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Abstract

Unit-linked policies are often complex life insurance products to price. This
is due to there being more forms risk in these policies than in traditional life
insurance. Unit-liked policies combine investments in financial assets with a
traditional life insurance policy. In addition to modeling mortality, one also
needs to model the financial investment.

The pricing of unit-linked policies can be complicated and difficult to
calculate. Results like Thiele’s PDE for unit-linked policies have therefore
been proven for securities models like the Black and Scholes, see Aase and
Persson In this thesis, we are going to generalize this to contexts where
the model for the underlying securities is more complex and realistic. We find
a partial integro-differential equation that models the evolution of value for a
unit-linked life insurance policy when the underlying security follows a jump
diffusion model. Jump diffusions are a generalization of diffusion models (like
the Black and Scholes), and allow for better modeling, especially the tails of
the returns. This means that large losses can be better modeled.

In addition to this we, propose some methods for numerically calculating
prices and we use these methods to find the value of some example policies.
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CHAPTER 1

Introduction

Insurance is the trading, hedging and management of risk. Humans are often
observed to be risk averse. This basic human trait might help explain why
insurance has such a long history. We can find evidence of insurance in as far
back as ancient Babylon. For example, in Hammurabi’s code there are laws
against making false insurance claims (Hammurabi [1904).

The history of insurance is woven into the history of the world, from ancient
Greece and Rome to China. Innovations in the insurance sector were taking
place during the birth of stock markets in the Netherlands and the industrial
revolution (Goetzmann [2017). Today this is a huge industry going through
revolutionary changes, with new technical tools and access to data like never
before.

Most of the mathematical tools the industry relies on today did not exist for
most of this period. In the context of the history of insurance they are about
as recent as the French Revolution. The actuarial sciences made a huge leap
forward in the 20th century thanks to the works of mathematicians like Andrey
Kolmogorov, Harald Cramér, Paul Lévy, and Thomas Mack. Even standing on
the shoulders of such giants we can still see new lands.

It is common today to divide actuarial science into life and non-life insurance.
Non-life insurance is often concerned with products such as housing or travel
insurance- insurance of objects or services. The tail of the claims distribution
can be heavy or light, and the duration of a contract is often short. One often
tries to model both the number of claims and the severity. Life insurance, on
the other hand, is different. The contracts can be very long and claims are
usually tied to big events in life.

For this reason, life insurance policies are essential in many people’s financial
planning. Such policies can provide security in old age with pension policies, or
a death benefit could provide financial stability for a family, should a provider
pass.

One particularly interesting kind of policy is the unit-linked life insurance
policy. This is a policy that allows the traditional life insurance to be combined
with investments in a financial asset. This can provide additional risk. More
risk is not necessarily a bad thing. Additional risk can mean a higher payment
for a lower price.

A central question with any kind of insurance is what the value should be.
The valuation of a unit-linked policy is not straightforward. In addition to the
mortality risk, one also needs to consider the financial risk. This require more
modelling to be done. In addition to a reasonable mortality model, one also
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needs a model for the price of the underlying financial asset. A realistic model
for financial assets needs a financial mathematical framework.

Suppose one were able to find a way of finding a value. The natural next
question is then: is there a simple way of calculating this value? In short, this
is the central aim of this thesis.

Thiele’s differential equation is a result from classical life insurance. It
explains how the value of a life insurance policy change with time. The
attraction of this result is that it is simple to calculate as a backwards
equation, in particular, when using numerical methods. This result has been
generalized to the study of unit-linked policies in the form of Thiele’s partial
differential equation (PDE). However, this result only hold in situations where
the underlying security are diffusion models like Black and Scholes.

We aim at finding a Thiele’s partial integro-differential equation (PIDE) for
a unit-linked policy where the securities model is a jump diffusion.

1.1 General background

The pricing of unit-linked polices is nothing new. The pricing of a unit linked
policy and a Thiele’s PDE for a unit linked policy governed by a Black and
Scholes model was done in Aase and Persson [1993.

The Black and Scholes model is a standard among many practitioners and
is given by the SDE

cfgS((tt)) = pdt + odW (t) (1.1)
S(0) = s (1.2)

Where p,0,s0 € R, dt is the time integral and W (t) is a standard Brownian
motion. We will define these notions in later chapters. This model’s popularity
can be attributed in part to its simplicity, and that it provides a closed
form solution to the pricing of some contingent claims. On the other hand,
there are some large drawbacks. The returns from this distribution are a log-
normally distributed random variables. Some argue that this underestimates
the probability of large losses. This can be catastrophic in the context of life
insurance.

One way to help this is to introduce jumps into the model. The jumps have
a natural interpretation in many financial markets, they can be caused by news.
News about a firm can affect the price of their stocks. Suppose the firm has
received a new patent. This would make the firm more valuable, and the price
of its stocks should reflect that. This could cause a jump in price. On the other
hand, suppose a senior manager is arrested for embezzlement. This reflects
badly on the company. It signals that the internal controls might not be good
enough and that there is a possibility that senior management might not be so
trustworthy. This can cause the price to fall abruptly.

To do this we can generalize Equation :

ase) _ pu(t, S(t))dt + o (t, S(t))dW (t) +/ h(t, S(t), z) N (dz, dt)
S(t) R\{0}
S(O) = S0



1.2. The structure of the thesis

Here N (dz,dt) is a compensated Poisson measure. This expression does not
only generalize the process, i.e. from a diffusion to a jump diffusion, but it also
allow for a dependence on t and S(t). This gives us more room in which to play
within our modelling.

We will show that it is possible to price unit linked policies under this kind
of securities model. Moreover, we find a Thiele’s PIDE for the value, thus
allowing for a simpler calculation of price.

This result is useful for multiple reasons. For one it generalizes the model
one can use to model the securities. This opens the door for more realistic
models that take extreme events better into account. In addition, including
jump processes in our model allows us to model a bigger class of Lévy processes.
Lastly, this result can find broader applications in finance and in particular
commodities.

1.2 The structure of the thesis

We start the next chapter by introducing the mathematical background. We
start with measure theory and use this to introduce probability theory and
some of the most important stochastic processes like martingales and Markov
processes.

In chapter three we turn our attention to stochastic calculus. We construct
the stochastic integral for semimartingales and introduce stochastic differential
equations. Then we study some of the most important results from stochastic
calculus like the It6 formula and Feynman-Kac formula.

In the fourth chapter we apply some of these results and build the theoretical
framework we will use for mathematical finance. We discuss portfolios, trading
strategies and the notion of arbitrage. Then we introduce Girsanov’s theorem
and discuss market completeness and pricing of contingent claims.

In the fifth chapter, we treat classical insurance mathematics. We talk about
how we use Markov processes to model the states of the insured, and how to
value traditional insurance contracts with deterministic payments.

In the sixth chapter we turn our attention to unit-linked policies. First we
talk about how to value the policy and then derive the Thiele’s PIDE for jump
diffusions in Theorem [6.2.1l This is one of the main results of the thesis.

Chapter seven is the first chapter of the second part. Here we introduce
the models that we will be using in the examples and some numerical methods
that can be used to solve the PIDE. The models and methods are in no way
exhaustive but were chosen for their simplicity and relative usefulness.

Chapter eight is devoted to examples. We look at some examples for
common policies and see how Thiele’s PIDE with a Merton jump diffusion
model compares to a Black and Scholes model. We finish the chapter with a
sensitivity test. We test how changing the jump intensity change the value of
the policy.

The ninth and final chapter is a conclusion. We summarize the thesis and
provide some discussion on the results. Then we provide some self-critical
remarks and finally some ideas for possible future research.

Appendix A contains proofs which are not part of the main text. These are
proofs that are often very long and not critical for the main results. Appendix
B contains the code used for calculations and graphs.
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CHAPTER 2

Mathematical preliminaries

The purpose of this chapter is to introduce some of the necessary mathematical
framework.

The heavy lifting in this thesis will be done using stochastic calculus. This
is a field of mathematics concerned with the study of random phenomena. With
stochastic calculus we can extend the theory of calculus from real functions to
stochastic processes. This is going to be essential in this thesis.

However, this means that we have to do some work developing the theory.

2.1 An introduction to measure theory

The main results of this thesis depend on stochastic calculus and probability
theory, both of which are built on measure theory. Measure theory is concerned
with assigning size to sets. Sets are going to be very useful when we deal with
random variables and random processes.

For a more comprehensive introduction in measure theory, one can consult
Lindstrgm and for an introduction in probability theory, @ksendal
or Walsh

The first thing we will do is to define the concept of the o—algebra.

Definition 2.1.1 (c—algebra). Suppose that Q is a non-empty set. Then a
collection A of subsets of € is called a o-algebra if the following properties are
satisfied:

e e A
o If Ac A, then A°=Q\ Ac A
o If {A,}hen is a sequence of sets in A, then U,enA, € A.

We say that the pair (£2,.4) is a measure space.

Moreover we might also want to refer to a o—algebra generated by some
event or set A.

Proposition 2.1.2 (c—algebra generated by an event). Let A be some subset of
Q. The smallest c—algebra containing A exist and is on the form.

O'(A) = ﬁAEzA,

where X is the collection of o—algebras containing A.
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Proof. We first have to prove that this is a o—algebra. Using Definition [2.1.1]

o By definition, ( € A for every A. Since all As are o—algebras. This
means that () also must be in the intersection, X, of all A.

e Suppose B € o(A), then B € A for all A € ¥. However, this means that
B¢ must also be in all A € ¥. Hence, B € Nges A =o(A).

o Lastly suppose By, B, ... € o(A), let A’ be any o—algebra in ¥.. B; € A’
for all 4. This implies that U;enB; € A’. Since this holds for any A’ € &,
then U;enB; € NA = o(A).

We have now proven that o(A) is indeed a o—algebra. It only remains to prove
that it is the smallest o—algebra containing A.

Suppose there exists some o—algebra C that contains A which is different
from o(A). But then there exists some o—algebra containing A that is not in
the set o(A). However, all such sets are in o(A) by assumption. Thus, this is a
contradiction. [ |

The o—algebra is an excellent model for information, because, it allows us to
use the notion of measurability. A set being measurable means that the set is in
a o—algebra. The set could also be in the compliment of the o —algebra, but as
we saw in the above definition, this implies that the set is also in the o—algebra.
A natural interpretation of this is that something that is measurable is a regular
enough to assign a reasonable size to. Something that is not measurable, on
the other hand, is too irregular for this to be possible.

We will consider models with multiple time periods. Naturally, as time
progresses, more information is gained, and none is lost. In real life, information
might be lost due to things like burning of great Egyptian libraries and secret
police, but we ignore such things in our modelling. To model the evolution of
information we will use the concept of filtrations.

Definition 2.1.3 (Filtration). A sequence of o—algebras {F;}er, is called a
filtration if for any s < ¢, then Fs C F;.
We say that the filtration is right-continuous if

Fi = No<tFs

Now that we have the basics of the universe in which we are working down
we can start populating it. The first inhabitant we need is measurability. A
way of looking at measurability is how regular a set is. Formally we can state
this as follows.

Definition 2.1.4 (Measurability). Let F be a o—algebra on the set Q and
f+ F — R a function. Now assume A € F such that f(A) € R. We say that f
is measurable (with respect to F) if for all r € R

fH[~o0,7)) € F.
That is,
{lwe: flw)y<rteF

Sometimes this definition can be unnecessarily rigorous, therefore it can be
useful to prove some equivalent statements about measurability.

8



2.1. Anintroduction to measure theory

Proposition 2.1.5 (Equivalent definition for measurability). For a given function
f:Q — R the following are equivalent.

o f is measurable

e {we: flw)<r}eF forallr €R
e {we: flw)y>r}eF forallr €R
e {weQ: f(w)>r} eF forallr eR,

Proof. See the proof of Lindstrgm 2017, Proposition 7.3.4 on page 254. |

As stated above, we want to assign size to sets. To accomplish this, we need
some way of actually doing this. Therefore, this we need to define a measure.
The notion of a measure can be extended to probability measure.

Definition 2.1.6 (Probability measure). A measure on (€, A) is a function
p: A — R, such that

« p(0)=0

o If {A;};>1 is a disjoint sequence of sets from A. Then,

p(UnzlA”) - Z p(An)

n>1

Moreover, if P is a function A — [0, 1] and the following hold,

then we call P a probability measure.

When we put the concepts together we can define the triplet, (Q, F, P), this
is a probability space. Sometimes, we might also want to specify the filtration.
In that case we write (92, F,{F;}i>0,P). Here, Q is the set of all possible
outcomes, w;. If Q is countable, then Q = {wy,ws,...}.

Suppose we have different measures on the same space ({2, F), P and Q. It
is useful to have some notion of equivalence, in the sense that the two measures
agree on something. We first need two technical definitions.

Definition 2.1.7 (Null set). Let (2, F, P) be a measure (or probability) space.
We say that a set N is a null set if P(N) = 0. The set of null sets is denoted
Np.

Definition 2.1.8 (Absolutely continuous). Let (€2, F) be a measurable space.
Suppose p and v are measures. We say that p is absolutely continuous with
regards to v if for every N € N, we have,

w(N)=0 = v(N)=0.

We denote this > v, or in other words N, C N,,.

Finally, equality of measure.



2. Mathematical preliminaries

Definition 2.1.9 (Equivalent measures). Let ;1 and v be measures on the same
measurable space (2, F). We say that p and v are equivalent, denoted p ~ v, if
pw>vand v > .

This has been an basic introduction to measure theory. This is a versitile
branch of mathematics. For example, it can be used to construct integration
theory. We are, however, going to use it for probability theory. The next
section is on the basics of probability theory. We introduce some basics like
independence, distribution, expectation, and characteristic functions, among
others.

2.2 An introduction to probability theory

We have now defined some of the basic measure-theoretical concepts and can
move on to more probabilistic matters. The first thing we need to consider is
an event. An event is an element of a o—algebra that we can assign size to.
For example, in the discrete case a set of elements A = {wy,ws,...,w,} is an
event. Examples of events can be an insured dying or the value of some financial
security being within a certain range. When we want to find the probability of
an event happening, we only need to measure the size of that event.

Since we are not dealing with only one event, we also have to consider the
relationship between events. Therefore, we introduce the notion of independence.

Definition 2.2.1 (Independence). Two events A and B are said to be independent
if P(ANB) = P(A)P(B)

We can now move on to the random variable.

Definition 2.2.2 (Random variable). A function X : Q@ — R is called an random
variable if it is measurable with respect to F.

A random variable is simply a function that takes some outcome w and
maps it to a real number.
We can define the law or push forward measure.

Definition 2.2.3 (The law of a random variable). The law of a d-dimensional
random variable X, denoted £(X), is the image measure Px on (R? B(R%).
The image measure, also called the push forward measure, is defined as such
for any Borel set B,

px(B)=Px(B)=P{weQ:we X (B)}) =

There is also the distribution function which is defined as follows:

Definition 2.2.4 (Distribution function). A function F is called a distribution
function for a random variable X if

F(z)=P{weN: X(w) <z})=P(X <z

The next point on our plan is the notion of expectation.

Definition 2.2.5 (Expectation). If,

/ | X|dP < .
Q

10
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Then the expectation of a random variable g(X) is defined,

E(X) :/Rxd,u(dx) :/QX(w)dP(w)

Note that here the integral is in a Lebesgue sense, see Lindstrgm [2017)
Chapter 7 for further details.

Characteristic function

When we are dealing with random variables and processes we often wish to
compare them. We want to know if they have the same distribution, if they are
independent and so on. A very handy tool in that context is the characteristic
function.

We start by defining the characteristic function.

Definition 2.2.6 (Characteristic function). Let X be a d-dimensional random
variable with distribution pux. Then, the characteristic function of px is

SDX(U) _ E[ei<u,x>] _ / ei<u’I>Mx(d$),u c Rd.
Q

We often refer to the characteristic function of a random variable. By that
we mean the characteristic function of the distribution of that random variable.

The characteristic function has some very useful properties. We can formalize
this in a proposition.

Proposition 2.2.7 (Properties of a characteristic function). Suppose px (u) is
the characteristic function for a random variable with distribution ux. Then
the following holds.

o |ox(u)| <1 forallueR

« px(0)=1

e px is uniformly continuous.

o ©.(u) = ox(—u), i.e. px is Hermitian.

e px(u) is a real function if and only if X has a symmetric distribution.

For proof see [A]]
At this point an example might be in order.

Example 2.2.8 (Normal distribution). The characteristic function of the normal
distribution with mean p and variance o2 is,

: 12,2
pu—50°t

p(u) =e

Calculating this is a technical affair, but the calculation can be found in Baldi
20I7, p. 16.

We also want to find out what happens when two random variables has the
same characteristic function.

11
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Proposition 2.2.9. Let X and Y be random variables with distributions px
and py and characteristic functions px(u) and py (u). X and 'Y has the same
distribution, i.e. ux = uy, if and only if px(u) = vy (u).

See the appendix for proof

We want to see what happens with the distribution of a sequence of random
variables. Therefore we have the following definition.

Definition 2.2.10 (Convergence in distribution). Let X and X,,,n = 1,2,...
random variables with distribution functions F' and F,,. Then we say that X,
converges to X in distribution if F}, converge to F for all continuity points.

Another convenient use of the characteristic function is to prove that two
random variables are independent.

Proposition 2.2.11 (Characteristic functions and independence). Two random
variables X,Y are independent if and only if

ox+v(n) = ox(u)py (u)

For proof see appendix,

This has been an introduction to the foundations of probability theory. In
the next section, we are going to continue with probability theory and discuss
stochastic processes.

2.3 Stochastic processes

Many of the elements of the insurance and financial models we will be using is
based on stochastic processes. Therefore, we need to introduce some important
concepts relating to random processes. We start by giving a basic definition.

Definition 2.3.1 (Stochastic process). A stochastic process is a parametrized
family of random variables, X = {X;,t € Z}, defined on the probability space
(92, F, P) and assuming values in R?. Here Z is an index set.

Remark 2.3.2. Examples of index sets can be the positive real numbers (R}.),
natural numbers (N), or other ordered sets.

Consider the process, {X;}tez. For any fixed ¢ we can consider,

wr— Xi(w), we.
We can think of this as individual experiments. If we on the other hand fix w
we get,
t— X, (w), tel
This is called the path of the process. From this we can see that the random
process can be considered a two variable function X (¢,w). This could lead to

some measurability problems. Therefore, we want to define the notion of an
adapted process.

12
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Definition 2.3.3 (Adapted process). Let {X;}1ez be a stochastic process and
{Fi}tez be a filtration. Then we say that X is adapted to F if X, is
JFi—measurable for all t € 7.

We might be interested in comparing different stochastic processes.
Therefore, we need to define some notions of relation between processes.

Definition 2.3.4 (Modification). Consider two stochastic processes X and Y.
We say that X is a modification of Y if

PXi=Y)=1

forall t € 7.

An interpretation of this is that even if there exists some outcome for which
X, and Y; are different, the probability of this outcome is zero.
Moreover, we have the slightly more stringent condition.

Definition 2.3.5 (Indistinguishable). Consider two stochastic processes X and
Y. We say that X and Y are indistinguishable if

P(X, =Y, Vtel)=1

Stochastic processes also has a notion of distribution. This is defined as
follows.

Definition 2.3.6 (Finite-dimensional distribution). Let F, Fy, ... Fy be Borel
sets in R™, and X be a stochastic process. Then the finite-dimensional

distribution of X are the measures fit, ¢,,... ¢, OD R™ k =1,2,... such that,

/’[’tl,tQ,...,tk(Fl X F2 X oo X Fk) = P(th S Fl,th S FQ’...,th S Fk),ti cT

This definition says that if we have a stochastic process, then we can find a
measure. On the other hand, there exists a result that states the opposite: that
if we have an appropriate probability measure, then we can find a stochastic
process that has that distribution. This is the famous Kolmogorov’s extension
theorem.

Theorem 2.3.7 (Kolmogorov’s extension theorem). For all t1,ta, ...t € Z, let
Ut to,...t,. € a probability measure on R™ . such that

1. v Fi x Fy x - X Fy) = Vi o0, (Fom1(1) X Fyo1(2) ¥

o(l)7ta(2))~“to(k)(
e Fyag
For all permutations o of {1,2,...,k}

2. Viy ta,.. 0ty (Fl X Fy XX Fk) = Viy o, tistosgt,oothtm (Fl X Fy X+ X F ¥
R™..-xR™), for allm € N. Here the number of factors on the right hand
side is k 4+ m.

Then there exists a probability space (0, F, P) and a stochastic process X
such that

th,tz,...,tk(Fl X F2 X o+ X Fk) = P(th S Fl,Xt2 S FQ,"' ,th S Fk)

For Borel sets Fy, Fy,--- | F}.
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A proof of this can be found in Tao 2011} p. 197.
Since we will be dealing with calculus, it will be useful to have some result
on continuity of stochastic processes.

Theorem 2.3.8 (Kolmogorov—Centsov theorem). Suppose Xis a stochastic
process on (Q,{F}, P) such that

E[|X, — X,|*] < C|t — s|**#

for allt,s € I, and positive real numbers a, 3, C. B

Then there exists a modification X; of X; such that X; is locally v— Hdélder
continuous with v € [0,2).

This proof can be found in Varadhan 2001}, p. 51.
Remark 2.3.9. A process Y; is y—Holder continuous if the following holds.

Y, - Y
P( sup M < 5) =1
o<t—s<h [t —s|7

At this point in the thesis, we can break up the monotony of theory by

introducing one of the stars of the show, the Brownian motion.
First of let us give a definition.

Definition 2.3.10. Let (2, F, P) be a probability space equipped with the
filtration {F}}icz. A F-Brownian motion with variance o2 is a stochastic
process X, adapted to the filtration F and satisfying the following.

e X has continuous paths, P-a.s.
o Xp=0, P-as.
e For all 0 < s <t, the random variable X; — X is independent of F;

e For all 0 < s <t, the random variable X; — X is normally distributed
with mean 0 and variance o2(t — s)

A special case of the Brownian motion which is often used in modelling is
the case where 02 = 1. This is sometimes referred to as the standard Brownian
motion and will here be denoted by W.

The Brownian motion is named after its discoverer botanist Robert Brown.
In 1892 Brown was studying the movement of pollen in water and how the
particles moved seemingly randomly throughout the liquid, @ksendal
p- 12. The process was further studied by Albert Einstein in 1905.

It is possible to modify the Brownian motion in a plethora of ways. This can
be used to create models that are useful in different applications. For example
we can define a process

}/t :,Ut+0'Wt

This is the Brownian motion with drift. This can be used to model phenomenon
where there is an increasing or decreasing trend.

Another example of a modification to the Brownian motion is the geometric
Brownian motion. It can be described as such,

Y; _ eﬂt+UWt

This has been an introduction to stochastic processes. In the next chapter we
are going to be look at a special kind of stochastic process known as martingales.

14



2.4. Martingales

2.4 Martingales

Named after a 18th-century betting strategy, the martingales is an important
class of stochastic processes. They are going to be important in the construction
of stochastic integrals and in the financial mathematics to come. Before we jump
into the martingales, we need to introduce the foundation on which martingales
are built, the conditional expectation.

Conditional expectations

Conditional expectations is essential to the martingale as we shall see. One way
to look at this is the the conditional expectation is our best guess about the
future, given the information we have today. Another interpretation is that the
conditional expectation is the projection of a random variable from a larger to
a smaller o—algebra.

In addition to conditional expectation we also want to define the conditional
probability. One can interpret the conditional probability as the probability of
an event given some set of information. For example, suppose that we know
that a child has a parent with a rare genetic condition. The parent having the
condition can affect the probability of the child also having the condition. Let
us define the conditional probability and the conditional expectation.

Definition 2.4.1 (Conditional probability). Let A and B be events. Then we
say that the conditional probability of A given B is defined
P(ANB)

P(AIB) = =55

Definition 2.4.2 (Conditional expectation). Let X be an integrable random
variable, i.e. [, |X|dP < oo and let F C Q be a o—algebra on . Then the
conditional expectation of X given F is an equivalence class of random variable
7, which is F-measurable, such that for any set A € F,

/XdP:/ZdP.
A A

We use notation Z = E[X|F].

It is useful to know that this conditional expectation exists and is unique.
For a proof of this, see Baldi 2017} p. 86.
We can now note some of the properties of the conditional expectation.

Proposition 2.4.3 (Properties of the conditional expectation). Let a,b € R, X
and Y be integrable and independent random variables, F and G be c—algebras
such that G C F. Then, the following hold

o Linearity: ElaX + DY |F] = « E[X|F] + bE[Y|F].
o The tower property: E[E[X|G]|F] = E[E[X|F]|F] = E[X]F].

o The law of total expectation: E[E[X|G]] = E[X]

If X is G—measurable, then E[XY|G] = X E[Y|G] P-a.s.

15



2. Mathematical preliminaries

o Suppose that X is independent of F. Then,

E[X|F] = E[X]

o The conditional Jensen inequality: if f is a convex function, then P.a.s.

E[f(X)|F] = f(E[X|F]).
For proof see [A1]

Martingales: Definition
Now that we have conditional expectations we can finally define a martingale.

Definition 2.4.4 (Martingales). Let (2, 7, P) be a probability space equipped
with the filtration F = {F; }+cz and X be a stochastic process. We call X a
martingale if,

o X is adapted to a filtration F.
o E[|X}|] <o foralltel.

e For any s,t € Z, s <t we have,

E[X\|Fs] = X,.

How should we interpret this kind of stochastic process? A natural
interpretation is found in the historic origin of the name. A martingale is
a betting strategy where the expected profits are zero. In other words, the
expected gain is the same as the bet. Hence the expectation of a martingale
process is the same as the value today.

This makes it very useful in the study of financial markets. The efficient
market hypothesis states that all information is immediately incorporated into
the price of the financial assets traded in the market, Berk and DeMarzo
Therefore the expected value of the discounted price process of some risky
security should be the same as the value of the security today. Supposing
instead that one could expect to gain from buying a security, then obviously
more traders would also wish to purchase the security. This would push the
price upwards and making the price too high to yield any profits from the trade.
We will later formalize this such that the discounted price process for an asset
has to be a martingale.

We can also define some of the other kinds of martingales. The one defined
above is the strongest notion of a martingale. There are contexts where we
would wish to use weaker notions of martingales. The first two are very similar.

Definition 2.4.5 ((Sub-)Supermartingale). Let X be a stochastic process. We
call X a (sub)supermartingale if,

o X is adapted to a filtration F.
. E“Xt” < 0
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2.4. Martingales

e For some s <t €7,

E[Xt|-7:€](2) S Xs

A consequence of this definition is that we can prove that something is a
martingale by proving that it is a supermartingale and a submartingale.

A slightly more general notion is the concept of a local-martingale. However,
before we get to that we need to define the concept of stopping times.

Definition 2.4.6 (Stopping time). Let F = {F;} be a filtration. Then the
random variable 7: Q + [0, o0] is called a stopping time if for every t € 7

{7' < t} e F;.
In addition we can define the stopped o—algebra F.,
Fr={AeF: An{r <t} e F, vt}

The concept of a stopping times is quite intuitive. A stopping time is random
time when some event occurs. Suppose one has never been to the aquarium in
Bergen. The first time one visits it to look at the penguins is a stopping time.

Stopping times will be more important later on, but for now we move on to
the fourth and penultimate kind of martingale we are going to define.

Definition 2.4.7 (Local martingale). Suppose there exists a sequence of stopping
times {7, } such that 7, < 7,41 and lim,, o, 7, = 00. A process X is called a
local martingale if the stopped process, that is if Y, = Xiar, is a martingale.

The last kind of process we will define is the semimartingale. This is going
to be essential in the construction of stochastic integrals.

Definition 2.4.8 (Semimartingale). Let X be an F adapted right continuous

process with left limits, also called a cadlag process. Then X is a semimartingale
if

Xy =Xo+ Ay + M,
Where A and M are cadlag, A being a process of bounded variation and M
being a local martingale.

We have now defined five different types of martingales. However martingales
have interesting properties that we want to study. This is the content of the
next subsection.

Martingales: Important results

The first important result we are going to study is the optional stopping theorem.

Theorem 2.4.9 (Doob’s optional stopping theorem). Let X be a martingale
with regards to the filtration F = {Fi}iez. Let 71 and 1o be bounded stopping
times such that 0 < 7 < 15 <T for some T € R.

Then,

E[X'rz|-7:n] =Xn
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2. Mathematical preliminaries

For proof, see Theorem 3.22 in Karatzas and Shreve 2014
Let us now consider some of the properties of martingales.

Proposition 2.4.10 (properties of martingales). Let X and Y be martingales
independent of each other, and a € R. Then the following are true,
o X; +Y; is a martingale.

e aX; is a martingale.

A proof of this can be found in the appendix, [A]

Martingales: Example

In this subsection we are going to prove that the process that we introduced
earlier, the Brownian motion is a martingale.

Example 2.4.11 (Brownian motion: part IT). Recall the Brownian motion,
Definition 2:3:10} We want to prove that the Brownian motion, X, is a
martingale.

o The Brownian motion is always adapted to the filtration F; = o(X,, s < 1),
i.e. the filtration generated by X, for s < t.

121
EHXtH = ;0’ < o0

The calculation is of no particular interest so it has been omitted.

o Lastly, to the martingale property. Let s <t

E[Xt‘fs} = E[Xt + Xs - Xs|-7:s]
=Xs + E[Xt - X9|-7:€]
= X, +E[X; - X,]
= X;.

Here, we have used the common trick of adding a "fruitful zero". Moreover,
in the second equality we use the fact that Xy is Fs — measurable, in the
third we have used that the increment X; — X is independent of F5.

By proving this we can conclude that the Brownian motion is a martingale.

The Brownian motion is one of the most common examples of a martingale.
It is also an canonical example of a Lévy process. This is the next type of
process we will be looking at.
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2.5. Lévy process

2.5 Lévy process

Lévy processes are very useful when dealing with stochastic calculus. They
have properties that makes them simple to handle, yet they are a class of
processes that are very versatile. We start by defining a Lévy process. Then we
continue with the example of the Brownian motion. After this we introduce
some important concepts like the Lévy measure, and show some important
results like the Lévy-Khintchine formula and the Lévy-It6 decomposition.

Definition 2.5.1 (Lévy process). A stochastic process X = {X¢,¢ > 0} is called
a Lévy process if the following conditions are true,

1. Xg =0, P-a.s.

2. X has independent increments.
3. X has stationary increments.
4. X is continuous in probability.

There are a few things to note with this definition.

Remark 2.5.2.

o Stationary increments are related to the distribution of the increments

of the process. A process X having stationary increments is therefore

equivalent to saying that for some h > 0 and s # ¢, then X, — Xs1p, 4

Xt - XtJrh.

e Continuous in probability means that, for some ¢ > 0 and t € Ry,
lims_,+ P(|X; — X4| > €) = 0. In other words, the probability that the
increment of the Lévy process X is greater than e converge to 0 when s
converge to t.

Lévy processes have some useful properties that we are going to take
advantage of.

Example 2.5.3 (The Brownian motion). We return once again to our running
example from the section on stochastic processes, the Brownian motion. Actually
the Brownian motion is also a Lévy process. This can be proven fairly simply
by checking the definition. Let X be a Brownian motion.

e Xy =0 a.s. follows from the definition.
o The second condition follows from Definition [2.3.10
o The third condition also follows from Definition 2.3.101

o Continuity of probability follows from Kolmogorov’s continuity criteria,
i.e. Theorem 2.3.8

Indeed, the Brownian motion is a Lévy process! We can plot a sample path
of the Brownian motion.
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Brownain motion

0 20 40 60 80 100

Figure 2.1: Sample path of a Brownian motion.

A very useful result concerning Lévy process is the Lévy-Khintchine formula.
This formula gives us a way of calculating the characteristic function of a Lévy
process. Before we get there, however, we need to define the Lévy measure and
the concept of infinitely divisible distributions.

Definition 2.5.4 (Lévy measure). Let v be a Borel measure on R\ {0}. We
call v a Lévy measure if

/ (\x\2 ADv(dr) < oo
R4\ {0}

We will also need to know about infinitely divisible distributions. These
kinds of distributions are closely related to Lévy processes.

Definition 2.5.5 (Infinitely divisible distributions). Let X be a random variable
taking values in R? with law Py. We say that X is infinitely divisible if for all
n € N there exists i.i.d. random variables Y; such that

XLV 4Vt +Y,
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2.5. Lévy process

Infinitely divisible distributions and Lévy processes are closely related.
Indeed, any Lévy process is infinitely divisible, see Proposition 1.3.1 in

Applebaum 2009, p. 43.

Theorem 2.5.6 (The Lévy-Khintchine formula). p is infinitely divisible if there
evist a b € R, a matriz A € R¥™9 and a Lévy measure v on R4\ {0}, such that
for all u € R,

exp(n(u)) = exp (i(b, u) — %(u, Au)
Wy — 1 —j(u 1(y)]v
b 1 )

On the other hand, any infinitely divisible distribution has a characteristic
function of the above form.

For proof see Theorem 1.2.14 in Applebaum

We sometimes call the triplet (b, A, v) the generating or characteristic triplet
of a infinitely divisible distribution.

We stated above that any Lévy process is infinitely divisible. Hence, this
formula can help us find the characteristic function of a Lévy process.

Theorem 2.5.7 (Characteristic function for a Lévy process). If X is a Lévy
process, then the characteristic function ¢x,(u) has the form

ox, (u) = exp(tn(u))

— exp (t [i(b, ) — %(wAu)
b 1))

A proof of this can also be found in Applebaum p. 44, see Theorem
1.3.3. This means that we can also use the triplet (b, A, v) to characterize Lévy
processes as well.

The last theorem we will introduce in this section is a decomposition theorem.
This is very powerful when modelling a Lévy process.

Theorem 2.5.8 (Lévy-1t6 decomposition). If X is a Lévy process, then there
exists a b € R?*, a Brownian motion B, a covariance matriz A, and an
independent Poisson random measure N on R? x (R9\ {0}) such that for
each t >0,

X(t) =bt+ Ba(t) +/ xN(t,dx) —|—/ xN(t,dx).
2] >1

|z|<1

Here N(t, dzx) is the compensated Poisson process as defined in Definition 2.7.5,
Note that N(t,dx) is a martingale.

See Theorem 2.4.16 Applebaum p. 126. This is a powerful result that
gives us a representation for any Lévy process.

With the Lévy processes in hand, we can move on to a different type of
stochastic process that will be useful, Markov processes.
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2. Mathematical preliminaries

2.6 Markov process

Markov processes are another class of processes that we will heavily utilize.
Named after the Russian mathematician Andrey Markov, Markov processes
are defined based on information, in particular, the state of the process at the
present point in time.

A Markov process is a great way of modelling the state of the insured. We
are therefore going to focus on the case of countable states. That is the state
space S has a countable number of elements, or § = {s1, s2,...}.

After defining the process, we are going to prove some important results
about transitional rates and transitional probabilities. We will return to Markov
processes in the chapter on classical insurance.

Definition 2.6.1 (Markov process). Let X = {X,,t > 0} be a stochastic process
on the (Q, F, P) such that X; € S. Then X is called a Markov process if

P(Xit,,, =int1| Xy, = i1,... Xy, = in) = P(Xy,,, = ins1| Xy, =in)

n

for all t; € 7, tisstig,-- € S with P(th = ’L'l,...Xt” = Zn) 7é 0.

. tin+1

We sometimes refer to Markov processes as "memoryless". This is because
our predictions about the future only depend on the current state of the process.
Therefore, knowing what states the process has been in previously tells us
nothing valuable about the future states of the process.

In order to effectively use the Markov process to model the state of the
insured, we also need to have a means of modelling the probability of moving
from one state to another.

Definition 2.6.2 (Transition probabilities). The transition probabilities are the
functions

pij(s,t): = P(Xy = j|Xs =1i), s<t, 4j€S

This is the probability that the process is in state ¢ at time s is in state j at
time ¢.

This is reasonably simple and direct to calculate when dealing with discrete
time. However, we are interested in continuous time. Therefore, we also need
the transitional rates.

Definition 2.6.3 (Transitional rates). Let X = {X,,t > 0} be a Markov process
with finite state space S. The transitional rates p; and pj; for 7,5 € S are the
functions

1- pi,i(ta t+ h)

palt) = h—>(1)I,Ii}>0 h
. pi,j (tv t+ h)
()= 1 — 7
Haj(t) h—>%)r,%>0 h

if they exist and are finite.
If in addition they are continuous in ¢, the process X is called regular.

With this in hand, we move on to some important results regarding Markov
processes.
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Theorem 2.6.4 (Chapman-Kolmogorov equations). Let X be a Markov process
and P(s,t) be a matriz of the transition probabilities. Then

Pig(s,t) =Y pik(s,u)pri(u,t)

keS

For s <u<tyi,j€S and P(Xs =1), P(X; = j) # 0. In matriz notation this
becomes,

P(s,t) = P(s,u)P(u,t)
Proof. We can show this directly using the laws of total probability and the
definition of conditional probability.
piJ‘(S,t) = P(Xt = i|Xs = ’L)
= ZP(Xt =i, X, = k| X, =)

keS
_ Z P(Xt:Z)Xu :k7XS :])
keS P(Xs :])
_ Z P(Xy=14,Xy =k, X5 =j) P(Xs = j, Xu = k)
kes P(XSZJaXu:k) P(XGZJ)
=Y P(Xy = ilX, = k. X, = j)P(X, = k| X, = j)
kesS
=Y P(X; =i|X, = k)P(X, = k|X, = )
keS

Another important result is the following.

Theorem 2.6.5 (Kolmogorov equation). Let X = {X;,t > 0} be a regular
Markov process. Then the backward Kolmogorov equation is:

d
25Pid(8:8) = nils)pi(s,t) — > pik(s)pr(st)
keS ki
and the forward Kolmogorov equation is:
d
P (8:1) = =pi(s, ) (t) + > pikls (1)
kES k]
Note that by convention ju;(t) = —p; i (t).

Before we look at the proofs for these equations, it can be useful to take a few
moments to consider the usefulness of this result. The Kolmogorov equations
give us differential equations describing the probabilities of the process moving
from one state to another. This gives us a method for finding the transition
probabilities through the transition rates.
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Proof. We start off with the backwards equations. Let A > 0 such that
s < s+ h < t. We are going to find the derivative with regards to s via
the definition of the derivative.

d T piﬁj(S-i-h,t)—pi’j(s?t)
%p”(s’t) = i h
- pig(s+Rt) = 3y csPin(s, s+ M)k (s + Ry t)
= lim
h—0 h
. Dij(s+ht) = pii(s,s+ h)pij(s+ h,t)
= lim
h—0 h
. Zkes,k;ﬁ pi,k(S, s+ h)pk’j(s + h, t)
— lim
h—0 h
o (1 —pii(s,s+h)
7%%p173(5+h7t) h
g pin(s,s+h)
hi% Z _ h ka(S + h,t)
keS,k#i
= pij(s, pi(s) — Z Wik (8)pr,;(s,t)
kES, k#i

Using similar calculations. We can find the forwards equations.

@ es(ost) = lim Pid (L1 = pis(5,1)

dt h—0 h

— lim Zkes pi,k(sv t)ka (t’ l+ h) — Dij (S’ t)
h—0 h

i Pii (s, 0)pj(tt+ h) + 3 e s jorj Pik (S, 0)Pk,j (8T + h) — pij(s,1)
h—0 h

. pij (8, ) (Pt +h) = 1) + 3 pes pr Pik (5, )prj (8 T+ 1)
h—0 h

i Pij (s, 0)(pji (Lt + 1) = 1) + 3y cq sy Pik(8, E)pr, (L 6+ D)
h—0 h

= —pi (s, t)pi(t) + Z ik (8, ), ()

keS,k#i

Markov processes are important in a lot of applications. In this thesis
Markov processes going to be used to model the state of the insured. The last
section of this chapter is going to be devoted to the Poisson process.

2.7 The Poisson process

We have already introduced the Brownian motion, the canonical example of a
stochastic process which is a martingale, Lévy, and so on, but this is not the
only process that we will be using. Another important process is the Poisson
process, and a special case of this process, the compensated Poisson process.
We will start by defining the Poisson process, and relating it to the
Poisson random measure. We will introduce the compensated Poisson process.
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Stochastic integrals driven by Poisson processes will be introduced in a later
chapters.

Definition 2.7.1 (Homogeneous Poisson process). The homogeneous Poisson
process with intensity A > 0 is a Lévy process N taking values in NU {0} such
that N(t) ~ Poisson(At). That is,

n!

The next stop on our journey is to relate this to the Poisson random measure.
This is going to give us a much more precise grasp when we get to the stochastic
integrals.

Counsider first a Lévy process X. We define the jump process of X as
AX(t) = X(t) — X(t—). How should one interpret this kind of process?

Suppose there is some Lévy process. The jump process is greater than 0
every time the process has a value at time ¢ different from the value at the limit
from the left. This means that there is a discontinuity at time t. We call a
discontinuity a jump.

We are often interested in the evolution of a process over time. How does
the total number of jumps over a period for such a jump process act? If we
restrict ourselves a little bit, the answer is simple.

Proposition 2.7.2. Let N be an integer valued Lévy process that is almost surely
increasing. If the jump process, AN (t) is such that it takes values in {0,1},
then N is a Poisson process.

The proof of this can be found in Applebaum p- 98. The proof includes
finding that the distribution of time between jumps is exponential. This is an
interesting result in and of itself.

Moving on, we finally get to the Poisson random measure. Note that instead
of counting every jump, we count only jumps of a certain size. This avoids the
problems associated with AX where it is zero P-a.s. and so on. Again, for
more details, see Applebaum

Definition 2.7.3 (Poisson random measure). Let B € B(R \ {0}), i.e. a Borel
set, and let AX be a Lévy jump process. Then the Poisson random measure
on B is defined

N(t,B)(w) =#{0<s<t: AX(s,w) € B} = >  1(AX(s,w))

0<s<t

Moreover, we define the intensity measure over B, u(B),
u(B) = [ N(1LB)(w)aPw) = BN (. B)

A possible interpretation of N (¢, B) is that it is the number of jumps of a
size within the interval B up to a time t. The intensity measure, on the other
hand, is then the average number of jumps in one time unit, related to A from
the original definition.

The time has now come to connect the notion of a Poisson random measure
and a Poisson process.
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Theorem 2.7.4. If B is bounded from below, that is 0 ¢ B, then {N(t, B)}+>0
is a Poisson process.

For a proof of this, see Applebaum p. 101.

Last on the agenda for this section is to consider the compensated Poisson
process. We would like to construct a stochastic integral with jump processes.
This is not possible with the standard Poisson process. The Poisson process is
not a martingale, therefore, we need to find some way of adjusting the Poisson
process for it to become a martingale. The answer to this is the compensated
Poisson process.

Definition 2.7.5 (Compensated Poisson process). Let N (¢, B) denote a Poisson
measure over a set Borel set B with an intensity measure pu(B). Then the
compensated Poisson process is defined

N(t,B): = N(t, B) — tu(B)

The final part of this section is to prove that this in fact is a martingale,
whenever u(B) < oc.

Lemma 2.7.6. For a B € B(R\ {0}) the compensated Poisson process N(t, B)
s a martingale under a suitable filtration.

Proof. We need to check the definition.
e we can find an upper bound,
E[[N(t, B)[| = E[[N(t, B)|| = E[|N(t, B) — tu(B)|] < E[|N(t, B)|] + E[[tu(B)]]
— BN (L, B)] + tu(B) = 2tu(B)

The third equality follows from the fact that N(¢) > 0 since it is increasing
a.s. and as a Lévy process it starts at 0. Moreover, the value of the
Poisson process at time ¢ is Poisson distributed with intensity tu(B).

e The last thing to check is the Martingale property. Let s <t,

E[N(t, B)|Fs] = E[N(t, B) — tu(B)||mathcal Fy]
=E[N(t,B) — tu(B) + N(s,B) — N(s, B) + su(B) — su(B)|Fs]
= N(s,B) — su(B) + E[N(t, B) — N(s, B)|Fs] — tu(B) + su(B)
= N(s,B) + E[N(t, B) — N(s, B)|] — (t — s)u(B)
= N(s,B) +E[N(t — s, B)] — (t — s)u(B)
— N(s,B) + (t— $)u(B) — (t — 5)u(B)
= N(s, B)

With this study of the Poisson process, we are finished with the mathematical
preliminaries. This has been a foundation for the following chapters. In the
next chapter we will use some of these tools to construct the stochastic integral.
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CHAPTER 3

Stochastic integrals

In this chapter we will develop the theory of stochastic integration and some
useful results that will be used in the rest of the thesis. Since we are going to
work with integrals driven by both a Brownian motion and a compound Poisson
process, we need a more general integral based on semimartingales.

Before we get to that, however, we need to introduce LP— spaces. Then we
will discuss convergance, before we construct the stochastic integrals and prove
some useful properties. After that we introduce some examples and one of the
most important results in stochastic calculus, It6’s formula. Lastly, we will look
at stochastic differential equations and the Feynman-Kac formula.

3.1 LP—spaces

LP—spaces are a very useful vector spaces when dealing with stochastic processes,
a special case of which is the L2—space. Convergence is the motivation for
why we need LP—spaces. We are not able to prove the convergence needed
to construct stochastic integrals in any stronger sense than in L2. It is worth
noting that we are dealing with equivalence classes in LP-spaces, and not the
elements themselves.

The first thing we need to do is to define what a norm is. The norm on a
vector space is how we measure distance.

Definition 3.1.1 (Norm). If V is a vector space over R, a norm on V is a
function || - ||: V — R such that,

o ||u|| > 0 with equality if and only if u = 0.
o |lau|| = |af||u|| for all & € R and all u € R.
o Jlu+v|| <||ul| + |Jv]| for all u,v € V.

The norm on theses spaces is, as the names might suggest, the LP—norm.
This is defined as such.

Definition 3.1.2 (L?—Norm). The L?—norm for some constant 1 < p < oo on
the function f is defined as follows,

1/p
11l = (/Q Ifl”du)
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3. Stochastic integrals

We also have the set of L?—functions,
LY ={f:||fllp < oo, f is measurable}
This integral is in the Lebesgue sense.

Example 3.1.3. Suppose X is a random variable. When dealing with random
variables the above definition becomes,

1/p
X1, = ( / |X|de)

If || X||, < oo for some p we say that X € LP.

There are some important inequalities in LP—spaces that are going to be
useful.

Theorem 3.1.4 (The Holder inequality). Let p,q € (1,00) such that % + % =1.
Suppose that f € LP and g € L9. Then, fg € L' and

fgll = / \Faldu < 11 llollglla

Note that we can find ¢ explicitly by solving the condition on p and ¢. It is
_p fe e S
q= 35 This is a well know theorem, and a proof can be found in Bédos -2019
or Kuttler
Another important inequality is the Minkowski inequality. This is a corollary
of the Holder inequality.

Corollary 3.1.5 (Minkowski’s inequality). Let p € [1,00). For all f,g € LP we
have,

I+ gllo < 1f1lp + llglln
For a proof see [A.2]

These inequalities are important in many proofs involving stochastic integrals,
particularly when trying to prove convergence. We will study convergence more
closely in the following section.

3.2 Convergence

Since we have now defined the LP—norm and have yet to start on the stochastic
integral part, it could be fitting to discuss convergence. There are multiple
ways a sequence can converge. These modes of convergence differ from each
other, although some modes imply others.

Definition 3.2.1 (Types of convergence). Let X be a random variables and
{X,(w)}nen be a sequence of random variables.

o If X, (w) = X (w) for all w € 2, we say that X,,(w) converge pointwise to
X(w).

o If there exist an event E of probability zero such that if w ¢ E
X, (w) = X(w), we say that X,, converge almost surely to X.
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3.3. Stochastic integral: Construction

o If P(|X,, —X|>¢) = 0asn — oo, we say that X,, converge in probability
to X.

o If E(|X,, — X|P) — 0 as n — oo, we say that X,, converge in LP to X.

e A sequence of random variables {X,,} with distribution Fx () is said to
converge in distribution to X if lim Fx, (z) = Fx(x).

Remark 3.2.2.

o The strongest notion of convergence is pointwise. We will seldom use this
one.

e LP convergence implies convergence in probability, see Proposition 4.4 in

Walsh 2012) p. 118.

e Convergence almost surely implies convergence in probability, see
Proposition 4.5 in Walsh 2012 p. 118

Lastly, this leads to a couple of handy theorems about convergence and
expectations.

Theorem 3.2.3 (The monotone convergence theorem). Let {X,}nen be a
sequence of random wvariables such that X, < X,41 and lim, ;. X,, = X,
both almost surely. Then

lim E[X,] = E[X]

n—o0
Theorem 3.2.4 (The dominated convergence theorem). Let {X,}nen be a
sequence of random variables, and let X be a random variable. Suppose further
that there exists a random variable Y such that | X, | <Y for all n almost surely,
lim, 00 X = X a.s. or in probability and that E(Y') < co. Then,

lim E[X,] = E[X]
n—oo
For proofs of both of these, consult Chapter 4.2 in Walsh
This has been convergence, the silence before the storm. In the next section
we will use many of the concepts that we have introduced to construct stochastic
integrals.

3.3 Stochastic integral: Construction

We now move over to the actual construction of the stochastic integral. We start
with step functions and expand the class of integrable functions by showing
how each broader class can be approximated. The problem we run into is that
the approximations do not, in general, converge in any stronger sense than L?2.
However, we will survive this.

The smallest class of integrands which we will define the stochastic integral
for is step functions. In this section we denote the set of step functions S.

Definition 3.3.1 (Stochastic integral for step functions). Let X = {X;,¢ > 0} be
a semimartingale and h be a random varibale. Define Y; = Y | hil(r, 1,007 (),
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3. Stochastic integrals

i.e. a step function on some partition IT = {7}, T5,...}. Then the stochastic
integral is defined as

t n
/ }/SdX(s) = Z h"L (Xt/\T7;+1 - Xt/\Ti)
0 i=1

This is the first baby step on the way to stochastic integration. Beginning
here we can actually already prove our first important stochastic integral result.

Theorem 3.3.2 (It6 isometry). Suppose f is a step function, and X is a
martingale. Then,

([ o) ][ [

Proof. We will use the fact that for independent martingales, E[AX;AX,] =0
and E[AX?] = 1, where we use the notation that AX; = X; — X; 1.

n

B K/Ot f(s)dXs>2} = E[é hiAX; ;thXj]
= E[Z

n
i=1

NE

hih; AX;AX;]

J

Il
-

(DCT) =) zn: hih; E[AX;AX]

i=1j=1
B 0, for i #j
B h?, fori=j
The result follows from this last equality. |

Note that this result has been proven for martingales, not semimartingales.

The class of step functions is not particularly useful in most applications.
However we can show that many functions can be approximated by the step
functions.

Consider now the following set of functions.

Definition 3.3.3. Let B € B(R™). We denote H? to be an equivalence class of
mappings F': [0,t) X B x © +— R such that

o F is progressive, i.e. measurable on Q ® [0, T].
o E[fy [F(t)]2dt] < oc.

This might seem like a cryptic definition, but the first condition ensures
mesurability and the second is a boundedness condition.

Lemma 3.3.4. S is dense in H?

The proof of this is very involved and can be found in Applebaum
p- 218.

The intuition behind this lemma is that we can approximate any function
in H? with a function from S.
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3.4. Stochastic integral: Properties

Since we have now learned that we can approximate any function with a
sequence of step functions, we can extend the stochastic integral to also allow
integrands in 2.

Definition 3.3.5 (Stochastic integral for H2—functions). Suppose X = {X;,t >
0} is a semimartingale. Let f € H? and {f,, }»>1 be a sequence of step functions
such that f, — f,ie. f, € S Vn > 1. Then the stochastic integral is defined,

t
/ f(s)dXs = lim tfn(s)dXS,
0

n—oo 0

It is possible to extend this even further to the following class of functions.

Definition 3.3.6. Let B € B(R™). We denote P? to be an equivalence class of
mappings F': [0,t) X B x Q +— R such that

o F is predictable, i.e., left continous and adapted.
o P(f|F(t)]dt < 00) =1

We also have a very similar lemma as above.
Lemma 3.3.7. H? is dense in P2.

A proof of this can also be found in Applebaum 2009 p. 225.

Using a similar definition as for H? functions, we can construct the integral
for P2 functions. However, this is not requiered for this thesis.

We have now constructed the stochastic integral for a sufficiently wide class
of functions or processes. In the next section, we will explore some of the
properties of the stochastic integral.

3.4 Stochastic integral: Properties

We start off by proving a more general case of a previous result. We have already
shown how It&’s isometry holds for step functions. However, we would like it to
hold for all functions in H?2. This presents a problem. In our framework where
the integral is defined, this does not hold in general for semimartingales.

Theorem 3.4.1 (1t6 isometry I1). Let f € H? and X; be a martingale. Then
the following holds,

B [(/Ot f(S)dXs>2] -0 [/Ot If(S)IQdS}
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3. Stochastic integrals

Proof. Let f € H? and {f,}n>1 be a sequence in S such that f, — f in L?
from below. Then,

o[( [/ rwe) = [( [ rwe ) ( f o )]

-2 [(m, [ #coex

_E —(nli_{rolo / Fuls)dX,

(DCT) = lim E K / Fu(s)dX,

sy < o [ 0r0)]

wor) =5 [( i, f/ storas)
-=[(] f<3>2d5ﬂ

\_/vv

We continue this section with some nice and handy properties.

Theorem 3.4.2 (Properties of the stochastic integral). Let f € H? and let X be
a semimartingale. Moreover, let o, 3 € R Then,

o Jolaf +Bg)dXs = a [) fdXs+ B [) gdX;.

Jy faXo+ [1 fdX, = [) fdX,.

o Let V, = fg Y.dX,. Then V; is a semimartingale and fot Z,dVy =
[5 Z.Y.dZ,.

o X is a martingale, then E[fg fdXi =

fg fdX, is Fy—measurable.

o If X is a local martingale, then fg fdXs is also a local martingale.

The proof of this is very long and has been relegated to the Appendix, [A-2}]
There are also two important representation theorem. These allow us to
represent many stochastic processes with stochastic integrals.

Theorem 3.4.3 (The It6 representation theorem). If X (t) is in L*(Q, Fr, P),
then there exists unique functions ®1(t) and ®o(2,t) such that,

X(t)=E[X]+ /OU(S)(I)l(t)dB(s) —I—/O /R\{O} h(z,t)®(z,t)N(dz, dt)
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3.5. Example: The It6 integral

Theorem 3.4.4 (The martingale representation theorem). If X is a square

integrable martingale, i.e. E[X?] < 0o, then there exists unique functions G(t)
and H(z,t) in L? such that,

M(t) = B[M(0) +0/G JAB(s //R\{O} (2, 1)dN (dz, ds)

A proof of both theorems can be found in Applebaum 2009, pp. 303-304.
These have been some important results about stochastic calculus. In the
next section we will look at an example of a stochastic integral.

3.5 Example: The It6 integral

We now turn our attention to a commonly used stochastic integral. The It6
integral is integrated with respect to a Brownian motion. It is a very common
example of a stochastic integral, and is heavily used in practice. We usually

denote the Brownian integral
t
[ rise
0

where f € H? and B is a Brownian motion. The Brownian motion is a
martingale, as opposed to a semimartingale. This does not pose any problems,
though, as any Lévy process is also a semimartingale, see Prop. 2.7.1 in
Applebaum [2009] p. 137.

The Brownian motion driven integral does have some attractive properties.
For example, if the integrand f is deterministic, then the integral is a random
variable with a normal distribution. We find this situation in many applications,
for example the Black—Scholes model. To see this consider first the step function

I

/f )dB(s Zf YAB,

Here we see that we have a sum of something deterministic multiplied by an
increment of the Brownian motion. The increments of the Brownian motion is
a normal random variable. Moreover, the sum of independent normal random
variables are also normal. The Brownian motion has independent increments,
since it is a Lévy process. Let o be the standard deviation of the Brownian
motion. Then the CF of the integral is,

¢
on(u) = E[exp(iu/0 fn(8)dB(s))] = E[exp( Zqun YJAB,)]
(independent increments) = ﬁ Elexp(iuf,(t;)ABy,)]

n
1
(increment normal r.v.) = Hexp 5 o(ti —ti—1) fu(ti)u)?]

:eXP%ZU _z lfn(z)) ]

(2
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3. Stochastic integrals

This is the CF of a normal random variable. Letting n go to infinity gives us the
CF of the integral with deterministic f € #2. Hence the integral is a normal
random variable.

The Ito6 integral is very useful indeed. We are not done with stochastic
calculus. For future results, we need the concept of quadratic variation. This is
the topic of the next section.

3.6 Quadratic variation

One way to consider the "smoothness" of a function is with notion of quadratic
variation. This concept is important in the Itd formula. A result we will become
very familiar with later. However, the first thing we will do is give a more
general formal definition for quadratic variation.

Definition 3.6.1 (CovariationI). Let X and Y be semimartingales and IT =
{70,71,...,7n} be a partition of stopping times. We define the covariation of
X and Y as

n

X, Y]e = lim VA = lm D Xener, = XenrplYinrp, — Yinry

, (3.1)

here the limits are in the sense that the distance between points in the partition
goes to zero.

When we are dealing only with a single process we have the following.
Definition 3.6.2 (Quadratic variation). Let X be a semimartingale, then X’s
covariation with itself is called the quadratic variation and is denoted,

X, X]; = [X],.

An equivalent definition can be made as follows.

Definition 3.6.3 (Covariation IT). Let X and Y be semimartingales. Then the
covariation of X and Y is defined as the process,

t t
X,Y] = X,V —/ X,_dY, —/ Y,_dX,,t > 0. (3.2)
0 0

This is, in fact, an equivalent definition to Definition [3.6.1] see Theorem
23(ii) in part IT chapter 6 of Protter

In some contexts, it can be usefull to separate the continuous part and the
discontinuous part of the quadratic variation. We do this via the following
notation,

(X, Y] = XoYo+ [X, Y]+ > AX,AY,,

0<s<t

where [X,Y]¢ is the continuous part and AX,AY is the discontinuous part.
The smoothness of a process is important in many applications. We need it
for the next section about It6’s formula.
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3.7. It6’s formula

3.7 Ito’s formula

In this section we are going to turn our eyes to one of the most important
results in stochastic calculus. It6’s formula gives us a method to calculate some
stochastic integral, but it can also help us find the dynamics of a stochastic
process. First, however, we wish to introduce some notation.

Definition 3.7.1 (Stochastic differential). Let p,o and h be functions. A
stochastic differential is on the form

dX () = p(t, Xo)dt + o(t, Xo)dW (t) + A\{O}h(t,Xt,z)N(dt,dz). (3.3)

Where dW (t) is the stochastic integral with regards to the standard Brownian
motion, N(dt,dz) is with regards to the compensated Poisson process, and dt
is the time integral.

Theorem 3.7.2 (Multidimensional 1t&’s formula). Let f € C*2([0,7T] x RY) and
let X(t) = (X1(t), Xa(t),...,Xq(t)) denote a d-dimensional semimartingale, if
X(t) is on the form (3.3)) then,

! 8f i,c
%0 = 10.X0)+ 32 [ 5 6 Xi(o-ax:
1 borf .
T2 1<§Sd/0 Ox;0z; A XJ]S

+/Ot (/|x|<1f(s’Xs_ + h(s,x)) — f(s—, X )>N(ds da)

- /075 </|x|<1[f(8_’ Aol =1 X
— ihi(s,x)

where Xb¢ is the continous part of X;.

For proof see Theorem 4.4.7 in Applebaum [2009] p. 251.
A special case of this is the one-dimensional Ité formula. The proof for this
one-dimentional case is a simple application of Theorem with d = 1.

Theorem 3.7.3 (It&’s formula). Suppose f € CL2([0,T] x R). If X, is a
semimartingale on the form (3.3)) then,

;)ajj: (s—, Xs)u(dx)> ds,

Lorf

| ZLax, x|

S

f(t, X)) = f(0,X0) + /833 _)dX¢

+/0 (/z|<1f(8_’X5_ + h(s,x)) —f(s—,Xs_)>J\7(d8>dw)

+/Ot (/ml<1[f(s_,xs_+h(s,x))

of

— f(s—, Xs—) — h(s,x) 8x(s,Xs_)l/(d:L’)])ds
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3. Stochastic integrals

In addition to the Itd formula we also have a result relating to the product
of two different processes.

Corollary 3.7.4 (1t6’s product rule). Let X and Y be semimartingales. Then
the following holds,

¢ ¢
XY, = XoYo +/ X, dY, +/ Yo dX, + [X,Y];
0 0

Proof. This can be proven via the It6 formula for the function f(z,y) = xy.
[ |

[t6’s formula helps us in many different ways, one of which is when dealing
with stochastic differential equations. It is often easier to model the change
in some phenomenon than to model the object itself. This is also the case
when what we want to model is random. For this purpose we use stochastic
differential equations.

3.8 Stochastic differential equations

In this section we are going to develop a little bit of the theory surrounding
stochastic differential equations, or SDEs. These are important tools in the
modelling of many real world phenomena. One of the first things we need to
consider is whether solutions to these kinds of equations exist. If the solution
exists, we want to know if the solutions unique.

These questions of existence and uniqueness have been studied extensively,
and luckily, well-known conditions exist to ensure this.

Consider the following SDE:

dX (t) = (s, X(£))dt + o (s, X (£)) AW (£) + /R " h(t, X;(t), 2)N(dt, dz)

Here X(t) is a multi-dimensional vector of independent semimartingales X (t).
In addition, pu and ¢ are d-dimensional vectors of functions.

We can formalize existence and uniqueness conditions in the following
theorem.

Theorem 3.8.1 (Existence and uniqueness of SDEs). Let T' > 0, pu(-,-): [0,T] x
R? i R?, o2 [0, T]xR? = R¥*™ be measurable functions such that the following
holds,

o Linear growth: |u(t,x)| + |o(t, )| + fR\{O} |h(t,z)|?v(dz) < C( + |z]),
r€RY t€[0,T] and C € R.

o Lipschitz continuity: |u(t, x) —p(t, y)|+|o(t, ) —o(t,y) |+ [p\ 1oy 1Pt 2) —
h(t,y)|v(dz) < D|z —y|, 2,y € R, t € [0,T] and D € R.

Moreover, suppose Z is a random variable measurable for Foo such that

E[|Z]?] < .
Then the SDE,

AX (1) = p(s, X (£))dt + o(s, X (£))dW (t) + /]R o h(z,t, X (£))N(dz, dt)
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3.9. The Feynman-Kac formula

Xo=2

has a unique solution X (t) that is adapted to the filtration generated by Z, W (t)
and N(t,z) and with E[[) |X (t)|2dt).

This is a well known result, and a proof of a special case, where h = 0, can
be found in @ksendal p- 70. Another proof can be found in Applebaum
p. 374. We have given our own proof in Appendix, [A-2]

SDEs wil be heavily featured in later chapter as models, e.g. for securities.
One of the most fasinating results in stochastic calculus, in the author’s humble
opinion, is the subject of the next section.

3.9 The Feynman-Kac formula

We finish up this chapter by introducing the Feynman-Kac formula. The theorem
was derived by the famous Richard Feynman and Mark Kac (pronounced "Kahts"
Raimi while both were working at Cornell in the 40’s, Kac p- 115.
The formula relates certain partial integro-differential equations (PIDEs) with
stochastic processes. This allows us to find a numerical solution to a PIDE
by taking the pathwise average of a stochastic process. It also allows us to
calculate a conditional expectation by solving a PIDE.

It is common in the literature to treat the case where the stochastic process is
driven by a Brownian motion. However, we also need jump-processes. Therefore,
we are going to prove a slightly generalized version of the Feynman-Kac formula.

Theorem 3.9.1 (The Feynman-Kac formula). Consider the PIDE defined,

0= L‘g’ b, u(x,t)ia“é? 2 %az(x,t)ia ggz 2 (3.4)
u(x x —u(x,t) — h(x Ou(x,t) v(dx

L R e R e e ECC D)

—Vi(x,u(z,t) + f(x,t) (3.6)

Defined on all x € R, t € [0,T] and with terminal condition u(xz,T) = (x). ¢
is a function. Then the solution u(x,t), is given by,

T CV(Xpr)dr V(X r)dr
u@m=EU"fﬁ(“”7mewmﬁ<“”waﬂ&:4
t
Under the probability measure P such that,

dXt = ,u(Xt, t)dt + O'(Xt, t)dBt + / h(t, Xt, Z)N(dt, dZ)
R\{0}

where the Brownian motion and the compensated Poisson process are pairwise
independent and with initial condition X; = x

The proof for existence of solution has been omitted here, but can be found

in Baldi 2017}, p. 317, or in Friedman (1975
Proof. Suppose u(zx,t) is the solution to (3.4). Consider the process,

u t u
Y(t) — fs V(Xmu)du’u(Xt,t) +/ 6—fs V(Xr,r)drf(Xu,u)du
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By It6’s product rule,

u t u
dy (1) = d(e_fs V(X“’u)d“>u(Xt,t) +d( / e J Ve mar f(Xu,u)du>
- [ V(X u)du
+e Js du(Xy,t)
V(X e Ve o gy o [TV e gy

2

_f:V(Xu,u)du X @ X @ B 1 X 2@
+e 1( t,t)atdt-i-o( tﬂf)atd <t)+20< vt) 829:dt

4 / (X + h) — u(X._)dN (dz, di)
R\{0}

+ / (X + h(Xert,2),1) — u(Xar£)) — h(Xort, 2)
R\{0}

ou
ot

5, 0%u

Pz

g

X da 1
_ v [_V(Xht)u(Xt,t)—i—f(Xt, )+ (X t) 50 + 5

+
—|—/ (w( Xt + h( X, t,2),t) — u(Xs, 1)) — h(X4, t, 2) }dt
R\ {0}

~ ["V(Xuwydu_Ou
7ot

4o J VK / w(Xso + h(Xi,t,2)) — (X, )dN (dz, dt)
R\{0}

+e dB(t)

_ e—f: V(Xy,u)du (X t)%dB( )

4 Jo ViXuwau / WXy + h( Xy, t,2)) — (X, )N (dz, dt)
R\{0}
The expression inside the square brackets is equal to 0 by assumption, since it
is the solution to the PIDE. This leaves us with two stochastic integrals, one
driven by Brownian motion, and one by a compensated Poisson. This means
that we are left with a sum of two independent martingales, which obviously is

also a martingale, see Proposition [2.4.10
Now taking the integral on both sides yields,

T r
YV(T)-Y(t) = / e . V(X“’u)dua(XT,r)%dB(r)
t

T T ~
+ / e J V(X“’“)du/ w(Xs— + h(Xs,5,2)) —u(Xs_)dN(dz,ds)
t R\{0}

Since the right side is a martingale with value at time zero of 0, we have
that the conditional expectation with Xy = x is,

EY(T)|X, = o] = BY ()| X, = 2] = u(s, ),
which means that,
V(X T "V(X
uls, @) = Ble™ o YOty 1) 4 / o SV L rydr| X, = ]
which proves the result. |
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3.9. The Feynman-Kac formula

We have now developed some of the theory of stochastic calculus and proven
some of the most important results like the existence of unique solutions to
stochastic differential, the It6 and the Feynman-Kac formulas. These are going
to be central in the study of financial markets and insurance contracts in the
coming chapters.
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CHAPTER 4

Mathematical finance

The two previous chapters have been spent developing a solid theoretical
framework. The examples have been limited and not particularly applied. In
this chapter, however, we start applying the theory to concrete problems from
the financial field. We are going to dip our toes into problems like arbitrage,
portfolios, and option pricing. The subject matter could fill an entire library,
so we are sadly forced to keep it short and sweet.

To avoid repetition, we note here that for the entirety of the chapter we
are dealing with the filtration generated by the securities’ price process. This
means that we are dealing with a filtered probability space (2, Fr, P) equipped
with the filtration {F }iez.

Moreover, we are interested in dealing with securities that are modeled by
SDEs on the form:

dS(t) = p(t, S(t))S(t)dt + o(t, S(t))S(t)dW (t) + S(t)/ h(t,S(t), z)N(dt,dz)
R\{0}

Assume that the coefficients are Lipschitz continuous and of linear growth,
such that a unique solution exists.

This inclusion of jumps means that we cannot use standard or generalized
Black-Scholes markets. We have to venture into Lévy-It6 markets, where valuing
contingent claims might not yield a single price. We forget these problems for
now and focus on the basics.

We start this chapter by introducing one of the basic components of a
financial market, the security. Then we talk about portfolios and trading
strategies before we venture into arbitrage theory and Girsanov’s theorem.
After Girsanov we talk briefly about complete markets before we finish with
the pricing of contingent claims.

4.1 The financial market

A financial market is a place where market actors (often called investors) meet
to exchange financial goods. These goods can often be stock or bonds, or they
can be financial contracts, commodities or even weather, for more on weather
derivatives see F. E. Benth, J. S. Benth, and Koekebakker We can often
call the goods traded in the markets securities, assets, or funds. Financial
markets are vital in a modern economy. They allow businesses, governments
and even private individuals to raise cash, manage of risk, and even move income
and consumption in time.
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We are not generally concerned with the people in the market, but rather
the goods exchanged in it. We call these good securities. We say that a market
has n risky securities and a risk free security. The risk-free security, usually
indexed by 0, is governed by the following dynamics,

dSo(t) = r(t)So(t)dt
Sp(0) =1,

where r(t) is a deterministic rate of risk-free return. We sometimes call this
security the "bank account" since there is assumed no risk of default. The bank
account process is sometimes denoted B(t) instead of Sy(t).

The risky assets, on the other hand, are a bit more complicated. This does
not mean that the risk-free security is trivial; it can be very complex. We say
that our risky assets are governed by the following dynamics under P,

dsS;(t) 4 o 4 AR .
Si(0) = pu(t, Si(t))dt + o (t, Si(t))dW (t) + /R o h(t,S;(t),z)N(dt,dz) (4.1)
S;(0) = S;(0) (4.2)

Where p is a d-dimensional vector, o and h are d x m matrices, dW =
(dWy,dWs, ..., dW,,)T is a vector of m independent standard Brownian motions
and N(dt,dz) = (Ny(dt,dz), No(dt,dz),..., Ny(dt,dz))T is a vector of d
independent Poisson processes.

In addition, we need some conditions on u, o and h in order to ensure that
this is well defined. Since they are deterministic, this is not a problem.

The securities are not the only thing that are traded in the financial markets.
A separate class of financial assets are derivatives, often called options or
contingent claims. These are financial contracts that promise the owner a
payment by the issuer if certain conditions apply. This is usually tied to the
price of some underlying security at a certain time or period in the future.
For example, these financial contracts can be used by for example insurance
providers in order to be sure that they can raise enough money to pay pension
obligations. An important example is the European call option.

Example 4.1.1 (The European call option). Consider the i’th financial asset, a
time to maturity 7" and an amount K > 0. Then the pay off of an European
option written on the asset i is,

max(S;(T) — K,0) = (Si(T) — K)

We will try to find a price for such a contract at the end of the chapter. In
order to price contingent claims, we need to consider portfolios and trading
strategies. This is the next topic.

4.2 The portfolio and trading strategies

We stated in the introduction of this chapter that financial securities are bought
and sold, but where did the investors keep track of these assets? What happened
to them after the sale was done? The answer to this is the portfolio.

Definition 4.2.1 (Portfolio). The process n(t) = (no(t), (%), ..., N (t)) is called
a portfolio or trading strategy if it is F- adapted and the following hold,
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. B _foT |n0(t)r(t)50(t)|dt} < .
. B _fOT |niu(t,Si(t))Si(t)|dt] < o0, for all i > 1.

« E| S |nia(t,Si(t))Si(t)|2dt} < o0, for all i > 1.

e E foT fR\{o} |nih(z7t,Si(t))S’i(t)|u(dz)dt} < o0, for all i > 1.

Remark 4.2.2. An assumption that has been implicit until now has been that
we are allowed to trade fractional securities. This can seem unrealistic but
what we are doing in reality is specifying the composition of a portfolio without
specifying the size.

Another thing to note is that there is no condition of positivity on any 7;.
This means that short selling and borrowing is allowed. Hence, the investor is
allowed to have a negative position in a security.

The latter four conditions are rather technical, but they ensure that the
stochastic calculus works out later. In particular, the third condition ensures
that the It6 differential in gives rise to a martingale. The trading strategy
describes how many units of a security are held at what time.

What is the value of a portfolio?

This is a question of accounting, and we elegantly sidestep the complexities
of the accounting world and assume that we can know the value of security in
continuous time. Then the value of the trading strategy at time ¢ is,

Vi (t) := mo(t)So(t) + Z ni(t)Si(t)

The set of trading strategies is quite extensive. Therefore, we need to narrow
it down a bit. To do this we introduce some properties that we would like our
trading strategies to have.

Definition 4.2.3 (Admissible trading strategy). We say that a trading strategy
is admissible if there exists some K € R, K < 0 such that

V,(t) > Ka.s.

The interpretation here is that the investor has a limit on how large losses
can be. This can be because the person is insolvent, or that no financial
institution want to extend more credit. In other words, cash is finite.

The other property that we want our trading strategy to have is related to
what makes the value change. There are two ways of making the value of a
trading strategy change- either the value of the security changes, or the amount
invested changes. We would like the change in value to only reflect a change in
value of the underlying asset. Indeed, consider what happens when we use It6’s
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product formula on the value of the portfolio.

d(Vy (1)) = d(mol1) +§hz
= dno(t)So(t) + 1o(t)dSo(t Z dni (1) Si(t) + Y mi(t)dSi(t)

— dno(t)Solt) + mo(H)reSo() me ’*imWﬁ@

The value changes if either the value of the security changes or the amount
invested changes. This gives us some of the motivation for the definition of a
self-financing trading strategy.

Definition 4.2.4 (Self-financing trading strategy). We call a trading strategy
self-financing if,

dni(t)Si(t) =0, Vi>0

The practical implication of this is that cash cannot be deposited or
withdrawn from the portfolio.

Moving forward, we assume that our trading strategies are self-financing
and admissible. The last problem to handle in this section is the time value of
money.

The reason we like to have money is that we would like to buy things from
time to time, like books, beer and electricity. However, the price of the things
we would like to buy changes over time, both relative to the value of money,
and relative to each other. This change in the value of money has to be taken
into account in our model. Therefore, we introduce the concept of discounting.

When we discount the value of something, we adjust the value of future
payments such that they are comparable to payments we receive today.

A common way to do this adjustment is with the bank account. The bank
account process is a magical time machine that transports our money from the
world of today and into the world of tomorrow. To motivate this, suppose we
are given a choice between getting a payment of a Norwegian krone today or in
a year. Which has the highest value? Obviously the krone today, because we
could put the krone in the bank and earn some interest on it. Thus, the value
today of the payment in a year has to be the amount of money we need to put
in the bank to get 1 NOK in a year. Hence the discounting factor needs to be
the bank account.

It is in principle possible to use any security as a numéraire. However, the
bank account process does has an advantage. It is the only process that is
risk-free. For example, if one were to use the shares of a company as a numéraire,
one could risk the company going bankrupt. Then its shares would no longer
be traded in the markets and the numéraire would no longer exist.

We define the discounted price and value processes.

Definition 4.2.5 (Discounted Price and Value process). We define the discounted
price process for security 1,

Gi(t) = e~ o g, 0.
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Moreover, we define the discounted value process for security 1,
B ot
V(1) = e Jo 7, (1),

t
Remark 4.2.6. If the numéraire is the risk-free asset Sy, then e Js reds g, (t) =
Si(t)
So(t) "
This has been a basic introduction to some of the most important elements
in mathematical finance. In the next section, we will tackle the problem of
arbitrage.

4.3 Arbitrage

One view of a financial market is that it is a market for risk. The investors
in the market buy and sell risk to each other. In this view, the only fair way
to make money is by taking on a risk. For stocks, this means that one makes
money by buying the stock and taking on the risk that the company will go
bankrupt. If you did not buy the stock, you would instead be sitting with cash
that you could spend.

In light of this opportunity cost, we would like our models to reflect the fact
that one cannot make money without taking on some risk. Profit without risk
is called arbitrage and we can define it mathematically.

Definition 4.3.1 (Arbitrage). A self-financing trading strategy 7 is said to
an arbitrage strategy if the associated value process V() has the following
properties,

« V,(00=0

o V,(t) >0 as. for every t € [0,1].

o P(V,(T)>0)>0.

There are other notions of arbitrage, but this one suffices for us.
Remark 4.3.2. One can interpret the conditions as follows:

e The value of the portfolio is zero in the beginning. This means that the
purchase of securities has been wholly financed by debt.

o The value of the portfolio is never negative.
o It has to be possible for the portfolio to have a positive value at time T.

e This notion of arbitrage is a very strong one. A less strict notion is called
"no free lunch with vanishing risk" (NFLVR). This is a more mathematically
complicated definition, see Definition 6.1.6 in Bingham and Kiesel 1998

In reality, arbitrage exist in financial markets, but they often only exist
for a very limited time. In principle, non-arbitrage is not realistic, but for all
practical purposes it does make sense. Assuming non-arbitrage also means that
we can take advantage of non-arbitrage pricing.

We can formalize this kind of market.
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Definition 4.3.3. A market model is called arbitrage-free if there does not exist
any admissible self-financing trading strategy that is also an arbitrage strategy.

How do we know if this is the case? It is not generally possible to test every
possible trading strategy, so what kind of condition would ensure that we are
in a arbitrage free-market?

To motivate the condition, consider one of the fundamental examples of
arbitrage, different prices for the same security. If a stock is traded for two
different prices at different exchanges, then obviously we could make a risk-free
profit by buying the stock at the lower price and sell it again at the other
exchange for a higher price.

What causes a difference in price? Different investors have different view of
securities. Some are optimistic and some are pessimistic, and this is a reflection
of risk. If then the optimists were allowed to trade with other optimists in one
exchange and pessimists with pessimists in a different exchanges, but not with
each other, then obviously different prices would prevail.

The idea is to remove the different risk assessments and risk appetites, and
find some probability measure for the entire market, the risk neutral probability.
This will solve our problem of arbitrage.

Hopefully this story gives some kind of motivation to why we move in the
direction of probability measures to solve our problems.

We start with the end and introduce the probability measure we are
eventually going to use.

Definition 4.3.4 (Risk neutral probability measure). We say that a probability
measure, @@ on (2, F) is a risk-neutral probability measure or alternatively
equivalent local martingale measure (ELMM) if,

e () is equivalent to P.
o The discounted price process, S; (t) is a local martingale for all securities.

If the discounted process is a martingale, then we call Q) a strong risk neutral
probability measure or equivalent martingale measure (EMM).

Recall the definition of equivalent measures Definition [2.1.9
We can now use this to prove that there is no arbitrage in the market.

Theorem 4.3.5. If there exist an ELMM, then there is no arbitrage in the
market.

This is one implication of the famous first fundamental theorem of asset
pricing. The following proof follows the proof in Bingham and Kiesel 1998
p- 175, but this is a slightly more general setting, so a proof is included.

Proof. Let 1 be any trading strategy that is self-financing and admissible.

We first want to show that then the V;,(¢) is a supermartingale. Since S is a
local martingale, then the process G.ta(t) = fot ndS(u) is also a local martingale.
This process is sometimes referred to as the gains process. The value process
can be written V,,(t) = V,(0) + G, (t). Since 7 is an admissible process we have
that V;,(t) > K for some K € R. Since V,(t) is bounded from below it has to be
a supermartingale. Indeed, let s < ¢, and note that Vn (t AT),) is a martingale
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for an increasing sequence of stopping times {7, },>o such that T;, — oo.

E[V,(t)|Fs] = E[lirginff/n(t AT |Fs]

(Fatou’s lemma) < lirr_l}infE[Vn (tAT,)|F

= liminf V,,(s A T},)

n—oo

= Vn(s)

Here we have used Fatou’s lemma, see Lindstrgm 2017, p. 266.
Suppose 7 is an arbitrage strategy. Then, together with the first part we
have that,

EQ[VW(T)] = EQ[VU(T”]:O] < ‘77,(0) =0.

Since 7 is admissible, K < Eg[V,(t)] < 0. However, for n to be an arbitrage

opportunity P(V,,(T") > 0) > 0 which is clearly not the case. [ |

As mentioned, this is one implication of the first fundamental theorem of
asset pricing. The proof of the other implication is very long an complicated,
but can be found in Delbaen p. 164. For the sake of completeness we also
state the full theorem.

Theorem 4.3.6 (The first fundamental theorem of asset pricing). There exists
an equivalent local martingale measure if and only if NFLVR holds.

This result ensures not only that we can know that there is no arbitrate,
but it also gives us a nice way of pricing cash flows. We can simply use the
expected discounted cash flow. However, it does not state how we can go about
finding such a probability measure. That is the goal of the next section.

4.4 The Girsanov theorem

The Girsanov theorem is fundamental to finding changes of measures that make
pricing of portfolios and derivatives possible. The theorem gives us a way to
check whether there is an equivalent local martingale measure and allows us
to construct a dynamic for our security or portfolio under the ELMM. This in
turn allows us to find the price. The Girsanov theorem is a generalization of
the Cameron-Martin theorem.

In this section we are first going to introduce the stochastic exponential.
Then we are going to study when the stochastic exponential is a martingale.
We shall see that this is essential. Lastly, we will prove Girsanov’s theorem.

The first part of our little program is to define the stochastic exponential.
Catherine Doléans-Dade defined the following stochastic exponential in her
1970 paper Doléans-Dade

Definition 4.4.1 (Doléans-Dade exponential). The Doléans-Dade exponential of
a semimartingale X (¢), denoted £(X)(¢) is the unique strong solution to the
the SDE,

dZ(t) = Z(t—)dX (t)
Z(0) =1
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The nice thing about these Doléan-Dade exponentials is that they work
very well as Radon-Nikodym derivatives. In order to use the Doléan-Dade
exponential as a change of measure, we need them to be martingales. What
kind of conditions do we need for this to be the case?

We can see that, by definition, it also has the martingale property. Since X is
a semimartingale by definition, the stochastic integral is also a semimartingale.
In some applications, we are more interested in local martingales. Since a
semimartingale is defined as the sum of a local martingale and a cadlag process,
any local martingale is also a semimartingale.

Suppose that X is a local martingale. This means that the process has the
martingale property. Hence, if it is adapted and we have bounded expectation,
then the Doléans-Dade exponential is a local martingale.

To find the expectation of a Doléan-Dade exponential is often difficult. The
Novikov condition is a sufficient condition. However, a different strategy can
also be used. Consider an SDE such as . What conditions do we need for
E(S)(t) to be a martingale?

Proposition 4.4.2 (Martingale conditions). Suppose S; is a well-defined SDE
on the form (4.1). £(S)(t) is a martingale if and only if,
E[E(S) ()] =1
A proof can be found in Appendix
With this in hand, we can state and prove Girsanov’s theorem.

Theorem 4.4.3 (Girsanov’s theorem). Let S be a Ito-Lévy process on the form
{@.1). Assume there exists 0o(t), 01(t,2) and a predictable process dX(t) =
Oo(t)dW (t) + fR\{O} 01(t,2)N(dz,dt) such that dZ(t) = Z(t—)(—00(t)dW (t) —
f]R\{O} 01(z,t)N(dz,dt)) is a P-martingale.

If in addition the following holds,

a(t)0o(t) —|—/ h(z,t)01(t, 2)v(dz)dt = u(t),
R\{0}
then % = Z(t) defines a new probability measure Q, such that Q ~ P and
Fi

S(t) is a Q-local martingale.

In addition,

AWE = 0o (t)dt + dW,
NC(dt,dz) = 0,(t, z)v(dz)dt + N(dt,dz)

thQ is a Q-Brownian motion and N9(dt,dz) is a compensated Poisson random
measure under Q.

The proof of this is very long and contains a lot of algebra. Hence, it has
been relegated to the Appendix, [A-3]
Remark 4.4.4. In one dimension Z; takes the form,

1
Z; = exp ( — 0o (t)dW; — 590(5)2dt
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+/ log(1 — 6, (t, 2))N(dt, dz)
R\{0}
. /R\{O}[log(1 — 0(t,2) + u(t, z)}v(dz)dt)

One can prove this via Itd’s formula.

These results are going to be very useful when we price contingent claims.
What if there is is a probability measure Q, but it is not unique? The next
section deals with this problem and presents the second fundamental theorem
of asset pricing.

4.5 Complete markets

Until now we have only discussed whether or not there exists an equivalent
martingale measure. However, what happens when there is more than one?

In order to motivate the further discussion, we need to discuss contingent
claims. What should the price of such a contract or cash flow be? We already
decided that we do not want arbitrage in our models. Suppose that we can
replicate the cash flow by buying the underlying security. Then obviously the
price of the contract needs to be the same as the value of that replicating
portfolio. Otherwise we could make an arbitrage profit by buying the contract
and "selling" the portfolio, or selling the contract and buying the portfolio. We
will return to the question of pricing contingent claims in the next section.

In this section we will focus on the question of whether it is possible to
replicate a cash flow. In furtherance of this, we define some notions regarding
contingent claims.

Definition 4.5.1 (Contingent claim). We say that a contingent claim at time T
is a random variable X > K such that E[X?] < oo and X is measurable with
respect to Fr, for some K € R. Moreover, we say that the contingent claim X
is replicable if there exists an admissible and self-financing trading strategy 7(t)
and x € R such that,

T
X=X}"=z +/ n(t)dS(t).
0

and
~ t ~
X7 —o+ [ n(wdsta)
0
is a Q-martingale.

We can note the similarities between the form of the replicating portfolio
and the martingale representation Theorem (|3.4.4]). With this vocabulary we
can define a complete market.

Definition 4.5.2 (Complete market). We say that a market is complete if all
contingent claims are replicable.

The second fundamental theorem of asset pricing connects these two
definitions.
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Theorem 4.5.3 (The second fundamental theorem of asset pricing). The
following is equivalent:

o A market is complete

o Every contingent claim, which is a Q-local martingale, has the following
representation,

e The ELMM (@ is unique.

A proof of this can be found in Harrison and Pliska [1983

This result not only connects the important bits, uniqueness and complete-
ness, but it also gives us a way to check if our market is complete. The second
condition is the ticket. Using the representation we can find conditions on the
market models that ensures completeness.

Theorem 4.5.4 (Conditions of market completeness). Suppose X is a contingent
claim with maturity T and that the discounted claim has representation,

T T
X = X Q@ z V& YA .
X_EQ[X]+/O O(1)dB (t)+/0 /R\{O}'y( ON(dz, dt)

where,

Eg [/OT w(t)th} < o0

and

Eo [/OT /R\{O} Yz, 02 (1 - Gl(z,t))y(dz)dt] < 0.

Then X 1is replicable if and only if there exists some predictable process n such
that,

(et = edo e n(tyn(a, )

(1) = elo () (1)

The proof of this can be found in Appendix [A-3]

From this result one could see the connection between the completeness of
the market and the solvability of a set of equations. A good rule of thumb is
therefore that if there are more processes than there are underlying noise, then
the market is probably not complete. Lévy-Itdé markets are often incomplete.

We finish this chapter with a section the pricing of contingent claims.
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4.6. Pricing contingent claims

4.6 Pricing contingent claims

This chapter has been dedicated to building a theoretical framework for
mathematical finance. We are now going to put this framework to use and price
an option. In particular we are interested in finding a price for the European
call option, ® = max(S(T) — K)+ and the corresponding hedging portfolio.
This hedging portfolio can be obtained by solving a PDE.

We are operating under the probability space (Q, Frr, {F:}, P), where {F;}
is the filtration generated by the Brownian motion W and the compensated
Poisson process N.

In the previous section we motivated why the price of a contingent claim
should be the same as the value of the replicating portfolio. The value of the
contingent claim at time ¢ needs to be the same as the conditional expectation
of the discounted payoff under the risk neutral measure.

7(t) = Eg { ié%@(g(ﬂ)‘ft}

Where Sp(t) is the value of the bank account at time ¢, ® is the payoff
function of the contingent claim, and S(T") is the value of the security at time
T. We assume that E[®(S(T))?] < cc.

To keep things simple, we will consider a replicable contingent claim. It is
possible to price contingent claims that are not replicable, but this requires more
advanced theory. One can for example find an interval of prices. Alternatively,
one can look for a portfolio that does not replicate the claim perfectly, but that

comes close, either in that it minimizes risk, or it minimizes cost. For more on
this, consult for example Eberlein and Kallsen 2019

The hedging portfolio

We can first find the PDE for the hedging portfolio. This can be done via the
Feynmann-Kac formula. Consider the model in and a contingent claim with
the payoff ® and maturity 7. The hedging portfolio for such a contingent claim
can be found. We denote V (t,z) = So(t) Eq[ 2SI = So(t)Fr(S(t),t).
Note first that by the Itd formula,

O’F
025,

dF(t,S(t)) = %fdt + %S(f)u(a S(t))dt + %S(t)2o2(t, S(t))

OF
" /R\{O}(F(t’ S(t) + hiz t) = F(t, 5() = bz, t) gamsv(dz)dt

dt

+o(t, S(t))a‘?gi)dwt + /R\{O} h(zJ)S(t);g}(z)N(dz,dt).

However, this is under P, but we want the dynamics under . By Girsanov’s
theorem, dW; = dW2 — 0o(t)dt and N (dz,dt) = N?(dz, dt) — 6 (z, t)v(dz)dt.
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OF  OF Lo o 0*F
dF(t,S;) = a—dt-ﬁ— aStStr(,t)dt+§Sta (St,t)azstdt

OF
+/R\{O}(F(Stth(z’t)’ t) = F(Si,t) = h(z, t))a?tsw(dz)dt

8F OF
_ /]R\{O} h(z,t)Si o o5, 01 (2, t)v(dz)dt — U(Stvt)afstst%(t)dt

+ o (S, )BSt dw, /]R\{O} h(z,t)Stﬁ—StN (dz,dt)

B <6F OF o

ot T as,
(r(t) + / (F(S; + h(z,t),t) — F(S,t)
R\{0}

— h(z,t) — 01(z,t)h(z,t))v(dz) — U(St,t)Qo(t)) + ;Sfaz(St,t)gjg)dt

85,5 ¢ t
B <aF OF

1
8t +7’tSta 55302(St,t)

a(st,)aFdW / h(z,t)Stg—gNQ(dz,dt)
R\{0}

0’F

9258,

OF (x,t)

+ / [F(z+ h(x,t),t) — F(x,t) — Sth(z,t)
R\ {0}

OF Q. oF
+ o (S, )BStdW /R\{O} h(z, t)Sta—StN (dz,dt)

]y(dax)) dt

Note that F'is a martingale, and thus the sum of all dt terms has to be zero.
The last equality follows from the fact that under the risk neutral measure,
the drift of the security has to be 7y, i.e. the risk free interest. The hedging
portfolio becomes,

al + 6l + 1 ( t>282l
at e T2t T g2y

+ / (F(x+ h(z,t),8) — Flat) — oh(z ) 22E D12
R\{0} Oz

- Ttv(ta JT)

The boundary conditions has to be V(T,z) = ®(z). This kind of PDE can be
solved by numerical methods.

The Black-Scholes formula

Most kinds of contingent claims in our framework do not give a closed form
solution. They demand numerical or Monte Carlo methods in order to find a
price, one special case where this is possible is the famed Black-Scholes model.
The Black-Scholes model does not have jumps, and assumes a constant drift,
volatility and interest rate. The SDE governing this model is,

ds(t)

—= = pudt dWt
S(t) pat + o ()
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S(0) =S
Under the ELMM this becomes,

ds(t)
SO rdt + odW (t)%

We can solve this,
1
S(t) = S(0) exp <(T - 202)t - adW(t)Q>

We can then price a call option at time ¢ with maturity 7" and strike K € R
as such,

() = 2205 [a(s(T)IF] = 220 Bq [(5(7) - K417

S8 o] - )

Consider first Eg |:K]-S(T)§K-Ft:|- Since the expectation of an indicator

function is just the probability of that event, and the Brownian motion is a
Lévy process (and thus has independent increments).

Eq |:K15(T)<K|]:t:| = KEq |:1S(T)<K|]:t:|

= KQ(S(T) < K|F)

= kQes@es ((r- 3ot ) -0+ [ oaw?) < K17
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Where

log (Sfé)» - <r - ;a2> (T —t)
h = VT 1 ’

Z ~ N(0,1) and ® is the cumulative distribution function for the standard
normal distribution. The conditioning disappeared because the Brownian
motion has independent increments, and hence the increment from ¢ to T is
independent of F;.

On the other hand, a similar calculation can be done for Eq {STI Sr> K|]—}}

Eq [S(T)15T>K|]:t} = S5@t)® <log <£)>>:\/gff_ja2) = t)>
— S(£)B(ds)

which gives

Where,

log (%)) + (7" - ;a2> (T —t)
- i .

Hence we get the closed form formula,

m(t) = S(t)®(dz) — Ke "D d(dy).
This concludes the chapter on mathematical finance. There is a lot to

untangle in this field, but this is hopefully a sufficient introduction to be able
to use in the following chapter on insurance mathematics.
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CHAPTER 5

Insurance mathematics

One of the basic functions of a financial market is the trade of risk. Nothing
exemplifies this more than insurance. An insurance policy is usually a contract
between two parties, the insurer and the insured. The insurer agrees that that
they will pay the insured some amount of money if a specific event were to
occur to the insured. This event is typically something that is disadvantageous
to the insured.

Traditionally, one divides insurance into life and non-life. We are going to
focus on life insurance. In life insurance, payments to the insured generally
happen either when the insured is in some state of health, or when the insured
moves between states. A simple example of this is a policy where the insurer
pays if the insured dies. Then the states are alive and dead, and the payment
occurs if the insured moves between states. We are going to model the movement
between states with Markov processes.

It is possible to derive a theory for life insurance in discrete time. However,
we will focus on models in continuous time.

We are going to start this chapter by introducing the basic life insurance
model. We will then show how one can find the value a policy before we derive
Thiele’s differential equation.

5.1 The insurance model

Consider a time period from 0 to T and let (92, Fr, P) be a complete probability
space, equipped with a filtration F = {F;}ic[o,7]. Consider the finite state
space S, and let X = {X;,t € [0,T]} be a Markov process that describes
the state of the insured. For the previous mentioned filtration, we have that
]:t - O'(XS,S Z 0)

X; is a Markov process in continous time. Hence recall the the transition
probabilities,

pij(s,t) = P(X; = j| X, = i)

and the transition rates,

. _ pi7j(tvt+ h) . .
pij(t) = pim # ]
i(t) = 1 : )

pa(t) ha(l]r,%x) h
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5. Insurance mathematics

where s <t and,j € S.

This is going to be the foundations for our mortality model. However, we
also need to describe the policy and the cash flow. The eventual goal of this
chapter is to find a value of the insurance contracts and how much the premiums
should be.

We can define the stochastic cash flow.

Definition 5.1.1 (Stochastic cash flow). A stochastic cash flow is a process
A ={A;,t €]0,T]} with paths of bounded variation P-a.s.

The idea is that the stochastic cash flow is a process that can be integrated
over. The cash flow depends on the policy. We can describe the terms of
functions.

Definition 5.1.2 (Policy functions). Let a;,a; ;: [0,00) — R, where i,j € S,i #
J. We say that a; and a; ; are policy functions if they model the following,

e a;(t) is the accumulated payments to the insured up to time ¢, given that
the insured has always been in state i.

o a;;(t) is the payment to the insured when the insured moves from state i
to state 7 at time t.

We assume for now that the policy functions are deterministic.
Combining policy functions and the underlying markov chain, we can describe
the policy cash flow.

Definition 5.1.3 (Policy cash flow). Let a;(t), a; ;(t) > 0 be policy functions.
1,7 € S and i # j. The (stochastic) policy cash flow at time ¢ is defined:
A) =D Ait)+ D A ().
= i#4.i,j€S

Where
t
Ai(t):/ l{XS:i}dCLi(S)
0

t
Ai’j :/O aw(s)dNig(s)

where N7 (t) == #{s € (0,t): X,_ =i, X, = j}.

The integrals are in the Riemann—Stieltjes sense.
We finish this introduction by defining the prospective value of the policy
cash flow. This is a kind of present value of the stochastic cash flow.

Definition 5.1.4 (Prospective value of a stochastic cash flow). Let the discount
factor be defined v(t) = 1/Sy(t), where Sy is the numéraire. Moreover, let
15(s) = 1ix,—i}- We denote the Prospective value of a (stochastic) cash flow,
V*(t, A) and define it by,

Vet = [ ooty
B % {Z/ " o(s)15 (5)dai(s)

€S
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5.2. The value of insurance policies

+ 0> / s)aij(s)dN5(s)|, t=>0.

i,JES,j#i

The next section deals with methods for calculating this value. We are going
to find both a direct method and a differential equation.

5.2 The value of insurance policies

As stated above, we want to find the value of insurance policies. The policy
is described by the policy functions, and from the policy functions we get a
prospective cash flow. Thus, the value of the policy should be the expected
value of this cash flow given some knowledge of the state of the insured.

First some technical results.

Lemma 5.2.1. Leti,j,k € S. Then if b€ L',

/ b(s)AN, () X, = 1] = /b )i (1, )15 (5)ds.

If ¢ is of bounded variation then,

E[/tOO 1ix, —jyde(s)| Xy =] = /OO i, (t, s)dc(s)

t

The proof follows the same basic strategy as Koller Theorem 4.6.3.
and can be found in Appendix

We can now find the explicit formula for the value of a stochastic cash flow.

It is useful to simplify notation a little bit. If x is the age of the insured at
the start of the contract, then we write p; j(z + s,z +t) = pf (s, 1).

Theorem 5.2.2. Let x be the age of the insured at the start of the contract.
Then the value if the cash flow A; and A;y, is,

Vilt, Ay) = % / " o)t (t, )da (s)
Vilt, A ) = % / 0(8)0E (1, 52 (5)a1g 1 (5)ds

Note that the subscript i in V, (¢, 4;) indicates that the insured is in state
1.

Proof. Taking the conditional expectation of the terms from Definition [5.1.4
The results follows from Lemma [5.2.1]

Vi(t, Aj) [ Z/ (8)1x,=i}(s)dai(s)| X, :i]
| [ e =
| [ e = i
:%/ i, (t, s)v(s)da;(s)

<

Il
~
~—

<

<
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5. Insurance mathematics

Here we have used the fact that the bank account is deterministic and let

fo s)daj(s
On the other hand we have,

Vi(t, Ajr) = L}t / s)a; k(s ( )|th}
- e[ [T =
[ i -

" () p ()pi g (1 5) it () ds

<

1
(t)

<

L
(
L

(t

<

~
~—

\\m

oo

v(s)ajk(s)pi;(t, s)u;’,k(s)ds.

<

~—

This result only tells us the value of a stochastic cash flow for each state
and each transition, but not for the entire insurance policy. However, the value
of the policy is the sum of the value of the cash flows from all states. Hence
the value of an insurance policy is just the sum of the above cash flows.

We can formalize this as a theorem.

Theorem 5.2.3 (Explicit formula for a policy). Suppose x is the age of the
insured at the start of the contract. Moreover, suppose that the contract has
cash flow A associated with policy functions a;,a;; fori,j € S,j # i. Given
that the insured is in state i, then the value at time t of the future payments is
given by,

vt

[ ’ ’U(t Z/ ij t S)da]( )

% > / $)pi;(t, 5)u 1 (s)azr(s)ds

7.keS k#]

Proof. This proof follows the fact that the value of a sum of cash flows is the
same as the combined cash flow.

Vf(t,A):Vi*(t,ZAj—i— Z Ai,j)

jes 1,JES, i)
=N VA + YD V(A
jES 1,5,i#]
1 o0
- Z Wt) /t v(s)pf,j(t, s)da;(s)
JES
Y [ e
i,JES, z;ﬁ]
The last equality follow from Theorem [5.2.2 |
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5.3. Thiele’s differential equation

It is in generally nice to know if a value exist, and it is even better if there
is a way to find the value. Here we have both. However, it is often hard to
calculate the above expressions, because of the dependence on p; ;(t, s). If there
are multiple states, for example, there might not exist an explicit expression
for the transition probabilities. In that case, we might rely on numerical
methods. However, we are going to choose a different strategy. In order to
get an expression that is easier to calculate, we are going to introduce Thiele’s
differential equation.

5.3 Thiele’s differential equation

Finding explicit values of cash flows at a time ¢ is a very powerful tool. However,
this power is diminished by the computational difficulties associated with the
transition probabilities. It is possible to use numerical methods to solve this,
but it is complicated.

Hence, if would be preferable if we were to find a way to calculate the
value of the cash flows using only the transition rates. This is what Thiele’s
differential equation gives us.

The basic idea is that we want to find a differential equation to model the
value of a policy. When dealing with differential equations, we also need to find
the boundary conditions. Since we are interested in finding the value today,
but often know the value of the policy at the end, we need to find a backward
equation. Mathematically, this is not less desirable, although the intuition
might be a little harder. This means that we are going to calculate the value
of a policy today by starting at the end of the contract and working our way
forwards. In the end we arrive at the value today.

We first need a technical lemma.

Lemma 5.3.1. Let us denote W, (t) = v(t)V;" (t). Then fort < u,

WH(t) = Z {pw- (t,u)Wj‘(u)

JES
n / " o($)p (1, )da (s)
+f Do) Y uia(s)agu(s)ds

kES k#]

The proof of this has been relegated to Appendix [A4]
Using this lemma, we can prove Thiele’s equation. We are going to prove
two versions of the equation.

Theorem 5.3.2 (Thiele’s differential equation I). Assume that a;(t) = fot ai(s)ds.
Let x be the age of the insured at the start of the contract and that time t has
passed since the start of the contract. Then,

GO =000+ T wa0aa)] + w0
keSS, k#]
— Z ,uj,k(t)W]:_(t)

kES k]
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5. Insurance mathematics

Moreover, the differential equation for V;(t) is

GV =0V 0 - [d0+ 5 matan)] + a0y o
kES, kAj

= > mEVIE)

k€S, k#j
This proof follow the proof found in, Sande 2021}, p. 67

Proof. Since a;(t) = fot al(s)ds, W;" is continuous. Recall Lemma and let
u=t+h.

W;h(t) = Zpg{j(t, t+ )W (t+h)

jES
t+h
+ v(s)p; ;(t, s)da;(s
ZS[ JaC
t+h
[ s X o)

kES k#]

Taking the difference W (t + h) — W' (t) gives us,

Wit +h) =W () = W (t+h) = > pf(tt+h)W;(t+h)
jes

S vt stasts

jes

t+h
+ / o5 (h5) S i a(5)asa(s)ds

kES, k£j
=W (t+h)(1 - pii(t,t+h))

— > pitt+ W+ h)

JES,jFi
t+h
_j%; [/f v(s)pi’j(t,s)daj(s)
t+h
+ / o5 S HEa(s)aga(s)ds).

kES k]

We want to find the derivative of this expression. Hence, we divide this
expression by A and find the limit when h — 0.

W+ h) = Wi () Wi+ h)(L = pi(tt + b))
B h
B D jes.jiPij(tt+ h)W;r(t +h)
h
h xT
e Ji T olo)pi; 8, s)day(s)
h
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5.3. Thiele’s differential equation

t+h T x
B ZjES ¢ U(S)pi,j(tas) Zkes,k;ﬁj Nj,k(s)aj,k(s)ds

h
= W = W o n Y wE w0
JES,j#i
IR S RG]

kES, ki

This follows from the definition of p; ;(¢), the fundamental theorem of calculus,
and the fact that,

it
pij(t,t+h) — O’T ! 7&‘7,
1,ifi=j
when h — 0.
As for the last expression,
dotn_ 4 + oy
SWEE) = Zo@ViE ) + o) 2V 0
d d
v(t) = Vit () = — W) + r(v(t)V;T (t)
dt dt
d
Vi O =r@ViT () + Vi i () - D uk Vi) - ai(t)
JES, jFi

= ) u()aik(t)

kES, ki
|

We can generalize this result a little bit. In particular, many common
insurance policies have cash flows that are such that a;(s) has a discontinuity.
An example of this is an endowment policy where the insured receives a lump
sum of money when they reach a certain age, if they are still alive. To handle
this kind of policy, we have the following theorem.

Theorem 5.3.3 (Thiele’s differential equation II). Let a be the aged of the
insured at the start of the contract, t be the time the contract has been in force
and T be the time the contract ends. Assume that a; is differentiable a.e. with
at most one discontinuity at time T'. Then,

d xr
Vi O =r@ViT(®) - () - D (s (0) + Vi) = Vit (1)
JES j#i
with V;(T)* = a;(T) — a;(T—).
This proof follows the proof of Theorem 5.6 in Sande

Proof. Since we accept a.e. differentiation with a discontinuity at the end point
t =T, we have that for all integrable f.

(s)da(s) = F(T)(ai(T) — a;(T—)) + / F(s)al(s)ds.

(t,T]
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5. Insurance mathematics

Now define,

07(s) = ajla) + > pii(s)ajals).

k€S, k#j
The explicit expression for the prospective reserves gives,

v [Zp” (1, T)(a(T) — a(T-))

jES

> / IG5+ D pa(s)ayu(s))ds

> 056, T)(a(T) - a(T-))

) jES

/t o p”tsé)m()d}

We can introduce the following notation,

7)) pi;(tT)(ai(T) — a;(T—))

jes

t) Zpi,j(tv 5)07 (s)

jES

VBV (1) / Fit

We can differentiate both G and F.

Cn
e
m
o
kel
S
<

‘ .
[ —

MA

+

%)

j€

<.

which means that,

GGT = (1) Y S8 (6,7 (0 (T) — a,(7))

jeES
d d
Z s = 2o T(g)
70 = 0 X ot 05

By the Kolmogorov backward equation from Theorem

d xr T xT T
—pi(t,s) = pi(t)pi;(t,s) — Z wi k(0P (, 5)

dt kES, ki

> w7t s) = pi it s)

kES ki

This is because uf (t) = —ui;(t) = D5 15 (t)-
However this means that,

Sr0 =002 (X w009 - 0956

JES NKES ki
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5.3. Thiele’s differential equation

=0 S WOt )6 (s)

JES kES, k#i

—o() ) D wik(Opk,(ts)65(s)

JES KES ki
= X a0 (o0 (0105 o) X 1005

JjES jES

keS ki
= ¥ o (Fr0 - o). 651)

Moreover,

GO0 = (0 00 (.7) 4.1 ) 057~ 057

JES NkES k#i

= Y ) (vm ™2 (0 T) (a5(T) — a;(T-))

kES, ki jes

o) S () ay(T) — w_)))

JjES

= > (@0 -Gl (5.2)

kES ki

But now consider the function

T
H(z,y) = / F7 (y)ds.

Taking the partial derivatives,

9 .

d Ta
s 9) = / T )i

In this proof we are interested in %H (t,t). Hence, by the chain rule.

d P P

ity = 2 H(a,y) + L pay)

dt Oz @w=tt) (@) =(1,1)
t r d
0+ [ SR

Letting s — t from above we can note that,

FU(0) = lim F (2) = o() oL, )65 1)

s—t 2
jES

= v()07 (t) = v(D)aj(t) +o(t) Y ufr(aix(t).

kES, ki
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5. Insurance mathematics

Now on one hand, by differentiation,

d d

L V(D) = SOV () + o) 5 V(1)
= POV () + o) (Vi (1),
On the other hand,
d d T g s
qovro) =4 (cro+ [ roa)

= %GlT(t) - ’U(t>ag(t) - U(t) Z /Lf,k(t)ai,k(t)

kES, k#i
T
d
ZF(t)ds.
*/t art 0

These two equations have to be equal and hence rearranging gives,
[ Lzt = 0V 0 + o0 2 )
g\ T T dt
d
- %G?(t) +o)ai(t) +o(t) Y pf(baik(t).

kES, ki

Integrating (5.1)) and inserting (5.2)) gives the equivalent expression.

/t st—/t >t (F0) - (o) as

kES ki

:/t o) 3 m()(F() Fpt) + 6T (1) — 6T ()

kES, ki

+GE(t) — Gf(t)) ds

—o(t) Y um)( / " Fr (s

kES, ki

- / " Bp(ds + GT () — GT () + GL (1) — GT (1)

—ut) 3 (Vﬁ AR G%(t))
kes, k;ﬁz
—ot) Y (W )
IceS ki
SCID MU CHUREACY
kes, k;m
d
o) 3w (vrO - v - H6T.
keS ki
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5.4. Examples of life insurance policies

Hence, we get the equation,

T
| aFwi =50 ¥ (Vﬁ(t) - vmt)) ~Lar
! kES ki
= —r(()BOV (1) + B(H) S (Vi (1)
LT+ B+ B0 Y paba)
kES ki

Since B(t) # 0 for all ¢ > 0 we have that,

> o (veo - o)

kES k#i

= (VT (t) + %Vﬁ(t)
+aj(t)+ Y uik(aik(t).

kES ki

Rearranging this we get that,

Lwrw) = rvim —at) - 3 uaass()

dt kES ki

s uf,ku)(mt)—vkﬂw)

kES, ki

— OV —a) - S ul) (ai,k<t>+vs<t>—vim<t>)

kES ki

This is the equation that we want.
|

We have now developed some theory on life insurance mathematics. This
theory is going to be crucial in the next chapter when we tackle unit-linked
policies. Before we get there, through, we are going to take a look at some
examples of life insurance policies.

5.4 Examples of life insurance policies

In this section we are going to tackle some examples. One example is very
simple, and the other a bit more advanced.

We have not discussed mortality models directly, but they are essential in
applications. Modeling the mortality of the insured is a huge topic in itself, but
will not be given much space in this thesis. To put it shortly, the mortality
model tells us about ; &, i.e. it governs the transition rates, and hence also the
transition probabilities and the prospective reserves.

In these examples we will use "K2013" as our mortality model, Finanstilsynet
This is a standard model developed by the Financial Supervisory Authority
of Norway (Finanstilsynet), the purpose of which is to give a minimum level
of mortality. This means that no insurers can have lower reserves than what
K2013 gives. We will return to K2013 in the chapter on applications.
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Example 5.4.1 (Death benefit). A death benefit is a life insurance policy that
pays out if the insured dies during the contract. This is a very common form of
insurance. Examples of uses can be to secure a family’s finances if the insured is
the breadwinner. Another common use is for business partners having a policy
on each other. If one of them dies, then the other would have the cash to buy
the other’s part of a company from the heirs.

In this context we only have two states S = {x, {}, where x indicates that
the insured is alive and t indicates that the insured is dead. Obviously the
person can move from * to f, but not from { to . Therefore, yi; , = 0. On the
other hand, p, + is determined by K2013.

Suppose the insured is a man at the age of 24. The death benefit is
B =100 000 NOK if the insured dies before the age of 70. This means that we
have the following policy functions,

0o i(t) = 100 000NOK, if t < 70
A 0, else

All other policy functions are zero.

Suppose that the risk free interest rate r = 3% and note that VTJr (t) = 0.
This means that we get the following Thiele’s differential equation for the state
*

V) - Vit —h)
h
In order to solve this we can use Euler’s method, see Mgrken [2015] p. 332.

This is not the most accurate method, but it is computationally and conceptually
simple. Let h =1/12, T'= 114 — 24 = 90. Then,

~ (V) — i (OB - V().

VI (t) =~ VI (t+h) — h%Vj(t +h)

~ VIt +h) = h(r(t+ h)V.E(E+ h) — p2h (4 h)(B = V.E(E + b))
V*+(T) =0

The terminal condition has to be zero, as there is no payment if the insured
lives to 114. 114 is a common actuarial choice. In addition, we want to find the
premium. To do this we first consider a policy where the insured pays 1 NOK
per year until 70, hence giving us the present value of such a cash flow. Then
we can find the yearly premium by dividing present value of policy by present
value of the 1 NOK payments.

The calculations have been implemented in Appendix [B.2] Note that the
mortality g+ is implemented in Appendix

The one time premium can be calculated as 4 211.38 NOK, and the yearly
premium is 173.43 NOK. Based on what the author pays for a similar policy,
this seems entirely reasonable. The graph of the value is also reasonable. The
value increases as the probability of death increases. On the other hand, when
the person reaches the age of ca. 55, the short time left in the policy start
to dominate as the probability of getting a payout over the last years of the
contract decreases fast.

Example 5.4.2 (Orphan insurance). Orphan insurance can be an important
peace of mind for many families. How can one ensure that a child is provided

66



5.4. Examples of life insurance policies

Value of a death benefit

Value of policy
1000 2000 2000 4000 5000 6000 7000

0
|
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Age

Figure 5.1: The evolution of value of a death benefit policy.

for if one or both parents die? The answer to this is orphan insurance. This
policy pays out a yearly sum to the insured if one or both parents die up to
and including the year the child turns 25 years.

Suppose a baby boy has just been born, that the mother is 25 years and the
father 27 years. This insurance would have eight states. We use the following
convention {child, mother, father}. The policy is described as such,

50 000¢, if t< 25

Geior(t) = @rni(t) = {1 950 000, if t> 25

(o)  { 100000z if t< 25
a =
Wl 92500 000, if t> 25.

We assume that the lifetime of the members of the family is independent.
This is unrealistic, but the alternative forces us to model the co-mortality which
is outside the scope of this thesis. Moreover, we assume that no member of
the family can perish at the same time. This simplifies the transitions between
states. There are no payments if the parents outlive the child. Therefore all
states where the child is dead has value zero. The same is true for the value of
the policy if the child is older than 25. The states and possible transitions are

shown in Figure [5.4.2]
We are then left with the following Thiele’s equation:

o8 = (O)Vian (D)

dt (
=t xxt () (Vie o, 1 () — Vi (1))
— Posr it x () (Vi (t) = Vir (1))
s, pax () Vie w1 (1)
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Hokk

+727

A

*fx

*xF

S -

Figure 5.2: The states and possible transitions for an orphan insurance under
the stated assumptions. In the interest of time we have collected all states
where the child is dead in one box.

%V**T(t) = 1(t)Vist(t) — 50 000
 Hoxxt, *TT( )(V* ( ) = Vit (t))
F Hot ot () Vit (1)

d

5 Vet (0) = 7()Vaga(£) — 50 000
= Htrrtt () (Vi (8) — Vire (1))

+ fie,tix (8) Vi (2)

d

av*ﬂ(t) = 7(t)Vis1(t) — 100 000
+ i1 () Vi (£)

The final value of the insurance for all states is zero. Using a similar set-up as
above, we find that the one-time premium of the insurance is 6 498.48 NOK.
The value evolves for the different states are displayed in Figure

This concludes the example.

In this chapter we have introduced the basics of insurance mathematics and
defined the basic insurance model with stochastic cash flows and policy functions.
Then we found the value of a policy and derived a differential equation for
the value. The payouts in this chapter have all been deterministic. A natural
question to ask is: what happens when the payment is stochastic and tied to a
financial asset?

These kinds of policies are called unit-linked life insurance policies, and
these are is the topic of the next chapter.
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Figure 5.3: The value of the orphan insurance for different states of the family.

69






CHAPTER 6

Unit-linked life insurance policies

In this chapter we will discuss the unit-linked life insurance policy (ULLIP).
This is a form of insurance policy that introduces risk to the payoff of the
contract. Hence one gets two sources of risk, the state of the insured and
the payment to the insured. This means that this kind of contract combines
classical insurance mathematics with financial mathematics. In particular we
will study contracts where the payment to the insured is based on the value of
some risky asset. The most natural application is that this risky asset is some
form of stock fund.

In the first section of this chapter we will find the explicit value of a general
unit-linked policy. The value of a unit-linked policy depends on the underlying
model of the fund. The second section is therefore going to be devoted to
finding a Thiele’s equation for a unit-linked policy governed by a jump diffusion
model like the one in . This is a new result from this thesis. Lastly, we
will show that this is a more general case of the Thiele’s PDE for a Black and
Scholes market from Aase and Persson 1993l

6.1 The value of a unit-linked policy

First, assume that we are in a complete filtered probability space
(Q, Fr,{F:}, P), where the filtration F is the filtration generated by the
security S and the state of the insured X. Le. F; = 0(S1(t)) V o(X¢). A com-
mon unit-linked contract is a version of the call derivative, that is max(G, St)+.
This means that the payoff is the greater of some constant G, called a guarantee,
and the value of the fund at time 7.

What should the value of a unit-linked contract be? Assume that the policy
function a;(t) is almost everywhere differentiable with at most one discontinuity
at t =T, where Aa; = a;(T) — a;(T—). Suppose there are functions f;, g; and
hij:[0,T] x R — R such that,

fZ(T7 ST) = Aaz(T) = ai(T) — ai(T—),
gi(t,St) = a;(t)v
h@j(f, St) = aq;,j(t).

Then, using this notation we find that the value of an insurance policy at
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6. Unit-linked life insurance policies

time ¢, with a fund of value S and the insured in state i € S can be written,
Vi+(t7 St) = Vi+ (t7 St A)
=D Vilt, S, Aj) + Y Vit S, Ay )
jeS jES
1

= @ Z o(T)p; ; Eqlf;(T, St)|F]

+ o Z/ % (b 5) Balgy (s, 5,) | Flds

v(lt > /t $)pi;(t, 8)us e (s) Eqlhjk(s, Ss)|Filds

JES i#£]

The second equality follows from the fact that A = 37, s Ai + >, 1 cs Ajk.
The third equality follows from Theorem [5.2.3] with appropriate values for the
policy functions.

Note that in this expression we can find the value of European derivatives,

-@fj(T’ ST)l-Ft:| ,

U2 = o | %L a(s.s0lo(50)|

where ¢ is the payoff function for some contingent claim.

We now have a value for the explicit value of a unit-linked policy. However,
as with the explicit value of a deterministic policy, we would prefer to have
a way of calculating this without having to calculate the probability py j(s, t).
This is the topic for the next section.

6.2 Thiele’s PIDE for unit-linked policies with jump
diffusions

In this section we are going to derive Thiele’s equation for a jump diffusion
model. This is the main new result in this thesis. Since we use S to denote the
fund, we can use S to denote the state space of the insured. The jump diffusion
model under P is as follows,

) (e S+ o SOV O + [ (S0, 2) ¥ de),
S(t 2\ {0}
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6.2. Thiele’s PIDE for unit-linked policies with jump diffusions

where Sy is a constant. We also assume that the coefficients are Lipschitz
continous and have, at most, linear growth.

We will derive a partial integro-differential equation (PIDE) that describes
the changes in value for the contract. If we had only been looking for the change
in value with a change in time, we would have gotten an ordinary differential
equation. However, not only does the change in value depend on the starting
value of the fund, S(0), but we are also getting the integral over a Lévy measure,
v. This means that we get a partial integro-differential equation.

First, however, we want to simplify the notation.

Vi(t, S)) = Zp”tTUTtSt+Z/ pei(t,s)U% (t, Sy)ds

JES

+ Z / pz] t S :uj k( ) ‘:Ljak(tast)ds

J,k€S k#]
_ZpZ]tT)UfytSt / [Zpljts tSt)
JjeS JjES
bS5
J,keS, k#j
_Zp”tTUthSt / Zp”ts{U%tSt)
JES jES
bY U )| ds
keS, k#j
v(s
,Zp”tT I (t, Sy) + / Zp”ts Eq L)(t;(gj(t,St)
jeS jES
+ > ()t SQ)G(SQ} ds
keS,k#j
U (¢, 8,) B, | 2) 22005 ()| (1) | d
_sz]t ) 2 t szjts Q (t) ()'(t) S
JjeS jES
_ZpZ]tTUfytSt /Zp”ts (¢, Sp)dt
JjeS jES
T
= G?(t, St) + / F,L-S(t, St)ds
t
Hence,
GT(t,S) =Y _ pi;(t, T)UF (t,5) (6.1)
jJES
63
Fy(t, S)ds = pi(t, s)Us” (t, Sy) (6.2)
jes

Note that U2(t, S;) is the value of a European contingent claim with payoff
&(s,Ss) at time ¢ < s. Thus, by the Feynman-Kac formula (3.4), the function
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6. Unit-linked life insurance policies

(t,z) = U2(t, S;) satisfies the PIDE,

0 4 0 9?
§U (t, x)—i—rtxa—U (t,z) + 20 2(t,x)2? GTU (t,x)

+ / [Uf(t,w + h(t,z),t) — Ul (t, ) — h(t,x)ngf(t,x) v(dx) = r U0 (t,z).
R\{0} O

We are now ready for the main new result of this thesis.

Theorem 6.2.1 (Thiele’s PIDE for jump diffusion). Let A be the cashflow
associated with the policy functions, f;, g; and h; j,1,5 € S. We denote the value
of an insurance contract at time t € [0,T] with the insured in state i € S and
given the market information F as V;i(t, A). Then,

V]-f,i(tv A) = V;(ta St)a

where the function (t,x) — V;(t,x) is the solution to the PIDE,

9
5 Vi =riVi —gilt @) — ;/‘w i)+ V= V) — LV,
JF

where the boundary conditions are V;(T,z) = f;(T,x), and

3} 1 0?
LV;(t,z) = mzavi(m) + §$20<t,$) 5Tv(t x)

0
+ /R\{O} {Vé(tvﬁ +h(t,x),t) = Vi(t,r) — h(t,x)x%Vi(t’x) v(dz).

Proof. This is a second order parabolic PIDE and if the coefficients are Lipschitz,
there exists a unique solution.

Moreover, suppose that ¢; and ¢, are final conditions to the PIDE U, with
U?t and U?? denoting their solutions. Then, by the uniqueness of PIDEs and
the linearity of the expectation U in ¢, thus U?'+%2 is the solution to the final
condition ¢ + ¢o.

As per the previous notation and using :

Vit A) = Vi(t,z) =Gl (t,x

LE:St

T
= G?(t, St) —+ / F,Lvs(t, St)ds
t

T
+ / Ff(t,x)ds
t

I:St

T s
Fix T and let s > ¢t. Then U:ij and Usej are well defined.
By Kolmogorov’s backward equation (Theorem [2.6.5)) we have that,

0
8tpz,g(t s) = —i,i(0)pi;(t, s) — Z Mk (8)Pr,j (¢, 5)

keS,k#i
= Z ik (0)pi (L, 8) — Z ik (8)pr,j (¢, 5)
kES ki keS,k#i
= > iyt s) — prts)).

kES, ki
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6.2. Thiele’s PIDE for unit-linked policies with jump diffusions

We can use this to find the time derivative of F;’.

s,
8tFl e Zp” (t,s) Us (t St)

-y = (pg{j(t, s)) UY (t,S)) + > pit, s)% (Uf; (t, St))

JjeSs jeS
03
= Z Z i, k pz,g t S) Pk,j (ta 8))U3] (t7 St)

JES kES, ki

0 :
+ pE(ts a(U‘fJ (t,St)>

JjES

_Z Z pi ke (t ngtS)Us (t,S¢) — pk,j(tvs)Usei(t,St))

JES kES ki

a s
+sz] t 8 8(US€J (t7St)>

JjES

= Y wr®(F = Fp)

k€S, kFi

+ Z jod ] (t,s)
JES
The third equality above follows from the previous calculation with Kolmogorov’s
backward equation.
Next we want to prove that L is linear. Let «, 5 € R and U,V be functions.

Q?‘QJ

0
o po (aV + pU)

+/ {(aV—i—ﬁU)(t,x—i—h(t,x),t) — (aV + BU)(t,x)
R\{0}

L(aV 4 BU) = rtxﬁ(ozv +pU0) + %xQG(t,x) i

— h(t, x)x%(oﬂ/ + ﬁU)} v(dx)

d 1, 3}
_oz<7’tx8xVi+2x o(t,x)? 72 Vi

i /R\{O} {V(t’ @+ h(t,z),t) = V(t,2) — h(t, x)x;;V] V(dx))

2 0

0 1
+ﬂ(rt1’U + ~2?0(t, x) po

Ox 2
* /]R\{O} [U(t’ @+ h(t,z),t) = U(t,x) = h(t, x)xC%U] V(dx))

=alV + LU.

Hence, L is a linear operator. Thus,

LF; = pi;(t,s)LU
J

s
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6. Unit-linked life insurance policies

Next we want to calculate the dynamics of F(¢,.S;) under some equivalent
local martingale measure ). This might not be a unique measure, since the
jump diffusion model need not be complete.

One way to find the dynamics is by direct definition,

dF?(t,S;) = QFS(t Sy)dt + 1Sy 88 7 (t, Sp)dt

ot
1 0?*
+ ig(t,St) St2 82 F (t St)

+/ {Ff(t,St + h(t, 2)) — Ff(t,S;) — Sth(t,z)gUf(t, Sy) | v(dz)
R\{0} ot

d
+o(t, St)%Fis(t’ St)thQ

+/ ng(t S)A(t, Sy, 2)NO(dt, dz)
R\{0} O

(;F‘S(t Sy) + LF?(t, st)>

8 S
g (. S)dW,

+/ 9 ps(t, S)h(t, Su, 2)NQ(dt, dz).
®\{0} 07

+ O'(t, St)

On the other hand,

dFi(t,St)=( S r((F(1,5) — F{(t,50)

k€S k#i
+D_pii(ts)7 Us (t,S0) + Y iy LUS )d
JES jeS
)
+o(t,S) 5 FL(, S dwW 2
+/ ﬁFS(t Sy)h(t, Sy, ) NO(dt,dz)
®\{0} 07

( ST ma®F S - FE(t,5)

G kES ki

0 . 6¢ 6%
+ Zpi7j(t’ 8)(51]‘;] (t, St) + LU’ )>dt

JjES
B
+ ot St)%Ff(t, S)dW 2

+/ 2F *(t,S¢)h(t, S, z) N9 (dt, dz).
r\{0} 0%

Since Ufj' is the solution to %Uf; + LUf’S' = rtUg;.
dFS(t, S,) = (ZM S(t,S;) — Fi(t, ) + rFE(t, St)>
k#i
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6.2. Thiele’s PIDE for unit-linked policies with jump diffusions

0
S S )dWR

+/ O st St Su, ) NQ(dt, d2).
R\{0} 0%

=+ (J'(t7 St)

6°
Here we have used the fact that LF} =37, s pi;(t, s)LUS”.

We can see that these are two expressions that are equivalent. This means
that,

, 0 .08 0%
D pi g (O(FF (8,8h) = Fi(t,S0) + e Fi (8, S)) = 57Us” (1:80) + LU
k#i
This is a PIDE in S; and ¢ for a fixed s.
Since V;(t, St) = Vi(t,z) and V;(t,z) = GT (t,z) + LT Ff(t,xz)ds

(t,z)=(t,5¢)
we can use Lebesgue’s dominated convergence theorem and the fundamental

theorem of calculus to get,

0
aVi(t,x) —GTta: / —Fstxds—hmFs(t x).
Finding the limit,
hmFs(tx —hmZp”ts '—hmZp”tt
jES jES
_ 7% ¢
=l >0 =0t =6
JjES
=gi(t, ) + Y pin(O)hik(t, ).
k#i
Inserting this into the previous expression yields,
0 0 7o
7‘/; t, — 7GT t’ —F3(t i t i l t .
GiVitn) = ZGT (k) + [ SR a)ds = gita) + 3 palOhiat.a)

k#i

This is equivalent to,

0
/ 7Fzétm av(t‘r—’—gltx E /'sz zktx)
k#i

We now return to the equality

a S S
5 B+ LF] ;mk — F}) 4 rF?. (6.3)

Integrating this with respect to s over the interval [¢, T].

T
/ —Féds—k/ LFfdsz/ (Zm,k(t)(Ff—F,j)—i—rth)ds
t

ki

a S S S 4 S T S
/taFderL/ Fdsfz;hk (/ FidS*/t des)Jrrt/t F?ids,

k#i
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6. Unit-linked life insurance policies

which is equivalent to

0
8t(V GT +gz Z/Jzk zk"‘L(V;,_G;T)
k#i
= Zﬂzk (V Vi + G} — GZT) +r(V = GY).
k#i
Now consider the following
8 0
5,07 Zap”tTUfJ-l-Zp”tT)an’
JES
0
= Y pgDGT =G + Y piy (0. T) 5 UF
JES ki je€Ss

In addition,

Sarfpar - > k(G = GY) +prtT)(aU{f+LU%j>

ot P Py ot
= pis(t.T) < Ul +rtGT)
k#i

This last equality follows from the fact that %Ugj + LU# = ’/‘tU%j which is a
PIDE we got from the Feynman-Kac formula. Finally,

0
a%(tvx):rt‘/i_gi(tax)_ E /'I”Lk? zkz t 3? + E Mzk V Vk) LV;.
k#i k#1

We have now proven the main theoretical result of this thesis, giving us
a simpler way to find the value of an insurance contract where the payment
depends on the value of a financial asset modeled with jumps.

One interesting special case of this is when pu,0 € R and h = 0. This is the
Black and Scholes case. In this case we can see that the differential operator
becomes,

LV—rtxaV—i— xa(tS()) 0

ox oz
This is a known result and can be found in Aase and Persson [1993], p. 97.

In the next chapter we will explore some numerical methods for estimating
the solution to the PIDE.

—V.
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CHAPTER 7

Numerical methods

In the theoretical part of this thesis, we derived a partial integro-differential
equation (PIDE). However, there might not be a simple and efficient way to
find an analytic solution. Therefore we need numeric methods.

In this chapter we will explore some of the methods that can be used to
solve such PIDEs. We introduce two methods. Both are based on backwards
integration on a bounded domain, but differ in computational cost and in
numerical stability. The bounded domain is a limitation we place on the
solution for computational reasons. We will refer to the first method as the
explicit method and the second method as the implicit method.

In order to calculate reserves and prices we need to specify the context
in which we are working. To that end we need to introduce a jump diffusion
that models the securities and a model for the mortality of the insured. We
will model the security with the Merton jump-diffusion model. The Merton
jump-diffusion model is an extension of the Black and Scholes model, but with
jumps. Merton eventually shared the 1997 Nobel prize with Myron Scholes (and
would probably have shared with Fischer Black, had he not abruptly died in
1995). The mortality model we are going to use is "K2013". This is a standard
method used by the Norwegian financial supervisory authority. Norwegian law
mandated that life insurance companies can not use models for mortality that
gives less conservative reserves than K2013. This makes it a natural model to
use.

7.1 The Merton jump-diffusion model

Robert Merton introduced the model in his 1976 paper "Option pricing when
underlying stock returns are discontinuous', see Merton The model is an
extension of the Black and Scholes model where jumps are introduced. The
jumping process is at time t a homogeneous compensated compound Poisson
process, where the jump intensity is a constant A and the jumps are i.i.d.
random variables Z;. Using Merton’s own notation one can state the dynamics
under P as follows,

d?st = (4 — AE(Z))dt + 0dW; + dN; (7.1)
t

Here dN; = Y; — 1 if a jump occurs and 0 otherwise.
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7. Numerical methods

Indeed this is a jump diffusion of the kind we have been studying when a
proper adjustment to the drift is made.
We can find an expression for the solution to this SDE.

Ny
St = S() exp ((l}, — 0’2/2 — )\E(Z))t—f— O'Bt + ZZ¢>

i=1

One can prove this by using Itd’s formula, however, since this is not a very
central result, we can refer the reader to Merton

The Merton model does not produce a complete market. Since a single
security is driven by two noisy processes, our rule of thumb states that the
market is not complete and that there is no unique local martingale measure.
More formally, no predictable process n exists such that,

0(t) = el n(w)o(r)
t
1z, t) = eh ().
Thus market incompleteness follows from theorem
This means that when we go from the dynamics under P to the dynamics

under Q, we have to make a choice of which Q we use.
We choose @ like in Merton [1976| and get the following dynamics,

ds, 0
5, = (r = AE[Z))dt + 0dB? + > Z;
B k=1

As for the jumps, one could in principle use many distributions, but a careful
analysis of the returns of the asset should be conducted. In Merton a
second independent log-normal distribution is used. We will also use this here.
This choice of distribution means that jumps are positive. Using a log-normal
distribution means that we avoid the problems associated with having negative
prices. This also means that we can find an explicit expression for the Lévy
measure.

=31t~ e (- H(552Y)

Here 6 is the standard deviations of the jumps, m is the mean of the jumps and
A is the jump intensity. The source of this result is F. E. Benth, J. S. Benth,
and Koekebakker p- 50.

One can prove this by finding the characteristic function of the compound
Poisson and using the Lévy-Khintchine formula to identify the correct term.

Moreover we can find the PIDE for a European option with Merton’s model
as the underlying model. Simply consider Theorem [3.7.3] where all dt terms
disappear. Alternatively, see Cheang and Chiarella

0 B 0 1 5 5 07
&V(t,x) =rV(tz)— rtx%V(t,x) ——o’x —xV(t,x) (7.2)

- / Vitz+y) - Vit,a) - xyaﬁ(t, Duldy)  (7.3)
R\{0} x
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Merton jump diffusion, S0 = 2

12

10

Value

Months

Figure 7.1: Sample paths of the Merton jump-diffusion.

This is going to be the generator L for our Thiele’s PIDE.

Using parts of the code in [B:3] we can generate Figure [7.1] showing some
sample paths of Merton’s jump-diffusion.

Now that we have explored the securities model we can move on to the
mortality model.

7.2 The mortality model: K2013

Another essential ingredient in life insurance is the modeling of the state of
the insured. Recall that the state of the insured is modeled by a Markov
process. In this thesis we will be looking at contracts where the insured is either
alive or dead. Therefore, we will use a model that only describes mortality.
If one were to look at a contract with multiple states of the insured, such as
disability insurance, one would have to model the movement between these
states. These kinds of models are slightly more complicated, but do not change
the mathematics of Thiele’s PIDE in any meaningful way, except that we would
need one PIDE for each state.

Since we are only looking at the case where the insured is either alive or dead,
let us derive a useful result connecting the transition rate with the transition
probability.

Proposition 7.2.1. Consider a Markov process, X = {X;,t > 0} with state
space S = {x, T} and suppose that u(t) describes the transition rate between
state * and T. Introduce the notation py .(s,t) = P(X; = | X5 = *). Then,

Pu,x(5,1) = exp ( — /: N*,T(S)d5>~

Proof. The idea is to find an ODE that gives us the solution. Let s <t and
h > 0.
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Dax(8,1) = P (8,0 + h) = pru(5,8) (1 — puu(t,t + 1))
— P*,*(& t)p*,f(ta t+ h)

Dividing this by h and taking the limit as h — 0 thus gives,

d
—£p*,*(8, t) = Pu (S, ) et (1)

This is an ODE with solution,

Pix(8,1) = exp (— /St #*,1(8)d8>-

with boundary conditions p, ,(t,t) = 1. [ |

This result is very useful because it gives us a quick way to find the probability
of moving between states in a given time without having to solve systems of
ordinary differential equations (ODEs). If the state space had more elements
with more transition probabilities, we would have one ODE for each state, all of
them interconnected. This would not yield a nice formula like this, but would
probably require numerical methods.

One might wonder why we needed to introduce this result. This is because
our mortality model, K2013, is a transition rate p. Using this result we can
then easily find the probabilities of survival. The model is as follows,

’LU(SC) t—2013
,U,(.T, t) = ,ukol(l', 2013) (1 + 100) 5

where

( min(2.671548 — 0.172480z + 0.001428522, 0), for men
w(x) =
min(1.287968 — 0.101090z + 0.00081422, 0), for women

and

(2,1) = (0.241752 + 0.004536 * 10°-951) /1000, for men
Hikot L (0.085411 + 0.003114 * 1009512 /1000, for women
Here x is the current year and t is the age of the insured.

We choose this method primary for two reasons. Firstly, it is a standard
model in the Norwegian industry. Hence, by using K2013 the mortality in
the examples are realistic and familiar to the industry. Secondly, the model is
simple and transparent. We implemented K2013 in Appendix

To conclude this section, the author has calculated his own survival
probability based on K2013. Life expectancy was 82 years. This is in line
with demographic expectations.
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Surivalprobability, Author (25 year old man)

age

Figure 7.2: Demonstrating the survival probability, p. .(25,t),t > 25, using
K2013.

7.3 The explicit method

The explicit method is based on Euler’s scheme for solving ODEs. We divide
the domain into a grid. Since we know the value of three border regions we can
calculate each of the border points systematically by taking the know values
and interpolating the interior point. A different introduction to this can be
found in Tankov p. 424.

Figure 7.3: The grid representing the domain where we approximate the solution.
Left is t = 0 and right is ¢t = T'. Blue edges are boundary conditions and red is
terminal conditions, both of which are known.

Consider the grid in Figure [7:3] Suppose the x-axis represents the partition
in time and the y-axis represent a partition in space, i.e. in value of the fund.
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The points on the red line are the terminal conditions, f;, and thus known. The
blue lines represents the boundary conditions we have imposed. Hence, the
points on the red and the blue lines are known. We seek to interpolate each
of the points in the intersection based on the known information. This means
that we start with the rightmost black line, and begin at the top. This point
has known neighboring points, both in the space, and the time direction. Using
Euler’s method we can interpolate it. The next point on the same line also has
known neighbors in the time and space directions, one of which is the previous
point we interpolated. We continue this for all points on the rightmost black
line. Once finished, we do the same thing to the second rightmost black line,
then the third rightmost, and so on.

This is the gist of the method. However, we can formulate this more
mathematically.

Consider the collection of points (x;,t;) fori =0,1,...nand j =0,1,...,m.
Introduce the following simplified notation:

r; =1(t;),

gl = g(ti, ;)

i = e (t),

= fulti ay),

b = hyy(ti, ),
J

b

= o(t;, ;).
Note that we assume that k,l € §. The method is easily extended to the
case where there are multiple states the insured can be in.

Next consider the Taylor approximations for the derivatives,

0 _V(t+Atz) - V(t,x)
gV (o)~ At
0 _V(t,z+ Ax) - V(t, )
2 _ _
ivwm - V(t,z+ Ax) — 2V (t,z) + V(t,x — Ax)
0%z (Ax)?

Define Vl-j = V(t;,x;) and let Zgare be the age of the insured at the start of the
contract. This means that we can rewrite Thiele’s PIDE [6.2.1] as

vi_vi . i
thzl = ’I"tvij — 9t — w(Zstart + ) (h — V) — rtszsz
1 | VEERE Ve SR Vb N 4 iy
_70-2l‘? i L ;_ v _/ Vi]JFy_Vi]_xjeyk;V(dy)
2 (Ax) B\(0} i

Suppose that we bound the domain to some interval [B;, B,]. Cont and
Voltchkova also suggest truncating the jump integral to an interval K, K,
such that [By, B,] C [(K; — 0.5)Ax, (K, + 0.5)Az]. Hence the expression above
can be written.

‘/}Z _ Vyl_l
At

i+l yri
Vi =V

= Tthi — g1, — M(Zspart + 1) (R = V) — 1z Ar
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1, Vit —avipvict &

K’F
2.2 J 5+ Yk i
T2 =2 VI Vi Y
k:KL ]C:Kl
Vﬁ+1 o V’L K,
+ z-2 4 eVt v
A
k=K,
Here v; f((j +(;) 55))25 (dy). Moreover, we can note the following

approximations. Firstly, Zk: V= \. This is the sum of the increments of

the Lévy measures over the domain of the jumps, i.e. an estimate of the mean

of the Lévy measure. Secondl ZKT eYv; = M, since the jumps are assumed
y . Y7 k=K, J ) .] p

to be log-normal this becomes an estimate of the mean of the jumps.

Rearranging this we can approximate the value at time ¢ — At,

. _ . Vit s
V;—l = ij — At <7‘thl - rwﬁ — 9t — i(Tstart +15)(h = V)

1, Vit —2vi4 Vit

_ Zo2p2d J J
2 (Ax)?
K

— . Ly

- S vz

k=K,

This can be implemented and solved with the terminal conditions being
that of the payoff function at time 7. The main drawback of this method is
that it is unstable. Therefore, we have preferred to use the implicit method in
this thesis.

7.4 The implicit method

The idea behind the implicit method is to express the discretized expression as
a system of equations that can then be solved. Consider again the discretized
expression for Thiele’s PIDE,

‘/’L] Vz ) ] VJ+1 VI
HT - T‘tV;J —gt; — N(wstart + t)(hf - V) - Tt‘rJTz
1 Vit oy 4yt B S
B v D DR R (I DY
k=K k=K,
V'ij"rl _ V;] K
M v DL
k=K,

If we write this out and group the terms together we can show that this is
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equivalent to,

VJ 1 ~ m 1
1+1 J tLg

= gt; — W(Tstart + t)h = — T e )
Ap M Zstart + ) V(At+r+u+A + Am+2<Am>)

102302 T A)

Vj+1 .
i ity 2 Az Az

2
_VJ 1101}

P2 Ag?
ﬂc,+yk
Z Y

One can simplify the notation further by introducing the following notation.

A 1o xQAt
i 9 A:EQ ’

2 A
Bl =1+ At A L D e L
I=1+ (rt+ut+A + % A )

2
; rv;  lojai o owy
C] _ At J - J '
v ( Az 2 Az2 Az
DJ = V;]—Q—I + At(gtl + N(xstart +t tza m] Z Vﬁ—l-i_yk J
k=—Kl

Here V; denotes the vector of value for all z in the domain at time ¢. Inserting
this notation yields the following system of equations,

AIVITH 4+ BIVY 4+ IVt = DI

Note that the jump matrix depends, as with D, on time ¢ + At. Thus, we can
set this up as matrices.

Al B ¢1 0 -~ 0 0 0 0 A
0 A2 B C? .- 0 0 0 0 V!
0 0 0 0 Am=? B2 oomt? 0 yml
0 0 0 0 o At prt gmt v
Dy
ALV D}
+ : = :
crtvm Dy
Dt

Denote the first matrix containing A, B and C' as M. This set of equations can
be expressed,

MV, + Ey = Dy
which can be solved,

Vi = (M)~ (Dy — Ey)
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An alternative scheme for Merton’s PIDE can be found in Cont and
Voltchkova It does not include the insurance part of the PIDE. However,
one can easily extend this implementation to also cover the insurance part. This
alternative scheme has been implemented in Cantarutti This code has
been adapted to fit the insurance context we here are working with.

We will use this method when we look at some examples in the next chapter.
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CHAPTER 8

Examples

In this chapter we will look at some examples. These examples will highlight
some of the differences between the jump-diffusion model and the classic Black
and Scholes model. We will study three unit-linked life insurance contracts this
is a pure endowment policy, a death benefit, and a pension. Moreover, we are
also going to look at a non-insurance example, fish farming.

For the following examples suppose that we have the probability space
(Q, Fr, P) equipped with the filtration F = {F;};>0 generated by the fund S
and the Markov chain X.

8.1 Example 1: Pure endowment policy

A pure endowment policy is one of the simplest life insurance policies in the
market. The policy pays a lump sum when the insured reaches a certain age,
but only if the insured is alive. This means that the state space is S = {*, 1},
where x signifies alive and f signifies dead. Suppose the contract is such that at
the age of 65 the insured is to get a sum of G = 3 (million NOK) guaranteed
or the value of a fund §' if this is greater than G. We assume that the fund is
modeled by a Merton model as described. We assume that the insured is a 55
year old man. From this we can summarize the following policy functions,

fx = max(St, G),
g+(t) =0,
hes =0.

All functions describing the state t have to be zero. From this we can derive
the following PIDE;,

d
%V* =1Vi — pu i Vi — LV,

0 1 0?
= Vo= puiVi =gV, — Satot oV,

- / [w,x (), 0) — Vi — oy 2V u(dy).
R\{0} O

Note that since there is no payment whatsoever when the insured is in state T
the value of the insurance has to be zero for this state.
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Parameter estimation for the securities model is outside the scope of this
thesis. Therefore, the values chosen are reasonable, but not based on any data
set. Methods for this do exist, such as in Tang or Meyer-Brandis and
Tankov The yield of the 10 year US treasury bond (as of 01.04.2022) has
been chosen as the risk-free interest rate. Hence, the security model has the
following parameters:

Parameter | Value
04 0.19
A 10
7%, 0.025
aj 0.25
r 0.023

With these assumptions in place, the first thing to consider is the boundary
conditions. If the insured is alive at this point, the payoff of the contract is
(St —G)4 + G. Here (S — G)4 = (St — G)1(s5,—c)>0- This means that the
terminal condition, i.e. the value at the last point in time, has to have this
form. Consider now the situation where the value of the fund is low. Obviously,
the insured would get the guaranteed amount, but only if he survived to collect
it. Hence, the lower bound should be Gp, . (s, T)e™"(T=%) where s € [0, T]. On
the other hand, what payment would the insured get if the value of the fund is
high? The value of the fund should, in this context, be the upper bound on the
value of the fund multiplied by the survival probability, X,,aepx, (s, T).

Running the code we get the figure on the left of Figure B.1] It can be
of interest to compare the shape of the value to a policy with the same terms
but with a securities model where there are no jumps. The figure on the right

of Figure 1}

Figure 8.1: The value of an endowment policy where the security is a Merton
jump-diffusion (L) and a Black and Scholes diffusion model (R).

We can see that the shape of the surface is slightly different. The jump-
diffusion model gives a less convex graph. This makes sense. Since the value
of the fund is subject to jumps, there is a greater possibility that the final
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8.1. Example 1: Pure endowment policy

value of the fund is different than the initial value. Moreover, there is a lower
bound to the payments, but not an upper limit. The jumps therefore make a
high payment more likely and thus makes the contract more valuable. This
conclusion might be due to the choice of Merton’s jump-diffusion.

We can find the difference between value of the insurance with and without
jumps.

1.2

08 0.8
06
Z
ob 0.6
ok
o 0.4
o
y 0.2
S

Figure 8.2: Pure Endowment: difference between Merton jump-diffusion and
Black and Scholes diffusion.

So | Merton Jump-diffusion | Black and Scholes diffusion
1 3.1 2.8
2 3.8 2.7
5 4.7 4.5

Note that there is some numerical error in all of these calculations. However,
as we can see for most initial values the jump-diffusion gives a more valuable
contract.
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To confirm these findings, a Monte Carlo simulation was done for this
example with the same securities and mortality model. This was implemented
in We simulated 10000 lifetimes and paths for the security and found the
sample mean and discounted. For Sy = 1 the sample mean was 3.1, the same
as we found in using the implicit method.

8.2 Example 2: Death benefit

A death benefit contract is a very typcal life insurance policy previously described
in more detail in example

Consider a 40 year old woman. The contract has a duration of 20 years,
and if the insured dies the contract pays the maximum of 1 (million) or the
value of the fund at the time of death. This means that we have the following
policy functions

f* =0,
Jx = 07
hy+ (S, 7) = max(S-, Q).

The function f, is zero because the contract is worthless when it expires.
There is also no continuous payment, and thus g, is also zero. Since the only
payment that can occur is the insured being payed when moving from state %
to state T the value of the insurance is zero when the insured is in state §. This
means that we have the following Thiele’s PIDE,

0
—V* = TtV* - H*,T(h*,T — V*) — LV*

ot
0 1 0?
= Ttv* - H*,T(h*v—r — V*) — 'I"tflﬁ%v* — 51720'2%‘/*

- / [V*(t,x +y) —Vi— nyV* v(dy).
R\{0} O

Here the generator L is the same as in the above example. Calculating the
value of insurances with a similar script as Appendix [B23] we get the following
graph. The right graph is with A = 10, i.e. with vigorous jump activity, the left
is the case A = 0, i.e. no jumps.

As we can see, the jumps "smooth out" the curve. The reason for this might
be that the jumps make the fund more volatile. The concave shape seems to be
made by the cash flow in the event of a death. The more volatile fund might
overpower this and mute the effect. Hence creating a less concave graph.

We can compare the value of the policy at time 0 with jumps and without
jumps.

So | Merton Jump-diffusion | Black and Scholes diffusion
1 0.0037 0.0041
2 0.0054 0.0064
3 0.0074 0.0084
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Figure 8.3: Value of a death benefit with jumps (R) and without jumps (L).

8.3 Example 3: Pension

A pension is a third very common life insurance policy. Most Norwegians have
at least one pension policy: one from the government, often from an employer,
and some also have private plans. Pensions generally give the insured some
financial security during old age. This allows them to work less or not at all.

A pension plan generally works by having the insured pay a premium every
period (every year or every month). Then after reaching an age determined
by the contract, the insured receives some amount every period. The value of
having a unit-linked policy as oppose to a regular fixed payment policy is that
the insured can take on some of the financial risk, and thus might receive a
cheaper policy, and higher returns.

In this examples we consider a 60 year old man. His policy stretches over
20 years, i.e. until he is 80. The policy has a retirement age of 70. When the
insured turns 70 he will receive 1 (million) or the value of the fund, whichever
is the highest, every year. When he reaches 80 the payments will cease.

The terminal condition therefore is 0. No matter how much the fund is worth
there is not going to be any payments after 20 years. The upper boundary
condition shows the value of the policy increasing until the age of 70, and
decreasing after. The same is the case for lower boundary condition. This
is because the insured only gets the pension if he survives. The closer to
retirement age he is, the higher the probability of getting a pension is, and the
more valuable the policy becomes. After the age of 70, there is only a limited
number of payments, since the policy is of limited duration. Hence, the value
should decrease for every time period. In addition to this, the probability of
dying during the next period increases, making the policy worth less.

Consider first the case where the value of the fund is very high. Then the
probability of receiving the value of the fund is also high. Hence, the upper
boundary condition is based on the present value of receiving the value of the
fund every year. On the other hand, the lower boundary condition is based on
the present value of receiving 1 (million) every year. Both the upper and lower
boundary have the behavior described above in regards to the value increasing
until 70 and decreasing afterwards.
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Figure 8.4: The value of a unit-linked pension with jumps (R) and without
jumps(L).

This policy has the following policy functions.

f* = 07
g*<t7 St) = ma'X(Sta 1)1t2707
het = 0.

As for the other policies discussed, there are no payments happening when
the insured is in state 7. Thus the value of the policy and the policy functions

for this state is 0. From this we can derive the corresponding PIDE for the
pension policy,

0 0 1 0?
av* =7V — gu(t, @) + pre i () Vi — rtx%V* — 536202—1/*

0%x
0
-/ [v*<t,x+y>—v*<t,x>—xyv* v(dy)
R\{0} ox

Using a similar script as in Appendix [B23] we get Figure 8.3

As we can see, both the model with and without jumps produce the typical
"tent shape" in time as we would expect, where the value of the policy gradually
increases until retirement and decreases afterwards. As the fund increases in
value the model without jumps is more S-shaped, whereas the model with jumps
has a flatter shape.

A possible explanation of this can be that when the fund is low, the risk in
the model with jumps makes the policy more valuable. Since the jumps make
the value more volatile, the probability of the fund increasing in value is higher.
Since there is a lower bound on the payments the downside risk is bounded,
but the upside risk is not, hence the value of the policy is higher. This would

mean that we do not see the valley in the model with jumps as we see in the
one without jumps.

96
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When the fund is higher we see the opposite. The downside risk in the
model with jumps is higher than in the model with jumps. Moreover, they have
a similar upside risk. This means that the value of the more risky policy is
lower. Hence, "cutting the mountain".

Lastly, we can compare the value of the insurance at time 0.

So | Merton Jump-diffusion | Black and Scholes diffusion
1 10.84 10.32
2 15.19 15.53
3 20.21 20.64

The table of initial values tells the same story.

8.4 Example 4: Commodity prices

The aim of this thesis has been to develop a PIDE for pricing insurance. However,
if we remove our insurance hat, and change our perspective we might be able to
apply this PIDE to a different context. A natural situation in which this could
be appropriate is Norwegian fish farming. Fish have a limited time span where
they grow before being harvested and sold. Here we have the same two sources
of risk, mortality risk and risk surrounding payment. In reality there is also
some risk as to how fast the fish grows, but we will not look at this here.

The first thing to consider is the mortality model. Obviously the fish does
not follow the same mortality as humans. Hence, K2013 is not appropriate for
this context. The public availability of data is a problem here. However, if
one were to get mortality data one could use standard actuarial methods to
estimate the mortality rate. Thus, we need to consult literature. Estimates
vary greatly, but a few papers point to 5-10 death per 1000 fish each week,
Oliveira et al. This changes based on time of year, temperature, and the
geographic region. Going forward we assume that the mortality rate for a fish
is px,+ = 0.05. A more accurate model is possible, but this one is sufficient for
this demonstration.

The next model we need is a model for the security. Luckily, there are
some data on the price. The Fish pool index (FPI) is a weekly index used
for settling the financial contracts at the Fish Pool exchange,
Fish pool is an international exchange for fish and seafood commodities
and related financial contracts. Using the FPI as a proxy for the value of
the salmon at the time of sales, we can try to estimate the parameters of the
Merton jump-diffusion. Using the code found Appendix we can find the
following estimates.

@ | 0.0093
o2 | 0.0047
Ljump | -0.0752
O jump | 0.7592
X | 08713

With all the modeling finnished we can move on to specifying the contract.
Suppose the salmon will be harvested in 2 years if it survives. At the point of
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Figure 8.5: FPI every week from January 1. 2006

harvest the fish is 3 kg. If the fish is harvested then the payment is going to be
random and decided by the Merton jump-diffusion. We suppose that the there
is a contract where the fish is either sold for 50 or at the market price. This is
not unreasonable when a fish farm is part of a bigger company. This means
that the terminal condition is that of a call option. On the other hand, the
lower boundary has to be equal to the future price adjusted for the probability
of delivery, and the upper boundary has to have the imposed maximum value
discounted and multiplied by the probability of payments.

The PIDE has the same general shape as in the case of the pure endowment,

d
av* =1V — Vi — LV,
1, 507

0
=1V — pu Vi — rio Vi - grto %V*

_ / [V*(t,x +h(ta),t) — V.
R\ {0}

Running a script similar to the one we used for the pure endowment policy
we get Figure Due to limitations in the software used for plotting (or the
use of said software) the values on the spot price-axis have disappeared.

However, the shape is the most important part. We can see that the lower
the initial price, the lower the value of the fish. The initial value of the fish
increases a lot with an increase in spot price. This means that the young fish
have a more volatile value than older fish. On the other hand, when the spot
price is high, then the fish has a very stable value.

The spot price as of time of writing is 119.69Nok/kg. This means that the
value of a fish that is going to become 3 kg when harvested is today 296.22 Nok.
We can summarize the initial value of fish with different spot prices.

98



8.5. Sensitivity analysis

180
200

160

150 140

100

NOK/KG

50

« s <)

<0p e
05 G

Figure 8.6: The value of 1 kg farm fish in Nok at every point in the growth
process.

Spot price | Initial Value
12.5 0.27

30 23.09

110 98.70

We finish out this chapter by doing a simple sensitivity analysis on the value
of the jump intensity parameter, \.

8.5 Sensitivity analysis

In this section we are interested in understanding how the jump parameter A
can affect the value of a policy. We return to the first examples of this chapter,
the pure endowment policy. We want to compare the value at time 0 of the
policy when we keep all parameters equal except the jump intensity parameter
A
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If we consider this question intuitively we would expect a higher A to make
the unbderlying fund more risky. Since the jumps are positive and thus to the
advantage of the insured, a more volatile fund makes the policy more valuable.
Moreover, the downside risk is insured with a guarantee and the upside risk is
not limited. Since the added risk is to the advantage of the insured, one would
expect the policy to be more valuable when A is increasing.

In order to test this hypotheses, we run the same script as we did in the
example, but with different value for \. We test from the no jump case of A =0
to the case where A = 20. We get the following result.

Value of a pure endowment when S0 =3

345
I

Value of the policy
340
|

T T T T T
0 5 10 15 20

lambda

Figure 8.7: The value of a pure endowment for different jump intensities.

We see that it is in fact the case that the value at time O increases when
the jump intensity increases. Whether this is for the intuitive reason as above
stated need not be the case but it is a plausible explanation that would be in
line with financial theory.
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CHAPTER 9

Conclusion and discussions

In this chapter we will take a step back and discuss the results of the thesis.
We will look at some possible further improvements and critical remarks.

9.1 Conclusion

The main goal of this thesis has been to generalize Thiele’s differential equation
for jump diffusion securities models. We accomplished this in Theorem [6.2-1]
What is the value of such a result?

There is a previously known result that assumes the underlying security
follows a Black and Scholes model, see Aase and Persson The Black and
Scholes model is a standard model used by many practitioners. It is simple and
fairly accurate in many situations which has helped keep it popular. However,
there are some major problems. One of the most damning issues with the Black
and Scholes model is that the model predict a distribution of the returns that
have too thin tails. This means that major movements, gains or losses, have a
vastly underestimated probability. This is a major problem when large losses
can have devastating effects on a portfolio.

We can alleviate this problem by generalizing the security models to a jump
diffusion. A jump diffusion is a model in which, in addition to a Brownian
motion term, there is a Poisson random measure. The Poisson process can
be thought of, for example, as a process that models big events like elections,
pandemics, etc. The added jumps makes the tails of the distribution of the
returns thicker. This makes the models more realistic.

In addition, by using a Brownian motion and a Poisson random measure,
one can expand the set of possible models. This means that one can use a lot
more realistic models.

For our insurance context, having a more realistic model for the underlying
security means that we can improve the pricing of our policies. A more accurate
model for the fund means a more accurate model of the cash flow to the insured.
This allows us to place a more accurate value on the insurance. In particular, we
saw in the previous chapter that when the jump intensity increased, the value
of the pure endowment increased. In general, when the risk of the underlying
fund increases, the value of the policy should change. Thus, a more realistic
securities model makes the pricing better.
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9.2 Further research

There are multiple ways to extend this research. In this section we will do some
some preliminary brainstorming.

The most immediate avenue of research in this direction is to generalize even
further. It should be possible to find even more general security models. One
of the insights in this thesis is that having non-unique equivalent martingale
measures does not pose a big problem. Thus, we should be able to find a
Thiele’s PIDE for even more general security models than a jump diffusion.

One interesting possible research project in this general theme is to study
other kinds of models. One example could be the model proposed in Mandelbrot,
Fisher, and Calvet and is based on the works of Benoit Mandelbrot.
Mandelbrot is primary known for his work in fractals, and is possibly most
known for the Mandelbrot set. However, much of his work has been in finance,
notably in commodity pricing. The Multifractal Model of Asset Returns
(MMAR) is based on a fractional Brownian motion with an subordinator,
i.e. time is modeled by an increasing stochastic process. Since the fractional
Brownian motion does not have independent increments, it cannot be a Lévy
process. Thus, we could not use the main result of this thesis with such a model
of the fund.

To take the possible research in a different direction, one could also extend
this method to different kinds of financial contracts. What differentiates unit-
linked contracts from other European contingent claims is the state of the
insured and mortality risk. Consider on the other hand a ship. The ship can be
in four different states: operating, in for repairs, in lay up, or sold. In each of
these different states the ship has a cash flow. The cash flow when the ship is
working is based on the rates. When the ship is in for repairs or in lay-up the
cash flow is fixed. When the ship is scraped the cash flow is based on the value
of the metal in the ship.

It could be interesting to try to model the movement between the states.
This would requiere dealing with the interplay between multiple securties and
possibly even weather. In the end this could lead to new methods of valuing
ships. This could also be a tool for ship-owners to better plan the use of their
vessels.

Lastly, a direct application of Theorem [6.2.1] is in commodities markets
where the value of the commodity is modeled by a Lévy process, and there is a
risk of delivery. If there is a risk that the delivery will not happen, the value
of the commodity contract in the market should reflect this. The agricultural
and aquaculture sectors are the most immediate possible uses for this result.
Since what they produce are living thing that might not survive long enough to
be sold. In addition, the sales price is subject to market fluctuations. It would
allow the producers and the purchasers to factor in the mortality risk inherent
in food production more accurately.

9.3 Critical remarks

We finish this thesis by making some critical remarks.
The first issue we want to raise is the fact that by introducing another
stochastic process we also introduce new parameters. If we wanted to estimate
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9.3. Critical remarks

the value of a unit-linked policy in the wild, it should be based on real securities.
In order to do this we would have to estimate the parameters of the security
model. In general, the more parameters, the harder the estimations are going
to be.

In addition to this general difficulty, we also have introduced jumps. This
raises another estimation problem. Namely, how to separate jumps from non-
jumps. In order to do this one might want to resort to stochastic filtering
techniques or solid threshold methods. This could make the estimation task
more difficult: neither of these problems are insurmountable, but because of
this we have not spent time doing very accurate estimates of parameters in this
thesis. The work required could probably fill a second master thesis.

As a result of this statistical issue, we have not done parameter estimation
in most of our examples. Since we used Merton’s jump diffusion, it is possible
to find an explicit likelihood-function one could optimize numerically. However,
as this was not central to the thesis, it was not prioritized.

A different critical remark also concerning the examples is the choice of
securities model. The Merton jump diffusion model might not have shown the
extent of the usefulness of the PIDE. The choice was made on the basis of
simplicity and the fact that the jump distribution was non-negative. Otherwise
one would have to do a lot of extra work modeling the probability of positive
and negative jumps.

The numerical methods can also be criticized. As with parameter estimation,
the numerical methods are not the focus of the thesis and were thus not a
priority. The explicit method proved to be very unstable. Some work could
possibly be done to improve stability, but the jumps made the stability problems
too extreme to be fixed in the short amount of time available. The implicit
method proved a lot better on the stability front. However, there are also
some stability problems here. The ideal choice in retrospect would have been a
different method for numerical solution to PIDEs. The reason for not doing
this was that the time it would take to implement and test adequately would
have been too great.

A general critique is the accuracy in the calculations. This is a problem with
any numerical method, and is only compounded if one were to use estimates
based on real life data. Hence, the calculations do all have some degree of error,
although it should not be great enough to change the results significantly.

There is one last criticism to add. No matter how much we improve the
models, they can never be perfect. The actual value of an insurance model
need the individual mortality of the insured and the true distribution of the
fund. This is impossible with the tools available to us today. Even the insured
does not know their own mortality, and when it comes to unit-lined policies,
the financial markets are remarkably difficult to model. To this end we might
conclude this thesis with the knowledge that we might have made some progress
towards better understanding and valuation of insurance policies, but there is
still a long way to go.

The words of George Box still plague us. All models are wrong, but some
are useful.
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APPENDIX A

Some proofs

This appendix encompasses a lot of the proofs omitted in the main part of the
thesis.

A.1 Chapter 2

Properties of a characteristic function

Proposition [2.2.7]

Proof. We have to prove each point.
First, we want to find |px (u)].

lox (w)] < Efle’<"*> ] =1

this follows from Jensen’s inequality and the fact that e?<"“*> is a compelx
number of modulus 1.
Second point,

px(0) = E[e”]) =1

Third point follows from the fact that the exponential function is uniformly
continuous, and thus the integral also has to be continuous.
Point four follows from the properties of the inner product.

E[ei<—u,X>] —_ E[ei<—lu,X>] — E[e—1i<u,X>] _ E[e—i<u,X>]

px(—u) = = px(u)

Fifth point is a little bit harder. Suppose that pyx is symmetric. Then
X and —X has the same distribution. However, this means that ¢x(u) =
vx(—u) = px(u). This is only possible if px is a real function.

On the other hand, suppose that px(u) is a real function. Then, ¢ x (u) =
vx (u). However, the following also holds, ¢x(u) = ¢x(—u). This means that

vx(u) = px(—u), implying that X and —X has the same distribution.

Proof of Proposition [2.2.9]

Proof. Suppose first that X and Y has the same distribution. That is, ux = py.
Then,
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px() = [ 0 () = [ 0y (dn) = v (a)
Q Q

The other implication follows from Lévy’s inversion theorem Walsh 2012
p-159.
|

Proof of Proposition [2.2.11]

Proof. First note that if Xy, X5, ..., X, are independent random variables with
distributions px,, ptx,,- .., tx, . Then,

(X1, X5, . X0) = BX1 M Xos - X,

This is a generalization of Theorem 8.7.2 in Lindstrgm 2017, p. 315 and involves
product measures but is a standard result from measure theory.

Then suppose first that X7, X5, ..., X,, are independent random variables.
Then,

DXy Xat X, E[61<X1+X2+ +Xn,u>]
1 2

<y taatetba, u>
Z ml 12 x " uX17X27"'X71,(d1;)

Il
\%\%\

%

i<T1+To+ T, u>

L€ X1 HXss - - - X, (dT)
_ 6z<:7t:1,u> €2<m2,u>uX L. €i<x"’u>NX (dSU)
2 n
_ E z<X1 u>] E[ 1<Xz,u>} . E[ei<Xn,u>]

= ¢x, (Wex, (u) - - px, (u).

Now on the other hand suppose that
X1+ Xat-X, (1) = x, (W)px, (1) - ox, (u).
By the calculation above, this implies that
/ gi<mtTattm >y (dr)
Rd

= /d ersmETR IS iy, - i, (da)
R
which means that

B(X1,X0,...X,) = BX1HXos -+ - HX,, -

This is equivalent with X7, Xo,...X,, being independent.
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Proof of Proposition

Proof. We will prove the statements in the same order as in the proposition.

e This can be showed via the definition of the conditional expectation. Let
A be any set in the o—algebra F.

/E[aX+bY|]-']dP:/(aX+bY)dP:a/ XdP+b/ YdP
A A A A
:a/ E[X\]-"]dPer/ E[Y|F]dP.
A A

e The tower property:
E[E[X|]]|F] = E[X|F].

The first equality follows from the fact that anything G-measurable is also
F.

On the other hand, suppose that A is any set in G, then A is also in F.
Hence,

E[E[X|F]|9] = E[E[X|F]14] = E[E[X14|F]] = E[E[X|G]|F].

o This is also called the law of iterative expectation. Let A be any set in F.
Then by definition,

/ E[X|F]dP = / XdP.
A A
The result follows by taking A = €.

e Suppose that Y is a random variable. Let B, A € F. Now assume that X
is G-measurable and that X = 14 for any A € F,

| BIXY|F4P = BEQAYIFIL5] = EIEY|FLpna] = E[EY1F]La1s)
= E[E[Y|F|X15] = / X E[Y|F|dP.
B

Now suppose that X = Zi>n o;1p,, where B; € F. Then the result
follow from the linearity of conditional expectations.
Lastly, suppose X; is a sequence of step functions converging to X from

below. Then the result follows from the monotone convergance theorem
and Proposition 7.5.3. in Lindstrgm [2017

e Suppose that X is independent of F. Suppose first that X = 14 and that
B is any set in F. Then,

E[X|F] = E[14115] = E[14] E[11] = E[L] E[L|F] = E[X].
If one assumes that X = > .. «;1p,, where B; € Q, then the result
follows from linearity. Lastly, one can extend this to any integrable

X with the monotone convergance theorem and Proposition 7.5.3. in
Lindstrgm [2017
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e Let f be a convex function. Then there exists sequences of real numbers
{an }nen and {by, }nen such that f(z) = sup,,cn(an + bp).

B[f(X0)F] > E | sup(an + b, X)|F =supan+bnE[X|f] — J(ELX|F).
neN neN

Proof of Proposition [2.4.10]

Proof. We can consider the first two properties in one aX; + Y;. X; and Y;
are adapted by definition. Since a is a constant is has to be adapted to any
o—algebra. The boundedness follows from Jensen’s inequality. Thus the last
thing to check is the martingale condition. Let s <'t,

ElaX; + Yi|Fs] = a B[ X¢|Fs] + E[Y:|F]
=aX,;+Ys5.

A.2 Chapter 3

Proof of Corollary 3.1.5]
This proof follow very closely the proof for Corollary 2.1.3 in Bédos [2019

Proof. The case where p = 1 is simple, and it follows from the linearity of the
integral.

Now assume that p € (1,00). The proof hinges on the Holder inequality.
Therefore, we first need to show that |f + g|P~! € L. Note first that by the
condition on p and ¢ the following two things hold,

:p_17

1/q
1F + g7, = (/Qlf+g|pdu) 1 gl = 1If + gllz

Hence, since f,g € LP, |f +g|P~! € L.
Finally,

||f+g||§§=/ﬂ\f+g|”dP
- / 4+ gllf + glP~1dP
- / FIF + glPtdP + / lgllf + gP~'dP

Hlders incquality < ||f]1/11f + "1y + lgllo|117 + 91"l
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A.2. Chapter 3

= (1£llpllgllp)II1f + 9"~ g
= (£ 1lpllgllp)If + gl

This implies that [|f + gll, < |[flpllg]lp-

Proof of Theorem: |3.4.2

Proof. The basic strategy used is to prove that the statement holds for all step
functions and then taking the limit.

e Suppose first that f, g € S with some partition tq, ¢, .... Then,

n

/O (af + Bg)dX; =Y (af + Bg)AX.
=1

= (afAX; + BgAX;)

i=1

—aZf JAX, +ﬂZg

—a/ fdXx, +ﬁ/ gdX,.

Since this holds for the case where f,g € S we can show by a limit
argument that it also holds for f,g € H?. Suppose f, — f and g, — g.
Then,

t

t
/ (@f + B)ax = 1 [ (af,+ o)
0

n— oo

= lim a/ fndXs +5/ gndX,

n— 00

:a/O des+5/O gdX,.

« Now suppose that 0 < u < ¢, and f,, € S such that f,, — f where f € H>.

n—oo

u t
/ fdX, + / fdX, = lim fndX + / frdX,
0 U
:nlgx;Oan JAX; + Z Falts)

1=m-+1
= Jm, Z Fn(t)AX

t

= lim fndX

n—oo

= /Ot fdX,.
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Here we did both steps of the proof in one, but the general strategy is
the same as in the first point.

e See Theorem 19 in chapter I1.5 of Protter 2005

e Suppose that X is a martingale. Suppose that f € S.

B [ / t f(S)dXs] -0 {;ft (X, — Xt,)]

=N 4E {(Xtm - Xti)]

i>1

Now let {f,}n>1 be a sequence of step functions converging to f from
below. Then,

{/ fl)ax } [ /0 nlgrgofms)czxs}

DCT = lim E {/ ful(s s:|
n—r o0

e The mesurability follows from the fact that f is progressive and hence
measurable on F; and the fact that since X is a martingale it has to be
adapted.

o Let {7;}ien be the sequence for which Xy, is a martingale. We check
the martingale definition.

1. Adaptability follows from an earlier property.

2. Next comes finite absolute expectation:

o o] -5 f

(DCT) = lim EH/ fals

]
o]

n— oo

= lim E[

i

=1
m

(TI) < lim Z hi B H

< 00.
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3. Lastly we have the martingale property. Let s <t and s,t € 7.

E [/Otf(u)quU-'s} -E [/Osf(u)qu+/:f(u)quJ-"s]
_ /Osf(u)qu—l—E U:f(u)dxufs}
- /Osf(u)qu+E {/:f(u)qu}
:/Osf(u)dX

Proof of Theorem

Proof. The first claim we are going to prove is the uniqueness.

Suppose first that there are two different solutions to the SDE X and X with
initial condition Z = Z. Let, a(s,w) = u(s, X (s,w)) — fi(s, X (s,w)), b(s,w) =
o(s,X(s,w)) — o(s,X(s,w)) and c(w,s,z) = h(X(s,w),s,2) — h(X(s,w), 2).
Then,

E[|X(t) - X#)*] =E [(z Z+/T a(s )ds+/OTb(s)dW(s)

/ /]R\{O} c(t, z)N(dt dz)) ]
_E[(Z-2)+2(7 - 2) /OT a(s)ds
+2(z - Z)/T b(s)dW (5))
2(Z — Z/ /R\{O} c(t, z)N(dt,dz)
/a //R\{O} o(t, )N (dt, dz)
+2/ $)dW (s / /R\{O} c(t, )N (dt, dz)
+ ( /R AR dz)>
+ (/OTCL(s)ds)2 + /OTa(s)ds /OT b(s)dW (s)

+ ( /O ’ b(s)dW(s)>2]

5 N T
_E[(Z - 2)) + 2E[(Z - 2) /O a(s)ds]

L 2E((Z - 2) / b(s)dW (s)]

113



A. Some proofs

L 2E[(Z - z/ /R\{O} (t, )N (dt, d2)]
+2E/ ds/ /R\{O} c(t, 2)N (dt, d2)]
+2E[/ dWs//R\{O} (t, 2)N(dt, d2)]
eul( [ et on V(i)

o " a(s)ds)) + B / " a(s)ds / ") (s)

([ Ws)aw ()7
B T T
<3E[(Z - 2)2 + 3E[( /0 a(s)ds)?] + 3E[( /O b(s)dW (5))?]

N 3E[< /]R e DN (dt, dz)>2]

T
<BE(Z - 27+ 301+ 0D* | E[X. - X.[lds
0

<0

Remark A.2.1.

e Three cross-terms disappear in the third equality because the covariance
is zero. The product of the expectations in all cases is also zero.

o The inequality happens because we multiply all therm by 3. This seems
strange, but is needed for Gronwall’s inequality.

e In the penultimate inequality we just rewrite 3E[( f a(s)ds)?] +

3E[(f) b(s)dX<(s))2] + EKfR\{O}c(t,z)N(dt,dz)ﬂ = 301 +

t)D? fo [[Xs — X,|?|ds. This is not hard but tedious and follows
from the linear growth condition and the definitions of a, b and c.

o The last 1nequahty follows form Gronwall’s lemma which stated that if
u(t) < F+Af0 t)ds, then u(t) < FeAt. Here u(t) = E[| X (t) — X (t)|?],

F =3E[(Z - Z)? ] and A = 3(1+t)D? fo (| X, — X,|?]ds. Since Z = Z
we see that F' = 0 and the result follows

This proves the uniqueness condition. One could also argue that this gives a
method for calculating the distance between two solutions given different initial
conditions.

We can now move on to existence. This will be done via Picard iterations.
Let Y°(t) = X and define recursively the sequence of Y (*)(¢) as follows,

Y ®)(¢) :X(O)+/tu(s,Y(k_1)(s))ds+/ta(&Y(k_l)(s))dW(s)
0 0
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t
+/ / h(z, Y =D (s))N(dz,dt).
0 JR\{0}
By a similar calculation as above we can see that,
t
E[[Y® ) — y*E=D @) < (1 + T)3D2/ E[[Y® (s) — Y+~ ()] ds.
0

One can see this by defining a and b in the same way as above with
Z-7Z=Xy-Xo=0.

We now want to show that the distance between each iteration is sufficiently
small to create a contraction mapping. To do this we use induction. Consider
the difference between the Oth and first iteration

t
0

E[[Y®(t) - YO )] = [ / (s, Xo)ds + / o (s, Xo)dWW (5)]2
< 2Eft / (s, Xo)Pds + / o (s, Xo) P (s)]

<2E[(t+1) /Ot C(1+ | Xo|*)ds)

< 2(t + 1)tC(1 + E[|Xo|])]
< At

Denote this A;t. Next by induction,

E[|Y(’“+1)(t) _ y(k)(t)m < M
- (k+1)!
This calculation is similar to the zero case.
Let || - || be the L? norm, then for any n,m € N we have that,
m—1
YO () = Y™ @) = (| Y (*H ) = YF@)l
k=n

IN

S () - Yr@)
e

_ B (o) _ yk(s)[2ds] /2
gllE[A YEH () — YH(s) ds]

m—1 T Ak+1tk+1
2

B 2;1(/0 (k+1)! )"

k=
—1
m A72€+1Tk+1

- T

k=n

The faculty term explodes and this series converges to zero as n,m — oo.
However, this means that {Y®)(#)} ey forms a Cauchy sequence in L?. This
means that it converges in L? since L? is complete. We then define

X(t) = lim Y® ().

k—o0
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Now we only need to show that this does indeed satisfy the SDE.
t t
YO0 = Xo+ [ (s YO ()ds+ [ ols, YO )W ()
0 0
t
+ / h(s, Y™ (s), 2)N(dt,dz).
0
Note that by Holder’s inequality and the 1t6 isometry,
t ¢
[ uts YO nds [ s, X5,
0 0
t t
/ o (s, Y™ ())dW (s) — / o (s, X (5))dW (s),
0 0

/t h(s, Y™ (s), 2)N(dt,dz) — /t h(s, X (s),z)N(dt,dz).
0 0

Hence,

YO (1) = X, + /O s, Y (5))ds + /O o(s, Y (5))dW (s)

t 5. Y™ (s) 2 z
*/Oh(’y (), 2) N (dt, dz),

which converge to

X0+/0 ,u(s,X(s))der/O o(s, X (s))dW(s)

+/0 h(s, X(s),z)N(dt,dz)
= X()

A.3 Chapter 4
Proof of Proposition

Proof. We want to prove that this condition is sufficient to ensure that the
stochastic exponential is a martingale.

Consider fist the implication that if Z is a martingale, then E(E(S)(t)) = 1.
This is almost trivial.

E[E(S)(1)] = E[E(9)(1)|Fo] = E(5)(0) = Zo = 1.

Now consider the other implication. Let {T},} be a sequence of times such
that £(S)(t A T,,) is a local martingale. Then by Fatou’s lemma,

BIE(S)(1)| 7] = Bltim inf £(S)(t A T,)| 7
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< liminf E[E(S)(t A T},)| Fs]

n—oo

= liminf £(S)(s A T},).

n—oQ
This means that £(S)(s A T},) is a supermartingale.
We now need to prove that if in addition E[E(S)(¢)] = 1, then £(S)(t) is
martingale. Consider £(S)(s) — E[E(S)(t)|Fs]. We can take the expectation of
this.

E[E(S)(s)] — E[E[E(S)(#)|Fs]l = 1 - E[E(S)(H)] =0
But this imples that,
E(S)(s) = E[E(5) ()| F]

This proves the martingality. Note that £(S)(¢) is adapted and has finite

expectation because of supermartingality.
|

Proof of Theorem

Proof. We here only prove the one dimensional case. First, we need to prove
that Z; defines an equivalent probability measure (). By the Radon-Nikodym
theorem Q(A) = [, ZpdP.

Suppose first that A is such that P(A) = 0. Then, Q(4) = [,dQ =
J4 ZrdP = 0. On the other hand, let Q(A) =0. 0= [,(Zr) 'dQ = [, dP =
P(A). Thus, we have proven that Q ~ P.

We now need to show that Y'(t) = S(t) is a Q-local martingale. To do this
it suffices to show that Y (¢)Z(¢) is a P-local martingale.

By It6’s formula,

+ S(t=)Z(8) (=60 (H)dW (t) — /R RCERLRED)

— Z(t—)o(t, S(£))0o(t)dt — Z(t—)h(t, S(t), 2)01 (2, t)N(dt, dz)
(t, S())00(t) — h(t, S(t), 2)01 (z, t)v(dz))dt

a(t, S(t))0o(t))dWy

)

) —

/ h(t, S(t),z) — 01 (t, 2)S(t-)
E\{0}

— h(t,S(t), 2)601(t, 2)) N (dt, dz)

= Z(t=)(u(t, 5(t)) — o(t, S(t))0o(t))dWr

+ Z(t-) (h(t, S(t
R\{0}

— h(t, S(t), 2)0: (¢, 2))N(dt, dz)

~— o

,2) = 01(t,2)S(t-)
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This expression only has local martingale terms, and is therefore a local
martingale. Since this product is a P-local martingale then X (¢) has to be a
@-local martingale.

To check that the product S(¢)Z(t) has bounded absolute moments we can
note that they both are sums of well defined stochastic integrals (with a few
bounded deterministic integrals), hence by the triangle inequality the expected
absolute value also needs to be bounded.

We now need to check the second part, that thQ is a Q-Brownian motion
and N@ (dt,dz) is a compensated random measure of N.

Consider first thQ. A proof of this can be found in Baldi p- 368.

We now need to prove that N9(dt, dz) is a compensated random measure
of N under Q. First let,

day :/ v(z,t)N (dz, dt).
R\{0}

dby :/ ¥(z,t)01(z, t)v(dz)dt.
R\{0}

Let M; = a; + b;. Using Itd’s formula,

dM{ = d((a; + br)?)

(at_ + bt_)(dat —+ dbt) + d[]\47 M]t
(

(

2
2

ar— + bt_)dat + (Clt_ + bt_)dbt + d[a + b, a + b}t
2 ar— + bt_)

/ (2 )N (dz, dt)
R\{0}

+2(a— + bt,)/ ¥(z, )01 (2, t)v(dz)dt
R\{0}
+ da, al;

— Yap_ +b) / 7 (2, 1) N (dz, dt)
R\{0}

+2ar +br) /R PRICOCRIERT

+/R\{0}7(t’z) N(dz, dt) +/R\{O} v(t, 2) v (dz)dt
— / [2(6%7 + btf)v(z,t) + ’V(taZ)Q]N(dz’ dt)
R\{0}

+[2(ar +bt_)/

(08 0w(d) + [t uld)dr
R\{0}

R\{0}

Now denote the process Ry,

Ry = M; —/0 /]R\{O} v(z,8)*(1 — 01(s,z))v(dz)ds.

We can find the dynamics of Ry,

AR, — dM? — / (2 H2(1 — u(t, 2))w(dz)dt
R\ {0}
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= [l + bl 4262 e d
R\ {0}

+ [2(@,5_ + bt—)/
R\{0}

_/ (2 1)2(1 = Ou(t, 2))w(dz)dt
R\{0}

(v(2, )01 (2, t)v(dz) + /R\{O} v(t, 2)?v(dz)|dt

=/‘ 2ar + b )1z, 1) + (1 2 R (d, dt)
R\{0}

+ [2(as— + bt,)/

(v(2,t)01 (2, t)v(dz) — / Y(t, 2)201 (2, tv(dz))dt.
R\{0} R\{0}

Lastly, we turn our eyes to Z; and seek to find the dynamics of Z; R;.
d(Z:Ry) = Zy_dRy + RydZ;— + d|Z, R);

— 7 / 2(ar— + bi_)y(2, ) + 7 (t, )2 N (dz, dt)
R\(0}

+ Zt7[2((lt, + bt,) /
R\{0}

— Ry Zy(0dW; + / 01 (t, 2)N(dz,dt))
R\{0}

(v(z,t)01 (2, t)v(dz) — /R\{O} Y(t, 2)201 (2, tv(dz)|dt

2 [ (@lart () + 4620 2N de)
_ 7, / [2(a_ + b )y(z, 6) + 7(t, )2 N (dz, dt)
R\ {0}
— Ry Z0pdW; — Ry_Z, / 01(t, )N (dz, dt)
R\{0)

— Ty / (2(as + b)Y (t, 2) + y(t, 2)2)01(t, 2) N(dt, dz).
R\{0}

Proof of Theorem [4.5.4]

Proof. Let us suppose first that X is replicable. Then there exists an admissible
and self-financing portfolio such that,

T ~
X = EolX] + /0 n(t)dS(¢)
T . )
=Eg[X] +/O n(t)efo “d5< (t)dB®(t) + /]R\{O} h(z,t)NQ(dz,dt))
::Ede+/meeﬁ““ HdB2(t) / A;m} ey T N, )

/¢ t)dB? (t) // (2, t)N9(dz, dt).
R\{0}
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Here we have used the martingale representation theorem. On the other
hand, assume now that that there exists some 7 under the conditions of the
theorem. Let S be a martingale. Then by definition of X,

/w t)dB@ (t) //R\{O} (z,t)N9(dz, dt)
/ e T8 (Do (H)dBRH) //R\{O} Jo 785 0 (D) b2, )N O (dz, dt)

/ eJo T (1) o (1)dBO 1) / / Jo 7850 () bz, )N (dz, dt)
R0}

/ o e (0Bt + / h(z,t) N9 (dz, di)]
R\{0}
= Eg[X] +/0 o Tt nyas

T
= Eo[X] + / n(t)dS(t).

0

This also uses the martingale representation theorem. Hence there is a
replicating portfolio. u

A.4 Chapter 5

Proof of Lemma[5.2.1]

Proof. The second expression follows from Fubini’s theorem.
E[/ 1ix._jyde(s)| X, = i] = / E[1px,_jde(s)|X, = i] = / pi (£, 5)de(s).
t t

t

For a stochastic version of Fubini, see Filipovi¢ 2009] p. 99.
The first expression is a bit more work. Suppose first that b is a step function
such that b(s) = 1(4,5)(s). Define,

g(s) = E[ka(s)|Xt =i], s>t
Now consider the increment from s to s + h. Then by the Markov property,

g(s +h) — g(s) = B[N}, (S+h) — N;5()|Xe =i]

= 3 B[y (N (s + h) — N¥%(s))1 X, = ]
les

=2 ﬁ ElLx, =L, (NS5 + ) = N7S(9)
les

=2 m E[Lx,=i (N7 (s + h) = Njj(5))| X, = k]
les
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Moreover, observe that
N (s+h) = Ni(s) = D 1 Xuo =4, Xy =k} = f(Xere, 2 0).
s<u<s+h

For some cadlag Borel function and for all £ > 0.
If X =kand 0<u<s, then X, ¢ is independent of X,,. This means that

1x,—; is independent given X = k. Hence,

oo 1) = 0(5) = 32 B BN (s 4 h) = NA(0) il X, = )
les t
=5 P BN s+ )~ NA()X, = HElLe|X, =1
les
= SRV h) — N, = i)
les

Let, Z(h) = E[NJXk(s +h)— ka(s)|Xs = k] = o(h). Since X, is Cadlag,

p 20 _ {m,k(s),ifkj

m
h—0,h>0 h 0, else

Hence, we can find the derivative for g.

g(s+h) —g(s)

/ _ 1
g'(s) = lim Y
— lim Zles E[Nj),(k(s +h) — Nj),(k(s)le =pii(s;t)
T 0 h
T ZleS Z(h)pii(s,t)
= lim
h—0 h

= pij(t,5)pjn(s).

By the fundamental theorem of calculus we have,
B /
9(6) - g(a) = [ (s
B
= / Piji(t, 8)pgk(s)ds
(e}
B
:/ b(s)ap; ;(t, s)pjk(s)ds.
«

On the other hand by definition of g we have,
9(B) — g(la) = E[ijk(ﬁ) - Nj),(k(a)‘Xt = i

B
([ aNex =i
B
=Bl LN )1 =

—m/ $)IX, = 1.
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This proves the statement for an indicator function. Since the set of simple
functions is dense in H? the result follows by the linearity of integrals and
expectations. |

Proof of Lemma[5.3.1]

Proof. We are going to use the Chapman-Kolmogorov equations in (2.6.4) and
the explicit expression in ((5.2.3).

Use the following simplifying notation,
A= B(s)p‘f’j(t, s)
D:=B(s)p;(ts) Y pix(s)aju(s)

kES,k#j
Ci= > (s)ajrls).
keS,k#j
From ([5.2.3]) we have,
Z/ 9Lt 5)day (s)
JjES
+Y Bs)pi(ts) > pdi(s)asn(s)
jes keS,k#j
_Z/ Adaj(s +Z/ Dds
Jjes jes
—Z/ Ada( +/ Ada;(s)
jeES
—|—Z/ Dds—l—/ Dds
jeSs
(Chapman-Kolmogorov) = Z / Ada;(s +Z / Dds
jeS JeES
+ Z B(s) Zpﬁl(t, w)py;(u, s)da;(s)
jes les
43 [ B sttt ot (. s)Cas
j€Ss les
*Z/ Adaj(s +Z/ Dds
jeS JjES
—|—Zp”tu[2/ B(s)pi j(u, s)da;(s —l—Z/ B(s)pi;(u,s)Cds
les jES j€eS
= Z/ s)pi ;(t, )
JjES
+3 [ Bt T sl
Jjes keS,k;éj
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+ Y pf,(t u) Wi (u).

les
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APPENDIX B

Code

This appendix contains the code that has been used in thesis. Most of the code
is in R or Python.

B.1 K2013

K2013 is the Financial Supervisory of Norway’s model for mortalities specified

in Finanstilsynet [2013

#Implementation of K2013
w <- function(x, man){

if(man){
return(min(c(2.671548-0.172480+x + 0.0014285%xx"2,0)))
}
if(!man){
return(min(c(1.287968-0.101090%x+0.000814%xx"2,0)))
}
}
mu_2013 <-function(x, man){
if(man){
return((0.241752+0.004536%10"(0.051%x))/1000)
}
if(!man){
return((0.085411+0.003114%1070.051%x)/1000)
}

b

mu <- function(t,x, man){
return(mu_2013(x,man)*(1l+w(x,man)/100)"(t-2013))
}

#numerical integration
integral <- function(f,s,t,man,year, age, h=1/100){
if(s==t){return(0)}
else{
N <- (t-s)/h
bin <- seq(s,t*N)/N
X <- f(year,age+bin,man)
return(sum(X)/N)
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B.2 Example5.4.]

This is the code used in Example[f.4.1] It calculates the value of a death benefit,

plots this value in time and finds the premium.

#Parameters
Tmax <- 120 #max age
age <- 25  #start age
Year <- 2022 #Current year

r <- 0.03 #rate
#Indicator function, saves some programming
less_than_70<- function(t){
if(t<70){
return(1)
}
else{
return(0)
}

}
B <- 100000

h <- 1/12  #Time steps
N <- (Tmax-age)/h #Number of steps

V_.T <- 0 #Terminal value
V_t <- rep(0,N) #Value of policy
V_p <- rep(0,N) #Value of premiums

#Loop to calculate
for(i in (N-1):1){

V_t[i] <- V_t[i+1]-h*(r*xV_t[i+1] - mu(year, age+ixh,T)x*(Bxless_than_70(age+ixh)-V_t[i+1]))
V_p[i] <- V_p[i+1l] - hx(r*V_p[i+1] +less_than_70(age+ixh) + mu(year, age+ixh,T)*V_p[i+1])

}

#0ne time premium
V_t[1]

#Yearly premium
-V_t[1]/V_p[1]

#plot

plot(((1:N)*h+age)[1:800],V_t[1:800], type ="1", xlab = "Age", ylab = "Value of policy", main

B.3 Example

The code is used to calculate the value of the policy.

from scipy import sparse
from scipy.sparse.linalg import splu

import numpy as np

import scipy as scp

import scipy.stats as ss

import sympy; sympy.init_printing()

from scipy import signal

from scipy.integrate import quad, quad_vec
import matplotlib.pyplot as plt

import plotly.graph_objects as go
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#mortality model, K2013
def w(x, male):
if male:
return(np.minimum(2.671548-0.172480+x + 0.0014285x%*(x**2),0))
else:
return(np.minimum(1.287968-0.101090+x+0.000814* (x*%x2),0))

def mu_2013(x, male):
if male:
return((0.241752+0.004536+10+*(0.051*x))/1000)
else:
return((0.085411+0.003114*10%+0.051+x)/1000)

def mu(x):

The mortality model. This is the method where sex and starting age is determined
man = False

t = 2022

return(mu_2013(x,man)*(1+w(x,man)/100)*x*x(t-2013))

#insurance functions
def f(x, G):

Policy function f
return(np.maximum(np.exp(x),G))
#return(0)

def g(x, t):

Policy function g, sustained payments
#if (t>60):

# return(np.exp(x))

#else:

return(0)

def h(x, t):

Policy function h.

#B = 3
#return(np.maximum(np.exp(x),B))
return(0)

def survival_probability(s,t):

probability of surviving from age s to age t

return(np.exp(-quad_vec(mu, s,t)[0]))

# #Test mortality, Gompertz-Makeham law

# def mu(t):

# a = -9.13275

# b = 0.0809438
# c = 0.000011018
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H*

def

H R H R HHHR

#Setti
#finan
r=0.
sig =
S0 =1
X0 =n

lam =
mul =
sigl =

#insur
G =np
B =3

Texpir
start_

S_max
S_min
X_max
Xx_min

Nspace
Ntime

#discr
dev_X
dx = (
extraP
X = np
T, dt

#Bound
Payoff
V = np
offset

# term
V[:,-1

test_d
for i
VI
V[
#upper
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return(np.exp(a+b*xt-cxt*x2))

survival_probability(s,t):

a = -9.13275

b = 0.0809438

c = 0.000011018
mu = b/ (2*c)

sigma = np.sqrt(1/(2x*c))
val = np.exp(-sigmaxnp.exp(a+(bxb)/(4xc))*np.sqrt(2*np.pi)*(scp.stats.norm.cdf((t-mu)/sigma,0,1)-
return(val)

ng up the parameters of the model

cial parameters

023

0.19

p.log(S0)

0 # lambda

0.025 # (or alpha) is the mean of the jump size

0.25 # (or xi) is the standard deviation of the jump size

ance parameters
.exp(3)

=10
age = 55

4xfloat(G)
float(G)/4
np.log(S_max) # A2
= np.log(S_min) # Al

=20 # M space steps
= Texpir+*12 # N time steps

etization
= np.sqrt(lam * sigJx*2 + lam * muJ*x*2) # std dev of the jump component
X_max - x_min)/(Nspace-1)

= int(np.floor(3xdev_X/dx)) # extra points

.linspace(x_min-extraPxdx, x_max+extraPxdx, Nspace + 2xextraP) # space discretization
= np.linspace(0, Texpir, Ntime, retstep=True) # time discretization

ry conditions

= f(x,G) # Call payoff

.zeros((Nspace + 2xextraP, Ntime)) # grid initialization

= np.zeros(Nspace-2) # vector to be used for the boundary terms

inal conditions
] = Payoff

eath_benefit = lambda t: 0 if(t>60) else 1

in range(len(T)):

rextraP+1,i] = Gxsurvival_probability(start_age+T[i], start_age+Texpir) #lower consdition
-extraP-1:,:] = np.exp(x[-extraP-1:]).reshape(extraP+1,1) * np.ones((extraP+1,Ntime))*survival_pr
condition



B.3. Example

#Test Death benefit
#V[:extraP+1,i] = test _death_benefit(start_age+T[i])*G*survival_probability(start_age,start_age+T[i])
#V[-extraP-1:,:] = test_death_benefit(start_age+T[i])*np.exp(x[-extraP-1:]).reshape(extraP+1,1) * np.ones((extt

#setting up the jump levy measure
cdf = ss.norm.cdf([np.linspace(- (extraP+1+0.5)*dx, (extraP+1+0.5)x*dx, 2*(extraP+2) )], loc=muJ, scale=sigJ)[0]
nu = lam * (cdf[1l:] - cdf[:-1])

#finding lambda hat and m hat
lam_appr = sum(nu) # sum of the components of nu

m = lam * (np.exp(mul + (sigJ*x2)/2) -1) # coefficient m
m_int = quad(lambda z: lam * (np.exp(z)-1) * ss.norm.pdf(z,mul,sigd), -(extraP+1.5)x*dx, (extraP+1.5)x*dx )[0]
m_appr = np.array([ np.exp(i*dx)-1 for i in range(-(extraP+1), extraP+2)]) @ nu

#constructing the diffusion matrix D
sig2 = sig#sig
dxx = dx * dx
def get_a(t, dt, dx, sig2, m_appr, lam_appr, mu):
dxx = dx * dx
return( (dt/2) * ( (r-m_appr-0.5%sig2)/dx - sig2/dxx ) )
def get_b(t, dt, dx, sig2, m_appr, lam_appr, mu):
dxx = dx * dx
return( 1 + dt * ( sig2/dxx + r +mu(t)+ lam_appr) )
def get_c(t, dt, dx, sig2, m_appr, lam_appr, mu):
dxx = dx * dx
return(-(dt/2) * ( (r-m_appr-0.5%sig2)/dx + sig2/dxx ) )

#Constructing the Jump matrix J
J = np.zeros((Nspace-2, Nspace + 2xextraP))
for i in range(Nspace-2):

J[i, i:(len(nu)+i)] = nu

# Backward iteration
for i in range(Ntime-2,-1,-1):

a = get_a(start_age+T[i],dt, dx, sig2, m_appr, lam_appr, mu)
b = get_b(start_age+T[i],dt, dx, sig2, m_appr, lam_appr, mu)
c = get_c(start_age+T[i],dt, dx, sig2, m_appr, lam_appr, mu)

D = sparse.diags([a, b, c], [-1, 0, 1], shape=(Nspace-2, Nspace-2)).tocsc()

DD = splu(D)

offset[0] = get_a(start_age+T[i],dt, dx, sig2, m_appr, lam_appr, mu) * V[extraP,i]

offset[-1] = get_c(start_age+T[i],dt, dx, sig2, m_appr, lam_appr, mu) * V[-1l-extraP,i]

V_jump = V[extraP+l : -extraP-1, i+l1] + dt = (J @ V[:,i+1]) -dt*(g(x[extraP+l : -extraP-1],start_age + T[i])-mt
V[extraP+1l : -extraP-1, i] = DD.solve( V_jump - offset )

#print(i)

#plotting

#fig = go.Figure(data=[go.Surface(z=V[extraP:-extraP,:1)])
fig = go.Figure(data=[go.Surface(y = x,z=np.log(V))])
fig.update_layout(scene = dict(

xaxis_title = "time (month)",
yaxis_title = "fund (million)",
zaxis_title = "value (million)"
))

fig.show()

#print(x)

#print(survival_probability(30,40)
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Monte Carlo simulation for pure endowment with jump diffusions

#Simulating unit linked polcies
start.time <- Sys.time()

set.seed(100)
#K2013
library(plotly)

#Implementation of K2013
w <- function(x, man){

if(man){
return(min(c(2.671548-0.172480xx + 0.0014285%x"2,0)))
}
if(!'man){
return(min(c(1.287968-0.101090+x+0.000814%x"2,0)))
}
}
mu_2013 <-function(x, man){
if(man){
return((0.241752+0.004536%10"(0.051xx))/1000)
}
if(!'man){
return((0.085411+0.003114%1070.051%x)/1000)
}

}

mu <- function(t,x, man){
return(mu_2013(x,man)*(1+w(x,man)/100)"(t-2013))
}

#numerical integration
integral <- function(f,s,t,man,year, age, h=1/100){
if(s==t){return(0)}
else{
N <- (t-s)/h
bin <- seq(s,t*N)/N
X <- f(year,age+bin,man)
return(sum(X)/N)

p_ss <- function(x,t, year, man){
return(exp(-integral(mu,0,t,man,year,x)))

}

#draw random life
drawlife <- function(start_age, n){
findzero <- function(z){
uniroot((function(y) 1l-p_ss(start_age, y, 2022, T)-z), c(0, 120))$root
}
u <- runif(n)
life <- u
for(i in 1:n){
print(i)
life[i]l<- floor(findzero(ul[il))

}

130



B.3. Example

return(start_age+life)

life.gen <- function(age,num){
life.inv <- function(y, lower=0, upper=120)
uniroot( (function(x) 1l-surv_prob(age,age+x)-y), lower=lower, upper=upper )$root

u <- runif(num,0,1)

lives <- u

for(i in 1l:num){ lives[i] <- floor(life.inv(u[i])) }
return(age+lives)

#parameters
n <- 10000
Tmax <- 10

h <- 1/120

r <- 0.023

sig <- 0.19
lambda <- 10
muJ <- 0.025
sig) <- 0.25

SO <- 1

#Simulatng sample paths of jump diffusion
paths <- matrix(rep(0, nx(Tmax/h)), nrow = n)
for(i in 1:n){

print(i)

path <- rep(S0,Tmax/h)

bm <- rnorm(Tmax/h, rxh, sigxsqrt(h))

jump_numbers <- rpois(Tmax/h, lambdaxh)

sum(jump_numbers)

jump <- rep(0,Tmax/h)

for(j in 1:(Tmax/h)){
#I <- 0
#for(k in 1:jump_numbers[j]){
# I =1+ rnorm(1l, mud*h,sigJxsqrt(h))
#}
#path[j] <-bm[j] + I
jump[j] <- sum(rnorm(jump_numbers[j], muJ,sigl))
}
geo_bm <- (r-0.5xsig”2 -lambda*(mul+0.5%xsig]"2))*h + sig*sqrt(h)*rnorm(Tmax/h)

paths[i,] <- SOxexp(cumsum(geo_bm)+cumsum(jump))
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#plot(paths[1,], pch = 1,type = "1", main = "Merton jump diffusion, SO = 2", xlab = "Months", ylab = "V
#lines(paths[2,], pch = 2, col = "red")

#lines(paths[3,], pch = 3, col = "blue")

#lines(paths[4,], pch = 4, col = "green")

#call option
G=3
#mean (pmax (paths[,Tmax/h],G))*exp(-rxTmax)

life_generated <- drawlife(55,n)
payoff <- rep(0,n)
for(i in 1:n){
if(life_generated[i]>=65){
payoff[i]<-pmax(paths[i,Tmax/h],G)
}

}

mean (payoff)*exp(-r«Tmax)

end.time <- Sys.time()

time.taken <- end.time - start.time
time.taken

#Runtime: 52 min
#Results: 3.1287.

FPI model calibration

#importing data
library(readxl)
library(BaPreStoPro)
Salmon_price <- read_excel("C:/Users/vegar/Desktop/Masters thesis/Code/Salmon_price.xls",
skip = 1)
View(Salmon_price)
plot(seq(2006,2022,by = 1/52), Salmon_price$‘NOK/kg‘, type = "1", main = "FPI", ylab = "Kr/KG", xlab =

#Estimating Merton jump diffusion

fit <- set.to.class("Merton", parameter = list(thetaT = 0.1, phi = 0.05, gamma2 = 0.1, xi = 0.5))
t <- seq(1l,length(Salmon_price$Week))

dat <- Salmon_price$‘NOK/kg’

est <- estimate(fit, t, dat, 1000)

plot(est@thetaT, type = "1")

plot(est@phi, type = "1")

plot(est@gamma2, type = "1")

plot(est@xi, type = "1")

plot(log(dat[2:length(dat)]/dat[1:(length(dat)-1)]), type = "1")
boxplot(log(dat[2:length(dat)]/dat[1:(length(dat)-1)1))
hist(log(dat[2:length(dat)]/dat[1:(length(dat)-1)]),100)
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