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Abstract

In this thesis we look at minimal surfaces in R3. We begin by looking at the
theory of minimal surfaces. We look at the definition as well as examples of
minimal surfaces. A minimal surface is defined as a surface that has zero mean
curvature. We also look at the connection of minimal surfaces to harmonic
functions, as well as the Weierstrass Enneper formulas. Then we look at the
area minimizing property of minimal surfaces. A minimal surface does not
always have minimal surface area. Thus we would like to find out when a
minimal surface has minimal surface area. In order to look at this, we study
the connection between minimal surfaces and the area functional. We also look
at this problem by studying the connection between minimal surfaces and soap
bubbles, which is given by Plateau’s problem. This allows us to find some
conditions that tell us when a minimal surface has minimal surface area. We
demonstrate these concepts by looking at specific examples of minimal surfaces
and finding out when they have minimal surface area. The examples we consider
are the catenoid, Enneper’s surface and higher order Enneper surfaces. We
find out when these minimal surfaces have minimal surface area. We mention
that this is a local property. By that we mean that minimal surfaces locally
minimize their surface area.
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Introduction

Minimal surfaces arise from differential geometry. They are surfaces that
have mean curvature equal to zero. Thus zero mean curvature is the defining
property of minimal surfaces. The theory of minimal surfaces can be connected
to different branches of mathematics. We will see how this allows us to define a
minimal surface in different ways.

The aim of this thesis is to look at the theory of minimal surfaces in R3, as
well as the area minimizing property. We begin by looking at the definition
and theory of minimal surfaces. Then we look at the area minimizing property.
Minimal surfaces tend to locally minimize their surface area. However, a
minimal surface may not always have minimal surface area. In other words, a
minimal surface is not always minimal in the sense of having minimal surface
area. This leads us to our problem of interest, which can be phrased as ‘When
does a minimal surface have minimal surface area?’

We will study some situations that tell us when a minimal surface has
minimal surface area, and when it does not. We will look at two different ways
to study this problem. One way we will study this problem is by looking at
the connection between minimal surfaces and the area functional. Another way
we will look at this problem is by looking at the connection between minimal
surfaces and soap films. We will see how these two methods will give us some
conditions that tell us when a minimal is area minimizing and thus having
minimal surface area. We will look at specific examples of minimal surfaces and
see in which case they have minimal surface area. However before we can look
at this area minimizing property of minimal surfaces, we need to understand
what a minimal surface is. This is what we will begin with. To get an overview
we present an outline of the thesis.

Chapter 1 In this chapter we recall the concepts from differential geometry.
This will be useful for understanding the definition of a minimal surface.

Chapter 2 In this chapter we look at the definition of a minimal surface in R3.
We make the connection of minimal surfaces to harmonic functions, which
then leads to the Weierstrass Enneper formulas. These formulas allow
us to parametrize a minimal surface with an isothermal parametrization.
We also look at the connection with partial differential equations. This
chapter gives a theoretical overview of minimal surfaces.
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Chapter 3 In this chapter we look at some examples of minimal surfaces in R3.
The examples we will look at are the catenoid, the helicoid, Scherk’s first
surface, Enneper’s surface, higher order Enneper surfaces and Richmond’s
surface. Furthermore we look at some interesting properties of these
surfaces.

Chapter 4 In this chapter we look at the area minimizing property of minimal
surfaces. We consider the area functional and see how it is connected to
minimal surfaces. We also consider the Gauss map of minimal surfaces. We
study the first and second derivative of the area functional. Furthermore
the second derivative of the area functional gives us a condition that
allows to find when a minimal surface has minimal surface area. This
condition is described by the stability of a minimal surface. We look at
some examples to see when they are area minimizing.

Chapter 5 In this chapter we look at the area minimizing property of minimal
surfaces. We consider soap films and see how it is related to minimal
surfaces. This leads us to Plateau’s problem. The soap films give us a
condition that tells us when a minimal surface has minimal surface area.
We also look at some examples and see when they are area minimizing.

Chapter 6 Here we present the conclusion and the main results related to the
area minimizing property of minimal surfaces.

We make a short comment about the notation used throughout the thesis.
To denote the partial derivatives of a function f with respect to the variables u
and v, the following notation is used

∂f

∂u
= fu,

∂f

∂u ∂v
= fuv,

∂2f

∂u2 = fuu

We mention that we use both notations, that is, the notation ∂f
∂u , as well as the

shorthand notation, that is, fu. Note that f, u, v are arbitrary symbols, so this
notation depends on the context we are using it in. In addition we mention
an important point in regards to the figures in this thesis. The programming
language that was used to produce the figures in this thesis is Python. All the
figures have been produced using python, except for figure 5.1 (which was hand
drawn).

vii



CHAPTER 1

Preliminaries

We begin by recalling some concepts in R3. These are the inner product, cross
product, and the norm of a vector. To make it clear, we present them here
as they will be used throughout the thesis. This will also make the notation
clear. The material presented here is sourced from [Do 16, chapter 1.2, 1.4].
Let u = (u1, u2, u3) and v = (v1, v2, v3) be two vectors in R3. Then their inner
product is

⟨u, v⟩ = u · v = u1v1 + u2v2 + u3v3 ∈ R (1.1)

Furthermore their cross product is

u × v =

∣∣∣∣∣∣
i j k

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) ∈ R3 (1.2)

Finally we mention the norm of a vector in R3. The Euclidean norm of u is

∥u∥ =
√

⟨u, u⟩ =
√

(u1)2 + (u2)2 + (u3)2 (1.3)

Now that we have these concepts in place, we are ready to look at the theory
of surfaces and regularity.

1.1 Surfaces and Regularity

We will recall some concepts from the differential geometry of surfaces in R3.
The theory presented in this section is based on [Do 16, chapter 1.2, 1.3, 2].
The theory presented on curves is based on [Do 16, chapter 1.2, 1.3], while the
theory presented on surfaces is based on [Do 16, chapter 2].

Before we can consider the theory for surfaces, we will recall some concepts
from the differential geometry of curves. Our main focus will be on the local
properties of curves. As we are working with differential geometry, it is only
natural to begin by looking at the notion of a differentiable function. A function
is said to be differentiable if it has derivatives of all orders at all of the points
where the function is defined. Let I = (a, b) be some interval of the real line R.
The interval I is an open interval. We allow a and b in the interval to take the
values +∞ or −∞. We introduce the variable t ∈ R. Let t ∈ I. Then for each
point t ∈ I, we denote the curve α : I = (a, b) → R3 by

α(t) = (x(t), y(t), z(t))

1



1.1. Surfaces and Regularity

The individual functions x(t), y(t) and z(t) are called the component functions.
We can now look at the notion of a parametrized differentiable curve, it is given
by the following definition.

Definition 1.1.1. A parametrized differentiable curve is a differentiable map
α : I = (a, b) → R3, given by α(t) = (x(t), y(t), z(t)).

The next important vector we will consider is the tangent vector. This is
given by the following definition.

Definition 1.1.2. The tangent vector of the curve α at the point t is given by

α′(t) = (x′(t), y′(t), z′(t)),

where x′(t) denotes the first derivative of the x component function with respect
to t. y′(t) and z′(t) are defined in a similar manner.

We mention that the tangent vector is also called the velocity vector. We
will now restrict ourselves to the case where α′(t) ̸= 0. This is because the
condition α′(t) ̸= 0 will allow us to define the tangent line of the curve α. Let
t ∈ I such that α′(t) ̸= 0. Then there is a straight line that passes through α(t)
and α′(t), in the direction of α′(t). This straight line is said to be the tangent
line to α at t. This brings us to the concept of regularity in connection with
curves.

Definition 1.1.3. A parametrized differentiable curve α : I → R3 is said to be
regular if for all t ∈ I, we have that α′(t) ̸= 0.

This regularity condition tells us that α′(t) ̸= 0, which further tells us that
a tangent line to α is well defined. The existence of the tangent line will allow
to compute further properties of curves. Going further we will only consider
regular parametrized differentiable curves. Thus regular curves allow us to
define other geometric concepts on the curve.

We are now in a position to look at the differential geometry of surfaces in
R3. We encounter many examples of surfaces in R3 in our daily life. To give a
simple example, the ice cubes in our drinks are bounded by surfaces that form
cubes. Ice cream cones have the shape of the surface which is a cone. Let us
consider a formal mathematical description of surfaces. To be more specific,
we are interested in regular surfaces in R3. Let us recall the definition of a
homeomorphism. A continuous function f is said to be a homeomorphism if it
is one-to-one, and has an inverse function which is also continuous. We are now
ready to look at a mathematical definition of a regular surface in R3.

Definition 1.1.4. Let S be a subset of R3, S ⊂ R3. Then S is a regular surface
if, for each point p ∈ S, there exists a neighborhood V in R3 and a map

x : U → V ∩ S

of an open set U ⊂ R2 onto V ∩ S ⊂ R3 such that the following conditions are
satisfied:

1. x is differentiable. This means that if we write the map x in the form

x(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U

then the individual component functions x(u, v), y(u, v), z(u, v) have
continuous partial derivatives of all orders in U .

2



1.1. Surfaces and Regularity

2. x is a homeomorphism. From the first condition we know that x is
continuous. Thus x is one-to-one and the inverse, x−1 : V ∩ S → U exists,
and it is also continuous.

3. For each q = (u, v) ∈ U , the cross product(∂x
∂u

× ∂x
∂v

)
(q)

̸= 0

This is the regularity condition.

The map x is called a parametrization of the surface S at the point p. The
parametrization is local. It provides local coordinates for S, in a neighborhood
around the point p. Thus a local parametrization of the surface S ⊂ R3 is given
by x : U → V ∩ S using the local coordinate variables u, v

x(u, v) = (x(u, v), y(u, v), z(u, v))

The regularity condition mentioned in the third condition in the above definition
can be interpreted in another way. We will look at the matrix of the linear map
of the differential of x at p, dxp. The differential is a linear map dxp : R2 → R3.
The matrix of dxp is given by the following 3 × 2 matrix:

dxq =

 ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v

 =
(

∂x
∂u

∂x
∂v

)
The regularity condition can be satisfied if the two column vectors of this matrix
are linearly independent. Thus x is regular if the the two vectors

∂x
∂u

=
(

∂x

∂u
,

∂y

∂u
,

∂z

∂u

)
and ∂x

∂v
=
(

∂x

∂v
,

∂y

∂v
,

∂z

∂v

)
are linearly independent. This can stated as requiring the matrix dxq to have
full rank, where q = (u0, v0) ∈ U ⊂ R2. One example of a regular surface that
can be useful to know is mentioned in the proposition below.

Proposition 1.1.5. [Do 16, p. 60] If the function f : U → R is differentiable in
an open set U ⊂ R2, then the graph of f , which is the subset of R3

{(x, y, f(x, y)) : (x, y) ∈ U}

is a regular surface. Furthermore it can be parametrized by the map x : U → R3,
with U ⊂ R2 an open set where the map x(u, v) is given by

x(u, v) = (u, v, f(u, v)), (u, v) ∈ U

The proposition tells us that if f(x, y) is a differentiable function, then the
graph of f = z(x, y) gives us a regular surface. The proposition also gives us a
simple way to parametrize f in the local u, v coordinates by the parametrization
x(u, v). We mention that this is a local parametrization. We have talked about
a regular parametrized surface, we can also talk about a parametrized surface.

3



1.1. Surfaces and Regularity

Definition 1.1.6. A parametrized surface

x : U ⊂ R2 → R3

is a differentiable map from an open set U ⊂ R2 into R3. The mapping x is
regular if the vectors ∂x/∂u and ∂x/∂v are linearly independent at all q ∈ U ,
in other words ∂x/∂u × ∂x/∂v ̸= 0.

We will be working with surfaces locally, and a parametrized surface can
always be restricted to a neighborhood around a point q ∈ U ⊂ R2 such that
the parametrized surface is regular in that neighborhood. Locally speaking, we
can always find a small regular patch of our parametrized surface, allowing us
to apply all the properties of regular parametrized surfaces to the regular patch.

We saw that the regularity condition for curves allows us to define the
tangent line to α at t. There is a similar interpretation in the case of surfaces.
The reason we want the regularity condition to be fulfilled for surfaces is so
that we can talk about the tangent plane. The tangent plane of a surface
S allows us to discover many geometric properties of S, hence it is of great
importance. Before we can look into the tangent plane, we present the definition
dxp(v). dxp(v) is called the differential of x at the point p [Tap16, p. 118].
Let S be a regular surface, this means that the map of the parametrization
x : U ⊂ R2 → R3 is differentiable. Let v ∈ R2 and a differentiable curve
α : (−ϵ, ϵ) → U be such that, α(0) = p and α′(0) = v. Then the differential of
x at p is given by,

dxp(v) = (x ◦ α)′(0)

We mention the notion of tangent vectors. Tangent vectors are defined in the
following manner.

• Let S ⊂ R3 be a regular surface. Let p ∈ S. Then a tangent vector w ∈ R3

of the surface S at the point p, is w = α′(0), where α : (−ϵ, ϵ) → S is a
parametrized differentiable curve with α(0) = p.

Tangent vectors of a surface define the tangent plane of a surface. The tangent
plane to S at p consists of all the tangent vectors of differentiable curves in S,
that also pass through the point p = α(0). The tangent plane can be thought
of as a set, denoted by Tp(S). A vector that is an element of this set w ∈ Tp(S)
is said to be a tangent vector for S at p. This can be written as (see [Tap16,
p. 141]),

Tp(S) = {w | w is a tangent vector for S at p ∈ S}
= {w = α′(0) | α : (−ϵ, ϵ) → S with α(0) = p}

There is a basis for the tangent plane Tp(S) that consists of the vectors xu

and xv. The basis of Tp(S) is given by {xu(q), xv(q)} where q ∈ U and so
x(q) = p ∈ S. We mention that the basis of Tp(S) is determined by the
parametrization x(u, v). Thus at a point q ∈ U the vectors give a basis {xu, xv}
for the tangent plane Tp(S) , and q = x−1(p).

4



1.2. The Gauss Map

1.2 The Gauss Map

If we take the cross product of the two basis vectors xu and xv, we get another
vector, namely the vector given by xu × xv. This vector is orthogonal to both
xu and xv. In order for this cross product xu × xv to be nontrivial, we need to
have xu × xv ̸= 0. This is why the regularity condition is so important as it
allows us to define the nonzero vector xu × xv. This vector is significant when it
comes to studying the local properties of surfaces in R3, or perhaps we should
say regular surfaces. The theory presented in this section is based on [Do 16,
chapter 3].

Let S be a regular surface, which is given by the parametrization x : U ⊂
R2 → S. Then for a point p ∈ S, we are able to define a unit normal vector N
at each point q ∈ x(U) given by

N(q) = xu × xv

∥xu × xv∥
(q) (1.4)

The unit normal vector N is then a differentiable mapping

N : x(U) ⊂ S → R3

For each point q ∈ x(U) we can find a unit normal vector N(q), which is a unit
vector in R3. Note that we have two possible ways to choose the unit normal
N, it can be either +N or −N. The choice of a unit normal vector N induces
an orientation on the surface S. Thus S is said to be orientable if it is possible
to define a continuous field of unit normal vectors N on the surface. If this is
not possible, the surface is said to be non-orientable. However locally speaking,
we can always define a continuous field of unit normal vectors N on S.

From this point onwards we will let S be a regular surface where we have
chosen an orientation N. Recall the unit sphere S2 ⊂ R3 given by the set

S2 = { (x, y, z) ∈ R3 | x2 + y2 + z2 = 1}

Now the concept of the unit normal vector leads to the definition of the Gauss
map.

Definition 1.2.1. Let S be a regular surface where we have chosen an orientation
N. Let S be given by the parametrization x : U ⊂ R2 → S. Let p ∈ S. Then
the map N : S → S2 that is given by

N(p) = xu × xv

∥xu × xv∥
(x−1(p))

is called the Gauss map of S. With regards to the parametrization of S, the
Gauss map can be written as

N(x(u, v)) = xu × xv

∥xu × xv∥
(u, v)

for u, v in the parameter domain.

We can interpret the Gauss map as follows. Let p be some point on the
surface S. Then there is a unit normal vector at the point p, N(p) ∈ R3. The
Gauss map takes as input this unit normal vector, and sends it to the unit
sphere S2. The output vector is also a vector in R3 and it has unit length. It is
clear that ∥N(p)∥ = 1. An important point to consider is that the Gauss map
is a differentiable map.
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1.3 The First Fundamental Form

The theory presented in this section is based on [Do 16, chapter 2]. Consider
the tangent plane Tp(S). If v1, v2 ∈ R3 are two vectors in Tp(S), then ⟨v1, v2⟩
is the inner product of v1 and v2. We can associate a quadratic form Q in the
tangent plane Tp(S) to this inner product. This leads us to the concept of the
first fundamental form.

Definition 1.3.1. Let v ∈ Tp(S). Then the quadratic from Ip : Tp(S) → R,
defined on Tp(S) by the following inner product

Ip(v) = ⟨v, v⟩

is called the first fundamental form of S at the point p.

Let us find the expression of the first fundamental form in terms of the local
coordinates u, v for a parametrization x(u, v) and the associated basis {xu, xv}
of the tangent plane at a point p. A vector w in Tp(S) is w = α′(0), where α is a
parametrized curve α(t) = x(u(t), v(t)) for t ∈ (−ϵ, ϵ) and p = α(0) = x(u0, v0).
Then

α′(t) = xuu′(t) + xvv′(t)
Let t = 0. We express the first fundamental form Ip as

Ip(w) = ⟨w, w⟩ = ⟨α′(0), α′(0)⟩ = ⟨xuu′ + xvv′, xuu′ + xvv′⟩
= ⟨xu, xu⟩(u′)2 + 2⟨xu, xv⟩u′v′ + ⟨xv, xv⟩(v′)2

= E(u′)2 + 2Fu′v′ + G(v′)2

at a point p. Note that u′ = u′(0) and v′ = v′(0). The functions E(u, v), F (u, v)
and G(u, v) are functions of (u, v) ∈ U . The values of these functions lead us
to the next definition.

Definition 1.3.2. Let x : U → V ∩ S be the parametrization of a regular
surface S. Then the quantities E, F and G are called the coefficients of the first
fundamental form. In local coordinates u, v they are given as

E = ⟨xu, xu⟩ = ∥xu∥2

F = ⟨xu, xv⟩
G = ⟨xv, xv⟩ = ∥xv∥2

The definition above gives E, F, G in the local coordinates u, v so we can
make computations with them in the parameter domain. The significance of
the first fundamental form is that many geometric quantities can be computed
by only using E, F and G. One such property is the surface area. The area
element, which is denoted by dA, of the local parametrization x(u, v) of the
surface S is

dA = ∥xu × xv∥ du dv (1.5)

Hence we can compute the surface area corresponding to a region U of the
parameter domain by the integral

Area(U) =
∫

dA =
∫ ∫

U

∥xu × xv∥ du dv (1.6)
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It is possible to express the norm of the cross product in terms of E, F and G
by using Lagrange’s identity. For any two vectors v, w Lagrange’s Identity is
given by

∥v × w∥2 = ∥v∥2∥w∥2 − ⟨v, w⟩2 (1.7)

Due to Lagrange’s identity in (1.7) with v = xu and w = xv and by definition
1.3.2, we get the following expression

∥xu × xv∥ =
√

EG − F 2 (1.8)

This means that we can write the area element dA in terms of E, F and G as

dA = ∥xu × xv∥ du dv =
√

EG − F 2 du dv (1.9)

Therefore we can now compute the surface area of a region U of the surface S
by computing the integral

Area(U) =
∫

dA =
∫ ∫

U

√
EG − F 2 du dv (1.10)

We only need to know the values of the coefficients of the first fundamental
form E, F, G of the surface in order to compute the integral (1.10).

Recall the concept of a diffeomorphism. A diffeomorphism is simply
a bijective function that is differentiable and has an inverse which is also
differentiable. Another notion related to the first fundamental form is the
notion of an isometry. Let S1 and S2 be two regular surfaces. A diffeomorphism
f : S1 → S2 is called an isometry if its differential df preserves the inner product
for all points p ∈ S1. The important point to consider is that an isometry
between two surfaces will preserve their first fundamental forms.

Proposition 1.3.3. [Do 16, p. 223] Let S1 and S2 be regular surfaces given by
the parametrizations

x1 : U → S1, x2 : U → S2

If the two surfaces have the same coefficients of the first fundamental form, that
is they satisfy

E1 = E2, F1 = F2, G1 = G2

Then the function f = x2 ◦ x−1
1 : x1(U) → S2 gives us a local isometry.

Thus if two surface have the same first fundamental form, they are said to
be locally isometric to each other. Note that this holds in the local sense.

1.4 The Second Fundamental Form and Curvatures

The theory presented in this section is based on [Do 16, chapter 3, 4.3].
Since the Gauss map N : S → S2 is a differentiable map, we can

compute its differential. Note that the differential dNp of N is the linear
map dNp : Tp(S) → TN(p)(S2). However TN(p)(S2) ≃ Tp(S). This is because
the tangent plane is the same in S and in S2. The Gauss map maps the unit
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normal vector from the surface S to the unit sphere. The unit normal vectors
before and after the mapping have unit length. The only thing that changes
is the point of origin. The unit normal vector N(p) has origin on the surface
S, and it gets mapped to S2, where the origin is the centre of S2. Due to this
TN(p)(S2) ≃ Tp(S). Hence the differential dNp of the Gauss map N at a point
p ∈ S is the linear map given by

dNp : Tp(S) → Tp(S)

An important property of the linear map dNp is that it is a self-adjoint linear
map. This just means that given some basis {a1, a2} for Tp(S),

⟨dNp(a1), a2⟩ = ⟨a1, dNp(a2)⟩

Due to this self adjoint property we can associate a quadratic form Q in the
tangent plane Tp(S) to the linear map dNp.

Definition 1.4.1. Let v ∈ Tp(S). Then the quadratic from IIp : Tp(S) → R,
defined on Tp(S) by the following inner product

IIp(v) = −⟨dNp(v), v⟩

is called the second fundamental form of S at the point p.

The self adjoint property of dNp can further be utilized. Let p ∈ S. Then
we can find an orthonormal basis {e1, e2} of Tp(S) at the point p such that

dNp(e1) = −k1e1

dNp(e2) = −k2e2

where −k1 and −k2 are the eigenvalues of dNp, and e1, e2 are the corresponding
eigenvectors of dNp. Considering the orthonormal basis {e1, e2} the eigenvalues
are ordered such that k1 ≥ k2. Moreover

• k1 is the maximum of IIp when we restrict Tp(S) to the unit circle

• k2 is the minimum of IIp when we restrict Tp(S) to the unit circle

This holds for every p ∈ S. To see the significance of this, we have to look at
the idea of normal curvature. Let α be regular curve in S going through p ∈ S
and k denote the curvature of α at p. In addition let cos(θ) = ⟨n, N⟩, where n
is a unit normal vector to α, and N is a normal vector to p ∈ S. Then

kn = k cos(θ)

is called the normal curvature of α ⊂ S at p ∈ S. Thus the significance of
k1 and k2 is that they are the maximum and minimum values of the normal
curvature at p ∈ S. Let p ∈ S. Then

• the principal curvatures at p are given by the maximum normal curvature
k1 and the minimum normal curvature k2, and

• the principal directions at p are given by vectors in their respective
directions, that is, they are given by the eigenvectors e1 and e2.
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The linear map dNp : Tp(S) → Tp(S) has a matrix of dimension 2 × 2. In
addition this matrix gives rise to two other types of curvatures. This leads to
the following definition.

Definition 1.4.2. Let A = (aij)ij=1,2 denote the 2 × 2 matrix of the linear map
dNp : Tp(S) → Tp(S) which is the differential of the Gauss map. Then for any
point p ∈ S

• the determinant of A is called the Gaussian curvature K of S at p ∈ S:

det(A) = a11a22 − a12a21

• the negative of half of the trace of A is called the mean curvature H of S
at p ∈ S:

−1
2 tr(A) = −1

2(a11 + a22)

In the orthonormal basis e1, e2 of Tp(S), the matrix of dNp, which we denote
by Aprincipal, is given as

Aprincipal =
(

−k1 0
0 −k2

)
The Gaussian curvature K in terms of the principal curvatures is given as

K = det(Aprincipal) = (−k1)(−k2) − 0 = k1 k2

The mean curvature H in terms of the principal curvatures is given as

H = −1
2 tr(Aprincipal) = −1

2(−k1 − k2) = −1
2(−(k1 + k2)) = 1

2(k1 + k2)

Thus we can express the Gaussian and mean curvature in terms of the principal
curvatures as

Gaussian curvature K = k1 k2, (1.11)

Mean curvature H = 1
2(k1 + k2) (1.12)

We can see that the Gaussian curvature is the product of the two principal
curvatures, and the mean curvature is half of the sum of the two principal
curvatures. We have found the curvatures in terms of the principal curvatures,
we would also like to find an expression for these curvatures in terms of the
local coordinates u, v of our parametrization. We mention the equations of the
vectors Nu and Nv in terms of xu and xv. They are given by

Nu = a11xu + a21xv

Nv = a12xu + a22xv

(1.13)

Let us compute the matrix of dNp in terms of u and v. Consider the parametrized
curve α on S given by α(t) = x(u(t), v(t)) with α(0) = p. At p ∈ S, the tangent
vector is w = α′(0) = xuu′ + xvv′. Then using these equations we compute

dNp(w) = dNp(α′(0)) = N′(u(t), v(t)) = Nuu′ + Nvv′

= (a11u′ + a12v′)xu + (a21u′ + a22v′)xv

9
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Let us compute the second fundamental form IIp

IIp(w) = −⟨dNp(w), w⟩
= −⟨dNp(α′(0)) , α′(0)⟩
= −⟨Nuu′ + Nvv′, xuu′ + xvv′⟩
= −

(
⟨Nu, xu⟩(u′)2 + ⟨Nu, xv⟩u′v′ + ⟨Nv, xv⟩u′v′ + ⟨Nv, xv⟩(v′)2)

= e (u′)2 + 2f u′v′ + g (v′)2

at a point p. Note that we have used that ⟨Nu, xv⟩ = ⟨Nv, xu⟩ (see definition
1.4.3). The functions e(u, v), f(u, v) and g(u, v) are functions of (u, v) ∈ U . The
values of these functions are the focus of the next definition.

Definition 1.4.3. Let x : U → V ∩ S be the parametrization of a regular surface
S. Then the quantities e, f and g are called the coefficients of the second
fundamental form. Referring to the fact that ⟨N, xu⟩ = ⟨N, xv⟩ = 0, in the
local coordinates u, v they are given as

e = −⟨Nu, xu⟩ = ⟨N, xuu⟩
f = −⟨Nv, xu⟩ = ⟨N, xuv⟩ = ⟨N, xvu⟩ = −⟨Nu, xv⟩
g = −⟨Nv, xv⟩ = ⟨N, xvv⟩

The definition above gives e, f, g in local coordinates u, v. Let us denote
the matrix of dNp in local coordinates by Alocal. To obtain Alocal we use the
coefficients of the second fundamental form e, f, g that are given by definition
1.4.3, and the coefficients of the first fundamental form E, F, G that are given
by definition 1.3.2, along with the equations (1.13). This leads to

−f = ⟨Nu, xv⟩ = a11F + a21G

−f = ⟨Nv, xu⟩ = a12E + a22F

−e = ⟨Nu, xu⟩ = a11E + a21F

−g = ⟨Nv, xv⟩ = a12F + a22G

or in matrix form

−
(

e f
f g

)
=
(

a11 a21
a12 a22

)(
E F
F G

)
Thus the matrix Alocal = aij can be found by(

a11 a21
a12 a22

)
= −

(
e f
f g

)(
E F
F G

)−1

= − 1
EG − F 2

(
e f
f g

)(
G −F

−F E

)
= − 1

EG − F 2

(
eG − fF −eF + fE
fG − gF −fF + gE

)
= 1

EG − F 2

(
fF − eG fE − eF
gF − fG gE − fF

)
The matrix Alocal is given by

Alocal =
(

a11 a21
a12 a22

)
10
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and the elements of this matrix are given by

a11 = fF − eG

EG − F 2 , a21 = eF − fE

EG − F 2

a12 = gF − fG

EG − F 2 , a22 = fF − gE

EG − F 2

Let us compute the curvatures in terms of the local coordinates. Let
W = EG − F 2. Then the Gaussian curvature K is given as

K = det(Alocal) = a11a22 − a12a21

=
(

fF − eG

W

)(
fF − gE

W

)
−
((

eF − fE

W

)(
gF − fG

W

))
= 1

W 2 ((fF − eG)(fF − gE) − ((eF − fE)(gF − fG)))

= 1
W 2 (f2F 2 − fgFE − efGF + egEG − (egF 2 − gfFE

− efGF + f2EG))

= 1
W 2 (f2F 2 − fgFE + fgFE − efGF + efGF

+ egEG − egF 2 − f2EG)

= 1
W 2 (egEG − f2EG − egF 2 + f2F 2)

= 1
W 2 (EG(eg − f2) − F 2(eg − f2))

= 1
W 2 ((EG − F 2)(eg − f2))

Substituting W back into the expression above leads to

K = det(Alocal) = (EG − F 2)(eg − f2)
(EG − F 2)2 = eg − f2

EG − F 2

The mean curvature H is given as

H = −1
2 tr(Alocal) = −1

2(a11 + a22)

= −1
2

(
fF − eG

W
+ fF − gE

W

)
= − 1

2W
(−eG + 2fF − gE)

= 1
2W

(eG − 2fF + gE)

Substituting W back into the expression above leads to

H = −1
2 tr(Alocal) = 1

2(EG − F 2) (eG − 2fF + gE) = 1
2

Eg − 2fF + Ge

EG − F 2

The curvatures are functions of the local variables u and v, that is K(u, v)
and H(u, v) for u, v ∈ U . These two curvatures tell us about the shape of the
surface locally at a point p = (u, v) ∈ U . We summarize the main expressions
for the Gaussian and mean curvature in the following definition.
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Definition 1.4.4. Let x : U → V ∩ S be the parametrization of a regular surface
S. Then in the local coordinates u, v the Gaussian curvature K is given as

K = eg − f2

EG − F 2

and the mean curvature H is given as

H = 1
2

Eg − 2fF + Ge

EG − F 2

where E, F, G are the coefficients of the first fundamental form, and e, f, g are
the coefficients of the second fundamental form for the surface S for (u, v) ∈ U .

There is something special about the Gaussian curvature. From the formula
for K given in definition 1.4.4, it seems that K depends on the coefficients
e, f, g and E, F, G. However Gauss discovered that the Gaussian curvature only
depends on the coefficients of the first fundamental form, E, F and G, and their
derivatives. In the case that F = 0, it is possible to compute the Gaussian
curvature using the formula [Do 16, p. 240],

K = − 1
2
√

EG

[
∂

∂v

(
Ev√
EG

)
+ ∂

∂u

(
Gu√
EG

)]
(1.14)

Another important concept that is related to the Gaussian curvature K, is
the integral of the Gaussian curvature. This leads us to the next definition.

Definition 1.4.5. [ONe06, p. 304] Let x : U → V ∩ S be the parametrization
of a regular surface S. Let R ⊂ U be a bounded set. Then the total Gaussian
curvature is given by ∫

R

KdA

where dA is the area element, and we integrate over the region R.

The total Gaussian curvature is defined as the integral of the Gaussian
curvature K over some bounded region in our surface S. We would like to
compute the total Gaussian curvature in terms of local coordinates u, v. We
can compute this integral in terms of the coefficients of the first fundamental
form, E, F and G. Due to (1.9) and (1.10), we get that∫

R

KdA =
∫ ∫

R

K ∥xu × xv∥ dudv

=
∫ ∫

R

K
√

EG − F 2 dudv

Therefore the total Gaussian curvature can be computed in terms of E, F and
G by ∫

R

KdA =
∫ ∫

R

K
√

EG − F 2 dudv (1.15)

We are now ready to look at the geometric object of interest, namely minimal
surfaces.
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CHAPTER 2

Theory of Minimal Surfaces

In this chapter we will look at the definition of a minimal surface in R3. The
interesting part about the theory of minimal surfaces is that we can look at it
from different areas of mathematics.

2.1 Mean Curvature

In this section we will look at the definition of minimal surfaces in R3 that is
connected to the branch of differential geometry (see [Do 16, p. 200]). The main
definition of minimal surfaces is from differential geometry. We have reviewed
the important concepts needed for surfaces in R3 from differential geometry.
We are now in a position to define minimal surfaces.

Definition 2.1.1. Let S be a regular surface in R3 that is parametrized by
x(u, v). Then x is a minimal surface if H = 0, where H is the mean curvature.

The concept of curvatures is significant when it comes to minimal surfaces.
In particular the mean curvature H is crucial. From the definition above we
can see that zero mean curvature is the defining property for minimal surfaces.
Consider H in terms of principal curvatures given by (1.12). Then zero mean
curvature implies that

H = k1 + k2

2 = 0 ⇐⇒ k1 + k2 = 0

⇐⇒ k1 = −k2

This shows us that the principal curvatures for a minimal surface S are such
that k1 = −k2, so they are equal and opposite. Consider K in terms of principal
curvatures given by (1.12). Since the Gaussian curvature is the product of the
principal curvatures,

K = k1 · k2 = (−k2) · k2 = −(k2)2 ≤ 0

This shows us that the Gaussian curvature K of a minimal surface is always
less than or equal to zero.

Consider the case where H = 0 and K = 0. In this case the surface we get is
the plane. This makes sense as a plane does not have any curvature at all. This
brings us to our first encounter with an example of a minimal surface. This
example is the plane. The plane is the trivial example of a minimal surface
[Pér17], as it has zero mean curvature, H = 0.
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2.2 Minimal Surfaces and Harmonic Functions

In this section we will look at the connection between minimal surfaces and
harmonic functions. This further makes the connection of minimal surfaces to
the branch of complex analysis. The theory presented in this section is based
on [Opr00, chapter 3.4, 3.5]. The theory presented on the review of the basics
of complex analysis is based on [Opr00, chapter 2.4]. We start by recalling some
basics from complex analysis. The set of complex numbers C is defined by

C = {w = x + iy | x, y ∈ R}

Let w ∈ C. Then w = u + iv, where u is the real part of w denoted by
Re(w), and v is the imaginary part of w denoted by Im(w). In addition i is
the imaginary unit and i2 = −1. We denote the complex conjugate by w, it is
defined as w = u − iv. We also recall the following

eiv = cos(v) + i sin(v) (2.1)

as well as the expression for ew,

ew = eu+iv = eueiv = eu(cos(v) + i sin(v)) (2.2)

We recall some properties of complex valued functions. We had previously
considered differentiable functions when the functions where real valued. Now
we consider the differentiation of a complex function.

Definition 2.2.1. Let f : C → C and D ⊂ C be an open set. Then f is complex
differentiable at a point a ∈ D if the limit

lim
w→a

f(w) − f(a)
w − a

= f ′(a)

exists for all a ∈ D, for all paths taken in approaching a. If this limit exists it
is denoted by f ′(a). We then say that f is holomorphic in D.

We can write the function f(w) as

f(w) = f(x + iy) = b(x, y) + ic(x, y)

where b(x, y) and c(x, y) real valued functions with x and y real. The function
b(x, y) is the real part of f , and c(x, y) is the imaginary part of f . Next we
recall the Cauchy-Riemann equations.

Definition 2.2.2. Let f(x + iy) = b(x, y) + ic(x, y). The equations given by

∂b

∂x
= ∂c

∂y
,

∂b

∂y
= − ∂c

∂x

are called the Cauchy-Riemann equations.

If f is complex differentiable at a ∈ D, it will satisfy the Cauchy-Riemann
equations. This gives a more convenient way to tell if a function is holomorphic
or not, as computing the limit every time is not so practical. Thus a function f
is said to be holomorphic in D if the partial derivatives

∂b

∂x
,

∂c

∂y
,

∂b

∂y
,

∂c

∂x
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exist and are continuous on D, and the Cauchy-Riemann equations are satisfied.
If f is holomorphic, then the higher order derivatives of f are also holomorphic.
By that we mean f ′, f ′′, f ′′′ and so on are holomorphic as well. Next we will
need to recall the Laplace equation.

Definition 2.2.3. The Laplace equation of a function f(x, y), f : R2 → R is the
equation given by

∆f = ∂2f

∂x2 + ∂2f

∂y2 = 0

and the operator that is denoted by

∆ = ∂2

∂x2 + ∂2

∂y2

is called the Laplace operator. Therefore the Laplace equation can be written
as ∆f = 0. The symbol ∆f is sometimes read as ’the Laplacian of f ’.

Now we are ready to look at harmonic functions.

Definition 2.2.4. A function Ψ(x, y), Ψ : D ⊂ R2 → R is called harmonic on
D if it has continuous partial derivatives of second order and it satisfies the
Laplace equation, that is

∆Ψ = ∂2Ψ
∂x2 + ∂2Ψ

∂y2 = 0

In addition we have the following theorem.

Theorem 2.2.5. [Opr00, p. 46] Let D ⊂ C be an open set. If f : D → C given
by

f(w) = b(x, y) + ic(x, y)
is holomorphic in D, then the functions b(x, y) and c(x, y) are harmonic.

Proof. Lets consider b(x, y) first. To show that b is harmonic, we have to show
that it satisfies the Laplace equation. Due to the Cauchy-Riemann equations
we get that

∂2b

∂x2 = ∂

∂x

(
∂b

∂x

)
= ∂

∂x

(
∂c

∂y

)
= ∂2c

∂x∂y

∂2b

∂y2 = ∂

∂y

(
∂b

∂y

)
= ∂

∂y

(
− ∂c

∂x

)
= − ∂2c

∂x∂y

The Laplacian of b(x, y) is

∆b = ∂2b

∂x2 + ∂2b

∂y2 = ∂2c

∂x∂y
− ∂2c

∂x∂y
= 0

Similarly for c(x, y) we have to show that c satisfies the Laplace equation. Once
again by using the Cauchy-Riemann equation we get that

∂2c

∂x2 = ∂

∂x

(
∂c

∂x

)
= ∂

∂x

(
− ∂b

∂y

)
= − ∂2b

∂x∂y

∂2c

∂y2 = ∂

∂y

(
∂c

∂y

)
= ∂

∂y

(
∂b

∂x

)
= ∂2b

∂x∂y

15



2.2. Minimal Surfaces and Harmonic Functions

Thus the Laplacian of c(x, y) is

∆c = ∂2c

∂x2 + ∂2c

∂y2 = − ∂2b

∂x∂y
+ ∂2b

∂x∂y
= 0

This is what we wanted to show, hence the proof is complete. ■

The harmonic functions b(x, y) and c(x, y) that form the holomorphic
function f(w) = b(x, y) + ic(x, y), are called harmonic conjugates. Let f(u, v)
be a function with complex coordinates, where w = u + iv and w = u − iv.
Then we can compute the partial derivatives with respect to w and w by

∂

∂w
= 1

2

(
∂

∂u
− i

∂

∂v

)
,

∂

∂w
= 1

2

(
∂

∂u
+ i

∂

∂v

)
,

(2.3)

The equations (2.3) provide us with yet another way to check if a function is
holomorphic. A function f is holomorphic precisely when ∂f/∂w = 0. We
have looked at a holomorphic function. We will also look at the notion of a
meromorphic function.

Definition 2.2.6. Let g : C → C and D ⊂ C be an open set. Let

g(w) = p1(w)
p2(w)

where p1(w) and p2(w) are polynomials. If all the singularities of g are poles,
then g(w) is meromorphic in D. By singularities, we mean the points where
g(w) is not defined. This means that the singularities of g are the roots of
p2(w), as this is where the function is not defined. In addition if the roots of
p2(w) are not cancelled out by the roots of p1(w), then this point is a pole for
g.

Next we mention an important point about the parametrization of a minimal
surface. This is the parametrization by isothermal coordinates.

Definition 2.2.7. Let S be a regular surface in R3 with parametrization x(u, v)
given by x : U → R3 with U ⊂ R2 an open set. Then x(u, v) is said to have an
isothermal parametrization if,

E = ⟨xu, xu⟩ = ⟨xv, xv⟩ = G and F = ⟨xu, xv⟩ = 0

If we parametrize a minimal surface using an isothermal parametrization,
many calculations become simpler. Luckily we can always parametrize a minimal
surface in R3 using isothermal coordinates.

Theorem 2.2.8. [Opr00, p. 73] Let S be a minimal surface in R3. It is always
possible to parametrize a minimal surface x(u, v) using isothermal coordinates.

This type of parametrization leads us to the connection between minimal
surfaces and harmonic functions. In order to see the connection we begin by
stating an essential theorem.
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2.3. The Weierstrass Enneper Formulas

Theorem 2.2.9. [Opr00, p. 75] Let S be a surface in R3. If the surface is
parametrized x(u, v) using isothermal coordinates, then there is a relationship
between the parametrized surface x(u, v) and the Laplacian of the parametrization
∆x(u, v). This relationship is

∆x(u, v) = (2EH) N

The theorem above tells us that if we have a surface which is parametrized by
isothermal parameters, then there is a connection between the parametrization
x(u, v) and the Laplacian of that parametrization ∆x(u, v). This relationship
between the two introduces the constants E and H, the coefficient of the first
fundamental form and the mean curvature, into the picture. This brings us to
the interesting relationship between an isothermal parametrization of a minimal
surface and harmonic functions.

Corollary 2.2.10. [Opr00, p. 76] Let S be a regular surface in R3.
Furthermore let S be parametrized by isothermal coordinates x(u, v) =
(x(u, v), y(u, v), z(u, v)). Then S is a minimal surface if and only if the three
component functions of the parametrization x(u, v), y(u, v) and z(u, v) are har-
monic.

Proof. Let S be a surface in R3 with isothermal parametrization x(u, v) =
(x(u, v), y(u, v), z(u, v). Then we have to prove implications of the corollary to
prove the if and only if statement.

⇒ Let us assume that S is a regular minimal surface. This means that it
has H = 0, which by theorem 2.2.9 implies that ∆x(u, v) = (2EH)N =
0 · N = 0. Thus ∆x = 0 so x(u, v), y(u, v) and z(u, v) are harmonic
functions.

⇐ Let us assume that x(u, v), y(u, v) and z(u, v) are harmonic functions.
This means that they satisfy the Laplace equation so ∆x = 0. Then
by using theorem 2.2.9 once more we have that ∆x = (2EH)N. Since
∆x = 0 we must have (2EH)N = 0. Since x is regular, the quantity E is
∥xu∥2 > 0 and the unit normal vector N is nonzero. The only way we
can have (2EH)N = 0 is if H = 0. This is precisely the definition of a
minimal surface, and so S is a minimal surface.

■

Thus we have looked at the ideas that connect the theory of minimal
surfaces to harmonic functions. All this is only possible thanks to the isothermal
parametrization of x(u, v).

2.3 The Weierstrass Enneper Formulas

In this section we look at another consequence of an isothermal parametrization
for a minimal surface in R3, and the fact that the component functions are
harmonic. This leads us to another type of parametrization for minimal surfaces,
known as the Weierstrass Enneper representation. The theory presented in this
section is based on [Opr00, chapter 3.6]. Let S be a minimal surface in R3. Let
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2.3. The Weierstrass Enneper Formulas

S have an isothermal parametrization x : U ⊂ R2 → R3, with U an open set,
given by

x(u, v) = (x(u, v), y(u, v), z(u, v))
We let the coordinates (u, v) ∈ R2 correspond to points in the complex plane
C. That is, a point (u, v) ∈ R2 is identified with w = u + iv ∈ C. With this, x
becomes the parametrization x : U ⊂ C → R3, with U an open set, given by

x(w) = (x(w), y(w), z(w))

where the component functions x(w), y(w), z(w) are complex functions. Fur-
thermore we define the parametrization ϕ as xw. Due to the formulas given in
(2.3) we define ϕ as,

ϕ = ∂x
∂w

=
(

∂x

∂w
,

∂y

∂w
,

∂z

∂w

)
= (xw, yw, zw)

where the component functions xw, yw, zw are given as

xw = ∂x

∂w
= 1

2

(
∂x

∂u
− i

∂x

∂v

)
= 1

2 (xu − ixv) ,

yw = ∂y

∂w
= 1

2

(
∂y

∂u
− i

∂y

∂v

)
= 1

2 (yu − iyv) ,

zw = ∂z

∂w
= 1

2

(
∂z

∂u
− i

∂z

∂v

)
= 1

2 (zu − izv) ,

Therefore the parametrization ϕ is

ϕ = ∂x
∂w

= (xw, yw, zw) =
(

1
2 (xu − ixv) ,

1
2 (yu − iyv) ,

1
2 (zu − izv)

)
Let us verify that ϕ is an isothermal parametrization. This is the topic of the
following lemma.

Lemma 2.3.1. Let S be a regular surface in R3 parametrized by x(u, v). Define
ϕ = ∂x

∂w . Then x(u, v) is isothermal if and only if ϕ2 = (xw)2+(yw)2+(zw)2 = 0.

Proof. We compute ϕ2 and see that

ϕ2 = (xw)2 + (yw)2 + (zw)2

= 1
4
(
x2

u − x2
v − 2ixuxv + y2

u − y2
v − 2iyuyv + z2

u − z2
v − 2izuzv

)
= 1

4
(
(x2

u + y2
u + z2

u) − (x2
v + y2

v + z2
v) − 2i(xuxv + yuyv + zuzv)

)
= 1

4
(
∥xu∥2 − ∥xv∥2 − 2i⟨xu, xv⟩

)
= 1

4(E − G − 2iF )

Let us assume that x(u, v) is an isothermal parametrization. Then E = G and
F = 0, so ϕ2 = 1

4 (E − E − 0) = 0. To prove the other direction assume that
ϕ2 = 0. Then we must have 1

4 (E − G − 2iF ) = 0. The right hand side has
both, real and imaginary part equal to zero. As E, G > 0, the only way the
expression 1

4 (E − G − 2iF ) can have its real and imaginary parts be equal to
zero is, if E = G and F = 0. Thus the parametrization is isothermal. ■
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2.3. The Weierstrass Enneper Formulas

As x(u, v) is an isothermal parametrization of a minimal surface, the
component functions xw, yw, zw must be harmonic. In order to show this
we first need a preliminary result.

Lemma 2.3.2. Let f(w) be holomorphic function. Then the Laplacian of f ,
∆f = fuu + fvv can be written in terms of ∂

∂w and ∂
∂w as

∆f = 4 · ∂

∂w

(
∂f

∂w

)
Proof. We compute the expression by using the formulas (2.3). This leads to

∂

∂w

(
∂f

∂w

)
= ∂

∂w

(
1
2

(
∂f

∂u
− i

∂f

∂v

))
= 1

4

(
∂

∂u
+ i

∂

∂v

)(
∂f

∂u
− i

∂f

∂v

)
= 1

4

(
∂2f

∂u2 − i
∂2f

∂u∂v
+ i

∂2f

∂u∂v
− i2 ∂2f

∂v2

)
= 1

4

(
∂2f

∂u2 + ∂2f

∂v2

)
= 1

4∆f

Therefore we get that

4 · ∂

∂w

(
∂f

∂w

)
= 4 · 1

4∆f = ∆f

■

We have an isothermal parametrization of a minimal surface x(u, v). Hence
by corollary 2.2.10 we have that ∆x = 0. We want to show that each component
of x is holomorphic. In order for ϕ to be holomorphic, we need to have ∂ϕ

∂w = 0.
We compute

∂ϕ

∂w
= ∂

∂w

(
∂x
∂w

)
︸ ︷︷ ︸
def of ϕ

= 1
4∆x = 0

To make the notation easier we denote each component of ϕ by ϕi for i = 1, 2, 3.
Using this notation we have ϕ1 = xw, ϕ2 = yw, ϕ3 = zw. Then the above
calculation shows that ϕ1, ϕ2 and ϕ3 are holomorphic, since ∂ϕ

∂w = 0. We have
shown that each component function ϕi, i = 1, 2, 3 is holomorphic. Since each
component function ϕi is holomorphic, their corresponding functions, that is
the functions xu − ixv, yu − iyv and zu − izv, are harmonic. This is due to the
result of theorem 2.2.5.

In order to create an isothermal parametrization for a minimal surface, we
need to find three holomorphic functions ϕ1, ϕ2 and ϕ3 such that ϕ = (ϕ1, ϕ2, ϕ3).
The functions also need to satisfy the condition ϕ2 = (ϕ1)2 + (ϕ2)2 + (ϕ3)2 = 0.

Turns out this is possible if we choose a holomorphic function f and a
meromorphic function g, such that fg2 is holomorphic. Once we have such
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functions, we set up the parametrization by

ϕ1 = 1
2f(1 − g2)

ϕ2 = i

2f(1 + g2)

ϕ3 = fg

With these functions ϕ is given by

ϕ = (ϕ1, ϕ2, ϕ3) =
(1

2f(1 − g2), i

2f(1 + g2), fg
)

(2.4)

The parametrization given by ϕ is an isothermal parametrization as

ϕ2 = (ϕ1)2 + (ϕ2)2 + (ϕ3)2 = (1
2f(1 − g2))2 + ( i

2f(1 + g2))2 + (fg)2

= 1
4f2(1 − g2)2 − 1

4f2(1 + g2)2 + f2g2

= 1
4f2(−4g2) + f2g2

= −f2g2 + f2g2 = 0

We get that ϕ2 = 0. By the result of lemma 2.3.1, we have that the
parametrization is isothermal. This leads us to the main theorem which gives
us formulas to form the parametrization.

Theorem 2.3.3. (see [Opr00, p. 80] or [DHS10, p. 112]) Let S be a minimal
surface in R3 that is different from a plane. Let U ⊂ C be an open set. In
addition let f(w) and g(w) be complex functions f, g : U ⊂ C → C. If f is
holomorphic in U , g is meromorphic in U , and fg2 is holomorphic in U , then
S can be defined by the parametrization x : U ⊂ C → R3 given as

x(w) = (x(w), y(w), z(w))

where the components are given by the integrals

x(w) = Re
∫

f(1 − g2) dw

y(w) = Re
∫

if(1 + g2) dw

z(w) = Re
∫

2fg dw

Furthermore the parametrization x(w) = (x(w), y(w), z(w)) is isothermal.

The remarkable theorem above allows us to build a minimal surface by using
two functions f(w) and g(w) that satisfy the conditions in theorem 2.3.3. We
will see how this theorem is used in the next chapter.

2.3.1 Geometric quantities in terms of the Weierstrass Enneper
formulas

If a minimal surface is parametrized by the formulas in theorem 2.3.3, we can
express the important geometric quantities in terms of the functions f(w) and
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g(w). We mention that the theory presented here is also based on [Opr00,
chapter 3.6]. One important quantity we would like to compute is the area
element, namely dA =

√
EG − F 2 from (1.9). Note that due to the isothermal

condition we have that E = G and F = 0. This means that√
EG − F 2 =

√
E(E) − 02 =

√
(E)2 − 0 =

√
E2 = E

In order to compute the area element, we can simply compute E. To compute
E in terms of the parametrization ϕ = (ϕ1, ϕ2, ϕ3) the following lemma is useful.

Lemma 2.3.4. The coefficient of the first fundamental form E in terms of the
isothermal parametrization ϕ = (ϕ1, ϕ2, ϕ3), where ϕ = ∂x

∂w , is given by

E = 2|ϕ|2

Proof. We begin by computing |ϕ|2 = |ϕ1|2 + |ϕ2|2 + |ϕ3|2 = |xw|2 + |yw|2 + |zw|2
and keep in mind that ϕ is isothermal, so E = G and F = 0. Then

|ϕ|2 = |xw|2 + |yw|2 + |zw|2

= xw · x̄w + yw · ȳw + zw · z̄w

=
(

1
2(xu − ixv)1

2(xu + ixv)
)

+
(

1
2(yu − iyv)1

2(yu + iyv)
)

+
(

1
2(zu − izv)1

2(zu + izv)
)

= 1
4
(
(x2

u + y2
u + z2

u) + (x2
v + y2

v + z2
v)
)

= 1
4(∥xu∥2 + ∥xv∥2)

= 1
4 (E + G) = 1

4 (2E) = 1
2E

Therefore E = 2|ϕ|2 and this is what we wanted to show. ■

We can now compute E in terms of f(w) and g(w) in the parametrization
given by theorem 2.3.3, where ϕ is given by (2.4). We begin by finding
|ϕ|2 = |ϕ1|2 + |ϕ2|2 + |ϕ3|2. This leads to

|ϕ|2 =
∣∣∣∣12f(1 − g2)

∣∣∣∣2 +
∣∣∣∣ i2f(1 + g2)

∣∣∣∣2 + |fg|2

= 1
4 |f |2|1 − g2|2 + 1

4 |f |2|1 + g2|2 + ffgg

= 1
4 |f |2

(
|1 − g2|2 + |1 + g2|2 + 4gg

)
= 1

4 |f |2
(
|1 − g2|2 + |1 + g2|2 + 4|g|2

)
= 1

4 |f |2
(
2 + 2|g|4 + 4|g|2

)
The above expression is a result of the following calculations:

|1 − g2|2 = (1 − g2)(1 − g2) = 1 − g2 − g2 + g2g2 = 1 − g2 − g2 + |g|4

|1 + g2|2 = (1 + g2)(1 + g2) = 1 + g2 + g2 + g2g2 = 1 + g2 + g2 + |g|4

|1 − g2|2 + |1 + g2|2 = 2 + 2|g|4
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To further simplify |ϕ|2 we note that (1 + |g|2)2 = 1 + |g|4 + 2|g|2. This leads
to the following

|ϕ|2 = 1
4 |f |2

(
2 + 2|g|4 + 4|g|2

)
= 1

4 |f |2
(
2(1 + |g|4 + 2|g|2)

)
= 1

2 |f |2(1 + |g|2)2

Then due to lemma 2.3.4 we find that

E = 2|ϕ|2 = 2 · 1
2 |f |2(1 + |g|2)2 = |f |2(1 + |g|2)2

Thus the expression for E in terms of f(w) and g(w) is given by

E = |f |2(1 + |g|2)2 (2.5)

We can also compute the Gaussian curvature K in terms of the functions
f(w) and g(w). Due to the isothermal condition we have F = 0. This means
that we can use the formula given in (1.14), which is

K = − 1
2
√

EG

[
∂

∂v

(
Ev√
EG

)
+ ∂

∂u

(
Gu√
EG

)]
to find an expression for K. In this case, the formula simplifies as we have
E = G. This simplified formula for K is given by

K = − 1
2E

[
∂

∂v

(
Ev

E

)
+ ∂

∂u

(
Gu

E

)]
Note that we are concerned with local coordinates u, v. So E is a function of
u, v, that is, E(u, v). Bear in mind that

∂

∂u
(ln(E(u, v))) = Eu

E
, and ∂

∂v
(ln(E(u, v))) = Ev

E
,

Thus if the surface is parametrized with isothermal coordinates, the formula for
K further simplifies to

K = − 1
2E

[
∂

∂v

(
Ev

E

)
+ ∂

∂u

(
Eu

E

)]
= − 1

2E

[
∂

∂v

(
∂

∂v
ln(E)

)
+ ∂

∂u

(
∂

∂u
ln(E)

)]
= − 1

2E

[
∂2

∂v2 (ln(E)) + ∂2

∂u2 (ln(E))
]

= − 1
2E

∆(ln(E)) (2.6)

where ∆ is the Laplace operator. By using the expression for E given in (2.5)
and inserting it into the formula for K given by (2.6), we can find an expression
for K in terms of f(w) and g(w). Firstly we compute

ln(E) = ln
(
|f |2(1 + |g|2)2)

= ln(|f |2) + ln((1 + |g|2)2)
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Inserting this into the formula for K leads to

K = −1
2E

∆(ln(E)) =
−∆

(
ln(|f |2) + ln((1 + |g|2)2)

)
2|f |2(1 + |g|2)2

= −∆ ln(|f |2) − ∆ ln((1 + |g|2)2)
2|f |2(1 + |g|2)2

We find ∆ ln(|f |2) first. To compute the Laplacian we use the formula in lemma
2.3.2. Note that f only depends on w, and f only depends on w. Then we get
that

∆ ln(|f |2) = ∆ ln(ff) = ∆ ln(f) + ∆ ln(f)

= 4 ∂

∂w

(
∂ ln(f)

∂w

)
+ 4 ∂

∂w

(
∂ ln(f)

∂w

)
= 4 ∂

∂w

(
fw

f

)
+ 4 ∂

∂w
(0) = 4 ∂

∂w

(
fw

f

)
= 4 · 0 = 0

Since the function fw/f only depends on w, differentiating with respect to w
gives 0. Thus ∆ ln(|f |2) = 0. Now we find ∆ ln((1 + |g|2)2). Note that g only
depends on w, and g only depends on w. Then by using the formula for the
Laplacian in lemma 2.3.2 we get that

∆ ln((1 + |g|2)2) = 2∆ ln(1 + |g|2) = 2∆ ln(1 + gg)

= 2 · 4 ∂

∂w

(
∂ ln(1 + gg)

∂w

)
= 8 ∂

∂w

(
∂ ln(1 + gg)

∂w

)
= 8 ∂

∂w

(
g′g

1 + gg

)
= 8

(
g′g′ + ggg′g′ − ggg′g′

(1 + gg)2

)
= 8 g′g′

(1 + gg)2 = 8 |g′|2

(1 + |g|2)2

Now we can find K. We find that

K = −∆ ln(|f |2) − ∆ ln((1 + |g|2)2)
2|f |2(1 + |g|2)2

= −1
2|f |2(1 + |g|2)2 · 8|g′|2

(1 + |g|2)2 = −8|g′|2

2|f |2(1 + |g|2)2(1 + |g|2)2

= −4|g′|2

|f |2(1 + |g|2)4

Thus the expression for K in terms of f(w) and g(w) is given by

K = −4|g′|2

|f |2(1 + |g|2)4 (2.7)

We saw that we can find the coefficient of the first fundamental form E,
and the Gaussian curvature K, in terms of the functions f(w) and g(w) when
a minimal surface is parametrized by the Weierstrass Enneper formulas given
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in theorem 2.3.3. Another geometric property that we would like to express in
terms of f(w) and g(w) is the unit normal vector N. From [DHS10, p. 113] we
get that the unit normal vector N can be expressed in terms of f(w) and g(w)
by the following expression,

N =
(

2Re(g)
1 + |g|2

,
2Im(g)
1 + |g|2

,
|g|2 − 1
1 + |g|2

)
(2.8)

The reason the unit normal vector is significant is due to the fact that the unit
normal vector is also the Gauss map. If we can find an expression for the unit
normal vector N, we will also be able to look at the Gauss map N : S → S2 of
a minimal surface paramterized by the formulas in theorem 2.3.3.

2.4 Other Ways to Look at Minimal Surfaces

In this section we will mention some other ways we can look at minimal surfaces.
We look at the connection of minimal surfaces to other areas of mathematics.

• Partial differential equations and minimal surfaces
Minimal surfaces have a connection with partial differential equations
[Opr00, p. 62]. Let S be a regular surface given in non parametric form
by f = z(x, y). The graph of f = z(x, y) gives us a regular surface due
to the result of proposition 1.1.5. Note that we consider the graph of f
locally. Then f is said to be a minimal surface if it satisfies the following
partial differential equation:

fxx(1 + f2
y ) − 2fxfyfxy + fyy(1 + f2

x) = 0 (2.9)

The partial differential equation given by (2.9) is called the minimal
surface equation. Thus a function f = z(x, y) is a minimal surface if it
satisfies the minimal surface equation. This tells us that the solutions to
the equation (2.9) allow us to find minimal surfaces.

• Area functional and minimal surfaces
Minimal surfaces have a connection to the area functional [Do 16, p. 202].
To be more specific, minimal surfaces can be looked at by considering the
first variation, that is, the first derivative of the area functional. This is
further explained in chapter four.

• Soap bubbles and minimal surfaces
Minimal surfaces have a connection to soap bubbles [Opr00, chapter 3.3].
In the context of minimal surfaces, we say soap films rather than soap
bubbles. This is because minimal surfaces can be modelled by the shape
or form of soap films. This is further explained in chapter five.

We have looked at the theory as well as the definition of a minimal surface in
R3. Next we look at some examples.
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CHAPTER 3

Examples of Minimal Surfaces with
a look at Some Properties

In this chapter we will look at some examples of minimal surfaces in R3. This
will allow us to further develop our understanding of minimal surfaces.

3.1 The Catenoid

The catenoid is a minimal surface that is a surface of revolution, see for example
[Do 16, p. 204]. It is generated by rotating the catenary curve y(x) = c cosh(x/c).
Let c = 1. If we rotate the catenary curve about the x-axis, that is, the curve
y(x) = cosh(x), the catenoid is parametrized by

x(u, v) = (u, cosh(u) cos(v), cosh(u) sin(v)),
−∞ < u < ∞, 0 ≤ v < 2π

(3.1)

If we rotate the catenary curve f(y) = cosh(y) about the y-axis, the catenoid is
parametrized by

x(u, v) = (cosh(u) cos(v), u, cosh(u) sin(v)),
−∞ < u < ∞, 0 ≤ v < 2π

(3.2)

(a) Rotation around the x-axis (b) Rotation around the z-axis

Figure 3.1: The catenoid. This figure shows the catenoid in the region
u ∈ (−1.2, 1.2) and v ∈ [0, 2π).
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3.1. The Catenoid

If we rotate the catenary curve y(z) = cosh(z) about the z-axis, the catenoid is
parametrized by

x(u, v) = (cosh(u) cos(v), cosh(u) sin(v), u),
−∞ < u < ∞, 0 ≤ v < 2π

(3.3)

The catenoid is shown in figure 3.1. Figure 3.1a shows the catenoid when it is
given by the parametrization in (3.1). Figure 3.1b shows the catenoid when it
is given by the parametrization in (3.3). Let us compute the mean curvature
for the catenoid, as well as the other important geometric quantities. We will
compute the geometric quantities using the parametrization where the rotation
is around the z-axis, that is the parametrization given by (3.3). We begin by
computing

xu = (sinh(u) cos(v), sinh(u) sin(v), 1)
xv = (− cosh(u) sin(v), cosh(u) cos(v), 0)

Then we compute the second partial derivatives of the tangent vectors

xuu = (cosh(u) cos(v), cosh(u) sin(v), 0)
xuv = (− sinh(u) sin(v), sinh(u) cos(v), 0)
xvu = (− sinh(u) sin(v), sinh(u) cos(v), 0)
xvv = (− cosh(u) cos(v), − cosh(u) sin(v), 0)

For the catenoid in this case, we get that xuv = xvu. We find the coefficients of
the first fundamental form namely E, F and G.

E = ⟨xu, xu⟩ = cosh2(u)
F = ⟨xu, xv⟩ = 0
G = ⟨xv, xv⟩ = cosh2(u)

We can see that E = G and F = 0, hence this is an isothermal parametrization
for the catenoid. It is useful to compute EG − F 2, since it is used for example
in the denominator when computing curvatures.

EG − F 2 = cosh2(u) · cosh2(u) − 02 = cosh4(u) (3.4)√
EG − F 2 =

√
cosh4(u) = cosh2(u) (3.5)

To find the unit normal vector N we will have to find

xu × xv =

∣∣∣∣∣∣
i j k

sinh(u) cos(v) sinh(u) sin(v) 1
− cosh(u) sin(v) cosh(u) cos(v) 0

∣∣∣∣∣∣
= i(− cosh(u) cos(v)) − j(cosh(u) sin(v))
+ k(sinh(u) cosh(u) cos(v)2 + sinh(u) cosh(u) sin(v)2))
= (− cosh(u) cos(v), − cosh(u) sin(v), sinh(u) cosh(u))

∥xu × xv∥ =
√

EG − F 2 = cosh(u)2

26



3.2. The Helicoid

The unit normal vector N is given by

N = xu × xv

∥xu × xv∥
=
(

− cos(v)
cosh(u) ,

− sin(v)
cosh(u) ,

sinh(u)
cosh(u)

)
(3.6)

and the derivatives of N with respect to u and v are:

Nu =
(

cos(v) sinh(u)
cosh2(u)

,
sin(v) sinh(u)

cosh2(u)
,

1
cosh2(u)

)
Nv =

(
sin(v)

cosh(u) ,
− cos(v)
cosh(u) , 0

)
Let us also compute the following inner products. This will be useful later.

⟨Nu, Nu⟩ = 1
cosh2(u)

, ⟨Nu, Nv⟩ = 0, ⟨Nv, Nv⟩ = 1
cosh2(u)

(3.7)

Now that we have the unit normal vector we can find the coefficients of the
second fundamental form, namely e, f and g.

e = ⟨N, xuu⟩ = −1
f = ⟨N, xuv⟩ = 0
g = ⟨N, xvv⟩ = 1

We can now calculate the Gaussian and mean curvatures. The Gaussian
curvature K is

K = eg − f2

EG − F 2 = (−1)(1) − 02

cosh4(u)
= −1

cosh4(u)
(3.8)

The mean curvature H is

H = 1
2

eG − 2fF + gE

EG − F 2 = 1
2

(−1)(cosh2(u)) − 2(0)(0) + (1)(cosh2(u))
cosh4(u)

= 1
2

− cosh2(u) + cosh2(u)
cosh4(u)

= 0 (3.9)

The mean curvature is zero, thus the catenoid is a minimal surface. The
Gaussian curvature is always negative.

3.2 The Helicoid

The helicoid is a minimal surface, see for example [Opr00, p. 61]. This minimal
surface is parametrized by

x(u, v) = (u cos(v), u sin(v), v),
−∞ < u < ∞, 0 ≤ v < 2π

(3.10)

The helicoid is shown in figure 3.2. From the figure we can see that as the
parameter v increases from 2π to 4π, the spirals of the helicoid increase. Let us
compute the mean curvature for the helicoid. We begin with

xu = (cos(v), sin(v), 0)
xv = (−u sin(v), u cos(v), 1)
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3.2. The Helicoid

(a) v ∈ [0, 2π) (b) v ∈ [0, 4π)

Figure 3.2: The helicoid. This figure shows the helicoid in the region u ∈ (−3, 3)
and v as mentioned.

Then we compute the second partial derivatives of the tangent vectors

xuu = (0, 0, 0)
xuv = (− sin(v), cos(v), 0)
xvv = (−u cos(v), −u sin(v), 0)

The coefficients of the first fundamental form E, F and G are

E = ⟨xu, xu⟩ = 1
F = ⟨xu, xv⟩ = 0
G = ⟨xv, xv⟩ = 1 + u2

We can see that in this case, we did not get E = G and F = 0. Therefore this
is not an isothermal parametrization for the helicoid. In what follows we will
see how we can get an isothermal parametrization for the helicoid. We compute
the following

EG − F 2 = (1)(1 + u2) − 02 = 1 + u2 (3.11)√
EG − F 2 =

√
1 + u2 (3.12)

To find the unit normal vector N we will have to find

xu × xv =

∣∣∣∣∣∣
i j k

cos(v) sin(v) 0
−u sin(v) u cos(v) 1

∣∣∣∣∣∣
= i(sin(v)) − j(cos(v)) + k(u cos2(v) + u sin2(v))
= (sin(v), − cos(v), u)

∥xu × xv∥ =
√

EG − F 2 =
√

1 + u2

The unit normal vector N is given by

N = xu × xv

∥xu × xv∥
=
(

sin(v)√
1 + u2

,
− cos(v)√

1 + u2
,

u√
1 + u2

)
(3.13)
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3.2. The Helicoid

Now that we have the unit normal vector we can find the coefficients of the
second fundamental form e, f and g.

e = ⟨N, xuu⟩ = 0

f = ⟨N, xuv⟩ = −1√
1 + u2

g = ⟨N, xvv⟩ = 0

Finally we can compute the curvatures. The Gaussian curvature K is

K = eg − f2

EG − F 2 = 1
1 + u2

[
0 · 0 − ( −1√

1 + u2
)2
]

= −1
(1 + u2)2 (3.14)

The mean curvature H is

H = 1
2

eG − 2fF + gE

EG − F 2 = 1
2

(0)(1 + u2) − 2( −1√
1+u2 )(0) + (0)(1)

1 + u2

= 1
2

0 − 0 + 0
1 + u2 = 0 (3.15)

The mean curvature is zero, thus the helicoid is a minimal surface. The Gaussian
curvature for the helicoid is always negative.

3.2.1 Relationship between the helicoid and the catenoid

The helicoid has a connection to the catenoid. In order to see this connection
we consider the Weierstrass representation formulas from theorem 2.3.3. The
catenoid can be represented by the functions [Opr00, p. 82]:

f(w) = −1
2ew

, g(w) = −ew

It will be useful to recall the following from complex analysis [Opr00, pp. 43–44].
Let w be a complex number, w = u + iv. Then

sinh(w) = 1
2(ew − e−w) (3.16)

cosh(w) = 1
2(ew + e−w) (3.17)

sinh(w) = sinh(u + iv) = sinh(u) cos(v) + i cosh(u) sin(v) (3.18)
cosh(w) = cosh(u + iv) = cosh(u) cos(v) + i sinh(u) sin(v) (3.19)

We begin by computing the integrals that are mentioned in theorem 2.3.3. First
we just compute the integrals without taking the real parts. To compute the
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3.2. The Helicoid

integrals we used the expressions in (3.16) and (3.17).

x(w) =
∫

f(1 − g2) dw =
∫

−1
2ew

(1 − (−ew)2) dw =
∫

−1
2ew

(1 − e2w) dw

= 1
2

∫
(−e−w + ew) dw = e−w + ew

2
= cosh(w)

y(w) =
∫

if(1 + g2) dw =
∫

−i

2ew
(1 + (−ew)2) dw =

∫
−i

2ew
(1 + e2w) dw

= −i

2

∫
(e−w + ew) dw = −i

[
ew − e−w

2

]
= −i sinh(w)

z(w) =
∫

2fg dw =
∫

2 −1
2ew

(−ew) dw =
∫ 2ew

2ew
dw =

∫
1 dw = w

To get to the next step we note that w = u + iv. Using this we find the
parametrization in u, v coordinates. Here we have used the expressions given in
(3.18) and (3.19).

x(w) = cosh(w) = cosh(u + iv) = cosh(u) cos(v) + i sinh(u) sin(v)
y(w) = −i sinh(w) = −i sinh(u + iv) = −i(sinh(u) cos(v) + i cosh(u) sin(v))

= cosh(u) sin(v) − i sinh(u) cos(v)
z(w) = w = u + iv

Consider the surface that is formed by taking the real parts of the
parametrization. We will denote this surface by xreal. This surface has the
components

xreal(u, v) = (x(u, v), y(u, v), z(u, v))
= (cosh(u) cos(v), cosh(u) sin(v), u)

Similarly the surface that is formed by taking the imaginary parts of the
parametrization will be denoted by ximag. This surface has the components

ximag(u, v) = (x(u, v), y(u, v), z(u, v))
= (sinh(u) sin(v), − sinh(u) cos(v), v)

The parameters of both of the surfaces are −∞ < u < ∞, 0 ≤ v < 2π.
Hence xreal gives the parametrization for the catenoid. The functions f(w) =
−1
2ew , g(w) = −ew represent the catenoid in the Weierstrass representation in
theorem 2.3.3. The interesting point to note is that ximag is a parametrization
for the helicoid. These surfaces are shown in figure 3.3. To expand on this
phenomenon let ω(t) be a function such that

ω(u, v, t) = xreal(u, v) cos(t) + ximag(u, v) sin(t), t ∈
[
0,

π

2
]

(3.20)

Then the minimal surfaces xreal and ximag are a part of a one parameter family
of minimal surfaces [DHS10, p. 100] where t is the parameter and varies in the
interval t ∈

[
0, π

2
]
. Thus the catenoid and helicoid are minimal surfaces that
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3.2. The Helicoid

(a) xreal(u, v) (b) ximag(u, v)

Figure 3.3: Surfaces parameterized by xreal(u, v) and ximag(u, v). It is clear
that figure a is a catenoid and figure b is a helicoid.

(a) t = 0 (b) t = 0.1963

(c) t = 0.3927 (d) t = 0.5890

Figure 3.4: Isometric transformation from the catenoid to the helicoid part 1.
The parameter domain is v ∈ [0, 2π) and u ∈ [−1, 1] and t ∈ [0, π/2]. Figure a
shows that at t = 0 we get a catenoid.
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3.2. The Helicoid

(a) t = 0.7854 (b) t = 0.9817

(c) t = 1.1781 (d) t = 1.3744

(e) t = 1.5708

Figure 3.5: Isometric transformation from the catenoid to the helicoid part 2.
The parameter domain is v ∈ [0, 2π) and u ∈ [−1, 1] and t ∈ [0, π/2]. Figure e
shows that at t = π/2 ≈ 1.570 we get a helicoid.
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3.3. Scherk’s First Surface

span a one parameter family of minimal surfaces. The transformation from the
catenoid to the helicoid is shown in figure 3.4 and 3.5. Note that

ω(u, v, 0) = xreal(u, v), ω(u, v,
π

2 ) = ximag(u, v)

Minimal surfaces that are in the same family can be continuously deformed
to one another as the parameter t varies from 0 to π/2. This means that the
catenoid can be continuously transformed to the helicoid, and the helicoid can
also be continuously transformed to the catenoid. When t = 0, the minimal
surface ω(u, v, 0) will parametrize the catenoid. When t = π/2, the minimal
surface ω(u, v, π

2 ) will parametrize the helicoid.
More can be said about this one parameter family. We have that xreal

parametrises the catenoid, and ximag parametrises the helicoid. Consider the
geometric properties of ximag and xreal.

ximag(u, v) = (sinh(u) sin(v), − sinh(u) cos(v), v)
∂ximag

∂u
= (cosh(u) sin(v), − cosh(u) cos(v), 0)

∂ximag

∂v
= (sinh(u) cos(v), sinh(u) sin(v), 1)

Hence the coefficients of the first fundamental form are

Eimag = cosh2(u), Fimag = 0, Gimag = cosh2(u)

We know that xreal is the catenoid as mentioned in (3.3). We have already
found the coefficients of the first fundamental form for the catenoid. They are
given by

Ereal = cosh2(u), Freal = 0, Greal = cosh2(u)

Therefore the minimal surfaces ximag and xreal have the same first fundamental
forms. Note that the two parametrizations have the same u, v domain. By
proposition 1.3.3 we have that if two surfaces have the same first fundamental
forms, then their is a local isometry between them. Since the catenoid and
the helicoid given by ximag, have the same first fundamental forms, they are
locally isometric to each other. Note that the helicoid that is given by the
parametrization

Helicoid = ximag(u, v) = (sinh(u) sin(v), − sinh(u) cos(v), v) (3.21)

has E = G and F = 0. Therefore (3.21) is an isothermal parametrization for
the helicoid. This is because the parametrization (3.21) is a result of of the
Weierstrass Enneper representation in theorem 2.3.3. The Weierstrass Enneper
formulas provide us with an isothermal parametrization for a minimal surface.

3.3 Scherk’s First Surface

Scherk’s first surface is a minimal surface that is defined in non-parametric
form by a function f = z(x, y), see for example [Opr00, p. 63]. The function f
is given by

f = z(x, y) = c ln
(

cos(x/c)
cos(y/c)

)
(3.22)
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3.3. Scherk’s First Surface

where c is a constant. Let c = 1. Then Scherk’s first surface is given by

f = z(x, y) = ln
(

cos(x)
cos(y)

)
(3.23)

Since Scherk’s first surface is a minimal surface that is defined by the graph
of a function f = z(x, y), the function f satisfies the minimal surface equation
given in (2.9), which is

fxx(1 + f2
y ) − 2fxfyfxy + fyy(1 + f2

x) = 0

To show this we compute the partial derivatives of f given in (3.23) and the
quantities needed in the minimal surface equation. We begin by computing

fx = − sin(x)
cos(x) , f2

x = sin2(x)
cos2(x) , fxy = 0

fy = sin(y)
cos(y) , f2

y = sin2(y)
cos2(y) , fyx = 0

Next we compute

fxx = − sin2(x)
cos2(x) − 1 = − sin2(x) − cos2(x)

cos2(x) = −(sin2(x) + cos2(x))
cos2(x) = −1

cos2(x)

fyy = sin2(y)
cos2(y) + 1 = sin2(y) + cos2(y)

cos2(y) = 1
cos2(y)

Due to the above calculations we get that,

1 + f2
x = 1 + sin2(x)

cos2(x) = 1
cos2(x) , 1 + f2

y = 1 + sin2(y)
cos2(y) = 1

cos2(y)

Then computing the following quantities gives us,

fxx(1 + f2
y ) = −1

cos2(x) · 1
cos2(y) = −1

cos2(x) cos2(y)

fyy(1 + f2
x) = 1

cos2(y) · 1
cos2(x) = 1

cos2(x) cos2(y)
−2fxfyfxy = −2 · 0 = 0

Inserting these calculations into the minimal surface equation leads to

fxx(1 + f2
y ) − 2fxfyfxy + fyy(1 + f2

x) = −1
cos2(x) cos2(y) + 1

cos2(x) cos2(y)
= 0

Thus f in (3.23) satisfies the minimal surface equation. Therefore Scherk’s
first minimal surface is a minimal surface as it satisfies the minimal surface
equation. It is possible to parametrize this surface by a map x(u, v), where
x : U ⊂ R2 → R3. Due to proposition 1.1.5, we can parametrize this surface by
the parametrization x(u, v) given as

x(u, v) =
(

u, v, ln
(

cos(u)
cos(v)

))
The parameters u, v are defined such that cos(u)/ cos(v) > 0.
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3.4. Enneper’s Surface

(a) R = 0.5 (b) R = 3

Figure 3.6: Enneper’s surface. This figure shows Enneper’s surface in the region
θ ∈ [0, 2π) and r ∈ [0, R) as mentioned.

3.4 Enneper’s Surface

Enneper’s surface is a minimal surface, see for example [Do 16, p. 208]. It is
parametrized by

x(u, v) = (u − u3

3 + uv2, v − v3

3 + vu2, u2 − v2),

−∞ < u < ∞, −∞ < v < ∞
(3.24)

From the parametrization (3.24) we can see that Enneper’s surface has
component functions that are polynomials in u and v. Enneper’s surface
is shown in figure 3.6. Let us compute the mean curvature for Enneper’s surface.
We begin by computing the following vectors

xu = (1 − u2 + v2, 2uv, 2u)
xv = (2uv, 1 + u2 − v2, −2v)

Then the second partial derivatives of the vectors are

xuu = (−2u, 2v, 2)
xuv = (2v, 2u, 0)
xvv = (2u, −2v, −2)

Thus we can find the coefficients of the first fundamental form E, F and G.
They are given by

E = ⟨xu, xu⟩ = (1 + u2 + v2)2

F = ⟨xu, xv⟩ = 0
G = ⟨xv, xv⟩ = (1 + u2 + v2)2

We get that E = G and F = 0, so this is an isothermal parametrization. Next
we compute the quantity EG − F 2 as this will help in finding the curvatures.

EG − F 2 = (1 + u2 + v2)2 · (1 + u2 + v2)2 − 02 = (1 + u2 + v2)4 (3.25)√
EG − F 2 =

√
(1 + u2 + v2)4 = (1 + u2 + v2)2 (3.26)
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3.4. Enneper’s Surface

To find the unit normal vector N we will have to find

xu × xv =

∣∣∣∣∣∣
i j k

1 − u2 + v2 2uv 2u
2uv 1 − v2 + u2 −2v

∣∣∣∣∣∣
= (−2u3 − 2uv2 − 2u, 2v3 + 2u2v + 2v, 1 − 2u2v2 − u4 − v4)
=
(
−2u(1 + u2 + v2), 2v(1 + u2 + v2), 1 − (u2 + v2)2)

∥xu × xv∥ =
√

EG − F 2 = (1 + u2 + v2)2

The unit normal vector N is given by

N = xu × xv

∥xu × xv∥
=
(

−2u

1 + u2 + v2 ,
2v

1 + u2 + v2 ,
1 − (u2 + v2)2

(1 + u2 + v2)2

)
(3.27)

Now that we have the unit normal vector, we can find the coefficients of the
second fundamental from, namely e, f and g.

e = ⟨N, xuu⟩ = 2
f = ⟨N, xuv⟩ = 0
g = ⟨N, xvv⟩ = −2

Finally we can compute the curvatures. The Gaussian curvature K is

K = eg − f2

EG − F 2 = (2)(−2) − 02

(1 + u2 + v2)4 = −4
(1 + u2 + v2)4 (3.28)

The mean curvature H is

H = 1
2

eG − 2fF + gE

EG − F 2 = 1
2

2(1 + u2 + v2)2 − 2(0)(0) + (−2)(1 + u2 + v2)2

(1 + u2 + v2)4

= 1
2

2(1 + u2 + v2)2 − 2(1 + u2 + v2)2

(1 + u2 + v2)4 = 0 (3.29)

The mean curvature is zero, thus the Enneper’s surface is a minimal surface.
The Gaussian curvature is also negative for all values of u and v. We saw
that Enneper’s surface has a parametrization which is in terms of polynomials.
We can obtain this parametrization from the Weierstrass Enneper formulas in
theorem 2.3.3. The functions f(w) and g(w) in the formulas in theorem 2.3.3
are given by [Opr00, p. 83]:

f(w) = 1, g(w) = w

It will be convenient to find the parametrization in polar coordinates. We have
that w = u+iv. Let u = r cos(θ) and v = r sin(θ). Then w = r(cos(θ)+i sin(θ)).
Referring to (2.1) we can write w in polar form as

w = reiθ = r(cos(θ) + i sin(θ))

We compute the integrals and set w = reiθ and then take the real part to find
the parametrization in polar coordinates.∫

f(1 − g2) dw =
∫

(1 − w2) dw = w − w3

3 = reiθ − (reiθ)3

3
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3.4. Enneper’s Surface

= reiθ − r3ei3θ

3

x(r, θ) = Re
∫

f(1 − g2) dw = r cos(θ) − r3

3 cos(3θ)∫
if(1 + g2) dw =

∫
i(1 + w2) dw = i

[
w + w3

3

]
= i
[
reiθ + (reiθ)3

3

]
= ireiθ + ir3ei3θ

3

y(r, θ) = Re
∫

if(1 + g2) dw = −r sin(θ) − r3

3 sin(3θ)∫
2fg dw =

∫
2w dw = 2 · w2

2 = w2 = (reiθ)2 = r2ei2θ

z(r, θ) = Re
∫

2fg dw = r2 cos(2θ)

Enneper’s surface is parametrized in polar coordinates by the parametrization
x(r, θ) given as

x(r, θ) =
(

r cos(θ) − r3

3 cos(3θ), −r sin(θ) − r3

3 sin(3θ), r2 cos(2θ)
)

(3.30)

0 ≤ r < ∞, 0 ≤ θ < 2π

The figure 3.6 shows Enneper’s surface given by the parametrization (3.30),
which is in polar coordinates. We find the geometric properties for Enneper’s
surface in polar coordinates, as this will be useful later. Since this
parametrization is obtained from the Weierstrass Enneper representation, we
can compute the first fundamental form E and the Gaussian curvature K. Let
w = u + iv. Then we note that

w w = (u + iv)(u − iv) = u2 − i2v2 = u2 − (−1)v2 = u2 + v2

We can find E and K in terms of f(w) and g(w). We wish to find E and K in
polar coordinates, this means that u2 + v2 = r2. Before we can compute E and
K we will have to find the expressions for

|g|2 = g · g = (w)(w) = w w = u2 + v2 = r2

|g′|2 = g′ · g′ = 1
|f |2 = f · f = 1

Now we can find E from (2.5) as,

E = |f |2(1 + |g|2)2 = 1 · (1 + r2)2 = (1 + r2)2 (3.31)

We can find K from (2.7) as,

K = −4|g′|2

|f |2(1 + |g|2)4 = −4(1)
1 · (1 + r2)4 = −4

(1 + r2)4 (3.32)

We can also find the unit normal vector N in terms of the functions f(w) and
g(w) by the expression given in (2.8). We compute the normal vector in polar
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3.4. Enneper’s Surface

coordinates. The formula for N in terms of f(w) and g(w) is

N =
(

2 Re(g)
1 + |g|2

,
2 Im(g)
1 + |g|2

,
|g|2 − 1
1 + |g|2

)
We have that g(w) = w = reiθ = r(cos(θ)+ i sin(θ)) = r cos(θ)+ ir sin(θ). Then

Re(g) = r cos(θ), Im(g) = r sin(θ)

The unit normal vector N for Enneper’s surface in polar coordinates is given by

N =
(

2r cos(θ)
1 + r2 ,

2r sin(θ)
1 + r2 ,

r2 − 1
1 + r2

)
(3.33)

3.4.1 Self intersections

Enneper’s surface has an interesting property. Let us take a look at Enneper’s
surface that is shown in figure 3.6. In this figure Enneper’s surface is
parametrized using polar coordinates, as in (3.30). Let us denote the radius by
R.

The figure shows the surface for two different radiuses. Figure 3.6a shows
the surface when the radius is R = 0.5. In figure 3.6b, the surface has a radius
of R = 3. Note that the parameter θ ∈ [0, 2π) in both figures. From figures
a and b, we can see that as the radius increases from R = 0.5 to R = 3, the
shape of Enneper’s surface changes dramatically. When R = 0.5, there are no
self intersections, however as the radius begins to increase, Enneper’s surface
intersects itself. The Enneper surface is a self intersecting minimal surface.

This tells us that for some value of R in between R = 0.5 and R = 3, there
is a value of R at which Enneper’s surface intersects itself for the first time. Let
us find the radius at which Enneper’s surface intersects itself for the first time.
The method used here to find this radius is based on the method presented in
[Web18].

Self intersections occur in the z-plane. Consider the x-z plane. In this
plane y = 0. To find the radius of intersection we will have to find when the y
component of the parametrization (3.30) is equal to zero. Let us look closer at
this. The y component from the parametrization in (3.30) is

y(r, θ) = −r sin(θ) − r3

3 sin(3θ)

Hence we would like to find the minimum radius r at which y(r, θ) = 0. We
begin by rewriting the expression for y(r, θ) by finding the common denominator.
This leads to

y(r, θ) = −3r sin(θ) − r3 sin(3θ)
3

= −r

3 (3 sin(θ) + r2 sin(3θ))

We would like to find the minimum value of r such that

3 sin(θ) + r2 sin(3θ) = 0
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3.4. Enneper’s Surface

Let P = r2. Then
3 sin(θ) + P sin(3θ) = 0

P sin(3θ) = −3 sin(θ)

P = −3 sin(θ)
sin(3θ) (3.34)

Let us denote by

P1(θ) = −3 sin(θ)
sin(3θ) (3.35)

Figure 3.7: Graph of P1(θ) = −3 sin(θ)/ sin(3θ). The point A is the first positive
minimum point of P1(θ). It is given by A = (1.570796, 3)

To find the radius r of intersection for the Enneper’s surface, we wish to find
the minimum value of θ for the function P1(θ). We want to find the minimum
point of the function P1(θ). Since r is a radius, we will only consider P1(θ) > 0.
This means that we want to find the first positive minimum point of P1(θ). Let
us denote the first positive minimum value of θ by θmin. The graph of P1(θ) is
shown in figure 3.7. From the figure we can see that the first positive minimum
point of P1(θ) is the point A, which is A = (1.570796, 3). Thus

θmin = 1.570796, and P1(θmin) = 3
We have found that P1(θmin) = 3. Going back to the expression for P which
was given in (3.34), we have found that the minimum value of P is

P = 3

Note that we had defined P = r2. To find the radius r we have to find (P )1/2

which gives us
r2 = 3
r =

√
3 ≈ 1.7321
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3.5. Higher Order Enneper Surfaces

Figure 3.8: Enneper’s surface with R =
√

3. This figure shows Enneper’s surface
in the region r ∈ [0,

√
3] and θ ∈ [0, 2π).

Therefore the radius R at which the Enneper’s surface intersects itself for
the first time is

R =
√

3 ≈ 1.7321 (3.36)

The Enneper surface with R =
√

3 is shown in figure 3.8. From the figure we
can see that the Enneper’s surface just intersects itself when R =

√
3. This

means that for R <
√

3, Enneper’s surface has no self intersections. Our result
is consistent with the results of the following theorem.

Theorem 3.4.1. [Nit89, p. 83] Enneper’s surface does not have any self
intersections for R2 < 3, that is R <

√
3. This corresponds to 0 ≤ r <

√
3 in

the parametrization (3.30).

Therefore Enneper’s surface has no self intersections for R <
√

3. It intersects
itself for the first time when the radius is R =

√
3.

3.5 Higher Order Enneper Surfaces

The higher order Enneper surfaces of kth order, are minimal surfaces that
are defined through the Weierstrass Enneper representation formulas given in
theorem 2.3.3, see [Opr00, p. 83]. The functions f(w) and g(w) in the formulas
in theorem 2.3.3 are given by:

f(w) = 1, g(w) = wk

where k is the degree or order of the Enneper surface. When k = 1, we get
the usual Enneper’s surface parametrized by (3.30). We compute the integrals
to find the parametrization. It will be convenient to find the parametrization
in polar coordinates. We will compute the integrals and set w = reiθ. Then
we will take the real parts to find the parametrization which will be in polar
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3.5. Higher Order Enneper Surfaces

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

(e) k = 5 (f) k = 6

Figure 3.9: Enneper surfaces of order k. This figure shows the higher order
Enneper surfaces for k = 1, 2, 3, 4, 5, 6 in the region r ∈ [0, 1.1) and θ ∈ [0, 2π).
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coordinates. We begin by computing the x component∫
f(1 − g2) dw =

∫
(1 − w2k) dw = w − w2k+1

2k + 1 = (reiθ) − (reiθ)2k+1

2k + 1

= reiθ − r2k+1eiθ(2k+1)

2k + 1

= r cos(θ) + ir sin(θ) − r2k+1

2k + 1

(
cos((2k + 1)θ)

+ i sin((2k + 1)θ)
)

Then taking the real parts

x(r, θ) = Re
∫

f(1 − g2) dw = r cos(θ) − r2k+1

2k + 1 cos((2k + 1)θ)

Similarly we compute the y component∫
if(1 + g2) dw =

∫
i(1 + w2k) dw = i

[
w + w2k+1

2k + 1

]
= i

[
reiθ + (reiθ)2k+1

2k + 1

]
= i

[
reiθ + r2k+1eiθ(2k+1)

2k + 1

]
= i
[
r cos(θ) + ir sin(θ) + r2k+1

2k + 1

(
cos((2k + 1)θ)

+ i sin((2k + 1)θ)
)]

= ir cos(θ) − r sin(θ) + r2k+1

2k + 1

(
i cos((2k + 1)θ)

− sin((2k + 1)θ)
)

Then taking the real parts

y(r, θ) = Re
∫

if(1 + g2) dw = −r sin(θ) − r2k+1

2k + 1 sin((2k + 1)θ)

Finally we compute the z component∫
2fg dw = 2

∫
wk dw = 2

[
wk+1

k + 1

]
= 2

[
(reiθ)k+1

k + 1

]
= 2rk+1eiθ(k+1)

k + 1

= 2rk+1

k + 1

(
cos((k + 1)θ) + i sin((k + 1)θ)

)
Then taking the real parts

z(r, θ) = Re
∫

2fg dw = 2rk+1

k + 1 cos((k + 1)θ)

Therefore the higher order Enneper surfaces of order k are parametrized in
polar coordinates by the parametrization x(r, θ) given as

x(r, θ) = (x(r, θ), y(r, θ), z(r, θ)), (3.37)
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3.5. Higher Order Enneper Surfaces

0 ≤ r < ∞, 0 ≤ θ < 2π

where the component functions x(r, θ), y(r, θ) and z(r, θ) are given by

x(r, θ) = r cos(θ) − r2k+1

2k + 1 cos((2k + 1)θ) (3.38)

y(r, θ) = −r sin(θ) − r2k+1

2k + 1 sin((2k + 1)θ) (3.39)

z(r, θ) = 2rk+1

k + 1 cos((k + 1)θ) (3.40)

The higher order Enneper surfaces are shown in figure 3.9 for k = 1, 2, 3, 4, 5, 6.
We find the geometric properties for the higher order Enneper surfaces. Since
this parametrization is obtained from the Weierstrass Enneper representation,
it is an isothermal parametrization. We can find the coefficient of the first
fundamental form E, and the Gaussian curvature K in terms of f(w) and g(w).
Note that w = u + iv, then

w w = (u + iv)(u − iv) = u2 − i2v2 = u2 − (−1)v2 = u2 + v2

We wish to find E and K in polar coordinates, this means that u2 + v2 = r2.
We first find the expressions for

|g|2 = g · g = (wk)(wk) = (w w)k

= (u2 + v2)k = (r2)k

= r2k

|g′|2 = g′ · g′ = (kwk−1)(kwk−1) = k2 wk−1wk−1

= k2(w w)k−1 = k2(u2 + v2)k−1 = k2(r2)k−1

= k2r2(k−1)

= k2r2k−2

|f |2 = f · f = 1

Now we can find E from (2.5) as,

E = |f |2(1 + |g|2)2 = 1 · (1 + r2k)2 = (1 + r2k)2 (3.41)

We can find K from (2.7) as,

K = −4|g′|2

|f |2(1 + |g|2)4 = −4(k2r2k−2)
1 · (1 + r2k)4 = −4k2 r2k−2

(1 + r2k)4 (3.42)

We can also find the unit normal vector N in terms of the functions f(w) and
g(w) by the expression given in (2.8). We compute the normal vector in polar
coordinates. The formula for N in terms of f(w) and g(w) is

N =
(

2 Re(g)
1 + |g|2

,
2 Im(g)
1 + |g|2

,
|g|2 − 1
1 + |g|2

)
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We have that g(w) = wk = (reiθ)k = rkeikθ = rk(cos(kθ) + i sin(kθ)) =
rk cos(kθ) + irk sin(kθ). Then

Re(g) = rk cos(kθ), Im(g) = rk sin(kθ)

The unit normal vector N for higher order Enneper surfaces of order k is given
by

N =
(

2rk cos(kθ)
1 + r2k

,
2rk sin(kθ)

1 + r2k
,

r2k − 1
1 + r2k

)
(3.43)

3.6 Richmond’s Surface

Richmond’s minimal surface is a minimal surface that is defined through the
Weierstrass Enneper representation formulas given in theorem 2.3.3, see [Opr00,
p. 83]. The functions f(w) and g(w) in the formulas in theorem 2.3.3 are given
by:

f(w) = w2, g(w) = 1
w2

We will find the parametrization in polar coordinates. We compute the integrals
and let w = reiθ and then we take the real parts.∫

f(1 − g2) dw =
∫

(w2 − 1
w2 ) dw = w3

3 + 1
w

= (reiθ)3

3 + 1
(reiθ)

= r3ei3θ

3 + 1
r

e−iθ

x(r, θ) = Re
∫

f(1 − g2) dw = r3

3 cos(3θ) + 1
r

cos(θ)∫
if(1 + g2) dw =

∫
i(w2 + 1

w2 ) dw = i(w3

3 − 1
w

) = i
(reiθ)3

3 − i

reiθ

= ir3ei3θ

3 − i

r
e−iθ

y(r, θ) = Re
∫

if(1 + g2) dw = −r3

3 sin(3θ) − 1
r

sin(θ)∫
2fg dw =

∫
2w2 1

w2 dw =
∫

2 dw = 2w = 2reiθ

z(r, θ) = Re
∫

2fg dw = 2r cos(θ)

Richmond’s surface is parametrized in polar coordinates by the parametrization
x(r, θ) given as

x(r, θ) =
(r3

3 cos(3θ) + 1
r

cos(θ), −r3

3 sin(3θ) − 1
r

sin(θ), 2r cos(θ)
)

0 < r < ∞, 0 ≤ θ < 2π

(3.44)

Thus we get to see another example of theorem 2.3.3. This shows us how
the theorem is applied to find minimal surfaces. We started with two functions
f(w) and g(w) that satisfy the requirements of theorem 2.3.3. We insert the
functions into the formulas and obtain a parametrization for a minimal surface.
In this case, a parametrization for Richmond’s surface.
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CHAPTER 4

Area Minimizing Property of
Minimal Surfaces and The Area

Functional

When we talk about minimal surfaces, we use the term minimal. However a
minimal surface may not always have minimal surface area. We are interested
in finding out when a minimal surface has minimal surface area. Let us take a
closer look at the area minimizing property of minimal surfaces. In order to
look at the problem of having minimal surface area we will consider the area
functional. Let us begin by finding the area functional.

4.1 Variations of the Surface

The material presented on the variations of the surface is based on [Do 16,
chapter 3.5B]. We will look at the notion of variations of a surface, which arise
from the calculus of variations. Let S ⊂ R3 be a regular parametrized surface
x(u, v), where x : U ⊂ R2 → R3. Let D ⊂ U be a bounded domain. We denote
the boundary of D by ∂D. Recall that the closure of D, which is denoted by
D, is the union of D and the boundary of ∂D. Using set notation we can write
this as D = D ∪ ∂D. Thus we let D be the closure of D. Let h : D → R be a
differentiable function. We introduce a parameter t ∈ R. Then for small values
of t we define the map xt(u, v) by

xt(u, v) = x(u, v) + th(u, v)N(u, v) (4.1)

The map xt(u, v) perturbs the surface x(u, v) in the direction of the normal
vector N, it gives us normal variations of x(u, v). The variational surfaces are
created by t h(u, v) as t varies in a small interval in R. When t = 0, we get
back our original surface x(u, v).

We would like to see whether the surface area of xt is always greater than
the surface area of x in the case that x is a minimal surface, in which case x
has mean curvature H = 0 everywhere. From (1.10) the surface areas of x and
xt over the domain D are given respectively by

A =
∫

D

∥xu × xv∥ du dv =
∫

D

√
EG − F 2 du dv

A(t) =
∫

D

∥xt
u × xt

v∥ du dv =
∫

D

√
EtGt − (F t)2 du dv
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Note that when t = 0, we get A(0) = A. If t = 0 is a critical point for the area
functional A(t), then we have that A′(0) = 0. For convenience we express the
integrals above as

A =
∫

D

B1/2 du dv, A(t) =
∫

D

(Bt)1/2 du dv (4.2)

where B and Bt are given by

B = EG − F 2, Bt = EtGt − (F t)2 (4.3)

The terms Et, F t, Gt are the coefficients of the first fundamental form of the
map xt in (4.1). They are defined in analogy to E, F, G, replacing x by xt. We
will study the first and second derivatives of the area functional A(t) at t = 0.

4.2 First Derivative of The Area Functional

We want to compute the first derivative of the area functional A′(t) at t = 0.
This is shown in [Do 16, p. 201], we will reproduce the proof here and consider
the second derivative as well. The area functional is given in (4.2).

Lemma 4.2.1.

A′(0) = −2
∫

D

B1/2hH du dv

If x is a minimal surface, that is, it has H = 0, then A′(0) = 0. Thus t = 0 is
a critical point of the area functional A(t).

Proof. We begin by differentiating xt(u, v) given in (4.1) with respect to t. By
using the chain rule we get that

xt
u = ∂xt

∂u
= xu + thuN + thNu

xt
v = ∂xt

∂v
= xv + thvN + thNv

The coefficients of the first fundamental form are calculated as

Et = ⟨xt
u, xt

u⟩
= ⟨xu, xu⟩︸ ︷︷ ︸

E

+2th ⟨xu, Nu⟩︸ ︷︷ ︸
−e

+2thu ⟨xu, N⟩︸ ︷︷ ︸
0

+t2h2
u ⟨N, N⟩︸ ︷︷ ︸

1

+2t2hhu ⟨N, Nu⟩︸ ︷︷ ︸
0

+ t2h2⟨Nu, Nu⟩
= E − 2eth + t2h2⟨Nu, Nu⟩ + t2h2

u

F t = ⟨xt
u, xt

v⟩
= ⟨xu, xv⟩︸ ︷︷ ︸

F

+thv ⟨xu, N⟩︸ ︷︷ ︸
0

+th ⟨xu, Nv⟩︸ ︷︷ ︸
−f

+thu ⟨xv, N⟩︸ ︷︷ ︸
0

+th ⟨xv, Nu⟩︸ ︷︷ ︸
−f

+ t2huhv ⟨N, N⟩︸ ︷︷ ︸
1

+t2hhu ⟨N, Nv⟩︸ ︷︷ ︸
0

+t2hhv ⟨N, Nu⟩︸ ︷︷ ︸
0

+t2h2⟨Nu, Nv⟩

= F − 2fth + t2h2⟨Nu, Nv⟩ + t2huhv
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4.2. First Derivative of The Area Functional

Gt = ⟨xt
v, xt

v⟩
= ⟨xv, xv⟩︸ ︷︷ ︸

G

+2thv ⟨xv, N⟩︸ ︷︷ ︸
0

+2th ⟨xv, Nv⟩︸ ︷︷ ︸
−g

+2t2hhv ⟨N, Nv⟩︸ ︷︷ ︸
0

+t2h2⟨Nv, Nv⟩

+ t2h2
v ⟨N, N⟩︸ ︷︷ ︸

1

= G − 2gth + t2h2⟨Nv, Nv⟩ + t2h2
v

Thus the coefficients of the first fundamental from Et, F t, Gt are

Et = E − 2eth + t2h2⟨Nu, Nu⟩ + t2h2
u

F t = F − 2fth + t2h2⟨Nu, Nv⟩ + t2huhv

Gt = G − 2gth + t2h2⟨Nv, Nv⟩ + t2h2
v

(4.4)

Then we obtain

EtGt = EG − 2th(Eg + Ge) + t2R0 + O(t3)

where

R0 = Eh2⟨Nv, Nv⟩ + Eh2
v + Gh2⟨Nu, Nu⟩ + Gh2

u + 4h2eg (4.5)

and

(F t)2 = F 2 − 4thFf + t2R1 + O(t3)

where

R1 = 2Fh2⟨Nu, Nv⟩ + 2Fhuhv + 4h2f2 (4.6)

Therefore we compute the expression for Bt as

Bt = EtGt − (F t)2 = EG − F 2 − 2th(Eg − 2Ff + Ge) + t2(R0 − R1) + O(t3)
= EG − F 2 − 2th(Eg − 2Ff + Ge) + t2R + O(t3)

where we have R = R0 − R1. Furthermore by using the definition of the mean
curvature H as mentioned in definition 1.4.4, we obtain that

Bt = (EG − F 2)(1 − 4thH) + t2R + O(t3)
= B(1 − 4thH) + t2R + O(t3)
= B − 4tBhH + t2R + O(t3) (4.7)

Now differentiating through the integral sign in the definition of A(t) as
mentioned in (4.2) gives

A′(t) = 1
2

∫
D

(Bt)−1/2 d

dt
(Bt) du dv, (4.8)

hence from (4.7) we compute

d

dt
(Bt) = −4BhH + 2tR + O(t2) (4.9)
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4.3. Second Derivative of The Area Functional

Then letting t = 0 gives

d

dt
(Bt)

∣∣∣
t=0

= −4BhH, (Bt)−1/2
∣∣∣
t=0

= B−1/2

Therefore A′(0) is

A′(0) = 1
2

∫
D

B−1/2(−4BhH) du dv

= −2
∫

D

B1/2hH du dv

This is what we wanted to proof. ■

This lemma shows us that t = 0 is a critical point for A(t) when x has zero
mean curvature. However it does not tell us anything about the type of critical
point. The critical point could be a maximum, minimum or even a saddle point
of A(t). As we concerned with having minimum surface area, we would like to
see if t = 0 is a minimum point of A(t). To see this we consider the second
derivative of the area functional.

4.3 Second Derivative of The Area Functional

We want to compute the second derivative of the area functional A′′(t). We
will express A′′(t) in terms of Gaussian curvature K of x. From definition 1.4.4
we know that in local u, v coordinates K can be expressed as,

K = eg − f2

EG − F 2

and that K is the product of the two principal curvatures K = k1k2. The area
functional is given in (4.2).

Lemma 4.3.1. If x is a minimal surface, that is, it has H = 0, then

A′′(0) =
∫

D

(
2B1/2Kh2 + B−1/2(∇h)T M(∇h)

)
du dv

where ∇h = [hu, hv]T is the gradient of h, and M is given by the matrix

M =
[

G −F
−F E

]
We will prove this lemma in two steps. The first step is to show the following

lemma.

Lemma 4.3.2.

A′′(0) =
∫

D

B−1/2
(

Sh2 + (∇h)T M(∇h)
)

du dv (4.10)

where the quantity S is given by,

S = −4BH2 + E⟨Nv, Nv⟩ − 2F ⟨Nu, Nv⟩ + G⟨Nu, Nu⟩ + 4(eg − f2) (4.11)
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4.3. Second Derivative of The Area Functional

Proof. We begin by differentiating A′(t), given by (4.8) with respect to t. This
gives us the following

A′′(t) = 1
2

∫
D

( d

dt

(
(Bt)−1/2

) d

dt
(Bt) + (Bt)−1/2 d2

dt2 (Bt)
)

du dv

= 1
2

∫
D

(
−1
2 (Bt)−3/2

( d

dt
(Bt)

)2
+ (Bt)−1/2 d2

dt2 (Bt)
)

du dv

Now from (4.9) we compute

d2

dt2 (Bt) = 2R + O(t).

Then letting t = 0 gives

(Bt)−3/2
∣∣∣
t=0

= B−3/2,
( d

dt
(Bt)

)2∣∣∣
t=0

= 16B2h2H2

(Bt)−1/2
∣∣∣
t=0

= B−1/2,
d2

dt2 (Bt)
∣∣∣
t=0

= 2R

Therefore A′′(0) is

A′′(0) = 1
2

∫
D

(
−8B1/2h2H2 + 2B−1/2R

)
du dv

=
∫

D

(
−4B1/2h2H2 + B−1/2R

)
du dv

=
∫

D

B−1/2(−4BH2h2 + R) du dv

From (4.5) and (4.6), we get that

R = R0 − R1

= h2(E⟨Nv, Nv⟩ − 2F ⟨Nu, Nv⟩ + G⟨Nu, Nu⟩ + 4eg − 4f2)
+ Eh2

v − 2Fhuhv + Gh2
u

Let Q = Eh2
v − 2Fhuhv + Gh2

u. Then we notice that Q is a quadratic form in
the variables hu and hv. This means that we can write

Q =
[
hu hv

] [ G −F
−F E

] [
hu

hv

]
= (∇h)T M(∇h)

where ∇h = [hu, hv]T and the matrix of the quadratic form M is given by

M =
[

G −F
−F E

]
Using this we see that R becomes

R = h2
(

E⟨Nv, Nv⟩ − 2F ⟨Nu, Nv⟩ + G⟨Nu, Nu⟩ + 4(eg − f2)
)

+ (∇h)T M(∇h)

Thus the expression for A′′(0) is shown, where R is given as above. ■
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4.3. Second Derivative of The Area Functional

The second step in the proof is to show the following identity, which is
stated in the lemma below.

Lemma 4.3.3.

E⟨Nv, Nv⟩ − 2F ⟨Nu, Nv⟩ + G⟨Nu, Nu⟩ + 2(eg − f2) = 4BH2

Then substituting this identity into the expression for S in (4.11) shows that

S = −4BH2 + 4BH2 + 2(eg − f2) = 2(eg − f2) = 2BK

This gives the result and concludes the proof for lemma 4.3.1. It remains to
show the proof for lemma 4.3.3. Thus we now show the proof of lemma 4.3.3.

Proof. Recall that from the formulas given in (1.13) we can write Nu and Nv

in terms of xu and xv as

Nu = a11xu + a21xv

Nv = a12xu + a22xv

(4.12)

In section 1.4, we expressed e, f, g in terms of the coefficients of the first
fundamental form E, F, G by the following equations

−e = ⟨Nu, xu⟩ = a11E + a21F,

−f = ⟨Nu, xv⟩ = a11F + a21G

−f = ⟨Nv, xu⟩ = a12E + a22F,

−g = ⟨Nv, xv⟩ = a12F + a22G,

We can express these equations in matrix form as

−
[

e f
f g

]
=
[
a11 a21
a12 a22

] [
E F
F G

]
Let us denote the unknown matrix by A = (aij)ij=1,2. In section 1.4 we found
the matrix A. We found that

A =
[
a11 a21
a12 a22

]
= −

[
e f
f g

] [
E F
F G

]−1

= − 1
EG − F 2

[
e f
f g

] [
G −F

−F E

]
= − 1

EG − F 2

[
eG − fF −eF + fE
fG − gF −fF + gE

]
The trace of the matrix A is

tr(A) = a11 + a22 = −eG − 2fF + gE

EG − F 2 = −2H.

Due to definition 1.4.2 we can express K as

det(A) = a11a22 − a21a12 = K

We also note that

Nu × Nv = a11a22 · xu × xv + a21a12 · xv × xu
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4.3. Second Derivative of The Area Functional

= a11a22 · xu × xv − a21a12 · xu × xv

= (a11a22 − a21a12) · xu × xv = det(A) · xu × xv

= K · xu × xv

Now we let

T = E⟨Nv, Nv⟩ − 2F ⟨Nu, Nv⟩ + G⟨Nu, Nu⟩ + 2(eg − f2)

Then by using the definitions of E, F, G given by definition 1.3.2, and the
definitions of e, f, g given by definition 1.4.3, we rewrite T as

T = ⟨xu, xu⟩⟨Nv, Nv⟩ − 2⟨xu, xv⟩⟨Nu, Nv⟩ + ⟨xv, xv⟩⟨Nu, Nu⟩
+ 2⟨xu, Nu⟩⟨xv, Nv⟩ − ⟨xu, Nv⟩2 − ⟨xv, Nu⟩2

Due to Lagrange’s identity (1.7), we get ⟨xu, xu⟩⟨Nv, Nv⟩ − ⟨xu, Nv⟩2 =
∥xu × Nv∥2 and ⟨xv, xv⟩⟨Nu, Nu⟩ − ⟨xv, Nu⟩2 = ∥xv × Nu∥2. Then inserting
this into the expression for T gives

T = ∥xu × Nv∥2 + ∥xv × Nu∥2

− 2⟨xu, xv⟩⟨Nu, Nv⟩ + 2⟨xu, Nu⟩⟨xv, Nv⟩

Next we will use the Binet-Cauchy identity. The Binet-Cauchy identity is the
identity that is given by

⟨a, c⟩⟨b, d⟩ − ⟨b, c⟩⟨a, d⟩ = ⟨a × b, c × d⟩ (4.13)

Using the Binet-Cauchy identity with a = xu, b = Nv, c = xv and d = Nu

gives us the following

⟨xu, xv⟩⟨Nv, Nu⟩ − ⟨Nv, xv⟩⟨xu, Nu⟩ = ⟨xu × Nv, xv × Nu⟩

Then inserting this into the expression for T gives us

T = ∥xu × Nv∥2 + ∥xv × Nu∥2 − 2⟨xu × Nv, xv × Nu⟩
= ∥xu × Nv − xv × Nu∥2

We substitute the formulas for Nu and Nv that were mentioned in (4.12) into
the expression for T above. We also use (1.8). This then leads to

T = (a22 + a11)2∥xu × xv∥2 = (−2H)2(EG − F 2)
= 4H2(EG − F 2) = 4H2B

This is the identity that we wanted to prove. ■

It is possible to further simplify the formula for A′′(0) given in lemma
4.3.1. The simplification occurs in the case of x(u, v) having an isothermal
parametrization, that is E = G and F = 0. In this case we get that

2B1/2Kh2 = 2EKh2

B−1/2(∇h)T M(∇h) = h2
u + h2

v = ∥∇h∥2
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This shows us the advantage of having an isothermal parametrization for
a minimal surface. We get a much simpler calculation due to this type of
parametrization. Therefore if x is parametrized by isothermal coordinates, then

A′′(0) =
∫

D

(
2EKh2 + ∥∇h∥2

)
du dv (4.14)

Let us compute the expression for A′′(0) using some specific examples of minimal
surfaces x(u, v).

4.3.1 The catenoid

We compute A′′(0) for the catenoid. Instead of using the formula in lemma
4.3.1, let us see how we can find A′′(0) from the area functional A(t). We
have the same premise as before. We define the variational surface by the map
xt(u, v) which is given in (4.1) as

xt(u, v) = x(u, v) + th(u, v)N(u, v)

The minimal surface x(u, v) is the catenoid which is parametrized by x(u, v)
given in (3.3). In addition t, h(u, v) and N(u, v) in the map xt are defined as
before. We begin by finding Bt for the catenoid. We first compute Et, F t and
Gt, which were given in (4.4). We have computed all the necessary quantities to
compute Et, F t and Gt for the catenoid in section 3.1 for the parametrization
(3.3). From section 3.1 we get for the catenoid that

Et = cosh2(u) + 2th + t2h2
(

1
cosh2(u)

)
+ t2h2

u

Gt = cosh2(u) − 2th + t2h2
(

1
cosh2(u)

)
+ t2h2

v

F t = t2huhv

Then we have

EtGt = cosh4(u) + t2[−2h2 + h2
v cosh2(u) + h2

u cosh2(u)] + O(t3)
(F t)2 = (t2huhv)2 = t4h4

uh4
v = O(t4)

Hence Bt = EtGt − (F t)2 is,

Bt = cosh4(u) + t2[−2h2 + h2
v cosh2(u) + h2

u cosh2(u)] + O(t3) (4.15)

Thus the area functional and its derivatives are

A(t) =
∫

D

(Bt)1/2 du dv

A′(t) = 1
2

∫
D

(Bt)−1/2 d

dt
(Bt) dudv

A′′(t) = 1
2

∫
D

(−1
2 (Bt)−3/2

( d

dt
(Bt)

)2
+ (Bt)−1/2 d2

dt2 (Bt)
)

dudv

Now we compute the necessary quantities where Bt is given by (4.15),

d

dt
(Bt) = 2t[−2h2 + h2

v cosh2(u) + h2
u cosh2(u)] + O(t2)
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d2

dt2 (Bt) = 2[−2h2 + h2
v cosh2(u) + h2

u cosh2(u)] + O(t)

Then letting t = 0 we get that,
d

dt
(Bt)|t=0 = 0

d2

dt2 (Bt)|t=0 = 2[−2h2 + h2
v cosh2(u) + h2

u cosh2(u)]

Bt|t=0 = cosh4(u)

Finally we are in a position to compute the first and second derivative of A(t)
at t = 0. The first derivative is

A′(0) = 1
2

∫
D

(cosh4(u))−1/2 · 0 dudv = 0

The second derivative is

A′′(0) = 1
2

∫
D

(−1
2 (cosh4(u))−3/2 · 0

+ (cosh4(u))−1/2 · (2[−2h2 + h2
v cosh2(u) + h2

u cosh2(u)])
)

dudv

= 1
2

∫
D

(
cosh(u)−2 · (2[−2h2 + h2

v cosh2(u) + h2
u cosh2(u)])

)
dudv

=
∫

D

(−2h2 + h2
v cosh2(u) + h2

u cosh2(u)
cosh2(u)

)
dudv

=
∫

D

( −2h2

cosh2(u)
+ h2

v + h2
u

)
dudv

For the catenoid we have found that A′′(0) is

A′′(0) =
∫

D

( −2h2

cosh2(u)
+ h2

v + h2
u

)
dudv (4.16)

4.3.2 Enneper’s surface

We compute A′′(0) for Enneper’s surface. We will find an expression for A′′(0)
directly by using the formula in lemma 4.3.1. From the lemma we have that

A′′(0) =
∫

D

(
2B1/2Kh2 + B−1/2(∇h)T M(∇h)

)
du dv

Enneper’s surface is parametrized by x(u, v) given in (3.24). We refer to section
3.4 for the quantities needed to find A′′(0) for Enneper’s surface. Note that
B1/2 = (EG − F 2)1/2. Then from section 3.4 we find that

B1/2 = (1 + u2 + v2)2, B−1/2 = 1
(1 + u2 + v2)2 , K = −4

(1 + u2 + v2)4 ,

(∇h)T M(∇h) =
[
hu hv

] [ G −F
−F E

] [
hu

hv

]
=
[
hu hv

] [(1 + u2 + v2)2 0
0 (1 + u2 + v2)2

] [
hu

hv

]
= (1 + u2 + v2)2(h2

u + h2
v)
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4.4. The Gauss Map for Minimal Surfaces

Thus we find that

2B1/2K = −4 · 2(1 + u2 + v2)2

(1 + u2 + v2)4 = −8
(1 + u2 + v2)2

B−1/2(∇h)T M(∇h) = (1 + u2 + v2)2(h2
u + h2

v)
(1 + u2 + v2)2 = h2

u + h2
v

We insert these calculations into the formula for A′′(0). For Enneper’s surface
we find that

A′′(0) =
∫

D

(
−8h2

(1 + u2 + v2)2 + h2
u + h2

v

)
du dv (4.17)

From section 3.4 we saw that Enneper’s surface parametrized by (3.24) is an
isothermal parametrization. This means we can use the formula (4.14) to find
an expression for A′′(0). Let us demonstrate a use of the formula (4.14) as well.

A′′(0) =
∫

D

(
2EKh2 + ∥∇h∥2

)
du dv

From section 3.4 we find that

E = (1 + u2 + v2)2

Thus we find that

2EK = −4 · 2(1 + u2 + v2)2

(1 + u2 + v2)4 = −8
(1 + u2 + v2)2

Inserting this into the formula for A′′(0) gives us

A′′(0) =
∫

D

(
−8h2

(1 + u2 + v2)2 + ∥∇h∥2
)

du dv (4.18)

Thus we can see that we get the same expression for A′′(0) using the formula in
lemma 4.3.1 and the formula (4.14). Thus the simplification in formula (4.14)
is correct when we have an isothermal parametrization.

4.4 The Gauss Map for Minimal Surfaces

We will look at the Gauss map of minimal surfaces. This will be useful when
looking at the concept of stability of minimal surfaces. We will be looking at
minimal surfaces locally, thus we will look at the Gauss map locally. Let x(u, v)
be a minimal surface, where x : U ⊂ R2 → R3. Let D ⊂ U be a bounded
domain. Let p be a point in D, that is p = (u, v) ∈ D. From the definition
1.2.1, the Gauss map N is defined by the unit normal vector which is given by

N(u, v) = xu × xv

∥xu × xv∥
(u, v)

at a point p. The Gauss map is defined from N : D → S2, where D is a local
region of the minimal surface x and S2 is the unit sphere.
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If the Gauss map is one-to-one, we have a formula to calculate the surface
area of the image of the Gauss map. From [Fan96, p. 96] this formula is given
by

Area(N(D)) = −
∫

D

K dA (4.19)

where the integral
∫

D
K dA is the total Gaussian curvature given by the

definition 1.15. If the Gauss map is one-to-one in the region D, then the
negative of the total Gaussian curvature −

∫
D

K dA allows us to calculate the
surface area of the image of the Gauss map. It is not so often a surface has a
one-to-one Gauss map. Things become much simpler for the case of two minimal
surfaces. These two minimal surfaces are described in the next theorems.

Theorem 4.4.1. [Opr00, p. 95] The Gauss map N : D → S2 for Enneper’s
surface is one-to-one.

Proof. It is convenient to look at the Gauss map for Enneper’s surface in polar
coordinates. From (3.33) we have that the Gauss map of Enneper’s surface in
polar coordinates is given by

N(r, θ) =
(

2r cos(θ)
1 + r2 ,

2r sin(θ)
1 + r2 ,

r2 − 1
1 + r2

)
In order to show that the Gauss map is one-to-one, we want to show that if
N(r, θ) = N(ρ, ϕ), then r = ρ and θ = ϕ, where r and ρ are radiuses and θ and
ϕ are angles. Thus we want to show that if N(r, θ) = N(ρ, ϕ), which is given by(

2r cos(θ)
1 + r2 ,

2r sin(θ)
1 + r2 ,

r2 − 1
1 + r2

)
=
(

2ρ cos(ϕ)
1 + ρ2 ,

2ρ sin(ϕ)
1 + ρ2 ,

ρ2 − 1
1 + ρ2

)
then r = ρ and θ = ϕ. Since r and ρ are radiuses, r, ρ ≥ 0. Keeping this in
mind, from the third component we can see that

r2 − 1
1 + r2 = ρ2 − 1

1 + ρ2

(r2 − 1)(1 + ρ2) = (ρ2 − 1)(1 + r2)
r2 + r2ρ2 − 1 − ρ2 = ρ2 + ρ2r2 − 1 − r2

2r2 − 2ρ2 = 0
r2 = ρ2

(r2)1/2 = (ρ2)1/2 ⇒ r = ρ

Hence from the third component of N(r, θ) and N(ρ, ϕ) we get that r = ρ, and
it is left to show that θ = ϕ. Looking at the first and second components of
N(r, θ) and N(ρ, ϕ) we have to show that if,

cos(θ) = cos(ϕ) and sin(θ) = sin(ϕ)

then it implies that θ = ϕ. The equations above can also be seen as requiring
the following to hold,

(cos(θ), sin(θ)) = (cos(ϕ), sin(ϕ))
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If we think about the unit circle then it is clear that we have θ = ϕ, if we look
at the angles from (0, 2π). Thus we get that θ = ϕ. Therefore in the case of
Enneper’s surface, the Gauss map is one-to-one. ■

Theorem 4.4.2. [Opr00, p. 95] The Gauss map N : D → S2 for the catenoid is
one-to-one.

Proof. From (3.6) we have that the Gauss map for the catenoid is given by

N(u, v) =
(

− cos(v)
cosh(u) ,

− sin(v)
cosh(u) ,

sinh(u)
cosh(u)

)
Referring to figure 3.1b, lets look at the idea of the proof. Let us take a
horizontal cross section of the catenoid. This horizontal cross section will take
the shape of a circle which we will denote by C. Then at each point p ∈ C, we
have a well defined normal vector N(p). Let us assume it is pointing in the
outward direction. Furthermore the catenoid is a regular minimal surface and
it never self intersects. At each point p ∈ C, we have a normal vector N(p),
and each N(p) is mapped to a single unique point on the unit sphere S2. This
shows us that the Gauss map for the catenoid is one-to-one. ■

Thus the catenoid and Enneper’s surface have a Gauss map that is one-
to-one. Actually due to the result [Opr00, p. 95], the catenoid and Enneper’s
surface are the only minimal surfaces that have a one-to-one Gauss map. This
means that we can use the formula (4.19) in the case of the catenoid and
Enneper’s surface. In the case of the catenoid and Enneper’s surface, we have a
theorem that tells us about the one-to-oneness of their Gauss maps.

Now Let us consider the Gauss map of the higher order Enneper surfaces.
Let us check whether the higher order Enneper surfaces have a one-to-one Gauss
map.

4.4.1 The Gauss map for the higher order Enneper surfaces

As a result of theorem 4.4.1 we know that Enneper’s surface given in (3.24)
has a one-to-one Gauss map. Let us look at the Gauss map of the higher
order Enneper surfaces and investigate whether it is one-to-one, or not. It is
convenient to consider the Gauss map for this surface in polar coordinates.
From (3.43) we have that the Gauss map for Enneper’s surface of order k is
given by

N(r, θ) =
(

2rk cos(kθ)
1 + r2k

,
2rk sin(kθ)

1 + r2k
,

r2k − 1
1 + r2k

)
Let us check whether this map is one-to-one or not. To check if the Gauss map
is one-to-one, we want to check that if N(r, θ) = N(ρ, ϕ), then does this imply
that r = ρ and θ = ϕ. Thus we begin by looking at N(r, θ) = N(ρ, ϕ), which is
given by(

2rk cos(kθ)
1 + r2k

,
2rk sin(kθ)

1 + r2k
,

r2k − 1
1 + r2k

)
=
(

2ρk cos(kϕ)
1 + ρ2k

,
2ρk sin(kϕ)

1 + ρ2k
,

ρ2k − 1
1 + ρ2k

)
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Here r and ρ are radiuses, thus r, ρ > 0. Then from the third components of
N(r, θ) and N(ρ, ϕ), we get that,

r2k − 1
1 + r2k

= ρ2k − 1
1 + ρ2k

(r2k − 1)(1 + ρ2k) = (ρ2k − 1)(1 + r2k)
2r2k − 2ρ2k = 0

r2k = ρ2k

(r2k)1/2k = (ρ2k)1/2k ⇒ r = ρ

Hence from the third components we get that r = ρ. Let us see whether θ = ϕ.
To check this, we look at the first and second components of N(r, θ) and N(ρ, ϕ).
Since we know that r = ρ, we can now check if θ = ϕ when,

cos(kθ) = cos(kϕ) and sin(kθ) = sin(kϕ)

Let θ′ = kθ and ϕ′ = kϕ. Then the equation above can be rewritten as,

cos(θ′) = cos(ϕ′) and sin(θ′) = sin(ϕ′)

Now we are in the same case as the Enneper’s surface of order 1, θ′ and ϕ′

describe the same point on the unit circle up to some multiple of 2π. This gives
us that,

θ′ = ϕ′ + 2lπ

kθ = kϕ + 2lπ

θ = ϕ + 2l

k
π

where l is an integer, and k is the order of Enneper’s surface. In this case we do
not get that θ = ϕ. Therefore the Gauss map for higher order Enneper surfaces
with k > 1, is not one-to-one.

We can restrict ourselves to a smaller domain D, in which the Gauss map
is one-to-one. How small the domain can be depends on the value of k. For
example if k = 2, then θ = ϕ + lπ, there is more than one point that will be
mapped to the same point on the unit circle. However if we restrict ourselves to
the half unit circle, that is in the region θ ∈ [0, π), the map would be one-to-one.

4.5 Stability Properties

To look at the area-minimizing property for minimal surfaces we will look at
the stability of the surface. The material presented here on the stability of
minimal surfaces is based on [Fan96, chapter 20]. We would like to look at
when a minimal surface has minimal surface area. Let x(u, v) be a minimal
surface. Then the area functional A(t) for x as mentioned in (4.2) is

A(t) =
∫

D

(Bt)1/2 du dv =
∫

D

√
EtGt − (F t)2 du dv
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We had found the first derivative of the area functional at t = 0, A′(0). From
lemma 4.2.1 we found an expression for A′(0) as

A′(0) = −2
∫

D

B1/2hH du dv = 0

Since x is a minimal surface, it has zero mean curvature. Due to the fact that
H = 0, we get that A′(0) = 0. If x is a minimal surface then A′(0) = 0. For
minimal surfaces we get that A′(0) = 0. If x is a minimal surface then t = 0 is
a critical point for the area functional. We would like t = 0 to be a minimum
point for A(t), as this would imply that A(0) is a local minimum for A(t).
This would then mean that x has minimal surface area. To see whether t = 0
is a maximum, minimum or a saddle point of A(t), we looked at the second
derivative of the area functional at t = 0, A′′(0). From lemma 4.3.1 we found
an expression for A′′(0) as

A′′(0) =
∫

D

(
2B1/2Kh2 + B−1/2(∇h)T M(∇h)

)
du dv

In order for t = 0 to be a minimum point for A(t), we would like A′′(0) > 0.
Thus we would like to look at the positivity of the second derivative of the area
functional. The condition that helps us in determining when A′′(0) > 0 is the
concept of stability. This leads us to the next definition.

Definition 4.5.1. Let x(u, v) be a minimal surface where x : U ⊂ R2 → R3. Let
D ⊂ U be a bounded domain. Then x is said to be stable if A′′(0) > 0. In
addition x is said to be unstable if A′′(0) < 0.

From the definition of the stability of a minimal surface mentioned above,
we have that if x is stable, then A′′(0) > 0. This then tells us that A(0) is a
local minimum for the area functional. This further tells us that in the region
D, the surface area of x is a local minimum. Hence the minimal surface x is an
area minimizing minimal surface in the region D. To summarize it all we have
that if x is stable in a region D, then by the definition of stability we have that
A′′(0) > 0. This tells us that the surface area of x is a local minimum, making
the minimal surface x area minimizing.

We would like to find local regions in which the minimal surface x is stable.
Then in this local region the minimal surface x will have minimum surface area
among all possible surfaces that share the same boundary. We mention that
this is a local property of minimal surfaces, that is, minimal surfaces are locally
area minimizing. If we can find a stable region D for x, we will be able to find
a locally area minimizing minimal surface x in D. Moreover if x is a minimal
surface which has minimal surface area in a region D, then x is stable in the
region D. In order to find the local regions in which a minimal surface x is
stable or unstable, we will use the following theorem.

Theorem 4.5.2. [Fan96, p. 96] Let x(u, v) be a minimal surface where
x : U ⊂ R2 → R3. Let D ⊂ U be a bounded domain. If the Gauss map
N : D → S2 is one-to-one, and the area of N(D) is less than 2π, then
x : D → R3 is stable.

The theorem above tells us how to find the stable region of a minimal surface
in the special case of the Gauss map being one-to-one. If the Gauss map of x is
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one-to-one, then from (4.19) we get that x is stable if

Area(N(D)) = −
∫

D

KdA < 2π (4.20)

The expression (4.20) shown above allows us to calculate stable regions of a
minimal surface in the case that the Gauss map is one-to-one. There is another
theorem that we can use to calculate stability, which does not require the Gauss
map to be one-to-one. This theorem is as follows.

Theorem 4.5.3. [Fan96, p. 96] Let x(u, v) be a minimal surface where x : U ⊂
R2 → R3. Let D ⊂ U be a bounded domain. If

−
∫

D

K dA < 2π (4.21)

then x is stable on D.

Theorem 4.5.3 tells us that if the negative of the total Gaussian curvature
is less than 2π, then the minimal surface x is stable in the region D. This then
tells us that A′′(0) > 0. This theorem allows us to find when A′′(0). We look
at some examples of theorem 4.5.3.

4.5.1 The catenoid

From the result of theorem 4.4.2, we found that the Gauss map of the catenoid
is one-to-one. This means that both theorem 4.5.2 and theorem 4.5.3 are
applicable for the catenoid. Let us find stable regions for the catenoid. We
begin by computing the integral in theorem 4.5.3. To compute the total Gaussian
curvature we can use the expression in (1.15). From (3.5) and (3.8) we have
that

K = −1
cosh4(u)

,
√

EG − F 2 = cosh2(u)

Thus we compute the integral over the region D where

D = {(u, v) | u ∈ (−R, R) and v ∈ (0, 2π)}

The region D is a strip where u ∈ (−R, R) and v ∈ (0, 2π). We get that

−
∫

D

KdA = −
∫ ∫

D

K
√

EG − F 2 dudv

= −
∫ R

−R

∫ 2π

0

−1
cosh4(u)

cosh2(u) dvdu

=
∫ R

−R

∫ 2π

0

1
cosh2(u)

dvdu

= 2π

∫ R

−R

1
cosh2(u)

du

= 2π
[

tanh(u)
]u=R

u=−R
= 2π

[
tanh(R) − tanh(−R)︸ ︷︷ ︸

− tanh(R)

]
= 2π[2 tanh(R)] = 4π tanh(R)
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4.5. Stability Properties

(a) f1(R) = 4π tanh(R) (b) f2(R) = 4π(1 − 1/(1 + R2))

Figure 4.1: Graph of f1(R) and f2(R). The points A, B and C have values
given by A = (0.5493, 6.2832), B = (1, 6.2832) and C = (−1, 6.2832).

To make the notation easier, we define

f1(R) = 4π tanh(R) (4.22)

To find the stable regions we have to find the values for R such that f1(R) < 2π.
Thus we solve the inequality f1(R) < 2π for R. This leads to

f1(R) < 2π ⇐⇒ 4π tanh(R) < 2π

tanh(R) <
1
2

R < arctanh
(1

2

)
≈ 0.5493

Therefore f1(R) < 2π when we have R < 0.5493. We can further verify this
by looking at the graph of f1(R), which is shown in figure 4.1a. The graph
shows that f1(R) = 2π when R = 0.5493. So if we have R < 0.5493, then
f1(R) < 0.5493. Thus we find that

f1(R) < 2π for R < 0.5493

Therefore for the catenoid we find that

−
∫

D

KdA < 2π for R < 0.5493 (4.23)

which further implies that A′′(0) > 0 for R < 0.5493. The catenoid is stable in
the region D with u ∈ (−R, R) and v ∈ (0, 2π) whenever we have R < 0.5493.
In this region the catenoid is locally area minimizing and has the least surface
area among all other surfaces that have the same boundary.

Let us see what the catenoid looks like in the stable region. Let R = 0.3.
Then the region D is given in the parameter domain with u ∈ (−0.3, 0.3) and
v ∈ (0, 2π). The catenoid in this region is shown in figure 4.2a. The image of the
Gauss map of the catenoid in this region is shown in figure 4.2b. We can also
find the area of the image of the Gauss map, it is given by the function f1(R)
in (4.22). We find that f1(0.3) = 3.661 which is less than 2π as 2π ≈ 6.28318.
The area of the Gauss map for R = 0.3 is less than 2π. Thus for R = 0.3 we
get that −

∫
D

KdA < 2π. Hence A′′(0) > 0 and x(u, v) is stable, making the
catenoid a local minimum in the region given by D.
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4.5. Stability Properties

(a) Catenoid (b) Gauss map

Figure 4.2: Catenoid with R = 0.3. This figure shows the catenoid in the region
u ∈ (−0.3, 0.3) and v ∈ (0, 2π). The corresponding image of the Gauss map is
also shown.

(a) Catenoid (b) Gauss map

Figure 4.3: Catenoid with R = 0.7. This figure shows the catenoid in the region
u ∈ (−0.7, 0.7) and v ∈ (0, 2π). The corresponding image of the Gauss map is
also shown.

Let us also look at the catenoid in the unstable region, that is, a region in
which R > 0.5439. Let R = 0.7. Then D is the region with u ∈ (−0.7, 0.7) and
v ∈ (0, 2π). The catenoid in this region is shown in figure 4.3a. The Gauss map
of the catenoid in this region is shown in 4.3b. We can see from the figure that
the surface area of the image of the Gauss map for R = 0.7 is larger than that
for R = 0.3. From the function f1(R) we compute the surface area of the Gauss
map to be f1(0.7) = 7.5947, which is larger 2π. In addition the shape of the
catenoid is narrower in the centre compared to the one for R = 0.3. In this case
we do not get that −

∫
D

KdA < 2π.

4.5.2 Enneper’s surface

Due to the result of theorem 4.4.1, the Gauss map of Enneper’s surface is
one-to-one. This means that both theorem 4.5.2 and 4.5.3 can be used to find
stable regions for Enneper’s surface. Just like the previous case, we begin by
computing the integral in theorem 4.5.3. We will compute the integral in polar
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coordinates r and θ. From (3.31) and (3.32) we have that

K = −4
(1 + r2)4 ,

√
EG − F 2 = E = (1 + r2)2

due to the isothermal parametrization. We compute the integral over the region
D where

D = {u2 + v2 < R2}

The region D is a disk of radius R with center (0, 0), where r ∈ [0, R) and
θ ∈ [0, 2π). Since the integral is in polar coordinates we have to multiply by
the Jacobian determinant r. We get that

−
∫

D

KdA = −
∫ ∫

D

KE · r drdθ

= −
∫ R

0

∫ 2π

0

−4
(1 + r2)4 (1 + r2)2 r dθdr

=
∫ R

0

∫ 2π

0

4r

(1 + r2)2 dθdr

= 4 · 2π

∫ R

0

r

(1 + r2)2 dr = 8π

∫ R

0

r

(1 + r2)2 dr

We can compute this integral by using the substitution method. Let m = 1 + r2,
then dm/dr = 2r and dr = dm/2r. This leads to

−
∫

D

K dA = 4π

∫ R

0

1
m2 dm = 4π[−m−1]m=1+R2

m=1 = 4π
[ −1

1 + r2

]r=R

r=0

= 4π
[
1 − 1

1 + R2

]
To make the notation easier, we define

f2(R) = 4π
(

1 − 1
1 + R2

)
(4.24)

To find the stable regions we have to find the values for R such that f2(R) < 2π.
We have to solve the inequality f2(R) < 2π for R. This leads to

f2(R) < 2π ⇐⇒ 4π(1 − 1
1 + R2 ) < 2π

1 − 1
1 + R2 <

1
2

1
1 + R2 >

1
2

This is equivalent to

R2 + 1 < 2 ⇐⇒ R2 < 1 ⇐⇒ R < ±
√

1 ⇐⇒ R < ±1

Since R is a radius, we will only be considering the positive values for R. On
that note we get that f2(R) < 2π when we have R < 1. We can further verify
this by looking at the graph of f2(R), which is shown in figure 4.1b. The graph
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(a) Enneper’s surface
(b) Gauss map

Figure 4.4: Enneper’s surface with R = 0.8. This figure shows Enneper’s surface
in the region r ∈ [0, 0.8) and θ ∈ [0, 2π). The corresponding image of the Gauss
map is also shown.

(a) Enneper’s surface (b) Gauss map

Figure 4.5: Enneper’s surface with R = 1. This figure shows Enneper’s surface
in the region r ∈ [0, 1) and θ ∈ [0, 2π). The corresponding image of the Gauss
map is also shown.

shows two intersection points of f2(R) with 2π, namely the points B and C. We
are considering R > 0 so we are interested in point B. We see that f2(R) = 2π
when R = 1. Thus we find that

f2(R) < 2π for R < 1

Therefore for Enneper’s surface we find that

−
∫

D

KdA < 2π for R < 1 (4.25)

which further implies that A′′(0) > 0 for R < 1. Enneper’s surface is stable in
D where r ∈ (0, R) and θ ∈ (0, 2π), whenever we have R < 1. In this particular
region Enneper’s surface is locally area minimizing and has the least surface
area among all other surfaces that have the same boundary.

Let us see what Enneper’s surface looks like in the stable region. Let R = 0.8.
Then D is given by r ∈ [0, 0.8) and θ ∈ [0, 2π). Enneper’s surface in this region
is shown in figure 4.4a. The corresponding image of the Gauss map is shown in
figure 4.4b. We can find the surface area of the image of the Gauss map. It is
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(a) Enneper’s surface
(b) Gauss map

Figure 4.6: Enneper’s surface with R = 1.4. This figure shows Enneper’s surface
in the region r ∈ [0, 1.4) and θ ∈ [0, 2π). The corresponding image of the Gauss
map is also shown.

given by the function f2(R) in (4.24). We find that f2(0.8) = 4.9039, which is
less than 2π. For R = 0.8 we get that −

∫
D

KdA < 2π, hence A′′(0) > 0 and
x(u, v) is stable. Enneper’s surface is a local minimum of the area functional in
the region given by D.

We know that x(u, v) is stable when R < 1. Let us look at the case when
R = 1. Then D is given by r ∈ [0, 1) and θ ∈ [0, 2π). Enneper’s surface in this
region is shown in figure 4.5. We can see that Gauss map has slightly larger
area compared to when R = 0.8. The area of the Gauss map is f2(1) = 6.2832,
which is 2π.

Let us look at the Enneper’s surface in the unstable region, that is, a region
in which R > 1. Let R = 1.4. Then D is given by r ∈ [0, 1.4) and θ ∈ [0, 2π).
Enneper’s surface in this region is shown in figure 4.6. We can see that the
image of the Gauss map covers more than half of the unit sphere. In this case
the surface area of the Gauss map is f2(1.4) = 8.3210, which is greater than 2π.
As the value of R increases, the Gauss map covers more surface area. In this
case we do not get that −

∫
D

KdA < 2π.

4.5.3 Higher order Enneper Surfaces

In section 4.4 we looked at the Gauss map of the higher order Enneper surfaces.
We found that the Gauss map is not one-to-one. In this case we can use theorem
4.5.3 to find stable regions for the higher order Enneper surfaces. To find the
stable regions we begin by computing the integral in theorem 4.5.3. We will
compute the integral in polar coordinates r and θ. From (3.41) and (3.42) we
have

K = −4k2 r2k−2

(1 + r2k)4 ,
√

EG − F 2 = E = (1 + r2k)2

due to the isothermal parametrization. We compute the integral over the region
D where

D = {u2 + v2 < R2}

64



4.5. Stability Properties

Figure 4.7: Graph of f3(R) = 4πk(1 − 1
1+R2k ) for k = 2, 3, 4, 5.

Thus D is a disk of radius R with center (0, 0), where r ∈ [0, R) and θ ∈ [0, 2π).
We also have to multiply by the Jacobian determinant r. We get that

−
∫

D

K dA = −
∫ ∫

D

KE · r drdθ

= −
∫ R

0

∫ 2π

0
− 4k2r2k−2

(1 + r2k)4 (1 + r2k)2 r dθdr

=
∫ R

0

∫ 2π

0

4k2r2k−2+1

(1 + r2k)2 dθdr

=
∫ R

0

∫ 2π

0

4k2r2k−1

(1 + r2k)2 dθdr

= 8π

∫ R

0

k2r2k−1

(1 + r2k)2 dr

This can be solved using the substitution method. Let m = 1 + r2k, then
dm/dr = 2kr2k−1 and dr = dm/2kr2k−1. This leads to

−
∫

D

K dA = 4πk

∫ R

0

1
m2 dm = 4πk

∫ R

0
m−2dm

= 4πk[−m−1]m=1+R2k

m=1 = −4πk

[
1

1 + r2k

]r=R

r=0

= 4πk

[
1 − 1

1 + R2k

]
To make the notation easier, we define

f3(R) = 4πk

(
1 − 1

1 + R2k

)
(4.26)
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The graph of f3(R) is shown in figure 4.7. The graph is shown for k = 2, 3, 4, 5.
As the value for k increases, f3(R) becomes flatter at the origin. To find the
stable region we have to find the value for R such that f3(R) < 2π. We solve
the inequality for R, which leads to

f3(R) < 2π ⇐⇒ 4πk

(
1 − 1

1 + R2k

)
< 2π

1 − 1
1 + R2k

<
1
2k

1
1 + R2k

> 1 − 1
2k

This is equivalent to

1 + R2k <
1

1 − 1
2k

⇐⇒ R2k <
1

1 − 1
2k

− 1 ⇐⇒ R <

(
1

1 − 1
2k

− 1
)1/2k

We simplify this expression and we find that

f3(R) < 2π for R <
1

(2k − 1)1/2k

Therefore for the higher order Enneper surfaces, we find that

−
∫

D

KdA < 2π for R <
1

(2k − 1)1/2k
(4.27)

which further implies that A′′(0) > 0 for R < 1/(2k − 1)1/2k. Thus the
higher order Enneper surfaces of order k are stable in D, where r ∈ [0, R) and
θ ∈ [0, 2π), whenever we have R < 1/(2k − 1)1/2k. In this particular region
the higher order Enneper surfaces are locally area minimizing among all other
surfaces with the same boundary.

Enneper surface of order k R < 1/(2k − 1)1/2k

k = 1 R < 1

k = 2 R < 0.7598

k = 3 R < 0.7647

k = 4 R < 0.7841

k = 5 R < 0.8027

Table 4.1: Enneper surface of order k and the value for R such that the minimal
surface is stable if R is less than the given value.

Let us look at some stable regions for the higher order Enneper surfaces.
Table 4.1 shows the values for R such that in the region given by r ∈ [0, R) and
θ ∈ [0, 2π), the Enneper surface of order k is stable. The table shows values for
k = 1, 2, 3, 4 and 5. Let R = 0.6. Then D is given by r ∈ [0, 0.6) and θ ∈ [0, 2π).
With this value of R, we see that Enneper surfaces of order 1, 2, 3, 4 and 5
are all stable, as R = 0.6 is less than the value of R needed for each of them
to be stable. Figure 4.8 shows these stable higher order Enneper surfaces for
k = 2, 3, 4 and 5. Thus we can see what they look like in the stable regions.
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4.5. Stability Properties

(a) k = 2 (b) k = 3

(c) k = 4 (d) k = 5

Figure 4.8: Enneper surfaces of order k for k = 2, 3, 4, 5 with R = 0.6. This
figure shows the higher order Enneper surfaces in the region r ∈ [0, 0.6) and
θ ∈ [0, 2π).
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CHAPTER 5

Area Minimizing Property of
Minimal Surfaces and Soap

Bubbles

We look further into the area minimizing property of minimal surfaces. In this
chapter we will consider the problem of having minimal surface area in relation
to soap bubbles and soap films. We will make the connection between soap
films and minimal surfaces. We then consider the area minimizing property
of minimal surfaces in relation to soap films. The way we can relate minimal
surfaces and soap films is by Plateau’s problem. Let us begin by looking at this
problem.

5.1 Plateau’s Problem

The material presented in this section is based on [Opr00, chapter 3.3]. Soap
bubbles come in different shapes and sizes. An enjoyable activity for pretty
much everyone is playing with soap bubbles. It is not just the shapes of the
soap bubbles that are fascinating, but the colors are delightful as well. When
the sun shines on the surface of the soap bubbles, one can see the burst of
colors that appear on the surface of the soap bubbles. This burst of rainbow
like colors on the soap films is a sight to see.

One person that was fascinated by these soap bubbles was Joseph Plateau.
He was interested in the various shapes of the soap bubbles. Plateau
experimented with soap films. He was particularly involved with creating
soap films that enclosed a given boundary curve. The way he performed his
experiments is as follows; first he would take a wire frame that was of a specific
shape. Then he would dip this wire frame into a soap solution. He would then
carefully remove this wire frame from the soap solution and look at the resulting
soap film that was created. The resulting soap film had the property that it
would be spanned by the wire frame. In other words the resulting soap film has
a form such that it encloses the wire frame. The soap film is bounded by the
wire frame, which is a boundary curve for the soap film.

We have talked about soap films but we did not mention how it relates to
minimal surfaces. The reason soap films are relevant to minimal surfaces and
the reason Plateau’s work is associated to minimal surfaces will be clear by the
presentation of the next two theorems.
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Theorem 5.1.1. (The First Principle of Soap Films) [Opr00, p. 14] A soap film
takes a shape such that the surface area is minimized.

Theorem 5.1.2. [Opr00, p. 59] Let a soap film be produced by Plateau’s soap
film experiments as mentioned above. That is, let the soap film be produced such
that it is bounded by the wire frame. Then the resulting soap film is a physical
model of a minimal surface.

The theorems 5.1.1 and 5.1.2 allow us to make the connection between
soap films and minimal surfaces. When we dip a closed wire frame into a soap
solution, and slowly take it out, we get a soap film enclosing the given wire
frame. This soap film that we see is actually a model of a minimal surface.
The result of theorem 5.1.1 tells us that the soap film is formed in a way that
minimizes its surface area. This is why soap film experiments done by Plateau
are significant in the world of minimal surfaces. The resulting soap films allow
us to get an idea of the shape of a minimal surface. Plateau wanted to see
what kind of soap films could be produced using different wire frames as the
boundary, which leads us to the problem of Plateau.

Definition 5.1.3. Plateau’s problem: Let Γ be a given boundary curve in R3.
Find a minimal surface x(u, v) that encloses the curve Γ, that is, the minimal
surface x has the curve Γ as its boundary.

The idea of Plateau’s problem is as follows. Let us assume that we have
a curve Γ in R3. Then we want to find a minimal surface that has the curve
Γ as its boundary. In the case of the soap film experiments, the curve Γ is
given by the wire frame that we will dip into the soap solution. Once we dip
and take out the wire frame from the soap solution, a soap film will be formed
which has the wire frame Γ as its boundary. By the result of theorem 5.1.2
the soap film produced will be a minimal surface. This resulting soap film is a
minimal surface x with the curve Γ as its boundary. Thus the minimal surface
x is a solution to Plateau’s problem. This simple soap film experiment lets us
visualize a solution to Plateau’s problem. Due to these soap film experiments,
in the context of minimal surfaces, we usually say soap films rather than soap
bubbles.

Let us look deeper into the solutions of Plateau’s problem. Let us look at
the area minimizing property of the solutions. In this case we wish to find
a minimal surface that is the solution to Plateau’s problem and it is also a
minimal surface with least surface area among all surfaces that have the same
boundary. From [Rad93, p. 38] we have that a minimal surface x that is a
solution to Plateau’s problem is not necessarily a solution that has minimum
surface area. On the other hand a solution that has minimum surface area
is not necessarily a solution to Plateau’s problem. A natural question to ask
ourselves is regarding the existence and uniqueness of the solutions to Plateau’s
problem, as well as considering when these solutions really have minimal surface
area. Before we can move further we have to look at some definitions. Recall
that a Jordan curve is a simple closed curve (see [Do 16, p. 32]). This means
that a Jordan curve is a curve that does not have any self intersections, and
that the starting point and ending point for the curve is the same. The next
definition is that of a disk-like minimal surface.

Definition 5.1.4. Let x(u, v) be a minimal surface where x : U ⊂ R2 → R3.
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Then x is said to be disk-like if U is the unit disk, U = {(u, v)|u2 + v2 ≤ 1} and
the boundary of the unit disk is mapped to the Jordan curve Γ (in relation to
Plateau’s problem given above).

Let us present a result that tells us about the existence of solutions to
Plateau’s problem such that the solutions also have minimal surface area.

Theorem 5.1.5. [Opr00, p. 67] Let Γ be a given Jordan curve. Then there
exists an area minimizing disk-like minimal surface x that spans any given
Jordan curve.

Moving further with the area minimizing property we mention the following.
Due to [Rad93, p. 38, paragraph III.14] we have that,

Lemma 5.1.6. Let Γ be a given Jordan curve. Let x be the minimal surface that
has Γ as its boundary. Then x does not always possess minimal surface area.

Having minimal surface area is not something that minimal surfaces always
possess. A solution to Plateau’s problem might be a minimal surface but it may
not be minimal in the sense of having minimal surface area. To demonstrate
these concepts we look at some examples of minimal surfaces that can be
produced as a solution to Plateau’s problem.

5.2 The Catenoid

We look at an example of Plateau’s problem. A minimal surface that is the
solution to Plateau’s problem is the catenoid. The material presented here is
based on [Opr00, section 5.6].

If we go back to our soap experiments then it is possible to produce a model
of the catenoid by the soap film experiments[Opr00, p. 11]. The wire frame
consists of two circular rings. To begin with we place these two circular rings
on top of each other horizontally. This will be their starting position. Then
we take these two wire frames and dip them into the soap solution. We take
them out and begin to pull them apart. We will slowly start to pull the two
wire frames apart in the vertical direction. The soap film that is produced
will enclose the wire frame, it will have the two circular rings as its boundary.
This soap film is a model of the catenoid. We will notice that the shape of the
catenoid will slightly change as the distance between the two rings varies. If we
keep pulling the two rings further apart, we will notice that at some point the
soap film formed will simply break. The soap film will not be in the shape of
a catenoid anymore. In fact the soap film will enclose the two circular rings
themselves, the soap film will be in the shape of a circular disk. At this point
we would not be able to form a catenoid, but the only solution that we can
form will be that of the two circular disks. The soap film forms a catenoid for a
specific distance between the two wire frames. At a distance greater than that,
the soap film is a circular disk. Thus the catenoid is a solution to Plateau’s
problem. Here the boundary curve Γ consists of the two circular rings, and
the minimal surface x(u, v) produced is the catenoid. We can visualize the
formation of the catenoid by doing these soap film experiments. Let us now
look at this phenomenon from a mathematical point of view. We will also look
at the existence and uniqueness of the solutions.
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5.2. The Catenoid

Figure 5.1: The blue circles are the boundary curve Γ that produce the catenoid
in Plateau’s problem.

Figure 5.2: Graph of y(x) = c cosh(x/c) for different values of c. This is the
catenary curve.

The catenoid is a minimal surface which is also a minimal surface of
revolution. It is created by revolving the catenary curve around an axis. Let us
look at the general case. If we take the x-axis to be the axis of revolution, then
the catenary curve is given by the equation

y(x) = c cosh
(x

c

)
(5.1)

and the corresponding surface of revolution that is generated by this catenary
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is parametrized as

x(u, v) =
(

u, c cosh
(u

c

)
cos(v), c cosh

(u

c

)
sin(v)

)
,

−∞ < u < ∞, 0 ≤ v < 2π
(5.2)

If we take the z-axis to be the axis of revolution, then the catenary curve is
given by the equation

y(z) = c cosh
(z

c

)
(5.3)

and the corresponding surface of revolution that is generated by this catenary
is parametrized as

x(u, v) =
(

c cosh
(u

c

)
cos(v), c cosh

(u

c

)
sin(v), u

)
,

−∞ < u < ∞, 0 ≤ v < 2π
(5.4)

Let us consider the catenary curve in (5.1). Figure 5.2 shows the graph for this
catenary curve as the value for c varies. The figure shows that as c increases
from c = 0.2 to c = 1, the graph of y(x) becomes wider and wider.

We will start by looking at the boundary curve Γ. The boundary curve Γ
is given by the two circular disks. We let the x-axis be the axis of revolution.
Then the catenary curve is given by (5.1). Let (x0, y0) and (−x0, y0) be the
centres of two disks of radius y0. Here x0 and −x0 are points on the x-axis.
This setup is illustrated in figure 5.1. Then these two disks are the boundary
curve Γ. As the catenoid is a minimal surface of revolution, we have to find
the equation of the catenary y(x) = c cosh(x/c) that passes through the points
(x0, y0) and (−x0, y0). Once we know the equation of the catenary curve, we
will form the catenoid as the surface of revolution by rotating the catenary
curve around the x-axis.

We want to look at the catenoid as the solution to Plateau’s problem. We
want to consider when the soap film forms a catenoid, and when the soap
film forms the two circular disks. Moreover we want to investigate the surface
area of the solutions. We would like to see when the minimal surface formed
has minimal surface area, hence possessing the area minimizing property. For
this reason we will look at the surface area of the catenoid compared to the
surface area of the two disk solution. We will look at the ratio between x and y.
This means that we will look at the problem as a function of x/y. This is the
technique used in [Opr00, p. 181]. Here x is the distance from the origin (0, 0)
to the center of the disk in the x-coordinate, and y is the radius of the disk.
We will be looking at the ratio between the distance from (0, 0) to the center
of the disk in the x-coordinate and the radius of the disk y. We will begin by
looking at the catenary curve

y = c cosh
(x

c

)
then solving for x

cosh
(x

c

)
= y

c
x

c
= arccosh

(y

c

)
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5.2. The Catenoid

Figure 5.3: Graph of u versus x/y. The function x/y = u arccosh(1/u). The
point A is the maximum point. It is given by A = (0.5524, 0.6627).

x = c arccosh
(y

c

)
(5.5)

Thus we will consider this function for expressing the ratio between x and y.
We will look at this as a function of x/y. We let

u = c

y
(5.6)

then
1
u

= y

c
(5.7)

Using the new variable u we can write x given in (5.5) in the form of x/y as

x

y
= c

y
arccosh

(y

c

)
= u arccosh

( 1
u

)
Thus the function x/y is given as

x

y
= u arccosh

( 1
u

)
(5.8)

Let us take a closer look at this function given by x/y. The graph of this
function is given by figure 5.3. The x-axis is the u value, where u = c/y, and
the y-axis is the value of x/y for the given value of u. So it is a plot of u versus
the function u arccosh(1/u). The graph of x/y allows us to see what is going on.
The point A is the maximum point of x/y = u arccosh(1/u). The maximum
point occurs when u = 0.5524, at which the value for x/y = 0.6627. This tells
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5.2. The Catenoid

Figure 5.4: Graph of u versus x/y. The function x/y = u arccosh(1/u). The
point A is the maximum point, it is given by A = (0.5524, 0.6627). The point
B = (0.1579, 0.4) and C = (0.9107, 0.4).

us that for each value of x/y < 0.6627, there are two values of u that give
the same x/y. This means that for each value of x/y < 0.6627, there are two
possible catenary curves that pass through the points (−x0, y0) and (x0, y0).
Since two catenary curves exist at that point, this tells us that there are two
possible catenoids that can be formed by rotating the catenary curve at that
point.

Since the maximum value of x/y = 0.6627, we have that for values of
x/y > 0.6627 no catenaries exist that pass through the points (−x0, y0) and
(x0, y0). This means that for each value of x/y > 0.6627, there are no catenoids
that can be formed, and the catenoid solution does not exist.

Let us demonstrate this phenomenon. Let

x0 = 0.4, and y0 = 1,

Then x/y = 0.4. We have to find the equation of the catenary curve that passes
through the points (−0.4, 1) and (0.4, 1). We have to find the value for c in the
equation (5.1). We can find the value of c by finding the value of u. Therefore
we want to find the value of u that gives us x/y = 0.4. Since 0.4 < 0.6627,
there are two values of u that have x/y = 0.4. We can find the value of u by
finding the intersection of the curve x/y = 0.4 with x/y = u arccosh(1/u). This
is shown in figure 5.4. There are two points of intersection B and C. From the
point B, we get that u = 0.1579, which is less than 0.5524. Let us denote this
value of u by u1. From the point C, we get that u = 0.9107, which is greater
than 0.5524. Let us denote this value of u by u2. The values of u1 and u2 give
us the values of c1 and c2 respectively. Thus the values of c1 and c2 that give
us x/y = 0.4 are

c1 = 0.1579 (5.9)
c2 = 0.9107 (5.10)
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(a) y1(x) (b) y2(x)

Figure 5.5: Catenary curves. This figure shows the graph of the catenary curves
y1(x) = 0.1579 cosh(x/0.1579), and y2(x) = 0.9107 cosh(x/0.9107).

The corresponding catenary curves formed by c1 and c2 are given by the
equations

y1(x) = c1 cosh
( x

c1

)
= 0.1579 cosh

( x

0.1579

)
(5.11)

y2(x) = c2 cosh
( x

c2

)
= 0.9107 cosh

( x

0.9107

)
(5.12)

The catenoid is formed by rotating the catenary curves y1(x) and y2(x)
about the x-axis. The graph of y1(x) and y2(x) is shown in figure 5.5 a and b
respectively. We can see that the shapes of the two curves are very different
from each other. The curve y2(x) is much wider compared to y1(x). Let us
choose two points −x and x that pass through the curves. Then the distance
between the two points on y1(x) is much less than the distance between the two
points on y2(x). The catenoid formed has the parametrization given in (5.2).
Let us write it in terms of x and y to make it more convenient

x(x, y) =
(

x, c cosh
(x

c

)
cos(y), c cosh

(x

c

)
sin(y)

)
, (5.13)

−x0 < x < x0, 0 ≤ y < 2π

We want to calculate the surface area of the catenoid that is formed. Thus we
compute

xx =
(

1, sinh(x/c) cos(y), sinh(x/c) sin(y)
)

xy =
(

0, −c cosh(x/c) sin(y), c cosh(x/c) cos(y)
)

The coefficients of the first fundamental form E, F and G are given by,

E = ⟨xx, xx⟩ = 1 + sinh2(x/c) = cosh2(x/c)
F = ⟨xx, xy⟩ = 0
G = ⟨xy, xy⟩ = c2 cosh2(x/c)
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5.2. The Catenoid

(a) c1 = 0.1579 (b) c2 = 0.9107

Figure 5.6: Catenoid. This figure shows the catenoid formed by rotating the
catenary curve with the given value for c. The parameters are in the region
x ∈ (−0.4, 0.4) and y ∈ [0, 2π).

From (1.8) and (1.9) we find the area element. We find the quantity
√

EG − F 2.
This gives us

EG − F 2 = cosh2(x/c) · c2 cosh2(x/c) − 02 = c2 cosh4(x/c)√
EG − F 2 =

√
c2 cosh4(x/c) = c cosh2(x/c)

From (1.10) we can compute the area of the catenoid. The area element dA is

dA =
√

EG − F 2 dx dy = c cosh2(x/c) dx dy

The surface area of the catenoid is calculated by

Area =
∫ ∫ √

EG − F 2 dxdy

=
∫ x0

−x0

∫ 2π

0
c cosh2(x/c) dydx = 2πc

∫ x0

−x0

cosh2(x/c) dx

= πc
[
c cosh(x/c) sinh(x/c) + x

]x=x0

x=−x0

= πc
[
c cosh(x0/c) sinh(x0/c) + x0 − c cosh(−x0/c)︸ ︷︷ ︸

cosh(x0/c)

sinh(−x0/c)︸ ︷︷ ︸
− sinh(x0/c)

+x0

]
= πc

(
2c cosh(x0/c) sinh(x0/c) + 2x0

)
= 2πc

(
c cosh(x0/c) sinh(x0/c) + x0

)
Thus the surface area of the catenoid x(x, y) with x ∈ (−x0, x0) is given by

Area of Catenoid = AC = 2πc
(

c cosh(x0/c) sinh(x0/c) + x0

)
(5.14)

Let us look at the catenoid that is formed by rotating the catenary curves
y1(x) and y2(x) given by (5.11) and (5.12) respectively. These two catenoids
are shown in figure 5.6. Figure 5.6a shows the catenoid that is formed by

76



5.2. The Catenoid

rotating the catenary curve y1(x), given by (5.11), around the x-axis. Figure
5.6b shows the catenoid that is formed by rotating the catenary curve y2(x),
given by (5.12), around the x-axis. In figure 5.6 we have rotated the catenary
curves around the x-axis, and then rotated the resulting catenoid by an angle
of 90◦. We have chosen to show the catenoid in this position along the z-axis,
as this gives a better view of the shape of the catenoid.

The catenoid in 5.6a has a ‘narrow neck’, and the catenoid in 5.6b has a
‘wide neck’. If we look at the shapes of the catenary curves in figure 5.5, we can
see why the shape of the catenoid is the way that it is.

Let us see why the catenoid in 5.6a has a narrow neck. First of all this
catenoid is formed by rotating the catenary curve y1(x) = 0.1579 cosh(x/0.1579)
around the x-axis. From figure 5.5a we can see the shape of the curve y1(x).
This curve is narrow (compared to the curve y2(x)) in the x direction. If we
revolve y1(x) around the x-axis, the surface formed is the narrow neck catenoid.
Thus the narrow neck of the surface is due to the narrow shaped catenary curve
y1(x). This gives us a justification for the shapes of the catenoids. In the same
way, we can also see why the catenoid in 5.6b has a wide neck. From figure
5.5b, the catenary y2(x) = 0.9107 cosh(x/0.9107) is wide shaped. The catenoid
formed by revolving y2(x) around the x-axis will form the corresponding wide
neck catenoid. These are the two possible catenoids that have the same value
of x/y = 0.4. Moving forward, we will use the following notation to denote the
two catenoids, which will make it easier to refer to each of them.

• Consider the narrow neck catenoid in figure 5.6a, formed by rotating the
catenary curve y1(x) = 0.1579 cosh(x/0.1579). We will denote this by

C1 = Narrow neck catenoid (5.15)

• Consider the wide neck catenoid in figure 5.6b, formed by rotating the
catenary curve y2(x) = 0.9107 cosh(x/0.9107). We will denote this by

C2 = Wide neck catenoid (5.16)

Let us look at the area minimizing property of the catenoids. We consider
the problem of having minimal surface area. From (5.14) we can calculate the
surface area of the catenoids C1 and C2.

• The surface area of the catenoid C1 with c = c1 = 0.1579 and x0 = 0.4 is

AC1 = 2πc1

(
c1 cosh(x0/c1) sinh(x0/c1) + x0

)
= 2π · 0.1579

(
0.1579 cosh(0.4/0.1579) sinh(0.4/0.1579) + 0.4

)
= 6.6086 (5.17)

• The surface area of the catenoid C2 with c = c2 = 0.9107 and x0 = 0.4 is

AC2 = 2πc2

(
c2 cosh(x0/c2) sinh(x0/c2) + x0

)
= 2π · 0.9107

(
0.9107 cosh(0.4/0.9107) sinh(0.4/0.9107) + 0.4

)
= 4.8836 (5.18)
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The catenoid C2 has less surface area than the catenoid C1. Thus the
catenoid C2 has minimum surface area. This means that the wide neck catenoid
is the area minimizing minimal surface. We have found that the wide neck
catenoid is the minimal surface that has the area minimizing property.

This result has an analogue in the soap film experiments that were discussed
earlier. If we perform the soap film experiment, we will notice that the catenoid
formed by the soap film will always take the shape of the wide neck catenoid.
As we have seen from figure 5.6 that there are two possible catenoids that can
be formed with the same value for x/y = 0.4. However the catenoid formed
by the soap film, will always be in the shape of the wide neck catenoid. The
reason for this is given by the first principle of soap films, in theorem 5.1.1.
The theorem tells us that a soap film always takes the shape that will minimize
its surface area. Since the wide neck catenoid is the area minimizing minimal
surface, the soap film will take the shape of the wide neck catenoid, and not
the narrow neck catenoid. Thus the catenoid that we will see from the soap
film experiment will be the wide neck catenoid. This tells us that our findings
of the catenoid with minimal surface area is consistent with theorem 5.1.1.

This result also has an analogue in the results that we have found by looking
at the area functional A(t) and the variational surfaces of a minimal surface. In
order to make the connection we will have to go back to our stability analysis in
section 4.5. Let us consider the definition of stability given by definition 4.5.1.
We have that a minimal surface x has minimal surface area in a region D if
x is stable in D, which by definition is that the area functional for x satisfies
A′′(0) > 0. Thus if x is stable in a region D, then it is area minimizing in D. In
section 4.5.1 we have already looked at the stability for the catenoid and found
the stable regions. We have found that the catenoid is stable in the region D
with u ∈ (−R, R) and v ∈ (0, 2π) whenever we have R < 0.5493. We have also
looked at the catenoid in a stable region with R = 0.3.

Figure 4.2a shows us the stable catenoid, so we can see the shape of the
catenoid when it is area minimizing, that is, when it has minimal surface area.
Thus we can see from figure 4.2a that the stable catenoid is the wide neck
catenoid. The catenoid outside the stable region is shown in figure 4.3a for
R = 0.7. We can see that as R gets larger than 0.54, that is, as R starts to
go towards the unstable region, the shape of the catenoid starts to go towards
the narrow neck catenoid, which is not an area minimizing catenoid. This tells
us that the stable catenoid is the wide neck catenoid, which means that the
shape of the area minimizing catenoid is given by the the wide neck catenoid.
We can also see this by looking at the shapes of the catenoids from figure 5.6b
and figure 4.2a. The catenoid in figure 5.6b is the catenoid C2 that we have
found to be area minimizing in this section, and the catenoid in figure 4.2a is
the stable catenoid that we have found in section 4.5.1. They both are the wide
neck catenoid. The catenoid C2 which is the wide neck catenoid, is the minimal
surface that is locally area minimizing.

Furthermore we can now classify the two catenoids C1 and C2 in terms of
stability. Let D be the region given by x ∈ (−0.4, 0.4) and y ∈ [0, 2π). Since
C2 is the minimal surface with least surface area, from definition 4.5.1 we have
that

• C1 is the unstable solution in D

• C2 is the stable solution in D
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The catenoid C2 is the area minimizing solution to Plateau’s problem when the
boundary curve Γ is given by the two disks with centre in (−0.4, 1) and (0.4, 1)
and the radius is r = 1.

5.3 Existence and Uniqueness of The Catenoid

We have looked at an example of the catenoid being formed when x0 = 0.4 and
y0 = 1. We also looked at the question of having minimal surface area. If we
go back to the soap film experiments, we will notice that the soap film forms a
catenoid as long as the two wire frames have a specific distance between them.
At a distance greater than that, the soap film will form two circular disks. At
this point the only possible solution we can get is that of the two disks.

Through the soap film experiments we can see the following. Given the wire
frame which consists of two circular rings, the soap film formed is sometimes
a catenoid, and sometimes the two disks. Let us consider when the solution
to Plateau’s problem is a catenoid, and when the solution is that of the two
disks. We would like to consider the problem of the existence and uniqueness
of the catenoid as a solution to Plateau’s problem. We mention that we have
been looking at the problem as a function of x/y, this was mentioned in the
previous section. We are looking at the ratio between the distance from (0, 0)
to the centre of the disk in the x-coordinate, to the radius of the disk. We can
interpret this in the context of the soap film experiments. Considering the two
wire frames, this means that we are looking at the ratio of half of the distance
between the two wire frames and the radius of the wire frame. We want to see
how varying the distance between the wire frames, as well as the radius of the
wire frame, affect the shape the soap film takes. This will allow us to look at
when the soap film forms a catenoid, and when the catenoid solution does not
exist.

Furthermore we would like to know when the surface area of the soap film
solution formed is a minimum. To study the area minimizing property of the
surface area, we will study the surface area of the catenoid versus the surface
area of the two disk solution. This way, we will be able to figure out when we
have an area minimizing catenoid solution. Since we are concerned with surface
areas, we will divide the surface area of the catenoid with the surface area of
the two disks. This technique was described in [Opr00, p. 186].

The surface area of a disk with centre in (−x0, y0) and radius r = y0 is

πr2 = π(y2
0) = πy2

0

The surface area of a disk with centre in (x0, y0) and radius r = y0 is

πr2 = π(y2
0) = πy2

0

Hence the surface area of the two disks is given by

Two Disks surface area = AD = πy2
0 + πy2

0 = 2πy2
0 (5.19)

We have found an expression to calculate the surface area of the catenoid. From
(5.14) we had found that the surface area of the catenoid, which is parametrized
as in (5.13) with x ∈ (−x0, x0) is given by

Catenoid surface area = AC = 2πc
(

c cosh(x0/c) sinh(x0/c) + x0

)
(5.20)
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To find how the surface area of the catenoid solution varies with the surface
area of the two disk solution, we divide the area of the catenoid AC, with the
area of the two disks AD. From the expressions above we get that

AC
AD = 2πc(c cosh(x0/c) sinh(x0/c) + x0)

2πy2
0

= c

y2
0

(c cosh(x0/c) sinh(x0/c) + x0)

= c2

y2
0

cosh(x0/c) sinh(x0/c) + cx0

y2
0

= c

y0

(
x0

y0
+ c

y0
cosh(x0/c) sinh(x0/c)

)
We are looking at the problem as a function of x/y. We would like to make
a graph of x/y versus the expression for catenoid area/disks area. To do this
we would like to express the above expression AC/AD in terms of u, since
x/y is also expressed in terms of u. In order to do this, we recall the way we
had defined u and x/y. From (5.6), (5.7) we have that u = c/y leading to
1/u = y/c. Inserting this into the expression for x/y given in (5.8), we have
that x/y = (c/y) arccosh(y/c). This gives us

x0

y0
= c

y0
arccosh

(y0

c

)
(5.21)

Using the expression (5.21) and the definition of u, which is u = c/y0 as well as
1/u = y0/c, we get that

AC
AD = c

y0
(x0

y0
+ c

y0
cosh(x0/c) sinh(x0/c))

= c

y0
( c

y0
arccosh(y0/c) + c

y0
cosh(x0/c) sinh(x0/c))

= c2

y2
0

(arccosh(y0/c) + cosh(x0/c) sinh(x0/c))

= c2

y2
0

(
arccosh(y0/c) + cosh((x0/y0) · (y0/c))︸ ︷︷ ︸

a

sinh((x0/y0) · (y0/c)︸ ︷︷ ︸
b

)
)

Let us simplify the expressions a and b by using the expression for x0/y0. This
leads to

a = cosh
(x0

y0
· y0

c

)
= cosh

( c

y0
arccosh

(y0

c

)
· y0

c

)
= cosh

(
arccosh

(y0

c

))
= y0

c

b = sinh
(x0

y0
· y0

c

)
= sinh

( c

y0
arccosh

(y0

c

)
· y0

c

)
= sinh

(
arccosh

(y0

c

))
=
√(y0

c

)2
− 1
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Now we insert the simplified expressions for a and b into the expression for
AC/AD. Once we have done that, we use the fact that u = c/y0 and 1/u = y0/c,
as mentioned previously, to find an expression for AC/AD in terms of u. This
leads to

AC
AD = c2

y2
0

(
arccosh

(y0

c

)
+ y0

c

√(y0

c

)2
− 1
)

=
( c

y0

)2(
arccosh

(y0

c

)
+ y0

c

√(y0

c

)2
− 1
)

= u2
(

arccosh
( 1

u

)
+ 1

u

√( 1
u

)2
− 1
)

= u2
(

arccosh
( 1

u

)
+ 1

u

√
1
u2 − 1

)

Hence an expression for AC/AD in terms of u is given by

AC
AD = u2

(
arccosh(1/u) + 1

u

√
1
u2 − 1

)
(5.22)

Now we are finally in a position to examine the surface area of the catenoid
versus the surface area of the two disk solution. But first we make an
observation from the previous section, and from figure 5.4. We found that
A = (0.5524, 0.6627) is the maximum for x/y. We have that for x/y < 0.6627,
there will always be two values of u, and hence c, that give us the same x/y. In
this case, we will always have one value of u that is less than 0.5524, and one
value of u that is greater than 0.5524. The value of u < 0.5524 will give us the
narrow neck catenoid when the catenoid is formed by revolving the catenary
curve around the x-axis. The value of u > 0.5524 will give us the wide neck
catenoid. Furthermore we also found that the wide neck catenoid is the area
minimizing catenoid. For x/y > 0.6627 there are no values of u that exist to
give the equation of the catenary. This means that for x/y > 0.6627 there are
no catenoids that can be formed.

We are now in a position to interpret the plot shown in figure 5.7. This
will allow us to examine the general case. In this figure we have plotted the
function x/y given in (5.8), against the function AC/AD, given in (5.22). The
x-axis shows

x-axis: x

y
= u arccosh

( 1
u

)
and the y-axis shows

y-axis: AC/AD = u2
(

arccosh(1/u) + 1
u

√
1
u2 − 1

)
We have plotted x/y against AC/AD in two different intervals of u. We have
plotted the graph in the narrow neck catenoid interval, which is given by

Narrow neck catenoid interval: u ∈ (0, 0.5524) (5.23)
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We have also plotted the graph in the wide neck catenoid interval, which is
given by

Wide neck catenoid interval: u ∈ (0.5524, 1) (5.24)

We mention that the solution that consists of two disks has a special name. It
is called the Goldschmidt solution. We draw a straight line at AC/AD= 1 to
represent the Goldschmidt solution. This is shown by the green line. The blue
line shows us for which values of x/y the narrow neck catenoid solution exists.
The yellow line shows for which values of x/y the wide neck catenoid solution
exists. The function AC/AD gives us a measure of the surface area. From the
plot we can see as x/y varies which solutions exists, as well as which solutions
exist that give us the minimal surface area.

Figure 5.7: Graph of x/y against AC/AD. The function x/y = u arccosh(1/u).
The point D is the intersection point between the wide neck catenoid solution
and the Goldschmidt solution, it is given by D = (0.5277, 1.0000).

Let us look at the existence of solutions. From the plot in figure 5.7 we can
see that up to a certain value of x/y, all three solutions exist. This point is
x/y = 0.6627. This means that for x/y up to the point x/y = 0.6627, the wide
neck catenoid, narrow neck catenoid and the Goldschmidt solutions exist. This
is consistent with what we found from figure 5.3. We can also see that for x/y
beyond this point, only one solution exists. It is the Goldschmidt solution. We
can see that for x/y > 0.6627, the catenoid solution does not exist and the only
solution that exists is the Goldschmidt solution. This is what we found from
figure 5.3. We found that 0.6627 is the maximum point of x/y. Thus for values
of x/y beyond its maximum point, no catenoid solutions exist. We have also
seen that for x/y less than its maximum value, there are two catenoids that
can be formed.

Let us look at the solutions that exist and have minimal surface area. From
the plot in figure 5.7 we can see that from 0 up to the point D, the wide neck
catenoid has less surface area compared to the narrow neck catenoid and the
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Goldschmidt solution. After the point D, the solution that has the least surface
area is the Goldschmidt solution. From 0 up to the point D = (0.5277, 1)
the wide neck catenoid is the area minimizing solution. Beyond the point
D = (0.5277, 1) the Goldschmidt solution is the area minimizing solution. Note
that beyond x/y = 0.6627, the only solution that exists is the Goldschmidt
solution. Hence for x/y > 0.6627 the only solution that exists and minimizes the
surface area is the Goldschmidt solution. Furthermore considering the narrow
neck catenoid and the Goldschmidt solution, we can see that approximately
after x/y = 0.2, the Goldschmidt solution always has less surface area compared
to the narrow neck catenoid.

Let us consider the soap film experiment with the wire frame given by the
two circular rings. Then we can interpret the plot in figure 5.7 in relation with
the soap film experiments. We will need the result of theorem 5.1.1, which tells
us about the first principle of soap films. Due to this theorem, we know that a
soap film will always take a shape such that its surface area is minimized. The
plot in figure 5.7 shows us that from the point (0, 0) to D = (0.5277, 1), the
soap film will take the shape of the wide neck catenoid. This is because the
wide neck catenoid is the solution with the least surface area, hence satisfying
the condition for least surface area for soap films from theorem 5.1.1. Beyond
the point D, the soap film will take the shape of the two disks, which is the
Goldschmidt solution.

We can see this in relation to the soap film experiments. To begin with, the
soap film will form the shape of the catenoid. We slowly increase the distance
between the two wire frames. At a certain point the distance will increase so
much that the catenoid soap film will break and form the two disk solution.
This is reflected by the discontinuity at point D. Initially the solution is the
yellow curve, at point D it changes to the green curve. The solution changes
abruptly as the catenoid soap film breaks and forms the two disk solution at
point D. Looking at the plot in figure 5.7 we can now explain why the soap
film formed will never take the shape of the narrow neck catenoid. The wide
neck catenoid always has less surface area than the narrow neck catenoid. Thus
the soap film will take the shape of the catenoid that has least surface area,
which is the wide neck catenoid, that is when the catenoid solution does exist.

We can say more about least surface area solutions. Looking at the plot
in figure 5.7 we can see that in the interval x/y ∈ (0, 0.5277), the catenoid
gives us an absolute minimum for surface area, while the Goldschmidt solution
gives us a local minimum for surface area. Note that when we talk about the
catenoid solution with minimum surface area, we are referring to the wide neck
catenoid. Thus the two solutions that can exist are the catenoid solution and
the Goldschmidt solution. We can classify these two solutions as an absolute
minimum for surface area, or as a local minimum for surface area.

This classification is given by table 5.1. Table 5.1 shows us which solution
is the area minimizing solution given a value for x/y. The table gives us a
summary of what we have found by looking at the plot in figure 5.7. If we are
given some value of x/y, we can find out which solution will be an absolute
minimum for surface area by looking at table 5.1. Thus the table gives an
overview of the general case. We note that for x/y > 0.6627, no catenoid
solution exist.

In the previous section, we have looked at an example where we had x0 = 0.4
and y0 = 1, so we had x/y = 0.4. Let us verify what we had found in the

83



5.3. Existence and Uniqueness of The Catenoid

Interval for x/y Solution to Plateau’s problem

Absolute Minimum

for Surface Area

Local Minimum

for Surface Area

0 < x/y < 0.5277 Catenoid solution Goldschmidt solution

0.5277 < x/y < 0.6627 Goldschmidt solution Catenoid solution

x/y > 0.6627 Goldschmidt solution —

Table 5.1: Solution to Plateau’s problem when the boundary curve Γ is given by
the two circular rings. We classify the two solutions as being absolute minimum
or local minimum in terms of the surface area, in the given interval for x/y.

Figure 5.8: Graph of x/y against AC/AD. The function x/y = u arccosh(1/u).
We draw a line at x/y = 0.4. This is given by the red dotted line.

previous section by looking at table 5.1 and the results found from the plot in
figure 5.7. To verify our results for x/y = 0.4, we draw a straight line at the
point x/y = 0.4 on the plot that we had in figure 5.7. This plot with the line
x/y = 0.4 is given in figure 5.8.

From the plot in figure 5.8, we can see that at x/y = 0.4 three solutions exist.
These three solutions are the narrow neck catenoid, the wide neck catenoid and
the Goldschmidt solution. The solution that is area minimizing is the wide
neck catenoid solution. We can see this on the plot as well. It is given by the
intersection of the red dotted line with the yellow line. This is the point which
gives the least surface area. This solution is given by the wide neck catenoid.
This is what we would expect as we have found that the wide neck catenoid is
the area minimizing catenoid. Let us calculate the surface area of each of the
solutions;
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• From (5.19) we calculate the area of the two disks. The radius of the disk
is r = 1, so

Area of the two disks = 2π(1)2 = 2π ≈ 6.2832

To compare it with the plot in figure 5.8, we recall that we were looking
at the ratios of the surface areas of the two solutions. This means we
divide the area of the disk by itself to get the area of the Goldschmidt
solution, which is

Area of Goldschmidt solution = 2π/2π = 1 (5.25)

• We have found the area of the narrow neck catenoid in (5.17). We have
to divide by the area of the disks to compare it to the plot in figure 5.8.

Area of Narrow neck catenoid solution = 6.6086/2π ≈ 1.0518 (5.26)

• Similarly we have found the area of the wide neck catenoid in (5.18). We
divide by the area of the two disks and get

Area of Wide neck catenoid solution = 4.8836/2π ≈ 0.7772 (5.27)

From doing the calculations we get that the solution with the least surface area
is the wide neck catenoid, with a surface area of 0.7772. This is consistent with
the plot in figure 5.8. We get that the surface area of the narrow neck catenoid,
which is 1.0518, is greater than that of the Goldschmidt solution. This is what
we can see by looking at the plot in figure 5.8. To read the plot, the surface
area of the narrow neck catenoid is given by the intersection of the red dotted
line and the blue line. We can see that they both intersect at approximately
1.05. Thus our calculations are consistent with what the plot shows in figure
5.8.

For x/y = 0.4, the wide neck catenoid solution is the absolute area
minimizing solution. On the other hand, the Goldschmidt solution is the
local area minimizing solution. By using the concept of stability from definition
4.5.1, the catenoid is the stable solution in the region D given by x ∈ (−0.4, 0.4)
and y ∈ [0, 2π), while the Goldschmidt solution is the unstable solution in D.
This is what we get by referring to table 5.1 with x/y = 0.4, and this is what
we get by explicitly calculating their surface areas.

5.4 Further Examples of The Catenoid as a Solution to
Plateau’s Problem

We have been looking at the solutions to Plateau’s problem where the boundary
curve Γ is given by the two disks with centres in (−x0, y0) and (x0, y0). The
disks have a radius of y0. We found in the previous section, that the solutions
to the problem with this given Γ is either a catenoid or the two disks. Table
5.1 gives us a summary of the solutions that can exist. We can also see which
solution will give us an absolute minimum for surface area hence giving us an
area minimizing solution.

Let us consider the results of table 5.1. In the previous section we looked
at the case of x/y = 0.4. This falls in the interval 0 < x/y < 0.5277. We have
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found that the catenoid gives us the absolute minimum for surface area. We
mention that whenever we talk about the catenoid with minimal surface area,
we are referring to the wide neck catenoid. This is due to the fact that the
wide neck catenoid always has less surface area compared to the narrow neck
catenoid. Our result is consistent with what is shown by the results in table
5.1. Thus we have looked at an example of the case 0 < x/y < 0.5277, with
x/y = 0.4.

Let us also look at the other two cases that are given by table 5.1. Let us
look at an example for a value of x/y in the interval 0.5277 < x/y < 0.6627,
and an example for a value for x/y > 0.6627. We would like look at an example
of these two cases in order to check if the solutions we get will be consistent
with the solutions given by table 5.1, just like we had looked at the example
with x/y = 0.4.

5.4.1 Example with x/y = 0.5941
We look at an example of the case where x/y is in the interval 0.5277 < x/y <
0.6627. Let

x0 = 0.5941 and y0 = 1

Then
x

y
= x0

y0
= 0.5941

1 = 0.5941

Thus x/y = 0.5941. The boundary curve Γ is given by the two circles with
centre in (−0.5941, 1) and (0.5941, 1). Both of the circles have radius r = 1.
In the previous section, we talked about the existence and uniqueness of the
solutions. We consider the existence of solutions. For our value of x/y = 0.5941,
we have that x/y < 0.6627. From section 5.3, we know that for x/y < 0.6627,
all three solutions exist. The three solutions are the wide neck catenoid, the
narrow neck catenoid, and the Goldschmidt solution. We can also see this
directly by looking at the plot in figure 5.7. This means that we expect to get
a catenoid solution, wide neck and narrow neck, as well as the Goldschmidt
solution.

We find the catenoid solutions first. In order to find the catenoid solutions,
we do the same thing here as we had done in section 5.2 for the case of x/y = 0.4.
We omit the details here as everything done here is based on the same approach
that was taken in section 5.2 for x/y = 0.4. We start by finding the equation of
the catenary curve

y(x) = c cosh(x/c)

that passes through the points

(−0.5941, 1) and (0.5941, 1) (5.28)

That is, we have to find the value for c in y(x) such that y(x) will pass through
the two points given in (5.28). We can find the value for c by finding the
value of u defined in (5.6), as u = c/y. We find the value for u by finding the
intersection of the curve x/y = 0.5941 and the curve x/y = u arccosh(1/u).
Since x/y < 0.6627 we know that that there are two values of u that give us
x/y = 0.5941. This means that there are two points of intersection, one point
that is less than 0.5524, and one point that is greater than 0.5524. Let us
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(a) c1 = 0.3428 (b) c2 = 0.7533

(c) Goldschmidt solution

Figure 5.9: Solutions to Plateau’s problem with x/y = 0.5941. Figure a and b
show the catenoid formed by rotating the catenary curve with the given value
for c. The parameters are in the region x ∈ (−0.5941, 0.5941) and y ∈ (0, 2π).
Figure c shows the Goldschmidt solution.

denote the intersection points by u1 and u2. The values of u give us the values
for c, so we denote the corresponding values for c in y(x) by c1 and c2. We find
that the values for c1 and c2 are

c1 = 0.3428 (5.29)
c2 = 0.7533 (5.30)

Let us denote the corresponding catenary curves formed by c1 and c2 by y1(x)
and y2(x). Then these catenary curves have the equations

y1(x) = c1 cosh
( x

c1

)
= 0.3428 cosh

( x

0.3428

)
(5.31)

y2(x) = c2 cosh
( x

c2

)
= 0.7533 cosh

( x

0.7533

)
(5.32)

The catenoid is formed by rotating the catenary curves y1(x) and y2(x)
around the x-axis. These catenoids are shown in figure 5.9 a and b. Figure
5.9a shows the catenoid formed by rotating the catenary curve y1(x) =
0.3428 cosh(x/0.3428) around the x-axis. This is the narrow neck catenoid.
Let us denote this narrow neck catenoid by C1. Figure 5.9b shows the catenoid
formed by rotating the catenary curve y2(x) = 0.7533 cosh(x/0.7533) around
the x-axis. This is the wide neck catenoid. Let us denote this wide neck catenoid
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by C2. Once again we mention that the catenoids shown in figure 5.9a and b
have been rotated by an angle of 90◦. We have chosen to show the catenoids in
this position as it gives a better view of their shapes.

Besides the catenoid solution, the Goldschmidt solution also exists. Let us
denote this Goldschmidt solution by G. The solution G is the two disk solution.
It is shown in figure 5.9c.

Now that we have found all three solutions that exist, we calculate their
surface areas to find the solution that gives us an absolute minimum for surface
area. We wish to find the area minimizing solution. According to table 5.1, we
expect the Goldschmidt solution to give us the absolute minimum for surface
area, and we expect the catenoid to be the local minimum for surface area. Let
us compute their surface areas to verify this.

• Consider the narrow neck catenoid C1. From (5.14) we can calculate the
surface area. The surface area of the catenoid C1 with c = c1 = 0.3428
and x0 = 0.5941 is

AC1 = 7.1832 (5.33)

• Consider the wide neck catenoid C2. Similarly the surface area of the
catenoid C2 with c = c2 = 0.7533 and x0 = 0.5941 is

AC2 = 6.9438 (5.34)

• Consider the Goldschmidt solution G. Then from (5.19) we can calculate
the surface area of the two disks. Both of the disks have a radius of r = 1.
The surface are of the two disks is 2π(1)2 = 2π ≈ 6.2832. The surface
area of the Goldschmidt solution G is

AG = 6.2832 (5.35)

By computing the surface areas of the three solutions, we can see that the
solution with the least surface area is G, with a surface area of 6.2832. The
catenoid C2 has a surface area of 6.9438, which is less then the surface area of
C1, which is 7.1832. This is what we had expect as the wide neck catenoid is
the area minimizing catenoid.

Thus we can see that the Goldschmidt solution is the absolute minimum
for surface area, with a surface area of 6.2832. The catenoid C2 is the local
minimum for surface area, with a surface area of 6.9438. We have verified the
results given by table 5.1. By the definition of stability, the solution G is the
stable solution in the region D given by x ∈ (−0.5941, 0.5941) and y ∈ (0, 2π),
while the catenoid is the unstable solution in D.

The solution G is the absolute area minimizing solution to Plateau’s problem
when the boundary curve Γ consists of the two disks with centres in (−0.5941, 1)
and (0.5941, 1), and the radius is r = 1.

5.4.2 Example with x/y = 0.7
We look at an example of the case where x/y has a value such that x/y > 0.6627.
Let

x0 = 0.7 and y0 = 1
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Then
x

y
= x0

y0
= 0.7

1 = 0.7

Thus x/y = 0.7. The boundary curve Γ is given by the two circles with
centre in (−0.7, 1) and (0.7, 1). Both of the circles have radius r = 1. In the
previous section, we talked about the existence and uniqueness of solutions.
Let us consider the existence of solutions. From section 5.3 we have that
for x/y > 0.6627, there exists only one solution. This only solution is the
Goldschmidt solution. For the value of x/y = 0.7, we have that x/y > 0.6627.
We expect to get the only solution, the Goldschmidt solution.

Let us start by finding the catenoid solutions. We start by finding the
equation of the catenary curve

y(x) = c cosh(x/c)

that passes through the points

(−0.7, 1) and (0.7, 1) (5.36)

Figure 5.10: Graph of u against x/y. The function x/y = u arccosh(1/u). The
point A is the maximum point, it is given by A = (0.5524, 0.6627).

We have to find the value for c in y(x). As we have done in the previous
example, we can find the value for c by finding the value of u in (5.6), as u = c/y.
We find the value for u by finding the intersection of the curve x/y = 0.7 and
the curve x/y = u arccosh(1/u). However let us take a look at the plot of
x/y = u arccosh(1/u) and the line x/y = 0.7. This is shown in figure 5.10.
From the figure we can see that the two curves never intersect. This is what we
had expected as 0.6627 is the maximum value for x/y, and x/y = 0.7 exceeds
the maximum value. Thus there are no catenary curves that pass through the
points (−0.7, 1) and (0.7, 1), and hence no catenoid solutions can be formed.
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5.5. Enneper’s surface

Figure 5.11: Solution to Plateau’s problem with x/y = 0.7. There is only one
solution that exists, namely the Goldschmidt solution.

Therefore the only solution that exists is the Goldschmidt solution. We
denote this solution by G. It is shown in figure 5.11. We can see that for
x/y = 0.7, G is the only solution that exists. Hence G is the unique solution
that is also the area minimizing solution. That is, G gives us an absolute
minimum for surface area. Let us compute the surface area for G.

• We can compute surface area of the two disks from (5.19). Both of the
disks have a radius of r = 1. The surface area of the Goldschmidt solution
G is

AG = 6.2832 (5.37)

The solution G is the unique area minimizing solution with a surface area of
6.2832. By the results of table 5.1, we expect to find the Goldschmidt solution
as the absolute minimum for surface area. We have verified the results of table
5.1.

By the definition of stability. the solution G is the stable solution in the
region D given by x ∈ (−0.7, 0.7) and y ∈ (0, 2π). The solution G is the
absolute area minimizing solution to Plateau’s problem when the boundary
curve Γ consists of the two disks with centres in (−0.7, 1) and (0.7, 1), and the
radius is r = 1.

5.5 Enneper’s surface

We look at another example of Plateau’s problem. Another minimal surface that
is a solution to Plateau’s problem is the Enneper surface [Opr00, pp. 113–114].

It is possible to produce a model the Enneper’s surface by the soap film
experiments. Let us consider the wire frame that we have to dip in the soap
solution to produce a model of the Enneper surface. From section 3.4 we have
that the Enneper surface is parameterized in u, v coordinates by

x(u, v) = (u − u3

3 + uv2, v − v3

3 + vu2, u2 − v2),

−∞ < u < ∞, −∞ < v < ∞
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where x : U ⊂ R2 → R3. Consider a circle of radius r in u, v coordinates
given by u2 + v2 = r2. Then the wire frame is obtained by evaluating the
parametrization x(u, v) on the circle u2+v2 = r2. This means that the boundary
curve Γ is given by

Γ = x(u, v) where x : {(u, v)|u2 + v2 = r2}︸ ︷︷ ︸
U

⊂ R2 → R3

The boundary curve Γ is obtained by evaluating the Enneper parametrization
x(u, v) on the circle of radius r, thus U = {(u, v)|u2 + v2 = r2}. We note
that r is a radius so r ∈ [0, ∞). We can simplify the expression for Γ above
by considering the parametrization for Enneper’s surface in polar coordinates.
From (3.30) the parametrization in polar coordinates is given by

x(r, θ) =
(

r cos(θ) − r3

3 cos(3θ), −r sin(θ) − r3

3 sin(3θ), r2 cos(2θ)
)

0 ≤ r < ∞, 0 ≤ θ < 2π

Fix some value for R ∈ (0, ∞) to be the radius in the parametrization given
above. Then the boundary curve Γ can be written as

Γ = x(R, θ) with θ ∈ [0, 2π)

The main result for Enneper’s surface as a solution to Plateau’s problem is
given by the following theorem.

Theorem 5.5.1. [Opr00, p. 114] Let R be the radius. Let the boundary curve Γ
be given as

Γ = x(R, θ) =
(

R cos(θ) − R3

3 cos(3θ), −R sin(θ) − R3

3 sin(3θ), R2 cos(2θ)
)

(5.38)

for θ ∈ [0, 2π). Then the Enneper’s surface x(r, θ), which is given by

x(r, θ) =
(

r cos(θ) − r3

3 cos(3θ), −r sin(θ) − r3

3 sin(3θ), r2 cos(2θ)
)

(5.39)

0 ≤ r ≤ R, 0 ≤ θ < 2π

is the unique solution to Plateau’s problem for

0 < R ≤ 1

Let us take a closer look at the result of theorem 5.5.1. This theorem tells us
that as long as the radius R has values in the interval 0 < R ≤ 1, the Enneper
surface that is formed by x(r, θ) with the parameters 0 ≤ r ≤ R and 0 ≤ θ < 2π,
is the unique solution to Plateau’s problem, when the boundary curve Γ is given
by x(R, θ) as in (5.38).

Let the boundary curve Γ be given by (5.38). Let us look at the existence
of solutions. Firstly we mention that for 0 < R ≤ 1, the Enneper surface has no
self intersections. We know this because of the result of theorem 3.4.1. Theorem
3.4.1 tells us that Enneper’s surface has no self intersections for 0 ≤ r <

√
3.

In this case we have 0 ≤ r ≤ 1, which is less than
√

3. Thus for 0 ≤ r ≤ 1,
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the Enneper surface has no self intersections. This further tells us that the
boundary curve Γ = x(R, θ) has no self intersections for 0 < R ≤ 1. The curve
Γ is a Jordan curve as it is a simple closed curve for 0 < R ≤ 1. Then by lemma
5.1.5 we know that there exists an area minimizing disk like minimal surface
that encloses the curve Γ.

Let the boundary curve Γ be given by (5.38). Then from theorem 5.5.1 we
know that the Enneper surface is the unique solution to Plateau’s problem for
0 < R ≤ 1. Let us look at the area minimizing property of the solutions with
the boundary curve Γ given as in (5.38). We would like to see if the solution
to Plateau’s problem has minimal surface area. To look at this we revisit our
stability analysis. We have already looked at the stability of Enneper’s surface
in section 4.5.2. We found the stable region D for Enneper’s surface. From
(4.25) we have that the Enneper surface is stable for R < 1. The stable region
D is given by r ∈ [0, 1) and θ ∈ [0, 2π). This tells us that the Enneper surface
x(r, θ), given by the parametrization (5.39), is the area minimizing solution
to Plateau’s problem for 0 < R < 1. This Enneper surface is given by the
parametrization (5.39) where 0 ≤ r < 1 and 0 ≤ θ < 2π.

We can see what the area minimizing Enneper’s surface looks like. In figure
4.4a we show the Enneper surface for R = 0.8. This value of R is less than 1, and
therefore figure 4.4a shows the area minimizing solution to Plateau’s problem
when the boundary curve Γ = x(0.8, θ) as defined by (5.38). We mention that
this is the area minimizing minimal surface that encloses Γ = x(0.8, θ) among
all surfaces that have Γ as their boundary.
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CHAPTER 6

Conclusion

In this thesis we have looked at the theory of minimal surfaces in R3. We
started by recalling some concepts from differential geometry. We then looked
at the theory and definition of a minimal surface. To get a better understanding
of the theory, we looked at some examples of minimal surfaces in R3. We also
looked at some interesting properties of these surfaces.

The next property we looked at is the area minimizing property of minimal
surfaces. The question we wanted to answer was ‘When does a minimal surface
have minimal surface area?’. We looked at three examples of minimal surfaces
and answered this question for each of them. The minimal surfaces we looked at
are the catenoid, the Enneper surface, and the higher order Enneper surfaces.

Let us consider the catenoid. From the stability analysis we found that the
catenoid is stable in the region D where u ∈ (−R, R) and v ∈ (0, 2π), whenever
we have R < 0.5493. In this region the catenoid is an area minimizing minimal
surface. Furthermore by looking at the catenoid as a solution to Plateau’s
problem, we found that the catenoid gives an absolute minimum for surface
area when 0 < x/y < 0.5277, with x/y given in (5.8). Figure 4.2a and figure
5.6b show the shape of the catenoid when it is area minimizing. From these
figures we can see that the area minimizing catenoid has the ‘wide neck’, as
discussed in section 5.2. The wide neck catenoid always has less surface area
compared to the narrow neck catenoid. This can be seen from the graph in
figure 5.7. Therefore the catenoid has minimal surface area when it is the wide
neck catenoid.

Let us consider Enneper’s surface. From the stability analysis we found that
the Enneper surface is stable in the region D where r ∈ [0, R) and θ ∈ [0, 2π),
whenever we have R < 1. In this region the Enneper surface is an area
minimizing minimal surface. Let us fix some value for the radius R. Then we
consider Enneper’s surface as a solution to Plateau’s problem. The boundary
curve Γ is given by x(R, θ) in (5.38). The Enneper surface has minimal surface
area when 0 < R < 1. It is parametrized by x(r, θ) in (5.39), where 0 ≤ r < 1
and 0 ≤ θ < 2π. Figure 4.4a shows the Enneper surface when it is area
minimizing with the value of R chosen to be R = 0.8.

Let us consider the higher order Enneper surfaces. Let k be the order of
the Enneper surface. For this example of minimal surfaces, we looked at the
stability condition in section 4.5.3. We found that the higher order Enneper
surfaces are stable in the region D where r ∈ [0, R) and θ ∈ [0, 2π), whenever
we have R < 1/(2k − 1)1/2k. In this region, the Enneper surface of order k
is an area minimizing minimal surface. Table 4.1 shows the value for R for
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k = 1, 2, 3, 4, 5. Furthermore figure 4.8 shows the higher order Enneper surfaces
when they are area minimizing, for k = 2, 3, 4 and 5 with R = 0.6.

Thus we have looked at some examples where we where able to find when a
minimal surface has minimal surface area.
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