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Preface

This Master Thesis is a presentation of my work conducted during the fall of
2021 and the spring of 2022 as a part of my masters degree in Computational
Science from the Department of Mathematics at the University of Oslo.

Turbulence springs up in virtually any system containing moving fluids. Clouds
are governed by turbulence, as is the motion of waves and solar winds. Due
to the ubiquitous nature of turbulence I, somewhat naively, started this thesis
with the hope of understanding the complex nature the phenomenon. After
a year working with the topic I am still no closer to answering the age old
question What is Turbulence? Unfortunately, I am not alone, as turbulence is
one of the prevailing mysteries of physics.

Great strides within the field of computational sciences have given engineers
and scientists the opportunity to perform high fidelity simulations of turbulent
fluid flows. This has proven to be an excellent tool for increasing our insight
into the nature of turbulence. As a better understanding of turbulence will
have huge positive impacts, such as more efficient wind farms, better weather
forecasts, and smoother rides for millions of airline passengers, I would like to
contribute to the fascinating world of computational modelling of turbulence.

The work has been challenging yet rewarding. A considerable amount of
time has been dedicated to implementing new features to existing software.
The use of the experimental code developed by Cascade Technology ensured
that I had complete control over what the program was doing and was thus
an invaluable tool in this work. The challenges related to implementing the
different filtering strategies have given me greater insight into the world of
numerical fluid dynamics and parallel computing. I have also gained a great
amount of respect for all the engineers and scientists that struggle daily with
implementing accurate and efficient algorithms for solving the non-forgiving
Navier-Stokes equations.
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Abstract

Several authors have reported large discrepancies in the normalized mean
velocity profile produced by wall modeled Large Eddy Simulation. These
discrepancies, known as the Log-Layer Mismatch, occur independent of grid
topology, subgrid model and wall-model. A significant research effort has been
aimed at solving this problem over the past decade. However, there exists no
universally accepted model thus far. The most common approaches seek to
reduce this mismatch by modifying the subgrid model, changing the wall model
height, or by filtering the wall model input in time and/or space.

In this thesis the effect of temporal filtering, spatial filtering, and changing the
wall model height is investigated. As a test case, a fully developed turbulent
channel driven by a constant pressure gradient at Reτ = 5200 is considered.
The simulation campaign considers two different cell lattices: hexahedral and
truncated octahedral. Simulations are performed with and without subgrid
modelling. The results are compared with DNS data concerning the mean
velocity profile, velocity gradient, and the Reynolds stresses.

It is shown that both the temporal filtering technique and moving the wall
model matching location away from the wall have a positive effect on LLM,
while spatial filtering has little effect on the predicted mean velocity profile.
Further, it is found that the simulations on truncated octahedral meshes
perform the best. Turning off the subgrid model reduces the magnitude of LLM,
while deteriorating the accuracy of the velocity gradient and the Reynolds
stresses.

Several prevailing explanations for LLM are studied, however, non of the
arguments seems to give an adequate explanation as to why the phenomenon
occurs. Closer study of the algebraic wall model indicates that by enforcing
the Law of The Wall locally and instantaneously one introduces additional
modeling errors proportional to the fluctuations in the velocity field and the
instantaneous wall stress. Further analysis of the the semi-discrete transport
equations in the near-wall region shows that the computed velocity field relies
on data from adjacent control volumes. The non-local nature of the transport
equation is believed to be the main reason for why the prevailing arguments of
LLM fail to provide a complete explanation of how the phenomenon occurs.
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CHAPTER 1

Introduction

The ability to accurately predict the motion of fluids has important applications
for engineers and scientists. A fundamental problem arises when fluid flows
transition from laminar flow, where the flow features are contained within a
small range of scales in time and space, to turbulent flow, for which the flow
dynamics are spread over a large number of scales. At present, a complete
description of turbulent flows is only accessible by numerically solving the
fundamental equations of fluid flows. Performing such simulations, termed
Direct Numerical Simulations (DNS), are still a source of major difficulties as
the required computational effort increase rapidly with the Reynolds number.
Hence, most real fluid flow problems, such as the flow past an aircraft or a
ship’s hull may not be computed with DNS. A thorough review of the challenges
related to performing such high fidelity simulations may be found in Moin and
Mahesh (1998). To mitigate the vast computational cost related to DNS one
usually rely on simplified descriptions of the flow, such as the technique of Large
Eddy Simulation (LES).

The main idea behind LES is to reduce the computational cost by only
resolving the large length scales, while modeling the computationally expensive
small-scale motions. Smagorinsky (1963) was the first to propose the use of LES
in his study of atmospheric flows. Due to the limited computational power at
the time the use of LES were for a long time restricted to the analysis of simple
flow problems, such as plane channels and mixing layers (Zhiyin 2015). The
advent of more modern computers in the late 1980s and early 1990s increased
the CFD community’s interest in LES. In the following decades several models
have been developed, allowing LES to be applied in many types of real fluid
flow situations. Despite the considerable progress in the development of LES
the past 30 years, LES does still have several issues (Piomelli 1999; Pope 2004).

Perhaps the greatest challenge when performing LES is related to the near-
wall region of attached flows. Close to walls, the turbulent flows are dominated
by eddies with characteristic lengths and time scales much smaller than those of
the free flow. Choi and Moin (2012) estimated that the number of grid points
necessary to resolve the near wall flow is proportional to Re13/7. Hence, the
resolution requirements for Wall-Resolved LES (WRLES) is almost as high as
DNS, making WRLES at high Reynolds number infeasible even with the most
advanced computers.

In order to apply LES to high Reynolds number engineering applications,
wall models are usually introduced. By modeling the flow in the near-wall
region, one may significantly reduce the requirement for the number of grid
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Figure 1.1: Estimated number of grid points necessary to resolve all relevant
flow structures as a function of Reynolds number. ( ), DNS; ( ),
WRLES; ( ) WMLES.

points, since only the larger scales in the outer region of the boundary layer
needs to be resolved. The estimated resolution requirement of Wall-Modeled
LES (WMLES) grows linearly with increasing Reynolds number (S. T. Bose
and Park 2018), and WMLES is therefore an attractive alternative from a
computational point of view. The approximate number of grid cells needed to
perform DNS, WRLES and WMLES are illustrated in Figure (1.1).

Following the taxonomy of Larsson et al. (2016), the wall model approaches
can be classified as hybrid LES/RANS method, where the near-wall region is
computed by solving the Reynolds Average Navier-Stokes (RANS) equations
interfaced to a LES region at some distance yint above the wall, or as a pure
LES formulation where the LES equations extend all the way down to the solid
boundary. In the latter formulation, one usually introduces Neumann boundary
condition in terms of the wall shear stress, τw, obtained by solving a wall model
over a layer with thickness hwm. Larsson et al. (2016) and Piomelli and Balaras
(2002) provide a thorough discussion of both approaches.

The first attempt to implement a model for the wall layer was made by
Deardorff (1970) for an LES of a plane channel flow at infinite Reynolds
number. However, the results obtained did not agree well with experimental
measurements. Assuming the wall shear stress to be in phase with the velocity at
the first off-wall grid point, Schumann (1975) derived what is now considered the
first standard wall model. This model performed much better than Deardorff’s
original attempt of WMLES. In the decades following U. Schumann’s publication,
several improved wall models have been developed, such as the methods proposed
by Piomelli, Ferziger et al. (1989) and S. Bose and Moin (2014). Significant
research effort is still aimed at this topic and recent reviews can be found in
Larsson et al. (2016) and S. T. Bose and Park (2018). The development of
suitable wall models is, however, a challenging task and as pointed out by
Piomelli (2008) “despite the increased attention to the problem, no universally
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accepted model has appeared”.
The scope of this thesis is inspired by the work of X. I. Yang, Park and

Moin (2017) and Kawai and Larsson (2012), both of have contributed greatly
to the study of Wall Modeled Large Eddy Simulation. The main goal is to
implement and verify different wall modeling strategies and their suitability for
different mesh topologies. The results will be verified by comparing the results
to DNS data available in the literature. Since this is a quite broad scope of
work, the present study is limited to a single test case, namely a fully-developed
turbulent channel flow with constant pressure-gradient.

The thesis is divided into 7 chapters, including the introduction. The
contents of the remaining chapters are briefly outlined below.

• Chapter 2 is devoted to the concept of turbulence. The chapter starts
by introducing the phenomenon and the main characteristics of turbulent
fluid flows. Next, the mathematical tools used in the theoretical analysis
of turbulent flows together with some characteristics of such flows are
presented. Thereafter, the concept of boundary layers and their extension
to turbulent flows is introduced.

• Chapter 3 focuses on applied turbulence models. The chapter present the
governing equations of fluid flow and derive both the Reynolds Averaged
Navier-Stokes and Filtered Navier-Stokes equations, and give a short
description of their physical characteristics. Lastly, the concept of wall
modelling, focusing on the algebraic wall model, is introduced.

• Chapter 4 outlines specifics of the problem studied in the thesis. Aspects
of the computational domain, grid topology and boundary conditions
are presented. The treatment of solid boundaries are described in detail
and we conclude the chapter with some general remarks regarding the
implementation of the boundary conditions.

• Chapter 5 presents the results obtained using the different wall modeling
strategies. The chapter focuses on the quantitative validation with
reference to existing DNS data.

• Chapter 6 seeks to explain how grid topology, wall modelling strategy
and eddy viscosity affect the near wall behavior of the WMLES solution
and why they affect the magnitude of LLM .

• Chapter 7 concludes the findings of the thesis and outline recommenda-
tions for further work.
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CHAPTER 2

Introduction to Turbulence

2.1 The Physics of Turbulence

The phenomenon of turbulent fluid motion is all around us, and almost everyone
have experienced hitting an extra rough patch of air on their way to their
next vacation. Still physicists and mathematicians do not agree on a universal
definition of the phenomenon. There are, however, a general agreement that
turbulence involves the complex, chaotic motion of a fluid.

Osborne Reynolds was the first to show that the distinction between
laminar and turbulent flow depends upon the relative magnitude of the viscous
and inertia forces (Jackson and Launder 2007). This relationship is usually
represented in terms of the dimensionless Reynolds number, Re, as defined in
Equation (2.1).

Re = UL

ν
(2.1)

Here, U denotes the characteristic velocity, L is the characteristic length scale of
the flow, and ν the fluid kinematic viscosity. The key characteristic of turbulent
flow is that the flow is dominated by three-dimensional time dependent swirling
flow structures, known as turbulent eddies. These structures occur over a vast
range of time and length scales, the largest being proportional to the flow field
itself. The size of the smallest eddies was for a long time disputed. In his famous
paper from 1941, Kolmogorov postulated that only two quantities, the kinematic
viscosity and the mean dissipation rate, ϵ, characterize the small-scale motion
of a fully developed turbulent flow (Tennekes 1972). From this assumption, he
derived the now well known Kolmogorov microscales of length η, time τ , and
velocity υ for the smallest turbulent structures, presented in the Equation (2.2).

η =
(

ν3

ϵ

) 1
4

, υ =
(
νϵ) 1

4 , τ =
(

ν

ϵ

) 1
2

(2.2)

Introducing the Kolmogorov length and velocity scale into the expression
for the Reynolds number yields Equation (2.3).

Reη = υη

ν
=
(
νϵ) 1

4

(
ν3

ϵ

) 1
4 1

ν
= ϵ

1
4 ν

ϵ
1
4 ν

= 1 (2.3)

The Reynolds number for the small scale eddies are of order 1. The small-scale
motions are thus dominated by viscosity, and the kinetic energy contained in
these eddies are rapidly dissipated by viscous heating.
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2.1. The Physics of Turbulence

One important consequence of the Kolmogorov scale is the fact that the
smallest eddies typically are significantly larger than the scale of molecular
motion. Hence, turbulence is a continuous phenomenon. A pertinent example is
the motion of the Earth’s atmosphere. Here the dissipation rate and kinematic
viscosity is of order 10cm2/s3 and 0.1cm2/s respectively, while the mean free
path ξ is in the order of 10−4cm. From Equation (2.2), one may estimate the
ratio ξ/η as shown below.

ξ

η
= ξ

(
ϵ

ν3

) 1
4

≈ 1
1000 (2.4)

The smallest eddies are several orders of magnitude larger than the molecular
scales and the small-scale eddies can be assumed to operate in a continuum.
For a more thorough discussion of the validity of the continuum hypothesis for
turbulent flows, consult R. D. Moser (2006).

Taylor (1935) postulated that the rate of viscous dissipation of the small-
scale eddies can be approximated from the large-scale dynamics, for which
viscosity is negligible, according to Equation (2.5).

Figure 2.1: Turbulent flows at different Reynolds numbers. (a) jet flow at a
relative low Reynolds number, (b) similar flow but at a higher Reynolds number
(Tennekes 1972).
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2.2. The Stochastic Description of Turbulence

ϵ ∝ u3

l
(2.5)

Here, u and l represent the velocity and length scales of the largest eddies
respectively. Substituting the above relation into the expressions for the
Kolmogorov microscales, we obtain relations for the relative size of the small-
and large-scale eddies. These relations indicate that the time, length and
velocity scales of the small eddies are significantly smaller than that of the
larger scales. The gap widens with increasing Reynolds number as expressed in
Equation (2.6).

η

l
∝ Re− 3

4 ,
υ

u
∝ Re− 1

4 ,
τ

t
∝ Re− 1

2 , (2.6)

In light of Equation (2.6), it follows that the main characteristic differentiat-
ing turbulent flows at different Reynolds numbers, everything else being equal,
is the size of the smaller eddies. This is illustrated in Figure (2.1).

Another characteristic of turbulent flows is the enhanced transport of mass
and momentum. The transfer rate being several orders of magnitude larger
than what is observed for laminar flows.

2.2 The Stochastic Description of Turbulence

In a turbulent flow, the velocity u at any given point varies in a seemingly
random manner, as illustrated in Figure (2.2). Here, we observe a typical
measurement of a velocity component captured by a hot wire at a given location
within the flow. This raises the question, how can deterministic equations such
as the Navier-Stokes have a stochastic nature? The answer is two-fold. First,
turbulent flows are chaotic processes. That is, an aperiodic system which exhibits
extreme sensitivity to small perturbations in the initial and boundary conditions

u

t
Figure 2.2: Typical velocity signal of a single component of velocity in turbulent
flow measured at a given location.
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2.2. The Stochastic Description of Turbulence

(Strogatz 2015). Secondly, even though one may reduce the presence of such
perturbations, one cannot remove them entirely. Unavoidable perturbations
in the initial conditions, boundary conditions and material properties make it
impossible to predict the state of the system over any significant amount of
time. Thus, one usually reduces the description of turbulence to the various
statistical moments since these properties are quite reproducible.

Probability Density Function and Moments

A turbulent flow parameter, such as the flow velocity u⃗, is fully characterized at
a given location in time and space by its Probability Density Function (PDF).
Letting f(X) denote the PDF of an arbitrary turbulent variable X, then the
nth moment of the variable X is defined as Equation (2.7) below.

〈
Xn
〉

=
∫ ∞

−∞
Xnf(X) dX (2.7)

Even though there is no limit to the number of moments one might examine,
one generally limits the study of turbulence to the lowest non-zero moment of
the stochastic variable. The first moment of any turbulent variable X, usually
referred to as the mean or expected value of X, is defined in Equation (2.8)
below.

〈
X
〉

=
∫ ∞

−∞
Xf(X) dX (2.8)

Following the excellent work by O. Reynolds one usually decompose the
turbulent quantities into a stochastic mean and a fluctuating part, X =

〈
X
〉
+X

′

(Reynolds 1995). This procedure is known as Reynolds decomposition. By design
the mean value of the fluctuating part is exactly zero,

〈
X

′〉 = 0. However, this
is generally not true for the higher order moments of X

′ . Thus, the properties
of the fluctuating fields are usually presented in terms of the second moment,
computed according to Equation (2.9).

〈
X

′
X

′〉
=
〈(

X −
〈
X
〉)(

X −
〈
X
〉)〉

=
〈

X2 − 2X
〈
X
〉

+
〈
X
〉〈

X
〉〉

=
〈
X2〉−

〈
X
〉〈

X
〉

(2.9)

The random variables describing turbulent flows are not independent. Thus,
the joint statistical properties of turbulent flow parameters are included in the
stochastic description of turbulence in the form of their covariance. Letting X
and Y denote two random variables, the second moment of the fluctuating part
of X and Y is calculated according to Equation (2.10).

〈
X

′
Y

′〉
=
〈(

X −
〈
X
〉)(

Y −
〈
Y
〉)〉

=
〈(

XY +
〈
X
〉
Y +

〈
Y
〉
X −

〈
X
〉〈

Y
〉)〉

=
〈
XY

〉
−
〈
X
〉〈

Y
〉

(2.10)
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2.2. The Stochastic Description of Turbulence

Assumption of Turbulent Flows

Formally, the PDF’s of turbulent quantities are constructed from an ensemble of
n independent realizations of the turbulent flow. In practice, this is a daunting
task as this requires the experiment, physically or numerically, to be performed
repeatedly. Therefore, one usually assume the principle of ergodicity to be valid
(Sagaut 2006). That is, all stochastic properties can be deduced from a single,
sufficiently long, realization. As a consequence one assumes the statistical
properties of turbulent flows to be stationary, i.e. all moments of the turbulent
quantities are time independent.

The added complexity introduced by the fluctuations superimposed onto
the fluid motion makes theoretical study of turbulence a challenging task. One
therefore frequently assumes that turbulent flows are homogeneous. That
is, the mean quantities are assumed invariant under any spatial translation.
Further, one commonly assumes all probabilistic quantities to be invariant
under any arbitrary rotation of the frame of reference, this assumption being
commonly referred to as isotropic turbulence. It should however be noted that
isotropic homogeneous turbulence is an idealization of true turbulent flows
rarely encountered in nature.

Correlations and Spectra

Even though one may extract a lot of useful information about the turbulent
variables from their PDF’s and their moments. They do not, in general, give a
complete description of the random processes of a turbulent flow. For example,
they do not contain any information about the interaction of turbulent quantities
at two or more locations. The simplest extension of the stochastic analysis
of turbulence is by way of two-point correlation. The correlation can be at
different points in time (usually referred to as auto-correlation) or in space. Let
x⃗ and x⃗ + r⃗ be two points in space. Then the spatial velocity correlation tensor
Ri,j(r⃗) is defined according to (2.11).

Ri,j(r⃗) =
〈
ui(x⃗), uj(x⃗ + r⃗)

〉
(2.11)

Since turbulence spans a vast range of eddy sizes, it is convenient to take
the Fourier transform of Ri,j(r⃗) to consider the statistical properties at different
wave numbers. Taking the Fourier transform of Equation (2.11) we obtain the
spectral tensor Ei,j as a function of the wave number vector κ⃗.

Ei,j(κ⃗) = 1
(2π)3

∫
Ri,j(r⃗)e−iκ⃗r⃗ d3r⃗ (2.12)

Ei,j(κ⃗) describes the direction and magnitude of the kinetic energy of all
scales present in the flow. Usually the information about the direction is of less
interest and is often removed by considering the energy at a particular scale
κ = |κ⃗|. We obtain E(κ), called the energy spectrum, by integrating the half
trace of the spectral tensor over a sphere with radius |κ⃗| (Sagaut 2006).

E(κ) = 1
2

∫
κ=|κ⃗|

Ei,i(κ⃗) dA (2.13)

We note that the energy spectrum E(κ) is a real and positive function.
Further, the spectrum is related to the total turbulent kinetic energy k and the

11



2.2. The Stochastic Description of Turbulence

Mean
flow Heat

Figure 2.3: Illustration of the energy cascade. Kinetic energy is transferred
from the mean flow to the large eddies. Energy is further transferred to the
smaller eddies, before being dissipated in to heat.

total dissipation ϵ according to Equation (2.14) (Pope 2000).

k =
∫ ∞

0
E(κ) dκ ϵ =

∫ ∞

0
νκ2E(κ) dκ (2.14)

In general, for fully developed turbulence at high Reynolds numbers the
bulk of turbulent energy is contained in the large-scale turbulent structures
with wave number κ ≈ l−1. By means of the nonlinear interaction, the energy
is transferred through an energy-cascade for which turbulent kinetic energy is
distributed from the large to the small-scale motions, as illustrated in Figure
(2.3). Moving down this cascade, towards the high wave number structures,
the viscous dissipation increases gradually. Peak dissipation occurring for
κ ≈ κη, where κη = η−1 denotes the Kolmogorov wave number. For higher
wave numbers, the energy spectrum rapidly drops to zero (Phillips 1991).

Assuming the turbulence to be locally homogeneous and isotropic
Kolmogorov concluded that the energy spectrum could be fully expressed
in terms of the energy dissipation rate, the kinematic viscosity and the wave
number (Kolmogorov 1991).

E = E(κ, ϵ, ν) (2.15)

For κ >> l−1 the spectrum is almost isotropic and in general equilibrium,
and is usually referred to as the equilibrium range. Excluding the energy
contribution from the smallest structures of the equilibrium range one obtain the
inertial subrange, for which κη >> κ >> l−1. The turbulent energy contained
in this part of the energy spectrum is not affected by viscosity. Using Equation
(2.15) as an ansatz, Kolmogorov derived the now well-known Kolmogorov
spectrum presented in Equation (2.16) through dimensional analysis, valid for
the inertial subrange.

E(κ) = αϵ
2
3 κ− 5

3 (2.16)

Here α denote the universal Kolmogorov number. For the smallest length
scales, where viscosity is of importance, Equation (2.16) does not provide a
good fit compared with real life turbulence spectra. Several improved spectra,
such as Equation (2.17) proposed by Kovasznay (1948), have been suggested
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E
(k

)

κ

ν
κ

2 E
(κ

)

κ

Figure 2.4: Theoretical turbulence energy spectra and dissipation spectra for
the equilibrium range. ( ), Kolmogorov spectrum; ( ), Kovasznay
(1948).

after Kolmogorov introduced his original spectrum. Both spectra and their
respective dissipation rate, ϵ = νκ2E(κ), are illustrated in Figure (2.4).

E(κ) = βϵ
2
3 (κη)− 5

3
(
1 − (κη) 4

3
)2 (2.17)

2.3 Boundary Layer Theory

In the absence of solid boundaries, the effect of viscosity becomes negligible
compared to inertia and pressure forces for sufficiently high Reynolds numbers.
By removing the effect of viscosity, one greatly simplifies the mathematical
problem of fluid motion (Çengel and Cimbala 2014). However, the inviscid flow
solution does not satisfy the no-slip boundary condition at solid boundaries.
That is, the relative velocity component tangential to the wall does not vanishes
at the wall. Thus, the non-viscous flow equations often yield non-physically
results such as zero shear stress along solid boundaries. Since there existed
only a few solutions to the equations of viscous fluids, researchers have had
to rely on experiments to study most real fluid flows. This changed with the
introduction of boundary layer theory.

The existence of a boundary layer was first proposed by Ludwig Prantl in
1904 (Tulapurkara 2005). The idea behind boundary layer theory is that high
Reynolds number flows can be split into two sub regions. The bulk region, for
which the effect of viscosity can be ignored, referred to as the outer layer; the
second region is a thin layer close to any solid boundary where the effect of
viscosity cannot be neglected. Since the transition from one region to another
is gradual, there exists no clear definition of the boundary layer thickness δ.
However, at least for laminar boundary layers, one frequently defines the edge
of the boundary layer as the point where the velocity has reached 99% of the
free flow velocity U∞ (Çengel and Cimbala 2014).

H. Blasius derived the first solution of a two-dimensional laminar boundary
layer over a flat plate, as illustrated in Figure (2.5). Assuming the streamwise
pressure gradient to be zero, he showed that Prantl’s boundary layer equations
has the solution presented in Equation (2.18) (White 2006).

13



2.3. Boundary Layer Theory

Figure 2.5: Illustration of a boundary layer over a flat plate (Schlichting and
Gersten 2016).

u = U∞
df

dη
, v =

√
νU∞

2x

(
df

dη
− f

)
(2.18)

Here, u and v denotes the wall parallel and wall normal velocity component.
Further, η denotes the dimensionless similarity variable defined in Equation
(2.19) below.

η = y

√
U∞

2νx
(2.19)

The function f = f(η) is the solution to the third order differential equation
(2.20), known as the Blasius equation.

d3f

dη3 + f
d2f

dη2 = 0 (2.20)

To date an exact analytical solutions to the Blasius equation does not exist.
Approximate analytic solutions may be obtained as a series expansion combined
with a suitable matching condition of an inner and outer solution, as done by
Blasius himself, or by means of numerical computations. Falkner and Skan
(1931) extended the similarity solution proposed by Blasius by accounting for
the effect of non-zero streamwise pressure gradients. In their equation for the
function f (Eq. (2.21)) the effect of dp/dx is measured by the parameter β.
Negative β implies an adverse pressure gradient, while positive values denote a
favorable pressure gradient (White 2006).

d3f

dη3 + f
d2f

dη2 + β

(
1 − df

dη

2)
= 0 (2.21)

The concept of a boundary layer was extended to turbulent flows in the late
1920s and early 1930s (Tani 1977). Due to the increased exchange of momentum
caused by the turbulent eddies, Turbulent Boundary Layers (TBL) involve
larger velocity gradients close to the wall, resulting in a fuller velocity profile
compared to laminar boundary layers. Further, the additional mixing caused
by the turbulent motion is an important source of friction drag encountered by
aircrafts and ships’ hulls and turbulent flows through ducts and pipes.

A striking difference between TBLs and their laminar counterparts, is that
viscosity only affect a small fraction of the actual boundary layer (Schlichting
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2.3. Boundary Layer Theory

and Gersten 2016). TBLs are thus usually divided into two regions. A thin
layer directly at the wall referred to as the inner region, where the viscous
contribution to the shear stress is significant, and the outer region where the
apparent friction is due to the turbulent transport of momentum. The mean
velocity profile of a typical TBL is presented in Figure (2.6).

One should note that even though we divide TBLs into different regions,
they act as a continuum. At high Reynolds numbers, energy flows from the
mean flow to the larger eddies in the outer region. On the other hand, Klebanoff
(1955) showed that the bulk of dissipation, both viscous and turbulent, takes
place in the inner region. Hence, there must be a constant exchange of turbulent
energy form the outer to the inner region.

Due to the complex nature of the turbulent fluctuations, there exist no
analytic solution to Prantl’s boundary layer equations for turbulent flows. The
shape of the velocity profile and other properties of turbulent boundary layers are
thus obtained from experiments, physical or numerical, or from semi-empirical
expressions. One of the simplest empirical models for the mean velocity profile
is the One-Seventh-Power Law originally presented by Prandtl (1925). Von
Karman (1931) postulated that the velocity profile of a turbulent boundary layer
could be described as a logarithmic function of the off-wall distance, commonly
called the Log-Law. Comparing the Log-Law with measurements obtained from
direct numerical simulation (Spalart 1988) and experiments (Klebanoff 1955) of
turbulent boundary layers shows that the log-profile is valid over a significant
portion of the turbulent boundary layer. This portion of the boundary layer is
thus called the Log-Layer. However, discrepancies are observed in the vicinity

lo
gu

log y

Viscous
sublayer

Buffer
layer

Log-layer

Inner region

Outer region

Figure 2.6: Illustration of a the mean velocity in a typical turbulent boundary
layer. The relative position of the different layers and regions are indicated.
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2.3. Boundary Layer Theory

of the wall, where the velocity increases linearly (Pope 2000). In this linear
region, the effect of turbulence is negligible compared with viscous stresses,
hence called the viscous sublayer. Additionally, the Log-Law deviates from the
correct velocity profile at the edge of the boundary layer.

Spalding (1961) created an improved expression for the mean velocity profile.
The so-called Spadlings’ Law of The Wall fits experimental measurements nicely.
Both in the viscous sublayer and the Log-Layer, as well as the transitional
Buffer-region connecting the two layers (see Figure (2.6)). However, as for the
Log-Law, it is not valid in the outer region. By studying a large set of boundary
layer data, Coles (1956) introduced the Wake function, which represents the
mean velocity in the outer region. By combining this function with the Log-Law,
he derived the Wall-Wake-Law valid over the whole boundary layer.
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CHAPTER 3

Turbulence Modeling

The flow of an incompressible Newtonian fluid is governed by the Navier-
Stokes equations and the continuity equation. In their primitive form they are
formulated in terms of velocity u⃗ = (u1, u2, u3) and static pressure p = P/ρ.
Expressed in Cartesian coordinates x = (x1, x2, x3), the Navier-Stokes and
continuity equations are defined as shown in (3.1) and (3.2). In (3.1), it
is assumed that the kinematic viscosity is constant. Following the Einstein
summation convention, repeated indices imply summation over 1, 2 and 3.

∂ui

∂t
+ ∂uiuj

∂xj
= − ∂p

∂xi
+ ν

∂2ui

∂xj∂xj
(3.1)

∂ui

∂xi
= 0 (3.2)

Even though the existence of a unique solution of the Navier-Stokes equations
is yet to be proven, numerical simulations are consistent with experimental
results, and have become an important tool for scientists and engineers.

The estimated number of grid points necessary to resolve all scales present
in a turbulent flow is proportional to Re9/4. Hence, Direct Numerical
Simulations (DNS) of the Navier-Stokes equations is often unfeasible due to the
computational cost required to perform such simulations. In order to overcome
this problem, one usually introduces a coarser level description of the flow while
modeling the interaction between the resolved and non-resolved scales.

Multiple turbulence models exist today. The most common methods belong
to one of two classes: Reynolds-Averaged Navier-Stokes (RANS) and Large
Eddy Simulation (LES). The former method is outlined in section (3.1), followed
by a description of the core concepts of LES preformed in physical space (Section
(3.2)).

3.1 Reynolds Average Naiver-Stokes

Following the concept of Reynolds decomposition, we decompose the primitive
variables into a slowly varying mean (

〈
.
〉
) and a fluctuating part(.′), according

to Equation (3.3).
ui =

〈
ui

〉
+ u

′

i, p =
〈
p
〉

+ p
′

(3.3)
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3.1. Reynolds Average Naiver-Stokes

Here
〈
.
〉

denotes the ensemble average of the velocity and pressure field. We
further assume that the primitive variables obey the Reynolds averaging rules
summarized below (Tennekes 1972).〈

u
′

i

〉
= 0,

〈〈
ui

〉
u

′

i

〉
=
〈
ui

〉〈
u

′

i

〉
= 0 (3.4)

Substituting Equation (3.3) into Equation (3.1), taking the ensemble average
and enforcing the Reynolds averaging rules we obtain the Reynolds Average
Navier-Stokes equation (RANS) (Speziale 1991).

D
〈
ui

〉
Dt

= −
∂
〈
p
〉

∂xi
+ ν

∂2〈ui

〉
∂xj∂xj

−
∂
〈
u

′

iu
′

j

〉
∂xj

(3.5)

The substantial derivative on the left of Equation (3.5) is defined as D/Dt =
∂/∂t +

〈
uj

〉
∂/∂xj . Similarly, one may derive the continuity equation for the

mean velocity given in Equation (3.6).

∂
〈
ui

〉
∂xi

= 0 (3.6)

Equations (3.5) and (3.6) do not form a closed system for the dependent
variables

〈
ui

〉
and

〈
p
〉
. The closure problem of the Reynolds Averaged

Navier–Stokes equations have been discussed by several authors (Speziale 1991;
Pope 2000).

The last term on the left hand side of (3.5), namely ∂
〈
u

′

iu
′

j

〉
/∂xj , is the

only term distinguishing the RANS equations from its laminar counterpart.
Mathematically, this term is equivalent to the stress term. Hence,

〈
u

′

iu
′

j

〉
is

usually referred to as the Reynolds stress tensor. Consequently, the effect of
the turbulent motions is to add additional “stresses” to what are otherwise
the same equations that govern laminar flow. One should note that they are
not stresses but are instead additional momentum fluxes due to the turbulent
motions. As this is the sole contribution of the turbulent fluctuations to the
mean motion, it is useful to derive the transport equation for the individual
Reynolds stresses. Following Speziale (1991), we first define the operator L
according to Equation (3.7).

L(u
′

i) = Du
′

i

Dt
+ u

′

j

∂
〈
ui

〉
∂xj

+ ∂p
′

∂xi
− ν

∂2u
′

i

∂xj∂xj
+

∂u
′

iu
′

j −
〈
u

′

iu
′

j

〉
∂xj

(3.7)

Using Equation (3.7) as an ansatz and applying the chain rule, we may derive
the transport equation of the second moment

〈
u

′

iu
′

j

〉
.

L(
〈
u

′

iu
′

j

〉
) =

〈
u

′

jL(u
′

i)
〉

+
〈
u

′

iL(u
′

j)
〉

(3.8)

More explicitly, the Reynolds-stress transport equation (3.8) is given by Equation
(3.9) (Mansour, Kim and Moin 1988).

D

Dt

〈
u

′

iu
′

j

〉
= −

(〈
u

′

ju
′

k

〉∂
〈
ui

〉
∂xk

+
〈
u

′

iu
′

k

〉∂
〈
uj

〉
∂xk

)
−
(〈

u
′

i

∂p
′

∂xj

〉
+
〈

u
′

j

∂p
′

∂xi

〉)
− 2ν

〈 ∂u
′

i

∂xk

∂u
′

j

∂xk

〉
−

∂
〈
u

′

iu
′

ju
′

k

〉
∂xk

+ ν
∂2〈u′

ju
′

i

〉
∂xk∂xk

(3.9)
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The terms on the right-hand side of the Equation (3.9) are identified as (Mansour,
Kim and Moin 1988)

Pij = −
(〈

u
′

ju
′

k

〉∂
〈
ui

〉
∂xk

+
〈
u

′

iu
′

k

〉∂
〈
uj

〉
∂xk

)
Production rate

Rij =
(〈

u
′

i

∂p
′

∂xj

〉
+
〈

u
′

j

∂p
′

∂xi

〉)
Pressure redistribution rate

Eij = 2ν
〈 ∂u

′

i

∂xk

∂u
′

j

∂xk

〉
Viscous dissipation rate

Tij = −
∂
〈
u

′

iu
′

ju
′

k

〉
∂xk

Turbulent transport rate

Dij = ν
∂2〈u′

ju
′

i

〉
∂xk∂xk

Viscous diffusion rate

The effect of Tij and Dij is to redistribute turbulent energy in space. The
effect of Pij and Eij becomes evident by taking the half trace of the Reynolds-
stress equation, which yields the transport equation of turbulent kinetic energy
k = 1/2

〈
u

′

iu
′

i

〉
presented in Equation (3.10).

Dk

Dt
+ u

′

k

∂k

∂xk
+
〈

u
′

i

∂p
′

∂xi

〉
− ν

∂2k

∂xk∂xk
= −

〈
u

′

iu
′

k

〉∂
〈
ui

〉
∂xk

− ν
〈 ∂u

′

i

∂xk

∂u
′

i

∂xk

〉
(3.10)

The first term on the right hand side stems from the production tensor Pij .
This term is in general negative and it thus works as a source of turbulent
kinetic energy (Pope 2000). The half trace of Eij reduce to the second term on
the right of Equation (3.10). Since the term is obviously non-negative it can
only reduce the amount of turbulent kinetic energy present in the flow, and
hence it operates as a sink in the transport equation for k.

The redistributive properties of Rij is easily revealed by considering fully
developed homogeneous turbulence, for which the Reynolds-stress equation
reduces to Equation (3.11) below.

0 = Pij − Rij − Eij (3.11)
Examining the above transport equation for the normal stresses〈

u
′

1u
′

1
〉
,
〈
u

′

2u
′

2
〉

and
〈
u

′

3u
′

3
〉

one observe that the only non zero production
term is located in the equation for

〈
u

′

1u
′

1
〉
. Hence the only net source of

turbulent kinetic energy is
〈
u

′

1u
′

1
〉
. As P22 = P33 = 0, there is no production

in the budgets of
〈
u

′

2u
′

2
〉

and
〈
u

′

3u
′

3
〉
. However, in homogeneous turbulence, it

follows from the continuity equation that the trace of Rii is exactly zero (Pope
2000). Thus −R11 = R22 + R33, consequently the pressure term serves to
redistribute turbulent kinetic energy from the most energetic Reynolds stresses
to the smaller stresses.

3.2 Large Eddy Simulation

In Large Eddy Simulation, one resolves the large three-dimensional unstable
turbulent motions, which contain most of the fluid kinetic energy, while modeling
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E
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Figure 3.1: Sketch of the energy distribution in a turbulent flow as a function
of wave number and the range for which turbulent motions are modeled using
LES (Imtiaz and Akhtar 2019).

the remaining smaller structures down to the Kolmogorov scales, as illustrated
in Figure (3.1). As the method resolves the large-scale turbulent motion, it is
expected to be more accurate than RANS-models for flows where large scale
turbulence is significant. However, as one omits resolving the smaller scales
(which are assumed to have a more universal behavior and are thus easier to
model) LES has a reduced computational cost compared to DNS. Based on this,
LES should theoretically produce high fidelity data at a reduced computational
cost.

Filtering

A common way to derive the theoretical model for the LES problem is to apply
a low-pass spatial filter to the momentum (Eq. (3.1)) and continuity (Eq. (3.2))
equations. The true solution is then approximated by a velocity field ū and
pressure field p̄, which represent the solution of the filtered equations. As
all small-scale motions are removed from the resulting velocity and pressure
field, the filtered equations can be solved accurately on a relatively coarse grid.
Following Leonard (1975), we derive the filtered momentum and continuity
equations by applying a low-pass spatial filter, in the form of a convolution
product, to Equations (3.1) and (3.2). Letting G∆xf

(x) represent an arbitrary
filter function of width ∆xf , then the filtered field of any quantity ϕ(x⃗, t) are
obtained according to Equation (3.12).

ϕ̄ =
∫

ϕ(y⃗, t)G∆xf
(|x⃗ − y⃗|) dy⃗ (3.12)

The filter function in Equation (3.12) is expressed as a function of space only, as
these are the most commonly used in LES. However, temporal filtered LES has
also been presented (Pruett 2007). To derive the filtered equations the applied
filter must:

• Be linear.
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3.2. Large Eddy Simulation

• Commutes with both spacial and temporal derivatives.

• Conserve constant values.

For properly chosen filter functions, the filtering operation represented in
Equation (3.12) satisfy all three criteria (see Sagaut (2006) for details).

The residual field, also called the subgrid scale field, ϕ
′ , is defined as the

departure of ϕ̄ from the unfiltered field.

ϕ
′

≡ ϕ − ϕ̄ (3.13)

Using the above definition, we end up with the Reynolds like decomposition of
u and p stated below.

u = ū + u
′
, p = p̄ + p

′
(3.14)

Even though the decomposition given in (3.14) looks similar to the Reynolds
decomposition, they differ in two important ways (Pope 2000).

• The filtered field (̄.) is random.

• The filtered residual field (.′) is in general non-zero, f̄ ′ ̸= 0 .

Explicit filtering of the Navier-Stokes equation is rarely a part of the solution
procedure when performing Large Eddy Simulations. Instead, one usually
solves the filtered system of equations directly, where the primitive variables are
assumed filtered by the spatial discretization of the domain. As this procedure
does not contain any filtering operation, it is usually referred to as implicit
filtering. Although numerical differential operators have some low pass filtering
effects there are issues related to consistency associated with the filtering process
when employing implicit filtering techniques (Lund 2003).

Filtered Navier-Stokes and Continuity Equation

Application of a filter to Equation (3.2) yields

∂ūi

∂xi
= 0, (3.15)

from which we find that the residual velocity field u
′ is divergence free, i.e.,

∂u
′

i

∂xi
= ∂

∂xi

(
ui − ūi

)
= 0. (3.16)

Similarly, we obtain the momentum equation for the filtered velocity by applying
a filter to Equation (3.1).

∂ūi

∂t
+ ∂

∂xj

(
uiuj

)
= − ∂p̄

∂xi
+ ν

∂2ūi

∂xj∂xj
(3.17)

The filtered product uiuj is different from the product of the filtered velocities
ūiūj and is unknown. As a remedy, this term is usually expressed as the
difference between the filtered velocities and the subgrid stress tensor Tij

(Lesieur, Métais and Comte 2005).
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3.2. Large Eddy Simulation

uiuj = ūiūj − (ūiūj − uiuj)
= ūiūj − Tij

(3.18)

By utilizing the above-mentioned decomposition as shown in (3.18) the
momentum equation for the filtered velocity ū becomes

∂ūi

∂t
+ ∂

∂xj

(
ūiūj

)
= − ∂p̄

∂xi
+ ν

∂2ūi

∂xj∂xj
+ ∂

∂xj

(
Tij

)
(3.19)

In Equation (3.19), Tij describes all momentum exchange between the resolved
and unresolved scales. As originally proposed by Leonard (1975), the subgrid
stress tensor Tij can be decomposed as shown in Equation (3.20).

Tij =ūiūj − uiuj

=ūiūj − (ūi + u
′
i)(ūj + u

′
j)

=Lij + Cij + Resgs
ij

(3.20)

Here Lij = ūiūj − ūiūj is known as the Leonard tensor (Leonard 1975).
Cij = −

(
ūiu

′
j + ūju

′
i

)
denotes the cross stress tensor, which represent the

interaction between the resolved and unresolved velocity fields. The Reynolds
like stress term Resgs

ij = −u
′
iu

′
j represents the interaction of the subgrid scales.

As the subgrid-scale tensors are unknown one needs to introduce proper
models for Tij to obtain a closed set of equations for ūi.

The Filtered Strain Rate and Spin Tensors

The filtered velocity gradient forms a second order tensor and may thus be
decomposed into symmetric and antisymmetric parts according to (3.21).

∂ūi

∂xj
= 1

2

(
∂ūi

∂xj
+ ∂ūj

∂xi

)
+ 1

2

(
∂ūi

∂xj
− ∂ūj

∂xi

)
= S̄ij + W̄ij (3.21)

Here S̄ij denotes the symmetric strain-rate tensor, while W̄ij , commonly called
the spin tensor, is its antisymmetric part, that is W̄ij = −W̄ji. From Newtons
stress law it follows that the viscous stresses are linearly dependent on the strain-
rate tensor, while the antisymmetric spin tensor holds the same information as
the vorticity field (Pope 2000).

Conservation of Kinetic Energy

The transfer of energy between the filtered and subgrid scale is an important
issue in the modeling of turbulence. The filtered kinetic energy field k̄ = 1

2 ukuk

can be expressed in the following manner

k̄ = 1
2 ūkūk︸ ︷︷ ︸

kf

+ 1
2ukuk − 1

2 ūkūk︸ ︷︷ ︸
kr

(3.22)
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3.2. Large Eddy Simulation

where kf is the kinetic energy of the filtered velocity field and kr denotes the
residual kinetic energy. Multiplying the momentum equation of the filtered
velocities by ūi the conservation equation for the filtered kinetic energy is
obtained.

∂kf

∂t
+ ūj

∂kf

∂xj
+ ∂ūip

∂xi
− 2ν

∂ūiS̄ij

∂xj
− ∂ūiTij

∂xj
= −2νS̄ijS̄ij︸ ︷︷ ︸

ϵkf

− TijS̄ij︸ ︷︷ ︸
Pkr

(3.23)

The left-hand side of Equation (3.23) represents transport, while the two terms
on the right-hand side represent the transfer of energy. More precise, ϵkf

denotes
the viscous dissipation of the resolved velocity field, while the last term Pkr

is
the rate of transfer of kinetic energy between the resolved and subgrid-scale.
As the term appears as a sink in Equation (3.23), Pkr

is usually called the rate
of production of residual kinetic energy. However, in contrast to ϵkf

, Pkr is
caused by inviscid interaction and may become negative. Implying a transfer of
energy from the subgrid- to the resolved-scale.

Closure Problem

As already stated the subgrid-stress tensor is unknown in the LES formulation.
In order to close the set of equations for the filtered velocity field, a model
for the residual stresses is needed. Similar to RANS, one usually solves the
closure problem by adopting a Boussinesq like hypothesis, i.e., we seek a relation
between the residual stresses and the rate of strain of the filtered velocity field.
This is commonly written as an eddy viscosity closure according to

Tij = 2νeS̄ij + 1
3Tkkδij , (3.24)

where the νe denotes the so-called eddy viscosity. Introducing Equation (3.24)
into the momentum equation for the resolved velocity field yields the eddy
viscosity closed LES formulation.

∂ūi

∂t
+ ∂

∂xj

(
ūiūj

)
= − ∂

∂xi

(
p̄ − 1

3Tkk

)
+ ν

∂2ūi

∂xj∂xj
+ ∂

∂xj

(
2νeS̄ij

)
(3.25)

Equation (3.25) still contains the yet unknown eddy viscosity. We therefore
need to find an explicit expression for νe to finalize the closure. A multitude
of models have been proposed, the best known being the Smagorinsky model.
Smagorinsky (1963) adopts the mixing-length hypothesis to obtain a model
for the eddy viscosity as a product of the filter width ∆, and a characteristic
velocity scale based on the second invariant of the filtered stress-strain tensor∣∣S̄∣∣ = (2S̄ijS̄ij) 1

2 . The Smagorinsky eddy viscosity reads

νe = (Cs∆)2∣∣S̄∣∣. (3.26)
Due to its simplicity, Equation (3.26) has become a widely used model for the
eddy viscosity. However, the appropriate value of the Smagorinksy constant,
Cs, differs for different flow regimes, e.g where as Cs ≈ 0.17 gives a realistic
description of isotropic turbulence, the constant should equal zero to model
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3.3. Wall Modeled Large Eddy Simulation

the absence of residual shear stresses in laminar flow regimes. The dynamic
Smagorinsky model proposed by Germano et al. (1991) solves this problem by
determining the Smagorinksy constant locally via double filtering. Following
this methodology Lilly (1992) derived the following modified version of the
dynamic Smagorinsky model

νe = ∆2

2

( ˜̄∆2∣∣∣ ˜̄S∣∣∣ ˜̄Sij − ∆2
∣̃∣S̄∣∣S̄ij

)(
˜̄ui ˜̄ui − ˜̄uiūi

)
( ˜̄∆2∣∣∣ ˜̄S∣∣∣ ˜̄Skl − ∆2

∣̃∣S̄∣∣S̄kl

)(
∆̃2
∣∣∣ ˜̄S∣∣∣ ˜̄Skl − ∆2

∣̃∣S̄∣∣S̄kl

)∣∣S̄∣∣ (3.27)

where (̃.) denotes the additional test filter with filter width ∆̃, usually taken
to be 2 times the size ∆. Dynamic Smagorinsky models tend to produce large
negative values for νe, yielding a non-physical growth of the filtered kinetic
energy. Consequently, LES computations applying Equation (3.27) are in
general unstable (Pope 2000). Germano et al. (1991) showed that one could
avoid extreme values of the eddy viscosity by averaging the numerator and
denominator in the expression for νe. While the averaging process removes the
local minima of νe, transfer of energy from the residual to the resolved velocity
field due to negative values of νe can occur. Hence, to eliminate this so-called
backscatter, some dynamic eddy-viscosity models perform clipping of νe, that
is, setting the eddy viscosity to zero at locations where the computed values
are negative (B. Vreman, Geurts and Kuerten 1997).

A. Vreman (2004) proposed an explicit eddy viscosity model that correctly
predicts small viscous dissipation in transitional and near-wall regions not
involving ad hoc clipping or averaging procedures. By investigating the behavior
of several functionals of the second invariant of the velocity gradient and
comparing their behavior with the theoretical transfer rate of energy, Pkr ,
Vreman derived the following dynamic eddy viscosity model

νe = Cv

√
Bβ

∂ūi

∂xj

∂ūi

∂xj

, (3.28)

where
Bβ = β11β22 − β2

12 + β11β33 − β2
13 + β22β33 − β2

23, (3.29)
and

βij = ∆2
m

∂ūm

∂xi

∂ūm

∂xj
. (3.30)

The Vreman model constant Cv is related to the Smagorinksy constant by,
Cv, ≈ 2.5Cs. Similar to the Smagorinsky model, the model presented by Vreman
does not need more than the local filter width and the velocity gradient and have
essentially the same computational cost as the less accurate Smagorinsky scheme.
Due to the model’s relatively high accuracy combined with its reasonable
computational cost, the Vreman model is a suitable candidate for LES of
complex flows.

3.3 Wall Modeled Large Eddy Simulation

Solid boundaries will always induce a large computational cost, due to the
advent of turbulent boundary layers, independent on how one chooses to model
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3.3. Wall Modeled Large Eddy Simulation

the near-wall region. In Wall-Modeled Large Eddy Simulation, one seeks to
minimize this additional cost by resolving the energetic motion in the outer
layer, while modeling the fluid motion in the inner region. Hence, omitting
the need for resolving the small-scale turbulent structures within the boundary
layer.

Following the taxonomy given in X. I. Yang and S. T. Bose (2017), one
may divide WMLES models into three subcategories dependent on how they
formulate the boundary conditions: Dirichlet-type, Neumann-type, or Mixed-
type. The Dirichlet-type wall models assign a streamwise slip velocity uslip

to a virtual surface located a predefined distance above the solid boundary
(Chung and Pullin 2009; Bazilevs and Hughes 2007). The Neumann-type models,
such as the equilibrium models proposed by Deardorff (1970) and Schumann
(1975), provides the shear stress, while the velocity is not explicitly modeled.
The Mixed-type, also known as Robin-type boundary condition, provides the
wall condition as a weighted combination of Dirichlet and Neumann boundary
conditions as stated in Equation (3.31). Here lp denotes the slip length, and xn

is the wall-normal coordinate (S. Bose and Moin 2014). Piomelli and Balaras
(2002) provides a comprehensive review of the most commonly used wall-models.

ui − lp
∂ui

∂xn
= 0 for i = 1, 2, 3 (3.31)

Wall-Stress Models

The most commonly used wall models are the so-called Wall-Stress Models
(WSM). This class of wall models omits the need to resolve the near-wall
turbulence by replacing the classical no-slip boundary condition with a Neumann
condition in terms of the wall stress. In general, the problem presented by
wall-stress modeled LES can be stated as follows: given the instantaneous
velocity field u⃗ a distance hwm above the wall (usually the first grid point off

Wall model

τw

u⃗

Figure 3.2: The principle of wall-stress-modeled LES. The wall-model is fed the
instantaneous velocity obtained from the LES and returns the wall stress.
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3.3. Wall Modeled Large Eddy Simulation

the wall), find an approximation of the local and instantaneous wall shear stress
τw at the wall (Larsson et al. 2016). Figure (3.2) illustrates the principle of
wall-stress modeled LES.

Most models classified as WSM determines the wall stress by applying the
principle of conservation of linear momentum. Assuming the boundary layer
to be sufficiently thin and that the interaction between the near-wall region
and the outer region is weak, the filtered momentum equation reduces to the
Turbulent Boundary Layer Equation (TBLE) given in Equation (3.32).

∂ūi

∂t
+ ∂

∂xj

(
ūiūj

)
= − ∂p̄

∂xi
+ ν

∂2ūi

∂xj∂xj
+ ∂

∂xj

(
Tij

)
for i = 1, 3 (3.32)

Here, x1 and x3 denotes the wall-parallel coordinates, with the corresponding
velocity components u1 and u3. At the wall, a no-slip boundary condition is
applied, while the wall parallel velocity components u1 and u3 are matched to
the LES solution at the outer boundary (Piomelli and Balaras 2002).

Equilibrium Wall Models

The simplest WSM are the equilibrium models, for which one further assume
the pressure gradient and convective transport to exactly balance each other.
Substituting the subgrid stress tensor with the Boussinesq eddy viscosity
assumption (3.24) the simplified TBLE (3.32), assuming two-dimensional flow,
becomes Equation (3.33).

∂

∂xn

(
νe

∂ūp

∂xn

)
+ ν

∂2ūp

∂x2
n

= 0 (3.33)

Here ūp is the wall-parallel velocity and xn denotes the wall-normal coordinate.
Equation (3.33) can be solved directly to obtain the friction velocity uτ , defined
in Equation (3.34), from which we may obtain the local wall shear stress.

uτ ≡
√

τw

ρ
, where τw = ρν

∂ūp

∂xn

∣∣∣
xn=xn,wall

. (3.34)

Alternatively, one may use the approximated solution of (3.33) given in
Equation (3.35) (Deardorff 1970, Larsson et al. 2016, Schumann 1975). Equation
(3.35) is commonly referred to as the Law of the Wall. From experiments, the von
Kármán constant K is found to be ≈ 0.4 and the constant B ≈ 5.0 (Schlichting
and Gersten 2000).

u+
wm =

{
y+ y+ ≲ 5
K−1 ln y+ + B y+ ≳ 30

(3.35)

The normalized velocity u+
wm and off wall distance y+ are made dimensionless

in terms of the wall units ν and uτ , according to Equation (3.36).

u+
wm = up

uτ
and y+ = yuτ

ν
(3.36)

As equation (3.35) couples the wall-shear stress to the flow velocity
algebraically, it is simple to implement and considerably cheaper, in terms
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3.3. Wall Modeled Large Eddy Simulation

of computational cost, compared to solving the TBLE directly. The coupling
of the assumed velocity profile given in (3.35) leads to the matching condition
||ū||y=hwm

= uwm, which one can solve for the friction velocity uτ using either
fixed-point iteration or Newton’s method. The standard practice is to estimate
the wall-stress by solving the wall model over the first off-wall gird cell, that is
hwm = ∆y. However, as pointed out by Kawai and Larsson (2012) there are
nothing requiring the wall-model to be applied between the first grid point and
the wall, only that the wall-model is still valid at the point y = hwm.

In general, for most algebraic closure models, the Law of the Wall is enforced
locally and instantaneously, and the impermeability condition is applied across
the solid boundary (S. T. Bose and Park 2018).

The Log-layer Mismatch

It is well known that WMLES wrongly predicts the normalized mean velocity
profile, the results deviating as much as 20% from the correct value. These
discrepancies, known as the Log-Layer Mismatch (LLM), occur independent
of grid topology, subgrid model and wall-model. Numerical experiments have
shown both positive mismatch, consistent over prediction of u+, (Kawai and
Larsson 2012; X. I. Yang, Park and Moin 2017) and negative mismatch,
consistent under prediction of u+ (J. Lee, Cho and Choi 2013; Nicoud, Baggett
et al. 2001). The effect of positive mismatch is illustrated in Figure (3.3).
Larsson et al. (2016) points out that compressible flow solvers using staggered
grids generally under-predict the mean velocity profile, while solvers using
co-located grids usually produce a positive mismatch. Hence, LLM seems to be
affected by the numerical scheme at hand as well as the wall model.

Up to the present date, there exist no single solution to the LLM problem.
Several remedies, based on different assumptions, have been proposed which
all seems to reduce the Log-Layer Mismatch. Kawai and Larsson (2012)

-1.7 -1.3 -0.8 -0.4 0.0
17.5

20.0

22.5

25.0

27.5

30.0

log (y/δ)

〈 u
〉 +

Figure 3.3: Example of positive mismatch. ( ), Mean velocity profile
obtained by wall-modeled LES for a fully turbulent channel flow; ( ), The
law of the wall with K = 0.41 and B = 5.2; ( ), DNS data (M. Lee and
R. Moser 2015).
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hypothesized that LLM is caused by feeding the wall-model with erroneous
data. They argued that the LES solution close to the wall (i.e. the first few
grid points off the wall) is plagued by numerical and modeling errors. Thus,
wall-models operating on the raw LES velocity at the wall-adjacent grid point,
which has been the established practice, necessarily yields an inaccurate wall
stress. This being independent of the accuracy of the wall-model itself. Based
on this reasoning, they argued that one may resolve the LLM problem by fixing
hwm and then refine the grid sufficiently, until numerical and subgrid errors are
negligibly small at the sampling point.

Another solution to the LLM problem has been proposed by Bou-Zeid,
Meneveau and Parlange (2004). They noted that the Log-law imposes an average
wall-stress proportional to

〈
ū
〉2, whereas the standard algebraic model relates

the average wall-stress and velocity by
〈
τw

〉
∝
〈
ū2〉. From the Cauchy–Schwarz

inequality, it follows that the modeled wall stress will exceed the expected
value. As a remedy, they proposed a two-dimensional spatial filter at a
scale corresponding to that of the LES resolution. One should note that
the explanation given by Bou-Zeid, Meneveau and Parlange (2004) explains
a negative mismatch, but do not address the problem of positive mismatch.
Furthermore, X. I. Yang, Park and Moin (2017) did not find any correlation
between the occurrence of LLM and the relative value of

〈
ū2〉 and

〈
ū
〉2. Still,

spatial filters seem to resolve the LLM problem as results obtained by Bou-Zeid,
Meneveau and Parlange (2004), X. Yang et al. (2015) and X. I. Yang, Park and
Moin (2017) successfully solved the LLM problem by applying spatial filtering.

As an alternative explanation, X. I. Yang, Park and Moin (2017) suggests
that, the mismatch is caused by an incorrect prediction of the near-wall Reynolds
shear stress

〈
u′v′〉, due to an unphysically high correlation between the wall-

adjacent LES velocity and the wall model, which in turn leads to an overestimate
of the velocity gradient. Following this argument, they proposed feeding
the wall-model with the temporally filtered velocity at the first off-wall cell.
This mechanism does provide a unified explanation for the previous remedies
mentioned so far, as all methods would reduce the artificial correlation. However,
as noted by S. T. Bose and Park (2018), this argument does not explain negative
mismatch.
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Numerical Experiments

29



30



CHAPTER 4

Numerical setup

The following chapter outlines the specifics of the numerical model applied in
the present study. As the choice of a computational domain and grid topology
is essential for any CFD study, this chapter supplies the reader with a detailed
description of the computational domain, computational grid and boundary
conditions. Next, we introduce the wall model employed together with the
different filtering schemes tested in this thesis. The chapter concludes with
some general remarks regarding practical problems one may encounter if one
wishes to leave the traditional approach of feeding the wall model with the LES
solution sampled at the first off-wall grid point.

The simulations are carried out using the compressible, low-mach, finite
volume-based solver developed by Cascade Technologies (Ambo et al. 2020). The
solver employed is second order in space and time. The coupling between the
pressure and velocity is accomplished by approximating the flow as isentropic.

The Vreman eddy viscosity model (B. Vreman, Geurts and Kuerten 1997) is
used for modelling the subgrid stresses due to its favorable properties described
in Chapter 3.2. The primitive variables u⃗ and p are not explicitly filtered.
Instead, the pressure and velocity field are assumed to be implicitly filtered by
the discretization procedure. We apply a Cartesian coordinate system x, y, z and
denote the stremwise (x), wall-normal (y) and spanwise (z) velocity components
as u, v, w respectively. The superscript (.+) indicates normalization in terms
of the kinematic viscosity ν and friction velocity uτ . Furthermore,

〈
.
〉

denote
the average across time and space, while (.′) is used to indicate fluctuations
with respect to the average. The Cascade grid generator Stitch, which applies
the properties of clipped Voronoi-diagrams to discretize the numerical domain
(Brès et al. 2018), is used to generate the grids.

4.1 Fully Developed Turbulent Channel Flow

To study the different wall modeling strategies and their suitability for different
mesh topologies we consider a fully developed turbulent flow between two
parallel planes, as sketched in Figure (4.1). Impermeability and stress boundary
conditions are imposed at the walls, and periodic boundary conditions are
applied in the streamwise and spanwise directions. Hence, the flow that exits at
the downstream boundary of the domain is fed back at the upstream boundary.
The computational domain is of size 24δ × 2δ × 9δ, where δ = 0.5 m denotes
the channel halfwidth. To encourage the transition from laminar to turbulent
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y

x

z

Lx

Lz

Ly

Figure 4.1: Sketch of the plane channel and the Cartesian coordinate system.
Lx, Ly and Lz denotes the channel length, width and height respectively.

flow we provide the channel with a perturbed velocity field as initial condition.
Further, the flow is driven by a time-independent momentum source term, which
is added to the streamwise momentum equation. Physically, this is equivalent to
a flow driven by a constant pressure gradient. To ensure that the flow behaves
as an incompressible fluid, and to suppress the advent of spurious pressure
waves due to the periodic boundary conditions, the fluid speed of sound, c,
is set sufficiently large. In the present case c = 1000 m/s was found to yield
satisfactory results.

As the flow is driven by a prescribed pressure gradient, the mean wall-stress
is known. Hence, we set the friction velocity based Reynolds number, defined
in Equation (4.1), to ≈ 5200 by adjusting the kinematic viscosity ν.

Reτ = uτ δ

ν
(4.1)

In terms of the bulk velocity Ub, which represent the average velocity through
the channel, this corresponds to a Reynolds number Reb approximately equal
to 130000.

Reb = Ubδ

ν
, where Ub = 1

2δ

∫ 2δ

0
u dy. (4.2)

All numerical simulations employ a fixed time-step of ∆t = 0.001s, to
ensure that the instantaneous Courant number is sufficiently small. Hence the

Table 4.1: Main simulation parameters for the turbulent channel flow.

Friction velocity based Reynolds number, Reτ 5200
Bulk velocity based Reynolds number, Reb 130000
Kinematic viscosity, ν 4.8 × 10−5

Fluid density, ρ 1.0
Fluid speed of sound, c 1000
Friction velocity, uτ 0.5
Wall shear stress, τw 0.25
Domain size (Lx × Ly × Lz) 24δ × 2δ × 9δ
Time step ∆t 10−3

Bulk velocity, Ub 13.5
Flow through time, Tf 0.89
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≈ ∆+
c

Figure 4.2: Illustration of the different grid cells. (Left) Hexahedron gird cell;
(Right) Truncated octahedron cell.

temporal resolution of turbulence is grid and filter independent. To remove any
transient turbulent structures, each simulation were run for at least 100 Tf ,
where Tf = Lx/Ub denotes the average flow through time, before gathering of
statistical data. The main parameters are summarized in Table (4.1).

The present study considers two different cell lattices: Hexahedron (Hex)
and Truncated Octahedron (Oct). Both are illustrated in Figure (6.5). Besides
the two cell types, three different grid resolutions are considered. As the near-
wall resolution of the computational domain is the dominating factor, the three
grid refinement levels are defined in terms of their wall normal resolution ∆+

c .
Here ∆+

c denotes the average wall normal extent of the boundary cells. The
grids tested have ∆+

c = 300, ∆+
c = 200 and ∆+

c = 100. All test cases have a
uniform cell structure, i.e.. ∆x = ∆y = ∆z ≈ ∆+

c . This corresponding to a
spatial resolutions ranging from 0.25 × 106 to 7.59 × 106 cells. Hence, each
filtering strategy is tested on six different grids. The number of grid cells for
each mesh, together with the computational cost Ccost is reported in Table
(4.2). Following Mukha, Bensow and Liefvendahl (2021) Ccost is estimated
by how many hours it would take one processor to advance the solution by
one Tf . We note that this metric assumes linear growth of computational
effort, neglecting parallelization overhead. The data presented in Table (4.2)
shows that simulations on hexahedral and truncated octahedral meshes have
comparable computational cost in terms of the near wall resolution.

Table 4.2: The dimensionless average wall normal cell size ∆+, number of cells
Ncells in millions and the computational cost Ccost for the mesh topologies
tested in the current thesis.

∆+
c Hexahedron Octahedron

Ncells Ccost Ncells Ccost

300 0.276 0.27 0.253 0.24
200 0.949 1.28 0.927 1.45
100 7.593 18.89 4.689 19.8
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4.2 Treatment of Solid Boundaries

All cases addressed in the thesis employ an algebraic wall model. Since Equation
(3.35) is not C1 continuous, we depart from the traditional Law of the wall.
Instead employing the piecewise algebraic expression given in Equation (4.3),
with K = 0.41, B = 5.2 and ŷ ≈ 23.32.

u+
wm =

{
y+ +

(
2ŷ
)−1
((

Kŷ
)−1 − 1.0

)
ŷ2 y+ ≤ ŷ

K−1 ln y+ + B y+ > ŷ
(4.3)

Matching Location

Following the methodology of Kawai and Larsson (2012) the strategy of feeding
the wall model with the instantaneous LES solution uLES sampled some distance
above the wall, as illustrated in Figure (4.3), is tested. As pointed out by Larsson
et al. (2016), the wall-model thickness hwm should be independent of the LES
grid to ensure that the wall model is grid independent. Hence, the velocity uwm

is sampled at a fixed distance, e.g. 20 % of the local boundary layer thickness,
instead of the n-th off-wall grid point, i.e,

uwm(x, z, t) = uLES(x, y, z, t)
∣∣
y=hwm

. (4.4)

y

δ

hwm

U(y)

Wall model

τw

uLES

Figure 4.3: Illustration of the wall normal filtering scheme. The wall model
models the flow over a layer of thickness hwm. It is fed the instantaneous velocity
obtained from the LES solution, and returns the instantaneous wall stress at the
solid boundary to the LES, which then uses this as the wall boundary condition.
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z

x

r

Figure 4.4: Illustration of the two wall parallel filters applied to the boundary
cell ( ) for a hexahedrion mesh. ( ) marks the neighboring cells that are
included in the filtering scheme. (Left): 5-points stencil. Right: 9-point stencil.
r represent the distance from the center cell to the neighboring cells.

Spatial Filtering

Two spatial filtering techniques are tested, namely a five-point-stencil and
a nine-point-stencil filter. The two filters, illustrated in Figure (4.4), are
performed within the wall parallel plane located at the first off-wall grid point.
The wall-model velocity, uwm, is computed according to Equation (4.5). The
spatial filtering weights wi are computed using two different schemes, a uniform
weighting scheme for which the weights wi are constant, and a quadratic scheme.
For the latter scheme wi ∝ 1/r2, where r denoting the distance between the
center and neighboring control volumes. The center cell is given a weight of 0.5.

uwm =
∑

i

wiui
LES , where

∑
i

wi = 1. (4.5)

Temporal Filtering

As proposed by X. I. Yang, Park and Moin (2017) the temporal filtering scheme
presented in Equation (4.6) is tested.

un
wm = (1 − ϵ)un−1

wm + ϵun
LES (4.6)

Here, uLES is the instantaneous velocity obtained by the LES at the first
off-wall grid point, and the superscript n denotes the time step index of the
LES solution. According to X. I. Yang, Park and Moin (2017) the weight ϵ
is defined as ∆t/Ttf , where ∆t is the simulation time step and Ttf represent
the filtering time scale. The time scale Ttf can be estimated locally, e.g. as a
fraction of the local convective time scale, or globally in terms of characteristic
flow or simulation properties. Herein the latter is applied, defining Ttf in terms
of the computational time step as Ttf = m∆t.
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4.3 Numerical Implementation

Presently (May 2022) none of the filtering schemes presented in Section (4.2) are
implemented in the finite volume-based solver developed by Cascade Technology.
Thus, the implementation of these filtering procedures has been a part of this
thesis. Even though the general principle of each filterer is quite simple, there
are challenges related to the implementation of the different schemes. As the
issues related to the implementation of these schemes are mostly code-specific,
only some general remarks regarding the challenges met in the implementation
of the different strategies are made.

An issue one might encounter if one wishes to feed the wall model with a
velocity sampled at a pre-defined distance hwm or at the nth off-wall grid point,
is that the matching location may not be well defined by the grid topology.
Thus, in most circumstances, it will be necessary to introduce some kind of
interpolation procedure to obtain the LES solution at the required matching
location. This problem is efficiently solved by introducing an interpolation stencil
during the initialization initialisation process. Similar issues may arise when
employing spatial filtering scheme. For flows past complex bodies, discretized
using unstructured grids, it is not given that neighboring cells in the same wall
parallel plane as the boundary node are themselves boundary cells. Which cells
to include in the filtering process in such cases have no simple answer and must
be resolved by the user on a case-by-case basis.

For all but the temporal filterer, we need to access non-local data, either from
neighboring cells or from some off-wall cell, which may render these methods
impractical, especially for flows involving complex wall geometries. At the
moment, a Message Passing Interface (MPI) library is a key ingredient for most
CFD tools. Hence, some or all of the cells needed by the filtering scheme, may
reside on different MPI processors. As this will complicate the implementation,
it may be tempting to avoid this issue by only considering cells on the same
processor. This is however, a bad idea as this would make the wall model
dependent on the domain decomposition, and the results will depend on the
number of processors available. Further, unpublished work by Johan Larsson
have shown that this may result in convergence issues (Larsson 2022). There
are at least two reliable solutions to this problem:

Figure 4.5: Illustration of communication between MPI processes in two
dimensions. The cells labeled with S and R represents the intermediate send
and receive buffers respectably (Hager and Wellein 2011).
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• Build a MPI communicator during the initializing of the computational
domain or during the pre-processing step.

• Modify the domain decomposition to ensure that all relevant cells are on
the same processor.

This thesis employ the former strategy. That is, during the initialization of
the computational grid the position of all non-local cell ID’s used by the filter
are located. Then local send and receive buffers, for which non-local data are
transferred to and from the MPI processes, are constructed. For each time step
during the simulation both buffers are updated, as illustrated in Figure (4.5),
before the wall shear stress is computed. For details on parallel programming,
message passing and MPI see Hager and Wellein (2011) and Gropp (1999).

As the current implementation of the non-local filtering schemes requires
additional communication between different MPI processes, some communic-
ation overhead is unavoidable. Through careful domain decomposition and
by employing non-blocking communication when possible, one can reduce the
overhead due to the non-local communication. However, compared to the
computational cost of solving the linear systems of equations, this overhead
is negligible in most cases. On the other hand, the additional startup cost
due to the construction of the MPI communicator, may become significant
when the number of boundary nodes increases. A good approach to reducing
the initialization overhead is to construct the virtual topology such that each
domain has an equal numbers of boundary cells. In addition, one may further
reduce the startup cost by constructing efficient algorithms for locating the
position of the non-local cell data. As code optimization is beyond the scope
of the present thesis, the effect of such strategies have not been investigated.
Nonetheless, the startup procedure is only performed once and will, in general,
not affect the overall efficiency of the solver.
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CHAPTER 5

Numerical Results

In the following chapter we present results from WMLES of the internal flow
presented in Section (4.1). Simulations are performed using different types of
grid topologies and refinement levels. Furthermore, the effect of changing hwm

and filtering the wall model input, employing both spacial and temporal filters,
are considered (see Section 4.2 for further details).

As a reference for estimating the error of the quantities of interest we use
the DNS results presented by M. Lee and R. Moser (2015). The magnitude of
LLM will be presented as the relative error, in percent, of the normalized mean
streamwise velocity profile with respect to the reference DNS.

LLM% =

∥∥∥〈uLES

〉+ −
〈
uDNS

〉+
∥∥∥

2∥∥∥〈uDNS

〉+
∥∥∥

2

· 100 (5.1)

Here, ∥.∥2 is defined according to Equation (5.2), and is estimated using
Simpson’s rule. As the spatial sampling rate of the DNS data is significantly
higher than what is obtained by WMLES, the reference data are obtained by
averaging the DNS profile across the extent of the LES grid cell.

∥.∥p =
(∫ δ

0

(
.
)p
)1/p

(5.2)

In a fully developed channel, the flow is homogeneous in the streamwise and
the spanwise directions. Hence we only report results of the non-zero stresses〈
u′u′〉, 〈v′v′〉, 〈w′w′〉, and

〈
u′v′〉 (Mansour, Kim and Moin 1988) or quantities

derived from them. When relevant, we also report the error distribution err()
defined in Equation (5.3).

err([.]) =
〈
[.](y)LES

〉
−
〈
[.](y)DNS

〉〈
[.](y)DNS

〉 · 100 (5.3)

5.1 Non-Filtered Algebraic Wall Model

LLM is influenced by a combination of the numerical scheme at hand, the
subgrid model employed, as-well as the wall model. Hence, the first step in the
present investigation of LLM is to obtain a baseline data set which we can use
to measure the effect of the strategies investigated herein. For this purpose we
reproduce the LLM in a turbulent channel flow by feeding the algebraic model
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Table 5.1: LLM% in simulations employing the non-filtered algebraic wall
model.

∆+
c Hex Oct

100 7.14 3.34
200 5.43 1.78
300 3.84 1.78

with the instantaneous LES solution sampled at the first off-wall grid point.
Furthermore, as the grid topology and refinement level also affect the predictive
accuracy of WMLES, the baseline simulation is carried out for several mesh
topologies and refinement levels.

The mean streamwise velocity, obtained using the standard algebraic wall
modeling approach, is presented in Figure (5.1). As the flow is driven by a
constant pressure gradient, the mean wall-stress is always correctly predicted.
Hence, LLM manifests itself as an erroneous shift of the mean velocity profile,
as clearly shown in the figure, where a significant positive mismatch is observed
for all simulations. The mean velocity at a distance y∗ above the wall is given
by Equation (5.4), thus this erroneous upshift seems to indicates that the wall
model over-predicts the mean velocity gradient close to the wall.

〈
u(y∗)

〉
=
∫ y∗

0

〈
du

dy

〉
dy (5.4)

Comparing the results obtained on the different grids, the simulations on the
truncated octahedral grids are allover the most accurate. The results presented
in Table (5.1) show that LLM% is approximately 2 for the latter grid topolgy,
while LLM% ≈ 5 for the solutions on the hexahedra grids. Refining the mesh
does not improve the predictions of

〈
u
〉+, on the contrary, it degrades
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Figure 5.1: Mean velocity profile computed using the non-filtered algebraic
wall-model and the reference DNS data obtained by M. Lee and R. Moser (2015).
(Left) Hexaedral grid cells; (Right) Octahedral grid cells. ( ), ∆+

c = 100;
( ), ∆+

c = 200; ( ), ∆+
c = 300; ( ), DNS data.
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5.1. Non-Filtered Algebraic Wall Model

the accuracy. On the other hand, increasing the grid density results in an
better description of the shape of the velocity profile. This indicates that the
numerical model yields better predictions of the velocity gradient as the cell
size decreases.

Figure (5.2) shows the relative error of the mean velocity profile for
simulations with characteristic cell size ∆+

c = 100. Again, we observe that the
solution on the truncated octahedron mesh is the most accurate. However, the
simulations carried out on hexahedra meshes yield more accurate predictions
of the mean flow velocity in the near wall region. This seems to be a general
trend for all simulation performed herein. The reason why is not clear to the
author. One reason might be that the topology of the truncated octahedral
cells better coincide with the anisotropic motion in the core region, producing
more accurate results in the wake, whereas the faces of the hexahedra meshes
are better oriented with the planar flow in the near-wall region.

The error of the turbulent kinetic energy is also presented in Figure (5.2).
In line with the findings of Mukha, Bensow and Liefvendahl (2021), the figure
shows that the overall accuracy of the kinetic energy is significantly lower than
what is observed for the mean velocity. The same trends are observed for both
grids. However, whereas the truncated octahedron grids generally over-predict k,
the simulations computed on the hexahedral mesh under-predicts the turbulent
kinetic energy. The large error observed close to the center of the channel is
due to the relatively small value of k in this region. Thus the relative error is a
less reliable measure close to the centerline of the channel.

The diagonal terms of the Reynolds stress tensor and the turbulent kinetic
energy are presented in Figure (5.3). In general, refining the mesh improves the
estimates of all quantities. The trends observed for the mean velocity profile
are also applicable for the diagonal elements of the Reynolds stress tensor and
its trace. Simulations performed using truncated octahedral grid cells yielded
better results in the wake, while hexahederal meshes produced better estimates
of the Reynolds stresses in the near-wall region.
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Figure 5.2: Relative error of the mean velocity profile (Left) and the turbulent
kinetic energy (Right) in simulations applying the non-filtered algebraic wall-
model with ∆+

c = 100. ( ), Hexahedron grid; ( ), Truncated
octahedron grid.

41



5.1. Non-Filtered Algebraic Wall Model

0
2

4

6

8

10

12

〈 u
′ u

′〉 +

0.00

0.25

0.50

0.75

1.00

1.25

〈 v
′ v

′〉 +

0.0
0.5

1.0

1.5

2.0

2.5

3.0

〈 w
′ w

′〉 +

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

k
+

y/δ
0.0 0.2 0.4 0.6 0.8 1.0

y/δ

Figure 5.3: The diagonal components of the Reynolds stress tensor and the
turbulent kinetic energy computed using the non-filtered algebraic wall-model
and the reference DNS data obtained by M. Lee and R. Moser (2015). (Left)
Hexahedral grid cells; (Right) Octahedral grid cells. ( ), ∆+

c = 100;
( ), ∆+

c = 200; ( ), ∆+
c = 300; ( ), DNS data.
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5.1. Non-Filtered Algebraic Wall Model

Figure (5.4) presents the Reynolds shear stress for simulations on hexahedra
and truncated octahedra meshes. According to Pope (2000) the streamwise
momentum equation yields the expression in Equation (5.5) for the total shear
stress.

− ρ
〈
u′v′〉+ ρν

〈
du

dy

〉
=
〈
τw

〉(
1 − y

δ

)
(5.5)

Outside the log-layer the velocity gradient
〈
du/dy

〉
is negligible. Hence in the

core of the channel we may approximate the force balance as Equation (5.6).

− ρ
〈
u′v′〉 =

〈
τw

〉(
1 − y

δ

)
(5.6)

As the mean wall shear is correctly predicted for the present channel flow, no
significant error is thus expected in this region. This is clearly seen in Figure
(5.4).

In the near wall region, significant errors are observed regardless of grid
type and mesh refinement level. From Equation (5.5) it follows that erroneous
prediction of the Reynolds shear stress could lead to an incorrect wall normal
velocity gradient. Hence, one may argue that LLM is caused by erroneous
prediction of the near-wall Reynolds stresses. The results presented below
somewhat support this claim as the largest discrepancies of the near-wall
Reynolds shear stress are observed in the simulations with the largest LLM
for both the hexahedra and truncated octehedra mesh topologies. However,
this argument does not explain the differences observed when comparing the
results obtained on the two different mesh topologies, as the solution on
hexahedral meshes more accurately predict

〈
u′v′〉 while LLM% are worse for

these simulations. One should, however, note that these discrepancies might
be due to other, unknown, numerical artifacts caused by the different grid
topologies.
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Figure 5.4: Reynolds shear stress computed using the non-filtered algebraic
wall-model and the reference DNS data obtained by M. Lee and R. Moser (2015).
(Left) Hexaedron grid cells; (Right) Octahedron grid cells. ( ), ∆+

c = 100;
( ), ∆+

c = 200; ( ), ∆+
c = 300; ( ), DNS data.
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5.1. Non-Filtered Algebraic Wall Model

The choice of subgrid stress model will, to some extent, affect the LES
(Fureby et al. 1997, De Santis et al. 2020). Results obtained by X. I. Yang and
S. T. Bose (2017) show that the choice of eddy viscosity closure model affect
the predicted velocity field in a turbulent channel. In particular the turbulence
intensity in the near wall region. Incorrect prediction of the eddy-viscosity νe,
especially in the near wall region might therefore be the root source for the
discrepancies observed so far. Integrating the equilibrium model, presented in
Equation (3.33), and enforcing the shear stress condition (ν + νe)du/dy = τw/ρ
at the wall, one finds that the wall shear stress and the mean velocity profile
are related by Equation (5.7).(

ν + νe

)∂ū

∂y

∣∣∣
y=hwm

= τw

ρ
(5.7)

Imposing the Law of the wall locally and instantaneously, and matching it
with the instantaneous LES velocity at y = hwm yields the following expression
for the wall shear stress:

τw = ρ

(
K

ln
(
h+

wm

)
+ B

)2
ū2

y=hwm
. (5.8)

By solving Equation (5.8) with respect to ūy=hwm
and differentiating with

respect to y one obtains Equation (5.9).

∂ū

∂y

∣∣∣
y=hwm

= uτ

Khwm
(5.9)

Substituting Equation (5.8) and (5.9) into (5.7) yields the relation below.

ūy=hwm
=
√(

1 + ν+
e

) 1
h+

wm

ln h+
wm + B

K3/2 uτ (5.10)
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Figure 5.5: Mean velocity profile from simulations applying the non-filtered
algebraic wall-model obtained on a mesh with characteristic grid size ∆+

c = 100.
(Left) Hexaedron grid cells; (Right) Truncated Octahedron grid cells. ( ),
Vreman subgrud model; ( ), No subgrid model; ( ), DNS data.
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Table 5.2: LLM% in simulations employing the algebraic wall model over a
distance hwm on grids with characteristic cell size ∆+

c = 100.

hwm Hex Oct

∆c/2 7.14 3.34
0.10δ 1.24 2.85
0.20δ 1.89 2.71

From equation (5.10) it follows that a larger eddy viscosity necessarily leads
to an increase of the velocity at the matching location y = hwm. Therefore,
turning of the subgrid model, setting νe to zero, should reduce the predicted
velocity, at least in the near-wall region. This is clearly seen in Figure (5.5),
which shows the mean velocity profile obtained from simulations with and
without the Vreman subgrid model.

5.2 Effect of Matching Location

First, the effect of solving the wall model over a range surpassing the distance
from the wall to the first off-wall grid point is tested. There is a general
agreement in the WMLES community that moving the matching location away
from the wall improves the wall model performance. However, the author is not
aware of any agreements on where to place the matching location. It is thus of
interest to investigate the effect of changing the value of hwm. Following the
recommendations of Larsson et al. (2016) simulations using matching locations
at 10 and 20 percent of the local boundary layer thickness are performed. Noting
that the channel flow can be viewed as two turbulent boundary layers with a
constant thickness equal to the the channel halfwidth, δ. Normalized in terms
of the viscous wall units, the two matching locations tested in this thesis are
thus located at a distance ≲ 1000+ units above the wall, well within the range
where the use of the Law of the wall is reasonable.
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Figure 5.6: Mean velocity profile from simulations applying the algebraic wall
model with different matching location obtained on a mesh with characteristic
grid size ∆+

c = 100. (Left) Hexaedron grid cells; (Right) Octahedron grid cells.
( ), First off-wall grid point; ( ), hwm = 0.10δ; ( ), hwm = 0.20δ; ( ),
DNS data.
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Figure 5.7: The diagonal components of the Reynolds stress tensor and the
turbulent kinetic energy computed applying the algebraic wall model with
different matching location hwm. The grid has a characteristic cell size ∆+

c = 100.
(Left) Hexaedron grid cells; (Right) Octahedron grid cells. ( ), First off-
wall grid point; ( ), hwm = 0.10δ; ( ), hwm = 0.20δ; ( ), DNS data.
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Figure 5.8: Relative error of the mean velocity profile computed applying
the algebraic wall model with different matching location hwm. The grid
has a characteristic cell size ∆+

c = 100. (Left) Hexaedron grid cells; (Right)
Octahedron grid cells. ( ), First off-wall grid point; ( ), hwm = 0.10δ;
( ), hwm = 0.20δ; ( ), DNS data.

The computed mean velocity profiles obtained on grids with ∆+
c = 100 are

presented in Figure (5.6). For the hexahedra grid we observe that the numerical
results converge towards the DNS data when the wall model is fed the LES
velocity sampled a distance hwm > ∆c/2 above the wall. As reported in Table
(5.2), the Log-Layer Mismatch is greatly reduced when moving the matching
locations away from the wall. The resolved Reynolds stresses presented in
Figure (5.7) are less sensitive, with only minor differences observed.

For the truncated octahedra grid one observes a similar down-shift of the
predicted mean velocity

〈
u
〉+ when abandoning the traditional practise of

using hwm = ∆y/2. As shown by the relative error found in Figure (5.8), the
estimated mean velocity is reduced by ≈ 5% − 7% regardless of grid topology.
Close to the wall this down-shift clearly improves the accuracy. On the other
hand, for simulations on the truncated octahedra meshes, the accuracy in the
outer region worsens when employing hwm > ∆c/2. At the center of the channel
the mean velocity is under-predicted by approximately 2.5% compared to the
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Figure 5.9: Reynolds shear stress computed applying the algebraic wall model
with different matching location hwm. The grid has a characteristic cell size
∆+

c = 100. (Left) Hexaedron grid cells; (Right) Truncated Octahedron grid
cells. ( ), First off-wall grid point; ( ), hwm = 0.10δ; ( ), hwm = 0.20δ;
( ), DNS data.
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Table 5.3: LLM% in simulations employing the algebraic wall model fed the
time filtered velocity at the first off-wall grid point. The grid has a characteristic
cell size ∆+

c = 100.

ϵ Hex Oct

1.0 7.14 3.34
0.5 6.44 1.49
0.25 5.22 1.47
0.1 5.44 1.43

DNS solution. However, the results presented in Table (5.2) show that the
over all error, in terms of LMM%, is reduced with both hwm = 0.10δ and
hwm = 0.20δ. Similar to simulation on the hexahedra meshes, we observe no
significant changes in the Reynolds stresses, as shown in Figure (5.7).

The resolved Reynolds shear stresses are shown in Figure (5.9). As for the
diagonal components, changing the matching location seems to have little effect
on the overall prediction of the Reynolds shear stress. Furthermore, we observe
little to no correlation between the predicted near-wall shear stress and the
LLM%.

5.3 Temporal Filtering

Next, the effect of the temporal filtering scheme presented by X. I. Yang, Park
and Moin (2017) is considered. Figure (5.10) shows the computed mean velocity
profiles obtained employing the temporal filter presented in Equation (4.6)
with ϵ = 0.5, 0.25 and 0.1 together with the non-filtered solution, equivalent to
setting ϵ = 1.0. The results presented are obtained on grids with characteristic
cell size ∆+ = 100.

As found by X. I. Yang, Park and Moin (2017) we observe that the use of
the present filtering technique reduces the strength of LLM. From the results
presented in Table (5.3) we make the following observations; LMM% drops with
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Figure 5.10: Mean velocity profile from simulations applying the algebraic wall
model with time filtered input obtained on a mesh with characteristic grid size
∆+

c = 100. (Left) Hexaedron grid cells; (Right) Truncated Octahedron grid
cells. ( ), Non filtered data (ϵ = 1.0); ( ), ϵ = 0.1; ( ), ϵ = 0.25; ( ),
ϵ = 0.5; ( ), DNS data.
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Figure 5.11: The diagonal components of the Reynolds stress tensor and the
turbulent kinetic energy computed applying the algebraic wall model with
time filtered input. The grid has a characteristic cell size ∆+

c = 100. (Left)
Hexaedron grid cells; (Right) Octahedron grid cells. ( ), Non filtered data
(ϵ = 1.0);( ), ϵ = 0.1; ( ), ϵ = 0.25; ( ), ϵ = 0.5; ( ), DNS data.
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Figure 5.12: Relative error of the mean velocity profile from simulations applying
the algebraic wall model with time filtered input obtained on a mesh with
characteristic grid size ∆+

c = 100. (Left) Hexaedron grid cells; (Right) Truncated
Octahedron grid cells. ( ), Non filtered data (ϵ = 1.0);( ), ϵ = 0.1; ( ),
ϵ = 0.25; ( ), ϵ = 0.5.

≈ 2 percentage points with ϵ = 0.25, regardless of the mesh topology. Further
decreasing the filtering weights seems to have little effect on the strength of
LLM, the magnitude remained small as we further decreased ϵ. The simulations
carried out on the octahedra meshes seem to be less sensitive to the value of the
filter weight compared to the results obtained from the hexahedra meshes. For
the former, LLM% decreases with less than ≈ 0.1 percentage points for ϵ < 0.5.
As noted by X. I. Yang, Park and Moin (2017), the observed reduction of LLM
can not be explained by numerical error at the sampling point, as this remedy
uses the LES solution sampled at the first off-wall grid point. The Reynolds
normal stresses, found in Figure (5.12), are again found to be less affected by
the filtering than the mean streamwise velocity.

Both the results presented in Table (5.3) and Figure (5.12) show that the
predicted mean velocity profile from the simulations on the hexahedral grid
slightly worsen when ϵ is decreased from 0.25 to 0.1. At this stage it is unknown
to the author if this is due to unfortunate rounding errors or if this is a general
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Figure 5.13: Reynolds shear stress computed using the algebraic wall model
with time filtered input. The grid has a characteristic cell size ∆+

c = 100. (Left)
Hexaedron grid cells; (Right) Truncated Octahedron grid cells. ( ), Non
filtered data (ϵ = 1.0); ( ), ϵ = 0.1; ( ), ϵ = 0.25; ( ), ϵ = 0.5; ( ), DNS
data.
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trend for the present filtering scheme when the filter weight becomes sufficiently
small. Hence, it would be of interest to investigate the asymptotic behavior
ϵ −→ 0 of the temporal filtering scheme. As simply setting the temporal weight
to zero, or to a value close to zero, might give unreliable results due to numerical
errors. The asymptotic analysis of the temporal filter uses Equation (4.6) as an
ansatz.

By rewriting (4.6), the temporal filtered velocity fed to the wall model can
be expressed according to Equation (5.11) when n −→ ∞. That is, the wall
model velocity uwm at an arbitrary time step can be viewed as a weighted sum
of all previous velocities fed to the wall model. The relative importance of the
mth time step being proportional to ϵ(1 − ϵ)n−m.

un
wm = ϵun

LES + (1 − ϵ)ϵun−1
LES + (1 − ϵ)n−2ϵun−2

LES + (1 − ϵ)3ϵun−3
LES + ... (5.11)

When ϵ −→ 0 the relative importance of two successive terms, m and m + 1,
approaches unity as shown below.

lim
ϵ→0

ϵ(1 − ϵ)n−(m+1)

ϵ(1 − ϵ)n−m
= lim

ϵ→0

1
(1 − ϵ) = 1 (5.12)

The infinite sum presented in Equation (5.11) can therefore be approximated
as a uniform weighted sum of ui

LES for sufficiently small ϵ. Thus, for sufficiently
small ϵ, the temporal filtered wall model velocity uwm can be approximated as
the average of uLES , according to Equation (5.13).

uwm ≈
〈
uLES

〉
(5.13)

Assuming the streamwise velocity to be non-negative, which is reasonable for
the current case, Equation (5.14) follows from Equation (5.13) and (5.8). That
is, as the filtering weight ϵ tends to zero, the time filtering scheme presented
in Equation (4.6) is equivalent to fixing the modelled wall shear to the time
average of τw.

〈
τw

〉
= ρ

(
κ

ln(y+) + B

)2〈
uwm

〉2 (5.14)
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Figure 5.14: Mean velocity profile for simulations with fixed wall stress at solid
boundaries on a mesh with characteristic grid size ∆+

c = 100. (Left) Hexaedron
grid cells; (Right) Truncated Octahedron grid cells. ( ), Non filtered data
(ϵ = 1.0); ( ), τwm =

〈
τw

〉
; ( ), DNS data.
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5.4. Spatial Filtering

Table 5.4: LLM% in simulations employing the algebraic wall model over a
distance hwm on grids with characteristic cell size ∆+

c = 100.

Weighting 5-point stencil 9-point stencil

Uniform 7.13 6.63
Quadratic 6.72 6.98

Following the above analysis, we therefore investigate the asymptotic
behavior, ϵ −→ 0, by modeling the wall stress according to Equation (5.15).
We note that the flow is driven by a prescribed pressure gradient, which allows
us to compute the mean wall shear stress apriori. Hence, we may employ such
a simple wall model.

τwm =
〈
τw

〉
(5.15)

As seen in Figure (5.14) LLM worsens when employing the theoretical mean
wall stress as a boundary condition. Both for the hexahedra and truncated
octahedra grid topologies. Thus, one should expect that LLM increase when
employing the temporal filtering scheme with small ϵ.

5.4 Spatial Filtering

Lastly, the effect of spatially filtering of the wall model input velocity is
considered. The mean velocity profile obtained for simulations on a hexahedra
mesh with characteristic cell size ∆+

c = 100, employing the 5-point and 9-point
stencils, with both uniform and quadratic weighting, are presented in Figure
(5.15). In contrast to what was reported by Bou-Zeid, Meneveau and Parlange
(2004) and X. I. Yang, Park and Moin (2017), the streamwise velocity profile
computed with the filtered wall model deviates from the assumed logarithmic
profile. As shown in Table (5.4), LLM remains large regardless of filter type.

The resolved Reynolds stresses are presented in Figure (5.16) and (5.17).
As for the mean velocity profile, the spatial filtering of the wall model velocity
seems to have little effect on the overall estimate of the resolved Reynolds
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Figure 5.15: Mean velocity profile obtained with the spatially filtered wall
model on a hexahedra mesh with characteristic grid size ∆+

c = 100. (Left)
5-point stencil; (Right) 9-point stencil. ( ), Non-filtered wall model; ( ),
Uniform weighting scheme; ( ), Quadratic weighting scheme; ( ), DNS data.
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Figure 5.16: The diagonal components of the Reynolds stress tensor and the
turbulent kinetic energy computed spatially filtered wall model on a hexahedra
mesh with characteristic grid size ∆+

c = 100. (Left) 5-point stencil; (Right)
9-point stencil. ( ), Non-filtered wall model; ( ), Uniform weighting
scheme; ( ), Quadratic weighting scheme; ( ), DNS data.
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Figure 5.17: Reynolds shear stress computed using spatially filtered wall model
on a hexahedra mesh with characteristic grid size ∆+

c = 100. (Left) 5-point
stencil; (Right) 9-point stencil. ( ), Non-filtered wall model; ( ), Uniform
weighting scheme; ( ), Quadratic weighting scheme; ( ), DNS data.

stresses. Although not shown, similar experiments were carried out on grids
with truncated octehedra cell lattices. For these experiments a 7-point stencil
was employed and both the uniform and quadratic weighting scheme was tested.
Again, no noticeable improvement of the Log-layer mismatch was observed.
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CHAPTER 6

Discussion

The results presented in the previous chapter show that WMLES is influenced by
the subgrid model, the grid topology, as well as the wall modelling approach. Of
the two grid topologies tested the truncated octahedral seems to be the overall
most accurate. However, the hexahedral meshes outperformed the octahedral
grids in the near-wall region, both regarding the computed mean velocity and
the Reynolds stresses. Generally, refining the mesh turned out to increase
the magnitude of LLM while improving the velocity gradient. Simulations
performed without the Vreman eddy viscosity model gave lower predictions of
the mean velocity compared to simulations with subgrid modeling, independent
of grid topology.

The results indicate that one may improve the accuracy of WMLES by
departing from the traditional wall modeling approach. For all strategies tested,
both the filtering schemes and the shifting of the matching location seems to
reduce the measured LLM. The latter being the most effective remedy. Of the
filtering techniques, the temporal filter seems to be the most effective. However,
none of the techniques seem to solve the problem completely.

The present chapter seeks to explain how grid topology, wall modelling
strategy and eddy viscosity affect the near wall behavior of the WMLES
solution and why they affect the magnitude of LLM . To reduce the scope of
the following chapter the analysis only considers the cases summarized in Table
(6.1). However, these are found to give a representative picture of the general
trends observed for the remaining simulations performed in this thesis.

6.1 Effect of Subgrid Modeling

The results presented in Section (5.1) indicate that one may reduce the
magnitude of LLM in a turbulent channel by setting νe to zero, when employing
the current numerical scheme. However, closer scrutiny of the mean velocity
profiles presented in Figure (5.5) shows that turning off the subgrid model
deteriorates the accuracy of the computed velocity gradient. Furthermore,
turning off the subgrid model also worsens the predicted Reynolds stresses, as
seen in Figure (6.1).

Figure (6.1) shows the turbulent kinetic energy and the Reynolds shear
stress for simulations with and without employing the Vreman subgrid model.
In the center of the channel the simulations are indistinguishable. The Vreman
subgrid model is defined in terms of the filtered strain rate tensor, S̄ij , which for
a fully developed channel flow is proportional to the mean streamwise velocity
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6.1. Effect of Subgrid Modeling

Table 6.1: Descriptions and abbreviations for the simulations studied in the
present chapter. If not specified the simulation is carried out on a hexahedral
mesh with characteristic cell size ∆+

c = 100.

Abbreviation Description

NFil Non-filtering algebraic wall model on a
hexahedral mesh with characteristic
cell size ∆+

c = 100
NFil-0 Non-filtering algebraic wall model

(not employing the Vreman subgrid model)
NFil-200 Non-filtering algebraic wall model on a

hexahedral mesh with characteristic
cell size ∆+

c = 200
NFil-Oct Non-filtering algebraic wall model on a

truncated octahedral mesh with characteristic
cell size ∆+

c = 100
WN Algebraic wall model fed the LES solution

sampled a distance hwm = 0.05δ
above the wall

WP Algebraic wall model fed the average velocity
computed using a nine-point-stencil employing
the uniform weighting scheme

TEMP Algebraic wall model employing a temporal
filter with ϵ = 0.25

FIXED Employing a fixed wall shear stress
(τwm = 0.25) as a boundary condition

gradient. Since
〈
du/dy

〉
is negligible in the outer-layer the solution should, at

least in theory, be less sensitive to the subgrid model at the core of the channel.
Closer to the wall the solutions diverge, and large discrepancies are observed
for the simulation without subgrid modeling. This is somewhat expected as the
viscous shear stress dominates at the wall. Further, since the eddy viscosity
computed by the Vreman model is non-negative, turning off the model should
lead to a decrease of the viscous dissipation rate and viscous diffusion rate,
which may explain the increase of the turbulent kinetic energy observed in the
near wall region.

It is not obvious to the author why the simulations employing the Vreman
modelling produce the largest mismatch, as one expects the modeling of the
subgrid stresses to improve the accuracy of the numerical scheme. As turning
off the subgrid model, in general, degrades the solutions of all flow quantities
except for the mean velocity profile, the observed reduction of LLM might be
caused by fortunate cancellations of errors. Alternatively, as noted by Nicoud,
Toda et al. (2011), the turbulent stresses should decay cubically in the vicinity
of solid boundaries. However, they showed that the asymptotic behavior of
the Vreman modeled is linear in terms of the wall normal distance. Hence,
the discrepancies observed when employing the Vreman model can possible be
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Figure 6.1: The turbulent kinetic energy (Left), and Reynolds shear stress
(Right) in simulations applying the non-filtered algebraic wall-model with and
without subgrid modeling on a hexahedral mesh with ∆+

c = 100. ( ),
(NFil); ( ), (NFil-0); ( ), DNS data.

attributed to over-predictions of the eddy viscosity in in the near-wall region
for the girds employed in this theses. It should be emphasised that this does
not discredit the Vreman subgrid model in general.

6.2 Near-Wall Flow Behavior

As the near-wall behavior of WMLES is crucial to the predicted velocity field,
this section is dedicated to the discussion of the statistics sampled at the first
off-wall grid point or at the matching location hwm, presented in Table (6.2).

As noted by Bou-Zeid, Meneveau and Parlange (2004), the mean shear stress
imposed by the algebraic wall model is proportional to

〈
u2〉, while the Log-Law

is validated in an average sense. That is, the true wall stress
〈
τLog−Law

w

〉
scales

as
〈
u
〉2. Since

〈
u2〉 and

〈
u
〉2 are in general unequal they argued that the

magnitude of LLM is proportional to
〈
u2〉/〈u〉2. However, the results presented

in Table (6.2) show only negligible changes of the relative magnitudes for all
but the simulation with shifted matching location. Thus we can conclude that
the reasoning of Bou-Zeid, Meneveau and Parlange (2004) do not, in general,
explain the occurrence of LLM.

The results presented in Table (6.2) indicate that employing spatial and
temporal filtering strategies reduces, to some extent, the magnitude of LLM .
As neither of the two filtering schemes introduce any additional information
of the LES solution away from the wall, the effect of these filters can not be
attributed to an increased accuracy of the LES at sampling point(s). Filtering
may remove some numerical noise, improving the quality of uwm. However, it
is not believed that this is the main mechanisms for the observed reduction of
LLM , since filtering of incorrect data will, in general, yield poor results. The
improvements observed thus imply that LLM is not solely attributed to the
local resolution of the WMLES. It is therefore reasonable to conclude that the
argument made by Kawai and Larsson (2012) does not suffice as an explanation
for LLM .

From the streamwise momentum equation for a fully developed channel flow
at sufficiently high Reynolds numbers it follows that the mean total shear stress
is balanced by the mean pressure gradient according to Equation (6.1).
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6.2. Near-Wall Flow Behavior

Table 6.2: Summary of relevant near wall quantities. All quantities presented
are normalized in terms of wall units.

NFil WN WP TEMP FIXED

LLM% 7.14 1.24 6.63 5.22 10.58〈
τwmu′

y=∆c/2
〉+ 0.47 0.09 0.35 0.41 4.65·10−10〈

u
〉+

y=∆c/2 16.37 15.27 16.44 16.41 18.01〈
u′v′〉+

y=∆c/2 -0.62 -0.64 -0.68 -0.65 -0.67〈
νe

〉+
y=∆c/2 12.22 13.48 12.66 12.62 12.90〈

u2
〉〈

u
〉2

∣∣∣
y=hwm

1.017 1.009 1.016 1.017 -〈
du
dy

〉+

y=∆c/2
0.0232 0.0209 0.0217 0.0221 0.0203

τ+
T otal = −

〈
u′v′〉+ +

〈
(1 + ν+

e )du

dy

+
〉

=
〈
τw

〉+
(

1 − y

δ

)
(6.1)

Evaluating the momentum balance at the first off-wall grid point, noting that
the mean wall shear stress is equal for all simulations performed herein, it follows
that a decrease of the Reynolds shear stress at y = ∆c/2 leads to an increase of
the near-wall viscous shear stress. Following this line of thought X. I. Yang,
Park and Moin (2017) argued that LLM is a consequence of wrongly predicting
the Reynolds shear stress

〈
u′v′〉 in the near-wall region caused by unphysically

high correlations of the instantaneous LES solution and the modelled wall stress.
Hence LLM can be remedied by disrupting the coupling of the wall stress and
the velocity field.

The results presented in Table (6.2) show that one may reduce the coupling
between the modeled wall stress and the local LES solution

〈
τwmu′

y=∆c/2
〉

by
filtering the wall model velocity or by shifting the matching location further from
the wall. However, the results show no clear correlation between the magnitude
of the Reynolds shear stress and

〈
τwmu′

y=∆c/2
〉
. Further, the magnitude of〈

u′v′〉 seems to have little to no effect on the near-wall velocity gradient.
As a part of their argumentation, X. I. Yang, Park and Moin (2017) assumed

that the eddy viscosity at the first off-wall grid point remains almost constant
independent of the wall modeling approach. The LES eddy viscosity at the first
off-wall grid point, reported in Table (6.2), shows that this is not the case for
the present WMLES. In general we observe that the filtered WMLES solutions,
which predict smaller values of

〈
u′v′〉

y=∆c/2 produce larger values of νe. Hence,
it seems that changes in the Reynolds shear stress is balanced by the magnitude
of
〈
du/dy

〉
as-well as the value of the eddy viscosity. Closer scrutiny of the near

wall statistics presented above shows that the simulations with the smallest
velocity gradients coincide with the simulations with the smallest correlation
between the modeled wall stress and the instantaneous LES solution. Thus the
results indicate that the near wall velocity gradient is related to

〈
τwmu′

y=∆c/2
〉
,
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Figure 6.2: The total shear stress balance obtained from WMLES of the
turbulent channel. ( ), NFil; ( ), NFil-200; ( ), NFil-0;
( ), NFil-Oct; ( ), WP.

but not by way of the Reynolds shear stress as suggested by X. I. Yang, Park
and Moin (2017).

The total shear stress profiles from WMLES are shown in Figure (6.2). The
WMLES satisfy the momentum equation at the core of the channel, independent
of wall model, subgrid model, and grid topology. On the other hand, large
discrepancies are observed in the near-wall region. The greatest errors are
observed in the simulations without subgrid modeling. A distinct peak is
observed for all simulations at the second off-wall grid point. There seems to be
no relation between the magnitude of this peak and discrepancies in the predicted
velocity profile. The results however indicate that LLM may be connected with
the absolute change in the total shear stress from the first to the second off-wall
grid point. In general, an increase of

∣∣∣τ+
T otal|y=3∆c/2 − τ+

T otal|y=∆c/2

∣∣∣ imply a
rise of the near-wall LLM.

As noted in Section (5.3) LLM worsens when employing the theoretical
mean wall stress as a boundary condition. However, as shown in Table (6.2),
the simulation with fixed wall shear at the boundary yields the smallest velocity
gradient at the first off-grid point. In Figure (6.3) the normalized mean velocity
gradient is plotted over the Log-layer in terms of the overshoot Φm, defined in
Equation (6.2) (Brasseur and Wei 2010).

Φm = K
y

uτ

〈
dū

dy

〉
(6.2)

Clear discrepancies in Φm shows up for the WMLES independent of wall
modelling approach. In general, the WMLES overpredict the velocity gradient
within the Log-layer except at the first off-wall grid point, where all but the
non-filtered solution significantly underpredict

〈
du/dy

〉
. The solution employing

61



6.3. Revisiting the Log-Law

0.6 0.8 1.0 1.2 1.40.00

0.05

0.10

0.15

0.20

0.25

0.30

Φm

y
/δ

Figure 6.3: Comparison of the overshoot from WMLES and DNS simulations
plotted against the wall normal distance normalized with respect to the boundary
layer thickness. Data are presented for measurements obtained within the
Log-layer. ( ), DNS data obtained by M. Lee and R. Moser (2015); ( ),
NFil; ( ), WN; ( ), WP; ( ), TEMP; ( ), FIXED.

a fixed shear stress at the wall consistently yields the smallest value of Φm.
Hence, we may not attribute the rise in LLM when employing this boundary
condition to an increased near-wall velocity gradient. However, the mean near-
wall velocity presented in Table (6.2) shows that

〈
u
〉

y=∆c/2 is ≈ 10% larger
for the solution with a fixed wall stress condition compared to the remaining
WMLES solutions.

Using the formulation for the streamwise velocity fluctuations presented in
Marusic, Mathis and Hutchins (2010) as an ansatz, Mathis et al. (2013) derived
a predictive model for the normalized fluctuating wall stress, τ+

wp = τwp/(ρu2
τ ),

only requiring the velocity obtained from the Log-layer. By tuning the modelling
parameters using DNS data, they found that the proposed model was able to
reconstruct a realistic time-series of the wall stress. As the proposed model
only needs the off-wall velocity to predict the instantaneous wall shear stress, it
seems likely that the fluctuating wall shear stress and the near-wall velocity are,
to some extent, correlated. This correlation implies that the wall stress respond
immediately to changes in the velocity, instantaneously draining the near-wall
region of turbulent kinetic energy. As pointed out by X. I. Yang, Park and Moin
(2017), by employing a fixing shear stress boundary condition one removes all
correlation between the wall model and the instantaneous LES solution. Thus,
by fixing the wall shear stress, one inevitably make the near-wall LES solution
too energetic, which might explain the unreasonable high velocity close to the
wall.

6.3 Revisiting the Log-Law

Next, the effect of employing an algebraic wall model based on the The Law of
The Wall is considered. Employing the algebraic wall model given in Equation
(4.3), it follows that the modeled instantaneous wall shear stress can be computed
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as shown below.
τwm = ρ

u2
wm(

C + 0.5K−1 ln τwm

)2 (6.3)

Here the constant C, defined in Equation (6.4), is introduced for reasons of
convenience.

C = B + K−1 ln hwm

ν
√

ρ
(6.4)

As shown in Appendix (A) one may rewrite Equation (6.3) as (6.5) by
first decomposing the wall shear stress into a mean and a fluctuating part,
τwm = Twm+τ

′

wm, and Taylor expanding the natural logarithm ln
(

Twm + τ
′

wm

)
around τ

′

wm = 0.

Twm + τ
′

wm= ρ
u2

wm(
C + 0.5K−1

(
ln Tw + τ ′

wm/Tw + · · ·
))2 (6.5)

One should note that the Taylor series of ln (Twm + τ
′

wm) converges if and only
if the normalized fluctuations |τ ′

wm/Twm| < 1 (Ahlfors 1966), which is in general
true for WMLES. After some simple algebraic manipulations and averaging of
the above equation, it follows that the modelled mean wall shear stress can be
expressed as Equation (6.6).

Twm =ρ

〈
uwm

〉2
+
〈

u′
wmu′

wm

〉
(

C + 0.5K−1 ln Twm

)2

+
〈

τ
′

wmτ
′

wm

〉(C/2 + 0.25K−1
(

1 − 3
2 ln Twm

))
KTwm

(
C + 0.5K−1 ln Twm

)2 + O(τ
′

wm
3)

(6.6)

The Log-Law was developed to be used, and is in principle only valid, in an
average sense (Bou-Zeid, Meneveau and Parlange 2004). Thus the theoretical
mean shear stress

〈
τLog−Law

w

〉
can be approximated according to Equation

(6.7). 〈
τLog−Law

w

〉
= ρ

〈
uwm

〉2

(
C + 0.5K−1 ln τLog−Law

w

)2 (6.7)

Assuming the higher order fluctuations of the wall stress τ
′

wm to be negligible,
it follows from Equation (6.6) and (6.7) that the modeling error of the mean
wall stress is given by Equation (6.8).
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Figure 6.4: The modeling error computed from the DNS data obtained by
M. Lee and R. Moser (2015) as a function of the wall model height. The error
is computed over the range for which the Log-Law is assumed valid.

Twm −
〈

τLog−Law
w

〉
≈ ρ

〈
u′

wmu′
wm

〉
(

C + 0.5K−1 ln Twm

)2 (6.8)

Figure (6.4) presents the normalized modeling error T +
wm −

〈
τLog−Law

w

〉+

computed with the DNS data obtained by M. Lee and R. Moser (2015) as a
function of the wall model height h+

wm. Since the wall model velocity uwm is
undefined in the DNS, the velocity fluctuations

〈
u′

wmu′
wm

〉
are estimated from

the fluctuations of the wall parallel velocity components sampled at y = hwm,
that is,

〈
u′

wmu′
wm

〉
=
〈
u′u′〉∣∣

y=hwm
+
〈
w′w′〉∣∣

y=hwm
. The error is computed

over the range h+
wm > 30 and hwm < 0.3δ, where the Log-Law is assumed valid.

The results presented in Figure (6.4) show that the modeling error decreases
monotonically with increasing wall model height. This is in line with the
observations made by Kawai and Larsson (2012, that LLM decreases as hwm

increases. One should note that the analysis presented in this section only
considers the wall model formulation of the Law of The Wall. The discrepancies
observed can thus not be attributed to subgrid modeling errors or to poorly

Table 6.3: The modeling error computed from WMLES data. The modeling
error and LLM% for the the solutions employing the algebraic wall model and
the Vreman subgrid model are presented.

NFil WN WP TEMP

LLM% 7.14 1.24 6.63 5.22

T +
wm −

〈
τLog−Law

w

〉+
2.53 · 10−2 1.57 · 10−2 2.46 · 10−2 2.40 · 10−2
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resolved LES solutions in the near-wall region as implied by Kawai and Larsson
(2012) and Wu and Meyers (2013). Hence, the results suggest that the algebraic
wall model introduces unavoidable modeling errors. Note that the error is non-
negative, meaning that the computed wall stress applying the instantaneous
LES solution is generally too large.

Table (6.3) shows the modeling error for four different wall modeling
approaches. Similar to the results obtained with the DNS data, increasing the
wall model height also reduces the modeling error in WMLES. However, no
appreciable changes are observed when comparing the modeling errors for the
non-filtered, the spatial filtered and the temporal filtered solutions.

In general, for y+ > ∆+
c /2, the relative magnitude of the turbulent

fluctuation, ∝
〈
u

′
u

′〉
/
〈
u
〉2, decreases monotonically with increasing wall

distance. Thus, by moving the matching location beyond the first off-wall grid
point one makes the modelled wall shear stress less sensitive to the fluctuations
of the velocity field. I.e. one reduces the contribution of

〈
u′

wmu′
wm

〉
to the

total modelled wall stress. From Equation (6.8) it follows that the modeling
error should decrease. However, by rewriting the expression for the magnitude
of the turbulent fluctuation according to Equation (6.9), it follows that the
modeling error is proportional to

〈
u2〉/〈u〉2, which is exactly the argument

made by Bou-Zeid, Meneveau and Parlange (2004). As noted earlier, this is
not a complete explanation for the occurrence of LLM. It is therefore believed
that the higher order fluctuating wall stresses are nonnegligible and should be
included in further analysis.〈

u
′
u

′〉〈
u
〉2 =

〈
u2〉−

〈
u
〉2〈

u
〉2 =

〈
u2〉〈
u
〉2 − 1 (6.9)

6.4 The Discretized Equations

All conclusions made so far are based on the continuous transport equations.
However, the velocity field obtained by WMLES resides in a discrete space.
The solution is thus valid only in a discrete sense. It is therefore meaningful to
investigate the problem of LLM in terms of the discretized equations that the
WMLES solution satisfies.

Assuming the density ρ to be constant, the semi-discrete form of the
numerical scheme presented in Ambo et al. (2020), can be expressed according
to Equation (6.10).

Vcv
∂ũi

∂t
+
∑
IF

ũf ũcv
i + ũnbr

i

2 +Vcv
∂p̃

∂xi
+
∑
BF

τ̃iAbf +
∑
IF

ν̃f ũcv
i − ũnbr

i

2 = 0 (6.10)

Here ũ, p̃ and τ̃ denote the instantaneous values of the discrete velocity field,
pressure and wall shear, respectively. Further, IF , BF and nbr denote the
internal faces, boundary faces with area Abf , and the velocity in the grid cells
adjacent to the control volume cv, respectively. The volume of the grid cell is
denoted by Vcv, and ν̃f , defined in Equation (6.11), represents the kinematic
viscosity at an internal face with area Af and is a function of time and space.
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6.4. The Discretized Equations

ũf
left

ũf
right

ũf
down

ũf
up

ũf
top

x

y z

Figure 6.5: Illustration of a hexahedron boundary cell and the streamwise flux
velocities ũf

up and ũf
down, the spanwise flux velocities ũf

left and ũf
right and wall

normal flux velocity ũf
top.

ν̃f = Af

∆x

(
ν + ν̃f

e

)
(6.11)

In the above equation, ∆x denotes the the cell size and ν̃f
e is the face eddy

viscosity. The flux velocity ũf , is defined on the face, as illustrated in Figure
(6.5), and satisfies the divergence free constraint given in Equation (6.12).∑

IF

ũf = 0. (6.12)

Even though it is referred to as a velocity, ũf is in reality a mass flux, hence
ũf ∝ ũcvAf . Ignoring the pressure projection step, assuming it is used to
enforce Equation (6.12), the semi-discrete RANS equation can be expressed as
shown below.

Vcv
∂U cv

i

∂t
+
∑
IF

Uf U cv
i + Uf Unbr

i

2 +
∑
IF

〈
uf ucv

i

〉
+
〈
uf unbr

i

〉
2 +

∑
IF

Nf U cv
i − Unbr

i

2∆xi

+
∑
IF

(〈
νf ucv

i

〉
−
〈
νf unbr

i

〉)
+ Vcv

∂P

∂xi
+
∑
BF

TiAf = 0 (6.13)

In the above equation capital letters denote the temporal average, while lower
case letters denote the fluctuating fields. Subtracting the semi-discrete RANS
equations from Equation (6.10), applying the chain rule, and averaging, yields
the numerical transport equation for the Reynolds stresses presented in Equation
(6.14). A detailed description of the derivation is found in Appendix (C).
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6.4. The Discretized Equations

Vcv
∂Rij

∂t
+ Ãij = −P̃s

ij − P̃τ
ij − R̃ij − T̃ij − Ṽij (6.14)

Here, Ãij , P̃s
ij , R̃ij and T̃ij , defined below, represent the numerical equivalents

to the advection, production, turbulent transport and pressure redistribution
terms found in the continuous transport equation of the Reynolds stress tensor.
Ṽij

1 represents the viscous terms, that is the numerical viscous dissipation rate
and viscous diffusion rate. The term P̃τ

ij acts like a production term for the
turbulent energy and is caused by correlations between the wall shear and the
velocity at the first off-wall gird point. Due to the no-slip and impermeability
conditions, the fluctuating velocity field vanishes at the wall, thus

〈
ujτi

〉∣∣
y=ywall

is zero in real fluid flows. The term is therefore a product of the discretisation
process. It is, however, not given that this term should be zero in WMLES
as the numerical model computes the correlation between the wall stress and
the velocity at y = ∆c/2. As argued earlier, these quantities may, to some
degree, be correlated in real fluid flows. What the value should be can only be
determined by DNS or experiments and is not within the scope of this thesis.

Ãij =
∑
IF

Uf

〈
ucv

j unbr
i

〉
+
〈
ucv

i unbr
j

〉
2 Advection

P̃s
ij =

∑
IF

(〈
uf ucv

j

〉Unbr
i

2 +
〈
uf ucv

i

〉Unbr
j

2

)
Production

P̃τ
ij =

∑
BF

〈
ucv

j τi + ucv
i τj

〉
Af Production due to wall shear

R̃ij = Vcv

(〈
ucv

j

∂p

∂xi

〉
+
〈

ucv
i

∂p

∂xj

〉)
Velocity-pressure gradient

T̃ij =
∑
IF

〈
uf ucv

j unbr
i

〉
+
〈
uf ucv

i unbr
j

〉
2 Turbulent transport rate

Next, the semi-discrete RANS equation for a fully-developed channel flow
on a structured Cartesian grid is considered. In this case the mean velocity
field reduces to U = (U(y), 0, 0). The flow is homogeneous in the streamwise
and spanwise directions, which implies that the stresses

〈
u1u3

〉
and

〈
u2u3

〉
are exactly zero. Furthermore, the flux velocity ũf at the internal faces of a
boundary node is defined according to Equation (6.15).

ũf
up = 1

2

(
ũcv

1 + ũup
1

)
Af

ũf
down = 1

2

(
ũcv

1 + ũdown
1

)
Af

ũf
left = 1

2

(
ũcv

3 + ũleft
3

)
Af

ũf
right = 1

2

(
ũcv

3 + ũright
3

)
Af

ũf
top = 1

2

(
ũcv

2 + ũtop
2

)
Af

(6.15)

1Due to time limitations this term has not been derived.
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6.4. The Discretized Equations

The superscripts (.up), (.down), (.left), (.right), and (.top) denote the velocity in
the cells sharing the face for which the respective flux velocity is defined. The
kinematic viscosity ν̃f can be decomposed in a similar fashion. Noting that
the only two non-zero mean flux velocities are Uf

up and Uf
down, the streamwise

semi-discrete RANS equation can be approximated as Equation (6.16). For more
details on the derivation of the semi-discrete RANS equations see Appendix
(B).

4U cv
1 U cv

1 + 2
〈
ucv

1 ucv
1
〉

+
〈
ucv

2 ucv
1
〉

+
〈
utop

2 utop
1
〉

2

+ 2
〈
uup

1 ucv
1
〉

+
〈
utop

2 ucv
1
〉

+
〈
ucv

2 utop
1
〉

2

+
〈
νtopucv

1
〉

−
〈
νcvutop

1
〉

∆x
+ 2V

Vcv

Af

∂P

∂x1
+ 2T1 = 0 (6.16)

Equation (6.16) suggests that the near-wall mean velocity is equally affected
by the Reynolds shear stress at the first and second off-wall grid points. As
indicated by the results presented in Figure (6.2), the occurrence of LLM seems
more likely associated with the change of

〈
u

′
v

′〉 in the near-wall region rather
than point values. Since the results presented so far show that the coupling
between the modeled wall stress and the local LES solution is related to the
near-wall gradient of the mean velocity, it seems reasonable to reformulate parts
of the argument made by X. I. Yang, Park and Moin (2017) as follows. Defects
observed in the velocity profile are due to wrongly predicting the near-wall
gradient of the Reynolds shear stress. The unphysical high correlation between
the modeled wall stress and the LES solution being the root source of these
errors. It is important to note that this argument may explain why the near-wall
velocity gradient is wrongly predicted, however, in light of the results presented
in Section (6.2), it does not provide a general explanation of how LLM occurs.

An interesting feature differentiating the semi-discrete RANS and its
continuous counterpart, is that the former contains two point correlations
of the velocity. Since the spatial and temporal resolutions of WMLES greatly
influence the small scale eddy behavior, it is difficult to estimate the magnitude
of these correlations without performing numerical experiments. However, it
is believed that the two-point correlations in Equation (6.16) are, in general,
dissimilar to the one-point correlation usually considered.

The nonlocal nature of the semi-discrete RANS equation imply that WMLES
simulations are affected not only by the grid resolution, but also by the
discretization strategy. For instance, by employing a staggered grid one
implicitly defined the cell to cell interaction differently than when employing
co-located grids. One thus end up studying a slightly different set of transport
equations, which might, to some extent, explain why LLM is code-dependent
as noted by Larsson et al. (2016).
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CHAPTER 7

Conclusions and Further Work

This thesis presents a thorough evaluation of Log-Layer Mismatch in wall
modelled LES. The effects of grid topology and refinement level, eddy viscosity,
and the wall modelling approach have been investigated. The effects of spatial
filtering and temporal filtering of the wall model input, as well as the effect of
shifting the matching location has been evaluated in the case of a turbulent
channel at Reτ = 5200.

The results clearly show that that WMLES is influenced by the subgrid
model, the grid topology, as well as the wall modelling approach. Comparison
with the mean velocity profile obtained from DNS showed that the simulations
on the truncate octahedral meshes yielded the most accurate results. However,
the hexahedral grids gave, in general, better descriptions of the flow at the first
off-wall grid point. The choice of cell lattice did not have a significant impact on
the computational cost. Refining the mesh turned out to increase the magnitude
of LLM while improving the computed velocity gradient. Simulations performed
without the Vreman eddy viscosity model deteriorated the accuracy of most flow
statistics. The observed reduction of LLM is therefore attributed to fortunate
cancellations of errors

The results indicate that one may improve the accuracy of WMLES by
departing from the traditional wall modeling approach. All strategies tested
seem to reduce the strength of LLM to some extent, while the predicted Reynolds
stresses were found to be less sensitive to the wall modelling approach. The
remedy proposed by Kawai and Larsson (2012), to provide the wall model with
LES data sampled at a distance hwm above the wall, were found to be the
most effective of the strategies tested. Comparing the results obtained with
hwm = 0.10δ and hwm = 0.20δ showed that the exact modelling height is of
less importance, as long as the wall model was fed data obtained above the first
off-wall grid point. However, the implementation of the scheme is not trivial,
especially for flows past complex bodies, discretized using unstructured grids.
Of the two filtering techniques the temporal filter with ϵ = 0.25 was found
to be the best, further reducing the filtering weight resulted in a small rise of
LLM. The spatial filter was found to have little effect on the overall solution,
independent of filtering stencil or weighing scheme.

All remedies reduced the coupling between the modeled wall stress and
the local LES solution. However,

〈
τwmu′

y=∆c/2
〉

showed no clear correlation
with the magnitude of the near-wall Reynolds shear stress, nor LLM . Hence,
the argument made by X. I. Yang, Park and Moin (2017), that LLM is due
to underprediction of the Reynolds stresses, does not explain the cause of
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LLM . Furthermore, employing the theoretical mean wall shear stress at the
boundary gave the smallest near-wall velocity gradient while producing the
largest mismatch. Hence, overprediction of the velocity gradient within the
Log-layer does not suffice as an explanation for LLM . Closer study of the
algebraic wall model indicates that by enforcing the Law of The Wall locally
and instantaneously additional modeling errors are introduced. However, the
modeling errors does not, in general, explain why LLM occurs. Analysis of
the semi-discrete transport equations in the near-wall region showed that the
computed velocity field relies on data from adjacent control volumes. As the
continuous transport equations are local in time and space, the analysis implying
that arguments for LLM based on the continuous equations does not provide a
complete explanation of the phenomenon. Furthermore, the nonlocal nature of
the semi-discrete RANS gives an explanation for why certain numerical schemes
generally produce negative mismatch, while some solvers experience positive
mismatch.

A logical extension of this thesis is to investigate how the wall modeling
strategies tested perform in flows involving complex bodies. Another possible
direction for future work is to quantify all terms in the semi-discrete RANS
equations in fundamental flow problems such as zero-pressure-gradient flat-plate
turbulent boundary layers or fully developed turbulent channel flow. Both to
see how the non-local effects of the discretized equations affects the WMLES
solution, and whether these equations can provide greater insight into the
problem of LLM .
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APPENDIX A

Modeled Wall Stress

From the Log-law it follows that the wall shear can be computed according to
Equation (A.1).

τwm = ρ
u2

wm(
C + 0.5K−1 ln τwm

)2 (A.1)

Here, the coefficient C is defined according to Equation (A.2).

C = B + K−1 ln hwm

ν
√

ρ
(A.2)

By decompose the wall shear stress into a mean and fluctuating part, τwm =
Twm + τ

′

wm, Equation (A.1) can be expressed as (A.3) below.

(
Twm + τ

′

wm

)
= ρ

u2
wm(

C + 0.5K−1
(

ln Twm + τ ′
wm/Twm + · · ·

))2 (A.3)

Here we have expressed ln (Twm + τ
′

wm) in terms of its Taylor expansion around
τ

′

wm) = 0 as shown below.

ln (Twm + τwm) = ln Twm + τwm/Twm − τ2
wm/2T 2

wm + ...

Solving Equation (A.3) with respect to ρu2
wm we obtain,

ρu2
wm =

(
Twm+τ

′

wm

)(
C2+CK−1

(
ln Twm+τ

′

wm/Twm−τ
′

wm
2/2T 2

wm+O(τ
′

wm
3)
))

+ 0.25K−2
(

Twm + τ
′

wm

)(
ln Twm

2 + 2τ
′

wm ln Twm/Twm + τ
′

wm
2/T 2

wm

− ln Twmτ
′

wm
2/T 2

wm + O(τ
′

wm
3)
)

which imply that,
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ρu2
wm =Twm

(
C2 + CK−1

(
ln Twm + τ

′

wm/Twm − τ
′

wm
2/2T 2

wm + O(τ
′

wm
3)
))

+ τ
′

wm

(
C2 + CK−1

(
ln Twm + τ

′

wm/Twm − τ
′

wm
2/2T 2

wm + O(τ
′

wm
3)
))

+ 0.25K−2Twm

(
ln Twm

2 + 2τ
′

wm ln Twm/Twm + τ
′

wm
2/T 2

wm − ln Twmτ
′

wm
2/2T 2

wm + O(τ
′

wm
3)
)

+ 0.25K−2τ
′

wm

(
ln Twm

2 + 2τ
′

wm ln Twm/Twm + τ
′

wm
2/T 2

wm − ln Twmτ
′

wm
2/2T 2

wm + O(τ
′

wm
3)
)

.

Averaging of the above equation yields,

ρ
〈

u2
wm

〉
=Twm

(
C2 + CK−1 ln Twm

)
− CK−1

〈
τ

′

wmτ
′

wm

〉
/2Twm + O(τ

′

wm
3)

+ CK−1
〈

τ
′

wmτ
′

wm

〉
/Twm + O(τ

′

wm
3)

+ 0.25K−2
(

Twm ln Twm
2 +

〈
τ

′

wmτ
′

wm

〉
/Twm −

〈
τ

′

wmτ
′

wm

〉
ln Twm/2Twm + O(τ

′

wm
3)
)

+ 0.25K−22
〈

τ
′

wmτ
′

wm

〉
ln Twm/Twm + O(τ

′

wm
3)

which again imply,

ρ
〈

u2
wm

〉
=Twm

(
C2 + CK−1 ln Twm

)
+ CK−1

〈
τ

′

wmτ
′

wm

〉
/2Twm

+ 0.25K−2
(

Twm ln Twm
2 +

〈
τ

′

wmτ
′

wm

〉
/Twm

(
1 − 3

2 ln Twm

))
+ O(τ

′

wm
3).

After some simple manipulation it follows that,

ρ
〈

u2
wm

〉
=Twm

(
C + 0.5K−1 ln Twm

)2

+ K−1
〈

τ
′

wmτ
′

wm

〉
/Twm

(
C/2 + 0.25K−1

(
1 − 3

2 ln Twm

))
+ O(τ

′

wm
3).

Solving for Twm we obtain Equation (A.4).

Twm =ρ

〈
u2

wm

〉
(

C + 0.5K−1 ln Twm

)2

+
〈

τ
′

wmτ
′

wm

〉(C/2 + 0.25K−1
(

1 − 3
2 ln Twm

))
KTwm

(
C + 0.5K−1 ln Twm

)2 + O(τ
′

wm
3)

(A.4)

Decompose the wall model velocity into a mean and fluctuating part, uwm =〈
uwm

〉
+ u′

wm, Equation (A.4) can be written as Equation (A.5).
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Twm =ρ

〈
uwm

〉2

(
C + 0.5K−1 ln Twm

)2 + ρ

〈
u′

wmu′
wm

〉
(

C + 0.5K−1 ln Twm

)2

+
〈

τ
′

wmτ
′

wm

〉(C/2 + 0.25K−1
(

1 − 3
2 ln Twm

))
KTwm

(
C + 0.5K−1 ln Twm

)2 + O(τ
′

wm
3).

(A.5)

Since the theoretical mean shear stress
〈

τLog−Law
wm

〉
can be approximated as,

〈
τLog−Law

wm

〉
= ρ

〈
uwm

〉2

(
C + 0.5K−1 ln Twm

)2 (A.6)

it follows from Equation (A.5) that wall model error is given by Equation (A.7).

Twm −
〈

τLog−Law
wm

〉
= ρ

〈
u′

wmu′
wm

〉
(

C + 0.5K−1 ln Twm

)2

+
〈

τ
′

wmτ
′

wm

〉(C/2 + 0.25K−1
(

1 − 3
2 ln Twm

))
KTwm

(
C + 0.5K−1 ln Twm

)2 + O(τ
′

wm
3)

(A.7)
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APPENDIX B

Derivation of the Semi-Discrete
Reynolds Average Navier-Stokes

Assuming the density ρ to be constant, the governing semi-discrete equation
for the velocity is of the form

Vcv
∂ũi

∂t
+
∑
IF

ũf ũcv
i + ũnbr

i

2 +Vcv
∂p̃

∂xi
+
∑
BF

τ̃iAbf +
∑
IF

ν̃f ũcv
i − ũnbr

i

2 = 0 (B.1)

Here, ũ, p̃ and τ̃ denote the instantaneous value of the discrete velocity field,
pressure and wall shear, respectively. Further, IF , BF and nbr denote the
internal faces, boundary faces with area Abf , and the velocity in the grid cells
adjacent to the control volume cv, respectively. The volume of the grid cell
is denoted by Vcv, and ν̃f , defined in Equation (B.2), represent the kinematic
viscosity at an internal face with area Af and is a function of time and space.

ν̃f = Af

∆x

(
ν + ν̃f

e

)
(B.2)

In the above equation, ∆x denotes the the cell size and ν̃f
e is the face eddy

viscosity. The flux velocity ũf , is defined on the faces of the control volume,
and satisfies the divergence free constraint given in Equation (B.3).∑

IF

ũf = 0. (B.3)

Even though it is refereed to as a velocity, ũf is in reality a mass flux, hence
ũf ∝ ũcvAf . Ignoring the pressure projection step, assuming it is used to
enforce Equation (B.3), and decomposing the fluctuating fields according to
Equation (B.4),

ũi = Ui + ui

ũf = Uf + uf

p̃ = P + p

τ̃i = Ti + τi

ν̃f = Nf + νf

(B.4)
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Equation (B.1) can be expressed as

Vcv
∂

∂t

(
U cv

i + ucv
i

)
+
∑
IF

(
Uf + uf

)U cv
i + ucv

i + Unbr
i + unbr

i

2

+ Vcv
∂

∂xi

(
P + p

)
+
∑
BF

(
Ti + τi

)
Abf

+
∑
IF

(
Nf + νf

)U cv
i + ucv

i − Unbr
i − unbr

i

2 = 0. (B.5)

Apply the averaging operator
〈
.
〉

to (B.5), noting that
〈
Φi

〉
= Φi,

〈
ϕi

〉
= 0

and
〈
Φiϕi

〉
=
〈
Φi

〉〈
ϕi

〉
= 0, we obtain the semi-discrete Reynolds Averaged

Navier-Stokes equation (B.6).

Vcv
∂U cv

i

∂t
+
∑
IF

Uf U cv
i + Uf Unbr

i

2 +
∑
IF

〈
uf ucv

i

〉
+
〈
uf unbr

i

〉
2

+
∑
IF

Nf U cv
i − Unbr

i

2 +
∑
IF

〈
νf ucv

i

〉
−
〈
νf unbr

i

〉
2 + Vcv

∂P

∂xi
+
∑
BF

TiAbf = 0

(B.6)

Next, we considering the semi-discrete equation presented above for a full-
developed channel flow at the first off-wall grid point on a structured Cartesian
grid. In this case the mean velocity field reduce to U = (U(y), 0, 0). Furthermore,
the flow is homogeneous in the streamwise and spanwise directions, which implies
that the stresses

〈
u1u3

〉
and

〈
u2u3

〉
are exactly zero. Finally, noting that each

control volume only have two faces with a non-zero mean flux velocity Uf ,
denoted as Uf

up and Uf
down, the semi-discrete RANS equation can be expressed

according to Equation (B.7).

Vcv
∂U cv

i

∂t
+ Uf

up

U cv
i + Uup

i

2 + Uf
down

U cv
i + Udown

i

2 +
∑
IF

Nf U cv
i − Unbr

i

2

+
∑
IF

〈
uf ucv

i

〉
+
〈
uf unbr

i

〉
2 +

∑
IF

〈
νf ucv

i

〉
−
〈
νf unbr

i

〉
2 + Vcv

∂P

∂xi
+ TiAf = 0

(B.7)

The superscripts (.up) and (.down) denotes the velocities in the cells sharing a
face with a non-zero mean flux velocity. Further, the flux velocity, ũf , can be
expressed according to Equation (B.8).
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ũf
up = 1

2

(
ũcv

1 + ũup
1

)
Af

ũf
down = 1

2

(
ũcv

1 + ũdown
1

)
Af

ũf
left = 1

2

(
ũcv

3 + ũleft
3

)
Af

ũf
right = 1

2

(
ũcv

3 + ũright
3

)
Af

ũf
top = 1

2

(
ũcv

2 + ũtop
2

)
Af

(B.8)

Here the superscripts (.left), (.right), and (.top) denotes the velocity in the
cells sharing the face for which the velocity fluxes (̃.)f

left, (̃.)f
right and (̃.)f

top are
defined. Similarly, the face kinematic viscosity at the internal faces are defined
in Equation (B.9).

ν̃f
up =

(
ν̃cv + ν̃up

)Af

∆x

ν̃f
down =

(
ν̃cv + ν̃down

)Af

∆x

ν̃f
left =

(
ν̃cv + ν̃left

)Af

∆x

ν̃f
right =

(
ν̃cv + ν̃right

)Af

∆x

ν̃f
top =

(
ν̃cv + ν̃top

)Af

∆x

(B.9)

Here the control volume kinematic viscosity is defined as ν̃cv = ν + ν̃cv
e .

Introducing the the decomposing of the flux velocity and kinematic viscosity
presented in Equation (B.8) and (B.9) yields the transport equation below.

Vcv
∂U cv

i

∂t
+
(

U cv + Uup
)

Af
U cv

i + Uup
i

4 +
(

U cv + Udown
)

Af
U cv

i + Udown
i

4

+
(

N cv + Nup
)U cv

i − Uup
i

2 +
(

N cv + Ndown
)U cv

i − Udown
i

2

+
(

N cv + N left
)U cv

i − U left
i

2 +
(
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)U cv
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i

2

+
(

N cv + N top
)U cv

i − U top
i

2

+
〈
νcvucv

i

〉
+
〈
νupucv

i

〉
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〈
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〉
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〈
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i

〉
2
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〈
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νdownudown

i

〉
2
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〈
νcvucv

i

〉
+
〈
νleftucv

i

〉
−
〈
νcvuleft

i

〉
−
〈
νleftuleft

i

〉
2

Af

∆x

+
〈
νcvucv

i

〉
+
〈
νrightucv

i

〉
−
〈
νcvuright

i

〉
−
〈
νrighturight

i

〉
2

Af

∆x

79



+
〈
νcvucv

i

〉
+
〈
νtopucv

i

〉
−
〈
νcvutop

i

〉
−
〈
νtoputop

i

〉
2

Af

∆x

+
〈
ucv

1 ucv
i

〉
+
〈
uup

1 ucv
i

〉
+
〈
ucv

1 uup
i

〉
+
〈
uup

1 uup
i

〉
4 Af

+
〈
ucv

1 ucv
i

〉
+
〈
udown

1 ucv
i

〉
+
〈
ucv

1 udown
i

〉
+
〈
udown

1 udown
i

〉
4 Af

+
〈
ucv

3 ucv
i

〉
+
〈
uleft

3 ucv
i

〉
+
〈
ucv

3 uleft
i

〉
+
〈
uleft

3 uleft
i

〉
4 Af

+
〈
ucv

3 ucv
i

〉
+
〈
uright

3 ucv
i

〉
+
〈
ucv

3 uright
i

〉
+
〈
uright

3 uright
i

〉
4 Af

+
〈
ucv

2 ucv
i

〉
+
〈
utop

2 ucv
i

〉
+
〈
ucv

2 utop
i

〉
+
〈
utop

2 utop
i

〉
4 Af + Vcv

∂P

∂xi
+ TiAf = 0

Noting that for a fully developed channel flow temporal derivatives vanishes
and U cv = Unbr. Furthermore, the turbulence is homogeneous in the wall
parallel plane, assuming the two point correlations

〈
ucv

1 unbr
3
〉

=
〈
ucv

2 unbr
3
〉

= 0,
it follows from the above equation that the semi-discrete RANS equation for
the streamwise direction becomes,
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(B.10)

The wall-normal transport equation becomes,
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while the spanwise transport equation reduce to Equation (B.12) below,
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APPENDIX C

Derivation of the Semi-Discrete
Reynolds Stress Transport

Equation

From Appendix (B) it follows that the semi-discrete Reynolds Averaged Navier-
Stokes equation can be written as Equation (C.1)

Vcv
∂U cv
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+
∑
IF

Uf U cv
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〉
2

+ Vi + Vcv
∂P

∂xi
+
∑
BF

TiAbf = 0 (C.1)

Here, Vi denotes the viscous terms. Subtract the above equation from the
semi-discrete transport equation (Eq. B.1) we get the transport equation for
the fluctuating velocity field,
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which implies
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The discretized transport equation for the Reynolds stresses, Rij , can be derived
using the following trivial manipulation,
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(C.4)

Inserting Equation (C.3) into the above relation yields the semi-discrete equation
of ucv

i ucv
j shown below.
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(C.5)

After some simple algebraic manipulation, Equation (C.5) becomes Equation
(C.6).
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(C.6)

Enforcing the divergence free constraint for Uf and uf , Equation (C.6) reduce
to Equation (C.7) below.
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Taking the ensemble average of Equation (C.6) yields the semi-discrete transport
equation of the Reynolds stresses, Rij =
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which imply
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The above equation can be expressed as,
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∂Rij
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+ Ãij = −P̃s

ij − P̃τ
ij − R̃ij − T̃ij − Ṽij (C.10)

where Ãij , P̃s
ij , R̃ij and T̃ij denotes the numerical advection, production,

turbulent transport and pressure redistribution of the semi-discretized transport
equation and are presented below. Ṽij represent the viscous terms, that is, the
viscous diffusion rate and the viscous dissipation rate. P̃τ

ij acts like a production
terms for the turbulent energy and is caused by correlations between the wall
shear and the of wall velocity. The five terms are summarized below.
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