal
cost J∗(x0) of the basic problem is equal to J0(x0), given by the last step of
the following algorithm, which proceeds backward in time from period N − 1 to
period 0:

JN (xN) = gN (xN), (3.6)

Jk(xk) = min
uk∈Uk(xk)

Ewk [gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))] ,

k = 0, 1, . . . , N − 1,
(3.7)

where the expectation is taken with respect to the probability distribution
of wk, which depends on xk ∈ Xk and uk ∈ U(xk) ⊂ Uk. Furthermore, if
u∗k = µ∗k(xk) minimizes the right-hand side of Equation (3.7) for each xk ∈ Xk

and k ∈ {0, . . . , N − 1}, the policy π∗ = {µ∗0, . . . , µ∗N−1} is optimal.

The function Jk(xk) from the theorem is called the ’cost-to-go’ function and
the value gives us the ’cost-to-go’ from state xk at time k.

Example 3.2.2 (Solving a DP problem, continuation of Example 2.1.8). †
This example is inspired by exercise 1.2 in [Ber17]. Let

xk+1 = xk + uk + wk,

with x0 = 0, and put

gN (xN) = 0
gk(xk, uk) = u2

k − xk.

We let k = 0, 1, 2, and thus N = 3. Assume also that

U(xk) = {u ∈ N : 0 ≤ u+ xk ≤ 3}.

In addition, let W = {−1, 0, 1}, where the disturbance wk ∈ W is given by
the random variable X described in Example 2.1.8. We let the probability
distribution Pk of Ω depend on the sum of xk and uk, such that

Pk(·|xk, uk) =
{
Q, if xk + uk = 0 or xk + uk = 3,
P, otherwise,

15

3.2. The dynamic programming algorithm

where the probability measures (Definition 2.1.2) P,Q, and the corresponding
probability spaces, are as described in Example 2.1.8. We also have the
constraint that x3 = 3. Note that our constraints imply that Xk = {0, 1, 2, 3}
for k = 1, 2, while X0 = {0} and X3 = {3}. Let us now try to find the optimal
cost J0(0) by using the algorithm described above in Theorem 3.2.1. Since
g3(x3) = 0, and we have the constraint x3 = 3, we see that

J3(x3) = J3(3) = 0.

We then go on to calculate J2(x2). Keep in mind that we need x3 = x2 +u2 = 3.
Thus our choice of control u2 is forced for each fixed x2.

J2(0) = min
u2∈U(0)

EP2 [u2
2 − 0 + J3(0 + u2 + w2)] = 32 − 0 + J3(0 + 3 + 0) = 9,

J2(1) = min
u2∈U(1)

EP2 [u2
2 − 1 + J3(1 + u2 + w2)] = 22 − 1 + J3(1 + 2 + 0) = 3,

J2(2) = min
u2∈U(2)

EP2 [u2
2 − 2 + J3(2 + u2 + w2)] = 12 − 2 + J3(2 + 1 + 0) = −1,

J2(3) = min
u2∈U(3)

EP2 [u2
2 − 3 + J3(3 + u2 + w2)] = 02 − 3 + J3(3 + 0 + 0) = −3.

Thus,

µ2(0) = 3, µ2(1) = 2, µ2(2) = 1, µ2(3) = 0,

as µ2(x) was the argument minimizing J2(x) in the above calculation for each
x ∈ {0, 1, 2, 3}. We then calculate J1(x1).

J1(0) = min
u1∈U(0)

EP1 [u2
1 − 0 + J2(0 + u1 + w1)]

= min
u1∈{0,1,2,3}

EP1 [u2
1 − 0 + J2(0 + u1 + w1)]

= min{EQ[02 + J2(0 + w1)], EP [12 + J2(1 + w1)],
EP [22 + J2(2 + w1)], EQ[32 + J2(3 + w1)]}

= min
{
J2(0), 1 + 1

3(J2(0) + J2(1) + J2(2)),

4 + 1
3(J2(1) + J2(2) + J2(3)), 9 + J2(3)

}
= min

{
9, 14

3 ,
11
3 , 6

}
= 11

3 ,

J1(1) = min
u1∈U(1)

EP1 [u2
1 − 1 + J2(1 + u1 + w1)]

= min
u1∈{0,1,2}

EP1 [u2
1 − 1 + J2(1 + u1 + w1)]

= min{EP [02 − 1 + J2(1 + w1)], EP [12 − 1 + J2(2 + w1)],
EQ[22 − 1 + J2(3 + w1)]}

= min
{
− 1 + 1

3(J2(0) + J2(1) + J2(2)),

1− 1 + 1
3(J2(1) + J2(2) + J2(3)), 4− 1 + J2(3)

}
16

3.3. State augmentation and other reformulations

= min
{

8
3 ,−

1
3 , 0
}

= −1
3 ,

J1(2) = min
u1∈U(2)

EP1 [u2
1 − 2 + J2(2 + u1 + w1)]

= min
u1∈{0,1}

EP1 [u2
1 − 2 + J2(2 + u1 + w1)]

= min{EP [02 − 2 + J2(2 + w1)], EQ[12 − 2 + J2(3 + w1)]}

= min
{
−2 + 1

3(J2(1) + J2(2) + J2(3)), 1− 2 + J2(3)
}

= min
{
−7

3 ,−4
}

= −4,

J1(3) = min
u1∈U(3)

EP1 [u2
1 − 3 + J2(3 + u1 + w1)]

= min
u1∈{0}

EP1 [u2
1 − 3 + J2(3 + u1 + w1)]

= EQ[02 − 3 + J2(3 + w1)] = −3 + J2(3) = −6,

giving us

µ1(0) = 2, µ1(1) = 1, µ1(2) = 1, µ1(3) = 0.

Because of the initial condition x0 = 0, the final calculation becomes

J0(0) = min
u0∈U(0)

EP0 [u2
0 − 0 + J1(0 + u0 + w0)]

= min
u0∈{0,1,2,3}

EP0 [u2
0 − 0 + J1(0 + u0 + w0)]

= min{EQ[02 + J1(0 + w0)], EP [12 + J1(1 + w0)],
EP [22 + J1(2 + w0)], EQ[32 + J1(3 + w0)]}

= min
{
J1(0), 1 + 1

3(J1(0) + J1(1) + J1(2)),

4 + 1
3(J1(1) + J1(2) + J1(3)), 9 + J1(3)

}
= min

{
11
3 ,

7
9 ,

5
9 , 3
}

= 5
9 .

Thus, µ0(0) = 2. Then, from Theorem 3.2.1 we have that the optimal value J∗0 ,
as defined in Section 3.1, is J∗0 (0) = J0(0) = 5

9 .

3.3 State augmentation and other reformulations

A problem that can arise in dynamic programming is that some of the
assumptions of the basic problem are not met, e.g. that the cost function
is nonadditive. We can then try to reformulate the problem into the form of the
basic problem described in Section 3.1. This is called state augmentation. We
often perform state augmentation by expanding the state space at each time k
such that all information known at time k is included. With inspiration from
[Ber17], we will look at techniques for reformulating problems with time delays,
correlated disturbances and forecasts.

17

3.3. State augmentation and other reformulations

Time delays

Time delay is when the state xn+1 does not only depend on the state xn and
control un, but also on earlier states and control, e.g. xn−1 and un−1. In other
words, the Markov-property of the dynamic programming problem is no longer
satisfied since the state xn+1 no longer only depend on the previous state and
control. We can formulate this mathematicaly as

xn+1 = f(xn, un, xn−1, un−1, wn).

We can then, by introducing two new state variables yk = xk−1 and sk = uk−1,
augment the state by letting x̃k := (xk, yk, sk), and

x̃k+1 = f̃k(x̃k, uk, wk) := (f(xn, un, xn−1, un−1, wn), xk, uk). (3.8)

Therefore, by having Equation (3.8) as the system equation, we can transform
the problem into the format of the basic problem by also expressing the cost-
function with the expanded state x̃k and by letting the µ∗k in the policy depend
on x̃k as well.

Correlated disturbances

We can have problems where the random disturbances wk are correlated over
time. A good example of this kind of correlation, taken from [Ber17], is when
the noise can be modelled as wk = Ckyk+1, where yk+1 = Akyk + ξk for each
k = 0, . . . , N − 1. Here, both Ak and Ck are known matrices, and the ξk’s
are random vectors that are independent. We can then, by adding yk as an
additional state variable, write the system equation as(

xk+1
yk+1

)
=
(
fk(xk, uk, Ck(Akyk + ξk))

Akyk + ξk

)
. (3.9)

Note that we would need to be able to observe yk if we were to have perfect
state information. This is for example the case if Ck is the identity matrix and
wk−1 is known before the control uk is chosen. Unfortunately, this is not very
realistic.

Forecasts

Now we look at the case where at time k ∈ {0, . . . , N − 1} we obtain some
information about the disturbance wk such that we can choose our control uk
with that information in mind. This information could be the exact value of
wk or knowledge about the probability distribution (see Definition 2.1.5) of
wk. State augmentation can be difficult when dealing with forecasts, so we
will only take a look at a simple example taken from [Ber17], and then expand
Example 3.2.2 with a similar forecast structure.

Assume that {Q1, . . . Qm} are probability distributions that wk can have.
So if the forecast yk is i, then wk has probability distribution Qi. We are also
given the a priori probabilities pi for the forecast being equal to i, i.e., the
probability of a forecast being i is pi. We represent the forecast as

yk = ξk−1,

18

3.3. State augmentation and other reformulations

where ξk−1 is a random variable (see Definition 2.1.3) that can take the values
1, . . . ,m (corresponding to the m possible probability distributions for wk) with
probabilities p1, . . . , pm, respectively. Hence, if ξk−1 = i we know at time k
that wk has probability distribution Qi. We can then define the new state
x̃k = (xk, yk) given by

x̃k = (xk, yk) = (fk−1(xk−1, uk−1, wk−1), ξk−1).

The random noise in this case is w̃k = (wk, ξk), and its probability distribution
is given by the distributions Qi and the probabilities pi. These values depend
directly on the value of yk in x̃k. We now take a look at an example where we
again consider the problem from Example 3.2.2, but now with forecasting.

Example 3.3.1 (DP with forecast, continuation of Example 3.2.2). †
This example is partly inspired by exercise 3.3 in [Ber17]. We consider again
the problem described in Example 3.2.2, but we now introduce a forecast
yk = ξk−1, k = 0, 1, 2 giving us information about the probability distribution
of Ω, and thus also the distribution of wk. Here, ξk−1 is a random variable
that is either 1 or 2, both with probability 1

2 . We also let x̃k = (xk, yk) and
redefine the probability distribution Pk of Ω to depend on our forecast yk in
the following way:

Pk(·|x̃k, uk) = Pk(·|xk, yk, uk) =


Q, if xk + uk = 0 or xk + uk = 3,
P, if 0 < xk + uk < 3 and yk = 1,
R, otherwise,

where the probability measures (Definition 2.1.2) P,Q,R are as described in
Example 2.1.8. We can then use the reformulation introduced above to rewrite
our system as

x̃k+1 = (xk+1, yk+1) = (xk + uk + wk, ξk).

Then, we have that the stochastic disturbance of the system is given by
w̃k+1 = (wk+1, ξk+1). Note that w̃k+1 depends on the value of yk+1, as the
probability distribution of Ω, which influences the probability distribution of
wk+1, is dependent on yk+1. From Example 3.2.2 we have the constraints
x0 = 0 and x3 = 3. We can then try to find J0(0, 1) and J0(0, 2) by use of the
dynamic programming algorithm (Theorem 3.2.1). As in Example 3.2.2, we
have that

J3(x̃3) = J3(x3, y3) = J3(3, y3) = 0,

since g3(x3) = 0 and because the constraints of the problem demands that
x3 = 3. We then continue with finding the values of J2(x̃2). Since we need
x3 = 3, our choice of control u2 is predetermined to be such that x2 + u2 = 3.
Thus, P3(·|x̃2, u2) = Q for each possible x̃2. Therefore, our calculations end up
being the same as in Example 3.2.2. We do not bother to repeat the calculations
here, so we just reiterate the findings. Recall that

J2(0, 1) = J2(0, 2) = 9, J2(1, 1) = J2(1, 2) = 3,
J2(2, 1) = J2(2, 2) = −1, J2(3, 1) = J2(3, 2) = −3,

19

3.3. State augmentation and other reformulations

and

µ2(0, 1) = µ2(0, 2) = 3, µ2(1, 1) = µ2(1, 2) = 2,
µ2(2, 1) = µ2(2, 2) = 1, µ2(3, 1) = µ2(3, 2) = 0.

We can now move on to calculate the values for J1(x̃1). Note first that for
all states x̃1 = (x1, 1), x1 = 0, 1, 2, 3, we get the same values as we calculated for
J1(x1) in Example 3.2.2. This is the case as we are taking the expectation with
respect to the same probability measure as in Example 3.2.2 when y1 = 1, and
because J2(x̃2) = J2(x2, y2) is equal to the value J2(x2) from Example 3.2.2 for
each x2 = 0, 1, 2, 3, and for each y2 = 1, 2. The last property also let us simplify
the calculations, since we do not need to take the expectation with respect to
the value of y2. We then calculate J1(x̃1) for states where y1 = 2.

J1(0, 2) = min
u1∈U(0)

EP1 [u2
1 − 0 + J2(0 + u1 + w1)]

= min
u1∈{0,1,2,3}

EP1 [u2
1 − 0 + J2(0 + u1 + w1)]

= min{EQ[02 + J2(0 + w1)], ER[12 + J2(1 + w1)],
ER[22 + J2(2 + w1)], EQ[32 + J2(3 + w1)]}

= min
{
J2(0), 1 + 1

2(J2(0) + J2(1)), 4 + 1
2(J2(1) + J2(2)), 9 + J2(3)

}
= min{9, 7, 5, 6} = 5,

J1(1, 2) = min
u1∈U(1)

EP1 [u2
1 − 1 + J2(1 + u1 + w1)]

= min
u1∈{0,1,2}

EP1 [u2
1 − 1 + J2(1 + u1 + w1)]

= min{ER[02 − 1 + J2(1 + w1)], ER[12 − 1 + J2(2 + w1)],
EQ[22 − 1 + J2(3 + w1)]}

= min
{
−1 + 1

2(J2(0) + J2(1)), 1− 1 + 1
2(J2(1) + J2(2)), 4− 1 + J2(3)

}
= min{5, 1, 0} = 0,

J1(2, 2) = min
u1∈U(2)

EP1 [u2
1 − 2 + J2(2 + u1 + w1)]

= min
u1∈{0,1}

EP1 [u2
1 − 2 + J2(2 + u1 + w1)]

= min
{
ER[02 − 2 + J2(2 + w1)], EQ[12 − 2 + J2(3 + w1)]

}
= min{−2 + 1

2(J2(1) + J2(2)), 1− 2 + J2(3)} = min{−1,−4} = −4,

J1(3, 2) = min
u1∈U(3)

EP1 [u2
1 − 3 + J2(3 + u1 + w1)]

= min
u1∈{0}

EP1 [u2
1 − 3 + J2(3 + u1 + w1)]

= EQ[02 − 3 + J2(3 + w1)] = −3 + J2(3) = −6,

giving us

µ1(0, 2) = 2, µ1(1, 2) = 2, µ1(2, 2) = 1, µ1(3, 2) = 2.

20

3.3. State augmentation and other reformulations

We also have from Example 3.2.2 that

J1(0, 1) = 11
3 , J1(1, 1) = −1

3 , J1(2, 1) = −4, J1(3, 1) = −6,

and
µ1(0, 1) = 2, µ1(1, 1) = 1, µ1(2, 1) = 1, µ1(3, 1) = 2.

We now let Eξ0 [·] be the expectation (see Definition 2.1.4) with respect to
the distribution (see Definition 2.1.5) of the random variable ξ0. Since we have
the constraint x0 = 0, the final round of calculations yields

J0(0, 1) = min
u0∈U(0)

EP0 [Eξ0 [u2
0 − 0 + J1(0 + u0 + w0, ξ0)]]

= min
u0∈{0,1,2,3}

EP0 [Eξ0 [u2
0 − 0 + J1(0 + u0 + w0, ξ0)]]

= min{EQ[Eξ0 [02 + J1(0 + w0, ξ0)]], EP [Eξ0 [12 + J1(1 + w0, ξ0)]],
EP [Eξ0 [22 + J1(2 + w0, ξ0)]], EQ[Eξ0 [32 + J1(3 + w0, ξ0)]]}

= min
{
EQ

[
02 + 1

2(J1(0 + w0, 1) + J1(0 + w0, 2))
]
,

EP

[
12 + 1

2(J1(1 + w0, 1) + J1(1 + w0, 2))
]
,

EP

[
22 + 1

2(J1(2 + w0, 1) + J1(2 + w0, 2))
]
,

EQ

[
32 + 1

2(J1(3 + w0, 1) + J1(3 + w0, 2))
]}

= min
{

1
2(J1(0, 1) + J1(0, 2)),

1 + 1
6(J1(0, 1) + J1(0, 2) + J1(1, 1) + J1(1, 2) + J1(2, 1) + J1(2, 2))

4 + 1
6(J1(1, 1) + J1(1, 2) + J1(2, 1) + J1(2, 2) + J1(3, 1) + J1(3, 2))

9 + 1
2(J1(3, 1) + J1(3, 2))

}
= min

{
13
3 ,

19
18 ,

11
18 , 3

}
= 11

18
J0(0, 2) = min

u0∈U(0)
EP0 [Eξ0 [u2

0 − 0 + J1(0 + u0 + w0, ξ0)]]

= min
u0∈{0,1,2,3}

EP0 [Eξ0 [u2
0 − 0 + J1(0 + u0 + w0, ξ0)]]

= min{EQ[Eξ0 [02 + J1(0 + w0, ξ0)]], ER[Eξ0 [12 + J1(1 + w0, ξ0)]],
ER[Eξ0 [22 + J1(2 + w0, ξ0)]], EQ[Eξ0 [32 + J1(3 + w0, ξ0)]]}

= min
{
EQ

[
02 + 1

2(J1(0 + w0, 1) + J1(0 + w0, 2))
]
,

ER

[
12 + 1

2(J1(1 + w0, 1) + J1(1 + w0, 2))
]
,

ER

[
22 + 1

2(J1(2 + w0, 1) + J1(2 + w0, 2))
]
,

21

3.4. Deterministic systems and the shortest path problem

EQ

[
32 + 1

2(J1(3 + w0, 1) + J1(3 + w0, 2))
]}

= min
{

1
2(J1(0, 1) + J1(0, 2)),

1 + 1
4(J1(0, 1) + J1(0, 2) + J1(1, 1) + J1(1, 2))

4 + 1
4(J1(1, 1) + J1(1, 2) + J1(2, 1) + J1(2, 2))

9 + 1
2(J1(3, 1) + J1(3, 2))

}
= min

{
13
3 ,

47
12 ,

23
12 , 3

}
= 23

12 .

We thus have
µ0(0, 1) = 2, µ0(0, 2) = 2.

We conclude that the expected optimal value is

Eξ−1 [J0(0, ξ−1)] = 1
2(J0(0, 1) + J0(0, 2)) = 1

2

(
11
18 + 23

12

)
= 91

72 .

3.4 Deterministic systems and the shortest path problem

The following section is also based on [Ber17]. We will in this section take a
look at deterministic problems with a discrete character, which is problems
where wk only has one possible value. Then, given some state xk and a policy
π = {µ0, . . . µN−1}, we can find the control uk as usual by

uk = µk(xk).

We can then determine the next state xk+1 by

xk+1 = fk(xk, µk(xk)).

We are therefore able to optimize the cost over the controls {u0, . . . , uN−1}
instead of the admissible policies π = {µ0, . . . µN−1} that we described in
Section 3.1.

Finite-state systems and shortest paths

We now consider the case where the state space at each time step is finite,
i.e., Xk is finite for each k = 1, . . . , N − 1. It is then possible, when at a
state xk ∈ Xk, to relate a control uk ∈ U(xk) ⊂ Uk with the transition to the
state xk+1 = fk(xk, uk) where the cost is given by g(xk, uk). Therefore, we
can represent this kind of problem as a graph with N layers, in addition to a
starting node s and a terminal node t. Here, the nodes at layer k represent
the possible states at time k. The arcs from nodes at a layer k to nodes at
the layer k + 1 then represents the transition from xk to xk+1, i.e., the control
uk. If we think of the cost g(xk, uk) as the length of the arc representing uk,

22

3.4. Deterministic systems and the shortest path problem

we see that our DP problem can be interpreted as finding the shortest path
from s to t. A path is a collection of arcs (j1, j2), (j2, j3), . . . , (jN−1, jN). Here
(jk−1, jk) represent choosing the control uk−1 when xk−1 = jk−1 such that
xk = fk−1(xk−1, uk−1) = jk. The shortest path from s to t is then the sequence
(s, j1), . . . , (jN , t) such that the sum

N−1∑
k=1

g(jk, uk)

is as small as possible. Here uk represent the arc that take us from jk to jk+1
when (jk, jk+1) is in our path.

We now introduce the following notation,

akij := Cost of going from state i ∈ Xk to state j ∈ Xk+1 at time k,

aNit := gN (i) = Terminal cost for state i ∈ XN .

We also set akij :=∞ when there is no control uk that take us from state i to
state j at time k. The DP algorithm, introduced in Section 3.2, for a finite-state
system can then be written as

JN (i) =aNit , i ∈ XN , (3.10)
Jk(i) = min

j∈Xk+1
(akij + Jk+1(j)), i ∈ Xk, k = 0, . . . , N − 1. (3.11)

We can then interpret the optimal cost, J0(s), as the length of the shortest
path connecting s and t.

Example 3.4.1 (Graph representation, continuation of Example 3.2.2). †
Let us again consider the dynamic programming problem from Example 3.2.2,
but now a deterministic version. That is, we let

Pk(·|xk, uk) = Q

induce the probability distribution (Definition 2.1.5) of Ω. Recall that

Q({w1}) = Q({w3}) = 0, Q({w2}) = 1.

Then,
wk = 0, k = 0, 1, 2.

We will now try to construct a graph that represents this system. Since we
have that x0 = 0, we let the start node s and the node representing x0 = 0 be
the same node. Accordingly, since x3 = 3 and g3(3) = 0, we let the termination
node t and the node representing x3 = 3 be the same node. We also need nodes
representing every possible state for k = 1, 2, which we call stage 1 and stage 2
respectively in our graph. Then, as described above in Section 3.4, we let the
numbers on (or lengths of) the arcs between the nodes be equal to

akxkxk+1
= g(xk, uk) = u2

k − xk,

when the node where the arc originates has the value xk ∈ Xk and the end
node of the arc has the value xk + uk = xk+1 ∈ Xk+1. Here, we only draw the
arcs that have a finite value, but we could have drawn the graph as a complete
graph where the missing arcs had an infinite cost (length). The resulting graph
can be seen in Figure 3.1.

23

3.4. Deterministic systems and the shortest path problem

3

-2

-1

9

0 4

Stage 0 Stage 1 Stage 2 Stage 3

s = x0 = 0

x1 = 0

x1 = 1

x1 = 2

x1 = 3

x2 = 0

x2 = 1

x2 = 2

x2 = 3

t = x3 = 3

0

0

9

1 3

4 -1

9

-3

-3

1

-1

Figure 3.1: A graph representation of a deterministic finite-state system

A forward DP algorithm for shortest path problems

A disadvantage with the regular DP algorithm from Section 3.2 is that it starts
with JN (i) and then calculates backwards. Thus, if we are solving a problem
in real-time, the algorithm is not applicable, since we do not know what the
final state looks like. However, for deterministic finite-state problems we can
find a forward DP algorithm. If we again look at the DP problem as a shortest
path problem, we can just flip each edge and let the length be the same as for
the original edge. The optimal path will now be the same as for the original
problem, just reversed. Then, the forward DP algorithm becomes

J̃N (j) =a0
sj , j ∈ X1, (3.12)

J̃k(j) = min
i∈XN−k

(aN−kij + J̃k+1(i)), j ∈ XN−k+1, k = 1, . . . , N − 1. (3.13)

The optimal cost, or shortest path, becomes

J̃0(t) = min
i∈XN

(aNit + J̃1(i)),

and we have that
J0(s) = J̃0(t).

Just as we viewed Equation (3.7) as the ’cost-to-go’ function, we can view J̃k(j)
as the ’cost-to-arrive’ function. That is, the optimal cost of starting from s and
arriving at state j.

Example 3.4.2 (Forward DP, continuation of Example 3.4.1). †
In this example, we demonstrate the forward dynamic programming algorithm
on the deterministic finite-state system from Example 3.4.1. Let us start by

24

3.4. Deterministic systems and the shortest path problem

3

-2

-1

9

0 4

Stage 0 Stage 1 Stage 2 Stage 3

s = x0 = 0

x1 = 0

x1 = 1

x1 = 2

x1 = 3

x2 = 0

x2 = 1

x2 = 2

x2 = 3

t = x3 = 3

0

0

9

1 3

4 -1

9

-3

-3

1

-1

Figure 3.2: The flipped deterministic finite-state system

drawing the flipped version of the graph from Figure 3.1 that represents our
new system that we will apply the forward DP algorithm to. The flipped graph
can be seen in Figure 3.2. Keep in mind that akij = g(i, j− i), as uk = j− i, and
that if an arc (ik, jk) is not drawn in the graph, we have that akij =∞. Note
also that we can find the costs akij from the graph in Figure 3.2. Then, since we
have the initial value x0 = 0 we can start the forward DP algorithm with

J̃3(0) = a0
00 = g(0, 0) = 02 − 0 = 0,

J̃3(1) = a0
01 = g(0, 1) = 12 − 0 = 1,

J̃3(2) = a0
02 = g(0, 2) = 22 − 0 = 4,

J̃3(3) = a0
03 = g(0, 3) = 32 − 0 = 9.

Thus,
µ3(0) = 0, µ3(1) = 0, µ3(2) = 0, µ3(3) = 0.

Note that µ3(x1) in this setting is not the control u0 ∈ U(x1) per se, but the
next state of the reversed path. This makes sense for the forward dynamic
programming algorithm since we minimize over states in XN−k and not controls
in Uk(xk). Thus, since each path needs to end at s = x0 = 0, we have that
µ3(x1) = 0. Then, at the next stage we get

J̃2(0) = min
x1∈X1

(a1
x10 + J̃3(x1)) = min

x1∈{0,1,2,3}
(a1
x10 + J̃3(x1))

= min{0 + J̃3(0),∞+ J̃3(1),∞+ J̃3(2),∞+ J̃3(3)}
= min{0,∞,∞,∞} = 0,

J̃2(1) = min
x1∈X1

(a1
x11 + J̃3(x1)) = min

x1∈{0,1,2,3}
(a1
x10 + J̃3(x1))

25

3.4. Deterministic systems and the shortest path problem

= min{1 + J̃3(0),−1 + J̃3(1),∞+ J̃3(2),∞+ J̃3(3)}
= min{1, 0,∞,∞} = 0,

J̃2(2) = min
x1∈X1

(a1
x12 + J̃3(x1)) = min

x1∈{0,1,2,3}
(a1
x10 + J̃3(x1))

= min{4 + J̃3(0), 0 + J̃3(1),−2 + J̃3(2),∞+ J̃3(3)}
= min{4, 1, 2,∞} = 1,

J̃2(3) = min
x1∈X1

(a1
x13 + J̃3(x1)) = min

x1∈{0,1,2,3}
(a1
x10 + J̃3(x1))

= min{9 + J̃3(0), 3 + J̃3(1),−1 + J̃3(2),−3 + J̃3(3)}
= min{9, 4, 3, 6} = 3.

This gives
µ2(0) = 0, µ2(1) = 1, µ2(2) = 1, µ2(3) = 2.

We then continue with calculating J̃1(x3), and since we have the constraint
x3 = 3, we get

J̃1(3) = min
x2∈X2

(a2
x23 + J̃2(x2)) = min

x2∈{0,1,2,3}
(a2
x23 + J̃2(x2))

= min{9 + J̃2(0), 3 + J̃2(1),−1 + J̃2(2),−3 + J̃2(3)}
= min{9, 3, 0, 0} = 0.

Therefore,
µ1(3) = 2, 3.

Now, since we have that the terminal node t and the node representing x3 = 3
is the same node, we have that the optimal value

J̃0(t) = J̃1(3) = 0.

Recall that we introduced paths in Section 3.4, and note that we here have two
candidates for the shortest path, namely

{(x3 = 3, x2 = 2), (x2 = 2, x1 = 1), (x1 = 1, x0 = 0)},

and
{(x3 = 3, x2 = 3), (x2 = 3, x1 = 2), (x1 = 2, x0 = 0)}.

Both paths are drawn in the graph in Figure 3.3, where the first path is drawn
in blue and the other in orange.

Converting a Shortest Path Problem to a Deterministic
Finite-State Problem

In this subsection, we show that we can convert any shortest path problem into
a deterministic finite-state problem. In the previous Section 3.4, we showed
that we can convert any deterministic finite-state problem into a shortest path
problem. Therefore, we have that the two types of problems are equivalent.

Assume that {1, 2, . . . , N, t} are nodes in a graph. We denote the cost of
traversing the graph from node i to node j by aij , and if there is no arc from
i to j, we set aij = ∞. The node t is called the destination node, and our

26

3.4. Deterministic systems and the shortest path problem

3

-2

-1

9

0 4

Stage 0 Stage 1 Stage 2 Stage 3

s = x0 = 0

x1 = 0

x1 = 1

x1 = 2

x1 = 3

x2 = 0

x2 = 1

x2 = 2

x2 = 3

t = x3 = 3

0

0

9

1 3

4 -1

9

-3

-3

1

-1

Figure 3.3: The two candidates for shortest path

goal is to discover the shortest path to the destination node from each node
i. The only assumption we need is that there are no cycles with negative cost,
as a negative cycle would allow us to decrease the cost as much as we would
like. We then have that the optimal path can not exceed N moves. Thus, we
require every solution to take exactly N moves, but we allow the paths to have
stationary moves. That is, we can move from node i to itself at a cost of 0, i.e.,
aii = 0 for all i ∈ {1, 2, . . . , N}. Then, we introduce

Jk(i) := optimal cost when in N−k steps moving to t from i, k ∈ {0, 1, . . . , N−1},

and we let i ∈ {1, 2, . . . , N}. Note that J0(i) is the cost of traversing the
shortest path between i and t. The corresponding DP algorithm (Section 3.2)
then takes the form

JN−1(i) = ait, (3.14)
Jk(i) = min

j=1,...,N
(aij + Jk+1(j)), k ∈ {0, 1, . . . , N − 2}. (3.15)

We see that this is a deterministic finite-state problem, which we introduced
in Section 3.4. Hence, we have shown that we can convert a general shortest
path problem to a deterministic finite-state problem. Thus, as mentioned at the
beginning of this subsection, we can conclude that the two types of problems
are equivalent. Let us now look at an example where we take a shortest path
problem and solve it using the dynamic programming algorithm described above
3.14.

Example 3.4.3 (Converting a shortest path problem to a DP-problem). †
This example is inspired by exercise 2.3 in [Ber17]. Let us consider a travel

planning problem. We are supposed to travel from city a to city b and would

27

3.4. Deterministic systems and the shortest path problem

1

2 3

5

4

5

1

2

0

3

4

1

Figure 3.4: Possible travelling routes

like to minimize the cost of our trip. Since the cheapest path is not necessarily
a direct route between a and b, we also consider some stopover options. We
represent the possible options as a graph, where each city is represented as a
node. We let node 1 and 5 represent city a and b, respectively. The cost of
going between two cities is represented as the length of the arc connecting the
nodes that represent the cities. If we consider an arc between the nodes i, and
j we use aij to denote the length of the arc. If an arc is not drawn on the graph
we did not manage to find a route between the cities, and we let the cost equal
∞. Thus, if i and j are two nodes that are not connected by an edge we let
aij = ∞. In our example we have the nodes {1, 2, 3, 4, 5}, where node 5 is the
terminal node, called t. The graph is shown in Figure 3.4.

We now want to apply the DP-algorithm described in Equation (3.14) and
Equation (3.15) to find the shortest path from each node i ∈ {1, 2, 3, 4} to node
t. As N = 4, we start by finding the J3(i) values, which denote the optimal cost
from node i to the terminal node t when only allowed one move, which gives

J3(1) = 5, J3(2) = 4, J3(3) = 0, J3(4) = 1.

Note also that
µ3(i) = 5 for i ∈ {1, 2, 3, 4},

where µk(i) gives the next node along the optimal path from i to t that reaches
t in N − k moves. Thus Jk(i) gives the length of the shortest path from i to
t that reaches the terminal node in N − k moves. We now go on to calculate
J2(i) for the different choices of i.

J2(1) = min{0 + J3(1), 1 + J3(2), ∞+ J3(3), 3 + J3(4)} = min{5, 5,∞, 4} = 4,
J2(2) = min{∞+ J3(1), 0 + J3(2), 2 + J3(3), ∞+ J3(4)} = min{∞, 4, 2,∞} = 2,
J2(3) = min{∞+ J3(1), ∞+ J3(2), 0 + J3(3), ∞+ J3(4)} = min{∞,∞, 0,∞} = 0,
J2(4) = min{∞+ J3(1), ∞+ J3(2), ∞+ J3(3), 0 + J3(4)} = min{∞,∞,∞, 1} = 1.

This gives
µ2(1) = 4, µ2(2) = 3, µ2(3) = 3, µ2(4) = 4.

We then continue with k = 1.

J1(1) = min{0 + J2(1), 1 + J2(2), ∞+ J2(3), 3 + J2(4)} = min{4, 3,∞, 4} = 3,

28

3.5. Stochastic systems with imperfect state information

1

2 3

5

4

5

1

2

0

3

4

1

Figure 3.5: Shortest travelling routes

J1(2) = min{∞+ J2(1), 0 + J2(2), 2 + J2(3), ∞+ J2(4)} = min{∞, 2, 2,∞} = 2,
J1(3) = min{∞+ J2(1), ∞+ J2(2), 0 + J2(3), ∞+ J2(4)} = min{∞,∞, 0,∞} = 0,
J1(4) = min{∞+ J2(1), ∞+ J2(2), ∞+ J2(3), 0 + J2(4)} = min{∞,∞,∞, 1} = 1.

Thus,
µ1(1) = 2, µ1(2) = 2 ∨ 3, µ1(3) = 3, µ1(4) = 4.

Then we proceed with calculating the shortest paths for each node i, namely
J0(i).

J0(1) = min{0 + J1(1), 1 + J1(2), ∞+ J1(3), 3 + J1(4)} = min{3, 3,∞, 4} = 3,
J0(2) = min{∞+ J1(1), 0 + J1(2), 2 + J1(3), ∞+ J1(4)} = min{∞, 2, 2,∞} = 2,
J0(3) = min{∞+ J1(1), ∞+ J1(2), 0 + J1(3), ∞+ J1(4)} = min{∞,∞, 0,∞} = 0,
J0(4) = min{∞+ J1(1), ∞+ J1(2), ∞+ J1(3), 0 + J1(4)} = min{∞,∞,∞, 1} = 1.

We then end up with

µ0(1) = 1 ∨ 2, µ0(2) = 2 ∨ 3, µ0(3) = 3, µ0(4) = 4.

Hence, the most affordable route from a to b costs J0(1) = 3 units. The
corresponding shortest path is drawn in the graph in Figure 3.5. We also note
that this was a quite small problem with only 5 nodes, but if the number of
nodes N were to increase, computing the shortest route by hand become very
tedious. Therefore, we often solve problems like this computationally.

3.5 Stochastic systems with imperfect state information

This section is as the former based on [Ber17]. In the previous sections, we
assumed that the controller has perfect information about state xk at time k.
Thus, we have assumed that we always know the exact value of xk. However,
this is not necessarily the case. In this section, we model a situation where the
controller does not have access to the underlying state, but only observes an
observation zk. These observations, z0, . . . , zN−1, depend on the current state
xk, a random observation disturbance vk and the control uk−1. We write

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k = 1, 2, . . . , N − 1.

29

3.5. Stochastic systems with imperfect state information

We let the observations zk ∈ Zk, and the random observation disturbances
vk ∈ Vk. We also let vk be distributed according to a given probability
distribution (see Definition 2.1.5) that depends on the state at time k, i.e., xk,
as well as all previous data. In more rigorous terms, we have

Pvk(·|xk, . . . x0, uk−1, . . . , u0, wk−1, . . . , w0, vk−1, . . . , v0).

As before, we have that the probability distribution of wk at time k,
Pwk(·|xk, uk), only depends on the current state and control, that is xk, uk. We
also have that the control uk ∈ Uk ⊂ Uk belongs to a known non-empty subset
Uk of the control space Uk, but in contrast to the basic dynamic programming
problem introduced in Section 3.1 we do not assume that Uk depends on xk.
Another assumption is that the initial state x0 is distributed according to a
given probability distribution Px0 .

Since our observation zk depends on all previous data through the random
disturbance vk, the controller should take into account all known information
at time k to make a decision about the control uk. That is, the functions µk
that have the subsets Uk of the control space Uk as its co-domain should have
the space Z0 × · · · × Zk × U0 × · · · × Uk−1 as its domain. We call vectors that
live in these spaces for information vectors. We let

I0 = z0, I1 = (z0, z1, u0), . . . , IN−1 = (z0, . . . , zN−1, u0, . . . , uN−2).

Then, for a policy π = {µ0, . . . , µN−1} to be admissible (see Section 3.1) we
would need µk to map the information Ik known to the controller at time k
into the relevant subset Uk of the control space for each possible information
vector Ik and each k. In other words, we would need µk(Ik) ∈ Uk to hold for
all Ik, k = 0, . . . , N − 1. The goal is then, similarly to the basic problem case
described in Section 3.1, to find such an admissible policy that minimizes the
cost described by the cost function

Jπ = E
x0,wk,vk,
k=0,...,N−1

[
gN (xN) +

N−1∑
k=0

gk(xk, µk(Ik), wk)
]

where the dynamics of the system is given by

xk+1 = fk(xk, µk(Ik), wk), k = 0, 1, . . . , N − 1,

along with the equations
z0 = h0(x0, v0),

zk = hk(xk, µk−1(Ik−1), vk), k = 1, 2, . . . , N − 1.

To be able to solve this, we need to reformulate the problem stated above,
similarly to what we did in Section 3.3. That means that we need to reformulate
the problem into a perfect state information version. To do this, we need to
find a new system where the state at time k contains all the information that
could be useful for the controller when choosing the control uk. An intuitive
first choice is the information vector Ik. We can thus look at the system

I0 = z0, Ik = (Ik−1, zk, uk−1), k = 0, . . . , N − 2. (3.16)

30

3.5. Stochastic systems with imperfect state information

Then, note that we can look at uk−1 as the control and zk as a random
disturbance that has the probability distribution P (zk|Ik−1, uk−1, zk−1, . . . , z0).
This would usually not satisfy the requirement of the basic problem (Section 3.1).
That is because the random disturbance zk only should depend on the current
state Ik−1 and control uk−1, but since zk−1, . . . , z0 ∈ Ik−1, we have that

P (zk|Ik−1, uk−1, zk−1, . . . , z0) = P (zk|Ik−1, uk−1).

Hence, the disturbance zk of the new system in Equation (3.16) depends only
on the current state Ik−1 and the control uk−1. Therefore, the requirement of
the basic problem holds. We can then write

E[gk(xk, uk, wk)] = E

[
E

xk,wk
[gk(xk, uk, wk)|Ik, uk]

]
,

and use this to find a new expression for the cost at time k that only depends
on the state Ik and control uk. We get

g̃k(Ik, uk) = E
xk,wk

[gk(xk, uk, wk)|Ik, uk]. (3.17)

We can then write one possible DP algorithm for problems with imperfect
state information by using Equation (3.16) and Equation (3.17). We have

JN−1(IN−1) = min
uN−1∈UN−1

[
E

xk,wk
[gN (fN−1(xN−1, uN−1, wN−1))

+ gN−1(xN−1, uN−1, wN−1)|IN−1, uN−1]
]
, (3.18)

Jk(Ik) = min
uk∈Uk

[
E
zk+1

[g̃k(Ik, uk) + Jk+1(Ik, zk+1, uk)|Ik, uk]
]
. (3.19)

We can then for each possible information vector IN−1 find the control
uN−1 ∈ UN−1 that minimizes Equation (3.18) and set µ∗N−1(IN−1) = uN−1 ∈
UN−1. Then, we can calculate JN−1(IN−1), and use Equation (3.19) to obtain
µ∗N−2 by finding the controls uN−2 ∈ UN−2 that are minimizing Equation (3.19)
for all possible values of IN−2. We can then continue in this fashion until
we find the value of J0(x0) = J0(z0). The optimal policy then becomes
π∗ = {µ∗0, . . . , µ∗N−1} and the optimal cost, J∗, is given by

J∗ = E
z0

[J0(z0)].

Sufficient statistic

A challenge with DP problems with imperfect state information is that the
dimension of the state space where the information vector Ik resides is expanding,
as we at each stage add a measurement. A sufficient statistic tries to overcome
this challenge by introducing some quantity Xk(Ik) of smaller dimension than Ik
that still contain all the information from Ik that is important for the controller
in order to solve the problem at hand. In other words, we want some mapping
Xk that maps the information vector Ik to some quantity such that we can
rewrite Equations (3.18) and (3.19) into

min
uk∈Uk

Hk(Xk(Ik), uk), (3.20)

31

3.5. Stochastic systems with imperfect state information

for some function Hk. We would then be able to find a policy µ̄k such that

µ∗(Ik) = µ̄k(Xk(Ik)),

where µ∗(Ik) is the optimal policy found by solving the DP algorithm given
by Equations (3.18) and (3.19). The functions that are reasonable to use as
sufficient statistics are of course problem dependent, and a trivial choice is
Xk(Ik) = Ik, but that does not help us much. In the following example we
illustrate the practicality of using a sufficient statistic by having the conditional
probability distribution of the state xk, given the information vector Ik, denoted
Pxk|Ik , as our sufficient statistic. In [Ber17] it is shown that this in fact is a
sufficient statistic and that we are able to find a problem specific function φk
such that we can recursively update our sufficient statistic by

Pxk+1|Ik+1 = φk(Pxk|Ik , uk, zk+1),

which is also illustrated in the following example.

Example 3.5.1 (Imperfect state information, continuation of Example 3.3.1). †
This example is partly inspired by exercise 4.10 in [Ber17] and the sufficient

statistic used is inspired by the proposed solution from [Ber]. We now consider
a version of the problem discussed in Example 3.3.1 where we introduce an
element of uncertainty. Instead of the value yk being forecasted at each stage,
as in Example 3.3.1, we now let yk+1 = yk, k = 0, 1, 2 where y0 is chosen at
random. We let P (y0 = 1) = P (y0 = 2) = 1

2 . The element of uncertainty comes
from y0 which is unknown to the controller, while the probability p of y0 = 1 is
known. Recall that the underlying scenario space Ω (see Section 2.1) has the
probability distribution

Pk(·|x̃k, uk) = Pk(·|xk, yk, uk) =


Q, if xk + uk = 0 or xk + uk = 3,
P, if 0 < xk + uk < 3 and yk = 1,
R, otherwise,

where the probability measures P,Q, and R are as defined in Example 2.1.8.
Thus, by not knowing the value of y0, and thereby not knowing the value of
any yk, k = 0, 1, 2, 3, we do not know whether our disturbance wk, k = 0, 1, 2
has the probability distribution P or R when 0 < xk + uk < 3. A way to tackle
this problem is to introduce a sufficient statistic (Section 3.5) and to find a way
of quantifying our belief about yk at time k based on the observed disturbances,
wk−1, · · · , w0. Before introducing a sufficient statistic, let us take a look at our
system. The underlying system is

x̃k+1 = (xk+1, yk+1) = (xk + uk + wk, yk), k = 0, 1, 2,

while the controller only observes

zk = xk.

We then introduce the sufficient statistic, (xk, pk), where pk is our belief that
the value of yk is 1 given the previously observed disturbances. That is,

pk = P (yk = 1|wk−1, · · · , w0).

32

3.5. Stochastic systems with imperfect state information

We can then, by use of Bayes’ theorem (Theorem 2.1.7), update our belief by

pk+1 = φk(pk, xk, uk, wk)

= pkP (wk|yk = 1, xk, uk)
pkP (wk|yk = 1, xk, uk) + (1− pk)P (wk|yk = 2, xk, uk) , k = 1, 2,

where p0 = p. We can then use the dynamic programming algorithm for
problems with imperfect state information (see Section 3.5) to find the expected
optimal value. We first note that since g3(x3) = 0, and because we have the
constraint x3 = 3, we get from Equation (3.18) that

J2(x2, p2) = min
u2∈U(x2)

{u2
2 − x2}, (3.21)

which is exactly the same value calculated in Example 3.2.2. Thus, we have
that

J2(0, ·) = 9, J2(1, ·) = 3, J2(2, ·) = −1, J2(3, ·) = −3.

The value of p2 has no impact on J2(x2, p2), since the constraint x3 = 3 forces
us to choose u2 such that x2 + u2 = 3. Hence

E[J3(3, φ2(p2, x2, u2, w2))|y2 = 1] = E[J3(3, φ2(p2, x2, u2, w2))|y2 = 2] = 0.

However, this is not the case for k = 0, 1. Then, we have that

J1(x1, p1) = min
u1∈U(x1)

{u2
1 − x1 + p1E[J2(x1 + u1 + w1, φ1(p1, x1, u1, w1))|y1 = 1]

+ (1− p1)E[J2(x1 + u1 + w1, φ1(p1, x1, u1, w1))|y1 = 2]}

J0(x0, p0) = min
u0∈U(x0)

{u2
0 − x0 + p0E[J1(x0 + u0 + w0, φ0(p0, x0, u0, w0))|y0 = 1]

+ (1− p0)E[J1(x0 + u0 + w0, φ0(p0, x0, u0, w0))|y0 = 2]}.

To be able to calculate the values for J1(x1, p1), we first need to find each
possible value for p1. Since x0 = 0, we have that U(x0) = {0, 1, 2, 3}. We also
know that p0 = p = 1

2 and that w0 ∈ {−1, 0, 1}. Thus,

p1 = φ0(p0, x0, u0, w0) = φ0

(
1
2 , 0, u0, w0

)
=

1
2P (w0|y0 = 1, 0, u0)

1
2P (w0|yk = 1, 0, u0) + (1− 1

2)P (w0|y0 = 2, 0, u0)
,

with u0 ∈ {0, 1, 2, 3}, w0 ∈ {−1, 0, 1}. We also note from the definition of Pk

33

3.5. Stochastic systems with imperfect state information

that if u0 = 0, 3 we have w0 = 0. Some simple calculations then yield

φ0

(
1
2 , 0, 0, 0

)
= φ0

(
1
2 , 0, 3, 0

)
=

1
2P (0|y0 = 1, x0 = 0, u0 = 3)

1
2P (0|yk = 1, x0 = 0, u0 = 3) + (1− 1

2)P (0|y0 = 2, x0 = 0, u0 = 3)

=
1
2

1
2 + 1

2
= 1

2 ,

φ0

(
1
2 , 0, 1,−1

)
= φ0

(
1
2 , 0, 1, 0

)
= φ0

(
1
2 , 0, 2,−1

)
= φ0

(
1
2 , 0, 2, 0

)
=

1
2P (0|y0 = 1, x0 = 0, u0 = 2)

1
2P (0|yk = 1, x0 = 0, u0 = 2) + (1− 1

2)P (0|y0 = 2, x0 = 0, u0 = 2)

=
1
2 ·

1
3

1
2 ·

1
3 + 1

2 ·
1
2

= 1
4 ,

φ0

(
1
2 , 0, 1, 1

)
= φ0

(
1
2 , 0, 2, 1

)
=

1
2P (1|y0 = 1, x0 = 0, u0 = 2)

1
2P (1|yk = 1, x0 = 0, u0 = 2) + (1− 1

2)P (1|y0 = 2, x0 = 0, u0 = 2)

=
1
2 · 1

1
2 · 1 + 1

2 · 0
= 1.

We can then go on to find values for J1(x1, p1). We start by finding the following
expressions

J1(0, p1) = min
u1∈U(0)

{u2
1 − 0 + p1EP1 [J2(0 + u1 + w1, φ1(p1, 0, u1, w1))|y1 = 1]

+ (1− p1)EP1 [J2(0 + u1 + w1, φ1(p1, 0, u1, w1))|y1 = 2]}

= min
u1∈{0,1,2,3}

{u2
1 + p1EP1 [J2(u1 + w1)|y1 = 1]

+ (1− p1)EP1 [J2(u1 + w1)|y1 = 2]}

= min{p1EP1 [J2(w1)|y1 = 1] + (1− p1)EP1 [J2(w1)|y1 = 2],

1 + p1EP1 [J2(1 + w1)|y1 = 1] + (1− p1)EP1 [J2(1 + w1)|y1 = 2],

4 + p1EP1 [J2(2 + w1)|y1 = 1] + (1− p1)EP1 [J2(2 + w1)|y1 = 2],

9 + p1EP1 [J2(3 + w1)|y1 = 1] + (1− p1)EP1 [J2(3 + w1)|y1 = 2]}

= min{p1J2(0) + (1− p1)J2(0),

1 + p1
1
3(J2(0) + J2(1) + J2(2)) + (1− p1)1

2(J2(0) + J2(1)),

4 + p1
1
3(J2(1) + J2(2) + J2(3)) + (1− p1)1

2(J2(1) + J2(2)),

9 + p1J2(3) + (1− p1)J2(3)}

34

3.5. Stochastic systems with imperfect state information

= min
{

9, 1 + p1
11
3 + (1− p1)6, 4− p1

1
3 + (1− p1), 6

}
,

J1(1, p1) = min
u1∈U(1)

{u2
1 − 1 + p1EP1 [J2(1 + u1 + w1, φ1(p1, 1, u1, w1))|y1 = 1]

+ (1− p1)EP1 [J2(1 + u1 + w1, φ1(p1, 1, u1, w1))|y1 = 2]}

= min
u1∈{0,1,2}

{u2
1 − 1 + p1EP1 [J2(1 + u1 + w1)|y1 = 1]

+ (1− p1)EP1 [J2(1 + u1 + w1)|y1 = 2]}

= min
{
− 1 + p1

1
3(J2(0) + J2(1) + J2(2)) + (1− p1)1

2(J2(0) + J2(1)),

p1
1
3(J2(1) + J2(2) + J2(3)) + (1− p1)1

2(J2(1) + J2(2)),

3 + p1J2(3) + (1− p1)J2(3)
}

= min
{
−1 + p1

11
3 + (1− p1)6,−p1

1
3 + (1− p1), 0

}
,

J1(2, p1) = min
u1∈U(2)

{u2
1 − 2 + p1EP1 [J2(2 + u1 + w1, φ1(p1, 2, u1, w1))|y1 = 1]

+ (1− p1)EP1 [J2(2 + u1 + w1, φ1(p1, 2, u1, w1))|y1 = 2]}

= min
u1∈{0,1}

{u2
1 − 2 + p1EP1 [J2(2 + u1 + w1)|y1 = 1]

+ (1− p1)EP1 [J2(2 + u1 + w1)|y1 = 2]}

= min
{
− 2 + p1

1
3(J2(1) + J2(2) + J2(3)) + (1− p1)1

2(J2(1) + J2(2)),

− 1 + p1J2(3) + (1− p1)J2(3)
}

= min
{
−2− p1

1
3 + (1− p1),−4

}
,

J1(3, p1) = min
u1∈U(3)

{u2
1 − 3 + p1EP1 [J2(3 + u1 + w1, φ1(p1, 3, u1, w1))|y1 = 1]

+ (1− p1)EP1 [J2(3 + u1 + w1, φ1(p1, 3, u1, w1))|y1 = 2]}

= min
u1∈{0}

{u2
1 − 3 + p1EP1 [J2(3 + u1 + w1)|y1 = 1]

+ (1− p1)EP1 [J2(3 + u1 + w1)|y1 = 2]}

= −3 + p1J2(3) + (1− p1)J2(3) = −6,

where we have used the fact that

J2(x2, p2) = J2(x2) for all x2 ∈ {0, 1, 2, 3}, p2 ∈ (0, 1).

35

3.5. Stochastic systems with imperfect state information

We can then insert the possible values for p1
(
that is 1

4 ,
1
2 , or 1

)
in the

expressions for J1(x1, p1) derived above. Calculations then give

J1

(
0, 1

4

)
= min

{
9, 1 + 1

4 ·
11
3 +

(
1− 1

4

)
6, 4− 1

4 ·
1
3 +

(
1− 1

4

)
, 6
}

= min
{

9, 77
12 ,

14
3 , 6

}
= 14

3 ,

J1

(
0, 1

2

)
= min

{
9, 1 + 1

2 ·
11
3 +

(
1− 1

2

)
6, 4− 1

2 ·
1
3 +

(
1− 1

2

)
, 6
}

= min
{

9, 35
6 ,

13
3 , 6

}
= 13

3 ,

J1

(
1, 1

4

)
= min

{
−1 + 1

4 ·
11
3 +

(
1− 1

4

)
6,−1

4 ·
1
3 +

(
1− 1

4

)
, 0
}

= min
{

53
12 ,

2
3 , 0
}

= 0,

J1

(
2, 1

4

)
= min

{
−2− 1

4 ·
1
3 +

(
1− 1

4

)
,−4

}
= min

{
−4

3 ,−4
}

= −4,

J1(2, 1) = min
{
−2− 1 · 1

3 + (1− 1),−4
}

= min
{
−7

3 ,−4
}

= −4,

J1

(
3, 1

2

)
= J1(3, 1) = −6,

which means that

µ1

(
0, 1

4

)
= µ1

(
0, 1

2

)
= µ1

(
1, 1

4

)
= 2,

µ1

(
2, 1

4

)
= µ1 (2, 1) = 1,

µ1

(
3, 1

2

)
= µ1(3, 1) = 0.

We can then go on to calculate J0
(
0, 1

2
)
. We have

J0

(
0, 1

2

)
= min
u1∈U(0)

{
u2

0 − 0 + 1
2EP0

[
J1

(
0 + u0 + w0, φ0

(
1
2 , 0, u0, w0

)) ∣∣∣∣y0 = 1
]

+
(

1− 1
2

)
EP0

[
J1

(
0 + u0 + w0, φ0

(
1
2 , 0, u0, w0

)) ∣∣∣∣y0 = 2
]}

= min
u0∈{0,1,2,3}

{
u2

0 + 1
2EP0

[
J1

(
u0 + w0, φ0

(
1
2 , 0, u0, w0

)) ∣∣∣∣y0 = 1
]

+ 1
2EP0

[
J1

(
u0 + w0, φ0

(
1
2 , 0, u0, w0

)) ∣∣∣∣y0 = 2
]}

= min
{

1
2J1

(
0, φ0

(
1
2 , 0, 0, 0

))
+ 1

2J1

(
0, φ0

(
1
2 , 0, 0, 0

))
,

36

3.5. Stochastic systems with imperfect state information

1 + 1
2 ·

1
3

(
J2

(
0, φ0

(
1
2 , 0, 1,−1

))
+ J2

(
1, φ0

(
1
2 , 0, 1, 0

))
+ J2

(
2, φ0

(
1
2 , 0, 1, 1

)))
+ 1

2 ·
1
2

(
J1

(
0, φ0

(
1
2 , 0, 1,−1

))
+ J1

(
1, φ0

(
1
2 , 0, 1, 0

)))
,

4 + 1
2 ·

1
3

(
J1

(
1, φ0

(
1
2 , 0, 2,−1

))
+ J1

(
2, φ0

(
1
2 , 0, 2, 0

))
+ J1

(
3, φ0

(
1
2 , 0, 2, 1

)))
+ 1

2 ·
1
2

(
J1

(
1, φ0

(
1
2 , 0, 2,−1

)
,

)
+ J1

(
2, φ0

(
1
2 , 0, 2, 0

)))
,

9 + 1
2J1

(
3, φ0

(
1
2 , 0, 3, 0

))
+ 1

2J1

(
3, φ0

(
1
2 , 0, 3, 0

))}
= min

{
1
2J1

(
0, 1

2

)
+ 1

2J1

(
0, 1

2

)
,

1 + 1
2 ·

1
3

(
J2

(
0, 1

4

)
+ J2

(
1, 1

4

)
+ J2 (2, 1)

)
+ 1

2 ·
1
2

(
J1

(
0, 1

4

)
+ J1

(
1, 1

4

))
,

4 + 1
2 ·

1
3

(
J1

(
1, 1

4

)
+ J1

(
2, 1

4

)
+ J1 (3, 1)

)
+ 1

2 ·
1
2

(
J1

(
1, 1

4 ,
)

+ J1

(
2, 1

4

))
,

9 + 1
2J1

(
3, 1

2

)
+ 1

2J1

(
3, 1

2

)}
= min

{
13
3 , 1 + 1

2 ·
1
3

(
14
3 + 0− 4

)
+ 1

2 ·
1
2

(
14
3 + 0

)
,

4 + 1
2 ·

1
3

(
0− 4− 6

)
+ 1

2 ·
1
2 (0 +−4) , 9− 6

}
= min

{
13
3 ,

41
18 ,

4
3 , 3
}

= 4
3 .

Thus,
µ0

(
0, 1

2

)
= 2.

This implies that the expected optimal value is

J∗
(

0, 1
2

)
= J0

(
0, 1

2

)
= 4

3 .

37

3.5. Stochastic systems with imperfect state information

In this chapter we introduced the theory of dynamic programming by
considering the finite horizon DP problem. We have also looked at how different
types of problems can be rewritten into the standard DP problem, which then
can be solved by the DP algorithm. In the next chapter we continue our study
of dynamic programming by taking a look at the abstract setting.

38

CHAPTER 4

Abstract dynamic programming

In this chapter we are going to take a look at abstract dynamic programming,
which is a more rigorous look at what we did in Chapter 3. The presentation
here is inspired by the book [Ber18].

4.1 The abstract dynamic programming model

We again let X be the set of states, while U is the set of controls, where
U(x) ⊂ U denotes the subset of possible controls in state x. The set of
all functions µ : X → U where µ(x) ∈ U(x), for all x ∈ X is denoted by
M. A non-stationary policy can then be written π = {µ0, µ1, . . .}, where
µk ∈ M for all k ∈ N. The definition of a stationary policy is given in the
following definition.

Definition 4.1.1 (Stationary policy). A stationary policy π is on the form

π = {µ, µ, . . .} for a µ ∈M.

We will often, by abuse of notation, write µ ∈M to denote the stationary
policy π = {µ, µ, . . .}. Note that this means that one can look atM as the set
of all feasible stationary policies, and we will therefore refer toM as the set of
stationary policies. We denote the set of all policies π by Π. We also introduce
the set R(X) which consist of all real-valued functions J : X → R. Observe
that every cost function J resides in the set R(X), so we can intuitively think
of this set as containing every possible cost function for our problem. We also
have some given mapping H : X × U ×R(X) → R. We will throughout this
thesis look at many examples of concrete choices for the mapping H, but in
general this mapping describes the dynamics of the system at hand. Given
some state x ∈ X, a control u ∈ U(x) and a cost function J , can we in many
cases interpret H(x, u, J) as the associated cost of applying control u in state x
when assuming that the cost-to-go at each state x′ ∈ X is given by J(x′).

The next important ingredients in this abstract framework is the DP
mappings, which is called Bellman operators in the reinforcement learning
literature. For each stationary policy µ ∈ M we define the operator
Tµ : R(X)→ R(X) by

(TµJ)(x) = H(x, µ(x), J), for all x ∈ X and J ∈ R(X). (4.1)

39

4.1. The abstract dynamic programming model

In addition, we have the operator T : R(X)→ R(X) which is defined as

(TJ)(x) = inf
u∈U(x)

H(x, u, J), for all x ∈ X and J ∈ R(X). (4.2)

Then, for a given initial cost function J̄ ∈ R(X) and a policy π =
{µ0, µ1, . . .} we let the N-stage cost function of the policy π be defined as

Jπ,N (x) = (Tµ0Tµ1 · · ·TµN−1 J̄)(x), x ∈ X,

while the infinite horizon cost function of the policy is defined as

Jπ(x) = lim sup
N→∞

Jπ,N (x) = lim sup
N→∞

(Tµ0Tµ1 · · ·TµN−1 J̄)(x), x ∈ X.

The objective in dynamic programming is, as we saw in Chapter 3, often to
minimize the total cost. In the abstract setting, this amounts to finding a policy
π that minimizes the cost function Jπ over the set Π of all policies. That is, we
would like to find some policy π∗, called an optimal policy, that satisfies

Jπ∗(x) = J∗(x) = inf
π∈Π

Jπ(x) for all x ∈ X,

where J∗ is the optimal cost function. For the problems we look at in this thesis
we have that the optimal cost function J∗ satisfies

J∗(x) = inf
u∈U(x)

H(x, u, J∗) for all x ∈ X, (4.3)

which is equivalent to J∗ being a fixed point of T . We call Equation (4.3)
Bellman’s equation. We will later in this chapter see that it is a monotonicity
and a contraction assumption that guarantee that there indeed exists a fixed
point J∗ of Equation (4.3) and that this fixed point satisfies

J∗(x) = Jπ∗(x) = inf
π∈M

Jπ(x) for all x ∈ X.

Therefore, if we are able to prove that our model satisfies the monotonicity and
contraction properties, then we would be able to find the optimal cost function
by calculating the fixed point of T . We will now take a look at these properties,
and start by defining monotonicity.

Definition 4.1.2 (Monotonicity [Ber18]). We say that a mapping H has the
monotonicity property if for J, J ′ ∈ R with J ≤ J ′ pointwise, i.e. J(x) ≤
J ′(x) for all x ∈ X, we have

H(x, u, J) ≤ H(x, u, J ′) for all x ∈ X and u ∈ U(x).

The notion of a contraction was introduced in Definition 2.2.7, but we will
now introduce a convenient normed space (Definition 2.2.3) of functions that
we will assume our operators to operate on.

Definition 4.1.3 (Space of real-valued functions J [Ber18]). Let v : X → R,
with v(x) > 0 for all x ∈ X, be a function. We then define B(X) as the space
of functions J : X → R where J(x)

v(x) < M for all x ∈ X for some M ∈ R. We
also equip B(X) with the following weighted sup-norm:

‖J‖v = sup
x∈X

|J(x)|
v(x) . (4.4)

If the choice of v is not important we just write ‖·‖.

40

4.1. The abstract dynamic programming model

We see that B(X) is a normed space of functions J where the fraction J(x)
v(x)

is bounded (Definition 2.2.10). The definition of B(X) imply that the space is
a compact normed space, and a proof of this can be found in the appendix of
[Ber18]. We will for the rest of this chapter assume that for arbitrary J ∈ B(X)
and µ ∈ M we have that TµJ, TJ ∈ B(X), and that the operator Tµ is a
contraction for each µ ∈M, i.e. for some α ∈ (0, 1) the following holds true:

d(TµJ, TµJ ′) = ‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖ = αd(J, J ′), (4.5)

for all J, J ′ ∈ B(X) and µ ∈M, where d(·, ·) is the metric induced by the norm
(4.4), as described in Proposition 2.2.4.

The following proposition ensures that the assumption of Tµ being a
contraction for each µ ∈ M implies that operator T also is a contraction.

Proposition 4.1.4 (Tµ contraction imply T contraction [Ber18]). Assume that
for any J ∈ B(X) and µ ∈M we have that TJ, TµJ ∈ B(X), and that Tµ is a
contraction, then the operator T is also a contraction.

Proof. This proof is based on a sketched proof of the same result given in
[Ber18]. We have for all µ ∈M that

‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖ for all J, J ′ ∈ B(X).

Thus,

TµJ(x)− TµJ ′(x)
v(x) ≤ α‖J − J ′‖ for all x ∈ X, J, J ′ ∈ B(X).

This tells us that

TµJ(x)− TµJ ′(x) ≤ α‖J − J ′‖v(x),

which imply that TµJ(x) ≤ TµJ ′(x) +α‖J −J ′‖v(x). Then taking the infimum
on both sides overM gives

TJ(x) ≤ TJ ′(x) + α‖J − J ′‖v(x).

Then
TJ(x)− TJ ′(x)

v(x) ≤ α‖J − J ′‖ for all x ∈ X, J, J ′ ∈ B(X). (4.6)

Now, by repeating the same arguments as above, but with

TµJ
′(x)− TµJ(x)
v(x) ≤ α‖J − J ′‖ for all x ∈ X, J, J ′ ∈ B(X),

we find that

TJ ′(x)− TJ(x)
v(x) ≤ α‖J − J ′‖ for all x ∈ X, J, J ′ ∈ B(X). (4.7)

Then by taking the supremum on the left-hand side of Equations (4.6) and (4.7)
gives ‖TJ − TJ ′‖ ≤ α‖J − J ′‖. �

41

4.1. The abstract dynamic programming model

To better see how the abstract formulation of the dynamic programming
problem given above relates to the model we introduced in Section 3.1 we take
a look at an example.

Example 4.1.5 (Abstract DP formulation, continuation of Example 3.2.2). †
Let us go back to the DP problem we looked at in Example 3.2.2 and try to
formulate the problem in the abstract DP context introduced in this chapter.
Recall that we have xk+1 = f(xk, uk, wk) = xk + uk + wk, with k ∈ {0, 1, 2}
and N = 3. We also have gN (xN) = 0 and gk(xk, uk) = u2

k − xk. The set
of controls are also limited with U(xk) = {u : 0 ≤ u + xk ≤ 3, u ≥ 0}, and
we restrict the initial and final state by x0 = 0, x3 = 3. In addition, we have
that the disturbances wk can take the values W = {−1, 0, 1}, with probability
Pk(·|xk, uk).

Let us first define the mapping H for this specific problem. We have

H(xk, uk, Jk) = EPk [gk(xk, uk) + αJk(f(xk, uk, wk))]
= EPk [gk(xk, uk) + αJk(xk+1)],

where in the last expression the expectation is taken with regards to the value
of xk+1 as this is the only thing dependent on the random disturbance wk. Note
also that we did not discount the cost function in the problem formulation given
in Section 3.1, so we let α = 1. We can then simplify the expression for H by
writing

H(xk, uk, Jk) = gk(xk, uk) + EPk [Jk(xk+1)].

We can then go on to define the DP mappings.

(TµJk)(xk) = H(xk, µk(xk), Jk) = gk(xk, µk(xk)) + EPk [Jk(xk+1)],

(TJk)(xk) = inf
uk∈U(xk)

H(xk, uk, Jk)

= inf
uk∈U(xk)

(gk(xk, uk) + EPk [Jk(xk + uk + wk)]).

Then, for a given policy π = {µ0, µ1, µ2}, we have

Jπ(x) = (Tµ0Tµ1Tµ2 J̄)(x),

where J̄ = g3(x3). Let us now try to find an exact expression for Jπ(x). We
start with k = 2.

(Tµ2 J̄)(x2) = g2(x2, µ2(x2)) + EP2 [J̄(x3)]
= g2(x2, 3− x2) + EP2 [J̄(3)] = g2(x2, 3− x2),

where we have used the restriction x3 = 3, and that J̄ = g3(x3) = g3(3) = 0.
Then

(Tµ1(Tµ2 J̄))(x1) = g1(x1, µ1(x1)) + EP1 [(Tµ2 J̄)(f(x1, µ1(x1), w1))]
= g1(x1, µ1(x1))

+ EP1 [g2(f(x1, µ1(x1), w1), 3− f(x1, µ1(x1), w1))].

42

4.2. Consequences of monotonicity and contracion assumptions

We then continue with the last step.

Jπ(x0) = (Tµ0(Tµ1Tµ2 J̄))(0)
= g0(0, µ0(0)) + EP0 [(Tµ1(Tµ2 J̄))(f(0, µ0(0), w0))]
= g0(0, µ0(0))

+ EP0 [g1(f(0, µ0(0), w0), µ1(f(0, µ0(0), w0)))
+ EP1 [g2(f(f(0, µ0(0), w0), µ1(f(0, µ0(0), w0)), w1),

3− f(f(0, µ0(0), w0), µ1(f(0, µ0(0), w0)), w1))]].

Then we have that the optimal policy π∗ is the one that minimizes Jπ∗ , and
this is the policy that we found in Example 3.2.2.

4.2 Consequences of monotonicity and contracion
assumptions

We continue with looking at some consequences of assuming that the operators
Tµ (4.1) and T (4.2) have the monotonicity (Definition 4.1.2) and contraction
(Definition 2.2.7) property, where the later is with respect to the norm on the
function space B(X) as defined in Definition 4.1.3. The first proposition covers
properties that are present even when we only assume that the contraction
property hold.

Proposition 4.2.1 (Consequences of contraction assumption [Ber18]). Assume
that for any J ∈ B(X) and µ ∈M we have that TJ, TµJ ∈ B(X) and that Tµ
is a contraction mapping with contraction factor α. Then

(i) The operators T and Tµ, for all µ ∈M have unique fixed points in the
space B(X) which we denote J∗ and Jµ, for all µ ∈M respectively. That
is, there exist some J∗ ∈ B(X) such that J∗ = TJ∗.

(ii) For arbitrary J ∈ B(X) and µ ∈M we have

lim
k→∞

‖J∗ − T kJ‖ = 0, lim
k→∞

‖Jµ − T kµJ‖ = 0.

(iii) We have that TµJ∗ = TJ∗ if and only if Jµ = J∗.

(iv) Let J ∈ B(X) be arbitrary, then

‖J∗ − J‖ ≤ 1
1− α‖TJ − J‖, ‖J∗ − TJ‖ ≤ α

1− α‖TJ − J‖.

(v) Let J ∈ B(X) and µ ∈M, then

‖Jµ − J‖ ≤
1

1− α‖TµJ − J‖, ‖Jµ − TµJ‖ ≤
α

1− α‖TµJ − J‖.

Proof. †
Parts (i)− (iv) are proven in [Ber18], so we will only write out the proof of

point (v) here. The proof of (v) is similar to the one for (iv), but we will write

43

4.2. Consequences of monotonicity and contracion assumptions

it out in more detail compared with the proof of part (iv) in [Ber18]. Assume
that J ∈ B(X) and that µ ∈ M. We also assume that Tµ is a contraction,
which in turn implies that T is a contraction from Proposition 4.1.4. We start
by showing that the inequality

‖Jµ − J‖ ≤
1

1− α‖TµJ − J‖

holds. From part (ii) of the proposition we have that

‖Jµ − J‖ = lim
k→∞

‖T kµJ − J‖

= lim
k→∞

‖T kµJ − T k−1
µ J + T k−1

µ J − · · · − TµJ + TµJ − J‖

≤ lim
k→∞

‖T kµJ − T k−1
µ J‖+ ‖T k−1

µ J − T k−2
µ J‖+ · · ·+ ‖TµJ − J‖

≤ lim
k→∞

αk−1‖TµJ − J‖+ αk−2‖TµJ − J‖+ · · ·+ ‖TµJ − J‖

= lim
k→∞

k−1∑
i=0

αi‖TµJ − J‖ = 1
1− α‖TµJ − J‖,

where the last inequality holds due to the contraction property of Tµ. To prove
the second inequality, note that we have

‖Jµ − TµJ‖ ≤
1

1− α‖Tµ(TµJ)− TµJ‖ ≤
α

1− α‖(TµJ)− J‖,

by using the first inequality with TµJ . �

We then proceed with a result that guarantees that the fixed point of T ,
which we denote by J∗, is equal to the cost function found by minimizing Jµ
over the set of stationary policies M when we have both monotonicity and
contraction. In fact, we will see that J∗ equals the minimum of Jπ over all
policies π ∈ Π, i.e. the optimal cost function.

Proposition 4.2.2 (Optimality of stationary policies [Ber18]). If the operators
Tµ, µ ∈M and T has the monotonicity property and are contractions on B(X),
then

J∗(x) = inf
π∈Π

Jπ(x) = inf
µ∈M

Jµ(x) for all x ∈ X,

where J∗ is the fixed point of T . We also have that for each ε > 0 there exists
some stationary policy µε ∈M that satisfies

J∗ ≤ Jµε ≤ J∗ + ε (4.8)

pointwise.

Our proof of Proposition 4.2.2 follows the one given in [Ber18] as well as a
section in the same book showing the optimality over nonstationary policies.
We choose to include the proof here anyway as it is of upmost importance for
the theory covered in this work. The proof we present also include somewhat
more details than the original from [Ber18]. However, before we present the
proof of Proposition 4.2.2 we need the following lemmas.

44

4.2. Consequences of monotonicity and contracion assumptions

Lemma 4.2.3. †
The following inequality holds:

J∗ ≤ T kµJ∗.

Proof of Lemma 4.2.3. We prove the lemma using induction on k ∈ N. For
k = 1 it is clear from the definition of T and Tµ (Equations (4.1) and (4.2))
that

J∗ = TJ∗ ≤ TµJ∗,

as J∗ is the fixed point of T . We now assume that the statement holds for
k = n. Then we have that

J∗ ≤ Tnµ J∗,

and by then applying Tµ on both sides of the equation we see that

TµJ
∗ ≤ Tn+1

µ J∗.

Then, by the using the same argument as for the case k = 1 we see that

J∗ ≤ TµJ∗ ≤ Tn+1
µ J∗.

We can then conclude that the lemma holds. �

Lemma 4.2.4. †
Assume that the mapping H is monotone. Then, for any policy π =
{µ0, µ1, . . . , µk, . . .} ∈ Π and any initial cost function J̄ ∈ B(X) we have
that

lim sup
k→∞

(Tµ0Tµ1 · · ·Tµk J̄)(i) ≥ lim
k→∞

(T k+1J̄)(i) for all i ∈ X.

Proof. We prove the claim with help of induction by showing that the inequality
holds for each k ∈ N. Let π = {µ0, µ1, . . . , µk, . . .} ∈ Π be an arbitrary policy.
For k = 0 and any cost function J̄ ∈ B(X) we have that

(Tµ0 J̄)(i) = H(i, µ0(i), J̄) ≥ min
u∈U(i)

H(i, u, J̄) = (T J̄)(i) for all i ∈ X.

We then assume that for any J̄ ∈ B(X)

(Tµ0Tµ1 · · ·Tµn J̄)(i) ≥ (Tn+1J̄)(i) for all i ∈ X

holds. We then have for k = n+ 1 and any J̄ ∈ B(X) that

(Tµ0Tµ1 · · ·TµnTµn+1 J̄)(i) = ((Tµ0Tµ1 · · ·Tµn)(Tµn+1 J̄))(i)
≥ (Tn+1(Tµn+1 J̄))(i)
≥ (Tn+1(T J̄))(i) = (Tn+2J̄)(i),

where the first inequality follows from the assumption made above, while
the second follows from the monotonicity property of H and the fact that
Tµn+1 J̄ ≥ T J̄ pointwise. We thus have that the inequality holds for each k ∈ N,
therefore it also holds at the limit and the statement is proved. �

We are then ready to present the proof of Proposition 4.2.2.

45

4.2. Consequences of monotonicity and contracion assumptions

Proof of Proposition 4.2.2. †
This proof is based on the proof of Proposition 2.1.2 and a section on optimality
over nonstationary policies in [Ber18], but with some more details. We begin
by showing that the right inequality of Equation (4.8) holds. We have from
Proposition 4.2.1(v) that

‖Jµ − J‖v ≤
1

1− α‖TµJ − J‖v. (4.9)

Then, by inserting J∗ in place of J in Equation (4.9) we have that

‖Jµ − J∗‖v ≤
1

1− α‖TµJ
∗ − J∗‖v. (4.10)

Note that we then for each ε > 0 are able to find some policy µε ∈ M that
satisfy

‖Jµε − J∗‖v ≤
1

1− α‖TµεJ
∗ − J∗‖v ≤ ε,

as

‖TµεJ∗ − J∗‖v = ‖TµεJ∗ − TJ∗‖v

= sup
x∈X

|H(x, µε(x), J∗)− infu∈U(x)H(x, u, J∗)|
v(x) ,

(4.11)

which imply that we are able to find some µε ∈M with µε(x) ∈ U(x) such that
supx∈X |H(x, µε(x), J∗) − infu∈U(x)H(x, u, J∗)| is sufficiently small. Observe
that sufficiently small in this context is (1 − α)εv(x) as we from combining
Equations (4.10) and (4.11) see that

‖Jµε − J∗‖v ≤
1

1− α‖TµεJ
∗ − J∗‖v

= 1
1− α sup

x∈X

|H(x, µε(x), J∗)− infu∈U(x)H(x, u, J∗)|
v(x)

≤ 1
1− α

(1− α)εv(x)
v(x)

= ε.

In other words, we find µε by for every x ∈ X setting

µε(x) = arg min
u∈U(x)

H(x, u, J∗)

while allowing an error of (1− α)εv(x). Thus we have that

Jµε(x) ≤ J∗(x) + ε for all x ∈ X.

This implies that
inf
µ∈M

Jµ(x) ≤ J∗(x).

We then proceed with showing that the opposite inequity holds. Note that
from the definitions of T and Tµ (Equations (4.1) and (4.2)) we have that
TJ∗ ≤ TµJ∗. Then, as J∗ is the cost function that satisfies J∗ = TJ∗, we have
that

J∗ = TJ∗ ≤ TµJ∗. (4.12)

46

4.2. Consequences of monotonicity and contracion assumptions

We can then apply Tµ on both sides of Equation (4.12) k − 1 times. Then

T k−1
µ J∗ ≤ T kµJ∗,

and from Lemma 4.2.3 we have that

J∗ ≤ T kµJ∗.

This implies that we have

J∗ ≤ lim
k→∞

T kµJ
∗ = Jµ,

showing that the other side of the inequality,

J∗(x) ≤ inf
µ∈M

Jµ(x),

holds. This also implies that the left inequality in Equation (4.8) holds. As we
then have shown that both Equation (4.8) and

J∗(x) = inf
µ∈M

Jµ(x),

holds, it only reminds to show that we have

J(x)∗ = inf
π∈Π

Jπ(x). (4.13)

AsM⊂ Π we immediately have that

J∗(x) = inf
µ∈M

Jµ(x) ≥ inf
π∈Π

Jπ(x).

To get the reverse inequality recall that

Jπ(i) = lim sup
k→∞

(Tµ0Tµ1 · · ·Tµk)(i),

for some policy π = {µ0, µ1, . . . , µk, . . .} ∈ Π. Then, from Lemma 4.2.4 we have
that

Jπ(x) = lim sup
k→∞

(Tµ0Tµ1 · · ·TµkJ) ≥ lim
k→∞

(T k+1J)(x) = J∗(x),

as we from Proposition 4.2.1(ii) have that limk→∞(T k+1J)(x) = J∗(x). Thus
we see that Equation (4.13) holds and the result is proven. �

Implications of results

The results we have introduced in Sections 4.1 and 4.2 have some important
implications that we are going to use a lot in the coming chapters. So far we
have shown that when we have some mapping H : X × U ×R(X)→ R that is
monotone, and that is such that the induced operator Tµ is a contraction for
each µ ∈M, then we have that:

• The operator T is a contraction as well (by Proposition 4.1.4),

47

4.2. Consequences of monotonicity and contracion assumptions

• For each µ ∈ M we have that Tµ has a unique fixed point Jµ (by
Proposition 4.2.1),

• The operator T has a unique fixed point that we denote by J∗ (by
Proposition 4.2.1),

• The identity J∗ = inf
µ∈Π

Jπ = inf
µ∈M

Jµ holds (by Proposition 4.2.2).

The strength in the theory presented in Chapter 4 is that if we have some
optimal control problem, and are able to find an expression for Bellman’s
equation, then we can easily define the mapping H. If we then are able to
show that the mapping H is monotone, and that the induced operator Tµ is
a contraction for each stationary policy µ ∈M, then that implies that T is a
contraction as well. This again tell us that the operator T has a fixed point,
which we denote J∗. We then know that J∗ = inf

µ∈Π
Jπ = inf

µ∈M
Jµ holds, which

imply two things of importance. First, the optimal cost function is indeed equal
to the fixed point of T . Second, the optimal policy can be found among the
stationary policies, which means that the subspace of stationary policies M
that we need to consider is a lot smaller than the space Π containing all policies.

Let us now take a quick look at the intuition behind defining the mapping
H, and the operators T and Tµ. The mapping H tell us something about how
the dynamic system evolve, as it given some state x ∈ X, control u ∈ U(x) and
some estimate of the cost function J give us the estimated cost-to-go when we
start in state x, use the control u and the cost-to-go values from the possible
successor states x′ ∈ X ′x,u = {x ∈ X | f(x, u, w) = x for some w ∈ W (x, u)}
are determined by J(x′) for each possible successor state x′ ∈ X ′x,u. We then
have that the operator Tµ, given some cost function J , finds the estimated
cost-to-go in each state x ∈ X when we start the control process in state x, use
the control u ∈ U(x) determined by the policy µ, i.e. u = µ(x), and where J
is the estimated cost-to-go in each possible successor state x′ ∈ X ′. In other
words, the function (TµJ)(x) gives the cost-to-go from state x, under control
µ(x) where J is the estimated cost-to-go from the possible successor states x′.

Let us now take a quick look at some examples showing why the monotonicity
and contraction property is important. The first example is taken from [Ber18],
but we have added some details and made some remarks the author does not
make in [Ber18].

Example 4.2.5 (Importance of Monotonicity property). †
This example is taken from [Ber18], but we write it out in more detail. Assume
that X = {x1, x2}, and that U = {u1, u2}. We define the mapping H by

H(x1, u, J) =
{
−αJ(x2) if u = u1,

−1 + αJ(x1) if u = u2,
H(x2, u, J) =

{
0 if u = u1,

B if u = u2,

where B is some positive number. Note first that the mapping H is not
monotone. Let J and J ′ be two cost functions with

J(x1) = 0, J(x2) = 0, J ′(x1) = 1 and J ′(x2) = 1,

48

4.2. Consequences of monotonicity and contracion assumptions

so we have J ≤ J ′ pointwise. We then see that

H(x1, u1, J) = −αJ(x2) = −α · 0 = 0,

while
H(x1, u1, J

′) = −αJ(x2) = −α · 1 = −α.

Thus we see that J ≤ J ′ pointwise, while H(x1, u1, J) ≥ H(x1, u1, J
′), showing

that H indeed is not monotone.
It is then possible to find that the fixed point J∗ of the operator T induced

by the mapping H is given by

J∗(x1) = − 1
1− α, J

∗(x2) = 0,

and indeed we see that

(TJ∗)(x1) = min
u∈{u1,u2}

H(x1, u, J
∗)

= min {−αJ∗(x2),−1 + αJ∗(x1)}

= min
{

0,−1− α
1− α −

α

1− α

}
= min

{
0, 1

1− α

}
= − 1

1− α,

and

(TJ∗)(x2) = min
u∈{u1,u2}

H(x2, u, J
∗)

= min {0, B}
= 0.

In addition, the, in this case unique, optimal policy (in the sense that Jµ∗ = J∗)
is given by

µ∗(x) =
{
u2 if x = x1,

u1 if x = x2.

If we now define another policy

µ(x) =
{
u1 if x = x1,

u2 if x = x2.

we can find that
Jµ(x1) = −αB, Jµ(x2) = B.

Thus we see that Jµ(x1) < J∗(x1) for sufficiently large B, which means that

J∗(x1) = inf
µ∈Π

Jµ(x1)

does not hold.

49

4.2. Consequences of monotonicity and contracion assumptions

The next example we are looking at considers the case where the operators
Tµ and T are not contractions.

Example 4.2.6 (Importance of Contraction property). †
In this example we let X = {x}, and U = {u}. We then let the mapping H be
defined by

H(x, u, J) = 1 + αJ(x),
where α ∈ (0, 1]. We also let v(x) = 1 for all x ∈ X. In order for the mapping
T to be a contraction we need for each pair J, J ′ ∈ R(X) to have

‖TJ − TJ ′‖ ≤ ρ‖J − J ′‖,

with ρ ∈ (0, 1). Note that

(TJ)(x)− (TJ ′)(x) = 1 + αJ(x)− (1 + αJ ′(x))
= 1− 1 + αJ(x)− αJ ′(x)
= α(J(x)− J ′(x))

= αv(x)J(x)− J ′(x)
v(x) ,

implying that

(TJ)(x)− (TJ ′)(x)
v(x) = α

J(x)− J ′(x)
v(x) .

Then, by taking the norm on both sides we see that

‖TJ − TJ ′‖ = α‖J − J ′‖ (4.14)

which implies that T is a contraction whenever α < 1. Lets now assume that
α = 1

2 , and let π = {µ0, µ1, . . .} where µk(x) = u for all k ∈ N. We then have
that

Jπ(x) = lim sup
k→∞

(Tµ0Tµ1 · · ·Tµk−1 J̄)(x)

= lim sup
k→∞

k−1∑
n=0

αn

= lim sup
k→∞

k−1∑
n=0

1
2n

= 2,

where J̄(x) = 0. It is clear that the operator T is equal to the operator Tµk
for all k ∈ N as we for the problem considered here only have one state and
one action, therefore Jπ(x) = J∗(x) = 2. Let us now set α = 1, then we see
from Equation (4.14) that T is not a contraction. The lack of the contraction
property results in

Jπ(x) = lim sup
k→∞

(Tµ0Tµ1 · · ·Tµk−1 J̄)(x)

= lim sup
k→∞

k−1∑
n=0

αn

50

4.3. Finding policies

= lim sup
k→∞

k−1∑
n=0

1n

=∞,

and thus we see that the sum diverges. We are therefore not able to determine
the optimal cost for this problem.

The two examples above illustrate why the two assumptions we introduce in
Section 4.1 are necessary. Let us now continue by looking at general methods
for finding the optimal cost function J∗ and optimal policies µ∗.

4.3 Finding policies

In this section we are going to take a look at different methods for finding
optimal and suboptimal policies. We start with lookahead policies before
proceeding with value iteration and then ending with policy iteration.

Lookahead policies

Assume that we have a function J̃ ∈ B(X) that is our current best approximation
of J∗. We can then obtain a one-step lookahead policy µ̄ by letting

µ̄(x) ∈ arg min
u∈U(x)

H(x, u, J̃). (4.15)

That is, we let the one-step lookahead policy be a policy that minimizes H
when we assume that the cost-to-go function is our approximation J̃ . Note that
this is the same as having µ̄ be a policy such that Tµ̄J̃ = T J̃ , note also that
µ̄ may not be unique. We then state a proposition from [Ber18] that assures
some bounds on the cost function Jµ̄.

Proposition 4.3.1 (One-step lookahead error bounds [Ber18]). Let the operator
Tµ be a contraction for each µ ∈ M. We also let µ̄ be a one-step lookahead
policy, that is, Tµ̄J̃ = T J̃ . We then have that the following bounds hold:

‖Jµ̄ − T J̃‖ ≤
α

1− α‖T J̃ − J̃‖,

‖Jµ̄ − J∗‖ ≤
2α

1− α‖J̃ − J
∗‖,

and
‖Jµ̄ − J∗‖ ≤

2
1− α‖T J̃ − J̃‖.

The one-step lookahead can be generalized to multistep lookahead policies,
but we will not go into the details of that here. Let us proceed with an example
showing one-step lookahead policies in practise.

Example 4.3.2 (Finding a lookahead policy, continuation of Example 3.4.3). †
Let us consider a shortest path problem similar to the one we considered in

Example 3.4.3, but with some changes in the weights. The graph with the new
costs is shown in Figure 4.1.

51

4.3. Finding policies

1

2 3

5

4

5

3

1

3

2

3

4

Figure 4.1: Graph of the shortest path problem

Let us begin with the zero-function as our approximation J̃ of J∗. That
is, J̃(x) = 0 for all x ∈ X = {1, 2, 3, 4, 5}. Note also that here we have
H(x, u, J) = axu + J(u), where axu is the cost associated with moving from
state x to state u. We can then find the one-step lookahead policy. For x = 1
we have:

µ̄(1) ∈ arg min
u∈U(1)

H(1, u, J̃) = arg min
u∈{2,4,5}

a1u + J̃(u) = arg min
u∈{2,4,5}

a1u = 4,

thus µ̄(1) = 4. For the other states we have the following:

µ̄(2) = 3, µ̄(3) = 5, µ̄(4) = 5, µ̄(5) = 5.

Note that we always have µ̄(5) = 5, as this is the only possibility. We then say
that the state is absorbing, as we can never escape the state if we at some point
ends up there. It is also straight forward to verify that Tµ̄J̃ = T J̃ .

Value iteration

We then proceed to take a look at the value iteration (VI) algorithm for finding
J∗. If T is assumed to be a contraction we have that T has a fixed point J∗,
which is the optimal cost function. Thus for an arbitrary chosen J0 ∈ B(X) we
have that the sequence

J0, TJ0, T
2J0, . . . ,

converges towards J∗. We can thus use the value iteration method to find
an approximation J̃ of J∗, and then find the one-step lookahead policy µ̄ as
defined by (4.15). The next proposition tell us that when the set of stationary
policiesM is finite we can in fact use the procedure just described to obtain an
optimal policy.

Proposition 4.3.3 (Optimal policy using VI [Ber18]). Assume that the operators
Tµ is a contraction for all µ ∈M. Let also J0 ∈ B(X). Then if the setM is
finite we have that there exists some n ∈ N such that every possible one-step
lookahead policy µ∗ found by using TnJ0 as our approximation of J∗, that is
µ∗ is such that Tµ∗TnJ0 = Tn+1J0, have the property that

Jµ∗ = J∗.

52

4.3. Finding policies

Proof. †
This proof is taken from [Ber18], but we have added some details. As M is
assumed to be finite, we have that the subset

M̃ = {µ | µ ∈M, Jµ 6= J∗} ⊂ M

is finite. Thus
inf
µ∈M̃
‖Jµ − J∗‖ > 0.

Then, from Proposition 4.3.1 we see that

‖Jµ̄ − J∗‖ ≤
2α

1− α‖J̃ − J
∗‖,

for all one-step lookahead policies µ̄ found by using J̃ as an approximation to
J∗, i.e. for all µ̄ ∈M such that Tµ̄J̃ = T J̃ . Then there exist some β > 0 such
that whenever ‖J̃ − J∗‖ ≤ β and Tµ̄J̃ = T J̃ we have that

‖Jµ̄ − J∗‖ ≤
2α

1− αβ < inf
µ∈M̃
‖Jµ − J∗‖,

which then imply that µ̄ /∈ M̃. Then, as Tµ is a contraction for all µ ∈M we
have from Proposition 4.1.4 that T also is a contraction, hence

‖TnJ0 − J∗‖ ≤ αn‖J0 − J∗‖. (4.16)

It then follows that for sufficiently large n ∈ N we have that ‖TnJ0 − J∗‖ ≤ β,
and thus, from the arguments above, we have that the one-step lookahead policy
µ∗ created by having TnJ0 as an approximation of J∗, i.e. Tµ∗TnJ0 = Tn+1J0,
satisfy

Jµ∗ = J∗,

as we needed to show. �

The inequality (4.16) in the proof above follows from the fact that T is a
contraction and that TJ∗ = J∗, as we then have that

‖TJ0 − J∗‖ = ‖TJ0 − TJ∗‖ ≤ α‖J0 − J∗‖,

thus

‖T (TJ0)− J∗‖ = ‖T (TJ0)− TJ∗‖ ≤ α‖TJ0 − J∗‖
= α‖TJ0 − TJ∗‖ ≤ α2‖J0 − J∗‖.

By repeating the argument, we see that the inequality

‖TnJ0 − J∗‖ ≤ αn‖J0 − J∗‖

holds true.
Let us now look at an example where we use value iteration to solve a

deterministic dynamic programming problem.

53

4.3. Finding policies

Example 4.3.4 (Value iteration, continuation of Example 4.3.2). †
Let us take a look at the same dynamic programming problem that we

considered in Example 4.3.2, but let us now try to find the optimal policy using
value iteration. Let us again start with J0 being the zero-function. We then
start by finding TJ0. For x = 1 we have that

(TJ0)(1) = min
u∈U(1)

H(1, u, J0) = min
u∈{2,4,5}

a1u + J0(u) = min{3, 2, 5} = 2.

We also see that for the other states we get

(TJ0)(2) = 1, (TJ0)(3) = 3, (TJ0)(4) = 4, (TJ0)(5) = 0.

We then proceed with finding T 2J0, again we look carefully at the case when
x = 1. We see that

(T 2J0)(1) = min
u∈U(1)

H(1, u, TJ0) = min
u∈{2,4,5}

a1u + TJ0(u)

= min{3 + (TJ0)(2), 2 + (TJ0)(4), 5 + (TJ0)(5)}
= min{3 + 1, 2 + 4, 5 + 0} = 4.

For the remaining states we have

(T 2J0)(2) = min{1 + 3, 3 + 0} = min{4, 3} = 3,
(T 2J0)(3) = min{3 + 0} = 3 = (TJ0)(3)
(T 2J0)(4) = min{4 + 0} = 4 = (TJ0)(4),
(T 2J0)(5) = min{0} = 0 = (TJ0)(5).

We then continue with calculate the values of T 3J0. We look at the case when
x = 1, giving

(T 3J0)(1) = min
u∈U(1)

H(1, u, T 2J0) = min
u∈{2,4,5}

a1u + T 2J0(u)

= min{3 + (T 2J0)(2), 2 + (T 2J0)(4), 5 + (T 2J0)(5)}
= min{3 + 3, 2 + 4, 5 + 0} = 5.

For x = 2 we have

(T 3J0)(2) = min{1 + 3, 3 + 0} = min{4, 3} = 3 = (T 2J0)(2).

We also note that (T 3J0)(x) = (T 2J0)(x) = (TJ0)(x) for x = 3, 4, 5. In the
next step we only check if the value for x = 1 has changed, as the value for the
other x-values has not changed between the two former steps. We then find

(T 4J0)(1) = min
u∈U(1)

H(1, u, T 3J0) = min
u∈{2,4,5}

a1u + T 3J0(u)

= min{3 + (T 3J0)(2), 2 + (T 3J0)(4), 5 + (T 3J0)(5)}
= min{3 + 3, 2 + 4, 5 + 0} = 5 = (T 3J0)(1).

Thus, we now have T (T 3J0) = T 3J0, so we see that T 3J0 is the optimal cost
function, i.e. J∗ = T 3J0. We can then find an optimal policy by finding a
one-step lookahead policy found by solving

µ̄(x) ∈ arg min
u∈U(x)

H(x, u, T 3J0) for all x ∈ X.

54

4.3. Finding policies

Note first that

T 3J0(1) = 5, T 3J0(2) = 3, T 3J0(3) = 3, T 3J0(4) = 4, T 3J0(5) = 0.

We have that

µ̄(1) ∈ arg min
u∈U(1)

H(1, u, T 3J0) = arg min
u∈{2,4,5}

a1u + T 3J0(u) = 5,

µ̄(2) ∈ arg min
u∈U(2)

H(2, u, T 3J0) = arg min
u∈{3,5}

a2u + T 3J0(u) = 5,

µ̄(3) ∈ arg min
u∈U(3)

H(3, u, T 3J0) = arg min
u∈{5}

a3u + T 3J0(u) = 5,

µ̄(4) ∈ arg min
u∈U(4)

H(4, u, T 3J0) = arg min
u∈{5}

a4u + T 3J0(u) = 5,

µ̄(5) ∈ arg min
u∈U(5)

H(5, u, T 3J0) = arg min
u∈{5}

a5u + T 3J0(u) = 5.

Thus we have that µ∗(x) = µ̄(x) = 5 for all x ∈ X = {1, 2, 3, 4, 5}.

Policy iteration

We end this chapter by looking at the policy iteration (PI) algorithm. At each
iteration k ∈ N of the algorithm we start with a current policy, denoted µk−1,
which is an estimate of an optimal policy µ∗. In each iteration we start with a
policy evaluation step where we find the cost function Jµk−1 which is the unique
solution of the equation

Jµk−1 = Tµk−1Jµk−1 .

We then move on to the policy improvement step, which is the last step of the
iteration, where we obtain an improved policy µk which is a one-step lookahead
policy found by using the cost function Jµk−1 as our approximation of J∗. That
is, µk satisfies

TµkJµk−1 = TJµk−1 .

The next proposition ensures that policy iteration converges under the
assumption of T and Tµ, µ ∈ M satisfying the monotonicity property and
the last being a contraction.

Proposition 4.3.5 (Convergence of PI [Ber18]). Assume that the operators T
and Tµ, µ ∈ M satisfy the monotonicity property and that Tµ, µ ∈ M is a
contraction. Then, let {µk} be a sequence of policies generated by policy iteration.
Then, for any k ∈ N we have that Jµk+1 ≤ Jµk , where Jµk+1 = Jµk if and only
if Jµk = J∗. We also have that

lim
k→∞

‖Jµk − J∗‖ = 0.

Furthermore, if the set of policies is finite we have Jµk = J∗ for some k.

For a proof of Proposition 4.3.5 we refer the curious reader to [Ber18].
Note that the previous Proposition 4.3.5 only guarantees that Jµk = J∗ for
some k ∈ N if the set of policies is finite. However, under some strengthened
assumptions we are actually able to guarantee that Jµ̄ = J∗ where µ̄ is any
limit point of the sequence {µk} of policies obtained with the policy iteration
algorithm even whenM is not finite.

55

4.3. Finding policies

Proposition 4.3.6 (Limit point PI [Ber18]). Assume that the operators T
and Tµ, µ ∈ M satisfy the monotonicity property and that Tµ, µ ∈ M is
a contraction. Assume also the following

(i) The number of states is finite, i.e. X = {1, . . . , n} for some n ∈ N.

(ii) Each subset U(x) ⊆ U, x ∈ X is a compact subset of Rn.

(iii) For each x ∈ X we have that the function H(x, ·, ·) is continuous over
U(x)× Rn.

If we then let {µk} be a sequence of policies generated by policy iteration we
have that Jµ̄ = J∗ for each limit point µ̄ of the sequence {µk}.

The proof of Proposition 4.3.6 can be found in [Ber18]. Let us now take a
look at an example using policy iteration.

Example 4.3.7 (Policy iteration, continuation of Example 4.3.4). †
Let us again take a look at the shortest path problem of trying to find

the shortest path to node 5 from every other node in the graph depicted in
Figure 4.1, which we looked at in Example 4.3.4. We will here demonstrate
how we can use policy iteration to find the optimal paths. We start with the
initial policy µ0(x) = min

u∈U(x)
u. Thus we see that

µ0(1) = 2, µ0(2) = 3, µ0(3) = 5, µ0(4) = 5, µ0(5) = 5.

We then start with the policy evaluation, that is finding the cost function Jµ0 .
From the graph in Figure 4.1 it is easy to see that the cost function from
following the policy µ0 is

Jµ0(1) = 7, Jµ0(2) = 4, Jµ0(3) = 3, Jµ0(4) = 4, Jµ0(5) = 0.

We then proceed to the policy improvement step, where we are supposed to
find the improved policy µ1 such that Tµ1Jµ0 = TJµ0 . We do this by finding a
one-step lookahead policy. We have that

µ1(1) ∈ arg min
u∈U(1)

H(1, u, Jµ0) = arg min
u∈{2,4,5}

a1u + Jµ0(u) = 5,

µ1(2) ∈ arg min
u∈U(2)

H(2, u, Jµ0) = arg min
u∈{3,5}

a2u + Jµ0(u) = 5,

µ1(3) ∈ arg min
u∈U(3)

H(3, u, Jµ0) = arg min
u∈{5}

a3u + Jµ0(u) = 5,

µ1(4) ∈ arg min
u∈U(4)

H(4, u, Jµ0) = arg min
u∈{5}

a4u + Jµ0(u) = 5,

µ1(5) ∈ arg min
u∈U(5)

H(5, u, Jµ0) = arg min
u∈{5}

a5u + Jµ0(u) = 5.

Thus we have that µ1(x) = 5 for all x ∈ X = {1, 2, 3, 4, 5}. We know from
Example 4.3.4 that this is the optimal policy, so we see that policy iteration
found the optimal policy after one iteration.

56

CHAPTER 5

Infinite horizon dynamic
programming

This chapter is based on Chapter 4 in [Ber19]. We will here take the abstract
setting from Chapter 4 where we allowed infinite horizons and make it more
concrete by looking at some examples, just like we did earlier for the finite
horizon case in Chapter 3. The examples we will look at in this chapter is
discounted problems and stochastic shortest path (SSP) problems. Previously
in Section 3.4 we looked at deterministic shortest path problems where we were
given a policy µ and knew exactly how many steps we needed to reach the end
state. For the stochastic version the best we can do for some policies (or all,
depending on the problem) is to assign a probability to the event of the policy
reaching the end state after N ∈ N steps. The transition from the finite horizon
setting of Chapter 3 to the infinite horizon setting means that we no longer try
to minimize

Jπ(x0) = E

[
gN (xN) +

N−1∑
k=0

gk(xk, µk(xk), wk)
]
,

over the set Π of all policies for some N ∈ N, but instead look at what happens
when we allow N →∞, i.e. we try to minimize the cost given by

Jπ(x0) = lim
N→∞

E

[
N−1∑
k=0

αkgk(xk, µk(xk), wk)
]
,

over Π, where α ∈ (0, 1] is the discount factor, xk ∈ X is the state at stage k,
wk ∈ D is the disturbance at stage k, and µk(xk) ∈ U(xk) is the control chosen
at stage k dictated by the function µk : X → U . To make the analysis easier we
assume that the state space X, control space U and disturbance space D are all
finite. We also introduce assumptions that makes sure that the additional cost
after stage k, for some k ∈ N, is zero when the discount factor α is 1. We begin
this chapter by looking at the SSP problems, which is the class of problems
where the discount factor has the value α = 1.

5.1 Stochastic shortest path problems

As we assume that the number of states is a finite number n ∈ N we can
label them with the first n integers, giving X = {1, 2, . . . , n, t}, where t is the

57

5.1. Stochastic shortest path problems

terminal node. We can also rewrite the cost at stage k when at state i ∈ X and
choosing control u ∈ U(i) from

E
w∈Dk

[g(i, u, w)] =
∑
w∈Dk

P (w | xk = i, uk = u) g(i, u, w),

where P (w | xk = i, uk = u) is the probability of the random noise being w
when at state i and picking control u, to∑

j∈X
pij(u) g(i, u, j),

where pij(u) is the probability of ending up at state j when at state i and
choosing control u also known as the transition probability from i to j under
control u, in other words

pij(u) = P ({w | f(i, u, w) = j} | xk = i, uk = u). (5.1)

Note that we have now already made some further simplifications if we compare
with the similar transition probabilities introduced in Section 3.1. We here
assume that the transition probabilities are stationary, i.e. that the probability
of going from a state i to another state j when choosing control u does not
change over time. This means that the function f , which given the current state
i, an control u and a disturbance w, giving us the next state j, is constant over
time. We also assume that transitioning from a state i to some state j under
the control u always give the cost g(i, u, j). With these simplifying assumptions,
and the transition probabilities as defined by Equation (5.1) we can write the
Bellman equation (4.3) for this problem, which is taken from [Ber19]. For all
states i ∈ X we have

J∗(i) = min
u∈U(i)

pit(u)g(i, u, t) +
n∑
j=1

pij(u)(g(i, u, j) + J∗(j))

 . (5.2)

We also state the corresponding Bellman equation for a stationary policy µ,
which for each state i ∈ X has the form

Jµ(i) = pit(µ(i))g(i, µ(i), t) +
n∑
j=1

pij(µ(i))(g(i, µ(i), j) + Jµ(j)). (5.3)

The intuition behind the formulation of (5.2) is that the first part of the
equation says something about the expected cost if we were to end up at the
terminal node after picking the next control, the first part of the sum says
something about the expected transition cost of going to state j, while the
second part consisting of pij(u)J∗(j) gives us the expected future cost of ending
up in state j. The intuition is the same for (5.3), as the only difference is that
we choose the control u by use of the policy µ in Equation (5.3). In order to
assure that an optimal cost function J∗, and policy cost functions Jµ exists,
and that they are the unique solutions of Equation (5.2) and Equation (5.3)
respectively, we need the following assumption taken from [Ber19], which we
will adopt for the rest of this section.

58

5.1. Stochastic shortest path problems

Assumption 5.1.1 (Non-zero probability of termination at stage m [Ber19]).
We assume that there exist some m ∈ N such that for all policies π the following
holds true:

ρπ = max
i=1,...,n

P (xm 6= t | x0 = i, π) < 1.

That is, there exist some m ∈ N such that for each policy π, and each possible
initial state i, there is a non-zero probability of reaching the terminal state
within m stages.

The consequences of Assumption 5.1.1 is quite important, as it ensures that
each policy terminates with probability 1. To see this, note that for each set
of m stages our agent has a non-zero probability less than or equal to ρ for
not being at the terminal node. Thus, if we are at stage km we have that
the probability of not having reached a terminal node is the same as the joint
probability of not having reached the terminal node for the k preceding sets of
m moves given that we condition on not having reached a terminal node in the
preceding set of m stages. In other words,

P (xkm 6= t | x0 = i, π) =
k∏
i=1

P (xim 6= t | x(i−1)m 6= t, x0 = i, π)

=
k∏
i=1

ρπ ≤
k∏
i=1

ρ = ρk,

(5.4)

where we have used Assumption 5.1.1 and let

ρ = max
π

ρπ.

We can then conclude that the limit giving the total cost exists and that it
is finite. Let us now take a look at the Bellman operators. In order to be
aligned with the theory presented in Chapter 4 we introduce the mapping
H : X × U × R(X) → R, where R(X) is the set of all functions J : X → R.
The function H is defined by

H(x, u, J) = pit(u)g(i, u, t) +
n∑
j=1

pij(u)(g(i, u, j) + J(j)). (5.5)

Then we define the Bellman operators as in Equations (4.1) and (4.2), i.e.

(TµJ)(i) = H(i, µ(i), J),

and
(TJ)(i) = min

u∈U(i)
H(i, u, J),

for all x ∈ X = {1, 2, . . . , n, t} and J ∈ R(X). We now want to prove results
showing that the value iteration algorithm converge to the optimal cost function,
and that the optimal cost function J∗ indeed is the unique fixed point of
Bellman’s equation, i.e. we want to show that the optimal cost function satisfies
TJ∗ = J∗ and J∗ = infπ∈Π Jπ, where Π is the set of all policies. In order
to prove these results using the theory in Chapter 4 we need to show that
the operator Tµ is a contraction for each µ ∈ M and that the mapping H is
monotone. We start with proving the contraction property. In order to ensure
the validity of the proof we need the following assumption.

59

5.1. Stochastic shortest path problems

Assumption 5.1.2. Assume that a positive bounded function vµ exists for each
µ ∈M such that

vµ(i) = 1 +
n∑
j=1

pij(µ(i))vµ(j) for each i ∈ X,

holds.

The assumption may seem a bit arbitrary, but if we think of the value vµ(i)
as the expected number of steps we need under policy µ to reach a terminal
node when starting in state i, we see that the formulation make sense, as the
value would be 1 (the next step we are taking) plus the expected future number
of steps after the next transition. Recall that we have shown above that the
probability of not having reached a terminal state after km steps, where m
is the value from Assumption 5.1.1, approaches zero as k increases. Thus the
number of steps is finite for every policy, regardless of starting state i. Therefore
the value vµ(i) should be finite for each i ∈ X, according to the interpolation
of the values of vµ. We now continue with the first proposition.

Proposition 5.1.3 (Contraction property of Tµ [Ber19]). For each stationary
policy µ ∈M there exist some positive scalar ρ < 1 such that

‖TµJ − TµJ ′‖v ≤ ρ‖J − J ′‖v for all J, J ′ ∈ B(X),

where B(X) is as defined in Definition 4.1.3 and the norm ‖·‖v is given by
Equation (4.4) for some positive function v : X → R.

Proof. This proof closely follows the proof of Proposition 4.2.5 in [Ber19]. Let
µ ∈ M be an arbitrary stationary policy and let vµ be the function we have
assumed to exist from Assumption 5.1.2. That is,

vµ(i) = 1 +
n∑
j=1

pij(µ(i))vµ(j) for all i ∈ X.

Then we have that
n∑
j=1

pij(µ(i))vµ(j) = vµ(i)− 1 ≤ ρvµ(i), (5.6)

where
ρ = max

i=1,...,n

vµ(i)− 1
vµ(i) ,

and as vµ(i) ≥ 1 for all i ∈ {1, · · · , n}, we have ρ < 1. We then have that

(TµJ)(i) = (TµJ ′)(i) +
n∑
j=1

pij(µ(i))(J(j)− J ′(j))

= (TµJ ′)(i) +
n∑
j=1

pij(µ(i))vµ(j)J(j)− J ′(j)
vµ(j)

≤ (TµJ ′)(i) +
n∑
j=1

pij(µ(i))vµ(j)‖J − J ′‖

60

5.1. Stochastic shortest path problems

≤ (TµJ ′)(i) + ρ vµ(i)‖J − J ′‖,

where we in the last inequality have used that Equation (5.6) holds. Hence,

(TµJ)(i)− (TµJ ′)(i)
vµ(i) ≤ ρ ‖J − J ′‖.

By maximizing both sides of the inequality above with regards to i ∈ X, and
noting that we can change the roles of J and J ′ in the above equation and end
up with the same bound, we see that

‖TµJ − TµJ ′‖ = max
i∈X

(TµJ)(i)− (TµJ ′)(i)
vµ(i) ≤ ρ‖J − J ′‖.

Thus, we have that Tµ is a contraction. �

We then proceed with showing that H as defined in Equation (5.5) is
monotone.

Proposition 5.1.4 (Monotonicity property of H). †
The function H, as defined in Equation (5.5), is monotone.

Proof. We need to show that for all J, J ′ ∈ R(X), with J ≤ J ′ pointwise, we
have

H(i, u, J) ≤ H(i, u, J ′) for all i ∈ X and u ∈ U(i).
Thus, let us assume that J ≤ J ′ pointwise for some J, J ′ ∈ R(X). Then we
have that

H(x, u, J)−H(x, u, J ′) = pit(u)g(i, u, t) +
n∑
j=1

pij(u)(g(i, u, j) + J(j))

−

pit(u)g(i, u, t) +
n∑
j=1

pij(u)(g(i, u, j) + J ′(j))


=

n∑
j=1

pij(u)(J(j)− J ′(j)) ≤ 0,

where the last inequality follows from the fact that J −J ′ ≤ 0 for all i ∈ X, and
that pij ≥ 0 for all i, j ∈ X. Thus, for all J, J ′ ∈ R(X), with J ≤ J ′ pointwise,
we have that

H(x, u, J) ≤ H(x, u, J ′) for all i ∈ X and u ∈ U(i),

as we needed to show. �

With Propositions 5.1.3 and 5.1.4 in hand we are able to prove multiple
of the results concerning the infinite horizon SSP problem that are provided
in chapter 4.2 in [Ber19]. We are also able to present proofs building on the
abstract dynamic programming theory presented in Chapter 4 in contrast to
the more direct proofs presented in [Ber19]. The first result guarantees that the
optimal cost function J∗ of the infinite horizon SSP problem as presented in
this section solves the Bellman equation as stated in Equation (5.2), and that
it is the unique solution of the equation.

61

5.1. Stochastic shortest path problems

Proposition 5.1.5 (J∗ is the unique solution of Bellman’s equation [Ber19]).
The optimal cost function J∗ for the stochastic shortest path problem with the
assumptions presented in this chapter is the unique solution of the Bellman
equation, i.e.

J∗(i) = min
u∈U(i)

pit(u)g(i, u, t) +
n∑
j=1

pij(u)(g(i, u, j) + J∗(j))

 .
Proof. †

As we in Proposition 5.1.3 have shown that Tµ is a contraction for each
stationary policy µ we have from Proposition 4.1.4 that T is a contraction as
well. We then know from Proposition 4.2.1 that there exists some unique fixed
point J̄ for the operator T , i.e.

J̄(i) = (T J̄)(i) = min
u∈U(i)

H(i, u, J̄)

= min
u∈U(i)

pit(u)g(i, u, t) +
n∑
j=1

pij(u)(g(i, u, j) + J̄(j))

 .
Thus, we have that J̄ is the unique solution of Bellman’s equation. Then, as
a consequence of the monotonicity of H proven in Proposition 5.1.4 we have
from Proposition 4.2.2 that the unique fixed point J̄ satisfies

J̄(i) = J∗(i) = inf
π∈Π

Jπ(i) = inf
µ∈M

Jµ(i) for all i ∈ X.

Thus the optimal cost function J∗ equals the unique solution of Bellman’s
equation J̄ , and the proposition is proven. �

In [Ber19] the author uses the inequality in Equation (5.4) to prove that
the value iteration algorithm, as previously discussed in Section 4.3, converges
to the optimal cost function J∗ for the kind of SSP problems described in this
section. We now take a quick look at how value iteration looks for this class of
problems, and present an alternative proof using the theory from Chapter 4.
Keep in mind that we have impost a stricter set of assumptions by adding
Assumption 5.1.2. We have also restricted the initial cost function J0 to be in
the set B(X).

Proposition 5.1.6 (Convergence of VI [Ber19]). For each state i ∈ X we have
that J∗(i) < ∞, and given an initial cost function J0 ∈ B(X), we have that
the sequence {Jk} of cost functions generated by the value iteration algorithm
converges to the optimal cost function J∗. The algorithm progresses by

Jk+1(i) = min
u∈U(i)

pit(u)g(i, u, t) +
n∑
j=1

pij(u)(g(i, u, j) + Jk(j))

 . (5.7)

Proof. †
As mentioned above we have as a consequence of Assumption 5.1.1 that

each possible policy terminates at some point. Therefore, the optimal cost
must be finite as we only allow finite costs for each stage. Furthermore, we

62

5.1. Stochastic shortest path problems

have from Propositions 5.1.3 and 5.1.4 that the operator Tµ is monotone and a
contraction for each µ ∈ M. As the number of states and controls are finite,
we have that the number of stationary policies also is finite, which makes the
setM finite. Then, as J0 ∈ B(X), we have from Proposition 4.3.3 that there
exist some N ∈ N such that the one-step lookahead policy µ∗ found by using
TnJ0 as our approximation of J∗ actually have the optimal cost function J∗ as
its value function, i.e. Jµ∗ = J∗. Then, by setting Jk = T kJ0 we see that the
iteration formula becomes

Jk+1(i) = (T k+1J0)(i) = (T (T kJ0))(i)

= (TJk)(i) = min
u∈U(i)

pit(u)g(i, u, t) +
n∑
j=1

pij(u)(g(i, u, j) + Jk(j))

 .
Thus we see that the value iteration algorithm is given as the proposition states
and that it actually converges towards J∗. �

The same result can also be shown for all stationary policies, as the next
proposition shows.

Proposition 5.1.7 (VI and Bellman’s equation for stationary policies [Ber19]).
For each stationary policy µ we have that the cost function Jµ satisfies

Jµ(i) = pit(µ(i))g(i, µ(i), t) +
n∑
j=1

pij(µ(i))(g(i, µ(i), j) + Jµ(j)), (5.8)

for each state i ∈ X, and we have that Jµ is the unique solution of the system
of equations defined by (5.8). We also have that for any initial cost function J0
the sequence {Jk} of cost functions generated by the value iteration algorithm
converges to the cost function Jµ, where the next function in the sequence is
generated by

Jk+1(i) = pit(µ(i))g(i, µ(i), t) +
n∑
j=1

pij(µ(i))(g(i, µ(i), j) + Jk(j)).

Proof. †
We start by proving that Jµ is a fixed point for Equation (5.8) for each stationary
policy µ ∈ M(X). From Proposition 5.1.3 we have that Tµ is a contraction
mapping. Then, from Proposition 4.2.1 we have that Jµ is the unique fixed
point of Tµ in the space B(X). Thus

Jµ(i) = (TµJµ)(i) = pit(µ(i))g(i, µ(i), t) +
n∑
j=1

pij(µ(i))(g(i, µ(i), j) + Jµ(j)).

The last part of this proof follows the proof of Proposition 4.2.3 in [Ber19].
To see that the value iteration algorithm converges towards Jµ, just consider
the modified optimal cost problem where we let U(i) = {µ(i)} for each state
i. Then the optimal cost function J∗ is equal to the cost function Jµ of the
policy µ, as the only available control at each state is the control dictated by
the stationary policy µ ∈M. We know from Proposition 5.1.6 that the value

63

5.1. Stochastic shortest path problems

iteration algorithm converges to the optimal cost function J∗, which for the
modified problem is equal to Jµ. Note also that by rewriting Equation (5.7) by
letting u = µ(i) we get that the value iteration for the modified problem takes
the form

Jk+1(i) = pit(µ(i))g(i, µ(i), t) +
n∑
j=1

pij(µ(i))(g(i, µ(i), j) + Jk(j)),

just as stated in the proposition. By the arguments above we have that the
algorithm converges toward the cost function of the policy Jµ. �

We then look at the final result for this section which guarantees the
convergence of policy iteration (Section 4.3).

Proposition 5.1.8 (Convergence of exact PI [Ber19]). We have that the policy
iteration algorithm produces an improving sequence of policies {µk} which
converges to an optimal policy for the SSP problem as described in this section,
i.e. we have that Jµk−1 ≤ Jµk pointwise for each k ∈ N and that Jµn = J∗

pointwise for all n ∈ N with n ≥ N for some large enough N ∈ N. The policy
evaluation step of the kth iteration consists of finding the solution Jµk of the
following set of equations

Jµk−1(i) = pit(µk−1(i))g(i, µk−1(i), t)

+
n∑
j=1

pij(µk−1(i))(g(i, µk−1(i), j) + Jµk−1(j)) for all i ∈ X,

while the policy improvement step consists of finding a policy µk that for each
state i ∈ X satisfy

µk(i) ∈ arg min
u∈U(i)

pit(u)g(i, u, t) +
n∑
j=1

pij(u)(g(i, u, j) + Jµk−1(j))

 .
Proof. †
We have from Proposition 4.3.5 that the policy iteration algorithm generates
a sequence {µk} of policies where for each k ∈ N we have that Jµk−1 ≤ Jµk ,
given that the monotonicity and contraction property is met. The proposition
also states that Jµk = J∗ for some k ∈ N if the set of policies is finite. Note
that the set of policies is in fact finite for the SSP problem as described in this
section as the number of states and controls are finite. Then, as we have from
Propositions 5.1.3 and 5.1.4 that the monotonicity and contraction properties
are met, and as the set of policies are finite, we see that the conditions in
Proposition 4.3.5 are met. Thus, the policy iteration algorithm generates a
sequence {µk} of improving policies and for some n ∈ N we have that Jµn = J∗,
i.e. the policy µn (and every subsequent policy generated by the policy iteration
algorithm) is an optimal policy. �

We end this section with a numerical example where we find the optimal cost
function and an optimal policy for a simple stochastic shortest path problem
with use of both value iteration and policy iteration.

64

5.1. Stochastic shortest path problems

A BC t

1, p = 1
2

3, p = 1
2 0

2
5, p = 3

20
1, p = 17

20

2, p = 99
100

1, p = 1
100

Figure 5.1: A simple SSP. Same coloured paths originating at the same node
depict the possible transitions from the given node under a specific control. The
black lines depict the transitions for control u1, while orange shows the same
for control u2. Node C is introduced for technical reasons only.

Example 5.1.9 (Numerical solution of SSP problem). †
In this example we consider the stochastic shortest path-problem of the graph
depicted in Figure 5.1. We will first implement and use value iteration to find
the optimal value function of the SSP, and then we implement policy iteration
and use the implemented algorithm to find an optimal policy for the SSP along
with the cost function of the final policy generated by the Policy iteration
algorithm. We first note that Assumption 5.1.1 and Assumption 5.1.2 holds
for this SSP. The fact that the first of the two assumptions holds can be seen
from Figure 5.1 as it is fairly straight forward to confirm that any policy must
terminate eventual due to the structure of the graph. It is also possible to
consider each possible stationary policy to see that Assumption 5.1.2 holds, but
we will not go through the details of those calculation here, as the assumption is
a technical detail we needed for the proof of Proposition 5.1.3. However, the fact
that these assumptions hold guarantees that both of these algorithms converge
as these are the assumptions of Propositions 5.1.6 and 5.1.8. The code used to
implement the graph can be found in Listing A.1, and the implementation of
the value iteration and policy iteration algorithms can be found in Listing A.3.

The solution generated by our implementation of the value iteration
algorithm is

J̄(A) = 97
25 , J̄(B) = 47

25 , J̄(C) = 47
25 ,

when we only include the first two decimal places (the error tolerance of our
implementation is 10−16). Let us now check that J̄ on this form indeed is a
fixed point of the Bellman equation as stated in Equation (5.2). Note that
control 1 is the control for which the possible transitions are depicted in black
in Figure 5.1, while control 2 is the one coloured in orange. We have that

J̄(A) = min
u∈{1,2}

pit(u)g(A, u, t) +
∑

j∈{A,B,C}

pAj(u)(g(A, u, j) + J̄(j))


= min

{
1
2

(
1 + 47

25

)
+ 1

2

(
3 + 47

25

)
, 2 + 47

25

}
= min

{
36
25 + 61

25 ,
50
25 + 47

25

}

65

5.1. Stochastic shortest path problems

= min
{

97
25 ,

97
25

}
= 97

25 ,

J̄(B) = min
{

17
20 + 3

20

(
5 + 47

25

)
, 2 99

100 + 1
100

(
1 + 47

25

)}
= min

{
17
20 + 3

20
172
25 , 2

99
100 + 1

100
72
25

}
= min

{
941
500 ,

2511
1250

}
= 941

500

= 47
25 + 1

500 ≈
47
25 ,

J̄(C) = J̄(B) ≈ 47
25 ,

and as we can see, J̄ is indeed a fixed point for the Bellman equation when we
exclude errors smaller than two decimal places

(1
500
)
, implying that the cost

function is the optimal cost function, i.e J∗ = J̄ . Let us now proceed to verify
that the final policy generated by the policy iteration algorithm actually is an
optimal policy. The output from the implementation yields

µ̄(A) = 2, µ̄(B) = 1, µ̄(C) = 1.

Observe that as the average cost of applying control 1 in state A is 2, which
is the same as the cost of applying action 2, we actually have that a policy is
optimal regardless of its value in state A. Our implementation also claim that
the cost function of the policy µ̄ as defined above (when only including two
decimal places) is

Jµ̄(A) = 97
25 , Jµ̄(B) = 47

25 , Jµ̄(C) = 47
25 ,

which we recognizance as the optimal cost function for this SSP-problem as we
showed that it indeed is a fixed point for Equation (5.2). We now verify that
the policy given by the algorithm indeed is optimal by checking that the cost
function of µ̄ is a fixed point for the Bellman equation for policies, which is
stated in Equation (5.8). We find that

Jµ̄(A) = pAt(µ̄(A))g(A, µ̄(A), t) +
∑

j∈{A,B,C}

pAj(µ̄(A))(g(A, µ̄(A), j) + J̄µ̄(j))

= 2 + Jµ̄(B) = 2 + 47
25 = 92

25 ,

Jµ̄(B) = pBt(µ̄(B))g(B, µ̄(B), t) + pBB(µ̄(B))(g(B, µ̄(B), j) + J̄µ̄(B))

= 17
20 + 3

20 (5 + Jµ̄(B))

= 17
20 + 3

20

(
5 + 47

25

)
= 17

20 + 3
20

172
25 = 941

500
= 47

25 + 1
500 ≈

47
25 ,

66

5.1. Stochastic shortest path problems

Jµ̄(C) = Jµ̄(B) ≈ 47
25 ,

which show that Jµ̄, as calculated by the PI algorithm, indeed is the cost
function of the policy µ̄ as it is the fixed point for Equation (5.8). This also
proves that µ̄ is an optimal policy as the cost function Jµ̄ is equal to the optimal
cost function J∗. We can then ask ourselves, if we in a given state i choose
a control u and then follow the optimal policy from then on out, what is the
expected cost? We can denote this value Q(i, u), which is called the Q-value of
the state-control pair (i, u). This concept is crucial for some of the methods we
will look at in Chapter 6. The Q-value of a given state-control pair (i, u) can
be found, given that we know the optimal value function J∗ of the SSP, by

Q(i, u) = pit(u)g(i, u, t) +
∑

j∈{A,B,C}

pij(u)(g(i, u, j) + J∗(j)).

Let us then find the Q-values for the SSP we consider in this example. We have
that

Q(A, 1) = pAt(1)g(A, 1, t) +
∑

j∈{A,B,C}

pAj(1)(g(A, 1, j) + J∗(j))

= pAB(1)(g(A, 1, B) + J∗(B)) + pAC(1)(g(A, 1, C) + J∗(C))

= 1
2

(
1 + 47

25

)
+ 1

2

(
3 + 47

25

)
= 36

25 + 61
25 = 97

25 ,

Q(A, 2) = pAt(2)g(A, 2, t) +
∑

j∈{A,B,C}

pAj(2)(g(A, 2, j) + J∗(j))

= pAB(2)(g(A, 2, B) + J∗(B))

=
(

2 + 47
25

)
= 50

25 + 47
25 = 97

25 ,

Q(B, 1) = pBt(1)g(B, 1, t) +
∑

j∈{A,B,C}

pBj(1)(g(B, 1, j) + J∗(j))

= pBt(1)g(B, 1, t) + pBB(1)(g(B, 1, A) + J∗(B))

= 17
20 + 3

20

(
5 + 47

25

)
= 17

20 + 3
20

(
172
25

)
= 425

500 + 516
500 = 941

500 = 47
25 + 1

500 ≈
47
25 ,

Q(B, 2) = pBt(2)g(B, 2, t) +
∑

j∈{A,B,C}

pBj(2)(g(B, 2, j) + J∗(j))

= pBt(2)g(B, 2, t) + pBB(2)(g(B, 2, B) + J∗(B))

= 2 99
100 + 1

100

(
1 + 47

25

)
= 198

100 + 1
100

72
25

= 4950
2500 + 72

2500 = 2511
1250 = 2500

1250 + 11
1250 ≈ 2,

Q(C, 1) = pCt(1)g(C, 1, t) +
∑

j∈{A,B,C}

pCj(1)(g(C, 1, j) + J∗(j))

= pCB(1)(g(C, 1, B) + J∗(B))

67

5.2. Discounted problems

State s J∗(s) Q(s, 1) Q(s, 2)
A 97

25 = 3.88 97
25 = 3.88 97

25 = 3.88
B 47

25 = 1.88 47
25 = 1.88 2

C 47
25 = 1.88 47

25 = 1.88

Table 5.1: Optimal value function and Q-values for SSP depicted in Figure 5.1

= J∗(B) ≈ 47
25 .

We now summarize the findings from this example in Table 5.1. Note that for
each state i we have that the optimal value function J∗(i) coincides with the
Q-value of the state-control pair (i, u) for which the control u satisfy

u = arg min
u∈U(i)

Q(i, u),

i.e. the optimal value function J∗(i) is equal to the minimum of the Q-values
Q(i, ·). This is exactly what we would expected, as we have the following
relation

min
u∈U(i)

Q(i, u) = min
u∈U(i)

pit(u)g(i, u, t) +
∑

j∈{A,B,C}

pij(u)(g(i, u, j) + J∗(j))


= J∗(i).

5.2 Discounted problems

We now continue with looking at the second type of infinite horizon problems
that we are looking at in this chapter, and that is the discounted problems.
The discounted problems are characterized by having a discount factor α with
a value below 1, that is α ∈ (0, 1). The effect of the discount factor is that the
costs encountered at future stages influence the expected cost less and less the
further into the future the cost is incurred. We are in this chapter going to
prove the same results as we did for the SSP problem in the former section.
In [Ber19] the author argues that the results proven for the SSP case is valid
for the discounted problems as well by rewriting the discounted problem into
a SSP problem. We will on the other hand prove the results by again using
the strength of the abstract dynamic programming theory from Chapter 4. We
therefore start by introducing the Bellman equations and the DP operators
for the discounted problem before we prove that the latter have the necessary
properties to be able to use the theory from Chapter 4. As written in the
introduction to the chapter we here also assume that the state space X and
control space U is finite. We can thus also here represent the states by the
first n integers when we have n states. We therefore let X = {1, 2, . . . , n}, as
we in this case does not have a terminal state t. By using the same transition
probabilities as defined in Equation (5.1) we can write the Bellman equation

68

5.2. Discounted problems

for the discounted problem. We have from [Ber19] that for each state i ∈ X we
have

J∗(i) = min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αJ∗(j)).

Then, for a given stationary policy we have

Jµ(i) =
n∑
j=1

pij(µ(x))(g(i, µ(x), j) + αJµ(j)).

Thus, we let H : X × U ×R(X)→ R take the form

H(x, u, J) =
n∑
j=1

pij(u)(g(i, u, j) + αJ(j)). (5.9)

It then follows that the DP operators are given by

(TJ)(i) = min
u∈U(i)

H(i, u, J) = min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αJ(j)),

and

(TµJ)(i) = H(i, µ(i), J) =
n∑
j=1

pij(µ(i))(g(i, µ(i), j) + αJ(j)). (5.10)

We can then move on to show that Tµ is a contraction, which then by
Proposition 4.1.4 implies that T is as well.

Proposition 5.2.1 (Contraction propoerty of Tµ [Ber19]). For each stationary
policy µ ∈M there exist some positive scalar ρ < 1 such that

‖TµJ − TµJ ′‖v ≤ ρ‖J − J ′‖v for all J, J ′ ∈ B(X),

where B(X) is as defined in Definition 4.1.3, the norm ‖·‖v is given by
Equation (4.4) for some positive function v : X → R and Tµ is as defined
in Equation (5.10).

Proof. †
This proof is based on the proof of Proposition 4.2.5 in [Ber19]. We let

µ ∈ M be an arbitrary stationary policy, and we let vµ(i) = 1 for all i ∈ X.

69

5.2. Discounted problems

Then we have that

(TµJ)(i)− (TµJ ′)(i) = H(i, µ(i), J)−H(i, µ(i), J ′)

=
n∑
j=1

pij(µ(i))(g(i, µ(i), j) + αJ(j))

−
n∑
j=1

pij(µ(i))(g(i, µ(i), j) + αJ ′(j))

=
n∑
j=1

pij(µ(i))α(J(j)− J ′(j))

= α

n∑
j=1

pij(µ(i))v(j) (J(j)− J ′(j))
v(j)

≤ α
n∑
j=1

pij(µ(i))v(j)‖J − J ′‖

= αv(i)‖J − J ′‖
n∑
j=1

pij(µ(i)) = αv(i)‖J − J ′‖,

where the transition to the last line follows from the fact that when we fix i ∈ X
we have that v(i) = v(j) for each j ∈ X. The last equality follows from the
fact that when we fix i ∈ X we have

∑n
j=1 pij(µ(i)) = 1. The inequality above

implies that
(TµJ)(i)− (TµJ ′)(i)

v(i) ≤ α‖J − J ′‖.

By then switching the roles of J and J ′ we get the inequality

(TµJ ′)(i)− (TµJ)(i)
v(i) ≤ α‖J − J ′‖.

Then, by maximizing both sides of the inequalities we get that

‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖,

and as α ∈ (0, 1) and µ ∈ M was chosen arbitrarily we have that Tµ is a
contraction for each stationary policy µ, as we were supposed to show. Note
also that the modulus ρ from the proposition is in fact equal to the discount
factor α when we let vµ be the constant function with value one. �

We then proceed with showing that the function H is monotone.

Proposition 5.2.2 (Monotonicity property of H). †
The function H as defined in Equation (5.9) is monotone.

Proof. We need to show that for all J, J ′ ∈ R(X), with J ≤ J ′ pointwise, we
have

H(i, u, J) ≤ H(i, u, J ′) for all i ∈ X and u ∈ U(i).

70

5.2. Discounted problems

Thus, lets assume that J ≤ J ′ pointwise for some J, J ′ ∈ R(X). Then we have
that

H(x, u, J)−H(x, u, J ′) =
n∑
j=1

pij(u)(g(i, u, j) + αJ(j))

−

 n∑
j=1

pij(u)(g(i, u, j) + αJ ′(j))


=

n∑
j=1

pij(u)α(J(j)− J ′(j)) ≤ 0,

where the last inequality follows from the fact that J −J ′ ≤ 0 for all i ∈ X, and
that pij ≥ 0 for all i, j ∈ X. Thus, for all J, J ′ ∈ R(X) with J ≤ J ′ pointwise
we have that

H(x, u, J) ≤ H(x, u, J ′) for all i ∈ X and u ∈ U(i),

as we needed to show. �

We then proceed with stating results that are analogous to the once from
Section 5.1. As these results only rely on the monotonicity and contraction
property to hold we leave out the proofs as they are similar to the proofs of their
equivalent result for the SSP case. We start with the result that correspond to
Proposition 5.1.5. It guarantees that J∗ is the unique solution of the Bellman
equation in the discounted case.

Proposition 5.2.3 (J∗ is the unique solution of Bellman’s equation [Ber19]).
The optimal cost function J∗ for the discounted problem with finite state and
control space is the unique solution of the Bellman equation, i.e.

J∗(i) = min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αJ∗(j)).

The next proposition concerns the convergence of the value iteration
algorithm for the discounted problem.

Proposition 5.2.4 (Convergence of VI [Ber19]). For each state i ∈ X we have
that J∗(i) < ∞, and given an initial cost function J0 ∈ B(X) we have that
the sequence {Jk} of cost functions generated by the value iteration algorithm
converges to the optimal cost function J∗. The algorithm progresses by

Jk+1(i) = min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αJk(j)). (5.11)

We then proceed with the result for individual stationary policies.

Proposition 5.2.5 (VI and Bellman’s equation for stationary policies [Ber19]).
For each stationary policy µ we have that the cost function Jµ satisfies

Jµ(i) =
n∑
j=1

pij(µ(i))(g(i, µ(i), j) + αJµ(j)), (5.12)

71

5.2. Discounted problems

for each state i ∈ X, and we have that Jµ is the unique solution of the system
of equations defined by (5.12). We also have that for any initial cost function J0
the sequence {Jk} of cost functions generated by the value iteration algorithm
converges to the cost function Jµ, where the next function in the sequence is
generated by

Jk+1(i) =
n∑
j=1

pij(µ(i))(g(i, µ(i), j) + αJk(j)).

The last proposition of this chapter say that policy iteration also generates
an optimal policy for the discounted problem in this setting.

Proposition 5.2.6 (Convergence of exact PI [Ber19]). We have that the policy
iteration algorithm produces an improving sequence of policies {µk} which
converges to an optimal policy for the discounted problem, i.e. we have that
Jµk−1 ≤ Jµk pointwise for each k ∈ N and that Jµk = J∗ pointwise for all k ∈ N
with k ≥ N for some large enough N ∈ N. The policy evaluation step of the kth
iteration consists of finding the solution Jµk of the following set of equations

Jµk−1(i) =
n∑
j=1

pij(µk−1(i))(g(i, µk−1(i), j) + αJµk−1(j)) for all i ∈ X,

while the policy improvement step consists of finding a policy µk that for each
state i ∈ X satisfy

µk(i) ∈ arg min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αJµk−1(j)).

We have in this chapter shown that the value iteration and policy
iteration algorithms converge for two different types of infinite horizon dynamic
programming problems. For the case where we discount the future costs we see
that the sum of accumulated costs converge with assumptions that are less strict
than what we need in the case where α = 1. This makes intuitively sense as we
know that for some constant C, which we can think of as max

i,j∈X,u∈U(i)
g(i, u, j),

and a positive factor α < 1, we have that
∞∑
n=0

αnC,

converges. However, for the case where α = 1 we risk allowing policies that
have an associated cost function that for some states is unbounded, which gives
us problems with convergence. This is analogous with the case we considered in
Example 4.2.6. We therefore need assumptions that guarantee that each policy
reach the terminal state t with probability p = 1 in order to show that value
iteration and policy iteration converges.

Another assumption that is important in the dynamic programming setting,
but which often does not hold for real-world problems, is that we have perfect
knowledge about the underlying system. That is, for each state i and control u
we know the probability pij(u) of transitioning to some state j. We also know
which costs we can receive from the given transition and the distribution of these

72

5.2. Discounted problems

costs. When this information is not know we need to rely on approximations and
simulations, which is what approximate dynamic programming, or reinforcement
learning, is concerned with. Reinforcement learning is therefore the topic of the
next chapter.

73

CHAPTER 6

Reinforcement learning

This short introduction to reinforcement learning (RL) is based on [SB18]. The
goal of reinforcement learning is to ’teach’ a learning agent a rule that given a
state of the learning agent in a given environment tells the agent which action
to choose next. The goal is then to maximize the accumulation of rewards that
are given to the learner after each action depending on the state at that time
and the sequence of actions taken beforehand. A concrete example of a learning
agent could be a dog trying to learn which command corresponds to what trick,
where the enviorment is the owner giving commands and rewards, and the
rewards are treats given to the dog by the owner when the dog is performing
the correct trick for the given command flawlessly. The goal of the dog is then
of course to be able to performe the correct trick flawlessly as fast as possible
so that it is rewarded more often. In addition to the agent and the enviroment,
we have a policy, a reward signal, a value function, and sometimes a model of
the environment as part of the reinforcment learning system.

The policy dictates how the agent should act given the current situation.
In other words, it is a mapping from states of the agent to actions the agent
can perform in these states. The policy could also be stochastic, giving a
probability to each possible action. At each time step of the reinforcement
learning procedure the agent receives a reward from the environment. The
goal of the agent is to maximize this reward over time, and thus the agent
will try to change the policy such that the action chosen by the policy yields
a high expected reward. The reward signal may also be a stochastic function
of the state of the environment and the actions taken by the agent. The value
function tells us something about the expected accumulation of rewards in the
future when starting from a given state in the environment, called the value
of the state. Thus the reward signal tells us something about the immediate
consequence of an action, while the value function says something about what
we can expect in the long-run. The estimating of values is a more complicated
task then finding the reward for the next action, and the estimating of the
values is central to reinforcement learning since we often would like to choose
actions that maximizes the value. A model of the environment is a model that
could help us predict the reward from a given action in a given state before they
are experienced thus allowing us to make a plan on which actions to take before
actually observing anything. In fact, if a model of the environment is given, we
have that dynamic programming and reinforcement learning becomes equivalent.
Thus, we can look at dynamic programming as the special case of reinforcement

74

6.1. A short introduction to finite MDPs and reinforcement learning

learning where we are able to obtain some model of the environment. However,
in contrast to dynamic programming, a model of the environment is not needed
in reinforcement learning. We will in this chapter give a short introduction to
RL, and some RL methods, before looking at the similarities and differences
between reinforcement learning and dynamic programming.

6.1 A short introduction to finite MDPs and reinforcement
learning

Finite Markov decision processes

Let us now take a look at Markov decision processes (MDPs), which is the
kind of processes that are underlying the problems we are trying to solve using
reinforcement learning, and is the same kind of processes underlying dynamic
programming. That is because an MDP is a way of modelling a sequential
decision problem, which is exactly what we try to solve both with reinforcement
learning and dynamic programming.

In an MDP we have discreet time steps, just like the model we covered in
Section 3.1. Unlike the form of problems we looked at in Chapter 3, here we let
the time horizon possible be infinite, just as the case we considered in Chapter 5.
At each time step t ∈ N an agent is in a given state xt ∈ X, take an action
ut ∈ U(xt) ⊂ U , and then receive a reward rt+1 ∈ R ⊂ R, before proceeding to
the next state xt+1 ∈ X. The MDP is said to be finite when the cardinality of
X and U , which are the set of possible states and actions respectively, are both
finite. Another property of an MDP is the Markov property, which says that at
time t the state xt and reward rt of the process only depend on the previous
state xt−1 and action ut−1. Because of the Markov property, the dynamics of
the MDP, that is how the process behaves, is completely determined by the
function p : X ×R×X × U → [0, 1], which is defined as

p(x′, r|x, u) = P (xt = x′, rt = r|xt−1 = x, ut−1 = u),

for all x′, x ∈ X, r ∈ R, a ∈ U . In other words, the probability of ending up in
state x′, and receiving reward r, when taking action u in state x is p(x′, r|x, u),
and from the Markov property we have that p completely describes the process.

Reinforcement learning

As in dynamic programming, the goal in reinforcement learning is most often
to optimize some value. However, in contrast to dynamic programming where
we want to minimize cost, in reinforcement learning we want to maximize the
cumulative sum of future discounted rewards obtained by the agent, denoted
Gt. That is, we want to maximize

Gt =
∞∑

k=t+1
αk−t−1rk,

75

6.1. A short introduction to finite MDPs and reinforcement learning

where α ∈ [0, 1). Note also from the definition of Gt that we have

Gt =
∞∑

k=t+1
αk−t−1rk

= rt+1 +
∞∑

k=t+2
αk−t−1rk

= rt+1 + α

∞∑
k=t+2

αk−t−2rk

= rt+1 + αGt+1.

A policy π in the reinforcement learning context is, given a state x, a
probability distribution over actions u. Then π(·|x) denotes the probability
density of the actions u when in state x. For a finite MDP, where U and X are
finite, we have that π is a mapping π : U ×X → [0, 1], and thus π(u|x) denotes
the probability of choosing action u when in state x. We then continue to look
at the state-value function of a given policy π, denoted Jπ(x), where x ∈ X.
The value function is defined as

Jπ(x) = Eπ[Gt|xt = x] = Eπ

[∞∑
k=0

αkrt+k+1

∣∣∣∣∣xt = x

]
, for all x ∈ X,

which is the expectation of the discounted sum of all future rewards when we
go from state x and follow policy π. Given the definition of Jπ(x) we can show
the following relation

Jπ(x) = Eπ[Gt|xt = x]
= Eπ[rt+1 + αGt+1|xt = x]

=
∑

u∈U(x)

π(u|x)
∑
x′∈X

∑
r∈R

p(x′, r|x, u)(r + αEπ[Gt+1|xt+1 = x′])

=
∑

u∈U(x)

π(u|x)
∑

x′∈X,r∈R
p(x′, r|x, u)(r + αJπ(x′)), for all x ∈ X,

which we can see is very similar to Bellman equation for policies.
We also have the action-value function Qπ(x, u) which is defined by

Qπ(x, u) = Eπ[Gt|xt = x, ut = u] = Eπ

[∞∑
k=0

αkrt+k+1

∣∣∣∣∣xt = x, ut = u

]
.

The goal in reinforcement learning is to find the best policies, denoted
π∗, but what denotes a good policy? Like in the dynamic programming case,
we say that a policy π′ is better than another policy π if the expected sum
of discounted rewards are greater for π′ than for π. This is equivalent to
Jπ′(x) ≥ Jπ(x) for all x ∈ X, and if that is the case, we write π′ ≥ π. Thus, an
optimal policy, denoted π∗, must satisfy

Jπ∗(x) = max
π

Jπ(x), for all x ∈ X,

76

6.2. Some reinforcement learning algorithms

and
Qπ∗(x, u) = max

π
Qπ(x, u), for all x ∈ X and u ∈ U(x).

We can also rewrite the last equation in terms of vπ∗ by

Qπ∗(x, u) = E[rt+1 + αJπ∗(xt+1)|xt = x, ut = u].

Now that we have an idea of what an optimal policy is we can proceed to
take a look at some algorithms for estimating such optimal policies. Observe
that many of the terms and equations are similar to what we are used with
from the dynamic programming case.
Remark 6.1.1 (Notation in optimal control). Note that we in the previous
chapters have denoted the cost function for a given policy by Jπ, while we in
this chapter use the same notation in order to denote the value function of a
policy. In principle, the idea of cost- and value functions are the same, Jπ is
some function that we want to optimize pointwise. When we are treating the
signals received by the agent after each transition as costs we often want to
minimize Jπ, while we would like to maximize the same values if we refer to
the signals as rewards. We have therefore opted to denote both the value and
cost function by Jπ in order to make it clear that in both cases the goal is to
optimize the pointwise value of the function Jπ, and that depending on the
formulation of the problem, we either maximize or minimize. Observe also that
any minimization problem, where we treat the signals received by the controller
as costs, can be turned into an maximization problem where we interpret the
signals as reward by changing the sign of the received signals. A last thing
to note is that the notation used for reinforcement learning in this thesis is
borrowed from dynamic programming in order to make the connection between
DP and RL as clear as possible. In the RL literature the states are often denoted
by s, actions by a and the value function of a policy is denoted by vπ. It is also
common to use γ instead of α as the discount factor, while α is used to denote
the learning rate in different RL methods. It is also useful to note the difference
in language used. In reinforcement learning we often talk about agent, actions,
rewards and value functions, while we in dynamic programming use controller,
controls, costs and cost functions to refer to the same thing (if we disregard
the fact that reward = −cost). A longer list of concepts in optimal control that
has different names in RL and DP can be found in [Ber19]

6.2 Some reinforcement learning algorithms

In this section we take a look at the Q-learning and SARSA algorithms which
are two reinforcement learning algorithms that are common in the literature.
The introductions given here is inspired by the ones given in [SB18]. Note that
policy iteration and value iteration that we covered in their abstract form in
Section 4.3 also are viable methods for finding the optimal policy and the value
function for an MDP, but we will not restate these methods here. Q-learning
and SARSA are both temporal differences methods. This class of methods are
able to learn from observations gained from simulations, and does not need a
mathematical model of the dynamics of the environment in order to learn, in
comparison to policy iteration and value iteration where we need to know the
underlying model of the MDP in order to define the Bellman operator T .

77

6.3. Similarities between reinforcement learning and dynamic programming

Q-learning

Q-learning is an off-policy temporal differences control algorithm that approxi-
mates the optimal Q-function by use of sampling, often from simulations. That
the method is an off-policy method means that the Q-values approximated
by the method is not dependent on the policy used to pick actions during
simulations. We start by initializing Q(x, u) for all x ∈ X,u ∈ U(x) to an
arbitrary value, except for the terminal state for which Q(terminal, ·) = 0. We
then train the algorithm on multiple samples, often called episodes in the RL
literature. For each episode we start in some state x0 ∈ X and take some action
u0 ∈ U(x0) decided from some policy π based on the current Q-value estimates,
e.g. the ε-greedy policy which with a small probability ε chooses a random
action, and otherwise take the action for which the state-action pair has the
maximum Q-value estimate. We then observe the reward r0 and the next state
x1. We then repeat the same procedure by finding u1 ∈ U(x1) using policy
π and then observing r1 and x2. This process is repeated until we reach the
terminal state of the episode. For each transition we update the Q-value with
the following equation

Q(xt, ut)← Q(xt, ut) + γ[rt+1 + α max
u∈U(xt+1)

Q(xt+1, u)−Q(xt, ut)], (6.1)

where γ is the learning rate of the agent, and α is the discount rate.

SARSA

SARSA is in contrast to Q-learning an on-policy temporal difference algorithm.
The two algorithms function in almost the same way, with the exception of a
small change in the updating function of the Q-values. The minimization in
(6.1) is substituted by Q(xt+1, ut+1), i.e. we use the Q-value of the state-action
pair that consist of the next state xt+1 and the action our current policy π
maps the state xt+1 to, which is ut+1. That is why SARSA is called on-policy,
as the updated Q-value depends on the policy π that we use to generate the
state-action pairs. The Q-value updates thus take the form

Q(xt, ut)← Q(xt, ut) + γ[rt+1 + αQ(xt+1, π(xt+1))−Q(xt, ut)].

6.3 Similarities between reinforcement learning and
dynamic programming

We have now shortly introduced reinforcement learning with emphasis on
Markov Decision Processes as the underlying model. With this model assumed
to be underlying we see that there is much resemblance between the theory
of dynamic programming that we have covered in Chapters 3 to 5 and the
reinforcement learning theory we have covered so far in this chapter. We are
considering problems where we traverse a path of states, where the next state
on the path is determined by a chosen control, also called action, and some
random value w drawn from some distribution. We also pay costs, or receive
rewards, whenever we transition from one state to the next. This is in essence
equivalent to traversing an MDP. The problems we are trying to solve is then
centred around finding an optimal policy that when applied to our control

78

6.3. Similarities between reinforcement learning and dynamic programming

problem results, on average, in the cumulated sum of costs/rewards being equal
to the optimal expected cumulative sum of costs/rewards. That is, in DP we
are often concerned with solving problems on the form

min
π∈Π

E
w∈W

[∑
n∈N

g(xn, π(xn), wn)
]
,

while we in the reinforcement learning context look at problems often formulated
as

max
π∈Π

E
w∈W

[∑
n∈N

r(xn, π(xn), wn)
]
.

But in essence these problems are equivalent. In fact, the function we are
optimizing can also be subject to change. We will therefore in the next section
sometimes refer to a target function, which is just a way of referring to the
expression we are optimizing. That is, in the usual DP case the target function
is E(w0,w1,···)

[∑
n∈N g(xn, π(xn), wn)

]
.

Another similarity between RL and DP is that we are able to use value
iteration and policy iteration in order to solve both kind of problems. But
it is here the differences between DP and RL are starting to show. Methods
such as Q-learning and SARSA are used in RL, but not in DP. That is because
in DP we focus on methods that in the RL literature are called model-based
methods, i.e. methods where the mathematical model of the environment is
required. The up side of focusing on model-based methods is that we often are
able to find exact solutions, and can therefore be certain that our solution is
sound. The same can not be said for all RL methods, as many of them are
dependent on approximations, simulations or simplifications. Therefore RL is
sometimes called approximate dynamic programming in the literature, with
the classic theory then being called exact dynamic programming. The short
story is that we can in some sense consider dynamic programming as being
the part of the reinforcement learning theory that considers problems were
we are able to find exact solutions using model-based methods. We can also
consider reinforcement learning as being an extension of dynamic programming
with approximate methods, hence justifying the label approximate dynamic
programming. If we for example are not able to obtain a model of the underling
system governing the optimal control problem we are trying to solve we would
need to use the model-free RL methods, as we would not be able to apply the
model-based DP modes. Another situation where RL proves useful is when we
have large state- and/or control spaces, as the complexity of value iteration
and policy iteration can be huge when the cardinality of the state- and control
space increases. As many RL methods only depend on simulations, which in
general are less computationally demanding than VI and PI, we could use them
in order to find a good policy for a problem where value iteration and policy
iteration are not feasible solution methods.

We have so far in this thesis only covered methods that converge when
the state and control space is finite. There exists several methods in order to
deal with problems where we have infinite state- and/or control spaces, but
we will not cover them in detail in this work. However, we will here give a
short descriptions of some of the methods available, and the idea behind them.
For the curious reader we referee to [Ber19]. If the state space is infinite there

79

6.3. Similarities between reinforcement learning and dynamic programming

0 250 500 750 1000
0

2

4

Approximate Q-values state A

A1
A2

Mean all runs
Actual

0 250 500 750 1000
0

1

2

3

4

Approximate Q-values state B

B1
B2

Mean all runs
Actual

0 250 500 750 1000
0.0

0.5

1.0

1.5

2.0
Approximate Q-values state C

0 25 50 75 100

3.90

3.95

4.00

Moving average (N=900) of costs
incurred during testing and training

Training
Testing

Mean testing
Optimal

Q-learning

Figure 6.1: The evolution of Q-values and running average of simulated costs
using Q-learning, as well as theoretical values and mean of sampled values.

exists several RL/approximate dynamic programming methods in order to
approximate the values in the state space. This is often done by use of e.g
regression or neural networks. The idea is that we assume some relationship
between the cost at two states. If we for example assume a linear relationship
between the cost at the different states, then we can find the cost at some
states, and use regression in order to interpolate the cost at every other state.
If we on the other hand have that the control space is e.g continuous we could
approach the problem using policy parametrization. We then assume some
parametrization of the policy, and try to find the optimal feature vector by use
of for example gradient descent. These examples also explain some of the need
for RL and approximate DP methods.

Let us now consider an example where we try to solve a problem that we
earlier solved using exact methods, but now using Q-learning and SARSA, that
in contrast to the DP methods, depend on simulations. That is, let us consider
the problem that we in Example 5.1.9 solved using exact dynamic programming
as we assumed that we had perfect information about the underlying model, an
assumption we remove in the following example.

Example 6.3.1 (Continuation of Example 5.1.9). †
We can now take a second look at the SSP-problem depicted in Figure 5.1

that we considered in Example 5.1.9. In the previous example we assumed that
we had perfect information. Let us now remove this assumption and try to
solve the same problem using Q-learning and SARSA. The concrete problem we
will try to solve is to find the policy that on average gives us the optimal cost

80

6.3. Similarities between reinforcement learning and dynamic programming

0 200 400 600 800 1000
0

2

4

Approximate Q-values state A

A1
A2

Mean all runs
Actual

0 200 400 600 800 1000
0

1

2

3

4
Approximate Q-values state B

B1
B2

Mean all runs
Actual

0 200 400 600 800 1000
0

1

2

Approximate Q-values state C

0 20 40 60 80 100

3.84

3.86

3.88

Moving average (N=900) of costs
incurred during testing and training

Training
Testing

Mean testing
Optimal

SARSA

Figure 6.2: The evolution of Q-values and running average of simulated costs
using SARSA, as well as theoretical values and mean of sampled values.

when traversing the stochastic shortest path shown in Figure 5.1 from state
A to the terminal state t. We have implemented the two methods using the
ε-greedy policy with initial parameter values of γ = 0.3, ε = 0.15, and α = 1.
After half of the training runs we let γ decrease by setting γ = 99

100γ between
each run. The code for running the Q-learning and SARSA examples can be
found in Listing A.4, while the code for implementing the graph itself can again
be found in Listing A.1.

In order to approximate the Q-values and the optimal policy for the SSP-
problem we first train the algorithm by using Q-learning as described above,
except for the fact that the maximization in Equation (6.1) is switched out with
a minimization as we in our problem formulation want to minimize cost and
not maximize reward. We run 1000 rounds of training and record the Q-values
of each state-action pair at the end of each round as well as the accumulated
cost for the given round. In addition, for every 200 rounds of training we test
the current policy. This is done by setting ε = 0 such that we always choose
the action with the highest Q-value in each state. We also lock the Q-values
for the duration of the test runs such that the behaviour dictated by the policy
does not change, as the Q-values stay fixed during the test runs. We run the
current policy for 1000 rounds during each test and collect the accumulated
cost for each round. Then, in order to approximate the expected cost of the
policy generated by the Q-learning algorithm we run an additional 1000 rounds
of testing with the final policy, i.e. the policy that in each state chooses the
action with the minimal Q-value, where the Q-values are the once generated

81

6.3. Similarities between reinforcement learning and dynamic programming

0 2 4
0

50
100
150
200
250

Co
un

t

Approximate Q-values state A
A1, std: 0.37
A2, std: 0.31

0 1 2 3 4
0

50
100
150
200
250

Co
un

t

Approximate Q-values state B
B1, std: 0.615
B2, std: 0.104

0.0 0.5 1.0 1.5 2.0
0

50
100
150
200
250

Co
un

t

Approximate Q-values state C
C1, std: 0.235

5 10
0

50
100
150
200
250

Co
un

t

Total costs incurred from
testing and training runs

Testing
Training

Histogram and KDE for Q-learning

Figure 6.3: Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate policies for
Q-learning. The height has been cut at y = 250.

by the algorithm after the 1000 rounds of training. During the final testing we
again track the accumulated cost for each round.

We then plot in Figure 6.1 the evolution of the Q-values for the different
state-action pairs after each of the training runs as well as the running average
of the last 900 approximations of the expected cost for both the training runs
and the testing runs of the final policy generated by the algorithm. This gives us
a clear picture of how the approximation of the optimal policy evolves over the
training period and from the plot depicting the running averages of the sampled
total costs we also get an estimate of the expected cost of the final policy. We do
exactly the same for SARSA which produces the plot shown in Figure 6.2. From
the plots we see that only SARSA attain the optimal policy after 1000 rounds
of training as action 1 yields the smallest approximated Q-value for SARSA
when at state B and C while action 2 does the same for state A, which is exactly
the same as the optimal policy we found in Example 5.1.9. However, we note
that during some periods of the training we actually have an approximation for
the optimal policy that in fact is not the optimal policy. These periods are the
once where we have Q(B, 2) < Q(B, 1). For Q-learning we see that it does not
correctly approximate the Q-values. This fact showcases the possible instability
of these approximate dynamic programming methods.

The actual Q-value estimates for both Q-learning and SARSA after the
training rounds is shown in Table 6.1. By looking at Table 5.1, with the results
from Example 5.1.9, we see that the Q-values for some of the states match

82

6.3. Similarities between reinforcement learning and dynamic programming

0 2 4
0

50
100
150
200
250

Co
un

t

Approximate Q-values state A
A1, std: 0.496
A2, std: 0.401

0 1 2 3 4
0

50
100
150
200
250

Co
un

t

Approximate Q-values state B

B1, std: 0.808
B2, std: 0.117

0 1 2
0

50
100
150
200
250

Co
un

t

Approximate Q-values state C
C1, std: 0.271

5 10 15
0

50
100
150
200
250

Co
un

t
Total costs incurred from
testing and training runs

Testing
Training

Histogram and KDE for SARSA

Figure 6.4: Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate policies for
SARSA. The height has been cut at y = 250.

Method and value s = A s = B s = C

Q-learning Q(s, 1) 4.17 2.54 1.92
Q-learning Q(s, 2) 4.01 2.01
SARSA Q(s, 1) 4.11 1.74 1.91
SARSA Q(s, 2) 3.67 2.02
Actual Q(s, 1) 3.88 1.88 1.88
Actual Q(s, 2) 3.88 2

Table 6.1: Q-values estimated by Q-learning and SARSA for SSP depicted in
Figure 5.1.

83

6.3. Similarities between reinforcement learning and dynamic programming

Q-le
arni

ng
SAR

SA
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of policies found by the different methods
Number of policies per method: 1000

A2B2C1
A1B2C1
A1B1C1
A2B1C1

Figure 6.5: Bar plot showing distribution of policies created with Q-learning
and SARSA. Legend notation explanation: A1B1C1 denotes the policy taking
action 1 in each state.

quite well, while the methods are less accurate for others. We can see the same
by looking at the deviation from the final Q-value approximations and the
actual Q-values in Figures 6.1 and 6.2. It can also be interesting to look at the
variability of the Q-value estimates and the distribution of the accumulated
costs that the final policy incurred during testing as well as the costs we sampled
during training. We therefore plot a histogram for the Q-values and the observed
costs for Q-learning in Figure 6.3 and for SARSA in Figure 6.4. We also plot
the kernel density estimate for the values. We note that for both methods the
Q-value Q(B, 1) had the largest standard deviation. This is probably due to
the fact that we under action 1 in state B have a 3

20 chance of receiving a cost
of 5 which is significantly higher than any other transition cost in the SSP.
Thus, the Q-value approximation of Q(B, 1) will increase by a relative high
amount each time this cost is observed during training, hence increasing the
variability of the approximation. We can also see from the histogram of the
incurred costs that the policy learned by the Q-learning method more or less
only accumulated a cost of 4 or 5 units during a run, while the optimal policy
correctly approximated by SARSA most often receive a cost of 3. However,
the policy learned by SARSA have a significant peak around a cost of 8 units
and another smaller peak around 13. Thus the optimal policy have a non-zero
chance of yielding relatively high costs when traversing the SSP.

In this example we only look in detail on a single run for both Q-learning
and SARSA. As the RL methods we look at here rely on simulations in order
to generate a policy the results of a single run are prone to randomness and

84

6.3. Similarities between reinforcement learning and dynamic programming

we are not guaranteed that running the same algorithm again would result
in the same policy being generated. In order to get an idea about how the
methods perform on average we generate another 1000 policies with both of
the methods and collect the generated policy after each round of training. We
then plot a bar plot in Figure 6.5 that depicts the distribution of the policies
generated by each method. We see that the two methods usually generate the
policy that takes action 2 in state A and B, and action 1 in state C, which was
the policy generated by Q-learning in the run we considered earlier. It is also
interesting to note that the distribution of policies are quite similar for both
methods, and that the actual optimal policy for this problem, which is A2B1C1,
only is generated about once in ten runs. Keep in mind that these results are
dependent on our choice of parameter values for the learning rate γ, discount
rate α and the exploration rate ε. We will however not look into the effect of
these parameters in this work.

In the next chapter we take a look risk-sensitive optimal control by
considering some methods that try to reduce the variation of the cost incurred,
typically by generating policies that are avoiding state-control pairs like (B, 1)
that has a probability of generating relatively large costs.

85

CHAPTER 7

Risk-sensitive control

In the usual form of dynamic programming and reinforcement learning we are
trying to optimize the expected value of a given target function. This is however
not always desirable. In some cases it would be better to have a less desirable
expected value for our target function, if we were able to, for example, make
the probability of extreme losses (almost) non-existing. An example could be
deciding on a strategy to save money. We could either invest our savings in
stocks and financial derivatives, or we could simply put the money into a savings
account. We would expect our savings to grow slower in a savings account,
but we would on the other hand avoid the price volatility of the financial
market. This means that by putting our money into a savings account we have
a lower expected gain, but we trade that for a lower variability and thus a more
predictable return. In other words, we have a savings solution with lower risk.
The idea behind risk sensitive control is to include the minimization of risk
as an optimization criterion together with the classical notion of optimizing
the expected value. Thus, an optimal policy in the context of risk sensitive
control is not necessarily a policy with an expected value equal to the optimal
expected value, but would need to have a trade-off between risk and the expected
cost/reward. We could therefore in risk sensitive control allow for an expected
value worse than the optimal if the risk associated with the policy is lower that
what we would have with a policy considered optimal in the regular DP and RL
context. This is analogues to how a risk-sensitive person that is risk-avoiding
would accept the lower expected gain associated with putting his money in a
savings account as that is less risky than the financial market, while a risk-
neutral person would not hesitate with entering the financial market with her
savings as the expected gain is higher. There exist many different methods to
include risk in the optimization criterion and we will in this chapter discuss a
few of them. Some methods depend on a model-based framework while others
use reinforcement learning techniques, and a few are based on ideas that are
compatible with both model-based and model-free frameworks. We start this
chapter with a section devoted to give some motivation for risk sensitive control
before we move on to introducing some of the model-based risk-sensitive control
methods. We then continue with a section on model-free risk-sensitive control
methods, and then we end the chapter with a discussion and comparison of the
methods presented in this chapter.

86

7.1. Motivation for risk-sensitive control

7.1 Motivation for risk-sensitive control

In this section we look at an example taken from [Heg94] that illustrates the
motivation for risk sensitive control.

Example 7.1.1 (St. Petersburg Paradox, motivation for risk-sensitive control).
The example considered here is taken from [Heg94]. Consider a situation where
someone offers us to play a game. The rules of the game is that we put in a
bet of k units, and then a fair coin is tossed over and over again until it hit the
ground with heads pointing upwards. We then receive 2n units, where n is the
number of tosses we needed for a heads to appear. That is, if we get heads on
the second toss, we win 22 = 4 units. The question is then, how much would
we be willing to pay to play this game, or would we not be willing to play at
all? If we use the expected payoff to decide whether to play or not, we see that
not playing will result in an expected gain of 0. While for playing the game we
expect the payoff X to be

E[X] =
∞∑
n=1

1
2n 2n − k =

∞∑
n=1

1n − k =∞.

Note that 1
2n is the probability that the nth toss is the first showing heads.

We can then conclude that we would, following the maximize expected value
criterion, always choose to play the game. It even turns out that we would be
willing to put in any finite stake of k units that is asked of us to play the game,
since our expected gain is infinite. This is however not sensible, as most people
would not be willing to put in any arbitrary amount of units.

We will in the following chapters look at different methods that try to take
risk into account in order to find policies that we would find more sensible
than those found by only considering the optimal expected value criterion. In
the context of Example 7.1.1 we saw that the optimal policy found when only
considering the optimal expected value would always play, no matter the initial
stake. Depending on your tolerance for risk the optimal policy, when considering
both the expected value and the risk, would be something like

π∗(k) =
{
take bet k ≤ c,
do not take bet k > c,

where k is the initial stake in order to play the game, while c is some finite
number that indicate what we would be willing to bet to enter the game and
is thus dependent on the level of risk that we tolerate. In the next section we
start by looking at some model-based approaches before continuing on with
some model-free methods.

7.2 Model-based risk-sensitive control

This section set out to introduce some classical ways of handling risk in a dynamic
programming setting with perfect information. We will look at minimax, the
utilization of a exponential utility function, and the introduction of so called
error states, as ways to find optimal policies in a risk-sensitive sense.

87

7.2. Model-based risk-sensitive control

Minimax

This subsection is based on [Heg94], [Ber17] and [Ber18]. In some situations
even small probabilities of extreme outcomes as a result of following a particular
policy is considered to be too severe to be acceptable. In such cases we could
be tempted to always consider the worst possible outcome of choosing a given
control as the outcome we would need to be willing to accept in order to pick
that given control. The controller should then optimize over the worst-case
outcomes for each action. This is the idea behind minimax where we minimize
over the maximal possible cost of the available controls in each state. When we
deal with rewards instead of costs, the analogue is called maximin and is when
we are trying to find a policy that is maximizing the minimal possible reward
gained by applying the policy. The problem of finding the optimal policy for
the minimax problem can in the finite-horizon case be rigorously stated as

min
π∈Π

max
wk∈Dk(xk,µk(xk)),

k=0,1,...,N−1

(
gN (xN) +

N−1∑
k=0

gk(xk, µk(xk), wk)
)
. (7.1)

In [Ber17] the author shows that the following DP algorithm, which is the
minimax analogue of the algorithm presented in Section 3.2, finds the optimal
cost function of a finite-horizon minimax problem, and is thus the cost function
Jπ of each policy π satisfying Equation (7.1). The algorithm takes the form

JN (xN) = gN (xN), (7.2a)

Jk(xk) = min
uk∈Uk(xk)

max
wk∈Dk(xk,uk)

(gk(xk, uk, wk)+Jk+1(fk(xk, uk, wk))). (7.2b)

Let us now apply this method on the problem we considered in Example 7.1.1

Example 7.2.1 (Maximin/Minimax, continuation of Example 7.1.1). †
We can now apply the maximin algorithm, by switching min and max in
Equation (7.2), in order to find a more sensible policy for the problem considered
in Example 7.1.1. We have only one state denoted by x, and the process lasts
for one single period, so we have N = 1. In addition, we have just two possible
controls which is to play or to not play, denoted by up and un, respectively. If
we choose to not play our reward is 0, implying that g(x, un, ·) = 0, while if we
choose to play and pay a cost k ∈ [0,∞) we get the price 2n with probability
p = 1

2n where n ∈ N \ {0}. Thus we receive the reward 2n − k with probability
p = 1

2n , i.e. the probability of the random noise w ∈W (x, up) having a value
satisfying g(x, up, w) = 2n − k is 1

2n , written compactly as

P ({w ∈W (x, up) : g(x, up, w) = 2n − k}) = 1
2n for each n ∈ N \ {0},

where P is the probability measure of the relevant probability space. Note that
we have no deterministic final cost, and therefore gN (x) = 0. This gives

J∗(x) = max
u∈{up,un}

min
w∈W (x,u)

g(x, u, w)

= max
{

min
n∈N\{0}

2n − k, g(x, un, ·)
}

88

7.2. Model-based risk-sensitive control

= max{2− k, 0}

=
{

0 kn > 2,
2− k k ≤ 2.

Note that the reward of 0 is associated with the control un, while the reward
2− k is achieved by applying the control up. Therefore, we have that

π∗(x) =
{
un k > 2
up k ≤ 2.

Thus we see that when using the maximin criterion we should opt not to play
if it cost more than 2 units, while we should play if the stake is 2 units or
less. This makes sense as we are always guaranteed a price of at least 2 units,
thus assuming that the odds are always not in our favour the optimal maximin
policy will only choose to play if k ≤ 2. As expected the maximin optimal
policy is more sensible than the optimal policy found by considering the optimal
expected value criterion as we now do not allow for arbitrarily large bets, but
only smaller bets that is of a size that guarantees that we at least get our money
back, and when k = 2, we double our initial investment with probability p = 1

2 ,
while for k < 2 we are guaranteed a profit. Sadly, we would probably never find
anyone willing to let us play the game for a stake k < 2.

For the infinite-horizon case we can turn to the theory of Chapter 4. In
order to use the abstract dynamic programming notation from Chapter 4 we
define

H(x, u, J) = sup
w∈W (x,u)

(g(x, u, w) + αJ(f(x, u, w))) , (7.3)

with α ∈ (0, 1). We see that Equation (7.3) is more or less the same expression
we are minimizing in Equation (7.2b), with the exception of H being stationary
and discounted, as well as the change from max to sup. The mapping H gives
rise to our usual operators Tµ and T , defined by

(TµJ)(x) = H(x, µ(x), J), (7.4)

for each stationary policy µ ∈M and

(TJ)(x) = min
u∈U(x)

H(x, u, J).

We would then like to show that the optimal cost function J∗ satisfies the
Bellman equation J∗ = TJ∗ and that we are able to apply the methods
presented in Section 4.3 in order to find an optimal policy. We know from
Chapter 4 that this is the case if the operator Tµ is a contraction for each
µ ∈ M and if the mapping H satisfies the monotonicity property. We start
with showing that H in fact is monotone.

Proposition 7.2.2 (Minimax mapping H is monotone). †
The mapping H : X × U × R(X) → R, as defined in Equation (7.3), is

monotone, i.e. for all functions J, J ′ ∈ R(X), with J(x) ≤ J ′(x) for all x ∈ X,
we have that

H(x, u, J) ≤ H(x, u, J ′) for all x ∈ X and u ∈ U. (7.5)

89

7.2. Model-based risk-sensitive control

Proof. Assume that J, J ′ ∈ R(X) with J ≤ J ′ pointwise. We then need to
prove that Equation (7.5) holds, which is equivalent to showing that

H(x, u, J)−H(x, u, J ′) ≤ 0.

We see that

H(x, u, J)−H(x, u, J ′) = sup
w∈W (x,u)

(g(x, u, w) + αJ(f(x, u, w)))

− sup
w∈W (x,u)

(g(x, u, w) + αJ ′(f(x, u, w)))

≤ sup
w∈W (x,u)

(g(x, u, w) + αJ(f(x, u, w))

− g(x, u, w)− αJ ′(f(x, u, w)))
= sup
w∈W (x,u)

(g(x, u, w)− g(x, u, w)

+ α(J(f(x, u, w))− J ′(f(x, u, w))))
= sup
w∈W (x,u)

α(J(f(x, u, w))− J ′(f(x, u, w)))

≤ αC
≤ 0,

where

C = sup
w∈W (x,u)

(J(f(x, u, w))− J ′(f(x, u, w))) ≤ sup
x∈X

(J(x)− J ′(x)) ≤ 0,

as we have assumed that J(x) ≤ J ′(x) for all x ∈ X. Then, as we have showed
that H(x, u, J)−H(x, u, J ′) ≤ 0, we have that H is monotone. �

We can then move on to show that the operator Tµ, as defined in
Equation (7.4), is a contraction for each stationary policy µ ∈M.

Proposition 7.2.3 (Minimax operator Tµ is a contraction). †
The operator Tµ as defined in Equation (7.4) is a contraction on the space

B(X) for each stationary policy µ ∈M, that is, for some arbitrary cost functions
J, J ′ ∈ B(X), and some positive number ρ < 1, we have that

‖TµJ − TµJ ′‖v ≤ ρ‖J − J ′‖v,

where the norm ‖·‖v is as defined in Definition 4.1.3 and where v : X → R is
some positive function.

Proof. Let J, J ′ ∈ R(X) be some arbitrary cost functions and let v(x) = 1 for
each x ∈ X. We then see that

(TµJ)(x)− (TµJ ′)(x) = H(x, µ(x), J)−H(x, µ(x), J ′)
= sup
w∈W (x,u)

(g(x, µ(x), w) + αJ(f(x, µ(x), w)))

− sup
w∈W (x,u)

(g(x, µ(x), w) + αJ ′(f(x, µ(x), w)))

≤ sup
w∈W (x,u)

α(J(f(x, u, w))− J ′(f(x, u, w)))

90

7.2. Model-based risk-sensitive control

= sup
w∈W (x,u)

αv(f(x, u, w)) (J(f(x, u, w))− J ′(f(x, u, w)))
v(f(x, u, w))

≤ sup
w∈W (x,u)

αv(f(x, u, w))‖J − J ′‖

= αv(x)‖J − J ′‖,

where we in the last equality have used that v(x) = v(f(x, u, w)) = 1. The
above calculation implies that

(TµJ)(x)− (TµJ ′)(x)
v(x) ≤ α‖J − J ′‖.

We can then switch the roles of J and J ′ to show that the inequality

(TµJ ′)(x)− (TµJ)(x)
v(x) ≤ α‖J − J ′‖,

holds. If we now maximize both sides of the inequities we see that

‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖.

Then, as α ∈ (0, 1), and as the choice of µ ∈M is not important, we see that
Tµ indeed is a contraction for each policy µ ∈M with modulus ρ = α. �

We have then showed that the operator Tµ is a contraction for each stationary
policy µ ∈ M and that the mapping H is monotone. We then know from
Chapter 4 that the optimal cost function J∗ satisfies

J∗ = inf
π∈Π

Jπ = inf
µ∈M

Jµ = TJ∗,

that is, J∗ is a fixed point of Bellman’s equation J∗ = TJ∗ and an optimal
policy is possible to find among the stationary policies µ ∈M. We then also
have that we are able to use the methods presented in Section 4.3 in order to
find both an optimal policy and the optimal cost function J∗ for the discounted
minimax problem.

As we see from Equation (7.1) the actual probability distributions of the
random values wk are actually not needed in order to solve the minimax problem.
We only need to have knowledge about which values the random noise can take
when we in a given state x pick the control u, along with the cost function g
and state transition function f . Therefore, in a situation where we in some
real-world application are not able to find sufficiently accurate estimates of the
probability distributions for the random quantities wk, but are only able to find
bounds on the values of the random noise, we could use minimax in order to
find a safe policy. We would then avoid the risk inherited from depending on
bad estimates of the probability distributions and would end up with a policy
where we are able to get some idea of the worst-case outcome of applying the
policy in question.

Exponential utility function

This subsection is based on the paper [MN02] as well as [HM72] and [Ber18].
Even though the minimax/maximin method introduced in Section 7.2 is a step

91

7.2. Model-based risk-sensitive control

on the way towards dealing with the problem of risk-neutrality when using the
optimal expected value criterion, as illustrated in Example 7.1.1, it has some
drawbacks. In Example 7.2.1 we saw that using maximin instead of the regular
optimization criterion gave a more sensible policy compared to the one found
in Example 7.1.1. However, a player that allow for some risk could for instance
be willing to put up, lets say, a stake of k = 3. This sounds reasonable as the
chance of suffering a loss is p = 1

2 while the probability of a gain is the same.
The exponential utility function approach to risk-sensitivity allows for this kind
of slight risk-averse behaviour. It includes a parameter β that represents how
risk-averse or -seeking the agent is and allows for behaviour that does not always
assumes the worst-case outcome and that still is not risk-neutral.

The idea behind using an exponential utility function is to transform the
cost function such that we can control the variation of our optimal policy π∗.
We do this in the finite-horizon case by changing the goal from finding a policy
π∗ = {µ0, · · · , µN−1} ∈ Π that satisfies

Jπ∗(x0) = min
π∈Π

E

[
gN (xN) +

N−1∑
k=0

gk(xk, µk(xk), wk)
]
,

into finding the policy that satisfies

Jπ∗(x0) = min
nπ∈Π

1
β

logE
[
e
β
(
gN (xN)+

∑N−1
k=0

gk(xk,µk(xk),wk)
)]
. (7.6)

The value β in (7.6) is a risk aversion coefficient. To see why it is preferable
to optimize the function in Equation (7.6) when we would like to control the
variability of our cost, we can write out the Taylor expansion of the expression.
We start by writing out the second order Taylor expansion of f(x) = eβx around
the point a = E[G], where

G := gN (xN) +
N−1∑
k=0

gk(xk, µk(xk), wk).

We have that (†)

T2fE[G](x) = f(E[G]) + f ′(E[G])(x− E[G]) + f ′′(E[G])
2 (x− E[G])2

+ f ′′′(c)
6 (x− E[G])3

= eβE[G] + βeβE[G](x− E[G]) + β2eβE[G]

2 (x− E[G])2

+ β3eβc

6 (x− E[G])3,

where c ∈ (E[G], x). Then by taking the expectation of eβG we get

E
[
eβG

]
= E

[
T2fE[G]

]
= E

[
eβE[G] + βeβE[G](G− E[G]) + β2eβE[G]

2 (G− E[G])2

+ β3eβc

6 (G− E[G])3
]

92

7.2. Model-based risk-sensitive control

= E
[
eβE[G]

]
+ E

[
βeβE[G](G− E[G])

]
+ E

[
β2eβE[G]

2 (G− E[G])2
]

+ E

[
β3eβc

6 (G− E[G])3
]

= eβE[G] + βeβE[G](E[G]− E[E[G]]) + β2 e
βE[G]

2 E
[
(G− E[G])2]

+ β3 e
βc

6 E
[
(G− E[G])3]

= eβE[G] + βeβE[G](E[G]− E[G]) + β2 e
βE[G]

2 Var(G)

+ β3 e
βc

6 E
[
(G− E[G])3]

= eβE[G] + β2 e
βE[G]

2 Var(G) + β3 e
βc

6 E
[
(G− E[G])3] .

We can then take the logarithm of expression above, giving us

log
(
E
[
eβG

])
= log

(
eβE[G] + β2 e

βE[G]

2 Var(G) + β3 e
βc

6 E
[
(G− E[G])3])

= log
(
eβE[G]

(
1 + β2

2 Var(G) + β3 eβc

6eβE[G]E
[
(G− E[G])3]))

= log
(
eβE[G]

)
+ log

(
1 + β2

2 Var(G) + β3 eβc

6eβE[G]E
[
(G− E[G])3])

= βE[G] + log
(

1 + β2

2 Var(G) + β3 eβc

6eβE[G]E
[
(G− E[G])3]) .

(7.7)

The next step is to find the first order Taylor expansion of g(x) = log(x) around
the point a = 1, which is given by

T1g1(x) = log(1) + g′(1)(x− 1) + g′′(d)
2 (x− 1)2 = x− 1− (x− 1)2

2d2 ,

where d ∈ (1, x). Thus, by using the Taylor approximation of log(x) in
Equation (7.7), we see that

log
(
E
[
eβG

])
= βE[G] +

(
1 + β2

2 Var(G) + β3 eβc

6eβE[G]E
[
(G− E[G])3]− 1

−

(
1 + β2

2 Var(G) + β3 eβc

6eβE[G]E
[
(G− E[G])3]− 1

)2

d2

)

= βE[G] + β2

2 Var(G) + β3 eβc

6eβE[G]E
[
(G− E[G])3]

−

(
β2

2 Var(G) + β3 eβc

6eβE[G]E
[
(G− E[G])3])2

d2 .

93

7.2. Model-based risk-sensitive control

This results in

1
β

logE
[
eβG

]
= E[G] + β

2Var(G) + β2 eβc

6eβE[G]E
[
(G− E[G])3]

−

(
β2

2 Var(G) + β3 eβc

6eβE[G]E
[
(G− E[G])3])2

βd2

= E[G] + β

2Var(G) +O(β2). (7.8)

Then it is clear that when we consider a minimization of cost problem
we have that with increased values of β we punish variation of the cost more
strongly. We also see that when β → 0, we have that optimizing the function
in Equation (7.6) becomes equivalent with optimizing the risk-neutral expected
cost. Note also that by having β < 0 we get the opposite situation. That is, we
then prefer policies with a higher variation in the cost, i.e, we then seek more
risk taking policies. In short, we have that

• β → 0 : Risk-neutral,

• β > 0 : Risk-averse,

• β < 0 : Risk-seeking.

Keep in mind that for a maximizaiton problem it is the other way around. That
means that then β > 0 promotes risk-seeking policies, while β < 0 would give
more risk-averse policies.

Let us now take a look at an example where we revisit the St. Petersburg
paradox in order to illustrate the benefits of the exponential utility function for
avoiding policies with a higher risk.

Example 7.2.4 (Exponential utility function, continuation of Example 7.1.1). †
Again, consider the example with the coin tossing game. We now try to use
an exponential utility function to decide on whether to play or not. The target
function that our policy should maximize is

1
β

log
∞∑
n=1

1
2n e

β(2n−k).

If we now fix β := −1, we can try to find for which value of k we would be as
willing to put in a bet of k units as not to play the game. That is, the value of
k for which

− log
∞∑
n=1

1
2n e

−(2n−k) = 0. (7.9)

We find that for k = 2.62709, equation (7.9) is satisfied. Thus, if we tried to
optimize the target function (7.6), we should follow the policy that play the
game if we only need to put in a stake lower than 2.62709 units, while we would
opt to not play if k > 2.62709. This was the case when β = −1, but how does
the value of k for which we would be willing to play change with β? We try to
illustrate this in Figure 7.1 (see Listing A.10 for plot generating code), where

94

7.2. Model-based risk-sensitive control

−5

0

5

(7.0036, 0)

β = −0.01

(4.35374, 0)

β = −0.1

0.0 2.5 5.0 7.5

−5

0

5

(2.62736, 0)

β = −1

0.0 2.5 5.0 7.5

(2.0072, 0)

β = −100

Target function value when playing and betting different values of k units for a given β

k

T
ar
g
et

fu
n
ct
io
n

1

β
log

(∞∑

n=1

1

2n
eβ(2

n−k)

)

y = 0

Figure 7.1: Illustrating the effect of β when using exponential utility function.

we visualise how the target function value changes with k for some different
values of β. We have also drawn the line y = 0 and marked the intersection
between the two curves, which marks the highest stake value k for which we
would be willing to play for the different values of β. We see from Figure 7.1
that for β = −0.01 we are willing to play if k < 7, while for β = −100 we are
only willing if k ≤ 2. Since we are guaranteed a payoff of at least 2 units, it
seems reasonable that the equilibrium point, that is the value of k for which we
are equally willing to do both actions, approaches 2 as we seek more and more
risk-averse policies.

It would also be interesting to figure out how the target value varies for
different values of β for fixed values of k. We illustrate this in Figure 7.2. From
the figure we see that when β → 0 the target value also increases rapidly. This
is expected, as we know that the limit for the target value is infinite when
β → 0. We also note that for k = 1, 2 the target value is above zero for each β.
This is expected, as we noted earlier that we are guaranteed to always receive 2
units. We see from the two other plots that we need a negative β that is quite
close to zero for preferring to take the bet when we have k ≥ 4, which again is
reasonable, as the probability for receiving 4 units or more is 1

2 .

For the infinite-horizon case we again turn to the notation introduced in

95

7.2. Model-based risk-sensitive control

−5

0

5

k = 1 k = 2

−4 −2 0

−5

0

5

k = 4

−4 −2 0

k = 8

Target function value when playing and betting k units for different values of β

β

T
ar
g
et

fu
n
ct
io
n

1

β
log

(∞∑

n=1

1

2n
eβ(2

n−k)

)

y = 0

Figure 7.2: Illustrating the effect of k when using exponential utility function.

Chapter 4. The mapping H takes the form

H(x, u, J) = E
[
eβg(x,u,w)J(f(x, u, w))

]
. (7.10)

It is shown in [Ber18] that the multiplicative form of the mapping H implies
that

Jπ(x0) = lim sup
N→∞

(Tµ0Tµ1 · · ·TµN−1J)(x0)

= lim sup
N→∞

E
[
eβg(x0,µ0(x0),w0) · · · eβg(xN−1,µN−1(xN−1),wN−1) | x0

]
= lim sup

N→∞
E
[
eβ(g(x0,µ0(x0),w0)+···+g(xN−1,µN−1(xN−1),wN−1)) | x0

]
,

where xn+1 = f(xn, µn(xn), wn) and the expectation is taken with respect to
(w0, . . . , wN−1).

We again want to prove that we are able to write the optimal cost function
J∗ as the solution of Bellman’s equation J∗ = TJ∗. In order to show that the
mapping H, as defined in Equation (7.10), is monotone, and that the operators
T and Tµ induced by the mapping H are contractions. As usual the operators

96

7.2. Model-based risk-sensitive control

are defined by
(TµJ)(x) = H(x, µ(x), J), (7.11)

for some stationary policy µ ∈M, and

(TJ)(x) = min
u∈U(x)

H(x, u, J).

Note that the usual definition of the cost function of a policy π would, as shown
above, give us

Jπ(x0) = lim sup
N→∞

E
[
eβ(g(x0,µ0(x0),w0)+···+g(xN−1,µN−1(xN−1),wN−1)) | x0

]
,

which is not equal to the expression we are minimizing in Equation (7.6).
Therefore, we redefine the cost function of a policy when using the exponential
utility function. We let

Jπ(x0) = 1
β

log
(

lim sup
N→∞

E
[
eβ(g(x0,µ0(x0),w0)+···+g(xN−1,µN−1(xN−1),wN−1)) | x0

])
,

as our cost then is equal to what we would have got from minimizing according
to the expression in Equation (7.6).

As usual we begin with showing that the mapping H, as defined in
Equation (7.10), is monotone.

Proposition 7.2.5 (Exponential utility function H is monotone). †
The mapping H as defined in Equation (7.10) is monotone. In other words,
given two cost functions J, J ′ ∈ R(X) with J(x) ≤ J ′(x) for all x ∈ X we have
that

H(x, u, J) ≤ H(x, u, J ′) for all x ∈ X and u ∈ U.

Proof. Assume that J, J ′ ∈ R(X) is such that J ≤ J ′ pointwise. We then have
that

H(x, u, J)−H(x, u, J ′) = E
[
eβg(x,u,w)J(f(x, u, w))

]
− E

[
eβg(x,u,w)J ′(f(x, u, w))

]
= E

[
eβg(x,u,w)J(f(x, u, w))− eβg(x,u,w)J ′(f(x, u, w))

]
= E

[
eβg(x,u,w)(J(f(x, u, w))− J ′(f(x, u, w)))

]
≤ E

[
eβg(x,u,w)C

]
= CE

[
eβg(x,u,w)

]
≤ 0,

where C = supx∈X(J(x)− J ′(x)) ≤ 0. The above inequality implies that

H(x, u, J) ≤ H(x, u, J ′),

and thus we see that H indeed is monotone. �

We then proceed by presenting a result that show that the operator Tµ, as
defined in Equation (7.11), is a contraction for each stationary policy µ ∈M.

97

7.2. Model-based risk-sensitive control

Proposition 7.2.6 (Exponential utility function Tµ is contraction). †
The operator Tµ, as defined in Equation (7.11), is a contraction for each
stationary policy µ ∈M whenever the choice of β is such that Ew

[
eβg(x,u,w)] <

1 for all choices of x ∈ X and u ∈ U(x). That is, there exist some ρ ∈ (0, 1)
such that

‖TµJ − TµJ ′‖ ≤ ρ‖J − J ′‖,

where J, J ′ ∈ B(X) are two arbitrary functions.

Proof. We assume that J, J ′ ∈ B(X) are two arbitrary functions and that
Ew
[
eβg(x,u,w)] < 1 for all x ∈ X and u ∈ U(x). Then we let v(x) = 1 for all

x ∈ X and define
ρ = sup

(x,u)∈X×U
Ew

[
eβg(x,u,w)

]
< 1.

Then we have that

(TµJ)(x)− (TµJ ′)(x) = E
[
eβg(x,u,w)J(f(x, u, w))

]
− E

[
eβg(x,u,w)J ′(f(x, u, w))

]
= E

[
eβg(x,u,w)J(f(x, u, w))− eβg(x,u,w)J ′(f(x, u, w))

]
= E

[
eβg(x,u,w)(J(f(x, u, w))− J ′(f(x, u, w)))

]
= E

[
eβg(x,u,w)v(f(x, u, w)) (J(f(x, u, w))− J ′(f(x, u, w)))

v(f(x, u, w))

]
≤ E

[
eβg(x,u,w)v(f(x, u, w))‖J − J ′‖

]
= E

[
eβg(x,u,w)

]
v(x)‖J − J ′‖

≤ ρv(x)‖J − J ′‖,

where we have used that v(x) = v(y) = 1 for any pair x, y ∈ X. The calculations
above imply that

(TµJ)(x)− (TµJ ′)(x)
v(x) ≤ ρ‖J − J ′‖.

Observe that by letting J and J ′ switch places in the calculation above we are
able to prove that

(TµJ ′)(x)− (TµJ)(x)
v(x) ≤ ρ‖J − J ′‖.

Then, by maximizing both sides of the inequalities above we see that

‖TµJ − TµJ ′‖ ≤ ρ‖J − J ′‖,

as we set out to prove. �

Note that Proposition 7.2.6 demands very strict assumptions on the value
of eβg(x,u,w), as we require

sup
(x,u)∈X×U

E
[
eβg(x,u,w)

]
< 1, (7.12)

98

7.2. Model-based risk-sensitive control

in order to be able to prove that the operator Tµ is a contraction for each
µ ∈ M. Nevertheless, it could be that the same result holds with other
underlying assumptions. However, it is comforting that the statement holds
whenever we are searching for risk-averse policies for a maximization problem,
as we always have eβg(x,u,w) < 1 whenever we have β < 0 and positive costs,
which we assume in general. Nonetheless, the results we have shown in this
subsection imply that under our assumptions we have that the fixed point J∗
of Bellman’s equation equals the cost function of an optimal policy π∗ for the
risk-sensitive control problem where we utilise an exponential utility function.
We have also seen that we are able to find the optimal cost function and a
corresponding optimal policy by using the methods covered in Section 4.3. We
summarize the findings in the preceding corollary.

Corollary 7.2.7 (Guarantees of risk-sensitive policies). †
We are able to find a unique optimal risk-averse policies for any optimal control
problem involving maximization by applying an exponential utility function as
described in this section. Conversely, the same applies for risk-seeking policies
when we are concerned with a minimization problem.

Error states

This subsection is based on [GW11]. In the previous parts of this section we
looked at how minimax and the introduction of an exponential utility function
can be used to tackle risk-sensitive model-based control when we define risk as
the possibility of extreme costs occurring during the control process. As we have
seen minimax handles this problem by always assuming worst-case behaviour
and preferring the policy that minimize the worst-case cost. On the other
hand, the introduction of the risk-sensitivity parameter β in the exponential
utility function case allows the controller to adjust how much the variance of
the cost under a given policy should count towards our preference of the policy
in addition to the expected cost of the policy in question. However, there has
been proposed other ways to define risk in a risk-sensitive control context. We
will now take a look at one of these, proposed in the paper [GW11]. In the
paper the authors use the notion of error states in order to define risk. We will
in this subsection apply the notation we use in connection with SSP problems,
that is, we denote a state by i, the successor state as j, a control as u and the
probability of being transferred from a state i to the successor state j under
the control u is denoted by pij(u) which is associated with a cost g(i, u, j). Let
us now take a closer look at their definition of risk. As usual we let X be the
set of states and U the set of controls. For the time being we assume that both
X and U are finite, and are therefore able to write X = {1, . . . , n}. We then
define the set of error states to be a subset

Φ ⊆ X.

Each error state î ∈ Φ is a terminal state as these represent e.g. a system failure
and thus mark an end of the control process. We denote the remaining terminal
states Γ, with Γ ∩ Φ = ∅. The definition of risk for a given state i0 ∈ X under
a policy π as defined in [GW11] can then be introduced.

99

7.2. Model-based risk-sensitive control

Definition 7.2.8 (Risk, [GW11]). Let π be a policy and i0 ∈ X an arbitrary
state. Then the risk is defined to be

ρπ(i0) = P (∃k ik ∈ Φ|π), (7.13)

where i0, i1, . . . , is the states encountered during the control process when
starting in state i0 and selecting controls according to the policy π.

We see that their notion of risk for a given state i0 under a policy π is the
probability of ending up in any error state î ∈ Φ when we start our control
process at state i0 and choose our controls following the policy π. Then, as
expected, we have from the definition that ρπ (̂i) = 1 for each î ∈ Φ. In addition,
we see that Definition 7.2.8 also imply that ρπ(i) = 0 for each i ∈ Γ, as we have
defined every state i ∈ Γ to be a terminal state and as Φ ∩ Γ = ∅.

The authors then go on to define an additional cost function, that we denote
by ḡ, and they augment the MDP by adding a new absorbing state η. The
controller is transferred, with cost g = 0, to the new absorbing state η after
reaching one of the states in the set Φ ∪ Γ. Thus, the states in Φ ∪ Γ are
no longer terminal states in the MDP with the augmented state space. The
additional cost function ḡ is given by

ḡ(i, u, j) =
{

1 i ∈ Φ and j = η,

0 otherwise.
(7.14)

The idea behind the cost function ḡ is that a sequence of costs ḡ incurred by
traversing the MDP under a policy π starting from some initial state i contains
the value 1 exactly once if the process reaches the terminal state η from a state
î ∈ Φ, while it contains zeros only otherwise. It is therefore possible to express
the risk ρπ(i) as the expected value of the costs ḡ as stated by the following
proposition.

Proposition 7.2.9 (Risk as expected value [GW11]). The identity

ρπ(i0) = E

[∞∑
k=0

ḡ(ik, π(ik), wk)
]

(7.15)

holds.

The fact that Equation (7.15) holds is proven in [GW11]. In risk-sensitive
control we often want our optimization criterion to in some way include both
the expected cost of the policy as well as the risk connected with the policy
in question. In [GW11] they consider the maximization counterpart of the
minimization problem

min
π
Jπ (7.16)

subject to
for all i ∈ X ′ : ρπ(i) ≤ ω, (7.17)

where X ′ is a set that contains the states we are interested in, e.g., a given
initial state i0 or for example X \ (Φ ∪ Γ ∪ {η}). Note that ω specifies what
level of risk, as defined by Definition 7.2.8, we allow for the states in X ′ and
therefore we let ω ∈ [0, 1]. In this context we call a policy feasible if it satisfies

100

7.2. Model-based risk-sensitive control

Equation (7.17). The authors also introduce another value function Jπ,ξ defined
by

Jπ,ξ(i) = ξJπ(i) + ρπ(i), (7.18)

with ξ ≥ 0. The policy attaining the minimum for all states i ∈ X ′ given a value
of ξ in Equation (7.18) is denoted by π∗ξ . We see that ξ determines the weight
of the value of the policy, and that whenever ξ = 0, we have Jπ,0(x) = ρπ(x).
Thus, a minimization of Jπ,0 will imply a minimization of the risk ρπ(x). The
parameter ξ is adapted by starting with ξ = 0 and then successively increasing
the parameter slightly by some value ε. By starting with ξ = 0 we are able to
check whether the constrained problem even is feasible, as the policy attaining
the optimal value of Jπ,0 is the one with minimal risk. Thus, if ρπ∗0 (i) ≤ ω
for all i ∈ X it implies that the problem indeed is feasible. Then, as we are
successively increasing ξ we are more strongly weighting the value of the policy,
and thus promoting policies that takes more risk given that the ξ weighted
decrease in the cost is higher than the increase in the risk. If we let 0, ξ1, ξ2, . . .
be the weights considered, we need for each policy π∗ξk to check that the risk
constraint Equation (7.17) is satisfied, i.e. we need for each k to check that

ρπ∗
ξk

(i) ≤ ω for each i ∈ X ′.

If we at some point reach a value ξk that generates a policy π∗ξk that do violate
the constraint we stop the process and say that π∗ξk−1

is our optimal policy.
We are now interested in finding a way to calculate the optimal policy

for the control problem stated in Equation (7.16) subject to the constraint
in Equation (7.17) in a model-based fashion. We would therefore like to find
an expression for Bellman’s equation for the cost given in Equation (7.18),
i.e. would like to find an operator T ξµ that has Jµ,ξ = ξJµ + ρµ as its fixed
point. Note that we now write Jµ,ξ instead of Jπ,ξ as we from Proposition 4.2.1
only are guaranteed that there is a fixed point for the operator if the policy is
stationary, given that the operator is a contraction. We would therefore like
T ∗µ to be a contraction. With that in mind, let us first consider the following
operators.

Definition 7.2.10 (Tµ, Tµ). We define the operators Tµ and Tµ by

(TµJ)(i) = H(i, µ(i), J), (7.19)

and
(TµJ)(i) = H(i, µ(i), J), (7.20)

respectively, where µ : X → U is some policy function. The mappings
H : X × U ×R(X)→ R and H : X × U ×R(X)→ R are defined by

H(i, u, J) = piη(u)g(i, u, η) +
n∑
j=1

pij(u)(g(i, u, j) + J(j)),

and
H(i, u, J) = piη(u)ḡ(i, u, η) +

n∑
j=1

pij(u)(ḡ(i, u, j) + J(j)).

101

7.2. Model-based risk-sensitive control

Note that both the operators Tµ and Tµ have a fixed point, with the
fixed points being Jµ and ρµ, respectively. In order to see this, observe that
the mappings H and H are written on the same form as the mapping in
Equation (5.5) where we in H and H use the cost functions g and ḡ, respectively.
Then it follows from Proposition 5.1.7 that the fixed point of the operator Tµ
indeed is the cost function Jµ of the stationary policy µ as g is the cost function
of the MDP. For Tµ, observe that the solution Jµ of Bellman’s equation
Jµ = TµJµ is the expected cost of the cost function ḡ, which is

Jµ(i0) = E

[∞∑
k=0

ḡ(ik, π(ik), wk)
]
,

as we know from Chapter 5 that the fixed point Jµ(i) of J = TµJ satisfies

Jµ(i) = (TµJµ)(i) = E

[∞∑
k=0

g(ik, π(ik), wk)
]
,

and then, as Tµ is on the same form as Tµ, we must have that the solution Jµ
of Jµ = TµJµ satisfies

Jµ(i) = (TµJµ)(i) = E

[∞∑
k=0

ḡ(ik, π(ik), wk)
]
.

Then it also follows from Proposition 5.1.7 that Tµ has a fixed point Jµ,
as H is on the same form as Equation (5.5). We then have from the argument
above, and the fact that Equation (7.15) holds that the fixed point Jµ of Tµ
indeed is equal to ρµ. As we now have applied Proposition 5.1.7 we need to
keep in mind that the proposition only holds true under some assumption. In
Chapter 5 we used Assumption 5.1.1 and Assumption 5.1.2 in order to apply
the theory from Chapter 4 to prove the results in Section 5.1. However, in
the literature Chapter 5 is based on, which is [Ber19], a result similar to our
Proposition 5.1.7 is proved using a more direct proof that is not based on
the abstract DP theory we considered in Chapter 4 and that only assumes
Assumption 5.1.1. In this chapter we will use the assumptions from [Ber19],
as these are less restrictive. Thus, in order to guarantee that both Tµ and Tµ
have fixed points, with the fixed points being Jµ and ρµ respectively, we need
Assumption 5.1.1, which we restate here for completion.

Assumption 7.2.11 (Non-zero probability of termination at stage m [Ber19]).
Assume that there is some number m ∈ N such that for all policies π ∈ Π we
have that

max
i=1,...,n

P (im 6= η | i0 = i, π) < 1.

A consequence of Assumption 7.2.11 is that we do not allow MDPs that
have policies that do not terminate with probability one, i.e. we do not allow
there to be some subset C ⊆ X \ (Φ ∪ Γ ∪ {η}) that satisfy

min
π∈Π

P (∃k ik ∈ X \ C|i0 ∈ C, π) = 0.

The natural approach to find the operator we are looking for is to look at
the sum of the two operators we defined in Definition 7.2.10. This motivates
the following definition.

102

7.2. Model-based risk-sensitive control

Definition 7.2.12 (T ξµ). †
We define the operator T ξµ by

(T ξµJ)(i) = Hξ(i, µ(i), J),

where µ : X → U is some stationary policy. The mapping Hξ : X × U ×R(X)
is defined by

Hξ(i, u, J) = piη(u)(ξg(i, u, η) + ḡ(i, u, η))

+
n∑
j=1

pij(u)(ξg(i, u, j) + ḡ(i, u, j) + J(j)).

We will now use the remainder of this chapter to show that given a weight
ξ, we can write Bellman’s equation for the control problem considered in this
subsection as Jµ,ξ = T ξµJ

ξ
µ, and we will prove that the value iteration and

policy iteration methods we looked at in Section 4.3 are also applicable for the
error state formulation of risk-sensitive model-based control. We start with the
following proposition.

Proposition 7.2.13. †
Assume that Jµ and ρµ are fixed points for Tµ and Tµ, respectively. Then Jµ,ξ
is a fixed point for T ξµ, with

Jµ,ξ = ξJµ + ρµ.

Proof. Assume that Jµ and ρµ are fixed points for Tµ and Tµ, respectively. Let
also ξ ∈ R with ξ > 0. We then have that

Jµ(i) = piη(µ(i))g(i, µ(i), η) +
n∑
j=1

pij(µ(i))(g(i, µ(i), j) + Jµ(j)),

and

ρµ(i) = piη(µ(i))ḡ(i, µ(i), η) +
n∑
j=1

pij(µ(i))(ḡ(i, µ(i), j) + ρµ(j)).

Moreover, by letting Jµ,ξ(i) = ξJµ(i) + ρµ(i) for each i ∈ X, we see that

Jµ,ξ(i) = ξJµ(i) + ρµ(i)

= ξ(piη(µ(i))g(i, µ(i), η) +
n∑
j=1

pij(µ(i))(g(i, µ(i), j) + Jµ(j)))

+ piη(µ(i))ḡ(i, µ(i), η) +
n∑
j=1

pij(µ(i))(ḡ(i, µ(i), j) + ρµ(j))

= piη(µ(i))(ξg(i, µ(i), η) + ḡ(i, µ(i), η))

+
n∑
j=1

pij(µ(i))(ξg(i, µ(i), j) + ξJµ(j) + ḡ(i, µ(i), j) + ρµ(j))

= piη(µ(i))(ξg(i, µ(i), η) + ḡ(i, µ(i), η))

103

7.2. Model-based risk-sensitive control

+
n∑
j=1

pij(µ(i))(ξg(i, µ(i), j) + ḡ(i, µ(i), j) + ξJµ(j) + ρµ(j))

= piη(µ(i))(ξg(i, µ(i), η) + ḡ(i, µ(i), η))

+
n∑
j=1

pij(µ(i))(ξg(i, µ(i), j) + ḡ(i, µ(i), j) + Jξµ(j))

= Hξ(i, µ(i), Jξµ) = (T ξµJξµ)(i).

Thus, we see that T ξµ indeed has a fixed point Jµ,ξ, and that it is possible to
write the fixed point as Jµ,ξ(i) = ξJµ(i) + ρµ(i). �

In order to prove that the operator T ξµ has a fixed point it suffices, according
to Proposition 7.2.13, to prove that the operators Tµ and Tµ has fixed points.
We know from the discussion above that both operators indeed has fixed points.
We are thus able to prove the following result.

Proposition 7.2.14 (T ξµ has fixed point). †
Assume that the state space X and control space U is finite, and that
Assumption 7.2.11 holds. Then the operator T ξµ defined by

(T ξµJ)(i) = piη(µ(i))(ξg(i, µ(i), η) + ḡ(i, µ(i), η))

+
n∑
j=1

pij(µ(i))(ξg(i, µ(i), j) + ḡ(i, µ(i), j) + J(j)),

has a fixed point Jµ,ξ that we are able to decompose into

Jµ,ξ = ξJµ + ρµ

where Jµ is the unique fixed point of Tµ and ρµ is the unique fixed point of Tµ.
In addition, the value ρµ(i) denotes the probability of entering an error state
j ∈ Φ when choosing controls according to the stationary policy µ and stating
in state i0, i.e. ρµ(i0) = P (∃k ik ∈ Φ | µ).

Proof. We start by proving that both Tµ and Tµ have fixed points, and that these
fixed points are Jµ and ρµ respectively. As the mappings H and H, as defined
in Definition 7.2.10, are on the same form as the mapping in Equation (5.5).
As we assume that Assumption 7.2.11 hold, we are able to use Proposition
4.2.3 from [Ber19], which provide the same result as Proposition 5.1.7 but
without the constraints of Assumption 5.1.2. That is, Proposition 4.2.3 from
[Ber19] grantees that the operators Tµ and Tµ have fixed points, with the fixed
point Jµof Tµ being the cost function of the policy as g is the cost function
determining the cost associated with traversing the MDP. From the discussion
above we have that the fixed point Jµ of Tµ is given by

Jµ(x0) = E

[∞∑
k=0

ḡ(xk, µ(xk), wk)
]
,

which by Proposition 7.2.9 is equal to ρµ(i0) = P (∃k ik ∈ Φ | µ). As the
operators Tµ and Tµ have Jµ and ρµ, respectively, as fixed point we know from
Proposition 7.2.13 that the operator T ξµ has a fixed point Jµ,ξ that we are able
to write as Jµ,ξ = Jµ + ρµ, just as we set out to prove. �

104

7.2. Model-based risk-sensitive control

We have now found a formulation of Bellman’s equation for the risk sensitive
control problem considered in this subsection. We would also like to show that
we are able to utilize the methods presented in Section 4.3 in order to find the
unique solution of the set of equations generated by the Bellman equation

Jµ,ξ = T ξµJ
ξ
µ.

We know from Propositions 4.3.3 and 4.3.5 that it is sufficient to show that the
operator T ξµ is a contraction for each stationary policy µ and that the mapping
Hξ satisfies the monotonicity property for all ξ > 0. In order to guarantee
convergence we also need the set of stationary policiesM to be finite, but as
both the state space X and control space U are assumed to be finite we see
that the set of stationary policiesM is finite as well. As Proposition 4.2.5 in
[Ber19] show that an operator T ′µ on the form

(T ′µJ)(i) = pit(µ(i))g(i, µ(i), t) +
n∑
j=1

pij(µ(i))(g(i, µ(i), j) + J(j))

is a contraction for each µ ∈M under Assumption 7.2.11 with finite state space,
and as we are able to write T ξµ as

(T ξµJ)(i) = piη(µ(i))(g(i, µ(i), η) + ḡ(i, µ(i), η))

+
n∑
j=1

pij(µ(i))(g(i, µ(i), j) + ḡ(i, µ(i), j) + J(j))

= piη(µ(i))h(i, µ(i), η) +
n∑
j=1

pij(µ(i))(h(i, µ(i), j) + J(j)),

where h(i, u, j) = g(i, u, j) + ḡ(i, u, j), we see that T ξµ also is a contraction as it
can be written on the same form as T ′µ. Therefore it only remains to show that
Hξ is monotone for each ξ > 0.

Proposition 7.2.15 (Hξ is monotone). †
For each ξ ∈ R with ξ > 0 we have that the mapping Hξ : X×U×R(X) defined
by

Hξ(x, u, J) =
n∑
j=1

pij(u)(ξg(i, u, j) + ḡ(i, u, j) + J(j)),

satisfies the monotonicity property. That is, for some J, J ′ ∈ R(X) with J ≤ J ′
pointwise we have

Hξ(x, u, J) ≤ Hξ(x, u, J ′) for all x ∈ X and u ∈ U(x).

Proof. To prove the monotonicity property of Hξ it is sufficient to prove that

105

7.2. Model-based risk-sensitive control

the difference between Hξ(x, u, J ′) and Hξ(x, u, J) is non-negative. We see that

Hξ(x, u, J ′)−Hξ(x, u, J) =
n∑
j=1

pij(u)(ξg(i, u, j) + ḡ(i, u, j) + J ′(j))

−
n∑
j=1

pij(u)(ξg(i, u, j) + ḡ(i, u, j) + J(j))

=
n∑
j=1

pij(u)(ξg(i, u, j) + ḡ(i, u, j) + J ′(j)

− ξg(i, u, j)− ḡ(i, u, j)− J(j))

=
n∑
j=1

pij(u)(J ′(j)− J(j))

≥
n∑
j=1

pij(u)C

= C

n∑
j=1

pij(u)

≥ 0,

where C = minj∈X(J ′(j) − J(j)) ≥ 0, since we assume that J(j) ≤ J ′(j) for
all j ∈ X. Thus we see that the difference between Hξ(x, u, J ′) and Hξ(x, u, J)
in fact is non-negative, proving that Hξ is monotone. �

We have in this subsection showed that under the assumption of having
a finite state space X and a finite control space U , as well as assuming that
Assumption 7.2.11 holds, we are able to find the policy that tries to attain the
minimum in

min
π∈Π

Jπ, (7.21)

subject to
for all i ∈ X ′ : ρπ(i) ≤ ω, (7.22)

for some subset X ′ ⊂ X \Φ and a risk threshold 0 ≤ ω ≤ 1. We also have from
Proposition 4.2.2 that we are able to restrict the policy space we are minimizing
over from the set of all policies Π to the set of all stationary policiesM, as we
have proved above that the operator Tξ is a contraction and that the mapping
Hξ is monotone for each value of ξ ∈ R with ξ > 0. That is, we are able to
write Equation (7.21) as

min
µ∈M

Jµ.

As written in the beginning of the subsection, the optimization process should
start with finding the policy that minimizes the risk, as this policy would need
to satisfy Equation (7.22) for the problem to be feasible. We can then set the
parameter ξ to some value ε > 0, giving ξ0 = 0 and ξ1 = ε. The thought behind
iteratively increasing the value ξ is to more strongly punish high-cost policies
and in that way favour more risk-seeking low-cost policies. Then, after finding
the policy π∗ξ1

that solves

min
µ∈M

Jµ,ξ1 = min
µ∈M

(ξ1Jµ + ρµ), (7.23)

106

7.2. Model-based risk-sensitive control

we need to check whether it satisfies the constraint in Equation (7.22). If
that is the case, we again increase the parameter ξ by ε, giving ξ2 = 2ε, and
repeat the process until we find some value ξk such that π∗ξk does not satisfy
Equation (7.22). We then stop the process and have π∗ξk−1

as our optimal policy.
Furthermore, we also proved in this subsection that we are able to find the
policy that is optimal for each value of ξ by using the methods from Section 4.3.
That is, we are able to use value iteration and policy iteration in order to find
the policy π∗ξ that satisfies

Jπ∗
ξ

= J∗ξ = T ξJ∗ξ ,

where J∗ξ is the optimal cost function, i.e. the cost function attaining the
minimum in Equation (7.23), for the given value of ξ, and where

(T ξJ)(i) = min
u∈U(i)

Hξ(i, u, J).

In addition, we showed with Proposition 7.2.14 that the cost function
satisfying Equation (7.23) for each value of ξ is possible to write as ξJπ + ρπ,
which as we have seen in this subsection has a nice interpretation from
Proposition 7.2.14. Let us now take a look at how we can utilize this model-based
method on the St. Petersburg problem

Example 7.2.16 (Error states, continuation of Example 7.1.1). †
We will now use the error state formulation of risk in order to find another take
on what a sensible risk-sensitive policy is for the St. Petersburg paradox that we
introduced in Example 7.1.1. In order to use the error state formulation of risk
we need to introduce a new state space. We let X = {x0, t, e, η} and X ′ = {x0},
where x0 is the initial state, t is a non-error state, e is an error state, while
η is an artificial terminal state introduced for technical reasons as described
earlier in this subsection. The controller is automaticity transferred to η at no
cost whenever she enters the state t or the state e. However, if the agent is
transferred to η from the error state e, it attains the ’risk’ cost ḡ(e, ·, η) = 1.
As in Example 7.2.1 we have that U(x0) = {up, un}, where choosing up means
that we pay some amount k ∈ [0,∞) in order to take the bet, while un means
that we do not play. We let

f0(x0, un, ·) = t.

For the control up we let
f0(x0, up, w) = t

whenever
w ∈ {w ∈W (x, up) | g(x0, up, w)− k ≥ 0}.

However, if
w ∈ {w ∈W (x, up) | g(x0, up, w)− k < 0}, (7.24)

we have that
f0(x0, up, w) = e.

In other words, we transfer to the error state e if we end up with a price that is
smaller than the bet we put in. Let µp be the policy with µp(x0) = up and µn
the policy where µn(x0) = un. Then, as we know that

P ({w ∈W (x, up) | g(x, up, w) = 2n − k}) = 1
2n for each n ∈ N \ {0},

107

7.2. Model-based risk-sensitive control

we see that

ρµp(x0) = P (∃i xi ∈ {e}|u0 = up)
= P ({w ∈W (x0, up) | g(x0, up, w) < k})

=
dlog2(k)e−1∑

n=1

1
2n ,

given some value k ∈ [0,∞) for the initial stake, and where the transition from
the first to the second line comes from the fact that the random values w that
lies in the set defined in Equation (7.24) are the same values that we need in
order to have x1 = e. In order to explain why dlog2(k)e − 1 is the limit of the
sum, consider some bet k ∈ R with k > 0. It is then clear that there exist a
unique m ∈ N such that 2m−1 < k ≤ 2m. We would then need the coin to show
heads on the mth throw, or later, in order to not be at a loss. What is then the
probability of that not happening, i.e. what is the probability of heads showing
on one of the m− 1 first throws? We have that

P (heads showing on first m− 1 throws) =
m−1∑
n=1

1
2n .

Thus, given some stake k we see that m = dlog2(k)e, and as we need to sum up
to m− 1 we conclude that the upper limit of the sum must be dlog2(k)e − 1 .

We have now seen that the policy µp is feasible, in the sense that ρµp(x0) ≤ ω,
whenever

dlog2(k)e−1∑
n=1

1
2n ≤ ω.

Clearly, we also have that ρµn(x0) = 0, as f0(x0, un, ·) = t, which imply that
µn is feasible for all values of k and all choices of ω ∈ [0, 1]. Note that we only
need to consider the case where the weight ξ = 0, as Jµp =∞ and Jµn = 0, so
for any ξ > 0 we would have Jµp,ξ > Jµn,ξ. We will therefore have µp as our
optimal policy whenever the value of k and the controllers choice of ω is such
that the policy µp is feasible, otherwise our optimal policy will be µn. Therefore
it suffices to check whether the policy µp is feasible in order to find the optimal
policy for any value k and risk level ω.

Let us now set ω = 1
2 and find out for which values of k we would be willing

to bet and play the game. We see that for k = 4 we have

ρµp(x0) = P ({w ∈W (x0, up) | g(x0, up, w) < 4})

=
dlog2(4)e−1∑

n=1

1
2n =

2−1∑
n=1

1
2n

=
1∑

n=1

1
2n = 1

2 ,

while for k > 4 we have that

ρµp(x0) = P ({w ∈W (x0, up) | g(x0, up, w) < 4 + ε})

108

7.2. Model-based risk-sensitive control

=
dlog2(4+ε)e−1∑

n=1

1
2n ≥

3−1∑
n=1

1
2n

=
2∑

n=1

1
2n = 3

4 >
1
2 ,

where ε > 0. Thus, when our accepted level of risk is ω = 1
2 we have that µp is

feasible whenever k ≤ 4. That gives in this instance

µ∗(x0) =
{
up if k ≤ 4,
un otherwise.

Observe that by setting the level of risk equal to ω =
∑n
i=1

1
2n for some

n ∈ N \ {0} we will be willing to bet up to 2n+1 units.
Another point of interest is to look at how risk-averse/risk-seeking we would

need to be in order to accept a stake of k units, i.e. given some value k, what
would our level ω need to be in order for us to be willing to participate in
the game. By the observation above we see that for some stake k we would
be willing to take the bet whenever ω ≥

∑dlog2(k)e−1
i=1

1
2i . Let us for example

assume that k = 5. We then have that

ω ≥
dlog2(5)e−1∑

i=1

1
2i =

3−1∑
i=1

1
2i =

2∑
i=1

1
2i = 3

4 .

We see that even with a stake of k = 5 we would need to at least be willing to
sustain a loss in 3 out of 4 games in order to be willing to play.

Before we end this subsection a word of caution is needed. Even though
we have showed that for each value of ξ there exists a fixed point J∗ξ of the
equation

J∗ξ = T ξJ∗ξ ,

we need to keep in mind that the policy π∗ξ satisfying Jπ∗
ξ

= J∗ξ only achieves
the minimum for the cost function

min
π∈Π

ξJπ(i) + ρπ(x).

This means that the final policy π∗ξ generated by the algorithm described in
this subsection may be suboptimal, as illustrated by the following example.

Example 7.2.17 (Suboptimal policy error states method). †
Assume that we are considering some optimal control problem where we in a
state x ∈ X has three different choices for the control, i.e. U(x) = {u1, u2, u3}.
Let us also assume that we have three different policies, µ1, µ2 and µ3 with
µi(x) = ui. The controllers level of risk-sensitivity yields ω = 0.2. Assume then
that the cost functions of the policies satisfy

Jµ1(x) = 2, Jµ2(x) = 1, Jµ3(x) = 0,

and that the risk of the policies are

ρµ1(x) = 0, ρµ2(x) = 0.2, ρµ3(x) = 0.21.

109

7.2. Model-based risk-sensitive control

0.0 0.2 0.4 0.6 0.8 1.0

ξ

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

ξJ
µ
i
(x
)
+
ρ
µ
i
(x
)

Value of target function for differen values of ξ

µ1

µ2 (optimal)

µ3 (unfeasible)

Figure 7.3: Value of target function for the policies considerd in Example 7.2.17.
The black line shows where the target function for policy µ1 and µ3 intersects.
Code to produce figure can be found in Listing A.11.

Note that the policy µ3 is unfeasible as ρµ3(x) > ω. It is clear that the
optimal policy for this problem according to the problem formulation given in
Equations (7.16) and (7.17) is µ2. However, when we gradually increase ξ from
0 we see that when e.g. ξ = 0.11 we get

Jµ3,0.11 = 0.11 · Jµ3(x) + ρµ3 = 0.21,

Jµ2,0.11 = 0.11 · Jµ2(x) + ρµ2 = 0.31,

and
Jµ1,0.11 = 0.11 · Jµ1(x) + ρµ1 = 0.22.

Thus µ∗0.11 = µ3, and as ρµ3(x) = 0.21 > ω, the method terminates and return
the policy that was optimal for the previous choice of ξ, which we from Figure 7.3
can see that is µ1. We can therefore conclude that the error states method
presented in this chapter does not always produce the optimal policy.

In the next subsection we will apply the three model-based risk-sensitive
approaches we have looked at in this section in order to find risk-sensitive
policies for the SSP problem we considered in Examples 6.3.1 and 5.1.9.

110

7.2. Model-based risk-sensitive control

A B

e

t

η

1, p = 1
2

4, p = 1
2

2

5, p = 3
20

1, p = 17
20

2, p = 99
100

1, p = 1
100 0

0

Figure 7.4: An augmented version of the SSP in Figure 5.1. Same coloured
paths originating at the same node depict the possible transitions from the
given node under a specific control. The black lines depict the transitions for
control u1, while orange shows the same for control u2.

Numerical example

We will in this subsection take a look at how the risk-sensitive methods covered
in this section performs on the SSP problem we looked at in Examples 6.3.1
and 5.1.9 in order to see what kind of behaviour they promote.

Example 7.2.18 (Continuation of Examples 6.3.1 and 5.1.9). †
We are now going to see which policies are favoured by the risk-sensitive model-
based methods we have looked at in this section. We implement the value
iteration and policy iteration algorithms using the optimization criteria we have
looked at in this chapter and run them on the SSP problem we considered
earlier in Examples 6.3.1 and 5.1.9. The code used for this example resides
in several files. The structure of the SSP, with among other things, a state
class that have methods that, given some cost function, finds the best action
and optimal cost from the state under the different optimization criteria can
be found in Listing A.1. The code to run the minimax experiments can be
found in Listing A.6, the code for the experiments using the exponential utility
function are in Listing A.7, while to see the code for testing the error state
implementation consult Listing A.8. For the error state notion we had to define
an augmented SSP in order to introduce an error state. The new SSP is depicted
in Figure 7.4, and the json file describing it can be found in Listing A.5. Note
that we define the error state as being the situation where the controller applies
control 1 in state A and ends up incurring a transition cost of 4 (the value 4
was chosen as it is the sum of the original cost of 3 and the best-case transition
cost between state B and t, which is 1), or when the agent choose action 1 in
state B and receives the transition cost of 5.

For the exponential utility function method we ran the algorithm using two
different values for β, namely β = −0.75 and β = −1, as we by trial-and-error
found that these parameter choices resulted in two different policies. We also
tried to run the algorithm for positive values of β, but the method did then not
produce a sensible result. This may be caused by the fact that the assumption
of Proposition 7.2.6 does not holds for this problem whenever β > 0. For the

111

7.2. Model-based risk-sensitive control

Method and parameter values J∗(A) J∗(B) J∗(C) ρµ∗
ξ
(A) ρµ∗

ξ
(B)

Minimax, α = 0.9 11.00 10.00 9.00
Exp. utility, β = −0.075 −0.17 5.30 −2.22
Exp. utility, β = −1 0.34 5.24 −1.66

Error states, ω = 0.1, ξ = 0.25 4.01 2.01 0 0
Error states, ω = 0.2, ξ = 1 3.60 1.60 0.15 0.15

Table 7.1: Optimal value under different risk-sensitive optimality conditions for
the SSPs depicted in Figures 5.1 and 7.4. The J∗(s) values for error state is
the actual expected cost function values of the policy found to be optimal by
the method.

Method and parameter values µ∗(A) µ∗(B) µ∗(C)
Minimax, α = 0.9 2 2 1

Exp. utility, β = −0.075 1 1 1
Exp. utility, β = −1 2 1 1

Error states, ω = 0.1, ξ = 0.25 2 2
Error states, ω = 0.2, ξ = 1 2 1

Table 7.2: Optimal policy under different risk-sensitive optimality conditions
for the SSPs depicted in Figures 5.1 and 7.4.

Method and parameter values Jµ∗(A) Jµ∗(B) Jµ∗(C)
Minimax, α = 0.9 3.81 2.01 1.81

Exp. utility, β = −0.075 3.88 1.88 1.88
Exp. utility, β = −1 3.88 1.88 1.88

Error states, ω = 0.1, ξ = 0.25 4.01 2.01
Error states, ω = 0.2, ξ = 1 3.60 1.60

Table 7.3: Expected discounted cost for the optimal policies found under
different risk-sensitive optimality conditions for the SSPs depicted in Figures 5.1
and 7.4.

error state method we used two different ω thresholds for allowed level of risk,
specifically ω = 0.1 and ω = 0.2. We also increase the ξ parameter by 0.25 for
each round.

The result from all three methods with the different parameter values can be
found in table Table 7.1. We quickly see that the values shown in Table 7.1 does
not tell us much as the transformations used in the different methods makes
the interpretation harder, except for the error states method, as we report the
actual cost function and the risk function for that method. Let us therefore
include two other tables. In Table 7.2 we present the optimal policy found by
policy iteration for the different optimization criteria, while we in Table 7.3

112

7.3. Model-free risk-sensitive control

present the expected costs for the policies found to be optimal by the different
methods, i.e. the cost function of the policies shown in Table 7.2.

We can see from Table 7.2 that only two of the combinations of risk-
sensitive methods and parameter choices resulted in the optimal policy µ∗

having µ∗(B) = 2, which we from Figures 5.1 and 7.4 can see that is the ’safer’
option if we would like to avoid high-cost transitions at the price of a lower
expected value, or if we would like to avoid the error states at all costs in
the error state formulation of the problem. It is no surprise that minimax
promotes an optimal policy that at all states chooses action 2, as these have the
lowest worst-case cost. It is also not surprising that the error state formulation
with ω = 0.1 yields the same result, as applying control 1 in state B gives a
probability p = 3

20 = 0.15 of transitioning to an error-state, and as ω = 0.1, we
only allow a probability of p ≤ 0.1 to end up in an error-state from any one state.
It is therefore expected that when we increase the parameter value of ω to 0.2
the preferred policy changes, as we then allow our policy to apply the more risky
action 1 in state B, given that the decrease in the ξ-weighted expected cost is
high enough. We see from Table 7.2 that indeed the ξ-weighted increase is large
enough for the method to change its preferred policy, as µ∗(B) = 1 when using
the error-state method with ω = 0.2. Another thing that was quite interesting
is how the exponential utility method with a value of β close to 0 yields an
optimal policy that has µ∗(A) = 1, while we by decreasing the parameter value
to β = −1 have that the optimal policy becomes the one that has µ∗(A) = 2.
This is surprising as the exponential utility function method should promote
policies that has a greater variability when the value of β decreases, but as we
with µ∗(A) = 1 have a 50/50 chance of either incurring a cost of 1 or 3, while
the other possible control always gives a cost of 2, we see that the variability
actually decreases as the negative value of β increases in this case. Interestingly,
by experimenting with further decreasing the value of β we noticed that the
method consistently returned the same optimal policy as we received with a
parameter value of β = −1.

When looking at the results in Table 7.3, it is interesting to see that both
risk-sensitive policies generated by policy iteration with the exponential utility
function optimization criterion have the same expected cost as the policy that is
optimal in the risk-neutral sense, which we found in Example 5.1.9. In fact, as
we briefly mentioned in Example 5.1.9, both policies found by the exponential
utility function method are considered optimal in the risk-neutral sense, as is
evident from the fact that the cost-functions of the policies are identical. For
minimax we see that it yields the expected policy, which is the policy that in
all states picks the control that has the lowest maximum cost. In the case of
the error-state formulation we see that when increasing ω from 0.1 to 0.2 we
have that the optimal policy satisfies µ∗(B) = 1, as the associated decrease in
cost with switching from applying control 2 in the same state outweighs the
increase in risk.

7.3 Model-free risk-sensitive control

In the previous section we looked at model-based methods for dealing with
risk-sensitive control problems, both by controlling the variation of performance
of our policy and by introducing error states. We will now take a look at

113

7.3. Model-free risk-sensitive control

model-free methods dealing with the same problem. We start with looking
at a method that is a model-free version of Minimax that we introduced in
Section 7.2. It was introduced in [Heg94] and is named Q̂-learning, which
essentially is a pessimistic version of Q-learning, and hence we will referee to
the method as pessimistic Q-learning.

Pessimistic Q-learning

This subsection is based on [Heg94]. The pessimistic Q-learning method does,
as minimax, assume that the worst-case outcome is the one that we are going to
observe, and are thus trying to find a policy that optimize over the worst-case
outcome. Let now

ĝ(i, u, j) = sup
w∈W (i,u)

{g(i, u, w)|f(i, u, w) = j}.

Then,
Jk(i) = min

u∈U(i)

(
max

j∈{x∈X|pix>0}
(ĝ(i, u, j) + αJk−1(j))

)
, (7.25)

is value iteration corresponding to using the mapping in Equation (7.3) when we
write the supremum with regards to the possible successor states instead of the
events w ∈W (i, u). The Q-function we then try to estimate with pessimistic
Q-learning is

Q̂∗(i, u) = max
j∈{x∈X|pix>0}

(ĝ(i, u, j) + αJ∗(j)), (7.26)

where J∗ is the cost function found as the limit limk→∞ Jk, where Jk is as
defined in Equation (7.25). The fact that J∗ = limk→∞ Jk when J0 ∈ R|X|,
where |X| is the number of states in the state space X, is taken from Theorem
2 in [Heg94]. The pessimistic Q-learning tries to approximate Q̂ by use of the
following update formula:

Q(i, u) = max
{
Q(i, u), r + α min

u′∈U(j)
Q(j, u′)

}
, (7.27)

where the initial Q-values needs to be less than or equal to the value of Q∗,
i.e. Q0(i, u) ≤ Q∗(i, u). Thus with no prior knowledge of Q∗ we could set
each initial value to zero, that is Q0(i, u) = 0 for all u ∈ U(i), i ∈ X. The
author claims in [Heg94] that the values Q(i, u) found by running Q̂-learning
(Equation (7.27)) converges to the optimal values Q̂∗(i, u) (Equation (7.26))
with probability one as the number of iterations goes to infinity, given that each
pair (i, u) for all i ∈ X and u ∈ U(i) is visited infinity often.

Weighting TD-rewards

Even though introducing an exponential utility function is a good way to
introduce a risk sensitive target function, it has one major drawback when
it comes to trying to find reinforcement learning methods approximating the
cost given by Equation (7.6). Since we are applying the utility function to
the final cost, or gain, we are actually not able to make use of this knowledge
during training of our algorithm. To tackle this problem we can take a look at

114

7.3. Model-free risk-sensitive control

the proposed solution from [MN02]. They propose a new framework for risk-
sensitive control where they instead of applying a transformation on the final
cost itself, they transform the so called temporal differences during learning. By
applying the transformation during learning we are able to train the algorithms
into being risk-sensitive using algorithms like Q-learning and SARSA. The
transformation introduced in [MN02] is

χκ(x) =
{

(1− κ)x if x > 0,
(1 + κ)x otherwise,

where κ ∈ (−1, 1) is a parameter that decides on the risk-sensitivity of the
algorithm. The risk-sensitive value function Jµκ is then defined implicitly as the
solution of the equations

0 =
∑
j∈X

pij(µ(i))χκ(g(i, µ(i), j) + αJµκ (j)− Jµκ (i)), (7.28)

where µ is some fixed stationary policy. The following theorem ensures that the
risk-sensitive value function is well defined. For a proof of the result consult
[MN02].

Theorem 7.3.1 (Well-defined value function [MN02]). For each κ ∈ (−1, 1)
there is a unique solution Jµκ of the defining system of equations (7.28). Hence,
the value function in the risk-sensitive sense is well defined. The following
properties apply for each i ∈ S

Jµ0 (i0) = E

[∞∑
t=0

αtg(it, µ(it), it+1)
]
, (7.29)

lim
κ→1

Jµκ (i0) = inf
i0,i1,...

p(i0,i1,...)>0

(∞∑
t=0

αtg(it, µ(it), it+1)
)
, (7.30)

lim
κ→−1

Jµκ (i0) = sup
i0,i1,...

p(i0,i1,...)>0

(∞∑
t=0

αtg(it, µ(it), it+1)
)
. (7.31)

Note that when κ = 0, we have that χ0(x) = x, and thus (7.28) reduces to
the normal risk-neutral case, which is what we see in (7.29). On the other hand,
when κ > 0 we overweight negative temporal differences, and the policy thus
becomes more risk-seeking, given that we are trying to minimize costs. However,
if we try to maximize rewards, having κ > 0 makes the resulting policy more
risk-averse. Similarly, if κ < 0 we overweight positive temporal differences,
and are thus less optimistic and more risk-averse if we try to minimize costs,
and again the interpretation is opposite if we are maximizing rewards. We
see from Equations (7.30) and (7.31) that in the limits κ→ 1 and κ→ −1 we
approach a very optimistic value function where we always assume that the
least costly outcome is the one that is going to happen and the minimax value
function, respectively. The natural way to then define a optimal policy π∗ in
the risk-sensitive sense, given that we are considering a maximization problem,
is that the policy π∗ satisfies the equation

Jπ
∗

κ (i) ≥ Jπκ for all π ∈ Π, i ∈ X. (7.32)

115

7.3. Model-free risk-sensitive control

Observe that [MN02] is concerned with the maximization formulation of the
optimization problems we are looking at. In order to present the results from
the paper as they are stated, we therefore assume for the rest of this subsection
that we are looking at a maximization problem, but note that the results still
hold for the minimization problem by exchanging max with min and arg max
with arg min at the appropriate places.

In [MN02] the authors prove that there exists such an optimal policy that is
stationary through the following theorem (Theorem 4 in [MN02]).

Theorem 7.3.2 (Optimal policy [MN02]). For each κ ∈ (−1, 1) there is a unique
optimal value function

J∗κ = max
π∈Π

Jπκ ,

which satisfies the optimality equation

0 = max
u∈U(i)

∑
j∈X

pij(u)χκ(g(i, u, j) + αJ∗κ(j)− J∗κ(i)).

Furthermore, a policy π∗ is optimal if and only if

π∗(i) = arg max
u∈U(i)

∑
j∈X

pij(u)χκ(g(i, u, j) + αJ∗κ(i)− J∗κ(i)).

We then, as in [MN02] introduce the following system of equations, for which
the solution is the risk-sensitive Q-functions Qπκ(i, u).

0 =
∑
j∈X

pij(u)χk (g(i, u, j) + αJπκ (j)−Q∗k(i, u)) for all i ∈ X,u ∈ U(i).

(7.33)
The following theorem (which is a combination of Theorem 5 and Theorem 6
from [MN02]) makes sure that the above defined Q-function is well defined, and
also introduce the optimality equations for the Q-function.

Theorem 7.3.3 (Q-function [MN02]). For each κ ∈ (−1, 1) there is a unique
solution Qπκ of the defining system of equations (7.33). Thus, the Q-function
Qπκ is well defined.

The optimal Q-function Q∗κ is the unique solution of the optimality equation

0 =
∑
j∈X

pij(u)χκ
(
g(i, u, j) + α max

v∈U(j)
Q∗κ(j, v)−Q∗κ(i, u)

)
for all i ∈ X,u ∈ U(i)

Furthermore, a policy π∗ is optimal if and only if

π∗(i) = arg max
u∈U(i)

Q∗κ(i, u).

The authors then go on to introduce the following risk-sensitive Q-learning
algorithm:

Q̂t(i, u) = Q̂t−1(i, u) + γt−1(i, u)χκ(g(it−1, ut−1, it) (7.34)
+ α max

v∈U(it)
Q̂t−1(it, v)− Q̂t−1(it−1, ut−1)),

γt−1(it−1, ut−1) = γt−1 > 0, (7.35)

116

7.3. Model-free risk-sensitive control

γt−1(i, u) = 0 if (i, u) 6= (it−1, ut−1). (7.36)

The following theorem from [MN02] proves convergence of the algorithm to the
optimal Q-function Q∗κ under given conditions.

Theorem 7.3.4 (Convergence of Q-learning algorithm [MN02]). Let κ ∈ (−1, 1).
Consider the risk-sensitive Q-learning algorithm, as described by Equations (7.34)
to (7.36). If the learning rates γi(i, u) are nonnegative and satisfy

∞∑
t=0

γi(i, u) =∞,
∞∑
t=0

(γi(i, u))2 <∞ for all u ∈ U(i), i ∈ X,

then Q̂t(i, u) converges to Q∗κ for all i and u with probability 1.

We thus see that under certain conditions our Q-function will converge
towards the optimal Q-function Q∗κ.

Error states

This part of the section is based on [GW11]. The last model-free risk-sensitive
method we will consider in this section is related to the notion of error states
that we introduced along with the last model-base method of Section 7.2. The
method we will look at in this subsection is the one originally proposed in the
paper [GW11]. Recall that we in this framework consider a subset Φ ⊂ X
consisting of states we call error states. The error states are all terminal states,
and we allow a set Γ ⊂ X, with Γ∩Φ = ∅, of non-error terminal states, i.e. the
terminal states of the MDP are the states in the set Γ ∪ Φ. We also augmented
the MDP and introduced a new terminal state η by automatically transferring
an agent from the states in Γ∪Φ to the terminal state η at no cost. This imply
that the states in Γ ∪ Φ are no longer absorbing. The notion of risk introduced
in [GW11] is given by

ρπ(x) = P (∃k ik ∈ Φ | π),

which is the probability of ending up in an error state when starting in state x
and following the policy π. As we wrote in Section 7.2, the authors the proceed
by defining a new cost function ḡ(i, u, j) that we defined in Equation (7.14),
but we repeat it here for convenience. We have that

ḡ(i, u, j) =
{

1 i ∈ Φ and j = η,

0 otherwise.

The model-free algorithm presented in [GW11] estimates the optimal policy by
use of an algorithm similar to Q-learning (Section 6.2). The authors therefore
introduce a function representing the state-action risk, it is defined by

Q̄π(x, u) = E [ḡ(x, u, f(x, u, w)) + αρπ(f(x, u, w))]

=
∑
x′∈X

pxx′(u)(ḡ(x, u, x′) + αρπ(x′).

As in Section 7.2, the problem we want to solve is

min
π∈Π

Jπ

117

7.3. Model-free risk-sensitive control

subject to
for all x ∈ X ′ : ρπ(x) ≤ ω.

With this in mind, the authors introduce a third state-action function given by

Qξπ(x, u) = ξQπ(x, u) + Q̄π(x, u), (7.37)

where Qπ(x, u) is the usual Q-function approximated by Q-learning and ξ
again is some non-negative value. Note that the state-action function Qξπ(x, u)
presented in [GW11] finds the difference between the two terms instead of
the sum, as they consider a maximization problem whereas we consider the
corresponding minimization problem. Observe also that the expression in
Equation (7.37) is the state-action function corresponding to the cost function
given in Equation (7.18) that we considered in the model-based case. The
learning algorithm introduced in [GW11] approximates the usual state-action
values Q(x, u) and the new state-action function Q̄(x, u) by use of Q-learning
while Qξπ is approximated by taking the weighted sum of the two previously
mentioned estimates. More rigorously the learning algorithm can for a given
value of ξ be written as

Qt+1(x, u) = Qt(x, u) + γt(g + αQt(x′, u∗)−Qt(x, u)) (7.38)
Q̄t+1(x, u) = Q̄t(x, u) + γt(ḡ + ᾱQ̄t(x′, u∗)− Q̄t(x, u)) (7.39)
Qξt+1(x, u) = ξQt+1(x, u) + Q̄t+1(x, u), (7.40)

where α and ᾱ are the discount rate for the Q-approximation of the cost function
and the risk, respectively, and where u∗ is the greedy action at the state x′. We
say in this context that an action u is preferable to u′ if

Qξt+1(x, u) < Qξt+1(x, u′),

and in the case where
Qξt (x, u) = Qξt (x, u′)

we prefer the action satisfying

arg min
v∈{u,u′}

Qt(x, v).

The authors in [GW11] claim that we are guaranteed convergence for the
algorithm whenever α = ᾱ, given that there exists at least one proper policy,
and that the cost function of any non-proper policy is infinite. A proper policy
is a policy that reaches the absorbing state, which here is η, with probability
1. Note that assuming that there only exist proper policies is equivalent to
assuming Assumption 7.2.11.

In order to solve the optimization problem we are interested in the authors
proposes to iteratively increase the value ξ and in each iteration estimate the
policy π∗ξ that optimize Equation (7.40) for the given value of ξ. We can then
check whether the policy π∗ξ is too risky by checking if some state x ∈ X ′ has
an associated risk greater than ω, where X ′ ⊆ X \ (Γ ∪ Φ ∪ {η}) is the states
we are interested in. When we at some point find a policy that is too risky we
pick the policy found during the previous iteration as our optimal policy. By
letting ξ = 0 in the first iteration we are able to find out if the problem even is

118

7.3. Model-free risk-sensitive control

0 500 1000

0

2

4

Approximate Q-values state A

A1

A2

Mean all runs

0 500 1000

0.0

2.5

5.0

7.5

Approximate Q-values state B

B1

B2

Mean all runs

0 500 1000

0

1

2

Approximate Q-values state C

C1

Mean all runs

0 50 100

4.00

4.01

Moving average (N=900) of costs
incurred during testing and training

Training

Testing

Mean testing

Q̂-learning

Figure 7.5: The evolution of Q-values and running average of simulated costs
using Q̂-learning, as well as the mean of the sampled values.

feasible, as we then are trying to minimize the risk, thus π∗0 is the minimal-risk
policy. Therefore, ρπ∗0 (x) ≥ ω for some x ∈ X ′ implies that the problem is not
feasible, as we then would not be able to find a policy with a lower risk for
any state x ∈ X ′ than what we have for π∗0 . Let us now see how the method
performs in practice by considering the SSP-problem we have used in previous
numerical examples.

Numerical example

We now want to look into how the model-free risk-sensitive methods covered in
this chapter perform on the SSP problem we so far have seen in Examples 6.3.1,
5.1.9 and 7.2.18. It will also be interesting to see if the policies found by the
model-free methods coincide with the once we found with the model-based
methods in Example 7.2.18.

Example 7.3.5 (Continuation of Examples 6.3.1, 5.1.9 and 7.2.18). †
In this example we are going to apply the three different model-free risk-
sensitive methods that we have presented in this section to the SSP problem
that we previously have looked at in Examples 6.3.1, 5.1.9 and 7.2.18. Again,
the regular SSP depicted in Figure 5.1 is described in Listing A.2, while the
augmented version with an error state which is show in Figure 7.4 can be

119

7.3. Model-free risk-sensitive control

0 500 1000

0

2

4

Approximate Q-values state A

A1

A2

Mean all runs

0 500 1000

0

2

4
Approximate Q-values state B

B1

B2

Mean all runs

0 500 1000

0

1

2

Approximate Q-values state C

C1

Mean all runs

0 50 100

3.80

3.85

3.90

Moving average (N=900) of costs
incurred during testing and training

Training

Testing

Mean testing

Weighting TDs with κ = 0.5

Figure 7.6: The evolution of Q-values and running average of simulated costs
when weighting TD-rewards using κ = 0.5, as well as the mean of the sampled
values

found in Listing A.5. The code used to simulate the states, and thus facilitate
the simulations, can be found in Listing A.1 and the code implementing the
model-free methods used in this example can be found in Listing A.9. We ran
the different methods with learning rate γ = 0.3 and with ε = 0.15. Note that
Q̂-learning tries to estimate the same policy that minimax promotes, which is
a policy that is optimal under the assumption that the worst-case outcome of
applying a control is the outcome we are going to have each time we use the
given control in a given state. Therefore we set the discount rate α = 0.9 for
Q̂-learning as that is the same value we used for minimax in Example 7.2.18,
while we have α = 1 for the two other methods.

For the method-specific parameters we used multiple values. For the method
where we weight the TDs we let the risk-sensitivity parameter κ take the values
κ = 0.5, κ = 0.15, and κ = −0.5. As we are considering a minimization problem
we expect that the parameter value of κ = 0.5 should give us a risk-seeking
policy, and the policy found using κ = 0.15 should give a risk-seeking policy that
is somewhat more pessimistic than the one found using κ = 0.5, while the last
policy based on the Q-value estimates found with the parameter value κ = −0.5
should be risk-adverse. For the method based on the error states formulation of
risk the model-specific parameter is ω, which specifies the accepted level of risk

120

7.3. Model-free risk-sensitive control

0 500 1000

0

2

4

Approximate Q-values state A

A1

A2

Mean all runs

0 500 1000

0

1

2

3

Approximate Q-values state B

B1

B2

Mean all runs

0 500 1000

0

1

2

Approximate Q-values state C

C1

Mean all runs

0 50 100

3.90

3.95

Moving average (N=900) of costs
incurred during testing and training

Training

Testing

Mean testing

Weighting TDs with κ = 0.15

Figure 7.7: The evolution of Q-values and running average of simulated costs
when weighting TD-rewards using κ = 0.15, as well as the mean of the sampled
values.

for the policy we are looking to find in the states we are interested in. We ran
the error states method using the values ω = 0.1 and ω = 0.2. The parameter
ξ, which is used to weight the cost of the policy, is varied from ξ = 0 to ξ = 1.
For each value of ξ we run the same set of simulations as we do for any other
method and estimate the optimal policy given that the objective is to solve

min
π∈{π′∈Π|ρπ′ (x)<ω ∀x∈X′}

(ξJπ(x) + ρπ(x))

for each x ∈ X ′. If the policy found is less risky than the threshold ω we increase
the value of ξ by 0.1 and do the same exercise again. We repeat this process
until either ξ reach the value 1 and the next policy found still has an associated
risk within the bound set by ω, or we for some value of ξ end up with a too
risky policy, at which point we return the policy found for the previous value of
ξ. For the first round, where the value of ξ is 0, we initialize the Q-values with
value 0 for each state-action pair, while we for each subsequent round initialize
the Q-tables with the Q-values found in the previous round.

Just like we did in Example 6.3.1, we plot the evolution of the Q-values
observed during the simulations for each state along with the mean of the values.
We also include the moving average of the incurred costs for both training and

121

7.3. Model-free risk-sensitive control

0 500 1000

0

2

4

Approximate Q-values state A

A1

A2

Mean all runs

0 500 1000

0

2

4

Approximate Q-values state B

B1

B2

Mean all runs

0 500 1000

0

1

2

Approximate Q-values state C

C1

Mean all runs

0 50 100
3.94

3.96

3.98

4.00

Moving average (N=900) of costs
incurred during testing and training

Training

Testing

Mean testing

Weighting TDs with κ = −0.5

Figure 7.8: The evolution of Q-values and running average of simulated costs
when weighting TD-rewards using κ = −0.5, as well as the mean of the sampled
values.

testing. For the error state experiments we included the moving average of the
empirically observed risk for training and testing as well, including the mean of
the testing rounds. Note that the empirically observed risk of a policy is the
mean of the ḡ costs received by the agent during a number of rounds, and that
this estimate is more accurate as the number of runs increase. This is because
the ḡ cost of 1 is received only when the controller exits the error state, which
terminates the run, and as we would like to know the probability of ending up
in the error state, we have that the mean over multiple rounds gives us exactly
such an estimate. We can draw the same conclusion from Equation (7.15) in
Proposition 7.2.9 as the mean of observed cumulative sums of the ḡ costs is the
maximum likelihood estimator of the expected value

E

[∞∑
k=0

ḡ(ik, π(ik), wk)
]
.

However, keep in mind that as the policy changes during training we can not
really draw any conclusion about the risk of any single policy from looking at
the mean of the cumulative ḡ costs observed during training (unless the Q-value
estimates for every state has the same ordering over the training period, but

122

7.3. Model-free risk-sensitive control

0 500 1000

2.0

2.5

3.0

Approximate Q-values state A

A1

A2

Mean all runs

0 500 1000

1

2

Approximate Q-values state B

B1

B2

Mean all runs

0 50 100

0.000

0.025

0.050

0.075

Moving average (N=900) of
risk for testing and training

Training risk

Testing risk

Mean testing

0 50 100

3.90

3.95

4.00

Moving average (N=900) of costs
incurred during testing and training

Training

Testing

Mean testing

Error states ξ = 0.6, ω = 0.1

Figure 7.9: The evolution of Q-values and running average of simulated costs
and risk using the error states method with a risk bound of ω = 0.1 for the
policy, as well as the mean of the sampled values.

keep in mind that we then would estimate the risk of the ε-greedy policy, and
not the final policy found by the method), which is why we do not include this
mean. The running average of the observed risk for the training runs is included
in order to get some idea of how the riskiness of the current (ε-greedy) policy
evolved over time.

We have plotted the results from running the Q̂-learning in Figure 7.5. The
results from the method where we weight the temporal differences with κ = 0.5
can be found in Figure 7.6, for the results with κ = 0.15 see Figure 7.7, while
the data from the run with κ = −0.5 can be found in Figure 7.8. For the
error states method we have plotted the results from the run with ω = 0.1
in Figure 7.9 and the results we obtained by setting ω = 0.2 can be seen in
Figure 7.10.

We can make multiple interesting observations from the plots mentioned
above. We can for instance find the policies found by the methods by looking at
which action has the minimum Q-value for each state. In Table 7.4 we list the
policies found by the methods. First, note that we from Figure 7.5 and Table 7.4
can see that the policy found by Q̂-learning indeed is the same policy that we
found by using minimax in Example 7.2.18 which is listed in Table 7.2. This
shows that Q̂-learning is able to approximate correctly the minimax algorithm
in this instance, which is exactly what it is meant to do. For the method

123

7.3. Model-free risk-sensitive control

0 500 1000

3

4

5
Approximate Q-values state A

A1

A2

Mean all runs

0 500 1000

1

2

3

4

Approximate Q-values state B

B1

B2

Mean all runs

0 50 100

0.12

0.13

0.14

Moving average (N=900) of
risk for testing and training

Training risk

Testing risk

Mean testing

0 50 100

3.6

3.7

Moving average (N=900) of costs
incurred during testing and training

Training

Testing

Mean testing

Error states ξ = 1.0, ω = 0.2

Figure 7.10: The evolution of Q-values and running average of simulated costs
and risk using the error states method with a risk bound of ω = 0.2 for the
policy, as well as the mean of the sampled values.

Method and parameter values µ∗(A) µ∗(B) µ∗(C) Empirical testing risk

Q̂-learning, α = 0.9 2 2 1
Weighting TDs, κ = 0.5 1 1 1
Weighting TDs, κ = 0.15 2 1 1
Weighting TDs, κ = −0.5 2 2 1
Error states, ω = 0.1, ξ = 1 2 2 0
Error states, ω = 0.2, ξ = 1 2 1 0.153

Table 7.4: Optimal policy under different risk-sensitive optimality conditions
for the SSPs depicted in Figures 5.1 and 7.4.

124

7.3. Model-free risk-sensitive control

0 2 4
0

100

200

C
o
u
n
t

Approximate Q-values state A

A1, std: 0.553

A2, std: 0.468

0.0 2.5 5.0 7.5
0

100

200

C
o
u
n
t

Approximate Q-values state B

B1, std: 1.488

B2, std: 0.38

0 1 2
0

100

200

C
o
u
n
t

Approximate Q-values state C

C1, std: 0.422

2.5 5.0 7.5 10.0
0

100

200

C
o
u
n
t

Total costs incurred from
testing and training runs

Training, std:0.697

Testing, std:0.122

Histogram and KDE for Q̂-learning

Figure 7.11: Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate policies for
Q̂-learning. The height has been cut at y = 250.

that weight the temporal differences we see that we get three different policies
based on our choice of the risk-sensitivity parameter. As expected, the run
with κ = −0.5 ends up with the most risk-averse policy, and does in fact arrive
at the minimax policy. We then see that by increasing the risk-sensitivity
parameter by setting it to κ = 0.15 we get a somewhat more risk-seeking policy
compared with the minimax policy. This policy is actually one of the optimal
policies when we only consider the expected cost of the policy. Observe that
the policy we then get by increasing the risk-sensitivity parameter further to
κ = 0.5 is the other optimal policy for the optimal expected cost problem. It
is interesting to note that the only difference between the two policies that is
optimal for the expected cost case is the action chosen in state A, as one of
them has µ∗1(A) = 1, while the other has µ∗2(A) = 2. For the expected cost
case there is no difference between the two options, as the expected cost under
both actions are equal. However, for the risk-sensitive case where we consider
variation of the cost to be a negative attribute, as it promotes uncertainty
around the performance of the policy, the difference actually matters. We
see that the weighted TDs method with the highest risk-sensitivity parameter
indeed promoted the more risk-seeking policy, which is to have µ∗(A) = 1, as
this leads to the agent receiving a non-deterministic cost for the transition

125

7.3. Model-free risk-sensitive control

0 2 4
0

100

200

C
o
u
n
t

Approximate Q-values state A

A1, std: 0.565

A2, std: 0.432

0 2 4
0

100

200

C
o
u
n
t

Approximate Q-values state B

B1, std: 0.669

B2, std: 0.144

0 1 2
0

100

200

C
o
u
n
t

Approximate Q-values state C

C1, std: 0.34

5 10 15
0

100

200

C
o
u
n
t

Total costs incurred from
testing and training runs

Training, std:2.054

Testing, std:2.452

Histogram and KDE for Weighting TDs with κ = 0.5

Figure 7.12: Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate policies when
weighting TD-rewards. The height has been cut at y = 250.

between state A and B. The other action, which is chosen by the same method
when ran with a parameter value of κ = 0.15 in this instance, results in the same
transition, but with a deterministic cost. This means that for the simulations
we ran the weighting TDs method behaved as expected with the policy getting
gradually more risky as we increase the risk-sensitivity parameter κ. For the
last method dependent on the error states formulation of risk we see that when
running with the parameter value ω = 0.1 we actually got the minimax policy
as well, which has a risk of zero, while we with the parameter value ω = 0.2
ended up with the somewhat more riskier policy which is optimal in the case
where we only want to minimize the expected cost. Note also that we in the
first case only were able to reach ξ = 0.6, while we in the other case were able to
reach ξ = 1, which means that we for the experiment with ω = 0.1 encountered
a too risky policy about half-way through the set of ξ values we used. Observe
that we in Example 7.2.18 found that for the model-based error state method
with ω = 0.1 we could not increase the ξ parameter from 0.25 to 0.5 without
having an optimal policy that was to risky. We can therefore conclude that
the model-free error states method in this instance was not able to find the
correct optimal policy for the runs with ξ = 0.5 and ξ = 0.6 when ω = 0.1 as
the method first stopped when it found a too risky policy after the run with

126

7.3. Model-free risk-sensitive control

0 2 4
0

100

200

C
o
u
n
t

Approximate Q-values state A

A1, std: 0.473

A2, std: 0.398

0 1 2 3
0

100

200

C
o
u
n
t

Approximate Q-values state B

B1, std: 0.475

B2, std: 0.097

0 1 2
0

100

200

C
o
u
n
t

Approximate Q-values state C

C1, std: 0.242

10 20
0

100

200

C
o
u
n
t

Total costs incurred from
testing and training runs

Training, std:1.219

Testing, std:2.276

Histogram and KDE for Weighting TDs with κ = 0.15

Figure 7.13: Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate policies when
weighting TD-rewards. The height has been cut at y = 250.

ξ = 0.7. The method therefore returned the policy it found with ξ = 0.6. Note
however that we for ω = 0.2 were able to estimate the optimal policy correctly.

In addition to plotting the results we also, as in Example 6.3.1, plotted
histograms, along with the kernel density estimate, showing the distribution of
the data underlying the plots mentioned earlier. We do this is in order to get an
idea of both how the distribution of the cost incurred by the agent is during the
training rounds of the final policy and in order to see how much variation we
had in the approximation of the Q-values during the training. The histogram
regarding the Q̂-learning is plotted in Figure 7.11. The histograms for the
method weighting temporal differences is plotted in the figures Figures 7.12
to 7.14 with the parameter values being κ = 0.5, κ = 0.15 and κ = −0.5,
respectively. For the method relying on the error states notion of risk we have
the histogram in Figure 7.15 for the run with the parameter value ω = 0.1 and
ξ = 0.6, while we in Figure 7.16 have plotted the data generated by the run
with ω = 0.2 and ξ = 1.

From the histograms shown in Figures 7.11, 7.14 and 7.15 we can see that
the most risk-averse methods, which is Q̂-learning, the weighting of TDs with
κ = −0.5 and the error states method with ω = 0.1, all had a standard deviation
close to 0.1 for the costs incurred during testing. The fact that the standard

127

7.3. Model-free risk-sensitive control

0 2 4
0

100

200

C
o
u
n
t

Approximate Q-values state A

A1, std: 0.375

A2, std: 0.245

0 2 4
0

100

200

C
o
u
n
t

Approximate Q-values state B

B1, std: 0.833

B2, std: 0.11

0 1 2
0

100

200

C
o
u
n
t

Approximate Q-values state C

C1, std: 0.156

2.5 5.0 7.5 10.0
0

100

200

C
o
u
n
t

Total costs incurred from
testing and training runs

Training, std:0.671

Testing, std:0.094

Histogram and KDE for Weighting TDs with κ = −0.5

Figure 7.14: Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate policies when
weighting TD-rewards. The height has been cut at y = 250.

deviation was so similar for these methods was no surprise as they all ended
up with finding the minimax policy to be the optimal policy. The interesting
thing is that a standard deviation of 0.1 is significantly lower than what we
get with the policies found by the other methods. It is also interesting to see
that even though the weighting TDs method with κ = 0.15 and the error states
method with ω = 0.2 takes the same actions in state A and B the former has
a standard deviation for the costs incurred during testing that is about 60%
greater than that of the latter method. This is probably due to the fact that the
two underlying SSPs used by the methods behave differently when the policy
satisfies µ(A) = 2 and µ(B) = 1. For example, in the case where the controller
receive the cost 5 in state B after applying control 1 we see from Figure 7.4
that the run ends immediately if we use the augmented SSP, while we in the
other case would need to apply control 1 in state B again, risking receiving the
high cost of 5 units again.

Another interesting observation is that the standard deviation of the cost
received during testing in this instance for the two policies found by using the
weighting of TDs method with the parameter values κ = 0.5 and κ = 0.15 does
only differ slightly. As we only compare the results of one batch of testing we
really can not say much about how this will be on average, but it indicates that

128

7.3. Model-free risk-sensitive control

2.0 2.5 3.0
0

100

200

C
o
u
n
t

Approximate Q-values state A

A1, std: 0.228

A2, std: 0.094

1 2
0

100

200

C
o
u
n
t

Approximate Q-values state B

B1, std: 0.384

B2, std: 0.023

0.0 0.5 1.0
0

100

200

C
o
u
n
t

Risk incurred from
testing and training runs

Training risk

Testing risk

2 4 6
0

100

200

C
o
u
n
t

Total costs incurred from
testing and training runs

Training, std:0.716

Testing, std:0.089

Histogram and KDE for Error states ξ = 0.6, ω = 0.1

Figure 7.15: Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate policies for
error states method. The height has been cut at y = 250.

choosing action 1 instead of action 2 in state A in the non-augmented SSP does
not have a great impact on the standard deviation of the observed costs.

As we in this example only take a detailed look at one run for each method
and choice of parameter value, we do not really get a good idea about how
robust our results are. We therefore, just as we did in Example 6.3.1, plot a
bar plot showing the distribution of policies generated by each method and
parameter choice when we generated a number of 1000 policies for each method
and parameter value. For the error states methods we also provide a bar plot
showing the distribution of ξ values used to generate the policies returned by the
method for each of the choices of ω. The plot is shown in Figure 7.17. The first
interesting thing to note is that three of the methods are really stable, as they
generated the same policy for each of the 1000 runs of training. Surprisingly,
these three methods are Q̂-learning, weighting TDs with κ = −0.5 and the error
states method with ω = 0.1, which are the three most risk-averse methods. The
fact that the error states method with ω = 0.1 only generates the policy A2B2
is actually not very surprising as that is the only policy with a risk bellow 0.1.
We also see that the weighting TDs method with κ = 0.5 generates the same
policy about nine out of ten times and that the policy it creates most often in
fact is the most optimistic. It is also interesting that the method only creates

129

7.3. Model-free risk-sensitive control

3 4 5
0

100

200

C
o
u
n
t

Approximate Q-values state A

A1, std: 0.338

A2, std: 0.234

2 4
0

100

200

C
o
u
n
t

Approximate Q-values state B

B1, std: 0.793

B2, std: 0.043

0.0 0.5 1.0
0

100

200

C
o
u
n
t

Risk incurred from
testing and training runs

Training risk

Testing risk

2 4 6
0

100

200

C
o
u
n
t

Total costs incurred from
testing and training runs

Training, std:0.95

Testing, std:1.384

Histogram and KDE for Error states ξ = 1.0, ω = 0.2

Figure 7.16: Histogram of Q-values attained during training as well as costs
incurred during training and testing of the final and intermediate policies for
error states method. The height has been cut at y = 250.

one other policy, which is the policy that is optimal in the risk-neutral case.
For the weighting of TDs with κ = 0.15 we see that it actually generate all of
the different possible policies, and that each of them is generated with about
the same frequency. It is also interesting to note that even though the method
should be risk-seeking, as we have κ > 0, we only generate the most optimistic
policy about 15% of the time, while the most risk-averse policy is generated
about 30% of the time. For the error states method with ω = 0.2 we see that
the actual optimal policy only is found about once in four runs, while the safer,
more risk-averse policy, is generated in about three out of four runs. Note also
that the error states method with ω = 0.2 almost always reach ξ = 1, which
indicates that we maybe should see what happens if we allow ξ to take greater
values that 1. In addition, observe that for ω = 0.1 the story is different as the
ξ value reached varies quite a lot.

We can conclude that the methods we have looked at here are varying in
their level of consistency, but it looks like the more risk-averse methods are the
most stable, with the most risk-seeking algorithm also being quite robust. Let
us now end this chapter with a brief comparison of the risk-sensitive methods
presented in this chapter.

130

7.4. Comparison of risk-sensitive control methods

Err
or
sta

tes
, ω

=
0.1

Err
or
sta

tes
, ω

=
0.2

Q̂-
lea
rni
ng

Weig
hti
ng

TD
s w

ith
κ =

−0.
5

Weig
hti
ng

TD
s w

ith
κ =

0.1
5

Weig
hti
ng

TD
s w

ith
κ =

0.5
0.0

0.5

1.0

Distribution of policies found by the different methods
Number of policies per method: 1000

A2B2

A2B1

A2B2C1

A1B1C1

A1B2C1

A2B1C1

Error states, ω = 0.1 Error states, ω = 0.2
0.0

0.5

Distribution of ξ values error state method used for final policy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 7.17: Bar plot showing distribution of policies created with the different
risk-sensitive RL methods introduced in this chapter with the parameter values
we have considered in this example, as well as distribution of ξ values used
to generate final policy for error states method. Legend notation explanation:
A1B1C1 denotes the policy taking action 1 in each state.

7.4 Comparison of risk-sensitive control methods

We have in this chapter considered different methods for risk-sensitive control.
We have introduced three different model-based methods, and three other
model-free algorithms. We can argue that each of the model-based methods
we have presented have a counterpart among the model-free algorithms we
considered. For example, the cost function and Q-values of a policy under the
minimax-criterion we looked at in Section 7.2 is what we try to approximate
by using Q̂-learning. We also have that the two methods based on the error
states representation of risk are quite similar, as the model-based method is
designed around using the information available in a model-based framework to
find exactly the cost functions we are trying to estimate using the model-free
algorithm introduced in [GW11] which we presented in Section 7.3. For the
two last methods, which is using the exponential utility and weighting TDs,
the similarity is that they both have a risk-sensitivity parameter that allows
the controller to choose how risk-seeking or risk-averse we would like our policy
to be. However, the interpretation of the parameters are different and the

131

7.4. Comparison of risk-sensitive control methods

range of values the parameters can take is different as κ ∈ (0, 1) while β ∈ R,
conditioned on the choice of β being such that Equation (7.12) holds. We have
also seen from Table 7.2 in Example 7.2.18 and Table 7.4 in Example 7.3.5 that
even though the two methods create the same policies they do not agree on the
ordering of the policies regarding how risk-averse the policies are. From the
tables we can see that for the parameter choices of β = −0.075 and κ = 0.5
both methods produce the same policy, and with the parameter values being
β = −1 and κ = 0.15 the two methods produced a second policy, and again
the two methods end up with the same policy. Note however that as we have
decreased the value of β the exponential utility function would interpret the
second policy as being more risk-seeking, while when we decrease the value of
κ from 0.5 to 0.15 we would expect a more risk-averse policy. We therefore
conclude that the two methods does not necessarily have the same interpretation
of how risk-averse a policy is and the ordering of policies when ordering them
according to their risk-sensitivity.

A nice thing about the method weighting TDs is that the κ parameter has
a nice interpretation. For negative values it tells us something about where
we lie on a scale from 0 to -1, where 0 is being risk-neutral while -1 is being
really risk-averse by trying to obtain the minimax policy, given that we are
considering a minimization of cost problem. On the other hand, for positive
values of κ we can view it as being able to tell where we want to be on the scale
between risk-neutral and risk-seeking, with κ = 0 being risk-neutral, and κ = 1
being very risk-seeking in the sense that we try to approximate the Q-values of
a method where we minimize over the set of policies assuming the best-case
outcome of each action. In short, the κ parameter tells us something about
where we are on a scale between trying to estimate a very optimistic policy and
the minimax policy with the risk-neutral case being midway between the two.
As we have seen before in Section 7.2 we also have a nice interpretation of the
β parameter as we have,

1
β

logE
[
eβG

]
= E[G] + β

2Var(G) +O(β2),

which tells us that β says something about how heavily we should weight
the variance of the cost. The final method-specific parameter that we have
not discussed yet is the ω parameter used in the error states method. The
interpretation of the ω parameter is quite straight forward, as it say something
about the maximum probability for transitioning into an error state from any
of the states x ∈ X ′ that we allow for the policies we consider. We then look
for the policy that on average achieve the lowest cost among the policies that
fulfils this risk-criteria.

To compare the behaviour of the model-based methods presented in
Section 7.2 we can take a look at how they handled the St. Petersburg paradox.
The minimax policy was only willing to bet if the stake was 2 or less, which is
probably a stake no sensible person would be willing to give a gambler, as it
would never give a profit. Thus, in practice, the minimax policy would not allow
for any sort of gamble in this case (or any case, really). For the exponential
utility function we see that we would need a value of β pretty close to 0 in order
to be willing to bet much more than 2 units. As we can see from Figure 7.1
a gambler with β = −0.1 would be willing to bet around 4 units, while a
less risk-averse player with β = −0.01 would be willing to bet around 7 units.

132

7.4. Comparison of risk-sensitive control methods

From the error states method we saw that when allowing to lose money with
probability p = 0.5 (that is, ω = 0.5) we would still only be willing to bet 4
units. In other words, having a parameter value of β = −0.1 in the exponential
utility case roughly corresponds to having ω = 0.5 for the error state method
in this case. At the same time, we see that the willingness to bet 7 units with a
parameter value of β = −0.01 would mean that the gambler would need to be
willing to sustain a loss with probability 0.75. We are able to see this from the
discussion in Example 7.2.16 as we found that for a given stake k we would be
willing to take the bet if

ω ≥
dlog2(k)e−1∑

i=1

1
2i .

Thus, by letting k = 7 we have that

ω ≥
dlog2(7)e−1∑

i=1

1
2i =

3−1∑
i=1

1
2i =

2∑
i=1

1
2i = 3

4 .

We can therefore see that by tuning the risk-sensitivity parameters we are able
to get quite similar behaviour for the policies found by using the exponential
utility function and the error states method. However, it is much easier to
interpret the value of the ω parameter compared with the β parameter. On
the other hand, the β parameter allows for more flexibility. For example, with
β = −0.01 we were willing to bet up to around 7 units, while the only way
to be willing to take the same bet using the error states method would be to
have ω = 3

4 , but we would then be just as willing to bet 8 units. Keep in mind
that this is the case for the St. Petersburg Paradox when we are defining the
error state as being whenever we lose money, so this need not be the situation
in general, but it indicates that there is some trade-off here between the two
methods and their interpretability and flexibility.

In this chapter we have considered two numerical examples, namely
Examples 7.3.5 and 7.2.18. From Tables 7.2 and 7.4 we see that combined the
model-free methods from Example 7.3.5 actually managed to recreate every
method we found by using the model-based methods in Example 7.2.18. The
two model-free runs of the error states method managed to find the same
policy as their model-based counterpart. As mentioned before, the Q̂-learning
method managed to end up with the minimax policy, which is exactly what the
algorithm is designed to do. For the model-free method weighting the temporal
differences we see that by varying the κ parameter we were able to estimate
both methods found by using the exponential utility function in Example 7.2.18
as well as the minimax policy. However, as we saw in Example 7.3.5 not all of
the methods generated the same policy consistently, so when applying these
methods on real-world problems we should run each of them several times and
compare the different policies generated by looking at their empirically found
cost and risk.

The six methods we have looked at in this chapter are quite different. Two of
them, Q̂-learning and minimax, try to find the optimal policy when we assume
that the worst-case outcome is the result of each transition. This means that
these methods are nice to use e.g., when we are uncertain about the data that
we have and therefore would like to plan for the worst-case outcome. Being
uncertain about the data can in this instance mean that we do not know if the

133

7.4. Comparison of risk-sensitive control methods

sampled simulations we have to train our RL algorithm is representative, or
that we do not entirely trust the estimated probabilities of our model-based
problem. These methods are also strong candidates when it is really important
to not allow for small probabilities of severe outcomes. In addition, we have
the exponential utility method and the weighting of the TDs method that both
rely on a tuning parameter that controls the risk-sensitivity of the methods.
Thus these methods are practical if we would like to control how risk-sensitive
the resulting policy should be. For the model-free weighting TDs method the κ
parameter allows us to lie somewhere on the scale between being really optimistic
and minimax, while the β parameter used in the exponential utility function
controls how much, and with what sign, the variability of the cost should count
towards the value we are looking to optimize. The last two methods we have
looked at are concerned with a definition of risk that is dependent on there
being defined at least one error state, as it sees a policy as more risky if it has a
higher probability of ending up in one of these error states compared with some
other policy. Thus this method is preferable if it is easy to define these error
states, and if it is important to control the probability of the controller ending
up in one of these states. We therefore see that the choice of which method to
use is heavily dependent on the problem at hand, and also on whether we have
access to a model of the underlying system.

In order to extend the work done in this chapter we could have included
additional risk-sensitive methods, such as any of those that we have not looked
at that is covered in the paper [GFF15], which is a review paper on risk-sensitive
reinforcement learning. If we had the time we could also have looked at the
methods presented in the papers [TDM12], [Ach+17] and [Cho+17]. In the
three papers the authors, among other things, find policy gradient types of
algorithms that estimates the optimal policies. The fact that the algorithms are
policy gradient type of algorithms means that the algorithms rely on there being
some parametrized family of policies for which we want to do the optimization
over. The way these papers introduce the notion of risk-sensitivity is also
quite different from the methods presented in this chapter, as e.g. [Ach+17]
consider constrained Markov decision processes, while [Cho+17] uses the notion
of risk-measures by utilising CVaR. Looking into, and comparing these methods
are something we will leave for further work.

134

CHAPTER 8

Concluding remarks

We have in this work taken a stroll through a rather small part of the jungle
of optimal control theory. We started by introducing optimal control through
finite horizon dynamic programming in Chapter 3. In the chapter that followed,
Chapter 4, we took a step back and looked at the theory of abstract dynamic
programming and some general methods for finding solutions of dynamic
programming problems in the abstract DP framework. Then, in Chapter 5 we
applied the abstract dynamic programming theory from the previous chapter in
order to give some new proofs for the convergence of the value iteration and policy
iteration methods when used to solve infinite horizon dynamic programming
problems. We then introduced reinforcement learning and Markov decision
processes in Chapter 6. In addition, we explained how dynamic programming
and reinforcement learning in essence are two sides of the same coin when we are
doing optimal control on Markov decision processes, as these processes also are
underlying the dynamic programming problems we had covered in the previous
chapters. We then ended our walk with Chapter 7 which is the highlight of
this thesis. In that chapter, we considered the important topic of risk-sensitive
control. We introduced three different model-based methods and three different
model-free algorithms, looked at their performance on a numerical example and
ended the chapter with a comparison of the different methods.

As we have covered many different topics in this thesis there are multiple
natural directions for future work. One such example is to look further into
the theory of abstract dynamic programming. The theory covered in this thesis
only consider contractive models, but there has been done work related to
semi-contractive and non-contractive models as well. It could be interesting to
look at the introduction of risk-sensitivity in such models, and to see if doing
so could extend our understanding of risk-sensitive reinforcement learning.

Another topic of interest could be risk-sensitive reinforcement learning in the
case where we would need approximations in value space and/or approximations
in policy space. That is, where we have a state space and/or control space that
is too large for the classical tabular reinforcement learning methods that we
have considered in this thesis. There is already many research papers on this
topic, but it is also a field with a lot of open questions that would be interesting
to work on. We could also consider other notions of risk, such as risk-measures
and the introduction of constraints that the feasible policies must satisfy.

In this work we have only considered the theory of discreet time stochastic
optimal control, but there exist a lot of theory on continuos-time stochastic

135

optimal control as well. Finding ways to introduce risk-sensitivity for the
continuos-time case could also prove to be an interesting exercise. We could
for instance try to introduce error states in the continuos-time optimal control
framework. A continuation of that kind of work could then be to check whether
reinforcement learning algorithms manage to correctly estimate the optimal cost
function for risk-sensitive continuos-time optimal control problems even though
RL methods depend on discretisation in order to approximate continuous-time
solutions.

136

Appendices

137

APPENDIX A

Code

Listing A.1: ssp_ex; Implementation of SSP considered in Example 5.1.9
import json
import numpy as np
rng = np.random.default_rng(5)

class State:
""" Class to hold informaiton about the different states.
This class features a method that supply the minimum expected
cost of the state when given a cost function, and the expected
cost of following a given policy.
"""

def __init__(self, name: str, action_probs: dict,
discount_rate: float=1):

self.name = name
self.discount_rate = discount_rate
self._set_actions(action_probs)

def _set_actions(self, action_probs: dict):
self.actions = action_probs.keys()
self.action_probs = action_probs

--------------------------- Regular DP methods ---------------------------
def get_policy_exp_cost(self, policy: dict, cost_func: dict):

action = policy[self.name]
exp_cost = 0
for i in range(len(self.action_probs[action][’states’])):

exp_cost += self.action_probs[action][’probs’][i]\

*(self.action_probs[action][’costs’][i]
+ self.discount_rate\

*cost_func[self.action_probs[action][’states’][i]])
return exp_cost

def get_min_exp_cost(self, cost_func: dict):
""" Calculate the expected cost given cost function.
"""
min_cost = np.inf
min_act = list(self.actions)[0]
for action in self.actions:

exp_cost = 0
for i in range(len(self.action_probs[action][’states’])):

exp_cost += self.action_probs[action][’probs’][i]\

*(self.action_probs[action][’costs’][i]
+ self.discount_rate\

*cost_func[self.action_probs[action][’states’][i]])

138

if exp_cost < min_cost:
min_cost = exp_cost
min_act = action

return min_cost, min_act

----------------------------- Minimax methods ----------------------------
def get_policy_minimax_cost(self, policy: dict, cost_func: dict,

maximin = False,):
action = policy[self.name]
worst_cost = 0
for i in range(len(self.action_probs[action][’states’])):

tmp_cost = self.action_probs[action][’costs’][i] \
+ self.discount_rate \

*cost_func[self.action_probs[action][’states’][i]]
if (not maximin) and (tmp_cost > worst_cost):

worst_cost = tmp_cost
elif maximin and (tmp_cost < worst_cost):

worst_cost = tmp_cost
return worst_cost

def get_opt_minimax_cost(self, cost_func: dict, maximin = False,):
""" Calculate the minimax cost given cost function.
"""
worst_costs = []
actions = list(self.actions)
for action in actions:

worst_cost = 0
for i in range(len(self.action_probs[action][’states’])):

tmp_cost = self.action_probs[action][’costs’][i] \
+ self.discount_rate \

*cost_func[self.action_probs[action][’states’][i]]
if (not maximin) and (tmp_cost > worst_cost):

worst_cost = tmp_cost
elif maximin and (tmp_cost < worst_cost):

worst_cost = tmp_cost
worst_costs.append(worst_cost)

worst = max(worst_costs) if maximin else min(worst_costs)
return worst, actions[worst_costs.index(worst)]

----------------------- Exponential utility methods ----------------------
def get_policy_exp_util_cost(self, policy: dict, cost_func: dict,

rs_factor: float=-0.1):
action = policy[self.name]
exp_cost = 0
for i in range(len(self.action_probs[action][’states’])):

exp_cost += self.action_probs[action][’probs’][i]\

*(np.exp(rs_factor*self.action_probs[action][’costs’][i])

*self.discount_rate\

*cost_func[self.action_probs[action][’states’][i]])
return 1/rs_factor*np.log(exp_cost) if exp_cost != 0 else exp_cost

def get_min_exp_util_cost(self, cost_func: dict,
rs_factor: float=-0.1):

""" Calculate the exponential utility cost given cost function.
"""
min_cost = np.inf
min_act = list(self.actions)[0]
for action in self.actions:

exp_cost = 0
for i in range(len(self.action_probs[action][’states’])):

exp_cost += self.action_probs[action][’probs’][i]\

*(np.exp(rs_factor*self.action_probs[action][’costs’][i])

139

*self.discount_rate\

*cost_func[self.action_probs[action][’states’][i]])
if exp_cost < min_cost:

min_cost = exp_cost
min_act = action

if min_cost != 0:
return 1/rs_factor*np.log(min_cost), min_act

else:
return min_cost, min_act

--------------------------- Error state methods --------------------------
def get_policy_es_cost(self, policy: dict, cost_func: dict, risk_func:dict,

xi: float=0):
action = policy[self.name]
exp_cost = 0
risk_comp = 0
for i in range(len(self.action_probs[action][’states’])):

exp_cost += self.action_probs[action][’probs’][i]\

*(xi*self.action_probs[action][’costs’][i]
+ self.action_probs[action][’risk_cost’][i]
+ self.discount_rate\

*cost_func[self.action_probs[action][’states’][i]])
risk_comp += self.action_probs[action][’probs’][i]\

*(self.action_probs[action][’risk_cost’][i]
+ self.discount_rate\

*risk_func[self.action_probs[action][’states’][i]])
return exp_cost, risk_comp

def get_min_es_cost(self, cost_func: dict, risk_func: dict, xi: float=0):
""" Calculate the expected cost given cost function.
"""
min_cost = np.inf
min_risk = np.inf
min_act = list(self.actions)[0]
for action in self.actions:

exp_cost = 0
risk_comp = 0
for i in range(len(self.action_probs[action][’states’])):

exp_cost += self.action_probs[action][’probs’][i]\

*(xi*self.action_probs[action][’costs’][i]
+ self.action_probs[action][’risk_cost’][i]
+ self.discount_rate\

*cost_func[self.action_probs[action][’states’][i]])
risk_comp += self.action_probs[action][’probs’][i]\

*(self.action_probs[action][’risk_cost’][i]
+ self.discount_rate\

*risk_func[self.action_probs[action][’states’][i]])
if exp_cost < min_cost:

min_cost = exp_cost
min_risk = risk_comp
min_act = action

return min_cost, min_act, min_risk

--------------------------- RL sampling method ---------------------------
def sim(self, action: str):

""" Simulate the transition from this state when the inputed
action is chosen.
"""
r = rng.random()
p = 0
for i in range(len(self.action_probs[action][’states’])):

p += float(self.action_probs[action][’probs’][i])

140

if r < p:
return self.action_probs[action][’states’][i]

return self.action_probs[action][’states’][i]

def max_cost_funcs_diff(cf: dict, other: dict):
""" Funciton that calculates the sup-norm of two cost functions
defined as dicts.
"""
assert cf.keys() == other.keys()
max_diff = 0
for state in cf.keys():

s_diff = np.abs(cf[state]-other[state])
max_diff = s_diff if s_diff > max_diff else max_diff

return max_diff

def get_rng():
return rng

def get_environment(discount_rate: float=1, path: str=’ex_SSP.json’):
load problem information
with open(path) as fp:

state_actions_probs = json.load(fp)
create states and cost func
env = {}
for state, action_probs in state_actions_probs.items():

env[state] = State(state, action_probs, discount_rate)
return env

Listing A.2: ex_SSP.json; JSON-file defining SSP implemented by Listing A.1
{

"A": {
"1": {

"states": [
"B",
"C"

],
"probs": [

0.5,
0.5

],
"costs": [

1,
3

]
},
"2": {

"states": [
"B"

],
"probs": [

1
],
"costs": [

2
]

}
},
"B": {

"1": {
"states": [

"B",

141

"t"
],
"probs": [

0.15,
0.85

],
"costs": [

5,
1

]
},
"2": {

"states": [
"B",

"t"
],
"probs": [

0.01,
0.99

],
"costs": [

1,
2

]
}

},
"C": {

"1": {
"states": [

"B"
],
"probs": [

1
],
"costs": [

0
]

}
},
"t": {

"terminate": {
"states": [

"t"
],
"probs": [

1
],
"costs": [

0
]

}
}

}

Listing A.3: ssp_DP.py; Implementation of value iteration and policy iteration
used to solve SSP problem in Example 5.1.9
from ssp_ex import max_cost_funcs_diff, get_environment

print(’\n{} Regular DP {}’.format(34*’#’, 34*’#’))
declear variables and get states
eps = 1E-16

142

states = get_environment()

------------------------------ Value Iteration -------------------------------
print(’{} Value Iteration {}’.format(31*’-’, 32*’-’))
create initial cost func
prv_cost_func = dict.fromkeys(states.keys(), 1E9)
prv_cost_func[’t’] = 0

solve the Bellman equation using value iteration
flag = True
while flag:

cost_func = {}
for state in states.values():

cost_func[state.name] = state.get_min_exp_cost(prv_cost_func)[0]
if max_cost_funcs_diff(cost_func, prv_cost_func) < eps:

flag = False
prv_cost_func = cost_func

print(cost_func)

------------------------------ Policy Iteration ------------------------------
print(’{} Policy Iteration {}’.format(31*’-’, 31*’-’))
create states and cost func
policy = {}
for state in states.keys():

policy[state] = list(states[state].actions)[0]
prv_cost_func = dict.fromkeys(states.keys(), 1E9)
prv_cost_func[’t’] = 0

p_flag = True
while p_flag:

Policy evaluation: Find value of current policy by use of value iteration
flag = True
while flag:

cost_func = {}
for state in states.values():

cost_func[state.name] = state.get_policy_exp_cost(policy,
prv_cost_func)

if max_cost_funcs_diff(cost_func, prv_cost_func) < eps:
flag = False

prv_cost_func = cost_func
Policy improvement:
p_flag = False
for state in states.values():

prv = policy[state.name]
policy[state.name] = state.get_min_exp_cost(cost_func)[1]
if policy[state.name] != prv:

p_flag = True
print(cost_func)
print(policy)

Listing A.4: ssp_rl_algs.py; Implementation of RL algorithms used to solve
SSP problem in Example 6.3.1
from ssp_ex import max_cost_funcs_diff, get_rng, get_environment
import re
import os, sys
import matplotlib
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.legend_handler import HandlerTuple

143

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from plot_palette import ito_cmap

def moving_average(x, w):
return np.convolve(x, np.ones(w), ’valid’) / w

def run_sarsa(states: dict, Q_table: dict, rng, alpha: float=0.1,
gamma: float=1, epsilon: float=0, training_flag: bool=False):

cum_cost = 0
curr_state = states[’A’]
update_flag = False
while True:

rand = rng.random()
if rand < epsilon and training_flag:

action = rng.choice(list(Q_table[curr_state.name].keys()))
else:

pos_actions = []
min_val = np.inf
for (k, v) in Q_table[curr_state.name].items():

if v < min_val:
min_val = v
pos_actions = [k]

elif v == min_val:
pos_actions.append(k)

action = rng.choice(pos_actions)
nxt_state = states[curr_state.sim(action)]
state_action_data = curr_state.action_probs[action]
idx = state_action_data[’states’].index(nxt_state.name)
cum_cost += state_action_data[’costs’][idx]
Update Q-value and cum_sum from second action
if training_flag and update_flag:

state_action_data = prv_state.action_probs[prv_action]
idx = state_action_data[’states’].index(curr_state.name)
Q_table[prv_state.name][prv_action] += alpha \

*(state_action_data[’costs’][idx] \
+ gamma*Q_table[curr_state.name][action] \
- Q_table[prv_state.name][prv_action])

prv_state = curr_state
prv_action = action
curr_state = nxt_state
update_flag = True
if curr_state.name == ’t’:

if training_flag:
state_action_data = prv_state.action_probs[prv_action]
idx = state_action_data[’states’].index(curr_state.name)
Q_table[prv_state.name][prv_action] += alpha \

*(state_action_data[’costs’][idx] \
+ gamma*Q_table[curr_state.name][’terminate’] \
- Q_table[prv_state.name][prv_action])

return cum_cost, Q_table

def run_q_learning(states: dict, Q_table: dict, rng, alpha: float=0.1,
gamma: float=1, epsilon: float=0, training_flag: bool=False):

cum_cost = 0
curr_state = states[’A’]
while True:

rand = rng.random()
if rand < epsilon and training_flag:

action = rng.choice(list(Q_table[curr_state.name].keys()))
else:

pos_actions = []
min_val = np.inf

144

for (k, v) in Q_table[curr_state.name].items():
if v < min_val:

min_val = v
pos_actions = [k]

elif v == min_val:
pos_actions.append(k)

action = rng.choice(pos_actions)
nxt_state = states[curr_state.sim(action)]
Update Q-value and cum_sum
state_action_data = curr_state.action_probs[action]
idx = state_action_data[’states’].index(nxt_state.name)
cum_cost += state_action_data[’costs’][idx]
if training_flag:

Q_table[curr_state.name][action] += alpha \

*(state_action_data[’costs’][idx] \
+ gamma*min(Q_table[nxt_state.name].values()) \
- Q_table[curr_state.name][action])

curr_state = nxt_state
if curr_state.name == ’t’:

return cum_cost, Q_table

def run_experiments(states: dict, N: int, rng, run_func, name: str,
theoretical_q: dict, alpha: float=0.1,
gamma: float=1, epsilon: float=0.1, n_test: int=5,
ret_q: bool=False, test: bool=True, plot: bool=True):

q_data = []
cum_costs = []
costs = {}
Q_table = {}
for n in states.keys():

Q_table[n] = dict.fromkeys(states[n].actions, 0)

training_flag = True
for i in range(2*N):

if i == N:
if not test:

break
epsilon = 0
training_flag = False
costs[’Training’] = cum_costs.copy()
cum_costs = []

if i >= 0.5*N:
alpha *= 0.99

cost, Q_table = run_func(states, Q_table, rng, alpha, gamma,
epsilon, training_flag)

cum_costs.append(cost)
if training_flag:

q_data.append([Q_table[s][a] for s in states.keys()
for a in states[s].actions])

if i%(round(N/n_test)) == 0 and i != 0 and training_flag:
curr_policy_cost = []
for j in range(N):

cost, Q_table = run_func(states, Q_table, rng)
curr_policy_cost.append(cost)

costs[’{} iterations’.format(i)] = curr_policy_cost

costs[’Testing’] = cum_costs
costs = pd.DataFrame(costs)
if plot:

print(Q_table)
plot_data(states, N, name, costs, q_data, theoretical_q)

if ret_q:

145

return Q_table

def plot_data(states: dict, N: int, name: str, costs: dict, q_data,
theoretical_q: dict):

path_name = ’_’.join(re.split(’ |-’, name)).lower().replace(’$’, ’’)
fig, axs = plt.subplots(2, 2)
n = int(9*N/10)
idx = 0
for i, ax in enumerate(axs.flatten()):

if i < len(states.keys())-1:
p = []; m = []; t = []
s = list(sorted(states.keys()))[i]
for j, a in enumerate(states[s].actions):

string = ’{}{}’.format(s, a)
data = [q_data[i][idx] for i in range(len(q_data))]
p1, = ax.plot(data, c=ito_cmap.colors[j+1])
p2 = ax.axhline(y=np.mean(data), xmin=0.045, xmax=0.965,

linestyle=’--’, c=ito_cmap.colors[j+1])
p3 = ax.axhline(y=theoretical_q[string], xmin=0.045, xmax=0.965,

color=ito_cmap.colors[j+1], linestyle=’:’)
p.append((p1, string)); m.append(p2); t.append(p3)
idx += 1

ax.set_title(’Approximate Q-values state {}’.format(s))
if len(states[s].actions) == 2:

ax.legend([p[0][0], p[1][0], (m[0], m[1]), (t[0], t[1])],
[p[0][1], p[1][1], ’Mean all runs’, ’Actual’],
numpoints=1, ncol=2, loc=’lower center’, borderaxespad=0.,
handler_map={tuple: HandlerTuple(ndivide=None)})

else:
costs[[’Training’, ’Testing’]].apply(lambda x:

moving_average(x, n)) \
.plot(kind=’line’, ax=ax,

color=ito_cmap.colors[1:3])
ax.axhline(y=np.mean(costs[’Testing’]), xmin=0.045, xmax=0.965,

color=’k’, label=’Mean testing’, linestyle=’--’)
ax.axhline(y=97/25, xmin=0.045, xmax=0.965, color=’k’,

linestyle=’:’, label=’Optimal’)
ax.set_title((’Moving average (N={}) of costs\nincurred ’

’during testing and training’).format(n))
ax.legend(ncol=2)

ax.grid()
fig.suptitle(’{}’.format(name))
fig.tight_layout()
plt.savefig(’../../figures/ssp_{}_{}runs.eps’.format(path_name, N))
Plot hists
fig, axs = plt.subplots(2,2)
idx = 0
for i, ax in enumerate(axs.flatten()):

if i < len(states.keys())-1:
plot_data = {}
s = list(sorted(states.keys()))[i]
for j, a in enumerate(states[s].actions):

d = [q_data[i][idx] for i in range(len(q_data))]
key = ’{}{}, std: {}’.format(s, a, round(np.std(d, ddof=1), 3))
plot_data[key] = d
idx += 1

ax.grid()
ax.set_title(’Approximate Q-values state {}’.format(s))
sns.histplot(data=pd.DataFrame(plot_data), ax=ax, kde=True,

palette=ito_cmap.colors[1:len(states[s].actions)+1])
ax.set_ylim(0, 250)

else:

146

ax.grid()
ax.set_title(’Total costs incurred from\ntesting and training runs’)
sns.histplot(data=costs[[’Testing’, ’Training’]], ax=ax, kde=True,

palette=ito_cmap.colors[1:3])#len(costs.columns)+1])
ax.set_ylim(0, 250)

fig.suptitle(’Histogram and KDE for {}’.format(name))
fig.tight_layout()
plt.savefig(’../../figures/ssp_{}_hists_{}runs.eps’.format(path_name, N))

def find_policy_distr(allPol: dict, states: dict, runs: int, N: int, rng,
run_func, name: str, alpha: float=0.1, gamma: float=1,
epsilon: float=0.1):

policies = {}
for _ in range(runs):

Q_table = run_experiments(states, N, rng, run_func, name, None, alpha,
gamma, epsilon, ret_q=True, test=False,
plot=False)

policy = ’’
for state in Q_table.keys():

if state != ’t’:
opt_Q = np.inf
opt_A = None
for action in Q_table[state].keys():

if (Q_table[state][action] < opt_Q):
opt_Q = Q_table[state][action]
opt_A = action

policy += ’{}{}’.format(state, opt_A)
if policy not in policies:

policies[policy] = 1
else:

policies[policy] += 1
allPol[name] = policies
return allPol

def plot_policies_distr(policies: dict, runs: int):
fig, ax = plt.subplots()
df = pd.DataFrame(policies)
df /= runs
df.T.plot.bar(ax=ax, color=ito_cmap.colors[1:len(df.index)+1])
ax.tick_params(axis=’x’, labelrotation=30)
fig.canvas.draw()
ax.set_title((’Distribution of policies found by the different methods’

’\nNumber of policies per method: {}’).format(runs))
ax.grid()
fig.tight_layout()
plt.savefig(’../../figures/ssp_rl_policies.eps’)

if __name__ == ’__main__’:
rng = get_rng()
N = int(1E3) # Number of training and test runs
alpha = 0.3
gamma = 1
epsilon = 0.15
states = get_environment()
theoretical_q = {’A1’:97/25, ’A2’:97/25, ’B1’:47/25,

’B2’:2, ’C1’:47/25}
run_experiments(states, N, rng, run_q_learning, ’Q-learning’,

theoretical_q, alpha, gamma, epsilon)
run_experiments(states, N, rng, run_sarsa, ’SARSA’,

theoretical_q, alpha, gamma, epsilon)
Find policy distribution
allPol = {}

147

runs = N
find_policy_distr(allPol, states, runs, N, rng, run_q_learning,

’Q-learning’, alpha, gamma, epsilon)
find_policy_distr(allPol, states, runs, N, rng, run_q_learning,

’SARSA’, alpha, gamma, epsilon)
plot_policies_distr(allPol, runs)

Listing A.5: ex_SSP_es.json; JSON-file defining SSP with error state
implemented by Listing A.1
{

"A": {
"1": {

"states": [
"B",
"e"

],
"probs": [

0.5,
0.5

],
"costs": [

1,
4

],
"risk_cost": [
0,

0
]
},
"2": {

"states": [
"B"

],
"probs": [

1
],
"costs": [

2
],

"risk_cost": [
0

]
}

},
"B": {

"1": {
"states": [

"e",
"t"

],
"probs": [

0.15,
0.85

],
"costs": [

5,
1

],
"risk_cost": [
0,

0

148

]
},
"2": {

"states": [
"B",

"t"
],
"probs": [

0.01,
0.99

],
"costs": [

1,
2

],
"risk_cost": [
0,

0
]
}

},
"t": {

"terminate": {
"states": [

"eta"
],
"probs": [

1
],
"costs": [

0
],

"risk_cost": [
0

]
}

},
"e": {

"terminate": {
"states": [

"eta"
],
"probs": [

1
],
"costs": [

0
],

"risk_cost": [
1

]
}

},
"eta": {

"terminate": {
"states": [

"eta"
],
"probs": [

1
],
"costs": [

149

0
],

"risk_cost": [
0

]
}

}
}

Listing A.6: ssp_minimax.py; Code to run minimax to solve SSP problem in
Example 7.2.18
from ssp_ex import max_cost_funcs_diff, get_environment

print(’\n{} Minimax {}’.format(35*’#’, 36*’#’))
declear variables and get states
eps = 1E-16
states = get_environment(0.90) # discount factor of 0.9

------------------------------ Value Iteration -------------------------------
print(’{} Value Iteration {}’.format(31*’-’, 32*’-’))
create initial cost function
prv_cost_func = dict.fromkeys(states.keys(), 1E9)
prv_cost_func[’t’] = 0

solve the Bellman equation using value iteration
flag = True
while flag:

cost_func = {}
for state in states.values():

cost_func[state.name] = state.get_opt_minimax_cost(prv_cost_func)[0]
if max_cost_funcs_diff(cost_func, prv_cost_func) < eps:

flag = False
prv_cost_func = cost_func

print(cost_func)

------------------------------ Policy Iteration ------------------------------
print(’{} Policy Iteration {}’.format(31*’-’, 31*’-’))
create initial policy and cost function
policy = {}
for state in states.keys():

policy[state] = list(states[state].actions)[0]
prv_cost_func = dict.fromkeys(states.keys(), 1E9)
prv_cost_func[’t’] = 0
prv_act_cost = dict.fromkeys(states.keys(), 1E9)
prv_act_cost[’t’] = 0

p_flag = True
while p_flag:

Policy evaluation: Find value of current policy by use of value iteration
flag = True
flag_act = True
while flag or flag_act:

cost_func = {}
act_cost = {}
for state in states.values():

cost_func[state.name] = state.get_policy_minimax_cost(policy,
prv_cost_func)

res_act = state.get_policy_exp_cost(policy, prv_act_cost)
act_cost[state.name] = res_act

if max_cost_funcs_diff(cost_func, prv_cost_func) < eps:
flag = False

150

if max_cost_funcs_diff(act_cost, prv_act_cost) < eps:
flag_act = False

prv_cost_func = cost_func
prv_act_cost = act_cost

Policy improvement:
p_flag = False
for state in states.values():

prv = policy[state.name]
policy[state.name] = state.get_opt_minimax_cost(cost_func)[1]
if policy[state.name] != prv:

p_flag = True
print(cost_func)
print(policy)
print(act_cost)

Listing A.7: ssp_exp_utility.py; Code to run VI and PI using exponential
utility function to solve SSP problem in Example 7.2.18
from ssp_ex import max_cost_funcs_diff, get_environment

print(’\n{} Exponetial utility {}’.format(30*’#’, 30*’#’))
declear variables and get states
eps = 1E-16
rs_f = -1
states = get_environment() # discount factor of 0.9

------------------------------ Value Iteration -------------------------------
print(’{} Value Iteration {}’.format(31*’-’, 32*’-’))
create initial cost function
prv_cost_func = dict.fromkeys(states.keys(), 1)
prv_cost_func[’t’] = 0

solve the Bellman equation using value iteration
flag = True
while flag:

cost_func = {}
for state in states.values():

cost_func[state.name] = state.get_min_exp_util_cost(prv_cost_func,
rs_f)[0]

if max_cost_funcs_diff(cost_func, prv_cost_func) < eps:
flag = False

prv_cost_func = cost_func
print(cost_func)

------------------------------ Policy Iteration ------------------------------
print(’{} Policy Iteration {}’.format(31*’-’, 31*’-’))
create initial policy and cost function
policy = {}
for state in states.keys():

policy[state] = list(states[state].actions)[0]
prv_cost_func = dict.fromkeys(states.keys(), 1)
prv_cost_func[’t’] = 0
prv_act_cost = dict.fromkeys(states.keys(), 1)
prv_act_cost[’t’] = 0

p_flag = True
while p_flag:

Policy evaluation: Find value of current policy by use of value iteration
flag = True
while flag:

cost_func = {}
act_cost = {}

151

for state in states.values():
cost_func[state.name] = state.get_policy_exp_util_cost(policy,

prv_cost_func,
rs_f)

res_act = state.get_policy_exp_cost(policy, prv_act_cost)
act_cost[state.name] = res_act

if max_cost_funcs_diff(cost_func, prv_cost_func) < eps:
flag = False

if max_cost_funcs_diff(act_cost, prv_act_cost) < eps:
flag_act = False

prv_cost_func = cost_func
prv_act_cost = act_cost

Policy improvement:
p_flag = False
for state in states.values():

prv = policy[state.name]
policy[state.name] = state.get_min_exp_util_cost(cost_func,

rs_f)[1]
if policy[state.name] != prv:

p_flag = True
print(cost_func)
print(policy)
print(act_cost)

Listing A.8: ssp_error_states.py; Code to run VI and PI using error states
notion of risk to solve SSP problem in Example 7.2.18
from ssp_ex import max_cost_funcs_diff, get_environment
import numpy as np

print(’\n{} Error states {}’.format(30*’#’, 30*’#’))
declear variables and get states
eps = 1E-16
states = get_environment(path=’ex_SSP_es.json’)
a=0; b=1; n=5
omegas = [0.1, 0.2]

------------------------------ Value Iteration -------------------------------
print(’{} Value Iteration {}’.format(31*’-’, 32*’-’))
for omega in omegas:

print(’Omega: {}’.format(omega))
create initial cost function
prv_cost_func = dict.fromkeys(states.keys(), 0)
prv_risk_func = dict.fromkeys(states.keys(), 0)
break_f = False
solve the Bellman equation using value iteration
for i, xi in enumerate(np.linspace(a, b, n)):

xi = round(xi, 3)
flag = True
while flag:

cost_func = {}
risk_func = {}
for state in states.values():

res = state.get_min_es_cost(prv_cost_func, prv_risk_func, xi)
cost_func[state.name] = res[0]
risk_func[state.name] = res[2]

if max_cost_funcs_diff(cost_func, prv_cost_func) < eps:
flag = False

prv_cost_func = cost_func
prv_risk_func = risk_func

for k in cost_func:
cost_func[k] = round(cost_func[k], 3)

152

risk_func[k] = round(risk_func[k], 3)
if k not in [’t’, ’e’, ’eta’] and risk_func[k] > omega:

print((’Current cost function can only be achived by a to ’
’risky policy! Breaking with xi={}’).format(xi))

break_f = True
break

print(’Optimization criterion: {}’.format(cost_func))
print(’Risk function: {}’.format(risk_func))
if break_f:

break
print()

------------------------------ Policy Iteration ------------------------------
print(’{} Policy Iteration {}’.format(31*’-’, 31*’-’))
for omega in omegas:

print(’Omega: {}’.format(omega))
break_f = False
for xi in np.linspace(a, b, n):

xi = round(xi, 3)
create initial policy and cost function
policy = {}
for state in states.keys():

policy[state] = list(states[state].actions)[0]
prv_cost_func = dict.fromkeys(states.keys(), 0)
prv_risk_func = dict.fromkeys(states.keys(), 0)
prv_act_cost = dict.fromkeys(states.keys(), 0)
p_flag = True
while p_flag:
Policy evaluation: Find value of current policy by use of value iteration

flag = True
flag_act = True
while flag or flag_act:

cost_func = {}
risk_func = {}
act_cost = {}
for state in states.values():

res = state.get_policy_es_cost(policy, prv_cost_func,
prv_risk_func, xi)

cost_func[state.name] = res[0]
risk_func[state.name] = res[1]
res_act = state.get_policy_exp_cost(policy, prv_act_cost)
act_cost[state.name] = res_act

if max_cost_funcs_diff(cost_func, prv_cost_func) < eps:
flag = False

if max_cost_funcs_diff(act_cost, prv_act_cost) < eps:
flag_act = False

prv_cost_func = cost_func
prv_risk_func = risk_func
prv_act_cost = act_cost

Policy improvement:
p_flag = False
for state in states.values():

prv = policy[state.name]
policy[state.name] = state.get_min_es_cost(cost_func, risk_func, xi)[1]
if policy[state.name] != prv:

p_flag = True
for k in cost_func:

cost_func[k] = round(cost_func[k], 3)
risk_func[k] = round(risk_func[k], 3)
if k not in [’t’, ’e’, ’eta’] and risk_func[k] > omega and not break_f:

print((’Current cost function can only be achived by a to ’
’risky policy! Breaking with xi={}’).format(xi))

153

break_f = True
print(’Optimization criterion: {}’.format(cost_func))
print(’Risk function: {}’.format(risk_func))
print(’Actuall cost of policy: {}’.format(act_cost))
print(’Policy: {}’.format(policy))
if break_f:

break
print()

Listing A.9: ssp_rs_rl.py; Implementation of risk-sensitive RL algorithms used
to solve SSP problem in Example 7.3.5
from ssp_ex import max_cost_funcs_diff, get_rng, get_environment
import re
import copy
import json
import os, sys
import matplotlib
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.legend_handler import HandlerTuple
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from plot_palette import ito_cmap
matplotlib.rcParams[’text.usetex’] = True

def moving_average(x, w):
return np.convolve(x, np.ones(w), ’valid’) / w

def run_q_hat_learning(states: dict, Q_table: dict, rng, alpha: float=0.1,
gamma: float=1, epsilon: float=0,
training_flag: bool=False):

cum_cost = 0
curr_state = states[’A’]
while True:

rand = rng.random()
if rand < epsilon and training_flag:

action = rng.choice(list(Q_table[curr_state.name].keys()))
else:

pos_actions = []
min_val = np.inf
for (k, v) in Q_table[curr_state.name].items():

if v < min_val:
min_val = v
pos_actions = [k]

elif v == min_val:
pos_actions.append(k)

action = rng.choice(pos_actions)
nxt_state = states[curr_state.sim(action)]
Update Q-value and cum_sum
state_action_data = curr_state.action_probs[action]
idx = state_action_data[’states’].index(nxt_state.name)
cum_cost += state_action_data[’costs’][idx]
if training_flag:

a = Q_table[curr_state.name][action] + alpha \

*(state_action_data[’costs’][idx] \
+ gamma*min(Q_table[nxt_state.name].values()) \
- Q_table[curr_state.name][action])

b = Q_table[curr_state.name][action]
Q_table[curr_state.name][action] = max(a, b)

curr_state = nxt_state

154

if curr_state.name == ’t’:
return cum_cost, Q_table

def run_overweighting(states: dict, Q_table: dict, rng, alpha: float=0.1,
gamma: float=1, epsilon: float=0,
training_flag: bool=False, kappa: float=0.99):

def chi(x: float, kappa: float):
return (1-kappa)*x if x > 0 else (1+kappa)*x

cum_cost = 0
curr_state = states[’A’]
while True:

rand = rng.random()
if rand < epsilon and training_flag:

action = rng.choice(list(Q_table[curr_state.name].keys()))
else:

pos_actions = []
min_val = np.inf
for (k, v) in Q_table[curr_state.name].items():

if v < min_val:
min_val = v
pos_actions = [k]

elif v == min_val:
pos_actions.append(k)

action = rng.choice(pos_actions)
nxt_state = states[curr_state.sim(action)]
Update Q-value and cum_sum
state_action_data = curr_state.action_probs[action]
idx = state_action_data[’states’].index(nxt_state.name)
cum_cost += state_action_data[’costs’][idx]
if training_flag:

Q_table[curr_state.name][action] += alpha \

*chi(state_action_data[’costs’][idx] \
+ gamma*min(Q_table[nxt_state.name].values()) \
- Q_table[curr_state.name][action], kappa)

curr_state = nxt_state
if curr_state.name == ’t’:

return cum_cost, Q_table

def run_error_states(states: dict, Q_table: dict, Q_bar_table: dict,
Q_xi_table: dict, rng, alpha: float=0.1, gamma: float=1,
epsilon: float=0, training_flag: bool=False, xi: float=0):

cum_cost = 0
cum_risk = 0
curr_state = states[’A’]
while True:

rand = rng.random()
if rand < epsilon and training_flag:

action = rng.choice(list(Q_table[curr_state.name].keys()))
else:

pos_actions = []
min_val = np.inf
for (k, v) in Q_xi_table[curr_state.name].items():

if v < min_val:
min_val = v
pos_actions = [k]

elif v == min_val:
pos_actions.append(k)

action = rng.choice(pos_actions)
nxt_state = states[curr_state.sim(action)]
Update Q-value and cum_sum
state_action_data = curr_state.action_probs[action]

155

idx = state_action_data[’states’].index(nxt_state.name)
cum_cost += state_action_data[’costs’][idx]
cum_risk += state_action_data[’risk_cost’][idx]
if training_flag:

pos_greedy_actions = []
min_val = np.inf
for (k, v) in Q_xi_table[nxt_state.name].items():

if v < min_val:
min_val = v
pos_greedy_actions = [k]

elif v == min_val:
pos_greedy_actions.append(k)

greedy_action = rng.choice(pos_greedy_actions)
cs_n = curr_state.name
Q_table[cs_n][action] += alpha \

*(state_action_data[’costs’][idx] \
+ gamma*Q_table[nxt_state.name][greedy_action] \
- Q_table[cs_n][action])

Q_bar_table[cs_n][action] += alpha \

*(state_action_data[’risk_cost’][idx] \
+ gamma*Q_bar_table[nxt_state.name][greedy_action] \
- Q_bar_table[cs_n][action])

Q_xi_table[cs_n][action] = xi*Q_table[cs_n][action] \
+ Q_bar_table[cs_n][action]

curr_state = nxt_state
if curr_state.name == ’eta’:

return cum_cost, cum_risk, Q_table, Q_bar_table, Q_xi_table

def run_experiments(states: dict, N: int, rng, run_func, name: str,
alpha: float=0.1, gamma: float=1, epsilon: float=0.1,
n_test: int=5, kappa = None, ret_q: bool=False,
test: bool=True, plot: bool=True):

q_data = []
cum_costs = []
costs = {}
Q_table = {}
for n in states.keys():

Q_table[n] = dict.fromkeys(states[n].actions, 0)

training_flag = True
for i in range(2*N):

if i == N:
if not test:

break
epsilon = 0
training_flag = False
costs[’Training’] = cum_costs.copy()
cum_costs = []

if i >= 0.5*N:
alpha *= 0.99

if kappa is not None:
cost, Q_table = run_func(states, Q_table, rng, alpha, gamma,

epsilon, training_flag, kappa=kappa)
else:

cost, Q_table = run_func(states, Q_table, rng, alpha, gamma,
epsilon, training_flag)

cum_costs.append(cost)
if training_flag:

q_data.append([Q_table[s][a] for s in states.keys()
for a in states[s].actions])

if i%(round(N/n_test)) == 0 and i != 0 and training_flag:
curr_policy_cost = []

156

for j in range(N):
cost, Q_table = run_func(states, Q_table, rng)
curr_policy_cost.append(cost)

costs[’{} iterations’.format(i)] = curr_policy_cost
costs[’Testing’] = cum_costs
costs = pd.DataFrame(costs)
path = None
if kappa is not None:

path = name + ’ kappa {}’.format(kappa)
name = r’{} $\kappa={}$’.format(name, kappa)
if plot:

print(’Value of kappa: {}’.format(kappa))
if plot:

print(Q_table)
plot_data(states, N, name, costs, q_data, path=path)

if ret_q:
return Q_table

def run_experiments_es(states: dict, N: int, rng, run_func, name: str,
omega: float, n_xi: int, alpha: float=0.1,
gamma: float=1, epsilon: float=0.1, n_test: int=5,
ret_q: bool=False, test: bool=True, plot: bool=True):

alpha_ = alpha
epsilon_ = epsilon
Q_table = {}
Q_bar_table = {}
Q_xi_table = {}
Q_prv = Q_xi_table
for n in states.keys():

Q_table[n] = dict.fromkeys(states[n].actions, 0)
Q_bar_table[n] = dict.fromkeys(states[n].actions, 0)
Q_xi_table[n] = dict.fromkeys(states[n].actions, 0)

for xi in np.linspace(0, 1, n_xi):
q_data = []
cum_costs = []
cum_risks = []
costs = {}
alpha = alpha_

epsilon = epsilon_

training_flag = True
for i in range(2*N):

if i == N:
if not test:

break
epsilon = 0
training_flag = False
costs[’Training’] = cum_costs.copy()
costs[’Training risk’] = cum_risks.copy()
cum_costs = []
cum_risks = []

if i >= 0.5*N:
alpha *= 0.99

cost, risk, Q_table, Q_bar_table, Q_xi_table = run_func(states,
Q_table,
Q_bar_table,
Q_xi_table,
rng,
alpha,
gamma,
epsilon,
training_flag,
xi)

157

cum_costs.append(cost)
cum_risks.append(risk)
if training_flag:

q_data.append([Q_xi_table[s][a] for s in states.keys()
for a in states[s].actions])

if i%(round(N/n_test)) == 0 and i != 0 and training_flag:
curr_policy_cost = []
curr_policy_risk = []
for j in range(N):

cost, risk, Q_table, Q_bar_table, Q_xi_table=run_func(states,
Q_table,
Q_bar_table,
Q_xi_table,
rng,
xi=xi)

curr_policy_cost.append(cost)
curr_policy_risk.append(risk)

costs[’{} iterations’.format(i)] = curr_policy_cost
costs[’{} iterations risk’.format(i)] = curr_policy_risk

costs[’Testing’] = cum_costs
costs[’Testing risk’] = cum_risks
if np.mean(cum_risks) > omega:

xi -= 1/(n_xi-1)
xi = round(xi, 3)
break

costs_df = pd.DataFrame(costs)
q_data_curr = q_data
Q_prv = copy.deepcopy(Q_xi_table)

if plot:
print(’Value of xi when breaking with omega={}: {}’.format(omega, xi))
print(Q_xi_table)
plot_data(states, N, r’{} $\xi = {}, \omega = {}$’.format(name, round(xi, 3), omega),

costs_df, q_data_curr, 3, ’{}_omega_{}’.format(name, omega))
if ret_q:

return Q_prv, xi

def plot_data(states: dict, N: int, name: str, costs: dict, q_data,
non_plotted_states: int = 1, path: str = None):

if path is not None:
path_name = ’_’.join(re.split(’ |-’, path.replace(’.’, ’_’))).lower()

else:
path_name = ’_’.join(re.split(’ |-’, name.replace(’.’, ’_’))).lower()

fig, axs = plt.subplots(2, 2)
n = int(9*N/10)
idx = 0
for i, ax in enumerate(axs.flatten()):

if i < len(states.keys()) - non_plotted_states:
p = []; m = []; t = []
s = list(sorted(states.keys()))[i]
for j, a in enumerate(states[s].actions):

string = ’{}{}’.format(s, a)
data = [q_data[i][idx] for i in range(len(q_data))]
p1, = ax.plot(data, c=ito_cmap.colors[j+1])
p2 = ax.axhline(y=np.mean(data), xmin=0.045, xmax=0.965,

linestyle=’--’, c=ito_cmap.colors[j+1])
p.append((p1, string)); m.append(p2);
idx += 1

ax.set_title(’Approximate Q-values state {}’.format(s))
if len(states[s].actions) == 2:

ax.legend([p[0][0], p[1][0], (m[0], m[1])],
[p[0][1], p[1][1], ’Mean all runs’],
numpoints=1, #ncol=3, #loc=’lower center’,

158

borderaxespad=0.,
handler_map={tuple: HandlerTuple(ndivide=None)})

else:
ax.legend([p[0][0], (m[0])], [p[0][1], ’Mean all runs’],

numpoints=2, #ncol=2,
borderaxespad=0.,
handler_map={tuple: HandlerTuple(ndivide=None)})

elif i == 2:
costs[[’Training risk’,

’Testing risk’]].apply(lambda x:
moving_average(x, n)) \
.plot(kind=’line’, ax=ax,

color=ito_cmap.colors[1:3])
ax.axhline(y=np.mean(costs[’Testing risk’]), xmin=0.045, xmax=0.965,

color=’k’, label=’Mean testing’, linestyle=’--’)
ax.set_title((’Moving average (N={}) of\n ’

’risk for testing and training’).format(n))
ax.legend()

else:
costs[[’Training’, ’Testing’]].apply(lambda x:

moving_average(x, n)) \
.plot(kind=’line’, ax=ax,

color=ito_cmap.colors[1:3])
ax.axhline(y=np.mean(costs[’Testing’]), xmin=0.045, xmax=0.965,

color=’k’, label=’Mean testing’, linestyle=’--’)
ax.set_title((’Moving average (N={}) of costs\nincurred ’

’during testing and training’).format(n))
ax.legend()#ncol=2)

ax.grid()
fig.suptitle(r’{}’.format(name.replace(’Q-hat ’, r’$\hat Q$-’)))

fig.tight_layout(rect=[0.125, 0.1, 0.875, 1])
plt.savefig(’../../figures/ssp_{}_{}runs.eps’.format(path_name, N), bbox_inches=’tight’)
Plot hists
fig, axs = plt.subplots(2,2)
idx = 0
for i, ax in enumerate(axs.flatten()):

if i < len(states.keys()) - non_plotted_states:
plot_data = {}
s = list(sorted(states.keys()))[i]
for j, a in enumerate(states[s].actions):

d = [q_data[i][idx] for i in range(len(q_data))]
key = ’{}{}, std: {}’.format(s, a, round(np.std(d, ddof=1), 3))
plot_data[key] = d
idx += 1

ax.grid()
ax.set_title(’Approximate Q-values state {}’.format(s))
sns.histplot(data=pd.DataFrame(plot_data), ax=ax, kde=True,

palette=ito_cmap.colors[1:len(states[s].actions)+1])
ax.set_ylim(0, 250)

elif i == 2:
ax.grid()
ax.set_title(’Risk incurred from\ntesting and training runs’)
sns.histplot(data=costs[[’Training risk’, ’Testing risk’]], ax=ax, kde=True,

palette=ito_cmap.colors[1:3])
ax.set_ylim(0, 250)

else:
plot_data = {}
for col in [’Training’, ’Testing’]:

key = ’{}, std:{}’.format(col, round(np.std(costs[col], ddof=1), 3))
plot_data[key] = costs[col]

ax.grid()
ax.set_title(’Total costs incurred from\ntesting and training runs’)

159

sns.histplot(data=plot_data, ax=ax, kde=True,
palette=ito_cmap.colors[1:3])

ax.set_ylim(0, 250)
fig.suptitle(’Histogram and KDE for {}’.format(name.replace(’Q-hat ’, r’$\hat Q$-’)))
fig.tight_layout(rect=[0.125, 0.1, 0.875, 1])
plt.savefig(’../../figures/ssp_{}_hists_{}runs.eps’.format(path_name, N), bbox_inches=’tight’)

def find_policy_distr(allPol: dict, states: dict, runs: int, N: int, rng,
run_func, name: str, alpha: float=0.1, gamma: float=1,
epsilon: float=0.1, kappa=None):

policies = {}
for _ in range(runs):

if kappa is None:
Q_table = run_experiments(states, N, rng, run_func, name,

alpha, gamma, epsilon, ret_q=True,
test=False, plot=False)

else:
Q_table = run_experiments(states, N, rng, run_func, name,

alpha, gamma, epsilon, kappa=kappa,
ret_q=True, test=False, plot=False)

policy = ’’
for state in Q_table.keys():

if state != ’t’:
opt_Q = np.inf
opt_A = None
for action in Q_table[state].keys():

if (Q_table[state][action] < opt_Q):
opt_Q = Q_table[state][action]
opt_A = action

policy += ’{}{}’.format(state, opt_A)
if policy not in policies:

policies[policy] = 1
else:

policies[policy] += 1
allPol[name] = policies
return allPol

def find_policy_distr_es(allPol: dict, states: dict, runs: int, N: int, rng,
run_func, name: str, omega: float, n_xi: int, xis: dict,
alpha: float=0.1, gamma: float=1, epsilon: float=0.1):

policies = {}
xis_loc = {}
for _ in range(runs):

Q_table, xi = run_experiments_es(states, N, rng, run_func, name, omega,
n_xi, alpha, gamma, epsilon,
ret_q=True, test=True, plot=False)

policy = ’’
for state in Q_table.keys():

if state not in [’t’, ’e’, ’eta’]:
opt_Q = np.inf
opt_A = None
for action in Q_table[state].keys():

if (Q_table[state][action] < opt_Q):
opt_Q = Q_table[state][action]
opt_A = action

policy += ’{}{}’.format(state, opt_A)
if policy not in policies:

policies[policy] = 1
else:

policies[policy] += 1
if xi not in xis_loc:

xis_loc[xi] = 1

160

else:
xis_loc[xi] += 1

allPol[name] = policies
xis[name] = xis_loc
return allPol, xis

def plot_policies_distr(policies: dict, runs: int, xis: dict = None):
fig, (ax1, ax2) = plt.subplots(2, 1)
df = pd.DataFrame(policies)
cols = list(df.columns)
for i, col in enumerate(cols):

cols[i] = r’{}’.format(col.replace(’Q-hat ’, ’$\hat Q$-’))
df.columns = cols
df /= runs
df.T.plot.bar(ax=ax1, color=ito_cmap.colors[1:len(df.index)+1])
ax1.tick_params(axis=’x’, labelrotation=30)
ax1.set_title((’Distribution of policies found by the different methods’

’\nNumber of policies per method: {}’).format(runs))
ax1.grid()
ax1.legend(ncol=3, loc=’upper center’)
df_xi = pd.DataFrame(xis)
df_xi /= runs
df_xi.T.plot.bar(ax=ax2, color=ito_cmap.colors[0:len(df_xi.index)])
ax2.tick_params(axis=’x’, labelrotation=0)
ax2.set_title(r’Distribution of ξ values error state method used for final policy’)
ax2.grid()
ax2.legend(ncol=5, loc=’center’)
fig.tight_layout(rect=[0.125, 0.1, 0.875, 1])
plt.savefig(’../../figures/ssp_rs_rl_policies.eps’, bbox_inches=’tight’)

if __name__ == ’__main__’:
rng = get_rng()
N = int(1E3) # Number of training and test runs
alpha = 0.3
gamma = 0.9
epsilon = 0.15
states = get_environment()
run_experiments(states, N, rng, run_q_hat_learning, ’Q-hat learning’,

alpha, gamma, epsilon)
gamma = 1
kappas = [0.5, 0.15, -0.5]
for kappa in kappas:

run_experiments(states, N, rng, run_overweighting,
’Weighting TDs with’, alpha, gamma,
epsilon, kappa = kappa)

states = get_environment(path=’ex_SSP_es.json’)
omegas = [0.1, 0.125, 0.15, 0.175, 0.2]
n_xi = 11
for omega in omegas:

run_experiments_es(states, N, rng, run_error_states, ’Error states’,
omega, n_xi, alpha, gamma, epsilon, 5)

Find policy distribution
allPol = {}
runs = N
states = get_environment()
gamma = 0.9
allPol = find_policy_distr(allPol, states, runs, N, rng, run_q_hat_learning,

’Q-hat learning’, alpha, gamma, epsilon)
print(’Finished Q-hat’)
gamma = 1
for k in kappas:

allPol = find_policy_distr(allPol, states, runs, N, rng, run_overweighting,

161

r’Weighting TDs with $\kappa = {}$’.format(k),
alpha, gamma, epsilon, kappa = k)

print(’Finished weighting TDs with kappa = {}’.format(k))

states = get_environment(path=’ex_SSP_es.json’)
omegas = [0.1, 0.2]
n_xi = 11
xis = {}
for o in omegas:

allPol, xis = find_policy_distr_es(allPol, states, runs, N, rng,
run_error_states,
r’Error states, $\omega = {}$’.format(o),
o, n_xi, xis, alpha, gamma, epsilon)

print(’Finished error states with omega = {}’.format(o))
plot_policies_distr(allPol, runs, xis)

Listing A.10: exp_utility.py; Generating plots for Example 7.2.4
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from plot_palette import ito_cmap
matplotlib.rcParams[’text.usetex’] = True

k = np.linspace(0,9, 10000)
beta = np.linspace(-5, -1E-3, 1000)

def find_sum(k, beta, N=50):
’Function approximating the sum of a target function using exp utility’
s = 0
for n in range(1, N):

s += (1/(2**n))*np.exp(beta*(2**n - k))
return 1/beta*np.log(s)

Create subplots for multiple fixed values for k
fig, axs = plt.subplots(2, 2, sharex=True, sharey=True)
ax1, ax2, ax3, ax4 = axs[0, 0], axs[0, 1], axs[1, 0], axs[1, 1]
for i, ax in zip([1, 2, 4, 8], [ax1, ax2, ax3, ax4]):

y = [find_sum(i, b) for b in beta]
ax.plot(beta, y, c=ito_cmap.colors[1])
ax.hlines(0, beta[0], beta[-1], colors=ito_cmap.colors[2],

linestyles=’dashed’)
ax.set_title(r’$k = {}$’.format(i))
ax.grid()

plt.suptitle(’Target function value when playing and betting k units for ’
’different values of $\\beta$’)

lgd = fig.legend([r’$\displaystyle\frac{1}{\beta} \log \left’
r’(\sum_{n=1}^\infty\frac{1}{2^n} e^{\beta(2^n-k)}\right)$’,
r’$y = 0$’],
loc=’upper center’, bbox_to_anchor=(0.5,0.1))

fig.text(0.5, 0.1, r’β’, ha=’center’)
fig.text(0.1, 0.5, ’Target function’, va=’center’, rotation=’vertical’)
fig.tight_layout(rect=[0.125, 0.1, 0.875, 1])
fig.savefig(’../figures/exp_utility.eps’, bbox_inches=’tight’)

Create subplots for multiple fixed values for beta
fig, axs = plt.subplots(2, 2, sharex=True, sharey=True)
ax1, ax2, ax3, ax4 = axs[0, 0], axs[0, 1], axs[1, 0], axs[1, 1]
for b, ax in zip([-0.01, -0.1, -1, -100], [ax1, ax2, ax3, ax4]):

y = [find_sum(k, b) for k in k]
y_abs = [abs(i) for i in y]

162

min_indx = y_abs.index(min(y_abs))
ax.plot(k, y, c=ito_cmap.colors[1])
ax.hlines(0, k[0], k[-1], colors=ito_cmap.colors[2], linestyles=’dashed’)
ax.scatter(k[min_indx], y[min_indx], color =ito_cmap.colors[0])
ax.annotate(r’$({:g}, 0)$’.format(k[min_indx]),

(k[min_indx]-0.5, y[min_indx]+1))
ax.set_title(r’$\beta = {}$’.format(b))
ax.grid()

plt.suptitle(’Target function value when playing and betting different values ’
’of k units for a given $\\beta$’)

lgd = fig.legend([r’$\displaystyle\frac{1}{\beta} \log \left’
r’(\sum_{n=1}^\infty \frac{1}{2^n} e^{\beta(2^n-k)} \right)$’,
r’$y = 0$’],
loc=’upper center’, bbox_to_anchor=(0.5,0.1))

fig.text(0.5, 0.1, r’k’, ha=’center’)
fig.text(0.1, 0.5, ’Target function’, va=’center’, rotation=’vertical’)
fig.tight_layout(rect=[0.125, 0.1, 0.875, 1])
fig.savefig(’../figures/exp_utility_vary_k.eps’, bbox_inches=’tight’)

Listing A.11: suboptimality_error_states.py; Generating plots for Exam-
ple 7.2.17
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from plot_palette import ito_cmap
matplotlib.rcParams[’text.usetex’] = True

n = 100
xi = np.linspace(0, 1, n)
fig, ax = plt.subplots()
ax.plot(xi, 2*xi, label=r’μ_1’, c=ito_cmap.colors[1])
ax.plot(xi, xi+0.2, label=r’μ_2 (optimal)’, c=ito_cmap.colors[2])
ax.plot(xi, 0.21*np.ones(100), label=r’μ_3 (unfeasible)’,

c=ito_cmap.colors[3], linestyle=’--’)
ax.vlines(0.21/2, 0, 2, ’k’, linestyle=’:’)
ax.set_xlabel(r’ξ’)
ax.set_ylabel(r’$\xi J_{\mu_i}(x) + \rho_{\mu_i}(x)$’)
ax.legend()
ax.grid()
ax.set_title(r’Value of target function for differen values of ξ’)
fig.tight_layout(rect=[0.125, 0.1, 0.875, 1])
fig.savefig(’../figures/suboptimality_es.eps’, bbox_inches=’tight’)

163

Bibliography

[Ach+17] Achiam, J. et al. “Constrained Policy Optimization”. In: Proceedings
of the 34th International Conference on Machine Learning - Volume
70. ICML’17. Sydney, NSW, Australia: JMLR.org, 2017, pp. 22–31.

[Ber] Bertsekas, D. P. Dynamic programming and optimal control. Vol. I.
Selected Theoretical Problem Solutions. Available at http://athenasc.
com/DP_4thEd_theo_sol_Vol1.pdf (last updated 2.11.2017).

[Ber17] Bertsekas, D. P. Dynamic programming and optimal control. Vol. I.
Fourth. Athena Scientific, Belmont, MA, 2017, pp. xix+555.

[Ber18] Bertsekas, D. P. Abstract dynamic programming. Athena Scien-
tific Optimization and Computation Series. Second edition of [
MR3204932]. Athena Scientific, Belmont, MA, 2018, pp. xiv+345.

[Ber19] Bertsekas, D. P. Reinforcement learning and optimal control. Athena
Scientific Optimization and Computation Series. Athena Scientific,
Belmont, MA, 2019, pp. xiv+373.

[Cho+17] Chow, Y. et al. “Risk-Constrained Reinforcement Learning with
Percentile Risk Criteria”. In: J. Mach. Learn. Res. Vol. 18, no. 1
(Jan. 2017), pp. 6070–6120.

[Fol99] Folland, G. B. Real analysis. Second. Pure and Applied Mathematics
(New York). Modern techniques and their applications, A Wiley-
Interscience Publication. John Wiley & Sons, Inc., New York, 1999,
pp. xvi+386.

[GFF15] García, J., Fern, and Fernández, o. “A Comprehensive Survey on
Safe Reinforcement Learning”. In: Journal of Machine Learning
Research vol. 16, no. 42 (2015), pp. 1437–1480.

[GW11] Geibel, P. and Wysotzki, F. “Risk-Sensitive Reinforcement Learning
Applied to Control under Constraints”. In: Journal of Artificial
Intelligence Research - JAIR vol. 24 (Sept. 2011).

[Heg94] Heger, M. “Consideration of risk in reinforcement learning”. In:
Machine Learning Proceedings 1994. Elsevier, 1994, pp. 105–111.

[HM72] Howard, R. A. and Matheson, J. E. “Risk-sensitive Markov decision
processes”. In: Management science vol. 18, no. 7 (1972), pp. 356–
369.

164

http://athenasc.com/DP_4thEd_theo_sol_Vol1.pdf
http://athenasc.com/DP_4thEd_theo_sol_Vol1.pdf

Bibliography

[Lin17] Lindstrøm, T. L. Spaces—an introduction to real analysis. Vol. 29.
Pure and Applied Undergraduate Texts. American Mathematical
Society, Providence, RI, 2017, pp. xii+369.

[MN02] Mihatsch, O. and Neuneier, R. “Risk-Sensitive Reinforcement
Learning”. In: Machine Learning vol. 49, no. 2 (2002), pp. 267–290.

[Øks03] Øksendal, B. Stochastic differential equations. Sixth. Universitext.
An introduction with applications. Springer-Verlag, Berlin, 2003,
pp. xxiv+360.

[SB18] Sutton, R. S. and Barto, A. G. Reinforcement learning: an
introduction. Second. Adaptive Computation and Machine Learning.
MIT Press, Cambridge, MA, 2018, pp. xxii+526.

[TDM12] Tamar, A., Di Castro, D., and Mannor, S. “Policy Gradients
with Variance Related Risk Criteria”. In: Proceedings of the
29th International Coference on International Conference on
Machine Learning. ICML’12. Edinburgh, Scotland: Omnipress, 2012,
pp. 1651–1658.

[Wal12] Walsh, J. B. Knowing the odds. Vol. 139. Graduate Studies in Math-
ematics. An introduction to probability. American Mathematical
Society, Providence, RI, 2012, pp. xvi+421.

165

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Symbols and notation
	Introduction
	Structure of the thesis
	Our contributions

	Preliminaries
	Basic probability theory
	Some real analysis

	Introduction to dynamic programming
	What is a dynamic programming problem?
	The dynamic programming algorithm
	State augmentation and other reformulations
	Deterministic systems and the shortest path problem
	Stochastic systems with imperfect state information

	Abstract dynamic programming
	The abstract dynamic programming model
	Consequences of monotonicity and contracion assumptions
	Finding policies

	Infinite horizon dynamic programming
	Stochastic shortest path problems
	Discounted problems

	Reinforcement learning
	A short introduction to finite MDPs and reinforcement learning
	Some reinforcement learning algorithms
	Similarities between reinforcement learning and dynamic programming

	Risk-sensitive control
	Motivation for risk-sensitive control
	Model-based risk-sensitive control
	Model-free risk-sensitive control
	Comparison of risk-sensitive control methods

	Concluding remarks
	Appendices
	Code
	Bibliography

