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Sammendrag

I søk etter supersymmetriske partikler ved hadron-akseleratorer trengs presise teoretiske predik-
sjoner for produksjonstverrsnittet deres. I praksis innebærer dette at flest mulige høyere ordens
effekter inkluderes, slik at avhengigheten av ufysiske parametere, og dermed den teoretiske usik-
kerheten, reduseres; videre vil man, ved å holde parameterene til modellen ubestemte, gjøre det
mulig å gjøre et mer komplett søk over parameterrommet. Med dette som mål har vi regnet
ut det inklusive tverrsnittet for slepton-parproduksjon ved hadron-akseleratorer til andre orden i
kvantekromodynamikk (QCD), inkludert korreksjoner fra supersymmetriske partikler, i tillegg til
å inkludere resummerte resultater til andre logaritmiske orden.

Sistnevnte er nødvendig siden kanselleringen av divergenser i perturbasjonsteori etterlater
logaritmiske ledd, som kan bli store dersom gluoner med lav energi emitteres. Vi viser at ved
hjelp av Wilson-linjer kan de logaritmiske bidragene resummeres, slik at de blir inkludert til alle
ordener i perturbasjonsteori.

Siden slepton-parproduksjon er en ren elektrosvak prosess til første orden, viser numerisk
implementasjon av beregningene en betydelig økning i tverrsnittet når QCD-effekter inkluderes.
Når de resummerte bidragene legges til er økningen i tverrsnittet ikke like stor; hovedeffekten
til disse bidragene er at den teoretiske usikkerheten minskes, ved at avhengigheten av ufysiske
parametere reduseres.

I tillegg til resultater for tverrsnittet, sammenligner vi implementasjonen vår med standard
numeriske verktøy for supersymmetri-beregninger, og demonstrerer en forbedring i både presisjon
og fart. Sistnevnte er særlig verdifullt, da det muliggjør et mer effektivt søk over parameterrommet
til teorien.
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Abstract

In searches for supersymmetric particles at hadron colliders, high-precision theoretical predictions
for their production cross-section are needed. In practice this means including as many higher-order
effects as possible, to reduce the dependence upon unphysical parameters and thus the theoretical
uncertainty; furthermore, by keeping the parameters of the model undetermined, one allows for a
more comprehensive scan over the parameter space. To this end, we have calculated the inclusive
cross-section for slepton pair production at hadron colliders, to next-to-leading order in QCD,
including loop corrections from supersymmetric particles, as well as adding resummed results to
the next-to-leading logarithmic order.

The latter is needed since the canceling of divergences at the next-to-leading order leaves
logarithmic terms, that can grow large when low-energy, “soft” gluons are emitted. We show
that by the use of Wilson lines these logarithmic contributions can be resummed, so that they are
included to all orders in perturbation theory.

Since slepton pair production is purely an electroweak process at tree-level, numerical
implementation of our calculations show a significant enhancement to the cross-section from
including QCD effects. When adding resummed results to the fixed-order ones the increase in the
cross-section is smaller; the main effect of these contributions is lowering the theoretical uncertainty
by reducing the dependence upon unphysical parameters.

In addition to the cross-section results, we also compare our implementation to standard
numerical tools for supersymmetry calculations, demonstrating an improvement in both precision
and speed. The latter is in particular valuable, as it allows for a more efficient search of the
parameter space of the theory.
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Introduction

The Standard Model of particle physics is a highly successful theory, effectively describing three
of the four fundamental interactions in nature from just a few starting principles — Yang-Mills
theory for non-Abelian gauge symmetry [1], and the Higgs mechanism for the breaking of such
symmetries [2–4]. It has been extensively tested and several important predictions of the theory
have been confirmed experimentally, notably the existence of the massive weak-interaction gauge
bosons W± and Z, and more recently the existence of the Higgs boson, discovered at the Large
Hadron Collider (LHC) in 2012 [5].

There remain, however, observed phenomena that are not explained by the theory, as well as
theoretical shortcomings; for example, it provides no explanation for dark matter, for which there
is strong experimental evidence; it does not include any description of gravity; the construction of
the Higgs mechanism is somewhat ad hoc, in the sense that there is no obvious origin of the Higgs
potential that leads to the breaking of the electroweak symmetry; and its couplings have Landau
poles, meaning that the theory breaks down at sufficiently high or low energies.

The latter is not necessarily a problem if one considers the theory to be an effective field theory,
with a completion at higher energy scales than currently experimentally accessible, but this does
lead to another issue: The masses of scalar particles such as the Higgs boson are highly sensitive to
corrections from particles that appear at such high energy scales. The fact that the observed Higgs
boson mass is on the same scale as the other electroweak particles would then require a remarkable
cancellation between terms at a far higher scale, and some significant fine-tuning of the parameters
in the theory. This is known as the hierarchy problem.

All of this points towards the conclusion that the Standard Model cannot be a complete theory,
and that if one wishes to approach a unified description of nature, an extension of the Standard
Model is required. One possible extension is the Minimal Supersymmetric Standard Model (MSSM),
in which by expanding the Poincaré symmetry group of the Standard Model to include a symmetry
between bosonic and fermionic degrees of freedom, one introduces a set of new particles called
superpartners to the Standard Model particles.

This model can potentially remedy some of the aforementioned problems of the Standard Model;
if one imposes the conservation of a quantity called R-parity, which is usually done to keep the
theory as consistent with experimental observations as possible, these new supersymmetric particles
can only be created and destroyed in pairs. Thus the lightest supersymmetric particle is a possible
dark matter candidate. The theory also gives a potential solution to the hierarchy problem, through
interactions between the Higgs boson and supersymmetric particles. Furthermore, if one assumes
equality of supersymmetric particle masses at some high energy scale (which would be desirable
in the high-energy completion of the theory, as there is no clear origin for differing masses), the
Higgs potential at the electroweak scale can automatically, by radiative corrections, take the form
required to break the electroweak symmetry.

In order to test any new theory, one must compare its predictions to experimental results from
particle colliders like the LHC, e.g. to look for evidence of new particles. As the experimental
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2 INTRODUCTION

precision is steadily improving, the theoretical calculations must be performed to high precision as
well in order to properly compare the two. This means including higher-order contributions to the
theoretical calculations; such contributions decrease the dependence on unphysical quantities like
the renormalization and factorization scales, making the theoretical uncertainty smaller. In this
way comparison between theory and experiment can be made more precise.

Further, as the MSSM contains a multitude of parameters that can affect its predictions, efficient
numerical evaluation is necessary for a comprehensive study of the theory; thus, to implement high-
precision calculations efficiently, these must be made analytical to the extent that it is possible.
This also makes it more straightforward to generalize results to other processes, by avoiding
simplifications that may only be valid in specific situations.

One of the simplest, and most useful, observables to study in the MSSM is the cross-section
for the pair-production of sleptons, the superpartners of the Standard Model leptons, at hadron
colliders. Since this process contains no strong interactions to the leading order in perturbation
theory, it is a comparatively uncomplicated process to study at higher orders, but it still contains
many of the same corrections as other processes involving supersymmetric particles. As a
consequence, such a process makes a useful starting point in a study of the theory.

To this end, we will in this thesis calculate the cross-section for slepton pair production at the
LHC to next-to-leading order in perturbation theory, using quantum chromodynamics and including
loop corrections from interactions with supersymmetric particles. At fixed order in perturbation
theory, the emission of soft (low-energy) gluons can lead to large logarithmic corrections; this is
dealt with by expressing the soft part of the interaction in terms of geometrical objects called
Wilson lines, which allows the cross-section to be resummed. Including resummed contributions
is expected to further reduce the dependence on unphysical parameters, lowering the theoretical
uncertainty. This in turn makes comparisons of theoretical results to data more precise, and allows
one to be more stringent in excluding regions of the parameter space of the model.

We also implement our calculations numerically, to see explicitly how the aforementioned
theoretical uncertainty is affected by higher order corrections and how the results depend on MSSM
parameters. This also allows us to test our calculations, for both precision and speed, against some
standard numerical packages, specifically resummino and prospino.

The thesis is structured as follows: In Chapter 1 we briefly comment on the structure of gauge
theories and the contents of the Standard Model, to make the transition to the MSSM clearer,
as well as some technicalities with perturbative calculations in quantum field theory. Specifically,
we discuss the regularization and renormalization techniques required to keep quantities finite,
and their theoretical basis; and how the momentum integrals that appear at higher orders in
perturbation theory can be categorized and kept track of using Passarino-Veltman functions.

In Chapter 2 we transition from the Standard Model to the Minimal Supersymmetric Standard
Model, by first looking at the theoretical structure of supersymmetry as an extension of the
Poincaré group; we then comment on the construction of the simplest possible supersymmetric
theory consistent with experiments, and the new particles this gives rise to. We then discuss the
phenomenology of this model; we look at the mass spectrum of the model and how the various
particles can be produced and (indirectly) observed at particle colliders, focusing in particular on
slepton pair production at hadron colliders.

In Chapter 3 we discuss some of the technical aspects of quantum chromodynamics (QCD) that
will be relevant when studying slepton pair production at higher orders. Due to the principle of color
confinement, particles with color charge are only observed in bound states called hadrons; therefore,
the particles colliding at a hadron collider can be any of the constituents of the hadron, depending
on probability distributions in their momenta called parton distribution functions (PDFs). This
complicates QCD calculations, in particular since these distributions are determined by low-energy
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strong interactions, which are not calculable perturbatively. Luckily the factorization theorems
for QCD state that the short- and long-range parts of interactions essentially decouple, making
it possible to extract these PDFs experimentally, while the short-range part can be calculated
in perturbation theory. As we will see, this will allow us to remove some divergences, as these
distributions themselves, like the various couplings in the theory, can be renormalized.

In Chapter 4, we use the theory of the previous chapters to calculate the inclusive cross-section
for slepton pair production at the LHC. For completeness, and to establish the notation and
structure of the calculation, we first show the calculation to leading order, before moving on to
QCD corrections. The next-to-leading order (NLO) calculation is shown in detail, including the
various divergences appearing and how they are dealt with. The last part of the chapter focuses
on resummation as a way of dealing with the large logarithmic terms that appear in the NLO
cross-section. We briefly discuss how Wilson loops can be used to represent cross-sections involving
soft gluons, showing explicitly how higher order corrections can appear in this formalism. We then
sketch how exponentiation of these objects can lead to a resummed expression for the logarithmic
corrections, to next-to-leading logarithmic order.

In Chapter 5 we implement these results numerically for a collection of MSSM parameters. We
first make some simple tests to verify the calculations, both to test the inverse Mellin transform
required to evaluate the resummed results, and to compare to existing packages for supersymmetry
calculations. We then investigate the effect that higher-order corrections have on how the cross-
section depends on unphysical parameters, before seeing how the results depend on the various
parameters appearing in the calculations.

Finally, we make our conclusions and some propositions for further work on this subject.
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Chapter 1

Perturbative quantum field theory

In this chapter we review some of the general field theoretical background for the calculations to be
made in the thesis. The reader is assumed to be familiar with the basics of quantum field theory
(QFT), so this is not intended as a complete introduction to quantum field theory and the Standard
Model (SM) from first principles; rather, we briefly review some general concepts that will become
useful in later chapters.

First, we summarize the logic behind the construction of the Standard Model Lagrangian and
its field content; this is mainly to be used as a reference when transitioning to supersymmetry in
the next chapter, so we will only comment on the most important points.

We then move on to look at some technical aspects of perturbative quantum field theory.
Higher-order corrections generically contain divergences which must be kept track of and eventually
removed from observable quantities by re-defining the theory; this requires techniques called
regularization and renormalization, respectively. These techniques, and the specific methods and
conventions used are covered here.

We also look at a convenient method of categorizing the momentum integrals that appear,
which greatly simplify the calculations, called Passarino-Veltman reduction; with this technique,
exploiting the Lorentz invariant nature of the theory, the initially complicated integrals can be
decomposed into generic functions that are efficiently calculable numerically.

1.1 Standard Model

To begin, we give a short summary of the logic behind the construction of the Standard Model
Lagrangian. As mentioned above the reader is assumed to be acquainted with basic quantum field
theory, so we will not go into concepts like quantization; a thorough introduction to the basics of
QFT can be found in references like [6] or [7].

We will instead focus mainly on the content of the theory, which will be useful when later
constructing the Minimal Supersymmetric Standard Model (MSSM); since this is an extension
to the Standard Model, the MSSM Lagrangian must naturally also contain the Standard Model
Lagrangian, so its construction must follow the same structure. This section will therefore make a
useful reference later.

1.1.1 Basic principles

In its most basic sense, the Standard Model can be seen as a theory describing fermions, i.e. regular
matter. All other fields, meaning gauge bosons and the Higgs boson, appear by necessity in the
construction of the theory.

5



6 CHAPTER 1. PERTURBATIVE QUANTUM FIELD THEORY

The SM Lagrangian is based on two underlying principles: Invariance under local gauge
transformations in Yang-Mills theory [1], described by the gauge group

SU(3)C × SU(2)L × U(1)Y , (1.1)

and the spontaneous breaking of one of part of this symmetry by the Higgs mechanism [2–4].
The SU(3)C group describes the transformation of fermions carrying color charge, called quarks.

These are arranged in so-called color triplets, and transform in the fundamental representation of
the group; as we discuss in Sec. 1.1.2, demanding these transformations to be local gives rise to an
octuplet of massless1 vector gauge fields gaµ, referred to as gluons.

Fermions fields ψL with left-handed chirality, meaning that they satisfy PLψL = 1
2

(
1− γ5

)
ψL =

ψL, are arranged in doublets transforming in the fundamental representation of SU(2)L;2 and all
fermions carrying hypercharge Y transform under U(1)Y , again in the fundamental representation.
Together these two form the electroweak symmetry group, and the locality of this symmetry requires
in total four massive electroweak gauge bosons.

These are not the electroweak bosons we observe physically, however, as the electroweak
symmetry is broken spontaneously by the introduction of a complex scalar Higgs doublet, also
transforming under the electroweak group; as we will discuss in Sec. 1.1.3, the potential of this
field can be constructed in such a way that the vacuum state (or any state at a sufficiently low
energy scale) violates the electroweak symmetry, leaving only the familiar electromagnetic U(1)EM
symmetry, under which particles with a charge Q = T 3 + Y transform.3 After this symmetry
breaking the electroweak bosons mix, leaving four physically observed mass eigenstates; three of
them — the so-called weak bosons W± and Z — are massive, while the last, the photon, is massless.
This way of intertwining the observed weak and electromagnetic forces is called the Glashow [8]-
Weinberg [9]-Salam [10] (GWS) theory for electroweak unification.

We will now look in some more detail at how the various terms in the Lagrangian arise from
these principles.

1.1.2 Wilson lines and Yang-Mills theory

A general Lagrangian for an N -tuplet of Dirac fermions ψi, i = 1, 2, . . . , N , is given by

L = ψi(i�∂ −m)ψi, (1.2)

where a sum over i is implicit, and �∂ ≡ γµ∂µ. This is invariant under a global non-Abelian SU(N)
transformation given by

ψi(x) → exp (iαaT a)ijψj(x), (1.3)
where T a are group generators and αa are constants. In a physical theory, the concept of locality
— meaning that what happens at separate spacetime points is independent — is desirable. Thus
we want this transformation to become local, i.e. to take αa → αa(x).

This complicates things considerably, however, as now the difference between fields ψi at
separate spacetime points — including, significantly, the derivative — is no longer well-defined,
as the fields at separate points transform differently under the gauge transformations. Explicitly,
the difference between fields ψi(y) and ψi(x) transforms as

ψi(y)− ψi(x) →
(
eiα

a(y)Ta
)
ij
ψj(y)−

(
eiα

a(x)Ta
)
ij
ψj(x). (1.4)

1As we will see in Sec. 1.1.2, mass terms for gauge fields are not gauge invariant, excluding them from a gauge
invariant theory.

2Right-handed fields ψR, with PRψR = 1
2

(
1 + γ5

)
ψR = ψR, are SU(2)L singlets.

3Here T 3 = 1
2
σ3 = 1

2

(
1 0
0 −1

)
.
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We can solve this problem by the introduction of objects called Wilson lines WP (x, y).4,5 If
these are defined to transform under the gauge transformations as

WP (x, y) → eiα
a(x)Ta

WP (x, y)e
−iαa(y)Ta , (1.5)

they allow us to compare the fields ψi(x) and ψi(y) in a consistent manner, by re-defining their
difference as WP (x, y)ijψj(y)−ψi(x); with this modification, both terms now transform in the same
way.

Similarly, we can change the derivative in Eq. (1.2) to a covariant derivative Dµ, defined by

Dµψi(x) ≡ lim
δxµ→0

WP (x, x+ δx)ijψj(x+ δx)− ψi(x)

δxµ
, (1.6)

so that Dµψi(x) →
(
eiα

a(x)Ta)
ij
Dµψj(x).

A Wilson line connecting the points y and x by a path P can be expressed explicitly in terms
of the gauge field Aa

µ ≡ AaµT
a, as

WP (x, y) = P

{
exp

(
ig

∫ x

y
Aaµ(z)T

adzµ
)}

, (1.7)

where P is a path-ordering operator. It ensures that when Taylor expanding the exponential, the
gauge field “latest” on the path, i.e. closest to the endpoint x, is always placed furthest to the
left in each term. This is important in non-Abelian gauge theories as the gauge fields at different
spacetime points do not in general commute; this follows from the algebra of the SU(N) generators,[

T a, T b
]
= ifabcT c, (1.8)

where the structure constants fabc 6= 0. The constant g in Eq. (1.7) is just a number, referred to
as the coupling strength of the theory.

We now see the origin of the gauge fields in the Standard Model; they appear when we want
to take covariant derivatives of fermion fields transforming under a local gauge symmetry. In fact,
by Taylor expanding Eq. (1.7) and inserting it into Eq. (1.6), keeping only the linear term of the
expansion since δxµ → 0, we find that

Dµψi(x) = ∂µψi(x)− igAaµT
a
ijψj(x), (1.9)

meaning that Aµ works as a connection on the geometry of gauge transformations.6
Since the Wilson lines transform under SU(N), so do the gauge fields; by again Taylor-expanding

Eq. (1.7) and inserting it into Eq. (1.5) we find that infinitesimally (αa � 1), the components of
Aµ transform as

Aaµ → Aaµ(x) +
1

g
∂µα

a(x)− fabcαb(x)Acµ(x)

= Aaµ(x) +
1

g
Dµα

a(x), (1.10)

4These were originally introduced by Wilson [11] in an attempt to explain color confinement in quantum
chromodynamics, as will be discussed in Chapter 3.

5This is not the most straightforward nor conventional approach; however, it has a nice geometrical interpretation,
and introduces the concept of Wilson lines, which will be useful in Chapter 4.

6We will not go into much detail on this here; for more on connections and covariant derivatives, see a textbook
on general relativity, e.g. Ref. [12].
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where Dµα
a = ∂µα

a + gfabcAbµαc is the covariant derivative of a field transforming in the adjoint
representation. This means that while the fermions transform in the fundamental representation
of SU(N), the gauge bosons transform in the adjoint representation.

Note that the transformation property of the gauge field forbids any mass term ∼ m2AµAµ in
a gauge invariant theory, since

AµAµ → A′µA′
µ 6= AµAµ, (1.11)

under the transformations.

Abelian gauge invariance For the Abelian group U(1) the analysis is mostly identical, with
the obvious simplification that there is only one generator T = 1, meaning that all fabc = 0.

1.1.3 Higgs mechanism and electroweak unification

As mentioned in Sec. 1.1.1, following the logic of the previous section, imposing SU(2)L × U(1)Y
gauge symmetry leads to the appearance of four massless vector bosons; a triplet W a

µ , a = 1, 2, 3,
transforming in the adjoint representation of SU(2)L, plus a single Bµ from the Abelian group.
However, since we observe that three of these bosons are in fact massive, this symmetry must be
broken at our energy scale.

This is done by postulating a complex, left-handed7 scalar doublet H with hypercharge 1
2 , that

transforms under these gauge groups as

H(x) → exp
(
igαa(x)τa +

1

2
ig′β(x)

)
H(x), (1.12)

where g and g′ are SU(2)L and U(1)Y couplings, respectively, and τa ≡ 1
2σ

a, σa being the Pauli
matrices.

The Lagrangian for this field is in general given by

LH = |DµH|2 − V (H), (1.13)

with DµH = ∂µH − igW a
µτ

aH − 1
2 ig

′BµH. The electroweak symmetry in the vacuum state is
broken by setting the Higgs potential V (H) so that it has a minimum for H 6= 0; its value at this
point is called its vacuum expectation value, or vev.

A simple choice of potential is that of complex φ4 theory (with “φ” renamed to H), given by

V (H) = −µ2H†H + λ
(
H†H

)2
, (1.14)

where µ2 and λ can in principle take any (real) values, positive or negative. This potential has a
finite minimum at non-zero field value as long as µ2 > 0 and λ > 0. The minimum is located at

H0 =
1√
2

(
0
v

)
, (1.15)

with v =
√
µ2/λ.8 Expanding H around this minimum by setting

H(x) =
1√
2

(
0

v + h(x)

)
, (1.16)

7The Higgs field is only “left-handed” in the sense that it transforms under SU(2)L transformations; being a
scalar, it does not have any relation to chirality operators like left-handed fermions do.

8This form of H0 is chosen for simplicity, but without loss of generality; the potential is SU(2) invariant, and we
also have a U(1) symmetry to remove any complex phase.
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and inserting this into the |DµH|2 term of the Lagrangian, we find that it contains mass terms for
three linear combinations of the SU(2)L × U(1)Y gauge bosons. These are given by [9]

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, (1.17)

with electric charge Q = ±1 and mass mW = 1
2vg; and

Zµ = cos θWW 3
µ − sin θWBµ, (1.18)

where tan θW ≡ g′/g, which is electrically neutral but has mass mZ = mW / cos θW . The remaining
mass eigenstate is the photon, which remains massless:

Aµ = cos θWBµ + sin θWW 3
µ . (1.19)

This demonstrates the power of this theory, as it manages to describe massive gauge bosons in a
gauge-invariant Lagrangian, even though mass terms for these particles are explicitly forbidden by
gauge invariance. It also combines this with a description of electromagnetism, since the vacuum
state retains a U(1)EM symmetry as we mentioned in Sec. 1.1.1; belonging to this symmetry is the
photon, coupling to particles with electric charge Q = T 3 + Y with the standard electromagnetic
coupling strength e = g sin θW .

There is a catch, however, in that setting the Higgs potential so that the Higgs field obtains a
vev, as in Eq. (1.14) with µ2 > 0, is arguably rather ad hoc; we typically want to describe as much
of physics as possible from a single set of principles, e.g. in some high-energy Grand Unification
Theory where observed phenomena at our lower energy scale follow from renormalization properties
of the theory. However, there is no clear mechanism for how such a symmetry-breaking potential
would arise, so we essentially have to assume that it “just happens” to have this form. In Chapter 2
we will see how this can happen automatically in the MSSM, through the renormalization of the
parameters in the Higgs potential.

1.1.4 Field content and Lagrangian

Having summarized how gauge fields and the Higgs field appear in the theory as an effect of the
postulated gauge symmetry and the breaking thereof, we now want to write down a Lagrangian
containing all possible renormalizable terms that do not violate gauge invariance. The inclusion
of every possible term can be motivated from renormalization, to be discussed in Sec. 1.2; even
if the “bare” Lagrangian were missing some terms, it might get contributions from higher-order
corrections.

First, we need to consider what fields are included. From experiment we have three generations
of quarks and leptons; the left-handed ones are organized into SU(2) doublets9 given by

Li =

{(
νeL
eL

)
,

(
νµL
µL

)
,

(
ντL
τL

)}
, Qi =

{(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)}
. (1.20)

The right-handed components are singlets under SU(2)L, and are denoted by

νiR = {νeR, νµR, ντR}, `iR = {eR, µR, τR},
uiR = {uR, cR, tR}, diR = {dR, sR, bR}.

(1.21)

9Each quark is also an SU(3) color triplet, but this is left implicit as this fact does not affect anything other than
the color interactions in the Lagrangian.
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Table 1.1: Charges of the Standard Model fermions and Higgs field under the gauge groups. F
denotes that the field transforms in the fundamental representation of the relevant group; the
hypercharges Y in the last line are inferred from the electric charges by the relation Q = T 3 + Y .

Field Li `iR νiR Qi uiR diR H

SU(3)C 0 0 0 F F F 0
SU(2)L F 0 0 F 0 0 F
U(1)Y −1

2 −1 0 1
6

2
3 −1

3
1
2

Right-handed neutrinos are not traditionally included in the Standard Model; we have included
them here mainly for symmetry with the quark sector, in particular when we later in this section
discuss the mixing of mass and gauge eigenstates for quarks and neutrinos. The exact properties
of neutrinos remains an open question in physics; in particular whether or not they are Dirac or
Majorana in nature, and the origin of their extremely low masses relative to other SM particles.

Finally there is, as we discussed in Sec. 1.1.3, the complex scalar Higgs doublet H.
A summary of the fields and their charges under the various gauge groups can be found in

Tab. 1.1.
We now have all the ingredients to write down all of the kinetic terms for the fermions and

Higgs field; following Sec. 1.1.2, we have (as usual, a sum over i is implicit)

Lk =iQ
i
(
�∂ − igs�g

aT a − ig��W
aτa − 1

6
ig′��B

)
Qi

+ iuiR

(
�∂ − igs�g

aT a − 2

3
ig′��B

)
uiR + id

i
R

(
�∂ − igs�g

aT a +
1

3
ig′��B

)
diR

+ iL
i
(
�∂ − ig��W

aτa +
1

2
ig′��B

)
Li + i`

i
R

(
�∂ + ig′��B

)
`iR + iνiR�∂ν

i
R

+

∣∣∣∣∂µH − igW a
µτ

aH − 1

2
ig′BµH

∣∣∣∣2, (1.22)

where gaµ is the octet gluon field, and T a and τa are the generators of SU(3) and SU(2), respectively,
in the fundamental representation. gs is the SU(3)C coupling.

Note the important fact that we cannot, while satisfying gauge invariance, add fermion mass
terms.10 First, mass terms with same-chirality fields like EE or eReR (with E = L1, eR = `1R)
vanish. This can be seen since any chiral field satisfies ψL/R = PL/RψL/R, with PL/R = 1

2

(
1∓ γ5

)
.

Then, with PL/RPR/L = 0,
(
γ5
)†

= γ5, and
{
γµ, γ5

}
= 0, we have

(
PL/RψL/R

)
PL/RψL/R = ψ†

L/RPL/Rγ
0PL/RψL/R

= ψL/RPR/LPL/RψL/R = 0. (1.23)

Meanwhile, terms like eRE violate gauge invariance, as the left- and right-handed spinors carry
different charges and thus transform differently.

What we can add instead are Yukawa terms, i.e. interactions between the Higgs field and two

10The one exception is the right-handed neutrino; since it is uncharged under all gauge groups one might include
a Majorana mass term like iMij

(
νiR

)T
σ2νjR, where νiR is a Weyl spinor [6, p. 600]. However, since the right-handed

neutrino does not couple to anything its properties, including mass terms, are not very relevant for our purposes.
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fermions. The most general gauge invariant terms that can be written down are

LY =− Y `
ijL

i
H`jR − Y ν

ijL
i
HCνjR

− Y d
ijQ

i
HdjR − Y u

ijQ
i
HCujR + h.c., (1.24)

where HC ≡ iσ2H∗ is defined to keep terms SU(2) invariant. When H is expanded around its
vacuum expectation value like in Sec. 1.1.3 this generates mass matrices for the fermions.

Note that the Yukawa matrices Yij are not in general diagonal; non-zero off-diagonal terms
in these matrices indicate a discrepancy between the gauge interaction eigenstates and mass
eigenstates. Such phenomena are indeed observed, and can be described by the CKM [13, 14]
and PMNS [15] matrices for the down-type quarks (d, s, b) and neutrinos respectively. The gauge
invariance can be exploited so as to keep the mass and gauge eigenstates identical for leptons and
up-type quarks (u, c, t).

For the Higgs boson, masses (and self-interactions) are added easily through the potential given
in Eq. (1.14):

LH = −V (H). (1.25)
Finally, there remain kinetic terms for the gauge bosons. These are written in terms of field

strength tensors; for a general non-Abelian gauge group like the one discussed in Sec. 1.1.2, it can
be defined by11

Fµν ≡ i

g
[Dµ, Dν ], (1.26)

where Fµν = F aµνT
a. From Eq. (1.9), its components are given by

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . (1.27)

For an Abelian theory, with fabc = 0 both Fµν and, naturally, its square (Fµν)
2 = FµνF

µν are gauge
invariant; this is not the case for non-Abelian SU(N). However, we can write down a gauge-invariant
term by taking the trace in generator space, which when using properties of SU(N) generators gives

tr(Fµν)2 =
1

2

(
F aµν

)2, (1.28)

with an implicit sum over a. Then, the kinetic gauge terms of the Lagrangian are given by

Lg = −1

4

(
gaµν
)2 − 1

4

(
W a
µν

)2 − 1

4
(Bµν)

2, (1.29)

where gaµν , W a
µν , and Bµν are the SU(3), SU(2), and U(1) field strengths, respectively.

These are all the terms that are possible to add under the restriction of Lorentz invariance and
renormalizability, since the latter restricts the couplings of each term to have a non-negative mass
dimension (more on this in Sec. 1.2.6), and the fermionic and bosonic fields have mass dimensions 3

2
and 1, respectively, while the Lagrangian has dimension 4. We could also add a term proportional
to εµναβF aµνF aαβ; this would, however, lead to violation of the so-called CP symmetry in the strong
interactions, and this is not seen experimentally. The absence of such a term, given that we argued
previously that all renormalizable terms compatible with gauge invariance should be included, is
called the strong CP problem [16].

To summarize, the Standard Model Lagrangian is given by

LSM = Lk + LY + LH + Lg, (1.30)

with the various terms defined in Eqs. (1.22), (1.24), (1.25), and (1.29).
11It can also be constructed from an infinitesimal Wilson loop, which is a Wilson line over a closed path.
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1.2 Regularization and renormalization
When calculating higher-order corrections in quantum field theory, divergences are all but
unavoidable. Obviously this does not invalidate the theory or make these calculations impossible,
or else perturbative QFT would essentially be useless; instead they are dealt with in two steps.

The first is called regularization, which is essentially a generalization of the expression, making it
analytical in every point but the physical one. An example is when a momentum integral, integrated
over all momenta diverges for large momenta; one can then introduce an ultraviolet cutoff Λ. The
expression will still diverge when taking the limit Λ → ∞, which is the physically relevant case,
but the regularization makes the divergence manifest and possible to deal with mathematically.

In a sense, regularization can be seen as a way of postponing the problem of the divergence,
keeping track of it while performing the rest of the calculation. The hope is that eventually, another
similar divergence will arise in the calculation and that the two will cancel. As we will discuss in
Sec. 1.2.7, and see in practice in Chapter 4, this is often the case for infrared divergences, which
appear in the low-energy limit of calculations.

Not all divergences cancel by themselves in calculations, however; in such cases, renormalization
of the theory is necessary. Renormalization is a technique where one uses that the parameters in
the Lagrangian are not themselves directly measurable, only physical observables such as scattering
cross-sections. Thus the Lagrangian parameters can be redefined, in terms of physically measurable
quantities, to absorb the divergences arising in the calculations, leaving a finite result.

For theories to be predictive, it is crucial that one can define the theory in terms of a finite
number of parameters, each fixed by experiment, so that just a few measurements can be used
to predict a potentially infinite number of observables. This is determined by a property called
renormalizability; we already used this to argue which terms could be included in the Standard
Model Lagrangian, and we will soon see how it is defined, as well as some technical aspects of
renormalization. First, however, we introduce the method of regularization that we will be using
in our later calculations.

1.2.1 Dimensional regularization

Above, we mentioned ultraviolet cutoffs as a possible method for regularization. Though this is
intuitive, it is not very convenient in practice nor mathematically sound. The most naive approach,
imposing a hard cutoff to only include energies k < Λ explicitly breaks Lorentz invariance; a more
sophisticated method, due to Pauli and Villars [17], is introducing unphysical particles with mass Λ,
which makes results finite outside of Λ → ∞. This cannot be used in Yang-Mills theories, however,
as it includes introducing massive gauge bosons, which is forbidden by gauge invariance.

Instead, we will in the rest of this thesis be using a less intuitive, though more practical, method,
called dimensional regularization (DR), as first introduced by t’Hooft and Veltman [18]. In DR,
the number of spacetime dimensions is analytically continued from 4 to

d = 4− 2ε; (1.31)

this makes divergences appear as poles in ε, typically of the form 1
ε or 1

ε2
.

This is apparently not as well-motivated as the aforementioned regulators, as it is not
immediately clear how it is related to any infrared or ultraviolet phenomena that would lead to
divergences, but since it respects the symmetries of the theory it turns out to be more useful.

The motivation for this approach becomes clearer when looking at the loop integrals that
generically appear in higher-order calculations; for example, the integral∫

ddk

(2π)d
1

(k2 −∆+ iε)2
, (1.32)
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is divergent for d ≥ 4, but not for d < 4. In other words, we can regularize this integral by setting
d = 4− 2ε with ε > 0. We will discuss these integrals in more detail in Sec. 1.2.2.

Note that this is an example of an ultraviolet divergence since it appears for d ≥ 4; by power-
counting, if we use a high-energy cutoff Λ as a regulator, for large Λ it behaves as∫

ddk

(2π)d
1

(k2 −∆+ iε)2
∼

{
Λd−4 d 6= 4,
lnΛ d = 4.

(1.33)

Similarly, an expression is infrared divergent if it diverges for d ≤ 4, since it will go like 1/Λ4−d,
where Λ is now a low-energy cutoff.

To keep the action S =
∫
ddxL dimensionless, the mass dimension of the Lagrangian must

be shifted to d; we thus need to redefine the mass dimensions of the couplings and fields of the
Lagrangian. As an example, consider the Lagrangian of a non-Abelian gauge theory,

L = −1

4

(
∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν

)2
+ iψ

(
�∂ − ig��A

aT a −m
)
ψ. (1.34)

In order to keep [L] = d,12 keeping in mind that [∂µ] = [m] = 1, we must have

[ψ] =
d− 1

2
,

[
Aaµ
]
=
d− 2

2
, [g] =

4− d

2
. (1.35)

The latter means that the coupling has obtained dimensions, which can be cumbersome to deal
with in calculations; it is therefore conventional to instead redefine the coupling by taking

g → µ
4−d
2 g, (1.36)

where µ is an arbitrary energy scale. This does have the downside of introducing an unphysical
parameter into the calculations, but it can actually be useful; since it must drop out of physically
observable quantities by virtue of being an unphysical quantity, imposing independence of µ upon
observables can give expressions for the parameters of the theory as functions of µ. This leads to
the renormalization group, as will be discussed in Sec. 1.2.5.

The scale µ can also give some measure of the uncertainty of a theoretical calculation due to
truncating the perturbation series at a certain order; at this order the expression will still have some
µ dependence, but the exact result must be independent of it. Thus we can use the dependence of
our truncated result upon µ to get a measure of the information lost in higher orders.

This is conventionally, and somewhat absurdly, done by varying the scale between 2µ and µ/2, µ
being the arbitrary central scale, and defining the theoretical uncertainty as the difference between
the results at the two scales. Of course, this has no connection to actual statistical uncertainties
in that it has no relation to confidence levels, etc.; furthermore, this approach can drastically
underestimate the higher-order constributions when they contain large couplings that were not
present at the lower order, e.g. when considering QCD corrections to processes that are purely
QED at the leading order. Nonetheless, as it is the standard procedure, we will do the same in our
later calculations in this thesis.

The advantage, practically, of using dimensional regularization is that the algebra in the
calculations is mostly unchanged, with some generalizations from 4- to d-dimensional space.
Perhaps the most notable example of this is the treatment of Dirac matrices, which inevitably
show up in calculations with fermions; the Dirac algebra is unchanged,

{γµ, γν} = 2gµν14×4, (1.37)

but in d spacetime dimensions this leads to some differences in trace and contraction identities.
This is covered in Appendix A.

12Technically this should be written as md, but with h̄ = c = 1 there are no other units than mass/energy.
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p1

p2 p3

p4

(a) Leading order.

k

p− k

(b) s-channel.

kp− k

(c) t-channel.

kp− k

(d) u-channel.

Figure 1.1: Leading order and 1-loop contributions to 2 → 2 scattering in scalar φ4 theory. The
momentum p in the loop diagrams is defined, from left to right, as p = p1 + p2, p = p1 − p3, and
p = p1 − p4. The external momenta in the 1-loop diagrams are the same as at the leading order.

1.2.2 Loop integrals in d dimensions

Higher-order calculations in quantum field theory typically involve the evaluation of momentum
integrals; in a Feynman diagram, all internal momenta that are not exactly determined by
momentum conservation must be integrated over. The analytic continuation from 4 to d dimensions
makes these slightly more complicated, but it does allow us to make the divergences manifest in ε,
which is very useful for renormalization purposes.

To see an example of how divergences arise in these integrals, and to present some techniques
for how these are solved, we will look in detail at a simple loop calculation, namely 2 → 2 scattering
in massless, real φ4 theory. The Lagrangian of such a theory is given by

L =
1

2
(∂µφ0)

2 − λ0
4!
φ40, (1.38)

written in terms of “bare” quantities φ0 and λ0, in anticipation of the renormalization discussion to
follow in the coming sections. The tree-level matrix element, shown in Fig. 1.1a, is easily evaluated
to

iM1 = −iλ0. (1.39)

Note that we do not need to make the replacement λ0 → µ(4−d)/2λ0 in the leading-order matrix
element; as long as the matrix element is not multiplied by anything divergent, any ε-dependent
terms will vanish in the limit ε→ 0.

The next-to-leading order (NLO) diagrams, all shown in Fig. 1.1, all have a similar form; with
the momentum p defined as either p1 + p2, p1 − p3, or p1 − p4, each of them has the form

iM2(p) = µ4−d
(−iλ0)2

2

∫
ddk

(2π)d
i2

(k2 + iε)
(
(p− k)2 + iε

) . (1.40)

The factor 1/2 is a symmetry factor due to the bosonic nature of scalars; the two propagators in
the loop can be swapped without changing the result, so we must divide by this symmetry factor
to avoid double-counting identical states.

We will evaluate this momentum integral in two steps. First, we use a technique called Feynman
parametrization to rewrite the integrand; this will allow us to make a change of variables, making
the integrand spherically symmetric. This is done by using the identity [7]

1

A1A2 · · ·An
=

∫ 1

0
dx1 · · · dxnδ

(∑
xi − 1

) (n− 1)!

[x1A1 + x2A2 + · · ·+ xnAn]
. (1.41)
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With this, we can write the NLO matrix element as13

iM2(p) =
λ20
2
µ4−d

∫ 1

0
dx

∫
ddk

(2π)d
1

D2
, (1.42)

where

D = x
(
(p− k)2 + iε

)
+ (1− x)

(
k2 + iε

)
= (k − xp)2 −∆+ iε, (1.43)

with ∆ = −p2x(1− x). We can now make a variable transformation in the integral, taking
k → k + xp, to get

iM2(p) =
λ20
2
µ4−d

∫ 1

0
dx

∫
ddk

(2π)d
1

(k2 −∆+ iε)2
. (1.44)

The integral is now spherically symmetric, but still on a form that is cumbersome to evaluate,
given the Lorentz signature k2 = (k0)

2 − k2. We can fix this by using our second step, called Wick
rotation, wherein we use the Feynman “+iε” prescription of the propagators; in the complex k0

plane, the poles of the integrand are located at

k0 = ±
√

k2 +∆∓ iε. (1.45)

Therefore, we can define a closed integration contour for k0 where we integrate along the real axis
from −∞ to ∞; in a quarter-circle from ∞ to i∞; along the imaginary axis from i∞ to −i∞; and
in another quarter-circle from −i∞ to −∞. Since the integrand has no poles within this contour,
the integral is zero, which again means that the integrals along the real and imaginary axes exactly
cancel since the quarter-circle parts, being infinitely far away, do not contribute.

In other words, we get exactly the same result by changing the integration limits on y0 from
(−∞,∞) to (−i∞, i∞). We can then make a variable change to the Euclidean momentum
kE =

(
k0E , kE

)
≡ (−ik0, k), so that ddk = iddkE and k2 = −k2E = −

(
k0E
)2 − k2

E .
After changing variables our expression is on the form of a spherically symmetric integral:

iM2(p) =
iλ20
2
µ4−d

∫ 1

0
dx

∫
ddkE

(2π)d
1(

k2E +∆− iε
)2 . (1.46)

We keep the iε regulator in the denominator even though its main purpose has been served in
defining a prescription to avoid the poles in k0, as it will still be needed to regulate the integral
over the Feynman parameter x later.

Euclidean, spherically symmetric integrals on this form are fairly straightforward to evaluate;
the integration measure can be decomposed as

ddkE = dΩdk
d−1
E dkE , (1.47)

with
dΩd = sind−2 φd−1 sind−3 φd−3 · · · sinφ2dφ1 · · · dφd−1. (1.48)

The integration limits on the various angles are φ1 ∈ [0, 2π), φi ∈ [0, π) for i > 1. Since the
integrand only depends on the magnitude kE , these can be integrated out by defining xi = sin2 φi

13We can interchange the orders of the integrations as the regularization makes the loop integral finite.
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to give

Ωd =

∫
dΩd = 2π

d−1∏
i=2

(∫ π

0
dφi sini−1 φi

)
= 2π

d−1∏
i=2

(∫ 1

0
dxx

i
2
−1(1− x)−

1
2

)

= 2π
d−1∏
i=2

(
Γ
(
i
2

)
Γ
(
1
2

)
Γ
(
i+1
2

) )
=

2π
d
2

Γ
(
d
2

) . (1.49)

Here we used the formula for the Euler beta function, given by

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0
dxxa−1(1− x)b−1. (1.50)

The remaining integral over kE is reasonably simple; we change variables to z ≡ ∆/
(
k2E +∆

)
,

where for brevity we have absorbed the −iε term into ∆, obtaining another beta integral:∫
dkE

kd−1
E(

k2E +∆
)2 =

1

2
∆

d−4
2

∫ 1

0
dz(1− z)

d−2
2 z

2−d
2

=
1

2
∆

d−4
2 Γ

(
d

2

)
Γ

(
4− d

2

)
. (1.51)

Here we see the ultraviolet divergence arise: The last gamma function has a pole for d = 4; we can
expand around this pole by setting d = 4− 2ε, ε > 0:

Γ(ε) =
1

ε
− γE +O(ε), (1.52)

where γE ≈ 0.577 is the Euler-Mascheroni constant.
Finally, we are left with the integral over the Feynman parameter x, which is left undetermined

for now: ∫ 1

0
dx∆

d−4
2 = pd−4

∫ 1

0
dx[−x(1− x)− iε]

d−4
2 . (1.53)

Note that ε is just a regulator to be taken to zero at the end of the calculation, so rescaling it as
we have done here does not change anything.

Collecting everything, the 1-loop amplitude is given by

iM2(p) =
iλ20

2(4π)
d
2

(
µ2

p2

) 4−d
2

Γ

(
4− d

2

)∫ 1

0
dx[−x(1− x)− iε]

d−4
2 . (1.54)

We now Taylor expand around ε = 0 using aε = 1+ ε ln a+O
(
ε2
)
, dropping all terms of order O(ε)

or higher, which leaves

iM2(p) =
iλ20
32π2

[
1

ε
+ ln µ

2

p2
−
∫ 1

0
dx ln [−x(1− x)− iε]

]
, (1.55)

where we have defined 1/ε ≡ 1/ε− γE + ln 4π.
We can now perform the integration over the Feynman parameter x:∫ 1

0
dx ln [−x(1− x)− iε] = −iπ + 2

∫ 1

0
dx ln (x+ iε)

= −iπ − 2 +O(ε), (1.56)
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after which we can safely take ε→ 0.
As an aside, we note that this means that M2 has an imaginary part, given by

ImM2 =
λ20
32π

; (1.57)

this is, not coincidentally, equal to (p1 + p2)
2 times the leading-order cross-section for 2 → 2

scattering; this shows an example of the optical theorem [7, p. 231].
Finally, adding together the three NLO diagrams (using the standard Lorentz-invariant

Mandelstam variables s = (p1 + p2)
2, t = (p1 − p3)

2, and u = (p1 − p4)
2 with the leading-order

result, we have to O
(
λ20
)
:

iM = −iλ0 +
iλ20
32π2

[
3

ε
+ 6 + ln µ

2

s
+ ln µ

2

t
+ ln µ

2

u
+ 3iπ

]
+O

(
λ30
)
. (1.58)

We still have a divergence in the limit ε → 0; this is fixed by renormalization, to which we turn
now.

1.2.3 Renormalized perturbation theory

To renormalize this amplitude, we note that the bare parameters of a Lagrangian, such as λ0, are
not directly measurable; they are only determined indirectly, e.g. through cross-sections at particle
accelerators. Therefore, attempting to define a theory in terms of these theoretical parameters is
not very productive; it is much more practical to define it in terms of a few experimentally measured
observables.

In other words, we define the renormalized parameters of the Lagrangian to fit to experiments;
this procedure is what is referred to as renormalization, and if all amplitudes at each given order
in perturbation theory can be made finite by the same finite set of renormalized parameters the
theory is said to be renormalizable. The criteria for renormalizability is related to power-counting
of terms in the Lagrangian, which we used to argue for the Standard Model Lagrangian in Sec. 1.1;
we will see how this works shortly.

To this end, we define the renormalized coupling λ by the experimentally measured value14 for
the amplitude at a given center-of-mass energy

√
s =

√
s0:

λ ≡ −M(s = s0). (1.59)

This is an example of a renormalization condition. We can now express λ0 in terms of this quantity;
assuming that it can be written as a perturbation series in λ, we have

λ0 = λ+ aλ2 +O
(
λ3
)
. (1.60)

Inserting this into Eq. (1.58) for s = s0, we find that

− λ = −
(
λ+ aλ2

)
+

λ2

32π2

[
3

ε
+ 6 + ln µ

2

s0
+ ln µ

2

t
+ ln µ

2

u
+ 3iπ

]
+O

(
λ3
)
, (1.61)

and solving for a yields

λ0 = λ+
λ2

32π2

[
3

ε
+ 6 + ln µ

2

s0
+ ln µ

2

t
+ ln µ

2

u
+ 3iπ

]
+O

(
λ3
)
. (1.62)

14Supposing, for the sake of the example, that this toy model actually describes reality so that such an experiment
actually exists.
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Finally, we insert this into Eq. (1.58) for a general s, to obtain the finite result

M(s) = −λ− λ2

32π2
ln s

s0
+O

(
λ3
)
. (1.63)

Thus we see how renormalizing the coupling in terms of an experimentally measured, finite, result,
gives us finite predictions from loop calculations. Note that for a renormalizable theory, this same
renormalized coupling will also give finite results for other amplitudes at the same order; thus fitting
just one parameter to experiment allows us to calculate a multitude of different quantities. This is
crucial for the predictivity of renormalizable theories.

Though the above procedure — performing the loop calculations with the bare parameters from
the Lagrangian, and then fixing these in terms of measured quantities to get a finite result — is
intuitive, it is not the most practical. Instead, we typically use what is referred to as renormalized
perturbation theory.

In such a theory, all the bare parameters of the Lagrangian, i.e. the fields, masses, and coupling
constants, are related to renormalized ones by multiplicative renormalization constants; for our φ4
example, this would mean setting

φ0 ≡
√
Zφφ, λ0 ≡ Zλλ. (1.64)

Inserting this into Eq. (1.38), the Lagrangian can be written as

L =
1

2
Zφ(∂µφ)

2 − Zφ4
λ

4!
φ4, (1.65)

where we have defined Zφ4 ≡ Z2
φZλ. We can now expand the renormalization constants as

Zφ = 1 + δφ, Zφ4 = 1 + δφ4 , so that

L =
1

2
(∂µφ)

2 − λ

4!
φ4 +

1

2
δφ(∂µφ)

2 −
δφ4

4!
φ4. (1.66)

The first two terms are exactly like the original Lagrangian, but now with renormalized quantities;
the last two are called counterterms. In practice, the factors δφ and δφ4 take the role of the bare
quantities we worked with previously, in that they are arbitrary, non-measurable factors that can
be defined to fit our renormalized parameters to experiment.

When doing calculations in renormalized perturbation theory, we perform the loop calculations
like we did above, but now with renormalized couplings, masses, etc., and add counterterm diagrams
as necessary to remove divergences. The Feynman rules for the counterterm diagrams can be read
off from Eq. (1.66) by considering the counterterms as interaction vertices in perturbation theory:

p p
= ip2δφ, (1.67)

= −iδφ4 . (1.68)

At 1-loop order in renormalized perturbation theory, following the calculations of the previous
sections and including a vertex counterterm diagram, we then have

iM = −iλ+
iλ2

32π2

[
3

ε
+ 6 + ln µ

2

s
+ ln µ

2

t
+ ln µ

2

u
+ 3iπ

]
− iδφ4 +O

(
λ30
)
. (1.69)

The result in Eq. (1.63) can then be obtained by setting the counterterm to

δφ4 =
λ2

32π2

[
3

ε
+ 6 + ln µ

2

s0
+ ln µ

2

t
+ ln µ

2

u
+ 3iπ

]
. (1.70)
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1.2.4 Renormalization schemes

The expression in (1.70) is just one possible choice for the counterterm; as long as it cancels the
divergence in the amplitude, the finite part can in principle be anything we want. How we define
a counterterm defines what renormalization scheme we are using.

The simplest possible choice, though perhaps not the most well-motivated physically, is just
removing the divergence and nothing else; this is called minimal subtraction (MS). The convenience
of this is that we can just remove ultraviolet divergences from matrix element calculations, without
having to do any further calculations to determine the finite part of the counterterm.

In practice, modified minimal subtraction (MS) is more used; in this scheme we set the
counterterm to remove not just the divergence, but the part proportional to

1

ε
≡ 1

ε
− γE + ln 4π, (1.71)

or equivalently remove the pole in ε and rescale µ2 → µ2eγE/4π. For our above φ4 example this
would mean taking

δφ4 =
λ2

32π2
3

ε
. (1.72)

Another possibility, which has a more immediate physical interpretation, is called on-shell
renormalization. We will demonstrate this scheme through an example, namely quantum
electrodynamics (QED), with a bare Lagrangian given by

L = −1

4
Z3(∂µAν − ∂νAν)

2 + Z2ψ(i�∂ − Zmm)ψ − eZ1A
a
µψγ

µψ. (1.73)

Here we have defined Zmm = m0,
√
Z2ψ ≡ ψ0,

√
Z3A ≡ A0, Zee ≡ e0, and Z1 ≡ ZeZ2

√
Z3. All

of the renormalization constants are expanded around 1 by counterterms, exactly like in the φ4
example. In the on-shell scheme, the counterterms are set so that the renormalized parameters
correspond exactly to the physically measured ones.15

This is done by considering the form of the total (i.e. taking into account all possible loop
corrections) 2- and 3-point functions in the theory, as discussed for example in Refs. [6, 7].

The total fermion propagator can be written as

iG(�p) =
i

�p−m+Σ(�p)
, (1.74)

where Σ(�p) is the sum of all possible 1-particle irreducible (1PI)16 loop corrections to the propagator.
In the on-shell scheme we want the renormalized mass m to correspond exactly to the physically
measured mP , called the pole mass. For this to be the case, G(�p) must have a pole at �p = mP with
residue 1; this leads us to the first two on-shell renormalization conditions:

Σ(�p)|�p=mP
= 0, (1.75)

d

d�p
Σ(�p)

∣∣∣∣
�p=mP

= 0. (1.76)

For later use, we specify what this means for massless fermions, with mP = 0, which is
approximately the case in high-energy scattering. In this case the first condition is automatically

15This is not necessarily the case in MS, where for example the renormalized mass of a fermion is shifted from its
physical value by a µ-dependent term.

16Meaning that all internal lines in the diagram have loop momentum running through them.



20 CHAPTER 1. PERTURBATIVE QUANTUM FIELD THEORY

satisfied at all orders; when the fermion is taken to be massless in the Lagrangian, i.e. m = 0, the
Lagrangian is symmetric under the chiral transformation (of the fermion fields)

ψ → eiαγ
5
ψ. (1.77)

This symmetry will also be respected in loops, since the Feynman rules come from the Lagrangian.
Thus a non-zero effective mass term, induced by loop effects, will not appear at any order as it
would violate the chiral symmetry.

We must still set the residue, however; at 1-loop order,

Σ(�p) = Σ2(�p) + �pδ2 +O
(
e4
)
, (1.78)

where Σ2 is the 1-loop correction, so that

δ2 = − d

d�p
Σ2(�p)

∣∣∣∣
�p=0

, (1.79)

in the on-shell scheme.
Similarly, the photon 2-point function is given by

iGµν(p) = −i
(
gµν − pµpν

p2

)
1

p2(1 + Π(p2))
, (1.80)

where Π
(
p2
)

is the sum of 1PI corrections to the function. Here only one condition is needed;
since gauge invariance guarantees that the photon is massless at all orders, we only need to fix the
residue by setting

Π(0) = 0. (1.81)

Lastly we need to fix the charge e; this is done by demanding that the all-order fermion-fermion-
photon vertex, denoted by Γµ(p), satisfy

Γµ(0) = γµ. (1.82)

What this means in practice is that e is defined to correspond to the elementary charge measured
in low-energy experiments, in which we can take the limit p2 → 0.

In our later calculations we will mostly be using MS renormalization, with the exception of
masses; since we will not encounter any propagator corrections at the order to which we are
calculating, it is more convenient to use pole masses rather than their MS versions. This is due to
the fact that the particles appearing in the calculations have (in principle) well-defined pole masses:
All of the incoming quarks are assumed to be massless since the center-of-mass energy is so large —
this refers to the physical pole mass, not MS. Similarly, typical parameter sets for supersymmetric
particles have their masses listed as pole masses. It will therefore be more convenient to consistently
use on-shell masses rather than convert them to their MS values.

1.2.5 The renormalization group

As we alluded to above, couplings and masses in the MS renormalization scheme can depend on the
unphysical parameter µ. Though this might initially seem undesirable, it can actually provide us
with valuable information about how parameters depend on energy, by demanding that observables
be independent of unphysical parameters. The resulting running of renormalized parameters is
described by so-called renormalization group equations (RGEs).
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We can see an example of how this works by returning to our φ4 example. Recall that the bare
coupling was defined in d = 4− 2ε dimensions, to 1-loop order, as

λ0 = µεZλλ = µεZφ4Z
−2
φ λ

= µε
(
1 + δφ4 − 2δφ +O

(
λ4
))
λ. (1.83)

Now, since this is a parameter of the bare Lagrangian, which has no µ dependence, λ0 must be
independent of µ, meaning that µdλ0dµ = 0, or

0 = µ
dλ

dµ
+ ελ+ λµ

d

dµ

(
δφ4
)
. (1.84)

Note that the δφ term has been dropped; this is due to the fact that at 1-loop level the only
correction to the propagator, which would lead to a non-zero counterterm, is given by a scaleless
integral

∫
d4k/k2. This integral vanishes in dimensional regularization; thus δφ = 0 to 1-loop order.

We can now solve Eq. (1.84) for the φ4 β-function, defined as

β(λ) ≡ µ
dλ

dµ
(1.85)

= −ελ− λµ
d

dµ

(
δφ4
)
. (1.86)

We calculate this expression perturbatively in λ. At the lowest order, β(λ) = −ελ; we then use the
chain rule to find

µ
d

dµ
δφ4 = β(λ)

d

dλ
δφ4 = − 3λ

16π2
+O(ε), (1.87)

where we inserted Eq. (1.70) and our leading-order β-function. Re-inserting this into Eq. (1.86),
now taking the limit ε→ 0, we find

β(λ) =
3λ2

16π2
+O

(
λ3
)
. (1.88)

Solving this equation, we find the RG running of λ, given by

λ(µ) = − 1
3

16π2 ln µ
Λ

, (1.89)

where Λ is an integration constant. If we assume that λ has been measured at some scale so that
λ(µ0) is known, this can alternatively be written as

λ(µ) =
λ(µ0)

1− 3λ(µ0)
16π2 ln µ

µ0

. (1.90)

We observe that λ increases with momentum, and conversely decreases for low energies; such
theories are called infrared free.

The usefulness of this expression is seen by inserting it into Eq. (1.39) in place of λ0; expanding
in λ(µ0) we find

iM = −iλ(µ0) = −iλ(µ0)− i
3λ2(µ0)

32π2
ln µ

2

µ20
+O

(
λ(µ0)

3
)

. (1.91)

This is exactly our renormalized 1-loop expression in Eq. (1.63), setting µ2 = s, µ20 = s0, and
λ(µ0) = λ, but it also automatically includes contributions to all orders in λ. We could also have
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obtained this result by summing up an infinite series of diagrams with an arbitrary number of
copies of the loop in Fig. 1.1b;17 instead we have found it from just a 1-loop calculation and the
renormalization group.

Since we had to set µ2 = s in order to reproduce our earlier result, this suggests that we should
in general keep the arbitrary scale µ around the relevant energy scale of the process. µ is often
referred to as the renormalization scale, as it serves as a proxy for the scale at which the theory is
renormalized.

From Eq. (1.89), we see a potential problem: At very high energy scales, µ = Λ, the coupling
blows up, and above this scale perturbation theory breaks down. Such a point is called a Landau
pole, and is common in quantum field theories. Another example is the running of the fine-structure
constant α = e2/4π in QED [6]:

α(µ) =
2π

β0 ln µ
ΛQED

=
α(mZ)

1− α(mZ)
3π ln µ2

m2
Z

, (1.92)

with β0 = −4
3 , and α(mZ)

−1 = 127.94 [19]. The fact that QED, one of the most precisely
and successfully tested theories in physics, breaks down at high energies (specifically at ΛQED ≈
10286 eV) is not as troublesome as it seems; it does mean that QED is not a complete theory, in that
it cannot describe all of physics, but this is not surprising. Quantum field theory is already expected
to break down at the Planck scale, where quantum gravity effects would become significant, and
this scale is far below the Landau pole of QED.

Instead, it suggests that we look at quantum field theory and the Standard Model as an effective
field theory, where some high-energy degrees of freedom have been integrated out. Such theories can
be very useful at their appropriate energy scales, like the 4-Fermi theory of weak interactions, where
the weak bosons can be integrated out for energies far below their masses; or even the theory of
weak interactions, where whatever mechanism causes spontaneous electroweak symmetry breaking
is not observed at our energy scales.

The above manipulations with counterterm is just one way of obtaining the RG running of
parameters; another possibility is by the Callan-Symanzik [20,21] equation.

This equation can be derived fairly easily, by considering Green’s functions; as an example,
we take a Green’s function in massless φ4 theory with n external particles. The bare Green’s
function (written in terms of bare fields) can be related to the renormalized one (written in terms
of renormalized fields) as

G0
n = 〈φ0(x1) · · ·φ0(xn)〉 = Z

n
2
φ 〈φ(x1) · · ·φ(xn)〉 = Z

n
2
φ Gn. (1.93)

Since the bare Green’s function is written in terms of bare fields it must be independent of µ,
meaning that

0 = µ
d

dµ
G0
n = µ

d

dµ

(
Z

n
2
φ Gn

)
. (1.94)

The renormalized Green’s function can depend on µ both directly and through the coupling λ;
using the chain rule we find (

µ
∂

∂µ
+
n

2
γφ + β(λ)

∂

∂λ

)
Gn = 0, (1.95)

where γφ ≡ µ
Zφ

dZφ

dµ is called the anomalous dimension of the theory. This equation is what is
referred to as the Callan-Symanzik equation; it allows us to calculate the running coupling and
anomalous dimension by considering the dependence of n-point functions upon the scale µ and the
coupling λ.

17This is an example of resummation, which will be discussed more later.
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1.2.6 Renormalizability

In order for a theory to be predictive, it is significant that the above renormalization can be
performed using a finite number of counterterms. If this is the case, we can define the counterterms
by fitting a few calculations to experiments, and use these to make predictions for any other process
in the theory.

In general, there are three different categorizations for renormalizability [7]:

• In a renormalizable theory there is a finite number of UV-divergent amplitudes at any
given order in perturbation theory, coming from 1-particle irreducible diagrams; thus all
UV divergences at any order can be removed with counterterms corresponding to this finite
number of amplitudes.

• In a super-renormalizable theory there is a finite number of UV-divergent diagrams; at
sufficiently high order in perturbation theory we do not need any counterterms, as there
are no UV divergences.

• In a non-renormalizable theory, all amplitudes at sufficiently high order in perturbation theory
diverge. This means that to remove all divergences, we in principle need an infinite number
of counterterms.

Note that this does not necessarily mean that non-renormalizable theories are useless, nor that
super-renormalizable theories are more useful than just renormalizable ones; the infinite number
of divergences in non-renormalizable theories are typically proportional to polynomials in external
momenta, so in the low-energy limit most can be discarded, making the theory perfectly valid in
these regions. Similarly, super-renormalizable theories can be useful in the high-energy regime, but
may not have a sensible low-energy limit.

The degree of renormalizability can largely be determined by power-counting. To see this, we
consider a quantity called the superficial degree of (ultraviolet) divergence D, which essentially just
describes the mass dimension of a matrix element M; using a high-energy cutoff Λ to regulate loop
integrals, we expect M ∼ ΛD for D 6= 0, and M ∼ lnΛ for D = 0.

Note that this behavior is not always the case, hence the prefix “superficial;” there may
be certain symmetries restricting the form of loop corrections, which can reduce the degree of
divergence of a diagram, or even make it finite. An example is the fermion two-point function.
By simple power-counting it should be linearly divergent, i.e. proportional to Λ; but from the
arguments in Sec. 1.2.4 it must actually be proportional to the (renormalized) fermion mass mf

since mf = 0 in the Lagrangian ensures that there are no loop corrections to the mass. Thus by
power counting, the two-point function can at worst be logarithmically divergent.

If at any given order in perturbation theory there is a finite number of 1PI amplitudes with
D ≥ 0, the theory is renormalizable; this is due to the BPHZ theorem [22–24], which states that
all divergences can be removed by counterterms corresponding to these 1PI amplitudes.

To see how the superficial degree of divergence relates to the mass dimension of couplings, we
consider a completely general theory of fermions and bosons (either vectors or scalars; this makes
no difference to the dimensional analysis), with an interaction term combining nf fermions and
nb bosons. By dimensional analysis, now assuming spacetime dimension d = 4 for simplicity, the
coupling constant g must satisfy [g] = 4 − 3

2nf − nb ≡ δ since fermions and bosons have mass
dimensions 3

2 and 1, respectively.
For a general 1PI amplitude with L loop integrals, Pf internal fermion lines, Pb internal bosons,

and n interaction vertices, D is given by

D = 4L− Pf − 2Pb, (1.96)
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since each loop requires a 4-dimensional loop integral with measure d4k, and fermion and boson
propagators are given by ∼ i/�k and ∼ i/k2, respectively. This can be simplified; a priori all
propagator momenta must be integrated over, but each vertex contains a momentum-conserving
delta function which removes one integral. One delta function merely assures that the total
momentum is conserved; thus we have

L = Pf + Pb − n+ 1. (1.97)

Further, since each vertex connects nf fermions and nb bosons, the number of vertices can be
expressed as

n =
1

nb
(2Pb + b) =

1

nf
(2Pf + f), (1.98)

where b and f are the number of external boson and fermion lines, respectively (internal lines are
connected to two vertices while external ones are connected to one). This can be combined to give

D = 4− 3

2
f − b− nδ. (1.99)

We can now connect the dimension of the coupling δ to the degree of renormalizablility: For a
renormalizable theory there is a finite number of divergent 1PI diagrams at each order, i.e. for any
n above. From Eq. (1.99) this is only possible when δ = 0. For a super-renormalizable theory, at
sufficiently high orders, i.e. sufficiently high n, there are no UV divergences; this is achieved with
δ > 0. For non-renormalizable theories all diagrams diverge at sufficiently high orders; this means
that δ < 0.

This allows us to categorize renormalizability in a second way:

• In a renormalizable theory, no couplings have negative mass dimension, and at least one
coupling has mass dimension zero.

• In a super-renormalizable theory, all couplings have positive mass dimensions.

• In a non-renormalizable theory, at least one coupling has negative mass dimension.

This explains why we restrict ourselves to Lagrangian terms with couplings of non-negative mass
dimensions for renormalizable theories.

1.2.7 Infrared divergences

So far we have mainly concerned ourselves with ultraviolet divergences, which can be removed in
the renormalization of the theory. Other divergences can appear too, however, which must be dealt
with differently; these are referred to as infrared divergences, as they occur in the low-energy part
of momentum integrals.

For ultraviolet divergences, we were able to exploit the fact that even though an amplitude
might contain a divergence, the difference between amplitudes at different scales is finite; thus we
could define our theory by fitting to a measurement at some scale µ0 and get finite results at other
scales by using µ0 as a reference point.

This is closely related to the fact that UV divergences show up as simple poles in ε; when using
a UV cutoff ΛUV these correspond to terms proportional to ln

(
Λ2

UV/p
2
)
, for some momentum scale

p, which can be easily removed by subtracting the result at another scale p1.
For infrared divergences, this is different. As we will see explicitly in Sec. 4.3, when setting

d = 4− 2εIR, where now εIR < 0 to keep d > 4,18 we also get double poles of the form 1/ε2IR, which
18Recall that, as we discussed earlier, IR divergent terms typically behave like 1/Λ4−d

IR , where ΛIR is a low-energy
cutoff; thus such terms are regulated by setting d > 4.
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correspond, when using an infrared cutoff, to terms proportional to ln2
(
Λ2

IR/Q
2
)
; these cannot be

removed by a simple subtraction.

Instead, these divergences must be removed by appealing to the nature of the experiments in
which our predictions would be tested. Observationally, there is no way to distinguish the case of
two high-energy final-state particles, from that of two high-energy particles and one that either has
very low energy or momentum very close to one of the other particles. Thus we can only expect
sensible predictions when we sum over all possible processes that contribute to the same observed
state at each order in perturbation theory. If we do not include all such processes, our result will
contain soft and/or collinear divergences, corresponding respectively to the two aforementioned
cases where a 3-particle state is indistinguishable from a 2-particle one.

In practice this means that a theoretical 2 → 2 scattering cross-section, in order to get an
infrared finite result, must also include the calculation of a 2 → 3 cross-section at the same order.
Exactly how this is done depends on what result we actually want: If we insist on calculating the
production cross-section for only two particles, we include the 3-particle final state only in the case
where it is indistinguishable from 2 particles; this is done by cutoffs in the energy of the third
emitted particle, or its angle to the other two, at the experimental resolution. In this way the
theoretical resolution effectively works as an infrared cutoff.

Another possibility is including all processes that include the production of our desired 2-particle
pair, alongside any arbitrary set of other particles; the resulting cross-section is called the inclusive
cross-section. This is often easier but can be just as useful, in particular when searching for new
physics; if we are looking for a process in which a pair of new particles are produced, it makes sense
to include all possible such processes. This is especially the case at hadron colliders, where any
observed final state can include a potentially large number of jets (see Chapter 3), and “filtering”
these out of calculations can be impractical.

1.3 Systematics of loop integrals with Passarino-Veltman reduc-
tion

In Sec. 1.2.2 we showed how a loop integral can be calculated using dimensional regularization.
Performing the loop integration explicitly for each diagram contributing to an amplitude can be
cumbersome, especially when the propagating particles are massive, since the dependence on various
scales then quickly becomes more complicated than our previous calculation.

Luckily, the form that these integrals can take turns out to be restricted by Lorentz invariance.
In fact, at 1-loop level, all such integrals can be reduced, by a procedure called Passarino-Veltman
reduction, to functions of scalar 1-loop n-point functions [25], which are simpler to calculate, and
more importantly, do not have to be calculated explicitly for each diagram. These scalar functions
are in turn restricted to only depend on external momenta and the masses of the particles in the
loop.
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Up to 3-point functions, they are given by (in d = 4− 2ε dimensions)

A0

(
m2
)
≡ (4π)

d
2µ4−d

irΓ

∫
ddk

(2π)d
1

k2 −m2
, (1.100)

B0

(
p2,m2

1,m
2
2

)
≡ (4π)

d
2µ4−d

irΓ

∫
ddk

(2π)d
1(

k2 −m2
1

)(
(k + p)2 −m2

2

) , (1.101)

C0

(
p21, p

2
2, (p1 + p2)

2,m2
1,m

2
2,m

2
3

)
≡ (4π)

d
2µ4−d

irΓ

∫
ddk

(2π)d

× 1(
k2 −m2

1

)(
(k + p1)

2 −m2
2

)(
(k + p1 + p2)

2 −m2
3

) ,

(1.102)

following the LoopTools [26,27] conventions for the normalization and the definitions of momenta,
all of which are defined to run into the loop. The factor rΓ is defined as

rΓ ≡ Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
. (1.103)

A generic loop integral of the type we will consider in this thesis, appearing in a Yang-Mills
n-point function with n ∈ {2, 3}, can also have up to 2 factors of kµ in its numerator, originating
from fermion propagators.19 Otherwise these are identical to the scalar functions listed above, and
they are denoted by Bµ, Bµν , Cµ, and Cµν .

The aim is now to express these tensor integrals as functions of the scalar ones. This is done by
exploiting the Lorentz structure of the integrals; since they are (rank 1 or 2) tensors, the result of
the integrals must also be written as a linear combination of symmetric (since kµkν is symmetric)
tensors with the same rank, with scalar coefficients. The list of such tensors is short; since kµ is
integrated over, the only available ones are products of the external momenta and the metric gµν .
Explicitly, again following the momentum conventions of LoopTools where qn ≡

∑n
i=1 pi in the

three-point functions, the integrals can be parametrized as

Bµ = pµB1, (1.104)
Bµν = gµνB00 + pµpνB11, (1.105)
Cµ = qµ1C1 + qµ2C2, (1.106)
Cµν = gµνC00 + qµ1 q

ν
1C11 + qµ2 q

ν
2C22 + (qµ1 q

ν
2 + qµ2 q

ν
1 )C12, (1.107)

suppressing the arguments of the scalar coefficient functions. The “Passarino-Veltman coefficients”
B1, Bij , Ci, and Cij are (a priori) unknown functions of the same scalars as their corresponding
integrals, namely masses and dot products of external momenta. By contracting both sides of these
equations with the available tensors we obtain linear systems of equations, the left-hand sides of
which can be reduced to functions of the known scalar functions A0, B0, and C0, making it possible
to solve for the unknown functions in terms of the known ones.

19In general a 1-loop n-point diagram can have up to n internal fermion lines, but a diagram with a three-fermion
loop would need to have at least three external gauge bosons, and we will not need to consider such diagrams here.
Note also that this is not the case for the 1-point function, as the integral of kµ/

(
k2 −m2

)
would be zero by symmetry,

so A0 is the most general 1-point function that can appear.
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As a simple example, we contract both sides of Eq. (1.104) with pµ. This leaves pµBµ = p2B1,
where

pµB
µ =

(4π)
d
2µ4−d

irΓ

∫
ddk

(2π)d
p · k(

k2 −m2
1

)(
(k + p)2 −m2

2

) . (1.108)

Now we can rewrite the numerator of this expression, using

p · k =
1

2

[(
(k + p)2 −m2

2

)
−
(
k2 −m2

1

)
−
(
p2 +m2

1 −m2
2

)]
. (1.109)

The first two terms then each cancel one factor in the denominator, leaving just A0 integrals, while
the third can be factored out, leaving a B0 integral. This allows us to solve for B1, obtaining (now
explicitly stating the arguments for clarity)

B1

(
p2,m2

1,m
2
2

)
=

1

2p2
[
A0

(
m2

1

)
−A0

(
m2

2

)
−
(
p2 +m2

1 −m2
2

)
B0

(
p2,m2

1,m
2
2

)]
. (1.110)

The same procedure similarly leads to expressions for the remaining functions in terms of the
scalar integrals. We will not do this explicitly here; the important point is that this procedure allows
us to express potentially complicated tensor integrals as combinations of external tensors, with
coefficients that can in turn be expressed in terms of (reasonably) simple scalar integrals, which have
been extensively studied [28]. These integrals, and functions thereof, e.g. the Passarino-Veltman
coefficients, can be calculated efficiently in numerical packages such as LoopTools [26, 27]; thus,
we will content ourselves with expressing 1-loop contributions to cross-sections etc. as functions of
these Passarino-Veltman coefficients.
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Chapter 2

Supersymmetry

In this chapter we present the Minimal Supersymmetric Standard Model (MSSM) as a possible
extension to the Standard Model, and discuss its predictions and how these may be tested
experimentally.

First we discuss the basic idea behind supersymmetry as an extension to the Poincaré symmetry
group of the special theory of relativity. We will see that it is possible to postulate a symmetry
between fermionic and bosonic degrees of freedom, and that the representations of this symmetry
group can be expressed as so-called superfields.

Next, we use these superfields to construct a Lagrangian. Here we use the previous discussion
of the Standard Model as a reference for what fields must be included and how the Lagrangian
must be constructed; the minimal model (in terms of the number of superfields) that fulfills these
conditions is the MSSM.

We finish the chapter by discussing the properties of the model; both how it can potentially solve
some of the unanswered questions of the Standard Model, as we mentioned in the introduction,
and the new particles it predicts. We focus in particular on sleptons, the scalar partners to the
Standard Model leptons, and experiments relevant for their potential discovery. Such particles
could in theory be produced at particle colliders such as the Large Hadron Collider (LHC) or
electron-positron colliders; we will look at the mechanism for production at such colliders, what
signatures one might expect in experiments depending on the parameters of the MSSM, and which
observables must be calculated theoretically to compare to experiment.

2.1 Superfields

2.1.1 Super-Poincaré algebra

The Special Theory of Relativity is largely based on invariance of physics under coordinate
transformations between arbitrary inertial frames, as described by the Poincaré group P . These
transformations can in general be written as

xµ → x′µ = Λµνx
ν + aµ, (2.1)

where Λ is any 4 × 4 matrix satisfying ΛT gΛ = g, g being the metric tensor in Minkowski space,
and aµ is an arbitrary 4-vector. Note that the Poincaré group P can be expressed as a semi-direct
product of the Lorentz group L = O(1, 3), describing the matrices Λ, and the translation group
T (1, 3) in 4-dimensional Minkowski space, so that

P = O(1, 3)o T (1, 3). (2.2)

29
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Restricting ourselves to the proper orthochronous Poincaré group SO+(1, 3), where detΛ = +1 and
Λ0

0 ≥ +1,1 the Poincaré Lie algebra is described by the relations [29]

[Mµν ,Mρσ] = −i(gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ), (2.3a)
[Mµν , Pρ] = −i(gµρPν − gνρPµ), (2.3b)
[Pµ, Pν ] = 0, (2.3c)

where Mµν = −Mνµ and Pµ = −i∂µ are the generators of the (proper orthochronous) Lorentz
group and the translation group, respectively.

So far we have only discussed the coordinate symmetries of special relativity. What we would
ideally want now is to extend this symmetry group to also include the internal symmetries of the
Standard Model, namely the gauge groups discussed in Sec. 1.1.1. Unfortunately, per Coleman and
Mandula [30], any such extended symmetry group would be isomorphic to the direct product of
the gauge groups and the Poincaré group; in other words there can be no interaction between the
two groups, making the construction rather unhelpful.

Instead, following Haag, Lopuszanski, and Sohnius [31], we construct a superalgebra. A
superalgebra, or a graded Lie algebra, is a direct sum of two vector spaces2 L = L0 ⊕ L1, defined
along with a product ◦ : L× L→ L, such that for all xi, yi, zi ∈ Li, i = 0, 1, we have:

• Grading:

xi ◦ yj ∈ Li+j mod 2. (2.4)

• Supersymmetrization:

xi ◦ yj = −(−1)ijyj ◦ xi. (2.5)

• Generalized Jacobi identity:

xk ◦ (yl ◦ zm)(−1)km + yl ◦ (zm ◦ xk)(−1)lk + zm ◦ (xk ◦ yl)(−1)ml = 0. (2.6)

In this way, L is a generalized Lie algebra, where some of the elements are given anticommutation
relations instead of commutation relations, as determined by Eq. (2.5). For this reason these Z2

graded Lie algebras, wherein we combine only two vector spaces, cannot be used to combine the
Poincaré algebra with the gauge groups, as both of these are defined with commutation relations.3
However, these constructions are still interesting in their own right, as we shall see.

With these definitions, we can define the super-Poincaré algebra by extending Eq. (2.3) with
four generators Qa; together these form a Majorana spinor, which can also be described by two-
component Weyl spinors QA and QȦ (left-handed and right-handed, respectively). In terms of these
Weyl spinors, the super-Poincaré algebra is defined by the Poincaré algebra with the additional

1This excludes time and space inversions, leaving only continuous transformations. The other parts of the group
can be accessed by performing these inversions.

2This is for the case of a so-called Z2 graded Lie algebra; it is possible to add more vector spaces.
3If we allow for more than two vector spaces to be combined, i.e. by adding two vector spaces to the Poincaré

generators, it is possible for one of the new sets of generators to be defined with commutation relations. In this way
one can potentially combine the Lie algebra with gauge groups, along with another set of generators.
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relations [29]

{QA, QB} = 0, (2.7a){
QȦ, QḂ

}
= 0, (2.7b){

QA, QḂ
}
= 2(σµ)AḂPµ, (2.7c)

[QA,M
µν ] = (σµν) B

A QB, (2.7d)
[QA, Pµ] = 0, (2.7e)[
QȦ, Pµ

]
= 0, (2.7f)

where σi = −σi are the Pauli matrices, σ0 = σ0 = 12×2, and σµν ≡ i
4(σ

µσν − σνσµ). In this
definition the original Poincaré generators correspond to the L0 vector field as described above,
while the new Weyl spinor generators make up L1. The product ◦ describes the commutator or
anti-commutator, determined by Eq. (2.5).

With this, we can parametrize a general supersymmetry transformation, under the super-
Poincaré group, as an exponential map given by

g = exp
[
iaµPµ + iαAQA + iαȦQ

Ȧ
+
i

2
ωρσM

ρσ

]
. (2.8)

Here aµ and ωρσ = −ωσρ are the parameters of regular Poincaré transformations, while αA

and αȦ are anticommuting Grassmann numbers. Note that contractions with Weyl spinors and
anticommuting numbers such as these are defined as

ψχ = ψAχA = εABψ
AχB = ψ2χ1 − ψ1χ2, (2.9a)

ψχ = ψȦχ
Ȧ = εȦḂψȦχḂ = ψ1̇χ2̇ − ψ2̇χ1̇. (2.9b)

By acting on a function f
(
xµ, θA, θȦ

)
we can express the new super-Poincaré generators

explicitly as [29]

QA = −i
(
∂A − i

(
σµθ

)
A
∂µ
)
, (2.10)

Q
Ȧ
= −i

(
∂
Ȧ − i(σµθ)Ȧ∂µ

)
, (2.11)

where the Grassmann derivatives are defined as ∂A ≡ ∂
∂θA

, ∂Ȧ ≡ ∂
∂θȦ

.

2.1.2 Representations

Having developed the supersymmetric extension to the Poincaré algebra, we can now define objects
that transform under the operations belonging to the corresponding group. These are called
superfields, and are generic functions of the four-vector xµ and the sets of Grassmann numbers
θA and θȦ, A, Ȧ ∈ {0, 1}.

The general form of a superfield is actually rather straightforward to write down; since
Grassmann numbers anticommute, the highest powers that can appear in any function are, following
Eq. (2.9), θθ ≡ θAθA = −2θ1θ2 and θθ ≡ θȦθ

Ȧ
= 2θ1̇θ2̇. Thus we can write a generic superfield as

a power series expansion in θ and θ, including powers up to just two of each of them.
In total, there are then 9 possible terms. The coefficient of each term is a complex function of xµ,

called a component field; its transformation properties under the Lorentz group can be deduced by
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demanding that the superfield transform as a scalar or pseudoscalar under Lorentz transformations.
Thus we can write down a generic superfield Φ

(
x, θ, θ

)
as

Φ
(
x, θ, θ

)
=f(x) + θAφA(x) + θȦχ

Ȧ(x) + (θθ)m(x) +
(
θθ
)
n(x)

+
(
θσµθ

)
Vµ(x) + (θθ)θȦλ

Ȧ
(x) +

(
θθ
)
θAψA(x) + (θθ)

(
θθ
)
d(x), (2.12)

where the various component fields transform under Lorentz transformations as:

f(x),m(x), n(x): Scalars or pseudo-scalars,
ψA(x), φA(x): Left-handed Weyl spinors,

χȦ(x), λ
Ȧ
(x): Right-handed Weyl spinors,

Vµ(x): Four-vector,
d(x): Scalar.

The specific properties of a superfield are determined by the representation of the super-Poincaré
algebra in which it transforms. It can be shown that any irreducible representation of the super-
algebra can be labeled by two numbers: m2 ∈ R, corresponding to mass, and j, a generalized spin
quantum number. We will concern ourselves with the representations with j = 0, called scalar
superfields, and j = 1

2 , called vector superfields.4
To see the physical relevance of these representations, we can construct so-called Clifford vacua

|Ω〉 that satisfy QA|Ω〉 = 0. Acting on these states with Q
1̇ and/or Q2̇ one can construct three

additional states with the same m2, j quantum numbers, but potentially with different spins.
Specifically, it can be shown [29] that the j = 0 representation contains two scalar (spin-0) and two
fermion (spin-12) states; while the j = 1

2 representation contains four fermion states, three vector
(spin-1) states, and one scalar state.

In general, each representation of the super-algebra contains an equal number of fermionic
and bosonic states, all with the same mass m; thus we see that extending the Poincaré algebra
as we have done here imposes an additional symmetry between bosonic and fermionic degrees of
freedom. In practice this means that when we construct a supersymmetric theory that is supposed
to include the established Standard Model, each Standard Model particle will obtain at least one
supersymmetric partner particle (“sparticle”), with opposite statistics.

We now return to Eq. (2.12), to try to recover these representations in superfield form; these
superfields will later be used to construct a supersymmetric Lagrangian. The scalar superfields
can be constructed by imposing DȦΦ

(
x, θ, θ

)
= 0 for left-handed scalar superfields Φ, and

DAΦ
†(x, θ, θ) = 0 for right-handed superfields Φ†. Here DA and DȦ are covariant derivatives,

defined so that they commute with supersymmetry transformations (analogously to how gauge
covariant derivatives commute with gauge transformations, as discussed in Sec. 1.1.2); explicitly [29]

DA ≡ ∂A + i
(
σµθ

)
A
∂µ, (2.13)

DȦ ≡ −∂Ȧ − i(θσµ)Ȧ∂µ. (2.14)

Through a variable transformation it can be shown that the only allowed component fields in a
left-handed scalar superfield are those that do not multiply any powers of θ in Eq. (2.12). Following
standard conventions these are given slightly different names from those we have used so far; the
possible component fields are denoted by A(x) ≡ f(x) and F (x) ≡ m(x), which are complex scalars,
and ψA(x) ≡ φA(x), a left-handed complex Weyl spinor. Applying the Euler-Lagrange equations of

4The reason for these names will be made clearer shortly.
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motion, we can cancel unphysical degrees of freedom,5 leaving two fermionic and two scalar degrees
of freedom. Thus as desired, the scalar superfield corresponds to the j = 0 representation of the
super-Poincaré algebra.

Similarly, right-handed scalar superfields contain two complex scalars and a complex right-
handed Weyl spinor, which after equations of motion reduce to the same number of degrees of
freedom as in the left-handed case.

The j = 1
2 representation is recovered in two steps. First we define a vector superfield Φ by

Φ = Φ†; from Eq. (2.12) this implies

f(x), d(x), Vµ(x) ∈ R, (2.15)
n(x) = m∗(x), (2.16)

χȦ(x) = φ
Ȧ
(x), (2.17)

λ
Ȧ
(x) = ψ

Ȧ
(x). (2.18)

This still leaves us with too many degrees of freedom compared to the j = 1
2 representation as

discussed above. This is actually analogous to the situation for vector fields in gauge theories,
where due to gauge invariance the vector fields have unphysical degrees of freedom; these can be
integrated out, when quantizing the theory, by making a choice of gauge.

The solution here is similar; by defining supergauge transformations on the superfields, which
we will discuss in Sec. 2.2.2, we recover the physical degrees of freedom corresponding to the j = 1

2
representation in what is called Wess-Zumino gauge. After applying equations of motion this
further reduces the degrees of freedom to two (massless) vector and two fermion degrees of freedom
corresponding to a left-handed Weyl spinor λ and its right-handed conjugate λ.

2.2 Minimal Supersymmetric Standard Model

Now that we have briefly explained the theoretical background for the super-Poincaré algebra and
how its representations can be expressed as superfields, we can go about constructing a Lagrangian
consisting of these superfields. We have two basic criteria for this model: It must contain at least
all of the established Standard Model, as it is supposed to be an extension thereof; and it must
contain terms that break supersymmetry.

The latter may seem counterproductive; we are after all trying to construct a supersymmetric
theory, so having to break supersymmetry in the same theory appears to rather defeat the purpose.
However, if supersymmetry were not broken, from the discussion in Sec. 2.1.2 all of the new
supersymmetric particles would be mass-degenerate to their Standard Model counterparts;6 from
experiment this is clearly not the case, so supersymmetry must be broken at our energy scales.
This logic is similar to that of electroweak theory, where the theory is based on gauge invariance,
but that invariance is broken at our energy scales.

We will discuss the breaking of supersymmetry at the end of this section; first, we will construct
a supersymmetric extension to the Standard Model by following the same logic as in Sec. 1.1.

5This includes the entire F field; having no derivatives it is a so-called auxiliary field, for which we can solve in
terms of other, physical degrees of freedom.

6Since each representation is labeled by the number j and a single mass m.
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2.2.1 Supersymmetric Lagrangians

The action in a supersymmetric theory is defined as

S ≡
∫
d4x

∫
d4θL, (2.19)

where the Grassmann volume element is defined as [29]

d4θ ≡ d2θd2θ, (2.20)

d2θ ≡ −1

4
dθAdθA, (2.21)

d2θ ≡ −1

4
dθȦdθ

Ȧ, (2.22)

so that
∫
d4θ(θθ)

(
θθ
)
≡ 1, and all lesser powers of θ vanish under the integration.

With these definitions only the highest-order terms in the Lagrangian survive the integration
over the Grassmann coordinates. This is important for the action to remain invariant under
supersymmetry transformations; for a vector superfield the θθθθ component changes by a total
derivative ∼ ∂µf

µ(x), which vanishes under integration, keeping S unchanged. Similarly, for a
scalar superfield the θθ component (θθ in the case of a right-handed superfield) has this property.
The other component fields do not in general transform in this way; thus we must take care to only
project out the highest order terms in a supersymmetric action.

Notice here that this gives supersymmetric Lagrangians a different mass dimension from
“regular” ones; from Eq. (2.7c),

[
QA
]
= 1

2 [P
µ] = 1

2 , and then from Eq. (2.8) we have
[
θA
]
=

−
[
QA
]
= −1

2 and [dθ] = 1
2 . The overall dimension of the integrals in Eq. (2.19) is therefore −2.

Thus, to keep the action dimensionless, we must have [L] = 2.
This means that to keep the mass dimensions of couplings non-negative, and hence the

Lagrangian renormalizable, the Lagrangian can at most have operators of mass dimension 2.
Furthermore, as we noted above we must project out only the highest-order component fields
of scalar or vector superfields to keep the action supersymmetry-invariant. To do this, each term
in the Lagrangian must actually transform like one of these types of field. Thus in a Lagrangian
constructed out of scalar superfields, we can only include terms of the form Φ†

iΦi, which are vector
superfields, or products of scalar superfields of the same handedness, which are also scalar superfields
of that same handedness.

Then, taking into account that the action must be real and that scalar superfields have mass
dimension 1,7 the most general renormalizable and supersymmetric Lagrangian written solely in
terms of a set of scalar superfields Φi

(
x, θ, θ

)
is

L = Φ†
iΦi + θθW

[
Φ
]
+ θθW †[Φ†], (2.23)

where the superpotential W [Φ], by renormalizability, can be written as

W [Φ] = giΦi +mijΦiΦj + λijkΦiΦjΦk. (2.24)

The first term in Eq. (2.23) is referred to as the kinetic term.

7This can be seen from the first term in Eq. (2.12), since scalar fields have mass dimension 1.
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2.2.2 Supergauge invariance

To make a supersymmetric extension of the Standard Model, we need to define the supersymmetric
equivalent to gauge transformations. These are referred to as supergauge transformations. We will
discuss the non-Abelian case here; the Abelian case, as in Sec. 1.1.2, can be obtained easily from
this.

A non-Abelian supergauge transformation on a multiplet (left-handed) scalar superfield Φ, for
a gauge group with generators T a, is defined by [32]

Φ → Φ′ = e−igT
aΛa

Φ, (2.25)

where Λa, in order for Φ′ to remain a left-handed scalar superfield, must themselves be left-handed
scalar superfields. Defining Λ ≡ gΛaT a, the kinetic term in Eq. (2.23) transforms as

Φ†Φ → Φ†eiΛ
†
e−iΛΦ. (2.26)

We make this gauge invariant similarly to regular gauge theories; we replace the kinetic term by
Φ†eVΦ, with V = gV aT a; here V a are vector superfields, which must transform as

eV → e−iΛ
†
eVeiΛ. (2.27)

Like in the Standard Model Lagrangian, see Eq. (1.29), we can also add a field strength term that
is both gauge and supersymmetry invariant, as well as renormalizable; we define the supersymmetric
field strength as

WA ≡ −1

4
DD

(
e−VDAe

V), (2.28a)

W
Ȧ ≡ −1

4
DD

(
e−VD

Ȧ
eV). (2.28b)

These can be shown to be left-handed and right-handed scalar superfields, respectively, in that
D
Ȧ
WA = 0 and DAW

Ȧ
= 0.

The construction to create supergauge invariant Lagrangian terms out of these field strengths
is similar to in Yang-Mills theory; depending on the representation R of the group generators T a,
we can add

Lg = − 1

4T (R)g2
θθtr

(
WAWA

)
− 1

4T (R)g2
θθtr

(
W ȦW

Ȧ), (2.29)

to the Lagrangian, with tr
(
T aT b

)
= T (R)δab.

2.2.3 Minimal field content

We now have all of the theoretical pieces necessary to construct a supersymmetric extension to
the Standard Model (so far we assume the model to be exactly supersymmetric; the breaking of
supersymmetry will be discussed in Sec. 2.2.5). First we must consider what superfields to include
in the Lagrangian; in order for the number of predicted new particles to stay as low as possible, we
will only include the bare minimum number of fields needed to contain all of the Standard Model
fields discussed in Sec. 1.1.4. The model that follows from this principle is called the Minimal
Supersymmetric Standard Model (MSSM).

Recall from Sec. 2.1.2 that a scalar superfields contains (excluding auxiliary fields) one Weyl
spinor and one complex scalar. Thus for each Standard Model Dirac fermion8 we need one left-
handed scalar superfield and a different right-handed one. For each of these fields we also get a
scalar particle/antiparticle pair.

8With left- and right-handed chiralities summed over; ψ = ψL + ψR, ψR/L = 1
2

(
1± γ5

)
ψ.
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Table 2.1: Charges of the MSSM left-handed scalar superfields. The SU(2)L singlets have opposite
hypercharges from those listed in Tab. 1.1; this is due to the fact the right-handed spinors listed
there are obtained from the conjugate of the left-handed superfields in this table. As before, F
means that the field transforms in the fundamental representation of a group.

Field Li `i Qi ui di Hu Hd

SU(3)C 0 0 F F F 0 0
SU(2)L F 0 F 0 0 F F
U(1)Y −1

2 1 1
6 −2

3
1
3

1
2 −1

2

These superfields are organized exactly like in the Standard Model case; left-handed superfields
are arranged into SU(2)L doublets given by

Li =

{(
νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

)}
, Qi =

{(
u
d

)
,

(
c
s

)
,

(
t
b

)}
. (2.30)

The right-handed superfields are SU(2)L singlets, given by

`
†
i =

{
e†, µ†, τ †

}
, u†i =

{
u†, c†, t

†
}
, d

†
i =

{
d
†
, s†, b

†
}

, (2.31)

where `i, ui, and di are left-handed superfields, with opposite hypercharges from those listed for
the right-handed fields in Tab. 1.1. Note that we have not included any right-handed neutrino
superfield here; this is purely conventional.

For the Higgs boson, the situation is now more complicated. For the Standard Model Yukawa
terms in Eq. (1.24) we had to take the conjugate of the Higgs field in the terms with up-type
particles, e.g. −Y u

ijQ
i
HCujR with HC = iσ2H∗. Generalizing this to superfields would mean

including terms in the Lagrangian that mix left- and right-handed superfields, which we cannot do.
Thus we will need two Higgs doublet superfields, given by

Hu =

(
H+
u

H0
u

)
, Hd =

(
H0
d

H−
d

)
. (2.32)

This will give four scalar Higgs particles (two electrically neutral, one positive and one negative)
and one neutral pseudoscalar — the three remaining scalar degrees of freedom are used to give
masses to the W± and Z bosons — as well as fermion Higgsinos.

A summary of the (left-handed) scalar superfields we have included, with their respective charges
under the gauge groups, can be found in Tab. 2.1.

Finally we need the supergauge fields; in terms of component fields, after eliminating auxiliary
fields, these bring a massless vector and a pair of Weyl spinors λ and λ. If the superfield is
electrically uncharged, these Weyl spinors combine to form a Majorana fermion; if not they can
combine with the Weyl spinors of a different vector superfield to form Dirac fermions.

The kinetic and gauge terms follow more or less automatically from our previous discussion;
denoting the vector gauge superfields of SU(3)C , SU(2)L, and U(1)Y by ga, W a, and B, respectively,
and using the charges in Tab. 2.1, we can write

Lk =Q†
ie
gsgaTa+gWaτa+ 1

6
g′BQi + u†ie

gsgaTa− 2
3
g′Bui + d

†
ie
gsgaTa+ 1

3
g′Bdi

+ L†
ie
gWaτa+ 1

2
g′BLi + `

†
ie
g′B`i +H†

ue
gWaτa+ 1

2
g′BHu +H†

de
gWaτa− 1

2
g′BHd. (2.33)
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For the gauge terms, we get,using T (R) = TF = 1
2 in the fundamental representation of both

SU(3) and SU(2),

Lg =
1

2g2s
θθtr

(
gAgA

)
+

1

2g2
θθtr

(
WAWA

)
+

1

4
θθBABA + h.c., (2.34)

where gA, WA, and BA are the field strengths constructed from ga, W a, and B, respectively.9

2.2.4 Superpotential and R-parity

The last ingredient needed is finding the most general gauge invariant superpotential consisting of
these fields. Recall that the superpotential contribution to the Lagrangian is

LW = θθW [Φi] + h.c., (2.35)

with
W [Φi] = giΦi +mijΦiΦj + λijkΦiΦjΦk. (2.36)

Following the logic of Sec. 1.1.4 we would now write down all possible such terms consistent with
gauge invariance. This quickly leads to trouble, however; for example, we might add a term like
λijkLiLj`k;10 this, and other similar terms, predict non-zero amplitudes for processes that violate
lepton and baryon number conservation. For this to be consistent with experiment the couplings
would have to be extremely small.

In order to avoid such interactions altogether, we postulate another symmetry of the theory,
called conservation of R-parity. The R-parity of a particle with baryon number B, lepton number
L, and spin s is defined as [32]

PR ≡ (−1)3(B−L)+2s. (2.37)

For a multi-particle state, the total R-parity given by the product of the individual parities. With
this definition all Standard Model particles (plus the additional Higgs scalars we had to introduce)
have PR = +1, while supersymmetric particles (sparticles) have PR = −1.

The postulated conservation of R-parity in the Lagrangian forbids the problematic terms from
the superpotential; physically, it means that sparticles must always be created or annihilated in
even numbers, and in particular that the lightest supersymmetric particle (LSP) is completely
stable since there is nothing it can decay to. As a consequence, a neutral11 LSP in an R-parity
conserving theory is a possible dark matter candidate; dark matter must be (at least very close to)
stable as it would otherwise have decayed already, and this is satisfied by the LSP.

Now, postulating an additional symmetry like this is obviously undesirable, since for a theory
to be as predictive as possible we typically want to start from as few basic principles as possible.
However, in this situation, where the other alternative would be constructing a model that clearly
breaks with observed phenomena, unless there is some significant fine-tuning of parameters, it is
probably the lesser “evil.”

With R-parity conservation the most general superpotential of the MSSM is given by

W [Φi] = Y `
ijLiHd`j + Y d

ijQiHddj + Y u
ijQiHuuj + µHuHd. (2.38)

9For an abelian theory with a vector superfield B the field strength simplifies to BA = − 1
4
DDDAB, with no

trace necessary to make the Lagrangian term gauge invariant.
10In this and the expressions to follow, we implicitly insert a factor iσ2 in between all SU(2)L doublets to preserve

SU(2)L gauge invariance.
11A neutral particle has limited interaction with ordinary matter besides gravitation.
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The Yukawa terms correspond to the Yukawa terms in the SM Lagrangian, with the same couplings
(so that we reproduce the SM masses); thus µ is so far the only new Lagrangian parameter of the
MSSM relative to the SM. This, along with Eqs. (2.33) and (2.34), exhausts the possible terms
we can include in a supersymmetric, renormalizable, gauge invariant, and R-parity conserving
Lagrangian consisting of our minimal number of superfields.

Notice that at surface-level, it would appear that this Lagrangian is missing a quartic Higgs
boson interaction like the one in Eq. (1.14), which was what led to electroweak symmetry breaking.
This is not the case, however; when applying equations of motion to solve for the auxiliary fields
and eliminate them in favor of dynamical fields, we obtain a scalar potential that among other
things contains quartic interactions of scalar component fields.

2.2.5 Breaking supersymmetry

The Lagrangian we have constructed so far is invariant under supersymmetry transformations,
meaning that all of the new supersymmetric particles are mass degenerate to their Standard Model
counterparts, badly contradicting experimental results. Thus supersymmetry must be broken at
our energy scale.

Presumably, such a breaking of supersymmetry would happen through a mechanism similar to
the Higgs mechanism, where the symmetry is spontaneously broken at some higher energy scale.
The exact mechanism that causes this is unclear, however, so we will simply add terms to the
Lagrangian that explicitly break supersymmetry.

This is similar to an “effective” theory in the Wilsonian picture of renormalization, in which we
assume that the spontaneous symmetry breaking happens at an energy scale that is inaccessible
experimentally. We can then integrate out these high-energy degrees of freedom, leaving effective,
non-supersymmetric terms in the Lagrangian. This is analogous to the theory of weak interactions
where high-energy degrees of freedom are integrated out, leaving a non-gauge invariant theory with
massive vector bosons.

To avoid the quadratic divergences that lead to the hierarchy problem, as will be discussed in
Sec. 2.3.1, we restrict ourselves to so-called “soft” terms, whose couplings have mass dimensions of
at least one [33]; these still give divergences, but only logarithmic ones. Following the notation of
Ref. [32], the possible soft terms in a supergauge theory are

Lsoft =−
(

1

4T (R)g2
Maθθθθtr

(
WA
a WaA

)
+

1

6
aijkθθθθΦiΦjΦk

+
1

2
bijθθθθΦiΦj + tiθθθθΦi

)
+ h.c. −m2

ijθθθθΦ
†
iΦj , (2.39)

or in terms of component fields,∫
d4θLsoft =−

(
1

2
Maλ

A
a λaA ++

1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi

)
+ c.c. −m2

ijφ
†
iφj . (2.40)

Here λAa is the left-handed Weyl spinor component of the vector superfield Va; φi is the scalar
component of a scalar superfield Φi. From this form we see that these terms have exactly the
desired effect, giving extra mass terms to all of the sparticles.

Which of these soft-breaking terms are included in the MSSM Lagrangian is determined by
enforcing gauge invariance and R-parity conservation, like before. This immediately excludes the
tadpole term (∝ ti) as we have no gauge singlet superfields. The aijk and bij terms are allowed
for the same combinations of fields as in the superpotential, see Eq. (2.38); the field strength term
is allowed for each of the three gauge groups; and the final mass term is allowed as long as φ†i
transforms in the complex conjugate representation of the gauge groups relative to φj .
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Figure 2.1: 1-loop fermionic (left) and scalar (right) contributions to the Higgs boson self-energy.

2.3 Theoretical advantages of the MSSM

As we alluded to in the Introduction there are several outstanding theoretical questions in the
Standard Model, that may be solved in the MSSM. One of these was dark matter; and in Sec. 2.2.4
we briefly noted how the MSSM provides a possible dark matter candidate in the LSP. Now, we
will demonstrate how loop effects can help answer more of these questions. We begin with perhaps
the most historically important one, which has been one of the most significant arguments for
supersymmetry, namely the Higgs boson hierarchy problem.

2.3.1 Hierarchy problem

The origin of the hierarchy problem can be understood by considering corrections to the Higgs boson
propagator, and hence its MS mass, at one-loop level. Suppose that the Higgs boson can interact
with a fermion ψ with mass mf , and a scalar φ with mass ms, as described by the Lagrangian
terms

L ⊃ −λfψψH − λsφ
†φH†H. (2.41)

These particles contribute to the Higgs self-energy through the loops shown in Fig. 2.1. Summing
over the infinite series of insertions of these loops on the Higgs propagator, the total propagator,
renormalized in the MS scheme, is given by

iG
(
p2
)
=

i

p2 −m2
MS +ΣMS(p

2)
, (2.42)

where, evaluating the loops in Fig. 2.1, the (unrenormalized) self-energy is given by

iΣ
(
p2
)
= −|λf |2µ4−d

∫
ddk

(2π)d
Tr[(�k +mf )(�k + �p+mf )](
k2 −m2

f

)(
(k + p)2 −m2

f

) + 2λsµ
4−d
2

∫
ddk

(2π)d
1

k2 −m2
s

. (2.43)

Evaluating the Dirac trace and using our previously discussed methods of Feynman parametrization
and Wick rotation, this can be rewritten as

iΣ
(
p2
)
= 4i|λf |2µ4−d

∫ 1

0
dx

∫
dΩd

(2π)d

∫ ∞

0
dkE

kd−1
E

(
k2E −∆

)(
k2E +∆

)2 − 2iλs

∫
dΩd

(2π)d

∫ ∞

0
dkE

kd−1
E

k2E +m2
s

,

(2.44)
where ∆ ≡ m2

f − p2x(1− x).
We evaluate this in two different ways. First we use a simple ultraviolet cutoff, i.e. changing

the upper integration limit of kE to Λ and setting d = 4, leaving

ΣΛ

(
p2
)
'

|λf |2

4π2
Λ2 − λs

8π2
Λ2 (2.45)
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to highest order in Λ. We observe that the self-energy is quadratically divergent; if we assume
that Λ has some physical meaning, e.g. as the highest energy scale at which the theory is viable,
this suggests that the Higgs boson propagator and mass are extremely sensitive to corrections from
these high energy scales. In other words, the Higgs mass is UV sensitive. The divergences can be
removed through mass renormalization, but this still requires significant fine-tuning to cancel very
large terms.

The quadratic divergence is not present in dimensional regularization, but the UV sensitivity
remains; to see this, suppose that the masses of the interacting particles mf ,ms � mh, so that

Σd ' −
|λf |2

4π2

(
3m2

f

ε
+m2

f

)
+

λs
8π2

(
m2
s

ε
+m2

s

)
, (2.46)

where 1
ε = 1

ε − γE + ln 4π. Then, defining the MS-renormalized version of the self-energy ΣMS by
simply removing the terms proportional to 1/ε, the difference between the MS mass and physical
pole mass mh of the Higgs boson is given by

m2
h −m2

MS = −ΣMS
(
m2
h

)
, (2.47)

as determined by demanding that Eq. (2.42) have a pole at the physical mass mh. Explicitly this
means that

m2
h −m2

MS '
|λf |2

4π2
m2
f −

λs
8π2

m2
s. (2.48)

Again we see that the Higgs mass is highly sensitive to contributions from higher scales; if we
suppose that the Standard Model has some UV completion at a high energy,12 e.g. at the Planck
scale, and interactions between the Higgs boson and particles at this scale exist, the Higgs mass
gets corrections proportional to this scale. The fact that the observed Higgs mass is still on the
same energy scale as other electroweak particles is the hierarchy problem of the Higgs boson.

This problem vanishes in a supersymmetric theory. As we noted in Sec. 2.1.2, fermions and
their scalar partners have the same mass as long as supersymmetry is not broken, i.e. mf = ms.
Furthermore, from a Yukawa term WY [Φ] = −λΦΦH in the superpotential, we get a contribution,
in terms of component fields, of

L ⊃ −λψψh, (2.49)

where ψ is the Weyl spinor component of Φ, and h is the scalar component of H. Eliminating
auxiliary degrees of freedom by solving for auxiliary fields with the equations of motion, the Yukawa
term contribution to the Lagrangian also includes a term [32]

L ⊃ −
∣∣∣∣∂WY

∂φ

∣∣∣∣2 = −|λ|2φ†φh†h, (2.50)

where φ is the scalar component of Φ. This means that we also have λs = |λf |2 in our above
notation.

Finally, as we argued in Sec. 2.2.3, a Dirac fermion must be constructed out of two scalar
superfields, meaning that there are two (complex) scalars φ for each Dirac fermion ψ. Taking all of
this into account, we see that the fermion and scalar contributions, in both Eqs. (2.45) and (2.48),
exactly cancel in a supersymmetric theory.

Naturally, this will not be the case in the MSSM, which contains terms that explicitly break
supersymmetry. Still, as long as we limit these terms to so-called soft terms with mass dimensions

12Which we need to do in a complete theory, due to the Landau poles discussed in Sec. 1.2.5.
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of at least 1 as we did in the previous section, the divergences in the Higgs self-energy are at
worst logarithmic [33], not quadratic as they were above. From Eq. (2.40) and following the above
calculation, we see that we will get a contribution proportional to a2ijk/(4π)

2 to the (squared) Higgs
mass,13 and since [aijk] = 1, by dimensional analysis the cutoff dependence can then at most be
logarithmic. To keep this correction on the same order as the Higgs mass itself, and avoid too much
fine-tuning of parameters, we then at most want aijk ∼ msoft . 1 TeV.

Thus, as long as the new sparticles are not much heavier than 1 TeV, we can still avoid the
hierarchy problem in the MSSM.

2.3.2 Electroweak symmetry breaking

In Sec. 1.1.3 we discussed how a Higgs potential in which the Higgs field obtains a vacuum
expectation value (vev), i.e. one with a minimum at a non-zero field value, leads to electroweak
symmetry breaking to give masses to particles. We did, however, note that we had to simply
construct a potential like the one in Eq. (1.14) in order for this to work.

We will now see how this symmetry breaking works in the MSSM, and how, with some
assumptions, the MSSM can actually predict a potential leading to a Higgs vev. We begin by
considering the Higgs scalar potential of the MSSM. Most of the terms contributing to this potential
have been discussed already; including also contributions from the soft-breaking terms

L ⊃ −bHuHd + h.c. −m2
Hu
H†
uHu −m2

Hd
H†
dHd, (2.51)

the potential is given by [32]

V (H) =
(
|µ|2 +m2

Hu

)(∣∣H+
u

∣∣2 + ∣∣H0
u

∣∣2)+ (|µ|2 +m2
Hd

)(∣∣H0
d

∣∣2 + ∣∣H−
d

∣∣2)
+
[
b
(
H+
u H

−
d +H0

uH
0
d

)
+ c.c.

]
+

1

2
g2
∣∣H+

u H
0∗
d +H0

uH
−∗
d

∣∣2
+

1

8

(
g2 + g′2

)(∣∣H0
u

∣∣2 + ∣∣H+
u

∣∣2 − ∣∣H0
d

∣∣2 − ∣∣H−
d

∣∣2)2. (2.52)

For spontaneous electroweak symmetry breaking, we need this potential to have a (finite) minimum
for non-zero field values; this is achieved by the simultaneous fulfillment of the criteria

2b < |µ|2 +m2
Hu

+m2
Hd

, (2.53)

b2 >
(
|µ|2 +m2

Hu

)(
|µ|2 +m2

Hd

)
. (2.54)

This is indeed possible, so electroweak symmetry breaking is possible also in the MSSM. Note,
however, that these constraints cannot be fulfilled without non-zero values for the soft parameters
m2
Hu

, m2
Hd

, and b; thus spontaneous electroweak breaking in the MSSM requires supersymmetry to
be broken.

More interestingly, suppose that m2
Hu

= m2
Hd

at some high scale, e.g. at the scale at which
supersymmetry is broken (the input scale). If it is assumed that some common mechanism causes
all of the supersymmetry-breaking terms in the Lagrangian, this is a fairly reasonable starting point.
We then allow these parameters to run with energy scale, by including loop corrections. Both m2

Hu

and m2
Hd

will increase with increasing energy scales, at a rate approximately proportional to their
highest corresponding Yukawa coupling; yt in the case of Hu, and yb in the case of Hd, where yt
and yb are the largest eigenvalues of Y u

ij and Y d
ij , from Eq. (2.38), respectively. Since yt � yb,

13This contribution comes from a diagram similar to the fermion loop diagram in Fig. 2.1, but with a scalar in
the loop.
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this means that at lower scales m2
Hu

� m2
Hd

. If the input scale is sufficiently high, the first factor
in Eq. (2.54) may even become negative, automatically fulfilling that constraint for positive b2.
This does not guarantee electroweak symmetry breaking, but it helps significantly in widening the
parameter space in which it is achieved.

This shows how spontaneous breaking of the electroweak symmetry can happen much more
“organically” in the MSSM than in the Standard Model, as it can be achieved through quantum
corrections, assuming universality of the soft-breaking parameters at the input scale.

One part of this argument is somewhat puzzling, though: In Eqs. (2.53) and (2.54), the three
soft-breaking parameters are assumed to have some common origin at a high energy scale, and are
effective parameters describing this process. The parameter µ, however, has an entirely different
origin, coming from the superpotential as a part of the supersymmetric Lagrangian. Thus there is
nothing to suggest that there would be any relation between µ and the soft-breaking parameters;
nonetheless, µ has to be of the same order of magnitude as the soft parameters for the above
argument to work out. This is referred to as the “µ problem” of the MSSM.

2.4 Phenomenology of the MSSM
The MSSM predicts a number of new particles, called sparticles. Experimental evidence of
supersymmetry would naturally include some signature of production of these particles at particle
colliders like the LHC; for this reason, one of the most relevant observables to calculate theoretically
in the MSSM is the production cross-section for supersymmetric particles.

Later in the thesis we will perform such a calculation for the pair-production of sleptons — the
scalar partners of the Standard Model leptons — at hadron colliders. To establish some notation
and conventions, we will here give a brief overview of the sparticles appearing in this process, before
discussing how sleptons might hypothetically appear in results from hadron colliders.

2.4.1 Supersymmetric particles

For each Standard Model fermion f , the MSSM predicts two complex sfermions f̃L and f̃R, one
from each of the scalar superfields needed to represent a Dirac fermion; leptons get slepton partners,
while quarks get squark partners. Taking into account all possible sources for mass terms for these
particles, including from auxiliary-field terms, soft-breaking terms, the superpotential, as well as
from Higgs vev contributions like in the Standard Model, the masses are determined by the general
form

Lf̃ = −
(
f̃∗L f̃∗R

)
m2
f̃

(
f̃L
f̃R

)
, (2.55)

where m2
f̃

is a generic 2× 2 matrix. If this matrix is not diagonal, the mass eigenstates will differ
from the chiral eigenstates;14 diagonalizing m2

f̃
, we can rewrite this in terms of the mass eigenstates

f̃1, f̃2 as

Lf̃ = −
2∑

A=1

m2
f̃A

∣∣∣f̃A∣∣∣2, (2.56)

where now mf̃A
are numbers, A = 1, 2, and the mass eigenstates are related to the chiral eigenstates

by (
f̃L
f̃R

)
=

(
cos θf sin θf
− sin θf cos θf

)(
f̃1
f̃2

)
. (2.57)

14Technically chirality has nothing to do with this; the L/R labels on the sfermions only denote the handedness
of their associated Weyl spinors.
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By convention, these eigenstates are usually defined so that mf̃2
≥ mf̃1

.
In our later calculations we will use this mass basis for sleptons and squarks, using their pole

masses and mixing angles θf as the parameters of the theory.15 This helps keep the calculations as
general as possible; for most of the sfermions this is rather overly cautious, as θf ≈ 0 for the first
two generations of squarks and sleptons.16

Note that we have implicitly assumed that there is no mixing across slepton or squark flavors
or generations; this is done to avoid large cross-sections for flavor-number violating processes. In
practice this means restricting m2

ij in Eq. (2.40) to be approximately diagonal.
This mostly covers the sparticles that will appear in our later calculations; the sleptons

obviously appear in the final state, while squarks appear in loop corrections to the quark-antiquark-
electroweak gauge boson vertex. The only remaining particle is the gluino g̃, which is the fermion
partner to the gluon.

As there are no other particles in the model with the same quantum numbers as the gluino
it cannot mix with anything, making it somewhat simpler to discuss than the aforementioned
sfermions; it is a Majorana fermion, originating from a single vector superfield ga; it is a color octet
transforming in the adjoint representation of SU(3)C , like its Standard Model counterpart; and its
mass gets only one contribution at tree-level, from the soft-breaking term

Lg̃ = −1

2
M3g̃

ag̃a + c.c., (2.58)

so that the gluino mass is simply mg̃ = |M3| at tree-level.

2.4.2 Slepton pair production at hadron colliders

The main candidates to discover sleptons are high-energy hadron or lepton (specifically electron-
positron) colliders. The latter is more specifically suited for detecting slepton production, as there
will be significantly less background at such colliders; furthermore, since one possible experimental
signature of slepton production is missing momentum in the final state (see below), the analysis
becomes much less complicated when the colliding particles are point particles, rather than the
composite particles of hadron colliders.

However, leptons are much lighter than hadrons. In a circular accelerator, which is the most
physically compact way of achieving the highest possible energies, the energy lost in bremsstrahlung
would then be far larger for leptons than for hadrons. This makes a circular e+e− collider more or
less completely unfeasible for high energies; to match the energies obtainable at hadron colliders,
one would need a linear e+e− collider far larger than any currently existing.

Thus, we will focus on production at hadron colliders. The production of sleptons, which are
not color-charged (and thus interact only weakly), will be suppressed compared to that of particles
that do carry such charge (and interact strongly); but the energies obtainable still make hadron
collider experiments a viable method for discovery of sleptons.

As we will discuss in the next chapter, hadron collisions are described by a partonic process
of the hadron’s constituent particles, i.e. quarks, antiquarks, and gluons, multiplied by a parton
distribution function. The partonic process for for slepton pair production is very similar to that of
lepton pair production in the Drell-Yan process; the leading-order Feynman diagram can be seen in
Fig. 2.2. Here A,B denote the mass eigenstates of the produced sleptons, while i denotes the flavor.

15In practice these have to be calculated from the other parameters in the theory, notably soft mass terms and
the vevs of H0

u, H0
d .

16The off-diagonal terms in Eq. (2.55) are proportional to the corresponding Yukawa couplings of Eq. (2.38). Since
these couplings are in turn proportional to the (SM) particle masses, they are negligible for all but the stau, sbottom,
and stop particles.
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p1

p2

q ≡ p1 + p2

γ/Z

p3

p4

q

q

˜̀∗
iB

˜̀
iA

Figure 2.2: Tree-level partonic diagram for slepton pair production at a hadron collider

The intermediate state is either a Z boson or a photon; the latter is only possible for A = B. We
will return to this diagram, and its higher-order corrections, in much greater detail in Chapter 4.

After the sleptons are produced they will rapidly decay. Following the conservation of R-parity
and lepton number they will decay, possibly in several steps, down to the LSP and (at least) a
lepton or neutrino of the same flavor as the produced slepton. As the LSP cannot decay further
it will not be detected; thus the momentum of the detected final state will not match that of the
initial state.

The amount of missing momentum can be deduced by momentum conservation on the detected
final-state particles. However, since we do not know exactly the momenta of the colliding constituent
particles of the hadron, this is not as straightforward as for lepton colliders. Still, since the collision
energy is so large we can, to a very good approximation, assume that the incoming momentum
is zero in the transverse direction. The LSP will therefore appear as missing momentum in the
transverse direction, conventionally called missing transverse energy.

In other words, slepton pair production will contribute to the final state of two leptons or
neutrinos and missing transverse energy. In addition to this there may be radiation of quarks
and/or gluons from the initial state, which will show up as jets in the final state (more on this
in the next chapter). To avoid discarding events that may be relevant for the discovery of new
particles, we will also want to include processes with such radiation; hence we are looking for the
inclusive cross-section for slepton production, cf. the discussion of Sec. 1.2.7.



Chapter 3

Quantum chromodynamics and the
parton model

In this chapter we look the theory of strong interactions, called Quantum chromodynamics (QCD),
and its implications for our later calculations.

We begin by discussing how the properties of the SU(3) gauge group of QCD lead to significant
physical consequences; namely the phenomena of asymptotic freedom, meaning that the strong
force gets stronger at larger length scales and smaller energy scales, and vice versa; and color
confinement, which is the observation that particles with color charge never appear freely, but
instead in charge-neutral bound states called hadrons.

As a result of this, making theoretical predictions in QCD is challenging since at colliders
we only know the precise momenta of the hadrons, not their constituent particles which are the
ones directly appearing in the collision. This is dealt with in the parton model, wherein one
assumes that a QCD observable factorizes into high- and low-energy components: The “hard”
high-energy part is calculable perturbatively, since the strong coupling is smaller at these energies,
while the “soft” low-energy part — assumed to be decoupled from the hard part as it happens
on a much larger time scale — is not, but instead extracted from data by fitting theoretical
predictions. The soft part is expressed in terms of parton distribution functions (PDFs), which
function as probability distributions for finding a particular parton (fundamental color-charged
particle) carrying a particular fraction of the momentum of the hadron.

After presenting the parton model, we note that the introduction of PDFs can aid in the
renormalization of observables. The PDFs themselves are not directly observable, only through
fitting data; this can be exploited by defining renormalized, energy scale-dependent PDFs, which
will allow us to remove divergences from the calculation.

3.1 Structure of the SU(3) gauge group
Quantum chromodynamics is based on invariance under the SU(3)C gauge group. As the name
suggests, the group describes 3×3 unitary matrices with determinants equal to 1; in the fundamental
representation it is generated by the Gell-Mann matrices λa [34]:

T a ≡ 1

2
λa, (3.1)

with a = 1, 2, . . . , 8. These generators satisfy[
T a, T b

]
= ifabcT c, (3.2)

45
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where fabc are the structure constants of the group. The fundamental representation describes the
transformation properties of the quarks; these are arranged into color triplets ψi, i = 1, 2, 3, which
transform according to

ψi → ψ′
i =

(
eiα

a(x)Ta
)
ij
ψj , (3.3)

where αa are eight functions of xµ.
The gluons are arranged into an octet transforming in the adjoint representation; the generators

of this representation are defined by
(T aA)

bc = −ifabc. (3.4)

3.1.1 Color sums

Calculations in QCD almost invariably involve taking products of the SU(3) generators and
summing over the various color states. To avoid having to do these calculations every time, using
the explicit form of the representations, it is practical to categorize such sums in terms of the
representation, and getting their value from group properties.

By Schur’s lemma [35], any element in a group that commutes with all other elements in the
group, for a given irreducible representation, are proportional to the identity. The proportionality
factor is referred to as a Casimir invariant, and labels the representation. In SU(3), one such
Casimir invariant labeling a representation R is the quadratic Casimir C(R), defined by

T aRT
a
R ≡ C(R)1, (3.5)

where as usual repeated indices are summed over. For the fundamental and adjoint representations,
we label the quadratic Casimir by CF and CA, respectively.

Another useful quantity is the index T (R) of a representation, which we encountered already
in Sec. 2.2; for a representation R it is defined by

tr
[
T aRT

b
R

]
≡ T (R)δab. (3.6)

As for the quadratic Casimir, we label the index of the fundamental representation by TF , and the
adjoint representation by TA.

Equations (3.5) and (3.6), together with the stated normalization of the generators and structure
constants, imply the following relations, which we will be using repeatedly in our calculations:1

T aikT
a
kj = CF δij , (3.7)

T aijT
b
ji = TF δ

ab, (3.8)
facdf bcd = CAδ

ab, (3.9)

with the constants given by CF =
N2

C−1
2NC

= 4
3 , TF = 1

2 , and CA = NC = 3.2 In a calculation where
all color states of both representations are summed over, either of the first two relations can be
used, giving

T aijT
a
ji = CFNC = TF

(
N2
C − 1

)
. (3.10)

1Here and in the following, T a with no subscript always refers to the generators of the fundamental representation.
2We usually write these quantities in terms of the number of color states NC , keeping it as a variable; this makes

it simpler to generalize calculations to other gauge groups.
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3.2 Asymptotic freedom and color confinement
Many of the theoretical challenges of QCD stem from two principles called asymptotic freedom
and color confinement. These can partially, at least qualitatively, be understood from the
renormalization properties of the theory.

3.2.1 Renormalization of the strong coupling

The quark-gluon interaction term in the renormalized Lagrangian is given by

Lqqg = µ
4−d
2 gsZ1A

a
µψiγ

µT aijψj , (3.11)

where the bare and renormalized quantities are related by gs0 = µ
4−d
2 Zggs, Aa0 =

√
Z3A

a,
ψi0 =

√
Z2ψi, and Z1 = ZgZ2

√
Z3. As before we expand all of the renormalization constants

around 1, Zi = 1 + δi. We can then find the 1-loop QCD β-function in the same way as for φ4
theory in Sec. 1.2.5:

β(gs) = µ
dgs
dµ

= εg2s
∂

∂gs

(
δ1 − δ2 −

1

2
δ3

)
. (3.12)

Thus to find the β-function we need the renormalization of the gluon and quark 2-point functions,
as well as for the quark-quark-gluon vertex.

The factor ε in Eq. (3.12) makes this much more straightforward than many other loop
calculations, as only the divergent part of the counterterms will contribute in the limit ε → 0.
Thus we can use the simplest possible renormalization scheme in defining the counterterm, namely
the MS scheme, to remove only the terms proportional to 1/ε. This in turn means that we only
need to extract the parts of Passarino-Veltman coefficients3 that are proportional to 1/ε. Assuming
massless quarks, which does not impact the β-function but simplifies expressions, these are given
by [36]

B0

(
p2, 0, 0

)
=

1

ε
+ finite, (3.13)

B1

(
p2, 0, 0

)
= − 1

2ε
+ finite, (3.14)

B00

(
p2, 0, 0

)
= − p2

12ε
+ finite, (3.15)

B11

(
p2, 0, 0

)
=

1

3ε
+ finite, (3.16)

C00 =
1

4ε
+ finite. (3.17)

All other C functions are finite;4 the arguments of C00 are suppressed as they do not affect the
divergence.

This makes it possible, through some fairly straightforward but tedious Dirac algebra, to
calculate the necessary counterterms, always keeping only the terms that contribute to ultraviolet
divergences. The quark-quark-gluon vertex gets two contributions at 1-loop, as shown in Fig. 3.1a;
the quark 2-point function gets a contribution from the insertion of a quark-gluon loop shown in
Fig. 3.1b; and the gluon 2-point function gets three (non-zero5) contributions, from insertions of

3These are defined in Sec. 1.3.
4“Finite” here really means UV-finite; there may be (and there are) infrared divergences, but these are irrelevant

for counterterm purposes.
5There is also a contribution involving a 4-gluon vertex, but this vanishes in dimensional regularization.
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(a) qqg vertex.

(b) Quark 2-point function

(c) Gluon 2-point function. Top to
bottom: Quark loop (one diagram
for each flavor), ghost loop, gluon
loop.

Figure 3.1: 1-loop diagrams contributing to the QCD β-function.

quark, gluon, or ghost6 loops, shown in Fig. 3.1c. For completeness, and to give an example of
how loop calculations are performed using Passarino-Veltman coefficients, we now carry out these
calculations.

The simplest amplitude to renormalize, in the sense that it only gets one 1-loop correction, is
the quark 2-point function. Following the notation of Eq. (1.74), we denote the sum of all 1PI
insertions on the quark propagator by iΣij(�p), where i, j are in- and outgoing quark color states.
At 1-loop with massless quarks we have

iΣij(�p) = i
(
Σij2 (�p) + �pδ2δ

ij
)
+O

(
g4s
)
, (3.18)

where iΣij2 (�p) is given by the loop in Fig. 3.1b. Explicitly, we have

iΣij2 (�p) = (igs)
2T ajkT

b
liδ

abδklµ4−d
∫

ddk

(2π)d
γµ(�k + �p)γµ

k2(k + p)2
. (3.19)

From Eq. (3.5) the color factor simplifies to (T aT a)ij = CF δij . The integral can be rewritten by
using the contraction identities for γ matrices listed in Appendix A, and then factoring out as much
as possible from the integrand; the remaining integral can be decomposed as described in Sec. 1.3.
Dropping all terms that are finite as ε→ 0, using Eqs. (3.13) and (3.14), we find

iΣij2 (�p) =
ig2s
16π2

CF δij�p
1

ε
+ finite. (3.20)

The quark self-energy counterterm in the MS scheme is then

δ2 = − g2s
16π2

CF
1

ε
. (3.21)

6We have not discussed ghost particles in this thesis as they are not relevant for our purposes; they appear
as a necessity when quantizing the gluon field in the path integral formalism, to avoid integrating over physically
equivalent gauge configurations. In calculations, they mostly appear in loop corrections to gluon processes, like its
propagator as seen here, or the 3- or 4-gluon vertex, since their only interactions are with gluons.
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The calculation for the gluon self-energy works out in much the same way, with the obvious
complication that there are three diagrams to add. We must also recall that the fermion loop
must be added once for each quark flavor that can appear, giving NF contributions; further, the
anticommuting nature of the quarks and ghost particles demand a factor of (−1) in these diagrams,
and that we take the trace of the fermion propagators in the loop. With all of these considerations,
we can proceed as in the previous example. The sum of 1PI insertions on the gluon propagator at
1-loop is given by Πµνab(p) = Π

(
p2
)(
p2gµν − pµpν

)
δab,7 where a and b denote gluon color states,

with
Π
(
p2
)
= − g2s

12π2

[
−NFTF +

5

4
CA

]
1

ε
− δ3 + finite +O

(
g4s
)
. (3.22)

This immediately gives

δ3 =
g2s

12π2

[
5

4
CA −NfTF

]
1

ε
. (3.23)

We are then left with the quark-quark-gluon 3-point function. The full calculation of these
diagrams is fairly cumbersome in the amount of Dirac matrices we have to keep track of; here it
simplifies greatly, as we are only interested in the coefficient of the pole in 1/ε. From Eq. (3.17) the
only UV divergence in a generic 3-point tensor integral is in the coefficient of gµν in Cµν ; all terms
with less than two powers of the loop momentum in the numerator are UV-finite and can thus be
dropped.

Adding together the diagrams in Fig. 3.1a, we find the following expression for the complete
quark-quark-gluon vertex igsΓ

aµ
ij (a, i, and j denoting the color states of the gluon and quarks,

respectively), including the tree-level result:

Γaµij = γµT aij + γµT aij

(
g2s

16π2
(CF + CA)

1

ε
+ δ1

)
+ finite +O

(
g4s
)
, (3.24)

giving, in the MS scheme,

δ1 = − g2s
16π2

(CF + CA)
1

ε
. (3.25)

We now collect Eqs. (3.25), (3.21), and (3.23), and insert them into Eq. (3.12). With TF = 1
2 ,

NF = 6, and CA = 3, we find

β(gs) = µ
dgs
dµ

= − g3s
16π2

β0, (3.26)

with
β0 =

[
11

3
CA − 4

3
NFTF

]
= 7. (3.27)

The fact that the β-function is negative is a very important property of QCD called asymptotic
freedom. In practice this means that the strong coupling gets weaker at high energies, or equivalently
at small distance or time scales; conversely the theory becomes unperturbative at small energies,
or long distances and time scales, as it has an infrared Landau pole.

This property can also give a qualitative understanding of the observed phenomenon of color
confinement, meaning that particles carrying color charge — quarks or gluons — are never seen
as free states, only in bound states with net zero color charge, called hadrons. To extract a single
particle from a bound state, due to asymptotic freedom, would require an infinite amount of energy,
as the force between the color-charged particles grows with distance.

7Note that this satisfies the Ward identity pµΠ
µνab = 0; this would not be the case without the ghost loop

diagram. This illustrates the use of these particles; they are a mathematical tool to enforce gauge invariance in the
quantized theory, and are not physically observable.
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Note again that this is only a very qualitative explanation; the exact mechanism causing color
confinement remains an open question in physics.

3.2.2 Jets

Color confimenent is clearly evident in scattering processes in which a color-charged particle, i.e. a
quark or a gluon, appears in the final state. Since this particle cannot exist in a free state, it must
instead form bound states with other color-charged particles.

Even though there may initially be no such particles nearby in the final state, they can easily
be created; as the strong coupling grows large for small energy transfers, the particle can readily
emit a number of gluons moving in approximately the same direction. These in turn create quark-
antiquark pairs. Eventually a large number of quarks and antiquarks will be moving together; these
can then bind together in color-neutral hadronic states.

This process is called hadronization. Since this is a low-energy process, where the strong
coupling is large, it cannot be calculated in perturbation theory; thus the exact process is not
precisely understood.

In a detector, such a collection of hadrons is seen as a mostly localized signal called a jet.
Each color-charged particle in the final state will manifest itself in the detector as an undetermined
number of jets. Predicting the actual number is difficult for several reasons; for one, due to the size
of the strong coupling it is likely that each outgoing parton will split one or more times in what is
called a parton shower, creating several jets; furthermore, two jets may be approximately collinear,
or one at a very low energy, so that they cannot be distinguished experimentally.

Such final states must be studied according to the discussion of Sec. 1.2.7. If we are looking for
the production rate of, say, a pair of non-color-charged particles plus a jet, we can either restrict
ourselves to final states with exactly one jet, cutting off processes with more jets according to some
experimental resolution; or we can find the inclusive cross-section, where all processes wherein the
colorless particles are produced along with at least one jet contribute.

3.3 Factorization and parton distribution functions

The properties of asymptotic freedom and color confinement significantly complicate calculations
in QCD. For one, we never have direct access to the particles that are interacting in a collision; on
a fundamental level, the interaction in a proton-proton collision is between quarks or gluons, but it
is the proton that we can actually observe, and whose momentum we can control. The momentum
of the proton is distributed among its constituent particles; classically these are just two u quarks
and one d quark, but through low-energy gluon exchange it can also contain any other quark or
antiquark, or even gluons.

The interactions governing this distribution of momentum happen on a much longer time scale
than that of the collision. On the one hand, this allows us to assume that the two parts of the
process — the long time-scale, low-energy soft part, and the short-time, high-energy hard scattering
process — decouple, making it possible to factorize the result into hard and soft components. On
the other hand, due to the running of the strong coupling, the soft part cannot be calculated in
perturbation theory. In other words it becomes very complicated to calculate theoretically the
process that determines which parton partakes in the interaction or what its momentum is; the soft
part of the result needs to be extracted from experiments, by fitting to theoretical calculations.

This is summarized in the various factorization theorems of QCD, which state that cross-
sections in the theory can be factorized into hard and soft parts. These have been proven for
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several processes, e.g. the Drell-Yan process [37], whose hadronic part is identical to that of slepton
pair production, to be discussed in detail in Chapter 4.

With factorization, we can write the cross-section as a convolution of a partonic cross-section,
described by the fundamental interactions between constituent quarks and gluons — collectively
called partons — and parton distribution functions (PDFs) fi(x), giving the probability density for
a parton i to carry a fraction x of the momentum of the proton.8,9 The latter must be extracted
from experiments. The resulting model is called the parton model.

Let us now consider a Drell-Yan-like process, in which two protons collide and produce a pair of
particles A and B through a virtual electroweak boson, plus possible radiation of quarks or gluons
from the initial state. This is described by a convolution of the partonic cross-section for the process
ij → AB + X, where i and j label a pair of partons and X any additional radiation, with two
PDFs. With the incoming proton momenta given by P1 and P2, the momenta of the interacting
partons are

p1 = x1P1, (3.28)
p2 = x2P2. (3.29)

If the energy is large enough that incoming particles can be taken as approximately massless, so
that P 2

1 = P 2
2 = 0, we can relate the partonic squared center-of-mass energy ŝ = (p1 + p2)

2, to the
hadronic one s = (P1 + P2)

2 by
ŝ = x1x2s. (3.30)

Furthermore, denoting the invariant mass of particles A and B by (pA + pB)
2 = Q2, we can define

a partonic threshold variable z, and a hadronic threshold variable τ , by

z ≡ Q2

ŝ
∈ (0, 1), (3.31)

τ ≡ Q2

s
= x1x2z ∈ (0, 1). (3.32)

These cannot be greater than 1 since no extra energy can come into the process in the initial state;
we can only “lose” energy to radiation, making the invariant mass Q2 ≤ ŝ. With these constraints,
we can write the hadronic cross-section, differential in Q2, as

dσ

dQ2
(pp→ AB +X)

=
∑
ij

∫ 1

τ

dx1
x1

∫ 1

τ/x1

dx2
x2

fi(x1)fj(x2)x1x2
dσ̂

dQ2
(ij → AB +X), (3.33)

where the sum over partons i and j in principle includes all possible combinations of quarks,
antiquarks, and gluons. σ and σ̂ are called hadronic and partonic cross-sections, respectively. The
factor of x1x2x1x2

may seem odd when written on this form, but is due to the fact that the partonic cross-
section is typically proportional to 1/ŝ = 1/x1x2s. Thus we have in practice just preemptively just
factored out 1/x1 and 1/x2 from the partonic cross-section, by shifting them over to the integration
measure.

In practice, the conservation of baryon number and color charge greatly reduce the number of
viable initial-state parton pairs. For Drell-Yan and similar processes, at next-to-leading order in

8In a high-energy scattering experiment any transverse momentum components of the partons will usually be
negligible; thus their momenta pµ can be approximated as pµ = xPµ, with Pµ being the momentum of the proton.

9One can of course also define PDFs for any other hadron, but hadron colliders almost exclusively collide protons.
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the strong coupling the only options are a quark-antiquark pair, where a gluon may or may not be
emitted, or a quark (or antiquark) with a gluon. In the latter case a quark (or antiquark) with the
same flavor as the incoming one is emitted.

3.3.1 Integrating over PDFs

After calculating the partonic cross-section analytically, the PDF integration must be performed
numerically. This can typically be made easier, and more computationally efficient, by exploiting
that many of the terms in the partonic cross-section contain distributions in the threshold variable
z = τ

x1x2
. These might be delta functions δ(1− z), which enforce momentum conservation in the

case of no radiation; or so-called plus distributions f+(z). In both cases the distributions impose
relations between x1 and x2, lowering the dimensionality of the PDF integrals by one.

For the delta functions, this is straightforward; denoting a generic function of x1 and x2 by
g(x1, x2), we have∫ 1

τ/x1

dx2
x2

g(x1, x2)δ

(
1− τ

x1x2

)
= g(x1, x2)

x1x2
τ

∣∣∣
x2=τ/x1

= g

(
x1,

τ

x1

)
. (3.34)

The treatment of the plus distributions requires some more care; in general, a plus distribution
f+(z) is defined by its action in an integral with a function g(z) so that∫ 1

0
dzg(z)f+(z) ≡

∫ 1

0
dz(g(z)− g(1))f(z), (3.35)

with f+(z < 1) = f(z). However, in our case the lower limit on the integral is non-zero, and we
must also change variables. Again considering a general function g(x1, x2), treating x2 as a function
of z while x1 is independent, we get∫ 1

τ/x1

dx2
x2

g(x1, x2)f+

(
τ

x1x2

)
=

∫ 1

τ/x1

dz

z
g

(
x1,

τ

x1z

)
f+(z)

=

∫ 1

0

dz

z
g

(
x1,

τ

x1z

)
f+(z)−

∫ τ/x1

0

dz

z
g

(
x1,

τ

x1z

)
f(z)

=

∫ 1

0

dz

z

[
g

(
x1,

τ

x1z

)
− zg

(
x1,

τ

x1

)]
f(z)−

∫ τ/x1

0

dz

z
g

(
x1,

τ

x1z

)
f(z)

=

∫ 1

τ/x1

dz

z

[
g

(
x1,

τ

x1z

)
− zg

(
x1,

τ

x1

)]
f(z)− g

(
x1,

τ

x1

)∫ τ/x1

0
dzf(z).

(3.36)

To summarize what we have just done: The first line is a simple change of integration variable; in
the second we extend the lower integration limit, subtracting a “correction” integral on which we
use the property f+(z < 1) = f(z); in the third we use the definition of the plus distribution under
an integral; finally, we move the integration limit back up to τ/x1 by re-absorbing the correction
integral, but now leaving a “remainder” integral of the function f(z).

In our calculations in the next chapter, we will encounter the cases f(z) = 1/(1− z) and
f(z) = ln (1− z)/(1− z). For these cases, the remainder integral is fairly easy to evaluate
analytically:

F (x1) ≡ −
∫ τ/x1

0
dzf(z) =

ln
(
1− τ

x1

)
, f(z) = 1/(1− z),

1
2 ln2

(
1− τ

x1

)
, f(z) = ln (1− z)/(1− z),

(3.37)
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leaving an expression which only has to be integrated over x1. For the first term, we transform the
integration variable back to x2, leaving

∫ 1

τ/x1

dx2
x2

g(x1, x2)f+

(
τ

x1x2

)
=

∫ 1

τ/x1

dx2
x2

(
g(x1, x2)−

τ

x1x2
g

(
x1,

τ

x1

))
f

(
τ

x1x2

)
+ F (x1)g

(
x1,

τ

x1

)
.

(3.38)

For the first part of Eq. (3.38), and in terms where the integrand is a generic function of z, we
still have to perform the integration over both variables.

3.4 Renormalized PDFs

So far we have discussed several types of divergence and how they are removed from calculations.
Ultraviolet divergences are removed by renormalization of the parameters in the Lagrangian, and
soft divergences typically cancel when adding cross-sections from different processes that contribute
to the same observable. After all these are removed, however, there may still be remaining collinear
divergences. These are dealt with by introducing renormalized, scale dependent PDFs.

This follows from the same principle as the “regular” renormalization discussed in Sec. 1.2:
Collinear divergences are logarithmic, or alternatively proportional to 1

ε . This means that they can
be removed by measuring the amplitude at some reference energy scale, and expressing results at
other scales in terms of the difference from the reference scale.

This can also be viewed as a renormalization of the PDFs; we can do this since, as for
the Lagrangian parameters, the PDFs themselves are not directly measurable. Instead, they
are extracted from fitting theoretical calculations of cross-sections to experiment, so precisely
how they are defined theoretically does not matter as long as they are convoluted with a finite
theoretical partonic cross-section. This procedure leaves a scale dependence in the PDFs: Their
scale dependences are governed by the DGLAP evolution equations [38–40], given by

µF
d

dµF

(
fi(x, µF )
fg(x, µF )

)
=
∑
j

αs
π

∫ 1

x

dξ

ξ

Pqiqj(xξ) Pqig

(
x
ξ

)
Pgqj

(
x
ξ

)
Pgg

(
x
ξ

)(fj(ξ, µF )
fg(ξ, µF )

)
, (3.39)

where αs = g2s
4π , and i, j denote quark or antiquark flavors. The scale µF is called the factorization

scale, as this renormalization can be seen as a re-factorization of the cross-section, where we absorb
non-perturbative, low-energy parts of the process into the PDFs. It is in general separate from the
scale we have discussed so far, which is called the renormalization scale µR; however, they are often
taken to be equal in calculations, so we will usually refer to them collectively as µ.

The Pij functions appearing in Eq. (3.39) are called splitting functions; at leading order they
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are given by

Pqq(z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
, (3.40)

Pqg(z) = TF

[
z2 + (1− z)2

]
, (3.41)

Pgq(z) = CF

[
1 + (1− z)2

z

]
, (3.42)

Pgg(z) = 2CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
+
β0
2
δ(1− z), (3.43)

with β0 defined in Eq. (3.27). These can qualitatively be understood as (proportional to) the
probability for an incoming parton j with momentum fraction (of the proton momentum) ξ to
radiate off part of its energy, leaving a parton i with momentum fraction x = zξ.

Splitting functions typically arise as the coefficients of collinear divergences in QCD calculations.
We will see examples of this in the next chapter when calculating QCD corrections to the qq(γ/Z)
vertex; the collinear divergences in the quark- and gluon-initiated processes are proportional to Pqq
and Pqg, respectively.

We now look explicitly at how the collinear divergences of a partonic cross-section are absorbed
into bare PDFs, leaving a finite partonic function and renormalized PDFs. First, recall that the
hadronic cross-section can be written as

dσ

dQ2
(τ) =

∑
ij

∫ 1

τ

dx̃1
x̃1

∫ 1

τ/x̃1

dx̃2
x̃2

f̃i(x̃1)f̃j(x̃2)w̃ij

(
z̃ =

τ

x̃1x̃2

)
. (3.44)

This is just a restatement of Eq. (3.33), where we have placed tildes on the bare PDFs and partonic
cross-section, here called w (with 1/x̃1x̃2 factored out as we alluded to previously). The latter
generically contains collinear divergences.

We now assume that a similar relation can be made for the singular functions w̃ij , i.e. that we
can define functions Γij(x) and write

w̃ij(z) =
∑
kl

∫ 1

z̃

dy1
y1

∫ 1

z̃/y1

dy2
y2

Γik(y1)Γjl(y2)wkl

(
z̃

y1y2

)
, (3.45)

where wkl is now finite. Inserting this into Eq. (3.44) and multiplying by 1 in the form of

1 =

∫ 1

τ

dx1
x1

δ(x1 − x̃1y1)x̃1y1

∫ 1

τ/x1

dx2
x2

δ(x2 − x̃2y2)x̃2y2, (3.46)

we find
dσ

dQ2
=
∑
kl

∫ 1

τ

dx1
x1

∫ 1

τ/x1

dx2
x2

fk(x1, µ)fl(x2, µ)wkl

(
z =

τ

x1x2

)
, (3.47)

where we have defined the renormalized PDFs as

fk(x, µ) =
∑
i

∫ 1

0
dx̃dyδ(x− x̃y)f̃i(x̃)Γik(y). (3.48)

The µ scale dependence comes from the function Γij and depends on renormalization scheme.
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In practice, the divergences are removed by expressing the above quantities as perturbation
series in the strong coupling αs, so that

w̃ij = w̃0
ij +

αs
π
w̃1
ij +O

(
α2
s

)
, (3.49)

wij = w0
ij +

αs
π
w1
ij +O

(
α2
s

)
, (3.50)

Γij = Γ0
ij +

αs
π
Γ1
ij +O

(
α2
s

)
. (3.51)

Inserting these into the above relations, and matching by order in αs shows that the divergences in
w̃ij can systematically be cancelled by those of Γij . In this way the Γij functions perform the role
of a generalized counterterm.

Exactly how the Γij functions are defined, and consequently the renormalized PDFs, depends
on the scheme used. The simplest choice, which we will adopt, is the MS scheme, which as
before just corresponds to removing terms proportional to 1

ε . Since the collinear divergences are
often proportional to the DGLAP splitting functions, as noted above, this typically means taking
Γ1
ij(z) ∝ 1

εPij(z), with Γ0
ij(z) = δijδ(1− z).
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Chapter 4

Slepton pair production in QCD

In this chapter we make use of what we have covered in the previous chapters to calculate the
theoretical cross-section for slepton pair production at hadron colliders.

We first establish the notation and kinematics of the process at the leading order, before adding
QCD corrections. We consider the inclusive cross-section, meaning that we add all processes at the
same order where a pair of sleptons are produced, regardless of the number of other color-charged
particles (called jets) that are produced; to this end we calculate both the virtual loop diagrams, in
regular QCD as well as including supersymmetric particles, and diagrams for emission of a single
quark or gluon alongside the sleptons.

These calculations involve various divergences, which are dealt with according to their origin:
Ultraviolet divergences from the loops are removed by field strength counterterms; soft divergences,
from when the energies of emitted particles go to zero, cancel between diagrams; and collinear
divergences, from when massless particles are emitted collinearly to the incoming partons, are dealt
with by renormalized PDFs. After this procedure, we are left with a finite expression for the
cross-section, to be integrated over parton momenta.

We then briefly discuss how the large logarithmic terms appearing at fixed orders can be dealt
with using resummation. These terms grow large in the limit where the emitted momentum goes
to zero, meaning that to compute such terms we can use the so-called eikonal approximation; this
can be done efficiently by relating the cross-section to geometrical objects known as Wilson lines.
Thus we will comment on how cross-sections in the eikonal limit can be calculated from Wilson
lines, and resummed by taking advantage of the renormalization of these objects. In the interest
of brevity we will not carry out the entire Wilson line calculation explicitly here — for details, the
reader is referred to Refs. [41–47] — but we will demonstrate explicitly how loop corrections appear
in the Wilson line formalism.

Finally, we combine the resummed results with the fixed-order ones. To avoid double-counting
— the resummed cross-section automatically includes parts of the fixed-order results at all orders
— we must use a technique called matching.

4.1 Kinematics and factorization

At leading order, the partonic process q(p1)q̄(p2) → ˜̀∗
iB(p3)

˜̀
iA(p4)

1 has two contributions, both
s-channel diagrams; one with the exchange of a virtual Z boson, and one with a virtual photon.
These are shown in Fig. 2.2. Their respective contributions to the S-matrix are as follows (all

1Recall from Fig. 2.2 that i = e, µ, τ denotes slepton flavor, while A,B = 1, 2 label mass eigenstates.
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Feynman rules taken from Ref. [48]):2

iMZ =v̄r(p2)
−ie

sin θW cos θW
γµ
[
ZqL

(
1− γ5

)
+ ZqR

(
1 + γ5

)]
us(p1)

× −igµν
Q2 −m2

Z + imZΓZ

−ie
sin θW cos θW

ZAB`i (p3 − p4)
ν , (4.1)

iMγ =v̄r(p2)(iQqeγ
µ)us(p1)

−igµν
Q2

(−ie)(p3 − p4)
νδAB, (4.2)

where q ≡ p3 + p4 is the momentum of the exchanged gauge boson, with Q ≡
√
q2; in the case

where there is no real emission from the initial state, q = p1 + p2 so that Q2 = ŝ ≡ (p1 + p2)
2; s

and r are the spins of the incoming quark and antiquark, respectively. The numerical factors in
the Z exchange diagram are defined by ZqL/R

≡ −1
2

(
T 3
qL/R

−Qq sin2 θW

)
and

ZAB`i ≡

{
1
2

(
δA1 cos2 θi` + δA2 sin2 θi` − 2 sin2 θW

)
A = B,

1
2 cos θi` sin θi` A 6= B,

(4.3)

and θi` is the left/right mixing angle (between the chiral and mass eigenstates) for slepton flavor i.3
The partonic differential cross-section is given by [6]

dσ̂ =
1

2ŝ
|M|2dΠ, (4.4)

where dΠ is the differential phase space of the final-state particles. The phase space can be simplified
in the center-of-mass frame, where the momenta of the different particles can be worked out fairly
easily using conservation of momentum. We assume that

√
ŝ � mq so that the quarks can be

assumed to be massless, while keeping the slepton masses. Using axial symmetry to define the
coordinates so that all motion happens on a two-dimensional plane, the involved particle momenta
can be parametrized as

p1 =

(√
ŝ

2
, 0, 0,

√
ŝ

2

)
, (4.5)

p2 =

(√
ŝ

2
, 0, 0,−

√
ŝ

2

)
, (4.6)

p3 = (EB, p sin θ, 0, p cos θ), (4.7)
p4 = (EA,−p sin θ, 0,−p cos θ), (4.8)

where θ is the center-of-mass scattering angle, and the slepton energies and (absolute value of)
momentum are given by

EB,A =
Q2 +m2

˜̀
iB,A

−m2
˜̀
iA,B

2Q
, (4.9)

p2 =
Q2

4
−
m2

˜̀
iA

+m2
˜̀
iB

2
+

(
m2

˜̀
iA

−m2
˜̀
iB

)2
4Q2

. (4.10)

2Since A and B are just labels for mass eigenstates, not vector indices, we can allow ourselves to be somewhat
haphazard with their placement for the sake of readability.

3Here we assume that the mixing is confined to the chiral eigenstates of individual flavors, so that the ˜̀̀̃ ∗ pair
must belong to the same flavor.
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If there is real radiation from the initial state, these momenta will naturally change, but p1,2 remain
the same in the center-of-mass frame, while p3,4 can also be written on the same form, but now in
their center-of-mass-frame, or the rest frame of the virtual exchange boson.

At next-to-leading order, the cross-section gets contributions proportional to αs = g2s/4π; both
via the exchange of virtual particles, and radiation of real ones. The latter technically describes a
different process, but as we discussed previously we are looking for the inclusive cross-section for
slepton pair production, i.e. that of the general hadronic process pp → ˜̀̀̃ ∗ + X, where X stands
for anything that is produced along with the slepton pair.

Since particles with color charge only appear in the initial state, this is the only part that
receives corrections at this order; it will therefore be convenient to factorize the cross-section into
a hadronic current, which is where quantum corrections arise, and a slepton current and effective
charge, both of which will remain unchanged at next-to-leading order.

To this end, we first look to factorize the phase space, in its most general form, i.e. including
a third particle with momentum k (with k2 = 0, k0 ≡ ω), that radiates off the initial state; in the
case where no such particle appears, this momentum is trivially integrated out. In d dimensions,
the phase space can be expressed as

dΠ = (2π)dδd(k + p3 + p4 − p1 − p2)
dd−1k

(2π)d−1

1

2ω

dd−1p3

(2π)d−1

1

2EB

dd−1p4

(2π)d−1

1

2EA
. (4.11)

Inserting two factors of unity (or more correctly, factors that integrate to unity), in the form of
(2π)dδd(k + q − p1 − p2)

ddq

(2π)d
and δ

(
q2 −Q2

)
dQ2, this can be factored as

dΠ =
1

2π
dΠLdΠHdQ

2, (4.12)

where now dΠH is the Lorentz-invariant phase space for the initial part of the interaction, with
q being viewed as the momentum of a massive, on-shell boson with mass Q (when there is no
radiation this phase space is trivial, as only q is integrated over and it is given exactly by momentum
conservation), and dΠL similarly for the slepton part. Explicitly these are given by

dΠH = (2π)dδd(q + k − p1 − p2)
dd−1q

(2π)d−1

1

2q0
dd−1k

(2π)d−1

1

2ω
, (4.13)

dΠL = (2π)dδd(p3 + p4 − q)
dd−1p3

(2π)d−1

1

2EB

dd−1p4

(2π)d−1

1

2EA
. (4.14)

Using this factorization, the spin- and color-averaged tree-level cross-section can be written
differential in the slepton invariant mass Q as

dσ̂

dQ2
=

4πα2

ŝ

(
PγH

µν
(γ)L(γ)µν + PZH

µν
(Z)L(Z)µν + PZγH

µν
(Zγ)L(Zγ)µν

)
, (4.15)

where α ≡ e2/4π. The three terms come from the expansion of the squared matrix element,
|M|2 = |MZ |2+ |Mγ |2+2Re

(
M∗

γMZ

)
. Here the P factors contain propagator factors and factors

of Qq, 1/ sin θW cos θW in each term (as well as their sign); the Ls are the slepton tensors, given
by4

Lµν(γ) = δABLµν , (4.16)

Lµν(Z) =
(
ZAB`i

)2
Lµν , (4.17)

Lµν(Zγ) = ZAB`i δABLµν , (4.18)
4There is no sum over A and B.
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with
Lµν ≡

∫
dΠL(p3 − p4)

µ(p3 − p4)
ν . (4.19)

The quark tensors are given by

Hµν
(γ) =

1

4N

∫
dΠHTr[�p2γ

µ
�p1γ

ν ], (4.20)

Hµν
(Z) =

1

4N

∫
dΠHTr

[
�p2γ

µ
(
ZqL

(
1− γ5

)
+ ZqR

(
1 + γ5

))
× �p1γ

ν
(
ZqL

(
1− γ5

)
+ ZqR

(
1 + γ5

))]
, (4.21)

Hµν
(Zγ) =

1

2N

∫
dΠHTr

[
�p2γ

µ
�p1γ

ν
(
ZqL

(
1− γ5

)
+ ZqR

(
1 + γ5

))]
. (4.22)

The factor 1/4N comes from dividing by the number of possible initial spin states (22 = 4) and
the number of color states N . At leading-order the initial state is restricted to be a color singlet,
since the electroweak gauge bosons cannot carry color charge, so that N = NC = 3; with radiation
included this is no longer necessarily the case.

Using properties of the γ5 matrix — specifically that its square is the identity, it anticommutes
with all γµ, and that the trace of γ5 times four other γ matrices is proportional to the Levi-Civita
tensor — it is fairly straightforward to show that all of the quark tensors are actually proportional:

Hµν
(γ) ≡ Hµν , (4.23)

Hµν
(Z) = 2

(
Z2
qL

+ Z2
qR

)
Hµν , (4.24)

Hµν
(Zγ) = 2(ZqL + ZqR)H

µν . (4.25)

This makes it possible to write a much simpler expression for the cross-section:

dσ̂

dQ2
=

4πα2

ŝQ4
FABq`i (Q)HµνLµν , (4.26)

with

FABq`i (Q) ≡ Q2
qδ
AB − 2Qqδ

AB
ZAB`i

sin2 θW cos2 θW
(ZqL + ZqR)

Q2
(
Q2 −m2

Z

)(
Q2 −m2

Z

)2
+m2

ZΓ
2
Z

+ 2

(
ZAB`i

)2
sin4 θW cos4 θW

(
Z2
qL

+ Z2
qR

) Q4(
Q2 −m2

Z

)2
+m2

ZΓ
2
Z

, (4.27)

Lµν ≡
∫
dΠL(p3 − p4)

µ(p3 − p4)
ν , (4.28)

εµε
∗
νH

µν ≡
∫
dΠH

∑
X

〈|M(qq̄ → γ∗ +X)|2〉. (4.29)

Here εµ is the polarization of the virtual photon, and the matrix element in the last line is defined
so that the qq̄γ∗ vertex is given by γµ, i.e. not including coupling strength. FABq`i can be viewed
as an effective coupling induced by the interference between the γ and Z diagrams; with only the
photon it would exactly equal the electromagnetic coupling.

The convenience of this factorization is that it is valid even beyond leading order, when taking
into account QCD loop corrections, as these only affect the hadronic current Hµν ; the slepton
current Lµν clearly does not receive any such corrections as the sleptons do not carry color charge,
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while the effective charge FABq`i remains the same as long as no supersymmetric particles appear in
loops (see Sec. 4.4), since the above manipulations of Dirac traces remains valid.

The latter point can be seen since each higher-order correction introduces an even number of
γ matrices; each loop gives two new vertices and two new fermion propagators, i.e. four new γ
matrices, while initial-state radiation gives one vertex and one propagator, i.e. two γ matrices.
Thus, the γ5 matrices from the Z vertex will commute with everything else exactly like it did in
the discussion above, and the same numerical factor FAB`i (Q) can be factored out.

The consequence of this is that when calculating 1-loop QCD corrections to the cross-section
we will only have to consider corrections to the process qq̄ → γ∗ +X, where γ∗ is a virtual photon
with mass Q and X represents anything that can be radiated off of the initial state.

Since, as discussed, the slepton vertex receives no corrections at next-to-leading order in QCD,
Lµν always takes the same form, and can be calculated just once and re-used; as p3 and p4 are
integrated over, Lµν can only depend on qµ, and from the available tensors and dimensional analysis
it must then have the form

Lµν = L1(Q)qµqν + L2(Q)gµνQ2. (4.30)

This can be contracted to make a pair of coupled equations:

qµqνL
µν = Q4(L1 + L2), (4.31)

gµνL
µν = Q2(L1 + dL2). (4.32)

Since the integrands on the left-hand side of both equations (recall that Lµν is defined to include
a slepton phase space integral) are rotationally symmetric they can be factored out of the integral,
making the system of equations straightforward to solve:

L1(Q) =
1

1− d

2
(
m2

˜̀
iA

+m2
˜̀
iB

)
−Q2

Q2
− d

(
m2

˜̀
iB

−m2
˜̀
iA

)2
Q4

∫ dΠL, (4.33)

L2(Q) =
4

1− d

p2

Q2

∫
dΠL, (4.34)

where the momentum p2 is given in terms of the masses and Q2 in Eq. (4.10). The total two-particle
phase space of the sleptons is given by∫

dΠL = (2π)d
∫
δd(p3 + p4 − q)

dd−1p3

(2π)d−1

1

2EB

dd−1p4

(2π)d−1

1

2EA

=
pd−3

2dπd−2Q

∫
dΩd−1

=
pd−3

2d−1π(d−3)/2Γ
(
d−1
2

)
Q

, (4.35)

where Γ is the Euler gamma function. This is somewhat overly general; since the slepton part of
the calculation receives no QCD corrections it is not divergent, so we can safely simplify it to d = 4.
This gives a much simpler expression: ∫

dΠL =
p

4πQ
. (4.36)

Note that Lµν does not immediately satisfy the Ward identity; this is because (p3 − p4)
µ is not

the full Feynman rule for the photon-slepton interaction, which also contains a Kronecker delta δAB;
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in the above factorization, this was instead included in the effective charge FAB`i . The “Feynman
rule” written on this form mixes left- and right-handed fields in the QED interaction term in the
Lagrangian, which violates gauge invariance and thus the Ward identity. The full term including
the Kronecker delta does satisfy the identity, as desired; this can be seen from setting A = B in
the above equations, which gives L1 = −L2.

Now that we have the slepton tensor on this form, we can use the Ward identity so simplify the
final result further; since qµMµ(qq̄ → γ∗ +X) = 0, where ε∗µ(q)Mµ = M, by gauge symmetry,5
only the second term in Eq. (4.30) contributes when contracted with Hµν , so that the contraction
of Hµν with Lµν reduces to a contraction with gµν and multiplication with a numerical factor. In
other words, the entire slepton tensor can be encapsulated in taking

Lµν =

∫
dΠL(p3 − p4)µ(p3 − p4)ν → − p3

3πQ
gµν . (4.37)

Furthermore, since −gµν is equal to the sum of photon polarizations ε∗µεν , the entire contraction
can be written as

HµνLµν =
p3

3πQ

∫
dΠH

∑
X

〈|M(qq̄ → γ∗X)|2〉. (4.38)

Then, the final reference formula for the partonic cross-section is

dσ̂

dQ2
=

4α2p3

3ŝQ5
FABq`i (Q)

∫
dΠH

∑
X

〈|M(qq̄ → γ∗X)|2〉 (4.39)

4.2 Leading-order cross-section

At leading order there are no divergences to be regulated, so we can safely set d = 4. The tree-level
diagram for qq̄ → γ∗ is given by

iM0 = v̄r(p2)γ
µus(p1)ε

∗
µ(q), (4.40)

where a color-conserving Kronecker delta is implicit, since as discussed above, only color singlet
initial quark states contribute. This gives a spin- and color-averaged matrix element (integrated
over the phase space) of∫

dΠH〈|M0|2〉 = − 1

4NC

∫
dΠHTr[�p2γ

µ
�p1γµ] =

d− 2

2NC

∫
dΠH ŝ. (4.41)

The phase space integral is trivial in this case:∫
dΠH =

∫
dd−1q

(2π)d−1

1

2q0
(2π)dδd(q − p1 − p2) =

2π

ŝ
δ(1− z), (4.42)

where z ≡ Q2/ŝ. The cross-section is then, using Eq. (4.39) with d = 4:

dσ̂0
dQ2

=
8πα2p3

3NC ŝQ5
FABq`i (Q)δ(1− z) (4.43)

≡ σ0δ(1− z). (4.44)
5Unlike for the slepton tensor we are not factoring out anything that is necessary for gauge invariance from M,

so the Ward identity will actually hold.
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For later reference, the cross-section in d dimensions is given by

dσ̂d0
dQ2

= (d− 2)
4πp3

3NcŝQ5
FABq`i (Q)δ(1− z) (4.45)

=

(
d− 2

2

)
σ0δ(1− z)

≡ σd0δ(1− z). (4.46)

4.3 Standard Model corrections at NLO

4.3.1 Virtual loop correction

At one-loop order, so far not including any supersymmetry contributions, there is one virtual gluon
diagram, given by

p1

k + p1
q

k − p2

−p2

k ≡ iMµ
1 ε

∗
µ(q). (4.47)

Here εµ(q) is the polarization tensor of the virtual photon, and all fermion momenta are given in the
direction of fermion flow as described by the arrows. At next-to-leading order (technically leading
order in QCD) this contributes through their cross-term with the tree-level diagram.

The loop gives, not including photon polarization,

iMµ
1 =v̄ri (p2)

(
iµ(4−d)/2gsT

a
ik

)(
iµ(4−d)/2gsT

a
kj

)
(−igρσ)

×
∫

ddk

(2π)d
γρi(�k − �p2)γ

µi(�k + �p1)γ
σ

k2(k + p1)
2(k − p2)

2 usj(p1)

=− δijCF iµ
4−dg2s

∫
ddk

(2π)d
v̄ri (p2)N

µusj(p1)

k2(k + p1)
2(k − p2)

2 . (4.48)

Here we have used Eq. (3.7) to simplify the sum over the quark colors i, j; the Kronecker delta δij
means that as in the tree-level case, only color singlet initial states contribute. Therefore, as before
we only need to consider NC = 3 different initial color states and can drop the color labels on the
spinors.

The numerator can be simplified through contraction identities for γ matrices in d dimensions,
the Dirac algebra, and using v̄(p2)�p2 = �p1u(p1) = 0 (for massless quarks):

Nµ = γρ(�k − �p2)γ
µ(�k + �p1)γρ

→ 2(2− d)γνk
µkν − (2− d)γµgρσk

ρkσ + 4(γµ(p1 − p2)ν − γν(p1 − p2)
µ)kν − 2ŝγµ. (4.49)

The arrow means that the two expressions are not equal, but evaluate to the same when placed
between the two spinors. The matrix element can then be written as

iMµ
1 = CFµ

4−dg2s v̄
r(p2)Γ

µus(p1), (4.50)
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where Γµ can be expressed in terms of Passarino-Veltman functions. Suppressing arguments, which
are the same for each function —

(
p21 = 0, ŝ, p22 = 0, 0, 0, 0

)
— and following the LoopTools [26,27]

conventions for normalization of the loop integrals (again using the Dirac equation as above, as
well as p21 = p22 = 0), we have

(4π)d/2µ4−d

rΓ
Γµ = 2(2− d)γνC

µν − (2− d)γµgρσC
ρσ

+ 4(γµ(p1 − p2)ν − γν(p1 − p2)
µ)Cν − 2ŝγµC0

→
[
(2− d)2C00 + (2− d)ŝC12 − 2ŝC1 − 2ŝC2 − 2ŝC0

]
γµ. (4.51)

Here rΓ is defined as

rΓ ≡ Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
, (4.52)

with d = 4− 2ε.
The NLO contribution to the quark tensor is then (the phase space integral is the same as for

the leading-order case)

Hµν
1 =

1

4NC

∫
dΠH

∑
spins

2Re(Mµ
0M

ν∗
1 )

= Re(f(ŝ))Hµν
0 , (4.53)

where
f(ŝ) ≡ 2CF

rΓ

(4π)d/2
g2s

[
(d− 2)2C00 − ŝ((d− 2)C12 + 2(C0 + C1 + C2))

]
, (4.54)

and Hµν
0 is the leading-order hadronic current. The virtual correction to the cross-section is then

given by
dσ̂v
dQ2

= Re(f(ŝ)) dσ̂
d
0

dQ2
, (4.55)

with the leading-order cross-section given by Eq. (4.46).
To simplify keeping track of divergences, we expand each Passarino-Veltman function in terms

of their divergences; for example,

Re(C0) ≡
1

ε2
C2
0 +

1

ε
C1
0 + C0

0 , (4.56)

where Ci0 are all finite, and the 1/ε term contains both infrared and ultraviolet divergences.
Expanding in ε, using

Γ(1− ε)Γ(1 + ε) = 1 + ε2π2/6 +O
(
ε3
)

(4.57)

and aε = 1 + ε ln a+ 1
2ε

2 ln2 a+O
(
ε3
)
, f(ŝ) can then be written as6

f(ŝ) =
Γ(1− ε)

Γ(1− 2ε)

(
4πµ2

Q2

)ε
CF

αs
π

[
1

ε2
f2 +

1

ε

(
f1 + ln

(
Q2

µ2

)
f2
)

+

(
f0 +

π2

6
f2 +

1

2
ln2

(
Q2

µ2

)
f2 + ln

(
Q2

µ2

)
f1
)]

, (4.58)

6Terms of order O(ε) go to zero in the limit ε→ 0, and are dropped.
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where

f2 = 2C2
00 − ŝ

(
C2
12 + C2

0 + C2
1 + C2

2

)
, (4.59)

f1 = 2C1
00 − 4C2

00 − ŝ
(
C1
12 − C2

12 + C1
0 + C1

1 + C1
2

)
, (4.60)

f0 = 2C0
00 − 4C1

00 + 2C2
00 − ŝ

(
C0
12 − C1

12 + C0
0 + C0

1 + C0
2

)
. (4.61)

The ln
(
Q2/µ2

)
terms appear since we have explicitly factored out

(
µ2/Q2

)ε. Note that this is
written on a somewhat unnecessarily general form, as many of these coefficients are zero.

4.3.2 Renormalizing the virtual diagram

The renormalization of this diagram requires some care; we cannot simply subtract the ultraviolet
divergence in the form of a vertex counterterm, since there is no parameter in the Lagrangian
corresponding to a vertex like this, mixing QED and QCD interactions. What we can do
instead is use the field renormalization of the quark field ψ; the bare field can be written as
|ψ0|2 = Zψ|ψ|2 = (1 + δψ)|ψ|2. Thus we can add the field renormalization 2Re(δψ)

dσ̂d
0

dQ2 to the
calculation.

We calculate the counterterm in the on-shell scheme, as discussed in Sec. 1.2.4; by Eq. (1.79)
this means that

δψ = − d

d�p
Σ2(�p)

∣∣∣∣
�p=0

, (4.62)

where iΣ2(�p) is the gluon-quark loop correction to the quark propagator. Explicitly this is given
by

iΣ2(�p) =
p

k

k + p
p

= −g2sµ4−dCF
∫

ddk

(2π)d
γµ(�k + �p)γµ

k2(k + p)2

= −g2sµ4−dCF (2− d)

∫ 1

0
dx

∫
ddk

(2π)d
�p(1− x)

[k2 + p2x(1− x)]2
. (4.63)

Here we have introduced the Feynman parameter x and changed integration variables k → k− xp,
dropping the kµ terms in the numerator which vanish due to symmetry. Differentiating with respect
to �p at �p = 0 leaves the scaleless integral7∫

ddk

(2π)d
1

k4
=

i

16π2

(
1

εUV
− 1

εIR

)
. (4.64)

Note that εUV and εIR are identical numerically; their subscripts are just meant to keep track of
their origin, in that the former must be taken larger than zero, and the latter smaller than zero,
when regulating the integral.

With this, the counterterm contribution to the cross-section is

2Re(δψ)
dσ̂d0
dQ2

= σd0δ(1− z)
αs
2π
CF

(
1

εIR
− 1

εUV

)
. (4.65)

7This is solved by splitting the integral over the Euclidean kE into low- and high-energy regions; the two integrals
are solved using d = 4− 2ε, where ε < 0 for the low-energy region, and ε > 0 in the high-energy region.
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p1 − k

q−p2
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k − p2

−p2
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Figure 4.1: Real gluon emission diagrams that contribute at order αs to the qq̄ → ˜̀̀̃ ∗ +X cross-
section.

By evaluating the Passarino-Veltman coefficients of Eq. (4.58) in LoopToops [26, 27], we find that
this exactly cancels the ultraviolet divergence from the virtual diagram, and adds an infrared one
with the same coefficient. In this way, since εIR = εUV, nothing has really changed in the expression.

This means that in practice, when implementing Eq. (4.58) numerically, we actually obtain the
renormalized expression when the UV-divergent terms are not actively removed; instead they are
(heuristically) regarded as contributing to the IR-divergent ones.

4.3.3 Real gluon emission

The virtual correction to the cross-section is UV-finite when renormalized, but still contains infrared
divergences. This can be amended by adding the cross-section for qq̄ → ˜̀̀̃ ∗+ g, where g is a gluon,
which at leading-order contributes at the same order in αs as the above to the inclusive cross-section
we are looking for.

As discussed in Sec. 4.1, the slepton part and intermediate propagator factorize in the cross-
section, and we only have to consider the hadronic part of the process; in this case, the process
qiq̄j → γ∗ga at leading-order. Here i, j denote the color states of the incoming quarks, and a
the state of the gluon, which transforms in the adjoint representation. At this order there is one
t-channel and one u-channel diagram, shown in Fig. 4.1. Their S-matrix element is given by

iMr = v̄rj (p2)

[
γµ �p1 −�k

(p1 − k)2

(
iµ

4−d
2 gsT

a
ji

)
γν +

(
iµ

4−d
2 gsT

a
ji

)
γν

�k − �p2

(k − p2)
2γ

µ

]
usi (p1)ε

a∗
ν (k)ε∗µ(q)

≡ v̄j(p2)S
µνusi (p1)ε

a∗
ν (k)ε∗µ(q)T

a
ji, (4.66)

where k and q are the momenta of the gluon and virtual photon, respectively. Defining the partonic
Mandelstam variables

ŝ ≡ (p1 + p2)
2 = (k + q)2, (4.67)

t̂ ≡ (p1 − k)2 = (p2 − q)2, (4.68)
û ≡ (p1 − q)2 = (p2 − k)2, (4.69)

the spin- and color-averaged squared matrix element is given by

〈|Mr|2〉 =
1

4N2
C

Tr[�p2S
µν

�p1S
ρσ]gµσgνρT

a
jiT

a
ij

=
CFµ

4−dg2s
4NC

{
1

t̂2
Tr[�p2γ

µ(�p1 −�k)γ
ν
�p1γν(�p1 −�k)γµ] +

1

t̂û
Tr[�p2γ

µ(�p1 −�k)γ
ν
�p1γµ(�k − �p2)γν ]

+ (p1 ↔ p2)

}
. (4.70)
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The first term is fairly straightforward to evaluate using Dirac algebra in d dimensions:

Tr[�p2γ
µ(�p1 −�k)γ

ν
�p1γν(�p1 −�k)γµ] = 2(d− 2)2ût̂. (4.71)

The second requires a little more work, and using ŝ+ t̂+ û = Q2, to simplify; in the end, it can be
written as

Tr[�p2γ
µ(�p1 −�k)γ

ν
�p1γµ(�k − �p2)γν ] = 2(d− 4)(d− 2)ût̂+ 4(d− 2)Q2ŝ. (4.72)

Putting this together, the squared matrix element reduces to

〈|Mr|2〉 =
CFµ

4−dg2s
2NC

(d− 2)

[
4
Q2ŝ

t̂û
+ 2(d− 4) + (d− 2)

(
û

t̂
+
t̂

û

)]
. (4.73)

To carry out the phase space integral, it is convenient to express everything in terms of
dimensionless variables. We use momentum conservation to eliminate one momentum integral and
fix the absolute value of the spatial momenta, and the energy of the gluon, to ω = (1− z)

√
ŝ/2;

then, by axial symmetry, we can eliminate all but one angular integration variable. With this the
differential phase space of the gluon and photon (as defined in Eq. (4.13)) can be simplified, in the
center-of-mass frame, to

dΠH =
(1− z)d−3(Q2/z

)(d−4)/2

2d−1π(d−2)/2Γ
(
d−2
2

) [y(1− y)]
d−4
2 dy, (4.74)

where y ≡ 1
2(1 + cos θ) ∈ (0, 1) and as before z = Q2/ŝ. The angle θ is the gluon emission angle in

the center-of-mass frame. Using this, the Mandelstam variables can be rewritten in terms of y and
z: From the definition of z, ŝ is immediately given by ŝ = Q2/z. For the others,

t̂ = −Q
2

z
(1− z)(1− y), (4.75)

û = −Q
2

z
(1− z)y. (4.76)

Inserted in Eq. (4.39), this gives (in d = 4− 2ε dimensions)

dσ̂r
dQ2

=
CFµ

2ε21+2επεαsα
2(1− ε)(1− z)1−2ε(Q2/z

)−ε
p3

3NC ŝQ5Γ(1− ε)
FABq`i (Q)

×
∫ 1

0
dy[y(1− y)]−ε

[
4z

(1− z)2y(1− y)
− 4ε+ (2− 2ε)

(
y

1− y
+

1− y

y

)]
. (4.77)

The y integral can be performed through Euler beta functions;∫ 1

0
dyya−1(1− y)b−1 = B(a, b) =

Γ(a)Γ(b)

Γ(a+ b)
. (4.78)

This leaves8

dσ̂r
dQ2

=
8CFαsα

2p3

3NC ŝQ5
FABq`i (Q)

(
4πµ2

Q2

)ε
(1− ε)

Γ(1− ε)

Γ(1− 2ε)

×
[
−2

ε
z1+ε(1− z)−1−2ε − 1

1− 2ε

(
ε+

1

ε
(1− ε)2

)
zε(1− z)1−2ε

]
. (4.79)

8Note that we must assume ε < 0, i.e. d > 4, in using the beta functions, meaning that the divergences are
infrared in nature
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The terms in brackets can be expanded to first order in ε using zε = 1 + ε ln z + O
(
ε2
)
, and with

plus distributions:9

(1− z)−1−2ε = − 1

2ε
δ(1− z) +

1

(1− z)+
− 2ε

(
ln(1− z)

1− z

)
+

+O
(
ε2
)
. (4.80)

Then, discarding all terms of order higher than ε1, as well as setting z = 1 in all terms proportional
to δ(1− z), the cross-section is given by

dσ̂r
dQ2

= σd0CF
αs
π
G(ε)

[
1

ε2
δ(1− z)− 1

ε

1 + z2

(1− z)+
−
(
1 + z2

)
ln z

1− z
+ 2
(
1 + z2

)( ln (1− z)

1− z

)
+

]
, (4.81)

where
G(ε) ≡

(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)
= 1 +O(ε). (4.82)

We recognize this factor from the virtual diagram, in Eq. (4.58).
It is worth noting where the different divergences originate from; in the calculation above, they

appear in the phase space integration for the region of phase space with y → 1 or y → 0, and
in expanding (1− z)−1−2ε, which diverges for z → 1. These are called collinear (y → 0, 1 means
cos θ → ±1, i.e. the emitted gluon goes collinear to either of the quarks) and soft (z → 1 means that
the gluon energy ω → 0) divergences, respectively. The 1/ε2 term has both of these contributions,
while the other divergence is purely collinear, since the δ(1− z) part in the expansion of Eq. (4.80)
cancels in all other terms.

Adding Eq. (4.55), evaluating the Passarino-Veltman coefficients in LoopTools [26,27],10 the qq
contribution to the partonic cross-section at NLO is given by

dσ̂qqNLO
dQ2

= σd0
αs
π
CFG(ε)

[
δ(1− z)

(
π2

3
− 4

)
−
(
1 + z2

)
ln z

1− z
+ 2
(
1 + z2

)( ln (1− z)

1− z

)
+

−1

ε

(
1 + z2

(1− z)+
+

3

2
δ(1− z)

)]
. (4.83)

The ultraviolet divergence has been removed, so we drop the subscript on ε = εIR. Notice that as
anticipated, the remaining collinear divergence is proportional to Pqq(z), as defined in Eq. (3.40).

Since the virtual loop contribution has a simple functional form, as verified by evaluating the
coefficients in Eq. (4.58), it is not necessary to calculate these from Passarino-Veltman coefficients
each time the cross-section is evaluated. Instead, it is more efficient to just use the above expression
directly.

This changes when considering loop corrections from supersymmetric particles, as we will do
in Sec. 4.4. There, since the particles in the loop are massive, the dependence on the scale µ and
the physical energy scales will not factor out as neatly as here. This in turn makes the integrals
over the Feynman parameters much more complicated, making it simpler to use Passarino-Veltman
reduction.

9For the definition of plus distributions, see Sec. 3.3.1.
10This is done by evaluating the terms in Eq. (4.58) proportional to 1/ε2, 1/ε, and finite ones, respectively, and

verifying that the expression in the brackets [· · · ] of that equation evaluates to − 1
ε2

− 3
2

1
ε
+ π2

3
− 4, regardless of the

energy scales µ and Q (this only happens due to the massless nature of the particles in the loop; more complicated
scale dependence is expected when the propagating particles are massive). Alternatively, one can explicitly perform
the loop integral following the methods of Sec. 1.2.2, with the integrals over the Feynman parameters becoming Beta
integrals similar to those of the real emission diagrams.
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Figure 4.2: Leading-order diagrams for qg → qγ∗.

4.3.4 Real quark emission

Next, we must consider the process qg → q ˜̀̀̃ ∗, or similarly with an antiquark instead of a quark.
At the parton level this is obviously a very different process, but at the hadron level it contributes
to the same observed process as the qq̄ collision diagrams; a collision of two protons, leading to the
production of a slepton pair, which manifests itself as missing transverse energy and a lepton pair
in addition to a jet, since neither gluons nor quarks can be observed on their own. This process
begins at order α2αs, and has no virtual contributions, so all divergences must cancel on their own.

As before, we only consider the hadronic part of the diagram, since the propagator and slepton
pieces remain unchanged. Thus we need the S-matrix element for qg → qγ∗, which at leading order
has two contributions as shown in Fig. 4.2, and is given by

iMqg = ūrj(k)S
µν
(q)u

s
i (p1)T

a
jiε

a
ν(p2)ε

∗
µ(q), (4.84)

where
Sµν(q) ≡ γµ

i(�p1 + �p2)

ŝ

(
iµ(4−d)/2gsγ

ν
)
+
(
iµ(4−d)/2gsγ

ν
) i(�k − �p2)

û
γµ, (4.85)

with the Mandelstam variables defined exactly like in the gluon emission case, but now p2 and k are
the momenta of the incoming gluon and outgoing quark, respectively. Note that since the quarks
are still taken to be massless the kinematics will work out in the same way as in the gluon emission
calculation.

For the spin- and color-averaged squared matrix element we now have to take into account
that the gluon has a different number of available states than the quark, as it transforms in the
adjoint representation of SU(3)C ; since it is a massless vector it has 2 possible polarizations, like
the quark, but the number of color states is given by the number of SU(3) generators, namely
N2
C − 1. The color factor remains the same, but here it is more convenient to use Eq. (3.8) to write

it as T ajiT aij = TF
(
N2
C − 1

)
, where TF is the index of the fundamental representation. With this, we

have
〈|Mqg|2〉 =

TF
4NC

Tr
[
�kS(q)µν�p1S

νµ
(q)

]
. (4.86)

The trace calculation works out in a very similar fashion as for the gluon emission, leaving

〈|Mqg|2〉 =
TF
2NC

µ4−dg2s(d− 2)

[
−4

4Q2t̂

ûŝ
+ 2(4− d)− (d− 2)

(
û

ŝ
+
ŝ

û

)]
. (4.87)

Expressing the Mandelstam variables as functions of z and y as in the previous section (again,
because the kinematics are identical), one can see that this expression is regular for z = 1; this
means that all divergences are collinear, and eliminates the need for plus distributions. Besides this
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Figure 4.3: Supersymmetry correction to the qq̄γ/qq̄Z vertex. For sparticles, both particle types
and momenta (in the direction of the arrows) are given. C,D label the squark mass eigenstates,
and i the quark/squark flavor.

the calculation is again similar to the gluon emission case, and gives a partonic cross-section of

dσ̂qg
dQ2

= σd0TF
αs
2π
G(ε)

[(
(1− z)2 + z2

)(
ln (1− z)2

z
− 1

ε

)
+

1

2
+ 3z − 7

2
z2

]
. (4.88)

Note that this also holds for gluon-antiquark scattering. Again, from Eq. (3.41) we are left with a
collinear divergence proportional to the splitting function Pqg(z), and the same prefactor G(ε) as
defined in Eq. (4.82).

4.4 Supersymmetry correction

At order O(αs) there is just one contributing diagram involving supersymmetric particles, given by
the loop shown in Fig. 4.3.

In the most general case,11 the two squarks corresponding to one quark can have different
masses, and the mass eigenstates are not necessarily the same as the chiral eigenstates. Thus the
photon and Z exchange diagrams will no longer factor exactly like they have up to this point,
since weak and QED interactions treat chirality differently; for example, the propagator factors
from each contribution will then not be the same since different particles appear in the different
processes (the squark-Z vertex allows for the two interacting squarks to not be in the same mass
eigenstate, while the γ vertex does not), and mass mixing angles will appear differently as well. It
is therefore necessary to evaluate the photon and Z exchange diagrams individually. The matrix
element for the loop diagrams (including the slepton part and propagators) is given by

iMS =v̄r(p2)
−ie
cW sW

ΓµZu
s(p1)

−igµν
Q2 −m2

Z + imZΓZ

−ie
cW sW

ZAB`i (p3 − p4)
ν

+ δAB v̄r(p2)(iQqe)Γ
µ
γu

s(p1)
−igµν
Q2

(−ie)(p3 − p4)
ν ,

(4.89)

11Excluding mixing mass mixing across flavors, as discussed previously.
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where sW , cW ≡ sin θW , cos θW . The vertices are given by [48]12,13

ΓµZ =

2∑
C,D=1

iµ(4−d)/2gs√
2

T ajk
[
a(q̃D)

(
1− γ5

)
+ b(q̃D)

(
1 + γ5

)]
×
∫

ddk

(2π)d
i(−�k +mg̃)

k2 −m2
g̃

i

(k + p1)
2 −m2

q̃C

i

(k − p2)
2 −m2

q̃D

ZCDq (2k + p1 − p2)
µ

× iµ(4−d)/2gs√
2

T aki
[
a(q̃C)

(
1 + γ5

)
+ b(q̃C)

(
1− γ5

)]
, (4.90)

and Γµγ is the same with C = D and no factor ZCDq . The various numerical factors are defined by

a(q̃C) ≡ −Q2C , (4.91)
b(q̃C) ≡ Q1C , (4.92)
ZCDq ≡ −

[
T 3
qL
Q1CQ1D + T 3

qR
Q2CQ2D −Qqs

2
W δ

CD
]
, (4.93)

with the mixing matrix given by

QCD =

[
cos θq sin θq
− sin θq cos θq

]
. (4.94)

note that without mass/chirality mixing, Z11/22
q = 2ZqL/R

.
The reason that mixing angles and chirality projection operators appear even in the quark-

squark-gluino vertex is that in the QCD Lagrangian, left- and right-handed fields are not mixed,
which means that left-handed quark fields only interact with q̃L, and vice versa. If there were
no mixing and no mass difference between the two squark states one could simply sum over the
chiralities with the γ5 matrices canceling out, as in a regular QCD vertex, but in the general case
we must keep track of the different squarks separately.

Since squarks are scalars, the Dirac matrix structure of these expressions is actually somewhat
simpler than in the regular QCD case; apart from the loop integral, only γ5 matrices appear, which
are fairly straightforward to keep track of as they anti-commute with all γµ. This means that all
terms proportional to �p1 or �p2 in the integral can be dropped, since they vanish when contracted
with the external spinors.

Furthermore, these vertices contribute to the NLO cross-section through interference with the
leading-order result, like the QCD loop did, giving terms proportional to e.g. Tr

[
�p2Γ

µ
Z/γ�p1γ

ν
]
. Such

traces vanish for an odd number of γ matrices; in other words, all terms in ΓµZ/γ not proportional
to γµ, after rewriting the integral in terms of Passarino-Veltman functions, will not contribute to
the trace. This makes it possible to simplify the loop integral in Eq. (4.90) (denoted by ICD)
considerably, dropping all terms containing �p1 and/or �p2, as well as terms without γµ; in the end,
the only contributing part is

ICD ≡ −iµ4−d
∫

ddk

(2π)d
(�k −mg̃)(2k + p1 − p2)

µ(
k2 −m2

g̃

)(
(k + p1)

2 −m2
q̃C

)(
(k − p2)

2 −m2
q̃D

)
→ 2

rΓ

(4π)d/2
γµC00

(
0, Q2, 0,m2

g̃,m
2
q̃C
,m2

q̃D

)
. (4.95)

12Here C,D label the mass eigenstates of the intermediate squarks.
13As mentioned in Ref. [49] the treatment of gluinos, being Majorana fermions, requires some care in definining

fermion flow directions, but the treatment for the quark-squark-gluino vertex is fairly straightforward.
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For convenience, the list of arguments of C00 will henceforth be abbreviated to (C,D), since only
the squark mass eigenstates change from one term to another.

Writing out the terms in the C,D sum explicitly and using the anti-commutation of the γ5
matrix, the vertex factors can be written as (as usual the color factors simplify to CF δij ; the
Kronecker delta is left implicit below)

ΓµZ → αs
2π

(4π)(4−d)/2rΓCFγ
µ
[
C00(1, 1)Z

11
q

(
sin2 θq

(
1 + γ5

)
+ cos2 θq

(
1− γ5

))
− 2(C00(1, 2) + C00(2, 1))Z

12
q sin θq cos θqγ5

+ C00(2, 2)Z
22
q

(
cos2 θq

(
1 + γ5

)
+ sin2 θq

(
1− γ5

))]
, (4.96)

Γµγ → αs
2π

(4π)(4−d)/2rΓCFγ
µ
[
C00(1, 1)

(
sin2 θq

(
1 + γ5

)
+ cos2 θq

(
1− γ5

))
+ C00(2, 2)

(
cos2 θq

(
1 + γ5

)
+ sin2 θq

(
1− γ5

))]
. (4.97)

As we mentioned above, these diagrams contribute to the NLO cross-section through interference
with the leading-order result. The phase space is identical to that of the leading-order case, with
the hadronic part simply integrating to 2π

ŝ δ(1− z) as in Sec. 4.2; and the slepton part contributing∫
dΠL(p3 − p4)µ(p3 − p4)ν → − p3

3πQ
gµν , (4.98)

like in Eq. (4.37). The cross-section can then be written as

dσ̂s
dQ2

=
1

2πŝ

∫
dΠHdΠLRe〈M∗

0Ms〉 (4.99)

= −p
3gµνδ(1− z)

12NCπQŝ2

[
e4

c4W s
4
W

(
ZAB`i

)2(
Q2 −m2

Z

)2
+m2

ZΓ
2
Z

Mµν
ZZ

− Qqe
4

c2W s
2
W

(
Q2 −m2

Z

)
ZAB`i δAB

Q2
((
Q2 −m2

Z

)2
+m2

ZΓ
2
Z

)(Mµν
Zγ +Mµν

γZ

)
+
Q2
qe

4

Q4
δABMµν

γγ

, (4.100)

where we have defined
Mµν

(Z/γ)(Z/γ) ≡ Tr
[
�p2Γ

µ
Z/γ�p1γ

ν
Z/γ

]
, (4.101)

with γµγ ≡ γµ and
γµZ ≡ γµ

(
ZqL

(
1− γ5

)
+ ZqR

(
1 + γ5

))
. (4.102)

Like in Sec. 4.1, all of the traces in Eq. (4.101) are proportional to Tr[�p2γ
µ
�p1γ

ν ], which is equal
to 2

(
4p

(µ
1 p

ν)
2 − ŝgµν

)
; once contracted with gµν from the slepton tensor, this gives 2(2− d)ŝ. The

proportionality factors are again found by using properties of the γ5 matrix.
The divergence in this expression (coming from C00) is purely ultraviolet, meaning that it

can be removed entirely by a counterterm without leaving any finite terms when expanding in
ε = 1

2(4− d).14 Thus we can make this expression finite by effectively taking, when factoring out
the usual prefactor G(ε)(1− ε),(

Q2

µ2

)ε
Γ(1 + ε)Γ(1− ε)Re(C00) → C0

00 ≡ C, (4.103)

14This is in contrast to what happened in Eq. (4.58), where the finite term contains contributions from IR-divergent
functions.
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where C0
00 is, as before, the real part of the finite component of C00. Since we are using the on-shell

renormalization scheme for the particle masses there is, however, a finite contribution from the
renormalization in this case, as we will see shortly.

In the end, the loop contribution to the cross-section, i.e. not including the counterterm, is
given by

dσ̂s
dQ2

= CFG(ε)(1− ε)
8α2αs

3NC ŝQ5
δ(1− z)FABq̃`i (Q)

= σd0G(ε)CF
αs
π

FABq̃`i (Q)

FABq`i (Q)
δ(1− z), (4.104)

where

FABq̃`i = C(1, 1)

 Q4
(
ZAB`i

)2
Z11
q

c4W s
4
W

((
Q2 −m2

Z

)2
+m2

ZΓ
2
Z

)(2 sin2 θqZqR + 2 cos2 θqZqL
)

− Qq
c2W s

2
W

Q2
(
Q2 −m2

Z

)
ZAB`i δAB(

Q2 −m2
Z

)2
+m2

ZΓ
2
Z

(
Z11
q + 2 sin2 θqZqR + 2 cos2 θqZqL

)
+Q2

qδ
AB


+C(2, 2)

 Q4
(
ZAB`i

)2
Z22
q

c4W s
4
W

((
Q2 −m2

Z

)2
+m2

ZΓ
2
Z

)(2 cos2 θqZqR + 2 sin2 θqZqL
)

− Qq
c2W s

2
W

Q2
(
Q2 −m2

Z

)
ZAB`i δAB(

Q2 −m2
Z

)2
+m2

ZΓ
2
Z

(
Z22
q + 2 cos2 θqZqR + 2 sin2 θqZqL

)
+Q2

qδ
AB


−2(C(1, 2) +C(2, 1))

Q4
(
ZAB`i

)2
Z12
q (ZqR − ZqL)

c4W s
4
W

((
Q2 −m2

Z

)2
+m2

ZΓ
2
Z

) sin θq cos θq. (4.105)

For the special case where θq = 0 and mq̃1 = mq̃2 = mq̃, this reduces to FABq̃`i =

2C
(
0, Q2, 0,m2

g̃,m
2
q̃ ,m

2
q̃

)
FABq`i , with FABq`i as defined in Eq. (4.27).

4.4.1 Self-energy counterterm

As we alluded to above, the renormalization of the quark-squark-gluino vertex, when using the
on-shell scheme for masses, leaves a finite contribution to the cross-section. Like in the QCD loop
correction we add a field renormalization term 2Re

(
δsψ

)
dσ̂d

0
dQ2 ; δsψ is given by

δsψ = − d

d�p
Σs2(�p)

∣∣∣∣
�p=mq=0

, (4.106)
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where Σs2 is the squark-gluino loop correction to the quark self-energy. Evaluating this diagram we
find (as usual the color sum includes a color-conserving Kronecker delta, which we leave implicit)

iΣs2(�p) =
p

p− k

q̃C

k

g̃ p
q q

=

2∑
C=1

µ4−dg2sT
aT a

1√
2

[
a(q̃C)

(
1− γ5

)
+ b(q̃C)

(
1 + γ5

)]
×
∫

ddk

(2π)d
�k +mg̃(

k2 −m2
g̃

)(
(k − p)2 −m2

q̃A

)
× 1√

2

[
a(q̃C)

(
1 + γ5

)
+ b(q̃C)

(
1− γ5

)]
. (4.107)

The two terms in the integral are treated separately; the first is a tensor integral Bµ, while the
other is a scalar 2-point function B0. The former can as discussed in section 1.3 be written as
Bµ = −pµB1, while B0 is left as is. Differentiating this expression with respect to �p,

15 as before
dropping all terms that will vanish (meaning terms containing �p, which is taken to zero in the
definition of the counterterm, and the γ5 terms that vanish when taking the trace with the leading-
order result), and summing over the squark mass eigenstates, a similar trace calculation to the one
leading to Eq. (4.104) gives the (finite) counterterm contribution to the cross-section:

dσ̂c.t.
dQ2

= σd0G(ε)CF
αs
π

δFABq̃`i (Q)

FABq`i (Q)
δ(1− z), (4.108)

with

δFABq̃`i (Q) = B1

(
0,m2

g̃,m
2
q̃1

)2Q4
(
ZAB`i

)2(sin2 θqZ
2
qR

+ cos2 θqZ2
qL

)
c4W s

4
W

((
Q2 −m2

Z

)2
+m2

ZΓ
2
Z

)
−2

Qq
c2W s

2
W

Q2
(
Q2 −m2

Z

)
ZAB`i δAB(

Q2 −m2
Z

)2
+m2

ZΓ
2
Z

(
sin2 θqZqR + cos2 θqZqL

)
+

1

2
Q2
qδ
AB


+B1

(
0,m2

g̃,m
2
q̃2

)2Q4
(
ZAB`i

)2(cos2 θqZ2
qR

+ sin2 θqZ
2
qL

)
c4W s

4
W

((
Q2 −m2

Z

)2
+m2

ZΓ
2
Z

)
−2

Qq
c2W s

2
W

Q2
(
Q2 −m2

Z

)
ZAB`i δAB(

Q2 −m2
Z

)2
+m2

ZΓ
2
Z

(
cos2 θqZqR + sin2 θqZqL

)
+

1

2
Q2
qδ
AB

.

(4.109)

With mass-degenerate, non-mixing squarks, this again simplifies considerably, reducing to δFABq̃`i =

B1

(
0,m2

g̃,m
2
q̃

)
FABq`i .

Using Eqs. (3.14) and (3.17), we can verify that the divergences from the loop are in fact exactly
canceled by the counterterm, as desired.

15For terms with no explicit �p dependence we use d

d�p
= 2�p

d
dp2

.
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4.5 Hadronic cross-section at NLO
Having computed the various contributions to the NLO partonic cross-section, we now want to
collect them and calculate the hadronic cross-section. However, we are still left with collinear
divergences which must first be dealt with; this is done by exploiting that what happens at the
partonic level, in particular the very low-energy interactions that distribute momentum between
the partons, is not physically observable.

We can therefore absorb the divergences into the bare parton distribution functions (PDFs),
leaving finite, scale-dependent PDFs and a finite partonic contribution, as explained in Sec. 3.4.
In terms of these bare PDFs f̃i(x), with x the fraction of the hadronic momentum carried by the
parton, the hadronic cross-section is given by

dσ

dQ2
= σB

∑
ij

∫ 1

τ

dx1
x1

∫ 1

τ/x1

dx2
x2

f̃i(x1)f̃j(x2)w̃ij

(
z =

τ

x1x2

)
, (4.110)

where τ = Q2/s so that z = τ/x1x2, and the Born cross-section σB = x1x2σ
d
0 has been factored out

of the integral. The partonic functions w̃ij are what has been calculated in the previous sections:

w̃qq̄(z) = δ(1− z) +G(ε)CF
αs
π
w̃qq̄,NLO, (4.111)

w̃qg(z) = G(ε)TF
αs
2π

[(
(1− z)2 + z2

)(
ln (1− z)2

z
− 1

ε

)
+

1

2
+ 3z − 7

2
z2

]
, (4.112)

with the next-to-leading order qq̄ function given by

w̃qq̄,NLO =−
(
1 + z2

)
ln z

1− z
+ 2
(
1 + z2

)( ln (1− z)

1− z

)
+

+ δ(1− z)

(
π2

3
− 4 +

FABq̃`i (Q)

FABq`i (Q)
+
δFABq̃`i (Q)

FABq`i (Q)

)

+
1

ε

[
− 1 + z2

(1− z)+
− 3

2
δ(1− z)

]
. (4.113)

By the procedure outlined in Sec. 3.4 we can transform Eq. (4.110) into a convolution of
renormalized PDFs and the finite functions wij . These still contain residual terms stemming from
the divergences, since there are finite terms, that do not vanish for ε → 0, when expanding G(ε);
explicitly, this prefactor gives

G(ε) =

(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

= 1 + ε(ln 4π − γE) + ε ln µ2

Q2
+O

(
ε2
)
. (4.114)

The ln 4π and γE terms are removed in the MS renormalization scheme, which we use for the PDFs;
the remaining O(ε) term leaves a finite contribution when multiplied by 1/ε. This leaves for the
hadronic cross-section, now in terms of finite components,

dσ

dQ2
= σB

∑
ij

∫ 1

τ

dx1
x1

∫ 1

τ/x1

dx2
x2

fi(x1, µ)fj(x2, µ)wij

(
z =

τ

x1x2

)
. (4.115)

The finite partonic functions wij are given by

wqq̄(z) = δ(1− z) + CF
αs
π
wqq̄,NLO, (4.116)

wqg(z) = TF
αs
2π

[(
(1− z)2 + z2

)(
ln (1− z)2

z
− ln µ2

Q2

)
+

1

2
+ 3z − 7

2
z2

]
, (4.117)
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with

wqq̄,NLO =−
(
1 + z2

)
ln z

1− z
+ 2
(
1 + z2

)( ln (1− z)

1− z

)
+

+ δ(1− z)

(
π2

3
− 4 +

FABq̃`i (Q)

FABq`i (Q)
+
δFABq̃`i (Q)

FABq`i (Q)

)

+ ln µ2

Q2

[
− 1 + z2

(1− z)+
− 3

2
δ(1− z)

]
. (4.118)

Extending Eq. (4.115) to find the total cross-section is trivial, by simply integrating over
the invariant mass Q2. The limits of this integral are given by momentum conservation,(
m˜̀

iA
+m˜̀

iB

)2
≤ Q2 ≤ s.

4.6 Cross-section in Mellin space

Equation (4.118) contains terms with plus distributions, which can grow very large in the threshold
region z → 1. In this region the emitted gluons are very low-energy, as most of the energy from
the initial state is transferred to the intermediate gauge bosons.

These terms are called large logarithmic corrections. They can be dealt with by resummation;
this means writing them on a form that when Taylor expanded, automatically includes contributions
to all orders in the coupling constant. A simple example of resummation is the total fermion
propagator in Eq. (1.74); this is obtained from summing together all diagrams with an arbitrary
number of copies of the sum of 1PI insertions on the propagator.

When studying these logarithmic contributions, we will need an operation called the Mellin
transform. The Mellin transform F (N) of a function f(z), where z ∈ (0, 1), is defined by

F (N) ≡ F(f) ≡
∫ 1

0
dzzN−1f(z). (4.119)

Its inverse is given by

f(z) ≡ F−1(F ) ≡ 1

2πi

∫ c+i∞

c−i∞
dNz−NF (N), (4.120)

where c ∈ R.
As we will see in Sec. 4.7, the soft-gluon emission contributions16 can be written on an

exponentiated form in Mellin space.17 As a point of reference, as well as to see why the plus
distributions are referred to as logarithmic corrections, it is constructive to calculate the Mellin
transform of the cross-section we have just found.

Even without mentioning resummation, the Mellin transformed cross-section might be very
useful, due to its effect on convolutions. The hadronic cross-section in Eq. (4.115) can be expressed
as a convolution of the three functions fi(x1), fj(x2), and wij(z) (leaving out scale dependence for
simplicity), given by

dσ

dQ2
= σB

∑
ij

∫ 1

0
dx1dx2dzfi(x1)fj(x2)wij(z)δ(τ − x1x2z). (4.121)

16Calculated in the so-called eikonal approximation, where emitted momenta are assumed to be small.
17The term “Mellin space” is used to denote that a function depends on the Mellin variable N . Conversely,

functions of real variables such as z = Q2/ŝ, that are not Mellin-transformed, are said to be in “x-space” or “real
space.”
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This can in principle allow for the numerical evaluation of the PDF integrals to be made much
more efficient, by instead considering the Mellin moment of the cross-section, defined by

dΣ

dQ2
(N) ≡

∫ 1

0
dττN−1 dσ

dQ2
(τ). (4.122)

Inserting Eq. (4.121) into this definition and using the delta function to eliminate τ , this allows us
to write the Mellin moment of the convolution as a simple product of the Mellin moments Fi, Fj ,
and Wij , of fi, fj , and wij respectively, leaving

dΣ

dQ2
(N) = σB

∑
ij

Fi(N)Fj(N)Wij(N). (4.123)

This shows the power of the Mellin transform; by considering Mellin moments of the various
functions, it reduces the number of numerical integrations required to evaluate the cross-section.
This is in particular helpful when taking resummed contributions into account; as noted above
these are typically evaluated in Mellin space, meaning that conventionally we would need to solve
a 3-dimensional integral: First the inverse Mellin transform of the partonic cross-section, then
integrals over both of the PDFs.18 If we instead use the Mellin transformed PDFs, we only need
one integral: The inverse Mellin transform of the convolution in Eq. (4.123).

This does, of course, require libraries to efficiently extract the Mellin moments of the PDFs,
which currently does not exist for modern PDF sets. Still, as resummed contributions are calculated
in Mellin space, it remains a useful exercise to calculate the Mellin moment of the partonic cross-
section at next-to-leading order; both as a reference in Sec. 4.7 and in anticipation of future work,
if one can efficiently use Mellin transformed PDFs.

4.6.1 Quark-gluon scattering

The quark-gluon scattering contribution in Eq. (4.117) is mostly straightforward to Mellin
transform, as most of the terms are simple polynomials in z. These transform as∫ 1

0
dzzN−1zi =

1

N + i
. (4.124)

Similarly, if the polynomial is multiplied by ln z, the Mellin moment can be found using integration
by parts: ∫ 1

0
dzzN−1zi ln z = −

∫ 1

0
dzzN−1zi = − 1

(N + i)2
. (4.125)

This leaves one term, containing the function
(
z2 + (1− z)2

)
ln (1− z). The Mellin moment of

this function requires some more care, as the individual terms will diverge; thus, we introduce a
regulator by writing the logarithm as ln (1− z) = ∂ε(1− z)ε, where the limit ε→ 0 is implicit. The
integral then becomes a Beta integral, giving

∂ε

∫ 1

0
dzzN−1

(
z2 + (1− z)2

)
(1− z)ε = ∂ε

[
Γ(N + 2)Γ(1 + ε)

Γ(N + ε+ 3)
+

Γ(N)Γ(3 + ε)

Γ(N + ε+ 3)

]
= ∂ε

[
N(N + 1)Γ(N)

(ε+ 1)(ε+ 2) · · · (ε+N + 2)
+

Γ(N)

(ε+ 3)(ε+ 4) · · · (ε+N + 2)

]
= −N(N + 1)Γ(N)

(N + 2)!

N+2∑
k=1

1

k
− 2Γ(N)

(N + 2)!

N+2∑
k=3

1

k
, (4.126)

18This is for the differential cross-section; for the total cross-section we need another integral, over the invariant
mass Q2.
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where the regulator has been removed in the last step. Using that Γ(N) = (N − 1)! and reorganizing
the sums in terms of the harmonic number S1(N) ≡

∑N
k=1 1/k,19 and adding the previously

calculated terms, we are left with

Wqg(N)

TF
αs
2π

= −2
N2 +N + 2

N(N + 1)(N + 2)
S1(N) +

N4 + 11N3 + 22N2 + 14N + 4

N2(N + 1)2(N + 2)2

− N2 +N + 2

N(N + 1)(N + 2)
ln µ2

Q2
. (4.127)

4.6.2 Quark-antiquark scattering

Many of the terms in Eq. (4.116) are proportional to delta functions; these transform trivially as
δ(1− z) → 1. The remaining terms require similar manipulations as above; for the 1/(1− z)+ term
we use the definition of the plus distribution, and also take 1/(1− z) = 1/(1− z)1−ε, as before in
the limit ε→ 0. Expanding by order in ε to cancel divergences, we get

1 + z2

(1− z)+
→ −2S1(N) +

1

N(N + 1)
. (4.128)

In the (ln (1− z)/(1− z))+ term we get rid of the logarithm as in the previous section; otherwise
the calculation works out similarly to the other plus distribution, leaving(

1 + z2
)( ln (1− z)

1− z

)
+

→2S2
1(N)− 2S1(N)

1

N(N + 1)
+

1

N2
+

1

(N + 1)2

− 2

N∑
k=1

N∑
j=k+1

1

jk
+

1

N(N − 1)
− 1

N(N + 1)
. (4.129)

For the remaining term, we use d
dN z

N = ln zzN to rewrite∫ 1

0
dzzN−1 1 + z2

1− z
ln z = ∂N

∫ 1

0
zN−1 1 + z2

(1− z)1−ε
. (4.130)

Then, expanding in ε as before, as well as using the derivative of the harmonic number

d

dN
S1(N) = ζ(2)− S2(N), (4.131)

with ζ(2) = π2/6, we get

1 + z2

1− z
ln z →2S2

1(N)− 2S1(N)
1

N(N + 1)
+

1

N2
+

1

(N + 1)2
− π2

3

− 4
N∑
k=1

N∑
j=k+1

1

jk
+

2

N(N − 1)
− 2

N(N + 1)
. (4.132)

By comparing Eqs. (4.129) and (4.132), we see that the awkward terms at the end will cancel when
all contributions are added together according to Eq. (4.118).

Putting all of the terms together, the qq̄ function in Mellin space is given by

Wqq̄(N) = 1 + CF
αs
π
Wqq̄,NLO, (4.133)

19In general, Sn(N) ≡
∑N

k=1 1/k
n.
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where

Wqq̄,NLO =2S2
1(N)− 2S1(N)

N(N + 1)
+

1

N2
+

1

(N + 1)2
+

2π2

3
− 4 +

FABq̃`i (Q)

FABq`i (Q)

+
δFABq̃`i (Q)

FABq`i (Q)
+ ln µ2

Q2

[
2S1(N)− 1

N(N + 1)
− 3

2

]
. (4.134)

From the transformations of the plus distributions in Eqs. (4.128) and (4.129) we see that the
divergence of the real-space partonic cross-sections for z → 1 correspond to the limit N → ∞ in
Mellin space. Thus we find the behavior of the cross-section in the eikonal limit by the expansion

S1(N) ' lnN +
1

2N
+O

(
1

N2

)
, (4.135)

where N ≡ NeγE . In other words, we have a correspondence between plus distributions in z and
logarithms of N , given by

αs

(
ln (1− z)

1− z

)
+

↔ αs ln2N , (4.136)

αs
1

(1− z)+
↔ αs lnN . (4.137)

For later reference, the large-N limits of the NLO partonic cross-sections of Eqs. (4.127) and
(4.133) are, keeping terms up to order ∼ 1/N ,

Wqg(N) ' −αs
π
TF

lnN + 1
2 ln µ2

Q2

N
+O

(
1

N2

)
, (4.138)

Wqq(N) ' 1 + CF
αs
π

(
2 ln2N + 2 ln µ2

Q2
lnN +

2π2

3
− 4− 3

2
ln µ2

Q2
+
FABq̃`i (Q)

FABq`i (Q)
+
δFABq̃`i (Q)

FABq`i (Q)

+ 2
lnN + ln µ2

Q2

N
+O

(
1

N2

))
. (4.139)

4.7 Resummation of large logarithms

The large logarithms in N we found above can be dealt with by all-order resummation. This is
possible in the eikonal approximation, which can be represented by expectation values of Wilson
lines, as we will discuss shortly.

The order to which we calculate the resummed result is denoted by the relation between the
strong coupling and the logarithms: Leading logarithmic (LL) terms, e.g. the one in Eq. (4.136),
are proportional to αns lnn+1N , while next-to-leading logarithmic (NLL) terms, e.g. Eq. (4.137), are
on the form αns lnnN . To deal with the logarithms that appeared at NLO in perturbation theory,
we will look to include the resummed result up to next-to-leading logarithmic accuracy.

As a first step, we will motivate how Wilson lines can be used to represent amplitudes in the
eikonal limit.
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4.7.1 Wilson lines and the eikonal approximation

Recall that from Eq. (1.7), we can construct a Wilson line from point y to x along a path P out of
the gluon field Aaµ(x), as

WP (x, y) = P

{
exp

(
igs

∫ x

y
Aaµ(z)T

adzµ
)}

. (4.140)

The role of the path ordering operator can be seen by Taylor expanding this exponential;
parametrizing the path P by zµ(λ), λ ∈ (a, b), with z(a) = y and z(b) = x, the first few terms of
the expansion are given by

WP (x, y) = 1 + igs

∫ b

a
dλ1

dzµ1(λ1)

dλ1
Aµ1(z(λ1))

+
(igs)

2

2

∫ b

a
dλ1

dzµ1(λ1)

dλ1

∫ b

a
dλ2

dzµ2(λ2)

dλ2

[
Aµ1(z(λ1))Aµ2(z(λ2))θ(λ1 − λ2)

+Aµ2(z(λ2))Aµ1(z(λ1))θ(λ2 − λ1)

]
+O

(
g3s
)
, (4.141)

where θ(x) is the Heaviside step function.
In a generic term of the Taylor expansion with n gauge fields, each labeled by i = 1, 2, . . . , n,

there are n! different permutations in the ordering of the fields. We must sum over all of these
permutations, and for each one the fields must be organized in order of decreasing path parameters
λi. Denoting each possible permutation by π, letting π(i) be a function that assigns a label to each
field according to the specific permutation,20,21 the expansion can be written as

WP (x, y) =
∞∑
n=0

(igs)
n

n!

(
n∏
i=1

∫ b

a
dλi

dzµi(λi)

dλi

)[∑
π

(
n∏
i=1

Aµπ(i)

(
z
(
λπ(i)

))
θ
(
λπ(i) − λπ(i+1)

))]
,

(4.142)
where λπ(n+1) = a.

We can write out the sum over permutations by a re-labeling of indices, since all the indices
appearing are just dummy indices that are summed over. For the second-order term in Eq. (4.141),
this means that

(igs)
2

2

∫ b

a
dλ1

dzµ1(λ1)

dλ1

∫ b

a
dλ2

dzµ2(λ2)

dλ2

[
Aµ1(z(λ1))Aµ2(z(λ2))θ(λ1 − λ2)

+Aµ2(z(λ2))Aµ1(z(λ1))θ(λ2 − λ1)

]
= (igs)

2
∫ b

a
dλ2

dzµ2(λ2)

dλ2

∫ b

a
dλ1

dzµ1(λ1)

dλ1
Aµ2(z(λ2))Aµ1(z(λ1))θ(λ2 − λ1). (4.143)

Here we have just switched the labels 1 ↔ 2 in the first term, and swapped integration orders.
We proceed similarly for the other terms in the expansion, using the step functions to restrict the

20An explicit example can be seen in the O
(
g2s
)

term in Eq. (4.141), inside the brackets. The first term describes
the permutation π1, which is defined so that π1(1) = 1, π1(2) = 2; the second describes π2, with π2(1) = 2 and
π2(2) = 1.

21This notation is adapted from Ref. [7, p. 204].
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integration limits; this allows us to write the Wilson line as

WP (x, y) =

∞∑
n=0

(igs)
n
∫ b

a
dλn

∫ λn

a
dλn−1 · · ·

∫ λ2

a
dλ1

dzµn

dλn
· · · dz

µ1

dλ1
Aµn(z(λn)) · · ·Aµ1(z(λ1)),

(4.144)
or equivalently as

WP (x, y) =
∞∑
n=0

(igs)
n
∫ b

a
dλ1

∫ b

λ1

dλ2 · · ·
∫ b

λn−1

dλn
dzµn

dλn
· · · dz

µ1

dλ1
Aµn(z(λn)) · · ·Aµ1(z(λ1)). (4.145)

The former expression is convenient when the path is bounded from above, i.e. a = −∞, b finite,
while the latter is more useful when it is bounded from below, with b = ∞, a finite.

This series expansion for the Wilson line reveals a possible interpretation of these objects; it
has the form of a standard perturbation expansion in the coupling constant, where each term can
be viewed as a representation of a fermion moving from spacetime point y to x, emitting n gauge
bosons (gluons in the case of SU(3)) in the process.

To make this correspondence clearer, and derive Feynman rules for these objects, we need to
perform the integrals over the parameters λi. To this end, we Fourier transform the gauge fields
using

Aµ(z) =

∫
ddk

(2π)d
Aµ(k)e

−ik·z, (4.146)

and specify the parametrization of the path as zµ(λ) = xµ+nµλ, λ ∈ (−∞, 0),22 so that dzµ

dλ = nµ.
Here nµ is a lightlike direction vector, nµnµ = 0. Inserting this in Eq. (4.144), the integrals over
the λi parameters (factoring out everything but the exponentials from the Fourier transform) can
be written as

Iλ ≡

(
1∏
i=n

∫ λi+1

−∞
dλi

)(
n∏
i=1

exp (−iλin · ki − ix · ki)

)
, (4.147)

with λn+1 ≡ 0. These integrals can be solved recursively; the innermost integral is given by∫ λ2

−∞
dλ1 exp

(
−iλ1(n · k1 + iε)− ix · k1

)
=

i

n · k1 + iε
exp

(
−iλ2(n · k1 + iε)− ix · k1

)
, (4.148)

where the iε was needed to regularize the integral. The exponential in this expression carries over
to the integral over λ2:∫ λ3

−∞
dλ2 exp

(
−iλ2(n · (k1 + k2) + iε)− ix · (k1 + k2)

)
=

i

n · (k1 + k2) + iε
exp

(
−iλ3(n · (k1 + k2) + iε)− ix · (k1 + k2)

)
. (4.149)

The remaining integrals are solved in exactly the same way, leaving

WP (x,−∞) =
∞∑
n=0

(igsT
an) · · · (igsT a1)

∫
ddkn

(2π)d
· · ·
∫

ddk1

(2π)d
(n ·Aan(kn)) · · · (n ·Aa1(k1))

× exp

(
−ix ·

n∑
i=1

ki

)
n∏
i=1

i

n ·
∑i

j=1 kj + iε
. (4.150)

22This is for the case where the path is bounded from above; the calculation for the opposite case proceeds similarly.
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Written on this form, we can see the correspondence to matrix elements. It closely resembles the
perturbation series expansion for a fermion propagating from infinity to a point x on a lightlike path
with nµ = pµ, p2 = 0, while emitting a number of gluons with momenta −ki with the assumption
that the ki are small; this is called the eikonal approximation for the amplitude.

To see this, consider the O(gs) term in the expansion for the aforementioned lightlike fermion.
This term describes a massless fermion with momentum p, moving from infinity to x, while emitting
or absorbing a gluon with momentum k � p. Denoting what happens at spacetime point x, be it
an interaction with another fermion or something else, by M , and the completion of the gluon part
of the diagram23 by Gaµ(k) the matrix element is given by

iM =
p p+ k

k

=MGaµ(k)igsT
a i(�p+�k)γµ

(p+ k)2 + iε
u(p), (4.151)

where u is the spinor of the incoming fermion. The denominator reduces to 2p · k+ iε, since p2 = 0
and kµ � pµ; for the numerator, dropping �k, the Dirac algebra gives

�pγ
µu(p) = 2pµu(p)− γµ �pu(p)︸ ︷︷ ︸

=0

, (4.152)

using the Dirac equation to eliminate the second term. Thus we have

iM =MigsT
a i

p · k + iε
p ·Ga(k)u(p). (4.153)

This looks a lot like the O(gs) term in Eq. (4.150), with some numerical differences that must be
dealt with when connecting the Wilson line to cross-sections. Regardless, this illustrates that for
soft-gluon processes, Wilson lines can be used as a proxy for matrix elements and cross-sections.

The Feynman rules for the perturbative expansion of Wilson lines can be deduced from
Eq. (4.150) and our O(gs) example (with pµ now taking the role of nµ in Eq. (4.150)):

• For each vertex with incoming gluon momentum k, a factor

p p+ k

k

= igs

∫
ddk

(2π)d
p ·Aa(k)T a. (4.154)

• For each fermion propagator with momentum p+ k in the direction of fermion flow, a factor

p+ k
=

i

p · k + iε
. (4.155)

• For an external point x with momentum p+ k running into it, a factor

p+ k
x = e−ik·x. (4.156)

23This can for example be the gluon polarization vector εaµ(k), or a propagator connecting to some other interaction.
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Note that the direction of fermion flow only matters in the propagator, hence the fermion
arrow on that diagram. In propagators we must take the momentum in the direction of fermion
flow, while for the other elements only the direction of the momentum matters. This is seen from
doing the above calculation for a Wilson line that is bounded from below, rather than from above
(representing an outgoing fermion, or ingoing anti-fermion), which gives the same set of rules with
the propagator momentum reversed.

4.7.2 Drell-Yan cross-section with Wilson lines

Having motivated Wilson lines as representations of soft-gluon processes and derived their Feynman
rules, we can use this formalism to describe a collision between a quark and an antiquark, with
incoming lightlike momenta p1 and p2 respectively, in the eikonal approximation. Setting up
the coordinate system so that the collision happens at the spacetime origin, we can describe the
incoming quark, on a classical24 trajectory zµ1 = pµ1λ1, λ1 ∈ (−∞, 0) by the Wilson line

Wp1(0,−∞) = P

{
exp

(
ig

∫ 0

−∞
Aµ(z1)dz

µ
1

)}
, (4.157)

and the antiquark, described as an outgoing particle with momentum −p2, on the trajectory
z2 = −p2λ2, λ2 ∈ (0,∞), by the Wilson line

W−p2(∞, 0) = P

{
exp

(
ig

∫ ∞

0
Aµ(z2)dz

µ
2

)}
. (4.158)

These can be combined to construct the Drell-Yan Wilson line (also valid for slepton pair production,
as the quark parts of these processes are identical), given by

UDY(0) ≡W−p2(∞, 0)Wp1(0,−∞). (4.159)

The eikonal quark-antiquark scattering cross-section (with the Born cross-section factored out
as usual) is constructed from the vacuum expectation value of this quantity squared; it is given
by [45]

weik
qq (z) =

Q

2

∫ ∞

−∞

dy0

2π
ei

Q
2
(1−z)y0WDY(y), (4.160)

where yµ =
(
y0, 0

)
, and WDY(y) is the expectation value of a Wilson loop, integrated over the path

CDY as shown in Fig. 4.4. The loop is constructed from the product of the Wilson lines UDY(0),
and its complex conjugate shifted from 0 to y, so that

WDY(y) =
1

NC

〈
0
∣∣∣TU †

DY(y)TUDY(0)
∣∣∣0〉, (4.161)

where T and T are anti-time- and time-ordering operators, respectively. This follows from the
facts that the product of two Wilson lines makes another line, along their combined paths, and
that the conjugate of a Wilson line is a Wilson line along the same path, but reversed.

24This trajectory is assumed linear, as the emitted gluons are soft. In other words, the gluon momenta are
sufficiently low that their emission does not affect the quark trajectory.
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0 y

p1

−p2
p2

−p1

Figure 4.4: Integration path for the Wilson loop in Eq. (4.160), as well as the leading-order
contribution to the same loop. Note that the lines extend to infinity, where the loop is closed.
The dots at 0 and y are included to illustrate that these are external points as referenced in
Eq. (4.156).

4.7.3 Calculation of WDY to one-loop

In order to illustrate how loop corrections appear in this formalism, we now want to calculate
WDY(y) to next-to-leading order in perturbation theory. The leading-order result is easily obtained
from the Feynman rules listed Eqs. (4.154)–(4.156); since the leading-order Wilson loop shown in
Fig. 4.4 has no propagators or vertices, the result is simply

W 0
DY(y) = 1. (4.162)

Here we have removed the color factor 1/NC which is absorbed into the Born cross-section, see
Eq. (4.44).

At next-to-leading order, the loop gets four (non-zero) contributions as shown in Fig. 4.5. The
calculation of these is made simpler by the fact that for each diagram we can use the so-called cut
gluon propagator, i.e. we replace〈

0
∣∣∣Aaµ(−k)Abν(k)∣∣∣0〉→ −δabgµν2πθ

(
k0
)
δ
(
k2
)
, (4.163)

which turns the loop integral25 over k into a phase space integral. To see why we can do this,
it is helpful to consider the role of each diagram in Fig. 4.5, in light of Eq. (4.161). The two
topmost diagrams represent the square of the Drell-Yan Wilson line with the emission of one gluon;
in other words, they represent the squared matrix element for real gluon emission, and by the
optical theorem and the Cutkosky cutting rules [50] this is proportional to the imaginary part of
the amplitude shown in the topmost diagrams, which is obtained by using the cut gluon propagator.

Meanwhile, the diagrams on the bottom represent interference terms between the leading-order
result and virtual gluon exchange diagrams. Like in Sections 4.3.1 and 4.4 this is given by twice
the real part of the amplitude; denoting the sum of the lower diagrams in Fig. 4.5 by WV , we then
have

2Re(WV ) = −2Im(−iWV ), (4.164)

which is exactly what we get when using the cut gluon propagator.26

25This integral appears from the vertex rule of Eq. (4.154), along with the gluon fields in Eq. (4.163).
26This is slightly different to how the cutting rules are usually stated, but it is equivalent; usually one uses the

rules on the expression for iM to find the imaginary part of some amplitude M, but here we use them on WV to get
the imaginary part of −iWV .
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p1

p1 − k

−p2

p2

p2 + k

−p1

k

p1

k − p2

−p2 p2

−k − p1

−p1

k

p1
p1 − k

−k − p2
−p2 p2

−p1

k

p1

−p2

p2

p2 − k

−k − p1

−p1

k

Figure 4.5: One-loop contributions to WDY.

Using this and the fact that p21 = p22 = 0, as well as making the usual replacement
gs → µ(4−d)/2gs to keep the coupling dimensionless in d dimensions, again using the Feynman
rules of Eqs. (4.154)–(4.156), we find that the 1-loop contribution is given by

W 1
DY = 2g2sCFµ

4−d
∫

dd−1k

(2π)d−1

1

2ω

(
e−iy0ω − 1

) p1 · p2
p1 · kp2 · k︸ ︷︷ ︸

≡I

. (4.165)

Here we have defined ω ≡ k0, and again removed a factor 1/NC . The integral I can be decomposed
by parametrizing k in the center-of-mass frame as kµ = ω(1, sin θ, 0, cos θ), with p1 and p2 given by
Eqs. (4.5) and (4.6), which means that

dd−1k = ωd−2dω sind−4 θd(cos θ)dΩd−2, (4.166)

where due to symmetry, dΩd−2 integrates to 2π(d−2)/2/Γ
(
d−2
2

)
. The integral can then be rewritten

as
I =

1

2d−3π(d−2)/2Γ
(
d−2
2

) ∫ ∞

0

dω

2π
ωd−5

(
e−iy0ω − 1

)
︸ ︷︷ ︸

≡Iω

∫ 1

−1
d(cos θ) sind−6 θ︸ ︷︷ ︸

≡Iθ

. (4.167)

The two terms in Iω are dealt with differently; for the term containing the exponential, we use
a change of variables and the integral definition of the Gamma function to get∫ ∞

0

dω

2π
ωd−5e−iy0ω =

1

2π

(
−y20

)(4−d)/2
Γ(d− 4). (4.168)

Note that in regulating the divergence in the Gamma function we must use d > 4, or d = 4 − 2ε
with ε < 0, making this an infrared divergence. This part of the integral can then be written as,
using Γ(1 + x) = xΓ(x), ∫ ∞

0

dω

2π
ωd−5e−iy0ω = − 1

2ε

1

2π
(iy0)

2εΓ(1− 2ε). (4.169)
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The second term in Iω has both infrared and ultraviolet divergences, but since it is scaleless
it formally vanishes in dimensional regularization; more precisely it is proportional to 1

εUV
− 1

εIR
,

where εUV and εIR are the dimensional regulators to remove the ultraviolet and infrared divergences,
respectively. Then, since the Wilson loop is renormalizable [43], we can add a counterterm like we
did in Sec. 4.3.1 to remove this term altogether.

For Iθ we make a variable change like the one in Sec. 4.3.3, defining x ≡ 1
2(1 + cos θ) to rewrite

the integral as a Euler Beta integral, giving

Iθ = 2d−5

∫ 1

0
dx[x(1− x)]

d−6
2 = 2d−5Γ

2
(
d−4
2

)
Γ(d− 4)

. (4.170)

To regulate the divergences in the Gamma functions we again use d = 4 − 2ε, ε < 0, and
Γ(1 + x) = xΓ(x), resulting in

Iθ = −1

ε
2−2ε Γ

2(1− ε)

Γ(1− 2ε)
. (4.171)

Then, collecting factors in Eq. (4.165) and rescaling µ2 → µ2eγE/4π according to the MS
renormalization scheme, the (unrenormalized) expression is

W 1
DY = CF

αs
π

Γ(1− ε)

ε2
e−εγELε, (4.172)

where

L ≡
(
i

2
y0µe

γE

)2

. (4.173)

Expanding in ε and removing the poles, which is possible since the eikonal cross-section can be
exponentiated and the divergences thus easily absorbed into bare distributions [51, 52], we get the
final result for the expectation value of the Drell-Yan Wilson loop to order αs:

WDY(y) = 1 + CF
αs
π

(
1

2
ln2 L+

π2

12

)
+O

(
α2
s

)
. (4.174)

Next, in order to turn this into a cross-section, we need to calculate the Fourier transform as in
Eq. (4.160). This can be made simpler by transforming to Mellin space, where we can make a few
approximations; first, for large N , which will dominate the expression, we have zN−1 ' e−N(1−z).
We then get

weik
qq (N) =

Q

2

∫ 1

0
dz

∫ ∞

−∞

dy0

2π
eF

(
z,y0

)
WDY(y), (4.175)

with F
(
z, y0

)
≡
(
iQ2 y

0 −N
)
(1− z). Next we expand around the stationary point of F

(
z, y0

)
,

located at z = 1, y0 = −2iNQ ≡ Y 0; for the exponent this changes nothing, while WDY(y) '
WDY

(
y0 = Y 0

)
+ O

(
y0 − Y 0

)
. This makes the double integral simple; the y0 is just the Fourier

transform of a delta function, which in turn makes the z integral trivial. This leaves

weik
qq (N) =WDY

(
y0 = −2i

N

Q

)
= 1 + CF

αs
π

(
2 ln2

(
N
µ

Q

)
+
π2

12

)
+O

(
α2
s

)
. (4.176)

Notice that since ln2
(
N µ

Q

)
= ln2N + ln µ2

Q2 lnN + O(1), we have reproduced the leading- and
next-to-leading logarithmic behavior of Eq. (4.139).
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4.7.4 Exponentiation

To upgrade this result to include corrections at all orders in αs, it must be written on resummed
form. This can be done according to the non-Abelian exponentiation theorem [51,52], which states
that the eikonal cross-section can be written as an exponential.

One way of obtaining this form is by the renormalization group. This is similar to what we did
in finding the scale-dependent coupling in φ4 theory, see Eq. (1.90), which when Taylor expanded
contains an infinite number of orders in λ. In this case, we can solve the renormalization group
equation for the Wilson loop WDY(N), which has the general solution [45]

WDY

(
µN

Q
,αs
(
µ2
))

=WDY

(
1, αs

(
Q2

N
2

))
× exp

{∫ µ2

Q2/N
2

dµ′2

µ′2

[
Γcusp

(
αs
(
µ′2
))

log

(
µ′2N

2

Q2

)
+ ΓDY

(
αs
(
µ′2
))]}

,

(4.177)

with the universal cusp27 anomalous dimension given at two-loop level by

Γcusp(αs) =
αs
π
CF +

(αs
π

)2
CF

[
CA

(
67

36
− π2

12

)
−NF

5

18

]
+O

(
α3
s

)
, (4.178)

and the Drell-Yan anomalous dimension

ΓDY(αs) = 0 +O
(
α2
s

)
. (4.179)

WDY

(
1, αs

(
Q2

N
2

))
is determined by boundary conditions.

To verify that this contains our fixed-order calculation of Eq. (4.176), we expand to first order in
αs (including the running coupling itself, i.e. we set αs

(
µ′2
)
' αs

(
µ2
)

which is accurate to leading
order), assumming WDY

(
1, αs

(
Q2

N
2

))
= 1, to get

WDY = 1 + 2
αs
π
CF ln2

(
µN

Q

)
+O

(
α2
s

)
, (4.180)

reproducing the leading- and next-to-leading-logarithmic behavior of Eq. (4.176). The π2

12 term is
missing, but this is unproblematic; the main purpose of the soft-gluon resummation is taking care
of the logarithms that grow large for large N , so constant terms are negligible. Furthermore, the
full cross-section can like before be factorized into hard and soft parts, the soft factor being this
exponentiated function, so “missing” factors in the soft part can be included in the hard part.

4.7.5 Resummed cross-section at NLL

With the exponentiated Wilson loop, we can proceed to calculate the resummed qq partonic cross-
section for the Drell-Yan process (or similar processes, such as slepton pair production). We need
the eikonal cross-section as stated in Eq. (4.177),28 QCD factorization theorems, and the two-loop
results for the cusp anomalous dimension and QCD beta function; the latter are given by

Γcusp(αs) =
αs
π
Γ1

cusp +
(αs
π

)2
Γ2

cusp +O
(
α3
s

)
, (4.181)

27A cusp is a non-smooth point on a Wilson line, like the ones at 0 and y in WDY(y).
28As we showed at the end of Sec. 4.7.3, WDY in Mellin space is identical to the eikonal partonic cross-section,

also in Mellin space.
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with coefficients given in Eq. (4.178), and

β(αs) = µ
d

dµ
αs = −2αs

[
αsb0 + α2

sb1 +O
(
α3
s

)]
, (4.182)

with 4πb0 = 11
3 CA − 4

3TFNF and (4π)2b1 = 34
3 C

2
A − 20

3 CATFNF − 4CFTFNF . Then, performing
the integral over µ′ in Eq. (4.177) gives [53]29

dσ̂res
qq

dQ2
= σd0 exp

(αs
π
C1
qq(αs)

)
exp [S(N,αs)], (4.183)

with30

C1
qq

CF
=

2π2

3
− 4− 3

2
ln µ2

Q2
, (4.184)

S(N,αs) = g1(λ) lnN + g2(λ). (4.185)

The functions g1(λ) and g2(λ), where λ ≡ b0αs lnN , contain the LL and NLL contributions,
respectively. They are given by

g1(λ) =
Γ1

cusp
πb0λ

(2λ+ (1− 2λ) ln (1− 2λ)), (4.186)

g2(λ) = −
Γ2

cusp
π2b20

[2λ+ ln (1− 2λ)] +
Γ1

cuspb1

πb30

[
2λ+ ln (1− 2λ) +

1

2
ln2 (1− 2λ)

]
−

Γ1
cusp
πb0

ln µ2

Q2
ln (1− 2λ). (4.187)

This result can be improved by including collinear effects in the so-called collinear-improved
resummation formalism [54]; in practice this amounts to taking [55]

S(N,αs) → S(N,αs) +
αs
2π

∫ 1

0
dzzN−1

∫ (1−z)2Q2

µ2

dq2

q2
P reg
qq (z), (4.188)

in Eq. (4.183). Here P reg
qq = −CF (1 + z) is the regular part of the splitting function given in

Eq. (3.40), i.e. after subtracting singularities at z = 1. The q2 integral is trivial; the remaining
Mellin transform is performed using the methods described in Sec. 4.6, keeping only terms up to
order ∼ 1/N . Carrying out the integral, the result of this extra term is effectively encapsulated in
the modification

C1
qq → C̃1

qq = C1
qq + 2CF

lnN + 1
2 ln µ2

Q2

N
, (4.189)

in Eq. (4.183).

4.7.6 Matching with fixed-order calculations

With the resummed cross-section now at hand, we can combine it with our earlier fixed-order
calculations. This must be done carefully, as the naive approach of simply adding the resummed
calculation to the fixed-order one would lead to double-counting.

29Here we have taken µF ≡ µR ≡ µ, as discussed in Sec. 3.4.
30The resummed contribution is calculated in pure QCD, i.e. not including sparticle loop corrections.
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This happens because the resummed result contains corrections from soft gluon radiation at
all orders in the strong coupling. These corrections are already included in the fixed-order result,
as shown in Eq. (4.139); thus, when adding the resummed cross-section to our fixed-order one we
must take care to only include those parts of the expression that are at a higher order in αs than
the fixed-order result. This procedure is called matching.

In practice, we match the resummed result to a given order in perturbation theory, in our case
the next-to-leading order, by subtracting the power series expansion of the resummed result up to
the given order in αs. Explicitly, matching to NLO, this means that for incoming partons i, j,

dσ̂match
ij

dQ2
=
dσ̂res

ij

dQ2
−
dσ̂exp

ij

dQ2
. (4.190)

The expansion is found by using the Taylor series ln (1− x) = −
∑∞

n=1
1
nx

n to expand g1,2, as
defined in Eqs. (4.186) and (4.187), in terms of λ; with this we can Taylor expand the expression
in Eq. (4.183) in αs, giving

1

σd0

dσ̂exp
qq

dQ2
= 1 +

αs
π

[
CF

(
2 ln2N + 2 ln µ2

Q2
lnN

)
+ C̃1

qq

]
. (4.191)

This reproduces the large-N limit of the NLO partonic cross-sections, given in Eq. (4.139).31

Adding Eq. (4.190) to our NLO result gives the cross-section at what is called NLO+NLL
accuracy.

4.7.7 Evaluating the inverse Mellin transform

Finally, we must convolute the resummed partonic cross-section with PDFs, and calculate the
inverse Mellin transform, to add to the fixed-order result. Ideally, as we discussed in Sec. 4.6, we
would like to evaluate the PDFs in Mellin space and then take the inverse Mellin transform, as this
would reduce the PDF convolution into a simple product; this is made problematic in practice by the
fact that easily available Mellin moments of modern PDF sets do not currently exist.32 Therefore
we must make do with calculating the inverse Mellin transform of just the partonic cross-section,
and then the convolution with the PDFs in x-space.

There is one simplification we can make, however. From the discussion in Sec. 4.6, the resummed
contribution to the hadronic cross-section, after matching orders with the fixed-order result, is
(denoting the Mellin transform by F and its inverse by F−1)

dσmatch

dQ2
= σB

∑
ij

F−1
[
F(fi)(N,µ)F(fj)(N,µ)W

match
ij

]
= σB

∑
ij

∫ ∞

0
dz

∫ 1

0
dx1dx2fi(x1, µ)fj(x2, µ)F−1

(
Wmatch
ij

)
(z)δ(τ − x1x2z), (4.192)

with dσ̂match
ij

dQ2 = σd0W
match
ij . Note the increased upper limit on z; this is because, as discussed in

Ref. [56], a Landau pole in Mellin space causes the function in z-space not to vanish for z > 1.
31Not including the supersymmetry contributions; as noted previously the resummed result contains only QCD

corrections.
32The ideal way to do this would be to calculate the Mellin moments just once and store them in a grid; but since

the inverse Mellin requires N to be complex, and over an infinite range, the dimensionality of such a grid makes this
cumbersome.
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However, as noted in Ref. [56] the z > 1 region gives only a very small contribution; thus, as a
fairly good approximation we will simply assume z ∈ (0, 1) to simplify the numerical evaluation.

The integrand may oscillate rapidly for large N when taking the inverse Mellin transform; these
oscillations may be reduced by extracting a factor N2. This factor can be absorbed into the PDFs
by using that for any function f(x) that vanishes at x = 1, such as the PDFs, integration by parts
gives

F
(
−x df

dx

)
= −

∫ 1

0
dxxN

df

dx
= N

∫ 1

0
xN−1f(x) = NF(f). (4.193)

Defining f i ≡ −xdfidx for the PDFs, this means that we can rewrite the resummed contribution to
the hadronic cross-section as

dσmatch

dQ2
= σB

∑
ij

∫ 1

τ

dx1
x1

∫ 1

τ/x1

dx2
x2

f i(x1, µ)f j(x2, µ)F−1

(
Wmatch
ij

N2

)(
z =

τ

x1x2

)
. (4.194)

This does require us to calculate derivatives of the PDFs, but as these have the same arguments as
the PDFs themselves they can be stored on the same type of grid, making them much simpler to
calculate and store than the Mellin moments.

We now turn to the actual form of the inverse Mellin transform, and how it can be calculated
numerically. From Eq. (4.120), the inverse Mellin transform of a general Mellin moment F (N) is
given by

F−1(F ) ≡ f(z) =
1

2πi

∫ c+i∞

c−i∞
dNz−NF (N), (4.195)

where c is a real number. The integration path can be deformed as long as we do not change the
number of singularities within it; following Ref. [56] we choose the minimal prescription (MP) path,
parametrized as

N(x) = CMP + |x|esgn (x)iφ, (4.196)
x ∈ (−∞,∞), with CMP = 2, φ = 3π

4 , and x real. Note that N∗(x) = N(−x). Using this
parametrization we have

f(z) =
1

2πi

[
−
∫ 0

−∞
dxe−iφz−N(x)F (N(x)) +

∫ ∞

0
dxeiφz−N(x)F (N(x))

]
=

1

2πi

∫ ∞

0
dx
[
eiφz−N(x)F (N(x))− e−iφz−N(−x)F (N(−x))

]
. (4.197)

We now notice that the integrand has the form of 2i times the imaginary part of a function, i.e.
2iIma = a− a∗, since

F (N(−x)) = F (N∗(x)) = F ∗(N(x)). (4.198)
Thus we have

f(z) =
1

π

∫ ∞

0
dxIm

(
eiφz−N(x)F (N(x))

)
. (4.199)

Lastly, to make this expression more practical to implement numerically, removing the need to
cut off the integration for large x, we define x ≡ − ln y, y ∈ (0, 1) and change integration variables,
to obtain

f(z) =
1

π

∫ 1

0

dy

y
Im
(
eiφz−N(y)F (N(y))

)
, (4.200)

where now
N(y) = CMP − ln yeiφ. (4.201)

As long as we use a numerical integration method that avoids the endpoints of the integration
range, the fact that N is singular at y = 0 will not be an issue.
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Figure 4.6: Tree-level production of sneutrinos at a hadron collider, either in a pair (left) or along
with a slepton (right). i = e, µ, τ denotes flavor; A = 1, 2 is the mass eigenstate of the slepton. The
charges in the slepton-sneutrino diagram are left ambiguous for generality; the final state can be
either ˜̀

iν̃
∗
i or ˜̀∗

i ν̃i.

4.8 Generalizing to other particles
With our NLO+NLL cross-section now at hand for slepton pair production, it is fairly
straightforward to generalize to other final states. The most immediate generalization is to also
include the production of sneutrinos; either a pair of these particles, or a sneutrino along with a
slepton. The leading-order diagrams for both of these cases are shown in Fig. 4.6. In both processes
the loop corrections are mostly identical to the ones we have calculated above; the difference only
appears in the effective couplings.

The simplest case is that of sneutrino pair production. Being uncharged, this pair can only be
created from a Z boson; furthermore there is only one mass eigenstate to consider as the MSSM
only contains left-handed neutrino superfields. This makes the effective couplings simpler than
those of slepton pair production; they are given by

Fqνi(Q) =

(
Z2
qL

+ Z2
qR

)
Q4

2 sin4 θW cos4 θW
((
Q2 −m2

Z

)2
+m2

ZΓ
2
Z

) , (4.202)

Fq̃νi(Q) =
Q4

2 sin4 θW cos4 θW
((
Q2 −m2

Z

)2
+m2

ZΓ
2
Z

)[C(1, 1)Z11
q

(
cos2 θqZqL + sin2 θqZqR

)
+ C(2, 2)Z22

q

(
sin2 θqZqL + cos2 θqZqR

)
− (C (1, 2) + C(2, 1))Z12

q (ZqR − ZqL) sin θq cos θq

]
,

(4.203)

δFq̃νi(Q) =
Q4

2 sin4 θW cos4 θW
((
Q2 −m2

Z

)2
+m2

ZΓ
2
Z

)[B1

(
0,m2

g̃,m
2
q̃1

)(
cos2 θqZqL + sin2 θqZqR

)
+B1

(
0,m2

g̃,m
2
q̃2

)(
sin2 θqZqL + cos2 θqZqR

)]
,

(4.204)

with all constants the same as in the slepton case, and i denoting flavor. These replace FABq`i , FABq̃`i ,
and δFABq̃`i , respectively, in in the cross-section.

For the slepton-sneutrino final state the modification is slightly more complicated, due to the
fact that this process is mediated by a charged W± boson. This means that the initial-state quarks
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are not a simple quark-antiquark pair like before, but instead a quark q and an antiquark q′ with
the opposite SU(2) isospin.33 The amplitudes for the different pairings are then multiplied by a
factor

∣∣Vqq′∣∣2, where Vqq′ are CKM matrix elements as referenced in Sec. 1.1.4.
The loop corrections are mostly the same as before. We do have to be careful in adding

counterterms; here the self-energy counterterms we add are averages of the respective counterterms
for the two quarks, as there are two different particles in the initial state. In the end, the effective
couplings are given by

FAqq′`i(Q) =

∣∣Vqq′∣∣2(WA
`i

)2
Q4

8 sin4 θW

((
Q2 −m2

W

)2
+m2

WΓ2
W

) , (4.205)

FAq̃q̃′`i(Q) =

∣∣Vqq′∣∣2(WA
`i

)2
Q4

4 sin4 θW

((
Q2 −m2

W

)2
+m2

WΓ2
W

)[C ′(1, 1) cos θq cos θq′ + C ′(2, 2) sin θq sin θq′

+ C ′(1, 2) cos θq sin θq′ + C ′(2, 1) sin θq cos θq′
]

,

(4.206)

δFAq̃q̃′`i(Q) =

∣∣Vqq′∣∣2(WA
`i

)2
Q4

16 sin4 θW

((
Q2 −m2

W

)2
+m2

WΓ2
W

)[B1

(
0,m2

g̃,m
2
q̃1

)
cos2 θq +B1

(
0,m2

g̃,m
2
q̃2

)
sin2 θq

+B1

(
0,m2

g̃,m
2
q̃′1

)
cos2 θq′ +B1

(
0,m2

g̃,m
2
q̃′2

)
sin2 θq′

]
,

(4.207)

where A denotes the slepton mass eigenstate. Here we have defined

WA
`i

≡ δA1 cos θ` + δA2 sin θ`, (4.208)

and
C ′(B,D) ≡ ReC00

(
0, Q2, 0,m2

g̃,m
2
q̃B
,m2

q̃′D

)∣∣∣
finite

. (4.209)

For reference, the corresponding effective couplings of slepton pair production are listed in
Eqs. (4.27), (4.105), and (4.109).

33Which is the quark and which is the antiquark depends on the charge of the produced slepton, and consequently
the W boson; a W+ boson requires an initial state of ud or similar pairings, while W− requires a ud-type pair.



Chapter 5

Numerical results

In this chapter we implement our analytical calculations numerically, to demonstrate the actual
impact that the higher-order corrections have on the results. Among the most important of the
expected effects is a decreased dependence upon the arbitrary scale µ; this reduces the theoretical
uncertainty, making comparisons to experimental data more reliable.

We evaluate the cross-section for a wide range of MSSM parameters — taking advantage of our
very general calculations, which for example allows us to give different values to masses and mixing
angles for each squark flavor — to examine how the results depend on the various parameters.

To verify our calculations, we perform some tests. In order to evaluate the resummed results we
need to transform from Mellin space to x-space, using differentiated PDFs; to check that this works
as desired we compare the NLO hadronic cross-section obtained from the Mellin-space results of
Sec. 4.6 to the standard x-space ones. We also compare our results to those of some widely used
numerical packages for supersymmetry calculations — resummino [53, 57–61] and prospino [62]
— including the speed of different programs.

All results in this chapter were obtained using the vegas integration algorithm [63, 64].
Passarino-Veltman coefficients were evaluated in LoopTools [26, 27],1 and PDFs and the strong
coupling in lhapdf [65].

5.1 Conventions and technical details
When evaluating the cross-section, a number of choices must be made regarding conventions. Here
we comment on some of these choices, and how they may differ from other sources.

The first choice is that of the scale µ.2 Being an arbitrary parameter, this can in principle take
any value; the most conventional approach is setting it to some energy scale that is representative
of the observable we are calculating. For the differential cross-section we therefore set µ = Q, i.e.
the invariant mass of the slepton pair. If we are calculating the total cross-section, meaning that
the invariant mass is integrated over, it is instead set equal to the average mass of the two sleptons;
µ =

(
m˜̀

iA
+m˜̀

iB

)
/2. This keeps the scale fixed, rather than implicitly integrating over it as we

would have done with µ = Q.
The theoretical uncertainty due to missing orders in the perturbation expansion is, by

convention, defined as the difference between the cross-section evaluated at µ′ = 2µ and at µ′ = µ/2,
µ being the central scale as defined above.

1We used the analytical expressions for the virtual QCD loop as explained at the end of Sec. 4.3.3; for the
supersymmetric contributions the Passarino-Veltman functions were used.

2Technically there are two such parameters, both the renormalization scale µR and the factorization scale µF ;
but as we noted in Sec. 3.4, we take them to be equal, µR ≡ µF ≡ µ, in all of our calculations.

93
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As we have discussed previously, the renormalization scheme varies depending on the quantity
in question. Following the conventions of prospino and resummino we renormalize couplings
and PDFs in the MS scheme, while masses (and as a consequence, fields) are renormalized in the
on-shell scheme. The latter is mainly for practical purposes, to avoid having to convert from pole
masses to MS masses in propagators.

However, there is a potential ambiguity in the electroweak sector when renormalizing the masses
of the W and Z bosons, the electromagnetic fine-structure constant α = e2/4π, and the Weinberg
angle θW . From Sec. 1.1.3, denoting the electroweak couplings by g and g′, and the Higgs vacuum
expectation value by v, these quantities are related by

mW =
1

2
vg, (5.1)

mZ =
1

2
v
√
g2 + g′2, (5.2)

e =
gg′√
g2 + g′2

, (5.3)

sin θW =
g′√

g2 + g′2
. (5.4)

Since all of these quantities depend on the same set of parameters g, g′, and v (which in turn
is determined by the Higgs potential), we must choose a consistent scheme in which to renormalize
them. One possibility, if one insisted on keeping the fine-structure constant in the MS scheme,
would be to calculate the RG running of the electroweak couplings g and g′ in the MS, and from
that calculate the MS running of the above quantities; here we choose the simpler option, keeping
to the conventions of prospino and resummino, of instead evaluating all of these quantities in
the on-shell scheme.

In practice this means using the pole masses [19] mW = 80.379 GeV and mZ = 91.188 GeV,
and then relating the Weinberg angle and fine-structure constant to these by

sin2 θW = 1−
m2
W

m2
Z

, (5.5)

α =
√
2
GFm

2
W sin2 θW
π

, (5.6)

where GF = 1.16638× 10−5 GeV−2 is Fermi’s constant. Note that the actual numerical difference
between one scheme and the other should not be terribly large, as the RG running of the electroweak
parameters is much lesser than that of the strong coupling and the PDFs; the important part is
consistency in the renormalization of quantities that are closely related.

The strong coupling and the PDFs are still allowed to run with scale according to the MS
scheme; the dependence of these upon the scale is calculated in lhapdf.

Where our conventions differ from those commonly used in software for supersymmetry
calculations, is in our inclusion of the decay widths of the weak bosons in their propagators. These
are often neglected in such packages, as the produced sparticles are expected to be sufficiently
heavy that the impact of the widths is fairly small; we choose to include them here as it leads to
somewhat more precise results, and makes the calculations more generalizable to the case where
the produced particles are light.

Unless otherwise stated, all calculations were done using the PDF4LHC21_40_pdfas [66] Hessian
PDF sets to evaluate both PDFs and the strong coupling. Being a fairly modern set, this is expected
to give more reliable results in the region where the partonic momentum fractions x approach 1.
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This is relevant for calculations with heavy sleptons, as a large initial-state momentum is then
needed to produce the sleptons with any significant phase space.

This set contains PDFs for 5 flavors or quarks and antiquarks, plus the gluon; the top quark
PDF is presumably low enough that it can be neglected in these calculations. This means taking
NF = 5 in the beta function coefficients appearing in Eq. (4.183).

The error in the result due to uncertainty in the PDFs is calculated according to the process
described in Ref. [66]. The PDF set contains 43 total members indexed from i = 0, 1, 2, . . . , 42:
i = 0 gives the central cross-section; i = 1, 2, . . . , 40 give the PDF error; and i = 41, 42 give the
error from uncertainty in αs by using different values for αs. Denoting the cross-section calculated
from PDF member i by σi, the PDF error is given by

δσPDF =

√√√√ 40∑
i=1

(σi − σ0)2, (5.7)

while the αs error is
δσαs =

1

2

(
σ42 − σ41

)
. (5.8)

These two are combined to give the “PDF+αs” uncertainty:

δσPDF+αs =

√
(δσPDF)

2 + (δσαs)
2. (5.9)

All calculations are made with center-of-mass energy
√
s = 13 TeV unless otherwise stated,

matching the energy at the LHC in run II.

5.2 Verification and comparisons

Before moving on to our main results, we need to verify the consistency of our calculations and
numerical techniques. To do this, we first compare our results to those obtained from other sources.
Obviously the comparison will depend on the choices of conventions discussed in the previous
section, so we take care to keep track of what conventions are used to make comparisons consistent.

5.2.1 Comparisons to other sources

In Fig. 5.1 we compare our NLO results for left-handed selectrons (with no left-right mixing in
the mass eigenstates), for various choices of these conventions, to those obtained from prospino.
We evaluated the results for two different PDF sets; the aforementioned PDF4LHC21_40_pdfas set
(with 40 members to determine the PDF uncertainty), and the PDF4LHC15_nlo_30_pdfas [67] set
(with 30 members) which was used in the prospino calculations. We also tested the impact of
excluding the b quark when summing over initial-state partons, hypothesizing that prospino, an
older software, may not include it. Finally, as we noted in the previous section, we have so far
chosen to include the Z boson width in our calculations, whereas many programs do not; to see
how much this changes results we also made our calculations with ΓZ = 0. Fig. 5.1 shows the
results for all combinations of these three settings.

The largest impact is made by the choice of PDF set, fairly unsurprisingly; as we will see in
Sec. 5.4 the PDF error, which is not included in this plot, is one of the main sources of theoretical
uncertainty at NLO. Thus the central values of the cross-section evaluated with different sets should
be expected to be different, within the PDF uncertainty. The difference from whether the b quark
is included or not is smaller, but still exhibits a clear trend in reducing the relative difference to
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Figure 5.1: Comparison of numerical results for the cross-section for pair-production of left-handed
selectrons at NLO, σ, obtained from the expressions in Chapter 4, relative to those obtained from
prospino, σp. The parentheses (a, b, c) are used as a shorthand for what conventions are used in
our calculations: a = 0, 1 denotes the use of the PDF set with 40 or 30 members, respectively;
b = 0, 1 means that 5 or 4 quarks, respectively, were summed over in the initial state; and c = 0, 1
means that the Z boson width is included or set to zero, respectively.

the prospino results when it is not included. The Z boson width, as anticipated in the previous
section, has little consequence on the results when the final-state masses are so far above mZ ; its
impact will mostly show up for final-state invariant masses around mZ .

In the end, when using the same PDF set as prospino, and not including the b quark or Z
width, the results are in good agreement up to numerical errors, though this agreement is fairly
dependent on conventions.

For a more general comparison to prospino, we show our NLO results for a collection of
different final states (including the previous left-handed selectron pair, for comparison purposes),
obtained with the “standard” conventions as described in Sec. 5.1, compared to those obtained with
prospino, in Fig. 5.2. The behavior is mostly the same in all cases, with some deviations in the
charged-current processes.3

These deviations might be due to differences in how the (squared) CKM matrix elements are
dealt with. In Eqs. (4.205), (4.206), and (4.207), they are kept general as

∣∣Vqq′∣∣2, for any up-type
quark q and down-type q′. Using experimentally obtained absolute values of the entries of the CKM
matrix, allowing for interactions across quark generations, will lead to the most accurate results; it
may also, however, take significantly longer to evaluate than simply keeping the matrix diagonal.
The latter allows us to sum over only one incoming quark flavor, the other being required to belong
to the same generation, instead of summing over both as in the former case. In Fig. 5.2 we have
evaluated the expressions in both cases; when the CKM matrix is kept diagonal, the charged-current

3These are mediated by W± bosons, with a slepton and sneutrino in the final state.
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Figure 5.2: Comparison of our NLO results, σ, to those obtained in prospino, σp, for a variety
of different final states. For the charged-current process we also show the result when the CKM
matrix is taken to be diagonal, shown by dotted lines.

results are similar to the neutral-current ones, suggesting that prospino may indeed be using a
diagonal CKM matrix.

A similar comparison to resummino, but now comparing the results at NLO+NLL, is shown in
Fig. 5.3. This shows largely the same behavior as in Fig. 5.2, suggesting that any major differences
between the calculations stem from differences in convention also in this case.

This comes with a slight caveat, though. Even though the final NLO+NLL results from our
calculations and from resummino are similar, and well within the PDF uncertainties as shown in
Sec. 5.4, there is a somewhat notable difference in that our cross-section increases slightly when
adding resummed contributions (again, see Sec. 5.4), whereas it decreases, also slightly, in the
resummino results. There are several reasons why this may be happening, notably possible
differences in exactly how the improved resummation formalism, as discussed in Sec. 4.7.5, is
defined, or in the matching procedure. resummino also treats the PDFs differently for resummed
contributions, using a fitting and evolution procedure in Mellin space [59]. Regardless, as we noted
the NLO+NLL results from the two sources are still in fairly good agreement.

Again, like in the comparison to prospino, the behavior for the charged-current process is
markedly different from the other cases. This suggests that also resummino may be using
a diagonal version of the CKM matrix.4 Our numerical implementation thus represents an
improvement on the current standard for slepton-sneutrino production, in terms of accuracy.

Lastly we make a note on the efficiency of the different codes, specifically in comparing our
results to those of resummino. A comparison of the time elapsed when evaluating the cross-
section for left-handed selectron pair production at NLO+NLL, for a set of 100 randomly chosen

4This can be verified in the resummino source code; as of version 3.1.1, the diagonal version is used as the
standard.
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ẽLν̃

∗
e

ν̃τ ν̃
∗
τ

Numerical errors

Figure 5.3: Similar to Fig. 5.2, but now comparing our NLL results, σ, to those from resummino,
σr. Our charged-current results were obtained keeping the off-diagonal terms in the CKM matrix.

parameter points,5 is shown to the left in Fig. 5.4 along with the relative numerical error. We see
that our calculations lead to significant speed-up, without sacrificing numerical precision.

This is likely due in large part to the fact that we have made our expressions analytical to
the extent that it is possible, thus reducing the need to load external packages. We do rely on
LoopTools for the supersymmetric QCD contributions, and on lhapdf for the PDFs and strong
coupling, but everything else is analytical. In particular this includes the virtual QCD loop as
explained previously, which is computed significantly faster with the analytical expression rather
than having to evaluate all of the Passarino-Veltman functions of Eq. (4.58). We were also able to
reduce the dimensionality of many of the integrals with the manipulations of Sec. 3.3.1.

Another difference, which we noted already in comparing the NLO+NLL cross-sections to
resummino, is how the PDFs and inverse Mellin transform are dealt with. As explained in Sec. 4.7.7
we opted to use differentiated PDFs in x-space, which were calculated once and then stored, to
reduce oscillations in the resummed expressions for large N . This should make the convergence
of integrals quicker, with better stability in the partonic cross-section, and does not require any
additional calculations at run-time. In comparison, resummino evaluates PDFs in Mellin space
through a least-squares fitting procedure at run-time [59], which may both be time-consuming and
vulnerable to numerical uncertainty.

A similar comparison for the production of ẽ∗Lν̃e, via a W+ boson, is shown to the right in
Fig. 5.4. As we noted above, the fact that we chose to include the full form of the CKM matrix,
and not assume that it is diagonal, is expected to slow down the evaluation by requiring a sum over
more quarks. This is reflected in the times, as our evaluation now takes slightly longer than that
of resummino for most of the points;6 still, our evaluation is more consistent in speed, and has a

5These were generated by random sampling on the MSSM parameter space.
6Notice also that the resummino calculation is faster than for the neutral-current process, since the charged W+

boson, restricts each incoming quark flavor to be either a quark or antiquark, depending on isospin, as opposed to
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Figure 5.4: Comparison of time elapsed and relative numerical error for neutral- and charged-current
processes, both in the evaluation of the cross-section at NLO+NLL, for our code and resummino.
For both processes, 100 MSSM parameter points were randomly selected. All calculations were
done on the same machine.

lower numerical uncertainty. Thus, since the difference in speed is not very large, we would argue
that it is a fair trade-off in achieving better accuracy with the more general CKM matrix form.

5.2.2 Inverse Mellin transform

Lastly, we check the consistency of the numerical inverse Mellin transform as described in Sec. 4.7.7.
To do this, we calculate the total cross-section at NLO for left-handed selectron pair production as
a function of selectron mass, both conventionally and from the Mellin-space partonic cross-section
of Sec. 4.6, and compare the two. This is shown in Fig. 5.5.

The uncertainty shown is purely numerical, from the integration. We note that the agreement
is good, if not necessarily perfect; better agreement might be reached using more integration points
than we have done here.7 Furthermore, to evaluate the harmonic numbers S1(N) ≡

∑N
n=1

1
n for

complex N , we used the series expansion

S1(N) ∼ lnN +
1

2N
−

∞∑
k=1

B2k

2kN2k
, (5.10)

where Bi are the Bernoulli numbers, up to O
(

1
N10

)
. Thus the agreement will never be perfect.

When taking the inverse Mellin transform of resummed results, which are given exactly in terms of
logarithms of N , no such approximation is necessary, so the precision is likely better in that case.

the γ, Z bosons that allow both. Thus resummino only needs to fit half as many PDFs in Mellin space.
7The purpose of the calculation from Mellin space partonic expressions was mainly to get a rough comparison to

the real-space results, so the numerical routine can likely be refined.
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Figure 5.5: Comparison of the total cross-section at NLO for left-handed selectron pair production
obtained from the conventional x-space expressions of Eqs. (4.116) and (4.117), denoted by σx, to
those obtained from the Mellin moments of the partonic cross-section, Eqs. (4.133) and (4.127),
denoted by σN . The upper plot shows both results as functions of the selectron mass (the difference
is too small to be visible here), while the lower shows their relative difference. All squark masses
are set equal at mq̃ = 1 TeV, with all squark mixing angles θq = 0; the gluino mass is set to
mg̃ = 2 TeV.

There could also be a small uncertainty in the numerical differentiation of the PDFs,8 cf. the
discussion in Sec. 4.7.7, as the numerical uncertainty from the differentiation is not included.
Regardless, the difference is of the same order of magnitude as the numerical uncertainty and far
smaller than the scale and PDF uncertainties, so the agreement is good enough for our purposes.

5.3 Scale dependence

One of the most important motivations for calculating higher-order corrections to cross-sections
is the expected reduction in dependence upon the unphysical energy scale µ. Being an arbitrary
unphysical parameter it must drop out of any exact computation; in other words, if we could
somehow calculate all of the contributions to a process in perturbation theory, we would expect the
µ dependence to cancel entirely. Any higher-order correction to a perturbative result represents a
step toward this idealized scenario; thus we expect the µ dependence to gradually decrease as we
include more contributions.

This is also the logic behind defining the theoretical uncertainty from missing higher orders by
varying the scale between 2 and 1/2 times the central scale; as µ is expected to drop out when
including all contributions one expects the exact result to lie somewhere in the range reached when

8The derivative was calculated using cubic spline interpolation, using the grid on which the PDF values are stored
as reference points.
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Figure 5.6: Scale-dependence of the total cross-section for pair production of left-handed selectrons,
given as a function of the ratio of the scale to the central scale µ0 = mẽL . Selectron masses
(clockwise from top-left) mẽL = 60 GeV, mẽL = 140 GeV, mẽL = 200 GeV, mẽL = 400 GeV. All
other parameters are identical to those used for Fig. 5.5.

varying the scale. From this perspective we can also understand the choice of µ as some energy scale
representative of the interaction, as higher-order corrections will presumably contribute around this
scale.

A selection of plots showing the cross-section as a function of the scale are shown in Fig. 5.6.9
These exhibit roughly the expected behavior, notably that the scale dependence generally decreases
as we go from NLO to NLO+NLL.

Where the behavior clearly differs from the naively expected one is when we add higher-order
corrections to the leading-order result; in this case the scale dependence can actually increase, and
the higher-order results often lie outside of the expected range obtained by varying the scale. This
shows an example of what we discussed at the end of Sec. 1.2.1. At the leading order this is purely
an electroweak process, meaning that the only notable scale dependence is from the PDFs; but
when including loop corrections the strong coupling also appears, which runs much more rapidly.

This illustrates one of the main flaws of the conventional definition of theoretical uncertainties by
scale dependence; the scale dependence at a certain order does not “know” what new couplings may
appear at higher orders, thus potentially underestimating the effect of these higher-order terms.

9These include results at LO+LL; we obtain these by adding the g1 term of Eq. (4.185), matched to leading-order
(i.e. by taking exp (· · · ) ≈ 1 in the expansion of Eq. (4.183)), to the leading-order result of Eq. (4.46). In the rest of
our figures the LO+LL results are mostly not included, as they mainly just make the figures more cluttered without
revealing anything too interesting.
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∗
L)

LO+NLO (ẽLẽ
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Figure 5.7: Total cross-section for production of either a pair or selectrons, or a selectron-sneutrino
pair, as a function of their mass. All MSSM parameters are identical to those used for Fig. 5.5.

5.4 Dependence upon MSSM parameters
Having verified the consistency of our calculations, and seen that higher-order corrections perform
as expected in reducing the dependence upon the arbitrary renormalization scale, we can now move
on to implement our results for a range of MSSM parameters. This will allow us to investigate how
sensitive the cross-section is to variations of the parameters; conversely, it shows what parameters
will be the most sensitive to measurements at colliders.

5.4.1 Final-state masses and PDF uncertainty

The most obvious parameter to test is the mass of the produced particles, which will have a
significant impact on the available phase space of the particles. Fig. 5.7 shows the total cross-
section for selectron production as a function of their mass, with uncertainties from scale variation
and PDFs as defined previously. We include all processes with at least one selectron in the final
state, be it in a pair of either chirality, or along with a sneutrino. In other words, the processes
taken into account are

pp→ ẽLẽ
∗
L +X; pp→ ẽRẽ

∗
R +X; pp→ ẽLν̃

∗
e +X + c.c., (5.11)

where X denotes any collection of particles that can be created along with the sleptons, contributing
to the inclusive cross-section. To represent all of these cross-sections in the same figure, all final-
state particle masses are assumed equal.
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The results seen here confirm much of what we have discussed previously; firstly, including
QCD corrections to the leading-order cross-section gives a fairly large numerical enhancement,
significantly more than what we would naively expect from the scale uncertainty of the LO result.
Adding resummed results on top of the fixed-order ones does not give that much of an enhancement,
but it does reduce the scale uncertainty by a fair amount. Reduced theoretical uncertainty is
invaluable in comparing theoretical calculations to experiments, as it allows us to make far more
definitive predictions, and be more stringent in excluding regions of parameter space.

The behavior as a function of the final-state masses is also as expected from kinematical
considerations. By momentum and energy conservation, the invariant mass Q of the final-state
particles must at least equal their total mass, meaning that the available phase space to be integrated
over decreases as the total mass increases. This further means that the Born cross-section becomes
increasingly suppressed, as seen from the Q-dependence in Eq. (4.44).

A larger required invariant mass will also suppress the cross-section through the PDFs; from
Eq. (4.115) a larger τ = Q2/s increases the lower limit on the momentum fractions of the incoming
partons, towards regions where their PDF values are significantly smaller.10

This suppression for large momentum fractions also explains why the PDF uncertainty11

increases with the final-state mass, as seen in Fig. 5.7, simply from a lack of sufficient data. This
happens since as we just noted, the larger required invariant mass forces the momentum fractions
of the partons to increase. Conversely, however, to fit PDFs in this region to experiment we need
measurements obtained for large momentum fractions. This is difficult in practice if the produced
particles are light, since the production cross-section will then be dominated by regions of lower
invariant mass and momentum fractions. Thus, since all currently discovered particles have masses
below 200 GeV, i.e. to the left of the range shown in Fig. 5.7, it is a challenge to gather enough
experimental data to precisely determine PDFs in the large-x region, and consequently to precisely
compare theoretical cross-sections for production of heavy particles to experiment.

This comparison can potentially be made simpler, even without improving the PDFs, with
higher center-of-mass energies in colliders. This can be understood from our above discussion; as
stated, the lower limit on the partonic momentum fractions is τ = Q2/s. A higher center-of-mass
energy

√
s will then allow the momentum fractions to be low even if the invariant mass Q is large,

allowing regions of phase space with lower PDF uncertainties to be the dominant contribution to
the cross-section.

A recent increase in center-of-mass energy from
√
s = 13 TeV to

√
s = 13.6 TeV at the LHC can

help improve the uncertainty, as shown in Fig. 5.8. Here we compare the relative PDF uncertainty
(not including αs uncertainty this time) for (selectron-) sneutrino pair production as a function
of sneutrino mass for the two center-of-mass energies; the relative uncertainty is clearly reduced,
especially for larger masses. To further illustrate the point we also include results for a hypothetical
20 TeV collider, in which the relative PDF error is further reduced.

5.4.2 Mass mixing

As we discussed in Sec. 2.4, for stau particles we in general expect the mass eigenstates not to
correspond to the chiral eigenstates. The mixing between these eigenspaces is described by the
parameter θτ . As we have done our calculations with mass eigenstates, a non-zero mixing angle
will not affect the phase space, since the final-state masses are unchanged. This further means
that the relative enhancement from LO to NLO (with just QCD) and NLO+NLL should not be
affected, as the preferred region of phase space — and hence the preferred values of z = Q2/ŝ —

10The PDFs fi(x) decrease drastically as x increases. This is largely owing to the running of the strong coupling,
which causes low momenta to be preferred.

11Really the combined PDF and αs uncertainty, but this is dominated by the PDF.
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Figure 5.8: Relative PDF uncertainty for ν̃eν̃∗e production at NLL, for varied center-of-mass energies.

are unchanged. The entire effect of the mixing angle will show up in the effective coupling Fαβq` ,
defined in Eq. (4.27), and its 1-loop versions, where it appears since the Z boson couples differently
to left- and right-handed particles.

In Fig. 5.9 we show the dependence of the NLL cross-section upon the mixing angle, as well
as the so-called K-factor K = σ/σLO, i.e. the relative enhancement from the leading-order result.
The latter supports the above discussion, as the K-factor is roughly constant with respect to the
mixing angle, except for a few fluctuations of the order of magnitude of the numerical uncertainty.

The mixing angle can, not unexpectedly, have a significant impact on the value of the cross-
section. For particle-antiparticle pairs, configurations where the produced sleptons approximately
correspond to the left-handed chiral eigenstate (meaning cos θτ = 1 for τ̃1τ̃

∗
1 production, and

cos θτ = 0 for τ̃2τ̃∗2 production) are preferred, simply because the SU(2)L gauge group only couples to
left-handed fields. For the mixed final state τ̃1τ̃∗2 (or its complex conjugate) there is no production
at all for the extreme cases of cos θτ = 0, 1, as in these cases the mass eigenstates correspond
exactly to chiral eigenstates, and production of unequal-chirality pairs is not possible. When there
is mixing between the two eigenspaces, the maximum cross-section is achieved when Zαβτ , as defined
in Eq. (4.3), is maximized, i.e. for cos θτ = 1/

√
2 or θτ = 45◦.

To further investigate this maximum-mixing case, we look at how the cross section for τ̃1τ̃∗2+ c.c.
production depends on the two stau masses, in the case of θτ = 45◦. The cross-section as a function
of both masses, under the restriction mτ̃2 ≥ mτ̃1 , is shown in Fig. 5.10; keeping their average mass
fixed at (mτ̃1 +mτ̃2)/2 = 200 GeV, the cross-section as a function of the mass difference is shown
in Fig. 5.11.

In both cases, the dependence is largely just a question of kinematics, since the final-state
masses do not have any direct influence on the QCD corrections.12 As we discussed in the previous
section, an overall increase in the final-state mass reduces the cross-section, exactly as shown in
Fig. 5.10. What is more interesting is that even though the total mass stays the same, so that the
available phase space is not affected, a larger mass difference between the stau eigenstate causes the
cross-section to decrease. This is again just a consequence of energy and momentum conservation,

12They do indirectly have some influence on these corrections, through the dependence on z = Q2/ŝ, where Q2 is
necessarily increased by a larger final-state mass.
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Figure 5.9: Top: NLL total cross-section for production of a pair of stau particles, for all
combinations of mass eigenstates, as a function of mixing angle θτ . Stau masses are set to
mτ̃1 = 250 GeV, mτ̃2 = 400 GeV; for other parameters, see Fig. 5.5. Bottom: Relative enhancement
compared to leading-order results.

which causes the momentum factor of Eq. (4.10) to decrease for unequal masses.

5.4.3 Squark and gluino masses

In the theoretical calculations of the last chapter, in particular when adding loop effects from
supersymmetric particles, we emphasized generality, in principle allowing for separate values for
each of the 12 squarks, and the 6 squark mixing angles. In this way as many parameters as possible
can be specified when evaluating the expression, enabling a more complete scan of the parameter
space of the theory.

Of course, the squark sector parameters are not expected to have an awfully large impact on
the cross-section; the squark-loop contributions only appear at 1-loop level, and are not the main
contribution even at this level, as the loop corrections are dominated by soft-gluon effects. Still,
with sufficient precision in the theory predictions and the PDFs, these variations can still have a
non-negligible impact, at least for the first generation of squarks; these will presumably have the
largest impact on the result since the u and d quarks have the largest PDFs.

The total cross-section for left-handed selectron pair production at NLL, as a function of ũ
and d̃ squark masses, are shown in Fig. 5.12. As anticipated the effect is fairly small, smaller
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Figure 5.10: Inclusive cross-section for pp → τ̃1τ̃
∗
2 + c.c. at NLO+NLL accuracy, as a function of

the stau masses. Maximum mixing between mass and chiral eigenstates are assumed, i.e. θτ = 45◦.
Squark and gluino sector parameters are the same as for Fig. 5.5.

than the theoretical uncertainty. Still, as noted above, with improved theoretical precision the
effect can be non-negligible in comparison with experimental data. Not surprisingly the largest
effect is seen for ũ masses, simply because the uu initial state, which is where this loop appears,
is the main contribution to the cross-section. Furthermore, as we noted previously the left-handed
particles generally dominate as they have SU(2)L couplings; as a consequence the cross-section is
more sensitive to changes in the left-handed squark masses than right-handed ones.

The cross-section can also depend on the gluino mass, albeit more weakly; on the one hand they
appear in every squark-gluino loop, independent of flavor, but each loop only has one power of the
gluino propagator, versus two for the squarks. The cross-section as a function of squark and gluino
masses, assuming all squark masses are equal, is shown in Fig. 5.13. Here we see a more pronounced
dependence than before, due to the fact that we are now varying masses in every squark-gluino
loop regardless of flavor. As anticipated the cross-section is more strongly dependent on the squark
mass than the gluino mass.

A few things in Fig. 5.13 are worth commenting on. For one, we see clearly in the upper right-
hand corner that as the particles in the loop become significantly heavier than the sleptons, and
thus far above the dominant invariant mass contributions, they decouple. This means that the loop
makes barely any contribution to the cross-section, and is seen from the fact that the cross-section
becomes nearly independent of the squark and gluino masses.

As an aside, this behavior illustrates the usefulness of effective field theories, in which particles
that are far more massive than experimental energy scales are integrated out. If the heavy particles
are sufficiently heavy they decouple and do not affect observables at lower energy scales. Conversely,
this explains the experimental challenge of discovering heavy particles from their appearances in
loops, since they affect observables at lower energies only very weakly.
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Figure 5.11: Inclusive cross-section for pp → τ̃1τ̃
∗
2 + c.c. at NLO+NLL accuracy, as a function of

the mass separation between the stau eigenstates, mτ̃2 −mτ̃1 , with (mτ̃1 +mτ̃2)/2 = 200 GeV and
θτ = 45◦. Squark and gluino sector parameters are the same as for Fig. 5.5.

The behavior for small squark and gluino masses, seen in the lower left-hand corner of Fig. 5.13,
is also interesting. As the masses drop below the selectron mass, mq̃,mg̃ . mẽL , the total cross-
section decreases by a fairly significant amount.

The fact that the dominant behavior, as a function of the masses, happens in this region is not
that surprising. After all, as we have argued from the Q-dependence of the Born cross-section, the
dominant contribution in the space of slepton invariant masses Q2 is when the invariant mass is as
low as possible, while still giving the sleptons a reasonably-sized phase space. In other words the
region where Q2 ∼ m2

ẽL
, meaning that the two are on the same order of magnitude, dominates the

phase space integration.
Meanwhile, in the virtual loop contributions to the cross-section, including the one including

supersymmetric particles, the invariant mass Q2 is exactly equal to the center-of-mass energy of
the partonic initial state, since nothing is radiated off. Q2 thus represents the relevant energy
scale in the loop, as seen from the arguments of the Passarino-Veltman function of Eq. (4.95),
so contributions where the masses are around the same scale, i.e. all masses m ∼ Q ∼ mẽL , are
preferred.

What is somewhat more surprising is the fact that the cross-section decreases in this region,
suggesting negative interference between the leading-order result and the supersymmetric loop
correction. It should be noted, however, that the scenario where this happens, i.e. where
mq̃,mg̃ . mẽL , is not terribly relevant from a phenomenological perspective, since squarks and
gluinos are typically assumed to be heavier than sleptons in most supersymmetric models.

5.4.4 Weak boson widths

As we saw in Sec. 5.2, whether or not the decay width of the mediating gauge boson is included in
the calculation does not make much of a difference when the final-state mass is significantly above
the gauge boson mass. Where it will have a large impact is if conservation of energy allows the
invariant mass of the sleptons to pass below mZ ; in other words, if m˜̀

iα
+m˜̀

iβ
< mZ . Admittedly

this is somewhat of a contrived scenario, as it is unlikely that the slepton masses could be that low
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Figure 5.12: Total cross-section for left-handed selectron pair production at NLL, as a function of
first-generation squark masses. The selectron mass is set to 200 GeV; the gluino mass mg̃ = 2 TeV.
All squark masses except d̃ in the left-hand plot and ũ in the right-hand one, are kept constant at
1 TeV; mass and chiral eigenstates are assumed equal.

without having been discovered already, but more generality in the expressions, and slightly better
accuracy, is still an advantage.

Assuming for the sake of the argument that the left-handed selectron has the mass mẽL =
40 GeV, we can calculate the invariant mass distribution arount Q = mZ as shown in Fig. 5.14.13

The distribution is peaked at Q = mZ as one would expect, and finite everywhere due to the non-
zero decay width. Note also that since the invariant mass is so much lower than in the previously
shown results, the PDF (+αs) error is far lower than the scale variation error, even for the NLL
results.

13This figure shows dσ
dQ

, whereas we have usually stated the differential cross-section as dσ
dQ2 . The transformation

between the two is a simple application of the chain rule for differentiation, that just amounts to dσ
dQ

= 2Q dσ
dQ2 .
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Figure 5.13: Total cross-section for left-handed selectron pair production at NLL, as a function of
gluino and squark masses. The selectron mass is set to 200 GeV; all squark masses are assumed
equal, with no mixing between mass and chiral eigenstates.
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Figure 5.14: Differential cross-section for left-handed selectron pair production as a function of
slepton invariant mass Q, for mẽL = 40 GeV. Squark and gluino parameters are the same as in
Fig. 5.5.
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Conclusion

In this thesis we have studied slepton pair production at hadron colliders, and how higher-order
corrections affect the inclusive cross-section for this process. First, we presented some theoretical
background needed to do calculations in Quantum Chromodynamics with supersymmetric particles.

We reviewed the techniques of regularization and renormalization to remove divergences in
perturbative Quantum Field Theory, as well as how momentum integrals can be systematically
kept track of using Passarino-Veltman reduction; we gave a brief introduction to supersymmetry
as an extension to the symmetry groups of the Standard Model, and to the construction of
a minimal supersymmetric extension to the Standard Model (MSSM); and we discussed some
technicalities arising when doing calculations in perturbative Quantum Chromodynamics (QCD),
in particular the concepts of asymptotic freedom and color confinement, and how they relate to
parton distribution functions and the renormalization thereof.

Using these concepts, we calculated the inclusive cross-section for slepton pair production to
next-to-leading order. The quantum corrections arising at this order include virtual loop corrections
— both from supersymmetric particles, namely squarks and gluinos, and from Standard Model
quarks and gluons. Both of these contain ultraviolet divergences, which were removed through
renormalization of the quark field; the latter correction also has infrared divergences. These were
largely removed when adding all diagrams contributing to the inclusive cross-section, i.e. also
diagrams with emission of real gluons or quarks; the remaining collinear divergences were removed
by renormalization of the PDFs, as discussed in Chapter 3.

With this all divergences have been removed, leaving the finite cross-section at NLO. However,
in cancelling the infrared divergences we were left with logarithmic terms that can grow very large in
the limit where the energy of the emitted gluons is low, called the eikonal limit. These logarithms
were handled by resummation. As we discussed, the cross-section in the eikonal limit can be
represented by Wilson lines, which through renormalization can be written on an exponentiated
form, thus including the large logarithmic contributions to all orders in perturbation theory. With
this we obtained the cross-section at NLO+NLL precision.

Upon completion of our analytical calculations, we show some representative results from a
numerical implementation of our calculations. These show that the inclusion of QCD corrections to
the leading-order cross-section gives a fairly significant increase to the cross-section; far larger, in
particular, than the naive estimate obtained from varying the renormalization and factorization
scales of the leading-order result, which contains no QCD interactions. The numerical effect
of also including resummed results is less dramatic; the main effect here is a reduction in the
dependence upon the unphysical scales compared to the fixed-order result, meaning that the
theoretical uncertainty is lowered. This is invaluable in comparisons of theoretical models to
experiment, as it allows us to be more stringent in excluding regions of the parameter space of
the model.

In our results we also include a comparison to standard numerical tools for cross-section
calculations in supersymmetry, namely prospino and resummino. We were able to improve
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existing results in several respects. In terms of accuracy, we included off-diagonal contributions
from the CKM matrix, and the decay widths of the W and Z bosons, neither of which are done in
the existing packages. We also saw that our implementation was quicker than that of resummino
in calculating resummed contributions, while also being more reliable in terms of relative numerical
error. Thus it can be used more efficiently in a scan of the parameter space of the MSSM.

There are many paths open for future work on this subject. One possibility is what we just
mentioned, using these results in a precise scan of the parameter space of the MSSM, by comparing
their predictions to experiment. Even though the results as stated here can be implemented
fairly efficiently, being given analytically to a large extent, evaluating the cross-section at a single
point can still take over a minute; thus, due to the sheer number of parameters in the model, a
straightforward evaluation of every single parameter point is so time-consuming that it becomes
completely unfeasible. Instead, it could be more efficient to use machine learning techniques to
interpolate on the parameter space.

It is also possible to speed up the numerical evaluation in a number of ways, to potentially aid in
such a parameter scan. In particular, as we noted in Sec. 4.6, evaluating the PDFs in Mellin space
can simplify and speed up the numerical integration significantly, by reducing the dimensionality of
the PDF integrals. To do this efficiently one would ideally need some way of storing PDFs in Mellin
space; this is made challenging by the fact that the Mellin variable N is complex, and should be
sampled over an infinite range when calculating the inverse Mellin transform. A possible solution is
restricting oneself to a particular parametrization of the integration contour, e.g. the one we chose
in Eq. (4.200). With such a parametrization N is fixed by a single real parameter, that runs over a
finite range; thus it might be possible to store Mellin space PDF values on a grid in this variable.
The drawback of this approach is that it does not allow for other integration contours, which might
be useful for optimization purposes.

Another possibility is applying the same theoretical methods we have used here to other
processes. An obvious generalization is the production of gauginos or Higgsinos — the fermion
supersymmetric partners of gauge bosons and the Higgs particle, respectively — which have
production mechanisms similar to those of sleptons. The alternative is looking at production
of color-charged particles, like squarks or gluinos, which have larger cross-sections due to their
strong interactions. Since both the initial- and final-state particles in such a process are strongly
interacting, QCD corrections can arise in both the initial and final state. As a consequence there
are many more contributions, both making the calculations more complicated and presumably the
higher-order effects more significant.
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Appendix A

Dirac algebra in d dimensions

Here we note some important relations of Dirac γ matrices that are used in our calculations. These
matrices are ubiquitous in amplitude calculations with fermions, so it is very useful to derive a set
of reference formulae for them rather than repeat similar calculations endlessly. These can all be
derived from the Dirac algebra, given by1

{γµ, γν} = 2gµν14×4. (A.1)

A.1 Contraction identities
From Eq. (A.1) it is fairly straightforward to find expressions for products of several γ matrices, in
which one or more pairs of indices are contracted. Such products commonly appear in processes with
gauge bosons, where the propagator of the gauge boson contains a factor gµν , forcing a contraction
of two indices. Exploiting this contraction and the Dirac algebra will allow us to remove two of the
matrices, significantly simplifying calculations.

These expressions can be found recursively; for the case of just two matrices, Eq. (A.1)

γµγµ = gµνγ
µγν =

1

2
gµν{γµ, γν} = gµνg

µν = d. (A.2)

Then, for a product of three matrices, this leads to

γµγνγµ = 2gµνγµ − γνγµγµ = (2− d)γν . (A.3)

Here we first used Eq. (A.1) to swap the order of the first two matrices, and then inserted our
result from Eq. (A.2). The calculations for higher numbers of matrices multiplied proceed similarly;
assuming that the contraction γνγµ1γµ2 · · · γµn−1γν ≡ Aµ1µ2···µn−1 is known, we find the next result
by

γνγµ1γµ2 · · · γµnγν = 2γµ2 · · · γµnγµ1 − γµ1Aµ2···µn . (A.4)

More specifically, this leads to the following set of identities, used repeatedly in the thesis:

γµγµ = d, (A.5)
γµγνγµ = (2− d)γν , (A.6)

γµγνγλγµ = 4gνλ + (d− 4)γνγλ, (A.7)
γµγνγλγργµ = (4− d)γνγλγρ − 2γργλγν . (A.8)

1The dimensionality of the Dirac matrices is unrelated to the number of spacetime dimensions, so they remain
4× 4 matrices even when d = 4− 2ε.
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A.2 Trace relations
Our calculations with fermions also typically include taking the trace of products of Dirac matrices,
from summing over the spins of the fermions. Such traces actually vanish in many cases, specifically
when the number of multiplied matrices is odd. To show this we use γ5 ≡ iγ0γ1γ2γ3, which satisfies
γ5γ5 = 1 and

{
γµ, γ5

}
= 0; then, for any product of n = 2m − 1 matrices, where m = 1, 2, 3, . . . ,

we have

Tr[γµ1 · · · γµn ] = Tr
[
γµ1 · · · γµnγ5γ5

]
= −Tr

[
γ5γµ1 · · · γµnγ5

]
= −Tr

[
γ5γ5γµ1 · · · γµn

]
= −Tr[γµ1 · · · γµn ]
= 0. (A.9)

Breaking it down step by step, this is what we have just done: In the first line we multiply by the
identity in the form of γ5γ5; in the second, we commute the leftmost γ5 past the n others, picking
up a factor (−1)2m−1 = −1; in the third we use that Tr[ABC] = Tr[CAB]; and in the fourth we
remove the identity. This leaves an expression that is equal to its own negative, i.e. zero.

For products of an even number of matrices, we can find the trace by using the Dirac algebra.
The most useful cases are those of two or four matrices multiplied together; if there are more, the
expression can often be simplified through the use of our above contraction identities. For two
Dirac matrices, we have

Tr[γµγν ] = 1

2
Tr[{γµ, γν}] = 4gµν , (A.10)

using again the cyclic property of the trace as well as Tr[14×4] = 4. This can in turn be used for
the product of four γ matrices; explicitly, through repeated use of the Dirac algebra we find

Tr[γµγνγργσ] = 2gµνTr[γργσ]− Tr[γνγµγργσ]
= 2gµνTr[γργσ]− 2gµρTr[γνγσ] + Tr[γνγργµγσ]
= 2gµνTr[γργσ]− 2gµρTr[γνγσ] + 2gµσTr[γνγρ]− Tr[γνγργσγµ]︸ ︷︷ ︸

=Tr[γµγνγργσ ]

. (A.11)

We can now solve for Tr[γµγνγργσ], and use Eq. (A.10) to get

Tr[γµγνγργσ] = 4gµνgρσ − 4gµρgνσ + 4gµσgνρ. (A.12)
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