Challenges in Combining Overlay Networks and
Cooperative Caching’

Frank T. Johnsen, Trude Hafsge, Thomas Plagemann and Vera Goebel
Dept. of Informatics, University of Oslo, Norway
Research Report No 340, March 2006
ISSN 0806-3036
ISBN 82-7368-295-1

{frankjo, truhafso, plageman, goebely@ifi.uio.no

ABSTRACT

The trends over the recent years show an increase in stream-
ing media transported across the Internet in addition to al-
ready abundant web traffic, increasing the need for distri-
bution schemes that efficiently handle this type of traffic.
There are two obvious bottlenecks in any content distribu-
tion system, namely the origin server and the network. Our
goal is to address both these bottlenecks simultaneously by
using cooperative caching proxies on top of an overlay net-
work. State of the art solutions within both subsystems uti-
lize self-organization. Just combining these two can enable
them to work together but may lead to a reconfiguration
loop problem. In this report, we identify the challenges of
combining these two subsystems, give an intuitive example
illustrating the problem, and proceed to give an outline for
several different solutions.

1. INTRODUCTION

In recent years there has been an increase in the types
of data transmitted over the Internet from text and images
to include multimedia data such as steaming of video and
audio. Continuous data types need to be delivered to clients
within a given time frame, thus placing high demands on the
underlying transport system. Possibilities for interactivity,
such as VCR-like operations on streams, further increase
the demands on the distribution system. In addition to
an efficient distribution scheme, the system must ensure re-
sponsiveness to client interaction. On-demand services, like
News-on-Demand, combine regular web traffic with stream-
ing media. Such services have demands on timeliness and
synchronization, which are not originally supported in the
Internet. Many solutions have been devised to address this
problem, ranging from specialized router implementations
and new network protocols to application level solutions.
Most of these solutions aim to resolve one of the two poten-
tial bottlenecks in content distribution: The server and the
network.

An overloaded server does not perform satisfactory and
yields a poor user experience. Several solutions exist that

*This work has been performed in the context of the
INSTANCE 1II project, which is funded by the Norwe-
gian Research Council’s IKT-2010 Program, Contract No.
147426/431.

attempt to remedy this, such as load balancing and reverse
proxies. Furthermore, duplication of content on storage
nodes located physically closer to the clients both offloads
the origin server and reduces network traffic. The content
duplication can be either the Akamai way, where the con-
tent owner pays for replication of specified content, or client
driven caching in the case of caching proxies. The latter is
especially important and in widespread use by ISPs, since
caching popular content locally and thus limiting network
traffic over other ISPs’ networks lowers transmission costs.

The other potential bottleneck in content distribution is
the network. Poor network performance can lead to long
delays before the multimedia data arrives at the client, or
make a service unusable by failing to deliver the data at all.
The majority of network delays is caused by congestion in
Internet routers, meaning one potential improvement in net-
work performance is to implement support for multimedia
streaming, priority routing and resource reservation in all
Internet routers. This would be a very costly solution, and
also require agreements between ISPs on how to perform
this. These limitations prevent an Internet wide implemen-
tation of techniques that require router support, like for in-
stance IntServ and DiffServ. Application level solutions do
not suffer from this problem, while at the same time allow-
ing for the deployment of enhanced distribution services, and
have thus become the preferred way of improving network
performance. Such solutions are often implemented as over-
lay networks because of the low cost and easy deployment
associated with such networks.

Instead of incremental improvements that move the bot-
tleneck from one subsystem to the other and vice versa, we
aim to develop a distribution infrastructure which addresses
both of these bottlenecks at the same time by using cooper-
ative caching on top of an adaptive overlay network. Com-
mon for both these techniques is the recent trend towards
dynamic, self-organizing systems which adapt to changing
network conditions and changing workloads, i.e., how clients
interact with the data. In the best tradition of systems de-
sign, like the layered system model, proxy caches and overlay
networks are regarded in most of the existing solutions as
separate and independent subsystems. This separation and
the corresponding transparency implies that both subsys-
tems can work together, but without any particular form
of integration. However, a severe problem can arise when
both dynamic subsystems do not take each others’ dynamic
nature into account. For example, if one subsystem changes

its configuration due to observed changes in the network, a
traffic shift will occur which may force the other subsystem
to revise its view of the network. This change can lead to
another traffic change, and may, in the worst case, make the
system end up in a constant reconfiguration loop where the
two subsystems spend a lot of time reconfiguring themselves.
As current solutions focus on only one bottleneck at a time,
none of them take this problem into account. The purpose
of this report is to create awareness regarding this problem,
and suggest a way to solve the problem by performing the
enhancements in an integrated manner and not separately.

The remainder of the report is organized as follows: In
Section 2, we present state of the art solutions of cooperative
caching schemes and overlay networks. Section 3 presents
the challenges that arise when integrating current modular
systems with each other, and proceeds to suggest one possi-
ble way of resolving these challenges in Section 4. Section 5
concludes the report.

2. BACKGROUND

Proxy caching schemes and overlay network techniques
have evolved since they were originally introduced. Early
solutions were highly static in nature; both proxy caches and
overlay networks were manually configured. Later, schemes
evolved into being more dynamic in nature. Below we present
a brief overview of the developments within these two areas
of related work: Cooperative caching and overlay networks.

2.1 Cooperative caching

Caching is important to reduce network traffic, server load
and improve end-to-end latency. The trend in proxy caching
has been to evolve from stand alone caches to schemes where
caches cooperate. The cooperation methods have been re-
fined, and have shifted from static cooperating clusters to
proxies forming dynamic cooperation groups reflecting on
network changes and cost issues. This trend is evident both
in classic web caching schemes and also in schemes for caching
of streaming media.

211 Wb caching

Originally, web proxy cache cooperation was done in a
static manner by using techniques such as URL hashing,
organizing the proxies into hierarchies, or by grouping prox-
ies into pools with shared directories. See [6] for a de-
tailed overview and discussions of past and current solutions.
Many approaches presented there are not fully suitable for
the scale of the Internet.

In the global Internet, origin servers may often be closer,
better connected or more powerful than remote proxies, a
fact that should be taken into account by the cache coop-
eration scheme. One such scheme is vicinity caching [5],
which makes explicit choices between remote proxies and
the origin server based on observed costs of fetching objects
from various sources. In this approach each proxy defines
a vicinity of other proxies relative to an origin server. This
vicinity contains only those proxies it is preferable to con-
tact and fetch objects from in addition to the origin server.
If the server is distant and slow, the proxy will have a large
vicinity, since many proxies would be preferable to the ori-
gin server. A fast, well connected site, on the other hand,
may have a small or empty vicinity since fetching objects
from the server would be faster than fetching from remote
proxies. Each proxy tracks object locations only within the

vicinity, and will not forward a request to another proxy
in its vicinity unless its directory indicates that the object
is cached there. The scheme measures latency of retrieved
objects, and can thus estimate a latency based cost for re-
trieving objects from remote proxies and servers. As net-
work conditions change the measured latency also changes,
and vicinities grow and shrink accordingly. Such dynamic
vicinities have the benefit of letting the cooperation scheme
adapt to changes in the network characteristics as they oc-
cur. One can also modify the scheme to measure distance or
other cost metrics and change the vicinities based on this,
the importance is that each proxy and origin server is as-
signed a directly comparable numeric value.

2.1.2 Streaming media caching

Streaming media requires other caching solutions than
those used for classic web content, an overview is given in [2].

The self-organizing cooperative caching architecture (SOC-
CER) [3] combines several orthogonal techniques. It em-
ploys a cost function which takes proxy load and distance
into account to decide which proxies to interact with, mak-
ing it a scheme suitable for use in a wide area network.
SOCCER uses both caching and multicast techniques, and
allows the proxies to form loosely coupled cache meshes for
forwarding streaming data. Each proxy has a global view
of the Internet, and chooses a subset of proxies to cooper-
ate with. Since cooperation is based on a cost function,
changes in proxy load or routes between proxies will af-
fect the cache meshes. Cache meshes change dynamically
to adapt to changing conditions. State information is dis-
tributed periodically as expanding rings, and the scope re-
strictions are based on varying the time-to-live field in the
multicast packets. This ensures that the frequency of state
messages exponentially decreases with increasing scope, while
it still ensures global visibility over a larger time scale. Tests
have shown that SOCCER yields the best overall perfor-
mance when compared to hierarchical schemes, thereby in-
dicating that self-organizing cooperation is a beneficial ap-
proach to streaming media caching on the Internet.

2.2 Overlay networks

Overlay networks were originally used as a means to in-
crease scalability of distribution systems, in particular for
streaming services, through the implementation of applica-
tion level multicast. However, the low cost and ease of de-
ployment of overlay networks lead them to be adapted for
other purposes as well. Overlay networks developed from
manual configuration to automatic systems for integrating
new nodes into the network. The first challenge that was ad-
dressed was taking the placement of the nodes in the Inter-
net into account when building an overlay network, so called
topology awareness [7]. However, Internet network dynam-
ics were not considered, leading to reduced overlay network
performance when traffic shifts occurred in the Internet.
This problem was resolved by introducing measurement-
based overlay networks that automatically adapt themselves
to changing network conditions. This adaptation can be
done in one of two ways; either by changing which routes
traffic follows over the already established virtual links, or by
changing the virtual links themselves. Changing the setup
of virtual links means modifying the neighbor set of each
node. This set is maintained individually by each node, and
consists of the set of nodes that this node has a direct virtual

link to. Each node uses this set to determine which nodes
it needs to monitor and communicate with, and also which
nodes to forward traffic to. The nodes in a neighbor set are
selected based on their distance from the node maintain-
ing that set. This distance is measured according to some
network metric, for instance delay or bandwidth. Neighbor
sets, and thereby also virtual links, will change over time to
reflect changes in the measured network metrics. Common
to most such self-organizing overlay networks is the use of a
network monitoring service which can detect changes in the
underlying network. Based on the results of the monitoring,
the overlay network will adapt itself to the changing network
conditions to improve the service to the user. Early overlay
networks were designed to serve one specific purpose, and
combined overlay networks with other techniques, forming
very specialized solutions. In the past few years trends have
turned towards making more general purpose overlay net-
works which do not support one specific application, but
rather aim to function as a middleware layer forming a gen-
eral purpose overlay. These generic overlay networks of-
fer overlay routing and network optimization for a number
of different network properties. One such service forms an
overlay routing layer [4] which more specialized overlay net-
works can be built on top of. An even more generic so-
lution is given in the Saxons [8] overlay network, which is
a common overlay structure management layer designed to
assist in the construction of large scale wide area Internet
services. It dynamically maintains a high quality structure
with low overlay latency, low hop count distance and high
overlay bandwidth. However, overlay services which sup-
port both discrete and continuous media data may need a
service which optimizes for several different metrics at the
same time. The core idea in [1] is a self-organizing overlay
network. This overlay network optimizes for several differ-
ent QoS parameters at the same time by combining already
established techniques like topology-awareness and network
monitoring with an automated route maintenance mecha-
nism that ensures efficient usage of Internet resources.

3. THE CHALLENGE

There are two important bottlenecks in a distribution sys-
tem: The server and the network. We aim to build a dis-
tribution infrastructure which addresses both of these po-
tential bottlenecks at the same time by applying coopera-
tive caching on top of an adaptive overlay network. In the
course of working towards this goal we have realized that
a simple combination of these two dynamic techniques can
have harmful effects, i.e., inefficient resource utilization and
in the worst case unproductive reconfiguration loops. The
resulting challenge is to coordinate these two self-managing
subsystems in such a way that they can still be used in-
dependent of each other, but that the combination of the
adaptations in both subsystems leads to the best resource
utilization and system performance. In order to explain this
challenge in more detail, we briefly describe the common-
alities and differences between state of the art solutions in
cooperative caching and adaptive overlays and use an exam-
ple to explain how unproductive reconfiguration loops can
occur:

e They rely on having an updated view of the network
conditions on the Internet. Their knowledge of the
underlying network comes from monitoring, often per-

monitoring
service COOPERATIVE CACHING SCHEME

monitoring OVERLAY NETWORK O
service

Figure 1: Modular approach with separate control
loops and monitoring.

formed by an external monitoring service.

e Dynamic groups are utilized in order to adapt to chang-
ing network conditions while retaining scalability. In
overlay networks a dynamic group is commonly re-
ferred to as a meighbor set. An overlay node’s neigh-
bor set consists of all nodes it has a direct virtual link
to. A dynamic group in cooperative caching, on the
other hand, is defined by the cost of communicating
with other proxies. This means that there is no direct
correlation between the neighbor sets and the caching
groups.

e Both have a control loop that reconfigures the dynamic
groups when needed. The need to reconfigure is deter-
mined by performing periodic evaluations of measured
or observed network conditions. The control loop of
the cooperative caching scheme does not necessarily
evaluate the same network properties as the overlay
network control loop does, but they still perform the
same basic steps and make decisions based on either
passive or active monitoring. Which type of monitor-
ing is used varies from one solution to the next, but
the end result is the same; an up to date overview of
network conditions. Based on the results of monitor-
ing a simplified and generic control loop will perform
the steps shown below:

:control loop:
1) check network conditions
2) determine if conditions have changed
enough to warrant reconfiguration
- if yes, reconfigure
3) wait
4) repeat from 1)

The naive approach to concurrently address the server
and network bottlenecks is to apply a cooperative caching
scheme on top of an adaptive overlay network without any
form of integration. Figure 1 illustrates this solution in
which the two components operate independently, each with
its own control loop and its own monitoring service. This
leads to redundancy, because two monitoring systems are
running at the same time and perform the same or simi-
lar tasks. The type of redundancy depends on whether the
monitoring is active or passive. Active monitoring means
that the monitoring service sends monitoring probes which
it uses to calculate several different network properties, for
instance bandwidth and latency. Passive monitoring can
calculate the same properties, but does not send probes of
its own. Instead it inspects passing traffic and performs cal-
culations based on this. Active monitoring is often used in
overlay networks, whereas passive monitoring is more com-
monly used by proxies.

3.1 Reconfiguration loops

The independence of the two control loops can lead to
non-optimal resource utilization and to the severe problem of
reconfiguration loops. Since the control loops are not aware
of each other, they will make their decisions independently of
each other. This may cause non-optimal solutions and even
repeated reconfiguration which is triggered by the system
entering a state as shown in the intuitive example presented
below:

1. The system is in a steady state, illustrated in Fig-
ure 2. This figure shows seven overlay nodes connected
by virtual links. We assume all these nodes are co-
operating caching proxies forming dynamic coopera-
tion groups. In this figure, we focus on one particular
proxy, node 5, and its cooperation group (dotted oval).
The load on each virtual link is denoted in three lev-
els, L, M, and H, corresponding to low, medium and
high load, respectively. The load levels are results of
measurements, and thus encompass both overlay traf-
fic and background traffic.

2. In Figure 3, there has been a reconfiguration of the
overlay network. This has occurred because the over-
lay network control loop has detected a change in traf-
fic on the Internet, for example because of a change in
background cross traffic. This can be seen as a change
in which virtual links are in use, in which case the
medium load link between node 3 and node 4 is re-
placed by a link between node 3 and node 5. At the
time of reconfiguration this link has a low load.

3. The reconfiguration of the virtual links leads to shifts
in traffic. Traffic that previously was traveling across
the old virtual link is now routed across the new one,
leading to a medium load on the link between node 3
and node 5, see Figure 4. A good overlay network
design should anticipate this change in traffic which is
based on its own reconfiguration action, and does not
attempt to reconfigure again at this point.

4. The caching scheme detects the reconfiguration done
by the overlay network as a change in network condi-
tions. This change means that the cost of communi-
cating with node 1 and node 2 in Figure 4 is reduced,
making them more attractive for node 5 to cooperate
with. As a consequence, the proxy changes its dynamic
groups as illustrated in Figure 5, causing a shift in the
data that is transmitted over the virtual links. The
new traffic pattern leads to an increase in load on sev-
eral virtual links. The virtual links between nodes 1
and 3 and nodes 2 and 3 thus increase from a low to a
medium load, whereas the virtual link between node 3
and node 5 now exhibits a high load. This increase in
traffic can not be anticipated by the overlay network.

tion.

Figure 5: Caching scheme expands cooperation
group.

Figure 6: The overlay network reconfigures a virtual
link.

5. The overlay network detects this increase in traffic as

an unexpected change in network properties, and de-
cides to reconfigure. Thus, it returns to the initial vir-
tual link configuration, as shown in Figure 6. Because
the cooperative cache dynamic group is unchanged at
this point the load on the virtual links between nodes 1
and 3 and nodes 2 and 3 stays at a medium load level.

. Node 5 now decides that the cost of utilizing node 1

and node 2 is too high, and excludes them from the

COOPERATIVE CACHING SCHEME

monitoring

service

OVERLAY NETWORK

Figure 7: Modular approach with separate control
loops and shared monitoring.

cooperation group. As a result of this, the traffic on
the virtual links that connect node 1 and node 2 to
node 3 will again decrease and return to their original
low load. We are now back at the initial configuration
as was shown in Figure 2. Due to this configuration
of cache cooperation groups, the load measured by the
overlay network is yet again favoring a reconfiguration.
This leads us back to Figure 3, and we are in a recon-
figuration loop.

This step-by-step example illustrates the reconfiguration
loop problem that may arise when the overlay network and

the cooperative caching scheme change their dynamic groups.

In the example, the problem is shown for one proxy only,
but the problem may be even bigger in practice as this may
happen for multiple proxies at the same time.

4. SOLUTIONS

The two challenges identified in the previous section are
those of redundancy and reconfiguration loop issues. The
redundancy issue is minor and easily remedied, and we will
address this issue first.

4.1 Monitoring redundancy

Redundancy is introduced into the system by having two
monitoring services running at the same time. Different
combinations of passive and active monitoring services give
two different types of redundancy:

1. Calculation redundancy.

2. Probe redundancy.

By calculation redundancy we mean performing more cal-
culations than are strictly necessary, for example by calcu-
lating the same bandwidth or latency between two nodes
more than once. This wastes CPU cycles and uses more
memory in each node than what is needed. Probe redun-
dancy only occurs when both subsystems use active moni-
toring, since each monitoring service will transmit network
probe packets, leading to an increase in network traffic.

The most common combination of monitoring services is
likely to be that the cooperative caching scheme uses pas-
sive monitoring and that the overlay network uses active
monitoring. A solution to reducing redundancy in this case
would be to introduce a simple integration of the monitor-
ing service, in which the active monitoring scheme is used
by both overlay network and caching scheme, as illustrated
in Figure 7. This form of integration may require the active
monitoring service to be expanded to perform additional
calculations to ensure that the needs of both subsystems
are covered. The same is true for the opposite case where
the overlay performs passive monitoring and the cooperative
caching scheme uses active monitoring. If both subsystems

Overlay | Caching | Integration

Passive Active Keep active, share results.
Active Passive Keep active, share results.
Active Active Use one active, share results.
Passive Passive 1) Keep both, share results.

2) Integrate into one passive.
3) Replace both with a shared active.

Table 1: Combinations of active and passive moni-
toring, and how to integrate them.

COOPERATIVE CACHING SCHEME

monitoring
service

OVERLAY NETWORK

Figure 8: Modular approach with integrated control
loops and shared monitoring.

use active monitoring, then one could replace both with a
shared, extended active monitoring service which heeds the
needs of both.

There are several ways to integrate monitoring if both
subsystems use passive monitoring. The three most obvi-
ous approaches are: If the two passive monitoring services
base their calculations on different, non-compatible observed
traffic, both must be kept. It is possible to optimize this
by making sure that the same information is not calculated
twice through the sharing of results. However, if the two
passive monitoring services base their calculations on the
same observed traffic, they can be integrated into one pas-
sive service which performs the calculations needed by both
subsystems. The third option is to replace the two passive
monitoring services with one common active service. This
introduces some probing traffic into the system, but it allows
for the calculation of more network properties than what the
passive services can provide. An overview of combinations
of the monitoring services that may be in use is given in Ta-
ble 1 along with the suggested ways to perform integration.

4.2 Reconfiguration loop avoidance

Integrating the monitoring solves the redundancy issue,
but the reconfiguration loop problem still remains. We have
identified five disjunct approaches concerning the problem:

1. Ignore the problem.
2. Integrate the control loops.
3. Make the control loops mutually aware of each other.

4. The cooperative caching control loop is aware of the
overlay network.

5. The overlay network control loop is aware of the coop-
erative caching scheme.

COOPERATIVE CACHING SCHEME

monitoring
service

OVERLAY NETWORK

Figure 9: Modular approach with mutually aware
control loops and shared monitoring.

Configuration | Proxy cache
Service cooperation
awareness

CENTRALIZED
COMPONENTS

DISTRIBUTED
COMPONENTS

Figure 10: Overlay network with a centralized con-
figuration service capable of taking proxy cache co-
operation scheme decisions into account.

The first, simplest and most naive approach is using the
ostrich algorithm and just ignore the problem. This method
may be sufficient if the problem described in Section 3 rarely
occurs. Using this approach requires caution as it is difficult
to be sure that the problem will not lead to indefinite re-
configuration loops, as this may render the system unusable.
In addition, ignoring the problem gives a less than optimal
resource usage, and we opt for other solutions.

Figure 8 illustrates the second approach of fully integrat-
ing the control loops. This approach requires heavy modi-
fication of central parts of each scheme, leading to a shared
control loop which handles both cooperative caching and
overlay network reconfiguration needs. In essence, this means
creating a new specialized solution where overlay and caching
is tightly coupled. This tight coupling limits the usability
and future development possibilities of the system, but re-
dundancy is eliminated and the reconfiguration loop issue is
resolved.

The third approach, shown in Figure 9, loosely couples
two separate subsystems by letting their respective control
loops be mutually aware of each other. In this case the
schemes retain much of their modularity, which allows for
easy expansion and modification at a later time. Because
there are two control loops there is some redundancy in com-
munication overhead and state information, but the recon-
figuration issue can be solved. However, there is an increase
in complexity, since each control loop needs to process and
take into account the information received from the other.
Also, the issue of agreement arises: What if the control loops
do not agree on the best configuration of the network? This
requires well defined interaction rules, in which one control
loop is defined to be the tie breaking one in such cases.

Approaches 2 and 3 represent two extremes. Between
these two there are other possibilities, namely approaches 4
and 5, where only one reconfiguration loop is aware of the
other. Using one of these approaches avoids the downsides
of tight coupling by allowing the system to remain modular,
while at the same time limiting complexity and overhead.
Thus, both these two are good candidates for reconfigura-
tion loop avoidance.

In approach 4, the cooperative caching scheme is made
aware of the overlay network. This awareness comes in one
of two ways:

1. Direct communication between the two subsystems.

2. Anticipation of reconfiguration based on knowledge of
the other subsystem’s decision logic.

Direct communication means that the overlay network
control loop informs the cooperative caching scheme about
all the reconfiguration decisions it makes, thus allowing the
cooperative caching scheme to take this information into ac-
count when performing its own reconfiguration. The second
option means that the overlay network does not share all the
decisions made, it simply informs the caching scheme once
about the logic it uses to make these decisions. Assuming
that the caching scheme has full knowledge of this logic, and
in addition the same knowledge about the underlying net-
work as the overlay network, it can predict which actions
the overlay network will perform. This means that the task
of reconfiguration loop avoidance in this case falls on the co-
operation scheme. However, exporting logic in this direction
may not be a good solution, because the overlay network will
in most cases have a more complete view of the network than
the cooperative caching scheme. This means that a large
amount of data must be relayed from the overlay network
to the cooperative caching scheme control loop to enable it
to correctly anticipate which actions will be performed. Just
informing the cooperation scheme about the reconfiguration
performed may not be sufficient to avoid the reconfiguration
loop problem. This is due to the fact that most overlay net-
work solutions keep a limited view of the network in each
node, i.e., it knows about its own virtual links only. Thus,
local decisions passed up to the cooperative scheme control
loop do not really help in solving the problem. This control
loop needs a broader overview of the participating nodes in
order to detect and avoid the problem. As a consequence
of this, the overlay network one employs in a cooperative
caching content network needs to be aware of a wide area of
the network, preferably having global knowledge.

Approach 5 is the inverse of the previous approach, here
the overlay network control loop is aware of cooperative
caching group dynamics. As above, there are two ways to
obtain awareness, namely direct communication or export-
ing logic. This approach is better than the previous one,
because it avoids many of the difficulties mentioned above.
If the overlay network has a broader view of the underlying
network, a simple solution to the problem springs to mind:
By exporting the cooperative cache reconfiguration logic to
the overlay network, the overlay network control loop can
utilize its knowledge of the data to reliably anticipate and
thus avoid reconfiguration loops.

The awareness enabled control loop should preferably have
a global view of the network in order to best utilize this in-
formation to determine and compensate for possible shifts in
traffic. We focus on approach 5, and outline a loop avoidance
solution based on an overlay network solution that lends it-
self well to this type of modification. The overlay network
solution that we want to expand to encompass loop aware-
ness combines distribution and centralization principles [1];
critical tasks like monitoring, routing and data transport
are performed individually on each node, while the recon-
figuration mechanism is centralized. This centralized con-
figuration service has a global view of the network which
it uses to make all reconfiguration decisions. If this con-
figuration service can be made aware of the principles for
dynamics in cache cooperation groups it can anticipate the
following traffic shift effect, thus allowing it to foresee and
avoid reconfiguration loops. Such a change to the configu-

ration service is relatively minor compared to approaches 1
through 4, as all nodes in the network remain unchanged.
Figure 10 illustrates this solution.

5. CONCLUSIONS

In this report, we have looked into combining two estab-
lished techniques for bottleneck avoidance in distribution
systems. We have identified challenges which arise when
combining two autonomous, self-organizing techniques; co-
operative caching and an overlay network. The main chal-
lenge is to overcome a possible reconfiguration loop which
may occur when both subsystems are self-organizing. We
have identified five approaches that address this problem,
and have discussed their suitability in that respect. One so-
lution we found to be particularly interesting is that of an
overlay network which is aware of cache cooperation scheme
logic.

In addition to resolving the reconfiguration loop issue, one
also needs to look into various compromises for avoiding the
monitoring service redundancy. If one is to replace the proxy
cache and overlay network monitoring service with a shared
resource, it is essential that a compromise that works for
both subsystems is found.

6. ACKNOWLEDGMENTS

This work was initiated while F. T. Johnsen and T. Hafsge
were visiting faculty at the University of Twente in En-
schede, the Netherlands. We would like to thank Marten
van Sinderen and the ASNA group for their hospitality.

Furthermore we would like to thank Katrine S. Skjelsvik
at the University of Oslo for proofreading the report and
providing us with valuable feedback during the writing pro-
cess.

7. REFERENCES
[1] T. Hafsge, T. Plagemann, and V. Goebel. Towards

Automatic Route Maintenance in QoS-Aware Overlay
Networks. Technical Report 329, University of Oslo,
November 2005. ISBN 82-7368-284-6.

[2] M. Hofmann and L. Beaumont. Content Networking:
Architecture, Protocols, and Practice. Morgan
Kaufmann, March 2005. ISBN 1-55860-834-6.

[3] M. Hofmann, E. Ng, K. Guo, S. Paul, and H. Zhang.
Caching techniques for streaming multimedia over the
internet. Technical report, Bell Laboratories, April
1999. BL011345-990409-04TM.

[4] A. Nakao, L. Peterson, and A. Bavier. A Routing
Underlay for Overlay Networks. In Proceedings of the
ACM SIGCOMM Conference, August 2003.

[5] M. Rabinovich, J. Chase, and S. Gadde. Not all hits are
created equal: cooperative proxy caching over a
wide-area network. Computer Networks and ISDN
Systems, 30(22-23):2253-2259, 1998.

[6] M. Rabinovich and O. Spatscheck. Web caching and
replication. Addison Wesley, 2002. ISBN 0-201-61570-3.

[7] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-aware overlay construction and server
selection. In Proceedings of IEEE INFOCOM’02, 6
2002.

[8] K. Shen. Saxons: Structure management for scalable
overlay service construction. In USENIX NSDI ’04,
pages 281-294, 2004.

