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Abstract

This thesis explores the asymmetrical deformation of Ruthenium isotopes, aim-
ing to provide reliable experimental data useful for testing theoretical nuclear
structure models.

We have obtained reduced transition probabilities B(E2) for a number of transi-
tions in 109,110,111Ru. A fit of the generalised triaxial rotor model indicates 110Ru
is well deformed, with a slightly oblate triaxial shape. The results are compared
to various global nuclear structure models. First approximation reveals no evi-
dence of shape changes between 109Ru and 111Ru, more accurate results will be
achieved through triaxial particle rotor calculations.

The dataset at the heart of the analysis, obtained with AGATA and VAMOS++
at GANIL in 2017, features much higher statistics for a much larger number of
nuclei than have previously been available. This has allowed us to get reliable
lifetime measurements for the neutron odd 109,111Ru, and for both the ground-
state band and one phonon γ-band in 110Ru. Additionally, it is expected to sig-
nificantly reduce systematic errors when comparing results from different nuclei.

We have developed and applied a new method for extracting lifetimes from the
decay curves obtained in recoil distance Doppler shift measurements. By impos-
ing constraints of physicality, it is expected to produce more reliable results than
previous methods. A code for simultaneously fitting multiple gamma-spectra
with shared parameters has also been developed.
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Chapter 1

Introduction

For millennia, humans have looked at the world and wondered “What is it all
made of?”. The concept of the atom dates back to the philosopher Democritus
(fourth century BC). The word comes from Greek “atomos” meaning indivisible.
The discovery of radioactivity by Henri Becquerel in 1896 – and the subsequent
research by Pierre and Marie Sk lodowska Curie and by Rutherford et al. – pro-
vided the first indication that atoms are not, in fact, immutable nor indivisible.
The discovery of the electron by J.J. Thomson in 1897 led him to suggest, in
1903, the so-called “plum pudding” model of the atom, where electrons move
freely in an otherwise uniform region of positive charge. The famous experi-
ments suggested by Rutherford and performed by Geiger and Marsden starting
in 1909 led to the first nuclear model of the atom in 1911, where the electrons
orbit around a positively charged nucleus. The nature of the nucleus itself, as
composed of positive protons and neutral neutrons, followed the discovery of the
neutron by Chadwick in 1932.

Today, research into nuclear structure is aimed towards understanding how the
protons and neutrons interact to give rise to the various observed nuclear prop-
erties. Following this, it aims to predict those properties for nuclei which cannot
be observed.

The best description of the internal structure of nuclei to date is the shell model.
Proposed by Maria Goeppert Mayer in 1949, it models protons and neutrons as
arranged in shells with discrete energies.
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The question of the nature of matter is accompanied by another age-old ques-
tion: “Where does it come from?”. The universe is mostly made out of Hydro-
gen, in fact, approximately 73% of the mass of the visible universe is Hydrogen.
What remains is principally Helium: the rest of the periodic table makes up only
2%. The creation of elements is called nucleosynthesis, and is one of the major
fields of study in nuclear astrophysics.

The rapid neutron capture process, or r-process, creates extremely neutron rich
nuclei close to the limit of what is possible, which then decay into the slightly
neutron rich elements we observe. Calculations seeking to describe the r-process
require information about the properties of these very exotic nuclei, and since
we cannot create and study them directly, we require models which can be ex-
trapolated far beyond the experimentally available data. A multitude of such
models exist, which diverge significantly as they are extrapolated. To select and
improve them, then, one needs to compare them against experimental data, and
as such acquiring more data contributes to gaining more precise insight into the
formation of heavy elements. Regions where the models differ significantly are
of particular interest, and the neutron rich Ruthenium isotopes studied in this
work are part of one such region.

Figure 1.1: The nuclear chart, with the A ∼ 100 region highlighted. The colours
indicate the degree of deformation of the nuclei. Figure by Girod (2007) showing
calculations by Hilaire and Girod (2007).
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The easiest nuclei to experiment on are those close to the valley of stability, but
these also tend to be where the models agree. In order to usefully test different
models of nuclear structure, we need do conduct our experiments for a situation
where the models give different predictions. The more the predictions differ, the
better the test. The highlighted region of the nuclear chart in figure 1.1 is just
what we are looking for. Indeed, it features several nuclei with rare properties
and widely varying theoretical predictions, making it an ideal testing ground for
nuclear structure models. The Strontium and Zirconium chains, for instance, ex-
hibit shape coexistence, where different states in a nucleus correspond to differ-
ent shapes. As for the Ruthenium chain, it is one of the few to contain isotopes
without axial symmetry.

In 2017, an experiment was performed at the Grand accélérateur national d’ions
lourds (GANIL) facility in Caen, France, with the aim of measuring the lifetimes
of excited states of a previously unattained number on nuclei in the A ∼ 100 re-
gion. This was achieved by a unique experimental setup. By employing a fusion-
fission reaction, the experiment produced a very high number of nuclei, which
could be identified individually in a magnetic spectrometer. The utilisation of a
γ-ray tracking detector allowed it to reliably extract lifetimes from a substantial
number of these nuclei, many more than the previous, and first, experiment to
employ this setup.

Obtaining data from this many nuclei from the same experiment poses a signif-
icant advantage when it comes to comparing the properties of different nuclei.
Indeed, we can expect systematic errors to be similar for all the measured nuclei,
and thus have little effect on their relative properties.

This thesis is structured as follows: Chapter 2 introduces the shell model, ex-
plains the concept of nuclear deformation, and presents an overview of the pre-
vious work done on the studied nuclei. Chapter 3 describes the experimental
setup, including the general principles of the recoil distance Doppler shift method,
and the particle identification. Chapter 4 explains the data analysis procedure in
detail, and presents new methods developed in this work. The results are pre-
sented in chapter 5 and discussed in chapter 6.

3



Chapter 2

Theoretical background

This chapter lays the ground work for the thesis by going over relevant defini-
tions and theoretical models. Further details on this material can be found in
most nuclear structure textbooks, such as Nilsson and Ragnarsson (1995). The
second section of this chapter introduces the specifics of Ruthenium isotopes and
the previous work done on the topic.

1 Nuclear deformation

1.1 Nuclear shell structure

As mentioned in the introduction, the protons and neutrons in the nucleus are
arranged in shells. This structure originates from the Pauli exclusion principle:
two fermions cannot occupy the same quantum state simultaneously. The or-
bital angular momentum l of the nucleons couples to their spin s, generating the
orbitals shown in figure 2.1. In a spherical nucleus, all orientations of the total
angular momentum j result in the same energy level.

Figure 2.1 shows the magic numbers 2, 8, 20, 28 and 50. When the proton or
neutron number is close to these magic numbers – or to the higher ones not seen
in the figure – it is energetically favourable for the nucleus to be spherical. As
one moves away from the magic numbers, however, nuclei can gain energy by
deforming; deformations create new states with different energies and different
magic numbers.

4



1s

1p

1d
2s

1f

2p

1g

2d

3s

1s1/2

1p3/2

1p1/2

1d5/2

2s1/2

1d3/2

1f7/2

2p3/2

1f5/2

2p1/2

1g9/2

2d5/2

1g7/2

3s1/2
2d3/2

2

4
2

6

2
4

8

4
6
2

10

6
8

2
4

2

8

20

28

50

16O———

40Ca———

56Ni———

s p d f g h——————
l : 0 1 2 3 4 5
π : + − + − +−

Figure 2.1: Illustration of the first orbitals in the spherical shell model, showing
the energy levels obtained with a Woods-Saxon potential on the left and spin-
orbit coupling on the right. The levels are named as nlj, where l uses the spec-
troscopic notation shown at the top. Figure courtesy of Jon K. Dahl.

Excitation of the nucleus is, in the simplest case, a result of a single particle
changing its energy level. When the gap between energy levels is large, such ex-
citations require more energy. This in turn makes magic nuclei more stable.
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1.2 Spherical harmonics and deformation parameters

Any shape in space can be described by expanding the radius vector R(t) in
spherical harmonics Yλµ as follows:

R(t) = R0

[
1 +

∑

λ

+λ∑

µ=−λ
aλµ(t)Yλµ(θ, ϕ)

]
for λ ∈ N, (1.1)

where, in the case of a nucleus, R0 is the radius for a spherical shape. At λ = 0,
there is only one harmonic Y00, and the coefficient a00 describes the volume. At
λ = 1, there are three harmonics, µ = −1, 0, 1, which describe the position of the
system in space. The remaining terms, that is λ ≥ 2, describe deformation from
a spherical shape.

Most nuclei have a quadrupole shape, which is described by the five harmonics
corresponding to λ = 2. Only the coefficients a20 and a22 are necessary to define
the shape; the others give the orientation of that shape in space.

We will consider the shape first. It is useful to define parameters which are eas-
ier to visualise than equation (1.1). For instance, the parameters β and γ de-
scribe the magnitude and asymmetry of the deformation, respectively, and relate
to a20 and a22 by

a20 = β cos γ, and (1.2)

a22 =
1√
2
β sin γ. (1.3)

The shape of a nucleus is not a fixed value. Rather it follows a potential indicat-
ing the probability of finding the nucleus with a given (β, γ) combination. Such
potentials are usually plotted in polar coordinates as in figure 2.2, with β as the
radial coordinate and γ denoted by the angle. For most nuclei, the minima lie
along the edges of the plot: they are deformed along a single axis, around which
they are axially symmetric. For γ = 0°, the symmetry axis is the z-axis and
the nucleus is prolate, whereas for γ = 60°, the nucleus is oblate and symmetric
around the x-axis. In the intrinsic frame of the nucleus, then, the oblate defor-
mation along γ = 60° can be described equally well by keeping γ = 0° and letting
β take negative values. Some nuclei are deformed such that they have no axial
symmetry. These are called triaxial deformations and correspond to the interior
of the plot in figure 2.2.
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Figure 2.2: Quadrupole deformations can be described by two parameters. β
indicates the deviation from a spherical shape, and γ indicates the asymmetry of
the deformation.

As the shape of a nucleus becomes asymmetrical, so does the charge distribu-
tion. This gives rise to electric moments,most notably in our case the intrinsic
quadrupole moment Q0, defined classically as

Q0 =

ˆ
ρ(r)(3z2 − r2) d3r, (1.4)

where ρ(r) is the charge distribution and z is the deformation axis. By conven-
tion, Q0 is negative for an oblate nucleus and positive for a prolate one.

1.3 The Nilsson model

As mentioned, deformation of the nucleus displaces the energy levels in the shell
model. The theoretical framework describing this was developed by Nilsson (1955).
Originally restricted to axially symmetric nuclei, it has since been adapted to

7



the triaxial case. In the interest of clarity, the axially symmetric Nilsson model
will be outlined first. The changes brought about by braking this symmetry will
then be made apparent. In the following, we will employ the intrinsic coordinate
system, where the z-axis is collinear with the symmetry axis of the nucleus. The
quantum numbers in this system are illustrated in figure 2.3.

K

j

I
R

s

Ω

lsymmetry axis

Figure 2.3: Quantum numbers in an axially symmetric nucleus. Each nucleon
has orbital angular momentum l and spin s, these combine with the angular mo-
mentum R of the other nucleons to yield the total angular momentum I of the
nucleus.

The Nilsson model modifies the effective potential of the shell model to describe
deformed nuclear shapes. It does this through the frequencies ω⊥ and ωz associ-
ated with the deformed potential in the intrinsic reference frame. The degree of
deformation is specified by the elongation parameter ε∗ , such that

ωz = ω0(ε)

(
1− 2

3
ε

)
and ω⊥ = ω0(ε)

(
1 +

1

3
ε

)
, (1.5)

where ω0 has a weak dependence on ε to conserve the nuclear volume.

The deformed potential causes additional splitting of the energy levels from the
spherical shell model in figure 2.1. The possible angular momentum components
Ω of a nucleon along the symmetry axis are no longer degenerate, and each or-

∗The parameters ε and β are equivalent descriptions of the deformation magnitude, and
relate one-to-one on [0,∞) by β =

√
5/π

∑
n 4εn/3n.
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bital is filled by only two particle with time-reversal symmetry. Figure 2.4 shows
calculated Nilsson orbitals around the Z and N of Ruthenium isotopes. The
splitting of each level according to Ω is apparent.

Figure 2.4: Calculated single-neutron (top) and single-proton (bottom) levels
in the Nilsson model, assuming axial symmetry. Positive and negative parity
is indicated by solid and dashed lines, respectively, and the orbitals are labeled
as Ω[NnzΛ]†. The figure is adapted from Xu, Walker, and Wyss (2002), who
performed the calculations.

†[NnzΛ] are called asymptotic quantum numbers. We will not treat these here, and refer
the reader to any textbook description of the Nilsson model.
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Only Ω and the parity Π remain good quantum numbers for orbitals in a de-
formed nucleus. Orbitals originating from different j shells with the same ΩΠ

interact with each other through mixing. This results in such orbitals repelling
each other as can be seen in figure 2.4.

In the triaxial case, the model requires a separate frequency for each axis of de-
formation, namely

ωx = ω0(ε, γ)

[
1− 2

3
ε cos

(
γ +

2π

3

)]
, (1.6)

ωy = ω0(ε, γ)

[
1− 2

3
ε cos

(
γ − 2π

3

)]
and (1.7)

ωz = ω0(ε, γ)

[
1− 2

3
ε cos γ

]
. (1.8)

As there is no longer a symmetry axis, there is no longer a defined Ω. The wave
function of a single nucleon is thus a superposition of several Nilsson orbitals
with different Ω. The parity is left the only remaining good quantum number.
All states with the same parity can mix, but odd and even parity states stay
uncoupled.

1.4 Collective excitations: vibrations and rotations

In some cases, the potential-energy surface has a deep, narrow minimum, mean-
ing the nucleus has a well-defined shape. In other cases, the potential-energy
surface has a larger, shallow minimum, allowing the shape of the nucleus to os-
cillate, or vibrate. Such vibrations are decomposed in β and γ vibrations, which
are quantised independently by β and γ phonons. The nuclei in question are
called β-soft and γ-soft, according to the oscillating parameter.

Once a nucleus deviates from a spherical shape, be it by vibrating or because of
a constant deformation, it becomes possible for it to rotate. Prolate and oblate
nuclei rotate around an axis perpendicular to the symmetry axis. Since triaxial
nuclei have no axial symmetry, they can rotate about any axis.

The various ways in which a nucleus vibrates and rotates are made apparent by
the band structure in its level scheme, as described by the collective model in-
troduced by Bohr and Mottelson (1969-1975). For even-even nuclei, the possible
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excitation energies are described by the formula

Enβ ,nγ (I) = ~ωβ
(
nβ +

1

2

)
+ ~ωγ

(
2nγ + 1 +

|K|
2

)
+

~2

2I
(I(I + 1)−K2), (1.9)

where nβ and nγ are the number of β and γ phonons, respectively, and I is the
moment of inertia of the nucleus. The first term in the sum describes β-vibrations
of frequency ωβ. The second term describes γ-vibrations of frequency ωγ, includ-
ing the apparent γ vibrations caused by rotations about the intrinsic z-axis. The
last term describes rotations with angular momentum I. For K = 0, the symme-
try of the nucleus only allows even I for positive parity.

Upon each vibrational state created by the first two terms, the last term builds a
rotational band, recognisable by the characteristic I(I + 1) spacing of the energy
levels.

The picture is more complex for nuclei with odd proton or neutron number.
Only the even-odd case is relevant to this work and will be discussed here.

Nuclei with a single odd nucleon are commonly described by the particle-rotor
model, which views the system as a single particle coupled to an even-even core.
The total angular momentum I is the sum of the angular momentum j of the
odd particle, and the collective angular momentum R of the core.

There are two competing mechanisms which determine how the odd particle cou-
ples to the core. Each orbital in the Nilsson model corresponds to a single value
of Ω, making it energetically favourable to rotate with a constant Ω. Such rota-
tion is called deformation aligned. Pulling the other way is the Coriolis effect:
the system gains energy by aligning the angular momentum of the odd nucleon
with that of the core. This is called rotation alignment.

The balance between these two opposing forces determines the coupling of the
odd nucleon to the even-even core. The coupling manifests in the rotational
bands of the nucleus, and we can recognise it by comparing with the two limits
shown in figures 2.5 and 2.6.

In the deformation aligned limit, K = Ω is a constant of motion, and the Corio-
lis effect is approximated in first order perturbation theory. The energy levels of
the rotational band are thus given by:

E(I) = |eΩ − λ|+
~2

2I

[
I(I + 1) + j(j + 1)− 2ΩK + δK,1/2a(−1)I+1/2(I + 1/2)

]
,

(1.10)
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Figure 2.5: Schematic illustration of the two particle-rotor coupling limits: defor-
mation alignment (left) and rotation alignment (right).

where the first term is the excitation of the odd nucleon relative to the Fermi
level. The resulting bands are strongly coupled, as exemplified in figure 2.6.

For K = 1/2, the Coriolis effect results in the decoupling parameter a, caus-
ing alternating parity levels to increase and decrease in energy, decoupling the
bands. K = 1/2 -bands are not studied in this work and will not be discussed
further.

In the rotation aligned limit, the constant of motion is α (see figure 2.5), and the
energy levels of the rotational bands are given by:

E(I) =
∑

Ω

2
[
Dj
αΩ

(
0,
π

2
, 0
)]2(

eΩ − e1/2

)
+

~2

2I
[I(I + 1) + j(j + 1)− 2Iα]. (1.11)

Once again, the first term is the contribution of the odd nucleon, whose wave
function is now spread over multiple orbitals. The energetically favoured band is
made by α = j, and the resulting spin states are I = R + j, where R is even.
Full alignment is rare, and a second, unfavoured band created from α = j − 1 is
usually observed at higher energies. Due to this large difference in energy, these
two bands are weakly coupled, as exemplified in figure 2.6.

1.5 Transitions

The transitions between energy levels are characterised by their reduced transi-
tion probabilities B(σλ), where σ is the type of transition – electric (E) or mag-
netic (M) – and 2λ is the multipole order of the emitted radiation. These are
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Figure 2.6: Schematic illustration of the general structure of weakly coupled
rotation aligned bands (left) and strongly coupled deformation aligned bands
(right).

independent of the transition energy and contain information about the wave
functions of the initial and final states. B(σλ) is related to the decay probability
T (σλ) by the formula

T (σλ) =
8π(λ+ 1)

λ~[(2λ+ 1)!!]2

(
Eγ
~c

)2λ+1

B(σλ), (1.12)

where Eγ is the energy difference between the initial and final states, and c is
the speed of light in vacuum. For a single transition from level Li to level Lj,
the decay probability is T (σλ;Li → Lj) = bijT (σλ), where bij is the branching
ratio from Li to Lj. The lifetime τi of a state being the inverse of the total decay
probability of that state, equation (1.12), can be written for a specific transition
as

bij
τi

=
8π(λ+ 1)

λ~[(2λ+ 1)!!]2

(
Eγ
~c

)2λ+1

B(σλ; Ii → Ij). (1.13)

This work considers electric quadrupole (σλ = E2) transitions, for which the
total transition probability is

T (E2) = 1.225× 109E5
γB(E2) s−1. (1.14)
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The quantity B(E2) characterises the E2 transition and follows from the struc-
ture of the specific nucleus. As such, it is common to use the B(E2) values to
relate experimental observations to theoretical models. B(E2) is given in units
of e2fm4 (some publications use e2b2, where 1 b = 100 fm2) or in Weisskopf
units, where 1 w.u. = 5.94 × 10−2A4/3 e2fm4 is an estimate of the single particle
transition between shell model states.

In many cases, it can be assumed that the nuclear shape is fully described by
the quadrupole moment, with no significant higher order deformation. For a ro-
tating, axially symmetric nucleus, the intrinsic quadrupole moment Q0 can then
be related to the B(E2) value by the Clebsch-Gordan coefficients, as

B(E2; Ii → Ij) =
5

16π
(Q0)2 〈IiK20|IjK〉2 . (1.15)

The quadrupole moment calculated from the B(E2) values is called the transi-
tional quadrupole moment Qt to differentiate the it from the physical Q0, though
it is generally considered a good approximation.

1.6 The generalised triaxial rotor model

The triaxial rotor model was first introduced by Davydov and Filippov (1958)
to describe the energy states and transitions in nuclei without axial symmetry.
This original model assumed nuclear rotations to be described by irrotational
flow. The generalised triaxial rotor model (GTRM) applied in this work was in-
troduced by Wood et al. (2004) and developed by Allmond (2007). It describes
rotation by three unique moments of inertia, and avoids any assumptions as to
its nature.

The GTRM features two parameters which describe the E2 properties, namely
the transitional quadrupole moment Qt and the asymmetry angle γ. The former
is related to the deformation magnitude by

β = Qt

√
5π

3ZeR2
0

, (1.16)

where Z is the proton number, e is the elementary charge, and R0 = 1.2 fm ·A1/3

is the nuclear radius.
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The other parameters are the mixing angles ΓI between the even spin energy
states in the ground state and γ bands. These are described theoretically by the
relation

tan(2ΓI) =

√
(I − 1)I(I + 1)(I + 2)

24
tan(2Γ2). (1.17)

Analytical expressions can be found (Allmond 2007) for all B(E2) values in the
ground state band and one phonon γ-band in terms of the parameters Qt, γ and
ΓI , and the Clebsch-Gordan coefficients. By using equation 1.17, the number of
parameters is reduced to three: Qt, γ and Γ2. Measurements of the transitions
21 → 01, 22 → 02 and 22 → 21 then produce a system of three equations with
three unknowns, enough to fully solve the model. If a nucleus is well described
by this model, it can be used to gain information about its deformation, and in
particular its degree of triaxiality.

2 Ruthenium: a rare case of triaxiality in the

ground state

The level schemes of 109Ru and 111Ru both show weakly coupled negative parity
bands based on the 1h11/2 intruder seen in figure 2.4. Because of the mixing in
triaxial nuclei, the band cannot be assigned to a single Nilsson orbital. Never-
theless, the orbital contributing most strongly can be determined. In the former
nucleus, this is the 5/2[532] orbital (Kumar, Chen, and Kondev 2016). In the
latter, experimental and theoretical studies by Urban et al. (2004) and Droste
et al. (2004) indicate the main contribution to be the 7/2[523] orbital, with an
admixture of the 5/2[532].

In both cases, the high spin of the 1h11/2 intruder generates a very strong Corio-
lis interaction, hence the rotation alignment.

The evolution of Ruthenium isotopes from prolate to oblate deformation passing
through triaxiality has been predicted by multiple different theoretical calcula-
tions.
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Macroscopic-microscopic calculations performed by Möller et al. (2008) for even-
even nuclei find the “largest effect of triaxial deformations on the energy of the
ground state for 108Ru”. Their calculations predict rigid triaxiality in 108Ru,
with increasing γ-softness on either side leading to a prolate 98Ru and oblate
120Ru.

Delaroche et al. (2010) performed fully microscopic global beyond mean field
calculations in constrained Hartree-Fock-Bogoliubov (CHFB) theory with the
Gogny D1S effective interaction, using a five dimensional collective Hamiltonian
(5DCH). Their results indicate maximal triaxial deformation in 110Ru, but with
still a high degree of γ-softness. The very neutron-rich isotopes are predicted to
be approximately spherical, rather than oblate.

Calculations using a cranked Skyrme HFB model by Zhang et al. (2015) predict
strong triaxial deformations in 108,110,112Ru. Triaxial projected shell model cal-
culations performed by Zhang et al. (2015) predict similar well-deformed triaxial
ground state minima.

Beyond-mean-field calculation by Shi and Li (2018) using a relativistic mean
field (RMF) and 5DCH show an earlier onset of triaxiality, with 104Ru already
being well deformed, maximal triaxiality in 108Ru, and subsequent isotopes lean-
ing towards γ-soft oblate deformations.

Sugawara (2019) has applied the GTRM with variable moments of inertia to re-
produce the energy levels and branching ratios in the γ-bands of 108,110,112Ru.
The calculations obtain stable asymmetry angles around γ = 20° for the spin
states below 6+.

These calculations all predict some degree of triaxial deformation in neutron-rich
Ruthenium isotopes. However, as we can see, the magnitude and location of the
deformation varies significantly; we need experimental evidence to compare with
the models.

The level schemes of 109,110,111,112Ru have been extended by Wu et al. (2006),
showing band crossings consistent with a triaxial shape transition in 111Ru.

The transition probabilities in the ground state and one phonon γ-bands of 110Ru
have been measured up to the 6+

1 and 3+
1 energy levels by Doherty et al. (2017)

using multi-step Coulomb excitation. Comparison with GTRM and Gogny CHFB
+ 5DCH calculations indicate a high degree of triaxiality (γ ∼ 30°) with some γ-
softness.
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Higher spin transition up to 16+
1 → 14+

1 have been measured for 108,110,112Ru by
Snyder et al. (2013) using the Doppler shift attenuation method.

In this thesis, we expand the work done on 110Ru by providing data for transi-
tions between those measured by Doherty et al. (2017) and those measured by
Snyder et al. (2013). In addition, we provide data on the hitherto little studied
transition probabilities of the odd-A isotopes 109Ru and 111Ru.
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Chapter 3

The experiment

(a) Photography of the experimental setup.
Image credit: CNRS/CEA/P.Stroppa.

(b) Photography of AGATA. Image
credit: Emmanuel Clément, GANIL.

(c) Three dimensional view of the Or-
say Plunger. Figure taken from Ljung-
vall et al. (2012).
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1 Overview

AGATA

MWPC

tstart

tstop

quadrupoles

dipole

MWPPAC DC IC

OUPS

E

target
degrader

Figure 3.2: Schematic of the experimental setup. The beam is generated by the
CSS1 cyclotron not shown in the figure.

The experimental setup, illustrated in figure 3.2, can be divided into three sec-
tions. First, the CSS1 cyclotron accelerates a beam of 238U and sends it to col-
lide with a 9Be target at 6.2 MeV/u. This energy is just above the Coulomb
barrier for the 238U + 9Be system, inducing the fusion fission reaction 238U(9Be, f)
as the dominating process. Due to conservation of momentum, the fission frag-
ments exit the target with velocities around 0.12 c. Because the mass is pri-
marily carried by the projectile instead of in the target, this is called an inverse
kinematics reaction. As they travel, the fission fragments γ-decay. This is a
much slower process than fission, taking place outside the target. The energy of
the emitted γ-rays is measured in the Advanced gamma tracking array (AGATA)
(Akkoyun et al. 2012). Finally, the Variable mode high acceptance spectrometer
(VAMOS++) (Rejmund et al. 2011) identifies the fission fragments and mea-
sures their velocity. The optical axis is rotated 19° with respect to the incom-
ing beam to align with the maximum number of fission fragments. The mag-
netic rigidity of VAMOS++ was selected to maximise the transmission of nuclei
around 104Mo.
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Not all photons will deposit all their energy at once in a detector. Compton
scattering within the detector is a major contributor to background and reduced
efficiency. AGATA uses pulse shape analysis and γ-ray tracking to reconstruct
Compton scattering events, thereby achieving much higher efficiency than a
conventional Germanium detector. This also eliminates the need for Compton
shielding, allowing the detectors to cover the whole range of solid angles. A full
description of the these techniques is beyond the scope of this thesis. The pulse
shape analysis and γ-ray tracking was performed on-line, providing the γ-ray
energies, times and angles used for further analysis.

2 The recoil distance Doppler shift method

The idea behind the recoil distance Doppler shift method (RDDS) is that γ-
rays emitted by nuclei with different velocities can be separated in an energy
spectrum thanks to their distinct Doppler shifts. If the velocity is then made to
change abruptly at given points, the closeness of these points, rather than the
time resolution of the detector, will determine the range of lifetimes which can
be measured. By achieving micrometer separations, it becomes possible to mea-
sure lifetimes down to the picosecond range.

In this experiment, excited fission products are sent through a 4.5 mg cm−2

Magnesium degrader foil which abruptly slows them down. The beam has lost
enough energy in the target that fission in the degrader is negligible.

The position of the degrader is controlled by the Orsay universal plunger sys-
tem (OUPS) developed by Ljungvall et al. (2012). Data were taken for ten po-
sitions of the degrader, given in table 3.1. During an experiment, heating from
the beam can cause variations in the target-degrader distance. To correct for
this, OUPS uses a feedback system which keeps the distance constant based on
the capacitance between the target and the degrader. The measurements for the
three longest distances were taken without the feedback system, and the RMS
was estimated from the magnitude of the feedback for the shorter distances.

At the time of the experiment, AGATA comprised 41 coaxial high-purity Ger-
manium detector crystals, covering a solid angle of approximately 0.9π. The
crystals were placed at backwards angles ranging from approximately 135° to
175°, symmetrically around the optical axis of VAMOS++. This configuration
was determined to yield optimal measurements for the RDDS method (Clément
et al. 2017).

20



Table 3.1: The distance between the target and the degrader, measured from the
capacitance between them.

Distance Distance RMS Distance RMS
µm µm %

29.8 0.5 1.67
51.6 0.3 0.58
89.9 0.6 0.66

155 2 1.29
264 5 1.89
449 4 0.89
776 40† 5.15

1170 5 0.43
1776 5 0.28
2651 5 0.19

†For the 776 µm distance, the feedback was turned off
and on during the run resulting in the larger variation.

When a nucleus decays, the emitted γ-ray is detected with a red-shift given by
the Doppler formula

Eγ = E0

√
1− β2

1− β cos θ
, (2.1)

where E0 is the gamma energy in the intrinsic frame of reference, v = βc is the
velocity of the fission fragment and θ is the angle of detection. A γ-ray emit-
ted before the degrader will be more red shifted than one emitted after. If the
life time is comparable to the flight time between the foils, this produces one
“before” and one “after” peak in the γ-spectra, like those shown in figure 3.3.
From their intensities Ib and Ia we can construct the decay curve of the decay-
ing state. This process will be discussed in detail in the following chapter.

The superior efficiency of AGATA, combined with the larger angular coverage
at sensitive backward angles, gives this data set an order of magnitude higher
statistics than the previous RDDS experiment by Grente (2014) using the EX-
OGAM detector (Azaiez 1999). This difference is illustrated in figure 3.4. Fur-
thermore, the position resolution provided by the pulse shape analysis allows for
more precise Doppler correction and results in better energy resolution.

When the RDDS method was developed, the reaction products would typically
stop completely in a thick stopper foil. Their velocity distribution was narrow
and was typically determined from the separation between the two peaks. In
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Figure 3.3: Illustration of the principle of the RDDS method.

our case, the fission fragments must be slowed down enough to measure the
Doppler shift while keeping the velocity high enough to enable identification in
VAMOS++. This is made possible by the inverse kinematics reaction. The re-
sulting velocity distribution is wider and is measured in the VAMOS++ spec-
trometer.
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CHAPITRE 4. MESURE DES TEMPS DE VIE

où E� est l’énergie du photon dans son référentiel, et v est la vitesse du noyau, égale à v1 ou v2

selon l’instant d’émission.
L’énergie mesurée dans les détecteurs Ge est corrigée évènement par évènement de l’effet

Doppler. La direction d’émission du photon est donnée par la position du cristal de germanium
touché. La vitesse du noyau utilisée pour la correction Doppler est mesurée par le système de
détection au plan focal de VAMOS (cf. chapitre précédent), c’est-à-dire ~v2. Les évènements pour
lesquels le photon est émis après le dégradeur sont ainsi bien corrigés et apparaissent dans les
spectres avec l’énergie 1 EU = E� , alors que ceux pour lesquels le photon est émis avant le
dégradeur ont une énergie :

ES = E�
�2 (1 � �2 cos ✓�)

�1 (1 � �1 cos ✓�)

Dans l’approximation où �v = k~v1 � ~v2k ⌧ v2, on peut réduire cette expression en :

ES ' E�

 
1 + �v/c

cos ✓� � �2

(1 � �2 cos ✓�)
�
1 � �2

2

�
!

(4.1)

où �i = k~vik/c et �i = 1/
q

1 � �2
i .

Les spectres issus des trois détecteurs placés à 135� par rapport à l’axe du spectromètre font
ainsi apparaître deux composantes pour chaque transition, l’une à l’énergie de la transition E�

et l’autre à une énergie inférieure d’environ 1 % (cf. figure 4.3).
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Figure 4.3 – Spectres du rayonnement g mesuré dans les détecteurs placés à 135� par rapport
à l’axe du spectromètre pour différentes distances x entre la cible et le dégradeur. Exemple de
la transition 6+

1 ! 4+
1 du 104Mo d’énergie E� = 519 keV.

La méthode RDDS consiste à analyser l’évolution de l’intensité relative des deux compo-
santes de la transition en fonction de la distance entre la cible et le dégradeur. On note IU

i (x)

1. On note, comme il est d’usage EU , pour unshifted, dans le cas d’une émission du photon après le dégradeur
et ES , pour shifted dans le cas d’une émission du photon avant le dégradeur.
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Figure 3.4: Comparison of EXOGAM (left, figure taken from Grente (2014)) and
AGATA (right) peaks for the 6+

1 → 4+
1 transition in 104Mo. Note the binning of

0.5 keV for AGATA against 1 keV for EXOGAM.

3 Particle identification

VAMOS++ was used to identify and measure the velocity of each fission frag-
ment. The schematic in figure 3.2 shows the detectors and electromagnets con-
stituting VAMOS++.

A fission fragment first passes through a dual multi-wire proportional counter
(MWPC) which measures its position and sends a first timing signal. Following
two quadrupole magnets which focus it horizontally and vertically, a magnetic
dipole then bends it according to its magnetic rigidity

Bρ =
M

Q
v. (3.1)
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Once the fission fragment exits the dipole a multi-wire parallel plate avalanche
counter (MWPPAC) sends a second timing signal, which along with the first
gives the time of flight. The position in the focal plane – which now depends
on the magnetic rigidity – and the angle of the trajectory relative to the optical
axis are measured in two 2 × 160-pad drift chambers (DC). Finally, the fission
fragment enters a 6 × 5-pad ionisation chamber (IC) at the end of which it has
deposited all its energy.
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Figure 3.5: Calibrated Q vs M/Q matrix for the longest target-degrader dis-
tance xd = 2651± 5 µm. The bin dimensions are 0.5 e× 0.005 Da/e.

The trajectory of the fission fragment is determined from the positions and an-
gles recorded by the MWPC and the DC. The bending through the dipole gives
the magnetic rigidity Bρ of the fission fragment, and the length of the trajec-
tory combined with the time of flight gives its velocity v. The mass of the fission
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fragment is then determined by relating the velocity v to the total energy E de-
posited in the IC, and its charge Q is obtained by inserting M , v and Bρ into
equation 3.1. After calibration, the events can be sorted as in figure 3.5 ∗

Finally the fission fragment’s proton number Z is determined using the ∆E-E
method, which measures the energy change as a particle passes through a de-
tector material as a function of the total particle energy. Since the total energy
depends on A and the rate of energy loss for a given A depends on charge, the
fission fragment is uniquely identified in this way. A ∆E:E matrix for this ex-
periment is shown in figure 3.6.
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Figure 3.6: ∆E:E matrix of the events recorded for the longest target-degrader
distance xd = 2651± 5 µm. The bin dimensions are 1 keV × 1 keV.

∗Mass is given in units of dalton (Da), which is the recommended name and symbol equiv-
alent to the atomic mass unit (u). 1 Da = 1.660 539 066 60(50)× 10−27 kg.
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The velocity vb before the degrader (see figure 3.3) was reconstructed event by
event, based the Doppler shift measured in AGATA for each separate Z. This
value is crucial for the lifetime extraction, the topic of the next chapter.

The calibration of VAMOS++ and event-by-event particle trajectory reconstruc-
tion was performed by other members of the collaboration. The resulting Z vs
M identification plot is shown in figure 3.7.
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Figure 3.7: Identification plot showing the multitude of nuclei populated in the
experiment. Here with the events recorded for the longest target-degrader dis-
tance xd = 2651± 5 µm. The bin dimensions are 0.1× 0.1.

26



Chapter 4

The data analysis

1 Event selection

Following the calibration of VAMOS++ and the sorting of the data as described
in the previous section, the data were organised in a ROOT tree, where each
event had an energy and an angle detected in AGATA and corresponding Z, A
and β values from VAMOS++. This was the starting point for our analysis.
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Figure 4.1: Zoom on events corresponding to Ruthenium (Z = 44) isotopes in
the identification plot. The two-dimensional gates are drawn for the three iso-
topes analysed in this work.
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Figure 4.1 shows a zoom on the events corresponding to the decay of Ruthenium
(Z = 44) isotopes. To extract these events, we applied the two-dimensional gates
on (Z,A) indicated on the figure. We discovered that the precise location of the
distribution for each nuclide varied slightly between the distances. As the offset
appeared to be approximately equal for all nuclides, we determined the gates for
the 776 µm distance, and applied a correction to each of the others. This correc-
tion is shown for 110Ru in figure 4.2.

xD/µm 29.8 51.6 89.9 155 254 449 776 1170 1776 2651

∆M −0.03 −0.09 0.00 −0.02 +0.01 +0.01 0.00 0.00 0.00 0.00
∆Z +0.22 +0.09 −0.01 +0.10 −0.07 +0.07 0.00 +0.01 +0.02 +0.04

Figure 4.2: Gate on 110Ru defined for the 776 µm distance without correction
(top) and with correction (bottom). The maximum of the colour map is different
in each case to best show the distribution. The applied correction is noted for
each distance.

The two-dimensional gates on (Z,A) allow us to project γ-rays originating from
a given nuclide, but inevitably also selects those from the complementary fission
fragments produced in the reaction. Because these all travel at different veloci-
ties and angles, they do not appear as peaks in the γ-spectra, but contribute to
a smooth background.

The ∆E-E method relies on being able to distinguish the ∆E “bananas” shown
in figure 3.6. As the figure shows, this becomes impossible when E is close to
∆E, as they all merge together. For this reason, we extracted only events for
which E −∆E > 20.

As can be seen in figure 4.1, the event distribution corresponding to 111Ru over-
laps with that of 111

45Rh. Clean spectra necessitated further gating than for the
stronger 109,110Ru. We increased the E − ∆E threshold from 20 to 40, and de-
fined a more restrictive gate on the (Z,A) matrix, removing the 111Rh contami-
nation.
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2 The differential decay curve method

The differential decay curve method (DDCM) for analysing RDDS data was first
developed by Dewald, Harissopulos, and Brentano (1989), and later reviewed by
Dewald, Möller, and Petkov (2012). It allows the determination of lifetimes from
relative quantities which can be obtained directly from measured γ-spectra, and
makes systematic errors related to feeding transitions evident.

In the interest of clarity, in particular with regards to notation, we will go through
the derivation of the DDCM here.

Lh

Lh

Li

Lj

Figure 4.3: Illustrative decay scheme. The lifetime of level Li is determined from
the decay to level Lj and the feeding from levels Lh.

Consider a level Li which is fed by the levels Lh and decays a level Lj, as illus-
trated in figure 4.3. The number of nuclei ni in Li is described by the differential
equation

dni(t)

dt
= −λini(t) +

∑

h

λhbhinh(t), (2.1)

where λ = τ−1 is the decay constant and bhi is the branching ratio for the tran-
sition h → i. We denote Ri(t) the number of nuclei which have yet to decay
from level Li at time t. This function is called the decay curve. Similarly, Fi(t)
is called the flight curve and is the number of nuclei which have decayed. From
this definition, it follows that

Ri(t) = λi

ˆ ∞
t

ni(t
′) dt′ , (2.2)
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that is the number of decays from Li occurring after time t.

All nuclei will eventually decay to the ground state L0. In mathematical terms,
limt→∞ ni(t) = 0. Using this, we can integrate the left hand side of equation
(2.1) and get

ˆ ∞
t

dni(t
′)

dt′
dt′ = lim

t′→∞
ni(t

′)− ni(t) =
∑

h

bhiRh(t)−Ri(t). (2.3)

We insert this result into the derivative of equation (2.2) to obtain,

dRi(t)

dt
= −λini(t) = λi

[∑

h

bhiRh(t)−Ri(t)

]
, (2.4)

which can be rearranged as such to give the lifetime of the state Li:

τi =
1

λi
=

dRi(t)

dt

−1
[∑

h

bhiRh(t)−Ri(t)

]
. (2.5)

Ideally, we expect this expression to be constant over all t.

Now we need to rewrite equation (2.5) in terms of measurable quantities. Namely
the intensities Ib

ij and Ia
ij introduced in the previous chapter. First we calculate

the time tD(x) = x · v−1
b when the nucleus of interest passes through the degrader

foil at position x, and write R(x) ≡ R(tD(x)). Then we introduce the relative
quantity

Qij(x) =
Ia
ij(x)

Ib
ij(x) + Ia

ij(x)
=
bijRi(x)

bijRi(0)
. (2.6)

By making this substitution in equation (2.5) we get

τi =

[
vbRi(0)

dQij(x)

dx

]−1
[∑

h

bhiQhi(x)Rh(0)−Qij(x)Ri(0)

]
(2.7)

=

[
vb

dQij(x)

dx

]−1
[∑

h

bijαhiQhi(x)−Qij(x)

]
. (2.8)

The feeding coefficient αhi describes the relative number of decays from the lev-
els Lh and Li, corrected for efficiency. It is given by

αhi =
bhiRh(0)

bijRi(0)
=
εij
εhi

[
Ib
hi(x) + Ia

hi(x)

Ib
ij(x) + Ia

ij(x)

]
for any x , (2.9)
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where εhi is the relative efficiency of AGATA at the energy of the transition from
Lh to Li.

An accurate lifetime estimate hinges on finding Qhi for all feeding transitions.
This can prove difficult if there are several weak transitions feeding into the
state of interest. Such unobserved feeding can induce a systematic error and
result in an overestimate of the lifetime. This can be overcome by employing
γγ-coincidence analysis, where gates applied to the before degrader component
of a feeding transition eliminate the influence of the feeding transitions. A draw-
back is that this gating excludes the majority of events, increasing the statisti-
cal uncertainty. In this work we have concentrated on single-γ analysis; the γγ-
coincidence technique is discussed in more detail by Dewald, Harissopulos, and
Brentano (1989).

2.1 Fitting the γ-spectra

The differential decay curve method requires extracting the intensities of the two
peaks for each transition. In order to fit the peaks, it is necessary to make as-
sumptions about their shape, as well as that of the background. The peaks are
described reasonably well by Gaussians, and we have approximated the back-
ground as linear under each peak.

Each of the peaks was fitted to a Gaussian function of energy

f(E) =
A

σ
√

2π
exp

(
−(E − µ)2

2σ2

)
, (2.10)

where A, µ and σ respectively are the area, mean and standard deviation of the
Gaussian. These were added to a linear background g(E) = aE + b.

To achieve a consistent fit, the spectra for all distances were fitted simultane-
ously, with common µ and σ parameters. The total fit function for a single spec-
trum j was constructed as

Fj(E) =

npeaks∑

i=0

Aij

σi
√

2π
exp

(
−(E − µi)2

2σ2
i

)
+ ajE + bj, (2.11)

A χ2
j cost function for Fj(E) was constructed for each spectrum j using the

cost.LeastSquares method implemented in iminuit (Dembinski and al. 2020).
These were then combined into a total χ2 cost function, where the parameters
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σi and µi depend only on the peak i and the parameters aj and bj depend only
on the spectrum number j. The area Aij, corresponding to the intensity of the
peak, depends on both.

Finally, the combined cost function was minimised using the Migrad algorithm (James
and Roos 1975).

2.2 The feeding coefficient

The peak fitting described above gives us the values for I, and hence for Q. To
complete equation (2.8), we need the detector efficiency and branching ratios.

The efficiency calibration was performed by Ansari (2019) using a 152Eu source.
The efficiency values were read from figure 4.4 (Ansari 2019) using pixel mea-
surements. The uncertainty on the reading was estimated as ±0.01. The branch-
ing ratios were obtained from the literature.

Figure 4.4: Efficiency curve normalised to 1 for 1408 keV. Figure taken from
Ansari (2019).

The energy levels we study here decay primarily through γ emmission. There
is however a small probability of internal conversion, given by the conversion
coefficient. This coefficient tends to decrease with increasing energy, making
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the feeder slightly stronger than what we measure. However, for the transitions
treated here, this amounts to a correction of approximately 1%, which is well
within one standard deviation of our measurements. We have therefore elected
to ignore this effect.

2.3 Fitting the decay curves: the derivative constrained
monotonic decay curve method

The recoil distance doppler shift method yields direct measurements of Q, but
dQ/dx must be estimated by fitting the data points. Figure 4.5 shows simulated
decay curve measurements similar to those obtained with the RDDS method.

0 500 1000 1500 2000 2500

target-degrader distance [µm]

0.0

0.2

0.4

0.6

0.8

1.0

Q = Ia/(Ib + Ia)

Figure 4.5: Simulated decay curve of the type one obtains with the RDDS
method, corresponding to a decay with vτ = 700 µm, fed by a state with
vτ = 350 µm and α = 0.7.

The most widely used method is to fit a smooth continuous piecewise function
comprising of quadratic polynomials to the data. The lifetime is then calculated
separately for each data point. Several slightly different implementation of this
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method are used. One common implementation is the Napatau software (Saha
2003). For simplicity, we will use the term “Napatau method” to refer to all im-
plementations of this method.

The approach described above has several limitations. The low curvature sec-
tions at the start and end of the curve are not well reproduced by quadratic
polynomials, which often results in the fitted curve having an unphysical shape.
A sensitive region is typically defined around the steepest point of the curve, and
points outside this region are discarded. The choice of this sensitive region can
influence the final result. While the derivative is continuous, it is not usually
constrained to be smooth. This creates an unphysical cusp at the maximum of
the derivative, which is at the center of the sensitive region.

A novel method of extracting the lifetime from the measurements was devel-
oped by Modamio, Heines, and Görgen (unpublished), and was first applied in
this work. This included exploration of the method’s parameters and testing to
identify and estimate potential sources of uncertainty. This method , which we
have named the derivative constrained monotonic decay curve method (DCM2),
is based on two primary considerations which are explained here.

The lifetime of any given state is a constant. Assuming all significant transitions
are accounted for, this places an additional constraint on the fits of Qhi(x) and
Qij(x), namely that

∑

h

bijαhiQhi(x)−Qij(x) = τivb
dQij(x)

dx
. (2.12)

In other words, we constrain the fits by the derivative, minimising not only the
difference between the fitted curves and the data points, but also the difference
between the two sides of equation (2.12).

With vb known, the lifetime τi becomes another parameter in the fit, for which
we get a single value. This eliminates the need to define a sensitive region.

The relative decay curve Q(x) represents the fraction of nuclei which have yet
to decay from a given level. As such, it is necessarily a monotonic, decreasing
function. In some cases, especially when one of the components is close to zero,
fluctuations in the measurements or in the background can results in a local in-
crease, within the uncertainties, of the experimentally measured values. Since
equation (2.8) includes a factor dQ/dx in the denominator, such fluctuations
will have a significant effect on the calculated lifetime. To mitigate this effect,
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Q(x) is transformed into the relative flight curve 1 − Q(x), which is fitted using
monotonic increasing Isplines (Ramsay 1988; djmw 2012; Bloom and Crawford
2022).

The use of Isplines, while arguably better adapted to the physical situation than
simple quadratic polynomials, depends on the absolute target-degrader distances.
In contrast, the traditional DDCM only uses the relative distances. The use of
absolute distance introduces a systematic uncertainty which could skew the re-
sult. This effect was however estimated to be negligible compared to the other
sources of uncertainty in this analysis. A more detailed study of the significance
of this effect will be performed in future work.

The DCM2 was tested both on simulated and measured data to characterise its
statistical and systematic errors. The results of these test are presented in sec-
tion 5.1.

2.4 Gating on the velocity distribution

The use of equation 2.8 requires a single velocity value. In any experiment how-
ever, the velocities will follow some distribution depending on the reaction and
experimental setup. Because v appears in the denominator, the best solution –
as shown by Hackstein and Dewald (2014) – is to calculate the average of the
inverse velocity distribution 〈1/v〉. In VAMOS++, the velocity distribution is
particularly wide, and this can be used to our advantage.

The AGATA + VAMOS experimental setup opens up the possibility for a new
method which can extract multiple data points from a single target-degrader
distance. With VAMOS++, the velocity distribution can be accurately mea-
sured, and thanks to the high statistics of AGATA, it is possible to apply the
DDCM to events from a subset of this distribution. By dividing the events into
velocity slices, we get data corresponding to multiple different velocities, and
thus to multiple different times which are closer together than the individual dis-
tances, but still far enough apart to yield different values for Q. The details of
this method will be explained below using the 4+

1 → 2+
1 transition in 100Zr as an

example.

Figure 4.6 shows the β distribution for 100Zr. The five sections, or slices, each
contain between 111 × 103 and 114 × 103 events. Individual γ-spectra were ex-
tracted for each slice and fitted as described in section 2.1.

35



0.110 0.115 0.120 0.125 0.130 0.135 0.140 0.145

βb

0

500

1000

1500

2000

2500

3000

3500

counts per 10−4

Figure 4.6: The velocity distribution of 100Zr nuclei before the degrader, divided
into five slices with an approximately equal number of counts.

Now, there are five sets of Q values for each distance. To separate them, the av-
erage inverse velocity 〈β−1〉 is calculated for each slice, then multiplied by the
distance to get the time td = xdc

−1 〈β−1〉 corresponding to each value of Q. The
decay curve can now be plotted as a function of td and interpolated from fifty
points, instead of ten. In this specific case however, we only performed the pro-
cess for the last six distances, where Q changes quickly enough that an effect
would be visible. For the 264 µm distance, we only made two velocity slices.

The resulting fit of the lifetime is displayed in figure 4.7. The top graph shows
the measured relative decay values Qhi(x) of the feeding energy level, along with
the fitted curve. The knots used in the fit are marked as dashed vertical lines.
The next graph is equivalent for the energy level under study. The third graph
shows the two sides of equation (2.12); the degree of overlap of these curves is an
important indication of the quality of the fit. Finally, the bottom graph shows
the lifetime calculated at each experimental value, as well as from the fitted
curves. The fitted lifetime value is marked by a horizontal dashed line.

36



0

1
Qhi ± 1σ

100Zr 6+
1 → 4+

1 at 497 keV

0

1
Qij ± 1σ 100Zr 4+

1 → 2+
1 at 352 keV

−0.6

−0.4

−0.2

0.0

bijαhiQhi − Qij

τ v dQi(t)
dx

0 10 20 30 40 50 60 70 80

target-degrader flight time [ps]

0

100

τ ± 1σ [ps]

Figure 4.7: DCM2 analysis of the 4+
1 → 2+

1 decay in 100Zr using sliced velocity
distributions for the six longest distances. The four shortest distances have been
omitted for the decaying level, see the text for details.
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With this technique, we obtain lifetimes which are consistent with those ob-
tained without velocity slicing. For the lifetime in this example however, we sus-
pect unseen feeding might be inducing a systematic error in the estimate. Con-
sequently, the analysis of this transition is better studied in γγ coincidences.
Such an analysis is being performed by another member of the collaboration
(Pasqualato et al. unpublished).

This technique achieves a similar result to the differential plunger proposed by
Dewald, Harissopulos, and Brentano (1989), where multiple consecutive degrader
foils are used to get multiple velocities from a single configuration.
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Chapter 5

Results

This chapter presents the results of the DCM2 tests, as well as the analyses for
the studied transitions, namely the first 19/2− → 15/2− and 15/2− → 11/2−

transitions in 109,111Ru, and the 6+
1 → 4+

1 , 5+
1 → 3+

1 and 4+
2 → 2+

2 transitions in
110Ru.

The treatment of overlapping transitions and contaminants is explained here.
The fits of the individual peaks in the γ-spectra are shown in appendix A.

1 Test of the DCM2

This work was the first application of DCM2. As such it was crucial to test it in
terms of accuracy and reliability.

The DCM2 includes manual selection of both the number of knots and the order
of the splines used to fit the decay curves. This introduces an element of un-
certainty which cannot be predicted reliably, because it depends on the person
performing the analysis.

The magnitude of this effect can be estimated by performing multiple fits with
different parameter combinations and comparing the results. We performed fits
of a simulated decay with τiv = 700 µm, and a single feeder with τhv = 350 µm
and αhi = 0.7. A summary of the results is shown in figure 5.1, the fits can be
found in appendix B.
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Figure 5.1: Results for fits of the simulated decay curves. Left: fourth order
splines with three to seven knots. Right: five knots with splines between second
and sixth order. Note the symmetrical log scale on the x-axis.

In our test cases, the DCM2 was observed to be highly robust, that is the life-
times obtained with multiple different reasonable parameter combinations all re-
produce the values used to generate the simulated data, within the uncertainties.
As seen in figure 5.1, the uncertainty decreases with increasing number of free
parameters. It is important to note that this was not always the case for experi-
mental decay curves. In our analysis of the Ruthenium isotopes, the parameters
were chosen on a case by case basis to yield the lowest error. A more thorough
study with both simulated and experimental data, featuring various lifetimes
and errors as well as multiple feeders, is needed to draw general conclusion as to
the optimal parameter combinations.

To assess the accuracy of the method, we applied it to the 8+
1 , 6

+
1 and 4+

1 states
in 104Mo. The lifetimes of these states have all been measured by Smith et al.
(2002) using a 252Cf source in a differential plunger arrangement, as well as by
Pasqualato (2022) using the DDCM with traditional fits of the decay curves on
the same data used in this work, both in single-γ and γγ-coincidence analysis.
The values for the 4+

1 state are compared in figure 5.2. The same pattern was
observed for the other lifetimes.

We found that the lifetimes we obtain with the DCM2 in single-γ analysis are
consistent with those obtained with the Napatau method. The shorter lifetimes
obtained in γγ-coincidence analysis can be explained by the elimination of un-
seen feeders, and the larger uncertainty by the lower statistics. This also illus-
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Figure 5.2: Comparison of the lifetimes of the 4+
1 excited state of 104Mo, as cal-

culated with the DCM2 (this work) and the Napatau method (Pasqualato 2022),
along with the adopted value (Smith et al. 2002).

trates the value of γγ-coincidence analysis to obtain reliable results. The mea-
surements derived from the present dataset do, however, yield significantly shorter
lifetimes than the 252Cf decay measurements.

2 Ruthenium isotopes.

The results of the analysis are shown in figures 5.5, 5.6, 5.10, 5.11 and 5.14 to 5.16.
These all share the same setup. The top graph shows the measured relative de-
cay values Qhi(x) of the feeding energy level, along with the fitted curve. The
knots used in the fit are marked as dashed vertical lines. The next graph is equiv-
alent for the energy level under study. The third graph shows the two sides of
equation (2.12); the degree of overlap of these curves is an important indication
of the quality of the fit. Finally, the bottom graph shows the lifetime calculated
at each experimental value, as well as from the fitted curves. The fitted lifetime
value is marked by a horizontal dashed line. To show the points contributing
significantly to the lifetime estimate, the y-axis has been limited around these
values. Note that in each case, the fitted lifetime value is within one standard
deviation of the values outside the y-axis range.

In most cases, the feeding coefficient α was taken as the average value 〈α〉 over
all distances. Deviation from this is stated for the concerned cases.
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2.1 109Ru
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Figure 5.3: The γ-spectra for 109Ru taken at the shortest and longest plunger
distance. The labeled peaks correspond to the transitions highlighted in fig-
ure 5.4.

The γ-spectra for 109Ru with the shortest and longest plunger distance are dis-
played in figure 5.3. Figure 5.4 shows a partial level scheme in which the studied
transitions are highlighted. The other transitions feeding into the studied levels
were not visible in the γ-spectra. Only one previous publication (Ding Huai-Bo
et al. 2009) has claimed the observation of the low-energy M1 transitions from
15/2−1 and 19/2−1 . This, however, without showing evidence or providing intensi-
ties. As we do not see any evidence for these transitions in our spectra, it can be
assumed that these decay branches are negligible.
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Figure 5.4: Partial level scheme around the studied levels in 109Ru, coloured
green. The level and transition energies are given in keV.

The fitting method described in section 2.1 was applied for each of the peaks.
The peaks at 542 keV and at 691 keV were clean enough for the DDCM to be
applied directly. For the peak at 375 keV, however, Ib was contaminated by the
9/2+

2 → 7/2+
1 decay at 368 keV.

Unable to determine Q directly in this case, we instead normalised the decay
curve to the intensity Inorm of the 11/2−1 → 9/2−1 transition at 74 keV. The
11/2−1 state is long lived (τ = 1.0 ns) and so only decays after the degrader,
making a single component peak easily fitted cleanly. We then calculated Q as

Q =
Ib

Inorm

k, (2.1)
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where k is the ratio of the intensity of the normalisation peak to the total in-
tensity of the studied peaks. This ratio is expected to be constant over the dis-
tances, and can thus be calculated for a single distance. In this case, we assumed
that for the shortest distance, all decays occurred after the degrader:

k =
Inorm

Ib + Ia
=

Inorm

Ia(30 µm)
(2.2)

For both the studied levels, the relative decay curves were fitted to fifth order
Isplines, with knots at xd = {0, 83, 235, 500, 1000, 2680} µm. For the 19/2−1 state,
we obtained a better fit by adding an additional knot at 39 µm.

The results are displayed in figures 5.5 and 5.6. The velocity vb was obtained
from 〈β−1〉 = 8.16 reconstructed from VAMOS++, and the branching ratios
were taken from Kumar, Chen, and Kondev (2016). The resulting lifetime values
are

τ(19/2−1 ) = 5.00± 0.45 ps and τ(15/2−1 ) = 32.3± 8.2 ps.
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Figure 5.5: Fitted decay curves Q and lifetime τ of the 19/2−1 state in 109Ru.
The fitted functions are fifth order Isplines, with knots marked by the vertical
dashed lines. The horizontal dashed line in the bottom graph indicates the fitted
lifetime value τ = 5.00± 0.45 ps.
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Figure 5.6: Fitted decay curves Q and lifetime τ of the 15/2−1 state in 109Ru.
The fitted functions are fifth order Isplines with knots marked by the vertical
dashed lines. The horizontal dashed line in the bottom graph indicated the fit-
ted lifetime value τ = 32.3± 8.2 ps.
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2.2 111Ru

0 200 400 600 800 1000

Energy [keV]

0

100

200

300

400

500

600

700

800

Counts per 0.5 keV

2651 µm
29.8 µm

23/2−

↓
19/2−

19/2−

↓
15/2−

15/2−

↓
11/2−

17/2−

↓
15/2−

Figure 5.7: The γ-spectra for 111Ru taken at the shortest and longest plunger
distance.

Figure 5.7 shows the γ-spectra for 111Ru, with the associated level scheme in fig-
ure 5.8. The 17/2−1 → 15/2−1 transition at 477 keV is present in the spectra, but
too weak to fit. Its contribution to the lifetime of the 15/2−1 state is assumed
negligible. Feeding transitions from other bands (such as the 15/2−2 → 15/2−1 or
19/2−2 → 19/2−1 transitions) were not observed in the γ-spectra.

The after degrader component of the 23/2−1 → 19/2−1 transition at 651 keV is
superposed on the before degrader components of the 21/2−1 → 17/2−1 transition
at 661 keV and the 19/2+

1 → 15/2+
1 transition at 666 keV. Due to the broad-

ening of the peaks after the degrader, these two components had to be fitted as

47



191523/2−

126419/2−

75015/2−

39211/2−

175819/2−

113215/2−

70611/2−

143217/2−

85613/2−

69613/2−

122717/2−

188821/2−

651

514

358

477

661

Figure 5.8: Partial level scheme around the studied transitions of 111Ru, coloured
green. The transitions referenced in the text are labeled, the contaminant transi-
tion is drawn in purple. The level and transition energies are given in keV.

a single peak. The before degrader components were still fitted individually. An
example of this fit is shown in figure 5.9. Note that the spectra were fitted si-
multaneously with the same peak positions and widths.

Because of the aforementioned contamination, the uncertainty is significantly
larger in Ia than in Ib. Therefore, the feeding coefficient α was calculated as the
average of only the two longest distances, where it is safe to assume Ia = 0.

No significant contaminants were observed for the 19/2−1 → 15/2−1 transition.

The decay curves were fitted using fifth order Isplines, with knots placed at xd =
{0, 83, 235, 500, 1000, 2680} µm.
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Figure 5.9: Fit of the 23/2−1 → 19/2−1 transition along with the two contaminat-
ing transitions on a linear background for xd = 89.9 µm. The labels correspond
to the after degrader components. The before degrader components of the con-
taminating transitions are fitted as a single peak.

For the 15/2−1 → 11/2−1 transition, the lifetime was long enough that the
change in Qij took place primarily in the last four distances. We used the tech-
nique described in section 2.4, slicing the velocity distribution into two regions
to give the decay curve 20 data points instead of the usual 10. The relative de-
cay curves were fitted to fourth order Isplines whith knots at td = {0, 4, 18, 40, 77} ps.

The results are displayed in figures 5.10 and 5.11. The velocity v was obtained
from 〈β−1〉 = 8.27 measured in VAMOS++, and the branching ratios were taken
from Blachot (2009). We obtained the lifetimes

τ(19/2−1 ) = 4.8± 1.1 ps and τ(15/2−1 ) = 47.6± 2.8 ps.
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Figure 5.10: Fitted decay curves Q and lifetime τ of the 19/2−1 state in 111Ru.
The fitted functions are fifth order Isplines with knots marked by the vertical
dashed lines. The horizontal dashed line in the bottom graph indicates the fitted
lifetime value τ = 4.8± 1.1 ps.
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Figure 5.11: Fitted decay curves Q and lifetime τ of the 15/2−1 state in 111Ru,
plotted against the target-degrader flight time. The fitted functions are fourth
order Isplines with knots marked by the vertical dashed lines. The horizontal
dashed line in the bottom graph indicates the fitted lifetime value τ = 47.6 ±
2.8 ps.
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2.3 110Ru
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Figure 5.12: The γ-spectra for 110Ru taken at the shortest and longest plunger
distance.

The γ-spectra for this nucleus are displayed in figure 5.12. While they are dom-
inated by transitions in the ground state band, transitions from the one phonon
γ-band are distinguishable as well. These bands are shown in figure 5.13.

For the 6+
1 level, only the transition from 8+

1 feeder showed enough counts to be
fitted. The transition from 6+

2 may be present, but was not strong enough to
include in the analysis. The other feeding transitions were not seen at all in the
γ-spectra.
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Figure 5.13: Partial decay scheme showing the ground-state band and one-
phonon γ-band in 110Ru. The studied transitions are drawn in green and con-
taminants in purple.

Several other transitions overlap with the 8+
1 → 6+

1 transition. The 12−2 → 10−2
and 14+

1 → 12+
1 were both determined to be negligible. The 5+

1 → 4+
1 and 8+

2 →
6+

2 were indistinguishable from each other, but large enough to fit them as one
peak, thus separating them from the transition of interest.

No significant contaminants were identified for the 6+
1 → 4+

1 transition.

The decay curves were fitted with fourth order Isplines, with knots placed at
xd = {0, 83, 235, 500, 1500, 2680} µm.

The 4+
2 → 2+

2 and 5+
1 → 3+

2 transitions peaks were both clean and were fitted
without difficulty.
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The feeding transition 6+
2 → 4+

2 was too close to the 3+
1 → 2+

1 and 2+
2 → 0+

1

transitions to be fitted alone. The peak itself was clean, but the fit also requires
some background on both sides. Therefore, the three transitions were fitted to-
gether, but since only the first peak was used in the analysis, we did not strive
for a high level of accuracy on the latter two.

Several transitions overlap with the 7+
1 → 5+

1 feeding transition. We have not
been able to conclusively confirm their negligibility, nevertheless they all come
from high energy states which we expect to be at most very weakly populated.
We have therefore assumed they are negligible.

The decay curves were fitted using fifth order Isplines with knots placed at xd =
{0, 235, 500, 1500, 2680} µm.

The results are displayed in figures 5.14 to 5.16. The velocity v was obtained
from 〈β−1〉 = 8.21 measured in VAMOS++, and the branching ratios were taken
from Gürdal and Kondev (2012). Our analysis yielded the lifetimes

τ(6+
1 ) = 3.56± 0.36 ps, τ(5+

1 ) = 14.0± 2.6 ps and τ(4+
2 ) = 27.5± 2.1 ps.
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Figure 5.14: Fitted decay curves Q and lifetime τ of the 6+
1 state in 110Ru. The

fitted functions are fourth order Isplines with knots marked by the vertical
dashed lines. The horizontal dashed line in the bottom graph indicates the fit-
ted lifetime value τ = 3.56± 0.36 ps.
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Figure 5.15: Fitted decay curves Q and lifetime τ of the 4+
2 state in 110Ru. The

fitted functions are fifth order Isplines with knots marked by the vertical dashed
lines. The horizontal dashed line in the bottom graph indicates the fitted life-
time value τ = 27.5± 2.1 ps.
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Figure 5.16: Fitted decay curves Q and lifetime τ of the 5+
1 state in 110Ru. The

fitted functions are fifth order Isplines with knots marked by the vertical dashed
lines. The horizontal dashed line in the bottom graph indicates the fitted life-
time value τ = 14.0± 2.6 ps.

57



Table 5.1: Measured lifetimes of excited states in 109,110,111Ru, along with
branching ratios from the literature and calculated B(E2) values. The standard
deviations are shown in brackets for each value.

Nucleus Transition Eγ τ b B(E2)
keV ps % 102 e2fm4

109Ru∗ 19/2−1 → 15/2−1 541.6 5.00 (45) 100 35.0 (32)
15/2−1 → 11/2−1 374.7 32.3 (82) 100 34.2 (87)

111Ru† 19/2−1 → 15/2−1 514.1 4.8 (11) 100 47. (11)
15/2−1 → 11/2−1 357.8 47.6 (28) 100 29.3 (17)

110Ru‡ 6+
1 → 4+

1 575.7 3.56 (36) 100 36.3 (37)

5+
1 → 3+

1 515.5 14.0 (26) 80.7 12.9 (24)
5+

1 → 4+
2 291.0 2.9 8.1 (15)

5+
1 → 4+

1 711.9 16.4 0.52 (10)

4+
2 → 2+

2 471.5 27.5 (21) 46.4 5.91 (45)
4+

2 → 3+
1 224.5 1.3 6.77 (52)

4+
2 → 4+

1 421.0 23.5 5.27 (40)
4+

2 → 2+
1 843.6 28.8 0.200 (15)

∗Kumar, Chen, and Kondev (2016)
†Blachot (2009)
‡Gürdal and Kondev (2012)
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Chapter 6

Discussion

1 Evaluation of the analysis methods

There are several sources of uncertainty in our analysis, some arising from the
experimental measurements and some from our methods. We attempt here to
give a full overview of the known sources of uncertainty, and how these affect the
results presented in the previous chapter.

1.1 Uncertainties arising from the experiment

Errors in the VAMOS++ measurements used for particle identification will not
affect the lifetime measurements. An event is assigned to a single fission frag-
ment, and incorrectly identified events will only contribute to the noise in the
γ-spectra. That is, of course, unless the contamination is significant and over-
laps with a fitted peak. In such cases, as for 111Ru, the contamination must be
be identified and removed before fitting.

Two experimental uncertainties contribute to the lifetime. The statistical un-
certainty in AGATA directly affects the fitted peak intensities Ib and Ia. The
uncertainty in these fits are propagated through to the final lifetime. There is
also an uncertainty in the reconstructed velocity vb before the degrader, both
from the VAMOS++ measurement and from the reconstruction. Statistical un-
certainties have been studied by Hackstein and Dewald (2014), who found that
effects from a wide velocity distribution are generally negligible at high veloci-
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ties. Furthermore, our very good mass resolution testifies the high precision of
the velocity measurement in VAMOS++. A detailed study of systematic errors
related to the reconstruction of the velocity before the degrader has not yet been
performed, though preliminary analysis based on the Doppler corrected energies
indicates they are small.

1.2 Uncertainties arising from our analysis

In this work, each peak was fitted simultaneously for all distances, with a sin-
gle mean and standard deviation. This has the distinct advantage of not placing
constraints on any individual fit, only a global consistency requirement. A heav-
ily constrained parameter can result in an artificial lowering of the final error es-
timates, which in turn causes incorrect weighting of the data points when fitting
the decay curves.

This combined fitting does, however, suppose that the peak mean and width ac-
tually are equal in all spectra. This requires similar velocity distributions, and
equivalent calibration of all γ-spectra. In practice, this method obtains more
consistent fits of the peaks at the cost of a higher sensitivity to deviations in the
spectra. In the present case, such inconsistencies were small and the combined
fits were observed to achieve better results than early attempts at single peak
fitting.

The spectra where one component is close to zero pose a particular challenge.
When the fitting algorithm attempts to fit a peak at a given position, with a
given width, it will find such a peak in the background noise, regardless of whether
any real peak exists. In the DCM2, the relative decay curve was constrained to 0
at xd = 0, and thus accords less importance to these measurements.

Accurate determination of the lifetime of an energy level requires us to take into
account all feeding into that level. This is a potential source of systematic error.

The studied states are fed through multiple transitions which appear very weakly
or not above the background in the γ-spectra. While such transitions may not
make, independently, significant contributions to the decay∗ , this may not be
true of them combined. Such a systematic error would result in a slight overesti-
mate of the lifetime. This is a possible explanation for the difference observed in

∗Even a week feeder can contribute significantly if it is very long lived. This is not the case
for the levels studied in this work.
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figure 5.2 between the lifetimes measured in γγ-coincidence and those measured
in single-γ decay. Where possible, γγ-coincidence analysis should be performed
to quantify this systematic error. Single-γ analysis can then be used to obtain a
lower statistical uncertainty.

The DCM2 developed for and used in this work differs significantly from the Na-
patau method of fitting decay curves. Where the latter aims to minimise the
number of constraints, and thereby treat each data point as an independent life-
time measurement, the DCM2 aims to view the data as a single system by im-
posing constraints of physicality.

As we showed in section 5.1, the lifetime obtained by the DCM2 has a low sen-
sitivity to the user-defined parameters, an important criteria for any method. It
also avoids some unphysical features, namely the decay curve increasing, becom-
ing negative, or not going to one at t = 0, making the fit more reliable.

We observed a discrepancy with the measurements by Smith et al. (2002) for
104Ru. The results obtained with the DCM2 for this nucleus are consistent with
results obtained by Pasqualato (2022) using Napatau on the same dataset, show-
ing that it is not due to the DCM2. Our results for the 6+

1 state in 110Ru are
also consistent with measurements by Krücken et al. (2001), using the RDDS
method with a 252Cf source, and by Doherty et al. (2017), using Coulomb excita-
tion. This agreement gives additional confidence in our measurements, indicating
that there is no general systematic discrepancy between the experimental meth-
ods. The specific case of the discrepancy with Smith et al. (2002), observed for
all measurements based on VAMOS++ data with a fusion-fission reaction, is not
yet understood.

2 Interpretation and comparison with previous

work

2.1 Generalised Triaxial Rotor Model Calculations for
110Ru

As outlined in section 2.2, theoretical calculations of the B(E2) values for 110Ru
have been performed by Delaroche et al. (2010) and by Shi and Li (2018). Do-
herty et al. (2017) have performed Coulomb excitation measurements of the
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transitions up to the 6+
1 and 3+

1 levels in 110Ru, along with GTRM calculations
based on those values. The GTRM calculations presented here are based on the
combined set of our B(E2) values and those measured by Doherty et al. (2017).

We fitted the parameters Qt, γ,Γ2,Γ4,Γ6 of the GTRM to the B(E2) values in
an iterative process. In each iteration, the quadrupole moment Qt was fitted
only to the 3+ → 2+ and 2+ → 0+ transitions, as these have the smallest de-
pendence on the other parameters. The asymmetry angle γ and the mixing an-
gles ΓI were then fitted to all transitions keeping Qt constant. The best fit was
obtained after four iterations, and is shown in figure 6.1.

The mixing angles are expected from theory to follow the relation in equation (1.17).
The values resulting from our fit are compared to the theoretical values in ta-
ble 6.1. It should be noted that Γ6 is only fitted from a single B(E2) measure-
ment, and as such has a very low accuracy. Indeed, we observed that with only
small changes in the other parameters, Γ6 could be made to take multiple widely
different values. The good agreement between the individually fitted mixing
angles and the values obtained from Γ2 and equation (1.17) suggests that the
GTRM describes the rotational bands in 110Ru very well.

Table 6.1: The fitted and calculated mixing angles in the GTRM. The calculated
values were obtained by inserting the fitted Γ2 into equation 1.17.

Γ2 /° Γ4 /° Γ6 /° Γ8 /°
fitted GTRM -15.6 -35.3 -41
calculated from Γ2 -15.6 -33.4 -39.4 -41.7

The B(E2) values resulting from the fit are are displayed in figure 6.1 along
with calculations by Delaroche (2010) and by Shi and Li (2018), as well as ex-
perimental values from this work, Doherty et al. (2017), and Snyder et al. (2013).
The values are given in table C.1.

Up to the 7+
1 → 5+

1 transition, there is good agreement between the experimental
values and the fitted GTRM. This indicates that, at low spins, 110Ru is a well-
deformed triaxial nucleus.

There is an exception, however, for the 5+
1 → 4+

2 transition, where the model
prediction is close to thrice the experimental value. The experimental value is
derived from the same lifetime measurement as the 5+

1 → 3+
1 and 5+

1 → 4+
1

transitions, which the GTRM predicts well. Hence it appears more likely that
this discrepancy originates from an error in the adopted branching ratio, than
from the GRTM calculations.
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Figure 6.1: GTRM calculations fitted to B(E2) values from this work and from
Doherty et al. (2017), extrapolated to compare with the values obtained by Sny-
der et al. (2013). The gray bands mark the transitions used to fit Qt. Predic-
tions by CHFB + 5DCH Gogny D1S calculations by Delaroche (2010) and RMF
+ 5DCH calculations by Shi and Li (2018) are also shown.

The two microscopic models models displayed in figure 6.1 both follow the gen-
eral trend of the experimental data. Contrarily to the GTRM, the predictions of
these are not fitted to the particular data, modelling instead the entirety of the
nucleic chart. As such they are typically less accurate for individual nuclei. The
level of agreement observed in this case is as good as can be expected.
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The deviation from experimental observations at high spin is an indication of
other effects than simple triaxial rotation. At such high angular momenta we ex-
pect to see cranking effects, so this is not surprising. Indeed, the RMF + 5DCH
calculations – which take cranking into account – remain close to the experimen-
tal values. Sugawara (2019) found that the asymmetry of 110Ru deviated from
a stable value at spins above 7+

1 . Changes in the deformation parameters would
explain the breakdown of the GTRM used in this work. Changes in the transi-
tional quadrupole moment at angular momentum I ≥ 8 was also found in the
triaxial projected shell model calculations by Zhang et al. (2015).

We obtain a quadrupole moment of Qt = 332 ± 6 e fm2 and an asymmetry angle
γ = 33.5± 0.7°, slightly on the side of oblate deformation. From equation (1.16),
we calculate a deformation magnitude β = 0.30, which is on the high end of the
range of previously calculated values.

Our result is closest to the (β, γ) = (0.31, 29°) obtained by Doherty et al. (2017),
also using the GTRM. Their calculations already capture the main features of
the nucleus. The additional B(E2) values measured in this work strengthen the
interpretation within the GTRM, and thus yield more reliable deformation pa-
rameters.

This contrasts with predictions of both microscopic-macroscopic and CHFB
Gogny D1S calculations, which predict γ < 30°: slightly on the prolate side.
The RMF + 5DCH calculations by Shi and Li (2018) are the only ones to pre-
dict γ > 30°, albeit with a slightly smaller deformation β = 0.26 than what we
obtain.

Our γ value differs significantly from that found by Sugawara (2019), which pre-
dicts the lowest γ at approximately 20°.

In figure 6.2 we show contour plots of the calculated potential energy surfaces by
the Gogny CHFB, RMF + 5DCH, and microscopic-macroscopic models, along
with the (β, γ) values obtained in this work and by Doherty et al. (2017), and
the minimum of the Skyrme CHFB calculations. It is clear that the latter devi-
ates significantly from the other models, and our result reinforces this.
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Figure 6.2: Deformation plot showing calculated and measured deformation pa-
rameters (β, γ) for 110Ru. For the microscopic-macroscopic, Gogny CHFB and
RMF + 5DCH calculations, contour lines of the potential energy surface are also
drawn, with a separation of 1 MeV.

2.2 Odd-neutron Ruthenium isotopes.

An adequate interpretation of the B(E2) values measured for 109,111Ru requires
triaxial particle rotor calculations. Such calculations are beyond the scope of
this thesis, but will be performed in future work. Nevertheless, as a first ap-
proximation, we can compare the two nuclei by calculating their transitional
quadrupole moments according to the formula

B(E2; Ii → Ij) =
5

16π
(Qt)

2 〈IiK20|IjK〉2 . (2.1)
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Since K is not a well-defined quantum number in triaxial nuclei, we use the
strongest contributor, namely 5/2 for 109Ru and 7/2 for 111Ru. The value we
obtain in this way has little physical significance, but can help identify possible
changes in the deformation between 109Ru and 111Ru.

The B(E2) values we have measured and the corresponding quadrupole mo-
ments from equation 2.1 are given in table 6.2.

Table 6.2: Measured B(E2) values and calculated quadrupole moments for
109,111Ru, assuming no higher order multipole deformations and ignoring triax-
ial mixing. Due to these approximation, the error in Qt is larger than the quoted
statistical uncertainties.

Nucleus transition Eγ B(E2) Qt

keV 102 e2fm4 102 e fm2

109Ru 19/2−1 → 15/2−1 542 35.0± 3.2 351± 16

15/2−1 → 11/2−1 375 34.2± 8.7 373± 47
111Ru 19/2−1 → 15/2−1 514 47 ± 11 444± 51

15/2−1 → 11/2−1 358 29.3± 1.7 403± 12

From the proximity of the calculated transitional quadrupole moments, there is
little indication that the two additional neutrons contribute significantly to the
deformation. Furthermore, compared to the quadrupole moment of 332 ± 6 efm2

obtained for 110Ru, we cannot conclude on any effect of the odd neutron on the
deformation in either case.
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Chapter 7

Conclusions and outlook

In this thesis, we have presented several hitherto unmeasured lifetimes of excited
states in 109,110,111Ru. We have used them to obtain a total of twelve B(E2) val-
ues – two for each odd isotope and eight for 110Ru.

In the latter case, our measurements bridge the gap between previous low an-
gular momentum Coulomb excitation measurements by Doherty et al. (2017)
and high angular momentum Doppler shift attenuation measurements by
Snyder et al. (2013). We combined our measurements with the former to fit
the generalised triaxial rotor model. The model describes the nucleus well
up to the 7+

1 state, allowing us to extract reliable deformation parameters
(β = 0.30± 0.01, γ = 33.5± 0.7) under the triaxial rotor assumption. These de-
scribe a well deformed, slightly oblate triaxial nucleus.

Microscopic nuclear structure models predict the B(E2) values directly, making
these a key way of testing models against experimental data. We compared the
experimental B(E2) values in 110Ru with predictions from CHFB+5DCH Gogny
D1S calculations by Delaroche et al. (2010) and RMF+5DCH calculations by
Shi and Li (2018). Both models successfully predict the general trends observed
in the experimental results.

The potential energy surfaces extracted from the above microscopic models are
similar, and their minima differ only slightly from the deformation parameters
of the fitted GTRM. They both predict a wide minimum on the oblate side, in-
dicative of γ-softness. The precise location of the minimum is on the oblate side
for the RMF+5DCH model, and slightly prolate for the Gogny CHBF model.
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Contrariwise, cranked Skyrme HFB calculations by Zhang et al. (2015) predict
a much lower deformation of the nucleus of approximately half the value of the
GTRM fit.

Microscopic-macroscopic calculations by Möller et al. (2008) predict a well de-
formed nucleus, as opposed to the microscopic models which predict γ-softness.
The calculated potential energy minimum is less deformed and more prolate
than the deformation of the fitted GTRM.

For 109Ru and 111Ru, we used a simple first approximation of the transitional
quadrupole moment Qt to identify possible changes in the deformation between
these two isotopes. No conclusive evidence of change was observed, either be-
tween the odd isotopes or with 110Ru. These nuclei will be studied further using
triaxial particle rotor calculations, which will produce more accurate results.

The evolution of the deformation in the Ruthenium chain can be studied by per-
forming similar analyses on 112Ru, and possibly 108Ru. Applying the same anal-
ysis methods on data from the same experiment will drastically reduce the effect
of systematic uncertainties when comparing the different isotopes.

As part of the work, we have written a program to fit the same peaks in multi-
ple γ-spectra simultaneously, producing consistent fits while avoiding the errors
that come from manually constraining fit parameters. This program is available
at https://github.com/johashei/multifit and as a python package. It will
be expanded in terms of both documentation and functionality, making it more
easily applicable to other cases.

We have also developed a novel method of fitting the decay curves obtained in
recoil distance Doppler shift experiments. This method, called the derivative
constrained monotonic decay curve method (DCM2) was first tested and applied
in this thesis. By imposing constraints of physicality on the fitted curves, tak-
ing all data points into account when determining the lifetime, and being only
weakly dependant on user-defined parameters, it is expected to provide more re-
liable results than currently used methods. Future work (Modamio, Heines, and
Görgen unpublished) will provide a detailed characterisation of the method, par-
ticularly with regards to uncertainty determination and expansion to multiple
feeders. In this context, the code will be published and developed into a python
package.

Some deviation of the lifetimes measured with the RDDS method using the
238U(9Be, f) reaction from the adopted values has been observed both in this
work, and by Grente (2014), Ansari (2019) and Pasqualato (2022). Most of these
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are likely to be caused by weak long-lived feeders which are unaccounted for in
the single-γ analyses. These systematic errors will be removed by γγ-coincidence
analysis in future work. Nevertheless, some cases, notably in 100Zr and 104Mo,
produce consistent shorter lifetimes in both approaches. It is therefore of interest
to conduct a study of the implementations and assumptions of both the fusion-
fission RDDS technique and the 252Cf-decay differential plunger technique with
which the adopted values were measured (Smith et al. 2002).

The experimental setup has achieved much better RDDS results than have pre-
viously been available. The fission fragment identification in VAMOS++ has
made clean γ-spectra for a large number of nuclei. The replacement of EXOGAM
by AGATA has increased the statistics by an order of magnitude, pushing the
limits of nuclei available for single-γ and γγ-coincidence analysis. In particular
it allows for the analysis of odd-neutron nuclei to a much larger extent.

Only a small fraction of the dataset has yet been analysed.
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sis. Université Paris-Sud.
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Appendix A

Fitted γ-spectra

This appendix contains figures of all the fitted γ-spectra. Unless stated other-
wise, the spectra are fitted using two Gaussian peaks on a linear background,
following the method described in section 2.1. Particularities of the fits are noted
in the figure texts.
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Figure A.1: Transitions 23/2−1 → 19/2−1 @ 691 keV (left) and 19/2−1 → 15/2−1 @
542 keV (right) in 109Ru.
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Figure A.2: Transitions 15/2−1 → 11/2−1 @ 375 keV (left) and 11/2−1 → 9/2−1 @
74 keV (right) in 109Ru. The latter is fitted with a single peak.
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Figure A.3: Transitions 23/2−1 → 19/2−1 @ 651 keV (left) and 19/2−1 → 15/2−1
@ 514 keV (right) in 111Ru. The former includes the transitions 21/2−1 → 17/2−1
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Figure A.4: Transition 15/2−1 → 11/2−1 @ 358 keV in 111Ru.

80



200

400

Counts per 0.5 keV

43µm

300
400
500

65µm

300

400 103µm

300

400

500
168µm

300

400

500
277µm

400

600
462µm

400

600

789µm

400

600
1183µm

400

600 1789µm

680 700 720

Energy [keV]

500

750

2664µm

250

500

Counts per 0.5 keV

43µm

500

1000

65µm

500

750
103µm

500

750
168µm

400

600
277µm

500

750 462µm

500

750 789µm

500

750 1183µm

500

1000
1789µm

560 570 580

Energy [keV]

500

1000

2664µm

Figure A.5: Transitions 8+
1 → 6+
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Figure A.6: Transitions 6+
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Figure A.7: Transitions 7+
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Appendix B

Fits of simulated decay curves

This appendix contains DCM2 fits of the simulated decay curves used for testing
the effects of varying the user-defined parameters. These are the order of the
Isplines and number of knots used to fit the decay curves. Their values are given
in the figure captions.

The top graph shows the simulated relative decay values Qhi(x) of the feeding
energy level, along with the fitted curve. The knots used in the fit are marked
as dashed vertical lines. The next graph is equivalent for the simulated decay
whose lifetime is measured. The third graph shows the two sides of equation (2.12);
the degree of overlap of these curves is an important indication of the quality of
the fit. Finally, the bottom graph shows the value vτ calculated at each experi-
mental value, as well as from the fitted curves. The fitted value is marked by a
horizontal dashed line.
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Appendix C

Comparison of B(E2) values

Table C.1 gives the numerical values of the points plotted in figure 6.1.

90



Table C.1: Comparison between the measured and predicted B(E2) values
shown in figure 6.1. The uncertainties on the last two digits are shown in brack-
ets for the experimental values.

transition experimental GTRM Gogny CHFB∗ RMF + 5DCH†

102 e2fm4

Doherty et al. (2017)

2+
1 → 0+

1 20.9 (+16
−15) 19.85 20.85 17.94

2+
2 → 0+

1 2.30 (10) 2.07 0.01 1.13

2+
2 → 2+

1 35. (13) 25.58 30.06 24.14

3+
1 → 2+

1 1.50 (20) 3.70 0.00 1.78

3+
1 → 2+

2 31. (+21
−22) 35.45 36.38 30.99

4+
1 → 2+

1 29.3 (+31
−21) 28.72 32.43 27.08

6+
1 → 4+

1 38. (+9
−4) 35.46 40.66 34.41

This work

4+
2 → 2+

1 0.200 (15) 0.199 0.00

4+
2 → 2+

2 5.91 (45) 5.62 16.25 15.90

4+
2 → 3+

1 6.76 (52) 6.61 6.45

4+
2 → 4+

1 5.27 (40) 5.76 13.86 11.87

5+
1 → 3+

1 12.9 (24) 14.56 24.20 21.23

5+
1 → 4+

1 0.52 (10) 0.21 0.01

5+
1 → 4+

2 8.1 (15) 24.96 19.37

6+
1 → 4+

1 36.3 (37) 35.46 40.66 34.41

Snyder et al. (2013)

6+
2 → 4+

2 18.0 (43) 10.42 27.60 23.82

7+
1 → 5+

1 22.4 (37) 20.11 30.77

8+
1 → 6+

1 21.6 (25) 38.44 40.01

8+
2 → 6+

2 20.3 (40) 0.73 32.18

9+
1 → 7+

1 27. (12) 90.89 37.66
∗Delaroche (2010)
†Shi and Li (2018)
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