
UNIVERSITY OF OSLO
Department of informatics

Criticality
Conditions on
Equations to
Ensure Poly-time
Functions

Vuokko-Helena
Caseiro

Research report 225

ISBN 82-7368-139-4
ISSN 0806-3036

November 1996

Criticality Conditions on Equations to Ensure

Poly-time Functions∗

Vuokko-Helena Caseiro
University of Oslo, Department of informatics

P. O. Box 1080 Blindern, N-0316 Oslo, Norway

Tel: +4722852405 Fax: +4722852401 E-mail: vuokko@ifi.uio.no

November 1996

Contents

1 Introduction 2

2 Preliminaries: Terms, Equations, Functions 4

3 The System poly-basic 5

3.1 Needed Parts: Fit Units and Fit Right-hand Side Trees . . . 5

3.1.1 Definitions. 6

3.1.2 Fit Trees Indicate What Is Needed. 7

3.2 The poly-basic System . 8

3.3 Starting to Work on Polynomially Bounded Output Lengths . 9

4 Critical Positions 10

4.1 Definition and Marking Algorithm 10

5 Polynomially Bounded Output 12

5.1 Replacing PC2.2 by PBO . 12

5.2 Motivation for DDC . 12

5.3 Replacing PBO by PBO’ . 13

∗This work was partially supported by The Research Council of Norway.

1

6 The “Don’t Double Criticals” System (DDC) 15

6.1 A Very Simple Syntactical Subsystem 16

6.2 A Little More Complicated Subsystem 17

7 Conclusion 18

8 Appendix 1: The Bellantoni-Cook Functions Are DDC 19

9 Appendix 2: Proofs of the Results in This Report 21

9.1 Proofs of Lemmas from Section 5 21

9.2 Proof of Theorem 2 . 24

1 Introduction

We consider equations defining functions on data structures built from con-
structors, e.g. sorting lists constructed from nullary nil and binary cons

quicksort nil = nil
quicksort (cons x y) = qs y x nil nil
qs nil z l r = append (quicksort l) (consz (quicksort r))
qs (consx y) z l r = if-then-else (lessx z) (qs y z (consx l) r))

(qs y z l (consx r))
append nil z = z

append (consx y) z = cons x (append y z)
if-then-else true x y = x

if-then-else falsex y = y

or exponentiation on unary numbers built from nullary 0 and unary succ

exp (succ x) = double (expx) exp 0 = succ 0
double (succ x) = succ (succ (double x)) double 0 = 0

We know that sorting may be executed in polynomial time (poly-time),
whereas exponentiation cannot. Is there some way of detecting this by a
syntactical consideration of the equations?

In [2] we defined a class poly-basic of functions (on any data structure) char-
acterized by having polynomial bounds i) on the number of “needed” calls
to mutually recursive functions and ii) on the length of “needed” interme-
diate results. We showed that all functions in poly-basic are poly-time. But
poly-basic is not a syntactically defined class. In examples it’s often easy
to see that (i) holds, but checking that (ii) holds might be just as difficult

2

as checking poly-time. In this report we wish to develop some methods for
checking (ii).

We will take an important idea from work by Bellantoni and Cook [1], and
Leivant [3]. They have given syntactic characterizations of classes of sub-
recursive functions by equational definitions; in particular, in [1] the data
structure is the binary numbers and the class is exactly the poly-time func-
tions, in [3] results are for arbitrary data structures but the classes become
larger than poly-time1. In their work, the key idea is to control recursion by
requiring that what we do recursion on (e.g. append’s first argument), is of
a different nature than the result of recursive calls (e.g. (append y z)). They
accomplish this by, in our words, marking the argument positions where the
result of recursive calls is received, as critical and disallowing recursion on
critical.

Our definition of the critical positions of a function f will be that these are
the argument positions of f that (directly or indirectly) in some right-hand
side (rhs) are filled with (the result of) a recursive call for some function.
We give a simple “marking algorithm” for assigning marks, “critical” or
“noncritical”, to all positions of all functions of an equation set. A main
point in our approach is that the equations are allowed to have a general
shape.

This report starts by recalling the system poly-basic and continues by mod-
ifying poly-basic gradually towards a poly-time equational system DDC.

First we define formally the concept of “critical position”. Then we use it
to replace (ii) by the finer requirements that output lengths be polynomial
in “needed” noncritical input and strictly linear in “needed” critical input
(i.e. for every function f there’s a polynomial function P such that for
all ground terms X1, . . . , Xn: |(f X1 . . .Xn)| ≤ P (

∑
i noncrit & needed |Xi|) +∑

i crit & needed |Xi|).

Then we study how to control the linearity of arguments in critical positions.
We must confront the problem of doubling an argument. Basically, there
are two ways for a function to double an argument. The first is by recurring
on it. The idea of [1] and [3] was to forbid recursion on critical altogether,
and so will we. The second way of doubling is by having a rhs nonlinear in
the variable from the related left-hand side position, and then in some way
or other using constructors of arity at least two to put the variable copies
together. This problem was not considered by [1] and [3]. We propose a way
of describing what is combined by constructors, and, in particular, whether
two copies of the same variable are combined.

In this way we obtain the system DDC – “Don’t Double Criticals” which we
consider the main achievement of this report. All function in (pure) DDC

1In [3], the length of a constructor term t is taken as the height of t as a tree.

3

systems are poly-basic, therefore poly-time. DDC includes the Bellantoni-
Cook functions (proved in Appendix 1), so also in DDC any function on
binary numbers is definable. But DDC is more general, allowing equations
of a general shape on arbitrary data structures, so that e.g. slightly modified
versions of sorting functions like quicksort become definable.

2 Preliminaries: Terms, Equations, Functions

Given three disjoint sets, of variables, of constructors with arity and of func-
tions with arity greater than zero, respectively, we define terms in the usual
way: A variable is a term, and if t1, . . . , tn are terms and h is a constructor
or a function, then (h t1 . . . tn) is a term. Furthermore (h t1 . . . tn) is called
an application with h as head and the ti’s as arguments of h. s is a subterm
of t if s is t, or if t is an application (h t1 . . . tm) and s is a subterm of some
ti. A constructor term is a term built only from constructors. A ground
term is a term built only from constructors and functions.

Define a canonical equation system to be a set of equations such that each
function f is defined by

(f (c y1 . . . ym) x2 . . .xn) = r

where n ≥ 1, m ≥ 0 and there’s one equation for each constructor c, where
y1, . . . ym, x2, . . . , xn all are different variables and r is a term with variables
among y1, . . . ym, x2, . . . , xn. We consider only finite systems. All our equa-
tions will be in this form. As shorthand notation, sometimes we instead
define a function f by composition, (f x1 . . . xn) = t, where x1, . . . , xn are
different variables and t is a term with variables among x1, . . . , xn. In exam-
ples we will permit defining functions just for some constructors (e.g. append
only for first argument a list, and not e.g. a boolean), formally, the rhs of
the remaining equations can be taken as e.g. the constructor false. For the
rest of this section we assume that a canonical (equation) system is given.

When a function f occurs in the lhs of an equation then the equation is
for f . If a function g occurs in the right-hand side (rhs) of an equation for
f then f calls g. If there is a sequence f1, f2, . . . , fn (n ≥ 1) of different
functions such that f1 calls f2, . . . ,fn calls f1 then each fi is recursive, and
every two functions from the sequence are mutually recursive.

We set up a directed graph, the dependency graph where the nodes are the
functions {f, g, . . .}, and there’s an arc f → g iff f calls g. Define the binary

relation
+
→ to be the transitive closure of →. Define f ≡ g iff f

+
→ g and

g
+
→ f . Note that f

+
→ f iff f is recursive, and f ≡ g iff f and g are mutually

recursive.

4

Given a node f , define the M-set2 for f to be Mf = {g | f ≡ g} ∪ {f}.
Define a binary relation . (written infix) on M-sets S, T by (S .T) iff S 6= T

and there is a node (function) s in S and a node (function) t in T such that
s → t. So . is antisymmetric and by definition it is irreflexive. We will do
induction using ., both upwards and downwards. S is over T/T is below S

if S . T).

In an equation e : l = r for a function f , if in r there is a subterm t such
that t is (g t1 . . . tn) and g ∈Mf , then t is a recursive call term in e.

The system is terminating if when we turn the equations into rewrite rules by
orienting them from lhs to rhs, then for any term t, any rewriting sequence
of t is finite. Obviously, the system has unique normal forms, and if the
system is terminating then the normal form of a term t is denoted t!.

3 The System poly-basic

In 3.1 and 3.2 we refer some definitions and results from [2]. In 3.3 we
explain how we want to go on developing poly-basic.

3.1 Needed Parts: Fit Units and Fit Right-hand Side Trees

Assume that the programmer has defined an n-ary function f . Then we
ask the programmer additionally to suggest some f-units. An f -unit is a
subset of {1, . . . , n} - with the intuition that each f -unit should indicate an
argument combination of f that may be needed to compute one call (f X)
for ground terms X. E.g. for if-then-else (see Introduction) the programmer
might suggest the units {1, 2} and {1, 3} since only arguments 1 and 2 or 1
and 3 will ever be needed to compute if-then-else. Formally {1, 2} and {1, 3}
is an acceptable collection of if-then-else-units since each unit contains the
position 1, and since each of the two rhs for if-then-else is uniquely “covered
up” by one if-then-else-unit (x is covered by 2, y is covered by 3). Such
formally acceptable units will be called fit units. Alternatively, {1, 2, 3} alone
would be ok, but less useful since it doesn’t narrow the set of arguments.

Indeed, given a set of units they may be used to delimit which parts of a rhs
might be needed: We draw each rhs as a tree in the usual way but in each
function node choosing a unit U (among the given ones) and only including
the children corresponding to U . Lemma 1 below states that when the given
units are fit units, then for each function call (f X) there is a unique such
tree τ such that only things occurring in the “instantiated” τ are needed in
order to compute (f X).

2“M-set” means “set of mutually recursive functions”

5

Note 1 Many things in this report are “modulo what is needed” (argument
positions, rhs subterms, trees of recursive calls . . .). If things seem compli-
cated, try to think of the special case when we call a function f on ground
input X1, . . . , Xn and everything is needed. Then a fit f -unit is just the
trivial unit {1, . . . , n}, a fit tree is just a subterm of the rhs (thought of as
a tree), a fit based tree of recursive calls is the tree of all recursive calls on
the initial call (f X) - e.g. on (quicksort cons 6 (cons 2) nil), the tree has root
quicksort who has one child qs who has two children qs and so on (altogether
14 nodes).

In the following definitions we make precise the concepts of need.

3.1.1 Definitions.

Let a canonical system with equation set E be given. For an n-ary function
f , define an f -unit to be a (possibly empty) set of f -positions, i.e. a subset
of {1, . . . , n}.

Given an equation e : (f (c y1 . . . ym) x2 . . . xn) = r in E, and an f -unit u,
we define the variable set from e corresponding to u:

W e
u = {yj | 1 ∈ u and 1 ≤ j ≤ m} ∪ {xi | i ∈ u and 2 ≤ i ≤ n}

E.g. let e1 and e2 be the equations for append (in the Introduction), then
W e1
{1} = ∅,W e2

{1} = {x, y}.

In the following, let F be the family consisting of sets SFf , where for each

function f in the canonical system, SFf is a nonempty set of f -units.

For every equation l = r in E: For any particular occurrence of a subterm
t of r, define the set τF (t) of rhs trees for t by induction on t: τF(t) is the
smallest set such that

• If t is a variable then the tree consisting of the single node (labeled)
“t” is in τF (t).

• If t = (c t1 . . . tn) where c is a constructor, then for any choice of rhs
trees τ1, . . . , τn from τF (t1), . . . , τF(tn) respectively, the tree with root
c and immediate subtrees τ1, . . . , τn is in τF (t).

• If t = (g t1 . . . tn) where g is a function, then for any choice of nonempty
g-unit u = {i1, . . . , ip} from SFg and for any choice of rhs trees τi1, . . . , τip
from τF (ti1), . . . , τF(tip) respectively, the tree with root g and imme-
diate subtrees τi1, . . . , τip is in τF(t).

For a function f , the set of f -units SFf is said to be adequate if for every
equation e for f with rhs r and for every rhs tree τr ∈ τF(r), when we let V

6

be the set of variables occurring in τr then there is an f -unit u ∈ SFf such
that V ⊆ W e

u . We say that u covers τr. If for every r and τr, when V 6= ∅
there’s exactly one f -unit in SFf covering τr, then SFf is said to be uniquely
covering.

If for every function f , SFf is adequate and uniquely covering and contains

the position 1, then F is a fit family, SFf is a fit unit set, the units are fit
units, and the rhs trees are fit trees.

Given an equation f (c y1 . . . ym) x2 . . . xn = r in E, particular subterms s, t
of r such that t is a subterm of s, a rhs tree τs ∈ τF(s). Define t is in τs
(sometimes written t ∈ τs) if either t and s are the same occurrence of a
subterm of r, or if for some constructor or function k, s = (k s1 . . . sn) and
for some immediate subtree τsi of τs, t is in τsi .

Note 2 A unit consisting of all positions is called a trivial unit and it is
always a fit unit. But often we wish to have smaller fit units. However,
for recursive functions finding (small) fit units is a nontrivial task. Future
work should be to make “completion algorithms” for handling some cases
automatically.

3.1.2 Fit Trees Indicate What Is Needed.

Lemma 1 Let the following be given: A terminating canonical system, a fit
family F , an n-ary function f in the system, ground input X1, . . . , Xn to f ,
and let r be the rhs of the equation such that (f X) matches the lhs. Then
there’s a unique fit tree τr ∈ τF(r) such that to compute (f X)

• from the constructors and functions in r we may only need those that
occur in τr, and

• from the input X1, . . . , Xn we may only need Xi such that i ∈ U , where
U ∈ SFf is the fit unit covering τr.

So Lemma 1 states that to compute a function f on input X there’s a unique
fit tree τr that contains all that’s needed. We will call τr the needed fit tree
and U the needed fit unit (w.r.t. f and X). Note that the lemma only asserts
the existence of τr, not how to find it, but to us that won’t matter.

The fit units can furthermore be used to delimit which recursive calls are
needed. We define a tree of recursive calls that only includes those recursive
calls that are in needed fit trees:

Definition 1 (fit based tree of recursive calls) Given a terminating canon-
ical system and a fit family F . Let M be an M-set in the system, let f ∈M

7

with ground input X1, . . . , Xn. The fit based tree of recursive calls Tf X for

f on X is the smallest tree such that

• the root is (f X1! . . .Xn!), and

• for each node (g Y1 . . . Ym) in Tf X , let r be the rhs of the equation

such that (g Y) matches the lhs, let σ be the matching substitution,
let the needed fit tree w.r.t. (g Y) be τr, then for every subterm t =
(h z1 . . . zk) of r such that t is in τr and h ∈ M , (g Y) has a child
(h (z1σ)! . . .(zkσ)!).

In the quick sort example, we might choose trivial units for all functions
except {1, 2}, {1, 3} for if-then-else, then in any fit based tree of recursive
calls for quicksort every qs-node has at most one child qs. If we didn’t
delimit by using fit units, the (sub)tree of qs calling itself would have been
exponentially large.

3.2 The poly-basic System

For a constructor term t, the length of t, written |t|, is the number of con-
structors in t. If the system is terminating then for a ground term t, |t| is
the length of t in normal form.

Whenever we say “polynomial”, we mean a unary, monotone polynomial
function p, i.e. p is a unary function on nonnegative integers of the form
p(x) = a0 + a1x+ · · ·+ akx

k, where ai ≥ 0, k ≥ 0.

Definition 2 (poly-basic) A canonical system with a fit family F and
such that PC1 3 and PC2 hold, is called poly-basic.

PC1 For every M-set M there is a polynomial PM such that for any n-ary
function f ∈M , for any ground terms X1, . . . , Xn, let U ∈ SFf be the
needed fit f -unit, let Tf X be the fit based tree of recursive calls for f

on X: The number of nodes in Tf X is bounded by PM(
∑
i∈U |Xi|).

PC2 For every M-set M there is a polynomial QM and a integer constant
CM such that for any ground term (f X1 . . .Xn) where f ∈ M , let
U ∈ SFf be the needed f -unit, let r be the rhs of the equation such

that (f X) matches the lhs, let σ be the matching substitution, let τr
be the needed fit tree, then for any subterm t = (g t1 . . . tm) of r such
that t is in τr and the needed g-unit for tσ is V ∈ SFg :

1. if g ∈M then
∑
i∈V |tiσ| ≤

∑
i∈U |Xi|+CM .

3PC means Polynomially Correct

8

2. if g /∈M then
∑
i∈V |tiσ| ≤ QM (

∑
i∈U |Xi|).

Note that PC1 implies termination. quicksort (choosing trivial units except
for if-then-else: {1, 2}, {1, 3}) is poly-basic - we may e.g. use PM (x) = x2 for
the M-set M = {quicksort, qs}. So by Theorem 1 below, quicksort is poly-
time. exp isn’t poly-basic since in the first equation, PC2.2 doesn’t hold for
double’s argument.

Theorem 1 (the poly-time theorem) Let a poly-basic system be given.
For every M-set M there is a polynomial RM such that for any n-ary func-
tion f , any constructor terms X1, . . . , Xn, let U ∈ SFf be the needed f-unit

for f on X, then (f X) can be computed in time bounded by RM(
∑
i∈U |Xi|)

by using a lazy computation strategy. (And: If fit units are trivial one may
use an eager strategy.)

3.3 Starting to Work on Polynomially Bounded Output Lengths

PC1 and PC2.1 are trivially satisfied for e.g. function definitions in usual
primitive recursive form, i.e. f (c y) x = h y x (f y1 x) . . . (f ym x). But PC2.2
doesn’t have such simple subcases. In poly-basic we have achieved to express
polynomially bounded computation time by polynomially bounded output
length (PC2.2). So now we need to study output lengths. Given a termi-
nating system with a fit family, consider PC3 :

For every M-set M there is a polynomial QM such that for any
function f ∈ M , for any ground terms X1, . . . , Xn, let U be the
needed f -unit: |f X1 . . .Xn| ≤ QM (

∑
i∈U |Xi|).

Furthermore consider a function f defined by recursion f (succx) = g (fx), f 0 =
0, where g is some function satisfying PC3. If g satisfies PC3 with the
Qg(x) = 2x (or greater) but not with any Q′g(x) = x + C (C ≥ 0), then f
doesn’t satisfy PC3. So we learn that recursive calls cannot be “doubled”4.

To be able to compose functions freely in rhs, the functions should satisfy a
stronger PBO (Polynomially Bounded Output): The length of the output
is bounded

• by a polynomial in the length of the needed input that doesn’t contain
recursive calls, and

• (strictly) linearly (i.e. p(x) = x + k, k a constant) by the length of
needed input that does contain recursive calls.

To formalize PBO we will use the concept of critical positions.

4It’s for a similar reason that we require PC2.1 inside recursive calls, otherwise we risk
things like e (succx) y = ex (double y), e 0 y = y.

9

4 Critical Positions

Our idea of defining critical positions for a function derives from works by
[1] and [3] to characterize classes of subrecursive functions. There they treat
the results of recursive calls (i.e. the recursive call terms) very carefully by
distinguishing between different types of arguments to functions: Namely
those arguments that may only be used “locally” and bit-wise ([1]’s “safe”);
and the rest of the arguments ([1]’s “normal”) that may be used “globally”
to do recursion on. Any recursive call term used as an argument, is of the
first type.

Now our intention is to give a general definition of the critical positions such
that they are exactly those argument positions that may receive the result of
recursive calls, and no others. So the naive definition of a critical position is:
Argument position i in function f is critical if in some rhs, f ’s i’th argument
is a recursive call term. E.g. in the definition of quicksort, append’s first
position is critical since there is a rhs where append’s first argument is the
recursive call term (quicksort l). But there are two complications about this .
The first is that f might have as i’th argument a term ti which has a proper
subterm that is a recursive call term (e.g. if append’s first argument were
(tail (quicksort l))). In this case too, we will define i to be a critical position
in f . The second complication has to do with passing arguments from one
function to another. We should then “remember” criticality. E.g. redefine
exp by

exp′ (succ x) = double′ (exp′ x) exp′ 0 = succ 0
double′ (succx) = add (succx) (succx) double′ 0 = 0
add (succx) y = succ (addx y) add 0 y = y

The position in double’ is critical, so we intend to treat any argument a to
double’ carefully. double’ passes two copies of a over to add, so it’s up to add
what happens to the a’s. We should tell add that both its inputs must be
treated carefully, i.e. we let both of add’s positions be critical. It’s because
of this second complication that we will first define critical variables and
then critical positions.

4.1 Definition and Marking Algorithm

Let a canonical system be given. Note that the definition of critical variables
and positions is with respect to this system, but to simplify notation, we
don’t mark this explicitly. Recall the definition of “the variable set from e

corresponding to u”, W e
u , from Section 3.1 (one of the first definitions there).

Definition 3 (critical variables in an equation)

10

• Let e : lhs = rhs be an equation in the given canonical system. If
there is a subterm (f t1 . . . tm) of rhs such that ti (1 ≤ i ≤ m) has a
subterm which is a critical variable in e or a recursive call term, then
this induces that in every equation e′ for f : Every v ∈W e′

{i} is a critical

variable in e′.

• A variable occurring in an equation in the given canonical system, is
noncritical if it cannot be demonstrated to be critical.

Consider the definition of quicksort. Since (quicksort l) is a recursive call term
so x and y in append are critical. Since (quicksort r) is a recursive call term
so z in append is critical. Since (qs y z (consx l) r)) and (qs y z l (consx r))
are recursive call terms so x and y in if-then-else are critical. Since the
variables in quicksort and qs cannot be demonstrated to be critical, they are
noncritical.

Definition 4 (critical positions) For an n-ary function f defined by k

equations e1, . . . , ek: Position i, 1 ≤ i ≤ n, is critical iff every v ∈ (W e1
{i} ∪

· · · ∪W ek
{i}) is a critical variable.5

Note that we haven’t said anything about the positions of the constructors.

We will now present a “marking algorithm” for marking all the critical
positions in the given canonical system. The algorithm is based on the
following observation of Definition 3: Let e, e′, f be as in the definition. Say
that M is the M-set for which e is an equation, and that N is the M-set for
which e′ is an equation (so f ∈ N). Then either N = M or M .N . In other
words, we have observed that the definition only concerns the positions of
functions in M and in M-sets below M . For this reason, in the algorithm
we can follow the order . downwards, in each M-set M , considering the
M -equations and applying the Definition 3 as much as possible.

Define the active set S to consist of all the M-sets in the canonical system.
While S isn’t empty do

Let M be a maximal (wrt. .) M-set in S.
Repeat

For every equation e in M do
Use definition 3 on e to mark variables as critical.

od
until in the last “round”, no new critical variable was found in an M -equation.
M -variables that aren’t critical, are marked as noncritical.
Remove M from S.

od

5Either all or none of the variables in W e1
{i} ∪ · · · ∪W

ek
{i} are critical.

11

Notation: Given a function f , an f -unit u . We let nu be the subset of u
consisting of all the noncritical f -positions and we let cu be the subset of u
consisting of all the critical f -positions.

5 Polynomially Bounded Output

5.1 Replacing PC2.2 by PBO

Now we can formalize PBO from Section 3.3.

Definition 5 (PBO M-set) Let a terminating canonical system with a fit
family F be given. An M-set M in the system satisfies PBO if there is a
polynomial QM such that for any function f ∈ M , for any ground terms
X1, . . . , Xn, when U = NU ∪CU is the needed fit f -unit then

|(f X1 . . .Xn)| ≤ QM(
∑
i∈NU

|Xi|) +
∑
i∈CU

|Xi|

Lemma 2 If in the definition of poly-basic, instead of PC2.2 we require
that PBO holds for every M-set, then Theorem 1 still holds.

The idea of the proof is to separate the construction of polynomials for the
“active” noncritical input from the “passive” critical input.

5.2 Motivation for DDC

We continue the work on making PC2.2 more manageable. According to
PBO, we must investigate how to treat critical arguments linearly.

Say that f on input X1, . . .Xn “doubles” its i’th argument if |f X| ≥ 2|Xi|.
In general there are two ways for a function f to double an argument: Either
by doing recursion on the argument, or by writing an equation where the rhs
is nonlinear in the variable(s) corresponding to the argument. For instance

double1 (succ x) = succ (succ (double1 x)), double1 0 = 0
double2 x = consx (consx nil)

Consider the first way of doubling arguments. We will forbid all recursion on
critical. In DDC this will be expressed by RON (Recursion On Noncritical),
i.e. PC1 depending only on the noncritical input. So RON fits in with the
ideas of [1] and [3].

But there’s also the second way of doubling, not considered by [1] and [3].
To avoid this kind of doubling, it’s not necessary to require that the whole

12

rhs is linear in all critical variables. Rather we should study the use of
constructors and make sure that we don’t combine several copies of the
same critical variables. Formally, we will do this by defining the output
unit, it’s just like the fit unit, but doesn’t have to contain position 1. E.g.
if-then-else has minimal output units {2}, {3}.

Definition 6 (output family) Let a canonical system be given and a fam-
ily F consisting of a nonempty set SFf of f -units for each function f . If for

every function f , SFf is adequate and uniquely covering then F is an output

family, SFf is an output unit set, the units are output units, the rhs trees are
output trees.

We will then require that every output tree is linear in every critical variable.
In DDC this will be expressed by LIC (Linear In Critical).

Note that from now on, for a system we will typically have two families of
sets of units: A fit family FF and an output family FO.

Intuitively, when recursion is ignored, output units and output trees express
what may leave traces in the output; and what may leave traces is decided
by the use of constructors and variables. The functions only “conserve”
what has been decided.

Consider the important special case of just having nullary and unary con-
structors (e.g. the BC functions). Such constructors cannot combine any
inputs. Formally this is expressed by the fact that for n-ary f , we may take
the singletons {1}, . . . , {n} as output units; then every output tree has only
some unary and a nullary branching. The second way of doubling doesn’t
work, LIC is always trivially satisfied.

But what we hope to obtain in this way (in DDC) is not exactly PBO,
but PBO’ where the length of (f X1 . . .Xn) depends on the critical output
positions rather than the critical fit positions. To bridge the gap, we will
require that output units are chosen to be “unit smaller” than fit units. The
technical details of this extra complication about PBO and PBO’ follow in
the next subsection.

5.3 Replacing PBO by PBO’

Analogously to Lemma 1, we have

Lemma 3 (needed when ignoring first arguments) Let the following
be given: A terminating canonical system, an output family F , an n-ary
function f in the system, ground input X1, . . . , Xn to f , and let r be the
rhs of the equation such that (f X) matches the lhs. Assume that the nor-
mal form of the first argument of every function called on any input, is

13

given6. Then there’s a unique output tree τr ∈ τF(r) such that to compute
(f X1 . . .Xn)

• from the constructors and functions in r we may only need those that
occur in τr, and

• from the input X1, . . . , Xn we may only need Xi such that i ∈ u, where
u is the f-unit covering τr.

We will call τr the needed output tree and u the needed output unit (w.r.t.
f , X).

Definition 7 (PBO’ M-set) As Definition 5, but add the assumption
that there’s also an output family FO and let the new requirement be that

|(f X1 . . .Xn)| ≤ QM(
∑
i∈NU

|Xi|) +
∑
i∈cu

|Xi|

where u is the needed output f -unit for (f X).

Definition 8 (FO “unit smaller than” FF) Let a terminating canon-
ical system be given with a fit family FF and an output family FO. FO is
smaller than FF if for every rhs r, every output tree τr and every fit tree
ρr such that τr is contained in ρr (defined below): If u is the output unit
covering τr, and U is the fit unit covering ρr, then u ⊆ U .

Define τr is contained in ρr by induction on r: Consider a (particular oc-
currence of a) subterm t of r. Let two rhs trees for t be τOt ∈ τFO (t) and
τFt ∈ τFF (t). τOt is contained in τOt if the roots in τOt and τFt are the same,
and

• if t = (c t1 . . . tn) then each τOti is contained in τFti .

• if t = (g t1 . . . tn): Let the g-units used be respectively u and U . Then
u ⊆ U , and for every i ∈ u we have that τOti is contained in τFti .

Lemma 4 (from PBO’ to PBO) Let a terminating canonical system with
a fit family FF and an output family FO be given such that FF is unit
smaller than FO. Then for every M-set M :

• For every f ∈ M , for every input X1, . . . , Xn to f : If u is the needed
output f-unit and U is the needed fit f-unit, then u ⊆ U .

• So if M satisfies PBO’ then M satisfies PBO with the same polyno-
mial.

So if in the definition of poly-basic, instead of PC2.2 we require that PBO’
holds for every M-set, then Theorem 1 still holds.

6First arguments are not computed, not even by an oracle.

14

6 The “Don’t Double Criticals” System (DDC)

Let the i’th projection πi be defined by πi (c x1 . . .xm) = xi for every con-
structor c and 1 ≤ i ≤ m. Let t be a term, let s be a subterm of t. s is a
projection sequence in t if s = πi1(. . . (πin v) . . .) such that in ≥ 0 and v a
variable. s is maximal if s is t or if the father of πi1 is not a projection.

Definition 9 (DDC M-set) Let a canonical system with a fit family FF

and an output family FO be given such that FF is unit smaller than FO.
An M-set M is DDC if PC2.1 holds for M and if moreover RON, and LIC
are satisfied:

RON There is a polynomial PM such that for any n-ary function f ∈ M ,
for any ground terms X1, . . . , Xn, let U = NU ∪CU be the needed fit
f -unit, let Tf X be the fit based tree of recursive calls for f on X: The
number of nodes in Tf X is bounded by PM (

∑
i∈NU |Xi|).

LIC For every function f ∈ M , for every equation e for f with rhs r,
for every output tree τr for r: If in τr there’s a maximal projection
sequence s = πi1(. . . (πin v) . . .) such that v is a critical variable in e,
then there are no other occurrences of the term s in τr.

In quicksort, choose trivial fit units and output units except for if-then-else:
choose {1, 2}, {1, 3} and {2}, {3} respectively. quicksort is not DDC since
append recurs on its critical first argument (so RON doesn’t hold). If we
however give append an extra noncritical first argument and simulate the
original recursion, this can be fixed (see also treesort below): Let C nil a b =
a,C (consx y) a b = b, and let (length t) produce |t| in unary. With the
following changes, the system becomes DDC.

qs nil z l r = append′ (length (cons l r)) (quicksort l) (cons z (quicksort r))
append′ (succ n) x y = C x y (cons (π1 x) (append′ n (π2 x) y))

It’s in fact in order to be able to simulate recursion on critical in this way
that we bothered to allow projections on critical variables in LIC ; otherwise
LIC could simply have required that every critical variable v occurs at most
once in τr.

Theorem 2 (the output length theorem for DDC) Let a (possibly empty)
terminating canonical system with a fit family FF and an output family FO

be given such that FF is unit smaller than FO and such that PBO’ holds for
every M-set. Define a new DDC M-set M using the given system7. Then
PBO’ is satisfied for M .

7That is, the M-functions may call functions from the given system.

15

The key ideas in the proof of Lemma 2 are to do a first recursion on the
height of the output based tree for (f X), and a second recursion on the
structure of the needed rhs. In the second recursion we keep critical input
outside the construction of polynomials. The arguments of recursive calls
are treated specially with PC2.1. By Theorem 2 and (the last two lines in)
Lemma 4 we get

Corollary 5 (pure DDC is poly-time) Let a canonical system with a fit
family FF and an output family FO be given such that FF is unit smaller
than FO. If every M-set is DDC then every function in the system is poly-
time.

So, summing up about the relationships between the different classes: All
pure DDC functions are poly-basic and all poly-basic functions are poly-time.
In the remaining subsections, we give examples of subsystems of DDC. In
Appendix 1, we show that all (nonnullary) BC functions are pure DDC.

6.1 A Very Simple Syntactical Subsystem

As an example of a particularly simple (pure) DDC system consider DDC-
simple1 : A canonical system (with trivial output units and fit units) satis-
fying

1. The first position of every recursive function is noncritical.

2. Every recursive call term has the form (g v1 . . . vn) where the vi’s are
different variables.

3. For every M-set M , for every equation of the form

f (c y1 . . . ym) x2 . . . xn = · · · (g1 v1,1 . . . v1,r1) · · ·(gk vk,1 . . . vk,rk)

where f, g1, . . . , gk all are in M and k ≥ 2, either

(a) Any (gi vi,1 . . . vi,ri) and (gj vj,1 . . . vj,rj), i 6= j, have no variables
in common, or

(b) Each vj,1 is some yp, and all the v1,1, . . . , vk,1 are different.

4. Every rhs is linear in every critical variable.

Note that Condition 4 is very restrictive. However, unary addition and mul-
tiplication are DDCsimple1 : mul 0 y = 0, mul (succ x) y = add y (mul x y), add 0 y =
y, add (succx) y = succ (addx y).

16

6.2 A Little More Complicated Subsystem

As a second example of a subsystem of (pure) DDC, consider DDCsimple2 :
Let a canonical system with a fit family FF and an output family FO be
given such that FF is unit smaller than FO. The system is DDCsimple2 if
LIC and the following conditions are satisfied.

1. The first position of every recursive function is noncritical.

2. Every recursive call term has the form (g t1 . . . tm) where each ti is
a maximal projection sequence; and for every fit tree τg t for (g t): If
there’s a maximal projection sequence s in τg t, then there are no other
occurrences of the term s in τg t.

3. For every equation f (c y1 . . . ym) x2 . . .xn = r we have that: For every
recursive call term (g t1 . . . tk) in r we have that t1 is a yi; and for
any fit tree τr for r, for any two recursive call terms (g yit2 . . . tm) and
(h yjs2 . . . sn) in τr, we have that i 6= j.

Example 1 quicksort isn’t DDCsimple2 for the same reason as it wasn’t
DDC and because arguments in recursive call terms contain constructors,
and because in qs’s first equation, quicksort is called (twice) with illegal first
argument.

Example 2 In the definition of tree sort below, we use intermediate binary
trees constructed from ternary bic (value, left subtree, right subtree) and
nullary emp. The critical positions are the first position in insert, the second
and third positions in if-then-else, both positions in append. Choose trivial
fit units and output units except for if-then-else ({1, 2}, {1, 3} and {2}, {3},
as usually).

treesort l = flatten (maketree l)
maketree nil = emp
maketree (consx y) = insert (maketree y) x
insert emp x = bic x emp emp
insert (bic v l r) x = if-then-else (lesseq x v) (bicv (insert l x) r)

(bic v l (insert r x))
flatten emp = nil
flatten (bic v l r) = append (flatten l) (consv (flatten r))

treesort isn’t DDCsimple2 since append and insert have critical first argu-
ments. As for quicksort, this can be fixed: Let C emp a b = a,C (bicx y z) a b =
b, and let (triplelength t) produce 3|t| in unary. With the following changes,
the system becomes DDCsimple2 (append’ and length are as when we “fixed”
quicksort).

17

maketree (consx y) = insert′(triplelength y) (maketreey) x
insert′ (succn) t x = C t (bicx emp emp) (if-then-else (lesseq x (π1 t))

(bic (π1 t) (insert′ n (π2 t) x) (π3 t)))
(bic (π1 t) (π2 t) (insert′ n (π3 t) x))

flatten (bic b l r) = append′ (length (bic b l r)) (flatten l) (cons b (flatten r))

Example 3 f receives a list of binary strings and outputs the list where
those elements that didn’t contain a string with an “s1” in it, have been
removed. Choose the fit g-units as {1, 2}, {1, 3}, choose output g-units as
{2}, {3}; choose trivial output and fit units for f. Then f and g are DDC-
simple2.

f nil = nil, f (consx l) = gx (consx (f l)) (f l)
g ε a b = b, g (s0 x) a b = gx a b, g (s1 x) a b = a

7 Conclusion

We have studied equations defining functions on constructor data structures
and tried to single out some characteristics of equations defining poly-time
functions. To this purpose we analyzed where the result of a recursive call
might be available, and called these argument positions critical. Our criti-
cality analysis is done after equations have been written down, whereas in
[1] and [3], writing equations and analyzing equations are mixed up

We showed that the concept of criticality is a useful syntactical tool in
identifying computationally hard points in function definitions: The point is
that a critical argument should not be doubled (cf. exp in the Introduction).
In the proposed poly-time system DDC, the two ideas how to avoid doubling,
were RON - recur on noncritical; and LIC - use every critical variable only
once in the output. The idea of RON is already present in [1] and [3], but
LIC is entirely ours. In [1], LIC wasn’t required since constructors have
arity less than two. In [3], there’s nothing like LIC and in fact, poly-time is
generally lost.

In principle, any poly-time function can be defined in pure DDC since the
BC functions are DDC (see proof of this in Appendix 1). But a direct
characterization of the poly-time functions on any data structure would be
more satisfactory; we are working on the problem. In future we also wish
to abandon PC2.1 and study tail recursion.

18

References

[1] S. Bellantoni, S. Cook: A new recursion-theoretic characterization of the
polytime functions, 24th Annual ACM STOC, 1992, 283-293

[2] V.-H. Caseiro: Some general criteria on equations to guarantee poly-time
functions, Research report no 224, ISBN 82-7368-138-6, ISSN 0806-3036,
University of Oslo, Department of Informatics.

[3] D. Leivant: Stratified functional programs and computational complexity,
20th ACM Symposium on Principles of Programming Languages, 1993

Now two appendices containing proofs follow. The first shows that the
Bellantoni-Cook functions are definable in pure DDC, and the second con-
tains the proofs of all the results in this report.

8 Appendix 1: The Bellantoni-Cook Functions Are
DDC

In [1], Bellantoni and Cook (BC) give an equational system in which every
function on binary strings8 can be defined. For every function f , BC distin-
guish between two kinds of argument positions (or input), safe and normal,
and they write (f x; a) to separate normal (on the left) from safe.

Definition 10 (the BC functions, from [1]) There are the following con-
structors: Nullary empty string ε and the unary successors s0 and s1. In the
rhs, s0 and s1 may only be applied to safe arguments. The following func-
tions are BC functions:

p ; ε = ε, p ; (s0 a) = a, p ; (s1 a) = a predecessor
C ; ε b c d= b, C ; (s0 a) b c d= c, C ; (s1 a) b c d= d conditional
pm,ni x1 . . . xm; xm+1 . . . xm+n = xi projections

There’s the following recursion scheme: Given BC functions or constructors
g, hsi, define a BC function f (x and a are sequences of variables, i is 0 or
1)

f ε x; a = g x; a
f (si y) x; a = hsi y x; a(f y x; a)

There’s the following composition scheme: Given BC functions or construc-
tors h, r, t, define a BC function f (x and a are sequences of variables)

f x; a = h (r x;); (tx; a)

8Actually they deal with binary numbers and they don’t use the word of “constructor”.

19

Lemma 6 Any set of nonnullary BC functions is a DDCsimple2 system.

Proof of Lemma 6 Observe that we may regard any set of BC equations
as a canonical system by removing “;” and by remembering that to us,
composition is shorthand notation. The original nullary BC functions are
lost in the canonical system.

Let a set of BC functions be given (considered as a canonical system). For
every n-ary function f , choose all singleton units {1}, . . . , {n} as output
units and choose the trivial unit fit unit (as we may generally do when
all constructors have arity less than two, see Section 5.2). Note that then
every output tree has only some unary and a nullary branching, so LIC is
obviously satisfied. As for the three other requirements to DDCsimple2 :

1. The first position of any recursive function is noncritical by Lemma 7.

2. The arguments in every recursive call term (f y x; a) are different vari-
ables.

3. The first argument in every recursive call term (f y x; a) is y, ok. There
is maximally one recursive call term in any rhs.

©

Lemma 7 Let a set of BC functions be given. For every function f , every
position i in f : If i is normal then i is noncritical.

Remark 1 The lemma implies that “If a position is critical then it is safe”.
The opposite direction is not true for the initial functions and not in general
because one can choose to let positions be safe.

Proof of Proposition 7 Let a set of BC functions be given. Observe
that in a BC system, assignment of critical/noncritical to a function f is
completely decided by the functions different from f that call f . We proceed
by downward induction on the M-sets.

For a function that isn’t called by any other function, except possibly itself,
all positions are noncritical.

We wish to show the lemma for a function q such that there’s a nonempty
set E of equations where q occurs in the rhs, but not in the lhs. Let i be a
normal position in q. Then by inspection and by induction hypothesis, we
have that in all the equations in E the i’th argument of q neither contains
a recursive call term nor a critical variable. So i is noncritical. ©

20

9 Appendix 2: Proofs of the Results in This Re-
port

Definition 11 (output based tree of recursive calls) As Definition 1,
but with an output family F instead.

9.1 Proofs of Lemmas from Section 5

Various definitions: Let a canonical system be given. A variable v is loose in
a rhs r in the M-set M if when we think of r as a tree, v has an occurrence
in r without any function f ∈ M above it. LCV (τ) is the set of loose,
critical variables in a rhs tree τ . For a variable v, s, #o(v, τ) is the number
of occurrences of v in τ .

Definition 12 (polynomials z(t, l)) Let a canonical system with a fit fam-
ily F be given. Choose an M-set M in the system, and assume that the
system is such that for every M-set below M , PBO is satisfied. Define z :
(subterm of M -rhs) × (natural number variable l) → (polynomial in l) by
induction on its first argument:

z(v, l) = l, for v a noncritical variable
z(v, l) = 0, for v a critical variable
z(c t1 . . . tm, l) = 1 + z(t1, l) + · · ·+ z(tm, l), for c a constructor
z(g t1 . . . tm, l) = 0, for g ∈M
z(g t1 . . . tm, l) = QMg(

∑
i noncrit z(ti, l)) +

∑
i crit z(ti, l), for g 6∈M

where QMg is the polynomial for Mg given by PBO.

Proof of Lemma 2 It’s enough to prove Lemma 8 below. ©

Lemma 8 (PBO gives polynomially bounded subterms) Let a ter-
minating canonical system with a fit family F be given such that for every
M-set, PC2.1 and PBO hold. Then for every M-set M there is a polynomial
DM such that for any ground term (f X1 . . .Xn) where f ∈ M , let U ∈ SFf
be the needed fit f-unit, let r be the rhs of the equation such that (f X)
matches the lhs, let σ be the matching substitution, let τr be the needed fit
tree, then for any subterm t of r such that t is in τr:

|t σ| ≤ DM(
∑
i∈U

|Xi|)

Proof of Lemma 8 By upward induction on M-sets. Now we are in an
M-set M . We wish to construct a polynomial DM .

21

Lemma 9 says that for any f ∈M , any input input X1, . . . , Xn, when we let
τ be the needed fit f -tree, we let q1, . . . , qk be the “outermost” recursive call
terms in τt, we let U = NU∪CU the needed fit f -unit, we let L =

∑
i∈U |Xi|,

L′ =
∑
i∈NU |Xi|; then for any t in τ , except a proper subterm of q1, . . . , qk,

we have

|tσ| ≤ z(t, L′) +
∑

v∈LCV (τt)

#o(v, τt)|vσ|+ |q1σ|+ · · ·+ |qkσ|

We have that

• z(t, L′) ≤ z(t, L) since z is monotone and L′ ≤ L.

•
∑
v∈LCV (τt) #o(v, τt)|vσ| ≤ kL for some constant k since U covers τ .

• By PBO and by PC2.1 and property of polynomials, each |qjσ| is
bounded by a polynomial in L.

So for every subterm t ∈ τ (by PC2.1 and coverings, also for t argument to
recursive call), there is some polynomial pol t such that |tσ| ≤ pol t(L).

Define the polynomial DM (l) to be the sum of pol t(l) for every subterm t of
all fit trees for rhs’s in M . Then obviously DM is as wished. ©

The following lemma is used in the proof of Lemma 8.

Lemma 9 (length of term in fit tree) Let a terminating canonical sys-
tem with a fit family F be given such that for every M-set PBO holds. For
any M-set M in the system, for any n-ary f ∈ M with input X1, . . . , Xn:
When we let σ be the substitution such that (f X1 . . .Xn) matches the lhs of
the equation with rhs r, we let τr be the needed fit f-tree, we let U be the
needed fit f-unit, we let L =

∑
i∈NU |Xi|, we let q1, . . . , qk be the recursive

call terms in τt such that in r there’s no h ∈M above (outside) them, then
for any subterm t in τr, except an argument to a q1, . . . , qk, we have

|tσ| ≤ z(t, L) +
∑

v∈LCV(τt)

#o(v, τt)|vσ|+ |q1σ|+ · · ·+ |qkσ|

Proof of Lemma 9

We prove Lemma 9 by induction on the structure of t. If t is

• A loose variable or a recursive call term without any h ∈M above it,
it’s ok.

• (c t1 . . . tm): By induction hypothesis for tj , 1 ≤ j ≤ m

|tσ| ≤ 1 + |t1σ|+ · · ·+ |tmσ|
= z(c t1 . . . tm, L) +

∑
v∈LCV (τt) #o(v, τt)|vσ|+ |q1σ|+ · · ·+ |qkσ|

22

• (g t1 . . . tm), g 6∈ M : By PBO for Mg, there’s a polynomial QMg for
Mg such that for the needed fit g-unit V , where V = NV ∪CV .

|(g t1 . . . tm)σ| ≤ QMg(
∑
j∈NV

|tjσ|) +
∑
j∈CV

|tjσ|

(Note: Here’s important that QMg only gets noncritical arguments.)
We have

– for j ∈ NV : By induction hypothesis, |tjσ| ≤ z(tj , L). (Notice:
There aren’t any recursive calls, nor critical variables in these
tj’s.) So ∑

j∈NV

|tjσ| ≤
∑

j noncrit

z(tj , L)

– for j ∈ CV by induction hypothesis for each tj , we get

∑
j∈CV |tjσ|
≤
∑
i crit z(ti, L) +

∑
v∈LCV (τt) #o(v, τt)|vσ|+ |q1σ|+ · · ·+ |qkσ|

Altogether

|tσ| ≤ QMg(
∑
j noncrit z(tj, L)) +

∑
i crit z(ti, L)+∑

v∈LCV (τt) #o(v, τt)|vσ|+ |q1σ|+ · · ·+ |qkσ|
= z(g t1 . . . tm, L) +

∑
v∈LCV (τt) #o(v, τt)|vσ|+ |q1σ|+ · · ·+ |qkσ|

©

Proof of Lemma 3 Let f ∈ M with input X1, . . . , Xn be given with
appropriate substitution σ and with appropriate equation e with rhs r. We
proceed by induction on the longest call sequence of functions starting with
f on X1, . . . , Xn. Basis and step are proved in the same way.

We will show that: For every subterm t of r, there’s a unique output tree
τt ∈ τF (t) such that if the first argument of every function called in the com-
putation of tσ is given, to compute tσ, from the constructors and functions
in t we only need those that occur in τt, and from X1, . . . , Xn we only need
Xi such that there is a variable v ∈W e

{i} such that v ∈ τt.

We proceed by induction on t.

• If t is a variable, let τt consist of the single node labeled t.

• If t is (c t1 . . . tm) where c is a constructor, then by induction hypothesis
there are τt1, . . . , τtm as wished, so let τt be the tree with root c and
immediate subtrees τt1, . . . , τtm.

23

• If t is (g t1 . . . tm) where g is a function, then to compute tσ when first
arguments are given, by induction hypothesis (since g’s call sequence
is shorter) the lemma holds so there’s a unique g-unit ug such that
from the input t1σ, . . . , tmσ we may only need tjσ such that j ∈ ug.
For each tj , j ∈ Ug, by induction hypothesis there is a τtj , so that to
compute tjσ, when first arguments are given, from the constructors
and functions in tj we only need those that occur in τtj , and from
X1, . . . , Xn we only need Xi such that there is a variable v ∈ W e

{i}
such that v ∈ τtj . So let τt be the tree with root g and as immediate
subtrees the τtj ’s. Then τt is a rhs tree as wished.

Then to compute (f X1 . . .Xn) we need X1 and the variables Xi, i ≥ 2 such
that some corresponding variable occurs in the uniquely chosen output tree
τr. We have assumed that X1 is given and by definition of output unit sets,
we know that there’s a unique output f -unit covering τr. ©

Proof of Lemma 4 We show the first part: For every f ∈ M , for every
input X1, . . . , Xn to f : If u is the needed output f -unit and U is the needed
fit f -unit, then u ⊆ U . By upward induction on M-sets, basis and step the
same way. Consider an M-set M , f ∈ M , input X1, . . . , Xn. By induction
on the height of the output based tree T of recursive calls on (f X1 . . .Xn)
we show the more general result that: For every node (hZ1 . . .Zm) in T : If
uh and Uh are the needed output and fit units respectively, then uh ⊆ Uh.
Basis and step are in the same way. Fix (hZ1 . . .Zm), uh, Uh, appropriate
rhs rh, appropriate substitution σh.

We show that: For every subterm t of rh: If t is in both τrh and ρrh then
for the subtrees τt and ρt we have that τt is contained in ρt. Induction on t.

• If t is a variable: Then τt and ρt are identical, ok.

• If t = (c t1 . . . tn): Then it’s ok by the induction hypothesis for the ti’s.

• If t = (g t1 . . . tn), g /∈ M : Then the first part of Lemma 4 holds for
tσh, so for the needed units ug, Ug we have ug ⊆ Ug, and by induction
hypothesis for i ∈ ug, τti is contained in ρti, so ok.

• If t = (g t1 . . . tn), g ∈ M : By induction hypothesis we have ug ⊆ Ug
so ok again.

So since rh is in τrh and in ρrh we have that τrh is contained in ρrh . By unit
smallness uh ⊆ Uh. ©

9.2 Proof of Theorem 2

Let a canonical system be given. Whenever we talk about a subterm (π v) =
πi1(. . . (πin v) . . .) of some rhs r in some M-set M in the system, we mean

24

that (π v) is a maximal projection sequence and that v is critical. Define
(π v) in r to be loose if (when we think of r as a tree) (π v) doesn’t have any
M -function above it in r.

Definition 13 (polynomials w(t, l)) Let a canonical system with a fit
family FF and an output family FO be given. Let M be a DDC M-set
in the system such that for every M-set below M , PBO’ is satisfied. Define
w : (subterm of M -rhs) × (natural number variable l) → (polynomial in l)
by induction on its first argument:

w(v, l) = l, for v a noncritical variable
w(v, l) = 0, for v a critical variable
w(c t1 . . . tm, l) = l+ w(t1, l) + · · ·+ w(tm, l), for c a constructor
w(g t1 . . . tm, l) = lPM(l+ AM)(

∑
r rhs in M w(r, a) + κa) +

∑
i crit w(ti, l+AM), for g ∈M

w(g t1 . . . tm, l) = lQMg(
∑
i noncrit w(ti, l)) +

∑
i crit w(ti, l), for g 6∈M

where a = l+AMPM (l+AM) +AM , κ is the maximal number of recursive
calls in any rhs in M , PM is from RON, AM is the sum of CM (from PC2.1)
and the maximal number of critical arguments to any M -function, QMg is
the polynomial for Mg given by PBO’.

Observe that for every t, w(t, l) is a (monotone) polynomial with constant
part 0 (i.e. w(t, l) = a0 + a1l+ · · ·+ akl

k for a0 = 0 and some ai ≥ 0, k ≥ 0.

It’s enough to prove Lemma 10 since then we may define QM (x) =
∑
r rhs in M w(r, x)

and by Part 1 we get (for the appropriate rhs r and needed output tree τr)

|(f X1 . . .Xn)| ≤ w(r,
∑
i∈NU |Xi|) +

∑
(π xi)∈τr |πXi|

≤ QM (
∑
i∈NU |Xi|) +

∑
i∈cu |Xi|

Remark 2 Originally, we tried only to prove Part 2 of Lemma 10 (which
gives Theorem 2). But then we weren’t able to show Equation 1 below (in
two and a half pages). So we added Part 1. And originally the definition
of w was just like the definition of z (Definition 12) except in the case that
g ∈ M , but then (also because of Equation 1) we found it convenient to
have a w with constant 0. As it is now, the proof is perhaps unnecessary
long, e.g. we would like to merge Part1 and the auxiliary Lemma 11.

Lemma 10 Let a (possibly empty) terminating canonical system with a fit
family FF and an output family FO be given such that FF is unit smaller
than FO and such that PBO’ holds for every M-set. Define a new DDC
M-set M using the given system.

Fix T to be an output based tree of recursive calls for some M-function on
some input. Let (f X1 . . .Xm) be a node in T deciding a subtree f -tree, with
needed fit unit Uf and needed output unit uf , let the needed output f-tree

25

be τr. Let (f (c y1 . . . ym) x2 . . . xn) = r be the appropriate equation, σ the
appropriate substitution. Then

Part 1 For every t in τr except a nonmaximal projection sequence:

|t σ| ≤ w(t,NLf) +
∑

(π xi)∈τt

|πXi|

Part 2

|f X1 . . .Xm| ≤ |f -tree|(
∑

r rhs in M

w(r, b) + κb) +
∑

(π xi)∈τr

|πXi|

where NLf =
∑
i∈NUf

|Xi|, b = NLf + AM |f -tree|.

Proof of Lemma 10 By induction on the height of f-tree . The structure
is: First we prove Part 1, using induction hypothesis for Part 2. Then we
prove the second part, using Part 1 and also the induction hypothesis for
Part 2.
Part 1: Basis and step in the same way. By induction on t. If t is

• A noncritical variable: Ok.

• A maximal projection sequence: Ok.

• (c t1 . . . tm): By induction hypothesis for tj , 1 ≤ j ≤ m and LIC

|tσ| ≤ 1 + |t1σ|+ · · ·+ |tmσ|
≤ 1 + w(t1, L) + · · ·+w(tm, L) +

∑m
i=1

∑
π xj∈τti

|πXj|

= w(t,NLf) +
∑
π xj∈τt |πXj|

• (g t1 . . . tm), where g /∈M :

PBO’ holds for Mg, so there’s a polynomial QMg for Mg such that for
the needed output g-unit v and for the needed fit g-unit V

|(g t1 . . . tm)σ| ≤ QMg(
∑
j∈NV

|tjσ|) +
∑
j∈cv

|tjσ|

(Note: Here’s important that QMg only gets noncritical arguments.)
We have

– for j ∈ NV : By Lemma 12 (not by induction hypothesis), |tjσ| ≤
w(tj,NLf). So∑

j∈NV

|tjσ| ≤
∑
j∈NV

w(tj,NLf) ≤
∑

j noncrit

w(tj,NLf)

26

– for j ∈ cv we have by induction hypothesis for tj and by LIC∑
j∈cv

|tjσ| ≤
∑
i crit

w(ti,NLf) +
∑

π xi∈τt

|πXi|

Altogether

|tσ| ≤ QMf
(
∑
j∈ noncrit w(tj,NLf)) +

∑
i crit w(ti,NLf) +

∑
π xi∈τt |πXi|

≤ w(t,NLf) +
∑
π xi∈τt |πXi|

• (g t1 . . . tm), where g ∈ M : Let v be the needed output g-unit, V
the needed fit g-unit, τrg the needed output tree for g’s appropriate
rhs rg. and let NLg =

∑
i∈NV |tiσ|. By RON and unit smallness we

have |g-tree| ≤ PM (NLg). By PC2.1 and since NLg doesn’t depend
on critical arguments to f , we have NLg ≤ NLf + AM . By induction
hypothesis part two for g-tre, LIC for τg, induction hypothesis for ti’s
in τt, LIC for τt we get

|tσ| ≤ |g-tree|(
∑
w(r, bg) + κbg) +

∑
π zi∈τrg

|π tiσ|

≤ PM (NLg)(
∑
w(r, Bg) + κBg) +

∑
i∈cv |tiσ|

≤ PM (NLg)(
∑
w(r, Bg) + κBg) +

∑
i∈cv (w(ti,NLg) +

∑
π xj∈τti

|πXj|)

≤ PM (NLf + AM)(
∑
w(r, B′g) + κB′g)+∑

i crit w(ti,NLf +AM) +
∑
π xj∈τt |πXj|

≤ w(t,NLf) +
∑
π xj∈τt |πXj|

where bg = NLg +AM |g-tree|, Bg = NLg +AMPM (NLg), B
′
g = NLf +

AMPM (NLf +AM) + AM .

Part 2: In the induction basis we have that in r there aren’t any recursive
call terms. By Part 1 of this lemma:

|f X1 . . .Xm| = |rσ|
≤ w(r, NLf) +

∑
π xi in τr |πXi|

≤ w(r, b) +
∑
π xi in τr |πXi|

We move on to the inductive step. Consider those recursive call terms in
r that don’t have M -functions above (outside) themselves. Among these,
let (g1Z1,1 . . .Z1,a1), . . . , (gk Zk,1 . . .Zk,ak) be those that are children of
(f X1 . . .Xm) in T (k ≥ 1). So the shape of the equation for f is f · · · =
· · · (g1 z1,1 . . . z1,a1) · · · (gk zk,1 . . . zk,ak · · ·). Assume that the j’th child needs
fit unit Uj, output units uj, equation lj = rj, output tree τrj . Let NLj =∑
i∈NUj |Zj,i|. By induction hypothesis for gj:

|gj Zj,1 . . .Zj,aj | ≤ |gj-tree |(
∑

r rhs in M

w(r, bj) + κbj) +
∑

π zj,i in τrj

|π Zj,i|

27

where bj = NLj +AM |gj-tree|. By PC2.1 and since NLj doesn’t depend on
critical arguments to f , we have NLj ≤ NLf + AM , so

bj = NLj +AM |gj-tree |
≤ NLf + AM + AM |gj-tree|
≤ NLf + AM + AM |g1-tree |+ · · ·+AM |gk-tree|
= NLf + AM |f-tree|
= b

so we have by Lemma 11 and induction hypotheses

|f X1 . . .Xm|
= |rσ|
≤ w(r, NLf) +

∑
π xi loose in τr |πXi|+ |g1Z1,1 . . .Z1,a1|+ · · ·+ |gk Zk,1 . . .Zk,ak |

≤ w(r, NLf) + (|g1-tree|+ · · ·+ |gk-tree|)(
∑
w(r, b) + κb)+∑

π xi loose in τr |πXi|+
∑
π z1,i in τr1

|π Z1,i|+ · · ·+
∑
π zk,i in τrk

|πZk,i|

We wish to use PC2.1 and Part 1 of this lemma to show that

∑
i∈cu1

|Z1,i| ≤ NLf +
∑

i∈cuf∧Πxi∈τg1 z

|πXi|+AM (1)

(and the same for 2, . . . , k). PC2.1 gives that∑
i∈cu1

|Z1,i| ≤ NLf +
∑

i∈CUf

|Xi|+CM

whereas Part 1 of this lemma (this is why we introduced Part 1!) for τg1 z

along with LIC for τg1 z yield that∑
i∈cu1

|Z1,i| ≤
∑
i∈cu1

w(z1,i,NLf) +
∑
π xj∈τz1,i

|πXj|

≤
∑a1
i=1 w(z1,i,NLf) +

∑
π xj∈τg1 z

|πXj|

The constant part of the polynomial
∑a1
i=1w(zi,NLf) is 0 (by definition of

w). So
∑
i∈cu1

|Z1,i| must be bounded by the sum of NLf ,
∑
π xj∈τg1 z

|πXj|,

the number of critical positions in g1, and CM . So Equation 1 is ok.

Then we have by LIC for τg1, . . . , τgk, by unit smallness

∑
π z1,i in τr1

|π Z1,i|+ · · ·+
∑
π zk,i in τrk

|π Zk,i|

≤
∑
i∈cu1

|Z1,i|+ · · ·+
∑
i∈cuk

|Z1,k|
≤ NLf +

∑
i∈cuf∧Πxi∈τg1 z

|πXi|+AM + · · ·+

NLf +
∑
i∈cuf∧Πxi∈τgk z

|πXi|+AM

≤ k(NLf + AM) +
∑
π xi∈τg1 z

|πXi|+ · · ·+
∑
π xi∈τgk z

|πXi|

≤ κb+
∑
π xi∈τg1 z

|πXi|+ · · ·+
∑
π xi∈τgk z

|πXi|

28

So altogether by LIC for τr we have

|f X1 . . .Xm| ≤ w(r, NLf) + κb+ (|g1-tree|+ · · ·+ |gk-tree|)(
∑
w(r, b) + κb) +

∑
π xi∈τr |πXi|

≤ |f-tree|(
∑
r rhs in M w(r, b) + κb) +

∑
π xi∈τr |πXi|

©

The following lemma (very similar to Lemma 9 and to Part 1 of lemma 10)
is used in the proof of Lemma 10.

Lemma 11 (DDC output tree lemma) Let a (possibly empty) termi-
nating canonical system with a fit family FF and an output family FO be
given such that FF is unit smaller than FO and such that PBO’ holds for
every M-set. Define a new M-set M with output and fit units, using the
given system such that (at least) LIC holds.

For any n-ary f ∈M with input X1, . . . , Xn, let (f (c y1 . . . ym) x2 . . . xn) = r

be the appropriate equation, let σ be the appropriate substitution, let τr be
the needed output tree, let u be the needed output f-unit, let U be the needed
fit f-unit. let q1, . . . , qk be the recursive call terms in τt such that in r they
don’t have any h ∈ M above (outside) them, let NLf =

∑
i∈NU |Xi|, then:

For any subterm t in τr, except a proper subterm of q1, . . . , qk or a proper
subterm of a maximal projection sequence π xi where i is noncritical, we
have

|tσ| ≤ w(t,NLf) +
∑

π xi loose in τt

|π xi σ|+ |q1σ|+ · · ·+ |qkσ|

Proof of Lemma 11 We prove Lemma 11 by induction on the structure
of t. If t is

• A noncritical variable: Ok.

• A loose π xi or an “outermost” recursive call term: Ok.

• (c t1 . . . tm): By induction hypothesis for tj , 1 ≤ j ≤ m and by LIC

|tσ| ≤ 1 + |t1σ|+ · · ·+ |tmσ|
≤ 1 +w(t1,NLf) + · · ·+ w(tm,NLf) +

∑
π xi loose in τt |π xi σ|+ |q1σ|+ · · ·+ |qkσ|

= w(c t1 . . . tm,NLf) +
∑
π xi loose in τt |π xi σ|+ |q1σ|+ · · ·+ |qkσ|

• (g t1 . . . tm), g 6∈M

PBO’ holds for Mg, so there’s a polynomial QMg for Mg such that for
the needed output g-unit v, where v = nv ∪ cv , and for the needed fit
g-unit V , where V = NV ∪CV

29

|(g t1 . . . tm)σ| ≤ QMg(
∑
j∈NV

|tjσ|) +
∑
j∈cv

|tjσ|

We have

– for j ∈ NV : By Lemma 12 (not by induction hypothesis), |tjσ| ≤
w(tj,NLf). So∑

j∈NV

|tjσ| ≤
∑
j∈NV

w(tj,NLf) ≤
∑

j noncrit

w(tj,NLf)

– for j ∈ cv we have by induction hypothesis for tj and by LIC

∑
j∈cv

|tjσ| ≤
∑
i crit

w(ti,NLf)+
∑

π xi loose in τt

|π xi σ|+|q1σ|+· · ·+|qkσ|

Altogether

|tσ|
≤ QMg(

∑
j∈ noncrit w(tj,NLf)) +

∑
i crit w(ti,NLf)+∑

π xi loose in τt |π xi σ|+ |q1σ|+ · · ·+ |qkσ|
≤ w(t,NLf) +

∑
π xi loose in τt |π xi σ|+ |q1σ|+ · · ·+ |qkσ|

©

The following lemma is used in the proof of Lemma 11 and Lemma 10.

Lemma 12 Let a (possibly empty) terminating canonical system with a fit
family FF and an output family FO be given such that FF is unit smaller
than FO and such that PBO’ holds for every M-set. Define a new M-set M
using the given system

Let f be in M with input X1, . . . , Xn let σ be the appropriate substiutition,
let U be the needed fit unit. For any subterm t of the needed fit tree such that
t doesn’t contain any recursive call terms nor critical variables as subterms

|tσ| ≤ w(t,NLf)

where NLf =
∑
i∈ NU |Xi|.

Proof of Lemma 12 By induction on t. If t is

• a noncritical variable: ok

30

• (c t1 . . . tm): By induction hypothesis

|tσ| = 1 + |t1σ|+ · · ·+ |tmσ|
≤ 1 + w(t1,NLf) + · · ·+w(tm,NLf)
= w(t,NLf)

• (g t1 . . . tm), g /∈M . By PBO’ and by monotonicity of QMg , by induc-
tion hypothesis

|tσ| ≤ QMg(
∑
j noncrit (|tjσ|) +

∑
j crit |tjσ|

≤ QMg(
∑
j noncrit w(tj,NLf)) +

∑
j crit w(tj,NLf)

≤ w(t,NLf)

©

31

