
UNIVERSITY OF OSLO
Department of informatics

An Equational
Characterization of
the Poly-time
Functions on any
Constructor Data
Structure

Vuokko-Helena
Caseiro

Research report 226

ISBN 82-7368-141-6
ISSN 0806-3036

December 1996

An Equational Characterization of the Poly-time

Functions on any Constructor Data Structure

Vuokko-Helena Caseiro

Department of Informatics, University of Oslo, P.B. 1080 Blindern, N-0316 Oslo, Norway

Tel: +4722852405 Fax: +4722852401 E-mail: vuokko@ifi.uio.no

December 1996

Abstract

We give a purely syntactical, equational characterization of the
poly-time functions on any constructor data structure (free algebra).
The equations defining a function f have the shape of simple patterns:
(f (c y1 . . . ym)x2 . . . xn) = r, where c is a constructor, y1,. . . ,ym, x2,. . . ,
xn are different variables. There are restrictions on the right-hand
sides (rhs) r. The first restrictions concern the general shape of calls
to mutually recursive functions, and they imply that we recur on first
argument.

To express the two main restrictions on rhs we use a concept of
“critical position” which is closely related to the notion “safe” of Bel-
lantoni and Cook, and to the “tiers” of Leivant. A function f ’s i’th
argument position is critical iff in this position f may have access to the
result of a recursive call. Then the two main restrictions are (there will
be some exceptions for if-then-else, projections and unary addition):

1. The first position of every recursive function is noncritical.

2. Every rhs is linear in all variables from critical positions in the
lhs.

Say that a function g on input X1, . . . , Xk “doubles” Xi iff the length
of (gX) is at least twice the length of Xi. The purpose of (1) and
(2) is to forbid doubling of arguments in critical positions. (1) forbids
doubling by recursion (which otherwise would have been possible for
i = 1). (2) forbids explicit doubling of a variable from position i.

1 Introduction and Summary

We consider equations defining functions on data structures built from con-
structors, e.g. sorting a list constructed from nullary nil and binary cons by
using an intermediate binary tree constructed from ternary bic (value, two
subtrees) and nullary emp:

1

treesort l = flatten (maketree l)
maketree nil = emp
maketree (cons x y) = insert (maketree y) x
insert emp x = bic x emp emp
insert (bic v l r) x = if (lesseq x v) (bic v (insert l x) r) (bic v l (insert r x))
flatten emp = nil
flatten (bic v l r) = append (flatten l) (cons v (flatten r))
append nil z = z

append (cons x y) z = cons x(append y z)

where if has boolean first argument and is defined by if truex y = x, if falsex y =
y. Another example is exponentiating a unary number built from nullary 0
and unary succ:

exp1 (succ x) = double1 (exp1 x) exp1 0 = succ 0
double1 (succ x) = succ (succ (double1 x)) double1 0 = 0

These two equation sets are examples of “canonical systems”, i.e. equation
sets where each function f is defined by equations f (c y1 . . . ym) x2 . . . xn =
r, where c is a constructor, the yi’s and xj’s are different variables, and r

is a term with variables among the left-hand side (lhs) variables (the lhs
“treesort l” is considered shorthand notation).

Our problem is: Can we give syntactical criteria on the right-hand sides
(rhs) of canonical equations so that 1) the defined functions are guaranteed
to be poly-time, and 2) any poly-time function is definable by such equa-
tions? And as a side goal, can we be so light-handed that a natural definition
like treesort satisfies the criteria?

To the first part of the problem we have already given some answers in
[3]. The second part will be answered positively here, it’s the main result of
the present report. And it turns out that a modified treesort will satisfy the
criteria.

Bellantoni and Cook [1] have given a characterization of the poly-time
functions on binary numbers, which may be read as an equational charac-
terization of the poly-time functions on any constructor data structure with
constructors of arity less than two. In [4], Leivant has studied arbitrary
constructor data structures and has given equational characterizations of
complexity classes, but for constructors of arity greater than one, his classes
exceed poly-time. As far as we know, our problem (2) has sofar been open.

As we read [1], [4], the key idea is to control recursion by saying that,
input on which we do recursion is of a different nature than input which is the
result of a recursive call; and it should be forbidden to do recursion on the
result of a recursive call. E.g. exp1 recurs on its argument and that’s ok since
exp1 doesn’t ever receive the result of a recursive call as argument. double1

2

also recurs on its argument and that’s not ok since there’s an equation where
double1’s argument is the result of a recursive call, (exp1 x).

We will exploit the same idea. We formalize the distinction between
different kinds of inputs by defining a partition of argument positions into
critical and noncritial. The main property is that the critical argument
positions of a function f are exactly those positions that (directly or indi-
rectly) in some rhs are filled with the result of a recursive call. So e.g. exp1’s
position is noncritical, double1’s position is critical. The definition was first
given in [3] along with a simple algorithm that, given a canonical system,
finds the critical positions.

Following the idea of [1], [4], we should now forbid recursion on argu-
ments in critical positions. So we will, but why do we do it? Considering
again the example of exp1, we understand that the real problem with double1

is not that double1 recurs on its input, but that double1 doubles its input1.
If instead of double1 we used some other definition of doubling, then exp1

would still be an exponential function. And considering the treesort example
we see that both append and insert recur on critical, and intuitively that’s
ok since these functions don’t double their input. So we come up with the
rule of “Don’t Double Criticals”.

Basically, there are two ways for a function f to double an argument. The
first is by doing recursion on the argument, as double1 does. The second way
of doubling is by having a rhs nonlinear in the variable from the related lhs
position, and then in some way or other using constructors of arity at least
two to put the variable copies together. E.g. double2 x = cons x (consx nil).
Without constructors of arity at least two, this way of doubling doesn’t
work; therefore Bellantoni and Cook didn’t need to consider it. Leivant
didn’t consider the second way of doubling either, and in our opinion that
explains why his classes (in general) exceed poly-time.

In [3] we formulated the DDC (Don’t Double Criticals) canonical sys-
tems based on the idea of avoiding both ways of doubling criticals, and
furthermore on an analysis of needed arguments (from [2]). We showed that
any function definable in a DDC system is guaranteed to be poly-time. In
this report, we will define a class of particularly simple, purely syntactical
DDC systems, called the DDC if,πi,+ systems. In these systems we have
dropped the analysis of needed arguments and instead we treat if-then-else
(if) specially. A system is DDC if ,πi,+ if the following hold (and in the for-
mal definition given later we also allow some exceptions for if-then-else and
projections):

i) No Inner Doubling: For every equation, for every (mutually) recur-
sive call (g t1 . . . tm) in the rhs: Each ti is built from variables and
constructors, and (g t1 . . . tm) is linear in all variables.

1f on input X1, . . . Xn “doubles” its i’th argument if |f X| ≥ 2|Xi|.

3

ii) Recursion on First Argument For each equation (f (c y1 . . . ym) x2 . . .xn) =
r, let (g1 t1,1 . . . t1,ag1), . . . , (gk tk,1 . . . tk,agk) be the (mutually) recur-
sive calls in r, then k ≤ m and each ti,1 is a yj, and t1,1, . . . , tk,1 are
all different.

iii) Recursion on Noncritical For every recursive function f except unary
addition, f ’s first position is noncritical.

iv) Linear in Critical Every rhs is linear in every critical variable (i.e. in
every variable from a lhs critical position).

In the treesort example, (i) - (iv) are ok except that insert doesn’t satisfy
(ii) and (iii), append doesn’t satisfy (iii).

(i) and (ii) concern the “inside”, i.e. the arguments of (mutually) recur-
sive calls. Intuitively, we have only been reasoning about “outside doubling”,
but also “inside doubling” can be dangerous, e.g. the exponential function
exp2 (succx) y = exp2 x (cons y y), exp2 0 y = y. Our choice in (i) is to for-
bid all inside doubling. (ii) implies that we recur on first argument, so (iii)
becomes easy to state.

We want to show that any poly-time function can be defined by a
DDC if,πi,+ system, and to do this, we’d like to have a simple, generic ma-
chine working on constructor terms. Leivant has already suggested such a
machine, but his machine can do too much (double the contents of a register)
in a single step. However, by modifying his machine, we obtain our “small
step term machine” (SST machine). We then simulate poly-time compu-
tations on SST machines by DDC if,πi,+ systems. Loosely, we a) compute
the length l of the input in unary2, b) compute a polynomial p(l), c) recur
on p(l), simulating one machine step in each “round”. Note that’s in (a),
passing from arbitrary terms (with constructors of arity greater than one) to
unary numbers, that we need unary addition to be able to recur on critical.
The only difficulty in the simulation is that naturally, one would do careful
recursion on critical to define the “one step” function in (c) (like insert and
append do). However, often enough, such recursion can be mimicked by a
recursion on noncritical.

This kind of mimicking of recursion on critical can be used more generally
- applied to treesort’s insert and append, treesort becomes DDC if ,πi,+.

2 Preliminaries: Function Definitions

Given three disjoint sets, of variables, of constructors with arity and of func-
tions with arity greater than zero, respectively, we define terms in the usual
way: A variable is a term, and if t1, . . . , tn are terms and h is a constructor

2Throughout this report, the length of a constructor term t is the number of construc-
tors in t.

4

or a function, then (h t1 . . . tn) is a term. Furthermore (h t1 . . . tn) is an ap-
plication with h as head and the ti’s as arguments of h. s is a subterm of t
if s is t, or if t is an application (h t1 . . . tm) and s is a subterm of some ti.
We will assume that there’s at least one nullary constructor. A constructor
term is a term built only from constructors.

Define a canonical equation system to be a set of equations such that
each function f is defined by

(f (c y1 . . . ym) x2 . . .xn) = r

where n ≥ 1, m ≥ 0 and there’s one equation for each constructor c, where
y1, . . . ym, x2, . . . , xn all are different variables and r is a term with variables
among y1, . . . ym, x2, . . . , xn. We consider only finite systems. All our equa-
tions will be in this form. As shorthand notation, sometimes we instead
define a function f by composition, (f x1 . . . xn) = t, where x1, . . . , xn are
different variables and t is a term with variables among x1, . . . , xn. Often, we
define functions just for some constructors (e.g. append only on lists), then
formally, the rhs of the remaining equations can be taken as some nullary
constructor.

Let a canonical (equation) system be given. If a function g occurs in the
rhs of an equation for f (i.e. f occurs in the lhs) then f calls g. If there is
a sequence f1, f2, . . . , fn (n ≥ 1) of different functions such that f1 calls f2,
. . . ,fn calls f1 then each fi is recursive, and every two functions from the
sequence are mutually recursive. In an equation e : l = r for a function f , if
in r there is a subterm t such that t is (g t1 . . . tn) and g and f are mutually
recursive, then t is a recursive call term in e, and t has arguments t1, . . . , tn.

3 A “Don’t Double Criticals” System

3.1 Critical Positions (from [3])

We intend to define the critical positions such that these are exactly those
argument positions that may receive the result of recursive calls. So the
naive definition of a critical position is: Argument position number i in
function f is critical iff in some equation e’s rhs, f ’s i’th argument is a
recursive call term in e. But there are two complications about this: 1)
That f ’s’ i’th argument ti isn’t itself a recursive call term, but ti has a proper
subterm that is a recursive call term (e.g. if f is double1 and exp3 (succ x) =
double1 (succ (exp3 x))). Also in this case, f ’s i’th position will be defined
to be critical. 2) That arguments are passed from one function (in lhs) to
another (in rhs). Then criticality should be “remembered”. It’s because of
this second complication that we will first define critical variables and then
critical positions. Formal definitions now follow:

5

Definitions

Let a canonical system be given. Note that the definition of critical variables
and positions is with respect to this system, but to simplify notation, we
don’t mark this explicitly. Given an equation e : (f (c y1 . . . ym) x2 . . . xn) =
r, and a set of positions u ⊆ {1, . . . , n}, we define the variable set from e

corresponding to u:

W e
u = {yj | 1 ∈ u and 1 ≤ j ≤ m} ∪ {xi | i ∈ u and 2 ≤ i ≤ n}

E.g. let e1, e2 be the equations for append (in Sect. 1), then W e1
{1} = ∅,W e2

{1} =

{x, y}.

Definition 1 (critical variables in an equation)

• Let e : lhs = rhs be an equation in the given canonical system. If
there is a subterm (f t1 . . . tm) of rhs such that ti (1 ≤ i ≤ m) has a
subterm which is a recursive call term in e or a critical variable in e,
then this induces that in every equation e′ for f : Every v ∈ W e′

{i} is a

critical variable in e′.

• A variable is noncritical if it cannot be demonstrated to be critical.

Definition 2 (critical positions) For an n-ary function f defined by k

equations e1, . . . , ek: Position i, 1 ≤ i ≤ n, is critical iff every v ∈ (W e1
{i} ∪

· · · ∪W ek
{i}) is a critical variable.3

Note that we haven’t said anything about the positions of the constructors.
Consider the treesort example. The critical positions are the first position

in insert, the second and third positions in if, both positions in append.

3.2 If-then-else, Projections, Unary Addition

Define if true x y = x, if falsex y = y. Consider a call t = (if t1 t2 t3). To
compute t, t1 and either t2 or t3 are needed, and the output of t is either
t2 or t3. We want to define terms to reflect this. Let c0 be some nullary
constructor. Define the function TB with input a term and output a set of
terms (TB means Test and Branch):

TB(x) = {x} for every variable x
TB(k t1 . . . tm) = {(k t′1 . . . t

′
m) | t′1 ∈ TB(t1), . . . , t′m ∈ TB(tm)}

for k a constructor or a function different from if
TB(if t1 t2 t3) = {(if t′1 t

′
2 c0) | t′1 ∈ TB(t1), t′2 ∈ TB(t2)} ∪

{(if t′1 c0 t
′
3) | t′1 ∈ TB(t1), t′3 ∈ TB(t3)}

3Either all or none of the variables in W e1
{i} ∪ · · · ∪W

ek
{i} are critical.

6

Define another function B(t) (B means Branch) in the same way, except
that

B(if t1 t2 t3) = {(if c0 t
′
2 c0) | t′2 ∈ B(t2)} ∪ {(if c0 c0 t

′
3) | t′3 ∈ B(t3)}

Define the i’th projection πi by πi (c x1 . . .xm) = xi for every nonnullary
constructor c and 1 ≤ i ≤ m. A term s is a projection sequence (p.s.) if
s = πi1 (πi2 (. . . (πin v) . . .)) such that n ≥ 0 and v is a variable4. Let t be a
term, let s be a particular occurrence of a subterm of t: If s is a p.s., then
s is a p.s. in t; if s is a p.s. and moreover either s is t or the father of πi1
(when we view t as a tree) is not a projection, then s is a maximal projection
sequence in t.

Define addition of unary numbers by + 0 y = y, + (succx) y = succ (+x y).

3.3 DDC if,πi,+

A term t is linear in a term s if t has at most one (occurrence of a) subterm
s.

Definition 3 (DDC if,πi,+ system) A canonical system is DDC if ,πi,+ if
the following hold:

No Inner Doubling (NID) In every equation e, for every recursive call
term (g t1 . . . tm) in e: Every ti is built from only variables, construc-
tors and projections, and (g t1 . . . tm) is linear in every maximal pro-
jection sequence.

Recursion on First Argument (ROFA) For every equation e : f (c y1 . . . ym) x =
r, for every r′ ∈ TB(r), let RCT r′ be the set of terms t such that t
is a particular occurrence of a recursive call term in e and this occur-
rence t is in r′: Every t ∈ RCT r′ has a variable yi as first argument,
and if t1 ∈ RCT r′ and t2 ∈ RCT r′ then t1 and t2 have different first
arguments.

Recursion on Noncritical (RON) For every function f different from
+, f ’s first position is noncritical.

Linear in Critical (LIC) For every rhs r, for every r′ ∈ B(r): r′ is linear
in every maximal projection sequence s such that s ends with a critical
variable.

In the treesort example, NID, ROFA, and LIC are satisfied, and RON is
satisfied for all functions except append and insert.

In [3], the DDC systems were defined, and we showed that every function
definable in a DDC system is poly-time (the length of a constructor term t

4Note that every variable is a projection sequence.

7

is the number of constructors in t). Every DDC if ,πi,+ system is obviously a
DDC system5 except that in DDC, +’s first position could not be critical.
However it’s easy to see that if we enlarge a DDC system by allowing +’s
first position to be critical, the system still guarantees that only poly-time
functions are definable6. So: Every function in a DDC if ,πi,+ system is poly-
time.

Note why we didn’t choose to let every recursive definition have a simple
“primitive recursive form”: f (c y) x = h y x (f y1 x) . . . (f ym x). Here NID
and ROFA are satisfied, and RON remains as a restriction. But LIC cannot
be satisfied if there are critical variables and h 6= if. However, [1] and [4]
use “primitive recursive form” definitions. Intuitively that works well when
constructors have arity less than two since then the only way of doubling is
by recursion (so there’s no need for LIC).

Theorem 1 For any poly-time function f on a constructor data structure
there’s a DDCif,πi,+ system that defines f .

In the next section, we will prove Theorem 1 by adapting Leivant’s idea
of simulating machines. As a corollary, the proof shows that if every con-
structor has arity less than two, then RON ’s exception for + is not needed.

4 Simulating a Poly-time Machine in DDC if ,πi,+

Choose a set C0 = {c0, . . . , cp} of constructors, including the nullary con-
structor #. A small step term machine (SST machine) M over C0 consists
of

1. a finite set S = {s0, . . . , sn} of states, of which s0 is the initial state
and sn is the final state

2. an infinite set P = p0, p1, . . . of registers, that contain constructor
terms over C0

3. a finite, nonempty set H = {h0, . . . , hm} of heads, where m − 1 ≥
maximal arity of any constructor. The heads will be considered as
“pointers” to registers as well as variables over the nonnegative num-
bers,

4. a finite set of commands s. t. for each state sj there’s exactly one
command

A command is one of the following:

5Choose trivial fit units except {1, 2}, {1, 3} for if, and choose trivial output units except
{2}, {3} for if. Then every fit tree τ ∈ τ(t) corresponds to a unique t′ ∈ TB (t) and vice
versa. Analogously for output trees and B.

6See [3]: add with trivial units is poly-basic and PBO’ holds. Apply Theorem 15.

8

branch (sjhisj0 . . . sjp) For (fixed) states sj , sj0 . . . sjp , (fixed) head hi: When
in state sj , if the value of phi has a ck ∈ C0 as head, then switch to
state sjk .

construct (sjcksr) For states sj, sr, constructor ck of arity l ≥ 0: When in
state sj , if h0, . . . , hl−1 point to different registers, then store in register
ph0 the term resulting from applying ck to the values of ph0, . . . , phl−1

,
then store # in ph1, . . . , phl−1

. Switch to state sr .

destruct (sjsr) For states sj, sr: When in state sj, let the value of ph0

be a term (ck a0 . . . al−1). If l ≥ 1 and the heads h0, . . .hl−1 point to
different registers, then store ai in phi (0 ≤ i ≤ l− 1). Switch to state
sr.

move head right (sjhisr) For states sj , sr, head hi: When in state sj, let
head hi point to the next register, and switch to state sr.

move head left (sjhisr) For states sj , sr, head hi: When in state sj, if
hi doesn’t point to p0 then let head hi point to the previous register.
Switch to state sr .

swap (hihjsksr) For states sk, sr, heads hi, hj: When in state sk, let hi
point to hj ’s register and let hj point to hi’s register, and switch to
state sr.

do nothing (sn) When in state sn don’t do anything.

M is deterministic. As a special case (use only nullary constructors) one
obtains an ordinary turing machine with a one-way infinite tape.

A configuration is a tuple (h0, . . . , hm, si, u0, . . . , uk) such that h0, . . . , hm
are the values of the heads, si is the state, u0, . . . , uk are the values of the
first k + 1 registers where k is such that a) there’s a head pointing to pk or
the value of pk is not #, and b) for every register pj, j > k: There’s no head
pointing to pj and the value of pj is #.

An SST machine M computes a a k + 1-ary function f on C0 terms if
f(x0, . . . , xk) = y iff when M starts in configuration (0, . . . , 0, s0, x0, . . . , xk),
then in a finite number of steps, M reaches configuration (0, . . . , 0, sn, y).

Our SST machine is a modification of the deterministic register machine
of Leivant in [4]. His machine has only a finite set of registers and no heads.
His commands are branch -the same as ours; construct - store in register p
the result of applying constructor c to the contents of registers p1, . . . , pk,
and change state; j-destruct - store in register p the j’th immediate subterm
of the term in register q, and change state.

We couldn’t use Leivant’s register machine, since his construct and de-
struct commands are too strong. E.g. the subterms to be combined in “con-
struct” may all be taken from the same register p and the result put in

9

p, and so in one single step, the contents of a register may be doubled.
In this way e.g. the exponential function exp2 defined by exp2 (succx) y =
exp2 x (cons y y), exp2 0 y = y, may be computed in polynomially many ma-
chine steps as follows: Define the following Leivant machine M : M uses
the constructors 0, succ, nil, cons. M has four states, sb, sc, sd, sstop, and we
start in sb and terminate in sstop. M has two registers p1, p2. There are
three commands:

• When in state sb, if the head of the value of register p1 is succ, then
switch to state sc, else switch to state sstop.

• When in state sc, store in register p2 the term resulting from applying
cons to the values of of register p2 and p2, and switch to state sd.

• When in state sd, store in register p1 the first immediate subterm of
the term in p1, if it exists, and switch to state sb.

Starting in state sb with (succn 0) in register p1 and some L in register p2,
in 3×n+ 1 steps we reach sstop with a term of length ≥ 2n+1−1 in register
p2

7.
So instead we have introduced the SST machine. There’s no implicit

duplication, but instead the SST machine has infinitely many registers ac-
cessed by a finite number of heads (in this way, one can still double the
contents of a register, but in many small steps).

4.1 Simulating One Step in an SST Machine

Choose an SST machine M with constructor set C0, states s0, . . . , sn, regis-
ters p0, p1, . . ., heads h0, . . . , hm.

We will define a canonical systemOM overC0 and nullary 0, nil, true, false, *,
unary succ, binary cons8. We code each state si in unary by succi 0, we code
the values of the heads in unary.

As list abbreviations we use [e1, . . . , en] for cons e1 (cons e2 . . . (cons en nil) . . .),
and we use [e1, . . . , en | L] for cons e1 (cons e2 . . . (cons en L) . . .).

We code a configuration (h0, . . . , hm, s, u0, . . . , uj) by any list [h0, . . . , hm, s, u0, . . . , uk]
such that k ≥ j and every pj with j > k contains #. So the representation
of a configuration might actually be longer than the real configuration. (In
the simulation below, we “keep on to” all registers we have ever touched.)

Below are some common functions in OM . l-different tests if l unary
numbers are different. Each head?c tests if the input starts with constructor
c or not. We need equality eq only on unary numbers and *. np means “next
pair” and the intended use is to call np repeatedly to produce sequences of
pairs [k, 0], [k− 1, 1], . . . , [0, k], [∗, k], [∗, k] . . .

7Note: Leivant defined the length of a contructor term t to be the height of t as a tree.
8It’s implicit that if these special constructors 0 etc. are in C0, they must have the

same arity there.

10

if true x y = x

if falsex y = y

append nil z = z

append (consx y) z = cons x(append y z)

rev nil = nil
rev (consx y) = append (rev y) [x]

np (consx y) = r1 x y

r1 (succx) y = [x, succ (π1 y)]
r1 0 y = [∗ | y]
r1 ∗ y = [∗ | y]

l-differenth0 . . .hl−1 = if (eqh0 h1) false
(if (eqh0 h2) false (. . .
(if (eqh0 hl) false
(if (eqh1 h2) false (. . .
(if (eqhl−2 hl−1) false true) . . .))) . . .))

πi (c x1 . . . xn) = xi for all i, n such that 1 ≤ i ≤ n

head?c (c y) = true for all c ∈ C
head?c (dy) = false, for all d, c ∈ C, d 6= c

eq 0 x = head?0 x

eq (succ y) x = hsucc x y

eq ∗ x = head?∗ x
hsucc (succ z) y = eq y z
hsucc 0 y = false

Below, onestep expects the representation of a configuration.

onestep (consh0 L) = b1Lh0

b1 (consh1L) h0 = b2Lh0 h1

b2 (consh2L) h0 h1 = b3Lh0 h1 h2
...
bm+1 (cons sL) h0 . . .hm = if (eq s 0) t0

(if (eq s (succ 0)) t1 . . .
(if (eq s (succn 0)) tn false) . . .)

In the following we will define each tj .

11

4.1.1 branch sjhisj0 . . . sjp

Then tj is sj-branch h0Lh1 . . . hl−1 hl+1 . . . hm 0 nil, where l ≥ 0. Let h =
h1 . . . hl−1 hl+1 . . . hm in

sj-branch (succ n)Lhh′ L′ = sj-bLnh (succ h′)L′

sj-branch 0 Lhh′ L′ = sj-finish-branch Lhh′ L′

sj-b (consxL) nhh′ L′ = sj-branchnLhh′ (consxL′)
sj-finish-branch (consxL) hh′ L′ = [h1, . . . , hi−1, h

′, hi+1, . . . , hm, state |
(append (revL′) (consxL))]

where state is the following term:

if (head?c0 x) sj0 (if (head?c1 x) sj1 . . . (if (head?cp x) sjp false) . . .)

4.1.2 construct sjcksr

Then according to the arity l of ck, tj is l-construct h0 . . . hm sr (ck 0 . . .0)L.
If l = 0 then

0-construct h0 . . .hm sr c L = insert h0Lh1 . . . hm sr c 0 nil

If l = 1 then

1-construct h0 . . . hm sr c L = (1-extractL [h0, 0] h1 . . . hm sr c# nil)

If l > 1 then (below, there are l #’s)

l-construct h0 . . .hm sr c L = if (l-differenth0 . . . hl−1)
(l-extractL [h0, 0] [h1, 0] . . . [hl−1, 0] hl . . . hm sr c# . . .# nil)
[h0, . . . , hm, sr | L]

Let h = hl . . . hm in l-extract.

l-extract (consxL) p0 p1 . . . pl−1 h sr c a0 . . . al−1 L
′ =

if (eq (π1 p0) 0) (l-extractL (np p0) . . . (np pl−1) hsr c x a1 . . . al−1 [# | L′])
(if (eq (π1 p1) 0) (l-extractL (np p0) . . . (np pl−1) hsr c a0 x a2 . . . al−1 [# | L′])
...
(if (eq (π1 pl−1) 0) (l-extractL (np p1) . . . (np pl−1) hsr c a0 . . . al−2 x [# | L′])
(l-extractL (np p0) . . . (np pl−1) hsr c a0 . . . al−1 [x | L′])) . . .)

l-extract nil p0 . . .pl−1 hl . . .hm sr c a0 . . . al−1 L
′ =

insert (π1 (π2 p0)) (revL′) (π1 (π2 p1)) . . . (π1 (π2 pl−1)) hl . . . hm sr (join c a0 . . .al−1) 0 nil

join is defined for every nonnullary constructor c as:

join (c x0 . . .xl−1) a0 . . . al−1 = c a0 . . .al−1

Let h = h1 . . .hm in insert.

insert (succ n)Lhsr a h
′ L′ = insLnhsr a (succh′)L′

insert 0Lhsr a h
′ L′ = [h′, h, sr | (append (revL′) (consa (π2L)))]

ins (consxL) nhsr a h
′ L′ = insertnLhsr a h

′ (consxL′)

12

4.1.3 destruct sjsr

Then tj is destruct h0 . . . hm L sr. Let h = h1 . . . hm in the definition of
destruct, find and fi:

destruct h0 . . .hm Lsr = if (l-differenth0 . . . hl−1)
(find h0Lhsr 0 nil)
[h0, . . . , hm, sr | L]

find (succ y)Lhsr h
′ L′ = fiLy h sr (succh′)L′

find 0Lh sr h
′ L′ = pick1Lh′ h sr L

′

fi (consxL) y h sr h
′ L′ = find y L hsr h

′ (consxL′)

Let h = h0 . . .hm in the definition of pick1 and pick2:

pick1 (cons aL) hsr L
′ = pick2 a hsr (append (revL′) (cons #L))

pick2 (c a0 . . . al−1) hsr L = l-putinL [h0, 0] . . . [hl−1, 0] hl . . .hm sr a0 . . .al−1 nil
pick2 c h sr L = [h, sr | L] nullary c

Let h = hl . . . hm in the definition of l-putin:

l-putin (consxL) ph sr a0 . . . al−1 L
′ =

if (eq (π1 p0) 0) (l-putinL (np p0) . . .(np pl−1) hsr # a1 . . . al−1 (cons a0L
′))

(if (eq (π1 p1) 0) (l-putinL (np p0) . . . (np pl−1) hsr a0 # a2 . . . al−1 (cons a1L
′))

...
(if (eq (π1 pl−1) 0) (l-putinL (np p0) . . .(np pl−1) hsr a0 . . . # (cons al−1L

′))
(l-putinL (npp0) . . . (np pl−1) hsr a0 . . . al−1 (consxL′))) . . .)

l-putin nil ph sr a0 . . . al−1L
′ = [π1 (π2 p0), . . . , π1 (π2 pl−1), h, sr | (revL′)]

4.1.4 move head right hisjsr

Then tj is
[h0, . . . , hi−1, (succhi), hi+1, . . . , hm, sr | if (lesseq (noelemL) (succhi)) (appendL [#]) L]
where

noelem (consx l) = succ (noelem l)
noelem nil = 0
lesseq 0 y = true
lesseq (succx) y = if (head?0 y) false (lesseq x (π1 y))

4.1.5 move head left hisjsr

Then tj is [h0, . . . , hi−1, (π1 hi), hi+1, . . . , hm, sr | L].

13

4.1.6 swap hihjsksr

If i < j then tj is [h0, . . . , hi−1, hj, hi+1, . . . , hj−1, hi, hj+1, . . . , hm, sj | L],
else if i > j then tj is [h0, . . . , hj−1, hi, hj+1, . . . , hi−1, hj, hi+1, . . . , hm, sj |
L], else if i = j then tj is [h0, . . . , hm, sj | L].

4.1.7 do nothing sn

Then tn is [h0, . . . , hm, sn | L].

Lemma 1 Let [h0, . . . , hm, si, u] be a representation of an M configuration.
We have that onestep [h0, . . . , hm, si, u] = [h′0, . . . , h

′
m, sj, v] iff M passes

from the first to the second of the corresponding configurations.

4.2 Simulating Poly-time Computations by a Canonical Sys-
tem

Let M be an SST machine over a constructor set C0, that computes a
function f(x0, . . . , xk) in time (with a number of steps) less than or equal to
a(|x0|+· · ·+|xk|)b, where |t| is the number of constructors in the constructor
term t, a and b are positive integers.

We will define a canonical system SM to consist of the following equations
plus the equations in OM (onestep’s position is critical!). q-lengthsum is
defined for q = k and for every positive q less than or equal to the maximal
arity of any c ∈ C0.

f x = take (succm+2 0) (compute (pola,b (k+1-lengthsum x)) x)
compute 0 x0 . . .xk = [0, . . . , 0, 0, x0, . . . , xk] m+1+1 0′s
compute (succ y) x0 . . .xk = onestep (compute y x0 . . .xk)
pola,0 x = succa 0

pola,i+1 x = × x (pola,i x) note that pola,i x = succa(|x|−1)i 0
take (succ x) y = take x (π2 y)
take 0 y = π1 y

q-lengthsum x1 . . . xq = + (length x1) (+ (length x2) . . . lengthxq) . . .) q ≥ 2
1-lengthsum x = length x
length c = succ 0
length (c x) = succ (length x)
length (c x1 . . .xq) = succ (q-lengthsum x1 . . . xq) q ≥ 2
× 0 y = 0
× (succ x) y = + y (× x y)
+ 0 y = y

+ (succ x) y = succ (+ x y)

Lemma 2 For all C0 terms x0, . . . , xk: f(x0, . . . , xk) = y iff f x0 . . . xk = y.

14

Proof of Lemma 2 Using Lemma 1 repeatedly plus “do nothing” in sn
we get that M has a computation of length l starting with a configuration
(0, . . . , 0, s0, x) and ending with a configuration (h0, . . . , hm, sn, u) iff for ev-
ery d ≥ l and for some nonnegative number of #’s, (compute (succd 0) x) =
[h0, . . . , hm, sn, u,#].

So we obtain that for all C0 terms x0, . . . , xk: f(x0, . . . , xk) = y iff
fx0 . . .xk = y. ©

4.3 Simulating Poly-time Computations in DDC if,πi,+

SM isn’t DDC if ,πi,+ since NID doesn’t hold (the use of np in l-extract and
l-putin offends), ROFA doesn’t hold (sj-branch, insert, find, eq offend), RON
doesn’t hold (the input to onestep is critical, so all functions below onestep
have only critical positions).

Define a canonical system S to be a preDDC if ,πi,+ system if the following
are satisfied for S: NID, LIC, and

pre1: For every equation e : l = r, for every r′ ∈ TB(r): There’s at most
one recursive call term t in e such that t is a subterm of r′.

pre2: The length of any recursion is bounded by the length of the input, i.e.
for any call (f1X1 . . .Xn) (where X1, . . . , Xn are constructor terms)
that provokes a call sequence f1 → f2 → · · · → fk such that every pair
fi, fj is mutually recursive, we have k ≤

∑n
i=1 |Xi| .

pre3: There’s a nonnegative constant δ such that for any n-ary f in S, for
any constructor terms X1, . . . , Xn, let r be the rhs of the equation such
that (f X) matches the lhs, let σ be the matching substitution, then
for any subterm t = (g t1 . . . tm) of r such that g 6= if we have that∑m
i=1 |tiσ| ≤

∑n
i=1 |Xi|+ δ.

Lemma 3 Divide SM in two at onestep, i.e. let F1 = { f, compute, pola,0,
. . . , pola,b, take, q-lengthsum’s, length, ×, +, π1, π2 }, let F2 consist of all
the functions that define onestep for machine M9. Then the equations for
F1 make up an incomplete DDCif,πi,+ system, and with a minor adjustment
for np, the equations for F2 make up a preDDCif,πi,+ system.

Proof of Lemma 3 Obviously F1’s system is DDC if ,πi,+ (only + has critical
positions) except that the definition of onestep is lacking.

The system for F2 is almost preDDC if ,πi,+ - the only problem is that
NID isn’t satisfied in l-extract and l-putin since they use np. But instead of
np we can explicitly test for whether each pair p is [succx | y] or [0 | y] or
[* | y] before doing the recursive call to l-extract (or l-putin). Then in the

9F1 ∩ F2 = {π1, π2}

15

first case use [π1 (π1 p) | succ (π1 (π2 p))], in the second and third case use
[∗ | (π2 p)]. For example, 2-extract’s first test and then-branch are

if (eq (π1 p0) 0) Note: As before
if (head?∗ (π1 p1)) Note: New from here onwards
(if (head?∗ (π1 p2))
(2-extractL [∗ | (π2 p0)] [∗ | (π2 p1)] [∗ | (π2 p2)] s)
(2-extractL [∗ | (π2 p0)] [∗ | (π2 p1)] [π1 (π1 p2) | succ (π1 (π2 p2))] s))
(if (head?∗ (π1 p2))
(2-extractL [∗ | (π2 p0)] [π1 (π1 p1) | succ (π1 (π2 p1))] [∗ | (π2 p2)] s)
(2-extractL [∗ | (π2 p0)] [π1 (π1 p1) | succ (π1 (π2 p1))] [π1 (π1 p2) | succ (π1 (π2 p2))] s))

where s = h sr c x a1 . . . a2 [# | L′].
Then NID, LIC, pre1, pre2, are satisfied, and as for pre3, by inspection,

the arguments to functions in rhs are variables, constructors, projections,
rev, append, join, - δ may be taken as 4m+ n+ 5. ©

Lemma 4 For every preDDCif,πi,+ system S there’s a DDCif,πi,+ system R

such that R mimicks S, i.e. for every n-ary f in S there’s an n + 2-ary
function f• in R such that for all constructor terms X1, X2, X3, . . . , Xn+2:
If |X1| = |X2| >

∑n+2
i=3 |Xi| then (f X3 . . .Xn+2) = (f•X1Xn+2).

Proof of Lemma 4 Let a preDDC if,πi,+ system S be given. The proof idea
is: In order to obtain ROFA and RON we will provide each function with
two new noncritical arguments, do recursion on the first of them and keep
the length of the original arguments in the second. Formally:

We define a canonical system R: If S has if, then R has if. For every
constructor c in S, R has a function head?c (as before head?c (c y) = true,
and for d 6= c: head?c (d y) = false). For each n-ary f in S, f 6= if, defined
by equations of the form f (c y1 . . . ym) x2 . . . xn = ri, where r0, . . . , rp are
the rhs’s, there’s an n+ 2-ary function f• in R, defined by:

f• (succ z1) z2 y x2 . . . xn = if (head?c0 y) r∗0
(if (head?c1 y) r∗1 . . .
(if (head?cp y) r∗p false) . . .)

where for each subterm t of some of r0, . . . , rp, t
∗ is

x∗i = xi
y∗i = πi y

(c t1 . . . tk)∗ = k t∗1 . . . t
∗
k, c a constructor

(g t1 . . . tk)
∗ = g• z1 (succδ z2) t∗1 . . . t

∗
k, g, f mutually recursive

(g t1 . . . tk)
∗ = g• (succδ z2) (succδ z2) t∗1 . . . t

∗
k, g, f not mutually recursive, g 6= if

(if t1 t2 t3)∗ = if t∗1 t
∗
2 t
∗
3

We show that R is a DDC if ,πi,+ system:

16

• NID holds for R since NID holds for S and since projections and
constructors are allowed in arguments to recursive call terms.

• ROFA holds by the shape of the equations and pre1.

• RON holds since the first position of every f• is noncritical.

• LIC holds for R since LIC holds for S and since the first two positions
of every f• are noncritical.

R mimicks S since the first two arguments for f• are large enough not
to disturb the intended definitions, i.e.: Call any n + 2-ary f• in S with
input X1, . . . , Xn+2 such that |X1| = |X2| >

∑n+2
i=1 |Xi|. Consider any pos-

sible function call g• Y1 . . . Ym+2 (g• 6= if) in this computation. If g• Y is a
nonrecursive call (i.e. g• was called by an h• not mutually recursive with
g•) then |Y1| = |Y2| >

∑m+2
i=1 |Yi|. If g• Y is a recursive call then by pre2,

Y1 has a succ as head.

Proof of Theorem 1 Let f be a poly-time function on a constructor set
C′0. Then there’s an SST machine M over C0 = C′0 ∪ {#} that computes f
in poly-time. Define a system SM as in Subsect. 4.2. Then by Lemma 2, SM
defines f . Replace compute’s second rhs by onestep• z z (compute y x) where
z is some bound on the length of the output of (compute y x) plus one, e.g.
a term representing 2(

∑k
i=0 |xi|+ (m+ 1)|y|+m+n+ 4). Then by Lemmas

3 and 4, SM is DDC if,πi,+. ©

5 Some Remarks on Natural Definitions

We have shown that in principle, any poly-time function on a constructor
data structure may be defined by a DDC if,πi,+ system. But we also think
that many functions may be defined in a natural way by a DDC if ,πi,+ sys-
tem. DDC if,πi,+ offers natural features like mutually recursive functions (e.g.
length and q-lengthsum’s), choice between different recursive calls (treesort’s
insert), combination of different recursive calls (treesort’s flatten), use of con-
structors and projections inside recursive calls (take, sj-branch).

But it is a problem that careful recursion on critical is not allowed - many
functions do use this. E.g. both treesort and our machine simulation work
by having two levels of functions. High level functions like maketree, flatten,
compute recur on noncritical - doubling and tripling their (noncritical) input
as they please. Low level functions like insert, append, onestep that only do
some modifications to their (partially critical) input, typically taking things
apart and putting them back together a little bit differently. But also to do
such simple things naturally, some simple recursion is needed.

However, often it’s possible to solve this problem as we did for onestep in
the proof of Theorem 1. E.g. in the treesort example, both append and insert

17

are preDDC if ,πi,+, so if we replace flatten’s call to append by a “suitable” call
to append• (i.e. with large enough first and second argument), and replace
maketree’s call to insert by a suitable call to insert•, then treesort becomes
DDC if,πi,+.

References

[1] S. Bellantoni, S. Cook: A new recursion-theoretic characterization of the
polytime functions, 24th Annual ACM STOC (1992), 283-293

[2] V.H. Caseiro: Some general criteria on equations to guaran-
tee poly-time functions, Research Report November 1996, available
at http://www.ifi.uio.no/∼ftp/publications/research-reports/
VHCaseiro-1.ps

[3] V.H. Caseiro: Criticality conditions on equations to ensure poly-
time functions, Research Report November 1996, available at
http://www.ifi.uio.no/∼ftp/publications/research-reports/
VHCaseiro-2.ps

[4] D. Leivant: Stratified functional programs and computational complexity,
20th ACM Symposium on Principles of Programming Languages, 1993

18

