Criticality
 Conditions on
 Equations to
 Ensure Poly-time Functions

Vuokko-Helena
Caseiro

Research report 225
ISBN 82-7368-139-4
ISSN 0806-3036

November 1996

Criticality Conditions on Equations to Ensure Poly-time Functions*

Vuokko-Helena Caseiro
University of Oslo, Department of informatics
P. O. Box 1080 Blindern, N-0316 Oslo, Norway
Tel: +4722852405 Fax: +4722852401 E-mail: vuokko@ifi.uio.no

November 1996

Contents

1 Introduction 2
2 Preliminaries: Terms, Equations, Functions 4
3 The System poly-basic 5
3.1 Needed Parts: Fit Units and Fit Right-hand Side Trees 5
3.1.1 Definitions. 6
3.1.2 Fit Trees Indicate What Is Needed. 7
3.2 The poly-basic System 8
3.3 Starting to Work on Polynomially Bounded Output Lengths 9
4 Critical Positions 10
4.1 Definition and Marking Algorithm 10
5 Polynomially Bounded Output 12
5.1 Replacing PC2.2 by $P B O$ 12
5.2 Motivation for $D D C$ 12
5.3 Replacing $P B O$ by $P B O^{\prime}$ 13

[^0]6 The "Don't Double Criticals" System (DDC) 15
6.1 A Very Simple Syntactical Subsystem 16
6.2 A Little More Complicated Subsystem 17
7 Conclusion 18
8 Appendix 1: The Bellantoni-Cook Functions Are $D D C$ 19
9 Appendix 2: Proofs of the Results in This Report 21
9.1 Proofs of Lemmas from Section 5 21
9.2 Proof of Theorem 2 24

1 Introduction

We consider equations defining functions on data structures built from constructors, e.g. sorting lists constructed from nullary nil and binary cons

```
quicksort nil = nil
quicksort (cons }xy\mathrm{ ) = qs }yx\mathrm{ nil nil
qsnilzlr = append (quicksort l)(consz (quicksort r))
qs (cons xy)zlr = if-then-else (less xz)(qs yz(cons xl)r))
    (qs yzl(cons xr))
append nil z = z
append (cons }xy)z=\operatorname{cons}x\mathrm{ (append }yz\mathrm{ )
if-then-else true x y = x
if-then-else false }xy=
```

or exponentiation on unary numbers built from nullary 0 and unary succ

$$
\begin{array}{llll}
\exp (\operatorname{succ} x) & =\text { double }(\exp x) & \exp 0 & =\operatorname{succ} 0 \\
\text { double }(\operatorname{succ} x) & =\operatorname{succ}(\operatorname{succ}(\text { double } x)) & \text { double } 0 & =0
\end{array}
$$

We know that sorting may be executed in polynomial time (poly-time), whereas exponentiation cannot. Is there some way of detecting this by a syntactical consideration of the equations?
In [2] we defined a class poly-basic of functions (on any data structure) characterized by having polynomial bounds i) on the number of "needed" calls to mutually recursive functions and ii) on the length of "needed" intermediate results. We showed that all functions in poly-basic are poly-time. But poly-basic is not a syntactically defined class. In examples it's often easy to see that (i) holds, but checking that (ii) holds might be just as difficult
as checking poly-time. In this report we wish to develop some methods for checking (ii).
We will take an important idea from work by Bellantoni and Cook [1], and Leivant [3]. They have given syntactic characterizations of classes of subrecursive functions by equational definitions; in particular, in [1] the data structure is the binary numbers and the class is exactly the poly-time functions, in [3] results are for arbitrary data structures but the classes become larger than poly-time ${ }^{1}$. In their work, the key idea is to control recursion by requiring that what we do recursion on (e.g. append's first argument), is of a different nature than the result of recursive calls (e.g. (append $y z$)). They accomplish this by, in our words, marking the argument positions where the result of recursive calls is received, as critical and disallowing recursion on critical.

Our definition of the critical positions of a function f will be that these are the argument positions of f that (directly or indirectly) in some right-hand side (rhs) are filled with (the result of) a recursive call for some function. We give a simple "marking algorithm" for assigning marks, "critical" or "noncritical", to all positions of all functions of an equation set. A main point in our approach is that the equations are allowed to have a general shape.

This report starts by recalling the system poly-basic and continues by modifying poly-basic gradually towards a poly-time equational system $D D C$.
First we define formally the concept of "critical position". Then we use it to replace (ii) by the finer requirements that output lengths be polynomial in "needed" noncritical input and strictly linear in "needed" critical input (i.e. for every function f there's a polynomial function P such that for all ground terms $X_{1}, \ldots, X_{n}:\left|\left(f X_{1} \ldots X_{n}\right)\right| \leq P\left(\sum_{i \text { noncrit \& needed }}\left|X_{i}\right|\right)+$ $\left.\sum_{i \text { crit \& needed }}\left|X_{i}\right|\right)$.
Then we study how to control the linearity of arguments in critical positions. We must confront the problem of doubling an argument. Basically, there are two ways for a function to double an argument. The first is by recurring on it. The idea of [1] and [3] was to forbid recursion on critical altogether, and so will we. The second way of doubling is by having a rhs nonlinear in the variable from the related left-hand side position, and then in some way or other using constructors of arity at least two to put the variable copies together. This problem was not considered by [1] and [3]. We propose a way of describing what is combined by constructors, and, in particular, whether two copies of the same variable are combined.
In this way we obtain the system $D D C$ - "Don't Double Criticals" which we consider the main achievement of this report. All function in (pure) $D D C$

[^1]systems are poly-basic, therefore poly-time. $D D C$ includes the BellantoniCook functions (proved in Appendix 1), so also in $D D C$ any function on binary numbers is definable. But $D D C$ is more general, allowing equations of a general shape on arbitrary data structures, so that e.g. slightly modified versions of sorting functions like quicksort become definable.

2 Preliminaries: Terms, Equations, Functions

Given three disjoint sets, of variables, of constructors with arity and of functions with arity greater than zero, respectively, we define terms in the usual way: A variable is a term, and if t_{1}, \ldots, t_{n} are terms and h is a constructor or a function, then $\left(h t_{1} \ldots t_{n}\right)$ is a term. Furthermore $\left(h t_{1} \ldots t_{n}\right)$ is called an application with h as head and the t_{i} 's as arguments of $h . s$ is a subterm of t if s is t, or if t is an application $\left(h t_{1} \ldots t_{m}\right)$ and s is a subterm of some t_{i}. A constructor term is a term built only from constructors. A ground term is a term built only from constructors and functions.
Define a canonical equation system to be a set of equations such that each function f is defined by

$$
\left(f\left(c y_{1} \ldots y_{m}\right) x_{2} \ldots x_{n}\right)=r
$$

where $n \geq 1, m \geq 0$ and there's one equation for each constructor c, where $y_{1}, \ldots y_{m}, x_{2}, \ldots, x_{n}$ all are different variables and r is a term with variables among $y_{1}, \ldots y_{m}, x_{2}, \ldots, x_{n}$. We consider only finite systems. All our equations will be in this form. As shorthand notation, sometimes we instead define a function f by composition, $\left(f x_{1} \ldots x_{n}\right)=t$, where x_{1}, \ldots, x_{n} are different variables and t is a term with variables among x_{1}, \ldots, x_{n}. In examples we will permit defining functions just for some constructors (e.g. append only for first argument a list, and not e.g. a boolean), formally, the rhs of the remaining equations can be taken as e.g. the constructor false. For the rest of this section we assume that a canonical (equation) system is given.
When a function f occurs in the lhs of an equation then the equation is for f. If a function g occurs in the right-hand side (rhs) of an equation for f then f calls g. If there is a sequence $f_{1}, f_{2}, \ldots, f_{n}(n \geq 1)$ of different functions such that f_{1} calls f_{2}, \ldots, f_{n} calls f_{1} then each f_{i} is recursive, and every two functions from the sequence are mutually recursive.
We set up a directed graph, the dependency graph where the nodes are the functions $\{f, g, \ldots\}$, and there's an arc $f \rightarrow g$ iff f calls g. Define the binary relation $\xrightarrow{+}$ to be the transitive closure of \rightarrow. Define $f \equiv g$ iff $f \xrightarrow{+} g$ and $g \xrightarrow{+} f$. Note that $f \xrightarrow{+} f$ iff f is recursive, and $f \equiv g$ iff f and g are mutually recursive.

Given a node f, define the M-set ${ }^{2}$ for f to be $M_{f}=\{g \mid f \equiv g\} \cup\{f\}$. Define a binary relation $\triangleright($ written infix) on M-sets S, T by $(S \triangleright T)$ iff $S \neq T$ and there is a node (function) s in S and a node (function) t in T such that $s \rightarrow t$. So \triangleright is antisymmetric and by definition it is irreflexive. We will do induction using \triangleright, both upwards and downwards. S is over T / T is below S if $S \triangleright T$).

In an equation $e: l=r$ for a function f, if in r there is a subterm t such that t is $\left(g t_{1} \ldots t_{n}\right)$ and $g \in M_{f}$, then t is a recursive call term in e.
The system is terminating if when we turn the equations into rewrite rules by orienting them from lhs to rhs, then for any term t, any rewriting sequence of t is finite. Obviously, the system has unique normal forms, and if the system is terminating then the normal form of a term t is denoted t !.

3 The System poly-basic

In 3.1 and 3.2 we refer some definitions and results from [2]. In 3.3 we explain how we want to go on developing poly-basic.

3.1 Needed Parts: Fit Units and Fit Right-hand Side Trees

Assume that the programmer has defined an n-ary function f. Then we ask the programmer additionally to suggest some f-units. An f-unit is a subset of $\{1, \ldots, n\}$ - with the intuition that each f-unit should indicate an argument combination of f that may be needed to compute one call ($f \bar{X}$) for ground terms \bar{X}. E.g. for if-then-else (see Introduction) the programmer might suggest the units $\{1,2\}$ and $\{1,3\}$ since only arguments 1 and 2 or 1 and 3 will ever be needed to compute if-then-else. Formally $\{1,2\}$ and $\{1,3\}$ is an acceptable collection of if-then-else-units since each unit contains the position 1, and since each of the two rhs for if-then-else is uniquely "covered up" by one if-then-else-unit (x is covered by $2, y$ is covered by 3). Such formally acceptable units will be called fit units. Alternatively, $\{1,2,3\}$ alone would be ok, but less useful since it doesn't narrow the set of arguments.

Indeed, given a set of units they may be used to delimit which parts of a rhs might be needed: We draw each rhs as a tree in the usual way but in each function node choosing a unit U (among the given ones) and only including the children corresponding to U. Lemma 1 below states that when the given units are fit units, then for each function call $(f \bar{X})$ there is a unique such tree τ such that only things occurring in the "instantiated" τ are needed in order to compute $(f \bar{X})$.

[^2]Note 1 Many things in this report are "modulo what is needed" (argument positions, rhs subterms, trees of recursive calls ...). If things seem complicated, try to think of the special case when we call a function f on ground input X_{1}, \ldots, X_{n} and everything is needed. Then a fit f-unit is just the trivial unit $\{1, \ldots, n\}$, a fit tree is just a subterm of the rhs (thought of as a tree), a fit based tree of recursive calls is the tree of all recursive calls on the initial call $(f \bar{X})$ - e.g. on (quicksort cons 6 (cons 2) nil), the tree has root quicksort who has one child qs who has two children qs and so on (altogether 14 nodes).

In the following definitions we make precise the concepts of need.

3.1.1 Definitions.

Let a canonical system with equation set E be given. For an n-ary function f, define an f-unit to be a (possibly empty) set of f-positions, i.e. a subset of $\{1, \ldots, n\}$.
Given an equation $e:\left(f\left(c y_{1} \ldots y_{m}\right) x_{2} \ldots x_{n}\right)=r$ in E, and an f-unit u, we define the variable set from e corresponding to u :

$$
W_{u}^{e}=\left\{y_{j} \mid 1 \in u \text { and } 1 \leq j \leq m\right\} \cup\left\{x_{i} \mid i \in u \text { and } 2 \leq i \leq n\right\}
$$

E.g. let e_{1} and e_{2} be the equations for append (in the Introduction), then $W_{\{1\}}^{e_{1}}=\emptyset, W_{\{1\}}^{e_{2}}=\{x, y\}$.
In the following, let \mathcal{F} be the family consisting of sets $S_{f}^{\mathcal{F}}$, where for each function f in the canonical system, $S_{f}^{\mathcal{F}}$ is a nonempty set of f-units.
For every equation $l=r$ in E : For any particular occurrence of a subterm t of r, define the set $\tau_{\mathcal{F}}(t)$ of rhs trees for t by induction on $t: \tau_{\mathcal{F}}(t)$ is the smallest set such that

- If t is a variable then the tree consisting of the single node (labeled) " t " is in $\tau_{\mathcal{F}}(t)$.
- If $t=\left(c t_{1} \ldots t_{n}\right)$ where c is a constructor, then for any choice of rhs trees $\tau_{1}, \ldots, \tau_{n}$ from $\tau_{\mathcal{F}}\left(t_{1}\right), \ldots, \tau_{\mathcal{F}}\left(t_{n}\right)$ respectively, the tree with root c and immediate subtrees $\tau_{1}, \ldots, \tau_{n}$ is in $\tau_{\mathcal{F}}(t)$.
- If $t=\left(g t_{1} \ldots t_{n}\right)$ where g is a function, then for any choice of nonempty g-unit $u=\left\{i_{1}, \ldots, i_{p}\right\}$ from $S_{g}^{\mathcal{F}}$ and for any choice of rhs trees $\tau_{i_{1}}, \ldots, \tau_{i_{p}}$ from $\tau_{\mathcal{F}}\left(t_{i_{1}}\right), \ldots, \tau_{\mathcal{F}}\left(t_{i_{p}}\right)$ respectively, the tree with root g and immediate subtrees $\tau_{i_{1}}, \ldots, \tau_{i_{p}}$ is in $\tau_{\mathcal{F}}(t)$.

For a function f, the set of f-units $S_{f}^{\mathcal{F}}$ is said to be adequate if for every equation e for f with rhs r and for every rhs tree $\tau_{r} \in \tau_{\mathcal{F}}(r)$, when we let V
be the set of variables occurring in τ_{r} then there is an f-unit $u \in S_{f}^{\mathcal{F}}$ such that $V \subseteq W_{u}^{e}$. We say that u covers τ_{r}. If for every r and τ_{r}, when $V \neq \emptyset$ there's exactly one f-unit in $S_{f}^{\mathcal{F}}$ covering τ_{r}, then $S_{f}^{\mathcal{F}}$ is said to be uniquely covering.
If for every function $f, S_{f}^{\mathcal{F}}$ is adequate and uniquely covering and contains the position 1 , then \mathcal{F} is a fit family, $S_{f}^{\mathcal{F}}$ is a fit unit set, the units are fit units, and the rhs trees are fit trees.

Given an equation $f\left(c y_{1} \ldots y_{m}\right) x_{2} \ldots x_{n}=r$ in E, particular subterms s, t of r such that t is a subterm of s, a rhs tree $\tau_{s} \in \tau_{\mathcal{F}}(s)$. Define t is in τ_{s} (sometimes written $t \in \tau_{s}$) if either t and s are the same occurrence of a subterm of r, or if for some constructor or function $k, s=\left(k s_{1} \ldots s_{n}\right)$ and for some immediate subtree $\tau_{s_{i}}$ of τ_{s}, t is in $\tau_{s_{i}}$.

Note 2 A unit consisting of all positions is called a trivial unit and it is always a fit unit. But often we wish to have smaller fit units. However, for recursive functions finding (small) fit units is a nontrivial task. Future work should be to make "completion algorithms" for handling some cases automatically.

3.1.2 Fit Trees Indicate What Is Needed.

Lemma 1 Let the following be given: A terminating canonical system, a fit family \mathcal{F}, an n-ary function f in the system, ground input X_{1}, \ldots, X_{n} to f, and let r be the rhs of the equation such that $(f \bar{X})$ matches the lhs. Then there's a unique fit tree $\tau_{r} \in \tau_{\mathcal{F}}(r)$ such that to compute $(f \bar{X})$

- from the constructors and functions in r we may only need those that occur in τ_{r}, and
- from the input X_{1}, \ldots, X_{n} we may only need X_{i} such that $i \in U$, where $U \in S_{f}^{\mathcal{F}}$ is the fit unit covering τ_{r}.

So Lemma 1 states that to compute a function f on input \bar{X} there's a unique fit tree τ_{r} that contains all that's needed. We will call τ_{r} the needed fit tree and U the needed fit unit (w.r.t. f and \bar{X}). Note that the lemma only asserts the existence of τ_{r}, not how to find it, but to us that won't matter.
The fit units can furthermore be used to delimit which recursive calls are needed. We define a tree of recursive calls that only includes those recursive calls that are in needed fit trees:

Definition 1 (fit based tree of recursive calls) Given a terminating canonical system and a fit family \mathcal{F}. Let M be an M-set in the system, let $f \in M$
with ground input X_{1}, \ldots, X_{n}. The fit based tree of recursive calls $T_{f} \bar{X}$ for f on \bar{X} is the smallest tree such that

- the root is $\left(f X_{1}!\ldots X_{n}!\right)$, and
- for each node $\left(g Y_{1} \ldots Y_{m}\right)$ in $T_{f} \bar{X}$, let r be the rhs of the equation such that $(g \bar{Y})$ matches the lhs, let σ be the matching substitution, let the needed fit tree w.r.t. $(g \bar{Y})$ be τ_{r}, then for every subterm $t=$ $\left(h z_{1} \ldots z_{k}\right)$ of r such that t is in τ_{r} and $h \in M,(g \bar{Y})$ has a child $\left(h\left(z_{1} \sigma\right)!\ldots\left(z_{k} \sigma\right)!\right)$.

In the quick sort example, we might choose trivial units for all functions except $\{1,2\},\{1,3\}$ for if-then-else, then in any fit based tree of recursive calls for quicksort every qs-node has at most one child qs. If we didn't delimit by using fit units, the (sub)tree of qs calling itself would have been exponentially large.

3.2 The poly-basic System

For a constructor term t, the length of t, written $|t|$, is the number of constructors in t. If the system is terminating then for a ground term $t,|t|$ is the length of t in normal form.

Whenever we say "polynomial", we mean a unary, monotone polynomial function p, i.e. p is a unary function on nonnegative integers of the form $p(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k}$, where $a_{i} \geq 0, k \geq 0$.

Definition 2 (poly-basic) A canonical system with a fit family \mathcal{F} and such that $P C 1^{3}$ and PC2 hold, is called poly-basic.
$\boldsymbol{P C 1}$ For every M-set M there is a polynomial P_{M} such that for any n-ary function $f \in M$, for any ground terms X_{1}, \ldots, X_{n}, let $U \in S_{f}^{\mathcal{F}}$ be the needed fit f-unit, let $T_{f} \bar{X}$ be the fit based tree of recursive calls for f on \bar{X} : The number of nodes in $T_{f} \bar{X}$ is bounded by $P_{M}\left(\sum_{i \in U}\left|X_{i}\right|\right)$.
$\boldsymbol{P C \mathcal { L }}$ For every M-set M there is a polynomial Q_{M} and a integer constant C_{M} such that for any ground term $\left(f X_{1} \ldots X_{n}\right)$ where $f \in M$, let $U \in S_{f}^{\mathcal{F}}$ be the needed f-unit, let r be the rhs of the equation such that $(f \bar{X})$ matches the lhs, let σ be the matching substitution, let τ_{r} be the needed fit tree, then for any subterm $t=\left(g t_{1} \ldots t_{m}\right)$ of r such that t is in τ_{r} and the needed g-unit for $t \sigma$ is $V \in S_{g}^{\mathcal{F}}$:

1. if $g \in M$ then $\sum_{i \in V}\left|t_{i} \sigma\right| \leq \sum_{i \in U}\left|X_{i}\right|+C_{M}$.

[^3]2. if $g \notin M$ then $\sum_{i \in V}\left|t_{i} \sigma\right| \leq Q_{M}\left(\sum_{i \in U}\left|X_{i}\right|\right)$.

Note that PC1 implies termination. quicksort (choosing trivial units except for if-then-else: $\{1,2\},\{1,3\}$) is poly-basic - we may e.g. use $P_{M}(x)=x^{2}$ for the M-set $M=$ \{quicksort, qs\}. So by Theorem 1 below, quicksort is polytime. exp isn't poly-basic since in the first equation, PC2.2 doesn't hold for double's argument.

Theorem 1 (the poly-time theorem) Let a poly-basic system be given. For every M-set M there is a polynomial R_{M} such that for any n-ary function f, any constructor terms X_{1}, \ldots, X_{n}, let $U \in S_{f}^{\mathcal{F}}$ be the needed f-unit for f on \bar{X}, then $(f \bar{X})$ can be computed in time bounded by $R_{M}\left(\sum_{i \in U}\left|X_{i}\right|\right)$ by using a lazy computation strategy. (And: If fit units are trivial one may use an eager strategy.)

3.3 Starting to Work on Polynomially Bounded Output Lengths

PC1 and PC2.1 are trivially satisfied for e.g. function definitions in usual primitive recursive form, i.e. $f(c \bar{y}) \bar{x}=h \bar{y} \bar{x}\left(f y_{1} \bar{x}\right) \ldots\left(f y_{m} \bar{x}\right)$. But PC2.2 doesn't have such simple subcases. In poly-basic we have achieved to express polynomially bounded computation time by polynomially bounded output length (PC2.2). So now we need to study output lengths. Given a terminating system with a fit family, consider PC3:

For every M-set M there is a polynomial Q_{M} such that for any function $f \in M$, for any ground terms X_{1}, \ldots, X_{n}, let U be the needed f-unit: $\left|f X_{1} \ldots X_{n}\right| \leq Q_{M}\left(\sum_{i \in U}\left|X_{i}\right|\right)$.

Furthermore consider a function f defined by recursion $\mathrm{f}(\operatorname{succ} x)=\mathrm{g}(\mathrm{f} x), \mathrm{f} 0=$ 0 , where g is some function satisfying $P C 3$. If g satisfies $P C 3$ with the $Q_{g}(x)=2 x$ (or greater) but not with any $Q_{g}^{\prime}(x)=x+C(C \geq 0)$, then f doesn't satisfy PC3. So we learn that recursive calls cannot be "doubled" ${ }^{4}$.
To be able to compose functions freely in rhs, the functions should satisfy a stronger PBO (Polynomially Bounded Output): The length of the output is bounded

- by a polynomial in the length of the needed input that doesn't contain recursive calls, and
- (strictly) linearly (i.e. $p(x)=x+k, k$ a constant) by the length of needed input that does contain recursive calls.

To formalize $P B O$ we will use the concept of critical positions.

[^4]
4 Critical Positions

Our idea of defining critical positions for a function derives from works by [1] and [3] to characterize classes of subrecursive functions. There they treat the results of recursive calls (i.e. the recursive call terms) very carefully by distinguishing between different types of arguments to functions: Namely those arguments that may only be used "locally" and bit-wise ([1]'s "safe"); and the rest of the arguments ([1]'s "normal") that may be used "globally" to do recursion on. Any recursive call term used as an argument, is of the first type.
Now our intention is to give a general definition of the critical positions such that they are exactly those argument positions that may receive the result of recursive calls, and no others. So the naive definition of a critical position is: Argument position i in function f is critical if in some rhs, f^{\prime} 's i^{\prime} th argument is a recursive call term. E.g. in the definition of quicksort, append's first position is critical since there is a rhs where append's first argument is the recursive call term (quicksort l). But there are two complications about this . The first is that f might have as i 'th argument a term t_{i} which has a proper subterm that is a recursive call term (e.g. if append's first argument were (tail (quicksort $l)$)). In this case too, we will define i to be a critical position in f. The second complication has to do with passing arguments from one function to another. We should then "remember" criticality. E.g. redefine exp by

```
\(\exp ^{\prime}(\operatorname{succ} x)=\operatorname{double}^{\prime}\left(\exp ^{\prime} x\right) \quad \exp ^{\prime} 0 \quad=\operatorname{succ} 0\)
double' \((\operatorname{succ} x)=\operatorname{add}(\operatorname{succ} x)(\operatorname{succ} x)\) double' \(0=0\)
\(\operatorname{add}(\operatorname{succ} x) y \quad=\operatorname{succ}(\operatorname{add} x y) \quad\) add \(0 y \quad=y\)
```

The position in double' is critical, so we intend to treat any argument a to double' carefully. double' passes two copies of a over to add, so it's up to add what happens to the a 's. We should tell add that both its inputs must be treated carefully, i.e. we let both of add's positions be critical. It's because of this second complication that we will first define critical variables and then critical positions.

4.1 Definition and Marking Algorithm

Let a canonical system be given. Note that the definition of critical variables and positions is with respect to this system, but to simplify notation, we don't mark this explicitly. Recall the definition of "the variable set from e corresponding to u ", W_{u}^{e}, from Section 3.1 (one of the first definitions there).

Definition 3 (critical variables in an equation)

- Let $e: l h s=r h s$ be an equation in the given canonical system. If there is a subterm $\left(f t_{1} \ldots t_{m}\right)$ of rhs such that $t_{i}(1 \leq i \leq m)$ has a subterm which is a critical variable in e or a recursive call term, then this induces that in every equation e^{\prime} for f : Every $v \in W_{\{i\}}^{e^{\prime}}$ is a critical variable in e^{\prime}.
- A variable occurring in an equation in the given canonical system, is noncritical if it cannot be demonstrated to be critical.

Consider the definition of quicksort. Since (quicksort l) is a recursive call term so x and y in append are critical. Since (quicksort r) is a recursive call term so z in append is critical. Since (qs $y z(\operatorname{cons} x l) r)$) and (qs $y z l(\operatorname{cons} x r)$) are recursive call terms so x and y in if-then-else are critical. Since the variables in quicksort and qs cannot be demonstrated to be critical, they are noncritical.

Definition 4 (critical positions) For an n-ary function f defined by k equations e_{1}, \ldots, e_{k} : Position $i, 1 \leq i \leq n$, is critical iff every $v \in\left(W_{\{i\}}^{e_{1}} \cup\right.$ $\left.\cdots \cup W_{\{i\}}^{e_{k}}\right)$ is a critical variable. ${ }^{5}$

Note that we haven't said anything about the positions of the constructors. We will now present a "marking algorithm" for marking all the critical positions in the given canonical system. The algorithm is based on the following observation of Definition 3: Let e, e^{\prime}, f be as in the definition. Say that M is the M-set for which e is an equation, and that N is the M-set for which e^{\prime} is an equation (so $f \in N$). Then either $N=M$ or $M \triangleright N$. In other words, we have observed that the definition only concerns the positions of functions in M and in M -sets below M. For this reason, in the algorithm we can follow the order \triangleright downwards, in each M-set M, considering the M-equations and applying the Definition 3 as much as possible.

Define the active set S to consist of all the M-sets in the canonical system.
While S isn't empty do
Let M be a maximal (wrt. \triangleright) M-set in S.
Repeat
For every equation e in M do
Use definition 3 on e to mark variables as critical.
od
until in the last "round", no new critical variable was found in an M-equation.
M-variables that aren't critical, are marked as noncritical.
Remove M from S.
od
${ }^{5}$ Either all or none of the variables in $W_{\{i\}}^{e_{1}} \cup \cdots \cup W_{\{i\}}^{e_{k}}$ are critical.

Notation: Given a function f, an f-unit u. We let $n u$ be the subset of u consisting of all the noncritical f-positions and we let $c u$ be the subset of u consisting of all the critical f-positions.

5 Polynomially Bounded Output

5.1 Replacing PC2.2 by PBO

Now we can formalize $P B O$ from Section 3.3.

Definition 5 (PBO M-set) Let a terminating canonical system with a fit family \mathcal{F} be given. An M-set M in the system satisfies $P B O$ if there is a polynomial Q_{M} such that for any function $f \in M$, for any ground terms X_{1}, \ldots, X_{n}, when $U=N U \cup C U$ is the needed fit f-unit then

$$
\left|\left(f X_{1} \ldots X_{n}\right)\right| \leq Q_{M}\left(\sum_{i \in N U}\left|X_{i}\right|\right)+\sum_{i \in C U}\left|X_{i}\right|
$$

Lemma 2 If in the definition of poly-basic, instead of PC2.2 we require that PBO holds for every M-set, then Theorem 1 still holds.

The idea of the proof is to separate the construction of polynomials for the "active" noncritical input from the "passive" critical input.

5.2 Motivation for $D D C$

We continue the work on making PC2.2 more manageable. According to $P B O$, we must investigate how to treat critical arguments linearly.

Say that f on input $X_{1}, \ldots X_{n}$ "doubles" its i 'th argument if $|f \bar{X}| \geq 2\left|X_{i}\right|$. In general there are two ways for a function f to double an argument: Either by doing recursion on the argument, or by writing an equation where the rhs is nonlinear in the variable(s) corresponding to the argument. For instance

```
double \(_{1}(\operatorname{succ} x)=\operatorname{succ}\left(\operatorname{succ}\left(\right.\right.\) double \(\left.\left._{1} x\right)\right)\), double \(_{1} 0=0\)
double \(_{2} x \quad=\operatorname{cons} x\) (cons \(x\) nil)
```

Consider the first way of doubling arguments. We will forbid all recursion on critical. In $D D C$ this will be expressed by $R O N$ (Recursion On Noncritical), i.e. $P C 1$ depending only on the noncritical input. So $R O N$ fits in with the ideas of [1] and [3].
But there's also the second way of doubling, not considered by [1] and [3]. To avoid this kind of doubling, it's not necessary to require that the whole
rhs is linear in all critical variables. Rather we should study the use of constructors and make sure that we don't combine several copies of the same critical variables. Formally, we will do this by defining the output unit, it's just like the fit unit, but doesn't have to contain position 1. E.g. if-then-else has minimal output units $\{2\},\{3\}$.

Definition 6 (output family) Let a canonical system be given and a family \mathcal{F} consisting of a nonempty set $S_{f}^{\mathcal{F}}$ of f-units for each function f. If for every function $f, S_{f}^{\mathcal{F}}$ is adequate and uniquely covering then \mathcal{F} is an output family, $S_{f}^{\mathcal{F}}$ is an output unit set, the units are output units, the rhs trees are output trees.

We will then require that every output tree is linear in every critical variable. In $D D C$ this will be expressed by LIC (Linear In Critical).
Note that from now on, for a system we will typically have two families of sets of units: A fit family $\mathcal{F}^{\mathcal{F}}$ and an output family $\mathcal{F}^{\mathcal{O}}$.

Intuitively, when recursion is ignored, output units and output trees express what may leave traces in the output; and what may leave traces is decided by the use of constructors and variables. The functions only "conserve" what has been decided.

Consider the important special case of just having nullary and unary constructors (e.g. the $B C$ functions). Such constructors cannot combine any inputs. Formally this is expressed by the fact that for n-ary f, we may take the singletons $\{1\}, \ldots,\{n\}$ as output units; then every output tree has only some unary and a nullary branching. The second way of doubling doesn't work, $L I C$ is always trivially satisfied.
But what we hope to obtain in this way (in $D D C$) is not exactly $P B O$, but $P B O^{\prime}$ where the length of $\left(f X_{1} \ldots X_{n}\right)$ depends on the critical output positions rather than the critical fit positions. To bridge the gap, we will require that output units are chosen to be "unit smaller" than fit units. The technical details of this extra complication about $P B O$ and $P B O$ ' follow in the next subsection.

5.3 Replacing PBO by $\mathrm{PBO}{ }^{\prime}$

Analogously to Lemma 1, we have
Lemma 3 (needed when ignoring first arguments) Let the following be given: A terminating canonical system, an output family \mathcal{F}, an n-ary function f in the system, ground input X_{1}, \ldots, X_{n} to f, and let r be the rhs of the equation such that $(f \bar{X})$ matches the lhs. Assume that the normal form of the first argument of every function called on any input, is
given ${ }^{6}$. Then there's a unique output tree $\tau_{r} \in \tau_{\mathcal{F}}(r)$ such that to compute $\left(f X_{1} \ldots X_{n}\right)$

- from the constructors and functions in r we may only need those that occur in τ_{r}, and
- from the input X_{1}, \ldots, X_{n} we may only need X_{i} such that $i \in u$, where u is the f-unit covering τ_{r}.

We will call τ_{r} the needed output tree and u the needed output unit (w.r.t. $f, \bar{X})$.

Definition 7 ($\boldsymbol{P B O} \boldsymbol{O}^{\prime}$ M-set) As Definition 5, but add the assumption that there's also an output family $\mathcal{F}^{\mathcal{O}}$ and let the new requirement be that

$$
\left|\left(f X_{1} \ldots X_{n}\right)\right| \leq Q_{M}\left(\sum_{i \in N U}\left|X_{i}\right|\right)+\sum_{i \in c u}\left|X_{i}\right|
$$

where u is the needed output f-unit for $(f \bar{X})$.
Definition $8\left(\mathcal{F}^{\mathcal{O}}\right.$ "unit smaller than" $\left.\mathcal{F}^{\mathcal{F}}\right)$ Let a terminating canonical system be given with a fit family $\mathcal{F}^{\mathcal{F}}$ and an output family $\mathcal{F}^{\mathcal{O}} . \mathcal{F}^{\mathcal{O}}$ is smaller than $\mathcal{F}^{\mathcal{F}}$ if for every rhs r, every output tree τ_{r} and every fit tree ρ_{r} such that τ_{r} is contained in ρ_{r} (defined below): If u is the output unit covering τ_{r}, and U is the fit unit covering ρ_{r}, then $u \subseteq U$.

Define τ_{r} is contained in ρ_{r} by induction on r : Consider a (particular occurrence of a) subterm t of r. Let two rhs trees for t be $\tau_{t}^{O} \in \tau_{\mathcal{F O}}(t)$ and $\tau_{t}^{F} \in \tau_{\mathcal{F} \mathcal{F}}(t) . \tau_{t}^{O}$ is contained in τ_{t}^{O} if the roots in τ_{t}^{O} and τ_{t}^{F} are the same, and

- if $t=\left(c t_{1} \ldots t_{n}\right)$ then each $\tau_{t_{i}}^{O}$ is contained in $\tau_{t_{i}}^{F}$.
- if $t=\left(g t_{1} \ldots t_{n}\right)$: Let the g-units used be respectively u and U. Then $u \subseteq U$, and for every $i \in u$ we have that $\tau_{t_{i}}^{O}$ is contained in $\tau_{t_{i}}^{F}$.

Lemma 4 (from $\boldsymbol{P B O} \boldsymbol{O}^{\prime}$ to $\boldsymbol{P B O}$) Let a terminating canonical system with a fit family $\mathcal{F}^{\mathcal{F}}$ and an output family $\mathcal{F}^{\mathcal{O}}$ be given such that $\mathcal{F}^{\mathcal{F}}$ is unit smaller than $\mathcal{F}^{\mathcal{O}}$. Then for every M-set M :

- For every $f \in M$, for every input X_{1}, \ldots, X_{n} to $f:$ If u is the needed output f-unit and U is the needed fit f-unit, then $u \subseteq U$.
- So if M satisfies PBO^{\prime} then M satisfies PBO with the same polynomial.

So if in the definition of poly-basic, instead of PC 2.2 we require that PBO ' holds for every M-set, then Theorem 1 still holds.

[^5]
6 The "Don't Double Criticals" System (DDC)

Let the i 'th projection π_{i} be defined by $\pi_{i}\left(c x_{1} \ldots x_{m}\right)=x_{i}$ for every constructor c and $1 \leq i \leq m$. Let t be a term, let s be a subterm of $t . s$ is a projection sequence in t if $s=\pi_{i_{1}}\left(\ldots\left(\pi_{i_{n}} v\right) \ldots\right)$ such that $i_{n} \geq 0$ and v a variable. s is maximal if s is t or if the father of $\pi_{i_{1}}$ is not a projection.

Definition 9 ($\boldsymbol{D D C}$ M-set) Let a canonical system with a fit family $\mathcal{F}^{\mathcal{F}}$ and an output family $\mathcal{F}^{\mathcal{O}}$ be given such that $\mathcal{F}^{\mathcal{F}}$ is unit smaller than $\mathcal{F}^{\mathcal{O}}$. An M-set M is $D D C$ if PC2.1 holds for M and if moreover RON, and LIC are satisfied:
$\boldsymbol{R O N}$ There is a polynomial P_{M} such that for any n-ary function $f \in M$, for any ground terms X_{1}, \ldots, X_{n}, let $U=N U \cup C U$ be the needed fit f-unit, let $T_{f} \bar{X}$ be the fit based tree of recursive calls for f on \bar{X} : The number of nodes in $T_{f \bar{X}}$ is bounded by $P_{M}\left(\sum_{i \in N U}\left|X_{i}\right|\right)$.
LIC For every function $f \in M$, for every equation e for f with rhs r, for every output tree τ_{r} for r : If in τ_{r} there's a maximal projection sequence $s=\pi_{i_{1}}\left(\ldots\left(\pi_{i_{n}} v\right) \ldots\right)$ such that v is a critical variable in e, then there are no other occurrences of the term s in τ_{r}.

In quicksort, choose trivial fit units and output units except for if-then-else: choose $\{1,2\},\{1,3\}$ and $\{2\},\{3\}$ respectively. quicksort is not $D D C$ since append recurs on its critical first argument (so $R O N$ doesn't hold). If we however give append an extra noncritical first argument and simulate the original recursion, this can be fixed (see also treesort below): Let C nil $a b=$ $a, \mathrm{C}(\operatorname{cons} x y) a b=b$, and let (length t) produce $|t|$ in unary. With the following changes, the system becomes $D D C$.

```
qs nilzlr = append' (length (conslr)) (quicksort l)(cons z (quicksort r))
append'}(\operatorname{succ}n)xy=\textrm{C}xy(\operatorname{cons}(\mp@subsup{\pi}{1}{}x)(\mp@subsup{\mathrm{ append}}{}{\prime}n(\mp@subsup{\pi}{2}{}x)y)
```

It's in fact in order to be able to simulate recursion on critical in this way that we bothered to allow projections on critical variables in LIC; otherwise LIC could simply have required that every critical variable v occurs at most once in τ_{r}.

Theorem 2 (the output length theorem for $\boldsymbol{D D C}$) Let a (possibly empty) terminating canonical system with a fit family $\mathcal{F}^{\mathcal{F}}$ and an output family $\mathcal{F}^{\mathcal{O}}$ be given such that $\mathcal{F}^{\mathcal{F}}$ is unit smaller than $\mathcal{F}^{\mathcal{O}}$ and such that PBO' holds for every M-set. Define a new DDC M-set M using the given system ${ }^{7}$. Then PBO' is satisfied for M.

[^6]The key ideas in the proof of Lemma 2 are to do a first recursion on the height of the output based tree for $(f \bar{X})$, and a second recursion on the structure of the needed rhs. In the second recursion we keep critical input outside the construction of polynomials. The arguments of recursive calls are treated specially with $P C 2.1$. By Theorem 2 and (the last two lines in) Lemma 4 we get

Corollary 5 (pure $\boldsymbol{D D C}$ is poly-time) Let a canonical system with a fit family $\mathcal{F}^{\mathcal{F}}$ and an output family $\mathcal{F}^{\mathcal{O}}$ be given such that $\mathcal{F}^{\mathcal{F}}$ is unit smaller than $\mathcal{F}^{\mathcal{O}}$. If every M-set is DDC then every function in the system is polytime.

So, summing up about the relationships between the different classes: All pure $D D C$ functions are poly-basic and all poly-basic functions are poly-time. In the remaining subsections, we give examples of subsystems of $D D C$. In Appendix 1, we show that all (nonnullary) $B C$ functions are pure $D D C$.

6.1 A Very Simple Syntactical Subsystem

As an example of a particularly simple (pure) $D D C$ system consider $D D C$ simple1: A canonical system (with trivial output units and fit units) satisfying

1. The first position of every recursive function is noncritical.
2. Every recursive call term has the form $\left(g v_{1} \ldots v_{n}\right)$ where the v_{i} 's are different variables.
3. For every M-set M, for every equation of the form

$$
f\left(c y_{1} \ldots y_{m}\right) x_{2} \ldots x_{n}=\cdots\left(g_{1} v_{1,1} \ldots v_{1, r_{1}}\right) \cdots\left(g_{k} v_{k, 1} \ldots v_{k, r_{k}}\right)
$$

where f, g_{1}, \ldots, g_{k} all are in M and $k \geq 2$, either
(a) Any $\left(g_{i} v_{i, 1} \ldots v_{i, r_{i}}\right)$ and $\left(g_{j} v_{j, 1} \ldots v_{j, r_{j}}\right), i \neq j$, have no variables in common, or
(b) Each $v_{j, 1}$ is some y_{p}, and all the $v_{1,1}, \ldots, v_{k, 1}$ are different.
4. Every rhs is linear in every critical variable.

Note that Condition 4 is very restrictive. However, unary addition and multiplication are DDCsimple1: mul $0 y=0, \operatorname{mul}(\operatorname{succ} x) y=\operatorname{add} y(\operatorname{mul} x y), \operatorname{add} 0 y=$ y, \quad add $(\operatorname{succ} x) y=\operatorname{succ}(\operatorname{add} x y)$.

6.2 A Little More Complicated Subsystem

As a second example of a subsystem of (pure) $D D C$, consider $D D C$ simple2: Let a canonical system with a fit family $\mathcal{F}^{\mathcal{F}}$ and an output family $\mathcal{F}^{\mathcal{O}}$ be given such that $\mathcal{F}^{\mathcal{F}}$ is unit smaller than $\mathcal{F}^{\mathcal{O}}$. The system is DDCsimple2 if $L I C$ and the following conditions are satisfied.

1. The first position of every recursive function is noncritical.
2. Every recursive call term has the form $\left(g t_{1} \ldots t_{m}\right)$ where each t_{i} is a maximal projection sequence; and for every fit tree $\tau_{g \bar{t}}$ for $(g \bar{t})$: If there's a maximal projection sequence s in $\tau_{g \bar{t}}$, then there are no other occurrences of the term s in $\tau_{g \bar{t}}$.
3. For every equation $f\left(c y_{1} \ldots y_{m}\right) x_{2} \ldots x_{n}=r$ we have that: For every recursive call term $\left(g t_{1} \ldots t_{k}\right)$ in r we have that t_{1} is a y_{i}; and for any fit tree τ_{r} for r, for any two recursive call terms $\left(g y_{i} t_{2} \ldots t_{m}\right)$ and $\left(h y_{j} s_{2} \ldots s_{n}\right)$ in τ_{r}, we have that $i \neq j$.

Example 1 quicksort isn't $D D C$ simple2 for the same reason as it wasn't $D D C$ and because arguments in recursive call terms contain constructors, and because in qs's first equation, quicksort is called (twice) with illegal first argument.

Example 2 In the definition of tree sort below, we use intermediate binary trees constructed from ternary bic (value, left subtree, right subtree) and nullary emp. The critical positions are the first position in insert, the second and third positions in if-then-else, both positions in append. Choose trivial fit units and output units except for if-then-else $(\{1,2\},\{1,3\}$ and $\{2\},\{3\}$, as usually).

```
treesort \(l=\) flatten (maketree \(l\) )
maketree nil \(\quad=\mathrm{emp}\)
maketree (cons \(x y\) ) \(=\) insert (maketree \(y\) ) \(x\)
insert emp \(x=\) bic \(x\) empemp
insert (bic \(v l r) x \quad=\quad\) if-then-else \((\) lesseq \(x v)(\operatorname{bic} v(\) insert \(l x) r)\)
    (bic \(v l(\) insert \(r x))\)
flatten emp \(\quad=\) nil
flatten \((\) bic \(v l r) \quad=\quad\) append \((\) flatten \(l)(\operatorname{cons} v(\) flatten \(r))\)
```

treesort isn't DDCsimple2 since append and insert have critical first arguments. As for quicksort, this can be fixed: Let Cemp $a b=a, \mathrm{C}(\operatorname{bic} x y z) a b=$ b, and let (triplelength t) produce $3|t|$ in unary. With the following changes, the system becomes DDCsimple2 (append' and length are as when we "fixed" quicksort).

```
maketree \((\operatorname{cons} x y)=\) insert \(^{\prime}(\) triplelength \(y)(\) maketree \(y) x\)
insert \(^{\prime}(\operatorname{succ} n) t x=\mathrm{C} t\left(\right.\) bic \(x\) empemp) (if-then-else (lesseq \(x\left(\pi_{1} t\right)\) )
    (bic \(\left(\pi_{1} t\right)\left(\right.\) insert' \(\left.\left.\left.^{\prime} n\left(\pi_{2} t\right) x\right)\left(\pi_{3} t\right)\right)\right)\)
    (bic \(\left(\pi_{1} t\right)\left(\pi_{2} t\right)\left(\right.\) insert \(\left.\left.^{\prime} n\left(\pi_{3} t\right) x\right)\right)\)
flatten \((\) bic \(b l r)=\operatorname{append}^{\prime}(\) length \((\) bic \(b l r))(\) flatten \(l)(\operatorname{cons} b(\) flatten \(r))\)
```

Example 3 f receives a list of binary strings and outputs the list where those elements that didn't contain a string with an " s_{1} " in it, have been removed. Choose the fit g -units as $\{1,2\},\{1,3\}$, choose output g -units as $\{2\},\{3\}$; choose trivial output and fit units for f . Then f and g are $D D C$ simple2.

$$
\begin{aligned}
& \mathrm{f} \text { nil }=\text { nil, } \mathrm{f}(\text { cons } x l)=\mathrm{g} x(\text { cons } x(\mathrm{f} l))(\mathrm{f} l) \\
& \mathrm{g} \in a b=b, \quad \mathrm{~g}\left(\mathrm{~s}_{0} x\right) a b=\mathrm{g} x a b, \mathrm{~g}\left(\mathrm{~s}_{1} x\right) a b=a
\end{aligned}
$$

7 Conclusion

We have studied equations defining functions on constructor data structures and tried to single out some characteristics of equations defining poly-time functions. To this purpose we analyzed where the result of a recursive call might be available, and called these argument positions critical. Our criticality analysis is done after equations have been written down, whereas in [1] and [3], writing equations and analyzing equations are mixed up
We showed that the concept of criticality is a useful syntactical tool in identifying computationally hard points in function definitions: The point is that a critical argument should not be doubled (cf. exp in the Introduction). In the proposed poly-time system $D D C$, the two ideas how to avoid doubling, were $R O N$ - recur on noncritical; and LIC - use every critical variable only once in the output. The idea of $R O N$ is already present in [1] and [3], but LIC is entirely ours. In [1], LIC wasn't required since constructors have arity less than two. In [3], there's nothing like LIC and in fact, poly-time is generally lost.

In principle, any poly-time function can be defined in pure $D D C$ since the $B C$ functions are $D D C$ (see proof of this in Appendix 1). But a direct characterization of the poly-time functions on any data structure would be more satisfactory; we are working on the problem. In future we also wish to abandon PC2.1 and study tail recursion.

References

[1] S. Bellantoni, S. Cook: A new recursion-theoretic characterization of the polytime functions, 24th Annual ACM STOC, 1992, 283-293
[2] V.-H. Caseiro: Some general criteria on equations to guarantee poly-time functions, Research report no 224, ISBN 82-7368-138-6, ISSN 0806-3036, University of Oslo, Department of Informatics.
[3] D. Leivant: Stratified functional programs and computational complexity, 20th ACM Symposium on Principles of Programming Languages, 1993

Now two appendices containing proofs follow. The first shows that the Bellantoni-Cook functions are definable in pure $D D C$, and the second contains the proofs of all the results in this report.

8 Appendix 1: The Bellantoni-Cook Functions Are DDC

In [1], Bellantoni and Cook $(B C)$ give an equational system in which every function on binary strings ${ }^{8}$ can be defined. For every function $f, B C$ distinguish between two kinds of argument positions (or input), safe and normal, and they write ($f \bar{x} ; \bar{a}$) to separate normal (on the left) from safe.

Definition 10 (the BC functions, from [1]) There are the following constructors: Nullary empty string ϵ and the unary successors s_{0} and s_{1}. In the rhs, s_{0} and s_{1} may only be applied to safe arguments. The following functions are $B C$ functions:

$$
\begin{array}{llll}
\mathrm{p} ; \epsilon=\epsilon, \quad \mathrm{p} ;\left(\mathrm{s}_{0} a\right)=a, \quad \mathrm{p} ;\left(\mathrm{s}_{1} a\right)=a & \text { predecessor } \\
\mathrm{C} ; \epsilon b c d=b, \quad \mathrm{C} ;\left(\mathrm{s}_{0} a\right) b c d=c, \quad \mathrm{C} ;\left(\mathrm{s}_{1} a\right) b c d=d & \text { conditional } \\
\mathrm{p}_{i}^{m, n} x_{1} \ldots x_{m} ; x_{m+1} \ldots x_{m+n}=x_{i} & & \text { projections }
\end{array}
$$

There's the following recursion scheme: Given $B C$ functions or constructors $g, h_{s_{i}}$, define a $B C$ function $f(\bar{x}$ and \bar{a} are sequences of variables, i is 0 or 1)

$$
\begin{array}{ll}
f \in \bar{x} ; \bar{a} & =g \bar{x} ; \bar{a} \\
f\left(\mathrm{~s}_{i} y\right) \bar{x} ; \bar{a} & =h_{s_{i}} y \bar{x} ; \bar{a}(f y \bar{x} ; \bar{a})
\end{array}
$$

There's the following composition scheme: Given $B C$ functions or constructors h, \bar{r}, \bar{t}, define a $B C$ function $f(\bar{x}$ and \bar{a} are sequences of variables)

$$
f \bar{x} ; \bar{a}=h(\bar{r} \bar{x} ;) ;(\bar{t} \bar{x} ; \bar{a})
$$

[^7]Lemma 6 Any set of nonnullary BC functions is a DDCsimple2 system.
Proof of Lemma 6 Observe that we may regard any set of $B C$ equations as a canonical system by removing ";" and by remembering that to us, composition is shorthand notation. The original nullary $B C$ functions are lost in the canonical system.
Let a set of $B C$ functions be given (considered as a canonical system). For every n-ary function f, choose all singleton units $\{1\}, \ldots,\{n\}$ as output units and choose the trivial unit fit unit (as we may generally do when all constructors have arity less than two, see Section 5.2). Note that then every output tree has only some unary and a nullary branching, so $L I C$ is obviously satisfied. As for the three other requirements to DDCsimple2:

1. The first position of any recursive function is noncritical by Lemma 7 .
2. The arguments in every recursive call term $(f y \bar{x} ; \bar{a})$ are different variables.
3. The first argument in every recursive call term $(f y \bar{x} ; \bar{a})$ is y, ok. There is maximally one recursive call term in any rhs.

Lemma 7 Let a set of BC functions be given. For every function f, every position i in f : If i is normal then i is noncritical.

Remark 1 The lemma implies that "If a position is critical then it is safe". The opposite direction is not true for the initial functions and not in general because one can choose to let positions be safe.

Proof of Proposition 7 Let a set of $B C$ functions be given. Observe that in a $B C$ system, assignment of critical/noncritical to a function f is completely decided by the functions different from f that call f. We proceed by downward induction on the M -sets.

For a function that isn't called by any other function, except possibly itself, all positions are noncritical.

We wish to show the lemma for a function q such that there's a nonempty set E of equations where q occurs in the rhs, but not in the lhs. Let i be a normal position in q. Then by inspection and by induction hypothesis, we have that in all the equations in E the i 'th argument of q neither contains a recursive call term nor a critical variable. So i is noncritical.

9 Appendix 2: Proofs of the Results in This Report

Definition 11 (output based tree of recursive calls) As Definition 1, but with an output family \mathcal{F} instead.

9.1 Proofs of Lemmas from Section 5

Various definitions: Let a canonical system be given. A variable v is loose in a rhs r in the M-set M if when we think of r as a tree, v has an occurrence in r without any function $f \in M$ above it. $L C V(\tau)$ is the set of loose, critical variables in a rhs tree τ. For a variable $v, s, \#_{o}(v, \tau)$ is the number of occurrences of v in τ.

Definition 12 (polynomials $z(t, l)$) Let a canonical system with a fit family \mathcal{F} be given. Choose an M -set M in the system, and assume that the system is such that for every M-set below $M, P B O$ is satisfied. Define z : (subterm of M-rhs) \times (natural number variable l) \rightarrow (polynomial in l) by induction on its first argument:

$$
\begin{array}{ll}
z(v, l) & =l, \text { for } v \text { a noncritical variable } \\
z(v, l) & =0, \text { for } v \text { a critical variable } \\
z\left(c t_{1} \ldots t_{m}, l\right) & =1+z\left(t_{1}, l\right)+\cdots+z\left(t_{m}, l\right), \text { for } c \text { a constructor } \\
z\left(g t_{1} \ldots t_{m}, l\right) & =0, \text { for } g \in M \\
z\left(g t_{1} \ldots t_{m}, l\right) & =Q_{M_{g}}\left(\sum_{i \text { noncrit }} z\left(t_{i}, l\right)\right)+\sum_{i c r i t} z\left(t_{i}, l\right), \text { for } g \notin M
\end{array}
$$

where $Q_{M_{g}}$ is the polynomial for M_{g} given by $P B O$.
Proof of Lemma 2 It's enough to prove Lemma 8 below.

Lemma 8 (PBO gives polynomially bounded subterms) Let a terminating canonical system with a fit family \mathcal{F} be given such that for every M-set, PC2.1 and PBO hold. Then for every M-set M there is a polynomial D_{M} such that for any ground term $\left(f X_{1} \ldots X_{n}\right)$ where $f \in M$, let $U \in S_{f}^{\mathcal{F}}$ be the needed fit f-unit, let r be the rhs of the equation such that $(f \bar{X})$ matches the lhs, let σ be the matching substitution, let τ_{r} be the needed fit tree, then for any subterm t of r such that t is in τ_{r} :

$$
|t \sigma| \leq D_{M}\left(\sum_{i \in U}\left|X_{i}\right|\right)
$$

Proof of Lemma 8 By upward induction on M-sets. Now we are in an M-set M. We wish to construct a polynomial D_{M}.

Lemma 9 says that for any $f \in M$, any input input X_{1}, \ldots, X_{n}, when we let τ be the needed fit f-tree, we let q_{1}, \ldots, q_{k} be the "outermost" recursive call terms in τ_{t}, we let $U=N U \cup C U$ the needed fit f-unit, we let $L=\sum_{i \in U}\left|X_{i}\right|$, $L^{\prime}=\sum_{i \in N U}\left|X_{i}\right|$; then for any t in τ, except a proper subterm of q_{1}, \ldots, q_{k}, we have

$$
|t \sigma| \leq z\left(t, L^{\prime}\right)+\sum_{v \in L C V\left(\tau_{t}\right)} \#_{o}\left(v, \tau_{t}\right)|v \sigma|+\left|q_{1} \sigma\right|+\cdots+\left|q_{k} \sigma\right|
$$

We have that

- $z\left(t, L^{\prime}\right) \leq z(t, L)$ since z is monotone and $L^{\prime} \leq L$.
- $\sum_{v \in L C V\left(\tau_{t}\right)} \#_{o}\left(v, \tau_{t}\right)|v \sigma| \leq k L$ for some constant k since U covers τ.
- By PBO and by PC2.1 and property of polynomials, each $\left|q_{j} \sigma\right|$ is bounded by a polynomial in L.

So for every subterm $t \in \tau$ (by PC2.1 and coverings, also for t argument to recursive call), there is some polynomial pol $_{t}$ such that $|t \sigma| \leq \operatorname{pol}_{t}(L)$.
Define the polynomial $D_{M}(l)$ to be the sum of $p o l_{t}(l)$ for every subterm t of all fit trees for rhs's in M. Then obviously D_{M} is as wished.
The following lemma is used in the proof of Lemma 8.
Lemma 9 (length of term in fit tree) Let a terminating canonical system with a fit family \mathcal{F} be given such that for every M-set PBO holds. For any M-set M in the system, for any n-ary $f \in M$ with input X_{1}, \ldots, X_{n} : When we let σ be the substitution such that $\left(f X_{1} \ldots X_{n}\right)$ matches the lhs of the equation with rhs r, we let τ_{r} be the needed fit f-tree, we let U be the needed fit f-unit, we let $L=\sum_{i \in \mathrm{NU}}\left|X_{i}\right|$, we let q_{1}, \ldots, q_{k} be the recursive call terms in τ_{t} such that in r there's no $h \in M$ above (outside) them, then for any subterm t in τ_{r}, except an argument to a q_{1}, \ldots, q_{k}, we have

$$
|t \sigma| \leq z(t, L)+\sum_{v \in \operatorname{LCV}\left(\tau_{t}\right)} \#_{o}\left(v, \tau_{t}\right)|v \sigma|+\left|q_{1} \sigma\right|+\cdots+\left|q_{k} \sigma\right|
$$

Proof of Lemma 9

We prove Lemma 9 by induction on the structure of t. If t is

- A loose variable or a recursive call term without any $h \in M$ above it, it's ok.
- $\left(c t_{1} \ldots t_{m}\right)$: By induction hypothesis for $t_{j}, 1 \leq j \leq m$

$$
\begin{aligned}
|t \sigma| & \leq 1+\left|t_{1} \sigma\right|+\cdots+\left|t_{m} \sigma\right| \\
& =z\left(c t_{1} \ldots t_{m}, L\right)+\sum_{v \in L C V\left(\tau_{t}\right)} \#_{o}\left(v, \tau_{t}\right)|v \sigma|+\left|q_{1} \sigma\right|+\cdots+\left|q_{k} \sigma\right|
\end{aligned}
$$

- $\left(g t_{1} \ldots t_{m}\right), g \notin M$: By PBO for M_{g}, there's a polynomial $Q_{M_{g}}$ for M_{g} such that for the needed fit g-unit V, where $V=N V \cup C V$.

$$
\left|\left(g t_{1} \ldots t_{m}\right) \sigma\right| \leq Q_{M_{g}}\left(\sum_{j \in N V}\left|t_{j} \sigma\right|\right)+\sum_{j \in C V}\left|t_{j} \sigma\right|
$$

(Note: Here's important that $Q_{M_{g}}$ only gets noncritical arguments.) We have

- for $j \in N V$: By induction hypothesis, $\left|t_{j} \sigma\right| \leq z\left(t_{j}, L\right)$. (Notice: There aren't any recursive calls, nor critical variables in these t_{j} 's.) So

$$
\sum_{j \in N V}\left|t_{j} \sigma\right| \leq \sum_{j \text { noncrit }} z\left(t_{j}, L\right)
$$

- for $j \in C V$ by induction hypothesis for each t_{j}, we get

$$
\begin{aligned}
& \sum_{j \in C V}\left|t_{j} \sigma\right| \\
& \leq \sum_{i c r i t} z\left(t_{i}, L\right)+\sum_{v \in L C V\left(\tau_{t}\right)} \#_{o}\left(v, \tau_{t}\right)|v \sigma|+\left|q_{1} \sigma\right|+\cdots+\left|q_{k} \sigma\right|
\end{aligned}
$$

Altogether

$$
\begin{aligned}
|t \sigma| \leq & Q_{M_{g}}\left(\sum_{j \text { noncrit }} z\left(t_{j}, L\right)\right)+\sum_{i} \text { crit } z\left(t_{i}, L\right)+ \\
= & \sum_{v \in L C V\left(\tau_{t}\right)} \#_{o}\left(v, \tau_{t}\right)|v \sigma|+\left|q_{1} \sigma\right|+\cdots+\left|q_{k} \sigma\right| \\
= & z\left(g t_{1} \ldots t_{m}, L\right)+\sum_{v \in L C V\left(\tau_{t}\right)} \#_{o}\left(v, \tau_{t}\right)|v \sigma|+\left|q_{1} \sigma\right|+\cdots+\left|q_{k} \sigma\right|
\end{aligned}
$$

Proof of Lemma 3 Let $f \in M$ with input X_{1}, \ldots, X_{n} be given with appropriate substitution σ and with appropriate equation e with rhs r. We proceed by induction on the longest call sequence of functions starting with f on X_{1}, \ldots, X_{n}. Basis and step are proved in the same way.
We will show that: For every subterm t of r, there's a unique output tree $\tau_{t} \in \tau_{\mathcal{F}}(t)$ such that if the first argument of every function called in the computation of $t \sigma$ is given, to compute $t \sigma$, from the constructors and functions in t we only need those that occur in τ_{t}, and from X_{1}, \ldots, X_{n} we only need X_{i} such that there is a variable $v \in W_{\{i\}}^{e}$ such that $v \in \tau_{t}$.
We proceed by induction on t.

- If t is a variable, let τ_{t} consist of the single node labeled t.
- If t is $\left(c t_{1} \ldots t_{m}\right)$ where c is a constructor, then by induction hypothesis there are $\tau_{t_{1}}, \ldots, \tau_{t_{m}}$ as wished, so let τ_{t} be the tree with root c and immediate subtrees $\tau_{t_{1}}, \ldots, \tau_{t_{m}}$.
- If t is $\left(g t_{1} \ldots t_{m}\right)$ where g is a function, then to compute $t \sigma$ when first arguments are given, by induction hypothesis (since g 's call sequence is shorter) the lemma holds so there's a unique g-unit u_{g} such that from the input $t_{1} \sigma, \ldots, t_{m} \sigma$ we may only need $t_{j} \sigma$ such that $j \in u_{g}$. For each $t_{j}, j \in U_{g}$, by induction hypothesis there is a $\tau_{t_{j}}$, so that to compute $t_{j} \sigma$, when first arguments are given, from the constructors and functions in t_{j} we only need those that occur in $\tau_{t_{j}}$, and from X_{1}, \ldots, X_{n} we only need X_{i} such that there is a variable $v \in W_{\{i\}}^{e}$ such that $v \in \tau_{t_{j}}$. So let τ_{t} be the tree with root g and as immediate subtrees the $\tau_{t_{j}}$'s. Then τ_{t} is a rhs tree as wished.

Then to compute ($f X_{1} \ldots X_{n}$) we need X_{1} and the variables $X_{i}, i \geq 2$ such that some corresponding variable occurs in the uniquely chosen output tree τ_{r}. We have assumed that X_{1} is given and by definition of output unit sets, we know that there's a unique output f-unit covering τ_{r}.
Proof of Lemma 4 We show the first part: For every $f \in M$, for every input X_{1}, \ldots, X_{n} to f : If u is the needed output f-unit and U is the needed fit f-unit, then $u \subseteq U$. By upward induction on M-sets, basis and step the same way. Consider an M-set $M, f \in M$, input X_{1}, \ldots, X_{n}. By induction on the height of the output based tree T of recursive calls on $\left(f X_{1} \ldots X_{n}\right)$ we show the more general result that: For every node ($h Z_{1} \ldots Z_{m}$) in T : If u_{h} and U_{h} are the needed output and fit units respectively, then $u_{h} \subseteq U_{h}$. Basis and step are in the same way. Fix $\left(h Z_{1} \ldots Z_{m}\right), u_{h}, U_{h}$, appropriate rhs r_{h}, appropriate substitution σ_{h}.
We show that: For every subterm t of r_{h} : If t is in both $\tau_{r_{h}}$ and $\rho_{r_{h}}$ then for the subtrees τ_{t} and ρ_{t} we have that τ_{t} is contained in ρ_{t}. Induction on t.

- If t is a variable: Then τ_{t} and ρ_{t} are identical, ok.
- If $t=\left(c t_{1} \ldots t_{n}\right)$: Then it's ok by the induction hypothesis for the t_{i} 's.
- If $t=\left(g t_{1} \ldots t_{n}\right), g \notin M$: Then the first part of Lemma 4 holds for $t \sigma_{h}$, so for the needed units u_{g}, U_{g} we have $u_{g} \subseteq U_{g}$, and by induction hypothesis for $i \in u_{g}, \tau_{t_{i}}$ is contained in $\rho_{t_{i}}$, so ok.
- If $t=\left(g t_{1} \ldots t_{n}\right), g \in M$: By induction hypothesis we have $u_{g} \subseteq U_{g}$ so ok again.

So since r_{h} is in $\tau_{r_{h}}$ and in $\rho_{r_{h}}$ we have that $\tau_{r_{h}}$ is contained in $\rho_{r_{h}}$. By unit smallness $u_{h} \subseteq U_{h}$.

9.2 Proof of Theorem 2

Let a canonical system be given. Whenever we talk about a subterm $(\bar{\pi} v)=$ $\pi_{i_{1}}\left(\ldots\left(\pi_{i_{n}} v\right) \ldots\right)$ of some rhs r in some M-set M in the system, we mean
that $(\bar{\pi} v)$ is a maximal projection sequence and that v is critical. Define $(\bar{\pi} v)$ in r to be loose if (when we think of r as a tree) $(\bar{\pi} v)$ doesn't have any M-function above it in r.

Definition 13 (polynomials $w(t, l)$) Let a canonical system with a fit family $\mathcal{F}^{\mathcal{F}}$ and an output family $\mathcal{F}^{\mathcal{O}}$ be given. Let M be a $D D C$ M-set in the system such that for every M-set below $M, P B O$ ' is satisfied. Define $w:($ subterm of M-rhs $) \times($ natural number variable $l) \rightarrow($ polynomial in $l)$ by induction on its first argument:

```
\(w(v, l) \quad=l\), for \(v\) a noncritical variable
\(w(v, l) \quad=0\), for \(v\) a critical variable
\(w\left(c t_{1} \ldots t_{m}, l\right)=l+w\left(t_{1}, l\right)+\cdots+w\left(t_{m}, l\right)\), for \(c\) a constructor
\(w\left(g t_{1} \ldots t_{m}, l\right)=l P_{M}\left(l+A_{M}\right)\left(\sum_{r \text { rhs in } M} w(r, a)+\kappa a\right)+\sum_{i c r i t} w\left(t_{i}, l+A_{M}\right)\), for \(g \in M\)
\(w\left(g t_{1} \ldots t_{m}, l\right)=l Q_{M_{g}}\left(\sum_{i n o n c r i t} w\left(t_{i}, l\right)\right)+\sum_{i c r i t} w\left(t_{i}, l\right)\), for \(g \notin M\)
```

where $a=l+A_{M} P_{M}\left(l+A_{M}\right)+A_{M}, \kappa$ is the maximal number of recursive calls in any rhs in M, P_{M} is from $R O N, A_{M}$ is the sum of C_{M} (from PC2.1) and the maximal number of critical arguments to any M-function, $Q_{M_{g}}$ is the polynomial for M_{g} given by $P B O^{\prime}$.

Observe that for every $t, w(t, l)$ is a (monotone) polynomial with constant part 0 (i.e. $w(t, l)=a_{0}+a_{1} l+\cdots+a_{k} l^{k}$ for $a_{0}=0$ and some $a_{i} \geq 0, k \geq 0$.
It's enough to prove Lemma 10 since then we may define $Q_{M}(x)=\sum_{r \text { rhs in }}{ }_{M} w(r, x)$ and by Part 1 we get (for the appropriate rhs r and needed output tree τ_{r})

$$
\begin{aligned}
\left|\left(f X_{1} \ldots X_{n}\right)\right| & \leq w\left(r, \sum_{i \in N U}\left|X_{i}\right|\right)+\sum_{\left(\bar{\pi} x_{i}\right) \in \tau_{r}}\left|\bar{\pi} X_{i}\right| \\
& \leq Q_{M}\left(\sum_{i \in N U}\left|X_{i}\right|\right)+\sum_{i \in c u}\left|X_{i}\right|
\end{aligned}
$$

Remark 2 Originally, we tried only to prove Part 2 of Lemma 10 (which gives Theorem 2). But then we weren't able to show Equation 1 below (in two and a half pages). So we added Part 1. And originally the definition of w was just like the definition of z (Definition 12) except in the case that $g \in M$, but then (also because of Equation 1) we found it convenient to have a w with constant 0 . As it is now, the proof is perhaps unnecessary long, e.g. we would like to merge Part1 and the auxiliary Lemma 11.

Lemma 10 Let a (possibly empty) terminating canonical system with a fit family $\mathcal{F}^{\mathcal{F}}$ and an output family $\mathcal{F}^{\mathcal{O}}$ be given such that $\mathcal{F}^{\mathcal{F}}$ is unit smaller than $\mathcal{F}^{\mathcal{O}}$ and such that PBO' holds for every M-set. Define a new DDC M-set M using the given system.

Fix T to be an output based tree of recursive calls for some M-function on some input. Let $\left(f X_{1} \ldots X_{m}\right)$ be a node in T deciding a subtree f-tree, with needed fit unit U_{f} and needed output unit u_{f}, let the needed output f-tree
be τ_{r}. Let $\left(f\left(c y_{1} \ldots y_{m}\right) x_{2} \ldots x_{n}\right)=r$ be the appropriate equation, σ the appropriate substitution. Then

Part 1 For every t in τ_{r} except a nonmaximal projection sequence:

$$
|t \sigma| \leq w\left(t, \mathrm{NL}_{f}\right)+\sum_{\left(\bar{\pi} x_{i}\right) \in \tau_{t}}\left|\bar{\pi} X_{i}\right|
$$

Part 2

$$
\left|f X_{1} \ldots X_{m}\right| \leq \mid f \text {-tree }\left|\left(\sum_{r \text { rhs in } M} w(r, b)+\kappa b\right)+\sum_{\left(\bar{\pi} x_{i}\right) \in \tau_{r}}\right| \bar{\pi} X_{i} \mid
$$

where $N L_{f}=\sum_{i \in \mathrm{NU}_{f}}\left|X_{i}\right|, b=N L_{f}+A_{M} \mid f$-tree \mid.
Proof of Lemma 10 By induction on the height of f-tree. The structure is: First we prove Part 1, using induction hypothesis for Part 2. Then we prove the second part, using Part 1 and also the induction hypothesis for Part 2.
Part 1: Basis and step in the same way. By induction on t. If t is

- A noncritical variable: Ok.
- A maximal projection sequence: Ok.
- $\left(c t_{1} \ldots t_{m}\right):$ By induction hypothesis for $t_{j}, 1 \leq j \leq m$ and LIC

$$
\begin{aligned}
|t \sigma| & \leq 1+\left|t_{1} \sigma\right|+\cdots+\left|t_{m} \sigma\right| \\
& \leq 1+w\left(t_{1}, L\right)+\cdots+w\left(t_{m}, L\right)+\sum_{i=1}^{m} \sum_{\bar{\pi} x_{j} \in \tau_{t_{i}}}\left|\bar{\pi} X_{j}\right| \\
& =w\left(t, N L_{f}\right)+\sum_{\bar{\pi} x_{j} \in \tau_{t}}\left|\bar{\pi} X_{j}\right|
\end{aligned}
$$

- $\left(g t_{1} \ldots t_{m}\right)$, where $g \notin M$:

PBO' holds for M_{g}, so there's a polynomial $Q_{M_{g}}$ for M_{g} such that for the needed output g-unit v and for the needed fit g-unit V

$$
\left|\left(g t_{1} \ldots t_{m}\right) \sigma\right| \leq Q_{M_{g}}\left(\sum_{j \in N V}\left|t_{j} \sigma\right|\right)+\sum_{j \in c v}\left|t_{j} \sigma\right|
$$

(Note: Here's important that $Q_{M_{g}}$ only gets noncritical arguments.) We have

- for $j \in N V$: By Lemma 12 (not by induction hypothesis), $\left|t_{j} \sigma\right| \leq$ $w\left(t_{j}, N L_{f}\right)$. So

$$
\sum_{j \in N V}\left|t_{j} \sigma\right| \leq \sum_{j \in N V} w\left(t_{j}, N L_{f}\right) \leq \sum_{j \text { noncrit }} w\left(t_{j}, N L_{f}\right)
$$

- for $j \in c v$ we have by induction hypothesis for t_{j} and by $L I C$

$$
\sum_{j \in c v}\left|t_{j} \sigma\right| \leq \sum_{i c r i t} w\left(t_{i}, N L_{f}\right)+\sum_{\bar{\pi} x_{i} \in \tau_{t}}\left|\bar{\pi} X_{i}\right|
$$

Altogether

$$
\begin{aligned}
|t \sigma| & \leq Q_{M_{f}}\left(\sum_{j \in \text { noncrit }} w\left(t_{j}, N L_{f}\right)\right)+\sum_{i c r i t} w\left(t_{i}, N L_{f}\right)+\sum_{\bar{\pi} x_{i} \in \tau_{t}}\left|\bar{\pi} X_{i}\right| \\
& \leq w\left(t, N L_{f}\right)+\sum_{\bar{\pi} x_{i} \in \tau_{t}}\left|\bar{\pi} X_{i}\right|
\end{aligned}
$$

- $\left(g t_{1} \ldots t_{m}\right)$, where $g \in M$: Let v be the needed output g-unit, V the needed fit g-unit, $\tau_{r_{g}}$ the needed output tree for g 's appropriate rhs r_{g}. and let $N L_{g}=\sum_{i \in N V}\left|t_{i} \sigma\right|$. By $R O N$ and unit smallness we have $\mid g$-tree $\mid \leq P_{M}\left(N L_{g}\right)$. By PC2.1 and since $N L_{g}$ doesn't depend on critical arguments to f, we have $N L_{g} \leq N L_{f}+A_{M}$. By induction hypothesis part two for g-tre, $L I C$ for τ_{g}, induction hypothesis for t_{i} 's in $\tau_{t}, L I C$ for τ_{t} we get

$$
\begin{aligned}
|t \sigma| \leq & \mid g \text {-tree }\left|\left(\sum w\left(r, b_{g}\right)+\kappa b_{g}\right)+\sum_{\bar{\pi} z_{i} \in \tau_{r_{g}}}\right| \bar{\pi} t_{i} \sigma \mid \\
\leq & P_{M}\left(N L_{g}\right)\left(\sum w\left(r, B_{g}\right)+\kappa B_{g}\right)+\sum_{i \in c v}\left|t_{i} \sigma\right| \\
\leq & P_{M}\left(N L_{g}\right)\left(\sum w\left(r, B_{g}\right)+\kappa B_{g}\right)+\sum_{i \in c v}\left(w\left(t_{i}, N L_{g}\right)+\sum_{\bar{\pi} x_{j} \in \tau_{t_{i}}}\left|\bar{\pi} X_{j}\right|\right) \\
\leq & P_{M}\left(N L_{f}+A_{M}\right)\left(\sum w\left(r, B_{g}^{\prime}\right)+\kappa B_{g}^{\prime}\right)+ \\
& \sum_{i c r i t} w\left(t_{i}, N L_{f}+A_{M}\right)+\sum_{\bar{\pi} x_{j} \in \tau_{t}}\left|\bar{\pi} X_{j}\right| \\
\leq & w\left(t, N L_{f}\right)+\sum_{\bar{\pi} x_{j} \in \tau_{t}}\left|\bar{\pi} X_{j}\right|
\end{aligned}
$$

where $b_{g}=N L_{g}+A_{M} \mid g$-tree $\mid, B_{g}=N L_{g}+A_{M} P_{M}\left(N L_{g}\right), B_{g}^{\prime}=N L_{f}+$ $A_{M} P_{M}\left(N L_{f}+A_{M}\right)+A_{M}$.

Part 2: In the induction basis we have that in r there aren't any recursive call terms. By Part 1 of this lemma:

$$
\begin{aligned}
\left|f X_{1} \ldots X_{m}\right| & =|r \sigma| \\
& \leq w\left(r, N L_{f}\right)+\sum_{\bar{\pi} x_{i} i n \tau_{r}}\left|\bar{\pi} X_{i}\right| \\
& \leq w(r, b)+\sum_{\bar{\pi} x_{i} \text { in } \tau_{r}}\left|\bar{\pi} X_{i}\right|
\end{aligned}
$$

We move on to the inductive step. Consider those recursive call terms in r that don't have M-functions above (outside) themselves. Among these, let $\left(g_{1} Z_{1,1} \ldots Z_{1, a_{1}}\right), \ldots,\left(g_{k} Z_{k, 1} \ldots Z_{k, a_{k}}\right)$ be those that are children of $\left(f X_{1} \ldots X_{m}\right)$ in $T(k \geq 1)$. So the shape of the equation for f is $f \cdots=$ $\cdots\left(g_{1} z_{1,1} \ldots z_{1, a_{1}}\right) \cdots\left(g_{k} z_{k, 1} \ldots z_{k, a_{k}} \cdots\right)$. Assume that the j 'th child needs fit unit U_{j}, output units u_{j}, equation $l_{j}=r_{j}$, output tree $\tau_{r_{j}}$. Let $N L_{j}=$ $\sum_{i \in N U_{j}}\left|Z_{j, i}\right|$. By induction hypothesis for g_{j} :

$$
\left|g_{j} Z_{j, 1} \ldots Z_{j, a_{j}}\right| \leq \mid g_{j} \text {-tree }\left|\left(\sum_{r \text { rhs in } M} w\left(r, b_{j}\right)+\kappa b_{j}\right)+\sum_{\bar{\pi} z_{j, i} \text { in } \tau_{r_{j}}}\right| \bar{\pi} Z_{j, i} \mid
$$

where $b_{j}=N L_{j}+A_{M} \mid g_{j}$-tree \mid. By PC2.1 and since $N L_{j}$ doesn't depend on critical arguments to f, we have $N L_{j} \leq N L_{f}+A_{M}$, so

$$
\begin{aligned}
b_{j} & =N L_{j}+A_{M} \mid g_{j} \text {-tree } \mid \\
& \leq N L_{f}+A_{M}+A_{M} \mid g_{j} \text {-tree } \mid \\
& \leq N L_{f}+A_{M}+A_{M} \mid g_{1} \text {-tree }\left|+\cdots+A_{M}\right| g_{k} \text {-tree } \mid \\
& =N L_{f}+A_{M} \mid \text { f-tree } \mid \\
& =b
\end{aligned}
$$

so we have by Lemma 11 and induction hypotheses

$$
\begin{aligned}
& \left|f X_{1} \ldots X_{m}\right| \\
& =|r \sigma| \\
& \leq w\left(r, N L_{f}\right)+\sum_{\bar{\pi} x_{i} \text { loose in } \tau_{r}}\left|\bar{\pi} X_{i}\right|+\left|g_{1} Z_{1,1} \ldots Z_{1, a_{1}}\right|+\cdots+\left|g_{k} Z_{k, 1} \ldots Z_{k, a_{k}}\right| \\
& \leq w\left(r, N L_{f}\right)+\left(\mid g_{1} \text { tree }|+\cdots+| g_{k}-\text { tree } \mid\right)\left(\sum \mid w(r, b)+\kappa b\right)+ \\
& \sum_{\bar{\pi} x_{i} \text { loose in } \tau_{r}}\left|\bar{\pi} X_{i}\right|+\sum_{\bar{\pi} z_{1, i} \text { in } \tau_{r_{1}}}\left|\bar{\pi} Z_{1, i}\right|+\cdots+\sum_{\bar{\pi} z_{k, i} \text { in } \tau_{r_{k}}}\left|\bar{\pi} Z_{k, i}\right|
\end{aligned}
$$

We wish to use PC2.1 and Part 1 of this lemma to show that

$$
\begin{equation*}
\sum_{i \in c u_{1}}\left|Z_{1, i}\right| \leq N L_{f}+\sum_{i \in c u_{f} \wedge \bar{\Pi} x_{i} \in \tau_{g_{1} \bar{z}}}\left|\bar{\pi} X_{i}\right|+A_{M} \tag{1}
\end{equation*}
$$

(and the same for $2, \ldots, k$). PC2. 1 gives that

$$
\sum_{i \in c u_{1}}\left|Z_{1, i}\right| \leq N L_{f}+\sum_{i \in C U_{f}}\left|X_{i}\right|+C_{M}
$$

whereas Part 1 of this lemma (this is why we introduced Part 1!) for $\tau_{g_{1} \bar{z}}$ along with $L I C$ for $\tau_{g_{1}} \bar{z}$ yield that

$$
\begin{aligned}
\sum_{i \in c u_{1}}\left|Z_{1, i}\right| & \leq \sum_{i \in c u_{1}} w\left(z_{1, i}, N L_{f}\right)+\sum_{\bar{\pi} x_{j} \in \tau_{z_{1, i}}}\left|\bar{\pi} X_{j}\right| \\
& \leq \sum_{i=1}^{a_{1}} w\left(z_{1, i}, N L_{f}\right)+\sum_{\bar{\pi} x_{j} \in \tau_{g_{1} \bar{z}}}\left|\bar{\pi} X_{j}\right|
\end{aligned}
$$

The constant part of the polynomial $\sum_{i=1}^{a_{1}} w\left(z_{i}, N L_{f}\right)$ is 0 (by definition of $w)$. So $\sum_{i \in c u_{1}}\left|Z_{1, i}\right|$ must be bounded by the sum of $N L_{f}, \sum_{\bar{\pi} x_{j} \in \tau_{g_{1} \bar{z}}}\left|\bar{\pi} X_{j}\right|$, the number of critical positions in g_{1}, and C_{M}. So Equation 1 is ok.

Then we have by $L I C$ for $\tau_{g_{1}}, \ldots, \tau_{g_{k}}$, by unit smallness

$$
\begin{aligned}
& \sum_{\bar{\pi} z_{1, i} \text { in } \tau_{r_{1}}}\left|\bar{\pi} Z_{1, i}\right|+\cdots+\sum_{\bar{\pi} z_{k, i} \text { in } \tau_{r_{k}}}\left|\bar{\pi} Z_{k, i}\right| \\
& \leq \sum_{i \in c u_{1}}\left|Z_{1, i}\right|+\cdots+\sum_{i \in c u_{k}}\left|Z_{1, k}\right| \\
& \leq N L_{f}+\sum_{i \in c u_{f} \wedge \bar{\Pi} x_{i} \in \tau_{g_{1} \bar{z}}}\left|\bar{\pi} X_{i}\right|+A_{M}+\cdots+ \\
& N L_{f}+\sum_{i \in c u_{f} \wedge \bar{\Pi} x_{i} \in \tau_{g_{k} \bar{z}}}\left|\bar{\pi} X_{i}\right|+A_{M}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \kappa b+\sum_{\bar{\pi} x_{i} \in \tau_{g_{1} \bar{z}}}\left|\bar{\pi} X_{i}\right|+\cdots+\sum_{\bar{\pi} x_{i} \in \tau_{g_{k} \bar{z}}}\left|\bar{\pi} X_{i}\right|
\end{aligned}
$$

So altogether by LIC for τ_{r} we have

$$
\begin{aligned}
\left|f X_{1} \ldots X_{m}\right| & \leq w\left(r, N L_{f}\right)+\kappa b+\left(\mid g_{1} \text {-tree }|+\cdots+| g_{k}-\text { treee } \mid\right)\left(\sum_{i} w(r, b)+\kappa b\right)+\sum_{\bar{\pi} x_{i} \in \tau_{r}}\left|\bar{\pi} X_{i}\right| \\
& \leq \mid f \text {-tree }\left|\left(\sum_{r \text { rhs in } M} w(r, b)+\kappa b\right)+\sum_{\bar{\pi} x_{i} \in \tau_{r}}\right| \bar{\pi} X_{i} \mid
\end{aligned}
$$

The following lemma (very similar to Lemma 9 and to Part 1 of lemma 10) is used in the proof of Lemma 10.

Lemma 11 ($\boldsymbol{D D C}$ output tree lemma) Let a (possibly empty) terminating canonical system with a fit family $\mathcal{F}^{\mathcal{F}}$ and an output family $\mathcal{F}^{\mathcal{O}}$ be given such that $\mathcal{F}^{\mathcal{F}}$ is unit smaller than $\mathcal{F}^{\mathcal{O}}$ and such that PBO' holds for every M-set. Define a new M-set M with output and fit units, using the given system such that (at least) LIC holds.
For any n-ary $f \in M$ with input X_{1}, \ldots, X_{n}, let $\left(f\left(c y_{1} \ldots y_{m}\right) x_{2} \ldots x_{n}\right)=r$ be the appropriate equation, let σ be the appropriate substitution, let τ_{r} be the needed output tree, let u be the needed output f-unit, let U be the needed fit f-unit. let q_{1}, \ldots, q_{k} be the recursive call terms in τ_{t} such that in r they don't have any $h \in M$ above (outside) them, let $\mathrm{NL}_{f}=\sum_{i \in \mathrm{NU}}\left|X_{i}\right|$, then: For any subterm t in τ_{r}, except a proper subterm of q_{1}, \ldots, q_{k} or a proper subterm of a maximal projection sequence $\bar{\pi} x_{i}$ where i is noncritical, we have

$$
|t \sigma| \leq w\left(t, \mathrm{NL}_{f}\right)+\sum_{\bar{\pi} x_{i} \text { loose in } \tau_{t}}\left|\bar{\pi} x_{i} \sigma\right|+\left|q_{1} \sigma\right|+\cdots+\left|q_{k} \sigma\right|
$$

Proof of Lemma 11 We prove Lemma 11 by induction on the structure of t. If t is

- A noncritical variable: Ok.
- A loose $\bar{\pi} x_{i}$ or an "outermost" recursive call term: Ok.
- $\left(c t_{1} \ldots t_{m}\right)$: By induction hypothesis for $t_{j}, 1 \leq j \leq m$ and by LIC

$$
\begin{aligned}
|t \sigma| & \leq 1+\left|t_{1} \sigma\right|+\cdots+\left|t_{m} \sigma\right| \\
& \leq 1+w\left(t_{1}, N L_{f}\right)+\cdots+w\left(t_{m}, N L_{f}\right)+\sum_{\bar{\pi} x_{i} \text { loose in } \tau_{t}}\left|\bar{\pi} x_{i} \sigma\right|+\left|q_{1} \sigma\right|+\cdots+\left|q_{k} \sigma\right| \\
& =w\left(c t_{1} \ldots t_{m}, N L_{f}\right)+\sum_{\bar{\pi} x_{i} \text { loose in } \tau_{t}}\left|\bar{\pi} x_{i} \sigma\right|+\left|q_{1} \sigma\right|+\cdots+\left|q_{k} \sigma\right|
\end{aligned}
$$

- $\left(g t_{1} \ldots t_{m}\right), g \notin M$

PBO' holds for M_{g}, so there's a polynomial $Q_{M_{g}}$ for M_{g} such that for the needed output g-unit v, where $v=n v \cup c v$, and for the needed fit g-unit V, where $V=N V \cup C V$

$$
\left|\left(g t_{1} \ldots t_{m}\right) \sigma\right| \leq Q_{M_{g}}\left(\sum_{j \in N V}\left|t_{j} \sigma\right|\right)+\sum_{j \in c v}\left|t_{j} \sigma\right|
$$

We have

- for $j \in N V:$ By Lemma 12 (not by induction hypothesis), $\left|t_{j} \sigma\right| \leq$ $w\left(t_{j}, N L_{f}\right)$. So

$$
\sum_{j \in N V}\left|t_{j} \sigma\right| \leq \sum_{j \in N V} w\left(t_{j}, N L_{f}\right) \leq \sum_{j \text { noncrit }} w\left(t_{j}, N L_{f}\right)
$$

- for $j \in c v$ we have by induction hypothesis for t_{j} and by $L I C$

$$
\sum_{j \in c v}\left|t_{j} \sigma\right| \leq \sum_{i \text { crit }} w\left(t_{i}, N L_{f}\right)+\sum_{\bar{\pi} x_{i} \text { loose in } \tau_{t}}\left|\bar{\pi} x_{i} \sigma\right|+\left|q_{1} \sigma\right|+\cdots+\left|q_{k} \sigma\right|
$$

Altogether

$$
\begin{aligned}
|t \sigma| & \\
\leq & Q_{M_{g}}\left(\sum_{j \in \text { noncrit }} w\left(t_{j}, N L_{f}\right)\right)+\sum_{i \text { crit }} w\left(t_{i}, N L_{f}\right)+ \\
& \sum_{\bar{\pi} x_{i} \text { loose in } \tau_{t}}\left|\bar{\pi} x_{i} \sigma\right|+\left|q_{1} \sigma\right|+\cdots+\left|q_{k} \sigma\right| \\
\leq & w\left(t, N L_{f}\right)+\sum_{\bar{\pi} x_{i} \text { loose in } \tau_{t}}\left|\bar{\pi} x_{i} \sigma\right|+\left|q_{1} \sigma\right|+\cdots+\left|q_{k} \sigma\right|
\end{aligned}
$$

The following lemma is used in the proof of Lemma 11 and Lemma 10.
Lemma 12 Let a (possibly empty) terminating canonical system with a fit family $\mathcal{F}^{\mathcal{F}}$ and an output family $\mathcal{F}^{\mathcal{O}}$ be given such that $\mathcal{F}^{\mathcal{F}}$ is unit smaller than $\mathcal{F}^{\mathcal{O}}$ and such that PBO' holds for every M-set. Define a new M-set M using the given system
Let f be in M with input X_{1}, \ldots, X_{n} let σ be the appropriate substiutition, let U be the needed fit unit. For any subterm t of the needed fit tree such that t doesn't contain any recursive call terms nor critical variables as subterms

$$
|t \sigma| \leq w\left(t, \mathrm{NL}_{f}\right)
$$

where $\mathrm{NL}_{f}=\sum_{i \in \mathrm{NU}}\left|X_{i}\right|$.
Proof of Lemma 12 By induction on t. If t is

- a noncritical variable: ok
- $\left(c t_{1} \ldots t_{m}\right)$: By induction hypothesis

$$
\begin{aligned}
|t \sigma| & =1+\left|t_{1} \sigma\right|+\cdots+\left|t_{m} \sigma\right| \\
& \leq 1+w\left(t_{1}, N L_{f}\right)+\cdots+w\left(t_{m}, N L_{f}\right) \\
& =w\left(t, N L_{f}\right)
\end{aligned}
$$

- $\left(g t_{1} \ldots t_{m}\right), g \notin M$. By $P B O^{\prime}$ and by monotonicity of $Q_{M_{g}}$, by induction hypothesis

$$
\begin{aligned}
|t \sigma| & \leq Q_{M_{g}}\left(\sum_{j \text { noncrit }}\left(\left|t_{j} \sigma\right|\right)+\sum_{j} \text { crit }\left|t_{j} \sigma\right|\right. \\
& \leq Q_{M_{g}}\left(\sum_{j} \text { noncrit } w\left(t_{j}, N L_{f}\right)\right)+\sum_{j \text { crit }} w\left(t_{j}, N L_{f}\right) \\
& \leq w\left(t, N L_{f}\right)
\end{aligned}
$$

[^0]: *This work was partially supported by The Research Council of Norway.

[^1]: ${ }^{1}$ In [3], the length of a constructor term t is taken as the height of t as a tree.

[^2]: 2 "M-set" means "set of mutually recursive functions"

[^3]: ${ }^{3}$ PC means Polynomially Correct

[^4]: ${ }^{4}$ It's for a similar reason that we require PC2.1 inside recursive calls, otherwise we risk things like $\mathrm{e}(\operatorname{succ} x) y=\mathrm{e} x($ double $y)$, e $0 y=y$.

[^5]: ${ }^{6}$ First arguments are not computed, not even by an oracle.

[^6]: ${ }^{7}$ That is, the M-functions may call functions from the given system.

[^7]: ${ }^{8}$ Actually they deal with binary numbers and they don't use the word of "constructor".

