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Abstract

This master thesis studies the statistical properties of waves generated at the
Hydrodynamics Laboratory of the Department of Mathematics at the University
of Oslo. We look at two distinct experimental setups. First, we study the
evolution of two di�erent, fairly narrow banded spectra and verify the results
found in K. B. Dysthe et al. (2003). We show that the wave spectrum with
the highest initial Benjamin-Feir index also has the sharpest increase in surface
elevation kurtosis as the wave process propagates. Additionally, we discover
that for the process with the highest initial Benjamin-Feir index, the surface
elevation and velocity field kurtosis increase at di�erent rates. Second, we study
the e�ects of an asymmetric shoal on a wave process with a Pierson-Moskowitz
wave spectrum. We show that the kurtosis and skewness of the surface elevation
and velocity field display similar tendencies as the results in Trulsen, Raustøl
et al. (2020). The higher order comoments are studied and we show that
the steeper the uphill slope of the shoal, the lower the cokurtosis. Then, by
using Q-Q plots, estimated probability density functions and PDFs, we discover
that the distribution of the surface elevation and velocity behave di�erently.
Moreover, we show that the dependence structure of the surface elevation and
velocity field is best described by a T-copula.
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CHAPTER 1

Introduction

The Eggum stone is a viking grave stone dated to 650 ≠ 700 A.D. with runic
inscriptions found in Sogndal, Norway. It is a description of a shipwreck in bad
weather. The mast had broken and the vikings’ oars could not save them. The
god Ægir cast a death wave upon them. The ship and crew were lost.
Tales of unexpectedly large, ‘monster’, waves lurching towards ships and ocean
structures, causing mayhem and destruction have been reported throughout
maritime history. The reports have been relegated to maritime myth, not to be
taken too seriously and fit to scare only those who have yet to fully attain their
sea legs.
In academia, this skepticism could be attributed to the deterministic frame-
work of nineteenth-century fluid mechanics not understanding the inherent
randomness of the ocean surface.
It was not until after the Second World War that stochastic analysis was
implemented in ocean wave forecasting. Yet, our ability to successfully predict
rogue waves, and provide warnings to seafarers, remains the same as the crew
whose fate is described on the Eggum stone.
Recently, oceanic rogue waves have garnered significant attention from academia,
shipping and o�shore industries, with good reason. Life-threatening waves are
bad for business. An example of such a wave is the ‘New Year Wave’ that hit
the Draupner oil platform and had a significant wave height of 11.8 meters and
a maximum wave height of 25.6 meters, Haver (2004).

Figure 1.1: The Eggum stone. Originally called ‘Del av innskrifta på
Eggjasteinen’ by Arild Finne Nybø. Picture acquired from Store Norske
Leksikon, https://snl.no/Eggjasteinen. The image is used under a Creative
Commons 3.0 liscense: https://creativecommons.org/licenses/by-sa/3.0/no/
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1.1. Literature Review

In fluid mechanics, oceanic rogue waves can be described as surface gravity waves
whose wave heights are much larger than the average sea state. Specifically,
we characterise a ‘rouge’ wave as at least twice the size of the significant wave
height, H > 2Hs, K. Dysthe, Krogstad and Müller (2008). The significant wave
height is defined as four times the standard deviation, Hs = 4‡.

1.1 Literature Review

Trulsen, Zeng and Gramstad (2012) were the first to report experimental
results showing an increased occurrence of rogue waves above a shoal. They
performed several calculations including a confidence interval for estimated
variance, autoskewness and autokurtosis as well as exceedance probability for
three di�erent experimental results of long-crested irregular waves propagating
over a sloped bathymetry. The experimental data used in the publication came
from MARIN in the Netherlands, Bunnik (2010). The results from all three
experiments showed that there is a local maximum in autokurtosis as well as a
local maximum in autoskewness near the shallow end of the slope. Moreover,
they found that the location of the local maxima is also the location of the local
maximal amplitude.
This research was continued by Gramstad et al. (2013) who implemented a
standard one dimensional Boussinesq numerical model with improved linear
dispersion. The Boussinesq model describes weakly non-linear and weakly
dispersive waves in shallow water. Point estimates for autokurtosis and
autoskewness as well as the probability for rouge waves were calculated for long-
crested waves that propagate towards di�erent non-uniform bathymetry profiles.
The results showed that non-uniform bathymetry can provoke significantly
increased autoskewness, autokurtosis and probability of rogue waves as a wave
field propagates into shallower water. Furthermore, they showed that the
increased risk of rouge waves is sustained over a distance in the shallow domain
before it decreases and then stabilises. For some of the bathymetry profiles, there
is a weak local minimum autoskewness and autokurtosis on the downhill slope.
In addition, it was observed that the probability of rogue waves was intensified
when the shallow regime was su�ciently shallow and the slope su�ciently steep.
If the shallow regime becomes deep enough the local maxima disappear and we
observe a gradual transition from one stable regime to another.
Trulsen, Raustøl et al. (2020) was the first publication to show that the surface
elevation and velocity field behave di�erently as the wave field propagates over
a shoal. Whilst the kurtosis of the surface elevation reaches a maximum over
the shoal, the kurtosis of the horizontal velocity achieve a maximum on the lee
side of the shoal. The publication reports the results of laboratory experiments
performed by, Raustøl (2014), Jorde (2018), and Rye (2014). Their results
indicate that there is a threshold depth for the extreme statistics over the shoal
to appear. When the shoal is shallower than a threshold depth the autoskewness
and autokurtosis over the shoal deviate from Gaussian statistics. The authors
postulate that this depth may be kh = 1.3, yet admit that this threshold depth
may depend on the steepness and bandwidth of the waves.
Zeng and Trulsen (2012) used a numerical model to study how slowly varying
bathymetry changes the autoskewness and autokurtosis of weakly nonlinear,
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irregular waves propagating from deeper to shallower water. The chosen
numerical model was a nonlinear Schrödinger equation with variable coe�cients
and a shoaling term for slowly varying depths. They simulated three di�erent
wave fields with di�erent Benjamin-Feir indices that propagated over five
di�erent slowly varying slopes. The dimensionless depth in the deep regime
was kept as kh = 10, whilst the final dimensionless depth in the shallow regime
was kh = 1.2, 1.363, 2.065, 3.015, 4.003 respectively. Their results showed that
autokurtosis and autoskewness were reduced for shallower regimes and had
a local minimum at the shallow end of the slope. After a given distance the
statistical parameters stabilised to an equilibrium value.
Bitner (1980) explored non-linear e�ects of wind waves on shallow water by
theoretical calculations and the comparison of these to experimental data. The
publication assumes that surface waves have near Gaussian waves probability
distribution and implemented the Gram-Charlier series distribution. She also
assumes that the process is stationary, homogeneous and ergodic. She found that
non-linear e�ects will a�ect the average wave height, period and the distribution
in ways not predicted by linear theory. Additionally, the Gram-Charlier series
distribution fit the experimental data well.
Cherneva et al. (2005) examined the ability of di�erent probability density
function to describe crests, troughs and heights of wind waves o� the coast of
Bulgaria. The field data was compared to three theoretical distributions of wave
parameters proposed by Ochi (1998), Al-Humoud, Tayfun and Askar (2002),
and Mori and Yasuda (2002). Cherneva et al. (2005) found that the occurrence
of large wave crests and heights are under estimated by the theoretical models.
Furthermore, the publication found that large values of autoskewness and
autokurtosis lead to negative values for the crest and trough probability density
function postulated by Al-Humoud, Tayfun and Askar (2002) and Mori and
Yasuda (2002). This leads to the models being inapplicable for shallow regimes.
Grue (1992) did wave tank experiments with both rectangular and cylindrical
shoals. The waves generated in the experiments had large wavelength compared
to the depth of the tank. The publication utilises fully deterministic analysis.
They found that the cylindrical shoal gave rise to higher harmonic free amplitude
waves of on the far side of the shoal.
Beji and Battjes (1993) observed the time series and spectrum of waves
propagating over a shoal. They used both JONSWAP and narrow-banded
spectra. The shoal consisted of an uphill, a plateau and a downhill. The
downhill was steeper than the uphill. They found that waves breaking did not
have much e�ect on the shape of their spectra, even though the waves lost
energy. The spectrum showed a clear di�erence between the frequencies of
the generated waves and the frequencies resulting from non-linear interactions.
From the time series we see that long wavelength monochromatic waves develop
a sawtooth shape, loosing their previous symmetry. On the plateau triple
resonance was observed. Then, the waves decoupled into smaller amplitude
waves with near harmonic frequency as the energy redistributed toward a new
equilibrium. For shorter wavelengths the e�ects were less pronounced.
To analyse wave propagating over a spherical or oval cylindrical shoal, T.
Janssen, Herbers and Battjes (2008) developed a stochastic model. Of particular
interest was the direction dependent evolution of the waves after the shoal. By

3



1.1. Literature Review

comparing their model to analytical and experimental data, they discovered
that it performed well for a two-dimensional seafloor topography. The model
precisely recreated the combination of wide angle refraction and di�raction
from the seafloor topography.
T. T. Janssen and Herbers (2009) developed a frequency-angular spectrum
model for waves in slowly varying mediums. They researched whether variables,
such as ocean currents and varying bathymetry, can cause a focusing of wave
energy increasing probability of extreme waves. They found that if the focusing
e�ect is strong enough the waves are forced into an unstable state. This induces
formidable deviations from Gaussian statistics and an increased probability of
extreme waves. The authors observed that concomitant e�ects of non linearity
and focusing may cause significant deviations from Gaussian statistics in already
intensified sea states.
Sergeeva, Pelinovsky and Talipova (2011) studied the transformation of an
irregular wave field propagating over shallow within the framework of a variable-
coe�cient Korteweg-de Vries equation. It applies to weakly non-linear and
weakly non-dispersive was that propagate over variable depths. The authors
performed two distinct numerical simulations with di�erent initial steepness,
‘ = 5 ◊ 10≠3 and ‘ = 1 ◊ 10≠2. The waves propagated over a flat bathymetry,
a sloped bathymetry that transitions from deep to shallow water and one that
transitions from deep to shallow water. The deeper regime had a dimensionless
depth of kh = 0.44, where as the shallower regime had dimensionless depth
of kh = 0.3. The publication showed that there is an increased probability of
rogue waves when depth decreases and stated that this process is characterised
by the initial wave steepness.
Viotti and Dias (2014). They utilised numerical simulations of the Euler
equation to show that autoskewness and autokurtosis is largest near the start of
the plateau using numerical simulations of the Euler equations. The probability
distribution showed that the autoskewness of wave became larger for a shallower
plateau. The shape of the spectrum at the start of the plateau was in line with
Phillips Ê

≠5 power-law for the stronger depth transitions.
Kashima, Hirayama and Mori (2014) investigated waves propagating in a
wave tank over changing depth, going from deep to shallow. They did both
experiments and numerical simulation employing the Boussinesq equations.
They generated waves with di�erent JONSWAP spectra altering the wave height
and peak enhancement factor, “. They noticed a change in wave behavior at
the water depth threshold value kph = 1.363. For values of kph < 1.363 the
kurtosis and skewness increased rapidly, while for kph > 1.363 the skewness
remained near constant and the kurtosis continued to grow. For a flat bottom
the kurtosis was dependent on the wave height and increased with distance
from the wave source for “ < 1. This behavior was not as pronounced for the
skewness. They concluded that the Boussinesq equations did not su�ciently
describe the behavior seen in the experiments. Specifically, the equations did
not produce the same occurrence of freak waves seen experimentally. This is
because their Boussinesq equation did not account for third order non-linear
e�ects, which the authors believed to be causing the increase in kurtosis for
kph < 1.363.
Yu et al. (2014) did experiments with a shoal consisting of an uphill, a pleateau
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and a downhill. The waves generated had a JONSWAP spectrum with di�erent
values of “. Their experiments showed that a “ value of 3.3 resulted in the
highest probability of freak waves and that the most vulnerable location was
the last part of the uphill. This same location had the largest skewness and
kurtosis. They also investigated the relationship between the skewness and
kurtosis. Here, they found a parabolic dependence fist shown in Mori and
Kobayashi (1999).

1.2 Research Scope

This master thesis studies the results of two di�erent experiments that we
conducted at the Hydrodynamics Laboratory of the Department of Mathematics
at the University of Oslo. Experiment 1 is inspired by K. B. Dysthe et al. (2003)
and has a wave spectra designed to hopefully induce modulation instability and
nonlinear e�ects, but with a uniform bathymetry. Experiment 2 is motivated by
Trulsen, Raustøl et al. (2020). It has a stable wave spectra and an interesting
non-uniform bathymetry.
We implement techniques commonly found in mathematical finance and
quantitative risk management in order to study how altering the wave spectra,
or the bathymetry, can impact rogue wave statistics.
We perform an analysis of the higher order automoments of the surface elevation
of experiment 2 as well as studying the evolution of the power spectral density
of the surface elevation as the process propagates.
For experiment 3 we study typical mechanical parameters, the higher order
automoments of the surface elevation and velocity field and the comoments
of the surface elevation and velocity field. Moreover, we compare the normal
distribution with the probability density function of the surface elevation and
the probability density function velocity field. Lastly, we study the dependence
structure of the surface elevation and velocity field using a Copula.

1.3 Outline

The rest of the text is organised as follows:

Chapter 2 provides a brief introduction to the background mathematics
necessary for the full enjoyment of this thesis.

Chapter 3 establishes key terms and concepts within Stochastic analysis used
study the experimental data.

Chapter 4 outlines wave theoretical foundations including the anatomy of a
wave, dimensionless numbers and wave parameters as well as the concept
of a wave spectra. Furthermore, the chapter describes narrow-banded
spectra and modulation instability.

Chapter 5 describes the theorectical framework surrounding the experimental
equipment used in the measurements of surface elevation and velocity
field.

5
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Chapter 6 discusses the ‘prelab’ work including specifying the di�erent
timeseries that run the wave maker, choosing the length of each
experimental run, deciding on an appropriate quiescent surface level
and peak period. Furthermore, this chapter discusses ADV placement
and equipment synchronisation.

Chapter 7 outlines the experimental set-up and methodology for each of the
three di�erent experiments. Furthermore, it provides a comprehensive
overview of the di�erent techniques used to post process the data.

Chapter 8 presents the results of experiment 1, which studies the e�ects of
modulation instability on narrow banded spectra. The analysis is done in
two parts. The first analysis studies how statistical moments evolve in
spaces as the wave process propagates along the tank. The second analysis
shows how the wave spectra changes as the wave process propagates along
the tank.

Chapter 9 displays the results of experiment 2, which studies the e�ects of
non-uniform bathymetry.

Chapter 10 discusses the results.

Chapter 11 concludes the thesis.

Appendix A contains additional results not deemed interesting enough for the
main thesis.

Appendix B shows tests used to verify the validity of the experimental setup.

Appendix C discusses univariate and multivariate Hilbert transforms. As a
result of time constraints, this theory was not applied to the experimental
data.

Appendix D includes bits of code used for postprocessing and analysis.
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Theory
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CHAPTER 2

Background Mathematics

2.1 The distinction between Multivariate and
Multidimensional

This thesis aims to describe the multivariate, multidimensional wave processes.
It is vital to clarify the di�erence between the terms multivariate and
multidimensional. Let U and V be two scalar processes that depend on three
coordinates, time and two spatial coordinates such that

U(x, y, t) and V (x, y, t).

We can now describe the bivariate, tridimensional process

{U, V }(x, y, t). (2.1)

The term "multivariate" refers to multiple scalar processes, whilst multidimen-
sional refers to multiple coordinates.

2.2 Cauchy Principal Value

Cauchy principal value is a technique used to solve improper integrals, which
would otherwise remain undefined, by approaching the singularity from both
sides with the same speed. The common notation, which is used in this thesis is

P

⁄
f(x) dx.

If f(x) has a singularity in the interval over which the integral is being evaluated,
then Cauchy principal value takes the form,

P

⁄ —

–
f(x)dx = lim

Áæ0

C⁄ t≠Á

–
f(x)dx +

⁄ —

t+Á
f(x)dx

D
, (2.2)

where f(x) has a singularity at x = t, King 2009a.

2.3 Discrete Fourier Transform

We would like to express a finite complex sequence with N elements {fj : j =
1, 2, · · · N} as a superposition of the basis function {e

2fiijn
N : j = 1, 2, · · · N}.

8



2.3. Discrete Fourier Transform

This can be expressed as

fj =
Nÿ

n=1
f̂ne

2fiijm
N . (2.3)

Since the basis functions are orthogonal, Èe
2fiijn

N , e
2fiijm

M Í = N”n,m where ”n,m

is the Kronecker delta, the discrete Fourier transform becomes

f̂n = 1
N

Nÿ

j=1
fje

≠ 2fiinj
N . (2.4)
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CHAPTER 3

Stochastic Analysis

3.1 Statistical foundations

Colloquially a random variable is a variable whose value depends on the outcome
of random phenomena. Formally, a stochastic variable X is a function that
maps a set of possible outcomes � to a measureable space E, X : � æ E. If X
is real valued, then X : � æ R.

The probability distribution or probability density funtion (pdf) of a continous
random variable X is a function such that for any two numbers a and b with
a Æ b, Devore, Berk and Carlton (2012), we have

P (a Æ X Æ b) =
⁄ b

a
f(x) dx. (3.1)

A probability density function must satisfy:

1. f(x) Ø 0 ’x,

2.
s Œ

≠Œ f(x) dx = 1.

The cumulative distribution function for a random variable X describes the
probability P (X Æ x) for a given value x. We define the cumulative distribution
function (CDF) F (x), as

F (x) = P (X Æ x) =
⁄ x

≠Œ
f(y) dy. (3.2)

A cumulative distribution function has the properties

1. F (≠Œ) = 0,

2. F (Œ) = 1,

3. F(X) is monotonically increasing function.

10



3.2. Common statistical distributions and their properties

3.2 Common statistical distributions and their properties

A normal distribution or Gaussian distribution is continuous probability density
function for a real-valued random variable. The general form of a normally
distributed pdf is

f(x) = 1
‡

Ô
2fi

e
≠ 1

2
(x≠µ)2

‡2 , (3.3)

where µ is the mean and ‡ is the standard deviation.
The chi distribution is the distribution of the Euclidean distance of normally
distributed random variables from the origin. If {Xi : i = 1, ..., k} are normally
distributed with mean, µ = 0 and standard deviation, ‡ = 1 then the static

Y =
ı̂ıÙ

kÿ

i=1
X

2
i , (3.4)

is Chi distributed. The parameter k, that describes the number of random
variables, specifies the degrees of freedom of the distribution.
A Chi distribution with two degrees of freedom is called a Rayleigh distribution
with the requirement that it only applies for non negative number, X > 0
otherwise the distribution is zero. The probability density function of a Rayleigh
distribution has the form

f(x; –) = x

–2 e
≠x2/2–2

. (3.5)

3.3 Moments and Comoments

The expected value, mean or first moment for a discrete random variable with a
finite set of possible outcomes, is a weighted average of all possible outcomes,xi,
where the weights are the corresponding probabilities, pi. Thus the expected
value is given by

µ = E[X] =
Œÿ

i=1
pixi. (3.6)

If we consider a continuous random variable X with a pdf f(x) then the
expectation is given by

µ = E[X] =
⁄ Œ

≠Œ
xf(x) dx. (3.7)

The expected value of a function is given by

µ = E[g(X)] =
⁄ Œ

≠Œ
g(x)f(x) dx. (3.8)

The second central moment is the variance, which measures how a set of numbers
is dispersed from their average value.

‡
2 = Var[X] = E[(X ≠ µ)2]. (3.9)

11



3.3. Moments and Comoments

The square root of the variance is the standard deviation.

‡
2 =

Ô
‡. (3.10)

Skewness measures the level of asymmetry of a real-valued distribution around
the mean,

“ = E[(X ≠ µ)3]
‡3 . (3.11)

A rule of thumb is that if the skewness is between “ = 0.5 and “ = ≠0.5 we
characterise the distribution as fairly symmetrical. If the skewness is between
0.5 and 1 or between between ≠0.5 and ≠1 the distribution is moderately
skewed and if the skewness is above 1 or below ≠1 the distribution is heavily
skewed.
Additionally if “ < 0 then the mass of the distribution is concentrated on the
left with the right tailed drawn out. If “ > 0 then the mass of the distribution
is concentrated on the right with the left tailed drawn out.
Kurtosis measures how ‘heavy’ the tails of a distribution are. In other words it
describes how many or how extreme the outliers of a distribution are,

Ÿ = E[(X ≠ µ)4]
‡4 . (3.12)

If Ÿ > 3 the distribution is leptokurtic and has fatter tails or more outliers. If
Ÿ < 3 the distribution is platykurtic and has thinner tails or less outliers. If
Ÿ = 0 the distribution is mesokurtic.

Comoments

The correlation used in this thesis is the Pearson correlation coe�cient which is
defined as the covariance between two variables divided by the product of their
standard deviations

flX,Y = COV(X, Y )
‡X‡Y

(3.13)

The covariance is defined as

COV = E[(X ≠ E[X])(Y ≠ E[Y ])] (3.14)

Correlation and covariance describe the linear relationship between two variables.
Coskewness describes the asymmetry of the simultaneous distribution of random
variables. If two random variables are positively co-skewed then the exhibit
positive asymmetry simultaneously. Naturally the reverse is true for negative
coskewness, Miller 2013. For random variables X and Y coskewness can be
expressed as,

“2,1(X, X, Y ) = E[(x ≠ E[X])2(y ≠ E[Y ])]
‡2

x‡y
, (3.15)

“1,2(X, Y, Y ) = E[(x ≠ E[X])(y ≠ E[Y ])2]
‡x‡2

y

. (3.16)
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3.4. Stochastic processes

Cokurtosis determines whether the tails of a simultaneous distribution contains
more or less extreme values, i.e. outliers. A high cokurtosis describes a
distribution that contains more outliers and is therefore ‘thicker-tailed’. A
simultaneous distribution with a lower cokurtosis can be described as ‘thinner-
tailed’, Miller 2013.

Ÿ2,2(X, X, Y, Y ) = E[(x ≠ E[X])2(y ≠ E[Y ])2]
‡2

x‡2
y

, (3.17)

Ÿ3,1(X, X, X, Y ) = E[(x ≠ E[X])3(y ≠ E[Y ])]
‡3

x‡y
, (3.18)

Ÿ1,3(X, Y, Y, Y ) = E[(x ≠ E[X])(y ≠ E[Y ])3]
‡x‡3

y

. (3.19)

Kurtosis is a special case of Cokurtosis where there is only one random
variable. To make this distinction clear we will use the term autokurtosis
to describe a kurtosis calculation with one random variable. The autokurtosis of
a univariate Gaussian normal distribution is 3. If a univariate distribution has
an autokurtosis greater than 3 then the distribution is said to be ‘leptokurtic’.
If a univariate distribution has an autokurtosis less than 3 it is said to be
‘platykurtic’.

Convergence of moments

The estimators of the statistical moments converge at the rate of
Ú

C

N
, (3.20)

where C is a moment-specific constant, equal to 1 for estimating the mean, 2
for the standard deviation estimate, 6 for the autoskewness estimate and 24
for the autokurtosis estimate. N is the sample size. This estimator requires all
samples are independent.

3.4 Stochastic processes

A stochastic process describes how random phenomena evolve in time. Formally,
a stochastic process is a set of stochastic variables, {X(t) : t œ T}, where at
every time t in the set T, we obtain a random variable X(t). If the set T is
countable or finite it is a discrete-time process. If the set T is not finite or
countable we have a continuous time process. We can define the expected value
as

µ(t) = E[X(t)] =
⁄ Œ

≠Œ
xf(x, t) dx. (3.21)

Moreover, we can define the autocorrelation function for a stochastic process as

R[X(t1)X(t2)] =
⁄ Œ

≠Œ
x1x2f(x1, x2, t1, t2) dx1 dx2. (3.22)

13



3.5. Copulae

The second moment of a stochastic process is also called the mean power, and
can be defined by

R(t, t) = E[|X(t)|2]. (3.23)

A weekly stationary process is a stochastic process where the expected value is
independent of time, E[X(t)] = µ and the autocorrelation function only depends
on the time di�erence,· = t2 ≠ t1. We have

R(t1, t2) = E[X(t1)X(t2)] = R(·).

3.5 Copulae

The term copula comes from the Latin word for link ,‘copulare’, and was coined
by Sklar (1959). In essence a Copula is a multivariate cumulative distribution
function for which the marginal probability distribution function of each of its
component variables is uniformly distributed from [0, 1]. For an entertaining
introduction to the subject see Mikosch (2005) and Genest and Rémillard (2006),
best read in that order.
The main purpose of copulas is to describe the dependence or inter-correlation
between random variables. Consider a set of random variables {Xi : i =
1, · · · , n} where each random variable is described by its cumulative distribution
function, CDF such that

Fi(x) := P (Xi Æ x). (3.24)

The di�erent CDFs are often referred to as marginals. These marginals provide
us with no understanding of the joint behaviour of the di�erent random variables
i.e. if the variables are independent, the joint distribution is the product of the
separate CDFs,

P (X1 Æ x1, X2 Æ x2) = F (x1) · F (X2). (3.25)

The goal of Copulas is to disentangle the marginal distributions and dependence
structure so that we can fully describe the behaviour of X1 and X2 together.

Definition 3.5.1 (Schmidt 2007). A d-dimensional copula C : [0, 1]d :æ [0, 1] is
a function which is a cumulative distribution function with uniform marginals.

By requiring a Copula to be a distribution function we get several properties

• The copula is equal to zero if any of its arguments are zero,
C(u1, u2, · · · ui≠1, 0, ui+1, · · · ud) = 0.

• The marginal ui can be obtained by setting uj = 1, ’j ”= i,
C(1, 1, · · · ui, 1, 1, · · · 1) = ui.

Sklar�s theorem provides the theoretical foundation for the application of
copulas and states that if we chose a copula and entangle it with some marginal
distributions we can end up with a fully fledged multivariate distribution
function.
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3.5. Copulae

Theorem 3.5.2 (Sklar�s Theorem). Sklar 1959
Let F (x) and F (y) be marginal cumulative distribution functions of two random
variables x and y such that F (x) = P (X Æ x) and F (y) = P (Y Æ x). Let
F (x, y) be a joint cumulative distribution function F (x, y) = P (X Æ x, Y Æ x),
then F (x, y) is linked to F (x) and F (y) through a copula such that

F (x, y) = C(F (x), F (y)). (3.26)

There are several di�erent families of Copulae. This thesis tested three di�erent
copulas. Gaussian, t and Gumbel copulas. Suppose we have two random
variables that have the correlation matrix

ÿ
=

5
1 fl

fl 1

6
, (3.27)

then the Gaussian Copula is given by

C
N
R (X) = �R(�≠1(u1) · · · �≠1(ud)), (3.28)

where �≠1 is the inverse cumulative distribution function of a standard normal
and �R is the joint cumulative distribution function of a multivariate normal
distribution.
Futhermore, the t-copula or ‘Student’ copula is given by

C
t
‹,

q(X) = t‹,
q(t‹≠1(u1) · · · t‹≠1(ud)), (3.29)

where
q

is the correlation matrix, t‹ is the CDF of a one dimensional student
t‹ distribution and t‹,

q is the CDF of a multivariate t‹,
q distribution

The Gaussian and t copulae are derived from multivariate distributions and
as a result there are no simple analytical formulas for the copula functions.
Conversely, there are some copulas that can by stated directly and often fall
into the category of Archimedean copulas. The Gumbel copula or Gumbel -
Hougaard copula is used in thesis thesis fall into this category, and is given of
the form

C
Gu
◊ (u1, u2) = exp

Ë
≠((≠ ln u1)◊ + (≠ ln u2)◊) 1

◊

È
, (3.30)

where ◊ œ [1, Œ).

Tail dependence

Copulas model dependence structure on a quantile scale, making them useful
for identifying dependence structure of extreme outcomes. In simple terms
if variables have tail dependence then there is more of a tendency for X2 to
be extreme when X1 is extreme and vice versa, McNeil, Frey and Embrechts
(2015).
This thesis utilises three di�erent copulae of model the dependence structure
between the surface elevation and velocity field. The first is a Gaussian copula
which has no tail dependence i.e. there is no change in relationship for extremely
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3.5. Copulae

large or extremely small values. The second is a Gumbel copula which has
positive tail dependence indicating that there is more of a tendency for X2 to
have extreme large values when X1 has extreme large values and vice versa. The
third copula is a T-copula which has both positive and negative tail dependence
of the same magnitude.

Akaike information criterion

To select which Copula best describes our data we utilise the Akaike information
criterion, AIC. Let k be the number of estimates parameters and let L̂ be the
maximum of the likelihood function of the model. The AIC is given by

AIC = 2k ≠ 2 ln(L̂). (3.31)

For our three copulae, the preferred model is the one that minimises the AIC.
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CHAPTER 4

Wave Theory

4.1 Anatomy of a wave

The surface elevation of a wave, ÷(t), describes the position of the water surface
that limits the free air. The equilibrium surface elevation or quiescent surface
is the water level when the water is at rest.
The frequency f , angular frequency Ê, and wavenumber k are given by,

f = 1
T

, Ê = 2fi

T
and k = 2fi

⁄.
. (4.1)

The wave period is given by T, and the wavelength by ⁄.
A wave crest is the local maxima of the surface elevation function, i.e. the
points at which the wave exhibits the maximum amount of displacement from
the quiescent surface. Conversely, the wave troughs are the local minimums of
the surface elevation.
In an inhomogeneous wave field the wave height can vary wildly. Therefore, we
describe the significant wave height as four times the standard deviation of the
wave process,

Hs = 4‡. (4.2)

In this thesis we choose to follow K. Dysthe, Krogstad and Müller (2008)’s
classification of a rogue wave, which states that a rogue wave must have a wave
height larger than two times the significant wave height,

H > 2Hs = 8‡. (4.3)

4.2 Dimensionless Parameters and Wave Properties

The characteristic wave steepness, ‘, of a wave field is given by

‘ = kcac, (4.4)

where kc is the characteristic wavenumber and ac is the characteristic amplitude.
Wave steepness is linked to the non-linearity of the waves. Greater steepness
indicates that the waves are displaying more nonlinear tendencies.
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4.3. Stokes waves

There are many ways to define the characteristic wavenumber. In this thesis,
the characteristic wavenumber kc is chosen to be the peak wavenumber kp.
Peak wavenumber is the wavenumber that corresponds to the maximum angular
frequency, of peak frequency, Êp and can be found using the dispersion relation
for surface gravity waves

Êp =


gkp tanh kph. (4.5)

The amplitude of a wave is often understood as a constant for the whole wave
train. However, in an irregular wave train the crest height is not constant. The
crest height can be negative and the trough depth can be positive. The wave
height is the distance between neighbouring wave crests and troughs. Therefore
we aim to define a characteristic amplitude as

ac =
Ô

2‡, (4.6)

where ‡ is the standard deviation of the surface elevation.
The Ursell Number, abbreviated Ur, describes the non-linearity of long surface
gravity waves. It is defined as

Ur = ackp

(kph)3 . (4.7)

The dimensionless depth is given by kph, and is traditionally used to define
deep water, kph ∫ 1, and shallow water, kph π 1.

4.3 Stokes waves

The surface elevation function, ÷, and velocity field potential, „, for second-order
Stokes waves in finite depth are

÷ = a cos(kx ≠ wt) + 2 ≠ tanh2
kh

4 tanh4
kh

ka
2 cos 2(kx ≠ wt) (4.8)

and

„ =Êa

k

cosh(k(y + h))
sinh(kh) sin(kx ≠ Êt) ≠ Ê

2(1 ≠ tanh2
kh)

4 tanh3
kh

t | a |2

+ 3Êa
2(1 ≠ tanh2

kh)
4 tanh3

kh

cosh(2k(y + h))
sinh(2kh) sin 2(kx ≠ Êt).

(4.9)

4.4 Wave Spectra

When observing the sea surface we notice that it is not described by a simple
sinusodial. The ocean fascinates us because it is composed of waves of di�erent
lengths and periods. When storms roar the ocean may unleash its ferocity and
on other days, the ocean may be calm and gentle. Di�erent sea states must be
represented di�erently.
To be able to represent the complexity of the sea surface we introduce the
concept of a wave spectrum. The wave spectrum gives us the distribution of
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4.4. Wave Spectra

wave energy among di�erent wave frequencies of wave-lengths on the ocean
surface.
Using a Fourier expansion we can represent the ocean surface as an infinite series
of sine and cosine functions of di�erent wave-lengths moving in any direction.
Since wave-lengths and wave frequencies are connected through the dispersion
relation, we can represent the ocean surface as an infinite sum of sine and cosine
functions of di�erent frequencies moving in any direction.
The implication of using infinite Fourier series is that we can represent an
inhomogenous wave field as a superposition of monochromatic waves. We
choose to define

÷(x, t) =
ÿ

n


2S(Ên)(�Ê)n cos (knx ≠ Ênt + �n), (4.10)

where S(Ên) is the wave spectra, (�Ê)n is the distance between to neighbouring
frequency components and kn represents the wavenumber associated with the
angular frequency Ên by a dispersion relation. Moreover, �n is a phase angle
which is uniformly distributed from [0, 2fi).
We demand that ÷, in Equation (4.10), must reproduce a desired wave spectrum.
However, there is no specific reason that � should have a certain probability
distribution, it is not necessarily the case that the phase angles must be uniformly
distributed. Nor is it the case that S(Ên) needs to be deterministic. Another
option might be to use a stochastic variable that has expectation S(Ên) with a
probability distribution that is sometimes assumed to be Rayleigh.
The choice of Equation (4.10) is made on the basis of two di�erent considerations,
to reconstruct the desired spectrum and provide an acceptable probability
distribution. In that case, deterministic S(Ên) and uniform �n are a typical
choices.

Pierson - Moskowitz Spectrum

We can use various di�erent idealized wave spectra to describe the di�erent sea
states and other properties. The Pierson - Moskowitz spectrum describes a sea
state where the wind has steadily blown over the a large ocean area for a long
time. The waves come into an equilibrium with the wind. This is called fully
developed sea.
To develop the spectrum Pierson Jr and Moskowitz (1964), they studied wave
measurements made by accelerometers placed on weather ships in the North
Atlantic after the wind had blown, steadily, for a long time over a large area.
The formula derived from the experiments defines the spectrum as

S(Ê) = –g
2

Ê5 exp
1

≠—(Êo

Ê
)4

2
, (4.11)

where – is an amplitude factor, Êp is the frequency is the most energy, and g is
acceleration due to gravity.
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4.5. Narrow Banded process

JONSWAP Spectrum

By analysing data from the Joint North Sea Wave Observation Project
(JONSWAP). K. Hasselmann et al. (1973) , found that the ocean is rarely fully
developed. Non-linear interactions e�ect the sea surface for a very long time and
over great distances. Therefore, to increase the the fit to their measurements,
they multiplied the Pierson-Moskowitz spectrum by a peak enhancement factor,
“ and created what is now known as the JONSWAP spectrum,

S(Ê) = –g
2

Ê5 exp
1

≠—(Êo

Ê
)4

2
“

r
, (4.12)

where r is defined as
r = exp

5
≠ (Ê ≠ Êp)2

2‡2Ê2
p

6
. (4.13)

Gaussian Spectrum

A Gaussian wave spectrum will then have the form,

S(Ê) = 1
‡

Ô
2fi

e
≠ (Ê≠µ)2

2‡2 . (4.14)

The Gaussian wave spectrum has several benefits, one of the them being that it
is fairly simple to create a narrow-banded Gaussian spectrum by letting ‡ be
very small. In this instance, ‡, is not the standard deviation.

4.5 Narrow Banded process

A narrow banded process has a spectrum with a small bandwidth. Simply put,
the spectrum includes only a narrow range of frequencies. There are many ways
to estimate bandwidth. We choose to define the bandwidth as half the width of
a line drawn at half the maximum amplitude

” = HPHW

Êp
. (4.15)

4.6 Modulation Instability

Modulation instability is the phenomenon where small deviations from periodic
waveforms are strengthened by nonlinearity which leads to the generation of
spectral tails T. Benjamin and Feir (1967).
There is a plethora of research on modulationally unstable surface gravity waves.
The original articles on Benjamin-Feir instability are T. B. Benjamin (1967),
Feir (1967), G. Whitham (1967),G. B. Whitham (1967), and Hasimoto and
Ono (1972). An important result of the research in these papers, is the finding
that a Stokes wave is modulationally unstable for long crested perturbations for
depths, kh > 1.363. Note that short crested perturbations will still be unstable
even for shallower regimes, kh > 1.363. The results in publications above are
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4.6. Modulation Instability

calculated using perturbation theory using Schrödinger equations or similar
equations.
J. McLean et al. (1981) and J. W. McLean (1982) did numerical calculations
using the Euler equations and confirmed the results of the perturbation analysis,
and extended the validity of the analysis to greater steepness and bandwidths.
The results above are limited to Stokes waves which are distinguished by have
a bandwidth, ” = 0. If we extend our discussion to Stokes waves with a wave
spectrum with a finite bandwidth, ” > 0. The question is whether the such
a spectrum is stable. This was originally analyzed by using the Schrödinger
equation, Alber and P. Sa�man (1978) and Alber (1978) and the Zakharov
equation Crawford, P. G. Sa�man and Yuen (1980).
Alber (1978) derived a stability criterion that was named the Benjamin-Feir
Index by P. A. Janssen (2003)

BFI = –
‘

”
, (4.16)

where ‘ is the wave steepness, ” is the bandwidth, and – is a constant. Alber
(1978) shows that if the ratio between the bandwidth and the steepness becomes
too large, ” > –‘, then the spectrum is stable.
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PART II

Experiments
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CHAPTER 5

Experimental Equipment

5.1 Measuring the surface elevation

To conduct surface elevation measurements, ÷, we used an ultra sound system
from General Acoustics.
The system can make up to four independent measurements simultaneously,
each independent measurement corresponds to a channel. Furthermore, each
channel can receive data from one to three senors.
The user manual, General Acoustics 2013, states that one channel is more than
su�cient to measure waves with low steepness, while for waves with greater
steepness results may be improved with a setup with more ultra sound probes
per channel.
A fixed reference sensor measures the speed of sound used to measure the
distances. The sensors we used have the following settings:

• Ultrasound probe type: USS02/ HFP.

• Samplerate: 125/250 Hz.

• Measurement range: 30 - 250 mm.

• Superior resolution: 0.18 mm.

• Accuracy: ±1 mm.

The data collected from the sensors is processed by an Ultralab Advanced
Controller which converts the data in to meters. Then it sends the converted
data to a PC which uses a software, Ultralab: Ultralab Monitoring Software, to
record and display the data.

5.2 Measuring the velocity component

We used a vectrino, an acoustic Doppler velocimeter (ADV) from Nortek, to
measure the di�erent velocity components in the wave field. The ADV we used
has a separated transmitter and receiver allowing it to detect velocities in three
dimensions.
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5.2. Measuring the velocity component

The center transmitter emits pairs of pulses of high-frequent sound, 10 MHz.
The ADV software sets a known time di�erence between the pulses and seeded
particles, a known distance in front of the center probe reflects the sound. Four
receivers accumulate sound that is returned with a Doppler-induced phase shift
and the measured phase shift is converted to velocity. The receivers work in
pairs, with two receivers per axis. It is argued that measuring the phase shift
is more accurate than using a direct Doppler frequency technique to measure
velocity.
We are able to measure four di�erent velocity components, X, Y, Z1 and Z2. It
should be noted that we use capital letters for the ADV’s coordinate system.
Z1 and Z2 are two di�erent measurements from two di�erent receiver pairs of
the velocity along the ADV’s center probe. Nortek often refers to this as the
ADV�s vertical axis. Due to the way in which the ADV is constructed, this is
the axis which is measured most accurately.
The ADV has several di�erent settings that must be determined by the user

• Sampling rate [Hz].

• Transmit length.

• Nominal velocity range [ m
s ].

• Sampling volume.

• Power level.

The sampling rate defines the number of samples per second. A high sampling
rate leads to a high time resolution at the cost of lower accuracy.
The transmit length determines the transmit pulse length.
The Nominal velocity range (NVR) determines the time lag between to pulses
in a pulse pair. A low NVR produces a greater lag between pulses. If the NVR
is set to high, the data quality will decrease as the signal will be polluted with
too much "noise". However, a too low NVR will induce phase ambiguity where
the data appears to unrealistically and abruptly vary, often including a sign
change. The vertical component, Z1 and Z2, has a greater sensitivity than
the other components, however, this also means that it has a lower maximum
NVR. A rule of thumb given by, CITATION, is to set the lowest possible NVR
without risking that the data quality will su�er.
According to the ADV manual, the measurement volume is located 50mm in
front of the center probe. Its form, although irregular, can be approximated
to a cylinder with a 6mm diameter and 2.5 - 8.5mm length, depending on the
chosen size of the sampling volume. A greater sampling volume produces more
accurate results.
Choosing a higher power level provides more accuracy, but uses more electricity.

Output

In addition the four velocity components, the ADV also returns performance
indicators used for error evaluation:
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5.2. Measuring the velocity component

• ‘Correlation measures’ the similarity in the data collected by the two
receivers in a receiver pair. The measured correlation should be above
90%.

• ‘Signal - to - noise ration’ (SNR) [dB] measures the ratio between
the accoustic signal and the background noise. The quality of the
measurements increases with an increasing SNR to an SNR around 15
or 20. Over this threshold the SNR does not impact quality of the data
measurements. To obtain a high SNR it is vital to ensure that there are
enough seeding particles in the tank.

• ‘Amplitude’ counts the number of amplitudes the ADV measures per
measurement. It is a measure of signal strength, however, it is not as
useful as the other two performance indicators.

The results from every run are saved in a .vno file and converted into a .hdr

file containing meta-data, and .dat file containing the velocity components and
the performance indicator measurements.
In order for the ADV to work, there must be seeded particles in the tank so
that the emitted pulses can be reflected back towards the receivers. Nortek
recommends a particle concentration of 20-30 mg/L however the SNR is an apt
indicator of whether or not the tank is adequately seeded. We used Norteks
own seeding material designed for ADVs in laboratory environments.

Systematic error

ADVs are often viewed as a non-intrusive measuring technique as the sampling
volume is located a known distance away from the device. However, it has been
shown that the high frequent sound emitted by the ADV induces a current
in the area in front of the center probe which is also the sampling volume,
and therefore it produces a systematic error. The article by Poindexter, P.
Rusello and Variano (2011) lists current strength compared to the other ADV
parameters making it possible to compensate for the generated systematic error.
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CHAPTER 6

Pre-lab

6.1 The wave maker

There is a direct relationship between the Fourier coe�cients of the wave maker
paddle motion and the Fourier coe�cients of surface elevation Newman 2018.
This thesis used two di�erent spectra, Gaussian and Pierzon - Moskowitz, to
create time series that control the movement of the wave maker paddle. The
some of the code used can be found in the appendices.
To determine the frequency resolution, N, we assume that the skewness and
kurtosis of the surface elevation will converge at the same N as the skewness
and kurtosis of the wave maker paddle signal. We chose N = 3000 as this is
the lowest N that insures convergence of kurtosis whilst minimising calculation
time.
We know that

S(Ên) æ 0 when Ên

Êp
æ 0, Œ.

This means that very small or very large values of Ên
Êp

will not contribute
significantly to the wave motion. Hence, we have chosen only to include
frequencies such that

S(Ên) Ø S(Êp)
500 .
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6.1. The wave maker

Gaussian

We used a narrow banded Gaussian spectra, Figure 6.1, with a Êp = 6.2832
and a range of frequencies between 5.1958 Æ Ên Æ 7.3747.

Figure 6.1: Gaussian Spectrum with a range of included frequencies between
5.1958 Æ Ên Æ 7.3747.

We created two di�erent time series from the Gaussian spectra. The first has
an amplitude factor of 0.05 and is called Gaussian1. The second has half the
amplitude factor, 0.025 and is called Gaussian2. Although they have the same
shape, bandwidth and peak frequency they have to be generated separately.
Figure 6.2 is a histogram displaying frequency distribution of Gaussian 1
compared to a theoretical Gaussian spectrum. We observe that the time
series is not perfectly distributed with some frequency bins above expected
values and some below the expected values. Similarly we see from, Figure 6.3,
which is the comparison between the power density spectrum of Gaussian 1
and a theoretical Gaussian spectrum the the PSD is slightly to the right of the
theoretical values.
Similarly, we see that the histogram of Gaussian2, Figure 6.4, compared to a
theoretical Gaussian spectrum also shows that the generated timeseries has
slight deviations from theorectical values. It also seems as if the power density
spectrum in Figure 6.5 is also shifted slightly to the right of theorectical values.

Pierson-Moskowitz

In experiment 2 we used a Pierson-Moskowitz spectrum, Figure 6.6, the included
frequencies for the Pierson-Moskowitz spectrum corresponds to a frequency
range between 3.66 Æ Ên Æ 16.56.
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6.2. Parameters and setup

Figure 6.2: Histogram comparing Gaussian 1 time series and theoretical
Gaussian spectrum.

Figure 6.3: Comparison between power density spectrum of Gaussian 1 time
series and theoretical Gaussian spectrum.

6.2 Parameters and setup

The length of each run

The values of the statistical parameters converge at a rate of
Ò

C
N . See

SECTION. In Figure 6.9 we show that when using the convergence rate of
kurtosis 20 minute runs were are su�cient to ensure convergence. As this is
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6.2. Parameters and setup

Figure 6.4: Histogram comparing Gaussian 2 time series and theoretical
Gaussian spectrum.

Figure 6.5: Comparison between power density spectrum of Gaussian 2 time
series and theoretical Gaussian Spectrum.

the slowest convergence rate it follows that if kurtosis converges so should the
other statistical parameters.Longer runs are not practically feasible due to two
restraints, time in the lab and amounts of data to be processed.
If the probes start measuring the surface elevation as soon as the wave generator
starts, the time series will all include start up e�ects from the wave maker. The
probes will measure the still water before the wave train reaches the probes.
Moreover, it is well known that the waves in the early wave train are more
extreme than the rest of the wave field. Due to these initial e�ects we chose
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Figure 6.6: Pierson-Moskowitz Spectrum with a range of included frequencies
between 3.66 Æ Ên Æ 16.56

Figure 6.7: Histogram of the paddle signal compared to a with a theorectical
Pierson-Moskowitz spectrum.

to run the wave maker for 30 seconds before the probes and the ADV start
recording data.
The time series thus became 125 Hz · (20.5 · 30) s = 153750 samples long for the
ultrasound probes and 200 Hz · (20.5 · 30) s = 246000 samples long for the ADV.

Quiescent surface level and peak period

Experiment 1

For experiment 1 and the quiescent surface level is set to 0.5 m with peak period
of, Tp = 1 s. This due to simplicity as both experiments do not depend on a
specific dimensionless depth.
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6.2. Parameters and setup

Figure 6.8: Comparison between the PSD of the paddle signal and a theorectrical
Pierson Moskowitz spectrum.

Experiment 2

Raustøl (2014) showed the dimensionless depth, kp,2h2, over the shoal was linked
to the degree to which the field displayed Gaussian behaviour. Specifically, a
field with a low dimensionless depth displayed more non-Gaussian behavior
over the shoal compared to a field with a greater dimensionless depth.
Since we want to emulate the experiments of Raustøl and Jorde, we chose a
dimensionless depth of kp,2h2 ƒ 0.65. This is the same dimesionless depth used
in Jorde’s master thesis. Moreover, we want a steepness kp,2a2 ƒ 0.05 similar
to the one used by Raustøl and Jorde, without inducing wave breaking.
Considering that we are using a Pierson-Moskowitz spectrum there are two
di�erent factors that determine kp,2h2. The first is the peak period, Tp, and
the second is water depth over the shoal, h2.

Tp [s] h2 [m] kp,2h2

1 0.10 0.681
1 0.11 0.719

1.1 10 0.611
1.1 0.11 0.645
1.1 0.12 0.677
1.2 0.10 0.555
1.2 0.11 0.5848
1.2 0.12 0.614

Table 6.1: Comparison of peak period, water depth over the shoal and
dimensionless depth.

Table 6.1 shows that we are able to achieve a dimensionless depth of kp,2h2 =

31



6.2. Parameters and setup

Figure 6.9: Graph displaying that the kurtosis converges as the sample length
increases.

0.645 with a peak period, Tp = 1.1 s, and a water depth over the shoal of
h2 = 0.11 m . The shoal has a height of 0.41 m therefore the total water depth
must be h1 = 0.52 m.

ADV placement

We assume that fluid flow is greatest directly below water surface, and therefore
the ideal placement of the ADV is close to the surface without risking that the
ADV receivers penetrate the surface in the wave troughs.
In order to measure the simultaneous behaviour of surface elevation and the
velocity field it is important to place the ADV so that the measurement area
is directly under the ultrasound probes. This placement is very sensitive and
a slight misplacement will lead to the data needing to be adjusted in post
processing.
For experiment 1, the ADV placement remained the same, 8 cm below the
quiescent surface. In experiment 2, we had to account for the shoal, and
therefore moved the ADV to 5.5 cm below the quiescent surface.

Amplitude factors

We chose to run experiment 1 with two di�erent Gaussian spectra that had
di�erent amplitude factors in order to test whether amplitude e�ected how a
narrow banded spectrum develops as it propagates along the tank. The first
spectrum, Gaussian1, had amplitude factor of 0.05. The second spectrum,
Gaussian2, had an amplitude factor of 0.025.
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In experiment 2 we want to maximise wave steepness whilst avoiding wave
breaking. As the Pierson-Moskowitz spectrum used in experiment 2 has a “ = 1
the only factor we are at liberty to adjust is the amplitude factor.
We ran experiments, Table 6.2, with di�erent Pierson-Moskowitz spectra,
starting with an amplitude factor of alpha = 0.05 and decreasing it for every
run. For each run we visually inspected the wave process for breaking waves. If
breaking waves were observed the process continued. Once we no longer could
observe breaking waves, the processed was stopped.

Run Amplitude Factor Did waves Break?
1 0.05 Yes
2 0.025 Yes
3 0.01 Yes
4 0.008 Yes
5 0.006 No
6 0.006 No
7 0.007 Yes
8 0.0065 Yes

Table 6.2: Experiment to find maximal amplitude factor for Pierson-Moskowitz
spectrum without waves breaking over the shoal.

Thus we achieved an amplitude factor of alpha = 0.006.

6.3 Parameters and Measurement equipment

We wish to measure the surface elevation several places simultaneously, however,
we are limited as we only have four probes. Therefore, instead of using several
probes per measuring location, we chose to measure four di�erent locations per
run.
After an assessment, we decided to use the ADVs standard settings for Sampling
rate, Transmit length, and Sampling volume as they produced adequate results.
To increase accuracy, we set Power level to high. The maximum speed was
measured to around 0.2 m/s.
Our ADV settings are:

• Sampling rate = 200 Hz.

• Nominal velocity range = 0.3 m/s.

• Transmit length = 1.8 mm.

• Sampling volume = 7.0 mm.

• Power level = High.

6.4 Synchronising the instruments

The ADV and ultrasounds probes are synchronised using a trigger signal which
insures that once the wave maker is initiated the ADV and the ultrasound
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6.4. Synchronising the instruments

probes start recording data after 30 seconds. We confirmed the accuracy of the
trigger signal by running tests using a stopwatch.
We chose a delay of 30 seconds to ensure that the wave process is fully developed
before any data is recorded.

34



CHAPTER 7

Experimental Methodology

7.1 In the lab

The experiments were performed in the 24.6 m long and 0.5 m wide tank at the
Hydrodynamics Laboratory of the Department of Mathematics at the University
of Oslo. The wave maker is placed at the one end of the tank and at the other
end is a damping beach.
Every day in the lab started with the same routine of checking the water level
in the tank and filling it if necessary. Then checking that the ADV is placed
at the correct depth. During the time period where the wave maker is o� and
the water is stationary the seeding particles fall to the bottom of the tank and
stick to its side. Therefore, every morning in the lab also starts by sweeping
the particles of the tank floor and cleaning the sides of the tank.

Experiment 1: Narrow banded Spectra

The goal of this experiment is to study how a narrow banded wave process
develops as it propagates along a tank. Therefore it is necessary to measure
surface elevation and the velocity field at many di�erent places. The full
experimental setup is shown in Figure 7.1
The ultrasound probes 1,2, and 3 are staged with a fixed 1 m distance between
on a sliding frame. Probe 1 is the ultrasound probe closest to the wave maker.
The ADV is mounted on the end of the frame and is place ≠0.08 m below the
quiescent surface. To check the e�ect of the ADV placement in the tank, probe
4 is mounted behind the ADV.
For every experimental position the frame is moved and the position is measured
from probe 3 to the wave maker in its stationary middle position using a laser
measure . This can be laborious process as any adjustment in position requires
another measurement using the laser measure. The further the frame is moved
away from the wave maker the more di�cult it becomes to use the laser measure
as the beam can more easily be refracted by the glass walls of the tank or the
water creating errors.
Many of the experimental runs are repeated three times to ensure that the
results are reliable.
For this experiment the y-axis is aligned vertically from the quiescent surface
whilst the x-axis runs horizontally with origo placed at the location of the wave
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7.1. In the lab

Position P1 [m] P2 [m] P3 [m] P4 [m] ADV [m]
1 2.006 3.006 4.006 4.711 4.006
2 3.003 4.003 5.003 5.71 4.003
3 4.005 5.005 6.005 6.763 6.005
4 5.003 6.003 7.003 7.757 7.003
5 6.062 7.062 8.062 8.819 8.062
6 7.008 8.008 9.008 9.765 9.008
7 8.009 9.009 10.01 10.758 10.01
8 10.022 11.022 12.02 12.776 12.02
9 12.015 13.015 14.015 14.771 14.015
10 14.009 15.009 16.009 16.758 16.009
11 16.018 17.018 18.018 18.773 18.018

Table 7.1: Location of the ultrasound probes and the ADV for the di�erent
experiment 1 positions.

Figure 7.1: Diagram of the experimental setup of experiment 1.

makers middle position.

Experiment 2: Analysis of the effects of non uniform bathymetry

The experiments utilise three di�erent shoals. All three shoals had a maximum
height of 0.41 m. The first shoal has a 1.6 m linear up-slope, a 1.6 m horizontal
section and a 0.8 m linear down-slope. The second shoal has a 0.8 m linear
up-slope, a 1.6 m horizontal section, and a 1.6 m linear down-slope. The
third shoal is a step with a 1.6 m horizontal section creating a discontinuous
bathymetry. The experimental setup for shoal one, two and three is shown in
Figures 7.2, 7.3 and 7.4 respectively.
The water depth in the deep end of the tank is h1 = 0.52 m, therefore the water
depth over the shoal is 0.11 m. The coordinate system is orientated so that the
x-axis runs horizontally in the direction of the waves propagation with origin
at the start of the horizontal part of the shoal. The y-axis is aligned vertically
from the quiescent water level.
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7.1. In the lab

Figure 7.2: Setup of experiment 2 with the first shoal.

Figure 7.3: Setup of experiment 2 with the second shoal.

Figure 7.4: Setup of experiment 2 with the third shoal.

We want to measure surface elevation and water velocity at several locations
along the tank. Due to the fact that we only have four ultrasound probes and
one ADV we need to repeat the experiment at di�erent locations along the
tank. It is also useful to repeat several times at the same location to check how
reproducible the results are.
The ultrasound probes are mounted vertically, and the ADV horizontally, on a
frame that is mobile. The three of the ultrasound probes are staged one after
another. The probe furthest from the wave maker measures just above the
measuring range of the ADV. The first ultrasound probe is mounted at the
deep end of the tank to corroborate that the Pierson-Moskowitz field in is the
same for all runs.
It is important that the shallow regime above the shoal is su�ciently shallow,
therefore the ADV is mounted horizontally. In order for it to disturb the current
as little as possible, the ADV is mounted so that it points towards the wave
maker.
The experiments with the first and second shoal were performed three times
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7.2. Postprocessing

Position P1 [m] P2 [m] P3 [m] P4 [m] ADV [m]
1 -2.900 -2.255 -1.5 -0.8 -0.8
2 -2.900 -1.855 -1.1 -0.4 -0.4
3 -2.900 -1.455 -0.7 0 0
4 -2.900 -1.155 -0.4 0.3 0.3
5 -2.900 -0.855 -0.1 0.6 0.6
6 -2.900 -0.555 -0.2 0.9 0.9
7 -2.900 -0.255 0.5 1.2 1.2
8 -2.900 0.045 0.8 1.5 1.5
9 -2.900 0.455 1.2 1.9 1.9
10 -2.900 0.845 1.6 2.3 2.3
11 -2.900 1.245 2 2.7 2.7

Table 7.2: Location of the ultrasound probes and the ADV for the di�erent
experiment 2 positions.

at positions 1-11, Table 7.2, totalling 64 runs. The experiments with the third
shoal were performed three times at positions 2-10, totalling 27 runs. In total
experiment 2 produced of 94 runs.

7.2 Postprocessing

Surface elevation from the Ultrasound Probes

The ultrasound probes measure the distance to the water surface. To find the
surface elevation, ÷, at the quiescent surface, x = 0 m, we use the formula

÷ = ≠(a ≠ ā), (7.1)

where a is the distance measured by the probes, ā is the average measurements,
and the negative sign is there because the ultrasound probes are pointing
downwards.

Dropout Filtering

The raw data from the ultrasound probes contains erroneous noise called
dropouts. It is caused by the ultrasonic signal not being returned to the probe
when the waves under the probes are too steep. The steepness of the waves
causes the signal to be sent in a di�erent direction. One can clearly visually
observe these ‘dropouts’ in the time series.
To increase the accuracy of the statistical analysis of the di�erent times series,
the noise must be removed. Several di�erent filters have been designed at the
hydrodynamic laboratory by Odin Gramstad, Tore Magnus A. Taklo, and Anne
Raustøl among others. In this thesis we used (InterpolateDropouts) and
(InterpolateSpikes)
The first filter, called InterpolateDropouts, removes sample points and
interpolates new samples points based on the samples in front of and behind the
removed sample. It has two criteria for removing points. Firstly, the points that
have a value above or bellow a specific threshold are removed by setting the
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7.2. Postprocessing

value to NaN (Not a Number). If the threshold is set to ±5 cm then all values
greater than 5 cm and all values less than ≠5 cm are set to NaN. The second
criterion specifies that if two neighbouring points have a Euclidean distance
greater than a given threshold, they are also removed and interpolated.
InterpolateDropouts is highly e�cient at removing dropouts when they are
far greater than the typical wave oscillations, however its struggles removing
noise when it is within the range of typical wave values. Therefore, we used
a second filter called InterpolateSpikes. This filter removes sample points
that have a slope above a given threshold value. The criterion is given by

----
(÷i+1 ≠ ÷i)
(ti+1 ≠ ti)

---- > Threshold. (7.2)

The results of the interpolation process can be seen below

Figure 7.5: Comparison of before and after dropout removal.

DFT resampling and interpolation

The surface elevation and velocity field are sampled at di�erent rates, 125 Hz
and 200 Hz respectively. To study simultaneous relationship between surface
elevation and velocity field we want to have the same number of sampling points.
This can be achieved by using DFT resampling or ’zero-padding’. It is the
process of taking a function with elements {fj : j = 1, 2, · · · , N} and converting
it into its frequency domain {f̂n : n = 1, 2, · · · , N} using DFT. The signal can
then be extended to a a size M by padding the center of the signal, N/2 with
M ≠ N zeros. Once the function is converted back into the time domain it is
resampled.

Finding vx,best from vx,1 and vx,2

The ADV produces two independent measurements for vx for each time point.
The two independent measurements can be used to weed out idiosyncratic errors
and reduce measurement uncertainty.
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7.3. Mesurement Errors

The ADV provides three quality indicators of each measurement namely, SNR,
correlation, and amplitude. We can also define �vx as the eucleadian distance
between two measurements at the same time, t.
We test the four di�erent performance indicators to discern how well they
describe measurement quality. The three performance indicators provided by
the ADV do not e�ectively reveal measurement points which are corrupted by
idiosyncratic measurement errors. The problem stems from not being able to
find a benchmark which removed obvious errors while not loosing significant
information.
However, it seems that �vx is able to remove idiosyncratic measurement errors.
The points removed by vx as a quality indicator are randomly scattered along
the curve, i.e. removing them will not create a systematic error.
The following algorithm is implemented to find vx,best:

Algorithm 1 Find vx,best

for i = 1 : N do
if �vx(i) greater than benchmark then

vx,best = NAN

else
vx,best(i) is mean between vx,1(i) & vx,2(i)

end if
end for

Corroborating the wave field

We assume that the field is the same for all runs, so that the measurements are
conducted under equal conditions.
To verify this assumption probe 1 is placed at the same position for every run.
We calculated the standard deviation of every run for shoal 1 at every time
step and the average standard deviation was 4.8 mm.
Moreover, we want the wave field have a Pierson-Moskowitz spectrum. Therefore
we can calculate the power spectrum of the surface elevation in the deep regime
and compare it to a theoretical Pierson-Moskowitz spectrum.

7.3 Mesurement Errors

There are several factors that may e�ect the results, including the experimental
setup, inherent factors in the experimental equipment, and outside idiosyncratic
errors.
The ADV is mounted on a metal rod which is connected to the moving frame.
On the end of the metal rod there is a small shelf holding the ADV. The shelf is
connected to the metal rod by a one screw. This means that with larger waves
it is possible for the shelf to move the ADV slightly to the left or slightly to the
right. However, when the ADV is on it displays its results in real time graphs.
It is therefore possible to control for this visually. Moreover, the amplitude
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7.3. Mesurement Errors

Figure 7.6: Comparison of a theoretical Pierson-Moskowitz Spectrum with the
experimentally observed wave spectrum.

factors of the wavemaker spectrums are so small that we were not able to detect
any such motion.
When running experiments we took great care to ensure that no waves broke,
however it is certainly possible, albeit rarely, that micro-breaking did occur.
It is obvious from Section 7.2 that dropouts in the surface elevation data are
a problem. Furthermore, dropouts occur when the surface becomes too steep
as the ultrasound waves emitted by the probes are refracted in an direction
that cannot be received by the receivers of the probes. This error is systematic
and although great care is taken to repair the data, through filtering and
interpolation, the reparation will never be perfect.
Although great e�ort is taken to ensure a high level of measurement accuracy,
there is an uncertainty on the distance from the ADV and ultrasound probes
to the wave maker paddle. The distance from the wave maker paddle in middle
position to the probes and the ADV was measured every single day with a
laser measure and the level of dedication to accuracy boarded on mania. Not
to mention the ADV depth was kept constant at either 8 cm or 5.5 cm below
the quiescent surface. It is not possible to use a laser measure to control this
distance as the ADV is under water. Therefore, we used a metal ruler to control
the ADV placement. There may be some inaccuracy on a millimeter level.
Using the ADV included filling the tank with copious amounts of seeding
particles. Over time these seeding particles could stick to the tank walls at the
quiescent surface level and could potential cause surface e�ects. Cleaning the
tank walls became a vital part of my morning routine.
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Analysis

42



CHAPTER 8

Experiment 1: Narrow banded
spectra

This chapter displays the experimental results and the results of the analysis
of experiment 1 which studies how a narrow banded spectra develops as it
propagates along the tank. Section 8.1 calculates the steepness and dimensionless
depth of the surface elevation of the Gaussian 1 and Gaussian 2 wave process.
Futhermore, this section calculates the spectral bandwidth and Benjamin-
Feir index of the surface elevation and velocity field of both Gaussian 1 and
Gaussian 2 wave processes. Section 8.2 presents variance, autoskewness, and
autokurtosis. Section 8.3 studies how the power spectral densities of the di�erent
wave processes change as they propagate along the tank. Note when we write
‘velocity field’ we are referring to the velocity field in x-direction.

8.1 Mechanical Parameters

Figure 8.1 displays the steepness of the surface elevation of the Gaussian 1
and Gaussian 2 wave processes. In both Figure 8.1(a) and (b) we see that the
steepness is decreasing as the wave process propagates along the tank.
We see from Figure 8.2 that the dimensionless depth is reasonably flat. In
Figure 8.2(a) we see that there is a downshift around x = 12 m. This might
due kp being calculated from the estimated peak frequency Êp. Yet, some of
the points may be due to large errors such as the very obvious point at x = 13
m in Figure 8.2(b).
In Figure 8.3(a) we see the bandwidth of the surface elevation of Gaussian
1 is stable, with prominent errors, until x = 10 m. After x = 10 m the
bandwidth varies wildly. This is may be due to an the half peak, half width
estimation method not being suitable if the shape of the wave spectrum deforms
asymmetrically. We that the bandwidth of the surface elevation of Gaussian 2
is much more stable, yet with unmistakable outliers. Similar the bandwidth of
the velocity field, of both Gaussian 1 and Gaussian 2 in Figure 8.3(c) and (d),
is much mores stable.
Due to the fact that we are uncertain about our estimation methodology of
bandwidth, we are uncertain about the estimation of the Benjamin-Feir Index
in Figure 8.4. We see that due to the bandwidth being reasonably constant
in Figure 8.3(b), the decreasing trend from the steepness in Figure 8.1(b)
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8.1. Mechanical Parameters

dominates. This results in the BFI of the surface elevation of the Gaussian 2
wave process is clearly decreasing as the process propagates.

(a) Gaussian 1 (b) Gaussian 2

Figure 8.1: Figure (a) depicts the steepness, ‘, of Gaussian 1. Figure (b) displays
the steepness, ‘, of Gaussian 2.

(a) Gaussian 1 (b) Gaussian 2

Figure 8.2: Figure (a) depicts the dimensionless depth, kh, of Gaussian 1.
Figure (b) displays the the dimensionless depth, kh, of Gaussian 2
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8.1. Mechanical Parameters

(a) (b)

(c) (d)

Figure 8.3: Figure (a) displays the bandwidth of the wave spectrum of the
surface elevation as Gaussian 1 the wave process propagates along the tank.
Figure (b) displays the bandwidth of the wave spectrum of the surface elevation
Gaussian 2 the wave process propagates along the tank. Figure (c) displays the
bandwidth of the wave spectrum of the velocity field as Gaussian 1 the wave
process propagates along the tank. Figure (b) displays the bandwidth of the
wave spectrum of the velocity field Gaussian 2 the wave process propagates
along the tank.
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8.2. Statistics

(a) (b)

(c) (d)

Figure 8.4: Figure (a) displays the BFI of the surface elevation of Gaussian 1.
Figure (b) displays the BFI of the surface elevation of Gaussian 2. Figure (c)
displays the BFI of the velocity field of Gaussian 1. Figure (d) displays the BFI
of velocity field of Gaussian 1.

8.2 Statistics

The variance is calculated using MATLABs var(x, ’omitnan’) function with
the nanflag that omits Nan values. The autoskewness and autokurtosis are
calculated through functions that we created, since the built-in MATLAB
functions did not have an ‘omitnan’ option.
Figure 8.5 shows a clear declining tendency in the variance of the surface
elevation of both the Gaussian 1 wave process and the Gaussian 2 wave process
as the processes propagate along the tank. The rate at which the variance
decreases is greater for Gaussian 1, compared to Gaussian 2. Additionally, in
Figure 8.6 we observe that the velocity field variance exhibits the same declining
tendency. Comparing the velocity field and surface elevation, in Figure 8.7, we
see the that the variance of the velocity field is significantly greater than the
variance of the surface elevation.
In Figure 8.8, we see that the surface autoskewness is increasing for both wave
processes. Moreover, both processes are already slightly positively skewed at the
first measurement at 2 m and 6 m. This means that the right side distribution,
describing positive values of the surface elevation function, will have longer or
fatter tails. As a result, the surface elevation function will include a larger range
of positive values compared to negative values, meaning that more extreme
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8.2. Statistics

(a) (b)

Figure 8.5: Figure (a) displays the variance of the surface elevation of the
Gaussian 1 wave process. Figure (b) displays the variance of the surface
elevation of the Gaussian 2 wave process.

(a) (b)

Figure 8.6: Figure (a) displays the variance of the velocity field of the Gaussian
1 wave process. Figure (b) displays the variance of the velocity field of the
Gaussian 2 wave process.

(a) (b)

Figure 8.7: Figure (a) displays a comparison of the variance of the Gaussian 1
wave process. Figure (b) displays a comparison of the variance of the Gaussian
1 wave process.
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(a) (b)

Figure 8.8: Figure (a) displays the autoskewness of the surface elevation of the
Gaussian 1 wave process. Figure (b) displays the autoskewness of the surface
elevation of the Gaussian 2 wave process.

(a) (b)

Figure 8.9: Figure (a) displays the autoskewness of the velocity field of the
Gaussian 1 wave process. Figure (b) displays the autoskewness of the velocity
field of the Gaussian 2 wave process.

positive values occur more often than extreme negative values. Curiously, it
seems as if in the autoskewness of the velocity field in Figure 8.9 there may
possibly be a slight decrease in autoskewness. However, it is very unclear due to
there being very few samples. Either way, the reduction in autoskewness is very
slight. For Gaussian 1 autoskewness varies between ≠0.0887 and ≠0.063 and
for Gaussian 2 autoskewness varies between ≠0.1235 and ≠0.0957. Yet, it is
noticeable that the autoskewness is ever so slightly negatively skewed resulting
in the left tail being ever so slightly longer or fatter. A common rule of thumb
is that distributions are fairly symmetrical if autoskewness is less that 0.5 and
greater than ≠0.5. The autoskewness of the surface elevation and velocity field
for both Gaussian 1 and Gaussian 2 are well within those limits. All though it
is curious that in Figure 8.10 we observe that the autoskewness of the velocity
field and autoskewness of the surface elevation develops di�erently from each
other.
In Figure 8.11, autokurtosis of the surface elevation of both the Gaussian 1 and
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8.2. Statistics

(a) (b)

Figure 8.10: Figure (a) compares the autoskewness of the velocity field and
surface elevation of the Gaussian 1 wave process. Figure (b) compares the
autoskewness of the velocity field and surface elevation of the Gaussian 2 wave
process.

Gaussian 2 wave process are clearly increasing. The di�erence between them,
however, is that the wave process with a higher amplitude factor, Gaussian 1,
increases at a much higher rate. At 2 m from the wave maker Gaussian 1 has
an autokurtosis of 3.0250 and at 18 m from the wave maker Gaussian 1 has a
kurtosis of 4.0066. As the Gaussian 1 wave process has propagated along the
tank the surface elevation has become much more extreme.
Similarly, in Figure 8.12 the autokurtosis of the velocity field in also increasing.
Figure 8.13 is highly interesting as it compares the autokurtosis of the surface
elevation and velocity field of both the Gaussian 1 wave process, (a) and the
Gaussian 2 wave process, (b). Clearly, in all cases the autokurtosis increases
as the wave process propagates along the tank. However, it is clear that the
autokurtosis of the surface elevation of Gaussian 1 increases much more sharply
than the velocity field of Gaussian 1. Furthermore, the autokurtosis of the
surface elevation of Gaussian 1 increases at a much higher rate than autokurtosis
of the surface elevation of Gaussian 2. This indicates that the higher amplitude
factor in Gaussian 1, compared to Gaussian 2, increases the rate at which the
process becomes more extreme.
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(a) (b)

Figure 8.11: Figure (a) displays the autokurtosis of the surface elevation of the
Gaussian 1 wave process. Figure (b) displays the autokurtosis of the surface
elevation of the Gaussian 2 wave process.

(a) (b)

Figure 8.12: Figure (a) displays the autokurtosis of the velocity field of the
Gaussian 1 wave process. Figure (b) displays the autokurtosis of the velocity
field of the Gaussian 2 wave process.

8.3 Spectral Analysis

A major issue when estimating the power spectral densities is that the spectral
density estimator has a standard deviation equal to its expected value. This
can lead to the estimate looking very rough and not being particularly useful.
Therefore, we must employ several tactics to smooth the PSD estimate. The
first is to calculate the PSD estimate using the MATLAB function pwelch(x)
which has built-in smoothing functionalities. However, to get a smooth estimate
using pwelch(x), we specified that the signal must be divided into thelongest
possible segments obtainable, yet not to exceed 8 segments with 50% overlap
and used a hamming window.
Then, the spectral density estimate is sent through MATLABs smoothdata(x)
where we specified the use of a Savitzky-Golay filter which is particularly adept
at increasing the precision of the data without distorting the signal tendency.
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8.3. Spectral Analysis

(a) (b)

Figure 8.13: Figure (a) displays the autokurtosis of the velocity field of the
Gaussian 1 wave process. Figure (b) displays the autokurtosis of the velocity
field of the Gaussian 2 wave process.

Figure 8.14(a) compares the estimated PSD at 2 m and at 18 m for the surface
elevation Gaussian 1. We see two e�ects very clearly. The first is a frequency
downshift and the second is a clear change of shape as the right spectral side
band has become elongated. Comparatively, in Figure 8.14(b) the PSD of the
surface elevation of Gaussian 2 does have a frequency downshift and a small
change in shape. Yet they are not of the magnitude as in Figure 8.14(a).
We can better understand how the spectrum of Gaussian 1 develops as it
propagates a long the tank by plotting all the PSD estimates at every position
in the same graph, Figure 8.15(a). We see clearly the further the process
propagates the larger the frequency downshift and shape alteration.
The same comparison in Figure 8.15(a) shows a similar trend a small frequency
downshift and some change in shape as the process propagates along the tank.
This implicates that the increase amplitude factor of Gaussian 1 increasing the
size of or rate at which the process develops.
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(a) (b)

Figure 8.14: Figure (a) compares the PSD at 2 m, (blue), and the PSD at 18 m,
(orange), of the surface elevation of Gaussian 1. Figure (b)compares the PSD
at 6 m, (blue), and the PSD at 18 m, (orange), surface elevation of Gaussian 2.

(a) (b)

Figure 8.15: Figure (a) compares the PSDs of the surface elevation of Gaussian
1 at di�erent positions along the tank. Figure (b) compares the PSDs of the
surface elevation of Gaussian 2 at di�erent positions along the tank. In both
cases the measurement points are evenly spread out from 2 m to 18 m.
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CHAPTER 9

Experiment 2: Effects of
non-uniform Bathymetry

This chapter presents the results of experiment 2 which studies the e�ects
on non-uniform bathymetry on a wave field with a Pierson-Moskowitz wave
spectrum. Section 9.1 presents common mechanical parameters. Section 9.2
studies how the statistical automoments are e�ected by the di�erent shoals. It is
worth noting that previous studies with a similar setup have studied the e�ects of
a JONSWAP spectrum over a symmetric shoal. This thesis studies the e�ects of
a Pierson-Moskowitz spectrum and an asymmetrical shoal. Section 9.3 examines
the statistical comoments of surface elevation and velocity field. Section 9.4
discusses the probability distribution of the velocity field and surface elevation.
Section 9.5 analyses the dependence structure between the velocity field and
surface elevation through the use of Copulae. Note when we write ‘velocity
field’ we are referring to the velocity field in x-direction.
In all figures that have position on the x-axis the red line indicates the start of
the upwards slope, the yellow line indicates the start of the plateau, the purple
line indicates the start of the downwards slope, and the green line indicates the
end of the downwards slope.

9.1 Mechanical Parameters

Figure 9.1 depicts the surface steepness as the wave field propagates over shoal
1 (a), shoal 2 (b), and shoal 3 (c). It is clear that the shoal geometry influences
the steepness. As the upward slope becomes shorter and steeper it leads to the
waves’ steepness increasing at a faster rate. As the wave process propagates
over the shoal plateau, the wave steepness stabilises before it decreases as it
propagates over the downward slope. It is not evident that the downward slope
has the same profound e�ect as the upward slope.
It is unsurprising that the dimensionless depth in Figure 9.2 decreases as the
wave process propagates over the shoal.
Similarly, Figure 9.3, the Ursell number is also a�ected by the shoals geometry.
It increases as the wave process propagates into the shallow regime.
It is interesting to note from Figure 9.4 that the bandwidth remains unchanged
from propagating above the shoal.
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If we now study the BFI in Figure 9.5, we see that the BFI increases slightly over
all three shoals. The BFI of the surface elevation is depicted in Figure 9.5(a),
(c) and (e). In Figure 9.5(a), the BFI is 0.0706 ± 0.001 at x = ≠2.555 m and
increases to 0.1585±0.001 at x = 0 m. In Figure 9.5(b) the BFI is 0.0793±0.001
at x = ≠2.555 m and increases to 0.1439 ± 0.001 at x = 0 m. If we disregard
the three points in front of the shoal 3, Figure 9.5(c), with very high standard
deviations we have a peak in BFI of 0.56 ± 0.03 at x = 0.6 m. The BFI of the
velocity field is depicted in Figure 9.5)(b), (d) and (f). They display similar
behaviour to that of the surface elevation.

(a) (b)

(c)

Figure 9.1: This figure compares the steepness of the surface elevation of shoal
1: (a), shoal 2: (b), and shoal3: (c).
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(a) (b)

(c)

Figure 9.2: This figure compares the dimensionless depth of the surface elevation
of shoal 1: (a), shoal 2: (b), and shoal3: (c).

(a) (b)

(c)

Figure 9.3: This figure compares the Ursell number of the surface elevation of
shoal 1: (a), shoal 2: (b), and shoal3: (c). 55
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(a) (b)

(c) (d)

(e) (f)

Figure 9.4: This figure compares the bandwidth of the surface elevation of shoal
1: (a), shoal 2: (c), and shoal3: (e) and the bandwidth of the velocity field of
shoal 1: (b), shoal 2: (d), and shoal3: (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 9.5: This figure compares the BFI of the surface elevation of shoal 1:
(a), shoal 2: (c), and shoal3: (e) and the BFI of the velocity field of shoal 1:
(b), shoal 2: (d), and shoal3: (f).
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9.2 Automoments

This section presents the autoskewness and autokurtosis of the surface elevation
and velocity field for shoal 1, 2 and 3. The theoretical background for this
analysis can be found in Section 3.3. The results in each point are an average
of the three runs at the same position. The autoskewness and autokurtosis
are calculated through function created for this thesis to include an ‘omitnan’
option.
Figure 9.6(a) shows that the autoskewness of the surface elevation increases
abruptly at the start of the plateau at x = 0 m and reaches a maximum of
0.6393 at x = 0.5 m. From x = 0.4450 m to x = 0.9 m the surface elevation
autoskewness is above 0.5 and we categorise the distribution of the surface
elevation as fairly asymmetric with a elongated or fatter right tail. At x = 2 m
the autoskewness drops to ≠0.1040 and continues to drop to ≠0.1266 at 2.3 m.
By contrast, in Figure 9.6(b) we cannot see the same significant asymmetry
in the velocity distribution. At x = 0.6 m the autoskewness of the velocity
field reaches a maximum of 0.2253 which would characterize the distribution
as fairly symertical. Furthermore, at ≠0.8 m the velocity field autoskewness
is ≠0.0574. The autoskewness of the velocity field starts slightly negative and
transitions to a positive autoskewness.
By comparing the simultaneous velocity field and surface elevation autoskewness
in Figure 9.7, we see that they follow the same trend with a rapid increase and
peak on the shoal plateau. Then, the autoskewness rapidly decreases as the
processes pass the slope behind the plateau and then seems to return back to
initial values the initial autoskewness.
Surprisingly, Figure 9.7 shows that even if we radically alter the shape of the
shoal the wave process behaves in a very similar manner. The autoskewness of
the surface elevation abruptly increases at the the start of the plateau, reaches
a peak and decreases before the end of the plateau. The autoskewness drops
further on the slope after the shoal to reach a minima and then increases slightly.
The individual plots of the autoskewness of the surface elevation and velocity
field of shoal 2 and shoal 3 can be found in appendix A.

(a) (b)

Figure 9.6: Figure (a) displays the autoskewness of the surface elevation as it
propagates over shoal 1.Figure (b) displays the autoskewness of the velocity
field as it propagates over shoal 1.
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Figure 9.7: Comparison between the autoskewness of the surface elevation and
velocity field as the process propagates over shoal1.

(a) (b)

Figure 9.8: Figure (a) compares the autoskewness of the surface elevation and
velocity field as the process propagates over shoal2. Figure (b) compares the
autoskewness of the surface elevation and velocity field as the process propagates
over shoal3.

Figure 9.9(a) shows that the surface elevation autokurtosis is quite stable as
the process propagates towards the shoal. As the process passes x = 0 m the
autokurtosis of the surface elevation sharply increases and reaches a peak at
x = 0.5 m. The location of the maximum surface elevation autokurtosis is the
same as the location of the maximum surface elevation autoskewness. Moreover
we see a very small dip in autokurtosis after the shoal plateau. However, we
cannot be certain that this dip is significant as we have similar values as before
the shoal.
The behaviour of the velocity field autokurtosis, Figure 9.9(b) is the antithesis
of the surface elevation autokurtosis. As the process passes x = 0 m the
autokurtosis of the velocity field decreases and reaches a minima at x = 0.6 m.
As the process reaches the downward slope the autokurtosis of the velocity field
reaches a maxima at x = 2.3 m.
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Figure 9.10 compares the surface elevation and velocity field autokurtosis and
the results are striking. It seems as if the surface elevation and velocity field
behave independently from each other and have their separate maxima, and
minima, at di�erent locations. This is remarkable as deterministic wave theory
teaches us that if we understand the behaviour velocity field then we also know
the behaviour of the surface elevation. The two should be inextricably linked.
Figure 9.11 shows that even when the shoal changes, the behavioural pattern
of the autokurtosis of the surface elevation and velocity field remains the same.
The autokurtosis of the surface elevation of shoal 2 and shoal 3 both have a
maximum at x = 0.6 m. Immediately after shoal 3, the velocity field has a large
maximum, with a kurtosis of 3.14 at x = 1.9 m. This is the largest maximum
achieved by the velocity field for any of the three di�erent shoals.

(a) (b)

Figure 9.9: Figure (a) displays the autokurtosis of the surface elevation as it
propagates over shoal 1. Figure (b) displays the autokurtosis of the velocity
field as it propagates over shoal 1.

Figure 9.10: Comparison between the autokurtosis of the surface elevation and
velocity field as the process propagates over shoal 1.
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(a) (b)

Figure 9.11: Figure (a) compares the autokurtosis of the surface elevation and
velocity field as the process propagates over shoal 2. Figure (b) compares the
autokurtosis of the surface elevation and velocity field as the process propagates
over shoal 3.

9.3 Comoments

In this section we view the results from the comoment analysis for shoal 1,
2 and 3. The theoretical background can be found in Section 3.3. As in the
last section, the results in each position are an average of the results of each
run. Furthermore, the coskewness and cokurtosis are found using a mean of Z1
and Z2 and not using the Vxbest algorithm. Earlier studies have not included
comoments.
Figure 9.12 shows the correlation between surface elevation and velocity field
for the process that propagates over shoal 1. For every position the correlation
is above 0.89 except at x = 1.5 m where the correlation is 0.8319. Notably,
the correlation is much higher after the shoal plateau. Figure 9.13 depicts
the correlation between surface elevation and velocity field for shoal 2. We
see the same trend of higher correlation after the shoal plateau than on the
shoal plateau, and a lower correlation at x = 0 m. In addition, the correlation
between the surface elevation and velocity field for shoal 3, Figure 9.14, shows a
significantly lower correlation on the shoal plateau compared to before or after
the shoal. The lowest correlation is 0.8578 at x = 0.3 m compared to 0.8989 at
x = ≠0.4 m and 0.9626 at x = 1.9 m.
There are two types of coskewness for bi variate simultaneously distributed
variables. The first is “2,1, Equation (3.15), and the second is “1,2,
Equation (3.16). For all analysis of simultaneously distributed variables in
this thesis we define the ADV measurements in x-direction as our X variable
and the ultrasound probes as our Y variable.
Figure 9.15 displays the coskewness of surface elevation and velocity field as the
process passes over shoal 1. We see that both versions of coskewness have the
same shape as the autoskewness. They increase to a peak as the process passes
the shoal plateau and then rapidly decrease before the end of the shoal plateau.
The coskewness also has a minima at on the downward slope. We also note
that (1,2)coskewness displays significantly higher values than (2,1)coskewness.
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Figure 9.12: Correlation between surface elevation and velocity field for shoal 1.

Figure 9.13: Correlation between surface elevation and velocity field for shoal 2.

Moreover, we see the coskewness of shoal 2, Figure 9.16, behave in a very similar
manner. The form of both (1,2)coskewness and (2,1)coskewness for shoal 2 is
almost identical to that of (1,2)coskewness and (2,1)coskewness for shoal 1.
By contrast, the coskewness of shoal 3, Figure 9.17, does not display the rapid
decrease. Both versions of coskewness, for shoal 3, reach a maximum at x = 0.6
m and have minima after the shoal plateau.
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Figure 9.14: Correlation between surface elevation and velocity field for shoal 3.

Figure 9.15: Coskewness of velocity field and surface elevation at di�erent
positions along the tank. Shoal1.
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Figure 9.16: Coskewness of velocity field and surface elevation at di�erent
positions along the tank. Shoal2.

Figure 9.17: Coskewness of velocity field and surface elevation at di�erent
positions along the tank. Shoal3.

There are three types of cokurtosis for bi variate simultaneously distributed
variables: (2,2)cokurtosis found in Equation (3.17), (3,1)cokurtosis found in
Equation (3.18), and (1,3)cokurtosis found in Equation (3.19).
In Figure 9.18 we see that the the mix of the velocity field and surface elevation
a�ects the form of the cokurtosis in the sense that (1,3)cokurtosis is much larger
than (3,1)cokurtosis. As a reminder the numbers 1 and 3 in (1,3)cokurtosis refers
to the exponentials in the cokurtosis function. Additionally, in (1,3)cokurtosis
the velocity field part is to the power of 1, whilst the surface elevation is to
the power of 3. Notably, (3,1)cokurtosis has a local minimum at x = 0.3 m
whilst both (2,2)cokurtosis and (1,3)cokurtosis are increasing. Moreover, we
see that all three cokurtosis have a minimum at x = 1.5 m. This minimum is
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not as prevalent for all the of the cokurtosis for shoal 2, Figure 9.19 or shoal 3,
Figure 9.20.
The cokurtosis’ of shoal 2 demonstrates the clear importance of the mix of ADV
and probes on the final cokurtosis. Yet, this e�ect seems more minimal than
for shoal 1. We also see that the di�erent (2,2)cokurtosis seems to have a peak
earlier than (1,3)cokurtosis. Contrarily, we see that (3,1)cokurtosis does not
increase until after the shoal plateau.
Similarly, although all the cokurtosis’ of shoal 3 have a local maxima on the
shoal plateau, all of the cokurtosis’ have a larger maxima just behind the shoal
plateau.

Figure 9.18: Cokurtosis of velocity field and surface elevation at di�erent
positions along the tank. Shoal 1.

Figure 9.19: Cokurtosis of velocity field and surface elevation at di�erent
positions along the tank. Shoal 2.
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Figure 9.20: Cokurtosis of velocity field and surface elevation at di�erent
positions along the tank. Shoal 3.
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9.4 Probability Estimate

The results in this section compares the probability distribution of the data to
that of a normal distribution. Due to time constraints we limit our analysis to
shoal 1.
Firstly, we study quantile to quantile plots, thereafter Q-Q plots. They compare
the probability distribution of the experimental data to that of a theoretical
normal distribution by plotting their quantiles against each other, Wilk and
Gnanadesikan (1968). The Q-Q plots are generated through MATLABs
qqplot(x)

Secondly, we use kernel density estimation, through MATLABs ksdensity(x),
to estimate a probability density function, at specific locations along the tank,
for our experimental data.

Q-Q plots

For the Q-Q plots, Figure 9.21 and Figure 9.22, the surface elevation, or velocity
field, is represented in blue and the normal distribution is the 45¶ red line.
Figure 9.21(a) and Figure 9.22(a) shows the the center quantiles of the surface
elevation and velocity field distributions align with the quantiles one would
expect from a normal distribution. We see that the experimental data primarily
deviates from a normal distribution in the tails. Moreover, Figure 9.21(a)
shows that the probability distribution of the surface elevation at x = 0 m
is highly similar to a normal distribution with the exception that in the left
tail the surface elevation quantiles sharply decrease and in the right tail some
quantiles are slightly above Gaussian values. The probability distribution of
the velocity field in Figure 9.22(a) shows a larger deviation from a normal
distribution compared to Figure 9.21(a). The quantiles in the left tail are larger
than expected from a normal distribution whilst the quantiles in the right tail
are less than a normal distribution.
As the wave process continues to propagate to x = 0.9 m we see that the
tails of the probability distribution of the surface elevation, in Figure 9.21(b),
have increased in size. The quantiles of the right tail have grown significantly
from Figure 9.21(a), and are much higher than that of a normal distribution.
Furthermore, we see that the left tails have also grown and the surface elevation
quantiles are much greater than Gaussian ones, before they suddenly drop o�.
The tails of the velocity field probability distribution, in Figure 9.22(b), have
also grown. However, the tails of the velocity field distribution behave very
di�erently compared to the tails of the surface elevation. In Figure 9.22(b) we
see that the left tail is much greater than the expected normal distribution, and
the right tail is much less than the normal distribution.
In Figure 9.21(c) we see that the right tails has reduced in size whilst the left
tail still has a similiar shape to that of Figure 9.21(b). Similarly, we see that in
in Figure 9.22(c) the right tail is slightly reduced and the left tail is similar to
Figure 9.22(b).
As the process has propagated beyond the shoal to x = 2.7 m, Figure 9.21(d)
and Figure 9.22(d), we see that the change becomes even more stark. The
right tail of the surface elevation probability distribution,Figure 9.21(d), has
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gone from being much larger compared to a normal distribution to a little less
that the quantiles given by a normal distribution. Whilst, the deviation from a
normal distribution in left tail has significantly reduced. Likewise, the deviation
in left and right tail from a normal distribution have been significantly reduced
in Figure 9.22(d).

(a) Shows the measurement of the probe
placed at x = 0 m.

(b) Shows the measurement of the probe
placed at x = 0.9 m.

(c) Shows the measurement of the probe
placed at x = 1.2 m.

(d) Shows the measurement of the probe
placed at x = 2.7 m.

Figure 9.21: This figure shows Q-Q plots of the surface elevation at di�erent
locations along the tank.
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(a) Shows the measurement of the probe
placed at x = 0 m.

(b) Shows the measurement of the probe
placed at x = 0.9 m.

(c) Shows the measurement of the probe
placed at x = 1.2 m.

(d) Shows the measurement of the probe
placed at x = 2.7 m.

Figure 9.22: This figure shows Q-Q plots of the velocity field at di�erent
locations along the tank.

Estimated Probability Density Function

We continue our analysis of the probability distributions of the surface elevation
and velocity field by comparing their estimated PDFs with that of a normal
distribution.
Figure 9.23(a) we that the estimated pdf of the the surface elevation is very
similar to that of a normal distribution. Likewise, Figure 9.24(a) the velocity
field PDF is also similar to that of a normal distribution.
As the process propagates to x = 0.9 m we see that the surface elevation PDF,
Figure 9.23(b), has changed form by developing an elongated right tail an the
mode has shifted to the left. The same trend is visible in Figure 9.24(b) as the
mode has shifted a little to the left.
We observe that as the process propagates further, to x = 1.2 m the shape
of Figure 9.21(c) has shifted back towards a normal distribution as the
elonglongated tail seen in Figure 9.23(b) has retracted slightly and the mode
has moved towards the middle of the probability distribution. The shape of
the velocity field distribution, Figure 9.22(c) seems almost Gaussian. It is clear
that the probability distribution of the surface elevation and the probability of
the velocity field probability distribution behave di�erently from each other.
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After the shoal, at x = 2.7m we see that the probability distribution of
the surface elevation, Figure 9.23(d) , has returned to resemble a Gaussian
distribution. Likewise, the probability distribution of Figure 9.24(d) also seems
to resemble a Gaussian distribution with the exception that the mode is shifted
a little to the right.

(a) Shows the measurement of the probe
placed at x = 0 m.

(b) Shows the measurement of the probe
placed at x = 0.9 m.

(c) Shows the measurement of the probe
placed at x = 1.2 m.

(d) Shows the measurement of the probe
placed at x = 2.7 m.

Figure 9.23: This figure compares estimated PDFs of the surface elevation at
di�erent locations along the tank.
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(a) Shows the measurement of the probe
placed at x = 0 m.

(b) Shows the measurement of the probe
placed at x = 0.9 m.

(c) Shows the measurement of the probe
placed at x = 1.2 m.

(d) Shows the measurement of the probe
placed at x = 2.7 m.

Figure 9.24: This figure compares estimated PDFs of the velocity field at
di�erent locations along the tank.
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9.5 Copula

This section introduces three di�erent copulae and attempts to describe the
dependence structure of the surface elevation and velocity field. The theoretical
background can be found in Section 3.5. The copula is fitted to the data using
maximum likelihood using MATLABs copulafit. The estimation methodology
used in this thesis is inspired by Bouyé et al. (2000).
To best visualise the dependence structure we use scatter-histograms which plot
histograms of the marginals of the surface elevation and velocity field on the
axis of a scatter plot. The scatter plot contains simulated data distributed by
the copula created based on the surface elevation and velocity field.
Figure 9.25 presents the development of Gaussian copulae, Equation (3.28), as
the stochastic process propagates along the tank. It seems as if the marginals
are quite similar, although the marginals of the surface elevation, on the x-axis,
have noticeably longer tails. A Gaussian copula does not have tail dependence,
i.e. there is no change in the relationship between the surface elevation and
velocity field for very large or very small values.
Figure 9.26 depicts the development of T-copulae, Equation (3.29), as the
process propagates a long the tank. The trend of the marginal probability
distribution of the surface elevation be skewed as the process propagates is also
evident when using the T-copula. The T-copula has both positive and negative
tail dependence of the same magnitude.
Figure 9.27 displays the development of Gumbel-copulae, Equation (3.30), as
the process propagates along the tank. A Gumbel copula has positive tail
dependence but not negative tail dependence. This means that if X1 reaches
large extreme values there is a tendency for X2 to reach large extreme values
as well.
For all three copulae, Figure 9.25, Figure 9.26, and Figure 9.27, we see that the
copula distributed simulated data become more concentrated along the diagonal
axis of the scatter plot.
The copula that best fits our data is the one that minimises the Akaike
information criterion, AIC, Equation (3.31). We see from Section 10.2 that
for all positions it is the T-copula that minimises AIC. For positions x = 0 m,
x = 1.2 m, x = 2.7 m the second best fit is the Gaussian copula. At x = 0.9 m
the second best fit is the Gumbel copula.

AIC

Copula
x [m] 0 0.9 1.2 2.7

T ≠4.97 ◊ 105 ≠4.89 ◊ 105 ≠4.72 ◊ 105 ≠6.69 ◊ 105

Gaussian ≠4.63 ◊ 105 ≠4.71 ◊ 105 ≠4.66 ◊ 105 ≠6.66 ◊ 105

Gumbel ≠4.60 ◊ 105 ≠4.72 ◊ 105 ≠4.53 ◊ 105 ≠6.30 ◊ 105

Table 9.1: The AIC of three di�erent copulas at four di�erent locations of Shoal
1. x is the position of the probe.
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(a) Shows the measurement of the probe
placed at x = 0 m.

(b) Shows the measurement of the probe
placed at x = 0.9 m.

(c) Shows the measurement of the probe
placed at x = 1.2 m.

(d) Shows the measurement of the probe
placed at x = 2.7 m.

Figure 9.25: The figure shows the development of a Gaussian copula as the
stochastic process propagates along the tank. The surface elevation is on the
x-axis and the velocity field is on the y-axis. The histograms describing the
marginal distributions are also shown on their respective axis.
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(a) Shows the measurement of the probe
placed at x = 0 m.

(b) Shows the measurement of the probe
placed at x = 0.9 m.

(c) Shows the measurement of the probe
placed at x = 1.2 m.

(d) Shows the measurement of the probe
placed at x = 2.7 m.

Figure 9.26: The figure shows the development of a T-copula as the stochastic
process propagates along the tank. The surface elevation is on the x-axis and
the velocity field is on the y-axis. The histograms describing the marginal
distributions are also shown on their respective axis.
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(a) Shows the measurement of the probe
placed at x = 0 m.

(b) Shows the measurement of the probe
placed at x = 0.9 m.

(c) Shows the measurement of the probe
placed at x = 1.2 m.

(d) Shows the measurement of the probe
placed at x = 2.7 m.

Figure 9.27: The figure shows the development of a Gumbel copula as the
stochastic process propagates along the tank. The surface elevation is on the
x-axis and the velocity field is on the y-axis. The histograms describing the
marginal distributions are also shown on their respective axis.
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CHAPTER 10

Discussion

This chapter is dedicated to discussing and interpreting the results and their
limitations, as well as placing them in an academic context. Section 10.1
discusses the results of Experiment 1. Section 10.2 discusses the results of
Experiment 2. Section 10.3 considers the limitations of the research.

10.1 Experiment 1

Experiment one studies the evolution of two narrow banded spectra as they
propagate along a wave tank with uniform bathymetry. The experimental setup
of experiment 1 can be found in Section 7.1. The results of experiment 1 can
be found in Chapter 8.

Mechanical Parameters

It is clear from Figure 8.1 that the steepness of both the Gaussian 1 and
Gaussian 2 wave processes is decreasing as the wave processes propagate along
the tank. A decrease in steepness is may sometimes be an indicator of a decrease
of the nonlinearity of the wave process.
From Figure 8.2 we see that the dimensionless depth is reasonably stable.
However, we see a clear downshift in figure Figure 8.2(a) which we suspect
is due to the wave spectra of the surface elevation experiencing a frequency
downshift.
It is clear that using the half peak half width method of estimating the
bandwidth of a wave spectra undergoing asymmetric spectral deformation
produces significant errors. In future the bandwidth should be estimated in
another manner. Moreover, due to the unreliability of the bandwidth estimation
the BFI calculation is called into question.
Nonetheless, there are a few insights we can gleam from the BFI. The first is
that the Gaussian 2 surface elevation BFI is decreasing as the wave process
propagates along the tank. This steams form the Gaussian 2 steepness decreasing.
Additionally, the initial BFI is much higher for the surface elevation of the
Gaussian 1 compared to the Gaussian 2 process.
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Statistics

The autoskewness of the surface elevation of Gaussian 1 increases as the process
propagates, Figure 8.10. This indicates that the probability distribution of
the surface elevation is developing a slight elongated right tail. However,
the autoskewness is still fairly small and the probability distribution would
still be characterised as symmetric. There may be a slight increase in in the
autoskewness of Gaussian 2, however, it is very slight.
Figure 8.13 compares the autokurtosis of the velocity field and the surface
elevation of Gaussian 1 and Gaussian 2. It is clear that the increased amplitude
factor in Gaussian 1 increases the rate at which the surface elevation autokurtosis
increases compared to Gaussian 2. Aditionally, it is also evident that the
surface elevation autokurtosis increases much faster than the autokurtosis of
the velocity field for the wave process with a higher amplitude factor, Gaussian
1. Comparatively, the increase in the autokurtosis of the surface elevation and
velocity field are very similar for the wave process with a lower amplitude factor,
Gaussian 2.
By considering the autoskewness and the autokurtosis of the velocity field and
surface elevation of Gaussian 1, we notice that the tails in both ends of the
probability distributions grow. This means that as the wave process propagates
the risk of very large waves and very small waves increases. Similarly, the risk
of very high velocities and very low velocities increase.

Spectral Analysis

Figure 8.14(a) compares the power spectral density of the surface elevation
of Gaussian 1 at 2 m and 18 m. Figure 8.14(b) compares the power spectral
density of the surface elevation of Gaussian 2 at 6 m and 18 m. This image is
extremely similar to Figure 2 in K. B. Dysthe et al. (2003). They used numerical
simulations to study the evolution of fairly narrow banded gravity wave spectra.
K. B. Dysthe et al. (2003)’s Figure 2 is the result of changing the bandwidth of
a wave process and keeping the amplitude factor constant, and our Figure 8.14
is the result of changing the amplitude factor and keeping the bandwidth the
same. These are two di�erent methods of achieving the same thing, which is
studying the e�ects of two wave spectra with di�erent initial BFI. Figure 2(a)
has a bandwidth of � = 0.1 Hz and Figure 2(b) has a bandwidth of � = 0.3 Hz.
Since, BFI is defined as steepness over bandwidth. Thus, Figure 2(a) will have
a higher initial BFI than Figure 2(b). Figure 8.14(a) has an amplitude factor of
– = 0.05 and Figure 8.14(b) has an amplitude factor of – = 0.025. This means
that Figure 8.14(a) will have a higher initial BFI than Figure 8.14(b).
Moreover in Figure 8.14 we see two e�ects clearly. The first is a frequency
downshift and the second is spectral deformation. The frequency downshift is
due to nonlinear e�ects other than modulation instability.

10.2 Experiment 2

Experiment 2 studies the e�ects on non-uniform bathymetry. Although similar
experimental research has been conducted in the past, we would like to point to
key di�erences. Firstly, our wave process has a Pierson-Moskowitz wave spectra
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whilst previous research, particularly Trulsen, Raustøl et al. (2020), utilised a
JONSWAP wave spectra. Secondly, our first two shoals are asymmetric whilst
the third is a ‘step’. The research in Trulsen, Raustøl et al. (2020) used a
symmetric shoal. The experimental setup of experiment 2 can be found in
Section 7.1. The results of experiment 2 can be found in Chapter 9.

Mechanical Parameters

From Figure 9.1, Figure 9.2, and Figure 9.3 we see that as the process propagates
over the shoal the steepness increases, the dimensionless depth decreases and the
Ursell number increases which all indicate that as the wave process propagates
over the shoal it becomes more nonlinear.
Figure 9.4(a), (c), and (e) shows that the bandwidth of the surface elevation, for
all three di�erent shoals, has small deviations, but remains somewhat constant.
It is di�cult to determine if there is a slight increase in the bandwidth of
velocity field in Figure 9.4(b), (d), and (f) or if it somewhat constant with
significant variability.
Although, the BFI of the surface elevation in Figure 9.5(a), (c), and (e) increases
as the wave process propagates over the shoals it is not high enough to indicate
that the process is modulationally unstable. The BFI of the velocity field display
the same behaviour, Figure 9.5(b), (d) and (f), and are also modulationally
stable.

Automoments

Our results in Figure 9.6, Figure 9.7, and Figure 9.7 are in accordance with
several studies which show that the autoskewness of the surface elevation of
an irregular velocity field propagating over a shoal will have a maximum on
the shoal plateau and an minimum on the downward slope, Trulsen, Zeng
and Gramstad (2012), Gramstad et al. (2013), Trulsen, Raustøl et al. (2020),
Lawrence, Trulsen and Gramstad (2021).
Similarly, the velocity field autoskewness are also in accordance with the results
in Trulsen, Raustøl et al. (2020) and Lawrence, Trulsen and Gramstad (2021).
The maximal autoskewness of the surface elevation, “s, and velocity field, “v,
that we achieve is “s = 0.64, “v = 0.23 for shoal 1, “s = 0.63s, “v = 0.20 for
shoal 2, and “s = 0.64, “v = 0.22 for shoal 3. It is striking that even though we
dramatically change the shape of the shoal, the values of the autoskewness are
very similar. Our values are also very similar to the simulations in Lawrence,
Trulsen and Gramstad (2021), where they achieved an autoskewness of “s = 0.67
with Tp = 1.1 s, Hs = 2.5 cm, and depth h1 = 0.53 m and h2 = 0.11 m. We
also see similar values in Trulsen, Raustøl et al. (2020). This is particularly
interesting as the wave field in Trulsen, Raustøl et al. (2020) is a JONSWAP
spectrum with a peak enhancement factor of 3.3, whilst the wave field in our
experiments is a Pierson-Moskowitz spectrum.
Likewise, our autokurtosis results, in Figure 9.9, Figure 9.10, and Figure 9.11
also coincide with other publications, Trulsen, Zeng and Gramstad (2012),
Gramstad et al. (2013), Trulsen, Raustøl et al. (2020), Lawrence, Trulsen
and Gramstad (2021). It is worth noting that only Trulsen, Raustøl et al.
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(2020) and Lawrence, Trulsen and Gramstad (2021) report the autokurtosis
of the velocity field. Moreover, in these publications there is variation in the
location of the transition zone between upward slope and shoal plateau. In
the simulations of Lawrence, Trulsen and Gramstad (2021) we see that the
distance from the leading edge of the shoal plateau to the maximum in surface
elevation autokurtosis, varies with peak period. Our maximal surface elevation
autokurtosis is Ÿ = 3.43 at 0.5 m for shoal 1, Ÿ = 3.54 at 0.6 m for shoal 2,
and Ÿ = 3.51 at 0.6 m. The locations of our maxima are fairly similar to the
simulated results in Lawrence, Trulsen and Gramstad (2021) with Tp = 1.1 s.
Furthermore, our results confirm the observation by Lawrence, Trulsen and
Gramstad (2021), stating that there is a tendency for the local minimum of the
autoskewness of surface elevation and the local maximum of the autokurtosis of
the horizontal velocity field to be at the same location.
It is highly noticeable that our maximal autokurtosis is significantly lower than
the experimental results in Trulsen, Zeng and Gramstad (2012). This could
be attributed to the fact that our experimental results are produced using a
Pierson-Moskowitz spectra, however the surface elevation have been filtered and
interpolated to remove dropouts. It is a fine line to filter and interpolate the
data enough to remove the dropouts, and not alter the shape. Especially, since
the autokurtosis is a measure of outliers. Therefore, there is some uncertainty
linked to the actual values of autokurtosis. On the other hand, the reader is
reminded that our experimental values have all been averaged so that some of
the idiosyncratic noise should significantly reduced.

Comoments

An analysis of the comoments of velocity field and surface elevation in an
irregular wave field propagating through inhomogeneous media, has to our
understanding never been done before.
When learning about deterministic wave theory, we are taught that if you
know the behaviour and the characteristics of the surface elevation then we
automatically know the behaviour and the characteristics of the velocity field,
Gevik, Pedersen and Trulsen (2021). Therefore, a natural starting point for
an analysis of the simultaneous behaviour of the velocity field and surface
elevation is to study the correlation between the two, Figure 9.12, Figure 9.13,
and Figure 9.14.
The results for shoal 2, and shoal 3 show that the correlation drops as the wave
distribution propagates over the shoal before it increases on the lee side of the
shoal. The correlation between the surface elevation and velocity field of the
wave process that propagates over shoal 1 shares the tendency to increase after
the shoal, however, there are some significant deviations.
It is clear from Figure 9.15, Figure 9.16, and Figure 9.17 that the coskewness
follows the shape of the autoskewness of the velocity field and surface elevation.
This is to be expected as autoskewness of the velocity field and the autoskewness
of the surface elevation share the same form. Yet, there is a distinguishable
di�erence in the maximal values of coskewness achieved across the three
shoals. With the highest (1,2)coskewness achieved for shoal 1, and the lowest
(1,2)coskewness achieved over shoal 3. It seems that as the leading slope of the
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shoal becomes steeper the coskewness over the shoal decreases.
When comparing the cokurtosis of shoal 1, Figure 9.18, with the correlation
in Figure 9.12, we see that at x = 1.5 m both the correlation drops and the
cokurtosis. If we assume that the velocity field and surface elevation should be
highly correlated then the sudden drop in correlation at x = 1.5 m for shoal 1
leads to some uncertainty as to the quality of the other comoments at 1.5 m for
shoal 1.
A clear trend emerges as we study the cokurtosis of shoal 1, shoal 2, shoal 3
in comparison, Figure 9.18, Figure 9.19, Figure 9.20. The maximal cokurtosis
achieved by the wave process, decreases as the shoals leading slope becomes
steeper.

Probability Estimate

From the Q-Q plot of the surface elevation at x = 0 m, Figure 9.21(a), we see
that it is an almost a completely Gaussian distribution with a few deviations.
The left tail has a sharp decrease for the smallest quantiles which probably is
due to the filtering process. Our dropouts were located in the wave troughs just
after the local minimum. It is unsurprising the that the interpolation may have
changed the probability distribution of the wave troughs. Therefore the reader
is advised to disregard the sharp decrease in the left tail in the Q-Q plots of
the surface elevation.
We see that as our wave process propagates inwards on the shoal, x = 0.9 m,
the tails of the surface elevation Q-Q plot grows. The quantiles of the left and
the right tail are much larger than expected from a Gaussian distribution. This
means that more extreme values, outliers, are possible and the risk of rogue
waves is greater. Our observations align closely with Cherneva et al. (2005)
who states that near Gaussian distributions underestimate the probability of
large wave crests.
The Q-Q plot of the surface elevation at x = 1.2 m is interesting because the
right tail has significantly decreased, lowering the probability of large values for
the surface elevation. However, the left tail remains very similar. There is an
asymmetric decrease in tail mass.
After the shoal, the quantiles in the right tail have become smaller than the
values expected from a Gaussian distribution. Contrarily, the quantiles in the
left tail are still larger than expected. This implies that we can expect smaller
large values of the surface elevation, and larger small values of the surface
elevation than predicted by a Gaussian distribution.
The quantiles of the velocity field behave remarkably di�erent from the quantiles
of the surface elevation. The Q-Q plot of the quantiles of the velocity field at
x = 0 depict a distribution that has some minor deviations from a Gaussian
distribution before propagating over the shoal plateau. The quantiles of the
right tail are smaller than expected from a Gaussian distribution and the left
tail is a larger than expected from a Gaussian distribution. As the wave process
propagates over the shoal plateau, these characteristics are strengthened. This
means that at x = 0.9 m and x = 1.2 m we can expect fewer high velocity
values compared to a Gaussian distribution and more small velocity values.
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After the slope, at x = 2.7 m, we see that the quantiles of the left tail have
become similar to those of a Gaussian distribution. The quantiles of the right
tail are still less than expected of a Gaussian distribution. It seems as if a
Gaussian distribution continuously over predicts the largest quantiles of the
velocity field.
The estimated probability density functions help in our attempt to understand
the behaviour of the stochastic process as it propagates over the shoal. The
estimated PDF of the surface elevation tells a distinct tale. As the process
enters the shoal it is near Gaussian, it then becomes noticeable asymmetrical
with a positive autoskewness. This asymmetry does not last. Even before the
end of the shoal plateau the process has started to stabilise and the asymmetry
has decreased. After the the shoal, the probability distribution of the surface
elevation returns to a near Gaussian distribution.
Due to the probability distribution of the velocity field having small deviations
for a Gaussian distribution, it is much harder to interpret the estimate
probability distributions. Although we can see the evidence of the autoskewness,
especially at 2.7 m where there is a clear left tail.
It striking to compare the way in which the surface elevation and velocity
field develop. The two dynamic stochastic processes behave independently
of each other. Moreover, we observe that the the wave process is a dynamic
stochastic process even when it is characterised by a Pierson-Moskowitz wave
spectra without modulation instability. Underlining that even though there is
no modulation instability, it does not mean that the nonlinearity of the wave
process is unimportant.

Copulae

Copulae are commonly used within quantitative finance and applied to risk
and portfolio management, optimisation and derivatives pricing. Lately, the
use of copulae outside of mathematical finance is gaining traction. Copulae
are used in reliability analysis of highway bridges in civil engineering, Kilgore
and Thompson (2011). Copulae are used in medical research, specifically,
magnetic resonance imaging research to segment images, Lapuyade-Lahorgue,
Xue and Ruan (2017). Moreover, copulae are used to study the joint statistics
of electroencephalographic (EEG) signals, with applications to early diagnosis
of Alzheimer’s, Iyengar et al. (2010).
The use of copulae in the study of wave processes is also gaining popularity. Cor-
bella and Stretch (2013) used Archimedean copulae to study the dependencies
of wave height, wave period, storm duration, water level and storm inter-arrival
time using data from the east coast of South Africa. They found that only wave
height, wave period, and storm duration have a clear dependence structure. Bai
et al. (2020) proposed a joint probability distribution of coastal wind waves
using copulae. They include wave height, wind speed, and wave period in their
research.
We see from our results that the copula that best describes the dependence
between the surface elevation and velocity field is a T-copula, Figure 9.26. This
means that the surface elevation and velocity field have positive and negative
tail dependence.
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The literature review documents numerous publications that research the
marginal behaviour of the surface elevation and velocity field respectively.
Yet, using copulae to study the dependence structure of the velocity field and
surface elevation of an inhomogeneous wave field propagating over a shoal has,
as far as the author is aware, not been attempted before.
Using copulae to model the relationship between the surface elevation and the
velocity field have several advantages.
The first is that it allows to avoid potential fallacies that arise from dependence
models that only use correlation. Although correlation is an extremely useful
measure, it has several pitfalls that are not always obvious. According to,
McNeil, Frey and Embrechts (2015), correlation is only a natural concept in
context the of multivariate normal, or more generally elliptical models, as their
copulae depend only on the correlation matrix and characteristic generator.
The correlation does not have this parametric role for more general multivariate
models. Moreover, the correlation between to random variables is a measure of
linear dependence and therefor gives us no indication of tail dependence.
Secondly, copulae allow us to build multivariate models from the bottom
up. We have a much better understanding of individual behavior of marginal
distributions of the surface elevation and velocity field respectively, compared
to their dependence structure. Using copulae allows us to combine our more
mature understanding of the marginal behavior with a multitude of dependence
models and test their fit.
Lastly, copulae assert dependence on a quantile scale which is convenient when
we want to study the behavior of rogue waves.

10.3 Limitations

All experimental results have limitations as they require those involved to
maintain a high level of variable control. The experimental results su�er the risk
of human error. Our numerical results included several "dropouts", stemming
from data not being properly registered by the probes. This is a limitation with
the Hydrodynamic Laboratory. We could possibly have removed the dropouts
experimentally by using a lower amplitude factor, but this would reduce the
steepness of waves over the shoal. The reduced steepness is emblematic of the
reduced nonlinearity caused by reducing the amplitude factor.
A clear limitation of the study of the mechanical parameters of Section 8.1 is
using the half peak half width estimation method of bandwidth. It produces
unreliable results when studying a process undergoing spectral deformation.
In future work a more reliable method of calculating bandwidth should be
implemented.
The correlation between surface elevation and the velocity field is sometimes
less than 0.9. This could be actual results in accordance with the ‘true’ state of
the world or it could be due to problems with the synchronisation between the
ultrasound probes and ADV. The problem is we do not know for certain and
have no benchmark. This is a perfect topic for numerical simulations.
Moreover, the correlation tested in this thesis is the Pearson correlation
coe�cient which reflects linear correlation of variables. Yet, from our study
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of copulae we see that the dependence in our data is best reflected by a T-
copula indicating that there is tail dependence between the surface elevation and
velocity field. We have not analysed the strength of the tail dependence. Further
research should study the tail dependence in more detail possibly deriving tail
dependence coe�cients.
We calculated copulae for four di�erent positions along the tank. This is due to
computational cost. Although we can gleam valuable insights for the analysis,
studying four positions does not provide the full picture. Further work could
extend the analysis to more positions along the tank. Additionally, we did
our copula analysis for three di�erent copulae. There are many other possible
copula methods that could have been included. This could also possibly be
expanded on in further work.
An analysis of data using Hilbert transforms would have been interesting, but
time limitations saw this relegated to Appendix C. The theory described there
includes novel discoveries made by the author and was therefore included even
though the framework was not applied to the experimental data. This analysis
is planned to be continued in further work.
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CHAPTER 11

Conclusion

Numerous studies have shown, experimentally and numerically, that a
inhomogenous wave field that propagates over non-uniform bathymetry has
a larger probability of rogue waves in the shallow regime above the shoal.
Furthermore, autokurtosis of the surface elevation and velocity field have their
maxima and minima at di�erent locations along the shoal. As a natural
continuation of this work, we wanted to study the e�ects of wave spectra and
the bathymetry separately and therefore performed two di�erent experiments.
The first experiment studies the e�ects of an ‘interesting’ narrow banded
spectrum with uniform bathymetry. The second experiment utilises a ‘boring’
spectrum, but with a varying bathymetry. Experiment one shows that the
autokurtosis of the surface elevation increases faster when it has a higher initial
BFI. Further, the autokurtosis of the surface elevation and velocity field increase
at di�erent rates.
Experiment two studies the e�ects of non-uniform bathymetry on a wave process
with a Pierson-Moskowitz spectrum. We show that the automoments follow
a similar trend as Trulsen, Raustøl et al. (2020). Q-Q plots and estimated
probability functions reveal that distributions of the surface elevation and
velocity field behave di�erently. They also show that the stabilisation of the
surface elevation autokurtosis and autoskewness is asymmetric. Furthermore,
our results indicate that the cokurtosis of the surface elevation and velocity field
decreases as the uphill slope onto the shoal becomes steeper. The dependence
structure of the surface elevation and velocity field is described by a T-copula
implying that the surface elevation and velocity field have tail dependence in
both tails.
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APPENDIX A

Extended Results

A.1 Experiment 2

Figure A.1 are the plots of the autoskewness of the surface elevation of shoal
2, (a), and shoal 3,(b). They are not included in the main text as they
are superfluous. They both depict the autoskewness increasing as the wave
propagates over the shoal plateau. Noticeably, we see that the autoskewness is
stable until x = 0 m where the shoal plateau starts.
Similarly, in Figure A.2 are the plots of the autoskewness of the velocity field
of shoal 2, (a), and shoal 3, (b).

(a) (b)

Figure A.1: Figure (a) surface elevation autoskewness, shoal 2. Figure (b)
surface elevation autoskewness, shoal 3.
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(a) (b)

Figure A.2: Figure (a) velocity field autoskewness, shoal 2. Figure (b) velocity
field autoskewness, shoal 3.
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APPENDIX B

Verifying the Equipment

To test the ultrasound probes and the Vectrino we conducted an experiment
with monochromatic waves with a constant depth. We performed eight di�erent
test cases with three runs in each case. This gave us a grand total of 27 runs.
Each run lasted 1 minute. We started with a very low small wave maker
displacement, and for each test case we increased it.

Test case Displacement
1 0.050
2 0.075
3 0.100
4 0.125
5 0.150
6 0.175
7 0.200
8 0.225

Table B.1: Test cases of equipment verification

The water depth kept constant at 0.5 m. and the ADV depth was kept constant
at -0.0725 below the quiescent surface. The peak period was Tp = 1 for all runs.

B.1 Ultrasound Probes

To test the ultrasounds probes we want to test their ability to reproduce a
monochromatic wave. We found the theoretical amplitude manually. Due to
time constraints and the exercise being of limited interest we chose to only
include a plot of test case 1.
We see that our measurements fit well with a monochromatic wave. There are
some slight deviation which is to be expected for experimental data.

B.2 ADV

The functionality and accuracy of ADVs in general and Vectrinos in particular
are both heavily documented. The Vectrino is a plug-and-play lab instrument
that is calibrated at the factory. Furthermore, the geometry of the Vectrino
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Figure B.1: Figure comparing two experimental runs in test case 1 with a sine
wave.

probe does not change unless it has been physically damaged in some way.
Damage can easily be visually detected by inspection. Moreover, the Vectrino
has built-in software, called Probe Check, that will detect damage.
P. J. Rusello et al. (2006) found that the Vectrino has an accuracy of 4% by
testing the Vectrino against PIV measurements.
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APPENDIX C

Hilbert Transforms

C.1 The Hilbert transform in 1D

An important first step when introducing Hilbert transforms is to clarify that
they have nothing to do with Hilbert spaces, other than that they are the work
of the same illustrious mathematician, David Hilbert. A Hilbert transform is
a linear operator that transforms a function f(t), where t is a real value, into
Hf(x).
The Hilbert transform on the real line is defined, in King (2009b), by the
principal value integral

Hf(x) = 1
fi

P

⁄ Œ

≠Œ

f(t)
x ≠ t

dt (C.1)

Let
g(x) = 1

fi
P

⁄ Œ

≠Œ

f(t)
x ≠ t

dt (C.2)

then the function f is connected to g by the following result:

f(x) = ≠ 1
fi

P

⁄ Œ

≠Œ

g(t)
x ≠ t

dt (C.3)

Equation C.2 and C.3 are a Hilbert transform pair.

The Hilbert Envelope

There are many alternative definitions of what an envelope of a process can
be. Moreover, there are many di�erent types of Hilbert transform which do
not always share the same statistical properties. The definition of a Hilbert
envelope in this thesis relies on the work of Ochi (1998), Papoulis and Pillai
(2002), and Lindgren (2013).
We define the underlying signal as x(t) and the Hilbert transform as Hf(t).
The Hilbert envelope is then

Á(t) =


x2(t) + Hf2(t) (C.4)

Futheremore we have

x(t) = Á(t) cos Â(t)
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Hf(t) = Á(t) sin Â(t)

where Â(t) is the total phase of x(t).

C.2 Properties of Hilbert Transforms

The Hilbert transform two properties that are highly interesting for this thesis.
The first is that the Hilbert transform and the underlying signal are orthogonal,
meaning that as long as they are at the same time step, they are uncorrelated.
The second is that if the underlying process is Gaussian then the envelope of
the Hilbert transform has a Rayleigh distribution. These properties will be
shown in turn.

The Hilbert transform and its signal are orthogonal

This can be shown two ways, with a Plancherels identity and by calculating
the correlation. This thesis chooses to display the latter proof. It is first worth
defining the inner product such that

Èu, vÍ = Cov(u, v). (C.5)

It is clear that processes that are uncorrelated are orthogonal and vice versa,
as long as they are at the same time step.

Uncorrelated

This proof, based on a proof from Lindgren (2013), will show that as long as
the time di�erence, · = 0 then

Cov(x, x̂) = 0

Proof. Let the underlying process x(t) be a weakly stationary stochastic process
with zero mean E[x] = 0 and power spectrum S(Ê). The covariance is given by

Cov[x, Hf ] = E[x(t + ·), Hf(t)ú]

=
⁄ Œ

≠Œ

⁄ Œ

≠Œ
g(Ê2)ú E[X̂(Ê1), X̂(Ê2)ú]e≠iÊ1(t+·)+iÊ2t dÊ1 dÊ2,

where X̂ is the Fourier transform. We define

g(Ê) =

Y
_]

_[

i for Ê < 0,

0 for Ê = 0,

≠i for Ê > 0.

For a weakly stationary process we have,

E[X(Ê1), Hf(Ê2)ú] = ”(Ê1 ≠ Ê2)S(Ê1),

hence

Cov[x, x̂] = ≠
⁄ Œ

0
Sone≠sided(Ê) sin(Ê·) dÊ.
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Since we have clearly specified that the time di�erence is zero, · = 0 then we
get,

Cov[x, x̂] = 0.

⌅

If the underlying process is Gaussian then Hilbert envelope is
Rayleigh distributed

Let the underlying process, x(t), be a Gaussian process with zero mean,
E[x(t)] = 0 and power spectrum S(Ê). The variance of x(t) is given by

Var[x(t)] = R(0) =
⁄ ≠Œ

Œ
S(Ê1) dÊ1.

Let

g(Ê) = ≠i Sign Ê.

The variance of the Hilbert Transform, Hf(t) of the underlying process x(t) is
given by

Var[Hf(t)] = E[Hf(t)Hf
ú(t)],

=
⁄ Œ

≠Œ

⁄ Œ

≠Œ
g(Ê1)gú(Ê2) E[X̂(Ê1)X̂ú(Ê2)]ei(Ê2≠Ê1)t dÊ1 dÊ2.

Let X̂ denote the Fourier transform. For a weakly stationary process we have

E[X̂(Ê1)X̂ú(Ê2)] = ”(Ê1 ≠ Ê2)S(Ê1).

Therefore we get

Var[x̂(t)] =
⁄ Œ

≠Œ

⁄ Œ

≠Œ
g(Ê1)gú(Ê2)”(Ê1 ≠ Ê2)S(Ê1)ei(Ê2≠Ê1)t dÊ1 dÊ2,

=
⁄ Œ

≠Œ
S(Ê1) dÊ1.

It is clear that the Hilbert transform and the underlying process have the
same variance. The Hilbert transform can be seen as a linear superposition of
di�erent time instances of the underlying process. Since the underlying process
is Gaussian then the Hilbert transform is also Gaussian.
If the under ying process is a weakly stationary Gaussian process then the Hilbert
transform is an identically distributed Gaussian process. At the same time
instance they are uncorrelated. It there must follow that they are independent
at that time instance. The Hilbert envelope is defined by

Á(t) =


x2(t) + Hf2(t).

The square of a Gaussian process, such as the underlying process and the
Hilbert transform, has a Chi-squared distribution. The square root of a Chi-
squared distribution is a sum of several Chi - distributions. This means that if
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Z1, Z2, ..., Zn are independent standard normally distributed variables, i.e with
mean µ = 0 and standard deviation ‡ = 1, we can write

Y =
ı̂ıÙ

nÿ

i=1
Z

2
i

where Y has a chi-distribution with n degrees of freedom. The Hilbert envelope
has this exact structure and must there have a Chi-distribution with two degrees
of freedom, which is a Rayleigh distribution. It is possible to conclude that if
underlying process is Gaussian, then the Hilbert transform is also a Gaussian
process, whilst the Hilbert Envelope is Rayleigh distributed.

C.3 The n-dimensional Hilbert Transform

For the case n = 1 there is only one possible definition of the Hilbert transform.
For the case n Ø 2, there are infinitely many choices. The specific choice given
in King (2009b) is

Hnf(x1, x2, . . . , xn) = 1
fin

P

⁄ Œ

≠Œ

⁄ Œ

≠Œ

⁄ Œ

≠Œ

◊ · · ·
⁄ Œ

≠Œ

f(s1, s2, · · · , sn)ds1, ds2, · · · , dsnrn
k=1(xk ≠ sk)

.

Note that the notation H1 is reserved for the one-sided Hilbert transform and
not the one-dimensional case. Moreover it is assumed that the Cauchy principal
value applies to each individual integral. This means that a the n-dimensional
Hilbert Transform can be concisely defined as

Hnf(x) = 1
fin

P

⁄ Œ

≠Œ
f(s)

nŸ

k=1

1
(xk ≠ sk)ds (C.6)

An important property of n-dimensional Hilbert transforms is that they can be
written as a product of one-dimensional Hilbert transforms. The subscript H(k)
denotes the one-dimensional operator. Therefore the n-dimensional Hilbert
transform can be written as

Hn =
nŸ

k=1
H(k) (C.7)

We also demand that the operator H(k) satisfies that the commutor condition

[H(k), H(j)] = 0, j, k = 1, 2, · · · , n.

Example: The Double Hilbert Transform

The n-dimensional Hilbert transform with n=2, is the double Hilbert transform
which can be expressed as

H2f(x1, x2) = 1
fi2 P

⁄ Œ

≠Œ
P

⁄ Œ

≠Œ

f(s1, s2) ds1 ds2
(x1 ≠ s1)(x2 ≠ s2) (C.8)
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Example: The Hilbert transform of cos(ax)

Let

f(x) = cos(a · x) = cos(a1x1 + a2x2 + · · · + anxn),

the

Hn[cos(a · x)] = 1
fin

P

⁄ Œ

≠Œ

ds1
x1 ≠ s1

⁄ Œ

≠Œ

ds2
x2 ≠ s2

◊ · · ·
⁄ Œ

≠Œ

cos(a1s1 + a2s2 + · · · + ansn) dsn

xn ≠ sn
,

= 1
fin

P

⁄ Œ

≠Œ

ds1
x1 ≠ s1

⁄ Œ

≠Œ

ds2
x2 ≠ s2

◊ · · ·
⁄ Œ

≠Œ

cos(a1s1 + a2s2 + · · · + anxn ≠ any) dy

y
,

= 1
fin

P

⁄ Œ

≠Œ

ds1
x1 ≠ s1

⁄ Œ

≠Œ

ds2
x2 ≠ s2

· · ·

◊ · · · [sin(a1s1 + a2s2 + · · · + anxn)]
⁄ Œ

≠Œ

cos(any) dy

y
,

= 1
fin

P

⁄ Œ

≠Œ

ds1
x1 ≠ s1

⁄ Œ

≠Œ

ds2
x2 ≠ s2

· · ·

◊ · · · [sin(a1s1 + a2s2 + · · · + anxn)] fi Sign an,

= 1
fin

P

⁄ Œ

≠Œ

ds1
x1 ≠ s1

⁄ Œ

≠Œ

ds2
x2 ≠ s2

· · ·

◊ · · ·
⁄ Œ

≠Œ

sin(a1s1 + a2s2 + · · · + ansn) dsn≠1
xn≠1 ≠ sn≠1

.

This can be simplified to

Hn[cos(a · x)] =
I

(≠1)
(n≠1)

2 sin(a · x)
rn

k=1 Sign ak, for n odd
(≠1)

(n)
2 cos(a · x)

rn
k=1 Sign ak, for n even

For n = 2, a1 = 1, a2 = 2 we get

Hn[cos(x + y)] = (≠1)
(2)
2 cos(x + y)

2Ÿ

k=1
Sign ak

= ≠ cos(x + y)

For n = 3, a1 = 1, a2 = 1, a3 = 1 we get

Hn[cos(x + y + z)] = (≠1)
(3≠1)

2 sin(x + y + z)
3Ÿ

k=1
Sign ak

= ≠ sin(x + y + z)

Are n-dimensional Hilbert transforms orthogonal with their signal?

This section discusses the whether n-dimensional Hilbert transforms are
orthogonal with the underlying signal. This section relies on the work of
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C.3. The n-dimensional Hilbert Transform

King (2009b) and the importance of this section cannot be stated strongly
enough. To be able to be able to discuss the statistical properties of the
multidimensional Hilbert transform, as well as the multi dimensional Hilbert
envelope, we demand that the Hilbert transform is uncorrelated in with the
underlying signal. Consequently the Hilbert transform must be orthogonal to
its underlying signal
From Appendix C.2, it is clear the one dimensional Hilbert transforms are
orthogonal to the underlying signal. Multidimensional Hilbert transforms
are di�erent. If the number of dimensions, n, is an odd number then the
n-dimensional Hilbert transform is uncorrelated with the underlying signal,

⁄

Rn

f(x)Hnf(x) dx = 0, if n = odd number. (C.9)

Proof. From King (2009b), we see that the n-dimensional Hilbert transform
satisfies the Parseval inspired formula

⁄

Rn

Hnf(x)g(x)dx = (≠1)n

⁄

Rn

f(x)Hng(x)dx (C.10)

If we now let g(x) = Hnf(x), the we arrive at
⁄

Rn

{Hnf(x)}2
dx =

⁄

Rn

{f(x)}2
dx. (C.11)

Equation C.10, can also be expressed as
⁄

Rn

Hnf1(x)Hnf2(x) dx =
⁄

Rn

f1(x)f2(x) dx (C.12)

where f1 = f and g = Hnf2, and is a generalisation of C.11 for a
multidimensional case. Now let f œ L

2(Rn) and set g = f , then
⁄

Rn

Hnf(x)f(x) dx = (≠1)n

⁄

Rn

f(x)Hnf(x) dx

which gives us
{1 ≠ (≠1)n}

⁄

Rn

f(x)Hnf(x) dx = 0 (C.13)

If n is odd, then ⁄

Rn

f(x)Hnf(x) dx = 0. (C.14)

From the proof above it is clear that the n dimensional Hilbert transform is
orthogonal with its signal if the number of dimensions corresponds to an odd
number. ⌅
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APPENDIX D

Code

This appendix was inspired by Raustøl (2014) as she included the filtering code
in the appendix of her master thesis. That code was the basis for my filtering
code. In the hopes the I can pay it forward I have attached some code in this
appendix.

D.1 Postprocessing

function [P4] = zeropadding(Z1, Probe4)
%Sizes
N = size(Z1,1);
M = size(Probe4,1);

K = (N-M)/2;
a = ceil(K);
b = floor(K);

%IFFT and separation into real and imag
fn_hat = ifft(Probe4);
fn_real = real(fn_hat);
fn_imag = imag(fn_hat);

%FFTshift
fn_2real = fftshift(fn_real);
fn_2imag = fftshift(fn_imag);

%Zeropadding
before = zeros(a,1);
after = zeros(b,1);

temp_real = cat(1,before,fn_2real);
temp_imag = cat(1,before,fn_2imag);

temp_real = cat(1,temp_real,after);
temp_imag = cat(1,temp_imag,after);

%FFTshift back
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D.1. Postprocessing

fn_real = fftshift(temp_real);
fn_imag = fftshift(temp_imag);

%Combining real and imag
fn_hat = fn_real + 1i*fn_imag;

%FFT back
P4 = real(fft(fn_hat));

%Clearing temporary variables
clear a
clear b
clear before
clear after
clear K
clear M
clear fn_2imag
clear fn_2real
clear fn_hat
clear fn_imag
clear fn_real
clear temp_imag
clear temp_real

disp(’Zeropadding done!’)
end
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