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Abstract

Stock market forecasting has long piqued the curiosity of academics and
professionals. However, because of the markets’ chaotic dynamics, increased
volatility, unstable liquidity, and periodic flash crashes, conducting this kind of
investigation is challenging while implementing algorithmic trading. To address
these issues, the current research presents a feedback–learning tool based on
reinforcement learning methods, namely function approximation reinforcement
learning: SARSA, Q–Learning, and Greedy–GQ. We examined the reinforcement
learning theory, from the fundamental to the most sophisticated, engineered
the control agents from scratch, and ultimately validated statistically reliable
analyzed findings. Numerous scenarios were provided in which reinforcement
learning agents acted in the market while trading a future contract of the São
Paulo stock exchange in Brazil (B3’s mini–index). Our best panels demonstrated
solid final cumulative earnings of over 150% in a period of one year.
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CHAPTER 1

Introduction

We launch our research by outlining the current state of artificial intelligence
(AI) in the world, followed by an examination of the distinctions among AI’s sub–
levels. While determining reinforcement learning (RL) as our AI central topic, we
bring in its simplest structure, how it differed from other systems, and why it is
rarely employed in the financial industry, in spite of its unquestionable promises
of earnings. Moreover, a compelling theoretical economics controversy between
efficiency and rationality on the one hand and inefficiency and irrationality on
the other, could not be ignored. Two key hypotheses are evaluated for this
purpose: the efficient market hypothesis and the adaptive markets hypothesis.
At the end, we briefly explain why RL may carry out the same, if not better,
degree of achievement than conventional stochastic optimal controls. In addition,
we also hand out the research methodologies, historical context, and thesis
structure.

1.1 Motivation and justification

In 2022, we stand facing the transformation of an emphatic world, giving rise
to a fundamentally new human way of life, working, and interacting with one
another, our planet, and the universe. The World Economic Forum refers to this
new cycle as the fourth industrial revolution (4IR), a phase that has never been
experienced before in human history. In a nutshell, the first industrial revolution
(1760–1840) mechanized the generation of water and steam power. The second
(1870–1914) saw the mass generation of electric power. The third period (the
1950s) witnessed the introduction of automated production via breakthroughs
in computers and electronics. The fourth (2016–now) can be characterized by
a series of rapidly evolving and well–publicized developments in a variety of
subsets of technological domains, including nanotechnology, biotechnology,
advanced digital production technologies, human–machine interfaces, and
artificial intelligence. With regard to these achievements in the 4IR, AI has
created machines that learn unknown complex intellectual tasks in real–time
and respond faster and more efficiently than humans. Earlier, these duties
were exclusively performed by extremely skilled humans after years of training,
experience, and practice. These valuable learning and responding machine
systems are already widely applied in uncountable different expertise, and, as
we will see, they could not be missing in the field of finance.
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1.1. Motivation and justification

Artificial Intelligence

Machine Learning

• Supervised

• Unsupervised

• Reinforcement

classification, regression,
neural networks

clustering, topic modeling

recommendation, dynamic
treatment regimes

Figure 1.1: AI and ML diagrams

AI problems are commonly separated into supervised, unsupervised, and RL.
The first set of problems includes classification, regression, and neural networks,
while the second encloses compression, clustering, and topic modeling. On the
one hand, the supervised models learn from a training set with labeled and
correct outcomes. On the other hand, the unsupervised models typically infer
from hidden structures discovered from within collected data. RL is different
from supervised or unsupervised machine learning (ML) techniques because it
neither receives any knowledgeable external information nor tries to find hidden
structures; instead, it only maximizes a reward measure. Essentially, it employs
a trial–and–error cumulative reward method to optimize the expectation of
a utility function over time. This is known as a sequential decision problem
where the agent must learn an optimal behavior in an unknown environment
through reinforcements (feedback). Fig. 1.2 illustrates a simple structure for
an RL system.

Agent

Environment
Next State

Reward

Action
Current State

Figure 1.2: RL’s basic framework

The motivation for this master thesis resides precisely in the point that RL
methods remain largely unexplored by the financial trading sector. Increased
volatility, unstable liquidity, and periodic flash crashes are the most prevalent
challenges encountered while implementing algorithmic trading. Moreover, the
financial markets are dynamic and turbulent structures that are too complex
for straightforward algorithms, demanding the expertise of highly skilled ML
scientists to make their applicability an investment choice. Indeed, complex

2



1.1. Motivation and justification

quantitative strategies and technologically enhanced participants result in
short–lived methods with harder ways of identifying patterns. However, recent
developments and advances in AI are changing the industry and contributing
to being more explored by the significant investment industry. These new
techniques are receiving more attention to their potential, which promises to
overcome other investment theories already settled in the industry for many
decades.

Automated strategies must be flexible, not wholly reliant on pattern–based
strategy, and capable of learning and adjusting on the go–just like humans,
but faster. RL covers these concepts with a high precision level, which is why
this thesis proposes a in–depth study on its most advanced methodologies. In
our opinion, RL algorithms are also superior to any other ML system because
they are quicker in recognizing an old and no longer predictable pattern (no
longer lucrative to trade), as well as faster in identifying new recurring patterns
that offer potential trading profits. Consequently, RL is preferable to other
ML subcategories for making real–time decisions based on current market
circumstances and the immediate consequences of their actions.

As a natural byproduct, this dissertation proposes an RF trading application
in financial markets using as a source of information nearly solely the past
prices and/or returns of assets. Note that the term "information" or "decision–
making information" may refer to any measurable knowledge that an individual
might retrieve from the market to substantiate their decision–making process.
However, since we design applications that make use of an asset’s historical
prices and/or returns, we often present information as those quantifiable values.

Why does this dissertation intend to develop trading strategies based on past
prices or returns as information?

We do not want to get enmeshed in the finer points of this question’s
topic and the theories that surround it, as a whole thesis may be devoted
to this issue. Nonetheless, a simpler response requires basic consideration of
the theoretical nature of financial markets. According to the efficient market
hypothesis (EMH) [CN05, chap. 3], when the market’s decision information
consists only of past prices or returns (i.e., its weak form), systematic profits
from trading are unattainable. This concept is because the market prices follow
the fair value of its risky assets, also called the discounted present value (DPV),
in an efficient manner. In a technical probability theory way, the market is a
martingale stochastic process where the difference between the expected future
return given an information measure (random variable), and the current return
(random variable) is equal to zero:

E
[
Rt+1|St

]
−Rt = 0.

From the perspective of microeconomics theory, a capital market is
considered efficient when its prices or returns are determined as the outcome
of supply and demand in a competitive manner and by rational players.
These players rapidly process relevant pieces of information into the asset’s
prices accordingly (efficiency and rationality). In such a world, there should
be no opportunities for profiting since new information is unforecastable,
considering which price changes should be unforecastable too, i.e., the expected

3



1.2. Research design and central issue

future return is zero given currently available data (fair game or martingale).
Conversely, common sense dictates that neither the market’s information is
entirely unforecastable, nor is the economic agents’ behavior often wholly
rational when making decisions under uncertainty; moreover, the market process
is also not a flawless martingale. The result lies in a frequently inefficient
financial market that opens possibilities for profitable tradings (inefficiency and
irrationality).

This debate between efficiency and rationality on one side and inefficiency
and irrationality on the other is one of the most contentious in our field, and one
that we can not ignore. Illustrious professor Andrew W. Lo [Lo17] brilliantly
solved this issue using his theory of adaptative markets hypothesis (AMH),
which shows the psychological incompleteness of the market’s efficiency by
the coexistence of rationality and irrationality notions. At some point, when
the markets become unstable, economic agents often tend to make decisions
instinctively, producing exploitable inefficiencies. According to common sense
and the AMH theory, it seems reasonable that the financial market might be
inefficient, thus opening opportunities for profiting in algorithm tradings.

How to benefit from market inefficiency circumstances?

The solution depends on the theoretical approach adopted to face those
opportunities. As justified before, this master thesis considers that financial
trading systems (FTSs) have to learn and adapt from a time–varying
environment in a real–time manner. We believe that this kind of framework is
able to detect and adjust profitable trading policies on the fly, without human
intervention. Throughout this dissertation, we will look at many RL approaches
that may be applicable in these situations.

Why do we not employ primary traditional and already established stochastic
dynamic programming (DP) systems that guarantee optimal solutions instead of

RL?

A last conundrum that someone reading this dissertation may consider is
the existence of regular stochastic optimum controls, for instance, DP, that, in
principle, may more efficiently find optimal financial trading strategies than
RL or other tools. In general, DP requires a tedious process that includes
complex mathematics to obtain the distribution of the transition probabilities
and rewards. However, RL does not demand these conditions, and can produce
nearly and exact optimal solutions despite this [Gos15, p. 198]. Additionally,
due to the extraordinarily large dimensionality of an FTS issue, calculations
are often infeasible. This is why RL is such a lovely method: it can handle
a Markov decision process (MDP) without developing a theoretical model
(transition probabilities and rewards), and without succumbing to the curse of
costly computations owing to their dimensionality.

1.2 Research design and central issue

Professionals and quantitative researchers nowadays depend on a variety of
conventional and modern computational methodologies to make fast and
accurate decisions. Thus, in light of recent breakthroughs in big data analytics,
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1.3. Research methodology

the problem is to identify a reliable tool capable of understanding enormous
volumes of unstructured data accessible on the market. Without a doubt,
the markets’ dynamism, complexity, evolutionary, and chaotic nature make
this task unmanageable and sometimes ineffective. To that end, this thesis
will examine mechanisms for generalizing knowledge gleaned from interactions
with the financial market environment using computer learning processes. As
previously said, there are various promising developers of AI techniques that
actually prove their capacity to address complicated sequential decision–making
dilemmas in a variety of domains, which should pose no difficulty when applied
to the financial forecasting environment.

This master’s thesis will examine an efficient and possibly profitable
application of AI in financial markets, an area of computer science that is
relatively underdeveloped. We will examine the theory and use of many of
the most powerful, automated, and contemporary self–adaptive ML, known as
RL. We focus on intelligent on–policy and off–policy control solutions based on
function approximation processes from the family of RL methodologies. These
titles may be troublesome to comprehend at the outset of this work, but we
will gradually gain the essential knowledge throughout the theory chapters, and
by the final analysis, the reader will be able to reconcile the theory with the
final application case, as well as assess its profitability and reliability.

This quantitative research is divided into three significant parts: theory,
application, and analysis. The first part comprehends the theory’s evolution
from the primary forms of the decision–process, and its evolutions during the
decades, arriving at the most advanced form today applied in the field of
computer science and finance. The second part applies the most advanced
theory in order to solve a practical algorithm trading problem. Finally, the last
part analyses the results of the application case, and its statistics and risks,
and answers the most important research question of this study:

Can we have consistent profits using RL in the financial market?

The main goal of this dissertation is to demonstrate that RL can be a reliable
and high–level investment tool like any other already established alternative
in the financial domain, such as stochastic process, fundamental or technical
analysis, econometrics, etc. Likewise, this research aims to propose a promising
application of its optimized model to allow experts to enhance returns, reduce
risk, and increase efficiency by systematically incorporating RL methods for
algorithm trading decision–making.

1.3 Research methodology

Prior to starting the study, certain key guidelines of our research methodology
should be considered. We conducted this study to assess the AI practice in
FTSs. We set up the applied design as the research methodology of this thesis
to meet the central research question. This option was made since our ambition
was to build a consistent AI technique that would contribute to the financial
trading algorithm industry, and the emerging model for this demand may serve
as a credible demonstration of this. Simultaneously, we likewise took advantage
of the quantitative research type owing to the nature of the investigation’s
analysis, which relies on measurements and statistics.

5



1.3. Research methodology

The programming language chosen for this work was Python 3.9, which
includes the scientific programs NumPy and Pandas, the visualization packages
Matplotlib and Seaborn, the ML library Pytorch, as well as the datetime
and tqdm supplementary packages. We rigorously adhered to the constraints
mandated by Python’s best practices for code organization, referred to as
Python Enhancement Proposals 8 (PEP8). PEP8 establishes style guidelines
for Python users in order to facilitate code comprehension. Yet, everything
was rewritten from the ground up, incorporating as many vectorized structures
and operations, and high performance guidelines as possible. We cannot
forget to mention the widespread use of abstraction, inheritance, encapsulation,
and polymorphism in Object–Oriented Programming (OOP), especially when
we engineered the RL environment as well as the three agents. Overall,
everything was created from scratch and authored by the writer of this thesis,
totaling approximately 200 lines of code for the RL environment, 650 lines
for the RL agents, and thousands lines for the pipeline, analysis, and helper
functions. The complete code is available in the author’s GitHub repository
at https://github.com/fabiorodp/uio_master_thesis under the GNU general
public license, version 3, from 29th June 2007. It is important to mention
that the reproducibility and results are achieved again with a high degree of
reliability when the methodologies are replicated by the files in that GitHub
repository.

Unfortunately, we did not have access to a professional data source such
as Bloomberg or other high–level terminals currently available on the market.
However, the data for this project was gathered straight from the B3 Sao Paulo
Stock Exchange’s website1. According to Brazilian legislation, they must make
a raw data with all daily transactions publicly available for at least a short
period of days (10 days). This data is registered every nano second, stored and
freely published at the end of every daily session. The files also consist of the
price and volume of every transaction that occurred during that day, for all
Brazilian financial assets. Thus, throughout the one–year period of research,
the author of this thesis continued to collect daily historical data from the B3
website, and treated it using his own Python code in order to make it ready for
the RL environment used in this work.

Finally, a significant legal and ethical problem that we had to take into
account is associated with the ownership, licensing and usage of the researched
data. As mentioned earlier, our research utilizes data from B3, which are openly
provided near the end of every day session. Despite that this data is open
and free for the public, we were not authorized to republish its contents. As a
consequence, it may compromise the reproducibility of our codes. To prevent
such impacts, the reader may:

1.) use any alternative downloadable and open–source accessible online
database, such as yahoo finance;

2.) follow the detailed processing construction of the data presented in the
Sections 1.4 and 5.1,

without sacrificing reliability or performance of our environment or agents
algorithms.

1https://www.b3.com.br/pt_br/market-data-e-indices/servicos-de-dados/market-
data/cotacoes/cotacoes/
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1.4. Reproducibility

1.4 Reproducibility

This section introduces a guideline for understanding the usage of our built–from–
scratch application programming interface (API), as well as reproducing the
experiments performed in this thesis. Keeping in mind that we are processing
a massive amount of data, the following steps must be carried out exactly as
outlined for the algorithms to perform properly. Further, we recommend reading
Chapter 5 and Chapter 6 first in order to comprehend the specifics of this
tutorial. It is important to mention that all classes, modules, functions, and
code–snippets are very well–commented and with their corresponding docstrings,
so the user may easily replicate the experiments. However, if there still are
questions, the author is happy and available to answer them by e–mail at
fabior@uio.no.

API’s STRUCTURE:

The API consists of the following directories and files:

|--- ./
| |--- thesis/
| |--- LICENSE
| |--- README.md
| |--- .gitignore
| |--- environment.py
| |--- algorithms.py
| |--- helper.py
| |--- pipeline.py
| |--- technicalAnalysis.py
| |--- parsingData.py
| |--- runPipeline.py
| |--- results60min.py
| |--- results500kticks.py
| |--- analysis60min.py
| |--- analysis500kticks.py
| |--- combinedAnalysis.py
|---

where

• thesis/: Directory where the electronic version of this thesis is stored.

• LICENSE: API’s license.

• README.md: API’s repository landing page.

• .gitignore: List with ignored files and folders.

• environment.py: Market’s environment dynamics.

• algorithms.py: Reinforcement learning algorithms.

• helper.py: Auxiliary functions necessary for the API to operate correctly.

• pipeline.py: Hyper–parameters search module.

• technicalAnalysis.py: Technical Analysis modules.

• parsingData.py: Code–snippet showing how to extract and parse market
data.
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• runPipeline.py: Code–snippet showing how to run the pipeline and
hyper–parameter search.

• results60min.py: Code–snippet showing how to collect the results for
60–min intervals.

• results500kticks.py: Code-snippet showing how to collect the results
for 500k–tick intervals.

• analysis60min.py: Code–snippet showing how to perform the analysis
for 60–min intervals.

• analysis500kticks.py: Code–snippet showing how to perform the
analysis for 500k–tick intervals.

• combinedAnalysis.py: Code–snippet showing how to run the combined
analysis.

PARSING MARKET’S DATA:

We use txt or csv daily files that include intraday raw data for all transactions
of all assets traded in the B3’s stock–exchange. The files’ contents must comply
with the following standard structure:

RptDt;TckrSymb;UpdActn;GrssTradAmt;TradQty;NtryTm;TradId;TradgSsnId;TradDt
2022-04-29;WDOM21;0;510840,000;1;090053610;10;1;2022-04-29
2022-04-29;WINM21;0;110840,000;1;090053610;20;1;2022-04-29
2022-04-29;PETR4;0;34.34,000;24;090053610;30;1;2022-04-29
2022-04-29;WINM21;0;110840,000;1;090053610;40;1;2022-04-29
2022-04-29;VALE3;0;88.90,000;3;090053610;50;1;2022-04-29
2022-04-29;WINM21;0;110840,000;1;090053610;60;1;2022-04-29
2022-04-29;WINM21;0;110840,000;1;090053610;70;1;2022-04-29
2022-04-29;VIIA3;0;2.90,000;1;090053610;80;1;2022-04-29
2022-04-29;WINM21;0;110840,000;5;090053610;90;1;2022-04-29

where

• RptDt is the date of the trade.

• TckrSymb is the ticker of the traded contract.

• UpdActn is always 0.

• GrssTradAmt is the executed value of the traded contract.

• TradQty is the number of contracts traded.

• NtryTm is the timestamp of the operation.

• TradId is the ID of the operation.

• TradgSsnId is always 1.

• TradDt is the date of the trade.
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Note that each trading day has a different file that must have the
exact filename format of TradeIntraday_yyyymmdd_1.txt, where yyyymmdd
denotes the year, month, and day, respectively. These files require ZIP
compression in order to be manageable, so the compressed filename format also
must be TradeIntraday_yyyymmdd_1.zip.

For the extraction and parsing modules to function effectively, these daily
files must be placed in a folder designated to each contract, exactly as follows:

|--- ./data/WINJ21/
| | |--- raw/
| | | |--- ...
| | | |--- TradeIntraday_20210302_1.zip
| | | |--- TradeIntraday_20210303_1.zip
| | | |--- TradeIntraday_20210304_1.zip
| | | |--- ...
|--- ./data/WINM21/
| | |--- raw/
| | | |--- ...
| | | |--- TradeIntraday_20220429_1.zip
| | | |--- TradeIntraday_20220428_1.zip
| | | |--- TradeIntraday_20220427_1.zip
| | | |--- ...
|--- ...

Now, making use of our helper.getAnAsset() module in helper.py2, the
chosen ticker/contract will be extracted from the raw files. We recommend
setting both in_folder and out_folder from helper.getAnAsset()’s
attributes to None, then the system will configure the market’s data in
accordance with the API’s default. Thus, we end up with the following directory
structure:

|--- ./data/WINJ21/
| | |--- raw/
| | | |--- ...
| | |--- extracted/
| | | |--- ...
| | | |--- WINJ21_20210302.csv
| | | |--- WINJ21_20210303.csv
| | | |--- WINJ21_20210304.csv
| | | |--- ...
|--- ./data/WINM21/
| | |--- raw/
| | | |--- ...
| | |--- extracted/
| | | |--- ...
| | | |--- WINM21_20210302.csv
| | | |--- WINM21_20210303.csv
| | | |--- WINM21_20210304.csv
| | | |--- ...
|--- ...

For parsing the data to a chosen framed interval, we utilize our mod-
ules helper.parseIntoTimeBars() or helper.parseIntoTickBars(). An
example of a data directory after helper.parseIntoTickBars() has been
properly used should be:

|--- ./data/WINJ21/
| | |--- raw/
| | | |--- ...
| | | |--- TradeIntraday_20210302_1.zip

2https://github.com/fabiorodp/uio_master_thesis/blob/main/helper.py
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| | | |--- TradeIntraday_20210303_1.zip
| | | |--- TradeIntraday_20210304_1.zip
| | | |--- ...
| | |--- extracted/
| | | |--- ...
| | | |--- WINJ21_20210302.csv
| | | |--- WINJ21_20210303.csv
| | | |--- WINJ21_20210304.csv
| | | |--- ...
| | |--- WINJ21_500000ticks.csv

|--- ...

An example of these procedures is found in the file parsingData.py.

PIPELINE AND HYPER–PARAMETER SEARCH:

Our module pipeline.pipeline() in the file pipeline.py3 performs the
hyper–parameter search described in Chapter 6.1, and saves the results as
a json file for further examination. Now that we have successfully parsed all
market data for all contracts/tickers, we may invoke that pipeline module to
perform a hyper–parameter search for each individually ticker, for example:

pipeline.pipeline(
fileName="./data/WINJ21/WINJ21_500000tick.csv",
initInvest=5600*5,
params=None,
outFolder=None,
verbose=True

)

When the attribute params is set to None, the standard hyper–parameter
search described in the application part of this thesis is carried out. If we
intend to modify the parameter space of the search, we should pay attention
to the function’s docstring first; otherwise, if it is not correctly implemented,
it will not work appropriately. Also, we recommend setting outFolder from
pipeline.pipeline()’s attributes to None, then the system will create a
"./results/" directory inside the API’s root folder, as follows:

|--- ./results/
| | |--- WINJ21_500000ticks.json
|--- ...

To collect all the findings and proceed to the next phase of the research,
this procedure must be done for each contract/ticker individually. We decided
to do this step independently for each contract since it enables us to parallelize
the process and get the results more quickly.

An example of these procedures is found in the file runPipeline.py.

RESULTS

The findings gathered in Chapter 6.1 were the product of the hyper–
parameter search, but the inference of these results were handled by the
code–snippets in results500kticks.py and results60min.py. There, three
distinct modules were employed, as follows:

3https://github.com/fabiorodp/uio_master_thesis/blob/main/pipeline.py
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• helper.loadResults(): To load results from files;

• helper.topWorstBest(): To filter the top worst/best results;

• helper.plotPies(): To show pie plots of results.

ANALYSIS

Chapter 6.2 performed an analysis of the most optimal RL models,
running the code–snippets in analysis500kticks.py, analysis60min.py,
and combinedAnalysis.py. There, several modules were used, as follows:

• helper.run500times(): To run 500 times each RL algorithm with
different seeds.

• helper.optimal500(): To get the most optimal model among 500
models.

• helper.plotReturnTrajectories(): To line–plot return trajectories.

• helper.plotMeanReturnTrajectory(): To line–plot mean return tra-
jectory.

• helper.plotDist(): To histogram–plot final return trajectories’ values.

• helper.plotBox(): To box– and swarm–plot final return trajectories’
values.

• helper.plotAllBoxes(): To box–plot all final return trajectories’ values
of all algorithms.

1.5 Research context

RL is described as a learning system with an agent operating in an environment,
getting quantifiable positive or negative feedback (reward) after each choice,
and maximizing the quantity of this information over time in order to improve
and maximize the overall reward. One of the first concepts of feedback–based
learning dates all the way back to the 1950s, when models were based on
trial–and–error learning, a concept known as the psychology of animal learning.
Simultaneously, optimum control and its solution via the use of value functions
and DP were well–known academic concepts. Richard Bellman [Bel52] proposed
the Bellman equation and value iteration in the mid–1950s, which Ronald
Howard [How64] further developed the theory in the early 1960s by including
MDP and policy iteration techniques to enhance DP. Additionally, Marvin
Minsk [Min95] explored various challenges in large trial–and–error learning
situations in his work titled "Steps toward artificial intelligence." From this
point, the term RL was coined and became well recognized in the literature.

Throughout the 1970s and 1980s, scientists concentrated their efforts on
supervised AI rather than RL. Despite this, A. Harry Klopf ([Klo72], [Klo75],
[Klo82]) established a clear separation between supervised and RL, allowing
subsequent researches to be more distinguished and focused on “[controlling]
the environment toward desired ends and away from undesired ends” [SB19,
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p. 19]. During these decades, Richard S. Sutton and Andrew G. Barto [SB81]
carried out fundamental contributions to the difference between supervised and
RL.

Combining trial–and–error and DP perspectives resulted in a third thread
devoted to temporal–difference (TD) systems, in which decision–making is
accomplished through the difference of the successive estimates of a particular
parameter, for example, the expected probability of winning the blackjack
game during its rounds given a particular goal in mind. There were various
contributors to the ideas of TD, such as Arthur Samuel [Sam59], who was the
first to suggest and develop a learning technique that incorporated TD concepts.
Minsky [Min95] discussed Samuel’s work associating to secondary reinforcement
theories. Klopf [Klo72] linked TD with trial–and–error learning and correlated
it to animal learning psychology. Ian Witten ([Wit76], [Wit77]) was the earliest
publication of a process called tabular TD(0) for use as part of an adaptive
controller for solving MDPs. A similar method was published by Sutton [Sut84]
that developed an actor–critic architecture that uses TD learning combined
with trial–and–error learning.

Chris Watkins [Wat89] built on past work by developing a framework known
as Q–learning in which TD and optimum control were completely integrated.
He was the first to clearly describe the so–called approximate DP technique,
which combines DP with online learning tools for non–stationary situations.
These non–stationary cases provided a fresh perspective on the theories and
techniques for solving problems involving complete and incomplete knowledge
systems.

Various research and theoretical variants were published in the 1990s and
2000s, although all were constrained by the period’s limited computing capability.
However, the spread of RL became apparent in the 2010s as computing power
increased. Indeed, the today’s processing capability evolution is far more and
more affordable than it was 20–30 years ago, allowing us to test such ideas in
previously imagined scenarios. For instance, we may easily apply RL to dynamic
and non–stationary systems with a high degree of dimensionality. Additionally,
as a consequence of these technological advancements, researchers may combine
deep, recurrent, or any complicated neural network architecture with advanced
RL theories to generate even more promising outcomes than previously possible.
As a result, Google DeepMind and Montreal Institute for Learning Algorithms
[Mni+16] released a paper titled "Asynchronous methods for deep reinforcement
learning" in which they presented a novel application that is regarded as a
game–changer in RL efficiency by the academic community.

Regarding the implementation of RL techniques in the field of finance,
particularly in algorithm trading, we would like to highlight three successful
contributions: [BC12], [CS15] and [Cor+19]. These academic works propose
automated FTSs based on various RL algorithms and their application to legit
datasets of daily stock prices.

The first paper developed a TD and a Kernel–based RL methods, both of
which were influenced by various 1990s and 2000s publications. The novelty
of this initial research was that the authors included a third signal, dubbed
“stay–out–from–the–market signal,” into the decision–making process of the
algorithms, while previous works solely examined two signals: sell and buy.
Overall, their results were quite positive, with their top models generating
more than 100% in final accumulated returns over a span of around 5,000 time
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periods.
The second publication engineered a Q–learning and a SARSA function

approximated RL. The methodology used in the first paper was generally
repeated in the second but with advances regarding the different RL types, and
employment of a particular basis functions (or "squashing function" term used
in the paper). Again, the final outcome of their best panels was significantly
high, with final accumulated returns exceeding 90% over a course of around
7,000 time intervals.

The third work developed the second paper further. The same methodology
was covered again, but now with three distinct function approximation
RL algorithms: SARSA, Q–learning and Greedy–GQ. Moreover, this study
evaluated more options of reward functions: Shape and Calmar ratios. Further,
based on a literature review from 2013, a recently developed block representation
of the features was employed, achieving consistent benefits. Finally, the final
accumulated results overcame the operative annual returns of 50% in a period
of approximately 18 years.

1.6 Structure of the thesis

This thesis was divided into three sections: theory, application, and analysis.
The first part addressed the foundation theories that underpin the landing
descent operated in the second part. We adopted a sequential exhibition
to expose these subjects because the most recent theory is based upon the
development of past notions, and without a comprehension of these earlier
concepts, the reader would be unable to grasp the more advanced theory.
Throughout the sections, we proceeded with the fundamental conceptions from
the early twentieth century, such as stochastic and Markov processes. Later,
we introduced a framework for sequential decision–making, set up notations
and entities, as well as resolved a simple control case operating exhaustive
computations. As soon as the foundation theory was solidified, we then went on
to the reinforcement theory, beginning with the tabular RL notion. Although
the tabular theory was not employed in the application section, the functional
approximation RL is based on it, and so requires a thorough comprehension.
Thereby, we devoted a whole chapter to function approximation, in which three
methods (SARSA, Q–learning, and Greedy–GQ) were explained, and they were
employed in the application part.

The second part of this research centered on the application case, which
encouraged the development of a state–of–the–art approximated RL. We
supplied a complete explanation of the circumstance we wanted to address, as
well as a mathematical formalization of the topic. These two chapters outlined
in detail how raw data were dealt with and adopted, including the dynamics
and specificities of the environment. Additionally, we explored the Brazilian
stock exchange, particularly the futures markets for mini–index contracts. At
the end of this part, we merged the theory with the application issue, braking
down the methods and engineering a code for their proper operation.

The third part of this thesis raised an analysis of the preceding two parts,
their theory as well as application, comprising the associated findings, discussion,
and conclusion. We started by describing the process through which we
discovered the optimal models and their profitability. Simultaneously, we
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inspected the hyper–parameters search and their impact on the outcomes.
The findings were then presented statistically, using 500 stochastically distinct
simulations of the best models. That way, we removed any possible argument
of lucky factor and further accessed statistical features that were utilized to
evaluate the models’ robustness. Finally, we dealt with the research questions,
looked at potential future works, made allusion and viewpoints on some open
academic subjects that are unresolved in the literature, and yet offered a fine
summary and conclusion to all accomplished tasks.
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Theory
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CHAPTER 2

Foundation theory

This chapter presents some essential stochastic process theories that are utilized
in the classical Markov decision process (MDP) theory and later subjects. Our
explanations will not focus only on the minutiae of those topics, but rather
on introducing certain necessary definitions, propositions, terminologies, and
notations and finally on solving a simple control optimization problem, namely
an MDP with exhaustive computations. This kind of scenario is particularly
interesting to the researchers since it is often used in the study of real–world
systems and serves as the foundation for the dissertation’s major theme –
reinforcement learning. In the end, an exhaustive computations example is
added for the sake of comparison with the more advanced techniques exhibited
later.

2.1 Stochastic process

Unlike the other sections of this thesis, the content here is basically a collection
of definitions, propositions, remarks, and properties that will be used later.
Important to mention that some definitions are reproduced from the literature,
with proper references, and sometimes adapted to our words, notations and
additions if we consider relevant. This collection is particularly critical for our
study because, e.g., on many occasions, we simply refer to the definition’s name,
and the reader must be acquainted with the subject in order to comprehend the
complete concept. We do not cover all of the details from each subject, but only
those that are important for our work; thus, if the reader is interested in knowing
more about topics that are not primarily addressed in this dissertation, we
recommend the following works: [Wal11], [Lin17], [Ros19], [Kle20], and [CB21].
Therefore, we start with the definitions of state space, stochastic process, and
Markov process:

Definition 2.1.1 ([CB21, Def. 2.1] - Stochastic process). Let (Ω,F , P ) be
a complete probability space, T an index set, and (E,B) a measurable space.
An (E,B)–valued stochastic process on (Ω,F , P ) is a family (Xt)t∈T of random
variables, that is, a family of measurable mappings Xt : (Ω,F) −→ (E,B) for
t ∈ T .
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Definition 2.1.2 (State space). The state space S is the set of all possible
states of an environment. More formally, is the measurable space (S, 2S) where
the stochastic process of interest will take values.

• Note that (E,B) = (S, 2S), where S is a finite or countable set.

• We will repeatedly use s for both the current state and s′ for the next
(future) state, where each s, s′ ∈ S.

Definition 2.1.3 (Markov process). A stochastic process {Xt, t = 0, 1, 2, . . .}
taking values in S values, i.e., Xt = s ∈ S, is said to be a Markov process if
following property is satisfied:

P (Xt+1 = s′|X0 = s0, . . . , Xt−1 = st−1, Xt = s) = P (Xt+1 = s′|Xt = s),
(2.1)

for all s0, . . . , st−1, s, s
′ ∈ S and t ∈ N ∪ {0}.

The transition probability (TP) provides insight into the process’s evolution
and it is assumed to not change with time, that is, the Markov process is time
homogeneous.

Definition 2.1.4 ([Wal11, Def. 7.5] - One–step TP). A Markov process has
one–step transition probabilities defined as

pXt(s′ | s) def= P (Xt+1 = s′|Xt = s), (2.2)

and the transition probability matrix (TPM) denoted by

P def=
[
pXt

(s′ | s)
]
, (2.3)

for all s, s′ ∈ S, and t ∈ N ∪ {0}.

Remark 2.1.5. In the literature, it is common to leave out the sub–index t from
pXt(·), resulting in pX(·). Moreover, it is possible to find the notation p(·) for
the same one–step transition probability pXt(·).

Remark 2.1.6 ([Wal11, pp. 194–195] - TP’s properties). For all possible states
s, k, s′ ∈ S, if pXt

(s′ | s) is a transition probability and P a transition probability
matrix, then we have the following properties:

(a) The n–step TP: Let n be a positive integer, then

P(n) def=
[
pXt+n

(s′ | s)
]
, (2.4)

where pXt+n(s′ | s) = P (Xt+n = s′|Xt = s).
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(b) Chapman–Kolmogorov equation: Let a and b be positive integers,
then

pXt+(a+b)(s
′ | s) def= P

(
Xt+(a+b) = s′|Xt = s

)
=

∑
k

P
(
X(t+a)+b = s′, Xt+a = k|Xt = s

)

=
∑
k

P
(
X(t+a)+b = s′, Xt+a = k,Xt = s

)
P

(
Xt = s

)
(*)=

∑
k

P
(
X(t+a)+b = s′, Xt+a = k,Xt = s

)
P

(
Xt+a = k,Xt = s

) ·
P

(
Xt+a = k,Xt = s

)
P

(
Xt = s

)
=

∑
k

P
(
X(t+a)+b = s′|Xt+a = k,Xt = s

)
· P

(
Xt+a = k|Xt = s

)
(**)=

∑
k

P
(
X(t+a)+b = s′|Xt+a = k

)
· P

(
Xt+a = k|Xt = s

)
=

∑
k

pX(t+a)+b
(s′ | k) · pXt+a

(k | s)

= P(b) ◦ P(a),

(2.5)

where ◦ denotes matrix multiplication, (*) represents algebraic manipula-
tion, and (**) denoted Markov property.

Definition 2.1.7 (State transition). A state s makes a transition to state s′

(s −→ s′), in other words, state s′ is accessible from s, such that

pXt+n(s′ | s) > 0.

Conversely, if the states s and s′ are not accessible from each other, then

pXt+n
(s′ | s) = 0.

Following that, we explain some valuable terminologies for Markov processes,
which are assumptions frequently used in some subsequent definitions.

Remark 2.1.8 ([Ros19, pp. 205–215]).

(a) If no other state is accessible from state s′, then this state s′ is called as
an absorbing state.

(b) If two states are accessible to each other, then they are said to
communicate and are denoted by s←→ s′.

(c) Suppose that a collection of states communicate with each other, even
though through an intermediary state in the group; thus, they are in the
same class.
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(d) Any two classes of states can be either identical or disjoint.

(e) Suppose all states communicate with each other, even though through an
intermediary state. In that case, the process is irreducible, i.e., there is
only one class.

(f) State s is said to be:

– recurrent if
∑∞
n=1 pXn(s|s) =∞, i.e., starting in state s, the process

will re–enter infinitely often times to that state.
– transient if

∑∞
n=1 pXn

(s|s) <∞, i.e., starting in state s, the process
will re–enter finitely often times to that state.

(g) Recurrent and transient properties are also applied to classes.

(h) A null recurrent state has its long–run proportion equal to zero.

(i) A positive recurrent state has its long–run proportion greater than
zero.

(j) All states in an irreducible process can neither be transient nor null
recurrent. Still, they can all be positive recurrent.

(k) A Markov process that can only return to a specific state after two or
more steps is called periodic. The converse process is named aperiodic.

(l) An irreducible, positive recurrent, and aperiodic Markov process is also
called ergodic.

The calculations of the long–run proportion, limiting probabilities, and
long–run average reward are done based on the following definitions:

Definition 2.1.9 ([Ros19, pp. 215–231] - long–run proportion). If an
irreducible Markov process {Xt, t = 0, 1, 2, . . .} has only positive recurrent
states, then the long–run proportion, also called stationary probabilities, can
be obtained by solving the linear equations

π(s′) =
∑
s

π(s) pXt+n(s′|s), (2.6)

and ∑
s′

π(s′) = 1, (2.7)

where π(s) and π(s′) denote the long–run proportion of time that the process
re–enters state s and s′ respectively.

Definition 2.1.10 ([Ros19, pp. 232–233] - Limiting probabilities). If {Xt, t =
1, 2, . . .} is an ergodic Markov process, then the limiting probabilities

α(s′) = lim
n−→∞

P (Xt+n = s′ | Xt = s) = lim
n−→∞

P (Xt+n = s′) (2.8)
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always exist and do not depend on an initial state s. Hence, α(s′) = π(s′), and
as in 2.1.9, they can be obtained by solving the linear equations

α(s′) =
∑
s

α(s) pXt+n(s′|s), (2.9)

and ∑
s′

α(s′) = 1. (2.10)

Definition 2.1.11 ([Ros19, p. 230] - long–run average reward). If {Xt, t =
1, 2, . . .} is an irreducible Markov process with positive recurrent states and
stationary probabilities π(s′), then the long–run average reward is given by∑

s′

r(s′) π(s′), (2.11)

where r(s′) is the average reward received whenever the process enters state
s′ ∈ S (see Definition 2.2.5).

2.2 Sequential decision–making framework, notations, and
entities

The sequential decision–making framework is the underlying concept behind
of feedback learning from environment interactions. This system follows a
stochastic process involving an agent who can choose different actions under
different situations, continuously optimizing its decisions. This process is
better described by Markov processes where actions influence immediate and
subsequent rewards. The agent, also called learner or decision–maker, selects
actions to be performed in an environment that responds, presenting new
situations and rewarding a specific quantity for each choice. The main goal here
is the maximization of rewards over time through new actions choices made
by the agent. Simply put, this process can be reduced in three signals into
a loop between the agent and environment (see Figure 1.2). The first signal
corresponds to the environment’s data (state) that will motivate the agent’s
choices. The second concerns the selection made by the agent (action). Finally,
the last one represents the reward obtained from the environment under an
agent’s decision.

The states represent the environment’s existing context. Any measurable
information from the real world could affect the desired outcome. The collection
of states is a space set (see 2.1.2) containing all the factors and knowledge that
the decision–making agent could benefit from comprehending it and in any form.
The agent will learn from these representations of the real–world scenarios and
wisely deal with uncertainties by selecting different available actions.

Definition 2.2.1 (Action space). The action space is the finite set

A def= {a1, a2, . . . , aN},

of all possible actions.
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2.2. Sequential decision–making framework, notations, and entities

The agent chooses, through a function denoted by A(s), an action a that is
available for a given state s.

Proposition 2.2.2 (Action function). Let set A be an action space in a
decision–making process. The action function A(s) returns a subset of A
containing all available actions for the given state s. A(s) may be a proper
subset of A or even the empty set.

For every unit time (step), the system either switches to a new state or stays
the same. This phenomenon occurs in a Markov decision problem, meaning
that an action–state transition probability

p(s′ | s, a) = P
(
Xt+1 = s′ | Xt = s, A(s) = a

)
, (2.12)

under the influence of an action a from A(s) is applied for each step. We will
often use the notation s −→ s′, which represents the transition from s to s′

state, where s can be equal or different from s′, and both s, s′ ∈ S.
Besides the individual mechanisms previously examined, there exists a

further entity in control problems, known as policy. This policy comprises a
tool that determines the action to be conducted in an environment.

Definition 2.2.3 (Policy space). The set of all |S|–tuples

ψ
def= A(s1)×A(s2)× . . .×A(s|S|) (2.13)

where ψ ∈ ψ is such that ψi ∈ A(si), for i = 1, 2, . . . , |S|, receives the name
policy space.

In its turn, the reward signal is an objective function to measure the benefits
or harms from the agent’s decisions, which can be averaged or discounted when
maximized by the agent. The former is the expected (average) reward, and the
latter is the expected discounted reward, where both are computed over time,
i.e., a long trajectory of state–action transitions.

Definition 2.2.4 (Immediate reward function). The immediate reward
earned in the transition from s −→ s′ states under the influence of an action a
is denoted by

r(s, a, s′). (2.14)

Correspondingly, the immediate reward earned in the transition from s −→ s′

states under the effect of a policy ψ is

r(s, ψ, s′). (2.15)
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2.2. Sequential decision–making framework, notations, and entities

Definition 2.2.5 (Average immediate reward). The average immediate
reward for all possible transitions under the effect of an action a or a policy ψ
are

r(s, a) =
∑
s′∈S

p(s′ | s, a) r(s, a, s′), (2.16)

and
r(s, ψ) =

∑
s′∈S

p(s′ | s, a) r(s, ψ, s′), (2.17)

respectively.

In summary, a Markov decision process has four elements (state, action,
policy, and reward) that describe its dynamics:

1. The decision maker (agent) has the intelligence to choose the system’s
optimal control mechanism (policy) in a given situation, i.e., the agent
chooses a particular action when the process is in a specific state.

2. The system’s control mechanism itself (policy) is a tuple of state and
action elements. For example, a policy ψ = (2, 1) means action 2 should
be selected’ when in state 1, and action 1 when in state 2.

– A policy can be stationary and/or deterministic. A stationary policy
means that it does not change with time. A deterministic policy
implies that the agent can only choose one action out of the many
allowed.

– If the number of actions allowed and the number of states are both
finite quantities, then we have a limited number of possible policies,
which is bounded above by |A||S|. For instance, an system with 2
states and 2 actions have 22 = 4 policies, such that:

ψ =
{

(1, 1), (1, 2), (2, 1), (2, 2)
}
.

3. The transition probability matrix (TPM) contains all the combinations of
the transition probabilities, under a specific action or policy (see 2.12).

4. The transition reward matrix (TRM) is the transition or immediate reward
earned in every action–state transition. It is important to state that this
reward can be positive or negative. Similar to TPM, we have TRM also
associated with each action or policy.

The basis of a Markov decision process (MDP) is the Markov chains theory,
which is widely applied in parallel with the MDP framework, so it is essential
to distinguish one from the other. Markov chains, also called uncontrolled
Markov chains, have no external agency that can control the path taken in
the stochastic process. On the other hand, MDPs run with several different
control mechanisms with their own action–state transition probability matrix,
i.e., multiple actions in each state. Consequently, an MDP has as many TPMs
and TRMs as its number of possible actions selected in each state. Moreover,
this MDP architecture combines two terms: "Markov" and "decision process."
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2.2. Sequential decision–making framework, notations, and entities

The former term denotes the "Markov property" from the "Markov chains" basis,
which resembles the "memoryless" Markov property with a stochastic process,
i.e., the conditional probability distribution of the probable next state depends
only on the present state and is independent of the earlier ones (see 2.1.3).
Thus, this stochastic model involves a sequence of finite or countable events
(discrete or continuous) such that the probability of the upcoming event is
based only on the current state. The latter term, "decision process," represents
a stochastic control process, which, in reinforcement learning, implies a function
that helps the agent choose the best action to take, transitioning to the next
state. This function describes the action–state transition probability conditioned
by the states (s′, s ∈ S) and a particular action (a ∈ A(s)) taken by the agent.
Similarly, the reward function r(s, a, s′) returns the immediate reward received
after a taken action a ∈ A(s) that occurs the transition from s to s′.

Before we go deep into the optimization of the decision’s mechanisms, it
would be wise to analyze a straightforward (one–step transition MDP) example
to consolidate the subjects dissected until now. For simplicity, the example
given below is not focused on maximizing rewards but only aims to assemble the
fragment of theories altogether. The maximization segment will be presented
in the following section when we will solve an MDP case using exhaustive
computations.

Example 2.2.6 ([Gos15, pp. 147–150]). Let S = {1, 2} be the state space (see
2.1.2), A = {1, 2} be the action space (see 2.2.1), and A(s = 1) = {1, 2} and
A(s = 2) = {1, 2} be the action function (see 2.2.2). This two–state MDP has
two actions allowed for each state. The TPMs associated with each action Pa

are
P1 =

[
0.7 0.3
0.4 0.6

]
and P2 =

[
0.9 0.1
0.2 0.8

]
(2.18)

The TRMs under each action Ra are

R1 =
[
6 −5
7 12

]
and R2 =

[
10 17
−14 −13

]
. (2.19)

The full graphical diagram for this example can be illustrated as follows:

1 2

(0.3, −5)

(0.4, 7)

(0.6, 12)(0.
7, 6)

(0.8, −13)

(0.9, 10)
(0.1, 17) (0.2

, −14)

Figure 2.1: Graphical system with values of transition probability and transition
reward for two different allowed actions (1 .= solid blue, 2 .= dashed red) for
each state (s, s′).

Consider a policy ψ = (2, 1). The TPM associated with this policy contains
the transition probabilities of action 2 in state 1 and action 1 in state 2, such
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that
P(2,1) =

[
0.9 0.1
0.4 0.6

]
.

The one–step transition probability of the transition from state s = 1 to state
s′ = 2 when action a = 1 is selected is

p(s′ | s, a) (2.12)= p(2 | 1, 1) = 0.3.

The one–step transition probability of the transition from state s = 2 to state
s′ = 2 under policy ψ = (2, 1) is

p
(
s′ | s, ψ

) (2.12)= p
(

2 | 2, (2, 1)
)

= 0.6.

Like in the TPM case, we can obtain the TRM associated with the policy
ψ = (2, 1) by

R(2,1) =
[
10 17
7 12

]
.

When policy ψ is observed, the immediate reward earned in the transition from
state s = 2 to state s′ = 1 is

r(s, ψ, s′) (2.15)= r
(

2, (2, 1), 1
)

= 7.

□

2.3 Solving a simple problem by exhaustive computations

A classic way of solving decision–making problems is through exhaustive
computations utilizing all the theories reviewed previously. The solution is
straightforward but only applicable for cases with small state space due to the
necessity of high computing power. For simplicity, we will solve a two–state
case, with two possible actions in each state, already presented in Example
2.2.6. First, we enumerate every policy that the agent can choose, followed
by evaluating each state’s stationary probabilities and its long–run average
reward, and finally select the policy with the most satisfactory performance,
the so–called optimal one.

In the Example 2.2.6, there are four possible policies that the agent can
use to control the system:

ψ =
{

(1, 1), (1, 2), (2, 1), (2, 2)
}
.

The TPMs and TRMs of these policies are generated from (2.18) and (2.19)
respectively:

P(1,1) =
[
0.7 0.3
0.4 0.6

]
, P(1,2) =

[
0.7 0.3
0.2 0.8

]

P(2,1) =
[
0.9 0.1
0.4 0.6

]
, P(2,2) =

[
0.9 0.1
0.2 0.8

]
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R(1,1) =
[
6 −5
7 12

]
, R(1,2) =

[
6 −5
−14 13

]

R(2,1) =
[
10 17
7 12

]
, R(2,2) =

[
10 17
−14 13

]
.

From the matrices above and using (2.9) and (2.10), we get the limiting
probabilities’ linear equations for each state with respect to the individually
corresponding policy:

For ψ = (1, 1):

0.7α(1,1)(1) + 0.4α(1,1)(2) = α(1,1)(1) (for s′ = 1)
0.3α(1,1)(1) + 0.6α(1,1)(2) = α(1,1)(2) (for s′ = 2)
1.0α(1,1)(1) + 1.0α(1,1)(2) = 1

For ψ = (1, 2):

0.7α(1,2)(1) + 0.2α(1,2)(2) = α(1,2)(1) (for s′ = 1)
0.3α(1,2)(1) + 0.8α(1,2)(2) = α(1,2)(2) (for s′ = 2)
1.0α(1,2)(1) + 1.0α(1,2)(2) = 1

For ψ = (2, 1):

0.9α(2,1)(1) + 0.4α(2,1)(2) = α(2,1)(1) (for s′ = 1)
0.1α(2,1)(1) + 0.6α(2,1)(2) = α(2,1)(2) (for s′ = 2)
1.0α(2,1)(1) + 1.0α(2,1)(2) = 1

For ψ = (2, 2):

0.9α(2,2)(1) + 0.2α(2,2)(2) = α(2,2)(1) (for s′ = 1)
0.1α(2,2)(1) + 0.8α(2,2)(2) = α(2,2)(2) (for s′ = 2)
1.0α(2,2)(1) + 1.0α(2,2)(2) = 1

Then, by solving the limiting probabilities’ linear equations above, we obtain:

α(1,1)(1) = 0.5714 and α(1,1)(2) = 0.4286
α(1,2)(1) = 0.4000 and α(1,2)(2) = 0.6000
α(2,1)(1) = 0.8000 and α(2,1)(2) = 0.2000
α(2,2)(1) = 0.6667 and α(2,2)(2) = 0.3333

Now, using (2.17), we find the average immediate reward for each possible
transition:
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For ψ = (1, 1):

r
(

1, (1, 1)
)

= p
(

1 | 1, (1, 1)
)
r
(

1, (1, 1), 1
)

+ p
(

2 | 1, (1, 1)
)
r
(

1, (1, 1), 2
)

= 0.7(6) + 0.3(−5)
= 2.7

r
(

2, (1, 1)
)

= p
(

1 | 2, (1, 1)
)
r
(

2, (1, 1), 1
)

+ p
(

2 | 2, (1, 1)
)
r
(

2, (1, 1), 2
)

= 0.4(7) + 0.6(12)
= 10

For ψ = (1, 2):

r
(

1, (1, 2)
)

= p
(

1 | 1, (1, 2)
)
r
(

1, (1, 2), 1
)

+ p
(

2 | 1, (1, 2)
)
r
(

1, (1, 2), 2
)

= 0.7(6) + 0.3(−5)
= 2.7

r
(

2, (1, 2)
)

= p
(

1 | 2, (1, 2)
)
r
(

2, (1, 2), 1
)

+ p
(

2 | 2, (1, 2)
)
r
(

2, (1, 2), 2
)

= 0.2(−14) + 0.8(13)
= 7.6

For ψ = (2, 1):

r
(

1, (2, 1)
)

= p
(

1 | 1, (2, 1)
)
r
(

1, (2, 1), 1
)

+ p
(

2 | 1, (2, 1)
)
r
(

1, (2, 1), 2
)

= 0.9(10) + 0.1(17)
= 10.7

r
(

2, (2, 1)
)

= p
(

1 | 2, (2, 1)
)
r
(

2, (2, 1), 1
)

+ p
(

2 | 2, (2, 1)
)
r
(

2, (2, 1), 2
)

= 0.4(7) + 0.6(12)
= 10
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For ψ = (2, 2):

r
(

1, (2, 2)
)

= p
(

1 | 1, (2, 2)
)
r
(

1, (2, 2), 1
)

+ p
(

2 | 1, (2, 2)
)
r
(

1, (2, 2), 2
)

= 0.9(10) + 0.1(17)
= 10.7

r
(

2, (2, 2)
)

= p
(

1 | 2, (2, 2)
)
r
(

2, (2, 2), 1
)

+ p
(

2 | 2, (2, 2)
)
r
(

2, (2, 2), 2
)

= 0.2(−14) + 0.8(13)
= 7.6

In the end, we use (2.11) to find the long–run average reward:

For ψ = (1, 1):

ρ(1,1) = α(1,1)(1) r
(

1, (1, 1)
)

+ α(1,1)(2) r
(

2, (1, 1)
)

= 0.5741(2.7) + 0.4286(10)
= 5.83

For ψ = (1, 2):

ρ(1,2) = α(1,2)(1) r
(

1, (1, 2)
)

+ α(1,2)(2) r
(

2, (1, 2)
)

= 0.4(2.7) + 0.6(7.6)
= 5.64

For ψ = (2, 1):

ρ(2,1) = α(2,1)(1) r
(

1, (2, 1)
)

+ α(2,1)(2) r
(

2, (2, 1)
)

= 0.8(10.7) + 0.2(10)
= 10.56

For ψ = (2, 2):

ρ(2,2) = α(2,2)(1) r
(

1, (2, 2)
)

+ α(2,2)(2) r
(

2, (2, 2)
)

= 0.6667(10.7) + 0.3333(7.6)
= 9.66

Hence, the policy ψ = (2, 1) that achieved ρ(2,1) = 10.56 (highest long–run
average reward) represents the optimal policy for this control problem. □

As an evident conclusion, these extensive enumerations and computations
are computationally costly, rendering the resolution of more complex problems
unfeasible.
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CHAPTER 3

Solutions based on tabular format

The previous chapters discussed some of the fundamental knowledge that
underpins the thesis’ topics. We became acquainted with the classical decision
problem’s dynamics, definitions, properties, notations, entities, etc., and, in the
end, we solved a straightforward case using exhaustive computations. However,
it turns out that such solutions are not feasible for problems with an ample
state space. Moreover, we are not always aware of the required transition
probabilities of the system to be controlled. Consequently, we need new tools
that could produce the same high–level results but more efficiently and can be
applied in additional types of adversities.

This chapter assesses what was learned previously while examining newer
approaches to solving decision processes. Some new notations and the essential
facts needed to understand the subsequent chapters are introduced here.
Nevertheless, Bellman’s equations, value equations, and policy control are
the central subjects. Then, we quickly progress toward a more engineering–style
exposition of the reinforcement learning evolution, covering key computational
concepts such as Dynamic Programming, Monte Carlo, temporal difference,
K–step bootstrapping, on–policy SARSA, and off–policy Q–learning methods.

3.1 Markov decision process

It is essential to keep in mind that this theory is restricted to countable
Markov decision process instances as well as the discounted total expected
reward condition. Yet, the findings also apply to Markov decision process with
continuous state–action under certain technical conditions. This disclaimer
extends to the results in subsequent sections and chapters.

As previously seen, the Markov decision process is obtained by embedding
controls with feedback loops into the framework of Markov chains (see 1.2).
This process gives rise to a trajectory of variables that starts as follows:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . . (3.1)

A countable Markov decision process is a combination of a stochastic process
(see 2.1.1), a Markov chain (see 2.1.3), and a control mechanism (see 2.2.3),
which is defined mathematically by the tuple{

S, A, p(s′ | s, a), R, γ
}
, (3.2)

where the following are its constituents:
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3.1. Markov decision process

• The first element S is the countable non–empty set of all possible states
s ∈ S. The set S can be discrete or continuous, and an observed state
at time t, denoted by St, can represent a single value or a vector. St = s
and St+1 = s′ are often denoted in this thesis as the current and future
states respectively.

• The second A is the countable non–empty set of actions. Typically used in
the literature, A(s) represents an action function (see 2.2.2) that returns
a set of possible actions At ∈ A(s) ⊆ A given a state St = s.

• The third is the one–step state transition probability (see 2.1.4), also called
the probability measure. In our case, this measure is conditioned by the
current state St = s and the control variable At = a, i.e., (s, a) ∈ S ×A,
such that

p(s′ | s, a) def= P (St+1 = s′ | St = s, At = a). (3.3)

Literally, equation (3.3) reads as the probability of going into the future
state s′ if the agent is in state s and takes action a. Note that this
transition probability does not depend on t, by the Markov property;
therefore, the p(·)’s sub–index t was omitted.

• The fourth is the set R of all possible random rewards Rt+1
1 ∈ R ⊂ R.

• The last one is the discount factor 0 ≤ γ ≤ 1 that reflects the value in
time of the rewards.

Since we deal with well–understood deterministic technical conditions, the
agent’s actions are the only variable that directly impacts the system. This
influence exists because the agent only needs to know the current state and
what action to choose; then, forecasting the upcoming state is possible. It
can stochastically anticipated as to how the scenario develops with a high
degree of assurance, making long–term planning predictable. However, the
system’s dynamics are still not entirely known, even though we can predict it
with high confidence; thus, the states and rewards obtained by the agent are
all random variables with well–defined probability distributions conditioned
only on the preceding state and action. Hence, a joint probability distribution
characterizes the state and reward pairs’ transitions, i.e., the whole dynamics
of the environment.

The joint transition probability is a mapping p(·) : S ×R×S ×A −→ [0, 1]
that combines p(s′ | s, a) and p(r | s, a), such that

p(s′, r | s, a) def= P{St+1 = s′, Rt+1 = r | St = s, At = a}, (3.4)

for all s, s′ ∈ S, r ∈ R, and a ∈ A(s), which specifies a probability distribution
for each choice of s and a ∑

s′∈S,r∈R
p(s′, r | s, a) = 1, (3.5)

for all s ∈ S, and a ∈ A(s).
1We use Rt+1 instead of Rt to represent the reward due to At because it highlights that

the new state St+1 and reward Rt+1 are jointly settled.
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3.1. Markov decision process

Note that the joint probability can be called the probability of anchoring
in the future state s prime and obtaining an associated reward r, given the
agent is currently in state s and decides to take action a. Furthermore, it is
necessary to observe that the joint transition probabilities (3.4) specify the
state transition probabilities (3.3) in the following way:

p(s′ | s, a) def=
∑
r∈R

p(s′, r | s, a). (3.6)

Next, the immediate reward functions are commonly represented by:

1. The mapping r(·) : S × A −→ R that returns the expected value of a
random reward Rt+1 received for the state St = s and the taken action
At = a:

r(s, a) def= E
[
Rt+1 | St = s, At = a

]
[SB19, p. 49]=

∑
r∈R

r
∑
s′∈S

p(s′, r | s, a).
(3.7)

2. The three argument function r(·) : S × A × S −→ R that outputs the
expected immediate reward for state–action–next–state triples:

r(s, a, s′) def= E
[
Rt+1 | St = s, At = a, St+1 = s′

]
[SB19, p. 49]=

∑
r∈R

r
p(s′, r | s, a)
p(s′ | s, a) .

(3.8)

As previously remarked, a Markov decision process represents a technique for
modeling sequential decision–making circumstances in which an agent interacts
successively with an environment. For example, in a Markov decision process
M , let t ∈ N ∪ {0} symbolize the current stage of the system, and St ∈ S
and At ∈ A(St) ⊆ A characterize the system’s random state and the decision
maker’s action, both at time t, respectively. When the agent takes an action,
the following transition occurs:

(St+1, Rt+1) def∼ p(◦|St, At), (3.9)

which means that a tuple containing the next state and reward is drawn from a
transition probability measure.

The agent of this system chooses its actions depending on the observed state’s
history at every point in time. A policy or behavior is a rule that describes how
actions are chosen. Suppose a stochastic process {St, At, Rt+1; t ≥ 0} where
(3.9) holds, and At is the action derived from the agent’s behavior based on the
system history. The purpose here is to devise a strategy for selecting actions
that maximizes the expected total discounted return. A cumulative return Gt:T
is a specific function of the total cumulative reward. In a time–discounted case,
that is the sum of the product between a received reward Rt and its discount
factor γ that yields

Gt:T
def= γ0Rt+1 + γ1Rt+2 + γ2Rt+3 + . . .+ γT−t−1RT , (3.10)
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up to the final step T .
Note that definition 3.10 has a final step T , which ends in a state called

terminal. From that, we come up with two different situations that can happen
in any experiment based on rewards. The episodic tasks or trial tasks occur
when the agent–environment–reward breaks naturally into sub–sequences, and
each of the sub–sequences has a mutually–exclusive ending and starting points
from each other. On the other hand, the continuing tasks arise when the
agent–environment–reward goes on continually without limit, turning T =∞.

Another essential conception is discounting, which is denoted by the
parameter 0 ≤ γ ≤ 1, often called the discount rate. The discount rate
determines the present value of future rewards, allowing the agent to maximize
the sum of future rewards, not only immediately but also in the long term,
resulting in the following:

Gt:T
def= γ0Rt+1 + γ1Rt+2 + γ2Rt+3 + . . .+ γT−t−1RT

=
T−t−1∑
k=0

γk Rt+k+1
(3.11)

While the parameter γ fluctuates from 0 to 1, the variable Gt takes future
rewards into account more strongly, i.e., the future reward is worth exponentially
less than the nearest reward, possibly providing more meaningful earnings than
an exclusively immediate approach without a farsighted picture. Keep in mind
that when γ = 1, we have an undiscounted MDP with an agent considering
all future rewards equivalent to the immediate reward. Conversely, if γ = 0, the
agent only assesses the immediate reward and discards the long–term return.

Henceforth, a computationally recursive strategy can be applied in (3.11) to
save expensive computations:

Gt
def= γ0Rt+1 + γ1Rt+2 + γ2Rt+3 + . . .

= Rt+1 + γ (Rt+2 + γRt+3 + . . .)
= Rt+1 + γGt+1,

(3.12)

where T =∞ in this case.

3.2 Value functions

With all of the components presented in the previous section, we can then pursue
the MDP’s goal of maximizing the expected total cumulative discounted reward,
or simply, expected return. Consequently, a behavior mechanism that selects
the system’s judgments, so–called policy (see 2.2.3), is necessary. There exist
two types of policies: deterministic and stochastic. The difference between them
is that the former returns an action, whereas the latter provides a probability.
We can explore both characterizations:

1. A mapping ψ(·) : S −→ A defines the deterministic stationary policy
ψ(St) that receives a state St as an argument and outputs an action At,
such that

At
def= ψ(St). (3.13)
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2. A stochastic stationary policy ψ(a | s) maps states to probability
distributions over the action space, i.e., a probability distribution for an
At ∈ A(St), given each St ∈ S. Hence, since

At
def∼ ψ(◦ | St), (3.14)

the process {St, t ≥ 0} is time–homogeneous Markov chain. It should
be noted that the notation Ψstat is used throughout this dissertation to
refer to the set of all stochastic stationary policies, and for convenience,
we frequently use the term "policy" rather than "stochastic stationary
policies". Nevertheless, it is important to remember that the sum of
probabilities of all possible actions a ∈ A from a determined state St = s
is equal to 1: ∑

a∈A
ψ(a | s) = 1. (3.15)

In the preceding chapter, we introduced a straightforward method for
identifying optimal behaviors in some MDPs (see 2.3). Such techniques provide
us with a list of all conceivable behaviors to determine which ones yield the best
possible value for each initial state. This plan, however, is impractical when
the states and actions are numerous. A more effective approach is based on
value functions, where we seek to determine their optimal values, the so–called
optimal value function, and therefore the system’s optimal behavior.

Accordingly , a clever way to solve an MDP without extensive computations
(see 2.3) is to use a state–value function under a fixed policy ψ ∈ Ψstat at
time t. This state–value function numerically estimates "how good it is for the
agent to be in a given state" [SB19, p. 58].

The value function that maps V ψ : S −→ R is called the state–value
function. This function specifies a conditional expected return when the
system begins in the state S0 = s and follows a fixed policy ψ ∈ Ψstat thereafter.
That is expressed mathematically as

V ψt (s) def= Eψ
[
Gt | St = s

]
(3.16)

for all s ∈ S, where Gt is defined in (3.12), and the superscript ψ on the
expectation sign Eψ[·] indicates that this expectation is also conditioned on a
specific ψ being followed.

Similar to (3.16), the value function that maps Qψ : S ×A −→ R is called
state–action–value function. In this variation, a state S0 = s and a first
action A0 = a are arbitrarily selected, and afterward, their subsequent decisions
are chosen by applying a fixed policy ψ ∈ Ψstat. This policy selects all the
subsequent actions and evaluates "how good it is to perform a given action in a
given state" [SB19, p. 58]. That is mathematically defined as

Qψt (s, a) def= Eψ
[
Gt | St = s, At = a

]
, (3.17)

for all s ∈ S and a ∈ A(s).

Note that the expected values in (3.16) and (3.17) denote an expected value
of a random variable Gt; therefore, those expressions also result in a random
variable.
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3.3 Bellman equations

While equation (3.16) gives the expected reward value for each state, equation
(3.17) gives the same besides taking an initial action at time step t. These
formulas are used to solve an MDP in two different ways: When the transition
probabilities are known, the problem is easily solved by dynamic programming;
however, when the transition probabilities are unknown, both functions can be
empirically estimated from experience, using Monte Carlo simulations. For
any case, those value functions satisfy a recursive relationship similar to what
we have seen in (3.12). So, the following is the state–value function:

V ψt (s) def= Eψ
[
Gt | St = s

]
(3.11)= Eψ

[ T−t−1∑
k=0

γkRt+k+1 | St = s
]

(3.12)= Eψ
[
Rt+1 + γGt+1 | St = s

]
= Eψ

[
Rt+1 + γV ψt+1(St+1) | St = s

]
=

∑
a∈A

ψ(a|s)
∑
r, s′

p(r, s′ | s, a)
[
r + γ V ψt+1(s′)

]
,

(3.18)

for all r ∈ R and s′ ∈ S, where Gt+1 is an unbiased estimate for V ψt+1(St+1).

Proof. We prove the last equality of (3.18):

(i) From probability theory, we have the definition of expectations:

E[X] def=
∑
x∈X

x p(x).

(ii) Let X be Rt+1 + γV ψt+1(St+1) under the condition St = s, and since Rt+1

and V ψt+1(St+1) are random variables that take values for all r ∈ R and
s′ ∈ S, then

E
[
Rt+1 + γV ψt+1(St+1)|St = s

] (i)=
∑

r∈R, s′∈S
p(r, s′ | s)

[
r + γ V ψt+1(s′)

]
.

(iii) However, note that the expectation in (3.18) has the superscripted policy
ψ, which we have not considered in step (ii). That policy takes values for
all a ∈ A, following the technical condition in (3.15). Then, the probability
distribution p(r, s′ | s) in (ii) turns to be a marginal probability considering
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3.3. Bellman equations

all a ∈ A, such that

p(r, s′ | s) =
∑
a∈A

p(r, s′, a | s) (marginal probability)

=
∑
a∈A

p(r, s′, a, s)
p(s) (Bayes theorem)

=
∑
a∈A

p(r, s′, a, s)
p(s)

p(a, s)
p(a, s) (algebraic manipulation)

=
∑
a∈A

p(r, s′, a, s)
p(a, s)

p(a, s)
p(s) (algebraic manipulation)

=
∑
a∈A

p(r, s′|s, a) p(a|s) (Bayes theorem)

=
∑
a∈A

p(r, s′|s, a) ψ(a|s) (3.14).

(iv) Finally, swapping p(r, s′ | s) from (ii) with the equivalent result in (iii),
we end up with the complete proof:∑
r∈R,s′∈S

p(r, s′|s)
[
r + γV ψt+1(s′)

]
=

∑
a∈A

ψ(a|s)

∑
r∈R,s′∈S

p(r, s′|s, a)
[
r + γV ψt+1(s′)

]
.

■

Likewise in (3.18), the state–action–value function is

Qψt (s, a) def= Eψ
[
Gt | St = s, At = a

]
(3.11)= Eψ

[ T−t−1∑
k=0

γkRt+k+1 | St = s, At = a
]

(3.12)= Eψ
[
Rt+1 + γGt+1 | St = s, At = a

]
= E

[
Rt+1 + γ Qψt+1(St+1, At+1) | St = s, At = a

]
=

∑
s′,r

p(s′, r | s, a)
[
r + γ Qψt+1(s′, a′)

]
,

(3.19)

for all r ∈ R, s′ ∈ S, and a′ ∈ A, where Gt+1 is an unbiased estimate for
Qψt+1(St+1, At+1). Consider how the expectation of the fourth equality has lost
the policy ψ superscript, as the first action A0 = a is arbitrary given, and
subsequent actions are determined by the state–action–value function enclosed
in square brackets.

Proof. We prove the last equality of (3.19):

(i) From probability theory, we get the definition of expectations:

E[X] def=
∑
x∈X

p(x) x.
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3.3. Bellman equations

(ii) Let X be Rt+1 + γQψt+1(St+1, At+1) under the condition of St = s and
At = a, and since Rt+1 and Qψt+1(St+1, At+1) are random variables that
take values for all r ∈ R, s′ ∈ S, and a′ ∈ A,

E
[
Rt+1+γQψt+1(St+1, At+1)|St = s,At = a

]
(i)=

∑
r∈R, s′∈S

p(r, s′ | s, a)
[
r + γ Qψt+1(s′, a′)

]
.

■

The final equations (3.18) and (3.19) are the so–called Bellman equations.
Illustrious author Dr. Richard Bellman proposed the Bellman equations’ theory
in [Bel52] as part of his pioneering work on dynamic programming in early
1950’s.

Due to the extreme importance of these concepts and to give the reader a
comprehensive understanding of the topic, the diagrammatic representation of
both equations is given in Figure 3.1.

state–value
equation

s

a

s′ s′

r r

a

s′ s′

r r

a a

s′ s′

r r

state–
action–value

equation

s

a

s′ s′

r r

a a a a a a

Figure 3.1: Diagram illustrating the state–value and state–action–value
equations.

There are several relations between the state–value and state–action–value
functions that the literature frequently makes use of, and we should be aware
of them:

(1) If the first action input to the state–action–value equation be drawn from
the policy, i.e., a ∼ ψ(a|s), then there exists the relation∑

a∈A
ψ(a | s) Qψt (s, a) = V ψt (s), (3.20)

for all s ∈ S.
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3.4. Bellman optimality equations

(2) Using (3.20), we obtain another variant for state–action–value function:

Qψt (s, a) = Eψ
[
Rt+1 + γ V ψt+1(St+1) | St = s,At = a

]
, (3.21)

for all s ∈ S. As we can see, the distinction between (3.21) and the fourth
equality in (3.19) is quite subtle and only in the superscript ψ on the
expectation sign, yet it significantly impacts the calculations.

Note that, since our thesis concerns stochastic policies, we omit the part of
the theory dealing with Bellman equations for deterministic policies. Therefore,
we refer interested readers to [SB19], and [Sze09], which brilliantly elucidate
this theme.

3.4 Bellman optimality equations

For a finite MDP with several distinct states, the Bellman equation yields a
set of linear equations defining the value function at time t for each state in
terms of expected immediate rewards plus the expected value function at time
t + 1. As a result, knowing the MDP’s transition probabilities allows us to
solve this linear system faster than the exhaustive method presented in the
previous chapter. To accomplish that, we still need to examine the Bellman
optimality equation for state–value, and action–value functions.

The Bellman optimality equation for state–value function is denoted by
V ψ

∗

t (s) and is known to be the best result for a given state out of all possible
policies.

Definition 3.4.1 (Optimal state–value function). If V ψ
∗

t (s) ≥ V ψt (s), then
ψ∗ ≥ ψ, for all s ∈ S. Therefore, the optimal state–value function can be
determined by

V ψ
∗

t (s) def= max
ψ

V ψt (s) (3.22)

for all s ∈ S, where ψ∗ is the optimal policy for all states of the system.

Similarly, the Bellman optimality equation for action–value function returns
the best expected reward for an initial action a in state s and then follows an
optimal policy ψ∗.

Definition 3.4.2 (Optimal action–value function). If Qψ
∗

t (s, a) ≥ Qψt (s, a),
then ψ∗ ≥ ψ, for all s ∈ S. Therefore, the optimal action–value function can be
expressed by

Qψ
∗

t (s, a) def= max
ψ

Qψt (s, a) (3.23)

for all s ∈ S and a ∈ A(s), where ψ∗ is the optimal policy for all states of the
system.

Intuitively, the Bellman optimality equation for state–value function needs
to have the same expected return for the best action from that state; therefore,
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3.4. Bellman optimality equations

another equation for definition (3.4.1) is often used in the literature:

V ψ
∗

t (s) def= max
a∈A(s)

Qψ
∗

t (s, a) (3.24)

Moreover, there are several other versions for the optimal action–value
function but in terms of the state–value function. For that, we must first
determine a useful relation:

Proposition 3.4.3 ([DHB20, p. 294] - state–action relation). Consider
random inputs a ∈ A to the action–value equation. If the first action input a is
also drawn from the policy ψ(a | s), then there exists the relation

V ψt (s) def= Eψ
[
Gt | St = s

]
=

∑
a∈A

Eψ
[
Gt | St = s, At = a

]
ψ(a | s)

=
∑
a∈A

Qψt (s, a) ψ(a | s)

= Eψ
[
Qψt (s, a)

]
.

(3.25)

Hence, using (3.24) and (3.25) in equations (3.22) and (3.23), we obtain the
variations:

V ψ
∗

t (s) (3.24)= max
a∈A(s)

Qψ
∗

t (s, a)

(3.17)= max
a

Eψ
∗
[
Gt | St = s, At = a

]
(3.12)= max

a
Eψ

∗
[
Rt+1 + γ Gt+1 | St = s, At = a

]
= max

a
E

[
Rt+1 + γ V ψ

∗

t+1(s′) | St = s, At = a
]

= max
a

∑
s′, r

p(s′, r | s, a)
[
r + γ V ψ

∗

t+1(s′)
]
,

(3.26)

where these equalities (3.26) present extra varieties for the Bellman optimality
equation for state–value function,

Qψ
∗

t (s, a) = E
[
Rt+1 + γ V ψ

∗

t+1(s′) | St = s, At = a
]

(3.24)= E
[
Rt+1 + γ max

a′
Qψ

∗

t+1(s′, a′) | St = s, At = a
]

=
∑
s′, r

p(s′, r | s, a)
[
r + γ max

a′
Qψ

∗

t+1(s′, a′)
]
,

(3.27)

where these equalities in (3.27) give different versions of the Bellman optimality
equation for action–value function.

Keep in mind that while we consider a finite discrete–state MDP formulation
in this section, the same procedures can be applied to a continuous–state MDP
model that replaces sums with integrals.
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3.5. Value and policy iteration on dynamic programming

3.5 Value and policy iteration on dynamic programming

Richard Bellman [Bel52] also pioneered the theory underlying classic dynamic
programming (DP). This method involves a collection of algorithms that provide
a solution for optimal policies when the environment is fully observable and
described by a Markov decision process. Dynamic programming is essential
for reinforcement learning because the former substantiates almost all of the
latter’s approaches. Hence, reinforcement learning can be viewed as attempting
to achieve much of the same effect as dynamic programming but with less
computation and without assuming a perfect environment model. The key idea
of a dynamic programming framework is to use the concept of a state–value
or an action–value function, or both, which are representations of the quality
of policies and/or states. In other words, they are performance metrics. As a
result, the state value equation (3.18) can be sorted out by a DP’s recursive
method that might be more efficient than other techniques that use linear
equation solutions. This efficiency is due to the fact that linear equations are
much more costly than simple recursive computations. The idea adds an iterator
index λ = 1, 2, . . . to enumerate the indices of each iteration. This approach
result in, for instance,

V
(λ)
t (s ; ψ)←− Eψ

[
Rt+1 + γ V

(λ)
t+1(St+1 ; ψ) | St = s

]
, (3.28)

for all s ∈ S.
See that equation (3.28) returns a performance metric value for each state

s ∈ S associated with a policy ψ at the iteration step λ. So that, a value function
vector −→v ψ

λ related to a policy ψ at the iteration step λ has |S| number of elements
derived from equation (3.28) outputs. Starting with a single arbitrarily chosen
policy ψ and some initial guess for −→v ψ

λ = −→0 , the iteration continues until
convergence at a given tolerance level is reached, or it can run until a certain
number of steps are completed. This traditional algorithm receives the name of
value iteration, and employs a recursive procedure to directly find the optimal
state–value function. The subsequent step–by–step, which was influenced by
[Gos15, p. 165], demonstrates the approach more in details:

Step 1. Initialize the iterator counter λ = 1, and the value function vector with
|S| number of elements containing initial values −→v ψ

0 = −→0 . Select an
threshold ϵ > 0.

Step 2. Compute the elements of the value function vector −→v ψ
1 , such that:

V
(1)
t (s ; ψ)←− max

a∈A(s)
Eψ

[
Rt+1 + γ V

(1)
t+1(St+1 ; ψ) | St = s

]
,

for all s ∈ S.

Step 3. If
||−→v ψ

1 −
−→v ψ

0 || < ϵ
(1− γ)

2γ ,

go to Step 4. Otherwise increment λ by 1 and go back to Step 2.

Step 4. For each s ∈ S, choose

ψ∗(s) ∈ arg max
a∈A(s)

V
(λ)
t (s ; ψ).
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3.5. Value and policy iteration on dynamic programming

Note that the justification for using of the expression (1−γ)
2γ is to ensure that

the max norm of the difference between vectors converges to ϵ. For further
considerations, we refer to [Gos15, Chapter 11].

Another classic DP approach is named as policy iteration. We need two
procedure parts to create a policy iteration algorithm: a way to evaluate a
given policy (policy evaluation) and another to improve that given policy
(policy improvement). Both can be thought of as sub–algorithms within a
more extensive one. Our step–by–step example below, which was inspired by
[Gos15, pp. 163–164], illustrates the method:

Step 1. Set an iterator counter λ = 0. Select an initial arbitrary policy ψ(λ=0).

Step 2. Policy Evaluation: Solve the linear system of equations

V ψ
(0)

t (s)←− Eψ
(0)

[
Rt+1 + γ V ψ

(0)

t+1 (St+1) | St = s
]
,

for all s ∈ S.

Step 3. Policy Improvement: Choose a new policy, such that

ψ(1)(s) ∈ arg max
a∈A(s)

V ψ
(0)

t (s),

for all s ∈ S.

Step 4. If ψ(1)(s) = ψ(0)(s) for each s ∈ S, then stop the iteration and set
ψ∗(s) = ψ(1)(s) for each s ∈ S. Otherwise, increment λ by 1, and return
to Step 2.

Furthermore, there is a commonly used term in the literature known as
generalized policy iteration (GPI) [SB19, pp. 86–87], which refers to the
general idea of allowing policy–evaluation and policy–improvement to interact
regardless of the specifics of these two processes. This GPI concept is crucial
because it generally describes many reinforcement learning approaches. In
conclusion, reinforcement learning methods have a dynamic that performs a
loop between the policy and value function. First, a value function is computed
in relation to the given policy (evaluation part). The results of that value
function are then used to improve the corresponding policy (improvement part).
The Figure 3.2 depicts the concept at work behind the scenes. As a result,
when the evaluation and improvement processes stabilize, i.e., when changes
are no longer produced, then the policy become optimal.

Finally, keep in mind that we made an inconspicuous assumption in this
section. We assumed that the states of the environment are all discrete and
distinct. However, most environments, at least those that are realistic, are not
discrete. They are, in fact, continuous. Nonetheless, we do not need to be
concerned about that in this early stage. More complex techniques have the
potential to solve this problem by acting as function approximators for our
policy and value functions. We will go over this in more detail when we get
further along with the theory.
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3.6. Monte Carlo estimation

ψ V̂

Evaluation

V̂ ≈ V ψ

ψ ≈ greedy(V̂ )

Improvement

ψ∗
V ψ

∗

Figure 3.2: Diagram for a generalized policy iteration framework [SB19, p. 86]
but with our notations.

3.6 Monte Carlo estimation

Monte Carlo technique is a simulation–based procedure for Markov decision
process problem–solving. It makes no assumptions about the environment, i.e.,
it does not rely on the real transition probabilities (model–free algorithm) but
can still achieve optimal behavior. Remember that the dynamic programming
procedure demands a precise understanding of the transition probabilities to
perform iteration steps in policy or value iteration algorithms. Conversely,
only sample sequences of states, actions, and rewards from actual or simulated
interaction with an environment are required for Monte Carlo approaches.
Therefore, it can learn from actual experience, working directly with the
definition of the value function. If we consistently draw episodes of T–step
trajectory for the return random variable Ĝk:T , then we can estimate the
action–value function at the state–action pair (s, a) using the empirical mean:

Qψt (s, a) ≈ 1
T

T∑
k=1

Eψ
[
Gk | Sk = s, Ak = a

]
= 1
T

T∑
k=1

Q̂
(k)
t (s, a ; ψ),

(3.29)

where k means each step needed for the system to reach the terminal state T .
The ψ notation is interpreted as a followed policy when gathering the actions.
This way of deciding the correct actions means that the Monte Carlo method
is an on–policy algorithm. on–policy algorithms exclusively learn an policy
from samples if these samples are generated using that same policy. Contrarily,
off–policy algorithms can learn an policy from data yielded by other policies.
However, it is beyond the scope of this thesis to examine all of Monte Carlo’s
variants; for further information, see [SB19].
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3.7. Temporal difference with one–step

Another major consideration is that the action–value function should be
drawn separately for each state–action combination. So that, for each pairwise
combination of (s, a),

Q̂
(k)
t (s, a ; ψ) −→ Qψ

∗

t (s, a) as k −→∞

which follows from the strong law of large numbers theory.
Hence, if the Monte Carlo’s agent has access to samples of the real–world

environment, it can also find the optimal control. In summary, the agent should
first generate a T–step trajectory using a policy. Then, the action–value function
is estimated using equation (3.29). Following that, the policy improvement step
corresponds to the greedy update of the policy iteration:

ψ′ = arg max
a∈A(s)

Q̂
(T )
t (s, a ; ψ),

where ψ′ represents a new policy after polity improvement step.
Finally, the new policy is employed to sample a new set of paths of a complete

trajectory, and this process repeats until convergence or a predetermined number
of repetitions are completed. As can be seen, each of these procedures came
from GPI (see Figure 3.2) and are extended to the Monte Carlo case, where
only sample experience is available.

A vital alternative method instead of waiting for the update of the action–
value (or state–value) function after all T–paths are sampled (3.29) is to apply
the iterated update rule invented by Robbins and Monro [RM51] but for the
action–value equation case, as follows:

Q̂
(k+1)
t (s, a ; ψ)←− (1− ηk) Ĝk(s, a ; ψ) + ηk Q̂

(k)
t (s, a ; ψ)

= Q̂
(k)
t (s, a ; ψ) + ηk

[
Ĝk(s, a ; ψ)− Q̂(k)

t (s, a ; ψ)
]
,

(3.30)

where 0 < ηk < 1 is the so–called learning rate or step–size parameter, and
Ĝk(s, a ; ψ) is a function under a policy ψ, at step k, denoting an unbiased
estimation for Eψ

[
Gk | Sk = s, Ak = a

]
.

If ηk = 1
(k+1) (decreases), it can be shown that such iterative updating

converges to the actual empirical and theoretical averages. This procedure was
invented in the early 1950s by Robbins and Monre [RM51], and it is still widely
used in reinforcement learning. The most significant advantage of this technique
is that it transforms the problem into an online learning environment, where
updates are faster and occur after each observed estimation. This algorithm
also benefits, even more satisfactorily, other reinforcement learning approaches,
such as temporal difference learning, which is the next section’s subject.

3.7 Temporal difference with one–step

As previously explained, Monte Carlo processes must wait until the completion
of each episode before updating the value function. However, if the T–step
trajectory is long, this effort may be tiresome and sluggish. As a solution,
another model–free technique termed one–step temporal difference learning
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3.8. Temporal difference with K–step

TD(0) has the potential to speed that process up without losing its reliability.
This approach updates the value function by waiting for an unique step/path
of the entire trajectory, rather than proceeding to the terminal state as Monte
Carlo does. Additionally, this method is sometimes referred to as an estimation
over an estimation, whereas Monte Carlo estimates the experience of a complete
trajectory.

Like Monte Carlo, TD(0) converts the value functions into update equations.
Nonetheless, the algorithm merely draws a single estimation of the expected
return and then computes an empirical mean with the old estimated value
function, such that for the state–value case:

V̂
(k+1)
t (Sk ; ψ)←−V̂ (k)

t (Sk ; ψ)

+ ηk

[
Rk+1 + γ V̂

(k+1)
t (Sk+1 ; ψ)− V̂ (k)

t (Sk ; ψ)
]

(3.31)

where k = 0, ηk is the learning rate, and γ is the discount factor. The expression
inside the square brackets in the right–hand side of the equation is commonly
named TD(0) error, as follows:

δk = Rk+1 + γ V̂
(k+1)
t (Sk+1 ; ψ)− V̂ (k)

t (Sk ; ψ). (3.32)

This approach is deemed to be online and extremely quick, but it comes with
a highly volatile trade–off. Because TD(0) comprises less information than the
mean of a whole episode, significant variation is inescapable. Taking this issue
into consideration and attempting to resolve it, TD(K), for K > 0, permits K–
step updates and may therefore be utilized as a bootstrapped online algorithm.
Several varieties of temporal difference learning apply one or multiple–step
updates on state–value or action–value functions. We will examine this topic
deeply in the next section.

3.8 Temporal difference with K–step

This section introduces K–step temporal difference TD(K) bootstrapping
procedures that allow an intermediary technique between Monte Carlo and
TD(0) methods. On one side, Monte Carlo approaches update the state–value
equation relying on the whole sequence of observed rewards from the given initial
state until the terminal state. On the other side, TD(0) updates the state–value
equation depending exclusively on the next reward, i.e., updates after each state
transition and reward, regardless of whether the subsequent state is terminal
or not. Thus, one intermediate approach would be to update the state–value
equation depending on an intermediate amount of state transitions and rewards,
greater than one but less than all of them, until a terminal state. A backup
diagram illustrating these explanations is shown in Figure 3.3.

Technically, a Markov’s cumulative return representation is

Gk:T
def= γ0 Rk+1 + γ1 Rk+2 + γ2 Rk+3 + . . .+ γT−k−1RT

= Rk+1 + γ GT

= Rk+1 + γ V̂
(T )
t+1 (ST ; ψ),

(3.33)
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Figure 3.3: Diagram illustrating the difference between 1–step TD, 2–step TD,
K–step TD, and Monte Carlo methods [SB19, p. 142].
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3.9. On–policy and off–policy optimal controls

where the terminal state T represents the last step of the entire trajectory/epis-
ode. Then, following the same idea in (3.33), a two–step return is, for example,

Gk:k+2
def= γ0 Rk+1 + γ1 Rk+2

= Rk+1 + γ Gk+2

= Rk+1 + γ V̂
(k+2)
t+1 (Sk+2 ; ψ),

and for more generalized K–step

Gk:k+K
def= Rk+1 + γ V̂

(k+K)
t+1 (Sk+K ; ψ),

for all K ≥ 1 and 0 ≤ k < T −K.
All these K–step cumulative returns Gk:k+K are approximations to the

entire return Gt:T , trimmed in K steps. Additionally, if k + K is an index
that is greater than the terminal state, then all rewards beyond the terminal
state are assumed to be zero. As a result, when K–step returns are used, the
state–value learning function becomes

V
(k+1)
t (Sk) def←− V (k)

t (Sk) + ηk

[
Gk:k+K − V (k)

t (Sk)
]
, (3.34)

and the state–action–value learning function

Q
(k+1)
t (Sk, Ak) def←− Q(k)

t (Sk, Ak) + ηk

[
Gk:k+K −Q(k)

t (Sk, Ak)
]
, (3.35)

where 0 ≤ k < K for both equations.

3.9 On–policy and off–policy optimal controls

In the previous three sections, we mainly focused on the evaluation or prediction
component of the value equation iteration. Now, let us focus our research on
the control mechanism. As is typical, a control problem seeks to determine the
optimal policy for the system under consideration. Before that, we again take
into account the absence of knowledge about the actual transition probabilities
of the environment, indicating that we are still in the model–free universe.
Consequently, a tabular solution needs to be employed in the evaluation part.
Following that, a control mechanism needs to be selected, and we are going to
operate with two variety types: on–policy and off–policy.

On the one side, SARSA is an example of a method that has been extensively
investigated for the first type, which is an on–policy control based on the
assumption of a policy picks up an action. This control policy ψ is known to
be an ϵ–greedy, as defined by the following:

ψ(Sk+1) =
{

arg maxa′∈A(Sk+1) Q̂
(k+1)
t (Sk+1, a

′) with probability 1− ϵ,
Uk

(
A(Sk+1)

)
with probability ϵ,

(3.36)
where Ut randomly draws a uniformly distributed action from the set originated
from A(Sk+1). Therefore, the choice for a future action is always gathered from
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3.9. On–policy and off–policy optimal controls

that policy. Hence, this notion becomes the following:

Q̂
(k+1)
t (Sk, Ak ; ψ)←− Q̂

(k)
t (Sk, Ak ; ψ) + ηk

[
Rk+1

+ γ Q̂
(k+1)
t

(
Sk+1, ψ(Sk+1)

)
− Q̂(k)

t (Sk, Ak ; ψ)
]
,

(3.37)

for all a′ ∈ A(Sk+1) and 0 ≤ k < K.
This update practice operates for the quintuple (Sk, Ak, Rk+1, Sk+1, Ak+1),

which symbolizes the algorithm’s name (SARSA) and comprises an episode
transition from one state–action pair to the next pair:

Sk

Ak
Sk+1

Rk+1

Ak+1
Sk+2

Rk+2

Ak+2
Sk+3

Rk+3

Figure 3.4: Diagram for SARSA’s episodes [SB19, p. 129].

It is important to mention that this update rule is executed after each
transition from a non–terminal state Sk, and if Sk+1 is terminal, then the
state–action equation is zero.

On the other side, Q–Learning is an example of control technique for the
second type. Watkins invented this off–policy TD–learning method in his
PhD dissertation in 1989 [Wat89]. This approach also assumes a model–free
controlled Markov process with an agent as a controller employs the evaluation
step with the action–value equation (3.19), and the control part by choosing an
future action exclusively from a greedy mechanism, as follows:

Q̂
(k+1)
t (Sk, Ak ; ψ)←− Q̂

(k)
t (Sk, Ak ; ψ) + ηk

[
Rk+1

+ γ max
a′∈A(Sk+1)

Q̂
(k+1)
t (Sk+1, a

′)− Q̂(k)
t (Sk, Ak ; ψ)

]
,

(3.38)

for all a′ ∈ A(Sk+1) and 0 ≤ k < K.
In summary, the fundamental difference between on–policy SARSA and

off–policy Q–learning is in terms of the online mechanism for choosing future
actions throughout the learning process. For example, in SARSA, subsequent
actions a′ ∈ A(Sk+1) adhere to the ϵ–greedy policy. Q–learning, in its turn,
ensures that the future actions are always the ones that yield the highest value
for its value function.
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CHAPTER 4

Solutions based on function
approximation

This chapter broadens our research to include methods for approximating
functions. We extend the tabular approaches provided in the previous chapter
to issues with arbitrarily large state space. Furthermore, we frequently address
partially observable problems where some states reached during many of our
tasks are unfamiliar to us or even to the process, meaning that there are no
records for assessment. Therefore, to make rational choices in such states, one
must generalize from earlier encounters with states that are comparable in some
way to the current one. In such instances, even in a hypothetical scenario with
unlimited time, data, and computer power, we cannot expect to find an optimal
policy or value function. Instead, we want to obtain a decent approximation
while operating restricted computing resources, and so, an inevitable question
arises:

How could we derive a generalized approximation across a significantly
extensive and even partially observable set if only a small portion of the set is

available?

To answer this issue, we combine reinforcement learning with any existing
generalization theory. Typically, the form of generalization used in this type
of problem is function approximation, which takes examples from the desired
function (in our case, the value function) and attempts to make generalizations
from them to obtain an estimate of the whole function. Function approximation
is often utilized in the field of supervised learning for linear and nonlinear
problems and encompasses a wide variety of techniques and applications. While
all of these strategies are theoretically applicable to reinforcement learning,
several do not fit easily in practice. Thus, the following sections will go into
further detail regarding this concept and any difficulties that may arise.

4.1 A weight parameter and an objective metric

Function approximated reinforcement learning estimates the value functions,
that is, approximates Qψ(s, a) or V ψ(s). Now, these equations are represented
in a parameterized functional form with a weight vector −→w ∈ Rd. For example,
the notation V̂ (s; −→w ) ≈ V ψ(s) represents the approximate value of state s,
given the weight vector −→w . Bear in mind that the dimensionality of −→w is
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4.2. Stochastic gradient descent

typically less than the number of states, and thus altering one weight impacts
the projected values of numerous other states. Consequently, when the value
function is updated for a single state, this modification affects many other
states, and according to [SB19, p. 197], "such generalization makes the learning
potentially more powerful but also potentially more difficult to manage and
understand".

Unlike the tabular approaches, the learned value function here is never equal
to the actual one. Undoubtedly, a change to one state has a ripple effect on
many others, and it is impossible to control all states’ values accurately. Thus,
quantifying how much we care about the inaccuracy in each state is vital, and
the conventional way to achieve this, based on the literature, is to employ the
mean squared error shown as follows:

MSE(−→w ) def=
∑
s∈S

µ(s)
∑

a∈A(s)

ψ(a|s)
[
Qψ(s, a)− Q̂(s, a; −→w )

]2
, (4.1)

where µ(s) is a state distribution with µ(s) ≥ 0 and
∑
s∈S µ(s) = 1.

Additionally, a metric assessing the degree to which approximation values
deviate from genuine values, the root mean square deviation, is formulated
as:

RMSD(−→w ) def=
√
MSE(−→w ). (4.2)

The intuition behind the usage of this metric is to minimize the estimation
error to identify the global optimum, "for which MSE(−→w ∗) < MSE(−→w ) for all
possible −→w " [SB19, p. 200]. While that is the primary purpose of our algorithms,
it is not always attainable, resulting in obtaining the local optimum rather than
the global optimum, "for which MSE(−→w ∗) < MSE(−→w ) for all possible −→w in
some neighborhood of −→w ∗" [SB19, p. 200].

4.2 Stochastic gradient descent

Stochastic gradient descent (SGD) is a well–established method for approx-
imating functions in supervised learning and is perfectly suitable for online
reinforcement learning, although with some concerns. This section will delve
into its theory and application to make it appropriate for reinforcement learning
circumstances.

The first parameter to examine is the weight vector, which is composed of
real–valued components in the following manner:

−→w t
def=

[
w1, w2, . . . , wd

]T
, (4.3)

for j = 1, 2, . . . , d, where T after the square brackets indicates that the weight
vector is transposed, denoting a column vector.

The objective is to develop a weighted linear function capable of approxim-
ating the value function in such a way that

V̂ (St; −→w t) −→ V ψ(St) as t −→∞, (4.4)

for state–value function, and

Q̂(St, At; −→w t) −→ Qψ(St, At) as t −→∞, (4.5)
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4.2. Stochastic gradient descent

for state–action–value function.
These estimate functions must be differentiable for all s ∈ S, and a ∈ A

(exclusively for state–action–value function), with respect to wj . In this scenario,
the SGD technique attempts to decrease inaccuracy in estimations, e.g., to
minimize the MSE metric (4.1), by adjusting the weight vector after each
iteration step t, such that

−→w t+1
def= −→w t −

1
2 ηt

−→
∇

[
Qψ(St, At)− Q̂(St, At; −→w t)

]2

= −→w t + ηt

[
Qψ(St, At)− Q̂(St, At; −→w t)

] −→
∇Q̂(St, At; −→w t),

(4.6)

where ηt is the learning rate at iteration step t, −→∇[·] represents the gradient
vector for the objective metric function seen in (4.1), and −→∇Q̂(St, At; −→w t) is
the gradient vector for the function Q̂(St, At; −→w t) that can be computed by:

−→
∇Q̂(St, At; −→w t) =

[
∂Q̂(St, At; −→w t)

∂w1
, . . . ,

∂Q̂(St, At; −→w t)
∂wd

]T
. (4.7)

It is critical to note that while we will continue to use the state–action–value
function as an algebraic illustration for the remainder of the theory, keep in
mind that the same holds for the state–value function.

Regarding convergence outcomes for SGD, it is assumed that the learning
rate ηt gradually diminishes at each iteration step t. According to the theory
in [RM51], if ηt declines satisfying criteria

∞∑
t=1

ηt =∞ and
∞∑
t=1

η2
t <∞, (4.8)

then the precision error for the estimations of (4.6) converges to a local optimum
(see [SB19]).

All of this theory is highly beneficial if we know the actual value function
V ψ(St) or Qψ(St, At). For example, this scenario is valid for supervised
learning, as the algorithm is typically fed with input and output data samples
and can infer from authentic value functions. Regrettably, this is not the case in
here because the target value function is frequently unknown. With this issue
in mind, we must look for the scenario where Qψ(St, At) is unknown, implying
that the update in (4.6) is not possible. Nevertheless, we may substitute the
target value function with an unbiased estimate, represented here by θt.
Note that if θt is an unbiased estimate for the state–action–value equation, then

Qψ(St, At) ≈ Eψ
[
θt|St = s, At = a

]
,

and the equation (4.6) turns to be

−→w t+1
def= −→w t + ηt

[
θt − Q̂(St, At; −→w t)

] −→
∇Q̂(St, At; −→w t), (4.9)

which is guaranteed to converge to a local optimum if (4.8) holds.
For illustration and according to the Monte Carlo method’s formulation

(3.29, where K = 1), the actual value of a non-terminal state is approximated
to the expected value of the subsequent return,

Qψ(St, At) ≈ Eψ
[
Gt|St = s, At = a

]
,
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4.3. Feature vector and basis function

withGt being an unbiased estimate for the unknownQψ(St, At); hence, equation
(4.6) can be expressed as

−→w t+1
def= −→w t + ηt

[
Gt − Q̂(St, At; −→w t)

] −→
∇Q̂(St, At; −→w t). (4.10)

On the other hand, bootstrapped and temporal difference scenarios, like
bootstrapped Monte Carlo, TD(0), and TD(K), are not compatible with
stochastic gradient descent [Bar93] because the convergence’s technical criteria
cannot be assured. They do, however, converge in a weaker form in semi–
gradient instances, which were first described by Richard S. Sutton in [Sut84;
Sut88], and recently in [SB19]. According to [SB19, p. 202], while semi–gradient
situations may not converge strongly, they do converge consistently when the
estimate value function is linearly combined with a weight vector −→w t and a
feature vector (this will be defined in the subsequent section). Moreover, such
scenarios also offer substantial benefits, such as considerably quicker continuous
and online learning. Consequently, we shall illustrate that concept with an
example of one–step temporal difference’s semi–gradient descent that makes
use of

θt = Gt

= Rt+1 + γGt+1

= Rt+1 + γQ̂(St+1, At+1; −→w t)
(4.11)

as their estimate, and

−→w t+1
def= −→w t + ηt

[
Rt+1 + γQ̂(St+1, At+1; −→w t)

− Q̂(St, At; −→w t)
] −→
∇Q̂(St, At; −→w t),

(4.12)

becomes variation of their weight update (4.6), which converges to a point near
the local optimum, the TD fixed point (see [SB19, pp. 205–2010] for proof and
further details). Similarly, the equation for a semi–gradient K–step temporal
difference is given by

−→w t+K+1
def= −→w t+K + ηt+K

[
Gt:t+K+1 − Q̂(St, At; −→w t+K)

]
−→
∇Q̂(St, At; −→w t+K),

(4.13)

for the K–step return

Gt:t+K+1
def=γ0 Rt+1 + γ1 Rt+2 + . . .+ γK Rt+K+1

+ γK+1 Q̂(St+K+1, At+K+1; −→w t+K),
(4.14)

where 0 ≤ t < T −K, and T denotes the step–time for the terminal state.

4.3 Feature vector and basis function

As mentioned previously, a semi–gradient situation converges when the estimate
function, estimate value function in our case, is a linear combination of weights
and features. These features are included in a vector, feature vector , that
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4.3. Feature vector and basis function

express a state–action pair (St, At). The constituents of a feature vector are
characterized by a fixed expression, named as basis function, that rely on
the state and action variables’ values. Generally speaking, the ideal technique
is to specify a fixed basis function first and then describe an estimate value
function as a function of that basis function. In this type of architecture, the
coefficients of a basis function are the weights in the weight vector. Then, the
linearly combined weights and features form the approximate value function.

Let us define a feature vector as
−→
ϕ t ∈ Rd, which has the same number of

dimensions d as in −→w t, such that

−→
ϕ t

def=
[
ϕ1(St, At), ϕ2(St, At), . . . , ϕd(St, At)

]T
, (4.15)

for i = 1, 2, . . . , d, where T after the square brackets indicates that the vector
is transposed, being a column vector, and each component of the feature vector
is a mapping ϕi : S ×A −→ R. Hence, the estimate value function is given by
the inner vector product between the weight vector and the feature vector:

Q̂(St, At; −→w t)
def= −→w T

t

−→
ϕ t

=
d∑

i,j=1
wj ϕi(St, At),

(4.16)

for all s ∈ S and a ∈ A.
Sutton and Barto [SB19, p. 205] formalize the mathematical terminology

underlying feature vectors’ components as "basis functions because they form a
linear basis for the set of approximate functions. Constructing d–dimensional
feature vectors to represent states is the same as selecting a set of d basis
functions."

With all of these aspects in mind, and particularly with the fact that we
are now interacting over a value function that is a linear weighted estimate
function, determining their gradient becomes trivial:

−→
∇Q̂(St, At; −→w t)

def=
−→
ϕ t, (4.17)

because

−→
∇Q̂(St, At; −→w t)

(4.7)=
[
∂Q̂(St, At; −→w t)

∂w1
, . . . ,

∂Q̂(St, At; −→w t)
∂wd

]T
(4.16)=

[
∂

∂w1

[
w1 · ϕ1(St, At)

]
, . . . ,

∂

∂wd

[
wd · ϕd(St, At)

]]T
=

[
ϕ1(St, At), . . . , ϕd(St, At)

]T
=
−→
ϕ t.

Notice now that the weight’s update routine, given by equation (4.9), yields

−→w t+1
def= −→w t + ηt

[
θt − Q̂(St, At; −→w t)

] −→
ϕ t, (4.18)

which is guaranteed to converge to a point near the local minimum under the
learning rate’s usual conditions (see 4.8).
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It is worth noting again that while we utilized the state–action–value function
Q̂(St, At;−→w t) ≈ Qψ(St, At), as a representative parameterized function, the
same extends and holds for the state–value function V̂ (St;−→w t) ≈ V ψ(St).

4.4 Linearly weighted on–policy SARSA

In this section, we proceed with the parameterized version of the state–action
value function

Q̂(St, At; −→w t) ≈ Qψ(St, At), (4.19)

where −→w t ∈ Rd is a finite d–dimensional weight vector at time t.
Now, let the update target value function θt in (4.9) be any approximation

of (4.19) (right–hand side) with SARSA’s one–step method represented as

−→w t+1
def= −→w t + ηt

[
Rt+1 + γ Q̂(St+1, At+1; −→w t)

− Q̂(St, At; −→w t)
]−→
∇Q̂(St, At; −→w t),

(4.20)

which is called in the literature [SB19, p. 244] as an episodic semi–gradient
one–step SARSA, and the same reference guarantees this system’s convergence
property. The assumption behind the scenario here is that

θt = Rt+1 + γ Q̂(St+1, At+1; −→w t), (4.21)

justified by the combination between (4.19) and one of the definitions’ variation
of state–action–value function in (3.19), as in the following manner:

Qψ(St, At) ≈ Eψ
[
Rt+1 + γ Q̂(St+1, At+1; −→w t) | St = s, At = a

]
.

Since we have already established in (4.16) the evaluation part, to build the
control phase, we must combine such a state–action–value estimation (4.19)
with an action selection, and a policy improvement approaches.

For the action selection, the estimate value function is used to evaluate each
possible action a ∈ A(St) available in the current state St. Then, we attain the
chosen action a by the ϵ–greedy policy ψ(St|At), such that

ψ(St|At) =
{

arg maxa∈A(St) Q̂(St, a; −→w t) with probability 1− ϵ,
Ut

(
A(St)

)
with probability ϵ,

(4.22)
where Ut randomly draws a uniformly distributed action from A(St).

For policy improvement, we wait for the environment’s output St+1 after
action decision ψ has been triggered in the environment; we then compute the
Rt+1 and so employ the (4.20) to update the estimate value function’s coefficients.
In this final step, also called weights’ update, note that Q̂(St+1, At+1; −→w t)
is computed by repeating the ϵ–greedy policy (4.22). The accompanying
pseudocode (see Algorithm 1) illustrates the whole process.

Algorithm 1 shows an episodic semi–gradient one–step SARSA because
its weights are updated in every episode’s step, as discussed before. Moreover,
note that if St is a terminal state (like in line 10), it has a state–action–value
equal to zero, i.e., Q̂(STerminal, At; −→w ) = 0.
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Algorithm 1: Episodic semi–gradient one–step SARSA [SB19, p. 244].
1 begin
2 By defining and/or initializing

• a parameterized and differentiable Q̂ : S ×A× Rd −→ R.

• a learning rate 0 < η ≤ 1.

• a greedy parameter 0 < ϵ <≤ 1.

• a discount rate 0 < γ ≤ 1.

• the weight vector −→w ∈ Rd (e.g., −→w = −→0 ).

3 while exists episodes do
4 for each episode’s step t = 0, 1, 2, . . . do
5 St ←− Input from the Environment (S0 ̸= Terminal).
6 At ←− e.g., ϵ–greedy policy w.r.t. Q̂(St, a; −→w ).
7 At −→ Output to the Environment.
8 St+1 ←− Input from the Environment.
9 Rt+1 ←− Compute and store.

10 if St+1 is terminal then
11 −→w ←− −→w + η

[
Rt+1 − Q̂(St, At; −→w )

]−→
∇Q̂(St, At; −→w ).

12 η ←− small reduction of the learning rate.
13 BREAK (go to the next episode).
14 else
15 At+1 ←− e.g., ϵ–greedy policy w.r.t. Q̂(St+1, a; −→w ).
16 −→w ←− −→w + η

[
Rt+1 + γQ̂(St+1, At+1; −→w )

17 −Q̂(St, At; −→w )
]−→
∇Q̂(St, At; −→w )

18 t←− t+ 1 (go to the next episode’s step).

In comparison, another SARSA variation called episodic semi–gradient
K–step SARSA employs the same general gradient–descent update for state–
action–value prediction (4.9), but with slight modifications regarding θt. In this
instance, the K–step return generalizes from

Gt:t+K+1
def=γ0Rt+1 + γ1Rt+2 + . . .+ γKRt+K+1

+ γK+1Q̂(St+K+1, At+K+1; −→w t+K),

for 0 ≤ t < T −K, where T is the time–step for the terminal state, and

Gt:t+K+1
def= Gt

if t ≥ T −K. Hence, the target θt turns to be Gt:t+K+1 because

Q̂(St+1, At+1; −→w t) = Eψ
[
Gt:t+K+1 | St+1 = s′, At+1 = a′

]
,
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with accordance to the theory discussed in the preceding section, and so the
updates of the K–step weight become

−→w t+K+1
def= −→w t+K + ηt+K

[
Gt:t+K+1 − Q̂(St, At; −→w t+K)

]
−→
∇Q̂(St, At; −→w t+K),

(4.23)

for 0 ≤ t < T −K. The pseudocode for this situation is included in Algorithm
2.

Finally, we could not leave out SARSA’s variations for continuing tasks,
but before that, we must mention a problematic technicality that arises with
a discounted setting with function approximation and on–policy scenarios.
When returns from each state can be computed and averaged individually,
the continuing discounted technique has been highly efficacious in the tabular
case. However, whether or not to employ this formulation in the function
approximation method is debated. This argument arises because we lack
distinctly defined states and instead have characteristics (features) representing
states or groupings. Additionally, performance is evaluated almost solely
utilizing reward sequences and actions, computed by averaging the returns
across time. Recall that we do not have a beginning or end state, nor a
particular time step, due to the continuing nature of the inputs. Therefore, "the
average of the discounted returns is proportional to the average rewards" [SB19,
p. 253], which gives us precisely the same outcomes, i.e., the discount factor K
"would have no effect" (see [SB19, pp. 253–254] for more details and proof).

With those particulars in mind, the continuing problems affect the average
instead of discounted reward setting. Moreover, these problems interact between
agent and environment permanently without a well–defined ending or starting
states. It is critical to note that the system we are describing contains an
ergodicity (2.1.8) assumption, which is capable of ensuring the validity of the
limits in the equation (4.24). Consequently, the average reward can be defined
as

r(ψ) [SB19, p. 249]= lim
t−→∞

E
[
Rt+1 | S0:t = s, A0:t ∼ ψ

]
, (4.24)

where A0:t ∼ ψ means that the actions {A0, A1, ..., At−1, At} are taken in
accordance with the policy ψ.

As a result, the computation of returns is defined as the difference between
individual rewards and the average reward.

Gt
[SB19, p. 250]= Rt+1 − r(ψ) +Rt+2 − r(ψ) + . . . (4.25)

which is known in the literature as differential return [SB19, p. 250]. The
corresponding differential value functions follow the same definitions and
notations in (3.16) and (4.4) for state–value, and (4.5) for state–action value.
The differential TD–error (3.32) form for state–value and state–action–value
are respectively

δt
def= Rt+1 −Rt+1 + V̂ (St+1; −→w t)− V̂ (St; −→w t), (4.26)

δt
def= Rt+1 −Rt+1 + Q̂(St+1, At+1; −→w t)− Q̂(St, At; −→w t), (4.27)
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Algorithm 2: Episodic semi–gradient K–step SARSA [SB19, p. 247].
1 begin
2 By defining and/or initializing

• a parameterized and differentiable Q̂ : S ×A× Rd −→ R.

• a number of episode’s steps K > 0.

• a learning rate 0 < η ≤ 1 for weight’s update.

• a greedy parameter 0 < ϵ <≤ 1.

• a discount rate 0 < γ ≤ 1.

• a weight vector −→w ∈ Rd (e.g., −→w = −→0 ).

3 while exists episodes do
4 T ←−∞.

5 for each episode’s step t = 0, 1, 2, . . . do
6 St ←− Input from the Environment (S0 ̸= Terminal).
7 At ←− e.g., ϵ–greedy w.r.t. Q̂(St, a; −→w ).

8 if t < T then
9 At −→ Output to the Environment.

10 St+1 ←− Input from the Environment.
11 Rt+1 ←− Compute and store.

12 if St+1 is terminal then
13 T ←− t+ 1.
14 else
15 At+1 ←− e.g., ϵ–greedy w.r.t. Q̂(St+1, a; −→w ).

16 τ ←− t−K + 1.

17 if τ ≥ 0 then
18 G←−

∑min(τ+K,T )
i=τ+1 γi−τ−1Ri.

19 if τ +K < T then
20 G←− G+ γKQ̂(Sτ+K , Aτ+K ; −→w ).

21 −→w ←− −→w + η
[
G− Q̂(Sτ , Aτ ; −→w )

]−→
∇Q̂(Sτ , Aτ ; −→w ).

22 η ←− small reduction to ensure convergence.

23 if τ = T − 1 then
24 BREAK (go to the next episode).
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where Rt+1 is a time dependent estimate (mean) of the average rewards r(ψ).
Meanwhile, SARSA’s weights’ updates resume in

−→w t+1
def= −→w t + ηt δt

−→
∇V̂ (St; −→w t), (4.28)

for state–value, where δt is given by (4.26), and

−→w t+1
def= −→w t + ηt δt

−→
∇Q̂(St, At; −→w t) (4.29)

for state–action–value, where δt is given by (4.27). As usual, an example of this
system’s pseudocode follows in Algorithm 3.

Algorithm 3: Continuing semi–gradient one–step SARSA [SB19,
p. 251].

1 begin
2 By defining and/or initializing

• a parameterized and differentiable Q̂ : S ×A× Rd −→ R.

• a learning rate 0 < η ≤ 1 for weight’s update.

• a learning rate 0 < ζ ≤ 1 for estimate reward’s update.

• a greedy parameter 0 < ϵ <≤ 1.

• a discount rate 0 < γ ≤ 1.

• the weight vector −→w ∈ Rd (e.g., −→w = −→0 ).

• the average reward estimate R ∈ R (e.g, R = 0).

• S ←− Input from the Environment.

• A←− e.g., ϵ–greedy w.r.t. Q̂(S, ◦; −→w ).

3 while exists continuing steps do
4 A −→ Output to the Environment.
5 S′ ←− Input from the Environment.
6 R′ ←− Compute and store.
7 A′ ←− e.g., ϵ–greedy w.r.t. Q̂(S′, ◦; −→w ).
8 δ ←− Rt+1 −R+ Q̂(S′, A′; −→w )− Q̂(S,A; −→w ).
9 R←− R+ ζ δ.

10 ζ ←− small reduction to ensure convergence.
11 −→w ←− −→w + η δ

−→
∇Q̂(S,A; −→w ).

12 η ←− small reduction to ensure convergence.
13 S ←− S′.
14 A←− A′.

The case is similar with the bootstrapped TD version but with its own
peculiarities regarding the return

Gt:t+K+1
def= Rt+1−Rt+K+1+. . .+Rt+K+1−Rt+K+1+Q̂(St+K+1, At+K+1; −→w t+K).
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Then, the K–steps TD–error turns to be

δt
def= Gt:t+K+1 − Q̂(St, At; −→w t), (4.30)

and so we apply that in an pseudocode example for differential semi–gradient
K–steps SARSA (see Algorithm 4).

Algorithm 4: Continuing semi–gradient K–step SARSA [SB19,
p. 255].

1 begin
2 By defining and/or initializing

• a parameterized and differentiable Q̂ : S ×A× Rd −→ R.

• a policy ψ(◦|St): e.g., ϵ–greedy w.r.t. Q̂(St, ◦; −→w ).

• a learning rate 0 < η ≤ 1 for weight’s update.

• a learning rate 0 < ζ ≤ 1 for estimate reward’s update.

• a greedy parameter 0 < ϵ <≤ 1.

• a discount rate 0 < γ ≤ 1.

• the weight vector −→w ∈ Rd (e.g., −→w = −→0 ).

• the average reward estimate R ∈ R (e.g, R = 0).

• S0 ←− Input from the Environment.

• A0 ←− A0 ∼ ψ(◦|S0).

3 for each step t = 0, 1, . . . do
4 At −→ Output to the Environment.
5 St+1 ←− Input from the Environment.
6 Rt+1 ←− Compute and store.
7 At+1 ←− At+1 ∼ ψ(◦|S0)
8 τ ←− t−K + 1 (time whose estimates start to update).

9 if τ ≥ 0 then
10 δ ←−

∑τ+K
i=τ+1(Ri −R) + Q̂(Sτ+K , Aτ+K ; −→w )− Q̂(Sτ , Aτ ; −→w ).

11 R←− R+ ζ δ.
12 ζ ←− small reduction to ensure convergence.
13 −→w ←− −→w + η δ

−→
∇Q̂(Sτ , Aτ ; −→w ).

14 η ←− small reduction to ensure convergence.
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4.5 Linearly weighted off–policy Q–learning and variations

In the preceding section, we discussed several mechanisms of on–policy learning.
Now, let us address off–policy, explaining Q–learning method and variants.
The same rationale that underpins SARSA can be extended to Q–learning,
where the parameterized form of the state–action–value function is equal
(4.19). Correspondingly, the approximate state–action–value function is a
linear combination between a weight and a feature vector (see 4.16). Thus, the
weight’s updates become

−→w t+1
def= −→w t + ηt δt+1

−→
∇Q̂(St, At; −→w t), (4.31)

and the TD–error

δt+1
def= Rt+1 + γ max

a′∈A
Q̂(St+1, a

′;−→w t)− Q̂(St, At;−→w t), (4.32)

where maxa′∈A Q̂(St+1, a
′;−→w t) is commonly identified in the literature as the

greedy policy.

Algorithm 5: Q–learning with function approximation [Sze09, p. 50].
1 begin
2 By defining and/or initializing

• a parameterized and differentiable Q̂ : S ×A× Rd −→ R.

• a learning rate 0 < η ≤ 1 for weight’s update.

• a discount rate 0 < γ ≤ 1.

• the weight vector −→w ∈ Rd (e.g., −→w = −→0 ).

• S ←− Input from the Environment.

• A←− e.g., a greedy policy arg max◦∈A Q̂(S0, ◦;−→w ).

3 while exists state transitions do
4 A −→ Output to the Environment.
5 S′ ←− Input from the Environment.
6 R′ ←− Compute and store.
7 A′ ←− e.g., a greedy policy arg max◦∈A Q̂(S′, ◦;−→w ).
8 δ ←− R′ + Q̂(S′, A′; −→w )− Q̂(S,A; −→w ).
9 −→w ←− −→w + η δ

−→
∇Q̂(S,A; −→w ).

10 η ←− small reduction to ensure convergence.
11 S ←− S′.
12 A←− A′.

Note that off–policy methods are guaranteed to be stable and asymptotically
unbiased in the tabular differential scenario, a subset of function approximation.
Hence, combining them with a more general method, like function approximation
via feature selection, may still be achievable to ensure stability. Despite that, the
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off–policy update rule outlined in (4.31) turns out to be far more distinct and
problematic than the on–policy rule, owing to the former’s inability to converge
reliably [SB19; Sze09]. Additionally, traditional off–policy processes such as Q–
learning may exhibit unstable behavior when coupled with linear value function
approximation [Bai95]. As a result, researchers have been investigating several
off–policy alternatives that exhibit more robust convergence properties, for
instance, Greedy–GQ.

This off–policy method, dubbed Greedy–GQ, is the product of a scientific
paper from 2010 co–authored by the most eminent researchers in the field of
reinforcement learning (see [Mae+10]). In this work, they developed a gradient–
based temporal difference learning algorithm for linear and nonlinear function
approximation reinforcement learning that is robust under off–policy learning,
i.e., the convergence properties are assured. Nonetheless, the authors assert
that this thought–provoking solution has several other benefits, including "1)
Linear function approximation; 2) No restriction on the features used; 3) Online,
incremental, with memory and per–time–step computation costs that are linear
in the number of features; and 4) Convergent to a local optimum or equilibrium
point" [Mae+10, p. 1].

In summary, Greedy–GQ updates the weight parameter −→w t ∈ Rd in a
manner similar to Q–learning with function approximation, except that a
corrective term is added, that is, a supplementary sequence of weights −→κ t ∈ Rd
and an extra step–size parameter ζt. This innovation culminates in the same
target value function θt+1 as in Q–learning, but with different weight–update
guidelines:

θt+1 = Rt+1 + γ max
a′∈A

Q̂(St+1, a
′;−→w t)

ϑt+1 ←−
[
θt+1 − Q̂(St, At;−→w t)

]
δt+1 ←− ϑt+1

−→
∇Q̂(St, At; −→w t) − γ Q̂(St, At;−→κ t)

−→w t+1 ←− −→w t + ηt δt+1
−→
∇Q̂(St+1, a

′; −→w t)
−→κ t+1 ←− −→κ t + ζt

[
ϑt+1 − Q̂(St, At;−→κ t)

]−→
∇Q̂(St, At; −→w t),

for a′ ∼ arg maxa′∈A Q̂(St+1, a
′;−→w t).
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CHAPTER 5

State–of–the–art RL algorithms
applied to financial markets

This chapter develops three examples of state–of–the–art reinforcement learning
algorithms applied to financial markets. Our ultimate purpose has been to
design a trading agent that, at the very least, demonstrates rational behavior
by ensuring all the technical conditions intrinsic to reinforcement learning.
Moreover and more idealistically, we are interested in producing gains over a
trade period, which should exceed those achieved through a simple buy–and–hold
strategy.

We design an estimate SARSA, estimate Q–learning, and estimate Greedy–
GQ agents. These trading agents require no estimation of the probability
transition of the environment and are therefore model–free. We decided not
to work on model–based reinforcement learning because of the complexity of
financial markets, which is deemed unsuitable for forecasting market behavior.
Indeed, model–free reinforcement learning is satisfactorily suited to our goals,
where an agent makes no effort to predict reward functions or transition
probabilities but to learn the optimal policy through experience.

Each of our applications is obtained from Markov decision processes
combined with Bellman’s theory, both of which are extensively covered in
the theory part of this thesis. Simply put, each linear interpolation with
respect to the samples of state–action pair’s value is updated to execute a
specific algorithm’s convergence routine. As observations of the environment
are evaluated and under certain conditions,

(i) given enough informative features, the true value function Qψt (St, At) is
possibly reached by an approximation SARSA, whereas,

(ii) the same should apply for approximate Q–learning and Greedy–GQ,
because

(iii) the estimated Q̂t(St, At ; −→w t) values may converge to the true value of
that value function.

Consequently, our algorithms should enable the trading agent to select the
most objectively beneficial actions in any given state to perform wisely in the
financial markets.
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5.1 Specification of the problem

Our goal is to develop an algorithm that trades a single asset optimally. This
asset is the mini Bovespa index, or commonly, mini index1, a futures derivative
contract used to trade the Bovespa index’s future values (IBOV). Technically
defined, IBOV characterizes a weighted average of the performance of the most
actively traded firms on the Sao Paulo Stock Exchange2. However, unlike the
IBOV, the mini index is traded on a mini–cap basis, proportional to 20% of the
IBOV, allowing small investors to trade the most prominent companies with a
smaller financial scale. Furthermore, the mini index minimum’s movement is
one tick, or typically spoken, five points. For example, one upward tick from
100 to 105 equals 5 points variation. As a result, a minimum fluctuation of
one tick or five points is equivalent to BRL 1.00 for every mini index contract.
Additionally, because investors are not permitted to negotiate fractions of a
mini index contract, the most diminutive contract size that can be negotiated
is one, and the largest is unlimited.

As is the case of any other asset traded on the stock exchanges, it is crucial
to know the mini index code to trade it through the brokerage house’s Home
Broker or any trading platform. The code always begins with a three–character
radical (WIN), followed by a letter indicating the month of expiration and two
final digits indicating the year of expiration. For illustration, WING22 denotes
a mini index contract with the month and year of expiration of February 2022.
The months and expiration code are listed in Table 5.1.

Month Code
February G

April J
June M

August Q
October V

December Z

Table 5.1: Mini index’s expiration months and codes.

Each mini index contract expires on the Wednesday closest to the 15th
of each even month. For our example of WING22, market agents exchanged
WING22 until 16.02.2022. It is worth noting that one might have traded
WINJ22 prior to 16.02.2022 (when the previous contract WING22 was still
valid). However, the most liquid period for a futures contract, especially that
following stock market indexes, is immediately following the previous contract’s
expiration date until one day before the current contract’s expiration. Further,
it is uncommon to trade on the current contract’s expiration day, despite it being
possible. Again, market practices are to not trade on the current contract’s
expiration date because of liquidity reasons. As a corollary, we implemented this
concept in our simulations. For WING22, for instance, the period evaluated was
exclusively from 15.12.2021 (the prior contract’s expiration) until 15.02.2022.

1https://www.b3.com.br/pt_br/produtos-e-servicos/negociacao/renda-variavel/futuro-
mini-de-ibovespa.htm

2https://www.b3.com.br/pt_br/market-data-e-indices/indices/indices-amplos/indice-
ibovespa-ibovespa-composicao-da-carteira.htm
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(one day before the current contract’s expiration). Table 5.2 summarizes our
available data, together with their associated code and period, for use in our
applications.

Code Period
WINJ21 17.02.2021 - 13.04.2021
WINM21 14.04.2021 - 15.06.2021
WINQ21 16.06.2021 - 17.08.2021
WINV21 18.08.2021 - 12.10.2021
WINZ21 13.10.2021 - 14.12.2021
WING22 15.12.2021 - 15.02.2022

Table 5.2: Available data for use in our applications.

As we can see, we are covering a one–year time range. Moreover, the stock
market was highly volatile during this period owing to a pandemic (COVID–19)
and the beginning of a conflict in Europe (Russian–Ukraine War). This way, our
algorithms faced the challenge to adapt to and overcome these global markets
adversities, making the results even more exciting.

To trade a regular mini index contract in the São Paulo stock exchange
futures markets, an investor must deposit a guarantee equal to a percentage of
the contract’s total value, the so–called margin, to the broker house. A margin
is a sum of money deposited by the counterparties to secure a transaction when
a contract is fulfilled. This guarantee may be in the form of cash or any other
securities owned by the investor, including bonds and fixed income positions.
This margin amount must be held in the broker’s account while buyers and
sellers maintain open positions, i.e., remain linked to futures contracts. Margin
is refunded when trades are closed.

There are two types of margins, one for day trades and the other for positions
of more than one days. The brokerage company defines the guarantee margin
for day trades, whereas B3 defines the guarantee margin for activities lasting
more than one day. Typically, the margin is around 25,00 BRL for a day trade,
while 2.800,00 BRL for long–term positions 3. Since our application case trades
a single mini index contract in a day trade or long–term position manner, the
margin guarantee needed is 2.800,00 BRL. This means that we must make
2.800,00 BRL available to the brokerage company if we open a position in the
mini index market.

Regarding brokerage’s commissions, there is a trend toward brokers charging
no commission4 5 6 for trading mini index futures contracts. Thus, there is no
commission on each deal, which gives us a significant advantage when trading
futures contracts on a high–frequency basis with nearly zero costs. It is essential
to mention that each transaction involves some stock exchange fees, but they
are significantly low and do not affect the outcomes; we will not address that
point.

The financial data we have available covers every trading activity on the B3
Stock Exchange in São Paulo. This data came in the form of a raw feed, which

3https://www.clear.com.br/site/Content/pdf/ebook_clear_mini_crontratos.pdf?idOrigem=ebook
4https://www.modalmais.com.br/planos-modalmais/corretagem-zero
5https://www.clear.com.br/site/corretagem-zero
6https://www.xpi.com.br/custos-operacionais/
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Figure 5.1: Bars illustration.

contains a variety of unstructured information that enables us to reconstruct
the trading season in its entirety. To apply our algorithms to unstructured data,
we must first parse it, extract what is needed, and store it in a systematized
format. The representation of the extracted data we employ is the standard
time bars. For the interested reader, we refer to [Pra18] for other possible
market representations, such as tick, volume, dollar, tick imbalance bars, and
others. This method is highly prevalent in the financial industry, where the
APIs of the majority of data vendors incorporate it. A series of observations
with an uneven frequency allocation is transformed into a homogeneous time
series. In other words, these time bars are created by collecting data at regular
intervals and parsing it into bars once every minute. The illustration of these
bars are showed in Figure 5.1, and the following pieces of information are
encapsulated in those bars:

• Timestamp

• Open (the first price of the time bar)

• High (the highest price reached during the time period of the bar)

• Low (the lowest price achieved during the time period of the bar)

• Close (the last price of the time bar)

Time bars are probably the type of representation used most by practitioners
and academics, but they may not be the best. Indeed, neither do markets
evolve in constant intervals nor are activity periods regular. Moreover, serial
correlation, heteroscedasticity, and non–normality of returns are often observed
in time–sampled series, which have poor statistical properties [Pra18, p. 26].
Thus, similar to time bars, this dissertation considers tick bars. The purpose of
tick bars is to retrieve open, high, low, and close (OHLC) prices whenever a
predefined number of transactions, also called ticks, occur. Consequently, we
have a representation technique that takes into account both distinct active
periods and non–constant expansion. Additionally, this approach has a higher
statistical relevance. Numerous studies, beginning with [MT67] and extending
to [AG00], prove that sampling as a function of trade activity produces an
independent identically distributed (IID) Gaussian process. Indeed, a large
number of statistical models rely on this IID premise, which is impossible to
accomplish with time bars.
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After establishing all of this knowledge, we may precisely identify our
problem. These trading times on the futures market (Table 5.2) were highly
turbulent. This volatility was caused by the world’s difficulties, as mentioned
previously, and as a result, the mini index alternated several times between
bearish and bullish trends, with some gaining and others losing significantly.
Taking that into account, we would rather have an intelligent algorithm that
learns via its actions on the market and thus profits from its operations. However,
the primary challenge is determining whether our algorithm is intelligent
enough and profitable. To do so, we constructed a conventional buy–and–
hold benchmark and determined whether our algorithm could outperform it.
Additionally, we adhered to all technical requirements and always verified the
rationale behind them. This aspect is critical because sometimes an algorithm
exhibits satisfactory performance, but its technical elements do not make sense.

Apart from that, we want a single unity contract trade at a time, with
no chance of enlarging the position, thus incurring only one margin call for
that process. This assumption is necessary because it allows us to quantify
the agent’s initial investment in our system, which is two times the required
margin call value (5.600,00 BRL). Notwithstanding that, this margin is necessary
because when open positions fluctuate, primarily in the negative direction, we
are compelled to restore the guarantee margin, always maintaining it at the
required amount to continue the operation. Therefore, we assume that twice
the required amount suffices to resolve any pertinent issues.

As previously stated, we are trading a mini index. This futures contract
was chosen because it does not require a large sum of money to initiate short–
and long–term trades, and, more importantly, this market has a high level of
liquidity. This point cannot be ignored since a lack of liquidity in the market
can wreck any trade. Indeed, spread and slippage are undesirable characteristics
in our scenario, which are consequences of low liquidity. The former is the
difference between the best bid and best ask booking prices for the trading
asset. The second is the discrepancy between the expected price of a transaction
and its actual executed price. However, those issues are minimized in our
application scenario. Due to the super high liquidity of the mini index, there
usually is not a spread between the bid and ask booking prices. Additionally, we
fight the slippage by adopting limit orders at closing prices as our hypothetical
procedure. This latter approach may lead to a few orders not being executed,
which we ignore for the sake of simplicity. it is necessary to state that we are
more interested in determining whether the algorithm can act prudently in the
market than in covering operational issues, which would require another entire
dissertation to solve. Regardless, this topic is raised here and may serve as a
focal point for future research.

Finally, we select to portray data in systematized formats of one and three
minutes, as well as 15.000 ticks. These representations are accomplished by
parsing raw data into tables that contain the OHLC prices for each timestamp.
This technique is carried out by a Python function in the helper.py7 file in our
GitHub repository.

7https://github.com/fabiorodp/uio_master_thesis/blob/main/helper.py
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Time Open High Low Close
05.29.2021 09:00:00 10.00 13.00 09.00 12.00
05.29.2021 10:00:00 12.00 14.00 11.00 14.00
05.29.2021 11:00:00 14.00 16.00 10.00 10.00

Table 5.3: Example of a state matrix S ∈ R(2+1)×4, where n = 2 and
t ="05.29.2021 11:00".

5.2 Mathematical formalization of the problem

Our reinforcement learning problem is formalized as a discrete–time stochastic
control process {S,A,R; t = 0, 1, 2, . . .} in which an algorithm trader interacts
with a market environment. This algorithm begins by gathering an initial
observation (St = S, where St ∈ S) of the market. Every market observation
St ∈ R(n+1)×4 comprises a matrix of (n + 1) continuing time with OHLC8

price values. For instance, consider the following matrix, which derives its
constituents from Table 5.3:

S =

10.00 13.00 09.00 12.00
12.00 14.00 11.00 14.00
14.00 16.00 10.00 10.00

 (5.1)

Then, at each time step, the agent must perform an action (At = a, where
At ∈ A(tradingStatus) ⊂ A), such that:

a =
{

0 do nothing,
+1 go long,

(5.2)

if tradingStatus= −1 (short on the market), or

a =


−1 go short,

0 do nothing,
+1 go long,

(5.3)

if tradingStatus= 0 (not on the market), or

a =
{
−1 go short,

0 do nothing,
(5.4)

if tradingStatus= 1 (long on the market). These actions are determined in
accordance with a policy ψ, where only be ϵ–greedy (SARSA) or greedy (Q–
learning) in our cases, which describes the agent’s behavior, suggesting each
action should be selected for each potential state. This picked action is forwarded
to an environment that, as a result of each selection, outputs the next state’s
observation (St+1 = S′, where St+1 ∈ S). Consistently with our example,
Table 5.4 and Figure 5.2, the matrix S′ ∈ R(n+1)×4 turns to be:

8Open, high, low, close prices.
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Figure 5.2: Illustration bars of Table 5.3 and Table 5.4 combined.

Time Open High Low Close
05.29.2021 10:00:00 12.00 14.00 11.00 14.00
05.29.2021 11:00:00 14.00 16.00 10.00 10.00
05.29.2021 12:00:00 10.00 11.00 06.00 06.00

Table 5.4: Example of a state matrix prime S′ ∈ R(2+1)×4, where n = 2 and
t+ 1 ="05.29.2021 12:00".

S′ =

12.00 14.00 11.00 14.00
14.00 16.00 10.00 10.00
10.00 11.00 06.00 06.00

 (5.5)

Along with the output of the next state, the environment also displays
the evolution of the reward associated with the initial investment capital and
performed actions. Since we are developing an algorithm that attempts to
maximize profits from trades, this reward’s evolution is the profitability’s
balance attained from interactions in the financial market. Our algorithm
trader starts their operations with a quantified initial capital of 28.000 points (2
contracts margin call). Then, as long as the time steps of the market go on, the
environment outputs the surplus of this investment based on each taken action
on the market. For instance, suppose the current balance is 28.000 points and
the agent signals the environment to make a purchase. If this action results in
a profit of 1.000 points, at the current time step, the reward balance output is
29.000 points (28.000 + 1.000).

This evolution of the reward process continuously goes on for each trading
time step t = 1, 2, ... and appends the results in the environment method’s
variable identified as a vector −−−−−−−→histRprime ∈ Rt. Provided that, we may define
(Rt+1 = r(−−−−−−−→histRprime), where Rt+1 ∈ R ⊂ R), and study three choices for this
function:

a.) The first one we identify by the name of minusMean,

Rt+1
def= histRprimet −mean(

−−−−−−−−→
histRprime),
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where the computation of returns is done by calculating the difference
between immediate reward and the average reward up to the current time
step (see 4.25). The hunch here is to build up a reinforcement algorithm
compatible with the theory of continuing semi–gradient one–step like
Algorithm 3.

b.) The second one is referred to as immediate,

Rt+1
def= histRprimet,

which simply takes the immediate reward of the current time step.

c.) We specify the third one as mean

Rt+1
def= mean(

−−−−−−−−→
histRprime),

which computes the mean of the appended evolution of the rewards.

The Python’s class called Environment present in the file environment.py9

at our GitHub repository does the job of reproducing the market dynamics and
outputting the necessary data.

5.3 Algorithm engineering

This master’s thesis section discusses several engineering alternatives, such
as approximate SARSA, approximate Q–learning, and approximate Greedy–
GQ, as well as their formalization. We developed these agents running on an
environment mechanics specified in the early section, which facilitates data
sourcing and allows a straightforward testing in our trials. We also implemented
these trading agents as Python’s class, in the algorithms.py10 file at our GitHub
repository, that performs these approximation reinforcement learning theories.
Each of the implementations, whether SARSA, Q–learning, or Greedy–GQ, has
its own set of attributes that the agent class must receive. This class maintains,
updates, and stores feature weights and Q–values, in addition to keeping a link
with the environment class.

To begin, we adhered to the theory framework of linear reinforcement
learning (see Sections 4.4 and 4.5), which has been the subject of many
recent and successful academic articles (see Section 1.5). The encoding of
environmental states as features is the most critical part of linear reinforcement
learning algorithms and can have a massive effect on performances. This
requires the determination of a basis function that maps states onto features.
Since we are working with model–free market data that lacks well–defined
transition probabilities and probability distributions, this basis function’s
theory is required, in accordance with the theory in Section 4.3. Thus,
we introduce three types of basis functions, namely sigmoid, hyperbolic tangent,
and sigmoid123.

A sigmoid function is a mathematical function with a distinctive S–shaped
curve that maps the entire real line to a limited range, such as between 0 and

9https://github.com/fabiorodp/uio_master_thesis/blob/main/environment.py
10https://github.com/fabiorodp/uio_master_thesis/blob/main/algorithms.py
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1. One frequent application of a sigmoid function is to transform a real value
to a probability score, which is easier to interpret. Additionally, all sigmoid
functions are monotonic and have a first derivative; hence, satisfies the technical
condition for a basic function, and we can express its mathematical formula as
follows:

bsigmoid(x) = 1
1 + e−x . (5.6)

The hyperbolic tangent function is another frequent variant of a sigmoid
function. This function maps any real–valued input to the range of -1 to 1.
Due to the fact that it inherits all of the benefits of sigmoid, it also meets the
technical prerequisites for being a basis function, and its formula is presented
as follows:

bhypTanh(x) = ex − e−x

ex + e−x . (5.7)

The last basis function is sigmoid123. We derived this formulation
from academic papers [CS15] and [Cor+19], in which the authors achieved
positive outcomes. Given the fact that this approach was beneficial for other
reinforcement learning algorithms, we repeat it here to compare final results.
We adopted the term sigmoid123 since its formula constructs a sigmoid with
some tweaks; nevertheless, unlike the other two functions, this one returns
discrete responses, as shown:

bsigmoid123(x) = a

1 + b · e−c·x − d, (5.8)

where a = 2, b = 1, c = 1015, d = −1, and

bsigmoid123(x) =


1 if x < 0,
2 if x = 0,
3 if x > 0.

(5.9)

After setting the basis function, we must bring about the basis vector, which
will belong to an element of the feature vector subsequently. This basis vector−→
b ∈ Rn+1 has the following elements:

bi =

b
(
l(S)

)
if i = 1, 2, . . . , n.

b
(
l(R)

)
if i = n+ 1,

(5.10)

where the function l(·) is defined as the log return, and R is the current trade
profit or loss (PL)’s ratio, such that

l(x) =

ln
(
x[j+1, 4]
x[j, 4]

)
if x = S,

ln
(

current close price
|entry price|

)
if x = R,

(5.11)

for j = 1, 2, . . . , n, and the column index number 4 represents the close time in
the state matrix. In keeping with other academic practices (see Section 1.5),
it is meaningful to mention that we likewise operate log returns rather than
simple returns.

After completing all the above schemes, we can figure out our feature vector−→
ϕ ∈ Rd, where d = |A| · (n+ 1). Similar to [Cor+19] and [GDH13], we employ
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a block representation of the feature vector, also known as feature expansion
technique, which was first proposed by [Ger+11] and further enhanced by
[Ger+13]. This system, which was developed specifically for estimations of
linear reinforcement learning, copies the basis vector to one of the three slots in
the feature vector, applying the constraint:

−→
ϕ =



[−→
b
−→0 −→0

]T
if At = −1,[−→0 −→

b
−→0

]T
if At = 0,[−→0 −→0

−→
b

]T
if At = 1,

(5.12)

where −→0 ∈ Rn+1.
As discussed in Section 4.3, the linear reinforcement learning framework

specifies the estimate value function as the inner vector product of weight and
feature vectors, as follows:

Q̂(St, At; −→w t) = −→w T
t ·
−→
ϕ t

=
d∑

i,j=1
wj · ϕi(St, At).

(5.13)

As a result, we call for a way of initialization of the weights. The chosen
method is by the uniform distribution of values between 0 and 1, so that
−→w ∼ Uniform(0, 1) ∈ Rd portrays this vector.

The purpose of reinforcement learning approximation solution methods is
to discover a suitable local minimum for MSE(−→w ) by using stochastic gradient
descent (SGD) techniques (see 4.1 and Sections 4.1 and 4.2). This entails
the use of a weight–update algorithm at each time step, according to what we
explained in Section 4.3. For that, we defined a generalized weight update
routine in (4.18), but it is repeated here again for convenience:

−→w t+1
def= −→w t + ηt

[
θt − Q̂(St, At; −→w t)

] −→
ϕ t, (5.14)

where ηt is the learning rate examined at the end of Section 3.6, and−→
ϕ t = ∇Q̂(St, At; −→w t) corresponding to the proof of (4.17). Note that the target
value function θt is an estimate for the expected future returns with respect to
an estimate of its related value function (see 4.11), which we already know how
to compute by (5.13), but now for the state–action pair of (St+1, At+1), i.e.,

θt = Rt+1 + γGt+1

= Rt+1 + γQψ(St+1, At+1)

≈ Rt+1 + γQ̂(St+1, At+1; −→w t)

= Rt+1 + γ

d∑
i,j=1

wj · ϕi(St+1, At+1).

(5.15)

However, the critical concern at this point is how to pick up the future action
At+1 and properly establish the target value function once we have St+1. In
our dissertation’s case studies, we employ three distinct techniques to solve this

69



5.3. Algorithm engineering

issue. It is necessary to highlight that they all adopt the accompanying generic
target value function (5.15) and generic weight update (5.14), but with various
alterations that produce their unique advantages and ensure their convergence
characteristics.

The first is a linearly weighted on–policy SARSA, which is extensively
discussed in Section 4.4. In the same way as in (5.15), we define its target
value function as

θt = Rt+1 + γ Q̂(St+1, a
′; −→w t),

where a′ ∼ ϵ–greedy policy agreeing to

a′ =
{

arg maxa′∈A(tradingStatus) Q̂(St+1, a
′; −→w t) with probability 1− ϵ,

Ut

(
A(tradingStatus)

)
with probability ϵ,

where Ut randomly draws a uniformly distributed action from A(tradingStatus).
From there, the final equation for weight update becomes

−→w t+1 ←− −→w t + ηt

[
Rt+1 + γ

d∑
i,j=1

wj · ϕi(St+1, a
′)−

d∑
i,j=1

wj · ϕi(St, At)
]−→
ϕ t,

for a′ ∼ ϵ–greedy policy. It is crucial to mention that we initialize the weight
vector here in two distinct ways: −→w 0 = −→0 and −→w 0 ∼ Uniform(x) ∈ (0, 1).

The second is a linearly weighted off–policy Q–learning covered in Section
4.5, where we determine its target value function as:

θt = Rt+1 + γ max
a′∈A(tradingStatus)

Q̂(St+1, a
′; −→w t), (5.16)

where a′ ∼ greedy policy. Hence, the final equation for weight update becomes:

wt+1 ←− wt + ηt

[
Rt+1 + γ max

a′∈A(tradingStatus)

d∑
i,j=1

wj · ϕi(St+1, a
′)

−
d∑

i,j=1
wj · ϕi(St, At)

]−→
ϕ t,

for a′ ∼ greedy policy. Keep in mind that we initialize the weight vector as
−→w 0 ∼ Uniform(x) ∈ (0, 1) for this second system.

The last one is Greedy–GQ (see [Mae+10] and Section 4.5). This method
stores quantities for a supplementary sequence of weights −→κ t ∈ Rd and an extra
step–size parameter ζt, culminating in the same target value function θt as in
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Q–learning (5.16), but with different weight update guidelines:

θt = Rt+1 + γ max
a′∈A(tradingStatus)

d∑
i,j=1

wj · ϕi(St+1, a
′)

ϑt+1 ←−
[
θt+1 −

d∑
i,j=1

wj · ϕi(St, At)
]

−→w t+1 ←− −→w t + ηt

[
ϑt+1
−→
ϕ t − γ

d∑
i,j=1

κj · ϕi(St, At)
]−→
ϕ t+1

−→κ t+1 ←− −→κ t + ζt

[
ϑt+1 −

d∑
i,j=1

κj · ϕi(St, At)
]−→
ϕ t,

for a′ ∼ greedy policy, where we initialize the weight vectors as −→w 0,
−→κ 0 ∼

Uniform(x) ∈ (0, 1) for this last scheme.
Now, all that remains to be done is to determine the learning rates η, ζ ∈ (0, 1)

that match to the theoretically required step rates for the learning process
to be convergent (see [RM51] and discussion at the end of Section 3.6).
These parameters may decrease in value over time as the model approaches
its optimal point, which is why we created a learning rate scheduler function,
namely lrSchedulerFct. After a fixed and pre–defined amount of time steps,
this function cuts the learning rate by half. Furthermore, we have the option of
keeping the learning rate constant with no cutback.

Ultimately, the pseudocodes for the estimate SARSA, estimate Q–learning,
and estimate Greedy–GQ algorithms are in (6), (7), and (8) respectively. They
were built as Python’s classes and stored in algorithms.py11 file in our GitHub
repository.

11https://github.com/fabiorodp/uio_master_thesis/blob/main/algorithms.py
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Algorithm 6: Pseudocode for estimate SARSA algorithm.
1 begin
2 By initializing the constructor with

• S ←− Environment.

• A ∼ ϵ–greedy policy.

3 for each time step do
4 A −→ Environment.
5 S′, R′ ←− Environment.
6 A′ ∼ ϵ–greedy policy.
7 δ ←− r(R′) + γQ̂(S′, A′; −→w )− Q̂(S, A; −→w ).
8 −→w ←− −→w + η δ

−→
∇Q̂(S,A; −→w ).

9 η ←− lrSchedulerFct.
10 S ←− S′.
11 A←− A′.
12 t←− t+ 1.

Algorithm 7: Pseudocode for estimate Q–learning algorithm.
1 begin
2 By initializing the constructor with

• S ←− Environment.

• A ∼ greedy policy w.r.t. arg maxa∈A(tradingStatus) Q̂(S′, a; −→w ).

3 for each time step do
4 A −→ Environment.
5 S′, R′ ←− Environment.
6 A′ ∼ greedy policy w.r.t. arg maxa∈A(tradingStatus) Q̂(S′, a; −→w ).
7 δ ←− r(R′) + γQ̂(S′, A′; −→w )− Q̂(S, A; −→w ).
8 −→w ←− −→w + η δ

−→
∇Q̂(S,A; −→w ).

9 η ←− lrSchedulerFct.
10 S ←− S′.
11 A←− A′.
12 t←− t+ 1.
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Algorithm 8: Pseudocode for estimate Greedy–GQ algorithm.
1 begin
2 By initializing the constructor with

• S ←− Environment.

• A ∼ greedy policy w.r.t. arg maxa∈A(tradingStatus) Q̂(S′, a; −→w ).

3 for each time step do
4 A −→ Environment.
5 S′, R′ ←− Environment.
6 A′ ∼ greedy policy w.r.t. arg maxa∈A(tradingStatus) Q̂(S′, a; −→w ).
7 ϑ←− r(R′) + γQ̂(S′, A′; −→w )− Q̂(S, A; −→w ).
8 −→w ←− −→w+η

[
ϑ
−→
∇Q̂(S,A; −→w )−γ−→κ T−→∇Q̂(S,A; −→w )

]−→
∇Q̂(S′, A′; −→w ).

9 −→κ ←− −→κ + ζ
[
ϑ−−→κ T

−→
∇Q̂(S,A; −→w )

]−→
∇Q̂(S,A; −→w ).

10 η, ζ ←− lrSchedulerFct.
11 S ←− S′.
12 A←− A′.
13 t←− t+ 1.
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CHAPTER 6

Assessment of applicability,
profitability, and reliability

We have intensively dealt with all the theoretical and applicative engineering
characterizations so far. Now, in this third part of the thesis, it is time to focus
on our study’s analysis, incorporating its findings, a discussion combining results,
statistics and theory, and subsequently a conclusion to the entire investigation.
In the discussion, we also tackle the thesis’s fundamental research question,
look into future works, and recommend some unresolved academic issues in the
literature. In the conclusion, we review all the themes and the specific aims
achieved.

6.1 Results

First, we established a baseline before undertaking any experiment. There
were many alternatives for that, but we opted for a straightforward buy–and–
hold strategy. Other investment tactics are more sophisticated and would
deviate from the thesis’s aim. On the contrary, buy–and–hold is a popular
and conservative approach whereby an individual purchases an investment
asset and holds them for an extended length of time regardless of the market
movements. Typically, this investor is unconcerned with short–term price swings
and technical indicators, seeking mostly long–term ventures.

Table 6.1 demonstrates how buy–and–hold fared from 17.02.21 to 15.02.22,

Code Period First trade Last trade B&H PL

WINJ21 17.02.21 - 13.04.21 119,695 119,010 -685
WINM21 14.04.21 - 15.06.21 119,490 130,075 10,585
WINQ21 16.06.21 - 17.08.21 130,705 117,150 -13,555
WINV21 18.08.21 - 12.10.21 118,890 112,100 -6,790
WINZ21 13.10.21 - 14.12.21 113,370 106,520 -6,850
WING22 15.12.21 - 15.02.22 108,400 115,135 6,735

Total 17.02.21 - 15.02.22 - - -10,560

Table 6.1: Buy–and–hold benchmark strategy, comprising the first and last
trade prices, as well as the profit or loss of the periods, all of which are measured
by points.
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breaking through each mini index expiration date. As shown, the market’s
volatility was exceptionally high, culminating in episodes of significant losses
and occasional spectacular gains. This might be explained by the international
scenario in which the world found itself, namely the COVID–19 pandemic
restrictions and the commencement of the Russia–Ukraine War. This global
situation is relevant for our research because it allows us to visualize even more
clearly if reinforcement learning algorithms are capable of quickly learning from
adversity and make worthwhile decisions while still providing robust profits.

Following that, as previously reported but worth repeating, we will delve into
three reinforcement learning designs across two distinct time–framed periods
(60 minutes and 500000 ticks). To that end, we conducted a preliminary
examination of the algorithms’ achievement by running several simulations and
comparing their behavior when different parameters were varied. More precisely,
we investigated the performance difference between multiple alternative values
for rlType (types of reinforcement learning framework), n (number of close prices
to look back), basisFctType (types of basis function), rewardType (types of
reward function), η (learning rate), ζ (second learning rate only for Greedy–GQ),
γ (discount rate), ϵ (probabilities for exploitation vs exploration), lrScheduler
(gradually reducing the learning rate or keeping it constant), and initType
(types of initialization of the weight vector) while running 50 seeds (stochastic
differently simulations) for each parameter combination. This hyper–parameter
tuning is developed in the file called pipeline.py1 containing a massive pipeline
with the settings listed in Table 6.2.

hyper–parameters Values
rlType SARSA, QLearn, Greedy–GQ
n 5, 25, 50

basisFctType sigmoid, sigmoid123, hypTanh
rewardType minusMean, immediate, mean

η 0.1, 0.01
ζ 0.1, 0.01
γ 1, 0.95
ϵ 0.15, 0.1

lrScheduler 0, 200
initType uniform01, zeros

seeds 1, ..., 51

Table 6.2: hyper–parameters’ settings for the pipeline.

The initial step for determining the optimal system was to design this gigantic
pipeline and test all potential parametric’s combinations. This investigation ran
for several weeks, nearly two months, and yielded extremely interesting results.

It is critical to note that, while we attempt to maximize returns throughout
the trading process, we consider the final profit or loss (PL) at the terminal
point to reflect our algorithms’ performance. To make it easier to comprehend
the algorithms’ accomplishments, we deduct the initial investment capital from
the final return (GT ) to get solely the profit or loss of the systems, which we

1https://github.com/fabiorodp/uio_master_thesis/blob/main/pipeline.py
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hyper–parameters Final PL

1 QLearn, 50, sigmoid123, minusMean, 0.01, 0.95, 200 -20,487

2 Greedy–GQ, 25, sigmoid, minusMean, 0.01, 1, 0.01, 0 -13,995

3 Greedy–GQ, 25, sigmoid, minusMean, 0.01, 1, 0.01, 200 -13,995

4 QLearn, 50, sigmoid123, minusMean, 0.01, 0.95, 0 -13,304

5 Greedy–GQ, 5, sigmoid123, minusMean, 0.01, 1, 0.01, 0 -10,477

6 Greedy–GQ, 50, sigmoid123, minusMean, 0.01, 0.95, 0.1, 200 -8,880

7 Greedy–GQ, 50, sigmoid123, minusMean, 0.01, 0.95, 0.1, 0 -8,838

8 Greedy–GQ, 5, sigmoid123, immediate, 0.1, 1, 0.1, 200 -8,512

9 Greedy–GQ, 50, sigmoid123, minusMean, 0.01, 1, 0.1, 200 -8,292

10 Greedy–GQ, 50, sigmoid123, immediate, 0.1, 1, 0.1, 200 -7,828

11 Greedy–GQ, 50, sigmoid123, minusMean, 0.01, 1, 0.1, 0 -7,706

12 QLearn, 50, sigmoid, minusMean, 0.01, 0.95, 0 -7,650

13 SARSA, 50, sigmoid123, minusMean, 0.01, 0.95, 0.15, uniform01, 200 -7,531

14 Greedy–GQ, 5, sigmoid, minusMean, 0.01, 1, 0.01, 0 -7,314

15 SARSA, 50, sigmoid123, minusMean, 0.01, 1, 0.1, uniform01, 200 -7,230

16 QLearn, 5, hypTanh, immediate, 0.1, 0.95, 0 -7,050

17 QLearn, 5, hypTanh, immediate, 0.1, 1, 0 -7,050

18 Greedy–GQ, 25, sigmoid, mean, 0.1, 0.95, 0.01, 0 -7,008

19 Greedy–GQ, 25, sigmoid, minusMean, 0.01, 1, 0.1, 0 -6,995

20 SARSA, 50, sigmoid123, minusMean, 0.01, 0.95, 0.15, zeros, 200 -6,762

Table 6.3: Top 20 worst combination of hyper–parameters for 60 minutes’ time–
framed periods. Final profit and loss values (Final PL) presented in points.

hyper–parameters Final PL

1 Greedy–GQ, 5, sigmoid, minusMean, 0.01, 0.95, 0.1, 200 16,896

2 QLearn, 5, sigmoid, minusMean, 0.01, 0.95, 0 16,073

3 QLearn, 5, sigmoid123, minusMean, 0.01, 0.95, 0 15,615

4 QLearn, 5, sigmoid123, minusMean, 0.01, 0.95, 200 15,450

5 QLearn, 25, sigmoid, minusMean, 0.1, 0.95, 0 14,028

6 QLearn, 5, sigmoid, minusMean, 0.01, 0.95, 200 13,076

7 QLearn, 25, sigmoid, minusMean, 0.1, 0.95, 200 12,721

8 QLearn, 25, sigmoid123, minusMean, 0.1, 1, 200 12,550

9 Greedy–GQ, 50, sigmoid, minusMean, 0.01, 0.95, 0.01, 200 12,374

10 QLearn, 5, sigmoid, minusMean, 0.1, 0.95, 0 12,033

11 QLearn, 25, hypTanh, minusMean, 0.1, 1, 0 12,003

12 QLearn, 25, hypTanh, minusMean, 0.1, 0.95, 0 12,001

13 QLearn, 25, hypTanh, minusMean, 0.1, 1, 200 11,348

14 QLearn, 25, hypTanh, minusMean, 0.1, 0.95, 200 11,348

15 QLearn, 50, hypTanh, minusMean, 0.1, 1, 200 10,926

16 QLearn, 50, hypTanh, minusMean, 0.1, 0.95, 200 10,926

17 SARSA, 5, hypTanh, minusMean, 0.01, 1, 0.1, zeros, 200 10,776

18 SARSA, 5, hypTanh, minusMean, 0.01, 0.95, 0.1, zeros, 200 10,689

19 SARSA, 5, hypTanh, minusMean, 0.1, 0.95, 0.1, zeros, 200 10,610

20 SARSA, 5, hypTanh, minusMean, 0.1, 1, 0.1, zeros, 200 10,610

Table 6.4: Top 20 best combination of hyper–parameters for 60 minutes’ time–
framed periods. Final profit and loss values (Final PL) presented in points.
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refer to as Final PL in our tables, and define as follows:

PL
def= GT − Initial Investment Capital,

where T is the terminal state, and Initial Investment Capital equals to 28,000
points in our cases.

From Table 6.3 and 6.4, we may now conduct a preliminary assessment of
these findings, adopting the PL performance metric for a 60–minute time–framed
period.

• The first convincing evidence that highlights the success of these
reinforcement learning methods is that merely 4 out of over 1500
parametric combinations yielded an inferior performance based on our
benchmark. This first piece of evidence indicates unequivocally that
reinforcement learning methods can easily outperform a simple buy–
and–hold strategy, even when the algorithms are neither fine–tuned nor
optimized properly.

• Another noteworthy observation from these data is the drop ratio of
the twenty worst and twenty best performances. On the one hand, the
worst–case scenario led to a loss of 20,487, while the 20th worst case
resulted in a loss of 6,762 points. This negative view brought in a drop
ratio of around 66%. On the other hand, the best scenario generated a
profit of 16,896, while the twentieth best cases generated a profit of 10,610
points. This positive view resulted in a drop ratio of around 37%. As we
can see, the loser side turns to be a winner more quickly than the winner
to a loser. This behavior is desirable because it emphasizes the goal of
maximizing returns, where losses must frequently be offset by profits.

Another sort of evaluation that we may do is one that concerns the hyper–
parameters. It is necessary to emphasize that the purpose of this master’s
dissertation is not to uncover the most generalized, fine–tuned and/or optimal
algorithm that best maximizes profit. For that, it would have been necessary
to run many more combinations of hyper–parameters, explore more financial
contracts, and consider the uniqueness of each different asset, which should
definitely be further researched in futures works. However, as we are dealing
with limited computational power (a personal laptop), limited time, and limited
data source (free data from B3’s exchange), we narrowed our aim to presenting
a more relevant discussion, such as the applicability, profitability, and reliability
of the reinforcement learning methodologies. Besides, despite these restrictions,
Table 6.3 and 6.4 can provide useful information about the hyper–parameters
and perhaps about the algorithms:

• Greedy–GQ provided the highest return. Nevertheless, further research is
essential before concluding that this strategy is the best.

• The hyper–parameters n equals 50 and basisFctType equals “sigmoid123”
appeared more consistently in the top 20 worst results. Due to the fact
that these hyper–parameters are not frequently detected in the top twenty
best returns, this may imply that they are not suitable for the success of
our models.
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Figure 6.1: Four pie plots containing the proportions for "Above 5,000", "Between
0 and 5,000", "Between -5,000 and 0", and "Below -5,000" profit/loss results in
points. These results are the entire possible combinations of hyper–parameters.
Each combination was run from 17.02.21 to 15.02.22 in a 60–min frame. Top
left, top right, bottom left and bottom right represent 60–min all, Greedy–GQ,
QLearn, and SARSA algorithms respectively.

• The hyper–parameter n equals 5 appeared regularly in the top twenty
greatest returns but infrequently in the top twenty worst. This evidence
reveals that the basis vector does not need to look far back in time to
learn about best market practices. Similarly, although from a different
point of view, a large value for n implies that the basis vector must look
far behind in time, which may confuse judgments and culminate in losses.

• Despite not being the optimal basis function, “hypTanh” routinely featured
in the top twenty best PLs and only rarely in the top twenty worst. This
suggests that “hypTanh” may be a more stable function than “sigmoid”
or “sigmoid123”, that is, it is likely to produce sustainable profits while
having rare losses.

• Looking upon the other parameters, we found non–standard patterns of
results, making it difficult to have conduct accurate convictions about
them.

Figure 6.1 presents the proportionality of the final profit or loss in four
different groups: “Above 5,000”, “Between 0 and 5,000”, “Between -5,000 and
0”, and “Below -5,000”. The intention although is to detect which reinforcement
learning type is more stable, that is, which model consistently and more
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frequently provides the most positive results, among the various combinations
of hyper–parameters, even though they are not wholly adjusted. Moreover, we
picked 5,000 points as a border reference since it represents around 18% of our
return on investment, which is a significant amount in financial markets in terms
of annualized profit. Hence, from the findings, we may draw the following:

• The top left pie chart summarizes the findings for all algorithms and
parameters searched. As we can see, most of the results are favorable,
with an impressive 12.96% exceeding 5,000 points. On the other extreme,
a tiny portion is less than -5,000 points (4.03%), which is quite desirable
and appears to be related to the algorithms’ success.

• When examining the other three pie charts, Greedy–GQ (top right pie)
appears to be the most unstable algorithm. Although a considerable
number of outcomes remain favorable for Greedy–GQ, we detect a greater
number on the negative side, both for “Between -5,000 and 0” and “Below
-5,000” levels, when compared with the overall results (top left pie).

• The pie chart plotted on the bottom right concerns for the QLearn
algorithm. According to the plots, this approach is the superior option
compared with the other two. This dominance is attributable to the fact
that 22.69% of outcomes are greater than 5,000 points, while 12.96%,
10.88% and 11.57% were achieved for all, Greedy–GQ, and SARSA. This
resilient percentile implies that, even when hyper–parameters are altered,
the method preserves a high level of performance, making it highly solid.
On the negative side, the number of outcomes below -5.000 points (6.02%)
rose when compared with the overall measure of 4.03%, or even 2.20%
for SARSA. However, this negative finding is not problematic when we
consider that it is still lower than the 6.71% produced by the Greedy–GQ.
Additionally, the 29.17% achieved for the “Between -5,000 and 0” group is
substantially less than 40.28%, 43.06%, and 41.67% for all, Greedy–GQ,
and SARSA respectively, demonstrating yet again how robust QLearn
appears to be.

• The bottom–left pie represents SARSA. This system achieved a stunning
2.20% of results in the category “Below -5,000,” as opposed to the other
approaches. The remaining categories keep nearly identical percentages to
the aggregate ones. These facts may indicate that SARSA is best suited
for cautious agents who minimize downside risks.

As we did for the time–framed periods of 60 min, we may also design
assessments concerning the models, hyper–parameters, and other specifications
adopting the PL performance metric for 500k ticks’ time–framed intervals, but
this time taking as reference Table 6.5 and 6.6:

• It is essential to keep in mind first that both the greatest profits and
losses climbed significantly. The increase of profits points out that
the algorithms are becoming more adept at determining how to act
in the market, resulting in more earnings. As previously stated and
consistent with literature [Pra18, p. 26], 500k ticks’ time–framed intervals
may provide greater statistical significance to the data, allowing for
better understanding and easier discovery of its optimal configuration.
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Conversely, a rise in losses seems to be an unavoidable trade-off for
increased earnings. Contrasted with 60–minute time–framed data, proper
parameter tuning is now required owing to the fact that flawed settings
might cause considerable losses.

• As observed for 60–minute, the drop ratio between the top worst outcomes
is greater than that of the top best. Indeed, the losing scenario has a drop
ratio of 78.53%, while the winning scenario has 57.18%. Take note that
we are now working with the top 50, rather than the top 20 as was the
case in the 60–minute.

• This time, SARSA proved to be a very effective strategy, generating
really high revenue. Additionally, the top 26 occurrences were SARSA
algorithms, with the best QLearn algorithm coming in at 27th and the
greatest Greedy–GQ algorithm coming in at 49th. SARSA’s tremendous
profit (48,246 points) was much more than that of its competitors QLearn
and Greedy–GQ, which attained 36,675 and 21,159 points respectively.

• The winner Table 6.6 manifests a preponderance of lower values for the
hyper–parameter n, while the loser Table 6.5 displays a preeminence of
higher qualities. Similar to what we saw in the 60 minutes’ time–framed
case, a higher value for n leads to a longer basis vector with a wider view
back in market’s history prices, and consequently, this lengthy vector may
be more detrimental than helpful to the models.

• It is a hurtful highlight for the “sigmoid” basis function, which yields
excessively negative results with the biggest losses in all top 13 worst PLs.
Indeed, there were 34 instances of the “sigmoid” basis function in the top
50 worst outputs, followed by 10 occurrences of the “sigmoid123” and
just 6 cases of “hypTanh”. Besides, the “sigmoid” appears only twice on
the winning outcomes’ list. Thus, these pieces of evidence unequivocally
suggest that “sigmoid” basis function can be very erratic, i.e., it repeatedly
gives extremely large losses while just occasionally producing profits.

• As we clearly see in Table 6.6, the “hypTanh” basis function was
consistently leading the best outcomes with very generous revenues when
compared with the other functions. This circumstance is well proven
with a frequency of 47 out of 50 occurrences in the top winners’ table,
as opposed to only 6 out of 50 in the top losers’ table. Additionally,
the “hypTanh” seems to go on vigorously with any kind of reinforcement
learning approach, but particularly well with SARSA, which achieved the
best results.

• In the top winners’ Table 6.6, 40 out of 50 instances, including the
greatest one, selected 5, “hypTanh” and “minusMean” as the optimal
parameters n, basisFctType and rewardType, respectively. Together, these
three parameters did not make it into the top worst Table 6.5. As a
result, these results strongly indicate that their arrangement is optimal
for our proposed case.

• Considering the remaining parameters, we identified non–standard
patterns, making exact convictions about them being precarious.
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hyper–parameters Final PL

1 QLearn, 25, sigmoid, minusMean, 0.01, 0.95, 200 -70,280
2 QLearn, 25, sigmoid, minusMean, 0.01, 0.95, 0 -61,570
3 Greedy–GQ, 5, sigmoid, minusMean, 0.01, 1, 0.1, 0 -52,360
4 QLearn, 25, sigmoid, mean, 0.01, 0.95, 200 -48,430
5 Greedy–GQ, 5, sigmoid, minusMean, 0.01, 1, 0.1, 200 -47,554
6 Greedy–GQ, 5, sigmoid, minusMean, 0.01, 0.95, 0.1, 0 -47,363
7 QLearn, 25, sigmoid, immediate, 0.01, 0.95, 0 -43,732
8 Greedy–GQ, 5, sigmoid, minusMean, 0.01, 0.95, 0.1, 200 -41,756
9 QLearn, 50, sigmoid, minusMean, 0.01, 0.95, 200 -41,670

10 QLearn, 25, sigmoid, mean, 0.01, 0.95, 0 -40,501
11 QLearn, 50, sigmoid, immediate, 0.01, 0.95, 200 -37,944
12 SARSA, 25, sigmoid, minusMean, 0.01, 0.95, 0.1, uniform01, 0 -36,189
13 QLearn, 25, sigmoid, minusMean, 0.01, 1, 200 -34,410
14 QLearn, 5, sigmoid123, minusMean, 0.01, 1, 200 -33,302
15 QLearn, 5, sigmoid, mean, 0.1, 0.95, 200 -31,826
16 QLearn, 25, sigmoid, minusMean, 0.01, 1, 0 -30,961
17 QLearn, 25, sigmoid123, minusMean, 0.01, 0.95, 200 -28,284
18 SARSA, 25, sigmoid, immediate, 0.01, 0.95, 0.15, uniform01, 0 -23,956
19 Greedy–GQ, 5, sigmoid123, minusMean, 0.01, 1, 0.01, 200 -23,856
20 SARSA, 25, sigmoid, immediate, 0.01, 0.95, 0.1, uniform01, 0 -23,089
21 SARSA, 25, sigmoid, minusMean, 0.01, 0.95, 0.1, uniform01, 200 -22,099
22 SARSA, 25, sigmoid, minusMean, 0.01, 0.95, 0.1, zeros, 0 -21,759
23 Greedy–GQ, 25, sigmoid, minusMean, 0.01, 0.95, 0.1, 200 -21,698
24 SARSA, 25, sigmoid, immediate, 0.01, 0.95, 0.1, zeros, 0 -21,313
25 Greedy–GQ, 25, sigmoid, minusMean, 0.01, 1, 0.1, 200 -20,817
26 QLearn, 5, sigmoid, minusMean, 0.01, 0.95, 0 -20,262
27 QLearn, 5, sigmoid123, minusMean, 0.01, 0.95, 200 -20,210
28 SARSA, 25, sigmoid123, minusMean, 0.01, 0.95, 0.1, zeros, 0 -19,976
29 SARSA, 25, sigmoid, mean, 0.01, 0.95, 0.1, uniform01, 0 -19,959
30 Greedy–GQ, 25, sigmoid, minusMean, 0.01, 0.95, 0.1, 0 -19,846
31 SARSA, 25, sigmoid, minusMean, 0.01, 0.95, 0.15, uniform01, 0 -19,450
32 Greedy–GQ, 5, sigmoid123, minusMean, 0.01, 1, 0.01, 0 -19,302
33 Greedy–GQ, 25, sigmoid, minusMean, 0.01, 1, 0.1, 0 -19,237
34 QLearn, 5, hypTanh, immediate, 0.1, 1, 0 -18,865
35 Greedy–GQ, 5, sigmoid123, minusMean, 0.1, 0.95, 0.01, 200 -18,638
36 QLearn, 5, sigmoid, minusMean, 0.01, 0.95, 200 -18,635
37 Greedy–GQ, 5, sigmoid, immediate, 0.1, 0.95, 0.1, 200 -18,472
38 SARSA, 25, sigmoid, minusMean, 0.01, 0.95, 0.15, zeros, 0 -18,393
39 QLearn, 25, sigmoid123, minusMean, 0.01, 0.95, 0 -18,316
40 SARSA, 25, sigmoid, immediate, 0.01, 0.95, 0.15, zeros, 0 -18,232
...

...
...

49 QLearn, 5, hypTanh, immediate, 0.1, 0.95, 200 -15,083
50 QLearn, 5, hypTanh, immediate, 0.1, 1, 200 -15,083

Table 6.5: Top 50 worst combination of hyper–parameters for 500,000 ticks’
time–framed periods. Final profit and loss values (Final PL) presented in points.
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hyper–parameters Final PL

1 SARSA, 5, hypTanh, minusMean, 0.1, 1, 0.1, uniform01, 0 48,246
2 SARSA, 5, hypTanh, minusMean, 0.01, 0.95, 0.1, uniform01, 200 47,756
3 SARSA, 5, hypTanh, minusMean, 0.01, 1, 0.1, uniform01, 200 47,756
4 SARSA, 5, hypTanh, minusMean, 0.1, 0.95, 0.1, uniform01, 0 47,655
5 SARSA, 5, hypTanh, minusMean, 0.1, 1, 0.1, uniform01, 200 45,236
6 SARSA, 5, hypTanh, minusMean, 0.1, 0.95, 0.1, uniform01, 200 45,209
7 SARSA, 5, hypTanh, minusMean, 0.01, 0.95, 0.1, zeros, 200 43,735
8 SARSA, 5, hypTanh, minusMean, 0.01, 1, 0.1, zeros, 200 43,735
9 SARSA, 5, hypTanh, minusMean, 0.1, 1, 0.1, zeros, 200 43,723

10 SARSA, 5, hypTanh, minusMean, 0.1, 0.95, 0.1, zeros, 200 43,723
11 SARSA, 5, hypTanh, minusMean, 0.01, 1, 0.1, uniform01, 0 43,168
12 SARSA, 5, hypTanh, minusMean, 0.01, 0.95, 0.1, uniform01, 0 43,167
13 SARSA, 5, hypTanh, minusMean, 0.01, 1, 0.15, uniform01, 200 42,157
14 SARSA, 5, hypTanh, minusMean, 0.01, 0.95, 0.15, uniform01, 200 42,157
15 SARSA, 5, hypTanh, minusMean, 0.01, 0.95, 0.15, zeros, 200 41,477
16 SARSA, 5, hypTanh, minusMean, 0.01, 1, 0.15, zeros, 200 41,477
17 SARSA, 5, hypTanh, minusMean, 0.1, 0.95, 0.15, zeros, 200 41,449
18 SARSA, 5, hypTanh, minusMean, 0.1, 1, 0.15, zeros, 200 41,449
19 SARSA, 5, hypTanh, minusMean, 0.01, 0.95, 0.15, zeros, 0 41,343
20 SARSA, 5, hypTanh, minusMean, 0.01, 1, 0.15, zeros, 0 41,343
21 SARSA, 5, hypTanh, minusMean, 0.1, 1, 0.15, zeros, 0 40,997
22 SARSA, 5, hypTanh, minusMean, 0.1, 1, 0.1, zeros, 0 40,997
23 SARSA, 5, hypTanh, minusMean, 0.1, 0.95, 0.15, zeros, 0 40,873
24 SARSA, 5, hypTanh, minusMean, 0.1, 0.95, 0.1, zeros, 0 40,798
25 SARSA, 5, hypTanh, minusMean, 0.01, 0.95, 0.1, zeros, 0 40,214
26 SARSA, 5, hypTanh, minusMean, 0.01, 1, 0.1, zeros, 0 40,214
27 QLearn, 5, hypTanh, minusMean, 0.1, 0.95, 200 36,675
28 QLearn, 5, hypTanh, minusMean, 0.1, 1, 200 36,604
29 SARSA, 5, hypTanh, minusMean, 0.01, 1, 0.15, uniform01, 0 36,039
30 SARSA, 5, hypTanh, minusMean, 0.01, 0.95, 0.15, uniform01, 0 36,039
31 QLearn, 5, hypTanh, minusMean, 0.1, 0.95, 0 31,825
32 QLearn, 5, hypTanh, minusMean, 0.1, 1, 0 31,701
33 QLearn, 5, hypTanh, minusMean, 0.01, 0.95, 200 29,864
34 QLearn, 5, hypTanh, minusMean, 0.01, 1, 200 29,834
35 SARSA, 5, hypTanh, minusMean, 0.1, 0.95, 0.15, uniform01, 200 28,968
36 SARSA, 5, hypTanh, minusMean, 0.1, 1, 0.15, uniform01, 200 28,968
37 SARSA, 5, hypTanh, minusMean, 0.1, 0.95, 0.15, uniform01, 0 26,993
38 SARSA, 5, hypTanh, minusMean, 0.1, 1, 0.15, uniform01, 0 26,768
39 QLearn, 50, sigmoid, immediate, 0.1, 0.95, 0 26,287
40 QLearn, 50, sigmoid, mean, 0.1, 0.95, 0 25,858
...

...
...

49 Greedy–GQ, 5, sigmoid123, minusMean, 0.1, 0.95, 0.1, 200 21,159
50 SARSA, 25, hypTanh, minusMean, 0.01, 1, 0.15, uniform01, 200 20,655

Table 6.6: Top 50 best combination of hyper–parameters for 500,000 ticks’
time–framed periods. Final profit and loss values (Final PL) presented in
points.
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Figure 6.2: Four pie charts representing the proportions for "Above 10,000",
"Between 0 and 10,000", "Between -10,000 and 0", and "Below -10,000" profit/loss
results in points. These results are the entire possible combinations of hyper–
parameters. Each combination was run from 17.02.21 to 15.02.22 in a 500k
ticks’ frame. Top left, top right, bottom left and bottom right plots represent
500k ticks all, Greedy–GQ, QLearn, and SARSA algorithms respectively.

We also exhibit pie charts, Figure 6.2, that illustrate the proportionality
of the ultimate profit or loss in four distinct categories: “Above 10,000,”
“Between 0 and 10,000,” “Between -10,000 and 0,” and “Below -10,000.” The
outcome is identical to that given in the 60 minutes’ time–framed intervals,
such as establishing which reinforcement learning type is more stable among the
permutations of hyper–parameters, even when they are not completely adjusted.
Nota bene: we chose 10,000 points as our new border reference. Since the
earnings and losses were greater in this scenario, 10,000 points were selected to
disclose more plausible and intriguing information, and so, we can make the
following inferences:

• Similar to what we reported for the analysis for 60 minutes’ time frame,
the 500k ticks for the top–left pie chart might have a similar rationale,
but with wider boundary references. As can be seen, most outcomes are
positive, with 53.25% scoring over 0 point and an amazing 9.33% above
10,000 points. On the other side, a small percentage is less than -10,000
points (7.74%). This number reveals that there are more parameter
options for the positive side than for negative.

• When checking the remaining three pie charts, Greedy–GQ (top–right
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pie) looks to be the least effective algorithm. This evaluation is possible
because of the significant number of responses in the category “Between 0
and 10,000” (55.09%), whereas the category “Above 10,000” has extremely
few responses (1.62%).

• Similar to the 60–minute case, the QLearn method is still the most stable
one. This observation is based on the fact that it has the greatest number
of positive parameter combinations (62.5%). Additionally, it has the
highest number of hyper–parameter permutations, in both of the two
positive boundary groups, than the other algorithms.

• Although the majority of SARSA’s results are negative (50.81%), when its
hyper–parameters are appropriately set, it seems to be a robust algorithm
with a large percentage of outcomes in the category “Above 10,000”
(11.69%).

Furthermore, we cannot neglect the return on investment (ROI). Return
on investment is another common financial performance metric that is used to
determine the effectiveness or profitability of an investment. To calculate the
ROI, we divide the PL of an investment by its initial investment capital, and
the result is denoted either as a percentage or as a ratio:

ROI = PL

Initial Investment Capital ,

where Initial Investment Capital equals to 28,000 points in our cases.

Algorithm Period ROI for 60 min ROI for 500k ticks

Buy & Hold 17.02.21 - 15.02.22 -37.71% -37.71%
Greedy–GQ 17.02.21 - 15.02.22 60.34% 75.56%

QLearn 17.02.21 - 15.02.22 57.40% 130.98%
SARSA 17.02.21 - 15.02.22 38.48% 172.30%

Table 6.7: Return on investment (ROI) for the different and best set ups. The
initial investment capital considered for our application cases was 28,000 points.

Finally, Table 6.7 depicts that the reinforcement learning algorithms
investigated easily outperform the buy–and–hold benchmark in both the 60
minutes’ and 500k ticks’ time–framed intervals. This superiority is observable
even when these methods are not entirely fine–tuned or optimized, confirming
the extraordinary capability of these approaches.

6.2 Discussion

In this early phase of our discussion, we will dive deep into the best models
and their optimal hyper–parameters using a more statistical approach. To do
that, we chose one best combination of hyper–parameters for each reinforcement
learning technique for each time frame, i.e., the parameter mix that produced
the greatest ROI for each time–framed interval, such the ones in Table 6.8.
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Algorithm Parameters time–framed interval

Greedy–GQ 5, sigmoid, minusMean, 0.01, 0.95, 0.1, 200 60 min
Greedy–GQ 5, sigmoid123, minusMean, 0.1, 0.95, 0.1, 200 500k ticks

QLearn 5, sigmoid, minusMean, 0.01, 0.95, 0 60 min
QLearn 5, hypTanh, minusMean, 0.1, 0.95, 200 500k ticks
SARSA 5, hypTanh, minusMean, 0.01, 1, 0.1, zeros, 200 60 min
SARSA 5, hypTanh, minusMean, 0.1, 1, 0.1, uniform01, 0 500k ticks

Table 6.8: Optimal parameters for each reinforcement learning model from
Section 6.1.

Next, we ran 500 simulations with diverse seeds employing the parameters we
selected to assess their returns pathways to the end of their profit or loss. These
simulations with different seeds are vital because they enable us to compel our
algorithms to operate 500 stochastically distinct drawings, thereby eliminating
the luck factor. Further, the key cause of worry in this stage of our dissertation,
and the reason we want to exclude it from our conjecture, is the possibility of
any relevant statistical attribute disqualifying any assumption of success of our
research.

Mean final return
Algorithm time–framed interval 50 seeds 500 seeds

Greedy–GQ 60 min 44,896 39,907
Greedy–GQ 500k ticks 49,159 44,622

QLearn 60 min 44,073 42,372
QLearn 500k ticks 64,675 65,942
SARSA 60 min 38,776 36,604
SARSA 500k ticks 76,246 74,744

Table 6.9: Mean final returns in points for different number of seeds (simulations).
The values for 50 seeds were extracted from Section 6.1.

Table 6.9 exposes the mean final returns for our experiments. The 50 seeds’
values were already known from the previous section, and we computed the
500 seeds’ results applying the methodology pointed out at the beginning of
this section. As can be confirmed, raising the number of simulations had no
discernible effect on the algorithms’ mean final return. Despite the fact that
virtually all setups lost a few points, except for QLearn 500k ticks that increased,
these optimal systems are sustainable and capable of retaining their statistical
properties even when more statistically different samples are collected.

Next, the figures 6.3, 6.4, 6.5, 6.6, 6.7, and 6.8 illustrate how the 500 distinct
seeds’ simulations performed in 60–minute and 500k–tick frames for GreedyGQ,
QLearn, and SARSA. Each seed has a return trajectory illustrated by the
top–left line plots. The bottom–left line plot shows the average of all lines
from the top–left plot. The distribution of each seed’s final returns can be seen
in the top–right histogram, while the bottom–right is a box and swarm plot,
exhibiting the final returns for each seed.

Those studies play an important role in our assessments because the
reinforcement learning framework attempts to maximize returns throughout
each time step via actions and feedback. As a result, we have a clean and big
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Figure 6.3: Lines, histograms, box, and swarm plots displaying the return
results for 500 simulations of various seeds for the method Greedy–GQ across
60–minute time intervals.

Figure 6.4: Lines, histograms, box, and swarm plots displaying the return results
for 500 simulations of various seeds for the method QLearn across 60–minute
time intervals.
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Figure 6.5: Lines, histograms, box, and swarm plots displaying the return results
for 500 simulations of various seeds for the method SARSA across 60–minute
time intervals.

Figure 6.6: Lines, histograms, box, and swarm plots displaying the return
results for 500 simulations of various seeds for the method Greedy–GQ across
500k–tick intervals.
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Figure 6.7: Lines, histograms, box, and swarm plots displaying the return results
for 500 simulations of various seeds for the method QLearn across 500k–tick
intervals.

Figure 6.8: Lines, histograms, box, and swarm plots displaying the return results
for 500 simulations of various seeds for the method SARSA across 500k–tick
intervals.
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picture for what occurred throughout the entire dynamics of our approaches
to the various seeds, and based on a careful inspection of the figures, we may
make the following observations:

• The top–left lines for all of these scenarios have significantly more return
trajectories that result in profit, i.e., over 28,000 points, than those that
end in loss. Additionally, the return pathways among different seeds have
a tendency to go along the positive side throughout the entire window of
our experimentation. This positive dominance emphasizes the model’s
ability to learn an optimal behaviour in such a manner that it avoids
actions that might cut down its returns. Conversely, we need to recognize
fewer trajectories running along the negative side, with some outliers
with high variations. These circumstances may indicate that the model
sometimes, albeit less often than in the positive case, struggles to learn
to acquire optimal actions. Besides, we can pay attention to certain lines
that fall to zero, that is, that lose 100% of the starting capital, before
rebounding or growing losses, suggesting that the initial capital level
(28,000 points) may be insufficient. Since we are analyzing the model’s
applicability and learn–ability, not the most adjusted initial investment
capital, this supposed inaccuracy requires supplementary investigation,
which is outside of the scope of this thesis.

• We can find out that all systems arise in consistent earnings by analyzing
the average return trajectory. Indeed, the bottom–left line plot for all
approaches includes periods of losses, sidewalks, but gains take place
more often. These patterns are an excellent demonstration of how the
methodologies successfully adapt and learn in response to changing market
conditions over time.

• The histogram plots (top–left plots) are also an excellent source of
knowledge showing how the distribution of the final returns ended up.
These information explains us if the model is more likely to generate
profits or losses due to the fact that they allow us to see their mean
and the spread of the results. Once more, all ways are likely to produce
more profits than losses, since all mean values are clearly found after
the starting capital value of 28,000 points, and so are the majority of
outcomes.

• The box and swarm plots are powerful tools for graphically presenting the
dispersion and skewness of the final returns statistics, such as frequency
location, median, minimum and maximum values, quartiles, outliers, and
more. We can assess that some of these plots, especially in Figures
6.4, 6.7, 6.8, provide additional evidence for the algorithms’ robustness,
suggesting that 75% of all final return occurrences exceed the initial
capital of 28,000 points. In fact, the initial capital line of 28,000 points for
all figures are either located before the 25% quartile, or in its proximity
between 25% and 50%, evidencing that there are more occurrences in
the positive side than in the negative. As a result, we have a greater
probability of profit than loss. It is worth emphasizing that certain systems
have minimum and maximum quantities that are distinctly lower and/or
higher than its mean value. This indicates that such algorithms exhibit
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60 min 500k ticks
Greedy–GQ QLearn SARSA Greedy–GQ QLearn SARSA

count 500 500 500 500 500 500
mean 39,907 42,372 36,604 44,622 65,942 74,744
std 19,038 17,070 16,050 51,556 35,266 41,195
min -14,505 -2,515 -4,300 -95,165 -53,975 -77,620
25% 27,350 33,350 25,088 11,392 42,651 46,577
50% 41,090 42,992 36432 43,627 65,327 73,465
75% 53,742 46,783 47,915 81,028 90,083 102,510
max 91,665 69,455 83,610 149,710 193,735 220,090

Table 6.10: Descriptive statistics for each optimal method.

a greater degree of variation than others. Because of the considerable
relevance of this issue, we shall analyze it in depth with the help of Table
6.10.

Table 6.10 shows the descriptive statistics for each optimal reinforcement
learning approach. It is basically a summary statistic that quantifies the
characteristics of the final returns. Standard deviation measurements are more
valuable to us at this point of our dissertation. The remaining numbers are
visually appealing, but have previously been studied in the context of the prior
charts. The standard deviation is an analytical term that points out the degree
of variance in a group of events. As detected previously, some algorithms, such as
Greedy–GQ 500k ticks (6.6) and SARSA 500k ticks (6.8), have a larger variance
than others, for example, QLearn 60min (6.4) and SARSA 60min (6.5). These
outputs that deviate significantly from its mean consequently present a high
standard deviation as well. In fact, Greedy–GQ 500k ticks and SARSA 500k
ticks exhibit standard deviations of 51,556 and 41,195, respectively, compared
with 17,070 and 16,050 for QLearn 60min and SARSA 60min. Despite the high
standard deviation for SARSA 500k ticks, just one outlier example was on the
extreme negative side; the rest were on the positive side, and even over 75%
of their final outcomes were on the profit side of their box plot (6.8). Thus,
we conclude that this high standard deviation metric does not invalidate the
success of our methods; rather, it highlights a key trade–off: if we want to set
up a reinforcement learning algorithm to yield higher revenues, we must be
willing to tolerate a higher risk of loss sometimes.

Although the purpose of this research is not to investigate ways for avoiding
or minimizing deviations, it is interesting to mention one very elegant strategy
from [Cor+19, p. 12]. The author creates a functional financial trading system
in that study, which runs the same algorithm several times in parallel to obtain
the average action for each time step. This concept is used to eliminate outlier
actions and hence might also have the potential to put an end to outlier returns
with large losses.

Inevitably, at this moment of our investigation, one challenging question
may surrounds our consciousness:

Which optimal model appears to be the most appropriate?
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Figure 6.9: All optimal methods together.

The answer to this query appears to be tied to the style of the human
investor behind the reinforcement learning algorithms. Put differently, the
settings of a reinforcement learning algorithm must be determined by a human
investor that can have an aggressive profile: willing to take on higher risks in
pursuit of greater profits; or a conservative style: willing to accept lower but
sustained returns of diminished risks. Therefore, Figure 6.9 may assist us in
overcoming this inescapable doubt by identifying the suitable options for these
two investor kinds outlined.

The box plots in Figure 6.9 depict all of our considered optimal scenarios.
Typically, the vertical black dotted line determines the initial capital of 28,000
points. As we can see, models with time intervals of 500k ticks are more
likely to have a broader box plot than models with time periods of 60 minutes.
Remarkably, the 500k periods still exhibit higher mean values for final returns
than 60 minutes’ period, proving that even with a bigger volatility, they still
generate higher earnings. This interpretation corroborates what we previously
stated about the risk–reward trade–off. Thus, a human investor seeking
increased earnings at the expense of possible high risks is more inclined to
choose 500k time–framed intervals as the setting for their reinforcement learning
environment. Considering the type of reinforcement learning technique, this
aggressive investor may prefer SARSA, as the starting capital line is at the
furthest point of the left side from the 25% quartile than in Greedy–GQ and
QLearn. As a result, SARSA offers a greater likelihood of profitability than the
others. Furthermore, the mean value for SARSA 500k ticks is further toward
the right side than the others, signifying bigger earnings.

For a more conservative investor, a time–framed interval of 60 minutes might
be favorable for the reinforcement learning environment. Indeed, the box plots
are substantially narrower than the 500k–tick ones, implying that there is less
volatility, i.e., less risks as explained before. Nonetheless, these time intervals
yield considerable rewards with a high probability of success, as the initial
capital line remains close to the 25% quartile. Since the beginning capital line
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is farther away from the left side of the 25% quartile in QLearn than it is in
Greedy–GQ or SARSA, this conservative investor may choose QLearn as their
preferable reinforcement learning technique. As a result, QLearn is more likely
to succeed financially than the others. Furthermore, the mean value for QLearn
60 minutes is more to the right side than the others, offering a higher potential
of profits.

Can we have consistent profits using reinforcement learning in the financial
market?

Up to this point, we have conducted a thorough examination of the theory,
application, and analysis of the findings. Returning to the central research
question of this master’s thesis, which is repeated above, it seems that the
profitability of the reinforcement learning techniques applied to financial trading
systems is not only plausible, but also reliable. It is important to emphasize
how effectively the functional approximation reinforcement learning approaches
performed in our problematic scenario. All algorithm types, including on–policy
SARSA and off–policy Q–Learning and Greedy–GQ, outperformed the buy–
and–hold benchmark, bringing about significant profits. Impressively, even
Q–Learning, a functional approximation reinforcement learning methodology
that lacks a technical proof of convergence (see [SB19, Chapter 11] for a more
theoretical debate) performed as well as the top approaches, perhaps the best.
This is not entirely surprising given the widespread usage and success of function–
approximated Q–Learning in other problems in the scientific world. Although
the convergence issue is a current open academic subject that needs deeper
examination in future works, we may postulate that since Q–Learning does
not operate randomly in the market, as SARSA does, it may reduce losses and
safeguard the earnings’ robustness. In other words, whereas Q–Learning and
Greedy–GQ behave greedily in the market, always choosing the action with
the best chance of receiving the highest reward, SARSA operates greedily in
a ϵ–greedy manner, and hence somethings randomly act in the market. This
might explain why Q–Learning and Greedy–GQ were the algorithms with the
greatest ultimate return for the 60–minute time periods. SARSA, on the other
hand, had the greatest final return in 500k–tick intervals because, conceivably,
it may have accomplished a better job of exploring and exploiting the actions,
thereby uncovering a greater return pathway than the off–policy solutions.

Another unresolved academic topic in the doctrines (see [SB19, pp. 249–254])
that we may touch on, but in an applied approach, is the discounted control
setting in continuing on–policy function approximation reinforcement learning.
The discount factor gamma, according to relevant literature, would have no
influence on the findings. We somewhat confirmed this in our studies since two
of our two best on–policy models had γ = 1 as their optimum parameter value.
A parameter search among various gamma values revealed that when gamma is
set to one, i.e., when it has no influence, the algorithm produces the strongest
results, confirming what [SB19, p. 253] claims:

"... if we optimized discounted value over the on–policy distribution,
then the effect would be identical to optimizing undiscounted average
reward; the actual value of γ would have no effect. This strongly
suggests that discounting has no role to play in the definition of the
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control problem with function approximation. One can nevertheless
go ahead and use discounting in solution methods. The discounting
parameter γ changes from a problem parameter to a solution method
parameter! However, in this case we unfortunately would not be
guaranteed to optimize average reward (or the equivalent discounted
value over the on–policy distribution)."

The in–depth theoretical justifications for this occurrence are beyond the scope
of this thesis, and interested readers are referred to the conclusion of the debate
in [SB19, p. 254].
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CHAPTER 7

Conclusion

Reinforcement learning techniques constitute the subject of our thesis. In
our point of view, because of the ability to learn by feed–backs, we proposed
that reinforcement learning is the most appropriate way for capturing financial
market nuances more quickly and efficiently than other artificial intelligence
methods. Moreover, as discussed in the introductory chapter, it seems reasonable
that the financial market is inefficient, based on common sense and adaptive
markets hypothesis [Lo17], creating a potential for earning from algorithmic
trading. Furthermore, we evidenced that reinforcement learning may carry
out the same, if not better, degree of achievement than traditional stochastic
optimal controls, especially when dealing with Markov decision problems without
developing a theoretical model (transition probabilities and rewards) and without
falling victim to the curse of expensive computations imposed by their high
dimensionality.

We opened the first part of our thesis engaging in the theory of reinforcement
learning. Chapter two presented the foundational concepts and reviewed key
definitions, such as of stochastic process, state space, Markov process, transition
probabilities and matrices, actions, policies, and rewards. We also solved an
example of Markov decision process using classical exhaustive calculations
and realized that this general approach is infeasible for the purposes of our
investigation. Chapter three’s primary topics included Markov decision process,
value equations, Bellman’s equations, and value and policy iteration and control.
Besides that, we quickly transitioned to a more engineering–oriented exposition
of the tabular reinforcement learning evolution, covering key computational
concepts such as Dynamic Programming, Monte Carlo, Temporal Difference,
k–step bootstrapping, and on–policy and off–policy controls. These approaches
showed they can be taken advantage of when we are unaware of the transition
probabilities for the system under control and thus produce the same high–level
outcomes as the preceding older processes, but more efficiently, and with the
added benefit of being applicable to other types of adversity. –While these
developments are indispensable to the evolution of the theory, they were still
inapplicable to our study case, which is why we needed to move on to the
next chapter–. Given that we were dealing with a super–high–dimensional
system with an incomplete state space, as well as unknown non–static transition
probabilities and rewards, a function approximation reinforcement learning
proposal appeared to be the most appropriate for our application problem, so
its specificity was extensively addressed in chapter four.

Part two of this thesis focused on developing cutting–edge reinforcement
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learning algorithms for use in the B3’s future financial market, particularly
for trading the B3’s mini index contract. Three function approximated
reinforcement learning algorithms, SARSA, Q–Learning, and Greedy–GQ, were
developed from scratch with three available controls: buy, do nothing, and sell.
It is meaningful to point out that the algorithms were designed to execute just
one transaction at a time, i.e., they were incapable of doubling positions. For
the trading period from 17.02.2021 to 15.02.2022, we adopted pre–processing
and hyper–parameter tuning in two distinct time–framed intervals of 500k–tick
and 60–minute. Several basis functions (hyperTanh, sigmoid, and sigmoid123)
and reward functions (minusMean, immediate, and mean) were also evaluated.
Finally, the feature vector was represented in a block format; the other settings,
as well as the mathematical formulation and theoretical framing, were explored
thoroughly in chapter five. When all of those factors were combined, we could
see that we had engineered an outstanding tool for overcoming any trading
obstacles and perhaps making profits.

The last part of our research included the analysis of the findings and
discussion. Everything came together to provide a satisfactory result: all of our
panels made a large yearly return on investment (from 38% up to approx. 172%),
outperforming the pre–established buy and hold benchmark of -37,71%. By
evaluating the various algorithm configurations and the data behind numerous
seed simulations, we confirmed that all three reinforcement learning approaches
are not only lucrative but also trustworthy in determining the optimal action
to take in the market. Furthermore, since all algorithms had generated robust
gains, we concluded that the optimal model is a matter of personal preference
for the human investor:

• aggressive: prepared to take on larger risks for higher profits;

• conservative: willing to accept lower but sustained revenues in exchange
for less risk

As a result, the most appropriate algorithm for an aggressive investor profile
would be SARSA with 500k–tick intervals. Conversely, the preferred design
for a conservative investor style would be Q–Learning with 60–minute periods.
Lastly, our central research question of whether consistent gains can be made
in the financial market using reinforcement learning was answered affirmatively
as a direct consequence of the trustworthy findings and substantial earnings.

Finally, as we also discussed in the analytical section, there are unresolved
academic topics in reinforcement learning theory that might be beneficial to
address in future works, which might improve the algorithms for trading purposes
too. It is well known that the Q–Learning off–policy technique for function
approximating reinforcement learning does not have a strong convergence
guarantee, although its application delivers robust results. To address this
problem, the Greedy–GQ method was developed; however, as shown, this novel
off–policy with better convergence security did not perform as well as desired
when compared with Q–Learning findings. Thus, an off–policy approach with
proven convergence properties and a capability to achieve higher results is still
missing.
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APPENDIX A

Reinforcement Learning
Algorithms

A.1 Environment

1 # Author: Fabio Rodrigues Pereira
2 # E-mail: fabior@uio.no
3
4 import numpy as np
5 import pandas as pd
6 from datetime import datetime
7 from technicalAnalysis import bollingerBands, ema, lwma
8
9 # suppress warnings

10 import warnings
11
12 warnings.filterwarnings(’ignore’)
13
14
15 class Environment:
16 """
17 Class method that reproduces the B3 stock exchange dynamics.
18 """
19
20 @staticmethod
21 def applyTA(data, freq, std_value=2.0, column_base=’close’):
22 """Module to compute some technical analysis metrics."""
23
24 data = ema(
25 data=data,
26 freq=freq,
27 column_base=column_base
28 )
29
30 data = bollingerBands(
31 data=data,
32 freq=freq,
33 std_value=std_value,
34 column_base=column_base
35 )
36
37 data = lwma(
38 data=data,
39 freq=freq,
40 column_base=column_base
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41 )
42 return data
43
44 @staticmethod
45 def ln(currentPrice, previousPrice):
46 """Computing a feature."""
47
48 return np.log(currentPrice / previousPrice)
49
50 @staticmethod
51 def cleanCurrentTrade():
52 """Clean memory."""
53
54 return {
55 "time": [],
56 "entryPrice": 0,
57 "currentTradePLs": [0],
58 "histTradePLs": [],
59 "lnTradePLs": [],
60 }
61
62 def __init__(self, n, fileName="data/WING22/WING22_1min_OLHCV.csv",
63 initInvest=5600*5, seed=0):
64
65 # seeding the experiment
66 self.seed = seed
67 if seed != 0:
68 self.seed = seed
69 np.random.seed(self.seed)
70
71 self.n = n
72 self.fileName = fileName
73 self.initInvest = initInvest
74 self.t = 1
75 self.data = pd.read_csv(f"{self.fileName}", sep=";")
76
77 self.S = self.data.iloc[: self.n + self.t, :]
78
79 self.S = self.applyTA(
80 data=self.S,
81 freq=self.n + 1,
82 std_value=2.0,
83 column_base=’close’
84 )
85
86 self.terminal = True if len(self.S) == len(self.data) else False
87
88 self.entryPrice = 0
89 self.tradeRandEpsilon = False
90 self.tradeStatus = 0
91 self.Rprime = self.initInvest
92 self.tradePL = 0
93 self.lnTradePL = 0
94
95 self.tradeMemory = {
96 "time": [],
97 "entryPrice": 0,
98 "currentTradePLs": [0],
99 "histTradePLs": [],

100 "lnTradePLs": [],
101 }
102
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103 self.histTradeMemory = []
104 self.histRprime = []
105 self.histTradePLs = []
106
107 def runNext(self, A):
108 """Run next time-step."""
109
110 Sprime = self.data.iloc[: self.n + 1 + self.t, :] # n=2 + 1 + t=1
111 Sprime = self.applyTA(
112 data=Sprime,
113 freq=self.n + 1,
114 std_value=2.0,
115 column_base=’close’
116 )
117
118 C = Sprime.iloc[-2, 3]
119 Cprime = Sprime.iloc[-1, 3]
120
121 try:
122 timePrime = datetime.strptime(Sprime.index[-1],
123 ’%Y-%m-%d %H:%M:%S’)
124 except:
125 timePrime = datetime.strptime(Sprime.index[-1],
126 ’%Y-%m-%d %H:%M:%S.%f’)
127
128 if A == -1: # limit short
129 if self.tradeStatus == 0: # new trade opened
130 self.tradeStatus = -1
131 self.entryPrice = C
132 tradePL = self.entryPrice - Cprime
133 deltaTradePLs = tradePL - self.tradePL
134 self.Rprime += deltaTradePLs
135 self.tradePL = tradePL
136 self.lnTradePL = self.ln(Cprime, abs(self.entryPrice))
137
138 self.saveNewTrade(
139 timePrime=timePrime,
140 entryPrice=self.entryPrice,
141 tradePL=self.tradePL,
142 lnTradePL=self.lnTradePL
143 )
144
145 elif self.tradeStatus == 1: # current trade closed
146 self.histTradePLs.append(self.tradePL)
147 self.tradeStatus = 0
148 self.entryPrice = 0
149 self.tradePL = 0
150 self.Rprime += self.tradePL
151 self.lnTradePL = 0
152 self.histTradeMemory.append(self.tradeMemory)
153 self.tradeMemory = self.cleanCurrentTrade()
154
155 elif A == 0: # do nothing
156 if self.tradeStatus == 1: # on a short trade
157 tradePL = self.entryPrice + Cprime
158 deltaTradePLs = tradePL - self.tradePL
159 self.Rprime += deltaTradePLs
160 self.tradePL = tradePL
161 self.lnTradePL = self.ln(Cprime, abs(self.entryPrice))
162
163 self.saveUpdateTrade(
164 timePrime=timePrime,
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165 tradePL=self.tradePL,
166 lnTradePL=self.lnTradePL
167 )
168
169 elif self.tradeStatus == -1: # on a long trade
170 tradePL = self.entryPrice - Cprime
171 deltaTradePLS = tradePL - self.tradePL
172 self.Rprime += deltaTradePLS
173 self.tradePL = tradePL
174 self.lnTradePL = self.ln(Cprime, abs(self.entryPrice))
175
176 self.saveUpdateTrade(
177 timePrime=timePrime,
178 tradePL=self.tradePL,
179 lnTradePL=self.lnTradePL
180 )
181
182 elif A == 1: # limit long
183 if self.tradeStatus == 0: # new trade opened
184 self.tradeStatus = 1
185 self.entryPrice = -C
186 tradePL = self.entryPrice + Cprime
187 deltaTradePLs = tradePL - self.tradePL
188 self.Rprime += deltaTradePLs
189 self.tradePL = tradePL
190 self.lnTradePL = self.ln(Cprime, abs(self.entryPrice))
191
192 self.saveNewTrade(
193 timePrime=timePrime,
194 entryPrice=self.entryPrice,
195 tradePL=self.tradePL,
196 lnTradePL=self.lnTradePL
197 )
198
199 elif self.tradeStatus == -1: # current trade closed
200 self.histTradePLs.append(self.tradePL)
201 self.tradeStatus = 0
202 self.entryPrice = 0
203 self.tradePL = 0
204 self.Rprime += self.tradePL
205 self.lnTradePL = 0
206 self.histTradeMemory.append(self.tradeMemory)
207 self.tradeMemory = self.cleanCurrentTrade()
208
209 if len(Sprime) == len(self.data):
210 self.terminal = True
211 if self.tradeStatus != 0:
212 self.histTradePLs.append(self.tradePL)
213
214 self.histRprime.append(self.Rprime)
215 self.S = Sprime
216 self.t += 1
217
218 def saveNewTrade(self, timePrime, entryPrice, tradePL, lnTradePL):
219 """Save data in memory."""
220
221 self.tradeMemory["time"].append(timePrime)
222 self.tradeMemory["entryPrice"] = entryPrice
223 self.tradeMemory["currentTradePLs"].append(tradePL)
224 self.tradeMemory["lnTradePLs"].append(lnTradePL)
225
226 def saveUpdateTrade(self, timePrime, tradePL, lnTradePL):
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227 """Save data in memory."""
228
229 self.tradeMemory["time"].append(timePrime)
230 self.tradeMemory["currentTradePLs"].append(tradePL)
231 self.tradeMemory["lnTradePLs"].append(lnTradePL)

A.2 Agents

1 # Author: Fabio Rodrigues Pereira
2 # E-mail: fabior@uio.no
3
4 import numpy as np
5 import torch as tr
6 from datetime import datetime
7
8
9 class QLearn:

10 """
11 Reinforcement Learning algorithm with function approximation
12 and off-policy Q-learning control.
13 """
14
15 @staticmethod
16 def ln(currentPrice: tr.Tensor, previousPrice: tr.Tensor) -> float:
17 """Computing a feature by log-return."""
18
19 return tr.log(currentPrice / previousPrice).item()
20
21 @staticmethod
22 def basisFunction(x: float, basisFctType: str = "sigmoid") -> float:
23 """Basis function."""
24
25 if basisFctType == "sigmoid123":
26 a, b, c, d = 2, 1, 10**15, -1
27 return (a / (1 + b * np.exp(-c * x))) - d
28
29 elif basisFctType == "hypTanh":
30 return np.tanh(x)
31
32 elif basisFctType == "relu":
33 return np.max([0, x])
34
35 elif basisFctType == "sigmoid":
36 return 1 / 1 + np.exp(-x)
37
38 else:
39 raise ValueError(f"basisFctType = {basisFctType} not recognized!")
40
41 @staticmethod
42 def rewardFunction(Gtplus1, rewardType):
43 """Reward function."""
44
45 if rewardType == "shapeRatio":
46 r = np.mean(Gtplus1) / np.sqrt(np.var(Gtplus1))
47 r = 0.0 if np.isnan(r) else r
48 return r
49
50 elif rewardType == "minusMean":
51 return np.mean(Gtplus1)
52
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53 elif rewardType == "immediate":
54 return 0.0
55
56 elif rewardType == "mean":
57 return 0.0
58
59 else:
60 raise ValueError(f"ERROR: rewardType {rewardType} "
61 f"not recognized...")
62
63 @staticmethod
64 def verbose(verbose, dfPrimeS, tradeStatus, primeTradeStatus, A, primeA,
65 tau, primeTau, entryPrice, primeTradePL, lnPrimeTradePL,
66 primeR):
67 """Print steps of the algorithm."""
68
69 if verbose is True:
70 print(f"\nThe prime time is {dfPrimeS.index.to_list()[-1]}.")
71 print(f"The prime closed price is {dfPrimeS.iloc[-1, 3]}.")
72 print(f"\ntradeStatus = {tradeStatus}.")
73 print(f"primeTradeStatus = {primeTradeStatus}.")
74 print(f"A = {A}.")
75 print(f"primeA = {primeA}.")
76 print(f"tau = {tau}.")
77 print(f"primeTau = {primeTau}.")
78 print(f"entryPrice = {entryPrice}.")
79 print(f"primeTradePL = {primeTradePL}.")
80 print(f"lnPrimeTradePL = {lnPrimeTradePL}.")
81 print(f"primeR = {primeR}.")
82
83 @staticmethod
84 def getCurrentDayTime(dataFrame):
85 """Get current date and time."""
86
87 currentDayTime = dataFrame.index[-1]
88 return datetime.strptime(currentDayTime, ’%Y-%m-%d %H:%M:%S’)
89
90 @staticmethod
91 def initWeights(initType, dimensions):
92 """Initializing weight vector."""
93
94 if initType == "zeros":
95 raise ValueError(f"ERROR: initType {initType} not allowed for "
96 f"off-policy methods!")
97
98 elif initType == "uniform01":
99 wVector = tr.zeros((dimensions, 1), dtype=tr.double)

100 wVector = wVector.uniform_()
101 return wVector
102
103 else:
104 raise ValueError(f"ERROR: initType {initType} not recognized!")
105
106 def __init__(self, env, n, initInvest=5600*5, eta=0.01, gamma=0.95,
107 initType="uniform01", rewardType="minusMean",
108 basisFctType="sigmoid", typeFeatureVector="block",
109 lrScheduler=0, verbose=False, seed=0):
110
111 # agent’s variables
112 self.env = env
113 self.n = n # conjugated states
114 self.initInvest = initInvest # initial investment
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115 self.eta = eta # learning rate
116 self.gamma = gamma # discount factor
117 self.initType = initType # zeros, uniform01
118 self.rewardType = rewardType # shapeRatio, mean, sum
119 self.basisFctType = basisFctType # hypTanh123, tanh, relu, sigmoid
120 self.typeFeatureVector = typeFeatureVector # block, nonblock
121 self.lrScheduler = lrScheduler
122 self.verbose = verbose
123
124 # seeding the experiment
125 if seed != 0:
126 self.seed = seed
127 np.random.seed(self.seed)
128 tr.manual_seed(self.seed)
129
130 self.spaceA = ["sell", "buy", "hold"]
131 self.zeroVector = tr.zeros((1, n + 1), dtype=tr.double)
132
133 if self.typeFeatureVector == "block":
134 self.d = len(self.spaceA) * (self.n + 1)
135 else:
136 self.d = self.n + 1
137
138 # init weight vector
139 self.w = self.initWeights(self.initType, self.d)
140
141 # memory
142 self.memory = pd.DataFrame(
143 columns=[’open’, ’high’, ’low’, ’close’, ’volume’,
144 ’tradeStatus’, ’A’, ’primeA’, ’tau’, ’tradePL’,
145 ’primeR’]
146 )
147 self.memoryW = None
148 self.memoryNablaQ = None
149 self.TDErrors = []
150 self.t = 1
151
152 # initial variables
153 self.dfS = self.env.S
154 self.S = tr.from_numpy(self.dfS.values)
155 self.A = 0
156 self.tradeStatus, self.tradePL = 0, 0
157
158 f = self.getFeatureVector(
159 S=self.S, # current state
160 A=self.A, # action t
161 tradeStatus=self.tradeStatus, # tradeStatus
162 tradePL=self.tradePL # current trade profit
163 )
164
165 self.Q = (self.w.T @ f).item()
166 self.nablaQ = f
167
168 def getBasisVector(self, S, tradeStatus, tradePL):
169 """Generate the basis vector."""
170
171 b = tr.zeros((1, self.n + 1), dtype=tr.double)
172
173 for i in reversed(range(2, self.n + 2)):
174 currentPrice = S[-i+1, 3]
175 previousPrice = S[-i, 3]
176
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177 b[0, -i] = self.basisFunction(
178 x=self.ln(currentPrice, previousPrice),
179 basisFctType=self.basisFctType
180 )
181
182 if tradeStatus == 0:
183 b[0, -1] = self.basisFunction(
184 x=0,
185 basisFctType=self.basisFctType
186 )
187
188 else:
189 b[0, -1] = self.basisFunction(
190 x=tradePL,
191 basisFctType=self.basisFctType
192 )
193
194 return b
195
196 def getFeatureVector(self, S, A, tradeStatus, tradePL):
197 """Generate the future vector."""
198
199 b = self.getBasisVector(
200 S=S,
201 tradeStatus=tradeStatus,
202 tradePL=tradePL
203 )
204
205 if self.typeFeatureVector == "block":
206 f = tr.zeros((self.d, 1), dtype=tr.double)
207 if A == -1:
208 f = tr.hstack(
209 (b, self.zeroVector, self.zeroVector)
210 ).T
211 elif A == 0:
212 f = tr.hstack(
213 (self.zeroVector, b, self.zeroVector)
214 ).T
215 elif A == 1:
216 f = tr.hstack(
217 (self.zeroVector, self.zeroVector, b)
218 ).T
219
220 return f
221
222 else:
223 if tradeStatus == 0:
224 b[0, -1] = self.basisFunction(
225 x=0,
226 basisFctType=self.basisFctType
227 )
228 return b.T
229
230 else:
231 b[0, -1] = self.basisFunction(
232 x=tradePL,
233 basisFctType=self.basisFctType
234 )
235 return b.T
236
237 def greedyPolicy(self, S, As, tradeStatus, tradePL):
238 """ Perform greedy policy."""
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239
240 Q, nablaQ = {}, {}
241 for a in As:
242 f = self.getFeatureVector(
243 S=S, # current state
244 A=a, # action t
245 tradeStatus=tradeStatus, # tradeStatus
246 tradePL=tradePL # current trade PL
247 )
248 Q[a] = (self.w.T @ f).item()
249 nablaQ[a] = f
250
251 # checking equal Q values for different actions.
252 equalQs = {k: v for k, v in Q.items()
253 if list(Q.values()).count(v) > 1}
254
255 # if equalQ is detected, do not trade, i.e., select action 0.
256 argmax = max(Q, key=Q.get) if len(equalQs) <= 1 else 0
257
258 return argmax, Q[argmax], nablaQ[argmax]
259
260 def spaceAs(self, tradeStatus):
261 """Filter action space."""
262
263 if tradeStatus == -1:
264 return [0, 1]
265
266 elif tradeStatus == 0:
267 return [-1, 0, 1]
268
269 elif tradeStatus == 1:
270 return [0, -1]
271
272 def saveMemory(self, dfS, tradeStatus, A, primeA, tau, tradePL,
273 primeR, nablaQ):
274 """Save results in memory."""
275
276 col = dfS.columns.to_list()
277 extCols = ["tradeStatus", "A", "primeA", "tau", "tradePL", "primeR"]
278 keys = col+extCols
279
280 val1 = [dfS[k][-1] for k in dfS.keys().to_list()]
281 val2 = [tradeStatus, A, primeA, tau, tradePL, primeR]
282 vals = val1+val2
283
284 timeIdx= dfS.index.to_list()[-1]
285
286 memory = pd.DataFrame(vals).T
287 memory.columns = keys
288 memory.index = [timeIdx]
289 self.memory = pd.concat([self.memory, memory], axis=0)
290
291 if self.memoryW is None:
292 mem = self.w.T.tolist()
293 df = pd.DataFrame(mem)
294 df.index = [self.memory.index.to_list()[-1]]
295 self.memoryW = df
296
297 else:
298 mem = self.w.T.tolist()
299 df = pd.DataFrame(mem)
300 df.index = [self.memory.index.to_list()[-1]]
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301 self.memoryW = pd.concat([self.memoryW, df], axis=0)
302
303 if self.memoryNablaQ is None:
304 mem = nablaQ.T.tolist()
305 df = pd.DataFrame(mem)
306 df.index = [self.memory.index.to_list()[-1]]
307 self.memoryNablaQ = df
308
309 else:
310 mem = nablaQ.T.tolist()
311 df = pd.DataFrame(mem)
312 df.index = [self.memory.index.to_list()[-1]]
313 self.memoryNablaQ = pd.concat([self.memoryNablaQ, df], axis=0)
314
315 def lrSchedulerFct(self):
316 """Learning rate scheduler."""
317
318 if self.lrScheduler != 0:
319 if self.t % self.lrScheduler == 0:
320 self.eta /= 2
321
322 def run(self) -> None:
323 """Run computations for the current time-step."""
324
325 # get environment’s information
326 self.env.runNext(A=self.A)
327 dfPrime = self.env.S
328 Sprime = tr.from_numpy(dfPrime.values)
329
330 if self.rewardType == "mean":
331 Rprime = np.mean(self.env.histRprime)
332 else:
333 Rprime = self.env.histRprime[-1]
334
335 # compute the type of reward needed
336 Rline = self.rewardFunction(
337 Gtplus1=self.env.histRprime,
338 rewardType=self.rewardType
339 )
340
341 # compute A’, Q’ and nabla’
342 Aprime, Qprime, nablaQprime = self.greedyPolicy(
343 S=Sprime,
344 As=self.spaceAs(self.env.tradeStatus),
345 tradeStatus=self.env.tradeStatus,
346 tradePL=self.env.lnTradePL
347 )
348
349 # compute TD-error
350 TDError = Rprime - Rline + self.gamma * Qprime - self.Q
351
352 # reduce learning rate
353 self.lrSchedulerFct()
354
355 # update weights
356 self.w += self.eta * TDError * self.nablaQ
357
358 # save data
359 self.saveMemory(
360 dfS=dfPrime,
361 tradeStatus=self.env.tradeStatus,
362 A=self.A,
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363 primeA=Aprime,
364 tau=len(self.env.tradeMemory["currentTradePLs"])-1,
365 tradePL=self.env.tradePL,
366 primeR=Rprime,
367 nablaQ=self.nablaQ
368 )
369
370 # update variables for the next time-step
371 self.dfS = dfPrime
372 self.S = Sprime
373 self.A = Aprime
374 self.Q, self.nablaQ = Qprime, nablaQprime
375 self.TDErrors.append(TDError)
376 self.t += 1
377
378
379 class SARSA(QLearn):
380 """
381 Reinforcement Learning algorithm with function approximation
382 and on-policy SARSA control.
383 """
384
385 @staticmethod
386 def initWeights(initType, dimensions):
387 """Initializing weight vector..."""
388
389 if initType == "zeros":
390 wVector = tr.zeros((dimensions, 1), dtype=tr.double)
391 return wVector
392
393 elif initType == "uniform01":
394 wVector = tr.zeros((dimensions, 1), dtype=tr.double)
395 wVector = wVector.uniform_()
396 return wVector
397
398 else:
399 raise ValueError(f"ERROR: initType {initType} not recognized!")
400
401 def __init__(self, env, n, initInvest=5600*5, eta=0.01, gamma=1.0,
402 epsilon=0.1, initType="uniform01", rewardType="minusMean",
403 basisFctType="sigmoid", typeFeatureVector="block",
404 lrScheduler=0, verbose=False, seed=0):
405 super().__init__(env, n, initInvest, eta, gamma, initType,
406 rewardType, basisFctType, typeFeatureVector,
407 lrScheduler, verbose, seed)
408
409 # epsilon for epsilon-greedy policy
410 self.epsilon = epsilon
411
412 # counters
413 self.randEpsilon = 0
414 self.countRandETrue = 0
415
416 def epsilonGreedyPolicy(self, S, As, tradeStatus, tradePL):
417 """Performing the epsilon-greedy policy."""
418
419 self.randEpsilon = np.random.uniform(low=0, high=1, size=None)
420 if self.epsilon >= self.randEpsilon:
421 self.countRandETrue += 1
422 a = np.random.choice(
423 As,
424 size=None,
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425 replace=False,
426 p=None
427 )
428 f = self.getFeatureVector(
429 S=S, # current state
430 A=a, # action t
431 tradeStatus=tradeStatus, # tradeStatus
432 tradePL=tradePL # current trade PL
433 )
434 q = (self.w.T @ f).item()
435 return a, q, f
436
437 else:
438 Q, nablaQ = {}, {}
439 for a in As:
440 f = self.getFeatureVector(
441 S=S, # current state
442 A=a, # action t
443 tradeStatus=tradeStatus, # tradeStatus
444 tradePL=tradePL # current trade PL
445 )
446 Q[a] = (self.w.T @ f).item()
447 nablaQ[a] = f
448
449 # checking equal Q values for different actions.
450 equalQs = {k: v for k, v in Q.items()
451 if list(Q.values()).count(v) > 1}
452
453 # if equalQ is detected, do not trade, i.e., select action 0.
454 argmax = max(Q, key=Q.get) if len(equalQs) <= 1 else 0
455
456 return argmax, Q[argmax], nablaQ[argmax]
457
458 def run(self):
459 """Run computations for the current time-step."""
460
461 # get environment’s information
462 self.env.runNext(A=self.A)
463 dfPrime = self.env.S
464 Sprime = tr.from_numpy(dfPrime.values)
465
466 if self.rewardType == "mean":
467 Rprime = np.mean(self.env.histRprime)
468 else:
469 Rprime = self.env.histRprime[-1]
470
471 # compute the type of reward needed
472 Rline = self.rewardFunction(
473 Gtplus1=self.env.histRprime,
474 rewardType=self.rewardType
475 )
476
477 # compute A’, Q’ and nabla’
478 Aprime, Qprime, nablaQprime = self.epsilonGreedyPolicy(
479 S=Sprime,
480 As=self.spaceAs(self.env.tradeStatus),
481 tradeStatus=self.env.tradeStatus,
482 tradePL=self.env.lnTradePL
483 )
484
485 # compute TD-error
486 TDError = Rprime - Rline + self.gamma * Qprime - self.Q
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487
488 # reducing learning rate
489 self.lrSchedulerFct()
490
491 # update weights
492 self.w += self.eta * TDError * self.nablaQ
493
494 # save data
495 self.saveMemory(
496 dfS=dfPrime,
497 tradeStatus=self.env.tradeStatus,
498 A=self.A,
499 primeA=Aprime,
500 tau=len(self.env.tradeMemory["currentTradePLs"])-1,
501 tradePL=self.env.tradePL,
502 primeR=Rprime,
503 nablaQ=self.nablaQ
504 )
505
506 # update variables for the next time-step
507 self.dfS = dfPrime
508 self.S = Sprime
509 self.A = Aprime
510 self.Q, self.nablaQ = Qprime, nablaQprime
511 self.TDErrors.append(TDError)
512 self.t += 1
513
514
515 class GreedyGQ(QLearn):
516 """
517 Reinforcement Learning algorithm with function approximation
518 and off-policy Greedy-GQ control.
519 """
520
521 @staticmethod
522 def initKappa(initType, dimensions):
523 """Initializing kappa weight vector."""
524
525 if initType == "zeros":
526 raise ValueError(f"ERROR: initType {initType} not allowed for "
527 f"off-policy methods!")
528
529 elif initType == "uniform01":
530 kappaVector = tr.zeros((dimensions, 1), dtype=tr.double)
531 kappaVector = kappaVector.uniform_()
532
533 return kappaVector
534
535 else:
536 raise ValueError(f"ERROR: initType {initType} not recognized!")
537
538 def __init__(self, env, n, initInvest=5600*5, eta=0.01, gamma=0.95,
539 initType="uniform01", rewardType="minusMean", zeta=0.01,
540 basisFctType="sigmoid", typeFeatureVector="block",
541 lrScheduler=0, verbose=False, seed=0):
542
543 super().__init__(env, n, initInvest, eta, gamma, initType,
544 rewardType, basisFctType, typeFeatureVector,
545 lrScheduler, verbose, seed)
546
547 self.zeta = zeta
548 self.kappa = self.initKappa(self.initType, self.d)
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549
550 def run(self):
551 """Run computations for the current time-step."""
552
553 # get environment’s information
554 self.env.runNext(A=self.A)
555 dfPrime = self.env.S
556 Sprime = tr.from_numpy(dfPrime.values)
557
558 if self.rewardType == "mean":
559 Rprime = np.mean(self.env.histRprime)
560 else:
561 Rprime = self.env.histRprime[-1]
562
563 # compute the type of reward needed
564 Rline = self.rewardFunction(
565 Gtplus1=self.env.histRprime,
566 rewardType=self.rewardType
567 )
568
569 # compute A’, Q’ and nabla’
570 Aprime, Qprime, nablaQprime = self.greedyPolicy(
571 S=Sprime,
572 As=self.spaceAs(self.env.tradeStatus),
573 tradeStatus=self.env.tradeStatus,
574 tradePL=self.env.lnTradePL
575 )
576
577 # compute TD-error
578 vartheta = Rprime - Rline + self.gamma * Qprime - self.Q
579
580 # reducing learning rate
581 self.lrSchedulerFct()
582
583 # update weights
584 self.w += self.eta * (vartheta * self.nablaQ - self.gamma *
585 (self.kappa.T @ self.nablaQ)) * nablaQprime
586
587 self.kappa += self.zeta * (vartheta -
588 (self.kappa.T @ self.nablaQ)) * self.nablaQ
589
590 # save data
591 self.saveMemory(
592 dfS=dfPrime,
593 tradeStatus=self.env.tradeStatus,
594 A=self.A,
595 primeA=Aprime,
596 tau=len(self.env.tradeMemory["currentTradePLs"]) - 1,
597 tradePL=self.env.tradePL,
598 primeR=Rprime,
599 nablaQ=self.nablaQ
600 )
601
602 # update variables for the next time-step
603 self.dfS = dfPrime
604 self.S = Sprime
605 self.A = Aprime
606 self.Q, self.nablaQ = Qprime, nablaQprime
607 self.TDErrors.append(vartheta)
608 self.t += 1
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