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Abstract

There are important connections between majorization and convex
polyhedra. Both weak majorization and majorization are preorders
related to certain simple convex cones. We investigate the facial struc-
ture of a polyhedral cone C' associated with a layered directed graph.
A generalization of weak majorization based on C is introduced. It
defines a preorder of matrices. An application in statistical testing
theory is discussed in some detail.
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1 Introduction

In this paper we study some problems related to majorization. For z € IR"
we let zj; denote the jth largest number among the components of z. If
x,y € IR" one says that x is weakly majorized by y, denoted by x <, vy,
provided that

k k
me < Zy[j] fork=1,...,n.
j=1 j=1

If, in addition, equality holds for £k = n, then x is majorized by y and we
write x < y. Both < and <, are preorderings that reflect how “spread out”
the components of the vectors are. These concepts play an important role in
different areas of mathematics and statistics, see [10], [1] and other papers
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in the special issue of Linear Algebra and Its Appl. (Volume 199, 1994) in
honor of 1. Olkin.

There are interesting (convex) polyhedra that are related to (weak) ma-
jorization. This applies to the polytope €2, of n x n doubly-stochastic matri-
ces as one has the well-known characterization of Hardy-Littlewood-Polya:
x < y if and only if there exists an S € ), with x = Sy. For a given
majorization, say x < y, the polytope Q(x < y) consisting of all S € €,
satisfying x = Sy was studied in [5]. Several combinatorial properties of this
polytope were established. As another example, [6] and [7] contains a study
of the concept of weak k-majorization from a polyhedral point of view. Both
<w and < are cone orderings corresponding to certain simple polyhedral
cones (see [10]). For instance, consider the convex cone D of nonincreasing
and nonnegative vectors

DY ={xecR":2;>...> 2, >0}

Assume that both the vectors x and y are nonincreasing. Then x is weakly
majorized by y if and only if y — x lies the polar cone of D7} (consisting of
the vectors z satisfying w''z > 0 for all w € D'}). Now, due to the simplicity
of the cone D7 one can explicitly determine a finite set of generators (a
“frame”) so that D7 is the set of nonnegative linear combinations of these
generators. From this fact one may derive nice characterizations of Schur-
convex functions and also different characterizations of weak majorization.

In this paper we study from a polyhedral point of view a class of convex
cones that contains D7 as a special case. The motivation comes from sta-
tistical testing theory, and this application is discussed in some detail. The
paper is organized as follows. In section 2 we introduce a polyhedral cone
C' associated with “layered” directed graphs. In a special case C' consists of
nonnegative m X m matrices where no entry is smaller than any entry in a
preceding row. Thus, for n = 1 we have C' = DT'. The faces of C are stud-
ied (in the general case) and characterized by means of certain partitions
in the graph. In section 3 we relate C' to weak majorization and introduce
a new preorder based on C. The application in statistical testing theory is
presented in section 4. It concerns optimal tests for certain testing problems
in discrete experiments.

We describe our notation. S, denotes the group of permutations on n
elements and K, is the standard simplex in R", ie., K, = {x € R} :
Z?Zl zj = 1}. For a finite set V we let IRY denote the vector space of real
valued functions from V to IR. 0 denotes the vector with all components

being zero. If S C V the vector x* is the incidence vector of S (so x5 equals
Lifv € S and 0 otherwise) and we also define x(5) = > oz, for x € RY. If



A C TRY the convex hull (conical hull) of A is denoted by conv(A) (cone(A)).
The relative interior of a convex set C' is denoted by rint(C). For polyhedral
theory, we refer to [4], [12], [14]. Some graph terminology is used, but is is
fairly standard.

2 A cone of row-ordered vectors

Let n; for i = 1,...,m be given positive integers. Let R; = {(i,7) : 1 <j <
n;} fori=1,...,m and define the index set (or node set) V.= Ry U...UR,,.
Fach set R; is called a row. We let D = (V, E) denote the directed graph
with node set V and with an arc from each node in the row R; to each node
in the next row R;4q for i =1,...,m — 1. Thus, £ = {(u,v) :u € R;, v €
R i1 for some i < m — 1}. D is a layered digraph. In the special case where
ny = ... = N, = n, the nodes correspond to the entries (or indices) of an
m x n-matrix. We shall study certain problems in the vector space RV of
real valued functions from V' to the reals. In the “matrix special case” above
this vector space may be identified with IR™".

We are interested in the polyhedral cone C' C IRV consisting of the vectors
x € IRV that satisfy the following set of homogeneous linear inequalities

(1) x4 >, forall (u,v) € E; (1)
(i) z,>0 forallveV.

Thus a nonnegative vector x > 0 lies in C' iff no component of x is smaller
than a component in the next row. The cone C' is full dimensional. If x € C'
we say that x is row-ordered.

Our main task in this section is to study the facial structure of C'. The
faces and, in particular, the extreme rays of C' are of interest in two different
contexts in the subsequent sections; majorization and statistical testing.

The faces of C' are related to partitions of V as discussed in the fol-
lowing. Consider a partition N' = {Np, N1,...,N,} of V where the sets
Ny, ..., N, are nonempty while Ny may be empty. (A more concise no-
tation would be N = (No,{N1,...,N,})). We say that partitions N =
{No, N1,...,Np} and M = {My, My, ..., M,} are equal and write N' = M
if p=ygq, No= My and {Ny,...,N,} ={Mi,...,M,},so Ny,..., N, is just a
renumbering of the sets My, ..., M,. (Thisis consistent with (Ng, {Ny,..., Np}) =
(Mo, {M,...,M,})). The partition A/ induces an equivalence relation =y
on N in the usual way, that is, i =5 7 if and only if 7,57 € Ni for some k < p.
We write u =5 0 if ¢ € Ny. If no confusion should arise, we may write = in
stead of =



Partitions with a certain relation to the rows Ry, ..., R,, are of interest
below, and to define these some more terminology is useful. For integers
[ and r with [ < r we call the set I = {l,l+ 1,...,r — 1,7} an interval
and define (1) := I, r(I) := r. A family of intervals I;, t = 0,...,p is
called cross-free if there is a permutation m € S, with 7(0) = 0 such that
r(Ln41y) < U(Iny) for t =0,1,...,p— 1. Let N = {Ny, N1,..., Ny} be a

partition and define the associated sets (“projections”)
for t =0,...,p. We say that N is cross-free if I(Ny), I(N1),...,I(N,) is a

family of cross-free intervals. It is not difficult to verify that A is cross-free
if and only if the following conditions hold

CF(i) ifu=v whereu€ R;,,v € R;, and iy <1i < iy then u = w for
each w € Ry;

CF(ii) for each i < m there is at most one k such that Nj intersects
both row R; and R;yq;

CF(iii) Rk N Ny # 0 implies that R, C Ny for all ¢ > k.

Roughly, this means, e.g. in the matrix case, that the sets Ny, Ni,..., N,
are stacked on top of each other with Ny at the bottom of the matrix, see
Figure 1. Let P be the set of all cross-free partitions (with equality as defined

above).

Y

N2

Figure 1: A cross-free partition in the matrix case, m = 3 and n = 4.

We define a polyhedral cone C(N) associated with the partition N:
CWN)={xeC:z,=x, whenu=v; z,=0 whenv=0}. (2)
A crucial property of C(N) holds when N is a cross-free partition.
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Lemma 2.1 Let N € P. Then there is a point x € C(N) such that for each
u,v € V one has that x, = x, if and only if u=v.

Proof. Assume that the partition N' = {Ny, Ni,...,N,} is cross-free.
Then the sets I(Np), [(N1), ..., I(N,) are intervals and for some permutation
7 € Spr1 with 7(0) = 0 we have 7(Ir41)) < I(Inw)) for t =0,...,p — 1. Let
x € IRY denote the vector with z, =t when v € Nz, t =0,...,p. Then,
due to the construction, x € C, and furthermore z, = x, if and only if
u=v. [

There is a bijection between P and the set of faces of C'. This is described
in the following proposition.

Proposition 2.2 (i) For each N € P the cone C(N) is a face of C.

(ii) If F is a nonempty face of C, there is an N' € P with F = C(N).
(iii) Let N, M € P. Then C(N) = C(M) if and only if N' = M.

(iv) If N = {No,Ni,...,N,} is a cross-free partition the face C(N) has

dimension p.

Proof. (i). Let N'= {No, Ni,...,N,} be a cross-free partition of N. We
prove that C'(N) (as defined in (2)) is a face of C by finding an equivalent
system describing C'(N') and consisting of valid inequalities for C' set to

equality.

From property CF(i) it follows that if (i1,71) = v = v = (i2,J2) and
11 < iy then there is a path from w to v in D, say u = ug,us,...,u = v,
where each u; = u for each i. This means that each equality x, = z, in (2)
is equivalent to the equalities x,, = xy, , for i = 0,...,¢ — 1. Similarly, by
CF(iii), if u = 0 there is a path in D consisting of nodes u = wg, uy, ..., us

with u; € R,, and u; = wu for all . Thus, x, = 0 is equivalent to z, =
Tuyy-ovs Ty | = Tyy, Ty, = 0. We may therefore replace all the equalities in
(2)) by an equivalent system of valid inequalities for C' set to equality, and
therefore C'(N) is a face of C.

(ii). Observe that all the inequalities z, > 0 for v € V \ R,,, may be
removed in the definition of C; they are implied by the remaining inequalities.

Let F' be a face of C. Then
F:{XE]RVZLIZu::Uv when (u,v) € Ey, x, =0 when v € Vj}

for suitable By C E and Vy C R,,,. Define for each v € V the set N(v) C V by
Nw)={ueV:z,=uz, forall x € F}. Since v € N(v) all these sets are
nonempty. Moreover, it is easy to see any two sets N(v1) and N(vy) are either
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equal or disjoint. Consider theset T'={u €V :x, =0 for all x € F'}. This
set may be empty, but if it is nonempty, say v € T, then T = N(v). It follows
that the sets N(v), v € V constitute a partition N' = { Ny, Ny, ..., N, } where
Ny = T is possibly empty. As usual, let = denote the equivalence relation
induced by this partition. We prove that

F=CN).

Let x € F. If u = v, then u € N(v) and therefore, due to the definition of
N(v), x, = x, holds. Also, if x € F and v € T, then z, = 0. It follows
that I C C(N). To prove the converse inclusion, let (u,v) € Ey. Then
each x € F satisfies z, = z,, so u € N(v), i.e., u = v. Thus each arc in
Ey has both endnodes in the same equivalence class. Consequently all the
equalities defining F are also valid equalities for C'(N) (because we clearly
have Vi C T'). This proves that F = C(N), as desired.

It remains to prove that the partition A is cross-free. Assume first that
11 <i<1tgand u € R;;, v € R;,, w € R; with u =v. Then, by definition of
N, we have that z, = z, for all x € F' (and F is assumed nonempty). But
for x € F C C, we have z, > x,, > x,, and therefore z,, = z,, for all x € F
so u = w. This proves that CF(i) holds. Next, assume (uq,v1), (uz,v2) € Ey
where uy,us € R;. Let x € F. Then z,, > x,, = Ty, > Ty, = Ty, so all these
numbers are equal and u; = ug. This proves CF(ii). Finally, let u € Ry N Ny
and let x € F. Thus, x, = 0 and therefore, if v € R; with ¢t > k, we get
0=ux, > 2, >0and v € Ny. This proves that A is cross-free.

(iii). Consider two cross-free partitions N'= {Ny, N1,...,N,} and M =
{My, M, ..., M,} such that C(N) = C(M). Assume that there are nodes u
and v with u =5 v and u Zp v. Using Lemma 2.1 we can find an x € C'(M)
with ,, # z,. But C(N) = C(M) so x € C(N) which gives (as u = v) that
Ty = T, a contradiction. It follows that the equivalence classes induced by
N and those induced by M coincide. Similar arguments give that Ny = M.
Therefore N' = M. (The converse, that C(N) = C(M) when N' = M is
trivial).

(iv). Let N'={No, N1, ..., Np} be a cross-free partition and consider the
face C(N). Tt follows from Lemma 2.1 that no inequality z, > x, where
w Z v is an implicit equality for C'(N). Thus the dimension of C'(N) may
be found from the rank r of the equalities in (2). It is easy to check that
r = |No|+>_1_,(|N¢]—1) and from the dimension formula for polyhedra (see
[12]) we get dim(C(N)) = |V]| —r =p. [

The cone C(N) for the cross-free partition N shown in Figure 1 has
dimension 4.

Note that there are many subsystems of (1) that induce the same face
of C. In fact two such subsystems induce the same face if and only if they
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define the same cross-free partition according to the procedure described in
the proof of property (ii) of Proposition 2.2.

We present some further relations between cross-free partitions and the
faces of C. Let N'= {No, Ny,...,N,} and M = {My, My, ..., M,} be two
cross-free partitions. We say that N is finer than M, and write N' C M,
if N9 € My and each set NN; is contained in some set M. It is easy to see
(P, Q) is a partially ordered set.

Remark 2.3 It is useful to see what this partial ordering corresponds to in

the digraph D. For N’ C P define the arc set
EWN) ={(u,v) € E:u=pv}.

consisting of arcs with both endnodes in the same equivalence class. Con-
versely, for any subset E’ of E the connected components of the subgraph
(V,E') (ignoring arc directions) gives rise to a partition of V, although it
may not be cross-free. We observe that N/ C M if and only if Ny C M, and

The following result is a strengthening of Proposition 2.2 (iii).

Proposition 2.4 Let N and M be cross-free partitions. Then N C M if
and only if C(N) 2 C(M).

Proof. Assume that N'C M and let x € C(M). If u =pr v, then u =p v
and therefore x, = z,. If u =5 0, then u = 0 and z, = 0. This proves
that x € C'(N), and we conclude that C(N) D C(M).

Conversely, assume that C(N) D C(M). Assume that there are nodes
w and v with u =x5 v and u Zap v. Due to Lemma 2.1) we may find an
x € C(M) such that x, # x,. This implies that x & C(N) (for u =y v)
which contradicts that C(N) D C(M). It follows that whenever u =y v
we also have u #pq v. Furthermore, if u =y 0, the each x € C(N) satisfies
z, = 0 and, in particular, this holds for each x € C(M) (as C(N) 2 C(M)).
This proves that A" C M. i

Let F¢ denote the set of all faces of the cone C. It is well known that
(Fe, Q) is a lattice, called the face-lattice of C' (the partial ordering is setwise
containment), see [4], [14]. We let, in any lattice, F'V G (F A G) denote the
smallest upper bound or join (greatest lower bound or meet) of the elements

F and @G.

Corollary 2.5 (P, Q) is a lattice which is anti-isomorphic to the face lattice
(‘7:07 C)'



Proof. This may be proved directly, but it also follows from Proposition
2.5 as follows. Due to Proposition 2.2 the function f : P — F¢ given by
f(N) = C(N) is a bijection. From Proposition 2.5 it follows that N'VU =
FFUHCN)AC(M)) and N AU = f7H(C(N) Vv C(M)). This proves that
both meet and join exist in P so this is a lattice and, in addition, f is a
lattice anti-isomorphism from P into Fe¢. i

We may also give an explicit description of how the lattice operations act
on P. Let N'={No, Ni,...,N,} and M = {My, My, ..., M,} be cross-free
partitions. We first determine N'A M. The sets N; N M; for 1 < i < p,
i < j < q define a partition U = {Uy, Uy, ..., U,.} where Uy = Ny N M, and
Ui, ..., U, are the remaining nonempty sets NV;\M;. It is easy to see that U is
cross-free (all the properties CF(i)—(iii) hold) and that it must be the greatest
lower bound of AV and M, i.e.,id = N'AM. It is somewhat more complicated
to determine N'V M. Let U = {Up, Uy, ..., U,} be an upper bound (in P) for
two cross-free partitions N' and M. Thus, due to Remark 2.3, Ny U M, C U,
and E(N)UE(M) C EU). Let W = {Wy, W1,...,W,} denote the partition
induced by the connected components in the subgraph (V, E(N)U E(U)) of
D, and let Wy be the union of the (one or two) components intersecting
either Ny or My. Observe that W C U. W may not be cross-free, but we can
modify it into a cross-free partition as follows. If we can find arcs (u1,v;)
and (ug,ve) with u; =y vy, us =y vy and uy Fyy ug, then we replace these
two equivalence classes (containing u; resp. us) by their union. We repeat
this procedure until there is no arc pair left with the mentioned properties.
Next, if there are two equivalence classes, say Wp and W5, with all the sets
WiNR;,_1, WiN R;y1 and Wy N R; nonempty, then we replace Wi and Wy by
their union Wi U W5. This is repeated until there is no pair of equivalence
classes with these properties. Let W denote the new partition obtained by
this procedure. It is not difficult to check that W' is cross-free and that
W' C U. Thus, we must have W = NV M.

Observe that the construction of the meet and join in the lattice P also
translates (via the bijection f) to finding the meet and join for a pair of faces
of the cone C.

Let £ € {1,...,m — 1}. We call a subset S of V a k-block in D if
S =R U---UR,USY for some nonempty subset S" of Rpy1. A block is a
k-block for some k.

Corollary 2.6 The extreme rays of C are the faces C(N') constructed from
cross-free partitions N = {Ny, N1}, i.e. p = 1. Moreover, C is generated
by the incidence vectors x° where S is either a block in D or S consist of
a single node in Ry, i.e., each vector in C may be written as a nonnegative
linear combination of the mentioned vectors.



Proof. The extreme rays have dimension 1 so the first part follows from
Proposition 2.2. The second form follows from the cross-free property of the
partition N. i

FEach of the inequalities , > 0 for v € R,, and z, > z, for (u,v) € E
defines a facet of C'. This is easy to prove directly, and it also follows from
Proposition 2.2. Let e and f denote the number of extreme rays and facets
of C, respectively. We see that

m m—1
e=ni+ 2(2"1 -1, f= Zniniﬂ + N,
i=2 i=1

In the matrix case with n; = n for all ¢, we obtain e = n+ (m — 1)(2" — 1)
and f = (m — 1)n? + n. In particular, the number of extreme rays grows
exponentially in n except when n = 1.

The generators of C' determined in Corollary 2.6 may be used to give a
parametric form of each face of C. Consider a face F' of C, so (by Proposition
2.2) F = C(P) for some cross-free partition N'= { Ny, Nq,..., N,}. The sets
I(No), I(Ny),...,I(N,) are intervals and there is a permutation 7 € Sy
with 7(0) = 0 and r(Izg41)) < I(Iz@) for t = 0,...,p — 1. Define, for
t =0,...,p the node set G = U]_,Nu). Then each Gy is either a block
or consist of a single node in R;. Moreover, x%t, t = 0,...,p are affinely
independent and they generate the face F', i.e.,

F =cone({x® :t=1,...,p}).

We omit the proof of these facts.

Finally, let us consider the two-dimensional faces of C. Fach such face is
spanned by two generators of C. We say that that two distinct generators z
and w are adjacent if F' = cone({z,w}) is a face of C' (and then dim(F') = 2).
One may derive from Corollary 2.6 that (i) x" for each v € Ry is adjacent to
all other generators, and (ii) for distinct blocks S and T the generators x*
and xT are adjacent if and only if S C T or T C S. This implies that the
“diameter” of C'is two: any two generators are either adjacent or they are
both adjacent to some other generator.

As an application of the results above we consider a polytope obtained by
intersecting C' with a certain hyperplane. Let p € IRV be a vector satisfying
py > 0forv e Vand ) ., p, =1 Later, p will be viewed as a discrete
probability distribution on the node set V. Consider the polyhedron

C(p)={xeC:) puz, =1} (3)

veV



Observe that C(p) is bounded as C' C IR} and each p, is positive. Therefore,
C(p) is a polytope. The faces of C(p) are the intersection between the faces
of C' and the hyperplane {x € IR" : Y wev Py = 1}, In particular, we
may determine the vertices of C'(p) from Corollary 2.6. Recall the notation
P(S) = Y cgPv for each subset S of V.

Corollary 2.7 The vertices of C(p) are the points (1/p(S))x® where S is

either a block in D or S consist of a single node in R;.

3 Row-ordered majorization

In this section we introduce a vector ordering which may be seen as a gen-
eralization of weak majorization. Some properties of the new ordering are

given.
We consider again the digraph D introduced in section 2, but restrict the
attention to the matrix case where |R;| =n for i =1,...,m. Thus each x €

IR” may be viewed as a real m x n-matrix with (4, j)th entry z; ;, and this is
done throughout the present section. The results below also hold for a general
node set V', but the matrix case is of special interest. We identify the vector
spaces IRV and IR™". This space is equipped with the usual inner product
for vectors which in matrix form is (x,y) = Z” z; ;v j = Trace(xTy). We
let 0 denote the matrix (suitably dimensioned) with all zeros.

Let K denote the the set of generators for the cone C, that is (see Corol-
lary 2.6) K contains x* for v € Ry and the incidence vectors of blocks in D.
Thus we have

C = cone(K).

The polar cone (sometimes called the dual cone) of C is the convex cone
Co={xeR™:(y,x) >0 forally € C}.
Consider an m X n-matrix x. We say that x C'-majorizes 0 and write
x =¢ 0, or 0 <¢ x, provided that x € C°. Since K generates C', x »¢ 0
holds if and only if
(g,x) >0 forall ge K. (4)

If y € R™" we say that x C-majorizes by y and write X =¢c y or y <¢ x if
x—y >cO.

We may write the concept of C'-majorization in a more transparent form.
For a real number a we write a~ := max{—a, 0}.
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Proposition 3.1 Let z € R™". Then z =¢ 0 if and only if

(i) 2,;=>0 for j=1,...,n; 5)
. k n n _
(11) Zz:l Z]:l Z’L,_] Z ijl Zk'-f—l,_] fOI’ k — 17 N 7m.

where we define zpmy1,; =0 for 7 <n. Thus, x =cy if and only ifz=x—Yy
satisfies (5).

Proof. The result follows from Corollary 2.6 by observing that the min-
imum value of (g, z) taken over all k-blocks is equal to Zle Z?Zl Zij —
> i1 %k41,; (and removing some redundant inequalities). D

There is a relation between C-majorization and weak majorization. Let
x € IR™"™ and define s = (s1,...,8m,) to be the vector of row sums in x, so

S; = ?:1 z;; for i = 1,...,m. Assume that s1 > sy > ... > s,,. Since

Zle Sk > Zle Z?Zl Tij — Z?Zl Tir1, We see that x =¢ 0 implies that
Zle s, >0for k=1,...,m, that is, s =, 0.

One may check that <¢ is a partial ordering on IR"™". Furthermore, <o
is a vector ordering in the sense that it is compatible with the vector space
operations: x <¢ y implies that x +z <¢ X+ z and Ax <¢ Ay for all z and
A > 0. All these properties are due to the fact C° is a convex cone. In fact,
<¢ is a cone ordering, see [8] for a discussion of cone orderings on vector
spaces. We remark that <o may be extended by introducing symmetries
as is the case for (weak) majorization (where < and <, are permutation
invariant), but we do not discuss this here.

Example 3.2 (componentwise ordering). If m = 1, the matrices are n-
dimen-sional row vectors and (omitting the redundant index) y <¢ x means
that y; < x; for 5 =1,...,n, i.e., componentwise ordering.

Example 3.3 (weak majorization). Let n = 1 so our matrices reduce to
m-dimensional column vectors (where we again omit an index). Let z € IR™
be nonincreasing, so z; > ... > z, (and define z,4; = 0). Observe that
Zle 2i — 2,4 equals either Zle z; or Zfill 2;, depending on the sign of
Zg+1- From this it follows that z >=¢ 0 if and only if z weakly majorizes 0.
Thus, C-majorization reduces to weak majorization in the case of n = 1.

We give a possible economic interpretation of the ordering z >¢ 0. Con-
sider n different economic activities over a span of m time periods (say years).
Let z; j denote the expected (discounted) payoff of activity j in time period
1, so we obtain a “payoff matrix” z € IR™". What does z >¢ 0 mean in
this setting? Conditions (5) says that (i) no payoff during the first year is
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negative, and (ii) the loss (negative payoff) during one single year does not
exceed the accumulated payoff at the beginning of that year. If x >¢ y
the payoff matrix x is “better” than y in this the sense that x — y has the
properties (i) and (ii) just given.

Let f : A — IR be a function defined on some subset A of R™". It
1s of interest to consider those functions that are <o-isotone in the sense
that f(x) > f(y) whenever x,y € A and x >¢ y. In [3] order preserving
functions for cone ordering are discussed, and a general characterization of
isotone functions in terms of generators is presented (see also [10]). Note
that (C°)° = C because C is a closed convex cone. The generators of C°
may be seen from (1). This set consists of (i) the matrices with a 1 in some
row and a -1 in the next row and all other elements being zero, and (ii) the
matrices with a 1 in the last row and all other elements zero. By applying
the general result of [3] we obtain that f is =c-isotone if and only if

)z o

8:171‘0‘ - 8$i+1’]§

x) >0
holds for ¢+ < m, 7 < n, k < n and for each x in the interior of A. This
is equivalent to the condition that the m x n-matrix of partial derivatives

%(X) lies in C for each x in the interior of A.
2,]

4 Applications to statistical hypothesis testing

In this section we study some mathematical problems arising in statistical
testing theory, and show how some of the results concerning the cone C' are
useful.

First we give the relevant statistical background (see [9] for the theory of
testing statistical hypothesis). We consider a (discrete) statistical experiment
where a random variable Z is observed. The sample space is finite, say
{1,...,n} and we assume that n > 2. The distribution of Z may be described
by a vector r where Pr(Z = j) = r; for j = 1,...,n (here Pr(-) denotes
probability). We consider the situation where it is known that r € {p, q},
but it is unknown whether r = p or r = q. Here p,q € K,, are given
vectors. The testing problem is to test, based on the observed value of Z,
the null hypothesis Hyp: r = p against the alternative H;: r = q. A test is
a rule which specifies whether Hy should be rejected (and thereby claiming
that q is the true distribution). More precisely, a test is simply a function
d: {l,...,n} — [0,1] where §; is the probability of rejection when Z = j
is observed. We also view ¢ as a vector in R", so § = (01,...,d,). The
level of a test § is defined as Z?Zl d;p; and the power of ¢ is Z?Zl 9;q5. The
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level is equal to the probability of rejection when r = p (an “error of the
first kind”), and the power equals the probability of rejection when r = q (a
correct decision).

We assume hereafter (for simplicity) that p; > 0 for each j. Let 0 < o <
1. The problem of finding a test with maximum power among all tests with
level at most a may be formulated as the linear programming problem

maX{quéj:ijéjga; 0<6; <1 forj=1,...,n}. (6)

j=1 j=1

A basic result in statistical testing theory is the Neyman-Pearson lemma
(see [9]) which describes the solution of problem (6). An optimal solution
0% of (6), called a Neyman-Pearson test, is found as follows. Determine a
permutation m € .S, such that

qw(l)/pw(l) > .2 Qﬂ'(n)/pﬂ'(n)> (7)

that is, the fractions ¢;/p; are ordered nonincreasingly. Let ¢ be maximal with

Zj<t Pr(j) < a and define vy = (a — Zj<t Pr(j))/Pr(t)- The Neyman-Pearson
test 0* is then given by

1 forj <t
or;y=9q 7 for j = t; (8)
0 forj>t.

The fact that §* is optimal in (6) may also be derived directly using linear
programming duality (see e.g. [2]). The problem (6), where p and q are
arbitrary vectors, is known as the continuous knapsack problem. A discussion
of this problem and other algorithms for solving it may be found in [11].

The test 6* is a function of the permutation 7. There may be several
permutations satisfying (7) as one may reorder elements i and j for which
¢i/pi = q;j/p;. In fact, these permutations determine all the optimal solutions
of (6): the set of optimal solutions is the convex hull of Neyman—Pearson tests
based on permutations satisfying (7). Thus the ordering in (7) characterizes
the solutions of the testing problem.

Consider the testing problem where p is fixed (and p; > 0 for all j) but q
may vary and it will be replaced by the variabley = (y1,...,yn). Leti,j <n
be distinct and assume that y € K, satisfies the ordering inequality

Yi/pi > y;/p;- (9)

Then, for each a € [0, 1], there is a Neyman—Pearson test ¢ satisfying 6; > ¢;,
i.e., the rejection probability at ¢ is no smaller than the rejection probability
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at j. Moreover, if the inequality in (9) is strict, then every Neyman—Pearson
test must satisfy §; > J;. Therefore, inequalities of the form (9) lead to
specific properties of Neyman—Pearson tests. We shall consider two different
sets of ordering inequalities of type (9). In each case the relation to the
cone (' studied in section 2 is explained and statistical interpretations of the
results are given.

Let 1 <k < n and consider the polyhedron Ni(p) € IR" defined by

We see that y € rint(Ng(p)) if and only if the unique Neyman—Pearson test
0 with level o = Z?Zl p; for testing p against y is given by d; = 1 for j <k
and 0; = 0 for j > k.

Consider the node set V' being the union of the two rows Ry = {1,...,k}
and Ry = {k+1,...,n}. Recall the polytope C(p) defined in (3). Consider
the linear transformation 7' : IR™ — IRY given by T(y) = x where z;; =
yj/p; for 1 < j < k and x9 ;1 = y;/p; for k+1 < j < n. Thus, the jth
variable is scaled by 1/p; and the variables are placed consecutively in the
two rows. We see that

C(p) = T'(Ni(p))

and T is a bijection from Ni(p) to C(p). This implies that all the faces
of Ni(p) are found from the faces of C(p). Thus, F is a face of Ni(p) if
and only if T'(F) is a face of C(p). Moreover, F' and T(F') have the same
dimension. In particular, we may determine the vertices of Ni(p).

Let S C {1,...,n} be such that either S = {i} for some ¢ < Ek, or
{1,...,k} C S (with strict inclusion). Let S denote the set of all such
subsets S. For each S € S we define p° € K,, by

s_ [ pi/p(S) forjes;
P; 0 for j & S.

Note that p® = e; when S = {i}, i < k. Let Z be a random variable on
{1,...,n} with distribution given by p. Then the conditional probability
of the event Z = j given that Z € § is equal to p;/p(S) if j € S and 0
otherwise. Therefore p® may be interpreted as the conditional distribution
of Z given that Z € S. From Corollary 2.7 we now obtain

Corollary 4.1 The vertices of Ni(p) are the points p° for S € S.

The polytope Ni(p) has therefore 2"~% + k — 1 vertices.
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We next study a second set of ordering constraints of type (9). Consider
the polytope M(p) € IR" given by

M(p) ={y € Kn:y1/pr > ... > yn/Dn}- (11)

The relative interior of M(p) consists of all those vectors y such that for
each level a € [0, 1] the Neyman—Pearson test 4 is unique and has the form
0 =1for j <t,0; =~y for j=tand j; =0 for j > ¢.

This polytope M(p) is also (affinely) isomorphic to a polytope C(p) for
suitable node set V. In fact, let |R;] = 1 for ¢ = 1,...,n and consider
the linear transformation T’ (from IR™ to IRY) given by z;; = vi/p; for i =
1,...,m. Then we have that C'(p) = T(M(p)) so again all faces of M(p)
are given via those of C(p).

Leti e {1,...,n}. Wedefine s; = 22:1 pr and p@) = (p(li), e ,pﬁf)) e K,
by

G | pi/si for j <i;
Pj {0 for 7 >4 (12)
In particular, p® = e; and p™ = p. Consider again a stochastic vari-

able Z with sample space {1,...,n} and distribution given by p. We may
interprete p¥ as the conditional distribution of Z given the event that Z < 1.

Proposition 4.2 M(p) is an (n — 1)-simplex with vertices p®, ..., p™.

Proof. This form of the vertices follows from Corollary 2.7 and the affine
independence is easy to check. Therefore M(p) is a simplex of dimension
n— 1. [[

Statistically, this says that the set of distributions q for which the Neyman—
Pearson test is unique and nonincreasing coincides with the set of convex
combinations (“mixings” of the conditional distributions for Z given that
Z <. In Figure 2 the polytope M(p) is shown for p = (0.1,0.4,0.5).

So far we have assumed that p; > 0 for all 5. We now consider the general
case where some components in p may be zero. We therefore assume that,
for some k, p; = 0 for 5 < k and p; > 0 for j > k. Observe that, for oo > 0,
each Neyman—Pearson test 0 must satisfy d; = 1 for j < k. Thus we are lead
to consider the polyhedron

Mi(p) ={y € K : Yrs1/Pri1 = - = Yn/Pn} (13)

Note that My(p) = M(p).

Proposition 4.3 Let p be as above. Then My (p) is an (n— 1)-simplex with
vertices eq, ..., ep p*tY, ... p™.
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0,0,1)

(0,1,0)

(0.2,08,0)
(1,0,0)

Figure 2: The simplex M (p) for p = (0.1,0.4,0.5).

Proof. Observe first that all the inequalities y; > 0 for £ +1 < j < n are
redundant. Let y be a vertex of My(p). Then y is determined by n linearly
independent equations consisting of Z?Zl y; = 1 plus n — 1 equations among
the n equations (i) y; = 0 for ¢ < k and (ii) y, = 0 and y;/p; = yi+1/pit1 for
ke {i,...,n—1}. If we leave out an equation from group (i), say y; = 0 for
some ¢ < k, then y satisfies y; =0 for j # i and j <k, yp/px = - .. = Yn/Pn,
Yn = 0 and finally Z?Zl y; = 1. A little calculation gives that y = e;. If we
leave out the equation gy, = 0, we obtain y = p. Finally, if we leave out the
equation y;/p; = yit1/pis1 for some i € {k+1,...,n — 1}, then y; = 0 for
je{l,....,ki+1,...,n} and we get y = p¥). This proves the result. i

Similar results to those above may also be derived for more complicated
sets of ordering constraints (9) by transforming the problem to questions
concerning faces of C'. We do not pursue this here, but rather we mention
some geometrical properties of M(p) (similar results hold for Mg (p)). Let
v (C) denote the k-dimensional volume of a convex set C' of dimension k.

Let S = conv({0,p™,..., p™}) which (due to Proposition 4.2) is the
convex hull of M(p)U{0}. Since 0,p1), ..., p™ are affinely independent, S
is an n-simplex in IR". The relation between the volumes of M(p) and S is

given by .
un(S) = mﬂn—l(M(P))- (14)

This follows from a well-known volume relation (see [13]) using the facts that
M (p) lies in the hyperplane defined by Z?Zl z; = 1 and the distance from
0 to this hyperplane equals 1/4/n. The volume of S can be determined as

16



follows
0a(S) = (1/n]) det ()|

where A € IR™" is given by

A :_[p(l)—O,...,p(")—O}:

1 2o omon
52 Ss3 Sn—1 Sn

0 2 B 2 B
52 Ss3 Sn—1 Sn

0 0 B . B I
S3 Sn—1 Sn

o
o
o
o
s}
S
|
L
s}
S
L

Therefore we have .
det(A) = [ [ vi/s:.
i=1

Putting these results together shows that the volume of M(p) is given by

a0 = o 15 (13

For instance, for n = 2 the volume (length) is pyy/2 and for n = 3 it is
(1/2)V/'3; paps /(1 — ps).
The (n — 1)-volume of the standard simplex K, is v/n/((n — 1)!), so we

have

0(p) = 1 (M(D)) /a1 ( le (16)

This number v(p), the relative volume, lies strictly between 0 and 1 and may
be given a probabilistic interpretation. Assume that a vector q is drawn at
random from K, according to the uniform distribution, and recall the remark
given after (11). It follows that v(p) is the probability that q lies in M(p))
or, equivalently, that for each level a € [0, 1] there is a unigue nonincreasing
Neyman—Pearson test §.

How does v(p) depend on p? A first observation is that if p € K, is
nondecreasing, i.e., py < ... < p,, then v(p) > v(7(p)) for all permutations
m € S,. Next, v(p) can be made arbitrarily close to 0 or 1 by suitable choices
of p. In fact, let p™ = (1—(n—1)/m,1/m,...,1/m) form =1,2,.... Then
M(p™) converges to {0} in the Hausdorff norm. It is also possible to find
another sequence w(™ m =1,2,... such that M(w(™) converges to K, (in
the Hausdorff norm), say w™ = (1/m,1/m,...,1 — (n —1)/m). Thus, by
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the continuity of the volume function w.r.t. the Hausdorff distance we get
lim,, 00 v(P™) = 0 and lim,, o v(W™) = 1. This can be checked by direct
calculation using (16). Both these observations are quite intuitive due to the
definition of M(p) or the probabilistic interpretation of M(p) in terms of
Neyman—Pearson tests.

The function v(+) is neither convex nor concave, but it has another inter-
esting property.

Proposition 4.4 v(-) is Schur-concave on D Nrint(K,).

Proof. We use the well known fact that the function x — > 7, g(z;) is
Schur-convex when g : R — IR is convex, see [10]. Therefore the function
x — » i, In(z;) is Scur-concave. Since the exponential function is increasing
it follows that f : IR" — IR given by f(x) = exp(Z?zl In(z;)) = H?Zl zj is
Schur-concave.

Assume that x,y € D} Nrint(K,) and that x < y. Since f above is
Schur-concave we have

xlanylyn

and combining this with the fact that Z?Zl zj < Z?Zl yifork=1,...,n—1
(here we use the assumption that x,y € D7), we see that

v(x) > v(y)
as desired. {

We remark that the function v(+) is not Schur-concave on rint(K,) since
it is not symmetric.

There is another property of the polytope M (p) that relates to majoriza-
tion.

Proposition 4.5 Assume that p € D} Nrint(Ky). Then the vertices of
M(p) constitute a chain in the partial ordering given by <:

p= p(") < p("_l) <...= p(l) = e;.

Proof. First we observe that p € D implies that p® € Dt fori=1,...,n
and therefore p&) = pgz) for all i and j. Let i € {1,...,n—1}. As pgz) =0 for
j > 1 we get for each k < n that

(@) .~k (9 ko (i4+1) 1 ~—kAi 1 kA(i4+1
Ay = Zj:lpj _ZJ 1Pj = ZJ 1P — 5, Zj:l )pj

Si4+1
where a A b denotes min{a, b}. If k < i we get AD = (£ — = 11) Z?Zl p; >0
because p;y1 > 0. If £ > 741 then A( =1 ZJ 1 D 81+1 Z;illpj =1-1=
0. This shows that A;ﬂ) > 0 and pttY < p'. i
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A consequence of Proposition 4.5 is that for every symmetric vector norm
|-1| (so ||w(x)]| = ||x]|| for every x € IR™ and 7 € S,,) the norms of the vertices
p® when p € D% Nrint(K,) are ordered by

™ < [p" V| < ... < |pY.

This is due the fact that such a norm is Schur-convex, see [10].

A final geometrical property we mention concerns the angles between
the vectors p@. If we let a; ; denote the angle between p® and p¥) when
1 < i< j < n (angles are calculated using the Euclidean norm), then we
obtain that

i i
cos(aig) = | 2_p}/ D _7-
t=1 t=1

In particular, for p = (1/n,...,1/n) we have cos(a; ;) = \/i/7.
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