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Abstract

There are important connections between majorization and convex

polyhedra. Both weak majorization and majorization are preorders

related to certain simple convex cones. We investigate the facial struc-

ture of a polyhedral cone C associated with a layered directed graph.

A generalization of weak majorization based on C is introduced. It

de�nes a preorder of matrices. An application in statistical testing

theory is discussed in some detail.
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1 Introduction

In this paper we study some problems related to majorization. For z ∈ IRn

we let z[j] denote the jth largest number among the components of z. If

x,y ∈ IRn one says that x is weakly majorized by y, denoted by x ≺w y,
provided that

k∑
j=1

x[j] ≤
k∑
j=1

y[j] for k = 1, . . . , n.

If, in addition, equality holds for k = n, then x is majorized by y and we

write x ≺ y. Both ≺ and ≺w are preorderings that re�ect how �spread out�
the components of the vectors are. These concepts play an important role in

di�erent areas of mathematics and statistics, see [10], [1] and other papers
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in the special issue of Linear Algebra and Its Appl. (Volume 199, 1994) in

honor of I. Olkin.

There are interesting (convex) polyhedra that are related to (weak) ma-

jorization. This applies to the polytope Ωn of n×n doubly-stochastic matri-

ces as one has the well-known characterization of Hardy-Littlewood-Polya:

x ≺ y if and only if there exists an S ∈ Ωn with x = Sy. For a given

majorization, say x ≺ y, the polytope Ω(x ≺ y) consisting of all S ∈ Ωn

satisfying x = Sy was studied in [5]. Several combinatorial properties of this

polytope were established. As another example, [6] and [7] contains a study

of the concept of weak k-majorization from a polyhedral point of view. Both

≺w and ≺ are cone orderings corresponding to certain simple polyhedral

cones (see [10]). For instance, consider the convex cone Dn+ of nonincreasing

and nonnegative vectors

Dn+ = {x ∈ IRn : x1 ≥ . . . ≥ xn ≥ 0}.

Assume that both the vectors x and y are nonincreasing. Then x is weakly
majorized by y if and only if y − x lies the polar cone of Dn+ (consisting of
the vectors z satisfying wTz ≥ 0 for all w ∈ Dn+). Now, due to the simplicity
of the cone Dn+ one can explicitly determine a �nite set of generators (a
�frame�) so that Dn+ is the set of nonnegative linear combinations of these

generators. From this fact one may derive nice characterizations of Schur-
convex functions and also di�erent characterizations of weak majorization.

In this paper we study from a polyhedral point of view a class of convex
cones that contains Dn+ as a special case. The motivation comes from sta-
tistical testing theory, and this application is discussed in some detail. The

paper is organized as follows. In section 2 we introduce a polyhedral cone

C associated with �layered� directed graphs. In a special case C consists of
nonnegative m × n matrices where no entry is smaller than any entry in a
preceding row. Thus, for n = 1 we have C = Dm+ . The faces of C are stud-

ied (in the general case) and characterized by means of certain partitions

in the graph. In section 3 we relate C to weak majorization and introduce

a new preorder based on C. The application in statistical testing theory is
presented in section 4. It concerns optimal tests for certain testing problems
in discrete experiments.

We describe our notation. Sn denotes the group of permutations on n

elements and Kn is the standard simplex in IRn, i.e., Kn = {x ∈ IRn
+ :∑n

j=1 xj = 1}. For a �nite set V we let IRV denote the vector space of real
valued functions from V to IR. 0 denotes the vector with all components

being zero. If S ⊆ V the vector χS is the incidence vector of S (so χSv equals
1 if v ∈ S and 0 otherwise) and we also de�ne x(S) =

∑
v∈S xv for x ∈ IRV . If
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A ⊆ IRV the convex hull (conical hull) of A is denoted by conv(A) (cone(A)).
The relative interior of a convex set C is denoted by rint(C). For polyhedral
theory, we refer to [4], [12], [14]. Some graph terminology is used, but is is

fairly standard.

2 A cone of row-ordered vectors

Let ni for i = 1, . . . ,m be given positive integers. Let Ri = {(i, j) : 1 ≤ j ≤
ni} for i = 1, . . . ,m and de�ne the index set (or node set) V = R1∪ . . .∪Rm.

Each set Ri is called a row. We let D = (V,E) denote the directed graph

with node set V and with an arc from each node in the row Ri to each node

in the next row Ri+1 for i = 1, . . . ,m − 1. Thus, E = {(u, v) : u ∈ Ri, v ∈
Ri+1 for some i ≤ m− 1}. D is a layered digraph. In the special case where
n1 = . . . = nm = n, the nodes correspond to the entries (or indices) of an
m × n-matrix. We shall study certain problems in the vector space IRV of
real valued functions from V to the reals. In the �matrix special case� above

this vector space may be identi�ed with IRm,n.
We are interested in the polyhedral cone C ⊂ IRV consisting of the vectors

x ∈ IRV that satisfy the following set of homogeneous linear inequalities

(i) xu ≥ xv for all (u, v) ∈ E;
(ii) xv ≥ 0 for all v ∈ V .

(1)

Thus a nonnegative vector x ≥ 0 lies in C i� no component of x is smaller
than a component in the next row. The cone C is full dimensional. If x ∈ C
we say that x is row-ordered.

Our main task in this section is to study the facial structure of C. The

faces and, in particular, the extreme rays of C are of interest in two di�erent
contexts in the subsequent sections; majorization and statistical testing.

The faces of C are related to partitions of V as discussed in the fol-

lowing. Consider a partition N = {N0, N1, . . . , Np} of V where the sets

N1, . . . , Np are nonempty while N0 may be empty. (A more concise no-

tation would be N = (N0, {N1, . . . , Np})). We say that partitions N =
{N0, N1, . . . , Np} and M = {M0,M1, . . . ,Mq} are equal and write N = M
if p = q, N0 = M0 and {N1, . . . , Np} = {M1, . . . ,Mq}, so N1, . . . , Np is just a

renumbering of the setsM1, . . . ,Mp. (This is consistent with (N0, {N1, . . . , Np}) =
(M0, {M1, . . . ,Mq})). The partition N induces an equivalence relation ≡N
on N in the usual way, that is, i ≡N j if and only if i, j ∈ Nk for some k ≤ p.
We write u ≡N 0 if i ∈ N0. If no confusion should arise, we may write ≡ in
stead of ≡N .
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Partitions with a certain relation to the rows R1, . . . , Rm are of interest

below, and to de�ne these some more terminology is useful. For integers

l and r with l ≤ r we call the set I = {l, l + 1, . . . , r − 1, r} an interval

and de�ne l(I) := l, r(I) := r. A family of intervals It, t = 0, . . . , p is

called cross-free if there is a permutation π ∈ Sp+1 with π(0) = 0 such that

r(Iπ(t+1)) ≤ l(Iπ(t)) for t = 0, 1, . . . , p − 1. Let N = {N0, N1, . . . , Np} be a

partition and de�ne the associated sets (�projections�)

I(Nt) = {i ≤ m : Ri ∩Nt 6= ∅}

for t = 0, . . . , p. We say that N is cross-free if I(N0), I(N1), . . . , I(Np) is a

family of cross-free intervals. It is not di�cult to verify that N is cross-free

if and only if the following conditions hold

CF(i) if u ≡ v where u ∈ Ri1 , v ∈ Ri2 and i1 < i < i2 then u ≡ w for

each w ∈ Ri;
CF(ii) for each i < m there is at most one k such that Nk intersects

both row Ri and Ri+1;
CF(iii) Rk ∩N0 6= ∅ implies that Rt ⊂ N0 for all t > k.

Roughly, this means, e.g. in the matrix case, that the sets N0, N1, . . . , Np

are stacked on top of each other with N0 at the bottom of the matrix, see
Figure 1. Let P be the set of all cross-free partitions (with equality as de�ned
above).

N0

N1

N2

N3 N4

Figure 1: A cross-free partition in the matrix case, m = 3 and n = 4.

We de�ne a polyhedral cone C(N ) associated with the partition N :

C(N ) = {x ∈ C : xu = xv when u ≡ v; xv = 0 when v ≡ 0}. (2)

A crucial property of C(N ) holds when N is a cross-free partition.
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Lemma 2.1 Let N ∈ P. Then there is a point x ∈ C(N ) such that for each

u, v ∈ V one has that xu = xv if and only if u ≡ v.

Proof. Assume that the partition N = {N0, N1, . . . , Np} is cross-free.

Then the sets I(N0), I(N1), . . . , I(Np) are intervals and for some permutation

π ∈ Sp+1 with π(0) = 0 we have r(Iπ(t+1)) ≤ l(Iπ(t)) for t = 0, . . . , p− 1. Let
x ∈ IRV denote the vector with xv = t when v ∈ Nπ(t), t = 0, . . . , p. Then,

due to the construction, x ∈ C, and furthermore xu = xv if and only if

u ≡ v.
There is a bijection between P and the set of faces of C. This is described

in the following proposition.

Proposition 2.2 (i) For each N ∈ P the cone C(N ) is a face of C.

(ii) If F is a nonempty face of C, there is an N ∈ P with F = C(N ).

(iii) Let N ,M∈ P. Then C(N ) = C(M) if and only if N =M.

(iv) If N = {N0, N1, . . . , Np} is a cross-free partition the face C(N ) has
dimension p.

Proof. (i). Let N = {N0, N1, . . . , Np} be a cross-free partition of N . We
prove that C(N ) (as de�ned in (2)) is a face of C by �nding an equivalent
system describing C(N ) and consisting of valid inequalities for C set to
equality.

From property CF(i) it follows that if (i1, j1) = u ≡ v = (i2, j2) and

i1 < i2 then there is a path from u to v in D, say u = u0, u1, . . . , ut = v,
where each ui ≡ u for each i. This means that each equality xu = xv in (2)

is equivalent to the equalities xui = xui+1 for i = 0, . . . , t − 1. Similarly, by
CF(iii), if u ≡ 0 there is a path in D consisting of nodes u = u0, u1, . . . , ut
with ut ∈ Rm and ui ≡ u for all i. Thus, xu = 0 is equivalent to xu =
xu1, . . . , xut−1 = xut, xut = 0. We may therefore replace all the equalities in

(2)) by an equivalent system of valid inequalities for C set to equality, and

therefore C(N ) is a face of C.
(ii). Observe that all the inequalities xv ≥ 0 for v ∈ V \ Rm may be

removed in the de�nition of C; they are implied by the remaining inequalities.

Let F be a face of C. Then

F = {x ∈ IRV : xu = xv when (u, v) ∈ E0, xv = 0 when v ∈ V0}

for suitable E0 ⊆ E and V0 ⊆ Rm. De�ne for each v ∈ V the set N(v) ⊆ V by

N(v) = {u ∈ V : xu = xv for all x ∈ F}. Since v ∈ N(v) all these sets are

nonempty. Moreover, it is easy to see any two sets N(v1) and N(v2) are either
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equal or disjoint. Consider the set T = {u ∈ V : xu = 0 for all x ∈ F}. This
set may be empty, but if it is nonempty, say v ∈ T , then T = N(v). It follows
that the sets N(v), v ∈ V constitute a partition N = {N0, N1, . . . , Np} where
N0 = T is possibly empty. As usual, let ≡ denote the equivalence relation

induced by this partition. We prove that

F = C(N ).

Let x ∈ F . If u ≡ v, then u ∈ N(v) and therefore, due to the de�nition of

N(v), xu = xv holds. Also, if x ∈ F and v ∈ T , then xv = 0. It follows

that F ⊆ C(N ). To prove the converse inclusion, let (u, v) ∈ E0. Then

each x ∈ F satis�es xu = xv, so u ∈ N(v), i.e., u ≡ v. Thus each arc in

E0 has both endnodes in the same equivalence class. Consequently all the

equalities de�ning F are also valid equalities for C(N ) (because we clearly

have V0 ⊆ T ). This proves that F = C(N ), as desired.
It remains to prove that the partition N is cross-free. Assume �rst that

i1 < i < i2 and u ∈ Ri1, v ∈ Ri2 , w ∈ Ri with u ≡ v. Then, by de�nition of
N , we have that xu = xv for all x ∈ F (and F is assumed nonempty). But

for x ∈ F ⊆ C, we have xu ≥ xw ≥ xv, and therefore xu = xw for all x ∈ F
so u ≡ w. This proves that CF(i) holds. Next, assume (u1, v1), (u2, v2) ∈ E0

where u1, u2 ∈ Ri. Let x ∈ F . Then xu1 ≥ xv2 = xu2 ≥ xv1 = xu1 so all these
numbers are equal and u1 ≡ u2. This proves CF(ii). Finally, let u ∈ Rk ∩N0

and let x ∈ F . Thus, xu = 0 and therefore, if v ∈ Rt with t > k, we get

0 = xu ≥ xv ≥ 0 and v ∈ N0. This proves that N is cross-free.
(iii). Consider two cross-free partitions N = {N0, N1, . . . , Np} andM =

{M0,M1, . . . ,Mq} such that C(N ) = C(M). Assume that there are nodes u
and v with u ≡N v and u 6≡M v. Using Lemma 2.1 we can �nd an x ∈ C(M)
with xu 6= xv. But C(N ) = C(M) so x ∈ C(N ) which gives (as u ≡N v) that

xu = xv; a contradiction. It follows that the equivalence classes induced by

N and those induced byM coincide. Similar arguments give that N0 = M0.

Therefore N = M. (The converse, that C(N ) = C(M) when N = M is

trivial).
(iv). Let N = {N0, N1, . . . , Np} be a cross-free partition and consider the

face C(N ). It follows from Lemma 2.1 that no inequality xu ≥ xv where
u 6≡ v is an implicit equality for C(N ). Thus the dimension of C(N ) may

be found from the rank r of the equalities in (2). It is easy to check that

r = |N0|+
∑p

t=1(|Nt|−1) and from the dimension formula for polyhedra (see
[12]) we get dim(C(N )) = |V | − r = p.

The cone C(N ) for the cross-free partition N shown in Figure 1 has

dimension 4.

Note that there are many subsystems of (1) that induce the same face

of C. In fact two such subsystems induce the same face if and only if they
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de�ne the same cross-free partition according to the procedure described in

the proof of property (ii) of Proposition 2.2.

We present some further relations between cross-free partitions and the

faces of C. Let N = {N0, N1, . . . , Np} and M = {M0,M1, . . . ,Mq} be two

cross-free partitions. We say that N is �ner than M, and write N ⊆ M,

if N0 ⊆ M0 and each set Nt is contained in some set Ms. It is easy to see

(P ,⊆) is a partially ordered set.

Remark 2.3 It is useful to see what this partial ordering corresponds to in

the digraph D. For N ⊆ P de�ne the arc set

E(N ) = {(u, v) ∈ E : u ≡N v}.

consisting of arcs with both endnodes in the same equivalence class. Con-
versely, for any subset E′ of E the connected components of the subgraph
(V,E′) (ignoring arc directions) gives rise to a partition of V , although it
may not be cross-free. We observe that N ⊆M if and only if N0 ⊆M0 and
E(N ) ⊆ E(M).

The following result is a strengthening of Proposition 2.2 (iii).

Proposition 2.4 Let N and M be cross-free partitions. Then N ⊆ M if
and only if C(N ) ⊇ C(M).

Proof. Assume that N ⊆M and let x ∈ C(M). If u ≡N v, then u ≡M v
and therefore xu = xv. If u ≡N 0, then u ≡M 0 and xu = 0. This proves

that x ∈ C(N ), and we conclude that C(N ) ⊇ C(M).
Conversely, assume that C(N ) ⊇ C(M). Assume that there are nodes

u and v with u ≡N v and u 6≡M v. Due to Lemma 2.1) we may �nd an

x ∈ C(M) such that xu 6= xv. This implies that x 6∈ C(N ) (for u ≡N v)
which contradicts that C(N ) ⊇ C(M). It follows that whenever u ≡N v

we also have u 6≡M v. Furthermore, if u ≡N 0, the each x ∈ C(N ) satis�es
xu = 0 and, in particular, this holds for each x ∈ C(M) (as C(N ) ⊇ C(M)).
This proves that N ⊆M.

Let FC denote the set of all faces of the cone C. It is well known that
(FC,⊆) is a lattice, called the face-lattice of C (the partial ordering is setwise

containment), see [4], [14]. We let, in any lattice, F ∨G (F ∧G) denote the
smallest upper bound or join (greatest lower bound or meet) of the elements

F and G.

Corollary 2.5 (P ,⊆) is a lattice which is anti-isomorphic to the face lattice

(FC,⊆).
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Proof. This may be proved directly, but it also follows from Proposition

2.5 as follows. Due to Proposition 2.2 the function f : P → FC given by

f(N ) = C(N ) is a bijection. From Proposition 2.5 it follows that N ∨ U =
f−1(C(N ) ∧ C(M)) and N ∧ U = f−1(C(N ) ∨ C(M)). This proves that

both meet and join exist in P so this is a lattice and, in addition, f is a

lattice anti-isomorphism from P into FC.
We may also give an explicit description of how the lattice operations act

on P . Let N = {N0, N1, . . . , Np} andM = {M0,M1, . . . ,Mq} be cross-free

partitions. We �rst determine N ∧ M. The sets Ni ∩Mj for 1 ≤ i ≤ p,
i ≤ j ≤ q de�ne a partition U = {U0, U1, . . . , Ur} where U0 = N0 ∩M0 and

U1, . . . , Ur are the remaining nonempty sets Ni∩Mj . It is easy to see that U is

cross-free (all the properties CF(i)�(iii) hold) and that it must be the greatest

lower bound of N andM, i.e., U = N∧M. It is somewhat more complicated

to determineN ∨M. Let U = {U0, U1, . . . , Ur} be an upper bound (in P) for
two cross-free partitions N andM. Thus, due to Remark 2.3, N0∪M0 ⊆ U0

and E(N )∪E(M) ⊆ E(U). LetW = {W0,W1, . . . ,Wt} denote the partition
induced by the connected components in the subgraph (V,E(N )∪E(U)) of
D, and let W0 be the union of the (one or two) components intersecting
either N0 orM0. Observe thatW ⊆ U . W may not be cross-free, but we can
modify it into a cross-free partition as follows. If we can �nd arcs (u1, v1)
and (u2, v2) with u1 ≡W v1, u2 ≡W v2 and u1 6≡W u2, then we replace these
two equivalence classes (containing u1 resp. u2) by their union. We repeat

this procedure until there is no arc pair left with the mentioned properties.
Next, if there are two equivalence classes, say W1 and W2, with all the sets
W1∩Ri−1, W1∩Ri+1 and W2∩Ri nonempty, then we replace W1 and W2 by
their union W1 ∪W2. This is repeated until there is no pair of equivalence
classes with these properties. Let W ′ denote the new partition obtained by

this procedure. It is not di�cult to check that W ′ is cross-free and that

W ′ ⊆ U . Thus, we must have W ′ = N ∨M.

Observe that the construction of the meet and join in the lattice P also

translates (via the bijection f) to �nding the meet and join for a pair of faces
of the cone C.

Let k ∈ {1, . . . ,m − 1}. We call a subset S of V a k-block in D if

S = R1 ∪ · · · ∪ Rk ∪ S ′ for some nonempty subset S ′ of Rk+1. A block is a

k-block for some k.

Corollary 2.6 The extreme rays of C are the faces C(N ) constructed from

cross-free partitions N = {N0, N1}, i.e. p = 1. Moreover, C is generated

by the incidence vectors χS where S is either a block in D or S consist of

a single node in R1, i.e., each vector in C may be written as a nonnegative

linear combination of the mentioned vectors.
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Proof. The extreme rays have dimension 1 so the �rst part follows from

Proposition 2.2. The second form follows from the cross-free property of the

partition N .
Each of the inequalities xv ≥ 0 for v ∈ Rm and xu ≥ xv for (u, v) ∈ E

de�nes a facet of C. This is easy to prove directly, and it also follows from

Proposition 2.2. Let e and f denote the number of extreme rays and facets

of C, respectively. We see that

e = n1 +
m∑
i=2

(2ni − 1), f =
m−1∑
i=1

nini+1 + nm.

In the matrix case with ni = n for all i, we obtain e = n + (m− 1)(2n − 1)
and f = (m − 1)n2 + n. In particular, the number of extreme rays grows

exponentially in n except when n = 1.
The generators of C determined in Corollary 2.6 may be used to give a

parametric form of each face of C. Consider a face F of C, so (by Proposition
2.2) F = C(P) for some cross-free partition N = {N0, N1, . . . , Np}. The sets
I(N0), I(N1), . . . , I(Np) are intervals and there is a permutation π ∈ Sp+1

with π(0) = 0 and r(Iπ(t+1)) ≤ l(Iπ(t)) for t = 0, . . . , p − 1. De�ne, for

t = 0, . . . , p the node set Gt = ∪pk=tNπ(k). Then each Gt is either a block
or consist of a single node in R1. Moreover, χGt, t = 0, . . . , p are a�nely
independent and they generate the face F , i.e.,

F = cone({χGt : t = 1, . . . , p}).

We omit the proof of these facts.

Finally, let us consider the two-dimensional faces of C. Each such face is
spanned by two generators of C. We say that that two distinct generators z
and w are adjacent if F = cone({z,w}) is a face of C (and then dim(F ) = 2).
One may derive from Corollary 2.6 that (i) χv for each v ∈ R1 is adjacent to

all other generators, and (ii) for distinct blocks S and T the generators χS

and χT are adjacent if and only if S ⊂ T or T ⊂ S. This implies that the

�diameter� of C is two: any two generators are either adjacent or they are
both adjacent to some other generator.

As an application of the results above we consider a polytope obtained by

intersecting C with a certain hyperplane. Let p ∈ IRV be a vector satisfying
pv > 0 for v ∈ V and

∑
v∈V pv = 1. Later, p will be viewed as a discrete

probability distribution on the node set V . Consider the polyhedron

C(p) = {x ∈ C :
∑
v∈V

pvxv = 1} (3)
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Observe that C(p) is bounded as C ⊂ IRn
+ and each pv is positive. Therefore,

C(p) is a polytope. The faces of C(p) are the intersection between the faces

of C and the hyperplane {x ∈ IRV :
∑

v∈V pvxv = 1}. In particular, we

may determine the vertices of C(p) from Corollary 2.6. Recall the notation

p(S) =
∑

v∈S pv for each subset S of V .

Corollary 2.7 The vertices of C(p) are the points (1/p(S))χS where S is

either a block in D or S consist of a single node in R1.

3 Row-ordered majorization

In this section we introduce a vector ordering which may be seen as a gen-

eralization of weak majorization. Some properties of the new ordering are
given.

We consider again the digraph D introduced in section 2, but restrict the
attention to the matrix case where |Ri| = n for i = 1, . . . ,m. Thus each x ∈
IRV may be viewed as a real m×n-matrix with (i, j)th entry xi,j, and this is

done throughout the present section. The results below also hold for a general
node set V , but the matrix case is of special interest. We identify the vector
spaces IRV and IRm,n. This space is equipped with the usual inner product
for vectors which in matrix form is 〈x,y〉 =

∑
i,j xi,jyi,j = Trace(xTy). We

let 0 denote the matrix (suitably dimensioned) with all zeros.

Let K denote the the set of generators for the cone C, that is (see Corol-
lary 2.6) K contains χv for v ∈ R1 and the incidence vectors of blocks in D.
Thus we have

C = cone(K).

The polar cone (sometimes called the dual cone) of C is the convex cone
C◦ = {x ∈ IRm,n : 〈y,x〉 ≥ 0 for all y ∈ C}.

Consider an m × n-matrix x. We say that x C-majorizes 0 and write

x �C 0, or 0 ≺C x, provided that x ∈ C◦. Since K generates C, x �C 0
holds if and only if

〈g,x〉 ≥ 0 for all g ∈ K. (4)

If y ∈ IRm,n we say that x C-majorizes by y and write x �C y or y ≺C x if
x− y �C 0.

We may write the concept of C-majorization in a more transparent form.

For a real number a we write a− := max{−a, 0}.
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Proposition 3.1 Let z ∈ IRm,n. Then z �C 0 if and only if

(i) z1,j ≥ 0 for j = 1, . . . , n;

(ii)
∑k

i=1

∑n
j=1 zi,j ≥

∑n
j=1 z

−
k+1,j for k = 1, . . . ,m.

(5)

where we de�ne zm+1,j = 0 for j ≤ n. Thus, x �C y if and only if z = x−y
satis�es (5).

Proof. The result follows from Corollary 2.6 by observing that the min-

imum value of 〈g, z〉 taken over all k-blocks is equal to
∑k

i=1

∑n
j=1 zi,j −∑n

j=1 z
−
k+1,j (and removing some redundant inequalities).

There is a relation between C-majorization and weak majorization. Let

x ∈ IRm,n and de�ne s = (s1, . . . , sm) to be the vector of row sums in x, so
si =

∑n
j=1 xi,j for i = 1, . . . ,m. Assume that s1 ≥ s2 ≥ . . . ≥ sm. Since∑k

i=1 sk ≥
∑k

i=1

∑n
j=1 xi,j −

∑n
j=1 x

−
k+1,j , we see that x �C 0 implies that∑k

i=1 sk ≥ 0 for k = 1, . . . ,m, that is, s �w 0.
One may check that ≺C is a partial ordering on IRm,n. Furthermore, ≺C

is a vector ordering in the sense that it is compatible with the vector space
operations: x ≺C y implies that x + z ≺C x + z and λx ≺C λy for all z and
λ ≥ 0. All these properties are due to the fact C◦ is a convex cone. In fact,

≺C is a cone ordering, see [8] for a discussion of cone orderings on vector
spaces. We remark that ≺C may be extended by introducing symmetries
as is the case for (weak) majorization (where ≺ and ≺w are permutation
invariant), but we do not discuss this here.

Example 3.2 (componentwise ordering). If m = 1, the matrices are n-
dimen-sional row vectors and (omitting the redundant index) y ≺C x means

that yj ≤ xj for j = 1, . . . , n, i.e., componentwise ordering.

Example 3.3 (weak majorization). Let n = 1 so our matrices reduce to

m-dimensional column vectors (where we again omit an index). Let z ∈ IRm

be nonincreasing, so z1 ≥ . . . ≥ zm (and de�ne zm+1 = 0). Observe that∑k
i=1 zi − z−k+1 equals either

∑k
i=1 zi or

∑k+1
i=1 zi, depending on the sign of

zk+1. From this it follows that z �C 0 if and only if z weakly majorizes 0.
Thus, C-majorization reduces to weak majorization in the case of n = 1.

We give a possible economic interpretation of the ordering z �C 0. Con-
sider n di�erent economic activities over a span ofm time periods (say years).

Let zi,j denote the expected (discounted) payo� of activity j in time period

i, so we obtain a �payo� matrix� z ∈ IRm,n. What does z �C 0 mean in

this setting? Conditions (5) says that (i) no payo� during the �rst year is

11



negative, and (ii) the loss (negative payo�) during one single year does not

exceed the accumulated payo� at the beginning of that year. If x �C y
the payo� matrix x is �better� than y in this the sense that x − y has the

properties (i) and (ii) just given.

Let f : A → IR be a function de�ned on some subset A of IRm,n. It

is of interest to consider those functions that are ≺C-isotone in the sense

that f(x) ≥ f(y) whenever x,y ∈ A and x �C y. In [3] order preserving

functions for cone ordering are discussed, and a general characterization of

isotone functions in terms of generators is presented (see also [10]). Note

that (C◦)◦ = C because C is a closed convex cone. The generators of C◦

may be seen from (1). This set consists of (i) the matrices with a 1 in some

row and a -1 in the next row and all other elements being zero, and (ii) the

matrices with a 1 in the last row and all other elements zero. By applying

the general result of [3] we obtain that f is �C-isotone if and only if

∂f

∂xi,j
(x) ≥

∂f

∂xi+1,k
(x) ≥ 0

holds for i < m, j ≤ n, k ≤ n and for each x in the interior of A. This
is equivalent to the condition that the m × n-matrix of partial derivatives
∂f
∂xi,j

(x) lies in C for each x in the interior of A.

4 Applications to statistical hypothesis testing

In this section we study some mathematical problems arising in statistical
testing theory, and show how some of the results concerning the cone C are
useful.

First we give the relevant statistical background (see [9] for the theory of
testing statistical hypothesis). We consider a (discrete) statistical experiment

where a random variable Z is observed. The sample space is �nite, say

{1, . . . , n} and we assume that n ≥ 2. The distribution of Z may be described
by a vector r where Pr(Z = j) = rj for j = 1, . . . , n (here Pr(·) denotes

probability). We consider the situation where it is known that r ∈ {p,q},
but it is unknown whether r = p or r = q. Here p,q ∈ Kn are given

vectors. The testing problem is to test, based on the observed value of Z,
the null hypothesis H0: r = p against the alternative H1: r = q. A test is
a rule which speci�es whether H0 should be rejected (and thereby claiming

that q is the true distribution). More precisely, a test is simply a function

δ : {1, . . . , n} → [0, 1] where δj is the probability of rejection when Z = j
is observed. We also view δ as a vector in IRn, so δ = (δ1, . . . , δn). The

level of a test δ is de�ned as
∑n

j=1 δjpj and the power of δ is
∑n

j=1 δjqj. The

12



level is equal to the probability of rejection when r = p (an �error of the

�rst kind�), and the power equals the probability of rejection when r = q (a

correct decision).

We assume hereafter (for simplicity) that pj > 0 for each j. Let 0 ≤ α ≤
1. The problem of �nding a test with maximum power among all tests with

level at most α may be formulated as the linear programming problem

max{
n∑
j=1

qjδj :

n∑
j=1

pjδj ≤ α; 0 ≤ δj ≤ 1 for j = 1, . . . , n}. (6)

A basic result in statistical testing theory is the Neyman-Pearson lemma

(see [9]) which describes the solution of problem (6). An optimal solution

δ∗ of (6), called a Neyman-Pearson test, is found as follows. Determine a

permutation π ∈ Sn such that

qπ(1)/pπ(1) ≥ . . . ≥ qπ(n)/pπ(n), (7)

that is, the fractions qj/pj are ordered nonincreasingly. Let t be maximalwith∑
j<t pπ(j) ≤ α and de�ne γ = (α −

∑
j<t pπ(j))/pπ(t). The Neyman-Pearson

test δ∗ is then given by

δ∗π(j) =

 1 for j < t;
γ for j = t;
0 for j > t.

(8)

The fact that δ∗ is optimal in (6) may also be derived directly using linear
programming duality (see e.g. [2]). The problem (6), where p and q are

arbitrary vectors, is known as the continuous knapsack problem. A discussion
of this problem and other algorithms for solving it may be found in [11].

The test δ∗ is a function of the permutation π. There may be several

permutations satisfying (7) as one may reorder elements i and j for which

qi/pi = qj/pj . In fact, these permutations determine all the optimal solutions

of (6): the set of optimal solutions is the convex hull of Neyman�Pearson tests
based on permutations satisfying (7). Thus the ordering in (7) characterizes

the solutions of the testing problem.

Consider the testing problem where p is �xed (and pj > 0 for all j) but q
may vary and it will be replaced by the variable y = (y1, . . . , yn). Let i, j ≤ n
be distinct and assume that y ∈ Kn satis�es the ordering inequality

yi/pi ≥ yj/pj . (9)

Then, for each α ∈ [0, 1], there is a Neyman�Pearson test δ satisfying δi ≥ δj,
i.e., the rejection probability at i is no smaller than the rejection probability
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at j. Moreover, if the inequality in (9) is strict, then every Neyman�Pearson

test must satisfy δi ≥ δj. Therefore, inequalities of the form (9) lead to

speci�c properties of Neyman�Pearson tests. We shall consider two di�erent

sets of ordering inequalities of type (9). In each case the relation to the

cone C studied in section 2 is explained and statistical interpretations of the

results are given.

Let 1 ≤ k < n and consider the polyhedron Nk(p) ∈ IRn de�ned by

Nk(p) = {y ∈ Kn : yi/pi ≥ yj/pj for all i ≤ k < j}. (10)

We see that y ∈ rint(Nk(p)) if and only if the unique Neyman�Pearson test
δ with level αk =

∑k
j=1 pj for testing p against y is given by δj = 1 for j ≤ k

and δj = 0 for j > k.
Consider the node set V being the union of the two rows R1 = {1, . . . , k}

and R2 = {k + 1, . . . , n}. Recall the polytope C(p) de�ned in (3). Consider

the linear transformation T : IRn → IRV given by T (y) = x where x1,j =
yj/pj for 1 ≤ j ≤ k and x2,j−k = yj/pj for k + 1 ≤ j ≤ n. Thus, the jth
variable is scaled by 1/pj and the variables are placed consecutively in the
two rows. We see that

C(p) = T (Nk(p))

and T is a bijection from Nk(p) to C(p). This implies that all the faces
of Nk(p) are found from the faces of C(p). Thus, F is a face of Nk(p) if
and only if T (F ) is a face of C(p). Moreover, F and T (F ) have the same

dimension. In particular, we may determine the vertices of Nk(p).
Let S ⊆ {1, . . . , n} be such that either S = {i} for some i ≤ k, or

{1, . . . , k} ⊂ S (with strict inclusion). Let S denote the set of all such

subsets S. For each S ∈ S we de�ne pS ∈ Kn by

pSj =

{
pj/p(S) for j ∈ S;
0 for j 6∈ S.

Note that pS = ei when S = {i}, i ≤ k. Let Z be a random variable on

{1, . . . , n} with distribution given by p. Then the conditional probability
of the event Z = j given that Z ∈ S is equal to pj/p(S) if j ∈ S and 0
otherwise. Therefore pS may be interpreted as the conditional distribution
of Z given that Z ∈ S. From Corollary 2.7 we now obtain

Corollary 4.1 The vertices of Nk(p) are the points pS for S ∈ S.

The polytope Nk(p) has therefore 2n−k + k − 1 vertices.
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We next study a second set of ordering constraints of type (9). Consider

the polytope M(p) ∈ IRn given by

M(p) = {y ∈ Kn : y1/p1 ≥ . . . ≥ yn/pn}. (11)

The relative interior of M(p) consists of all those vectors y such that for

each level α ∈ [0, 1] the Neyman�Pearson test δ is unique and has the form
δj = 1 for j < t, δj = γ for j = t and δj = 0 for j > t.

This polytope M(p) is also (a�nely) isomorphic to a polytope C(p) for
suitable node set V . In fact, let |Ri| = 1 for i = 1, . . . , n and consider

the linear transformation T (from IRn to IRV ) given by xi,1 = yi/pi for i =
1, . . . ,m. Then we have that C(p) = T (M(p)) so again all faces of M(p)
are given via those of C(p).

Let i ∈ {1, . . . , n}. We de�ne si =
∑i

k=1 pk and p(i) = (p(i)
1 , . . . , p

(i)
n ) ∈ Kn

by

p
(i)
j =

{
pj/si for j ≤ i;
0 for j > i

(12)

In particular, p(1) = e1 and p(n) = p. Consider again a stochastic vari-
able Z with sample space {1, . . . , n} and distribution given by p. We may
interprete p(i) as the conditional distribution of Z given the event that Z ≤ i.

Proposition 4.2 M(p) is an (n− 1)-simplex with vertices p(1), . . . ,p(n).

Proof. This form of the vertices follows from Corollary 2.7 and the a�ne

independence is easy to check. Therefore M(p) is a simplex of dimension
n− 1.

Statistically, this says that the set of distributions q for which the Neyman�

Pearson test is unique and nonincreasing coincides with the set of convex
combinations (�mixings� of the conditional distributions for Z given that

Z ≤ i. In Figure 2 the polytope M(p) is shown for p = (0.1, 0.4, 0.5).
So far we have assumed that pj > 0 for all j. We now consider the general

case where some components in p may be zero. We therefore assume that,

for some k, pj = 0 for j ≤ k and pj > 0 for j > k. Observe that, for α > 0,
each Neyman�Pearson test δ must satisfy δj = 1 for j ≤ k. Thus we are lead

to consider the polyhedron

Mk(p) = {y ∈ Kn : yk+1/pk+1 ≥ . . . ≥ yn/pn}. (13)

Note that M0(p) = M(p).

Proposition 4.3 Let p be as above. Then Mk(p) is an (n−1)-simplex with

vertices e1, . . . , ek,p(k+1), . . . ,p(n).
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(1,0,0)

(0.2,08,0)

(0,1,0)

(0,0,1)

Figure 2: The simplexM(p) for p = (0.1, 0.4, 0.5).

Proof. Observe �rst that all the inequalities yj ≥ 0 for k + 1 ≤ j < n are
redundant. Let y be a vertex of Mk(p). Then y is determined by n linearly
independent equations consisting of

∑n
j=1 yj = 1 plus n−1 equations among

the n equations (i) yi = 0 for i ≤ k and (ii) yn = 0 and yi/pi = yi+1/pi+1 for

k ∈ {i, . . . , n− 1}. If we leave out an equation from group (i), say yi = 0 for
some i ≤ k, then y satis�es yj = 0 for j 6= i and j ≤ k, yk/pk = . . . = yn/pn,
yn = 0 and �nally

∑n
j=1 yj = 1. A little calculation gives that y = ei. If we

leave out the equation yn = 0, we obtain y = p. Finally, if we leave out the
equation yi/pi = yi+1/pi+1 for some i ∈ {k + 1, . . . , n − 1}, then yj = 0 for

j ∈ {1, . . . , k, i+ 1, . . . , n} and we get y = p(i). This proves the result.

Similar results to those above may also be derived for more complicated
sets of ordering constraints (9) by transforming the problem to questions

concerning faces of C. We do not pursue this here, but rather we mention

some geometrical properties of M(p) (similar results hold for Mk(p)). Let

vk(C) denote the k-dimensional volume of a convex set C of dimension k.
Let S = conv({0,p(1), . . . ,p(n)}) which (due to Proposition 4.2) is the

convex hull of M(p)∪{0}. Since 0,p(1), . . . ,p(n) are a�nely independent, S
is an n-simplex in IRn. The relation between the volumes of M(p) and S is

given by

vn(S) =
1

n
√
n
vn−1(M(p)). (14)

This follows from a well-known volume relation (see [13]) using the facts that

M(p) lies in the hyperplane de�ned by
∑n

j=1 xj = 1 and the distance from

0 to this hyperplane equals 1/
√
n. The volume of S can be determined as
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follows

vn(S) = (1/n!)|det(A)|

where A ∈ IRn,n is given by

A =
[

p(1) − 0, . . . ,p(n) − 0
]

=

1 p1

s2

p1

s3
. . . p1

sn−1

p1

sn

0 p2

s2

p2

s3
. . . p2

sn−1

p2

sn

0 0 p3

s3
. . . p3

sn−1

p3

sn
...

...
. . .

...
...

0 0 0 0 pn−1

sn−1

pn−1

sn

0 0 0 0 0 pn
sn


.

Therefore we have

det(A) =
n∏
i=1

pi/si.

Putting these results together shows that the volume of M(p) is given by

vn−1(M(p)) =

√
n

(n− 1)!
·
n∏
i=1

pi
si
. (15)

For instance, for n = 2 the volume (length) is p2

√
2 and for n = 3 it is

(1/2)
√

3; p2p3/(1− p3).
The (n − 1)-volume of the standard simplex Kn is

√
n/((n − 1)!), so we

have

v(p) := vn−1(M(p))/vn−1(Kn) =
n∏
i=1

pi

si
. (16)

This number v(p), the relative volume, lies strictly between 0 and 1 and may

be given a probabilistic interpretation. Assume that a vector q is drawn at

random fromKn according to the uniform distribution, and recall the remark
given after (11). It follows that v(p) is the probability that q lies in M(p))
or, equivalently, that for each level α ∈ [0, 1] there is a unique nonincreasing
Neyman�Pearson test δ.

How does v(p) depend on p? A �rst observation is that if p ∈ Kn is

nondecreasing, i.e., p1 ≤ . . . ≤ pn, then v(p) ≥ v(π(p)) for all permutations
π ∈ Sn. Next, v(p) can be made arbitrarily close to 0 or 1 by suitable choices

of p. In fact, let p(m) = (1−(n−1)/m, 1/m, . . . , 1/m) for m = 1, 2, . . .. Then
M(p(m)) converges to {0} in the Hausdor� norm. It is also possible to �nd

another sequence w(m), m = 1, 2, . . . such that M(w(m)) converges to Kn (in

the Hausdor� norm), say w(m) = (1/m, 1/m, . . . , 1− (n − 1)/m). Thus, by
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the continuity of the volume function w.r.t. the Hausdor� distance we get

limm→∞ v(p(m)) = 0 and limm→∞ v(w(m)) = 1. This can be checked by direct

calculation using (16). Both these observations are quite intuitive due to the

de�nition of M(p) or the probabilistic interpretation of M(p) in terms of

Neyman�Pearson tests.

The function v(·) is neither convex nor concave, but it has another inter-

esting property.

Proposition 4.4 v(·) is Schur-concave on Dn+ ∩ rint(Kn).

Proof. We use the well known fact that the function x →
∑n

j=1 g(xj) is

Schur-convex when g : IR → IR is convex, see [10]. Therefore the function

x→
∑n

j=1 ln(xj) is Scur-concave. Since the exponential function is increasing
it follows that f : IRn → IR given by f(x) = exp(

∑n
j=1 ln(xj)) =

∏n
j=1 xj is

Schur-concave.
Assume that x,y ∈ Dn+ ∩ rint(Kn) and that x ≺ y. Since f above is

Schur-concave we have
x1 · · · xn ≥ y1 · · · yn

and combining this with the fact that
∑k

j=1 xj ≤
∑k

j=1 yj for k = 1, . . . , n−1
(here we use the assumption that x,y ∈ Dn+), we see that

v(x) ≥ v(y)

as desired.
We remark that the function v(·) is not Schur-concave on rint(Kn) since

it is not symmetric.
There is another property of the polytopeM(p) that relates to majoriza-

tion.

Proposition 4.5 Assume that p ∈ Dn+ ∩ rint(Kn). Then the vertices of

M(p) constitute a chain in the partial ordering given by ≺:

p = p(n) ≺ p(n−1) ≺ . . . ≺ p(1) = e1.

Proof. First we observe that p ∈ Dn+ implies that p(i) ∈ Dn+ for i = 1, . . . , n

and therefore p
(i)
[j] = p

(i)
j for all i and j. Let i ∈ {1, . . . , n− 1}. As p(i)

j = 0 for
j > i we get for each k ≤ n that

∆
(i)
k :=

∑k
j=1 p

(i)
j −

∑k
j=1 p

(i+1)
j = 1

si

∑k∧i
j=1 pj −

1
si+1

∑k∧(i+1)
j=1 pj

where a ∧ b denotes min{a, b}. If k ≤ i we get ∆
(i)
k = ( 1

si
− 1

si+1
)
∑k

j=1 pj > 0

because pi+1 > 0. If k ≥ i+1 then ∆
(i)
k = 1

si

∑i
j=1 pj−

1
si+1

∑i+1
j=1 pj = 1−1 =

0. This shows that ∆(i)
k ≥ 0 and p(i+1) ≺ pi.
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A consequence of Proposition 4.5 is that for every symmetric vector norm

‖·‖ (so ‖π(x)‖ = ‖x‖ for every x ∈ IRn and π ∈ Sn) the norms of the vertices

p(i) when p ∈ Dn+ ∩ rint(Kn) are ordered by

‖p(n)‖ ≤ ‖p(n−1)‖ ≤ . . . ≤ ‖p(1)‖.

This is due the fact that such a norm is Schur-convex, see [10].

A �nal geometrical property we mention concerns the angles between

the vectors p(i). If we let αi,j denote the angle between p(i) and p(j) when

1 ≤ i < j ≤ n (angles are calculated using the Euclidean norm), then we

obtain that

cos(αi,j) =

√√√√ i∑
t=1

p2
j/

j∑
t=1

p2
j .

In particular, for p = (1/n, . . . , 1/n) we have cos(αi,j) =
√
i/j.
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