
Twisting targets in
Sequential Monte Carlo
Martin Strøm Olsen
Master’s Thesis, Spring 2022

This master’s thesis is submitted under the master’s programme Data Science,
with programme option Data Science, at the Department of Mathematics,
University of Oslo. The scope of the thesis is 60 credits.

The front page depicts a section of the root system of the exceptional
Lie group E8, projected into the plane. Lie groups were invented by the
Norwegian mathematician Sophus Lie (1842–1899) to express symmetries in
differential equations and today they play a central role in various parts of
mathematics.

Abstract

Sequential Monte Carlo methods are often used for inference in state space
models that are nonlinear and non-Gaussian. Inference about the latent variables
of a state space model can be performed in an online setting by using Sequential
Monte Carlo methods. It is also possible to obtain estimates of the marginal
likelihood of the observations from a state space model in an online setting.
There are different ways of introducing flexibility in Sequential Monte Carlo
methods. One way is by considering the target distributions where one may
alter all the intermediate target distributions except the final target distribution.
Altering or twisting the intermediate target distributions can be done in different
ways. One possibility is to alter the transition density and the observation
density of the state space model by utilising a set of functions. These functions
have few requirements and they may utilise observations from the state space
model. There exists a specific set of functions which utilise all the observations,
which implies an offline setting. This specific set of functions can also be used to
alter the transition density and the observation density of the state space model.
If Sequential Monte Carlo methods now are used to estimate the likelihood it
can be shown that the variance of the likelihood estimates is minimised. The
functions in the specific set are in general intractable and additionally defined
in an offline setting. We therefore need to approximate these functions in an
offline setting, subsequently we can use these to alter the transition density
and the observation density. The motivation being that we now may obtain
likelihood estimates with lower variance. Having the final target distribution
unaltered implies that the marginal likelihood obtained by using intermediate
twisting target distributions is equal to the marginal likelihood obtained by
using unaltered target distributions.

We will consider a modified setup for utilising the twisting target framework
in a batch setting, that is we assume that observations become available in
batches. We also consider numerical experiments to check the effect of the
batch setting on the variance of the likelihood estimates.

i

Acknowledgements

I primarily want to thank my supervisor Geir Storvik for his guidance, feedback
and patience throughout the year. I also want to thank those accompanying
me at Blindern campus throughout yet another Covid-year.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

1 Introduction 1
1.1 Structure . 1
1.2 Notation . 3

2 Monte Carlo methods and state space models 4
2.1 State space models . 4
2.2 Special distributions . 7
2.3 The Monte Carlo method . 9
2.4 Weights . 12
2.5 Importance sampling concepts 14
2.6 Sequential Monte Carlo . 19

3 Inference in state space models 23
3.1 Motivation . 23
3.2 Filtering recursions . 26
3.3 Particle filters . 29
3.4 Smoothing recursions . 33
3.5 Likelihood estimation in particle filters 35

4 Twisting target distributions 39
4.1 Motivation . 40
4.2 Twisting target distributions 43
4.3 Optimal twisting functions . 47
4.4 Twisting target distributions in the particle filter framework . 51
4.5 Approximation of the optimal twisting functions 53
4.6 Calculating the approximations 55
4.7 Lookahead setting . 58
4.8 Iterated auxiliary particle filter 59
4.9 Example: instability in estimation 60

5 Twisting targets in a batch setting 65

iii

Contents

5.1 Motivation . 66
5.2 The batch sequence . 68
5.3 Batch twisted model . 71
5.4 Optimal batch twisting functions 76
5.5 Likelihood . 79
5.6 Connection to the offline setting 82
5.7 Outline of the batch algorithm 84

6 Alternative twisting functions 88
6.1 Motivation . 88
6.2 Alternative twisting functions 90
6.3 Approximation of the alternative twisting functions 92
6.4 Laplace-based approximations 98
6.5 Example: Laplace approximations 101

7 Numerical experiments 104
7.1 Experiment 1: offline setting 106
7.2 Experiment 2: batch setting 108
7.3 Experiment 3: univariate stochastic volatility 110
7.4 Experiment 4: multivariate setting 112
7.5 Experiment 5: discrete observations 113
7.6 Experiment 6: multivariate setting with higher dimensionality 115
7.7 Experiment 7: effective sample size 116
7.8 Experiment 8: batch likelihood 120

8 Conclusions 126
8.1 Summary . 126
8.2 Further work . 127

Appendices 129

A Extended calculations 130
A.1 Extended calculations chapter 2 130
A.2 Extended calculations chapter 4 131
A.3 Extended calculations chapter 5 133

B Calculations for numerical examples 136
B.1 Alternative psi estimation for Poisson observations 136

Bibliography 137

iv

CHAPTER 1

Introduction

General methodologies such as Sequential Monte Carlo (SMC) are important
for statistical inference in state space models. Many SMC methods have
traditionally focused on inference in an online setting while it is also possible to
utilise SMC methods in an offline setting (Naesseth, Lindsten, and Schön, 2019).
The marginal likelihood related to the observations of a state space model is
often of particular interest when considering parameter estimation (Guarniero,
Johansen, and Lee, 2017). When estimating the marginal likelihood related to
a state space model, the offline setting can be utilised in order to reduce the
variance of the likelihood estimates.

There exist algorithms operating in an offline setting which can minimise
the variance of the likelihood estimates. The setup for the algorithms yielding
minimised variance likelihood estimates is however generally intractable and
must be approximated. Approximations can however be iteratively improved
to further reduce the variance of the likelihood estimates (Guarniero, Johansen,
and Lee, 2017; Heng et al., 2020). Low variance is important for further
inference and this will be our main focus in this thesis.

1.1 Structure

This thesis is structured into three main parts which are related to background
concepts, twisting target distributions and numerical experiments. For all
numerical examples and experiments we use R, Python and ggplot2 (Lutz, 2014;
R Core Team, 2021; Wickham, 2016). We now consider a brief outline of the
structure.

Background concepts

In this part we cover some of the background concepts that we will need in the
following parts. The main focus here is SMC methods and likelihood estimation.

Chapter 2 contains some aspects related to state space models and Monte
Carlo integration. State space models are thoroughly covered in Cappé,
Moulines, and Rydén (2005). We briefly consider a connection between state
space models and Bayesian networks which is reviewed in Koller and N. Friedman
(2009) and Koller and Lerner (2001). We then consider importance sampling
concepts and finally the SMC algorithm.

Chapter 3 covers some inferential aspects in state space models. Specifically
we consider some aspects related to the filtering recursions and particle filter

1

1.1. Structure

algorithms. Here we consider likelihood estimation by using particle filter
algorithms. We also briefly consider the motivation for low variance likelihood
estimates in relation to parameter estimation and some aspects of smoothing in
state space models.

Twisting target distributions

In this part we introduce twisting target distributions by considering its
motivation. Further we consider twisting functions as a strategy of obtaining
twisting target distributions.

Chapter 4 introduces twisting target distributions and twisting functions.
We consider the motivation for twisting target distributions and how it can be
used to reduce the variance of the likelihood estimates. Twisting functions as
a strategy to obtain twisting target distribution is also introduced. Here we
consider the iterated auxiliary particle filter presented in Guarniero, Johansen,
and Lee (2017). This is an offline algorithm utilising iteratively improving
twisting functions to reduce the variance of the likelihood estimates.

Chapter 5 considers a setup that aims to utilise iteratively improving twisting
functions in a batch setting. This is a setup that we have not seen before. We
consider grouping the timeline consisting of iterations as a batch setting. This
setup is utilising many of the concepts from Guarniero, Johansen, and Lee
(2017) adapted to a batch setting. We aim to utilise these iteratively improving
twisting functions in twisting target distributions and consequently reduce the
variance of the likelihood estimates.

Chapter 6 contains an alternative way of approximating directly optimal
twisting functions. Optimal twisting functions are introduced in Guarniero,
Johansen, and Lee (2017) and can theoretically yield likelihood estimates with 0
variance. The alternative way of approximating the optimal twisting functions
use reformulation and conditional independence properties of the state space
model. This is an approximation that we have not seen before. Further we
consider one of the deterministic approximations of twisting functions from
Lindsten, Helske, and Vihola (2018) utilised in combination with the approach
of Guarniero, Johansen, and Lee (2017) in order to reduce computational cost
in some special cases.

Numerical experiments

We consider numerical experiments in order to compare the variance of the
likelihood estimates obtained by algorithms in the online, batch and offline
setting. Our aim is here to compare the effect of batching on the variance of
the likelihood estimates.

Chapter 7 contains a series of numerical experiments where we focus on the
variance of the likelihood estimates. Our motivation is mainly to compare the
methodology of twisting target distributions in a batch setting to the traditional
online and offline setting. The main focus here is also variance of the likelihood
estimates.

Chapter 8 is a summary of the main topics that we have considered.
Specifically, we summarise what has been done in this thesis and further
possibilities.

2

1.2. Notation

Appendix A contains extended calculations related to some of the topics.
These are are included in order to give more details about some of the topics
covered in the text.

Appendix B contains calculations that were omitted from the numerical
examples in order to focus on the most important parts.

1.2 Notation

We follow Doucet, Freitas, and Gordon (2001) and use lowercase letters zt
for both random variables and their realisations. For notational simplicity
we also use lowercase z for both scalar and vector variables. The notation
zs:t = (zs, . . . , zt) is used for a sequence where s < t.

When it is either ambiguous or we want to highlight which distribution the
expectation or variance is with respect to, we will use the notation Ep or Vp.
Throughout we use θ as a generic parameter notation for both scalar and vector
parameters. Variables on the form zit use subscript t to indicate iteration and
superscript i is used to indicate sequence number. When either the subscript
and/or superscript is not relevant in the context it will be omitted for notational
simplicity.

In general we will use p(x) to denote a generic probability density functions
and probability mass function. For simplicity we will refer to probability mass
functions as also as probability density functions and therefore use the same
notation. We use other letters to indicate density functions or distributions
when they have a specific meaning in different contexts. Throughout we will
also use the term iteration and notation t when referring to the time index of
variables.

3

CHAPTER 2

Monte Carlo methods and state
space models

In this chapter we start by a brief overview of state space models. We also
consider Monte Carlo integration and some aspects of importance sampling in
the context of state space models. Importance sampling will be introduced as
the foundations of SMC methods.

2.1 State space models

To introduce the concept of a state space model (SSM) we mainly follow the
approach provided in Chopin and Papaspiliopoulos (2020). We will in general
refer to t = 1, . . . , T as iterations where it is assumed that T is the final iteration.
The description provided here is a brief overview, for a comprehensive review
of state space models see Cappé, Moulines, and Rydén (2005). We will denote
general parameters by θ when these are unknown and of general interest. The
variables εt and ηt are independent and identically distributed variables at
iteration t (Chopin and Papaspiliopoulos, 2020). We can define a SSM by using
three general, deterministic, functions

x1 = S1(ε1, θ)
xt = S(xt−1, εt, θ)
yt = O(xt, ηt, θ).

Here we will in addition assume that the model is time homogenous, that is
the functions S1, S and O are equal for every iteration t. We will follow Creal
(2012) and assume that the functions may be nonlinear and that the variables
in the model may be continuous or discrete. In general we refer to the sequence
x1:t as the latent variables. Similarly, we refer to the sequence y1:t as the
observable variables or observations. These are often referred to as stochastic
processes (Cappé, Moulines, and Rydén, 2005). At each iteration, t, we can
think of receiving an observation yt and we want to utilise the information from
that observation in order to make inference about the latent variable xt. The
function S1 is the first or initial state equation, it differs from the general S
because it has no dependence on any previous latent variable. The function S is
often called state equation while the function O is called observation equation
(Cappé, Moulines, and Rydén, 2005). It is also possible to define a SSM by

4

2.1. State space models

using density functions for the latent variables and the observations. We here
use the generic notation p, to denote a density function. We can then define a
SSM with density functions, adapted from equation (4) in Naesseth, Lindsten,
and Schön (2019). We then have

x1 ∼ p(x1|θ) initial density (2.1a)
xt|xt−1 ∼ p(xt|xt−1, θ) transition density (2.1b)
yt|xt ∼ p(yt|xt, θ) observation density. (2.1c)

Here, the observation yt only depends on the latent variable xt. Further, the
latent variable xt only depends on the previous latent variable xt−1 and not
any variables preceding this (Naesseth, Lindsten, and Schön, 2019). The model
defined in equation (2.1) is sometimes referred to as a hidden Markov model
(HMM) when yt only depends on xt and xt only depends on xt−1. We will
however mainly refer to this model as a SSM. The parameters θ will in general
be omitted from the functions when they are assumed known for notational
simplicity.

There are many variations within the SSM framework. In special cases
such as finite SSMs or linear Gaussian SSMs, we are able to find recursive,
analytical, expressions related to the latent variables. When considering the
linear Gaussian case, this is referred to as Kalman filtering. We can further use
these expressions to find analytical posterior density functions, such as p(xt|y1:t)
and likelihood factors such as p(yt|y1:t−1). Utilising likelihood factors, we can
find a recursive, analytical, expression for the likelihood. This is given by the
decomposition into likelihood factors

p(y1:t) = p(y1)
t∏

s=2
p(ys|y1:s−1).

See e.g. chapter 5 of Cappé, Moulines, and Rydén (2005) for detailed reviews of
inference in finite SSMs and linear Gaussian SSMs. We note that even though
the two special cases of SSMs are of major importance, the general case is that
SSMs can be both nonlinear and non-Gaussian. For the general case, we often
need approximations based on e.g. simulation. We will now consider some
properties of SSMs which we utilise when it comes to further calculations and
inference. The first is related to the latent variables and the second is related to
the observations. Combined, these form what we will refer to as the conditional
independence (CI) properties of the SSM.

Latent variables

The Markov assumption is a CI assumption between the last latent variable
xt in the model and all preceding latent variables except xt−1. In general, we
will consider the case where the Markov assumption holds for all t. We can be
summarise this by the following CI statements (Koller and N. Friedman, 2009,
p. 201). We then have

(xt ⊥ x1:t−2|xt−1).

This simplifies a lot of the calculations when considering inference in SSM
through different methods. It is possible to have higher order Markov structures

5

2.1. State space models

for the latent variables as discussed in Naesseth, Lindsten, and Schön (2019). In
this case, the latent variable xt may depend on an arbitrary number of previous
latent variables and in the extreme all the previous latent variables x1:t−1.
Assume a situation where xt has a higher order Markov structure and depends
on the previous latent variables, xt−k:t−1, where k > 1. It is possible to define
the latent variable as a vector consisting of xt−k+1:t to get the original Markov
structure back (Cappé, Moulines, and Rydén, 2005, p. 4). This flexibility
can often be important as there are scenarios where the first order Markov
structures might be insufficient to define a model.

Observations

Another property which also is simplifying when considering inference
calculations is the CI properties of the observations. In words we could say that
the latent variable xt shields the observation yt from all other variables. That
is, when we have xt in the conditioning set, all other variables are independent
of yt. This corresponds to the following CI statements from Cappé, Moulines,
and Rydén (2005, p. 2)

(yt ⊥ x1:t−1, y1:t−1|xt).

In the same manner as for the latent variables, we can consider situations where
it is a higher order Markov structure between the observation yt and latent
variables. In the full dependence case we have yt|x1:t and xt|x1:t−1 and this
is often called non-Markovian latent variable model Naesseth, Lindsten, and
Schön (2019, p. 7). This increase in dependence will naturally complicate
calculations related to the model.

We will see that the Markov structure in both the latent variables and
the observations will simplify calculations considerably. We can consider the
conceptual structure of a state space model in Figure 2.1.

Figure 2.1: Conceptual SSM at t+ 1.

Following chapter 6 of Koller and N. Friedman (2009), we can consider an
example HMM with first order Markov structure and finite, discrete, variables.
We can then view this model as a dynamic Bayesian network (DBN) which form
a Bayesian network (BN) with a conditional probability distribution (CPD)
for each node. We can then think of the DBN over the variables x1:t and y1:t
as being conceptually stopped at a given iteration t and we view the resulting
network as a traditional BN. The DBN structure lets us repeat the xt → yt
structure for increasing t and the parent structure Paxt

= xt−1 connects the time

6

2.2. Special distributions

slices together. The observations follow a similar parent structure Payt
= xt.

See chapter 6 of Koller and N. Friedman (2009) for a detailed review. Because
the DBN can be viewed as a BN for a given iteration t, we can utilise the CI
structure present in BN when considering the model at that iteration. We would
then have the following structure where the arrows represent trails between the
variables. We then have

xt−1 →xt → yt

yt ←xt → xt+1.

Here the first and second trail above correspond to a causal trail and common
cause respectively. They are both inactive when xt is being conditioned on,
implying conditional independence between (xt−1, yt) and between (yt, xt+1).
The general trails which extend these trails either way are then also inactive
(Koller and N. Friedman, 2009, p. 71). This would imply that the following
trails

a→xt → b

c←xt → b.

Here a, b, c are trails on either side of the edges going in to/out from xt. Trails
between nodes in a and nodes in b are active as long as none of the variables
in the trails connecting them are in the conditioning set. This is because the
trails a, b, c does not contain any v-structures (Koller and N. Friedman, 2009,
p. 71). We can then think of the variable xt as blocking influence between
any xs or ys before where s < t and any xs or ys where s > t when it is in
the conditioning set. A detailed review can also be found in Koller and Lerner
(2001). The BN structure can be useful when assessing how influence flows
between the variables in the model.

2.2 Special distributions

In this section we briefly consider two special distributions, the target
distribution and the importance sampling distribution. We start by considering
the target distribution. It can be useful to use a general definition of the target
distributions. We follow the notation of Naesseth, Lindsten, and Schön (2019)
and define the general target distributions for t = 1, . . . , T by

ft(x1:t) = f̃t(x1:t)
Zt

. (2.2)

Here Zt is the normalising constant for the positive and integrable function
f̃t(x1:t) at iteration t (Naesseth, Lindsten, and Schön, 2019, pp. 4-6). We often
refer to f̃t(x1:t) as the unnormalised target distribution. Therefore we have
that the normalising constant can be written as Zt =

∫
f̃t(x1:t)dx1:t. In the

settings we will consider the target distributions are often closely related to the
components of the SSM. In these setting we often define the unnormalised target
distributions f̃t(x1:t) to be joint distributions over variables from the model.
The resulting target distributions ft(x1:t) are then posterior distributions of
the latent variables, x, conditioning on the observations, y. These posterior
distributions will be our main focus until Chapter 4.

7

2.2. Special distributions

Because of this, we will often define the unnormalised target distribution on
the form f̃(x) = p(x, y) and the target distribution on the form f(x) = p(x|y).
The notation x and y denote some subset of latent variables and observations
respectively. Until we consider twisting target distributions in Chapter 4, we
will therefore refer to posteriors on the conceptual form p(x|y) as the target
distributions. The main specific target distributions of interest are the posterior
distributions on the form p(x1:t|y1:t, θ). For this reason we define these specific
target distributions now. The unnormalised target distribution is defined
by f̃t(x1:t) = p(x1:t, y1:t|θ) following Naesseth, Lindsten, and Schön (2019,
eq. 6). The specific target distributions then become ft(x1:t) = p(x1:t|y1:t, θ)
for t = 1, . . . , T . We can now consider general reformulations of the target
distributions combined with the conditional independence properties of the
SSM to see a recursive structure. We then have

p(x1:t|y1:t, θ) = p(yt|xt, θ)p(xt|xt−1, θ)
p(yt|y1:t−1, θ)

p(x1:t−1|y1:t−1, θ).

In general, we omit the parameters θ when they are assumed known. The joint
recursive form of the target distributions without θ is then given by

p(x1:t|y1:t) = p(yt|xt)p(xt|xt−1)
p(yt|y1:t−1) p(x1:t−1|y1:t−1) (2.3a)

p(x1:t|y1:t) ∝ p(yt|xt)p(xt|xt−1)p(x1:t−1|y1:t−1). (2.3b)

The fraction before the target distribution at iteration t − 1 consists of the
density functions from from the model defined in equation (2.1). We refer to
the term p(yt|y1:t−1) as the likelihood factor at iteration t, following Chopin
and Papaspiliopoulos (2020). When focusing on the posterior distribution, the
likelihood factor does not depend on x1:t and can be considered constant. This
implies that we are able to recursively express the current target distribution up
to proportionality using the previous target distribution and the components
from the SSM.

One important decomposition of the unnormalised target distribution
p(x1:t, y1:t) is the joint distribution over all the variables expressed by the
transition densities and observation densities from the model. We then
continue the recursive structure in (2.3b) and use the CI properties of the
SSM. Straightforward calculations lets us decompose the joint distribution
p(x1:t, y1:t) into

p(x1:t, y1:t) = p(y1|x1)p(x1)
t∏

s=2
p(ys|xs)p(xs|xs−1). (2.4)

We denote the generic importance sampling function by g and in general
this will be needed whenever simulating variables directly from the target
distribution is intractable. An importance sampling function can also be
useful if it is possible, but too computationally costly to simulate directly from
the target distribution. We can instead simulate variables from some other
importance sampling function g. Then, we can weight the variables which now
are simulated from the importance sampling distribution instead of the target
distribution. As we will see this is the idea in importance sampling (IS). We
often use a conditional distribution where we have the observations up until the

8

2.3. The Monte Carlo method

current iteration in the conditioning set, then we can denote the importance
sampling distribution by g(x1:t|y1:t). One possibility when it comes to the
structure of g is to define it by a recursive structure where we consider the
leftmost term to simulate xt and the rightmost term as the distribution for
the already simulated x1:t−1 (Creal, 2012, eq. 10). The importance sampling
distribution is then given by

g(x1:t|y1:t) ≡ g(xt|y1:t, x1:t−1)g(x1:t−1|y1:t−1). (2.5)

This structure is important for the efficacy of the sequential weight structures
used in importance sampling-based algorithms. As we will see, the importance
sampling distributions and the target distributions are important components
in many of the importance sampling-based algorithms. By adjusting both of
these one may increase the efficiency of many of the algorithms as is covered in
section 3 of Naesseth, Lindsten, and Schön (2019).

2.3 The Monte Carlo method

We first consider the curse of dimensionality to motivate Monte Carlo as a
numerical integration method. In order to have a given number of nd evaluation
points in high-dimensional integrals, one need e.g. n points for each dimension.
To have the same number of evaluation points in all d dimensions we need
nd points in total. The number of total points needed then increase quickly
with increasing d. This rapid growth of needed evaluation point when the
dimensionality increase is often referred to as the curse of dimensionality.

We follow one of the examples in Hastie, Tibshirani, and J. Friedman (2009)
in order to illustrate the curse of dimensionality. This can be illustrated by
considering the ratio v = vs

v1
of two volumes. We think of each of the volumes

containing evenly distributed points and we now want to consider the ratio v
of points contained in a smaller volume vs to the unit volume v1. The volume
vs = ed is a d-dimensional hypercube with edge length e. We refer to this
as the smaller hypercube because it will be contained in the unit hypercube.
The volume v1 is that of a unit hypercube in d dimensions. Consider a unit
hypercube in d dimensions. That is, a line [0, 1] in d = 1, a square [0, 1]× [0, 1]
in d = 2, a cube [0, 1]× [0, 1]× [0, 1] in d = 3 and so on. Because all sides of
v1 has edge length 1 we know that the volume of the unit hypercube is v1 = 1.
We consider the ratio v as a function of the edge length e ∈ [0, 1] and the
dimensionality d ∈ N+. The ratio v is then given by a function

v = ed.

To illustrate the concept we can plot v as a function of the edge length
e ∈ [0, 1] and dimensions d = 1, . . . , 20. We see from Figure 2.2 that with
higher dimensionality d we need to increase each edge length e in the smaller
hypercube in order to cover the same ratio of volume v. As an example we see
that already at dimension 4 we need to have edge length e > 0.8 in order to
cover about half of the unit hypercube volume. In contrast, when considering
20 dimensions, an edge length of 0.8 yields a hypercube that covers less than
0.05 of the unit hypercube.

Metropolis and Ulam presented an example of calculating a complex, finite,
volume in dimension d located within a unit hypercube. The calculation of

9

2.3. The Monte Carlo method

Figure 2.2: Ratio of smaller hypercube volume to unit hypercube volume. Here,
v denotes the ratio of volume, e the edge length and d the dimension.

the complex volume can be done with a multiple integral where the combined
integral bounds describe the complex volume. Assume that we want n evaluation
points for each variable, resulting in nd evenly distributed evaluation points.
It is then suggested evaluating M � nd randomly sampled points and denote
m as the number of points within the complex volume. One could estimate
the complex volume by the fraction m

M when M is sufficiently large due to
the law of large numbers (Metropolis and Ulam, 1949, pp. 336-337). In this
way, we can reduce the number of evaluation points and be able to estimate
high-dimensional integrals with less impact from the curse of dimensionality
because M � nd. This suggests that one may use a sample of points as an
alternative to n points in each dimension in order to estimate integrals.

Monte Carlo integration is a general method for numerical integration. We
therefore present the Monte Carlo method in a general form and then briefly in
the context of SSMs. Assume we are interested in calculating the expectation
of the function k(x) with respect to a generic density p(x). We denote this
expectation by µk = Ep [k(x)] and it is by the definition equal to the following
integral

µk = Ep [k(x)] =
∫
k(x)p(x)dx.

The expectation is a standard integral when we consider k(x)p(x) as the
integrand of the integral. In traditional numerical integration one often
evaluates the integrand on a specified number of points. The objective is
then to approximate the integral by summarising the area of different geometric

10

2.3. The Monte Carlo method

shapes. Intuitively, more evaluation points produces more agile shapes that are
able to follow the integrand closer and therefore increase the accuracy of the
estimate. More points in each dimension quickly becomes intractable when the
dimensionality is high. We briefly consider the strong law of large numbers,
adapted from Givens and Hoeting (2013).

Theorem 2.3.1. Define µ̂ = 1
n

∑n
i=1 x

i and assume that n→∞. In addition,
assume that the variables xi for i = 1, . . . , n are i.i.d. from a distribution with
expectation µ and E

[
|xi|
]
<∞. Then we have almost sure (a.s.) convergence,

µ̂
a.s.→ µ.

Monte Carlo integration

One often divide numerical integration into stochastic and deterministic methods.
Deterministic methods often select uniform evaluation points along different
dimensions and related to the curse of dimensionality, the number of total
points in high-dimensional problems quickly becomes intractable. Stochastic
methods simulate evaluation points from a distribution rather than uniformly
along all dimensions (Gelman et al., 2013). This implies that the distribution
from which we sample from also will have an impact on the effectiveness of the
numerical integration. We define an estimator for the expectation denoted by
µ̂k = 1

n

∑n
i=1 k(xi). Assume now that we have n variables xi for i = 1, . . . , n

simulated i.i.d. from a generic distribution p(x). We can then define the Monte
Carlo method following Givens and Hoeting (2013).

Definition 2.3.1. When n→∞ and the variables are i.i.d. from p(x) we have

xi ∼ p(x) i = 1, . . . , n

µ̂k = 1
n

n∑
i=1

k(xi)→
∫
k(x)p(x)dx.

The convergence of the Monte Carlo method is ensured by the strong law
of large numbers from Theorem 2.3.1 (Givens and Hoeting, 2013; Robert and
Casella, 2004). The Monte Carlo method in Definition 2.3.1 holds for both
scalars and vectors because it holds for each variable of a vector (Chopin and
Papaspiliopoulos, 2020, p. 81). In order to utilise the Monte Carlo method,
we need a large i.i.d. sample of variables. If the distribution p(x) however
is intractable to simulate from this can be problematic. In addition, we are
often interested in considering the variance of the estimator µ̂k. Assuming now
that Ep[k(x)2] <∞ we can then use the Monte Carlo method to estimate the
variance of the estimator µ̂k as well, following Robert and Casella (2004). We
then have an estimate of the variance given by

V [µ̂k] = V

[
1
n

n∑
i=1

k(xi)
]

= 1
n

∫
[µ̂k − k(x)]2 p(x)dx

≈ 1
n2

n∑
i=1

[
µ̂k − k(xi)

]2
.

An estimate of the integral is inserted in the last step by using the Monte Carlo
method, adapted from (Robert and Casella, 2004, pp. 83-84). When the sample

11

2.4. Weights

size n → ∞, we can use the central limit theorem, see e.g. Devore and Berk
(2012), to motivate the standardisation of µ̂k to a N (0, 1) as is also done in
(Robert and Casella, 2004, p. 84). Using this standardisation, we are able to
say something about the uncertainty of the Monte Carlo-estimates when the
sample size n is large.

Monte Carlo integration in SSMs

In the context of SSMs we often consider situations where the target distribution
is defined as the posterior distribution p(x1:t|y1:t). Assume now that we are
interested in expectations with respect to this posterior distribution. We
can then use the Monte Carlo-estimator in order to approximate the integral
numerically in the same manner as the general case. Assume that we can
simulate n sequences xi1:t for i = 1, . . . , n directly from the posterior p(x1:t|y1:t).
An estimate from using Monte Carlo integration is then given by

Ep [k(x1:t)] =
∫
. . .

∫
k(x1:t)p(x1:t|y1:t)dx1:t (2.6)

≈ 1
n

n∑
i=1

k(xi1:t).

In general it is however often difficult to simulate sequences directly from the
posterior p(x1:t|y1:t). This is mainly because we generally do not have access
to the distribution p(x1:t|y1:t) in closed form. Recall for example the joint
distribution p(x1:t, y1:t) from equation (2.4). It is only in some special cases
that we are able to evaluate p(x1:t|y1:t) in closed form. The normalising constant
in this case corresponds to the marginal likelihood p(y1:t) and in this case is
generally not available in closed form. We will see that estimating the likelihood
of the observations in a SSM is possible using different algorithms. Often, we
are interested in estimates of the likelihood to use in further inference.

2.4 Weights

Using variables i.i.d. from a density p is a necessary condition in standard Monte
Carlo integration defined in Definition 2.3.1. However, simulating directly from
p might be intractable. The target distribution we consider in the SSM context
is in general intractable to simulate directly from. The target distributions that
we consider are often not available in closed form and in addition we can often
only evaluate it up to proportionality. When simulating directly from the target
distribution is intractable, alternative strategies to simulate the variables are
needed. One can often distinguish between exact and approximate simulation.
In exact simulation, the resulting sampling distribution is equal to the target
distribution. This often requires the inverse cumulative distribution function
(CDF) of the target density or a variant of rejection sampling. In approximate
simulation, the sampling distribution approximates the target distribution. This
approach is often based on importance sampling concepts and utilise weighting
of variables (Givens and Hoeting, 2013). If the inverse CDF is not available,
rejection sampling is one of the main exact simulation methods. Even though
rejection sampling is an exact simulation method, we may choose importance
sampling from within the approximate simulation methods instead. This is

12

2.4. Weights

related to that the computational cost of simulating n variables with rejection
sampling is not fixed. The computational cost of simulating n variables with e.g.
importance sampling is on the other hand fixed. For an overview of simulation
methods, see e.g. chapter 6 of Givens and Hoeting (2013).

Our focus will be on approximate simulation. Therefore we consider
weighting of variables which is fundamental in importance sampling-based
methods. The ratio p(x)

g(x) is often referred to as an importance weight for x
(Givens and Hoeting, 2013). We use p to denote the target density and g to
denote the importance sampling function used to simulate variables. Combined,
the simulated variables and the corresponding importance weights represents a
weighted sample. The variables simulated from g are then combined with the
importance weights in calculations. In the SSM context our target distribution
is often the posterior of the latent variables x1:t conditioning on the observations
y1:t. The importance sampling function, g, is important when it comes to the
efficiency of Monte Carlo-based methods. Because the concept of importance
weights is used in all of the importance sampling-based methods, we consider it
here. Note that we are considering a specific sequence xi1:t.

Definition 2.4.1. Let p(x1:t|y1:t) denote the target and g(x1:t|y1:t) denote the
importance sampling distribution. Then the importance weight and normalised
weight are defined respectively

w̃(xi1:t) = p(xi1:t|y1:t)
g(xi1:t|y1:t)

w(xi1:t) = w̃(xi1:t)∑n
l=1 w̃(xl1:t)

.

For notational simplicity w̃it = w̃(xi1:t) and wit = w(xi1:t) are often used.

It is also possible to use the unnormalised target distribution, p(x1:t, y1:t),
to define the importance weights. This can be useful if we do not have access
to the normalising constant (Naesseth, Lindsten, and Schön, 2019). In these
cases we can only calculate the importance weights up to proportionality, but
after normalisation the unknown normalising constants cancel. We follow
the convention from Creal (2012) among many others and refer to the pair
(xi1:t, w̃

i
t) for i = 1, . . . , n as the particles at iteration t. We can utilise the

recursive structure from equation (2.3a) for the target and equation (2.5) for
the importance sampling distribution. Then following the approach of Creal
(2012) in order to rewrite the importance weights to a recursive form

w̃(x1:t) =
p(x1:t−1|y1:t−1)p(yt|xt)p(xt|xt−1)

p(yt|y1:t−1)

g(x1:t−1|y1:t−1)g(xt|y1:t, x1:t−1) = w̃(x1:t−1)
p(yt|xt)p(xt|xt−1)

p(yt|y1:t−1)

g(xt|y1:t, x1:t−1) .

Note that the recursive structure of the importance weights requires us to
evaluate the likelihood factor p(yt|y1:t−1). Generally, except for special cases,
we cannot evaluate the likelihood factor exactly in the SSM context. We
therefore calculate the importance weights up to proportionality because the
likelihood factor will be constant when the observations y1:t are assumed to be
fixed. This implies we can write the importance weights up to proportionality
in a recursive form

w̃(x1:t) ∝ w̃(x1:t−1)p(yt|xt)p(xt|xt−1)
g(xt|y1:t, x1:t−1) . (2.7)

13

2.5. Importance sampling concepts

The recursive structure is useful because it allows for incremental updates of the
importance weights. The incremental update at iteration t consists multiplying
the importance weight from iteration t− 1 with the fraction in equation (2.7).
The alternative to an incremental update is to first simulate a new xi1:t from g
and then calculate w̃(xi1:t) by evaluating p(xi1:t|y1:t) and g(xi1:t|y1:t) for every t.
This will often be computationally costly both because we need to simulate the
entire xi1:t for every t, but also because we need evaluate the entire expression
for w̃it (Givens and Hoeting, 2013). The recursive structure of the importance
weights is therefore an essential component in many of the sequential simulation
methods we will consider. The structure in equation (2.7) makes it possible
to see a recursive structure in the normalised weights akin to equation 1.6 in
Doucet, Freitas, and Gordon (2001)

w̃(x1:t)∑n
l=1 w̃(xl1:t)

∝ w̃(x1:t−1)∑n
l=1 w̃(xl1:t−1)

p(yt|xt)p(xt|xt−1)
g(xt|y1:t, x1:t−1)

w(x1:t) ∝ w(x1:t−1)p(yt|xt)p(xt|xt−1)
g(xt|y1:t, x1:t−1) . (2.8)

Because simulating from approximations of the target distribution is especially
important in Monte Carlo methods, we will summarise some of the most
important methods in the following section.

2.5 Importance sampling concepts

As we will see, importance sampling is a fundamental part of many related
methods. It is generally not possible to simulate directly from the target
distributions that result from a SSM context. This is in part a result of the
transition and observation densities that can be nonlinear and non-Gaussian.
In order to use Monte Carlo integration we therefore depend on alternative
simulation methods such as IS. In the following section we consider importance
sampling and two closely related methods. These are sampling importance
resampling (SIR) and sequential importance sampling (SIS). We focus mainly on
importance sampling and consider briefly SIR and SIS. We state some relatively
general assumptions related to the effectiveness of importance sampling function
g adapted to our notation from (Givens and Hoeting, 2013, p. 181) and (Robert
and Casella, 2004, p. 92).

Assumptions 2.5.1.

• supp(p) ⊂ supp(g)

• p(x1:t|y1:t)
g(x1:t|y1:t) <∞ and g(x1:t|y1:t) is more heavy-tailed than p(x1:t|y1:t)

Assume now that we are able to evaluate the importance weight w̃t exactly.
Following Naesseth, Lindsten, and Schön (2019) we are then able to summarise
IS as Algorithm 1. Note that if we are to normalise w̃t after simulating n
sequence we can also use the unnormalised target distributions p(x1:t, y1:t)
in the importance weights. We get the particles (xi1:t, w̃

i
t) for i = 1, . . . , n

as output from the algorithm. Consider then the scenario where we want
to estimate the integral in equation (2.6) by using Monte Carlo integration.
Because simulating directly from the target distribution is generally intractable,

14

2.5. Importance sampling concepts

Algorithm 1 Importance sampling
1: for i ∈ (1, . . . , n) do
2: xi1:t ∼ g(x1:t|y1:t)
3: w̃it = p(xi

1:t|y1:t)
g(xi

1:t|y1:t)
4: end for

we aim to reformulate the integral so it corresponds to an expectation with
respect to the importance sampling distribution. We are able to express the
expectation with respect to the importance sampling distribution by multiplying
the function k inside the expectation with importance weights or normalised
weights (Givens and Hoeting, 2013, pp. 180-181). Assume that the importance
sampling distribution g(x1:t|y1:t) > 0 whenever k(x1:t)p(x1:t|y1:t) > 0 (Chopin
and Papaspiliopoulos, 2020). We can then we can always reformulate the
integrand in the expectation. By starting from the original integral on the
left-hand side, we get

µk = Ep [k(x1:t)] =
∫
k(x1:t)

p(x1:t|y1:t)
g(x1:t|y1:t)

g(x1:t|y1:t)dx1:t (2.9a)

= Eg

[
k(x1:t)

p(x1:t|y1:t)
g(x1:t|y1:t)

]
(2.9b)

This equality by reformulation is often referred to as the IS fundamental identity
(Robert and Casella, 2004, p. 92). We can then use the Monte Carlo method
for the integral in equation (2.9a). We insert the expression for the importance
weight in the integral. Then we can use n simulated sequences of variables from
g combined with Monte Carlo integration to get∫

k(x1:t)w̃tg(x1:t|y1:t)dx1:t ≈
1
n

n∑
i=1

k(xi1:t)w̃it = µ̃IS
k

This is useful because we now only need to sample from the importance sampling
function g and then weight the sampled value using the importance weight w̃it.
We will often refer to µ̃IS

k as the unnormalised IS estimator.
We can follow the derivation in (Chopin and Papaspiliopoulos, 2020, p. 86)

in order to see another valid reformulation of the original integral in equation
(2.6) called normalised IS. Recall that we are using the target distribution
p(x1:t|y1:t) = p(x1:t,y1:t)

Zt
where Zt is the normalising constant at iteration t. In

general, we are not able to evaluate the normalising constant Zt and consequently
we can only evaluate the importance weight w̃t up to proportionality. We can use
the importance weight w̃t = p(x1:t,y1:t)

g(x1:t|y1:t) where the numerator is the unnormalised
target distribution. We then have the following, see extended calculations in
Appendix A.1,

Ep [k(x1:t)] =
Eg

[
k(x1:t)p(x1:t,y1:t)

g(x1:t|y1:t)

]
Eg

[
p(x1:t,y1:t)
g(x1:t|y1:t)

] .

We see that we can approximate both the numerator and the denominator by
using the Monte Carlo method. We denote the estimator for this expectation

15

2.5. Importance sampling concepts

by µ̂IS
k . We then have

µ̂IS
k =

1
n

∑n
i=1 k(xi1:t)

p(xi
1:t,y1:t)

g(xi
1:t|y1:t)

1
n

∑n
i=1

p(xi
1:t,y1:t)

g(xi
1:t|y1:t)

=
n∑
i=1

k(xi1:t)wit

by using the definition of normalised weights, Definition 2.4.1. As this estimator
is using the normalised weights, we refer to it as the normalised estimator. We
now have the unnormalised estimator µ̃IS

k which uses the importance weights
directly. In addition we have the normalised estimator µ̂IS

k where it suffices
to know the target distribution up to proportionality. Now we consider some
properties related to the IS estimators before considering SIR and SIS.

Properties of the estimators

We now want to consider the expectation and variance of the two IS estimators.
For the normalised IS estimator we need to use Taylor expansions to approximate
the estimator and subsequently consider the expectation of the approximation.
The estimate µ̂IS

k obtained with normalised IS converges a.s. to Ep [k(x1:t)]
when n→∞ (Naesseth, Lindsten, and Schön, 2019, p. 16). For the properties
of the estimators we follow Givens and Hoeting (2013). When considering
properties of the estimators, we use the simplified notation w = p(x1:t|y1:t)

g(x1:t|y1:t) and
u = wk(x1:t). Their means are denoted by w̄ and ū respectively. It can be
shown that we can approximate µ̂IS

k with a multivariate Taylor expansion. First
we note that µ̂IS

k = ū
w̄ , then we have the first order and second order Taylor

approximations around the expansion point θ0 = (µk, 1). That is µ̂T1
k and µ̂T2

k

respectively. We are then able to approximate expectation and variance of the
estimator from the Taylor approximation of the estimator. First we consider
the expectation of the estimators. We then have

Eg
[
µ̃IS
k

]
= µk

Eg
[
µ̂IS
k

]
≈ Eg

[
µ̂T2
k

]
= µk −

1
n
Cov(u,w) + µk

1
n
Vg [w] .

Then we consider the variance of the estimators,

Vg
[
µ̃IS
k

]
= 1
n
Vg [u]

Vg
[
µ̂IS
k

]
≈ Vg

[
µ̂T1
k

]
= 1
n
Vg [u]− 2µk

1
n
Cov [u,w] + 1

n
µ2
kVg [w] .

From the expectation of the normalised estimator µ̂IS
k we see that when n→∞,

the expectation approaches the true expectation µk. Comparing the variances
of the two estimators we see that the variance of the normalised IS estimator
can be expressed by using the variance of the normalised IS estimator. That is,

Vg
[
µ̂IS
k

]
≈ Vg

[
µ̃IS
k

]
− 2µk

1
n
Cov [u,w] + 1

n
µ2
kVg [w] .

This highlights the relationship between the estimators and that it is possible
for the normalised IS estimator to have lower variance than the unnormalised
IS estimator. We can compare the estimators µ̂IS

k and µ̃IS
k when it comes to

16

2.5. Importance sampling concepts

mean squared error (MSE). It is possible to show that, see Appendix A.1, that
we should choose µ̂IS

k over µ̃IS
k when the following holds

Corr [u,w] > CV [w]
2CV [u] .

The expression is equivalent to Givens and Hoeting (2013, eq. 6.45). We can
reformulate the unnormalised estimator as µ̃IS

k = 1
n

∑n
i=1 u and the normalising

term as 1
n

∑n
i=1 w. Then we see that the normalised estimator can be written

as µ̂IS
k = (1

n

∑n
i=1 u)/(1

n

∑n
i=1 w). When the terms within the sums in the

numerator and denominator have high correlation, we should use the normalised
estimator (Givens and Hoeting, 2013, p. 183).

Sampling importance resampling

Resampling can be regarded as one of the key extensions within the IS
framework. Resampling allows us to move from n weighted sequences (xi1:t, w̃

i
t)

for i = 1, . . . , n to a sample of size nr which is unweighted. This is achieved
through resampling from the original weighted sample. Assume we have
simulated xi1:t for i = 1, . . . , n i.i.d. from an importance sampling function g.
Assume further that our target distribution is p(x1:t|y1:t) and that we have
the normalised weights wit for i = 1, . . . , n from Algorithm 1. We can then
resample nr sequences from xi1:t for i = 1, . . . , n with replacement using wt
as a discrete probability distribution. We then then have the nr resampled
sequences zi1:t for i = 1, . . . , nr which is approximate i.i.d. from the target
distribution as is discussed in Givens and Hoeting (2013). It can then be shown
that when n→∞ and nr

n → 0 the distribution of zi1:t for i = 1, . . . , nr converge
to the target distribution, see section 6.3 in Givens and Hoeting (2013) for the
derivations and proof.

Because the nr variables are approximately i.i.d. from the target distribution,
we can use the Monte Carlo method from Definition 2.3.1 directly to get the
estimator µ̂SIR

k . This follows because the resampled sample is now approximately
i.i.d. from the target distribution. It can be shown, see Givens and Hoeting
(2013, p. 183), that the expectation of µ̂SIR

k is the same as for normalised
estimator µ̂IS

k , but the variance is equal or higher. This is an incentive to use the
normalised estimator µ̂IS

k because even if we do not need the weights directly in
µ̂SIR
k we need to calculate them in order to resample. This would imply that we

already have the weights available. Further, we can then use µ̂IS
k to potentially

reduce variance. An advantage with the SIR estimator is in a scenario where
we have limited memory available. We only need to store the nr resampled
sequences as opposed to all the n sequences where nr < n. In addition we can
discard the weights after resampling and keep only the sequences as opposed to
the sequences and their weights. Other arguments for using the SIR estimator
include scenarios where the function k might be computationally costly to
evaluate and scenarios where we need approximately i.i.d. sequences for other
calculations (Skare, Bølviken, and Holden, 2003).

Sequential importance sampling

Using IS we need to evaluate the entire target distribution p(x1:t|y1:t) at every
iteration t. When t increases, we simulate increasingly larger x1:t from g at every

17

2.5. Importance sampling concepts

iteration t. We also need to evaluate increasingly more complex expressions to
calculate the weights. The SIS introduce a sequential aspect to IS by utilising
conditional distributions in combination with a recursive structure of both the
target distribution and the importance sampling function. We can use the
recursive structure of the target distribution in equation (2.3a) and the recursive
importance sampling function g in equation (2.5) when available. This implies
that we only need to simulate xt from the conditional distributions in order to
calculate the weights at t. This is because we can use the weights from t− 1
and multiply in the weight update. We can start with the recursive structure
of the importance weights defined in equation (2.7). We then have that

w̃it ∝ w̃it−1u
i
t uit =

p(yt|xit)p(xit|xit−1)
g(xit|y1:t, xi1:t−1) (2.10)

which is adapted from (Givens and Hoeting, 2013, pp. 170-171). We denote
uit as the weight update function, similar to the incremental update factor in
(Creal, 2012, p. 252). In general we can update the previous weight in order to
get the current weight in a sequential manner by using a weight update function.
The expression for the for the importance weight can also be written in a slightly
different form where we only need to evaluate the target distribution and the
conditional part of the importance sampling distribution,

w̃it ∝ w̃it−1
p(xi1:t|y1:t)

p(xi1:t−1|y1:t−1)g(xit|y1:t, xi1:t−1) = w̃it−1u
i
t, (2.11)

adapted from (Naesseth, Lindsten, and Schön, 2019, p. 17). Note that both these
recursive update expressions for the importance weights also can be extended to
the normalised weights in equation (2.8). Extended calculations for the weight
update expression are in Appendix A.1. This implies that it is possible to
update the weight for sequence i sequentially by sampling xit ∼ g(xt|y1:t, x

i
1:t−1)

at iteration t. We use this notation for the weight updates and restate the
algorithm from (Naesseth, Lindsten, and Schön, 2019, p. 18). We assume that
w̃0 = 1, p(x1:0|y1:0) = 1 and g(x1|y1, x1:0) = g(x1|y1) for the first iteration of
the algorithm. We can then state SIS as Algorithm 2 in the context of SSMs.
Similar to importance sampling we get the particles (xi1:t, w̃

i
t) for i = 1, . . . , n

Algorithm 2 Sequential importance sampling
1: for t ∈ (1, . . . , T) do
2: for i ∈ (1, . . . , n) do
3: xit ∼ g(xt|y1:t, x

i
1:t−1)

4: w̃it ∝ w̃it−1u
i
t

5: end for
6: wit = w̃i

t∑n

l=1
w̃l

t

for i = 1, . . . , n
7: end for

as output. From line 3 in Algorithm 2 however, we are now able to sample the
variables xt for t = 1, . . . , T sequentially in contrast to regular IS. This implies
that we can sample one variable, of the same dimension, at a time compared to
IS where the length of x1:t increase with each t. We then update the importance
weights with the weight update uit. The weight update uit is defined in equation

18

2.6. Sequential Monte Carlo

(2.10) and from its structure we can consider its influence on the importance
weight. We see that a simulated variable xit can reduce the importance weight of
sequence i if it is inconsistent with the previous part of the sequence, xi1:t−1. It
can also reduce the importance weight if it is inconsistent with the observation
yt. With multiplicative updating, a simulated xit which is inconsistent with
xi1:t−1 and yt can reduce the importance weight for the entire sequence relative
to the other sequences. When normalising the weights, the sequences which
contain an inconsistent variable will have low normalised weights. When t
increase, many of the n sequences will therefore have low normalised weights.
This implies that a small number of sequences will have normalised weights
close to 1. This phenomenon is referred to as weight degeneracy (Givens and
Hoeting, 2013, p. 171).

2.6 Sequential Monte Carlo

Selecting an importance sampling distribution which is close to to the target
distribution increase the efficiency of importance sampling-methods. Because
we are not simulating directly from the target distribution our objective is
to find the particles (xi1:t, w̃

i
t) for i = 1, . . . , n at iteration t. The weights

should optimally adjust for the fact that we are simulating from the importance
sampling distribution g(x1:t|y1:t) and not the target distribution p(x1:t|y1:t). In
SIS we saw that the sequential weight structure resulted in weight degeneracy
when t increased. In this section we will consider the general SMC algorithm.
We also briefly consider the choice of importance sampling function g and
reduction of weight degeneracy.

Algorithm

In this section we will consider the standard SMC algorithm. We follow the
setups presented in Creal (2012) and Naesseth, Lindsten, and Schön (2019). In
the following presentation, we resample at every iteration t. We handle weight
degeneracy by resampling the sequences according to a specific resampling
scheme. The addition of a resampling step implies that sequences x1:t having
high normalised weights wt are duplicated while some of the sequences with
low normalised weights are not resampled at all (Chopin and Papaspiliopoulos,
2020, p. 114). One possible resampling scheme is called multinomial resampling
and here the sequences xi1:t for i = 1, . . . , n are sampled independently with
replacement using the normalised weights as a discrete probability distribution
(Naesseth, Lindsten, and Schön, 2019). Here we select the importance sampling
distribution with the recursive structure from equation (2.5). We then have
the incremental importance sampling distributions given by g(xt|y1:t, x1:t−1)
for t ≥ 2 and g(x1|y1) for t = 1. The algorithm is an adaption of algorithm
3 in Naesseth, Lindsten, and Schön (2019). Note that we resample the entire
sequence up to t− 1 at line 7 from the discrete approximation p̂(x1:t−1|y1:t−1),
then the resampled set is used when sampling from the importance sampling
distribution at line 8. There are several methods of resampling, but we will
unless otherwise stated use multinomial resampling, see e.g. Chopin and
Papaspiliopoulos (2020) for a review of different resampling schemes. We also
note that the importance sampling distribution g(xt|y1:t, x1:t−1) is selected by

19

2.6. Sequential Monte Carlo

Algorithm 3 Sequential Monte Carlo
1: for t ∈ (1, . . . , T) do
2: for i ∈ (1, . . . , n) do
3: if t = 1 then
4: xi1 ∼ g(x1|y1)
5: w̃i1 = p(xi

1,y1)
g(xi

1|y1)
6: else
7: xi1:t−1 ∼ p̂(x1:t−1|y1:t−1)
8: xit ∼ g(xt|y1:t, x

i
1:t−1)

9: w̃it = p(xi
1:t,y1:t)

p(xi
1:t−1,y1:t−1)g(xi

t|y1:t,xi
1:t−1)

10: end if
11: end for
12: wit = w̃i

t∑n

l=1
w̃l

t

for i = 1, . . . , n

13: p̂(x1:t|y1:t) =
∑n
l=1 w

l
tδxl

1:t
(x1:t)

14: end for

the user and therefore it do not necessarily depend on the observations y1:t or
all the previous simulated variables x1:t−1.

Importance sampling distribution

The effectiveness of Algorithm 3 is dependent on the importance sampling
distribution. The importance sampling distribution is important primarily in
order to simulate variables that are approximately distributed according to
the target distribution. Optimally, we would have an importance sampling
distribution that also is easy to simulate from. We ideally want to select the
importance sampling function such that the variance of the weights conditional
on the previous variables at t−1 is 0. This can be seen as the optimal importance
sampling function when the objective is to minimise the variance of the weight
update ut in equation (2.10) conditional on the previous weights through x1:t−1
and y1:t.

Proposition 2.6.1. As proposition 2 in (Doucet, Godsill, and Andrieu, 2000, p.
199) we have that the importance sampling function

g(xt|y1:t, x
i
1:t−1) = p(xt|yt, xit−1)

is optimal w.r.t. reducing variance of the importance weight of xit when
conditioning on y1:t and xi1:t−1.

The proof can be found in Doucet, Godsill, and Andrieu (2000). Note
that the importance sampling function g in Proposition 2.6.1 is optimal in
the scenarios where we only can use variables available from the previous and
current iteration t. The setting where we use only variables available at iteration
s where s ≤ t is often referred to as an online setting (Naesseth, Lindsten, and
Schön, 2019). We can also consider the importance weight w̃it from the SMC
algorithm when using a straightforward reformulation of the optimal importance
sampling function. We then have

w̃it = p(yt|xit−1).

20

2.6. Sequential Monte Carlo

We note that the expressions for both the optimal g(xt|y1:t, x
i
1:t−1) and the

weight update function p(yt|xit−1) in closed forms are rarely available. However,
we can often utilise approximations of the optimal importance sampling
distribution with a Gaussian by using local linearisation. This and related
approaches are reviewed in part 2 of Doucet, Godsill, and Andrieu (2000).

Weights

The weights play a central role in the importance sampling-framework and as
we saw with SIS there is a problem with weight degeneracy when t increases.
Related to weight degeneracy is the variance of importance weights as t increase.
It is also possible to show that with the sequential weight structure the variance
of the importance weights increase with t. That is,

V [w̃t] ≤ V [w̃t+1] .

This is stated in Creal (2012) and proved in Kong, J. S. Liu, and Wong (1994).
It also follows that because the variance of the importance weights increase,
a few or one of the importance weights will be large. When normalising the
importance weights, we will have a few or one normalised weights close to 1.
Obviously we want to avoid or at least decrease weight degeneracy. We first
want to estimate the current weight degeneracy and then we consider strategies
to decrease weight degeneracy.

Estimating weight degeneracy

We can estimate weight degeneracy through the coefficient of variation (CV)
which measures the standard deviation divided by the mean of an estimator
(Chopin and Papaspiliopoulos, 2020, p. 93). We then start by finding an
expression for the squared CV of the normalised weights. It can be shown, see
e.g. Givens and Hoeting (2013), that the squared CV of the normalised weights
can be expressed through an expectation

CV2 [wt] = E
[
(nwt − 1)2] .

By estimating CV2 [wt] we can define the effective sample size (ESS) approx-
imately as variables with nonzero weights and then reformulate so to get an
expression for ESS that we can estimate. We use the ESS to measure the
efficiency of sampling. As discussed in Chopin and Papaspiliopoulos (2020) we
have that 1 ≤ ESS ≤ n. ESS can then be expressed as:

ESS = 1∑n
i=1(wit)2 . (2.12)

In an optimal situation we have that the importance weights w̃it = 1 for
i = 1, . . . , n. This consequently implies that we have wt = 1

n for i = 1, . . . , n for
the normalised weights. In this situation we also see that CV2 [wt] = 0 which is
the minimum point for the squared coefficient of variation.

Decreasing weight degeneracy

In order to reduce weight degeneracy there are several strategies available.
Different frameworks of resampling are common strategies in order to reduce

21

2.6. Sequential Monte Carlo

weight degeneracy, see e.g. Creal (2012) and Givens and Hoeting (2013).
A popular setup is the adaptive resampling setup where we resample when
ESS < α · n where α ∈ [0, 1] (Creal, 2012). We then often refer to α as a
resampling threshold.

The resampling scheme can be multinomial with replacement where the
probability for selecting each sequence is given by the normalised weights wt
(Givens and Hoeting, 2013). An important aspect of resampling in order to
decrease weight degeneracy is that resampling duplicates entire sequences x1:t
so when t increases we will have few unique subsequences x1:s where s < t. This
implies that our estimate of p(x1:s|y1:s) can be based on few unique sequences.
As is discussed in e.g. Creal (2012) and Naesseth, Lindsten, and Schön (2019)
resampling increase short-term variance by duplication, but decrease weight
degeneracy at a later point.

This is based on that after resampling we continue resampling from sequences
that are more likely based on the normalised weights. The multinomial
resampling scheme is not the only resampling scheme nor the optimal in terms
of Monte Carlo variation. Other possible resampling schemes include the
residual, systematic or stratified which are discussed in chapter 9 Chopin and
Papaspiliopoulos (2020). We will however often employ an adaptive resampling
setup with multinomial resampling by using α = 0.5 as a resampling threshold,
that is we resample if ESS < α · n.

22

CHAPTER 3

Inference in state space models

The concepts in Chapter 2 based on importance sampling are general methods
not limited to the SSM context. In this chapter we will consider some aspects
of inference in state space models. Our main focus will here be on filtering and
likelihood estimation. We will also see strategies to approximate filtering and
smoothing recursions. These recursions are only available in tractable forms for
two special cases: discrete models with a finite state space and linear Gaussian
models, see chapter 5 of Cappé, Moulines, and Rydén (2005). In general cases
we need approximations of high-dimensional integrals obtained using e.g. Monte
Carlo integration. In addition, we consider particle filter (PF) algorithms and
how one can obtain likelihood estimates from particle filter algorithms.

3.1 Motivation

In general, we are often interested in inference related to the posterior
distribution p(x1:t|y1:t) or a marginal of this distribution (Doucet, Freitas,
and Gordon, 2001). In addition, we often want unbiased estimates of the
marginal likelihood denoted by p(y1:t) at each t. Recall that we have omitted
the dependence on the parameters θ when these are assumed to be known.
Unbiased estimates of the likelihood p(y1:t|θ) is specially important when it
comes to parameter estimation as it allows us to compare different parameters
θ. As discussed in Kantas et al. (2015), the marginal likelihood is generally not
available in closed for general SSMs. Some of the inferential aspects in SSMs
have received special names and we consider a subset of the more comprehensive
list in Chopin and Papaspiliopoulos (2020).

1. Filtering: we follow Kantas et al. (2015) and often refer to p(x1:t|y1:t)
as the filtering distribution. We then refer to p(xt|y1:t) as the marginal
filtering distribution.

2. Smoothing: we will refer to p(x1:T |y1:T) as the joint smoothing distribution
and p(xt|y1:T) as the marginal smoothing distribution.

3. Likelihood: the marginal likelihood p(y1:t) can be estimated through what
we will refer to as likelihood factors, denoted by p(yt|y1:t−1).

In the two special cases of finite discrete SSMs and linear Gaussian SSMs we
have tractable analytical expressions which we are able to sum and integrate
respectively. These special cases are covered in e.g. chapter 5 of Cappé,

23

3.1. Motivation

Moulines, and Rydén (2005). This implies that for the linear Gaussian models,
we can find analytical expressions for e.g. the likelihood. In general models
however, we need to simulate variables by exact or approximate simulation
methods and then use Monte Carlo methods to approximate the intractable
integrals.

Approximating distributions

We will generally need discrete approximations of the distributions of interest
because these distributions are generally intractable. We first follow Doucet,
Freitas, and Gordon (2001) and consider the case where we assume that we
can simulate n sequences i.i.d. from p(x1:t|y1:t). We then have the discrete
approximation

p̂(x1:t|y1:t) =
n∑
i=1

1
n
δxi

1:t
(x1:t)

where δxi
1:t

(x1:t) is a Dirac measure. This is however an unlikely scenario when
considering that the general SSM can be nonlinear and non-Gaussian. We
can instead formulate a similar approximation by using particles (xi1:t, w̃

i
t), i =

1, . . . , n from an IS-based algorithm. Note that the sequences xi1:t for i = 1, . . . , n
now are simulated from the importance sampling distribution instead of directly
from the target distribution p(x1:t|y1:t). We can then view the importance
weights w̃it for i = 1, . . . , n as adjusting for the fact that we are not simulating
from the target distribution (Naesseth, Lindsten, and Schön, 2019). When we
use these particles in order to approximate the target distribution p(x1:t|y1:t)
we need to normalise the weights according to Definition 2.4.1. We then get
the normalised weights w(xi1:t) for i = 1, . . . , n which we combine with the
Dirac measure δxi

1:t
(x1:t) to approximate the target distribution. The target

distribution can then be approximated by the discrete approximation

p̂(x1:t|y1:t) =
n∑
i=1

w(xi1:t)δxi
1:t

(x1:t). (3.1)

This is the traditional discrete approximation of the target distribution found in
e.g. Chopin and Papaspiliopoulos (2020), Creal (2012), and Naesseth, Lindsten,
and Schön (2019). The discrete approximation of the target distribution will
be important when considering approximations of the filtering and smoothing
recursions.

Approximating integrals

Similarly to having discrete approximations in order to estimate distributions,
we can utilise the particles in order to estimate integrals. This again allows for
estimating different quantities of interest within the Monte Carlo integration
framework (Creal, 2012). Consider calculating the expectation of the function
k(x1:t) with respect to the target distribution p(x1:t|y1:t) as the objective of
inference. Assume that the sequences xi1:t for i = 1, . . . , n are simulated from
the importance sampling distribution g(x1:t|y1:t) and let w(xi1:t) denote the

24

3.1. Motivation

normalised weights for xi1:t. We then have the following setup by using Monte
Carlo integration

Ep [k(x1:t)] =
∫
. . .

∫
k(x1:t)p(x1:t|y1:t)dx1:t ≈

n∑
i=1

k(xi1:t)w(xi1:t).

Note that even though we are simulating from the importance sampling
distribution g(x1:t|y1:t) which most likely is easier to simulate from, we are still
simulating the entire sequence x1:t at every t (Creal, 2012). This naturally
becomes computationally costly as t increase and in addition it implies that we
need all observations before simulating any xt (Doucet, Freitas, and Gordon,
2001). Similarly, we can use Monte Carlo integration to estimate the expectation
of the function k(x1:t) = xs where s ≤ t. Selecting this specific function k gives
an estimate of the first moment with respect to the marginal target distribution.
We then have the approximation

Ep [xs] =
∫
xsp(xs|y1:s)dxs ≈

n∑
i=1

xisw(xi1:s). (3.2)

The particles at iteration s can be used to approximate the marginal target
distribution p(xs|y1:s) through a weighted measure (Doucet, Freitas, and Gordon,
2001, p. 12). That is, the variables xis and the normalised weights wis for
i = 1, . . . , n. The estimates resulting from the Monte Carlo integration with
particles from many particle filters can be proved to be consistent. That is, for
Equation (3.2) where k(x1:t) = xs, we would have that

n∑
i=1

xisw(xi1:s)
a.s.→ Ep [xs]

as in (Creal, 2012, eq. 37) when n → ∞, under some assumptions on w and
the function k. Proofs are found in Chopin (2004). In addition there are
asymptotic variance expressions available for some particle filters where one
can show that the variance is finite and bounded in time, but generally not in
the dimensionality of x (Creal, 2012).

The particles allow for inference about x1:t or some subset, usually xt at
iteration t. As t increase we will have an approximation of the marginal filtering
distribution p(xt|y1:t) at every iteration by using the particles. We will refer
to this as an online setting. In an online setting we are not bounded to wait
until we have all observations y1:T in order to make inference about xt. The
necessity for real-time inference about parameters, θ, may also be a motivation
for algorithms that are suited for an online setting. See e.g. section 5.2 and 6.2
in Kantas et al. (2015).

We see that even though we are able to make online inference at every
iteration t, this can be computationally costly if we are simulating the entire
x1:t again for every iteration t. We therefore want to utilise the SIS approach by
simulating only the last xt and append this to the existing sequence x1:t−1 by
using equation (2.5) as an importance sampling distribution. As we saw with
the SIS approach we then needed to evaluate only the weight update functions
in order to update the importance weights.

25

3.2. Filtering recursions

3.2 Filtering recursions

We have often used the posterior p(x1:t|y1:t) as the target distribution. We have
also seen the recursive structure of this distribution which allow for sequential
approximation. The marginal distribution, p(xt|y1:t), is the main objective of
interest when it comes to filtering. We will refer to this as the marginal filtering
distribution. We will see that this distribution also can be decomposed into
a recursive structure. In this section we will focus on the marginal filtering
recursions and consequently the distribution p(xt|y1:t). We will see that the
filtering recursion can be used in order to update the filtering distribution
in an online setting. This can be important in real-time applications where
estimates are needed dynamically as the observations are available. We follow
the presentation from Creal (2012) when it comes to the predict and update
step below. Assume now that at iteration t− 1 we have observations, y1:t−1,
available. Then we can formulate the predictive distribution through the
following marginalisation

p(xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1.

At iteration t, we assume that observation yt is available. We can now formulate
the filtering distribution at t by using the above predictive distribution which
itself contains the marginal filtering distribution at t−1. This recursive structure
of the filtering distributions allows for sequential updates. We then get by
straightforward reformulations

p(xt|y1:t) = p(yt|xt, y1:t−1)p(xt|y1:t−1)
p(yt|y1:t−1) = p(yt|xt)

p(yt|y1:t−1)p(xt|y1:t−1).

Here, the CI properties of the SSM is used in the last equality. We are now able
to summarise the two equations above referred to as the predict- and update
step respectively by the following equations

predict step: p(xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (3.3a)

update step: p(xt|y1:t) = p(yt|xt)∫
p(yt|xt)p(xt|y1:t−1)dxt

p(xt|y1:t−1). (3.3b)

We see that inserting equation (3.3a) into equation (3.3b) yields the recursion.

Approximations

In general, we want to consider the discrete approximation p̂(xt|y1:t). We
assume that the approximations at iteration t− 1, that is p̂(x1:t−1|y1:t−1) and
consequently p̂(xt−1|y1:t−1) are available. By using equation (3.1) we can see
that the joint posterior distribution, p(x1:t|y1:t), and the marginal posterior
distribution, p(xt|y1:t), can be approximated by mixtures of Dirac measures.
Hence we need to update the set of particles from iteration t− 1 to a new set of
particles at iteration t. Conceptually, this can be done through obtaining the
most recent xit and updating the normalised weights so we get wit for i = 1, . . . , n.
Once the updated particles are available, we can construct the approximations

p̂(x1:t|y1:t) =
n∑
i=1

witδxi
1:t

(x1:t) p̂(xt|y1:t) =
n∑
i=1

witδxi
t
(xt).

26

3.2. Filtering recursions

Here we consider approximations of both the joint and the marginal filtering
distributions. By considering only xt and the related weights wt we are focusing
on the marginal filtering distribution, see e.g. section 7.3 of Cappé, Moulines,
and Rydén (2005). We now look at how we can approximate the predict
and update step for the marginal filtering distribution p(xt|y1:t). By using
these recursive approximations, we can transition from the marginal posterior
distribution p̂(xt−1|y1:t−1) to the marginal posterior distribution p̂(xt|y1:t). For
the predict step in equation (3.3a) we need to approximate p(xt−1|y1:t−1) by
p̂(xt−1|y1:t−1), while the transition density p(xt|xt−1) is given by the model.
Assume that we have the approximation of the filtering distribution at the
iteration t−1, that is we have the weighted measure. We start by approximating
the update step

p̂(xt|y1:t−1) =
∫
p(xt|xt−1)p̂(xt−1|y1:t−1)dxt−1

=
∫
p(xt|xt−1)

n∑
i=1

wit−1δxi
t−1

(xt−1)dxt−1

=
n∑
i=1

wit−1p(xt|xit−1).

Now we have an approximation of the predictive distribution and can
approximate the filtering distribution. We already have the observation density
p(yt|xt) from the SSM. Inserting the approximation p̂(xt|y1:t−1) then gives

p̂(xt|y1:t) = p(yt|xt)∫
p(yt|xt)p(xt|y1:t−1)dxt

p̂(xt|y1:t−1)

∝ p(yt|xt)
n∑
i=1

wit−1p(xt|xit−1).

Now we have both the predict step and the update step on approximate forms.
These can be summarised as an analogue to (3.3a) and (3.3b) respectively

predict step: p̂(xt|y1:t−1) =
n∑
i=1

p(xt|xit−1)wit−1 (3.4a)

update step: p̂(xt|y1:t) ∝ p(yt|xt)
n∑
i=1

p(xt|xit−1)wit−1. (3.4b)

The equations (3.4a) and (3.4b) give us an intuition of how the recursions can
be approximated. Recall that the approximation p̂(xt−1|y1:t−1) at iteration
t− 1 needs (xit−1, w

i
t−1) for i = 1, . . . , n where wt−1 are the normalised weights.

Consider the conceptual movement from right to left in equation (3.4b). The
normalised weight wit−1 represents p̂(xit−1|y1:t−1), then we can simulate a new
variable xit ∼ p(xt|xit−1). Note here that simulation of xit can be done from
other distributions. Once we have the simulated variable xit, we can update the
weight. Because we simulated from the transition density, we get that

wit ∝ wit−1
p(yt|xit)p(xit|xit−1)

p(xit|xit−1) = wit−1p(yt|xit).

27

3.2. Filtering recursions

At this point, we have the simulated variables xit for i = 1, . . . , n and
wit ∝ wit−1p(yt|xit). We want the normalised weights wt, hence we need the
common normalisation constant C in wit = Cwit−1p(yt|xit). The normalised
weights should sum to 1, therefore we have the normalising constant and
normalised weight respectively

C = 1∑n
l=1 w

l
t−1p(yt|xlt)

wit =
wit−1p(yt|xit)∑n
l=1 w

l
t−1p(yt|xlt)

for the variables xit where i = 1, . . . , n. We now have (xit, wit) and we can find the
discrete approximation at iteration t, consequently, p̂(xt|y1:t) =

∑n
i=1 w

i
tδxi

t
(xt).

We also note that simulating a new variable from p(xt|xit−1) is a user-specified
choice. We can e.g. simulate from the general importance sampling distribution
xit ∼ g(xt|xi1:t−1, y1:t). From this, we have that

wit ∝ wit−1
p(yt|xit)p(xit|xit−1)
g(xit|xi1:t−1, y1:t)

wit =
wit−1

p(yt|xi
t)p(xi

t|x
i
t−1)

g(xi
t|xi

1:t−1,y1:t)∑n
l=1 w

l
t−1

p(yt|xl
t)p(xl

t|xl
t−1)

g(xl
t|xl

1:t−1,y1:t)

.

As in the case where we simulate from the transition density, we now have (xit, wit)
and can approximate the target distribution at iteration t. After obtaining
the updated weighted measure (xit, wit), for i = 1, . . . , n, one may resample
n variables xt with replacement using wt as probabilities. Once resampled,
the importance weights are reset, w̃t = 1

n , implying also that the normalised
weights, wt = 1

n . This may be done at every iteration which is in line with the
standard particle filter strategy (Givens and Hoeting, 2013). Resampling with
replacement increase variance because of the replacement in the short term,
but may reduce variance in the long term because we are propagating particles
from more likely particles (Naesseth, Lindsten, and Schön, 2019).

As in the standard SMC algorithm, one may therefore utilise adaptive
resampling based on ESS from equation (2.12) in particle filters. Using this
intuition, we can outline a generic particle filter algorithm with adaptive
resampling using threshold α. We focus on a specific particle and therefore omit
the superscript notation, note however that the steps must be repeated for all
the particles i = 1, . . . , n. We also define w0 ≡ 1 together with p(x1|x0) ≡ p(x1)
and g(x1|x1:0, y1) ≡ g(x1|y1) to simplify notation. We also use α as a resampling
threshold. Compared to the standard SMC setup from Algorithm 3 we here only

Algorithm 4 Outline of generic particle filter
1: for t ∈ (1, . . . , T) do
2: xt ∼ g(·|x1:t−1, y1:t)
3: w̃t ∝ w̃t−1

p(yt|xt)p(xt|xt−1)
g(xt|x1:t−1,y1:t)

4: calculate normalised weights wt
5: if ESS(wt) < α · n then
6: resample x1:t with probability wt and set w̃t = 1

n
7: end if
8: end for

evaluate the incremental target p(yt|xt)p(xt|xt−1) and the chosen importance

28

3.3. Particle filters

function g(xt|x1:t−1, y1:t) at iteration t. Assume the objective is drawing
inference related to the marginal filtering distribution p(xt|y1:t) and that the
function g only depends on xt−1 and yt. Then we only need to store xt−1 and
wt−1 from the previous iteration. This can be useful when considering memory
requirements in situations where the number of particles n and/or T is large.

3.3 Particle filters

In this section we briefly consider some aspects of three particle filter algorithms,
we start by considering the particle filter algorithm that would result from
the conditionally optimal importance sampling distribution. Then we consider
the popular bootstrap particle filter and then finally we consider the auxiliary
particle filter.

Optimal particle filter

The conditionally optimal importance sampling distribution is given in
Proposition 2.6.1 and we follow the setup from Creal (2012) when considering
what we refer to as the optimal particle filter. This importance sampling
distribution is optimal in the sense that the variance of the weighs when
conditioning on x1:t−1 and y1:t is minimised. We see from the defined
structure of g in equation (2.5) that we can simulate xt from the incremental
importance sampling function g(xt|y1:t, x1:t−1) and create the new sequence
x1:t = (x1:t−1, xt) (Creal, 2012, p. 252). Recall the sequential structure of the
importance sampling distribution in equation (2.5). Combined with a recursive
structure of the target distribution this allowed us to update the previous
importance weight with a weight update function. Assume now that we select
the optimal importance sampling distribution. From Proposition 2.6.1, we
would then set our incremental importance sampling function equal to the
conditional distribution

g(xt|y1:t, x1:t−1) = p(xt|yt, xt−1).

Assume now that we are able to simulate directly from p(xt|yt, xt−1). Then
we can consider the resulting weight update. Recall the general form for the
weight update from equation (2.10). We reformulate the incremental importance
sampling distribution which we have selected by straightforward calculations.
When the reformulated optimal importance sampling function is inserted, we
get the weight update

ut = p(yt|xt)p(xt|xt−1)
g(xt|y1:t, x1:t−1) = p(yt|xt)p(xt|xt−1)

p(yt|xt)p(xt|xt−1)
p(yt|xt−1)

= p(yt|xt−1).

This expression is generally not available in closed form. In addition, simulating
variables directly from p(xt|yt, xt−1) might be intractable. We can reformulate
the weight update as an integral (Doucet, Godsill, and Andrieu, 2000). We
then have

p(yt|xt−1) =
∫
p(yt|xt)p(xt|xt−1)dxt.

29

3.3. Particle filters

Despite containing the observation and transition density from the SSM, the
integral is in general intractable except in special cases. To summarise, the
incremental importance sampling function p(xt|yt, xt−1) is generally intractable
to simulate directly from and the resulting weight update function p(yt|xt−1) is
generally difficult to evaluate. Consequently, even though optimal with respect
to reducing variance of the importance weights at t given x1:t−1 and y1:t it can
rarely be used directly in practice.

Bootstrap particle filter

We now consider the bootstrap particle filter (BPF). In this particle filter, we
set the importance sampling function g equal to the transition density. We then
have

g(xt|x1:t−1, y1:t) = p(xt|xt−1).

Consider then the weight update that results from using the transition density
as the importance sampling function. This is given by

ut = p(yt|xt)p(xt|xt−1)
g(xt|x1:t−1, y1:t)

= p(yt|xt)p(xt|xt−1)
p(xt|xt−1) = p(yt|xt).

The importance sampling function which is used in the bootstrap particle filter
implies that we ignore the observation yt when simulating xt. This is the
reason BPF also has been referred to as using blind proposals (Creal, 2012).
The weight update, ut, then corresponds to the observation density from the
SSM. The bootstrap particle filter is considerably easier to implement than the
optimal particle filter because we already know the transition and observation
density from the defined SSM. One would however expect that the transition
density performs worse as an importance sampling function than the optimal
from Proposition 2.6.1. The BPF is still a popular particle filter because of
all the components being available a priori, making implementation easy in
practice.

In situations with informative observations y1:T we see in general that
particle filters that include yt or possibly yt:T in the conditioning set of the
importance sampling function improve performance compared to traditional
BPF (Chopin and Papaspiliopoulos, 2020). Including observations yt:T at
iteration t is however not possible in an online setting because we only have
access to the observations y1:t, the future observations are not available. We
refer to an offline setting as the situation where all observations y1:T are available
at every iteration. This also implies that the calculations cannot performed
before all observations are available. We will see that utilising information from
iteration s at iteration t where s > t is often referred to as lookahead strategies,
see e.g. Lin, Chen, and J. S. Liu (2013). At iteration t, we however have
observation yt available and this can be included in the importance sampling
function. By conditioning also on yt we have the same importance sampling
function as in the optimal particle filter. We can now consider the BPF in
algorithmic form. For notational simplicity we have the following assumption
p(x1|xi0) = p(x1) in the algorithm. We use α as the resampling threshold
together with the generic function ESS(wt) which calculates the effective sample
size, in addition the resampling step is with replacement. The algorithm is

30

3.3. Particle filters

Algorithm 5 BPF with adaptive resampling
1: for t ∈ (1, . . . , T) do
2: for i ∈ (1, . . . , n) do
3: x̂it ∼ p(xt|xit−1)
4: x̂i1:t = (xi1:t−1, x̂

i
t)

5: w(x̂i1:t) ∝ w(xi1:t−1)p(yt|x̂it)
6: end for
7: w(x̂i1:t) = w(x̂i

1:t)∑n

l=1
w(x̂l

1:t)
for i = 1, . . . , n

8: if ESS(wt) < α · n then
9: resample xi1:t from x̂i1:t using w(x̂i1:t) for i = 1, . . . , n

10: w(xi1:t) = 1
n for i = 1, . . . , n

11: else
12: xi1:t = x̂i1:t for i = 1, . . . , n
13: w(xi1:t) = w(x̂i1:t) for i = 1, . . . , n
14: end if
15: end for

adapted to our notation from the bootstrap particle filter in Doucet, Freitas,
and Gordon (2001).

Auxiliary particle filter

The auxiliary particle filter (APF) is another possible PF algorithm. Compared
to the BPF, the APF at iteration t is utilising the observation yt in two ways.
First it is resampling the previous variables xt−1 based on their predictive
ability by calculating p(yt|x̃t). Here x̃t is some estimator of a likely value
given xt−1 from the distribution p(xt|xt−1). Often, the conditional mean of the
distribution is used (Pitt and Shephard, 1999, p. 592). Then these resampled
variables, xt−1, are used in order to simulate the latent variables xt.

This is done by introducing auxiliary variables that represent the latent
variables at the previous iteration of the algorithm. We will follow Pitt and
Shephard (1999) in this section in order to see the motivation for introducing
the auxiliary variables. We denote the auxiliary variable by k ∈ (1, . . . , n).
At iteration t, the auxiliary variable, k, is referring to one of the, previous,
latent variables xt−1. Assume now that we have an outlier observation, yt, at t.
The weight update p(yt|xit) for i = 1, . . . , n in the BPF can then yield values
with high variance because of yt. This is in part because BPF is ignoring the
potentially extreme observation yt when simulating xt. It is proposed that
considering the joint posterior distribution over p(xt, k|y1:t) in order to sample
xt will give more equal normalised weights (Pitt and Shephard, 1999, p. 592).
We then have the joint posterior distribution and the importance sampling
distribution

p(xt, k|y1:t) ∝ p(yt|xt)p(xt|xkt−1)w(xk1:t−1)
g(xt, k|y1:t) ∝ p(yt|x̃kt)g(xt|xkt−1)w(xk1:t−1).

The importance sampling function, g, is the generic importance sampling
function proposed in (Pitt and Shephard, 1999). We can see the resemblence to

31

3.3. Particle filters

the generic reformulation by considering the joint distribution over xt and xt−1
and using CI properties. We then have

p(xt, xt−1|y1:t) ∝ p(yt|xt)p(xt|xt−1)p(xt−1|y1:t−1).

Conceptually, we want to marginalise out xt from the importance sampling
distribution (Pitt and Shephard, 1999). This is done in order to find an
expression for the conditional distribution of k given by

g(k|y1:t) ∝ p(yt|x̃kt)w(xk1:t−1).

We then consider the two stage weighting-setup from the original definition
of APF combined with the setup from Creal (2012). The first stage weight is
associated with the previously simulated latent variable xkt−1 for k = 1, . . . , n.
We consider the unnormalised weights λ̃ which we then normalise. We then
have unnormalised and normalised weights respectively

λ̃kt = g(k|y1:t) λkt = λ̃kt∑n
j=1 λ̃

j
t

If we resample with respect to the discrete distribution with probabilities λt,
then xkt−1 is expected to give a high value for the likelihood p(yt|x̃kt). To
sample xt we now use xkt−1 where k is sampled according to λkt . We then
sample xt ∼ g(xt|xkt−1) where we can think of the auxiliary variable k as
including information from the observation yt. Conceptually, we can then think
of g(xt|xkt−1) = p̂(xt|xt−1, yt). For the weight update ut used to update the
importance weights we have the more traditional incremental target function
and the implicit incremental importance sampling function

ukt =
p(yt|xkt)p(xkt |xkt−1)
p(yt|x̃kt)g(xkt |xkt−1)

. (3.5)

A special case is when we have an analytical expression for the predictive
likelihood p(yt|xt−1). We then use the reformulation p(yt|xt−1)p(xt|xt−1, yt) =
p(yt|xt)p(xt|xt−1). The distribution g(xt|xkt) is implicitly approximating
p(xt|xt−1, yt) and we can follow Creal (2012) in setting p(yt|x̃) = p(yt|xt−1)
and g(xt|xkt) = p(xt|xt−1, yt). We insert the known expressions for the
approximations in equation (3.5) and consequently we have ukt = 1. This
is referred to as fully adapted in Creal (2012).

Informally one could say that the APF is resampling the previous xt−1 at
iteration t based on the expected predictive likelihood. This resampled set
of xt−1 is then incorporating information from the observations yt. This can
again increase the quality of the simulated set xt which is now simulated by
conditioning on more information than in the BPF. It is also possible to see
APF as a standard SMC algorithm with a slightly different target distribution
than p(x1:t|y1:t). See Johansen and Doucet (2008) for a further discussion. The
APF can also be seen as a true lookahead strategy, this is discussed in Lin,
Chen, and J. S. Liu (2013), this is because it is performing the lookahead using
only available observations y1:t at iteration t. Conceptually, we can think of it
as utilising yt which is future relative to xt−1.

32

3.4. Smoothing recursions

3.4 Smoothing recursions

In this section we briefly consider smoothing recursions. We follow the approach
of Briers, Doucet, and Maskell (2010) and consider briefly two approaches
used for smoothing. We will in general be interested in the target distribution
p(xt|y1:T), often referred to as the marginal smoothing distribution (Creal,
2012). Smoothing is fundamentally related to an offline setting because we
require y1:T at iteration t where T > t. That is, we need all the observations
y1:T at every iteration in order to consider the marginal smoothing distributions.
Recall that through the filtering recursions, we have p(x1:T |y1:T) at t = T . By
integration, one could conceptually obtain the marginal smoothing distribution
for xt by marginalising out every latent variable except xt. This gives the
high-dimensional integral

p(xt|y1:T) =
∫
. . .

∫
p(x1:T |y1:T)dx1:t−1dxt+1:T .

Similarly to the analytical expressions for the filtering density, we have that
the integrals on this form are intractable. In general terms, the smoothing
algorithms often rely on approximate filtering distributions for t = 1, . . . , T .
The smoothing recursions then utilise these distributions in different ways when
moving backwards t = T, . . . , 1. One issue related to these approaches is the
resampling of particles introduced to reduce weight degeneracy in the particle
filters. Recall that entire sequences xi1:t for i = 1, . . . , n were resampled. When
t = T , many of xi1:T for i = 1, . . . , n will then be equal in x1:s when s� T due
to resampling. This is referred to as path degeneracy in Naesseth, Lindsten,
and Schön (2019) because at the earlier parts of the sequences almost all or all
sequences will share the same path.

Forward filtering-backward smoothing

The forward filtering-backward smoothing (FFBS) is one approach to smoothing.
Here, we use a particle filter moving forwards. When t = T , we have approximate
filtering distributions p̂(xs|y1:s) for s = 1, . . . , T . In order to see the motivation
for FFBS we start by a reformulation of the marginal smoothing recursion that
result in (Kitagawa, 1987, eq. 2.4, eq. 2.5). We also note that in this setting,
we have approximations to all the filtering distributions because we start the
smoothing after running the particle filter to iteration T . We therefore start
from the last iteration and iterate backwards, that is t = T, . . . , 1. The marginal
smoothing distribution can then be expressed by

p(xt|y1:T) =
∫
p(xt|xt+1, y1:T)p(xt+1|y1:T)dxt+1

=
∫
p(xt|xt+1, y1:t)p(xt+1|y1:T)dxt+1

= p(xt|y1:t)
∫

p(xt+1|xt)
p(xt+1|y1:t)

p(xt+1|y1:T)dxt+1. (3.6)

Recall the CI properties of the SSM. In the second equality there are no active
trails between xt and yt+1:T given xt+1. Therefore xt and yt+1:T are d-separated
given xt+1, implying that (xt ⊥ yt+1:T |xt+1) (Koller and N. Friedman, 2009).

33

3.4. Smoothing recursions

We can then omit yt+1:T from the conditioning set of p(xt|xt+1, y1:T). Assume
now that we have approximations of the predictive and filtering distributions
available from the particle filter. In addition assume that because we are
iterating backwards, we have an approximation of p(xt+1|y1:T) at iteration t.
Then we have all the necessary terms to approximate the recursion above.

Two-filter

Another possible reformulation of the marginal smoothing distribution is called
the two-filter. This is motivated by the following reformulation

p(xt|y1:T) = p(yt:T |xt)p(xt|y1:t−1)
p(yt:T |y1:t−1) ∝ p(yt:T |xt)p(xt|y1:t−1).

The first equality follows by omitting y1:t−1 from the conditioning set because
xt is in the conditioning set. This is another case of there being no active trails
from any of the variables in y1:t−1 to yt:T because of xt. It is possible to express
the term p(yt:T |xt) in a recursive manner. We then have

p(yt:T |xt) =
∫
p(yt:T , xt+1|xt)dxt+1

= p(yt|xt)
∫
p(yt+1:T |xt+1)p(xt+1|xt)dxt+1. (3.7)

This makes it possible to calculate the smoothing distribution up to propor-
tionality. The term p(yt:T |xt) is often called the backward information filter
(Briers, Doucet, and Maskell, 2010, eq. 7, eq. 8). We see that the backward
information filter can be calculated recursively by iterating backwards. The last
reformulation follows by moving the observation density out from the integral
as it does not depend on xt+1.

Approximations

We can approximate smoothing recursions in a similar way to how we can
approximate filtering recursions. This allows for making inference in a similar
manner as with the approximate filtering distributions. In this section we will
briefly see how we can approximate the recursions for FFBS. It is also possible
to derive approximations for the smoothing distributions using the two-filter
approach, see e.g. Briers, Doucet, and Maskell (2010).

For the approximation of the forward-backward recursion, we follow the
approach of Doucet, Godsill, and Andrieu (2000). First assume that we have a
weight expression which incorporates future observations from t+ 1 up to T
already at t. Denote these weights by wjt+1|T , we can then use these weights in
combination with Dirac mixtures in the same way as when we have discrete
approximations of filtering distributions. We then have the approximation
p(xt+1|y1:T) ≈

∑n
j=1 w

j
t+1|T δxj

t+1
(xt+1) available at t. Then we note that the

numerator in the recursion (3.6) can be reformulated and approximated. This
then gives

p̂(xt+1|y1:t) =
n∑
k=1

wkt

∫
p(xt+1|xt)δxk

t
(xt)dxt

34

3.5. Likelihood estimation in particle filters

=
n∑
k=1

wkt p(xt+1|xkt).

This corresponds to equation (59) in Doucet, Godsill, and Andrieu (2000). We
can then set up the approximation to the recursion given equation (3.6) by
using particle estimation of the different distributions. This then result in an
expression equivalent to equation (60) in Doucet, Godsill, and Andrieu (2000)
in our notation. We therefore have

p̂(xt|y1:T) =
n∑
i=1

witδxi
t
(xt)

n∑
j=1

wjt+1|T

∫
p(xt+1|xt)∑n

k=1 w
k
t p(xt+1|xkt)

δxj
t+1

(xt+1)dxt+1

=
n∑
i=1

wit

 n∑
j=1

wjt+1|T
p(xjt+1|xit)∑n

k=1 w
k
t p(x

j
t+1|xkt)

 δxi
t
(xt)

=
n∑
i=1

wit|T δxi
t
(xt).

By using this approximation, we have all the components needed to calculate the
approximate smoothing distribution at t. This allows us to iterate backwards
and generate new smoothing weights for the different particles. We note that
only the weights are updated with this approach. This implies that the problems
related to degeneracy still remains because of the resampling steps used in the
forward filtering.

We can then use this approximation in order to setup the fixed-interval
smoothing algorithm described in Doucet, Godsill, and Andrieu (2000). This
algorithm estimates the smoothing weights by iterating backwards from t = T .
The initialisation in the fixed-interval smoothing algorithm starts by setting
wiT |T = wiT for i = 1, . . . , n where wT is the normalised weights from the final
iteration of the particle filter.

3.5 Likelihood estimation in particle filters

The marginal likelihood related to the observations of a SSM can be used for
further inference. Both maximum likelihood and Bayesian methods in online
and offline settings rely on likelihood estimates for parameter estimation. In
general, we can express marginal likelihood through marginalisation p(y1:t) =∫
. . .
∫
p(y1:t, x1:t)dx1:t as in e.g. Devore and Berk (2012). Recall that we have

an expression for p(x1:t, y1:t) in equation (2.4) which consists of the transition-
and observation density. This gives a multiple integral for the marginal likelihood
at iteration T . We then have

p(y1:T) =
∫
. . .

∫
p(x1:T , y1:T)dx1:T

=
∫
. . .

∫
p(y1|x1)p(x1)

T∏
s=2

p(ys|xs)p(xs|xs−1)dx1:T . (3.8)

The integral is in general high-dimensional and the integrand can be on an
intractable form. This implies that we have to estimate the integral numerically

35

3.5. Likelihood estimation in particle filters

by using e.g. Monte Carlo integration. For effective parameter estimation by
using likelihood estimates we also want the estimates to have low variance. In
an online setting, we can utilise the fact that the likelihood expression can be
reformulated in a recursive manner (Kantas et al., 2015). This allows us to
approximate integrals of lower dimensions and combine the approximations.
This is compared to approximating high-dimensional integrals directly. We
denote the marginal likelihood at iteration t by Zt = p(y1:t) and similarly the
estimated likelihood by Ẑt.

As discussed in Kantas et al. (2015) we also need likelihood estimates Ẑt for
t = 1, . . . , T when estimating parameters in an online setting. The recursive
structure of the likelihood expression allows for online estimation of the marginal
likelihood. By straightforward calculations we also note that at iteration s < T
we will have the likelihood p(y1:s) by including likelihood factors up to and
including iteration s. We then have the following expression for the marginal
likelihood,

p(y1:T) = p(y1)
T∏
s=2

p(ys|y1:s−1). (3.9)

In order to estimate the marginal likelihood we often utilise the decomposition
in equation (3.9). We start by an expansion of the likelihood factor given by

p(ys|y1:s−1) =
∫
p(ys|xs)

[∫
p(xs|xs−1)p(xs−1|y1:s−1)dxs−1

]
dxs

If we are able to evaluate p(ys|y1:s−1) exactly, we could utilise these likelihood
factors combined with equation (3.9) in order to calculate the marginal
likelihood directly. As we generally cannot evaluate p(ys|y1:s−1) exactly, we
need approximations. We denote approximations of the likelihood factor
by p̂(ys|y1:s−1). If we can obtain approximations p̂(y1) and p̂(ys|y1:s−1) for
s = 2, . . . , T , we can combine these using equation (3.9) in order to approximate
the marginal likelihood.

We now consider approximations of the likelihood factors in combination
with a BPF. Assume now that the particles from iteration s− 1 are available.
We can use these to obtain a discrete approximation of the filtering distribution
p(xs−1|y1:s−1). We can then approximate the likelihood factor which gives us

p̂(ys|y1:s−1) =
n∑
i=1

wis−1

∫
p(ys|xs)p(xs|xis−1)dxs.

For s = 1 and s ≥ 2 respectively we have approximations of the likelihood
factors

p̂(y1) =
n∑
i=1

1
n
p(ys|xis) p̂(ys|y1:s−1) =

n∑
i=1

wis−1p(ys|xis). (3.10)

We can then utilise the structure in equation (3.9) when estimating the marginal
likelihood using a particle filter. This gives an expression for estimating the
marginal likelihood using a particle filter by inserting from equation (3.10). We
then have

ẐT = p̂(y1)
T∏
s=2

p̂(ys|y1:s−1). (3.11)

36

3.5. Likelihood estimation in particle filters

An important property of the likelihood estimate Ẑt is that it is unbiased, see
e.g. chapter 16 of Chopin and Papaspiliopoulos (2020) for a proof. In the case of
a BPF we can estimate the likelihood factor at each iteration and then combine
these with equation (3.11) in order to estimate the marginal likelihood. The
marginal likelihood is also important when it comes to the target distribution in
equation (2.2). We often have the posterior p(x1:t|y1:t) as the target distribution
and the joint distribution p(x1:t, y1:t) as the unnormalised target distribution
in the filtering context. This yields that the normalising constant at iteration t
is given by Zt =

∫
. . .
∫
p(x1:t, y1:t)dx1:t. We therefore see that the normalising

constants are given by Zt = p(y1:t) for t = 1, . . . , T .
A more direct approach of likelihood estimation can be seen when considering

IS and SIS and is discussed in Naesseth, Lindsten, and Schön (2019). This
is related to the unnormalised target distribution f̃t(x1:t) = p(x1:t, y1:t) which
we use in a filtering context. Assume now that we sample n sequences x1:t
from an importance sampling distribution. We denote the importance sampling
distribution by g(x1:t) and construct the importance weight w̃(x1:t) as discussed
in Section 2.5. We can then see from the definition of the likelihood integral
that we can estimate this by using e.g. Monte Carlo integration. We then have
that ∫

. . .

∫
w̃(x1:t)g(x1:t)dx1:t ≈

1
n

n∑
i=1

w̃(xi1:t).

In the case of online parameter estimation, we need estimates of the marginal
likelihood Ẑt possibly at every iteration t = 1, . . . , T . Utilising particle filters
in an online setting makes it possible to obtain these estimates. If we however
are not limited to an online setting, it is possible to obtain likelihood estimates
that typically have lower variance. By moving to an offline setting we can
introduce flexibility by using alternative intermediate t < T target distributions
in addition to selecting the importance sampling distribution. This is discussed
in e.g. Lindsten, Helske, and Vihola (2018) and Naesseth, Lindsten, and Schön
(2019).

As an motivation for our interest in estimating the likelihood, we here
briefly consider some aspects of parameter estimation where we see the need for
likelihood estimates. Parameter estimation is a large field in itself. Therefore
our aim here is only to consider briefly the role of likelihood estimates within
Bayesian parameter estimation. A detailed review can be found in e.g. Kantas
et al. (2015). Recall that we had unknown parameters θ that can be a scalar or
a vector. These were omitted for notational simplicity when assumed known. In
general these are not known and we have to estimate the unknown parameters,
denoted by θ̂. We briefly focus on some aspects of Bayesian parameter estimation
in an offline and an online setting. In Bayesian parameter estimation we assign
a prior denoted by p(θ) for the unknown parameter and use the posterior
p(x1:t, θ|y1:t) in online setting or p(x1:T , θ|y1:T) in offline settings for inference
about the parameter (Kantas et al., 2015).

Within offline Bayesian parameter estimation we have the marginal
Metropolis-Hastings algorithm where we use SMC in order to estimate the
likelihood p(y1:T |θ). This results in what is often referred to as a particle version
of marginal Metropolis-Hastings as discussed in section 2.4.2 of Andrieu, Doucet,
and Holenstein (2010). Estimates of the likelihood p(y1:T |θ) can then be used in

37

3.5. Likelihood estimation in particle filters

the Metropolis-Hastings ratio within the particle version of Metropolis-Hastings
setup. This is also part of the motivation in Guarniero, Johansen, and Lee
(2017) for obtaining unbiased likelihood estimates with low variance.

Within online Bayesian parameter estimation the most straightforward
approach consists of only simulating θ from a prior p(θ) and use p(x1:t, θ|y1:t) as
the target distribution. However simulating θ only once at the initial iteration
and then resampling at later iterations implies many duplicated values of the
parameter (Kantas et al., 2015). Another approach within online Bayesian
parameter estimation is that of J. Liu and West (2001) where noise is added
to the parameter at every iteration. Here we focus on the target distribution
p(x1:t, θ1:t|y1:t) and define p(θt+1|θt) as a transition density for θ in order to
simulate new parameters when t increases (J. Liu and West, 2001). If the
main assumption is that θ is a fixed parameter, then introducing p(θt+1|θt)
which introduce noise to the parameter may not be optimal. However there are
situations where this dynamic behaviour of the parameter can be reasonable.

38

CHAPTER 4

Twisting target distributions

We have seen that selecting the importance sampling distribution can influence
the efficiency of different SMC methods. We also considered the optimal
importance sampling distribution at iterations t = 1, . . . , T in Proposition 2.6.1
when observations up until iteration t were available. Twisting target
distributions refers to altering the intermediate, that is t < T , target
distributions when our main objective is making inference using the final,
t = T , target distribution. Being able to alter the target distributions at
iterations t < T in addition to selecting every importance sampling distribution
increase the flexibility of general SMC methods. Altering, or twisting, in this
context often refers to utilising future observations ys:T at iteration s (Naesseth,
Lindsten, and Schön, 2019). Utilising future observations ys:s+∆ where ∆ > 0
for inference about xs is a part of the general lookahead framework reviewed
in Lin, Chen, and J. S. Liu (2013). Including all the observations, y1:T , in the
conditioning set at every iteration is intuitively optimal. We are then utilising
all available information at every iteration, however this requires an offline
setting. Recall the general form of target distributions from equation (2.2). In
the filtering context, we had the unnormalised target distribution defined as
f̃t(x1:t) = p(x1:t, y1:t) and the specific target distribution ft(x1:t) = p(x1:t|y1:t).
We then denoted the target distributions directly by p(x1:t|y1:t) for clarity. We
will now use ft(x1:t) for the target distribution and f̃t(x1:t) for the unnormalised
target distribution. To distinguish it from the twisting target distributions, we
will refer to the specific target distributions p(x1:t|y1:t) as the untwisted target
distributions.

In this chapter we first consider the motivation for using twisting target
distributions. We start with what we refer to as the optimal target distributions
for simulating x1:T . These are characterised by conditioning on all observations
y1:T at every iteration. The optimal target distributions are generally intractable,
but motivates how we can define twisting target distributions. We then introduce
what we will refer to as twisting functions. This is a pair of functions defined
for every iteration. We will see that we can use twisting functions to define
twisting target distributions. We then consider some properties related to
the twisting target distributions. Finally we will briefly consider the iterated
auxiliary particle filter (iAPF) of Guarniero, Johansen, and Lee (2017) which
is using twisting functions and a twisted model. Other approaches to using
twisting target distributions is the controlled SMC from Heng et al. (2020) and
the approach of Lindsten, Helske, and Vihola (2018) and Naesseth, Lindsten,

39

4.1. Motivation

and Schön (2019).
Our main strategy for utilising twisting target distributions is via the twisted

model, following the approach of Guarniero, Johansen, and Lee (2017). The
transition and observation density of the SSM given in equation (2.1) will be
replaced with a twisted transition density and a twisted observation function in
the twisted model. We sometimes refer to concepts as untwisted in the twisting
target context. Such as referring to a traditional SSM as an untwisted model.
The untwisted model is repeated here without parameters for completeness,

x1 ∼ p(x1) initial density
xt|xt−1 ∼ p(xt|xt−1) transition density
yt|xt ∼ p(yt|xt) observation density.

4.1 Motivation

So far we have mainly focused on the filtering context. There we had ft(x1:t) =
p(x1:t|y1:t) and f̃t(x1:t) = p(x1:t, y1:t) for t = 1, . . . , T . The unnormalised target
distributions in the filtering context follow the decomposition

f̃t(x1:t) = p(x1:t, y1:t) = p(y1|x1)p(x1)
t∏

s=2
p(ys|xs)p(xs|xs−1).

At the final iteration, the target distribution is p(x1:T |y1:T) in the filtering
context. Therefore we want a sample of simulated sequences x1:T to be as close
as possible to a sample originating directly from p(x1:T |y1:T). The simulated
sequences can then be used to estimate the normalising constant ZT = p(y1:T)
and discrete approximations of p(x1:T |y1:T). For the motivation of twisting
target distributions we mainly follow the discussion in Naesseth, Lindsten,
and Schön (2019). We can define twisting target distributions by altering the
intermediate untwisted target distributions. Hence the sequence of untwisted
target distributions p(x1:t|y1:t) for t = 1, . . . , T − 1, can be viewed as one of
many possible sequences that yield p(x1:T |y1:T) at the final iteration. To see the
motivation for twisting target distributions we consider the optimal intermediate
target distributions. These are referred to as optimal with respect to simulating
x1:T from the final target distribution p(x1:T |y1:T).

Optimal target distributions

We denote the optimal target distributions by f∗t (x1:t) for iterations t = 1, . . . , T .
Assume we are in an offline setting and have observations y1:T available at
every iteration. We want to utilise the observations in order to define optimal
target distributions. This corresponds to a nonconstant lookahead of ∆ = T − t
at iteration t, compared to the online setting where ∆ = 0 at every iteration.
Following Naesseth, Lindsten, and Schön (2019), the optimal target distributions
can be defined as marginalised versions of the final posterior distribution
p(x1:T |y1:T). That is,

f∗t (x1:t) =
∫
. . .

∫
p(x1:T |y1:T)dxt+1:T

40

4.1. Motivation

and we see that the optimal target distribution can be formulated as the
posterior distribution

f∗t (x1:t) = p(x1:t|y1:T). (4.1)

This corresponds to defining the unnormalised target distribution, f̃∗t (x1:t) =
p(x1:t, y1:T), and consequently having the normalising constant Zt = p(y1:T). We
see that the optimal target distribution have all observations in the conditioning
set at every iteration. The optimal target distribution f∗t (x1:t) and the untwisted
target distribution p(x1:t|y1:t) are equal at the final iteration. That is,

f∗T (x1:T) = p(x1:T |y1:T)

which we will refer to as final target equivalence. From this we see that one
can choose a sequence of untwisted target distributions ft(x1:t) = p(x1:t|y1:t)
or a sequence of optimal target distributions f∗t (x1:t) = p(x1:t|y1:T) for the
intermediate iterations if the objective is p(x1:T |y1:T). Both are equal at the
final iteration, but the optimal target distributions are conditioning on all the
observations at every iteration. This is in contrast to the sequence of target
distributions on the form p(x1:t|y1:t) which is used in the filtering context. If
we however are in an online setting, we only have access to y1:t at iteration t.

We now want to reformulate the optimal, intermediate, target distributions
f∗t (x1:t) into a recursive form similar to equation (2.3a). We will use this
recursive form of the optimal target distributions when defining the twisting
target distributions. At iteration t = 1, we have

f∗1 (x1) = p(y1|x1)p(x1)p(y2:T |x1)
p(y1:T)

and at iteration 1 < t ≤ T − 1, we have

f∗t (x1:t) = f∗t−1(x1:t−1)p(xt|xt−1, yt:T)

= f∗t−1(x1:t−1)p(yt|xt)p(xt|xt−1)p(yt+1:T |xt)
p(yt:T |xt−1)

f̃∗t (x1:t) = f̃∗t−1(x1:t−1)p(yt|xt)p(xt|xt−1)p(yt+1:T |xt)
p(yt:T |xt−1) . (4.2)

Because all optimal target distributions have the same normalisation constants
the unnormalised optimal target distributions follow the same recursive structure.
This is given in equation (4.2). We will refer to p(yt+1:T |xt) as a predictive
likelihood term at iteration t. A more direct motivation for the recursive
structure when we know the form of the optimal target distribution p(x1:t|y1:T)
can be seen by

p(x1:t|y1:T) = p(x1:t−1|y1:T)p(xt|x1:t−1, y1:T)
= p(x1:t−1|y1:T)p(xt|xt−1, yt:T)

which we see follow a recursive structure by utilising CI assumptions about the
model.

41

4.1. Motivation

Optimal importance sampling distributions

As in the general IS framework, we can select the importance sampling
distribution. The optimal, trivial, case is when the importance sampling
distribution is equal to the optimal target distribution. Following Naesseth,
Lindsten, and Schön (2019), we find the optimal importance sampling
distributions for the optimal target distributions. This can be done by using the
same sort of calculations as for Proposition 2.6.1. We denote this importance
sampling distribution by

g∗t (xt|x1:t−1, y1:t) = p(xt|xt−1, yt:T). (4.3)

Note that this importance sampling distribution uses all future observations at
iteration t. These are not conditionally independent of xt given xt−1 because we
have no variables in the conditioning set that blocks influence from observations
that are future relative to xt. We can reformulate equation (4.3) to recognise
terms from the optimal intermediate target distribution. We then have

p(xt|xt−1, yt:T) = p(yt, yt+1:T , xt, xt−1)
p(yt:T , xt−1)

= p(yt+1:T |xt)p(yt|xt)p(xt|xt−1)
p(yt:T |xt−1) . (4.4)

Optimal weight update

We now consider the weight update that follows from using the optimal
importance sampling distributions in equation (4.3). Simulating from the
optimal importance sampling distribution while targeting the optimal target
distribution yields that the simulated sequence, x1:T , form a perfect sample
from p(x1:T |y1:T) which is the final untwisted target distribution (Naesseth,
Lindsten, and Schön, 2019, p. 48). Consider now the weight update function
from equation (2.10). At iteration t, we can insert the optimal intermediate
target distribution and the optimal importance distribution. We then have that

ut =
p(yt|xt)p(xt|xt−1) p(yt+1:T |xt)

p(yt:T |xt−1)

g∗t (xt|x1:t−1, y1:t)

=
p(yt|xt)p(xt|xt−1) p(yt+1:T |xt)

p(yt:T |xt−1)
p(yt+1:T |xt)p(yt|xt)p(xt|xt−1)

p(yt:T |xt−1)

= 1.

The weight update functions become 1 for all iterations, this implies that all
the samples will have normalised weights of 1

n . We generally cannot sample
directly from g∗t (xt|x1:t−1, y1:t). In addition, we generally cannot evaluate the
predictive likelihood terms in the optimal target distribution. If we however can
do this, it would correspond to sampling from the optimal target distribution.

Target distribution in factorised form

We follow the same assumption as in Naesseth, Lindsten, and Schön (2019, p.
48) about being able to factorise the final, unnormalised, target distribution
into multiplicative factors. This is not restricted to twisting target distributions,

42

4.2. Twisting target distributions

we have seen this in equation (2.4). The factors are equivalent to what Creal
(2012) refers to as incremental target distributions.

Definition 4.1.1. For t = 1 and t = 2, . . . , T we define the factors respectively
as

φ1(x1) ≡ p(y1|x1)p(x1)
φt(xt, xt−1) ≡ p(yt|xt)p(xt|xt−1).

The dependence on yt are omitted because the observations are assumed fixed.

Following Naesseth, Lindsten, and Schön (2019) we can express the
unnormalised target distribution by using factors at iteration t = T . Consider
the case where we defined the unnormalised target distribution to be f̃t(x1:t) =
p(x1:t, y1:t). The normalisation constant then corresponded to the marginal
likelihood at iteration t, that is, Zt = p(y1:t). This is the setup we considered
in the filtering context. For the final, unnormalised, target distribution this
gives the expression

f̃T (x1:T) = p(x1:T , y1:T) = p(y1|x1)p(x1)
T∏
s=2

p(ys|xs)p(xs|xs−1)

= φ1(x1)
T∏
s=2

φs(xs, xs−1).

4.2 Twisting target distributions

In this section we first consider what we will refer to as twisting functions.
Then we consider how twisting functions can be used to define twisting target
distributions. Finally, we consider some properties of the resulting twisting
target distributions.

Twisting functions

The twisting functions at iteration t is a pair of functions. This pair consist of
a lookahead function denoted by ψt(xt) and a normalising function denoted by
ψ̃t(xt). At iteration t we then refer to the twisting functions as (ψt(xt), ψ̃t(xt)).
We will in general use the simplified notation ψt(xt) = ψt and ψ̃t(xt) = ψ̃t, the
twisting functions can then be denoted by (ψt, ψ̃t) at iteration t. In addition,
we use the notation (ψ, ψ̃) when referring to twisting functions in general. We
start by defining some general assumptions for the twisting functions, following
Ala-Luhtala et al. (2016) and Guarniero, Johansen, and Lee (2017).

Assumptions 4.2.1. We have the following assumptions about the lookahead
functions

• ψt for t = 1, . . . , T are continuous and real-valued

• 0 < ψt <∞ for t = 1, . . . , T

and ψ̃T ≡ 1 for the final normalising function.

43

4.2. Twisting target distributions

These assumptions implies that we can define ψ with a lot of flexibility. We
now consider the normalising function ψ̃ which can be defined by using the
lookahead function ψ. The definition of the normalising function is motivated
by normalising the altered transition density ψt+1(xt+1)p(xt+1|xt). We will see
that the normalised version of the altered transition density becomes what we
will refer to as the twisted transition density. Motivated by this, we can define
the normalising function, ψ̃t(xt), at iteration 0 < t ≤ T and the normalising
constant ψ̃0 at iteration t = 0.

Definition 4.2.1. Given the lookahead functions ψt(xt), for t = 1, . . . , T , we
define the normalising functions

ψ̃t(xt) =
∫
ψt+1(xt+1)p(xt+1|xt)dxt+1

for t = 1, . . . , T − 1. For t = 0 we define the normalising constant

ψ̃0 =
∫
ψ1(x1)p(x1)dx1.

We see that selecting a lookahead function ψt+1(xt+1) conjugate to the
transition density p(xt+1|xt) will simplify calculations for the normalising
function ψ̃t(xt). This is because the integral often will be tractable and we
can evaluate it analytically. The general twisting functions (ψ, ψ̃) have been
defined under Assumptions 4.2.1 and the definition of the normalising function.
Because the assumptions for the lookahead functions are relatively flexible,
there are many valid functions that can be used as lookahead functions. The
normalising functions then follow from the lookahead functions and result in
valid twisting functions. One example is defining the lookahead functions by
ψt(xt) = 1 for t = 1, . . . , T and all xt. These lookahead functions are valid and
hence the resulting twisting functions are valid. It further simplifies discussion
to consider all the lookahead functions, ψ, as a sequence.

Definition 4.2.2. Denoting ψt(xt) = ψt, we have the sequence of lookahead
functions

Ψ1:T ≡ ψ1, . . . , ψT .

Defining twisting target distributions

One possible approach to twisting target distributions is given in Lindsten,
Helske, and Vihola (2018) and Naesseth, Lindsten, and Schön (2019). With
this approach we also have that ψ̃0 ≡ 1. The intermediate twisting target
distributions can be defined in any way we want as long as final target equivalence
holds. We are defining the structure of the twisting target distributions
motivated by the structure of the optimal target distributions in equation
(4.2). We define the unnormalised twisting target distributions recursively and
denote these by f̃ψt (x1:t) at iteration t. Adapted to the HMM setting and our
notation from Naesseth, Lindsten, and Schön (2019, eq. 62), the twisting target
distribution is then defined as

f̃ψt (x1:t) = f̃ψt−1(x1:t−1)φt(xt, xt−1) ψ̃t(xt)
ψ̃t−1(xt−1)

. (4.5)

44

4.2. Twisting target distributions

The focus of this approach is the recursive structure and multiplication with
the ratio of normalising functions. This approach has also been referred to
as a multiplicative adjustment in Lindsten, Helske, and Vihola (2018). We
can use any importance sampling distribution with this approach as discussed
in Naesseth, Lindsten, and Schön (2019). In order to use this approach, we
therefore only need to be able to evaluate the normalising functions. We can
view this unnormalised twisting target distribution as an approximation to
the unnormalised optimal target distribution in equation (4.2). Based on this
we see that by setting ψ̃t(xt) = p(yt+1:T |xt), then equation (4.5) is equal to
equation (4.2). We also see that defining ψ̃t(xt) = C for all t and all xt, then
the twisting target distribution in equation (4.5) is equal to the untwisted target
distribution p(x1:t, y1:t).

Another approach to twisting target distributions is to combine twisting
functions with a twisted model. This is the approach described in Guarniero,
Johansen, and Lee (2017) where the twisted model is defined by twisted
transition densities and twisted observation functions. We define this as the
twisted model.

Definition 4.2.3. The twisted model defined in equations (5) and (6) in
Guarniero, Johansen, and Lee (2017) in our notation is defined as

pψ1 (y1|x1) = p(y1|x1)ψ̃1(x1)ψ̃0

ψ1(x1) pψ1 (x1) = p(x1)ψ1(x1)
ψ̃0

and for t = 2, . . . , T

pψt (yt|xt) = p(yt|xt)ψ̃t(xt)
ψt(xt)

pψt (xt|xt−1) = p(xt|xt−1)ψt(xt)
ψ̃t−1(xt−1)

.

Note that we need to have the twisting functions (ψ, ψ̃) before we can use the
twisted model. In addition, we see that selecting ψt(xt) conjugate to p(xt|xt−1)
is a significant advantage when wanting to simulate from pψt (xt|xt−1). We will
mainly focus on the twisted model when defining twisting target distributions.
It will however be useful to compare it to the recursively defined twisting target
distribution in equation (4.5).

Properties of twisting target distributions

Now we consider some properties of the twisting target distributions that are
defined by twisting functions. First we want to check that final target equivalence
holds. We consider the recursively defined twisting target distribution in
equation (4.5) and the unnormalised twisting target distribution that results
from the twisted model. Recall that the final twisting target distributions should
be equal to the final, untwisted and unnormalised, target distribution denoted by
p(x1:T , y1:T). If we assume that p(x1:T , y1:T) can be seen as a product of factors
then so should the unnormalised twisting target distribution at t = T (Naesseth,
Lindsten, and Schön, 2019, pp. 48-49). That is, f̃ψT (x1:T) = p(x1:T , y1:T).
Consider first the recursively defined unnormalised twisting target distribution.
Recall that that in this approach it is assumed that ψ̃0 ≡ 1. We expand the
expression from equation (4.5). We see that ψ̃t(xt) for t = 1, . . . , T − 1 cancels

45

4.2. Twisting target distributions

and then we insert the assumptions to get the product of factors,

f̃ψT (x1:T) = φ1(x1) ψ̃1(x1)
ψ̃0

φ2(x2, x1) ψ̃2(x2)
ψ̃1(x1)

. . . φT (xT , xT−1) ψ̃T (xT)
ψ̃T−1(xT−1)

= φ1(x1) 1
ψ̃0

[
T−1∏
t=2

φt(xt, xt−1)
]
φT (xT , xT−1)ψ̃T (xT)

= p(y1|x1)p(x1)
T∏
t=2

p(yt|xt)p(xt|xt−1) = p(x1:T , y1:T).

We can also consider the unnormalised twisting target distribution at t = T
from the twisted model in Definition 4.2.3. We then have

pψ1 (y1|x1)pψ1 (x1) . . . pψT (yT |xT)pψT (xT |xT−1)

=p(y1|x1)ψ̃1(x1)ψ̃0

ψ1(x1)
p(x1)ψ1(x1)

ψ̃0
. . .

p(yT |xT)ψ̃T (xT)
ψT (xT)

p(xT |xT−1)ψT (xT)
ψ̃T−1(xT−1)

=p(y1|x1)p(x1)
T∏
t=2

p(yt|xt)p(xt|xt−1) = p(x1:T , y1:T).

This reformulation and cancellation for the final, unnormalised, distributions
corresponds to part of the calculations in the proof of proposition 1 from
Guarniero, Johansen, and Lee (2017). In both the approaches, we therefore see
that at the final iteration, t = T , we have that the unnormalised twisting target
distribution is equal to the unnormalised untwisted target distribution. That is,
we have final target equivalence.

The recursively defined, unnormalised, twisting target distribution in
equation (4.5) is closely related to the twisted model from Definition 4.2.3.
We now want to consider these twisting target distributions at some iteration
t < T where they are not required to be equal to the unnormalised, untwisted,
target distribution. We then have from the twisted model

pψ1 (y1|x1)pψ1 (x1)
t∏

s=2
pψs (ys|xs)pψs (xs|xs−1)

=p(y1|x1)p(x1)
[

t∏
s=2

p(ys|xs)p(xs|xs−1)
]
ψ̃t(xt)

=p(x1:t, y1:t)ψ̃t(xt).

All the lookahead functions ψs(xs) for s = 1, . . . , t cancels. In addition, the
normalising constant ψ̃0 cancels in the first twisted transition density and the
first twisted observation function. Now we consider the recursively defined,
unnormalised, twisting target distribution from equation (4.5). Here, we expand
the recursion and use that ψ̃0 ≡ 1. We then have that

f̃ψt (x1:t) = f̃ψt−1(x1:t−1)φt(xt, xt−1) ψ̃t(xt)
ψ̃t−1(xt−1)

=
[
f̃ψt−2(x1:t−2)φt−1(xt−1, xt−2) ψ̃t−1(xt−1)

ψ̃t−2(xt−2)

]
φt(xt, xt−1) ψ̃t(xt)

ψ̃t−1(xt−1)

46

4.3. Optimal twisting functions

=
[
φ1(x1)

t−1∏
s=2

φs(xs, xs−1)
]
φt(xt, xt−1)ψ̃t(xt)

= p(x1:t, y1:t)ψ̃t(xt).

The recursively defined, unnormalised, twisting target distribution in equation
(4.5) combined with ψ̃0 ≡ 1 is equal to the unnormalised twisting target
distribution from the twisted model at iteration t. This is because the lookahead
functions ψt(xt) used in the twisted model are cancelling at every iteration and
ψ̃0 ≡ 1 in the recursively defined twisting target distribution.

We have seen that, when using twisting functions, we can twist the
intermediate, untwisted, target distributions and have final target equivalence.
The final target equivalence is useful because it also ensures that the likelihood
when using twisting target distributions is equal to the likelihood for untwisted
target distributions at t = T . Recall that we can define the marginal likelihood
of the SSM by marginalising out the latent variables from the joint distribution
over the latent variables and the observations. We follow Guarniero, Johansen,
and Lee (2017) and refer to the likelihood integral with a joint distribution
from twisting target distributions as Zψ, we then have that

Zψ =
∫
. . .

∫
f̃ψT (x1:T)dx1:T

=
∫
. . .

∫
p(x1:T , y1:T)dx1:T = Z.

This implies that the maeginal likelihood at t = T from using twisting target
distributions is equal to the marginal likelihood from using untwisted target
distributions. As long as final target equivalence holds, we can use the twisting
target distributions to estimate the marginal likelihood. Conceptually, we can
therefore alter the intermediate target distributions of our SSM of interest by
using twisting functions as long as final target equivalence holds. The likelihood
integral obtained from the twisted model will then be equal to the likelihood
integral from the original model.

4.3 Optimal twisting functions

So far we have considered an optimal situation where it is assumed that we can
simulate from the optimal importance sampling distribution in equation (4.3)
and in addition evaluate the optimal target distribution. In general, we are
not able to simulate from the optimal importance sampling distribution and
unable to evaluate the optimal target distributions. In order to evaluate the
optimal target distributions, we ideally would have closed form expressions for
the predictive likelihood terms. We have considered general twisting functions
and seen that there are many valid twisting functions within Assumptions 4.2.1.
We now want to utilise the recursive structure in the optimal target distributions
from equation (4.2) to motivate the configuration of twisting target distributions.
This is following the same approach as in section 3 of Naesseth, Lindsten, and
Schön (2019). We have recursively defined twisting target distributions in
equation (4.5) and we now utilise that the twisting target distributions are
defined with the same structure as the optimal target distributions.

47

4.3. Optimal twisting functions

We also note that the predictive likelihood term from the optimal target
distribution is related to the backward information filter in equation (3.7). This
can be seen with a straightforward reformulation

p(yt:T |xt) = p(yt|xt)p(yt+1:T |xt).

If the backward information filter and the transition density are conjugate,
we see that simulation from the optimal importance sampling distribution in
equation (4.4) can be tractable. From the recursively defined twisting target
distributions in equation (4.5), we see that setting ψ̃t(xt) = p(yt+1:T |xt) if
possible means that the twisting target distributions are equal the optimal
target distributions. We generally do not have access to the predictive likelihood
terms or the backward information filter. We start with a reformulation of the
predictive likelihood term p(yt+1:T |xt) to see if we can use a similar structure
for the normalising functions ψ̃t(xt). This gives

p(yt+1:T |xt) =
∫
p(yt+1:T , xt+1|xt)dxt+1

=
∫
p(yt+1|xt+1)p(yt+2:T |xt+1)p(xt+1|xt)dxt+1

=
∫
p(yt+1:T |xt+1)p(xt+1|xt)dxt+1.

From the second equality we see that the predictive likelihood terms follow a
backward recursive structure. From the last equality we see that predictive
likelihood term equals the expectation of the backward information filter at
iteration t+ 1 with respect to the transition density p(xt+1|xt).

We are now interested in finding a similar recursive structure for the
normalising functions that we so far have defined in general terms. The
structure of the optimal target distributions is known and we can use this
to find a recursive structure for the normalising functions. The optimal target
distribution at t can always be defined as a marginalised version of the optimal
target distribution at t+ 1 because they are all marginal distributions of the
final untwisted target distribution Naesseth, Lindsten, and Schön (2019, eq. 63).
We then have the unnormalised optimal target distribution in recursive form,

f̃∗t (x1:t) =
∫
f̃∗t+1(x1:t+1)dxt+1. (4.6)

We start with the unnormalised optimal target distribution at iteration t and
t+1 in equation (4.6). We substitute these with the unnormalised twisting target
distributions from equation (4.5). Recall that the twisting target distributions
are defined using general normalising functions. The motivation is now to find
a recursive structure for the normalising functions by utilising that we know the
recursive structure of the optimal target distributions. This recursive structure
is defined by the recursive structure from the unnormalised, optimal, target
distributions. Inserting the unnormalised twisting target distributions that we
defined in equation (4.5) into equation (4.6) then gives us

f̃ψt (x1:t) =
∫
f̃ψt (x1:t)φt+1(xt+1, xt)

ψ̃t+1(xt+1)
ψ̃t(xt)

dxt+1

48

4.3. Optimal twisting functions

= f̃ψt (x1:t)
ψ̃t(xt)

∫
φt+1(xt+1, xt)ψ̃t+1(xt+1)dxt+1.

Reformulating the expression above gives us the recursive structure for the
normalising function ψ̃t(xt). At iteration t we can express ψ̃t(xt) recursively
by using ψ̃t+1(xt+1). This can be further expanded and expressed with the
transition and observation density,

ψ̃t(xt) =
∫
φt+1(xt+1, xt)ψ̃t+1(xt+1)dxt+1 (4.7a)

= p(yt+1|xt+1)
∫
ψ̃t+1(xt+1)p(xt+1|xt)dxt+1. (4.7b)

These normalising functions follow a recursive structure which was defined by
the unnormalised optimal target distributions. Equation (4.7a) correspond to
equation (64) in Naesseth, Lindsten, and Schön (2019) and we follow their
convention and refer to these normalising functions as optimal with the notation
ψ̃∗t (xt). Based on this we can define the recursive structure for the optimal
normalising functions.

Definition 4.3.1. For t = 1, . . . , T − 1

ψ̃∗t (xt) =
∫
φt+1(xt+1, xt)ψ̃∗t+1(xt+1)dxt+1

and for t = T

ψ̃∗T (xT) ≡ 1

Closed form expressions for ψ̃∗t (xt) are generally not be available as the
integral is often intractable. The recursive definition also allows us to consider
the motivation for the optimal normalising functions from a different aspect.
We begin by the assumption ψ̃∗T (xT) ≡ 1 and insert this into Definition 4.3.1.
We assume that we are able to evaluate the integrals that follow,

ψ̃∗T−1(xT−1) =
∫
φT (xT , xT−1)ψ̃∗T (xT)dxT

=
∫
p(yT |xT)p(xT |xT−1)dxT = p(yT |xT−1).

Which we again can insert into the expression for ψ̃T−2(xT−2) and so on.
Continuing this backward recursion with t = T, . . . , 1 implies the general form

ψ̃∗t (xt) =
∫
p(yt+1:T |xt+1)p(xt+1|xt)dxt+1 = p(yt+1:T |xt) (4.8)

which we recall as the predictive likelihood from the optimal target distributions.
Recall the general definition of ψ̃t(xt), given by Definition 4.2.1 as

ψ̃t(xt) =
∫
ψt+1(xt+1)p(xt+1|xt)dxt+1.

This implies the form for the optimal lookahead function ψ∗t (xt) by setting the
integrals equal to each other, ψ̃∗t (xt) = ψ̃t(xt). This implies

ψ∗t (xt) = p(yt:T |xt). (4.9)

49

4.3. Optimal twisting functions

Another motivation for the sequence of optimal lookahead functions, denoted
by Ψ∗1:T , can be seen in proposition 2 of Guarniero, Johansen, and Lee (2017).
Using these optimal lookahead functions with a twisted model results in a
likelihood estimate Ẑψ being equal to Z with Pr. = 1 (Guarniero, Johansen,
and Lee, 2017). We now consider this sequence of lookahead functions in our
notation.

Definition 4.3.2. The optimal lookahead functions from proposition 2 in
Guarniero, Johansen, and Lee (2017) are for t = 1, . . . , T − 1

ψ∗t (xt) = p(yt|xt)
∫
. . .

∫ T∏
s=t+1

p(ys|xs)
T∏

s=t+1
p(xs|xs−1)dxt+1:T

and for t = T

ψ∗T (xT) = p(yT |xT).

The optimal normalising constant ψ̃∗0 has a special interpretation when
this sequence of optimal lookahead functions is used. To see this, we consider
the standard definition of the normalising constant, ψ̃0, and follow the proof
of proposition 2 from Guarniero, Johansen, and Lee (2017) in our notation.
From the definition of the normalising constant ψ̃0, we can insert the optimal
lookahead function at t = 1. We then have

ψ̃∗0 =
∫
ψ∗1(x1)p(x1)dx1

=
∫
p(y1|x1)

[∫
. . .

∫ T∏
s=2

p(ys|xs)
T∏
s=2

p(xs|xs−1)dx2:T

]
p(x1)dx1

=
∫
. . .

∫
p(x1:T , y1:T)dx1:T = Z.

We see that the last integral is equal to the likelihood given in equation (3.8).
We also consider an alternative recursive definition of the optimal lookahead
function ψ∗t (xt), which will be useful. It is possible to show that for t = 1, . . . , T
we have

ψ∗t (xt) = p(yt|xt)ψ̃∗t (xt). (4.10)
See Appendix A.2 for calculations. This is also stated in the proof of proposition
2 in Guarniero, Johansen, and Lee (2017). We can now summarise the optimal
twisting functions and their structure,

ψ∗t (xt) = p(yt:T |xt)

ψ̃∗t (xt) =
∫
ψ∗t+1(xt+1)p(xt+1|xt)dxt+1

=
∫
p(yt+1:T |xt+1)p(xt+1|xt)dxt+1 = p(yt+1:T |xt).

This is the same setup as in Guarniero, Johansen, and Lee (2017). Because we
can alter the sequence of intermediate, t < T , target distributions as long as the
final twisting target distribution t = T is equal to the distribution of interest
there are several alterations possible. We have now considered general twisting
functions (ψ, ψ̃) and the optimal twisting functions with respect to minimising
variance of the likelihood estimates (ψ∗, ψ̃∗).

50

4.4. Twisting target distributions in the particle filter framework

4.4 Twisting target distributions in the particle filter
framework

Utilising twisting target distributions in a PF context is straightforward when
we have defined the twisting functions and a twisted model. The twisting
functions can hypothetically, and in some special cases, be the optimal twisting
functions. These are however generally not available in closed form and we use
approximations of the optimal twisting functions which are denoted by (ψ̄, ˜̄ψ).
When discussing twisting functions in particle filters in general, we will however
use the generic notation (ψ, ψ̃) for notational simplicity. In this section we
mainly follow the approach of Guarniero, Johansen, and Lee (2017) by using
a twisted model which defines a sequence of twisted transition densities and
twisted observation functions. When used in a BPF we often refer to this setup
as a twisted particle filter.

When using the twisted model in a particle filter framework we set the
importance sampling function equal to the twisted transition density. That
is, we simulate variables from pψ1 (x1) for t = 1 and from pψt (xt|xt−1) for t ≥ 2.
Assume that we can easily simulate variables from the transition densities p(x1)
and p(xt|xt−1). To easily simulate from the twisted transition densities, we
need ψ1(x1) to be conjugate to p(x1) and ψt(xt) to be conjugate to p(xt|xt−1).
Also recall the optimal importance sampling distributions from equation (4.3).
For t > 1 and t = 1 we see that the twisted transition densities defined
in Definition 4.2.3 can be viewed as approximating the optimal importance
sampling distributions. That is

pψ1 (x1) ≈ g∗1(x1|y1) pψt (xt|xt−1) ≈ g∗t (xt|x1:t−1, y1:t).

The transition densities p(xt|xt−1) are given in both the twisted transition
densities and the optimal importance sampling distributions. This also motivates
the approximation of the optimal twisting functions (ψ∗t , ψ̃∗t) because when
inserted into the twisted transition densities, we are approximating the optimal
importance sampling distribution. In this manner when ψ is close to ψ∗, the
twisted transition density in this case is close to the optimal importance sampling
distribution. When we use the twisted transition density as the importance
sampling function, we have that the weight update functions become

u1 = pψ1 (y1|x1) ut = pψt (yt|xt).

This follows from the fact that we are using the twisted transition density as
the importance sampling function.

For completeness, we include a slightly modified version of algorithm 5 from
Guarniero, Johansen, and Lee (2017) in our notation. We refer to this as a
twisted BPF with n particles. The notation tstart and tstop is used to denote
the first and last iteration in the algorithm. In an offline setting we set tstart = 1
and tstop = T . We will see in Chapter 5 that this algorithm can be used also
for subsets of the iterations. To use it for a subset of the iterations, we only
need the simulated variables xit−1 and importance weights w̃it−1 for i = 1, . . . , n
if t = tstart > 1. We use β as a resampling threshold and calculate the ESS
using w̃it−1 for i = 1, . . . , n which is denoted by ESS(w̃t−1) at line 7.

51

4.4. Twisting target distributions in the particle filter framework

Algorithm 6 Twisted BPF
1: for t ∈ (tstart, . . . , tstop) do
2: for i ∈ (1, . . . , n) do
3: if t = 1 then
4: xi1 ∼ p

ψ
1 (x1)

5: w̃i1 = pψ1 (y1|xi1)
6: else
7: if ESS(w̃t−1) < β · n then
8: xit ∼

∑n
i=1 w

i
t−1p

ψ
t (xt|xit−1)

9: w̃it = pψt (yt|xit)
10: else
11: xit ∼ p

ψ
t (xt|xit−1)

12: w̃it = w̃it−1p
ψ
t (yt|xit)

13: end if
14: end if
15: end for
16: wit = w̃i

t∑n

l=1
w̃l

t

for i = 1, . . . , n
17: end for

Likelihood estimation

To estimate the marginal likelihood using Algorithm 6 with n particles we follow
Guarniero, Johansen, and Lee (2017). When we resample at every iteration or
using adaptive resampling we estimate the marginal likelihood by

ẐψT =
T∏
s=1

[
1
n

n∑
i=1

pψs (ys|xis)
]

(4.11a)

ẐψT =
[

1
n

n∑
i=1

w̃iT

]∏
ESS

[
1
n

n∑
i=1

w̃it

]
(4.11b)

respectively. When using adaptive resampling, the condition ESS in the product
denotes whether ESS(w̃t) indicated resampling in line 7 at iteration t. Both
methods provide unbiased estimates of the marginal likelihood (Guarniero,
Johansen, and Lee, 2017).

Now we can consider the sequence Ψ∗1:T of optimal lookahead functions
yielding that the recursive structure from equation (4.10) holds exactly. Assume
that we are resampling at every iteration, then we use equation (4.11a). Assume
additionally that the optimal twisting functions are available, we have the
following estimate for the marginal likelihood

ẐψT =
[

1
n

n∑
i=1

p(y1|xi1)ψ̃∗1(xi1)ψ̃∗0
ψ∗1(xi1)

]
T∏
s=2

[
1
n

n∑
i=1

p(ys|xis)ψ̃∗s (xis)
ψ∗s (xis)

]

=
[

1
n

n∑
i=1

p(y1|xi1)ψ̃∗1(xi1)ψ̃∗0
p(y1|xi1)ψ̃∗1(xi1)

]
T∏
s=2

[
1
n

n∑
i=1

p(ys|xis)ψ̃∗s (xis)
p(ys|xis)ψ̃∗s (xis)

]
= ψ̃∗0

52

4.5. Approximation of the optimal twisting functions

By inserting the recursive structure ψ∗t (xt) = p(yt|xt)ψ̃∗t (xt) we see that the
contribution to the marginal likelihood from all iterations t ≥ 2 sum to 1. In
addition, the denominator of the contribution from the first iteration cancels
everything except for ψ̃∗0 because of the recursive structure that holds exactly
when we have the optimal twisting functions. We then have Ẑψ = ψ̃∗0 = Z with
Pr. = 1 which is the result provided in proposition 2 of Guarniero, Johansen,
and Lee (2017).

If we are using twisting functions (ψ, ψ̃) that are not the optimal twisting
functions, the recursive structure generally does not hold exactly. As a result
of this we do not get the perfect cancellation in the likelihood estimates that
we do with the optimal twisting functions. This can also be a motivation to
consider twisting functions where the recursive structure holds for as many of
the iterations t = 1, . . . , T as possible, but not necessarily all.

4.5 Approximation of the optimal twisting functions

As discussed in Naesseth, Lindsten, and Schön (2019), the optimal normalising
functions in Definition 4.3.1 are rarely available in closed form. Because of
this we usually need to approximate the sequence of optimal twisting functions.
The twisting functions can also be approximated with a constant lookahead,
that is defining the lookahead function with a constant C future observations
relative to the current iteration. The lookahead functions will in this case
have the conceptual form p(yt:t+C |xt) at iteration t, see e.g. Ala-Luhtala et al.
(2016). Other approaches for approximating twisting functions include numerical
optimisation in Guarniero, Johansen, and Lee (2017), Heng et al. (2020), and
Naesseth, Lindsten, and Schön (2019). In addition, they can be approximated
by expectation propagation, belief propagation and Laplace approximations as
discussed in Lindsten, Helske, and Vihola (2018).

When approximating the lookahead functions, we will follow the same
approach as in Guarniero, Johansen, and Lee (2017) and Naesseth, Lindsten,
and Schön (2019) by utilising the recursive structure from equation (4.10). A
local case where the recursive structure Definition 4.3.1 only is true for one
iteration ahead is also considered in Naesseth, Lindsten, and Schön (2019). This
coincides with the fully adapted case which is also discussed in e.g. Creal (2012)
and Johansen and Doucet (2008). We focus more on the general case where
we assume that the recursive structure holds until t = T . In general, we will
use the notation (ψ̄, ˜̄ψ) when we are referring to approximations of twisting
functions.

Defining the approximate twisting functions

We now want to define approximations of the optimal twisting functions which
we denote by (ψ̄t, ˜̄ψt) at iteration t and refer to as approximate twisting functions.
We can utilise the recursive structure in Definition 4.3.1 which was derived
based on the optimal target distributions. We define the approximate twisting
functions to approximately follow the same recursive structure as the optimal
twisting functions (ψ∗t , ψ̃∗t) at iteration t. We start with the definition of the
approximate normalising function ˜̄ψt(xt) which is an analogue definition to

53

4.5. Approximation of the optimal twisting functions

ψ̃t(xt) in Definition 4.2.1. We then have

˜̄ψt(xt) =
∫
ψ̄t+1(xt+1)p(xt+1|xt)dxt+1 for t = 1, . . . , T − 1 (4.12)

˜̄ψT (xT) ≡ 1 (4.13)

which corresponds to Naesseth, Lindsten, and Schön (2019, eq. 74) in our
notation. We know that the optimal normalising functions follow the recursive
structure in Definition 4.3.1. The general idea for deriving the approximations
(ψ̄, ˜̄ψ) is to use this recursive structure of the optimal normalising functions. To
define a similar recursive structure in the approximate twisting functions, we
set the integrals ˜̄ψt(xt) = ψ̃∗t (xt) for t = T − 1, . . . , 1. To find the approximate
lookahead function ψ̄t+1(xt+1), we then see what expression in the optimal
integral ψ̃∗t (xt) the approximate lookahead function must estimate. We utilise
the optimal recursive structure and the defined recursive structure combined.
We start at t = T and follow the backward recursive structure in order to find
the approximations, see Appendix A.2 for the start of the recursion. To find
the approximation ψ̄t(xt) we have that

ψ̃∗t−1(xt−1) =
∫
φt(xt, xt−1)ψ̃∗t (xt)dxt

=
∫
p(yt|xt)ψ̃∗t (xt)p(xt|xt−1)dxt

˜̄ψt−1(xt−1) =
∫
ψ̄t(xt)p(xt|xt−1)dxt.

This implies that the approximations ψ̄t(xt) can be formulated as

ψ̄t(xt) = p(yt|xt)ψ̃∗t (xt)

≈ p(yt|xt) ˜̄ψt(xt).

We see that the approximate twisting functions (ψ̄t, ˜̄ψt) then approximate the
recursive structure of the optimal twisting functions (ψ∗t , ψ̃∗t) in equation (4.10).
We provide a definition of the approximate lookahead function, ψ̄t(xt), similar
to equation (75) in Naesseth, Lindsten, and Schön (2019) and the recursive
estimation in proposition 4 of Guarniero, Johansen, and Lee (2017).

Definition 4.5.1. The approximate twisting functions are defined by

ψ̄t(xt) ≈ p(yt|xt) ˜̄ψt(xt) t = 1, . . . , T − 1
ψ̄T (xT) ≈ p(yT |xT).

Ideally we would like equality in Definition 4.5.1, but in general this will be
intractable because we would need ˜̄ψt(xt) to be conjugate to the observation
density in order for ψ̄t(xt) to be used in the next approximate normalising
function ˜̄ψt−1(xt−1) and so on. By following the approach of Guarniero,
Johansen, and Lee (2017) we therefore find the closest approximation ψ̄t(xt)
to p(yt|xt) ˜̄ψt(xt) where the approximate lookahead function is conjugate to
p(xt|xt−1). Then we can find a closed form expression for the next integral

54

4.6. Calculating the approximations

˜̄ψt−1(xt−1) in the backward recursive approximation. We see from this definition
that if we are able to calculate the approximations recursively and we have
the approximation ψ̄t+1(xt+1) we can use equation (4.12) in order to calculate
˜̄ψt(xt). In this sense Definition 4.5.1 and the approximate normalising function
in equation (4.12), constitutes an analogue definition to Definition 4.3.1. We
see this by

˜̄ψt(xt) =
∫
ψ̄t+1(xt+1)p(xt+1|xt)dxt+1

≈
∫
p(yt+1|xt+1) ˜̄ψt+1(xt+1)p(xt+1|xt)dxt+1

=
∫
φt+1(xt+1, xt) ˜̄ψt+1(xt+1)dxt+1.

Which we see approximates the same recursive structure as the optimal ψ̃∗t (xt).

4.6 Calculating the approximations

There are several possibilities for calculating the approximate twisting functions
(ψ̄, ˜̄ψ). Some of these are reviewed in e.g. Ala-Luhtala et al. (2016), Guarniero,
Johansen, and Lee (2017), Heng et al. (2020), and Lindsten, Helske, and Vihola
(2018). We mainly focus on parametric approximation following Guarniero,
Johansen, and Lee (2017) in this section, but briefly consider some aspects of
the nonparametric approximation.

Nonparametric approximation

Defining the approximation ψ̄t for t = 1, . . . , T through nonparametric
approximation is also possible and there are different methods for doing
this, see e.g. chapter 6.6 in Hastie, Tibshirani, and J. Friedman (2009) or
chapter 10.2 in Givens and Hoeting (2013). Evaluation of a nonparametric
approximation ψ̄ is however generally computationally costly compared to a
parametric approximation. An intuitive advantage with using a nonparametric
approximation is that we have a more flexible approximation compared to the
parametric approximation. We do not need to specify a parametric class Ψ̄ in
advance that restrict the form of ψ̄.

Parametric approximation

The parametric approximation defines a class Ψ̄ of functions on a specific
parametric form and we denote the parametric approximation by ψ̄t(xt, θt) ∈
Ψ̄. Here θt denotes the parameters used in the parametric form for the
parametric approximation at iteration t. The parameters θt define the
parametric approximation and we focus on estimating these. To motivate
how we can estimate the parameters, recall the approximate recursive structure
Definition 4.5.1 of ψ̄t, where we have substituted in the parametric form

ψ̄t(xt, θt) ≈ p(yt|xt) ˜̄ψt(xt, θt+1) (4.14)

= p(yt|xt)
∫
ψ̄t+1(xt+1, θt+1)p(xt+1|xt)dxt+1.

55

4.6. Calculating the approximations

Following the backward recursive structure, at iteration t we have all the
terms in ˜̄ψt(xt, θt+1) available. One choice of class, Ψ̄, suggested in Guarniero,
Johansen, and Lee (2017) is such that the parametric approximations ψ̄t(xt, θt)
are conjugate to the transition density. This ensures that the integrand also
has a parametric form (Gelman et al., 2013). Because of this we can find a
closed form expression for the integral ˜̄ψt(xt, θt+1). Combining this with the
observation density, we can evaluate all the term on the right-hand side of
equation (4.14). We often refer to the right hand-side as the target and denote
this with

ψ̇t(xt) = p(yt|xt) ˜̄ψt(xt, θt+1).

Selecting a conjugate form for ψ̄t(xt, θt) for t = 1, . . . , T is useful because we
then can evaluate ψ̇t(xt) in closed form. We note that the conjugacy between
approximate lookahead function and the transition density is especially useful
due to the analytical evaluation of the integral. When we are at iteration t of
the backwards recursive structure, the parameters θt+1 are available and we
now consider how θt can be estimated. We define a distance function, denoted
by D, to measure the distance between ψ̄t(xt, θt) and ψ̇t(xt). We then minimise
D with respect to θt in order to find the parameters that minimises the distance.
The parameters that minimise the distance are denoted by θ̄t, we then have

θ̄t = argminθt
D(θt). (4.15)

We denote the distance function using only θt as a parameter for notational
simplicity. Note however that xit for i = 1, . . . , n and θt+1 if t < T are required
to evaluate the distance function.

Distance functions

There are several possibilities when it comes to choice of distance function D.
The distance function denoted by DiAPF is given in section 5.1 of Guarniero,
Johansen, and Lee (2017). With our notation and setup, this is given by

DiAPF =
n∑
i=1

[
ψ̄t(xit, θt)− λtψ̇t(xit)

]2 + rt(x1:n
t , θt, λt). (4.16)

The function rt is a regularisation function which can be included in order to
avoid trivial solutions θ̄t when minimising the distance function D. A trivial
solution in this context is e.g. θ̄t which contains a variance parameter that
yields ψ̄t(xt, θ̄t) so diffuse that it is close to 0 at every xt obtained from the
particles. Another possible distance function is given in Naesseth, Lindsten,
and Schön (2019, eq. 78) where the normalised weights are used to define a
weighted distance.

During our numerical simulations, primarily when xt were scalars, we saw
that DiAPF when used with rt(x1:n

t , θt, λt) = 0 for t = 1, . . . , T could be sensitive
to initial values in the numerical minimisation. This is discussed further in
Section 4.9. Related to this sensitivity we used a slightly altered version of the
distance function DiAPF. We denote this by DiAPF2 and it is given by

DiAPF2 =
n∑
i=1

[
λtψ̄t(xit, θt)− ψ̇t(xit)

]2
. (4.17)

56

4.6. Calculating the approximations

In the case of scalar variables, heuristics implies that this distance function, in
our specific numerical optimisation framework, tended to be numerically more
stable. This is mainly compared to the distance function DiAPF.

We now present a recursive algorithm that can be used to calculate
parametric approximations (ψ̄, ˜̄ψ). The algorithm is adapted from algorithm
3 and equation (15) in Guarniero, Johansen, and Lee (2017). However
this algorithm may run backwards from an arbitrary tstop to an arbitrary
tstart < tstop. In an offline setting we set tstop = T and tstart = 1 to calculate all
the twisting functions. The algorithm is presented for parametric approximations
and we assume that ψ̇t(xt) can be calculated within the distance function D.

Algorithm 7 Recursive estimation of twisting functions
1: for t ∈ (tstop, . . . , tstart) do
2: if t = tstop then
3: ˜̄ψt(xt) = 1
4: else
5: ˜̄ψt(xt) =

∫
ψ̄t+1(xt+1, θ̄t+1)p(xt+1|xt)dxt+1

6: end if
7: θ̄t = argminθt

D(θt)
8: end for

Numerical minimisation

After selecting a class Ψ̄ and a distance function D, we need to find the
parameters θ̄t. When Ψ̄ and D are selected, the problem in equation (4.15)
is a general numerical optimisation problem. The θt is normally a vector of
parameters defining the approximate lookahead function. In the case of defining
ψ̄ as a mixture of distributions or a multivariate distribution it consists of the
parameters for several mixture components or dimensions respectively. Our
main approach to numerically minimise (4.15) has been based on Newton’s
method which is conceptually defined in Givens and Hoeting (2013, eq. 2.33).
This is given here in our notation

θj+1
t = θjt − (H(θjt))−1∇D(θjt).

The term ∇D(θjt) denotes the gradient of the distance function while H denotes
the Hessian matrix at the numerical optimisation iteration j. We use Newton-
like methods for the numerical minimisation, see e.g. chapter 2 of Givens and
Hoeting (2013). We do not go into details about the numerical optimisation,
but some general expressions that can be used for Newton-like optimisation
methods can be found in Appendix A.2. See e.g. Givens and Hoeting (2013)
and Spall (2003) for general approaches to numerical optimisation problems.

Initial values in the minimisation

Assume that we use a parametric approximation ψ̄t(xt, θt) consisting of a
single Gaussian. For the numerical optimisation we need initial values for the
parameters θt and λt if we use the distance function DiAPF. We want the
expectation parameter of ψ̄t(xt, θt) to be close to the mode of ψ̇t(xt). We

57

4.7. Lookahead setting

therefore extract a subset of xit for i = 1, . . . , n that has the highest values of
ψ̇t(xt) and use the mean of these values as the initial value for µt.

For σ2
t we use a SIR approach with the importance weight set to w̃t = ψ̇t(xt)

wt

where wt is the normalised weights for xt. In practice, we often resampled xt
according to wt ∝ w̃t = ψ̇t(xt) to avoid storing the normalised weights. We then
calculate the sample variance. Then we add a constant C and use the result
as the initial value. We usually set C = 1 in the numerical experiments. The
motivation for adding the constant C to the initial value of the variance is related
to starting the optimisation from a more uninformative initial distribution.

As an initial value for λt we solve ∂
∂λt

DiAPF = 0, then insert the initial
values of µt and σ2

t . In the case of using the distance function DiAPF, this
implies that

λt =
∑n
i=1 ψ̄t(xit, θt)ψ̇t(xit)∑n

i=1 ψ̇t(xit)2
(4.18)

can be used as an initial value for λt.

4.7 Lookahead setting

We have so far seen two main approaches to approximating the optimal twisting
functions, parametric and nonparametric. Common for these are that all the
observations y1:T are required due to the backwards recursive structure in
Algorithm 7. The optimal lookahead functions are similar in character to the
general lookahead strategies in Lin, Chen, and J. S. Liu (2013). It is therefore
natural to consider if one can approximate the optimal lookahead function ψ∗
with a general constant lookahead strategy. Recall the constant lookahead
setting, that is, we assume that we have the observations y1:t+C available at
iteration t where C is a positive constant. In contrast to the offline setting
discussed in e.g. Guarniero, Johansen, and Lee (2017), Heng et al. (2020), and
Naesseth, Lindsten, and Schön (2019), we are here restricted to a constant
lookahead of C observations relative to iteration t. This constant lookahead
setting is part of a more general framework often referred to as lookahead
strategies (Lin, Chen, and J. S. Liu, 2013).

Unless the lookahead is C ≥ T − t for t = 1, . . . , T , we are not in the
offline setting. If one use a constant lookahead of c iterations, Guarniero,
Johansen, and Lee (2017) argues that ψ becomes constant lookahead functions
and therefore not optimal lookahead functions. If we use a constant lookahead
of C iterations, we have that the recursive structure from the optimal lookahead
functions ψ∗t (xt) = p(yt|xt)ψ̃∗t (xt) may not hold. Here, we denote the constant
lookahead functions by ψct (xt) = p(yt:t+C |xt) at iteration t. We start from the
right-hand side of the recursive structure. Substituting ψct+1(xt+1) into the
definition of the normalising function in equation (4.2.1) gives

p(yt|xt)ψ̃ct (xt) = p(yt|xt)
∫
ψct+1(xt+1)p(xt+1|xt)dxt+1

= p(yt|xt)
∫
p(yt+1:t+C+1|xt+1)p(xt+1|xt)dxt+1

= p(yt:t+C+1|xt).

58

4.8. Iterated auxiliary particle filter

We see that this do not correspond to the left hand side ψct (xt) = p(yt:t+C |xt).
With a constant lookahead of C iterations, we therefore have that the recursive
structure that follows from the optimal twisting functions may not hold.

The constant lookahead setting, with a constant lookahead of C future
observations, corresponds to the delayed-sample method (Guarniero, Johansen,
and Lee, 2017). From section 4.2 of Lin, Chen, and J. S. Liu (2013) we have
that the delayed-sample method uses an importance sampling distribution that
in our notation correspond to p(xt|x1:t−1, y1:t+C) = p(xt|xt−1, yt:t+C). Assume
now that we use a constant lookahead function ψct (xt). We can check that by
using this constant lookahead function in the twisted transition density we have

pψt (xt|xt−1) = p(xt|xt−1, yt:t+C).

In the constant lookahead setting with C iterations of lookahead at all iterations,
the importance sampling distribution in the twisted model is equal to the
importance sampling distribution in the delayed-sample method. This is seen
by the following at iteration t ≥ 2 and with constant lookahead of C ≤ T − t.
We then have

pψt (xt|xt−1) = p(xt|xt−1)p(yt:t+C |xt)
p(yt:t+C |xt−1)

= p(xt, xt−1)p(yt:t+C |xt, xt−1)
p(yt:t+C , xt−1)

= p(xt|xt−1, yt:t+C).

For iteration t = 1, we first consider the normalising constant ψ̃c0. In the
constant lookahead setting this becomes

ψ̃c0 =
∫
ψc1(x1)p(x1)dx1 = p(y1:1+C).

We then insert ψ̃c0 into pψ1 (x1) from the twisted model

pψ1 (x1) = p(x1)ψc1(x1)
ψ̃c0

= p(y1:1+C , x1)
p(y1:1+C) = p(x1|y1:1+C).

From this we see that when using lookahead functions with a constant lookahead
of C iterations the twisted transition densities correspond to the importance
sampling function from the delayed-sample method. The fact that the recursive
structure from the optimal lookahead functions does not hold is also part of
the motivation for utilising twisting target distributions in the batch setting as
we consider in Chapter 5.

4.8 Iterated auxiliary particle filter

Here we briefly review the iAPF from algorithm 4 in Guarniero, Johansen, and
Lee (2017). This is using an iteratively improving approximation of ψ̄ with two
stages: run a particle filter with approximate twisting functions in a twisted
model to obtain a set of particles, then improve the lookahead functions ψ̄ by
using the obtained particles. A stopping criterion for the iteratively improving
approximations and a dynamic number of particles is used. The number of

59

4.9. Example: instability in estimation

particles at iteration i of the algorithm, ni, is determined by the last k estimates
of the likelihood Ẑψ from the particle filter. This is done by checking if the
sequence of likelihood estimates are monotonically increasing which is done in
the generic function mi. The algorithm starts with an initial n0 number of
particles, but this may increase during the run of the algorithm. In order to
measure the stability of the likelihood estimates, the condition sd(ẑk)

mean(ẑk) < τ is
checked with τ being a specified threshold. The variable ẑk is the sequence of
the last k likelihood estimates. We also assume that the first set of n0 sequences
(x1

1:T , . . . , x
n0

1:T) are obtained from a BPF. This corresponds to the case where
we use a constant function ψ̄ = 1.

Here, we use i to denote the iteration of the algorithm and we use ψ to
indicate all the approximate lookahead functions. We denote the approximation
ψ̄ by ψ in order to simplify notation in the algorithm. This implies that ψi was
obtained using particles from the ith iteration. The function mi(ẑk) checks if

Algorithm 8 iAPF
1: i = 1, ψi = 1, continue = True
2: while continue do
3: ẑi = Zψ

i

ni from Algorithm 6 with ψi

4: if [i > k] and
[

sd(ẑk)
mean(ẑk) < τ

]
then

5: ẑi = Zψ
i

ni from Algorithm 6 with ψi
6: return ẑi
7: else
8: ψi+1 from Algorithm 7
9: if

[
ni−k == ni

]
and

[
¬mi(ẑk)

]
then

10: ni+1 = 2 · ni
11: else
12: ni+1 = ni

13: end if
14: i = i+ 1
15: end if
16: end while

the sequence of the last k likelihood estimates, ẑk, is monotonically increasing
and returns True if it does and False if not. The algorithm corresponds to
algorithm 4 from Guarniero, Johansen, and Lee (2017) in our notation. In
Algorithm 8 the recursive estimation of the twisting functions in Algorithm 7 is
always started from t = T and stopped at t = 1 because we are in an offline
setting.

4.9 Example: instability in estimation

In our experience, estimating the twisting functions recursively in a backward
manner might be unstable in 1D. The first iteration of recursive estimation in
Algorithm 7 was sensitive to the initial values used in the numerical minimisation.
To illustrate this with an example, we use model 1 from Chapter 7.

We simulate T = 50 latent variables and observations, then we obtain a
set of n = 500 particles from a BPF using an adaptive resampling with a

60

4.9. Example: instability in estimation

threshold of 0.5. We now consider the first two iterations of the backwards
recursive estimation in Algorithm 7 when using the distance function DiAPF.
We highlight the instability by plotting the distance function as a surface over a
set of evenly spaced µ-values and σ2-values. The surface of the distance function
is plotted before the numerical minimisation starts. This is to highlight the
effect of the initial value selected for λt on the minimisation problem. We start
with λt = 1 as an initial value. We then illustrate how the surface plot changes
when we use the same set of evenly spaced for µt and σ2

t , but with the initial
value of λt set equal to the initial value from equation (4.18).

We start the backward recursive estimation at t = 50 where we have plotted
the particles and the target ψ̇t(xt) in figure 4.1b. In figure 4.1a, the surface
of DiAPF has been plotted over a set of evenly spaced µ-values and σ2-values.
The white circle in figure 4.1a indicates the initial values for µ50 and σ2

50. The
red cross indicates the minimum values of µ50 and σ2

50 found by using optim in
R with the quasi-Newton method BFGS. The minimisation use the analytical
gradients. The parameters (µ50, σ

2
50) found by the numerical minimisation

is used in the approximation ψ̄50. We see from figure 4.1b that this seems
reasonable as the approximation is overlapping with the target ψ̇50. We then
proceed to the second iteration of the recursive estimation, that is t = 49, while
using an initial value of λt = 1.

From figure 4.2a we see that the local minimum point found, indicated by
the red cross, is far from the µ49 and σ2

49 that are reasonable for the target.
The target ψ̇49 is plotted in blue in figure 4.2b. From figure 4.2b, a value of
µ49 ≈ 2 can be a reasonable approximation. The minimum point found by
the numerical minimisation however indicate µ49 ≈ −15 which is unreasonable.
When t = 49 we see from figure 4.2b that the approximation ψ̄49, indicated by
the green line, is far from the target ψ̇49 indicated by the blue line. In this case,
the approximation, ψ̄49(x49, θ49), has a low value of DiAPF, but only because
all ψ̄49(x49, θ49) at those x values are close to 0. If we however use the initial
value for λ49 from equation (4.18) we get another initial surface for the distance
function, DiAPF. From figure 4.3 we see the initial surface of DiAPF when using
equation (4.18) to calculate the initial λ49. Even though the initial values for µ
and σ2 are the same the initial surface is quite different. We also note that if
the parameters µ49 and σ2

49 obtained with initial value λ49 = 1 is selected, the
following estimation of the parameters at t < 49 is more difficult. This is due
to the backward recursive structure in Algorithm 7. Further, approximations
of twisting functions far from the optimal twisting functions will cause the
following run of the twisted particle filter to obtain suboptimal particles. This
will again affect the next recursive approximation of (ψ̄, ˜̄ψ).

61

4.9. Example: instability in estimation

(a) Surface of distance function over a grid of µ50 and σ2
50.

(b) Particles as red circles, approximation ψ̄50 as green line and target ψ̇50 as blue
line.

Figure 4.1: First iteration of the recursive estimation using initial value λ50 = 1.

62

4.9. Example: instability in estimation

(a) Surface of distance function over a grid of µ49 and σ2
49.

(b) Particles as red circles, approximation ψ̄49 as green line and target ψ̇49 as blue
line.

Figure 4.2: Second iteration of the recursive estimation using initial value
λ49 = 1.

63

4.9. Example: instability in estimation

Figure 4.3: Second iteration of the recursive estimation using the alternative
initial value for λ49.

64

CHAPTER 5

Twisting targets in a batch setting

In this chapter we consider a different setup for utilising twisting target
distributions which we have not seen before. We will use the term batch
setting when dividing all the iterations 1, . . . , T of the timeline into subsets of
iterations. We think of observations becoming available in batches corresponding
to these iterations. In the extremum, a batch setting with one batch is equal to
an offline setting. Fundamentally, we expect estimates obtained in an offline
setting to have lower numerical variance than estimates obtained in an online
setting. In the context of estimating likelihood, we expect lower variance for
likelihood estimates obtained in an offline setting than in an online setting.
This is related to the additional information available. We also saw that if were
able to utilise all future observations both in simulating latent variables and
when evaluating the target distribution, this would result in all incremental
weights being equal to 1.

In an offline setting it is possible to utilise twisting target distributions
obtained with twisting functions in order to reduce the variance of the likelihood
estimates. Algorithms such as the iterated auxiliary particle filter of Guarniero,
Johansen, and Lee (2017) and Controlled SMC of Heng et al. (2020) are
utilising this general strategy combined with numerical optimisation. The
obtained likelihood estimates often have significantly lower variance compared
to likelihood estimates from a BPF using more particles.

We consider a batch algorithm that is utilising twisting functions to reduce
the variance of likelihood estimates. The main idea is to utilise iteratively
improved twisting functions within a batch setting. As we have seen, there
are infinitely many valid twisting functions (ψ, ψ̃). Among the approximate
twisting functions there are e.g. the parametric forms from within predefined
classes and the nonparametric forms. In the batch algorithm, we will see that
we can use any form of twisting functions in a similar manner to that we
can use any form of twisting functions in the offline setting. This gives us
much of the same flexibility as in the offline setting. We also want to have
iterative improvement of the twisting functions within the batches. This is an
adaption of the offline iterative improvement that was used in the iAPF of
Guarniero, Johansen, and Lee (2017). We then consider likelihood expressions
in the batch setting, estimation of the likelihood and the connection between
the batch setting and the twisting functions in an offline setting. We will in
the following chapter use the generic notation (ψ, ψ̃) for the general, offline,
twisting functions.

65

5.1. Motivation

5.1 Motivation

In this section we consider the motivation and structure of a batch setting
used in the batch algorithm. Conceptually, we define a batch as a subset of
all iterations. We think of the observations at these iterations as becoming
available in batches, then we simulate the latent variables within the batch. We
denote the batches by e = 1, . . . , E and the last iteration in the last batch by
T . We can consider two different approaches when it comes to structuring the
iterations into batches.

One way to think of a batch is as a fixed size subset of L observations that
becomes available, then these L observations are utilised in the current batch.
Conceptually, we then think of these observations as becoming available at
the start of the respective batch and when the batch ends the observations
are discarded. Since our first iteration is t = 1, the first batch consists of
the iterations t = 1, . . . , L. The next batch then consists of the iterations
t = L + 1, . . . , 2L and so on. We refer to this as the batch setting and it is
illustrated in Figure 5.1. In Figure 5.1 the iteration numbers are indicated over

Figure 5.1: Conceptual structure of the batch setting.

the timeline, the dashed lines represent the boundaries of the batches and the
batch numbers are indicated below the timeline indicating what observations
are available in the current batch.

The other way is to think of incrementally increasing subsets of iterations
to define incrementally larger batches. In this setting, we think of a fixed size
subset of L observations that becomes available. The subset of observations
is added to the previously stored observations to form a new batch. We refer
to this as the incremental batch setting and it is illustrated in Figure 5.2. In

Figure 5.2: Conceptual structure of the incremental batch setting.

this way, batch e contains the observations from batch e− 1 as a subset. The
batches are incrementally increasing by L observations as shown in Figure 5.2.

First, we consider the case of moving from an offline setting to a batch setting,
then we consider the case of extending the batch setting into an incremental
batch setting. The incremental batch setting is equivalent to considering the
last iteration of the incremental batch as the final iteration in an offline setting.

66

5.1. Motivation

This implies that in each incrementally larger batch, we will have another offline
setting as in Chapter 4 with the final iteration defined as T = eL. Therefore,
our focus will be on the batch setting in Figure 5.1. Note that the number of
iterations defining each batch in the batch setting does not necessarily need to
be fixed. In the batch setting we will however assume that each batch consists
of L iterations for notational simplicity.

Consider the first batch that contains the iterations 1, . . . , L. We can think
of having the observations y1:L available at time L. We then think of having the
current observation y1 and future observations y2:L available at iteration 1 in
an algorithm. This is related to the discussion of lookahead and delay strategies
in Lin, Chen, and J. S. Liu (2013) and we follow their notion of conceptually
thinking that we have future observations available at the current iteration.
This implies that already at iteration t = 1, we have y1:L available and can
use these observations e.g. when simulating x1. In terms of delay strategies,
this would correspond to delaying simulation of x1 until iteration t = L where
we have y1:L available. The idea is the same as in the offline setting where we
consider that at iteration t = 1, . . . , T , we have all observations y1:T available.

The main motivation for a batch algorithm is that at iteration t = 1 of
the algorithm we have a batch of observations, y1:L, available and we want to
be able to start a particle filter. That is, we want to start simulating latent
variables so that we can estimate both the final target distribution in the batch,
p(x1:L|y1:L) and the marginal likelihood p(y1:L). This is in contrast to an offline
setting where we wait until t = T to start the particle filter. When we are
at iteration t = L, that is the end of batch 1, we also want an estimate of
the marginal likelihood p(y1:L). Then we assume that batch 2 consisting of
observations yL+1:2L becomes available. At the end of batch 2 we want an
estimate of the marginal likelihood p(y1:2L) and so on. The first motivation
for the batch algorithm is the fact that we do not have to wait until we have
all the observations y1:T in order to start the calculations. Secondly, we can
have estimates of the marginal likelihood at the end of each batch which may
be useful for e.g. parameter estimation. Thirdly, the batch algorithm can also
have constant memory requirements over time compared to in an offline setting
when the objective is to estimate the marginal likelihood.

The second motivation can be related to online Bayesian parameter estima-
tion. We may think of of the approach where we considered the distribution
p(x1:t, θ1:t|y1:t) and assumed a transition density p(θt+1|θt) discussed in J. Liu
and West (2001). If we assume the parameter θ is fixed or very slowly changing
we can be motivated to only simulating this at the start of a batch. This is in
contrast to simulating θ at every iteration which might be somewhat unreason-
able if we assume θ is fixed or very slowly changing. Ideally, we would never
need to resample, at least very rarely, which also would help when considering
reducing degeneracy of θ within each batch. In practice one may think of this as
a trade-off between using an offline setting where one could use particle MCMC
methods as discussed in Andrieu, Doucet, and Holenstein (2010) and an online
setting where one could use the approach of J. Liu and West (2001).

We assume in our presentation that all the batches have equal length, for
notational simplicity, and therefore that the last iteration in the last batch,
E, corresponds to the final iteration T = EL. If one were to consider the
comparable offline setting, this would consists of the iterations 1, . . . , T . At
the end of the batches we also have simulated sequences x1:L, x1:2L, . . . , x1:T

67

5.2. The batch sequence

along with the corresponding weights available. This also makes it possible
to estimate the distributions p(x1:L|y1:L), p(x1:2L|y1:2L), . . . , p(x1:T |y1:T). If we
estimate the marginal likelihood at the end of each batch we have marginal
likelihood estimates on the form p(y1:L), p(y1:2L), . . . , p(y1:T). We use the
notation Zt to denote the marginal likelihood up to and including iteration t.
This is only available analytically in special cases such as in a linear Gaussian
model when using a Kalman filter. For the likelihood estimates, we will use
Ẑt to denote the likelihood estimate up to and including iteration t. The BPF
estimates the marginal likelihood online, so we would expect the estimates Ẑt
to be consistent estimates for every t. Moving from the offline setting to a batch
setting implies that we will be able to utilise less information at every iteration.
Therefore we also expect that the likelihood estimates in an offline setting will
have lower variance than in a batch setting.

When moving from an offline setting to a batch setting we can conceptually
think of a modified twisted model and twisting functions within each batch. We
will see that this idea correspond to a special sequence Ψs

1:T of functions which
we refer to as the batch sequence. We will also see that the batch sequence have
some additional structural requirements compared to the traditional sequence
Ψ1:T .

5.2 The batch sequence

Our focus in this section is Ψs
1:T , the sequence which we refer to as the batch

sequence. For notational simplicity when we discuss iterations in the batch
setting we will think of a generic batch e > 1. We denote the last iteration
of batch e − 1 by q = (e − 1)L. Consequently q + 1 corresponds to the first
iteration of batch e. We then define the batch sequence by

Ψs
1:T = ψ1(x1), . . . , ψq(xq), ψq+1(xq+1, xq), ψq+2(xq+2), . . . , ψT (xT)

and we see that at iterations q+1 the functions ψq+1 depend on both the current
and the previous latent variables, xq+1 and xq respectively. We note here that
the lookahead functions defined in Naesseth, Lindsten, and Schön (2019) at
iteration t depends on x1:t. This implies that we might can see the functions
ψq+1(xq+1, xq) as a special case of these functions. We use another function
or combination of functions to define every function ψt in the batch sequence.
As long as the functions we use to define every ψt are selected with some
requirements, our aim is that the batch sequence also follows Assumptions 4.2.1
and therefore is a valid sequence. We denote the functions that we use to
define each ψt in the batch sequence by (ψb, ψ̃b) and refer to these as batch
twisting functions. We then consider how the batch sequence Ψs

1:T can be used
in combination with the twisted model to define what we will refer to as batch
twisted models. Finally we focus on what we will refer to as batch optimal
twisting functions, denoted by (ψb∗, ψ̃b∗) which is just a specific choice of batch
twisting functions.

The motivation is now to define a batch sequence Ψs
1:T that fulfils

Assumptions 4.2.1. This again ensures that a twisting target distributions
using this sequence and a twisted model has final target equivalence with the
joint distribution p(x1:T , y1:T). This is seen in proposition 1 of Guarniero,
Johansen, and Lee (2017). As we have seen, finding a general sequence Ψ1:T

68

5.2. The batch sequence

that fulfils these requirements is not necessarily difficult. There are infinitely
many valid sequences, one of them being the sequence that results from setting
all the functions in the sequence equal to a constant C. So far we have only
specified that every function ψt in the batch sequence Ψs

1:T should be defined
by another function or combination of functions which we denoted by (ψb, ψ̃b).
We now consider the batch twisting functions before returning to how we can
use these to define every ψt in the batch sequence.

Batch twisting functions

Our aim is to define every function in the sequence Ψs
1:T . That is, we want

to define ψt for t = 1, . . . , T and the only restrictions we have for each ψt are
those in Assumptions 4.2.1. To define each ψt in the batch sequence we use
either one function or a combination of functions from another set of functions
which we denote by (ψb, ψ̃b). We refer to the set of functions used to define
every ψt as batch twisting functions. For now the batch twisting functions
are simply functions used to define each ψt in the batch sequence. Because
the batch twisting functions are just a set of functions, we also select ψbt so
Assumptions 4.2.1 is fulfilled. From these assumptions, we still have a lot of
flexibility when it comes to defining the batch twisting functions. In addition,
we denote the batch normalising functions for the batch lookahead function
ψbq+1(xq+1) by ψ̃b0e(xq). We then have for batch e = 1 and e ≥ 2 respectively

ψ̃b01 =
∫
ψb1(x1)p(x1)dx1 (5.1a)

ψ̃b0e(xq) =
∫
ψbq+1(xq+1)p(xq+1|xq)dxq+1. (5.1b)

Here, we have denoted the normalising function by using 0e even though it
can be viewed as a traditional normalising function. The motivation for this
is based on its placement in the batch sequence Ψs

1:T where we will see that
it is included at iteration q + 1 instead of at iteration q. We have now have
defined the batch twisting functions and further we want to use these functions
to define every ψt in the batch sequence Ψs

1:T . Note that even though we have
used the notation (ψb, ψ̃b), these functions are so far only used in order to define
each function ψt in the batch sequence.

Defining the batch sequence

We now want to use the set of batch twisting functions which we denote by
(ψb, ψ̃b) to define each of the ψt in the sequence Ψs

1:T . Recall that we defined
iteration q as the last iteration of batch e−1 such that iteration q+1 corresponds
to the first iteration of the following batch e ≥ 2. We now define the function
ψt for t = 1, . . . , T which gives

ψt(xt) = ψbt (xt) if t 6= q + 1 (5.2a)

ψt(xt, xt−1) = ψbt (xt)
ψ̃b0e(xt−1)

if t = q + 1. (5.2b)

When each of these functions are defined we have all the functions in the batch
sequence Ψs

1:T . Our goal is that the batch sequence also fulfils the original

69

5.2. The batch sequence

assumptions defined in Guarniero, Johansen, and Lee (2017) when we have
defined each ψt by using batch twisting functions. As we have seen, this ensures
final target equivalence when the twisting functions obtained from the batch
sequence is used in a twisted model. Note that so far, the iterations q + 1 are
only iterations of the batch sequence where we have defined ψt in a different way.
The batch sequence therefore has much of the flexibility of a general sequence
Ψ1:T . This is because at iterations t 6= q + 1 we simply have ψt(xt) = ψbt (xt).
The function ψt at iterations q + 1 also depends on xq which corresponds to
the latent variable of the last iteration of the previous batch.

The batch sequence Ψs
1:T is a valid sequence because of the assumptions

made about the batch lookahead functions ψb which again defines every ψt
in the batch sequence. To define the batch sequence we first define ψb and
then ψ are defined based on ψb. We can think of this as inserting ψb into
equation (5.2a) and (5.2b) which defines every ψt. When this is done, we have
the sequence Ψs

1:T and we can use this in a twisted model. The twisted model
can then be used in a twisted particle filter. This also mean we can estimate
the likelihood in the same way as in Guarniero, Johansen, and Lee (2017).

We now want to consider the normalising functions associated with the
batch sequence. The normalising function ψ̃t(xt) is defined as the expectation
of ψt+1(xt+1) with respect to the transition density p(xt+1|xt). Recall that we
denoted iteration q as the last iteration in batch e − 1 for batch e ≥ 2 and
therefore that q + 1 corresponds to the first iteration in batch e. Therefore, if
we think of iteration q as the last iteration in batch e = 1, . . . , E − 1 we have
that

ψ̃q(xq) =
∫
ψq+1(xq+1, xq)p(xq+1|xq)dxq+1

=
∫
ψbq+1(xq+1)
ψ̃0e(xq)

p(xq+1|xq)dxq+1

=
∫

ψbq+1(xq+1)∫
ψbq+1(xq+1)p(xq+1|xq)dxq+1

p(xq+1|xq)dxq+1 = 1. (5.3)

Note that the second equality follows from substituting ψq+1(xq+1, xq) with
equation (5.2b). We then have that the normalising functions ψ̃t(xt) which are
defined by the batch sequence are given by the following

ψ̃t(xt) =
{∫

ψbt+1(xt+1)p(xt+1|xt)dxt+1 = ψ̃bt (xt) if t 6= q

1 if t = q.

Note that the last normalisation function associated with the sequence Ψs
1:T

is ψ̃T (xT) ≡ 1 because ψ̃bT (xT) ≡ 1. To summarise we now see that the
functions ψt at iterations t that correspond to the first iteration of batches
e ≥ 2 are defined differently from the remaining functions. For the iterations
that correspond to the first of batches, we have ψt(xt, xt−1) which we saw in
equation (5.2b). For the remaining functions we have that ψt(xt) = ψbt (xt). As
a consequence of this, we see that the normalising functions ψ̃t(xt) at iterations
t that corresponds to the last of batches e ≥ 1 are equal to 1 while at all the
other iterations we have ψ̃t(xt) = ψ̃bt (xt).

In proposition 1 of Guarniero, Johansen, and Lee (2017), it is stated that
we need the final, unnormalised, twisting target distribution to be equal to the

70

5.3. Batch twisted model

joint distribution p(x1:T , y1:T) when the final target distribution is the posterior
p(x1:T |y1:T). As a result of this, the likelihood integral from the twisted model
is equal to the likelihood integral from the SSM used to define the twisted model.
As long as the sequence Ψs

1:T is valid, we will have final target equivalence at the
final iteration t = T when using a twisted model and this sequence. So far, the
batch sequence is just a sequence of functions ψt with a special way of defining
the functions at iterations that correspond to the first iteration of each batch
e ≥ 2. Consider now the case of selecting batch lookahead functions ψbt (xt) = 1
for every xt and every t. All the functions ψt in Ψs

1:T would then be equal to 1
and consequently, all the normalising functions ψ̃ would be equal to 1. This is
a valid choice of batch lookahead functions ψb and the resulting functions ψt
which all are 1 are also valid within Assumptions 4.2.1. The resulting batch
sequence will however not be very useful with respect to reducing variance of the
likelihood estimates. This is because the twisted transition density and twisted
observation functions then will be equal to the transition and observation density
respectively.

In the next section we consider how we can define what we will refer to as
batch twisted models by inserting the specially defined batch sequence into a
twisted model. The batch twisted models are subsets of the sequence of twisted
transition densities and observation functions from equation (5) and (6) in
Guarniero, Johansen, and Lee (2017) after Ψs

1:T is inserted. This is done in the
same manner as we think of splitting the iterations into subsets and referring
to these as batches. We start by inserting the batch sequence into one twisted
model. Then, we split the sequence of resulting twisted transition densities and
observation functions into subsets corresponding to the iterations that defines
batches. We then think of each batch as having a batch twisted model which
is defined over the iterations of the batch. This implies that we can always
return to thinking of one sequence Ψs

1:T and one twisted model. In Figure 5.3

Figure 5.3: The batch sequence at iterations corresponding to batch e ≥ 2.

we consider a subset of the batch sequence at iterations corresponding to a
batch e ≥ 2. The boundaries of the batch are denoted by the dashed lines.
Over the timeline we have the functions ψt and below we have its definition
from equations (5.2a) and (5.2b). See Appendix A.3 for an overview of Ψs

1:T .

5.3 Batch twisted model

The batch sequence Ψs
1:T is a sequence of general functions ψt that can be used

directly with the twisted model as long as Assumptions 4.2.1 holds for the
functions ψb. This implies that the unnormalised twisting target distributions

71

5.3. Batch twisted model

that result from the twisted model have final target equivalence with the joint
distribution p(x1:T , y1:T). In this section we will consider what we refer to as
batch twisted models by inserting the batch sequence into a twisted model.
We split the sequence of twisted transition densities and twisted observation
functions into subsets of iterations defined by the batches.

Our motivation for thinking of subsets of the twisted model as batch twisted
models is based on how we defined each of the functions ψt in the batch sequence
by using the functions ψb. Up until now, we have been thinking of the functions
ψb only as functions that define every ψt. We want to use the framework
defined in Guarniero, Johansen, and Lee (2017) within each batch by now
viewing the functions ψb as batch lookahead functions. Our aim is to have
target equivalence with p(x1:t, y1:t) also at the iterations t that correspond to
the end of batches when using batch twisted models. Note that this can trivially
be achieved by selecting each ψbt = 1 for all t. Then every twisted transition
density and twisted observation function in a twisted model would correspond
to the transition density and observation density of the model that defined
the twisted model. The unnormalised twisting target distributions would then
correspond to p(x1:t, y1:t) at every iteration, including at the iterations that
correspond to the end of each batch. However, in that case we are not utilising
any future information.

To define the batch twisted models, we now insert the batch sequence Ψs
1:T

into a twisted model for iterations t = 1, . . . , T . We start with iterations
t = 1, . . . , L which correspond to the iterations in batch 1 and ψt corresponding
to Ψs

1:L is inserted into the twisted model. Note that we omit dependence on x
in these expressions to simplify notation. This then gives

pψ1 (y1|x1)pψ1 (x1) . . . pψL(yL|xL)pψL(xL|xL−1) (5.4a)

=p(y1|x1)ψ̃b1ψ̃b01
ψb1

p(x1)ψb1
ψ̃b01

. . .
p(yL|xL) · 1

ψbL

p(xL|xL−1)ψbL
ψ̃bL−1

=p(y1|x1)p(x1)
L∏
s=2

p(ys|xs)p(xs|xs−1). (5.4b)

After inserting the functions ψt into the twisted model, the batch twisting
functions (ψb, ψ̃b) remain in the first equality. When considering the
unnormalised twisting target distribution up to the end of batch 1 all the
batch twisting functions cancels and the joint distribution p(x1:L, y1:L) results
in the second equality. Recall that the last normalising function is ψ̃L(xL) = 1
from equation (5.3). We now want to consider the unnormalised twisting target
distribution at the end of batch e. Recall that this corresponds to iteration eL,
we then have that

pψ1 (y1|x1)pψ1 (x1)
eL∏
s=2

pψs (ys|xs)pψs (xs|xs−1) (5.5)

follows from the twisted transition density and twisted observation functions. For
notational simplicity, we denote the last iteration of batch e− 1 by q = (e− 1)L
and therefore iteration q + 1 is the first of batch e. We then have that equation

72

5.3. Batch twisted model

(5.5) can be reformulated into[
p(y1|x1)p(x1)

L∏
s=2

p(ys|xs)p(xs|xs−1)
]

...[
p(yq+1|xq+1)ψ̃bq+1ψ̃

b
0e

ψbq+1

p(xq+1|xq)ψbq+1

ψ̃b0e
. . .

p(yeL|xeL) · 1
ψbeL

p(xeL|xeL−1)ψbeL
ψ̃beL−1

]
.

This is a result of inserting Ψs
1:eL into the twisted model. For iterations up

to iteration L equations (5.4a) and (5.4b) are used in the first pair of square
brackets. We insert ψt into batches 2, . . . , e− 1 in the same way as for the first
batch and show the expression only for iterations corresponding to batch e. We
see the resulting expression after inserting ψt from Ψs

q+1:eL in the lower pair of
square brackets. The batch twisting functions (ψb, ψ̃b) cancels in the batches
2, . . . , e equivalently as in the first batch and we have[

p(y1|x1)p(x1)
L∏
s=2

p(ys|xs)p(xs|xs−1)
]

...[
p(yq+1|xq+1)p(xq+1|xq)

eL∏
s=q+2

p(ys|xs)p(xs|xs−1)
]

=p(y1|x1)p(x1)
eL∏
s=2

p(ys|xs)p(xs|xs−1).

This implies that at the end of batch e, the unnormalised twisting target
distribution is p(x1:eL, y1:eL). Recall that we denoted the last batch by E and
that the last iteration of this batch was denoted by T = EL. By considering
the last iteration of the last batch, we would therefore have that the final
unnormalised twisting target distribution would be equal to the joint distribution
p(x1:T , y1:T). Recall that it is only for notational simplicity that we think of all
batches as consisting of L iterations. We can define each batch to contain any
number of iterations and consequently, the batch twisted models will consist
of a varying number of twisted transition densities and twisted observation
functions.

We have now considered Ψs
1:T to be one sequence of functions ψt that fulfils

target equivalence at iterations eL for e = 1, . . . , E when inserted into the
twisted model. Now we define what we will refer to as batch twisted models.
Conceptually, we consider each batch to have its own twisted model and twisting
functions. These twisting functions are provided by the batch sequence Ψs

1:T
because of how we defined the functions ψt in this sequence. Recall that we
defined the functions ψb under the general Assumptions 4.2.1. We can then
think of (ψb, ψ̃b) as the batch twisting functions in combination with a batch
twisted model. This motivates that at the end of a batch, that is iteration
eL, we have target equivalence and therefore the marginal likelihood from the
twisted model at the end of a batch should correspond to the marginal likelihood

73

5.3. Batch twisted model

of the SSM at that iteration. In a filtering context we can have p(x1:t, y1:t)
as unnormalised target distributions at iterations t = 1, . . . , T . Similarly, we
consider a batch algorithm as having unnormalised twisting target distributions
f̃ bt (x1:t) which by target equivalence are equal to p(x1:t, y1:t) at iterations t = eL
for e = 1, . . . , E. Also in a similar way, we consider offline algorithms using
twisting functions as having target equivalence with p(x1:t, y1:t) only at the
final iteration, t = T .

We now consider the sequence of twisted transition densities and twisted
observations functions corresponding to the iterations contained in the batch as
the batch twisted model when Ψs

1:T is inserted into the twisted model. Similarly,
we consider the (ψbt , ψ̃bt) as the twisting functions for iterations t in the batch
combined with the normalising function in equation (5.1b) for batch e > 1 or
the normalising constant in equation (5.1a) for the first batch. As in proposition
1 of Guarniero, Johansen, and Lee (2017) we see that final target equivalence
is necessary for the marginal likelihood of the SSM to be equal to that of the
twisted model at the final iteration. In addition to having the same likelihood
integral at the final iteration, we want to have the same likelihood integral at
the end of each batch. We saw from the definition of Ψs

1:T that when used in a
twisted model, we had target equivalence at iterations eL where e = 1, . . . , E
because of how it was defined. We consider the structure of the batch twisted
models by considering the first batch twisted model and the batch twisted
model for batch e to highlight the structure and how they are connected.

Batch twisted models

We now consider Ψs
1:T inserted into a twisted model, this gives a sequence of T

twisted transition densities and twisted observation functions. Here we consider
a subset of the twisted transition densities and twisted observation functions.
The subset consists of the twisted transition densities and twisted observation
functions corresponding to the iterations of batch e. Recall that we denoted the
last iteration of batch e− 1 by q = (e− 1)L. Hence we have that the iterations
t = q + 1, . . . , eL are included in batch e. The initial twisted transition density
and twisted observation function for batch e = 1 are

pψ1 (y1|x1) = p(y1|x1)ψ̃b1(x1)ψ̃b01
ψb1(x1)

pψ1 (x1) = p(x1)ψb1(x1)
ψ̃b01

and for batch e ≥ 2 these are given by

pψq+1(yq+1|xq+1, xq) =
p(yq+1|xq+1)ψ̃bq+1(xq+1)ψ̃b0e(xq)

ψbq+1(xq+1)

pψq+1(xq+1|xq) =
p(xq+1|xq)ψbq+1(xL+1)

ψ̃b0e(xq)

and for the remaining iterations in a batch, we have

pψt (yt|xt) = p(yt|xt)ψ̃bt (xt)
ψbt (xt)

pψt (xt|xt−1) = p(xt|xt−1)ψbt (xt)
ψ̃bt−1(xt−1)

pψt (yeL|xeL) = p(yeL|xeL) · 1
ψbeL(xeL)

pψeL(xeL|xeL−1) = p(xeL|xeL−1)ψbeL(xeL)
ψ̃beL−1(xeL−1)

74

5.3. Batch twisted model

Recall that ψ̃eL(xeL) = 1 from equation (5.3) in the last twisted observation
function in batch e. When e ≥ 2, the term ψ̃b0e(xq) is the normalising function
for the first twisted transition density in the batch. When e = 1, the term
ψ̃b01 is the normalising constant. These are defined in equation (5.1b) and
(5.1a) respectively. This follow from the special definition of the functions in
the sequence Ψs

1:T at iterations q + 1. Within batch e consisting of iterations
q + 1, . . . , eL, we consider the batch twisting functions. We have the lookahead
functions for batch e which we denote by Ψb

e to emphasise that this is a sequence
of batch e lookahead functions. We can define this sequence as

Ψb
e = ψbq+1, ψ

b
q+2, . . . , ψ

b
eL−1, ψ

b
eL (5.6)

and the corresponding normalising functions for batch e are denoted by

ψ̃b0e, ψ̃
b
q+1, . . . , ψ̃

b
eL−1, ψ̃

b
eL. (5.7)

Note that ψ̃beL do not appear in batch e because of how ψeL+1(xeL+1) is defined
in the batch sequence Ψs

1:T . We see however that the last twisted observation
function in batch e has 1 in the numerator resulting from ψ̃eL. For this reason
we set ψ̃beL ≡ 1.

Batch twisted model target equivalence

We only inserted the functions from Ψs
1:T into a twisted model to define the

batch twisted models. This implies that we always can return to the view of
one sequence Ψs

1:T and one twisted model. By conceptually considering batch
twisted models we see that we have target equivalence with the untwisted target
distribution p(x1:t, y1:t) at iterations t that correspond to the last of each batch.
Conceptually, we think of the unnormalised twisting target distribution f̃ bt (x1:t)
in the batch setting as being composed by the twisted transition densities
and twisted observation functions from batch twisted models up to iteration t.
Consider observations y(e−1)L+1:eL becoming available at the start of batch e
and then we consider the twisting target distribution at iteration eL. We can
think of this as extending the unnormalised twisting target distribution. At the
end of batch e, we then consider the unnormalised twisting target distribution
as being

f̃ beL(x1:eL) = pψ1 (y1|x1)pψ1 (x1)
eL∏
s=2

pψs (ys|xs)pψs (xs|xs−1)

= p(y1|x1)p(x1)
eL∏
s=2

p(ys|xs)p(xs|xs−1) = p(x1:eL, y1:eL)

which we will refer to as batch target equivalence. We can think of this as
utilising twisting target distributions for the iterations that are intermediate
within the batch. That is, we use twisting target distributions at the intermediate
iterations (e− 1)L+ 1, . . . , eL− 1 and then at iteration eL we have batch target
equivalence with the untwisted target distribution p(x1:eL, y1:eL). Note that this
follows from composing the twisting target distributions by the batch twisted
models which again is equivalent to inserting Ψs

1:T into the twisted model.

75

5.4. Optimal batch twisting functions

Batch target equivalence is achieved at the end of batch e by extending
an unnormalised target distribution which have batch target equivalence with
p(x1:(e−1)L, y1:(e−1)L) by the next batch e. This consists of the intermediate
iterations (e− 1)L+ 1, . . . , eL and at the end of batch e we have batch target
equivalence with p(x1:eL, y1:eL). We denote the last iteration of batch e−1 by q
for notational simplicity. Then p(x1:q, y1:q) is the unnormalised twisting target
distribution at the end of batch e− 1 and

p(xq+1:eL, yq+1:eL|x1:q, y1:q)

is the extension to the unnormalised target distribution by batch e. This can
be reformulated to

p(xq+1:eL, yq+1:eL|xq) =
eL∏

s=q+1
p(ys|xs)p(xs|xs−1)

due to the CI properties of the model. This results in the unnormalised and
untwisted target distribution p(x1:eL, y1:eL) at the end of batch e. We can
compose the extension f̃ beL(xq+1:eL) from the twisted transition densities and
observation functions in batch e. When extending the target distribution
p(x1:q, y1:q) at the end of batch e − 1, we see that it has to be equal to
the untwisted extension p(xq+1:eL, yq+1:eL|xq) in order to have batch target
equivalence at the end of batch e. This motivates the idea that we are using
twisting target distributions for the intermediate iterations in each batch.

5.4 Optimal batch twisting functions

We have considered the batch sequence Ψs
1:T of functions ψ defined by another

set of functions, ψb, which we refer to as batch twisting functions. In principle,
we can define the ψb however we want as long as the resulting functions, ψ, they
define are valid. We have seen that a valid choice is to define ψbt = 1 for all t.
This results in that ψt = 1 for all t, hence all functions in the batch sequence are
equal to one. The twisted model then corresponds to a SSM because all twisted
transition densities correspond to the transition densities and all the twisted
observation functions correspond to the observation functions. Our motivation
for using twisting target distributions is to reduce the variance of likelihood
estimates. The sequence Ψ∗1:T from Guarniero, Johansen, and Lee (2017) is
optimal with respect to minimising the variance of the likelihood estimates
when combined with a twisted model in an offline setting.

If we consider the iterations corresponding to batch e we have a batch
twisted model and we have the batch lookahead functions in Ψb

e which is defined
in equation (5.6). The corresponding batch e normalising functions are given in
equation (5.7). For batch e, we now have a setup of batch lookahead functions,
normalising functions and twisted model akin to the setup we considered in an
offline setting in Chapter 4. Motivated by this similarity we now want to consider
if there are optimal batch twisting functions with respect to minimising the
variance of the likelihood estimates. Then we consider the task of approximating
the optimal batch twisting functions.

76

5.4. Optimal batch twisting functions

Defining the optimal batch twisting functions

The recursive structure of the optimal, offline, twisting functions in equation
(4.10) is an important property of these twisting functions. This structure is
also important in the approximation of the optimal twisting functions as seen
in e.g. Guarniero, Johansen, and Lee (2017), Heng et al. (2020), and Naesseth,
Lindsten, and Schön (2019). The recursive structure however implies that we
need ψ∗t+1(xt+1) to calculate ψ∗t (xt) in a backwards recursive manner. The
backwards recursive structure is also used in order to calculate the approximate
twisting functions which are estimating the optimal twisting functions. In a
batch setting we do not have access to all the observations y1:T at every iteration.
Because only observations from within the batch are available, we cannot utilise
the full backwards recursive structure to calculate the twisting functions. If we
consider batch e, only observations y(e−1)L+1:eL are available in that batch. We
can always store all previous the observations, y1:(e−1)L, and calculate all the
the twisting functions from iteration 1 at every iteration. This however implies
increasing memory requirements and increasing computational cost.

We denote the first iteration of batch e by q + 1 and the last by eL for
notational simplicity. Conceptually, we consider the optimal target distributions
in the batch where t ≥ q + 1 as

f b∗t (x1:t) = p(x1:t|y1:eL).

Consider now the unnormalised optimal target distributions in the batch. As in
the offline setting these can also be defined at iteration t by marginalising out
xt+1. We therefore have that for the unnormalised optimal target distributions
in the batch,

f̃ b∗t (x1:t) =
∫
f̃ b∗t+1(x1:t+1)dxt+1.

This is akin to the offline setting in equation (4.6). Assume now that we
recursively define the unnormalised batch twisting target distributions

f̃ bt+1(x1:t+1) = f̃ bt (x1:t)φt+1(xt+1, xt)
ψ̃bt+1(xt+1)
ψ̃bt (xt)

We use this recursively defined batch twisting target distribution motivated
by the unnormalised optimal target distribution to define the optimal batch
twisting functions which we denote by (ψb∗, ψ̃b∗). See Appendix A.3 for the
calculations related to the optimal batch twisting functions. Our goal is to
approximate the optimal twisting functions and use these approximations to
reduce variance of the likelihood estimates. We therefore want to preserve
the recursive structure of the batch twisting functions as far as possible when
approximating the optimal batch twisting functions. Moving from an offline
setting to a batch setting, we already know that the full offline backwards
recursive structure is unachievable. In order to utilise the backwards recursive
structure in a batch setting, we define the twisting functions within the batches.
As we are utilising future information in the optimal batch twisting functions,
the strategy here is also related to the general framework of lookahead strategies
from Lin, Chen, and J. S. Liu (2013).

77

5.4. Optimal batch twisting functions

For all batches we have that eL is the last iteration of batch e and we have
denoted q = (e− 1)L as the last iteration of batch e− 1. We can now define the
optimal batch twisting functions within each batch. We start by the optimal
batch lookahead functions ψb∗.

Definition 5.4.1. For batch e containing iterations t = q + 1, . . . , eL we define

ψb∗t (xt) = p(yt:eL|xt)

as the optimal batch lookahead functions for q + 1 ≤ t ≤ eL.

Once the optimal batch lookahead functions, ψb∗, are defined, we can
consider the optimal batch normalising functions ψ̃b∗. These follow from
Definition 4.2.1 and we have that

ψb∗q+1, . . . , ψ
b∗
eL

ψ̃b∗0e, ψ̃
b∗
q+1, . . . , ψ̃

b∗
eL−1

we also here use ψ̃b∗eL ≡ 1 as in the general case. Note that ψ̃beL is not needed
to find the optimal batch twisting functions as we saw in Appendix A.3. This
follows from how we defined the sequence Ψs

1:T .

Batch recursive structure

We now want to consider if the recursive structure akin to the recursive structure
from the offline optimal twisting functions holds for the optimal batch twisting
functions. That is, if ψb∗t (xt) = p(yt|xt)ψ̃b∗t (xt) for all iterations t within a
batch. When t < eL, the right hand-side can be expanded

p(yt|xt)ψ̃b∗t (xt) = p(yt|xt)
∫
ψb∗t+1(xt+1)p(xt+1|xt)dxt+1

= p(yt|xt)
∫
p(yt+1:eL|xt+1)p(xt+1|xt)dxt+1

= p(yt|xt)p(yt+1:eL|xt)
= p(yt:eL|xt).

This is equal to the left-hand side by Definition 5.4.1. When t = eL we have
that ψ̃b∗t (xt) ≡ 1. The right-hand side is then given by

p(yt|xt)ψ̃b∗t (xt) = p(yt|xt)

which is equal to the left hand-side by Definition 5.4.1. Combined, this gives

ψb∗t (xt) = p(yt|xt)ψ̃b∗t (xt). (5.8)

Now we can utilise this recursive structure that holds within the batch in order
to approximate the optimal batch lookahead functions ψb∗. We use Algorithm 7
with appropriate tstart and tstop to obtain approximate batch twisting functions
denoted by (ψ̄b, ˜̄ψb). We can then use these with a batch twisted model which
again can be used in a twisted particle filter.

78

5.5. Likelihood

5.5 Likelihood

By using the batch sequence Ψs
1:T with a twisted model we saw that we could

conceptually split the the sequence of twisted transition densities and observation
functions into what we referred to as batch twisted models. This setup yielded
target equivalence with the joint distributions p(x1:eL, y1:eL) at iterations eL
for e = 1, . . . , E. We now utilise the same idea as in proposition 1 of Guarniero,
Johansen, and Lee (2017) in order to see that the marginal likelihood obtained
by using a twisting target distributions from batch twisted models up to the
the end of batch e is consistent with the marginal likelihood p(y1:eL). We then
have that∫

. . .

∫
f̃ beL(x1:eL)dx1:eL =

∫
. . .

∫
p(x1:eL, y1:eL)dx1:eL = p(y1:eL).

Because f̃ beL(x1:eL) = p(x1:eL, y1:eL) at the iterations corresponding to the end
of a batch. This includes the full marginal likelihood p(y1:T) as iteration T
is the last iteration of batch E. So far, we can view the batch sequence as
a general sequence Ψ1:T with some additional requirements at the iterations
that corresponds with the first iterations of batch e where e ≥ 2. With these
additional requirements, we can still select the functions ψb that define each
of the ψ ∈ Ψs

1:T . This implies that there are still infinitely many valid Ψs
1:T

sequences. Selecting ψbt = 1 for every t is a valid choice because then ψt = 1
for every t. This specific choice results in every twisted transition density
and twisted observation function becoming equal to the transition density and
observation density from the SSM respectively.

To highlight the conceptual batch structure in the marginal likelihood, we
decompose the marginal likelihood into conditional likelihood factors. This is an
analogue to the likelihood factors from equation (3.9) that we considered in an
online setting. Consider the case of having batches e = 1, . . . , E with iteration
eL being the last in batch e. We can then use the standard decomposition of
the marginal likelihood p(y1:T) given by

p(y1:T) =p(y1:L)
E∏
e=2

p(y(e−1)L+1:eL|y1:(e−1)L). (5.9)

We then refer to p(y(e−1)L+1:eL|y1:(e−1)L) as a batch likelihood factor. This
represents the addition to the marginal likelihood from batch e.

Likelihood estimation

We want the likelihood estimate at the end of a batch to be consistent with
the estimated marginal likelihood at the corresponding iteration. This way we
can view the likelihood estimate at the end of each batch as an estimate of
the marginal likelihood at the corresponding iteration. This is due to target
equivalence at the end of the batch. With particle filters in an online setting,
we can view the likelihood estimate Ẑt at each iteration as an estimate of the
marginal likelihood at the corresponding iteration. The difference is again in
target equivalence, online particle filters with an untwisted target distribution
p(x1:t|y1:t) has at every iteration t the normalising constant given by p(y1:t).
In a batch setting, we rely on target equivalence at iteration t in order to

79

5.5. Likelihood

have f̃ bt (x1:t) = p(x1:t, y1:t). This equality will generally not be true unless
t corresponds to the last iteration of a batch. Consequently the likelihood
estimate at an iteration that is not the last of a batch is not consistent with
the corresponding marginal likelihood. This is again because we have target
equivalence only at the end of the batches.

Conceptually, we can think of estimating one batch likelihood factor in each
batch and then update the marginal likelihood estimate with the estimated
batch likelihood factor. This is why we focused on the extension of the
unnormalised target distribution p(x1:q, y1:q) by the term f̃ beL(xq+1:eL) =
p(xq+1:eL, yq+1:eL|xq) where q + 1 is the first iteration in batch e ≥ 2 in order
to get the next unnormalised target distribution. This implies that

f̃ beL(x1:eL) = f̃ bq (x1:q)f̃ beL(xq+1:eL) = p(x1:eL, y1:eL).

When estimating the marginal likelihood in practice, we focus on the
likelihood addition per iteration. We can then think of these additions combined
as a batch likelihood factor. In the twisted BPF we are simulating variables
from the twisted transition density. We consider the situation of using n
particles in the estimates. An estimate of the marginal likelihood following
equation (2) in Guarniero, Johansen, and Lee (2017) can be expressed by the
twisted observation functions when resampling is assumed to occur at every
iteration. We simplify notation by denoting the last iteration of batch E − 1 by
q = (E − 1)L. The first iteration in the last batch is then denoted by q + 1 and
the last iteration in the last batch is denoted by T . This gives the following
expression for the full marginal likelihood estimate

ẐψT =
[

1
n

n∑
i=1

pψ1 (y1|xi1)
]

L∏
s=2

[
1
n

n∑
i=1

pψs (ys|xis)
]

[
1
n

n∑
i=1

pψL+1(yL+1|xiL+1, x
i
L)
] 2L∏
s=L+2

[
1
n

n∑
i=1

pψs (ys|xis)
]

...[
1
n

n∑
i=1

pψq+1(yq+1|xiq+1, x
i
q)
]

T∏
s=q+2

[
1
n

n∑
i=1

pψs (ys|xis)
]
.

Conceptually, we can think of each line as representing an estimate of the batch
likelihood factor for batch e denoted by Ẑψe|e−1. This implies the following
structure of the estimated likelihood

ẐψT = Ẑψ1

E∏
e=2

Ẑψe|e−1. (5.10)

Likelihood estimates at the end of a batch e should correspond to the estimated
marginal likelihood up until the corresponding iteration eL because of target
equivalence. Hence we should have that ẐψeL ≈ ẐeL. Further, by considering the
likelihood estimate at the last iteration of the last batch, this should correspond
to estimating p(y1:T). We have considered the likelihood addition per iteration.
It is however only at the iterations that correspond to the last of a batch that

80

5.5. Likelihood

the estimated likelihood from the batch twisting target distribution is consistent
with the likelihood from the untwisted model. This is again due to target
equivalence at the end of batches.

Likelihood with batch recursive structure

We now consider likelihood estimation in the case where the batch recursive
structure ψb∗t (xt) = p(yt|xt)ψ̃b∗t (xt) from equation (5.8) holds exactly. We can
now insert the batch recursive structure into the twisted observation functions
in the batch twisted models. We have for the first iterations in batch 1 and for
batch e ≥ 2 with first iteration q + 1 on the first line and for the remaining
iterations on the second line that

pψ1 (y1|x1) = ψ̃b∗01 pψq+1(yq+1|xq+1, xq) = ψ̃b∗0e(xq)
pψt (yt|xt) = 1 for t 6= q + 1

In this case, we see that the likelihood estimate at the end of batch e with
corresponding iteration eL becomes

ẐψeL = ψ̃b∗01

[
1
n

n∑
i=1

ψ̃b∗02(xL)
]
. . .

[
1
n

n∑
i=1

ψ̃b∗0e(xq)
]

(5.11)

and the remaining terms become 1. We see from equation (5.11) that the
marginal likelihood estimate at the end of batch e rely on simulated variables.
This is the case also when the batch recursive structure holds exactly and this
is where we see the effect of not having all observations y1:T available. If the
recursive structure holds exactly in an offline setting we would have ẐψT = ψ̃∗0 .
If we use only one batch, we have that the batch setting corresponds to the
offline setting and therefore we would have ẐψT = ψ̃b∗01 = ψ̃∗0 . In general, the
batch recursive structure do not hold exactly and in addition we are not able
to evaluate the terms ψ̃b∗0e(xq) exactly. For these reasons we expect that the
variance of the likelihood estimates in a batch setting will be higher than the
equivalent situation in an offline setting. In general we see that the normalising
function ψ̃b∗0e(xq) in batch e depend on the simulated variables of the last
iteration of batch e− 1. Recall that the final target distribution of batch e− 1
was p(x1:q|y1:q).

The optimal situation

For batch 1 we see that if the batch recursive structure holds exactly, we get that
the contribution from the first iteration of likelihood estimation is ψ̃b∗01. Consider
now the the same expansion that was used when estimating the likelihood
factors. Now we have a twisted observation function, so this expansion will not
correspond to the likelihood factor of the untwisted model, but we consider the
expansion∫ ∫

p(yq+1, xq+1, xq|y1:q)dxqdxq+1

=
∫ ∫

pψq+1(yq+1|xq+1, xq)pψq+1(xq+1|xq)p(xq|y1:q)dxqdxq+1 (5.12)

81

5.6. Connection to the offline setting

where we see the twisted transition density and the twisted observation function
for iteration q + 1. In addition we recognise the marginal filtering distribution
p(xq|y1:q). Recall that iteration q is the last iteration of batch e − 1 and the
final target distribution in batch e− 1 was p(x1:q|y1:q). Assume now that we
can approximate the filtering distribution with a weighted measure by using the
particles from iteration q. We insert the approximation and have the following∫ ∫

pψq+1(yq+1|xq+1, xq)pψq+1(xq+1|xq)
n∑
i=1

wiqδxi
q
(xq)dxqdxq+1

=
n∑
i=1

wiqp
ψ
q+1(yq+1|xiq+1, x

i
q).

Assume additionally that we have the filtering density p(xq|y1:q) avail-
able in closed form. Because of the batch recursive structure, we have
pψq+1(yq+1|xq+1, xq) = ψ̃b∗0e(xq) and recall the interpretation from the optimal
normalising function ψ̃b∗0e(xq) = p(yq+1:eL|xq) from equation (5.1b). Assume
that we can evaluate the normalising function ψ̃b∗0e(xq) and the integral, then
we have ∫ ∫

p(yq+1:eL|xq)pψq+1(xq+1|xq)p(xq|y1:q)dxqdxq+1

=
∫ ∫

p(yq+1:eL, xq, xq+1|y1:q)dxqdxq+1 = p(yq+1:eL|y1:q).

The first equality follows from the reformulation

p(yq+1:eL, xq, xq+1|y1:q) = p(yq+1:eL|xq)pψq+1(xq+1|xq)p(xq|y1:q).

5.6 Connection to the offline setting

Our main focus is how we can move from a batch setting to an offline setting and
vice versa. The direction from a batch setting to an offline setting is requiring
us to increase the lookahead. The other direction effectively requires us to
decrease the lookahead. Decreasing lookahead can be regarded as ignoring a
subset of future information.

From batch to offline setting

Moving from a batch setting to an offline setting requires all the observations.
That is, the lookahead is increased to include all future observations at all
iterations. Conceptually, moving from the batch setting to the offline setting can
be done by using only one batch which contains all the observations y1:T . This
implies that the sequence of batch lookahead functions from the first batch will
be the same as the offline sequence of lookahead functions, that is Ψb

1 = Ψ1:T .
We then have that ψt = ψbt for every t and the batch twisting functions (ψb, ψ̃b)
correspond to the offline twisting functions. In the same manner, we would
have only have one batch twisted model being equal to the twisted model. The
normalising constant from the first iteration of the first batch would then be
equal to the normalising constant in the offline setting, that is ψ̃b01 = ψ̃0.

82

5.6. Connection to the offline setting

From offline to batch setting

When we are in the batch setting we do not have access to all the observations
y1:T at every iteration. From proposition 2 in Guarniero, Johansen, and Lee
(2017) we know that the optimal sequence of lookahead functions requires
all the observations y1:T . This implies that if we are in a batch setting, we
cannot approximate the optimal sequence of lookahead functions because we
are missing observations outside the current batch. Therefore, to approximate
the optimal twisting functions (ψ∗, ψ̃∗) we need to be in the offline setting.

We have in the previous sections seen that we only use (ψb, ψ̃b) to define all
the functions ψt in the batch sequence Ψs

1:T . To move from an offline setting
to a batch setting, we can use the batch sequence. If the functions ψb that
define the functions ψ in the sequence do not depend on observations at all,
then the batch sequence simply makes sure that there is target equivalence at
the iterations that correspond to the last iteration of a batch. If ψb do depend
on observations, for example by approximating the optimal batch lookahead
functions ψb∗, we can only use observations from within the current batch.
In an offline setting however, we have y1:T available at every iteration. This
implies that all possible twisting functions we can calculate in a batch setting,
we can calculate in an offline setting. This can be done by using only subsets of
observations corresponding to the subsets available in each batch when defining
the ψb in an offline setting. In light of general lookahead strategies from Lin,
Chen, and J. S. Liu (2013), using batch twisting functions in an offline setting is
suboptimal. This is because using batch twisting functions in an offline setting
is equivalent to ignoring future information in every batch except the last batch.

If the objective is to minimise variance, one would not select the batch
sequence in an offline setting. This is because the sequence Ψs

1:T is not equal
to the optimal sequence Ψ∗1:T from Definition 4.3.2. We can also look at the
recursive structure of the twisting functions resulting from the batch sequence.
Assume now that we have the optimal the batch twisting functions (ψb∗, ψ̃b∗).
We know that the recursive structure holds within the batch as we saw in
equation (5.8). Assume that we select the optimal batch twisting functions
when defining every ψt of the sequence Ψs

1:T . Recall that for the offline optimal
twisting functions we have that the recursive structure ψ∗t (xt) = p(yt|xt)ψ̃∗t (xt)
holds for every t = 1, . . . , T . We now consider the functions ψ from the sequence
Ψs

1:T and check if the resulting twisting functions follow the recursive structure.
The sequence Ψs

1:T contains functions ψt that are equal to the functions ψbt for
all iterations except those corresponding to the first of a batch. Therefore we
consider the recursive structure for the first iteration of a batch e which we
denote by q + 1. We then have the recursive structure

ψq+1(xq+1, xq) = p(yq+1|xq+1)ψ̃q+1(xq+1).

The left-hand side is equal to

ψb∗q+1(xq+1)
ψ̃b∗0e(xq)

= p(yq+1:eL|xq+1)
p(yq+1:eL|xq)

and the right-hand side is equal to

p(yq+1|xq+1)ψ̃b∗q+1(xq+1) = p(yq+1:eL|xq+1).

83

5.7. Outline of the batch algorithm

We then see that the recursive structure does not hold for iteration q + 1 when
using Ψs

1:T even when we assume that we have the optimal batch twisting
functions (ψb∗, ψ̃b∗). From an offline viewpoint, the batch sequence stops
influence in the backwards recursive structure from future observations. We
consider the recursive structure of iteration q which is corresponding to the last
iteration of batch e− 1, this is

ψq(xq) = p(yq|xq)ψ̃q(xq) = p(yq|xq).

Here we see that because of the special definition of ψq+1(xq+1, xq) we stop
the influence coming from iteration q + 1 to iteration q when considered from
an offline viewpoint. This is why we have ψq(xq) = p(yq|xq) when iteration
q is the last of a batch with the sequence Ψs

1:T . When we use the optimal
lookahead functions from Ψ∗1:T , we have that ψ∗q (xq) = p(yq:T |xq). The optimal
offline lookahead function contains information from all the future observations
yq:T . The optimal batch lookahead function only contain information from the
current observation yq.

5.7 Outline of the batch algorithm

In this section we consider an outline of the batch algorithm with iteratively
improving batch twisting functions. In addition, we will briefly discuss some
aspects of using what we will refer to as alternative twisting functions from
Chapter 6 and parametric approximations of twisting functions in the batch
algorithm. The optimal batch twisting functions can be approximated in the
same ways as the optimal twisting functions in the offline setting. We therefore
denote the estimation of batch twisting functions by a generic estimate-ψ
function. We denote approximate batch twisting functions by (ψ̄b, ˜̄ψb) in the
algorithm. For each batch e, we assume that we have observations y(e−1)L+1:eL
available at the start of the batch. We want to approximate the optimal
(ψb∗, ψ̃b∗) and we use the observations available in the batch in order to obtain
approximations (ψ̄b, ˜̄ψb). These batch twisting functions are then used to define
the batch twisted model for the current batch and then this batch twisted model
is used in a particle filter. We assume that there are E batches and that each
batch consists of L iterations.

In the algorithm outline we denote the first and last iteration of batch
e by k and q respectively. We denote a generic particle filter by PF in the
algorithm and a particle filter using a twisted model by TT-PF. Once we have
the batch twisting functions, TT-PF will just be a particle filter utilising the
batch twisted model. We denote the resampling thresholds by α in PF and
β in TT-PF. The n particles obtained from TT-PF we refer to as (xik:q, w

i
k:q)

for i = 1, . . . , n. These are used to estimate the likelihood and to iteratively
improve the approximations of the batch twisting functions in the while-loop.
We denote the m particles from PF by (ẋjk:q, ẇ

j
k:q) for j = 1, . . . ,m. These

particles are used in the first approximation of the batch twisting functions, in
the following approximations within the batch we use particles from the twisted
particle filter to iteratively improve (ψ̄b, ˜̄ψb).

The PF use the transition and observation density of the SSM to obtain
the initial particles. The improve parameter may be based on the stability of
the likelihood estimates such as in Guarniero, Johansen, and Lee (2017) or it

84

5.7. Outline of the batch algorithm

may be a fixed number of repeats, it is always set to true when a new batch of
observations become available. In addition, it is assumed that PF and TT-PF
uses the batch number e in order to select the appropriate transition density
and twisted transition density respectively. For the batch likelihood estimates
from equation (5.10) we define Ẑψ0 ≡ 1 and Ẑψ1|0 ≡ Ẑ

ψ
1 for notational simplicity.

The final likelihood estimate is then ẐψE = p̂(y1:T) and the intermediate batch
likelihood estimates are Ẑψe = p̂(y1:eL). The estimation of (ψ̄b, ˜̄ψb) in the

Algorithm 9 Batch algorithm outline
1: for e ∈ (1, . . . , E) do
2: k = (e− 1)L+ 1
3: q = min(eL, T)
4: xk:q, wk:q = ẋk:q, ẇk:q = PF(ẋk−1, ẇk−1, e,m, α)
5: while improve do
6: (ψ̄b, ˜̄ψb) = estimate-ψ(xk:q, wk:q)
7: xk:q, wk:q = TT-PF(ψ̄b, ˜̄ψb, xk−1, wk−1, e, n, β)
8: end while
9: Ẑψe = Ẑψe−1Ẑ

ψ
e|e−1

10: end for

generic function estimate-ψ can be done using the backwards recursive algorithm
Algorithm 7. For the TT-PF, we can use Algorithm 6. In order to use TT-
PF we need the batch twisted model which again requires the batch twisting
functions. The batch twisting functions are assumed to be returned by the
generic function denoted by estimate-ψ. The algorithm also includes iteratively
improvement of (ψ̄b, ˜̄ψb) in the improve step. This is similar to the iAPF. We
use the particles from a TT-PF to estimate the optimal batch twisting functions.
Then these approximate batch twisting functions are used in TT-PF to generate
new particles. Hence we can get iteratively improving batch twisting functions.

Batch algorithm with alternative twisting functions

We can set up a possible version of Algorithm 9 that uses what we will refer
to as the alternative approximation of twisting functions. We consider this
alternative approximation in Chapter 6, but this can be used in the same
way we can use nonparametric or parametric approximations of (ψb, ψ̃b). The
main alteration necessary when using the alternative approximation of twisting
function is that we need to estimate smoothing weights within each batch.
These estimated smoothing weights are used in the generic estimate-ψ function.
The particles from PF will be used to estimate the smoothing weights. When
using the alternative approximation, we have that the approximation ψ̄b and the
transition density generally are not conjugate. This implies that the integral ˜̄ψb
in general is not available in closed form and has to be approximated numerically.
It also implies that the twisted transition density is not available in closed form
and we simulate from it by using an importance sampling-based method.

Intuitively, we expect the approximation of the batch twisting functions
(ψ̄b, ˜̄ψb) to be more accurate when the batches contain more iterations. That is,
L increases and we are including more future information through the future

85

5.7. Outline of the batch algorithm

observations yt:eL at iteration t. If we have that L = T , we include all future
observations. This corresponds to using one batch which again corresponds to
the offline setting. For the batch twisted models we use the structure defined in
Section 5.3. Further, we use the batch twisted models in a twisted particle filter
such as Algorithm 6. We note that there are many computationally expensive
components when using the alternative approximations of the twisting functions.
Because of this, we only have numerical experiments with relatively few particles
when using this alternative approximation of the twisting functions.

Batch algorithm with parametric twisting functions

We can approximate the optimal batch lookahead function ψb∗ by using a
parametric approximation. Even though more restrictive than nonparametric
approximations, we select a parametric approximation of the optimal batch
lookahead function. We also select a parametric form such that the
approximations are conjugate to the transition density of the SSM. The
advantages of conjugacy between the approximation ψ̄ and the transition
density in the offline setting also holds for the batch setting.

Using a parametric form for the approximate batch twisting functions (ψ̄b, ˜̄ψb)
includes selecting a class that defines the parametric form of the approximate
batch lookahead functions ψ̄b. Compared to nonparametric approaches of
approximating the batch twisting functions, we are sacrificing flexibility for
reduced computational cost. Because of the conjugacy, we have a closed form
expressions for the normalising function ˜̄ψb and the twisted transition density.
This represent a significant reduction in computational cost compared to the
alternative approximation and nonparametric approximation of batch twisting
functions. Because our main focus is the batch structure we follow section 3
of Guarniero, Johansen, and Lee (2017) and use a Gaussian approximation of
the optimal lookahead function. A proposed structure of the approximation in
Guarniero, Johansen, and Lee (2017, eq. 12) is given by a mixture of Gaussians.
We follow this general strategy when selecting the approximate batch twisting
functions (ψ̄b, ˜̄ψb). We define approximations ψ̄b of the optimal batch lookahead
function on the following form

ψ̄bt (xt) = N (xt;µt,Σt).

We use this approximate batch lookahead function for both one dimensional
and multidimensional approximations. In the case of multidimensional
approximations we use a diagonal covariance matrix Σt in the approximate
batch lookahead functions. We can approximate the batch twisting functions
(ψb, ψ̃b) by choosing a parametric form and then use Algorithm 7 for each
batch e = 1, . . . , E. We are then approximating the batch twisting functions
within each batch by using the batch recursive structure. Once we have the
approximations (ψ̄b, ˜̄ψb) we can use the the batch twisted model and the batch
twisting functions in a twisted particle filter.

In the twisted particle filter, we set the parameters tstart = k and tstop = q
for a batch e. At iteration q we have obtained n batch particles, denoted by
(xik:q, w

i
k:q) for i = 1, . . . , n. With the while-loop we utilise the batch particles

in order to estimate the batch twisting functions again. This can be repeated
as long as the condition improve is true. The newest (ψ̄b, ˜̄ψb) is then used to

86

5.7. Outline of the batch algorithm

find new batch twisted particles (xik:q, w
i
k:q) for i = 1, . . . , n. The iteratively

improving batch twisting functions approximations are similar to the iteratively
improving twisting function approximations in iAPF. This is motivated by
minimisation of the variance of the likelihood ratio in the asymptotic case as
shown in proposition 3 of Guarniero, Johansen, and Lee (2017). The improve
condition is not specified in the algorithm and it can be on the form

sd(Ẑψe)
mean(Ẑψe)

< τ

for batch e. This is the same improve condition as in Guarniero, Johansen, and
Lee (2017), but here it is used in each batch. We can use this condition with
the estimated marginal likelihood at the end of each batch. We would then
use a stability parameter such as s as in Algorithm 8 in order to calculate the
condition for the last s estimates of the marginal likelihood. Note that by using
a stochastic stopping criterion we would need to run the twisted particle filter
once more with the latest batch twisting functions after the while-loop as is
done in the iAPF. Then we would use the obtained particles to estimate the
marginal likelihood at the end of the batch. A simpler condition for the iterative
improvement is to iterate a fixed number of times in the while-loop which we
will refer to as repeats. This parameter refers to the number of improvement
repetitions, that is, the number of times to improve the batch twisting functions
after the first necessary calculation of the batch twisting functions.

87

CHAPTER 6

Alternative twisting functions

In this chapter, we consider first a reformulation of the optimal lookahead
function and an approximation of this reformulation. We have previously not
seen this approximation in use in twisting target algorithms. We will refer to
this alternative formulation of the optimal lookahead function as the alternative
lookahead function and we denote it by ψ′t(xt) for t = 1, . . . , T . This alternative
lookahead function is based on a direct reformulation of the optimal lookahead
function ψ∗t (xt) for t = 1, . . . , T . We also use the simplified notation ψ′ and ψ∗
when we discuss the lookahead functions in general. As is also the case for ψ∗,
we generally do not have analytical expressions for the alternative lookahead
functions ψ′ available.

We generally denote approximations of lookahead functions by ψ̄ and we
usually approximate the optimal lookahead functions, that is ψ̄ ≈ ψ∗. As the
alternative lookahead function is a direct reformulation of the optimal lookahead
function, we will also consider approximations of the alternative lookahead
function ψ̄′ ≈ ψ′. The motivation for approximating ψ′ is the connection to the
optimal ψ∗ and by utilising ψ̄′ our aim is to reduce variance of the likelihood
estimates.

In this chapter, we also consider a Laplace-based approximation of the
observation density which can be used in order to approximate the optimal
lookahead function. This approximation can in some special cases can reduce
the computational cost when approximating the optimal twisting functions
(ψ∗, ψ̃∗). We will refer to this approximation as the Laplace approximation to
distinguish it from the twisting functions based on the alternative lookahead
functions.

6.1 Motivation

In general, the function ψt(xt) can be defined under Assumptions 4.2.1 and the
normalising function ψ̃t−1(xt−1) are defined in Definition 4.2.1 as an expectation
of ψt(xt) with respect to the transition density p(xt|xt−1). This is the main
motivation for approximating ψt(xt) with a parametric form that is conjugate
to the transition density in Guarniero, Johansen, and Lee (2017). We also
know that the optimal lookahead function can be defined conceptually as
ψ∗t (xt) = p(yt:T |xt) and for that reason our objective is to approximate this
function for t = 1, . . . , T . When considering the approximate twisting functions,

88

6.1. Motivation

denoted by (ψ̄t(xt), ˜̄ψt(xt)) for t = 1, . . . , T we refer to these as (ψ̄, ˜̄ψ) in
simplified notation when we discuss all the approximate twisting functions.

Regardless of using a parametric or a nonparametric approximation, the
objective is approximations ψ̄t(xt) ≈ p(yt:T |xt) for t = 1, . . . , T . The main
advantage of using parametric approximations is that there are often a small
number of parameters to estimate. Additionally, we have the approximate
normalising function ˜̄ψ in closed form if the approximation ψ̄ is conjugate to
the transition density. The disadvantage of using a parametric ψ̄ is that we
have to select a specific class, Ψ̄, for the parametric form in advance which may
be restrictive.

If we have the optimal lookahead functions we can obtain the optimal twisting
functions denote by (ψ∗, ψ̃∗). We can use these twisting functions in the iAPF
with a twisted model in a twisted particle filter. From the twisted particle
filter we can estimate the likelihood. Another approach to twisting functions
is given in Ala-Luhtala et al. (2016). Here it is proposed to approximate
the optimal lookahead function, ψ∗t (xt), at iteration t with a constant c
observations of lookahead. This can be written as ψ∗t (xt) ≈ p(yt:t+c|xt).
The function p(yt:t+c|xt) can be approximated by an exponential form when
considering nonlinear Gaussian SSMs. Local linearisation can then be used in
order to estimate the parameters of the exponential form (Ala-Luhtala et al.,
2016, p. 4881). In Guarniero, Johansen, and Lee (2017), two main types of
approximations for the optimal lookahead functions are considered. These are
parametric and nonparametric approximation of the optimal lookahead functions
ψ∗. The parametric approximations may be too restrictive in some situations
as we are required to determine a class Ψ̄ for the parametric approximate
lookahead functions a priori. Fully nonparametric approximations are often
flexible, but implies high computational cost as is discussed in section 6 of
Guarniero, Johansen, and Lee (2017).

With the alternative lookahead functions in the following section, our aim
is to utilise the conditional independence structure of the SSM combined with
the conceptual form of the optimal lookahead function, ψ∗t (xt) = p(yt:T |xt).
The motivation for the alternative twisting functions is that the alternative
lookahead function ψ′ can be approximated without the need for numerical
optimisation as is the case for parametric approximation of ψ∗ as we saw in
Chapter 4.

Our motivation for the alternative lookahead function is based on the
trade-off between selecting the parametric or nonparametric approximation
of the lookahead functions. By not requiring a parametric class of functions
to be selected in advance, our aim is to gain flexibility in the approximations.
Conceptually, all the components needed in the approximate alternative
lookahead functions are provided by the SSM. In that sense, we can view
the approximate alternative lookahead function as a trade-off between the
parametric and nonparametric approximation. Our motivation for the Laplace-
based approximation is based on reducing computational cost compared to
utilising numerical optimisation when approximating the lookahead functions.

89

6.2. Alternative twisting functions

6.2 Alternative twisting functions

The alternative twisting functions are based on a reformulation of the optimal
lookahead function which is given by

ψ∗t (xt) = p(yt:T |xt) = p(yt:T |xt, y1:t−1).

Here we are adding y1:t−1 back into the conditioning set at the second equality.
In the same way that y1:t−1 can be excluded from the conditioning set it can also
be included. This is possible because the variable xt blocks influence between
yt:T and y1:t−1. We can utilise the expression with the modified conditioning
set to further reformulate the expression for the optimal lookahead function,

ψ∗1(x1) = p(y1:T |x1) = p(x1|y1:T)p(y1:T)
p(x1)

ψ∗t (xt) = p(yt:T |xt, y1:t−1) = p(xt|y1:T)p(yt:T |y1:t−1)
p(xt|y1:t−1) .

We now recognise the marginal smoothing distribution as the first term in the
numerator. In the denominator we see the, marginal, predictive distribution
from equation (3.3a). The conditional likelihood term, p(yt:T |y1:t−1), in the
numerator does not depend on xt and will be fixed when we regard the
observations as fixed. When viewing the optimal lookahead function as a
function of xt it can also be considered constant. Expanding the predictive
distribution in the denominator then gives us

ψ∗1(x1) = p(x1|y1:T)p(y1:T)
p(x1)

ψ∗t (xt) = p(xt|y1:T)p(yt:T |y1:t−1)∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

.

We are now able to approximate all the terms in the expression by well-known
algorithms. In this section, we will follow the setup of Guarniero, Johansen,
and Lee (2017) by combining twisting functions with a twisted model. Our goal
in the following sections is therefore to approximate a sequence of functions
that we will denote by Ψ′1:T . Using this sequence of what we will refer to
as alternative lookahead functions, we can calculate what we will refer to as
the alternative twisting functions. This can be denoted by (ψ′t(xt), ψ̃′t(xt)) for
t = 1, . . . , T . We will use the following, simplified notation denoted by (ψ′, ψ̃′)
when we are referring to the alternative twisting functions for all the iterations.
Once we have the alternative twisting functions, we can utilise a twisted model
which we again can use in a twisted particle filter.

We now define the sequence Ψ′1:T of alternative lookahead functions ψ′t(xt)
for t = 1, . . . , T . The definition of the alternative lookahead functions is based
on the reformulation in equation (6.1) of the optimal lookahead function ψ∗t (xt).

Definition 6.2.1. The alternative lookahead functions are defined by

ψ′t(xt) =
{
p(x1|y1:T)p(y1:T)

p(x1) if t = 1
p(xt|y1:T)p(yt:T |y1:t−1)

p(xt|y1:t−1) if t > 1.

90

6.2. Alternative twisting functions

Note that the terms on the form p(yt:T |y1:t−1) will cancel if we use the
alternative lookahead functions ψ′ in a twisted model. Note also that if we
had been able to evaluate ψ′t(xt) exactly at each iteration t we would have
ψ′t(xt) = ψ∗t (xt) for t = 1, . . . , T . Also note that to evaluate ψ′t(xt) at iteration
t would require all observations y1:T . Hence we see from Definition 6.2.1 that
an offline setting is required if we are to use ψ′ directly. Because ψ′t(xt) is a
reformulation of ψ∗t (xt) = p(yt:T |xt) which requires an offline setting, the offline
setting is also expected for ψ′t(xt). The definition of ψ′ also allows us to define
a sequence similar to Definition 4.2.2.

Definition 6.2.2. Denoting ψ′t(xt) = ψ′t. We have a sequence of alternative
lookahead functions, denoted by

Ψ′1:T ≡ (ψ′1, . . . , ψ′T) .

Having defined the lookahead functions, ψ′, we can now consider the
normalising functions. When we have the lookahead functions ψ′ we can
define the normalising functions. Following the structure from Definition 4.2.1
we have that the normalising functions and the normalising constant based on
the alternative lookahead functions can be denoted by ψ̃′.

Definition 6.2.3. For the normalising functions, we have:

ψ̃′t(xt) =
{∫

ψ′t+1(xt+1)p(xt+1|xt)dxt+1 if t < T

1 if t = T.

For the normalising constant, we have:

ψ̃′0 =
∫
ψ′1(x1)p(x1)dx1. (6.2)

In combination with Definition 6.2.1, the alternative twisting functions
(ψ′, ψ̃′) are now defined and therefore can be used with the twisted model.
There are generally many valid sequences Ψ1:T = (ψ1, . . . , ψT) which satisfy
final target equivalence which we saw in Section 4.2. If we have an analytical
expression for ψ′t(xt) that we can evaluate exactly, we know that it is equal to
ψ∗t (xt) because ψ′t(xt) is a reformulation of the optimal lookahead function. We
also know that using approximations to the optimal twisting functions (ψ∗, ψ̃∗)
in combination with a twisted model can yield likelihood estimates with low
variance (Guarniero, Johansen, and Lee, 2017). If we can find an accurate
approximation of the alternative twisting functions, (ψ′, ψ̃′), this approximation
may also be close to the optimal twisting functions. This again imply that we
can obtain low variance likelihood estimates from using approximations to the
alternative twisting functions.

Assume now that we use a parametric approximation ψ̄. Unless ψ̄ ∈ Ψ∗, that
is the parametric approximation is in the class of optimal lookahead functions,
ψ̄ cannot be equal to the optimal lookahead function. By selecting a class Ψ̄
of parametric approximations that are conjugate to the transition density of
the SSM we are restricting the flexibility of ψ̄. This implies that we might
sacrifice closeness to the optimal lookahead function for being able to evaluate
the integral ˜̄ψ exactly. A possible motivation for the alternative lookahead
function ψ′t(xt) is that we are approximating the optimal lookahead function

91

6.3. Approximation of the alternative twisting functions

ψ∗ directly. By not using a parametric ψ̄ conjugate to the transition density
we are in general giving up exact evaluation of the integral ˜̄and we have to
approximate ˜̄ψ. It can be feasible to give up exact evaluation of the integral ˜̄ψ′
if the approximation ψ̄′ is good.

6.3 Approximation of the alternative twisting functions

In order to approximate ψ∗, we will start by using the reformulation ψ′ and
approximate this instead of approximating ψ∗ directly. Conceptually we can
consider increasing the accuracy of the approximations for the three components
in the ψ′-functions. Recall that we have the smoothing distribution p(xt|y1:T)
and the likelihood term p(yt:T |y1:t−1) in the numerator. We also have the
predictive distribution p(xt|y1:t−1) in the denominator.

To define an approximation of ψ′, denoted by ψ̄′, we need to approximate
the components in Definition 6.2.1. We will consider how to approximate the
smoothing distribution, the likelihood term and the predictive distribution below.
Informally, we can think of improving the accuracy of the three estimators by
increasing the number of particles used. We can then think of increasing the
number of particles as an alternative to iteratively improving the lookahead
functions. This is however a simplification because some of the motivation
for the iteratively improving the approximations in Guarniero, Johansen, and
Lee (2017) is to utilise the particles obtained from a twisted particle filter
to approximate the lookahead functions. Then the approximate lookahead
functions are used to obtain variables which in themselves should closer to
perfect samples from p(x1:T |y1:T). This is in contrast to estimating the three
components in ψ′ one time with a large number of particles. We however expect
that the approximations ψ̄′ obtained by using a large number of particles to
provide more variance reduction in the likelihood estimates than approximations
obtained by using fewer particles.

Smoothing distribution

For the smoothing distribution p(xt|y1:T), we can in an offline setting use any
smoothing algorithm to approximate the smoothing weights. Methods such
as the forward filtering backward smoothing as discussed in e.g. Douc et al.
(2011) may be used to obtain smoothing weights though at a relatively high
computational cost. There are also other smoothing algorithms available that
have lower computational cost, see e.g. Fearnhead, Wyncoll, and Tawn (2010).

We are mainly interested in approximating the marginal smoothing
distributions for the different iterations t = k, . . . , q where q > k. In an
offline setting we would have k = 1 and q = T , but we can think of k and q as
the first and last iteration of a batch respectively. In that sense, we are interested
in the marginal distributions p(xt|yk:q) where k ≤ t ≤ q. To approximate the
smoothing weights, we use the fixed-interval smoothing algorithm from Doucet,
Godsill, and Andrieu (2000). For that reason we assume that when starting the
estimation of the smoothing weights, we have available (xjt , w̃

j
t) for j = 1, . . . ,m

particles for every t = k, . . . , q. That is, we have m particles to approximate
the marginal filtering distribution at every iteration t within the batch. Here
we think of the offline setting as using only one batch with k = 1 and q = T .

92

6.3. Approximation of the alternative twisting functions

In practice we ran a BPF and stored matrices of the required sets of particles.
Then we ran the fixed-interval smoothing algorithm for t = q, . . . , k. In the
outline of Algorithm 9 we ran the fixed-interval smoothing algorithm within
the generic estimate-ψ function.

As mentioned in Doucet, Godsill, and Andrieu (2000), the fixed-interval
smoothing algorithm uses the same variables as the approximated marginal
filtering distributions as support and changes only the weights when iterating
backwards. Because of this, the support of the approximate smoothing
distribution still consists of discrete points. We however need continuous
versions for the discrete approximations of the smoothing distribution. This is
because we in general need to evaluate ψ̄′t(xt) for a xt different than that of the
discrete support of the smoothing weights.

A natural idea for a solving this is by employing nonparametric density
estimation. One common approach is kernel density estimation. Consider first
estimation of the generic density function p. In general we want a kernel K to
be decreasing around x such that sample values xjt that are far away from x
will influence the density estimate of p(x) less than those that are closer to x.
We denote the kernel density estimator by p̂(x). This is then given by

p̂(x) = 1
h

m∑
j=1

wjtK

(
x− xjt
h

)
. (6.3)

Here h is the bandwidth which conceptually can be viewed as a scale parameter.
K indicates a typically symmetric kernel, e.g. a Gaussian. The parameter wjt
is usually set wjt = 1

n for j = 1, . . . ,m in traditional kernel density estimation
(Givens and Hoeting, 2013, pp. 325-328). In addition, the variables xjt for
j = 1, . . . ,m are assumed to be simulated directly from p(x) in traditional
kernel density estimation (Hastie, Tibshirani, and J. Friedman, 2009, p. 208).
From standard kernel density estimation it is also established that the value of
the bandwidth h represents a bias-variance trade-off for the mean integrated
squared error (MISE), see e.g. Givens and Hoeting (2013, pp. 329-331).
When considering xt coming from an algorithm, instead of being simulated
directly from p(x), we cannot use the traditional kernel density estimation
setup. Adjustments to the kernel density estimation are required. These are
done in order to use the particles resulting from an importance sampling-based
algorithm in the kernel density estimation framework.

We want to estimate p(xt|y1:t) using the variables xjt for j = 1, . . . ,m by
using kernel density estimation. This is done in Crisan and Miguez (2014)
where a relationship between the bandwidth h and the number of variables m
from the PF is given as a boundary. In addition, a similar approximation as
equation (6.3) is given, when using xt obtained with a particle filter. Let dx
denote the dimensionality of x, we then have the following relations adapted
from Crisan and Miguez (2014) to our notation

h ≥ m−
1

2(dx+1) p̂(x|y1:t) ≡
1
hm

m∑
j=1

K

(
x− xjt
h

)
.

Based on the same intuition as in Crisan and Miguez (2014), we would like to
approximate the smoothing distribution by using symmetric kernels around the

93

6.3. Approximation of the alternative twisting functions

particles combined, but combined with the smoothing weights. We denote the
density kernel approximation of the marginal smoothing distribution by f̂s(xt).

When using a kernel density estimate, the bandwidth, h, of the kernel
function is important in terms of the bias-variance tradeoff for the estimator. In
general, this could be adaptive in the sense that it varies with each observation
j used in the kernel density estimate for each t or fixed in the sense that it is
constant for each t. This gives two possible options for selecting the bandwidth
h in the approximation.

Fixed bandwidth: We use constant h for each t, Crisan and Miguez (2014)
provides a lower bound h ≥ m−

1
2(dx+1) where dx denotes the dimensionality

of xt.

Adaptive bandwidth: We have a separate bandwidth, denoted by hj , for
each observation j used in the kernel density estimate. This allows the
bandwidth to adapt to each observation j (Brewer, 2000).

The fixed bandwidth case for h differs from approximations to the optimal h in
standard kernel density estimation which is discussed in Givens and Hoeting
(2013). The distinction from standard kernel density estimation is that the
variables are not i.i.d. when obtained from particle filters and not simulated
directly from the density we are trying to estimate hence we have only have
what Crisan and Miguez (2014) refers to as "approximate samples". That is
weighted samples from the distribution. This is in contrast to standard kernel
density estimation as discussed in e.g. chapter 9 of Givens and Hoeting (2013)
or chapter 6.6 of Hastie, Tibshirani, and J. Friedman (2009). Continuing,
we select the fixed bandwidth-approach, following Crisan and Miguez (2014).
Assume now we have m particles consisting of the variables and smoothing
weights resulting from the fixed-interval smoothing. We denote the smoothing
weights by ẇsjt for particle j at iteration t. Further, K denotes a symmetric
kernel function and h denotes the fixed bandwidth. We can then consider an
approximation of the smoothing density denoted which we denote by f̂s(xt),
we then have

f̂s(xt) = 1
h

m∑
j=1

ẇsjtK

(
xt − xjt
h

)
. (6.4)

Naturally, we see that this approach can be computationally demanding. First
we need to estimate m smoothing weights and then in order to evaluate the
functions we have to evaluate the kernel function m times. In general kernel
density estimation we have computational complexity in the order of O(m)
see e.g. chapter 6 of Hastie, Tibshirani, and J. Friedman (2009). Evaluation
of f̂s(xt) for one xt is computationally demanding. Typically we have xit for
i = 1, . . . , n where n is the number of particles used in the twisted particle
filter.

94

6.3. Approximation of the alternative twisting functions

Likelihood term

For the likelihood term, p(yt:T |y1:t−1), we see can reformulate it in the following
way

p(yt:T |y1:t−1) = p(y1:T)
p(y1:t−1) = p(y1)

∏T
s=2 p(ys|y1:s−1)

p(y1)
∏t−1
s=2 p(ys|y1:s−1)

=
T∏
s=t

p(ys|y1:s−1)

for t > 1. The likelihood factors p(ys|y1:s−1) can be estimated with a standard
PF as we saw in equation (3.11). We see that all the likelihood terms include
all future observations yt:T . A straightforward approach for approximating all
the likelihood factors p(ys|y1:s−1) used to estimate the likelihood term is to run
a particle filter and store the estimated likelihood factors. Hence we need the
approximations p̂(y1) and p̂(ys|y1:s−1) for s = 2, . . . , T in order to estimate the
likelihood term.

Predictive distribution

We saw an approximation of the marginal predictive distribution p(xt|y1:t−1)
when considering the filtering recursions. Recall the approximation in equation
(3.4a), repeated here for completeness

p̂(xt|y1:t−1) =
n∑
i=1

wit−1p(xt|xit−1)

The weights used in this estimator is also generally available after running a
PF up until iteration t − 1. In addition the transition density of the SSM is
assumed known and it will generally ensure that we can evaluate p̂(xt|y1:t−1).

Alternative lookahead function

Having the necessary components for the estimators, we can now combine these
into approximate alternative lookahead functions. We denote the approximation
of the alternative lookahead function ψ′t(xt) by ψ̄′t(xt). We then have that

ψ̄′t(xt) = f̂s(xt)p̂(yt:T |y1:t−1)∑m
j=1 w

j
t−1p(xt|x

j
t−1)

(6.5)

ψ̄′t(xt) ∝
f̂s(xt)∑m

j=1 w
j
t−1p(xt|x

j
t−1)

(6.6)

can be used as approximate alternative lookahead functions. In practice we
can use the approximation in equation (6.6) as the term p̂(yt:T |y1:t−1) is a
constant that will cancel out when considering the final target distribution.
The advantage of the alternative lookahead function ψ̄′ is that we know how
to estimate the three components. In addition, the accuracy of each of the
components can to some extent be increased with increased computational
cost. That is, by increasing computational time, we can generally increase
the accuracy for the three components. Another possible advantage is that
we do not have to select a class Ψ̄ for the parametric approximations of the
lookahead functions a priori. This is only a possible advantage of ψ′ compared

95

6.3. Approximation of the alternative twisting functions

to a parametric approximation of a lookahead function, denoted by ψ̄. Using a
parametric approximation of the lookahead function that is conjugate to the
transition density lets us evaluate the integral ˜̄ψ analytically. This often reduces
computational cost significantly and in addition it often lets us find a closed
form expression for the twisted transition density in a twisted model. This
will in turn also reduce computational cost, we now consider briefly a way to
simulate approximately from the twisted transition density.

Simulating from the twisted transition density

Because the approximation ψ̄′t(xt) and the transition density are not conjugate,
we generally need alternative methods for simulating from the twisted transition
density. In order to simulate from the twisted transition density, we use a
version of nested IS adapted from algorithm 5 in Naesseth, Lindsten, and Schön
(2019). Here, we denote the unnormalised target distribution by f̃t(xt). We set
this equal to the unnormalised twisted transition density as follows

f̃t(xt) = p(xt|xit−1)ψ̄′t(xt).

Hence we have the the normalised target distribution then is ft(xt) =
pψt (xt|xt−1). In the algorithm we then use the transition density p(xt|xt−1)
of the SSM as the importance sampling function. We define the special case
p(x1|xi0) ≡ p(x1) and at line 5 we sample one value for xit based on the normalised
weights. Note that we first sample k = 1, . . . , s values x̄kt for each xit−1, then
these s values are weighted and one of x̄t is sampled as xit. We here note that
when s increase, this will also be a computationally costly algorithm.

Algorithm 10 Approximate simulation from twisted transition density
1: for i ∈ (1, . . . , n) do
2: x̄kt ∼ p(xt|xit−1) k = 1, . . . , s
3: w̃kt = f̃t(x̄k

t)
p(x̄k

t |xi
t−1)

4: wkt = w̃k
t∑s

l=1
w̃l

t

5: xit ∼
∑s
k=1 w

k
t δx̄k

t
(xt)

6: end for

Normalising functions

Recall the normalising functions, ψ̃t(xt), defined by the integral in Defini-
tion 4.2.1. In order to obtain the approximate alternative twisting functions
(ψ̄′, ˜̄ψ′) we also need approximations for the normalising functions. The integral
from which these are defined is in general intractable, unless the selected ap-
proximation ψ̄ is conjugate to the transition density. For this reason we need to
approximate the approximate alternative normalising functions. Note that we
also have to approximate the alternative lookahead function ψ′t+1(xt+1) in the
integrand by ψ̄′t+1(xt+1), hence we are not directly approximating the integral
ψ̃′t(xt). Starting with the normalising functions for 0 < t < T , we can use a

96

6.3. Approximation of the alternative twisting functions

variant of the Monte Carlo method after approximating the integrand in order
to estimate the integral. We then have

˜̄ψ′t(xit) =
∫
ψ̄′t+1(xt+1)p(xt+1|xit)dxt+1

˜̄ψ′t(xit) ≈
1
s

s∑
k=1

ψ̄′t+1(xkt+1) xkt+1 ∼ p(xt+1|xit).

Note here that for each particle i = 1, . . . , n at iteration t we sample s variables
from p(xt+1|xit) and are therefore estimating one integral per variable xit. Ideally,
we also would like s→∞ to get more accurate estimates of the integral. This
implies a computational cost in the order of O(sn) which quickly can be
intractable. We also need to approximate the normalising constant ˜̄ψ′0 from
equation 6.2. This can be estimated in the same manner as for the normalising
functions

˜̄ψ′0 ≈
1
s

s∑
k=1

ψ̄′1(xk1) xk1 ∼ p1(x1).

Alternatively we can also utilise that for the optimal ψ∗-functions, we know
that the normalising constant ψ̃∗0 should be equal to the marginal likelihood.
In an offline setting we already have an estimate of the marginal likelihood
denoted by p̂(y1:T) from the PF which we use to calculate the likelihood terms
and the particles used in the estimation of the smoothing weights. In an offline
setting we may use this as an alternative to Monte Carlo integration for the
normalising constant. That is, we can set ˜̄ψ′0 = p̂(y1:T) by using the likelihood
factors from the particle filter. Another aspect of the normalising constant ˜̄ψ′0 is
that for the sequence optimal Ψ∗1:T in Guarniero, Johansen, and Lee (2017), all
the estimated likelihood factors in the likelihood estimation except the first is
equal to 1. This will obviously not be the case when we are using approximate
lookahead functions ψ̄. It still could motivate an increase in the Monte Carlo
sample size s when estimating the normalising constant ˜̄ψ′0.

The approximate alternative twisting functions which we denote by (ψ̄′, ¯̃ψ′)
can also be used in the batch algorithm from Chapter 5. To use the alternative
lookahead function in a batch sequence we define ψb = ψ′ and then insert this
into the batch sequence Ψs

1:T . We can then view the alternative lookahead
function ψ′ adapted to the batch setting as a reformulation of the optimal batch
lookahead function ψb∗ for each batch. We can calculate approximate alternative
lookahead functions ψ̄′ for each batch which estimates the optimal batch
lookahead function. Then we can use the approximate alternative lookahead
functions in combination with batch twisted models and a twisted particle filter.
This is done in some of the numerical experiments of Chapter 7 both for an
offline setting and a batch setting. However, we note that the computational
cost of using these alternative lookahead functions is high in practice. The
main reason for this is the evaluation of ψ̄′t(xt) from equation (6.5). Recall that
evaluating ψ̄′t(xt) includes evaluating the kernel density-based approximation
f̂s(xt). We need to evaluate ψ̄′t(xt) when simulating approximately from the
twisted transition density and when estimating the integral ˜̄ψ′.

Regarding our initial motivation for this alternative lookahead, we have
seen that we have more flexibility than the parametric approximation of the

97

6.4. Laplace-based approximations

lookahead function because we do not have to select a class of parametric forms.
On the other side, the computational cost is significantly higher. Both when
evaluating ψ̄′ because of the kernel density estimation and when estimating
the integral ˜̄ψ. We also see that even if we have ψ′t+1(xt+1) available in closed
form we would have to approximate the integral ψ̃′t(xt) numerically unless
p(xt+1|xt) is conjugate to ψ′t+1(xt+1). The high computational cost related to
the approximate alternative lookahead function makes it intractable to use in
practice which is why we mainly focus on parametric approximations.

6.4 Laplace-based approximations

The numerical estimation of the approximate lookahead functions ψ̄ is a
computationally expensive part of the iAPF. It can be the costliest part of the
algorithm when taking into account that it is run once for each improvement of
ψ̄. In this section, we consider another approach to estimating the approximate
lookahead functions. This is based on the section about Laplace approximations
in Lindsten, Helske, and Vihola (2018). We follow their notation by denoting
p̃(yt|xt) as a Gaussian approximation of the observation density obtained by
the Laplace method. A somewhat restrictive assumption for this specific setup
is that the latent process we are considering is a Gaussian Markov random field
(GMRF). This implies that xt is only dependent on its neighbours (Lindsten,
Helske, and Vihola, 2018, p. 6). Another, somewhat less restrictive, assumption
is that the observation density, p(yt|xt), is at least twice differentiable. In
order to estimate the Gaussian approximation, p̃(yt|xt), we use the Laplace
method on log p(yt|xt) around its mode. This corresponds to the initial setup
for Gaussian approximations in e.g. Rue, Martino, and Chopin (2009). We
then denote the point x0 as the solution to d

dx log p(yt|x) = 0. We also denote
f(xt) = log p(yt|xt) for notational simplicity. We start by defining the Gaussian
approximation log p̃(yt|xt) by the following

log p̃(yt|xt) =
2∑
j=0

1
j!f

(j)(x0)(xt − x0)j .

This is a Taylor expansion around the point x0 of order 2 where f (j)(x0) denotes
the jth derivative at x0 (Givens and Hoeting, 2013, p. 2). The approximation
ψ̄t(xt) of the lookahead function is then selected directly as the Gaussian
approximation which is proportional to p̃(yt|xt) ˜̄ψt(xt) for t < tstop. When
t = tstop it is set equal to the Gaussian approximation.

This is possible because the approximate lookahead functions, denoted by
ψ̄, are conjugate to the transition densities, making the integral ˜̄ψ tractable.
This again follows from the assumption that the latent process is a GMRF. In
addition the Gaussian approximation, p̃(yt|xt), is conjugate to the normalising
function ˜̄ψt(xt). We also use the assumption that ψ̃T (xT) ≡ 1 which follows
from Assumptions 4.2.1. We can calculate ψ̄t(xt) analytically which means
there is no need for the computationally expensive numerical optimisation. In
addition, we do not use particles in the calculations of ψ̄. This implies that
we do not have to run the initial BPF in order to obtain particles used in
the estimation of ψ̄. We can estimate ψ̄ by running Algorithm 11 once with

98

6.4. Laplace-based approximations

Algorithm 11 Laplace approximation of ψ
1: for t ∈ (tstop, . . . , tstart) do
2: if t = tstop then
3: ψ̄t(xt) = p̃(yt|xt)
4: else
5: ˜̄ψt(xt) =

∫
ψ̄t+1(xt+1)p(xt+1|xt)dxt+1

6: ψ̄t(xt) ∝ p̃(yt|xt) ˜̄ψt(xt)
7: end if
8: end for

tstop = T and tstart = 1 in an offline setting. Then we can use the approximate
twisting functions (ψ̄, ˜̄ψ) in combination with a twisted model in a twisted
particle filter. From the twisted particle filter we obtain a likelihood estimate.
Note that the offline setting is still implied because of the backward recursive
structure. One disadvantage of this approach is the fact that we are losing the
iteratively improving ψ̄ property of the iAPF. One way to keep the iteratively
improving ψ̄ is to use the Laplace approximation only for the first iteration and
then numerical optimisation for the improvements. In that scenario however,
we would still have relatively similar computational cost as the standard setup.
This is because we are only reducing the number of numerical estimations of ψ̄
by one. We will consider a numerical example in Section 6.5.

General setup

After we have the Gaussian approximation, denoted by p̃(yt|xt) = N (xt, µ̃t, σ̃2
t),

we want to find the sequence Ψ̄1:T of approximate lookahead functions. We will
use ˜̄ψT (xT) ≡ 1 and the recursive approximation structure from proposition 4
in Guarniero, Johansen, and Lee (2017). We then have that ψ̄T (xT) = p̃(yT |xT).
The remaining lookahead functions are approximated by using the recursive
structure of the optimal twisting functions. We consider the transition density
on a generic form p(xt|xt−1) = N (xt;µx, σ2

x). Here, the expectation parameter
is on the form µx = α0 + αxt−1. All the approximate lookahead functions are
on the general form N (xt;µt, σ2

t). We then start by

ψ̄T (xT) = p̃(yT |xT) = N (xT ;µT , σ2
T).

Assume now that we have the approximate lookahead function ψ̄t(xt) and want
to calculate the normalising function ˜̄ψt−1(xt−1). We reformulate the integrand
by straightforward calculations to simplify the integral which then can be solved
analytically. The normalising function then becomes

˜̄ψt−1(xt−1) =
∫
ψ̄t(xt)p(xt|xt−1)dxt

=
∫
N (µx;µt, σ2

t + σ2
x)N

(
xt;

µt

σ2
t

+ µx

σ2
x

1
σ2

t
+ 1

σ2
x

,
1

1
σ2

t
+ 1

σ2
x

)
dxt

= N (µx;µt, σ2
t + σ2

x).

We can now use the recursive structure from the optimal twisting functions in
order to approximate the lookahead function at iteration t− 1. We then have

99

6.4. Laplace-based approximations

by the same type of straightforward calculations that

p̃(yt−1|xt−1) ˜̄ψt−1(xt−1) ∝ N

xt−1;
µ̃t−1
σ̃2

t−1
+ αµt−αα0

σ2
x+σ2

t

1
σ̃2

t−1
+ α2

σ2
x+σ2

t

,
1

1
σ̃2

t−1
+ α2

σ2
x+σ2

t

 .

By using the recursive structure in Definition 4.5.1, we approximate ψ̄t−1(xt−1)
directly by the right-hand side. We then have the approximate lookahead
function at iteration t− 1 on parametric form given by

ψ̄t−1(xt−1) = N

xt−1;
µ̃t−1
σ̃2

t−1
+ αµt−αα0

σ2
x+σ2

t

1
σ̃2

t−1
+ α2

σ2
x+σ2

t

,
1

1
σ̃2

t−1
+ α2

σ2
x+σ2

t

 .

We can now calculate the entire sequence Ψ̄1:T analytically, without numerical
optimisation. For this type of models, this represents significantly lower
computational cost than the corresponding parametric approximation found
by numerical optimisation. Having obtained a sequence of approximations,
we now have the twisting functions (ψ̄, ˜̄ψ). The twisting functions can be
utilised in a twisted model in the same way any valid sequence of twisting
functions can be used in a twisted model. This includes parametric and
nonparametric approximation of the lookahead functions and the alternative
lookahead function.

Setup for Poisson observations

We will consider the general class of models given by the structure of model 4 in
Chapter 7 and see how Laplace approximation of ψ̄ can be utilised. The setup
in Lindsten, Helske, and Vihola (2018) also use the Gaussian approximations
p̃(yt|xt) to estimate the importance sampling distributions and weights. We
instead follow the setup from Guarniero, Johansen, and Lee (2017) by using
the twisted transition density as the importance sampling distribution. That is,
we will be using the Gaussian approximation p̃(yt|xt) only for the approximate
twisting functions (ψ̄, ˜̄ψ). The general class of models having the same structure
as model 4 is defined by

p(x1) = N
(
x1;α0,

σ2
x

(1− α)2

)
p(yt|xt) = (ext)yt

yt!
e−e

xt

p(xt|xt−1) = N (xt;α0 + αxt−1, σ
2
x).

We see that the observation density is more than twice differentiable and we
start by finding p̃(yt|xt). We find the mode x0 = log yt and the Taylor expansion
around x0. We then have that

log p̃(yt|xt) = 1
0!f

(0)(x0) + 1
1!f

(1)(x0)(xt − x0)1 + 1
2!f

(2)(x0)(xt − x0)2

= log p(yt|x0)− ex0

2 (xt − x0)2

p̃(yt|xt) = p(yt|x0)e− ex0
2 (xt−x0)2

.

100

6.5. Example: Laplace approximations

We are considering the Gaussian approximation, p̃(yt|xt), to be a function of xt.
Here and yt is a fixed observation and therefore the term p(yt|x0) is constant.
We recognise the Gaussian density up to proportionality on the right-hand side,

p̃(yt|xt) ∝ exp− 1
2 1
ex0

(xt − x0)2.

The parametric form for the approximation can therefore be expressed as
p̃(yt|xt) = N (xt; µ̃t, σ̃2

t) where µ̃t = x0 and σ̃2
t = 1

ex0 . With this setup we can
use Algorithm 11 in order to calculate approximate lookahead functions which
we then can use to define approximate twisting functions.

Due to the GMRF assumptions about the transition density and the Gaussian
approximation of the observation density, the transition density is conjugate to
the approximate lookahead function ψ̄. In addition the integral ˜̄ψ is tractable
and is available in closed form. This reduces the computational cost as no
numerical optimisation is needed to calculate the approximate lookahead
functions ψ̄. We see that if the GMRF assumption holds, we can reduce
computational cost by using the Laplace approximations. However, in order to
have iteratively improving estimates of the lookahead functions we still need
numerical optimisation.

6.5 Example: Laplace approximations

We consider a specific example in order to compare the Laplace-based approach
to approximating the lookahead functions with the traditional setup of iAPF
with Gaussian lookahead functions and numerical optimisation. We include a
BPF with more particles as a reference. In this example, we will use model 4
from Chapter 7 given by

p(x1) = N
(
x1; 0.9, 0.22

(1− 0.7)2

)
p(yt|xt) = (ext)yt

yt!
e−e

xt

p(xt|xt−1) = N (xt; 0.9 + 0.7xt−1, 0.22).

The iAPF uses a single Gaussian as the approximate lookahead function, that
is ψ̄t(xt) = N (xt;µt, σ2

t). With the Laplace-based approach, we first calculate
the approximate lookahead functions ψ̄ by using Algorithm 11, then we use the
Laplace-based twisting functions in combination with the twisted model. We
use the setup of the iAPF with a twisted model, but we do not include any
improvement steps or numerical optimisation. We denote the Laplace-based
iAPF with iAPFL and we used the following setup for the example

Algorithm Particles Parameters
iAPF n0 = 200 k = 3, τ = 1, α = β = 0.5
iAPFL n = 200 α = β = 0.5
BPF n = 1000 α = 0.5

We compare all the likelihood estimates with a likelihood estimate denoted by
Ẑ from a BPF with n = 500000 particles. We then calculate the likelihood
ratios ẐiAPF

Ẑ
, ẐiAPFL

Ẑ
and ẐBPF

Ẑ
. Running the algorithms BPF, iAPF and the

iAPF with the Laplace-based approximate lookahead functions are repeated 100
times. The likelihood estimates from each of the runs for all three algorithms

101

6.5. Example: Laplace approximations

are then stored. We also want to compare the effective sample size of the
three algorithms. Because the algorithms use a different number of particles we
consider a fraction with the ESS at the given iteration in the numerator and the
number of particles in the denominator. We denote this by EFt = ESSt

nt
. For

the iAPF, the fraction EFt is calculated for the last run of the twisted particle
filter. We also used the distance function DiAPF2 from equation (4.17) in the
iAPF.

Data

We start by simulating latent variables and observations from the model for
T = 50 iterations.

Figure 6.1: Simulated latent variables x1:T and observations y1:T for T = 50.

Results

The iAPF with numerical optimisation had a considerably higher computational
cost than the BPF and the iAPF with the Laplace-based approximate lookaehad
functions. The iAPF with numerical optimisation yielded likelihood estimates
with low variance by using only n0 = 200 particles. The iAPF with Laplace-
based approximations had considerably lower computational cost than the
iAPF with numerical optimisation. We see from Figure 6.2 that the iAPF
with Laplace-based approximations achieved lower variance for the likelihood
estimates compared to the BPF with five times as many particles. The likelihood
ratios are plotted in Figure 6.2 with the red circle indicating the mean of the
estimates. We also consider the effective sample size, measured by the mean EFt
from 100 repetitions. We see from Figure 6.3 that the mean EFt is consistently
higher for the iAPF. Recall that the ESS is measured in the last run of the
twisted particle filter in this case. When taking this into account we see that the
iAPFL has a relatively high effective sample size given that it has no iteratively
improving of the approximate lookahead functions ψ̄. We also consider the
numerical variance of the calculated likelihood ratios and the estimated squared
bias.

102

6.5. Example: Laplace approximations

Figure 6.2: Box plots of estimated likelihood from 100 runs relative to estimated
likelihood from a BPF using 500000 particles. The red circles represent the
sample means.

Figure 6.3: Sample mean of EFt over 100 runs of the three algorithms.

BPF iAPF iAPFL
V
[
Ẑ/Z

]
0.0597 0.0023 0.0087

(E
[
Ẑ/Z

]
− 1)2 0.0016 3.2730e-05 1.7999e-05

103

CHAPTER 7

Numerical experiments

In this section we consider numerical experiments where we will focus on some
of the concepts we have considered. We start by defining a set of models which
we mainly use in the numerical experiments of this chapter. For each of the
experiments we will provide an overview of the setup for the different algorithms.

Model 1

For the first model, we define a linear Gaussian SSM in 1D similar to the model
of section 7 in Kantas et al. (2015). Because of the linear Gaussian structure,
we can use a Kalman filter in order to calculate the likelihood which will be
useful for comparisons with the estimated likelihood. The model structure is
given by

xt = ρ0 + ρxt−1 + σwt wt ∼ N (0, 12)
yt = xt + τvt vt ∼ N (0, 12).

With ρ0 = 0.2, ρ = 0.75, σ = 1, τ = 1 and x0 = 0.

Model 2

For the second model, we will consider the univariate stochastic volatility model
(USV) described in Guarniero, Johansen, and Lee (2017).

p(x1) = N
(
x1;α0,

σ2

(1− α)2

)
p(xt|xt−1) = N (xt;α0 + αxt−1, σ

2)
p(yt|xt) = N (yt; 0, β2ext)

We define model 2 by selecting the parameters σ = 0.2, α0 = 0, α = 0.8 and
β = 0.2.

Model 3

For the third model, we use the multivariate linear Gaussian with dimensionality
d from section 5.2 in Guarniero, Johansen, and Lee (2017). This is defined by

p(x1) = N (x1;m,Σ)

104

p(xt|xt−1) = N (xt;Axt−1, B)
p(yt|xt) = N (yt;Cxt, D).

We use the same setup as in Guarniero, Johansen, and Lee (2017, p. 1641)
where Id denotes the d× d identity matrix. Further, the parameters have the
values

• B = C = D = Σ = Id

• Aij = α|i−j|+1 i, j ∈ 1 . . . , d

• m = 0

We consider the case where y and x have the same dimensionality d. Here, 0
denotes a vector with dimension d where the components all are equal to 0.

Model 4

We here consider a model that includes discrete observations. This is based on
the USV. However, each of the observations has a Poisson distribution instead
of a nonlinear Gaussian. The model is then given by

p(x1) = N
(
x1;α0,

σ2

(1− α)2

)
p(xt|xt−1) = N (xt;α0 + αxt−1, σ

2)

p(yt|xt) = (ext)yt

yt!
e−e

xt
.

We denote the following as model 4 when α0 = 0, α = 0.75 and σ = 0.5.

Mean squared error

We estimate the MSE from the estimate Ẑ of the true Z as

MSE
[
Ẑ
]

= V
[
Ẑ
]

+
(
E
[
Ẑ
]
− Z

)2

adapted from Hastie, Tibshirani, and J. Friedman (2009, p. 24). Here, Z
denotes the likelihood which generally is unknown. When we are considering
linear Gaussian models, we use a Kalman filter in order to calculate the value
of Z analytically. When considering other models than the linear Gaussian,
we use the likelihood estimate from a BPF with a large number of particles as
an accurate estimate for reference. In that case we also denote the likelihood
estimate by Z. We use Ẑ to denote the estimated likelihood. We will mainly
be interested in the MSE of the likelihood ratio denoted by Ẑ

Z . This implies
that we are often considering the MSE of the fraction

MSE
[
Ẑ

Z

]
= V

[
Ẑ

Z

]
+
(
E
[
Ẑ

Z

]
− 1
)2

We use the package from Luethi et al. (2021) to obtain the likelihood using a
Kalman filter.

105

7.1. Experiment 1: offline setting

Notation

We will mainly be interested in some specific model configurations in these
numerical experiments. We use the following abbreviations for the different
setups to simplify notation in the discussion

BPF: The bootstrap particle filter as presented in Algorithm 5.

BP: The batch algorithm with parametric approximations of twisting functions
(BP) presented in Algorithm 9.

BA: The batch algorithm with the alternative lookahead functions (BA)
presented in Algorithm 9. We here refer to the reformulation of the
optimal lookahead function. This is denoted by ψ′ and the approximation
discussed in Section 6.3 is denoted by ψ̄′.

iAPF: The iAPF algorithm from Algorithm 8.

Note that the BP and BA are batch algorithms, but when used in offline settings
this is equivalent to using only one batch.

7.1 Experiment 1: offline setting

We first consider an experiment in the offline setting where we use model
1. Because of the linear Gaussian structure of the model, we calculate the
likelihood exactly using a Kalman filter. Recall that the when using the batch
algorithms BA and BP in an offline setting, we are using only one batch. For
the algorithm BA, we are using the alternative lookahead function ψ′ which
is approximated by ψ̄′ discussed in Section 6.3. We compare the BPF, BP,
BA and the iAPF for estimating the likelihood, denoted by Ẑ. We denote the
likelihood calculated using a Kalman filter by Z and when we have estimates of
the likelihood from all the algorithms, we consider the numerical variance of the
likelihood ratio Ẑ

Z . In general we use the adaptive resampling threshold α in
BPF and iAPF. We also use resampling threshold α for the initial particle filter
used in BP and resampling threshold β in the twisted particle filter. For BA we
use α for the internal particle filter which obtains particles for estimating the
smoothing weights and approximating the predictive distributions. We then
use resampling threshold β for the twisted particle filter in BA. The main focus
in this numerical experiment is the effect of using twisting target distributions
when considering numerical variance of the likelihood estimates.

Setup

We now present the configuration of the four algorithms in this experiment.

Algorithm Particles Parameters
BA n = 200, m = 400, s = 200 L = T , α = β = 0.5
BP m = n = 100 repeats = 3, L = T , α = β = 0.5
BPF n = 400 α = 0.5
iAPF n0 = 100 k = 5, τ = 1, α = 0.5

106

7.1. Experiment 1: offline setting

For BP we use the parametric form ψ̄bt (xt) = N (xt, µt, σ2
t) when approximating

the lookahead functions and for iAPF we use ψ̄t(xt) = N (xt, µt, σ2
t). We use

the distance function DiAPF2 from equation (4.17) in this experiment. For the
configuration of BA we present a more detailed overview.

• Batch length: the last iteration in the first batch in this experiment is set
to L = T which implies that the algorithm use one batch.

• Internal particle filter: a bootstrap particle filter obtains is used to
obtain particles which then is used to estimate smoothing weights and
approximate the predictive distribution.

• Smoothing: the algorithm uses a fixed-interval smoothing algorithm to
obtain the estimated smoothing weights.

• Twisting functions: we use the approximation ψ̄′t(xt) discussed in
Equation (6.5). The symmetric kernel, K, in this experiment is set
to a N (0, 12) and the bandwidth h was set to the lower bound h = m−0.25

defined by Crisan and Miguez (2014).

• Importance sampling distribution: here we use Algorithm 10.

Data

We simulate latent variables x1:T and observations y1:T with T = 30 from model
1. These are shown in Figure 7.1.

Figure 7.1: Simulated latent variables x1:T and observations y1:T from model 1,
T = 30.

Results

We estimate the likelihood with the four algorithms 100 times and calculate the
empirical variance of the likelihood ratios Ẑ/Z where Ẑ denotes the estimated
likelihood from an algorithm. The exact likelihood Z is obtained using a Kalman

107

7.2. Experiment 2: batch setting

filter. The likelihood ratios are shown in the box plots in Figure 7.2 and the
mean of the estimates are shown in red.

The likelihood estimates from the BPF have the largest variance as expected.
When considering the BP and iAPF, these have approximately the same variance
of the likelihood estimates because the batch setting with one batch corresponds
to the offline setting. Note that this is an artificially low variance because
p(yt|xt) ˜̄ψt(xt) is proportional to a Gaussian density. With this in mind, we
see that we are using one Gaussian density, ψ̄t(xt), to approximate another
Gaussian density, p(yt|xt) ˜̄ψt(xt). Therefore, when we are in the offline setting
combined with linear Gaussian transition and observation densities we expect
the iAPF and BP with Gaussian approximate lookahead functions ψ̄ to perform
well. We also note that the number of particles are not directly comparable
across algorithms. Both iAPF and BP are utilising iteratively improving ψ̄
estimates which is also difficult to factor in when comparing the algorithms.
We also see that the BA has lower variance of the likelihood estimates than the
BPF, but at a significantly higher computational cost compared to all the other
algorithms. We also consider the estimated MSE by calculating the sample

Figure 7.2: Box plots of likelihood ratios from 100 runs relative to the likelihood
calculated by a Kalman filter, the red circles represent the sample means. The
algorithm BPF is in an online setting, the remaining algorithms are in offline
settings.

variance and an estimate of the squared bias for the likelihood ratios.

BA BP BPF iAPF
V
[
Ẑ/Z

]
0.0344 3.9239e-06 0.0855 7.4168e-06

(E
[
Ẑ/Z

]
− 1)2 0.0044 1.1234e-07 0.0014 5.8726e-09

7.2 Experiment 2: batch setting

We use the same base configuration as in experiment 1, but with some
modifications. We are interested in the variance of the likelihood estimates when
moving from an offline setting to a batch setting. Because we are now in a batch

108

7.2. Experiment 2: batch setting

setting, we cannot use the iAPF and will therefore mainly focus on BA and BP
which are batch algorithms. We include the likelihood estimates obtained with
a BPF using a higher number of particles as a reference. Moving from an offline
setting implies that we can start the calculations before receiving all observations
y1:T . This can again be beneficial in scenarios where different estimates are
needed before iteration T . This is in contrast to the iAPF which is an offline
algorithm, requiring all observations y1:T before starting the calculations.

Setup

In this setting we use batch size of L = 5 which implies that we have 6 batches
in the batch algorithms. The BA use the alternative lookahead functions
approximated by ψ̄′. We now present the configuration for the algorithms used
in this experiment.

Algorithm Particles Parameters
BA n = 200, m = 200, s = 400 L = 5, α = β = 0.5
BP m = n = 200 repeats = 3, L = 5, α = β = 0.5
BPF n = 400 α = 0.5

The BP is using the parametric approximation ψ̄bt (xt) = N (xt, µt, σ2
t) and

iteratively improving approximations of ψ̄bt (xt). We also used the distance
function DiAPF2 from equation (4.17) for the numerical optimisation in BP.

Results

We run the three algorithms 100 times. The likelihood ratios with the likelihood
Z calculated with a Kalman filter in the denominator are compared in the box
plots. The box plots of the likelihood ratios are shown in Figure 7.3 where the
red circles indicate the sample mean.

Figure 7.3: Box plots of likelihood ratios from 100 runs relative to the likelihood
calculated by a Kalman filter, the red circles represent the sample means. The
algorithms BA and BP are in a batch setting while the BPF is in an online
setting.

109

7.3. Experiment 3: univariate stochastic volatility

We then consider the sample variance of the likelihood ratios.

BA BP BPF
V
[
Ẑ/Z

]
0.0304 0.0022 0.0736

(E
[
Ẑ/Z

]
− 1)2 0.0018 2.2253e-07 0.0003

Recall that we in experiment 1 use L = T , that is an offline setting. In this
experiment however we are using L = 5, indicating that each batch contains
5 iterations. Consequently, both BA and BP are operating in a batch setting
in this experiment. In Figure 7.3 we see that the variance of the likelihood
estimates obtained by the BPF is highest while the BP has considerably lower
variance of the obtained likelihood estimates. We here included BA mostly for
reference even though it also possible to use in this experiment. In terms of
computational cost the BA exceeds both BP and BPF by far, so in a practical
application these are not comparable. Note that we now see the effect of being in
a batch setting when considering BP. This algorithm is still utilising a Gaussian
for ψ̄bt (xt) while the target p(yt|xt) ˜̄ψt(xt) is also a Gaussian for model 1. This
implies that the variability in Figure 7.3 for BP can be seen as a consequence
of being in a batch setting compared to an offline setting.

7.3 Experiment 3: univariate stochastic volatility

In this experiment we want to consider the USV model which corresponds to
model 2. This model has a nonlinear Gaussian observation density, so we cannot
use the Kalman filter to calculate the likelihood. We therefore use a BPF with
n = 500000 particles as the reference estimate which we here denote by Z. This
will then serve as an accurate estimate of the likelihood which we can compare
the algorithms to. The main focus is comparing the three algorithms to each
other which in we still do with this reference estimate.

We compare the batch algorithm with parametric approximations, denoted
by BP, the offline iAPF and a standard BPF in the online setting. Our
motivation for using the BP or the iAPF compared to the BPF is the interest in
low variance likelihood estimates. We therefore compare the different likelihood
estimates with the reference estimate Z. The likelihood ratios are then given by
ẐBP
Z , ẐBPF

Z and ẐiAPF
Z for BP, BPF and iAPF respectively. We then calculate

the sample variance of these likelihood ratios.

Setup

We summarise the setup of the algorithms in this experiment.

Algorithm Particles Parameters
BP m = n = 200 repeats = 5, L = 10, α = β = 0.5
BPF n = 1000 α = 0.5
iAPF n0 = 200 k = 5, τ = 0.5, α = 0.5

For BP we use the approximation ψ̄bt (xt) = N (xt;µt, σ2
t) and for iAPF we

use ψ̄t(xt) = N (xt;µt, σ2
t). We also used the distance function DiAPF2 from

equation (4.17) for the numerical optimisation in BP and iAPF.

110

7.3. Experiment 3: univariate stochastic volatility

Data

We simulated a sequence of latent variables x1:T and observations y1:T of length
T = 50 from model 2. These are shown in Figure 7.4.

Figure 7.4: Simulated latent variables x1:T and observations y1:T from model 2,
T = 50.

Results

We run the three algorithms and estimate the likelihood by using the algorithms
500 times. We are now comparing three algorithms in three different setting.
The iAPF is in an offline setting. The batch algorithm with parametric
approximations of the lookahead functions BP is in a batch setting with L = 10
implying that the timeline is split into 5 batches. The BPF is in an online
setting, but also utilising five times as many particles as the other two algorithms.
From Figure 7.5 we see the likelihood ratios and the sample mean of these
denoted by a red circle. We also see that BP and iAPF have considerably lower
variance of the likelihood estimates compared to the BPF utilising five times as
many particles in the estimations. We consider the variance and the estimated
squared bias of the likelihood ratios for the three algorithms.

BP BPF iAPF
V
[
Ẑ/Z

]
0.0037 0.0165 0.0004

(E
[
Ẑ/Z

]
− 1)2 8.5919e-05 5.6265e-05 4.4549e-05

We see that the variance of the likelihood estimates obtained by the iAPF in
an offline setting is still around 1/10 of the variance of the likelihood estimates
obtain by the BP. This highlights the additional decrease in variance for the
likelihood estimates obtained in an offline setting compared to the batch setting.
For the squared bias estimate, the three algorithms are quite similar and all are
close to 0.

111

7.4. Experiment 4: multivariate setting

Figure 7.5: Box plots of likelihood ratios from 500 runs relative to the likelihood
calculated by a BPF using 500 000 particles, the red circles represent the sample
means. The algorithm BP is in a batch setting, BPF is in an online setting and
iAPF is in an offline setting.

7.4 Experiment 4: multivariate setting

In this experiment we consider model 3. This model is a multivariate linear
Gaussian model. We consider the case where α = 0.42 which is the same value
as in Guarniero, Johansen, and Lee (2017). In this experiment we consider
d = 4, that is both the latent variables and the observations are vectors. Here
we compare a BPF, iAPF and a BP. Our main interest is how the BP is in higher
dimensions compared to the iAPF. We also run a BPF with more particles for
comparison.

Again we expect the iAPF to have the lowest variance of the likelihood
estimates. In this experiment we are able to calculate the likelihood using a
Kalman filter as we are considering a linear Gaussian model. We denote the
likelihood from the Kalman filter by Z and again consider the likelihood ratios
ẐBPF
Z , ẐiAPF

Z and ẐBP
Z .

Setup

Algorithm Particles Parameters
BP m = n = 500 repeats = 5, L = 6, α = β = 0.5
BPF n = 5000 α = 0.5
iAPF n0 = 500 k = 4, τ = 0.5, α = 0.5

The BP use ψ̄bt (xt) = N (xt, µt,Σt) as approximations of the lookahead functions
while iAPF use ψ̄t(xt) = N (xt, µt,Σt). Note that Σt for t = 1, . . . , T are
diagonal matrices. We also used the distance function DiAPF2 from equation
(4.17) for BP and iAPF.

We simulate 30 latent variables and observations from model 3 defined in
Chapter 7.

112

7.5. Experiment 5: discrete observations

Results

Then we ran the three algorithms 200 times to obtain 200 likelihood estimates
from each algorithm. We also want to consider the variance of the likelihood

Figure 7.6: Box plots of likelihood ratios from 200 runs relative to the likelihood
calculated by a Kalman filter, the red circles represent the sample means. The
algorithm BP is in a batch setting, BPF is in an online setting and iAPF is in
an offline setting.

ratios in this experiment.

BP BPF iAPF
V
[
Ẑ/Z

]
0.0259 0.0936 0.0245

(E
[
Ẑ/Z

]
− 1)2 0.0014 4.1386e-06 5.6387e-05

In this experiment with the given setup, we see from Figure 7.6 that the BP
with batch size L = 6 slightly higher variance than the iAPF. Both the BP and
the iAPF however have considerably lower variance of the likelihood estimates
compared to the BPF which is using 10 times as many particles. We also note
that with L = 6, the BP is using less future information than the iAPF.

7.5 Experiment 5: discrete observations

We now consider an experiment by using model 4 from Chapter 7 which includes
discrete observations. We are therefore not able to calculate the likelihood by
using a Kalman filter. In this case, we use a BPF with n = 500000 particles as
a reference and denote the likelihood estimate by Z. The likelihood estimates
obtained from the algorithms are then compared to this estimate. Our focus is
again to compare the batch algorithm with parametric approximation of the
lookahead function, denoted by BP which is in a batch setting, the iAPF in an
offline setting and BPF as a reference in an online setting.

113

7.5. Experiment 5: discrete observations

Setup

Algorithm Particles Parameters
BP m = n = 1000 repeats = 6, L = 10, α = β = 0.5
BPF n = 5000 α = 0.5
iAPF n0 = 1000 k = 6, τ = 0.5, α = 0.5

We use the approximations ψ̄bt (xt) = N (xt;µt, σ2
t) for the lookahead functions

in BP and ψ̄t(xt) = N (xt;µt, σ2
t) in iAPF. We also used the distance function

DiAPF2 from equation (4.17) for BP and iAPF.

Data

We simulate 50 latent variables and observations from model 4. We then ran
the three algorithms 100 times to obtain 100 likelihood estimates from each
algorithm.

Figure 7.7: Simulated latent variables x1:T and observations y1:T from model 4,
T = 50.

Results

We compared the likelihood ratios ẐBP
Z , ẐBPF

Z and ẐiAPF
Z . We still see from

Figure 7.8 that the BP in a batch setting and the iAPF in an offline setting have
lower variance of the likelihood estimates than the BPF in an online setting.
However in this experiment with discrete observations y1:T , both BP and iAPF
have clearly higher variance than in the linear Gaussian model from experiment
1. This is also to be expected because we are still using an approximation for
the lookahead function on the form ψ̄t(xt) = N (xt;µt, σ2

t), but now the target
function, p(yt|xt) ˜̄ψt(xt), is not Gaussian because of the discrete observations.

We then consider the variance and estimated squared bias of the estimated
likelihood ratios from the three algorithms in this numerical experiment.

114

7.6. Experiment 6: multivariate setting with higher dimensionality

Figure 7.8: Box plots of likelihood ratios from 200 runs relative to the likelihood
calculated by a BPF using 500 000 particles, the red circles represent the sample
means. The algorithm BP is in a batch setting, BPF is in an online setting and
iAPF is in an offline setting.

BP BPF iAPF
V
[
Ẑ/Z

]
0.0025 0.0063 0.0012

(E
[
Ẑ/Z

]
− 1)2 2.4530e-05 3.2908e-06 1.7103e-05

We see that the estimated variance of the likelihood estimates is lowest for the
iAPF as expected. For the BP it is about two times higher. The estimated
variance for BPF is about 2.5 times higher than the estimated variance of the
likelihood estimates obtained from BP. The estimated squared bias is similar
for all three algorithms. The BP is however using L = 10, that is, a batch
size of 10 while iAPF is in an offline setting. The BPF is included mostly as a
reference and we note here that it is using five times as many particles as the
other algorithms.

7.6 Experiment 6: multivariate setting with higher
dimensionality

In this experiment we consider model 3 from Chapter 7 with dimensionality
d = 8 and the same α = 0.42 as in Guarniero, Johansen, and Lee (2017).

Setup

Algorithm Particles Parameters
BP m = n = 1000 repeats = 8, L = 10, α = β = 0.5
BPF n = 5000 α = 0.5
iAPF n0 = 1000 k = 7, τ = 1, α = 0.5

The BP use ψ̄bt (xt) = N (xt, µt,Σt) as approximations of the lookahead functions
while iAPF use ψ̄t(xt) = N (xt, µt,Σt). Note that Σt for t = 1, . . . , T are

115

7.7. Experiment 7: effective sample size

diagonal matrices. We also used the distance function DiAPF2 from equation
(4.17) for BP and iAPF. We simulate 30 latent variables and observations from
model 3 defined in Chapter 7.

Results

We then consider the likelihood ratios for the three algorithms in Figure 7.9.

Figure 7.9: Box plots of likelihood ratios from 50 runs relative to the likelihood
calculated by a Kalman filter, the red circles represent the sample means. The
algorithm BP is in a batch setting, BPF is in an online setting and iAPF is in
an offline setting.

We can then consider the variance and the estimated squared bias of the
likelihood ratios from the three algorithms.

BP BPF iAPF
V
[
Ẑ/Z

]
0.1112 1.0119 0.0899

(E
[
Ẑ/Z

]
− 1)2 4.6485e-09 0.0165 0.0071

Again we see from Figure 7.9 that the iAPF has the lowest variance of the
likelihood estimates compared to the BP and BPF. We however see that the
variance of the likelihood estimates obtained by the BP is only slightly higher
in this case. From Figure 7.9 we also see that the number of particles for BPF
is likely too low considering the dimensionality (d = 8) of the data in this
experiment. We also note that we are using a higher stability lag parameter
k = 7 than Guarniero, Johansen, and Lee (2017) and a higher threshold τ = 1.
See Algorithm 8 for more details.

7.7 Experiment 7: effective sample size

Recall that if the optimal offline sequence Ψ∗1:T is used with a twisted model all
the weight updates would be equal to 1 which again implies that all weights
would be equal. In this scenario we would have that the effective sample size

116

7.7. Experiment 7: effective sample size

ESSt = n for t = 1, . . . , T and therefore we would never resample. In this
numerical experiment we will focus on ESS in the batch setting with BP, in
the offline setting with iAPF and in the online setting with BPF as a reference
algorithm.

We will consider ESS and resampling with these algorithms both in the
optimal scenario of a linear Gaussian model which is corresponding to model
1. Recall that in a linear Gaussian model with Gaussian approximations for
the lookahead functions, we have that p(yt|xt) ˜̄ψt(xt) is also Gaussian. We will
also consider the scenario with discrete observations which is corresponding
to model 4, which is no longer an optimal situation. In the iAPF, we report
the estimates of ESS from the last iteration of the algorithm. We expect these
estimates to be the best of all the algorithmic iterations of the iAPF algorithm.
This is because of the iteratively improving estimates of ψ̄t(xt). Because the
iAPF can increase the number of particles during one run of the algorithm, we
will consider the quantity which we will refer to as the effective sample size
fraction (EF) EFt = ESSt

n . This fraction will have values between 1
n and 1 where

1 indicates that the effective sample size is equal to the number of particles.

Setup

We consider a common setup for the three algorithms in this experiment. The
same setup is used in both the models we consider.

Algorithm Particles Parameters
BP m = n = 100 repeats = 3, L = 10, α = β = 0.5
BPF n = 500 α = 0.5
iAPF n0 = 100 k = 3, τ = 0.5, α = 0.5

For approximations of the lookahead functions we will use ψ̄bt (xt) = N (xt, µt, σ2
t)

for the BP and ψ̄t(xt) = N (xt, µt, σ2
t) for the iAPF.

First we consider some aspects that are common for both the models. Our
focus will be on estimating the expectation for EFt estimated by the sample
mean. We use a nonparametric bootstrap approach, see e.g. section 7.11 Hastie,
Tibshirani, and J. Friedman (2009). The number of bootstrap samples is
denoted by B = 1000 and we use z0.05 as critical values in order to approximate
a 90% confidence interval. We calculated an approximate confidence interval
for each fraction EFt for t = 1, . . . , T . Our initial sample of EF1

t , . . . ,EF500
t

for every t was used as the initial sample for each of the bootstrap confidence
intervals. In Figure 7.10 and Figure 7.12 below we have denoted the bootstrap
confidence intervals as error bars for the different fractions EFt.

The different lines in Figure 7.10 and Figure 7.12 represent the sample
mean EFt for t = 1, . . . , T for the three algorithms. Common for both models
considered in this experiment is that we expect the iAPF to have the highest EF
and therefore the lowest number of resampling counts. We expect this specially
in the linear Gaussian case as we are approximating a linear Gaussian target
function p(yt|xt) ˜̄ψt(xt) with another Gaussian function ψ̄t(xt). We include
histograms of the resampling counts in Figure 7.11 and Figure 7.13 for the
three algorithms over the 500 runs. The main interest of this experiment is
the BP algorithm. Also here we expect a trade-off in performance since we are

117

7.7. Experiment 7: effective sample size

no longer using all observations y1:T in a batch setting compared to an offline
setting.

Linear Gaussian model

We simulated latent variables and observations from model 1 with length T = 50.
We also used a batch length L = 10 for the batch version BP. This is to so we
can consider the effect of going from the offline setting of iAPF to the batch
setting of BP. We also used the distance function DiAPF2 from equation (4.17)
for BP and iAPF. We consider the EFt at the different t in Figure 7.10 and
the number of resampling counts in Figure 7.11. We see from Figure 7.10 that

Figure 7.10: Sample mean EFt for algorithms BP, BPF and iAPF over 500 runs
using model 1. The error bars indicate estimated 90% confidence intervals.

EFt is consistently high for the iAPF. This is again to be expected because
we are here in an offline setting and we have an approximation ψ̄t(xt) on the
same parametric form as p(yt|xt) ˜̄ψt(xt) which we referred to as an optimal
scenario. Considering BP in Figure 7.10, we see the effect of using batches with
L = 10 compared to an offline setting. This is clear at iterations eL, that is
t = 10, 20, 30, 40 as we often see a decrease in EFt after these iterations. From
Figure 7.11 we see the same as in Figure 7.10 when it comes to the iAPF, that
is we do not resample in this optimal scenario. We also see in Figure 7.11
that the BP is often not resampling at all and in some runs it is resampling 1
time. This is likely resampling related to the iterations at the start of batch 4,
that is iterations t = 31, . . . , 40 as we see an increase in ĒFt around iterations
t = 31, . . . , 35. We also see a slight increase in ĒFt at the start of batch 5.
The estimated confidence intervals are also wider around these iterations which
might indicate that the EFt in most of the runs were just above the resampling
threshold. In some of the runs however, EFt were below the threshold and
resampling were performed.

118

7.7. Experiment 7: effective sample size

Figure 7.11: Resampling counts for algorithms BP, BPF and iAPF over 500
runs using model 1.

Model with discrete observations

When we are not using a linear Gaussian model we expect iAPF and BP
to resample more often because we use the same approximations ψ̄t(xt) for
t = 1, . . . , T . We also used the distance function DiAPF2 from equation (4.17)
for BP and iAPF. Now we have that the target ψ̇t(xt) = p(yt|xt) ˜̄ψt(xt) are
products of discrete Poisson probability mass functions and ˜̄ψt(xt). We now
consider the EFt for different t in Figure 7.12 and the resampling counts in
Figure 7.13. As with the linear Gaussian model, we see from Figure 7.12 that

Figure 7.12: Sample mean EFt for algorithms BP, BPF and iAPF over 500 runs
using model 4. The error bars indicate estimated 90% confidence intervals.

the ĒFt falls at the start of a new batch. We also note that ĒF1 for the
BPF is very low. This is due to observation y1 being an outlier (not shown).
Compared to the situation in Figure 7.10 we see a bigger decrease in ĒFt in

119

7.8. Experiment 8: batch likelihood

this case. We also see from Figure 7.12 that the ĒFt obtained from the iAPF
has a gradual decrease with relatively narrow estimated confidence intervals.
The BP is resampling more often as we see in Figure 7.13 which also helps
explain the increase in ĒFt in the last two batches. Also from Figure 7.12

Figure 7.13: Resampling counts for algorithms BP, BPF and iAPF over 500
runs using model 4.

we recognise the decrease in ĒFt in the first iteration of a new batch followed
by an increase. This is again likely due to resampling. We can think of the
iterations at the end of a batch utilising fewer and fewer future observations
when simulating xt. Simulation of the last latent variables in a batch is only
utilising the current yt. Recall from Section 5.3 that the next batch is utilising
these simulated variables in the initial twisted transition density and twisted
observation function. This may also help explain the abrupt decrease in ĒFt at
the start of batches. Comparing the linear Gaussian model with the experiment
with the discrete observations we also note the suboptimal approximations of
ψ̄t(xt) in the iAPF and the BP. This is seen as a steady decrease of the sample
mean ĒFt with t compared to the optimal case with the linear Gaussian model.

7.8 Experiment 8: batch likelihood

We now want to consider the estimate of the marginal likelihood obtained at the
end of each batch. We use model 1 and model 2 in this experiment. Model 1 is
selected in order to calculate the likelihood exactly by using the Kalman filter.
We also consider model 2 because model 1 represents the optimal situation that
we saw in experiment 1 and 2.

Linear Gaussian model

We start by considering model 1 where the likelihood obtained from the Kalman
filter is denoted by Z. Our main interest is to consider the variance of the
estimated marginal likelihood at the end of each batch. The Kalman filter is
used to calculate the marginal likelihood up until the iteration that corresponds
to the last of each batch. The likelihood estimates Ẑ at the end of each batch

120

7.8. Experiment 8: batch likelihood

are then compared to the likelihood Z obtained from running a Kalman filter
up until the corresponding iteration.

Setup

Recall that the number of iterations within each batch is L. We therefore
expect that the algorithm with the highest number of iterations within each
batch should have lower variance for the likelihood estimates. We consider two
slightly different setups of the same experiment. Two setups of the algorithm
BP are defined. The first setup is denoted by BP10 and here we use L = 10.
The second setup is denoted by BP20 and here we use L = 20. We use the same
number of particles, improvement steps and resampling thresholds.

Algorithm Particles Parameters
BP10 m = n = 100 repeats = 3, L = 10, α = β = 0.5
BP20 m = n = 100 repeats = 3, L = 20, α = β = 0.5

We use the approximations ψ̄bt (xt) = N (xt;µt, σ2
t) for the lookahead functions

within the two variants of the BP algorithm. We also used the distance function
DiAPF2 from equation (4.17) for BP.

Data

We simulate x1:80 latent variables and y1:80 observations from model 1. These
are shown in Figure 7.14.

Figure 7.14: Simulated latent variables x1:T and observations y1:T from model
1, T = 80.

Results

The likelihood estimates obtained at the end of batch e are denoted by ẐeL and
we denote the likelihood calculated with the Kalman filter up to iteration eL

121

7.8. Experiment 8: batch likelihood

by ZeL. We therefore calculate

LR = ẐeL
ZeL

(7.1)

for BP10 and BP20. We first run BP10 100 times. With L = 10, the algorithm
use 8 batches in total. We obtain 100 estimates of the likelihood at the end
of each of the 8 batches. The likelihood ratio in equation (7.1) is calculated
for each of the batches and the result is in Figure 7.15. From Figure 7.15
we see that the likelihood estimates from BP10 are relatively close to the ZeL
obtained by the Kalman filter. From Figure 7.15 and Figure 7.16 we see that

Figure 7.15: Box plots of 100 likelihood ratios with respect to the likelihood
from a Kalman filter. Each box plot show the likelihood ratios at the end of the
batches, the red circles represent the sample means. The likelihood estimates
are obtained by the algorithm BP10.

the variance of the likelihood estimates increase substantially from the end of
batch 1 to the end of batch 2. This may be explained by the fact that in the
first batch we are using all the observations in order to simulate all the latent
variables. Because of the linear Gaussian model and the selected approximation
ψ̄t(xt) = N (xt, µt, σ2

t) we have that the batch recursive structure from equation
(5.8) should approximately hold which might help explain the low variance of
the likelihood estimates obtained at the end of batch 1. In Figure 7.16 we are
considering the same experiment with algorithm BP20. By the scale of the
y-axis, we see that the likelihood estimates when L = 20 have lower variance
than the situation where L = 10. When L = 20, the BP is utilising 4 batches
as seen in Figure 7.16. Here we also see that the variance of the likelihood
estimates at the end of batch 1 is lower than after the subsequent batches.
Comparing the likelihood ratios in Figure 7.15 to those in Figure 7.16, we see
that given the same fixed observations y1:80, having longer batches decrease the
variance of the likelihood estimates.

122

7.8. Experiment 8: batch likelihood

Figure 7.16: Box plots of 100 likelihood ratios with respect to the likelihood
from a Kalman filter. Each box plot show the likelihood ratios at the end of the
batches, the red circles represent the sample means. The likelihood estimates
are obtained by the algorithm BP20.

Univariate stochastic volatility model

We also consider the USV model. Compared to the definition of model 2 we
here define α = 0.5 instead of 0.8 as in Chapter 7. This implies lower variance
in p(x1).

Setup

We use mainly the same setup as with the linear Gaussian model, but we
increase both the number of particles and the number of repeats. Recall that
the number of repeats represents the iteratively improving approximation ψ̄b.

Algorithm Particles Parameters
BP10 m = n = 200 repeats = 4, L = 10, α = β = 0.5
BP20 m = n = 200 repeats = 4, L = 20, α = β = 0.5

Data

We simulate x1:80 latent variables and y1:80 observations from model 2. These
are shown in Figure 7.17.

Results

Comparing the likelihood ratios in Figure 7.18 with the likelihood ratios
in Figure 7.15 we see the effect of not being in the optimal situation that
we considered with the linear Gaussian model. The first thing we notice
when comparing Figure 7.18 and Figure 7.15 is the sample variance of the
likelihood ratios at the end of batch 1. With the linear Gaussian model and
ψ̄t(xt) = N (xt, µt, σ2

t) we have the optimal situation. This resulted in the low
variance of the likelihood estimates at the end of batch 1 in Figure 7.15. When
not in the optimal situation, we see from Figure 7.18 that the variance of the

123

7.8. Experiment 8: batch likelihood

Figure 7.17: Simulated latent variables x1:T and observations y1:T from model
2, T = 80.

Figure 7.18: Box plots of 200 likelihood ratios with respect to the likelihood
from a BPF using 500 000 particles. Each box plot show the likelihood ratios
at the end of the batches, the red circles represent the sample means. The
likelihood estimates are obtained by the algorithm BP10.

likelihood estimates is higher at the end of batch 1. When increasing L to 20
we see that the variance of the likelihood estimates decrease compared to using
L = 10. When comparing Figure 7.16 with Figure 7.19 we also here see that the
variance is higher compared to the optimal situation. What seems to be a slight
decrease of variance of the likelihood estimates at later batches in Figure 7.19
is somewhat unexpected.

124

7.8. Experiment 8: batch likelihood

Figure 7.19: Box plots of 200 likelihood ratios with respect to the likelihood
from a BPF using 500 000 particles. Each box plot show the likelihood ratios
at the end of the batches, the red circles represent the sample means. The
likelihood estimates are obtained by the algorithm BP20.

125

CHAPTER 8

Conclusions

8.1 Summary

In Chapter 2 we briefly introduced state space models, Monte Carlo methods and
related concepts. In Chapter 3 we considered some inferential aspects related to
different Sequential Monte Carlo methods. We considered filtering and particle
filter algorithms and in addition we briefly considered some aspects related
to smoothing. Further we considered likelihood related to state space models.
Specifically we considered estimating the likelihood of observations related to
a state space models by using particle filter algorithms. The objective was to
obtain likelihood estimates with low variance for further inference, for example
in relation to parameter estimation. In Section 3.5 we saw that likelihood
estimates can be obtained in an online setting by using e.g. a bootstrap particle
filter. In that case we obtained a marginal likelihood estimate for each iteration
by using approximations of likelihood factors.

Further, we considered twisting target distributions in Chapter 4 as a
strategy to obtain likelihood estimates with low variance in an offline setting.
We also considered Ψ∗1:T , the optimal sequence with respect to minimising
variance of likelihood estimates in Section 4.3. The optimal lookahead functions
within the optimal sequence are generally intractable. For this reason we
used approximations of the optimal lookahead functions in the offline setting
utilising the backwards recursive structure. We saw in Section 4.7 that the
recursive structure defined by the optimal twisting functions did not hold when
we considered what we referred to as a constant lookahead setting. That is,
lookahead functions on the form ψct (xt) = p(yt:t+C |xt) where C is a positive
constant.

In Chapter 5 we considered twisting target distributions in a batch setting
where we found the recursive structure within the batches which we denoted
by batch recursive structure. This is in contrast with the constant lookahead
setting. Twisting target distributions in the batch setting allowed us to obtain
likelihood estimates at the end of each batch due to target equivalence with the
joint distribution p(x1:eL, y1:eL) in batch e. Due to the batch recursive structure
and how the batch twisting functions were defined, we could approximate the
batch twisting functions by using the backwards recursive estimation within
each batch. We also saw that we could have iteratively improving batch
lookahead functions ψb in the same way Guarniero, Johansen, and Lee (2017)
have iteratively improving lookahead functions ψ in an offline setting. Finally we
presented an algorithm outline Algorithm 9 which can be used with parametric

126

8.2. Further work

or nonparametric approximations ψ̄b. We considered the effect of using the
batch setting in the numerical experiments of Chapter 7 and saw that using
batch twisting functions and iteratively improving approximations also helped
to reduce variance of the likelihood estimates in a batch setting.

In Chapter 6 we considered an alternative formulation of the optimal looka-
head function ψ∗ that we denoted by ψ′. We then considered approximations
of this alternative lookahead function as an alternative to approximating the
optimal lookahead function. The approximation of this alternative lookahead
function was denoted by ψ̄′. The main appeal of the approximation ψ̄′ from
Section 6.3 was that it do not require us to select a parametric class Ψ̄ for the
approximations of lookahead functions. The high computational complexity
related to the approximation ψ̄′ is however an issue. We considered some nu-
merical experiments using ψ̄′ in Chapter 7 where the variance of the likelihood
estimates tended to be somewhat lower than those from the BPF, but the
computational cost was far greater. We also considered what we referred to
as Laplace-based approximations. For special cases of transition densities, we
could utilise a Gaussian approximation of the observation density. Combined,
this allowed us to calculate the twisting functions deterministically once we had
the observations. We illustrated this in Section 6.5.

We considered a series of numerical experiments in Chapter 7. We considered
different models and compared the variance of the likelihood estimates obtained.
In summary, the results from the numerical experiments is in line with the
numerical experiments from Guarniero, Johansen, and Lee (2017). The iAPF in
an offline setting tended to provide likelihood estimates with the lowest variance.
Followed by Algorithm 9 in a batch setting with parametric approximations ψ̄b
that tended to provide likelihood estimates with slightly higher variance than
the iAPF. Followed by the bootstrap particle filter in an online setting, with
a higher number of particles. The BPF tended to have higher variance than
the batch algorithm. When the dimensionality of the problems increased, we
however saw that the iAPF and batch algorithm obtained likelihood estimates
with relatively low variance compared to the BPF using a higher number of
particles which saw an large increase in variance. This is also in line with
the numerical experiments from Guarniero, Johansen, and Lee (2017) where
the iAPF tended to tackle high-dimensional problems better with respect to
variance of the likelihood estimates.

8.2 Further work

As the objective was to obtain likelihood estimates with low variance, a main
area of interest can therefore be to combine the batch algorithm with parameter
estimation. Specifically a similar parameter estimation setting as in J. Liu and
West (2001) where one could e.g. add artificial noise to the parameter θ only at
the beginning of a new batch.

An interesting addition in Algorithm 9 would be a stochastic stopping
criterion for the iteratively improvement of ψ̄b. Another area of interest would
be an increase in the number of particles at the final iteration of batch e− 1
and in the first iteration of batch e. This is based on the experiments from
Chapter 7 where we saw significant decreases in effective sample size at the
iterations around the start of a new batch.

127

8.2. Further work

Another interesting aspect to consider is to introduce overlapping batches.
One could think of temporarily storing the the last half of observations from
the previous batch. These observations could perhaps be combined with the
first half batch of new observations. We would then have a overlapping batch
in which we run the batch algorithm. In this way one could utilise future
observations also for the last iterations of the previous batch. It would be
interesting to consider the effect of overlapping batches on the effective sample
size.

The parametric approximations ψ̄b were of a simple form in this thesis
as it usually was set equal to a single Gaussian. There are here several
possibilities for using e.g. mixture Gaussian or other parametric forms for
the approximations. For the alternative approximation ψ̄′ from Chapter 6
decreasing the computational complexity of these alternative approximations
would be the primary goal.

128

Appendices

129

APPENDIX A

Extended calculations

A.1 Extended calculations chapter 2

Normalised IS estimator

We can write the target distribution as p(x1:t|y1:t) = p(x1:t,y1:t)
Zt

. We then have

Ep [k(x1:t)] =
∫ p(x1:t,y1:t)
g(x1:t|y1:t)k(x1:t)g(x1:t|y1:t)dx1:t∫ p(x1:t,y1:t)

g(x1:t|y1:t)g(x1:t|y1:t)dx1:t
=
Eg

[
p(x1:t,y1:t)
g(x1:t|y1:t)k(x1:t)

]
Eg

[
p(x1:t,y1:t)
g(x1:t|y1:t)

]
This derivation was adapted from Chopin and Papaspiliopoulos (2020, p. 86).

Difference in MSE

Now we consider the difference in MSE between µ̂IS
k and µ̃IS

k . This is given by

MSE
[
µ̂IS
k

]
= Vg

[
µ̂IS
k

]
+ (Eg

[
µ̂IS
k

]
− µk)2

≈ 1
n
Vg [u]− 2µk

1
n
Cov [u,w] + 1

n
µ2
kVg [w] .

Here we use the approximate expressions for the expectation and variance. We
then consider the unnormalised estimator given by

MSE
[
µ̃IS
k

]
= Vg

[
µ̃IS
k

]
+ (Eg

[
µ̃IS
k

]
− µk)2 = 1

n
Vg [u] .

When we consider the difference in MSE we then have that

MSE
[
µ̂IS
k

]
−MSE

[
µ̃IS
k

]
≈ 1
n
µ2
kVg [w]− 2µk

1
n
Cov [u,w] .

We want to consider the case where MSE
[
µ̂IS
k

]
< MSE

[
µ̃IS
k

]
. That is, when we

should use the normalised estimator instead of the unnormalised estimator. We
follow the assumptions of Givens and Hoeting (2013) and assume that µk > 0.
We then have

1
n
µ2
kVg [w]− 2µk

1
n
Cov [u,w] < 0→ µkVg [w]

2
√
Vg [u]

√
Vg [w]

<
Cov [u,w]√
Vg [u]

√
Vg [w]

√
Vg [w]
1

2
√
Vg [u]
µk

< Corr [u,w]→ CV [w]
2CV [u] < Corr [u,w] .

130

A.2. Extended calculations chapter 4

Sequential weight structure

The second equality is given by multiplying by 1 and substituting the
decomposition of (2.5) into the expression. We then have

w̃it = p(xi1:t|y1:t)
g(xi1:t|y1:t)

=
p(xi1:t−1|y1:t−1)
g(xi1:t−1|y1:t−1)

p(xi1:t|y1:t)
p(xi1:t−1|y1:t−1)g(xit|y1:t, xi1:t−1)

A.2 Extended calculations chapter 4

Optimal sequence of lookahead functions

Recall first the assumption ψ̃T (xT) ≡ 1 and Definition 4.2.1,

ψ∗T (xT) = p(yT |xT)ψ̃∗T (xT) = p(yT |xT)
ψ∗T−1(xT−1) = p(yT−1|xT−1)p(yT |xT−1)

= p(yT−1|xT−1)
∫
p(yT |xT)p(xT |xT−1)dxT

= p(yT−1|xT−1)
∫
ψ∗T (xT)p(xT |xT−1)dxT

= p(yT−1|xT−1)ψ̃∗T−1(xT−1)
ψ∗T−2(xT−2) = p(yT−2|xT−2)p(yT−1:T |xT−2)

= p(yT−2|xT−2)
∫ ∫ T∏

s=T−1
p(ys|xs)p(xs|xs−1)dxT−1:T

= p(yT−2|xT−2)
∫

p(yT−1|xT−1)
[∫

p(yT |xT)p(xT |xT−1)dxT
]
p(xT−1|xT−2)dxT−1

= p(yT−2|xT−2)
∫
ψ∗T−1(xT−1)p(xT−1|xT−2)dxT−1

= p(yT−2|xT−2)ψ̃∗T−2(xT−2)
...

Approximations of optimal twisting functions

Recall the assumption ψ̃∗T (xT) ≡ 1. For the last approximate lookahead function
we then get

ψ̃∗T−1(xT−1) =
∫
p(yT |xT)p(xT |xT−1)ψ̃∗T (xT)dxT

=
∫
p(yT |xT)ψ̃∗T (xT)p(xT |xT−1)dxT

˜̄ψT−1(xT−1) =
∫
ψ̄T (xT)p(xT |xT−1)dxT .

131

A.2. Extended calculations chapter 4

This implies ψ̄T (xT) ≈ p(yT |xT)ψ̃∗T (xT) ≈ p(yT |xT). Then for ψ̄T−1(xT−1) we
get

ψ̃∗T−2(xT−2) =
∫
p(yT−1|xT−1)p(xT−1|xT−2)ψ̃∗T−1(xT−1)dxT−1

=
∫
p(yT−1|xT−1)ψ̃∗T−1(xT−1)p(xT−1|xT−2)dxT−1

˜̄ψT−2(xT−2) =
∫
ψ̄T−1(xT−1)p(xT−1|xT−2)dxT−1.

This implies that

ψ̄T−1(xT−1) = p(yT−1|xT−1)ψ̃∗T−1(xT−1)

≈ p(yT−1|xT−1) ˜̄ψT−1(xT−1).

Numerical optimisation

Here we will denote component j of θ as θj . We want to minimise the distance
function with respect to the composite vector (θ, λt)T . We focus on the distance
function DiAPF. We then have

∇D(θ) =

∂
∂θ1

D(θ)
∂
∂θ2

D(θ)
...

∂
∂λt

D(θ)

=

2
∑n
i=1
[
ψ̄t(xit, θ)− λtψ̇t(xit)

] ∂ψ̄t(xi
t,θ)

∂θ1
+ ∂

∂θ1
rt(x1:n

t , θ, λt)
2
∑n
i=1
[
ψ̄t(xit, θ)− λtψ̇t(xit)

] ∂ψ̄t(xi
t,θ)

∂θ2
+ ∂

∂θ2
rt(x1:n

t , θ, λt)
...

−2
∑n
i=1
[
ψ̄t(xit, θ)− λtψ̇t(xit)

]
ψ̇t(xit) + ∂

∂λt
rt(x1:n

t , θ, λt)

 .

To consider the Hessian, we need the second derivatives

H =

∂2

∂θ2
1
D(θ) . . . ∂2

∂θ1∂λt
D(θ)

...
∂2

∂λt∂θ1
D(θ) . . . ∂2

∂λ2
t
D(θ)

 .

These are found by taking the derivatives of the terms in the gradient. Here we
have the general form for component j in θ

∂2

∂θ2
j

D(θ) = 2
n∑
i=1

∂ψ̄t(xit, θ)
∂θj

∂ψ̄t(xit, θ)
∂θj

+
[
ψ̄t(xit, θ)− λtψ̇t(xit)

] ∂2ψ̄t(xit, θ)
∂θ2
j

+ ∂2

∂θ2
j

rt(x1:n
t , θ, λt)

∂2

∂λt∂θj
D(xt, θ) = −2

n∑
i=1

∂ψ̄t(xit, θ)
∂θj

ψ̇t(xit) + ∂2

∂λt∂θj
rt(x1:n

t , θ, λt)

132

A.3. Extended calculations chapter 5

∂2

∂λ2
t

D(xt, θ) = 2
n∑
i=1

ψ̇t(xit)ψ̇t(xit) + ∂2

∂λ2
t

rt(x1:n
t , θ, λt).

The cross terms are found by similar calculations.

A.3 Extended calculations chapter 5

The batch sequence

We consider the batch sequence with one row per batch. Recall that we denote
the first iteration of a generic batch e by q+1. We also denote the first iteration
of the last batch E by r + 1. Recall that eL is the last iteration in a batch, we
then have

Ψs
1:T =ψ1(x1), ψ2(x2) . . . , ψL−1(xL−1), ψL(xL)

...
ψq+1(xq+1, xq), ψq+2(xq+2) . . . , ψeL−1(xeL−1), ψeL(xeL)
...
ψr+1(xr+1, xr), ψr+2(xr+2) . . . , ψEL−1(xEL−1), ψEL(xEL)

=ψb1(x1), ψb2(x2) . . . , ψbL−1(xL−1), ψbL(xL)
...
ψbq+1(xq+1)
ψ̃b0e(xq)

, ψbq+2(xq+2) . . . , ψbeL−1(xeL−1), ψbeL(xeL)

...
ψbr+1(xr+1)
ψ̃b0E(xr)

, ψbr+2(xr+2) . . . , ψbEL−1(xEL−1), ψbEL(xEL)

Batch target equivalence

We here consider batch target equivalence when using the batch twisted models.
Recall that batch e contains the iterations (e−1)L+1, (e−1)L+2, . . . , eL−1, eL.
Here we consider batch target equivalence at the end of batch e. Recall that
the batch normalising function ψ̃beL ≡ 1 from equation (5.7). Each of the lines
below represent twisted transition densities and twisted observation functions
from the corresponding batch.

pψ1 (y1|x1)pψ1 (x1)
L∏
s=2

pψs (ys|xs)pψs (xs|xs−1)

pψL+1(yL+1|xL+1, xL)pψL+1(xL+1|xL)
2L∏

s=L+2
pψs (ys|xs)pψs (xs|xs−1)

...

133

A.3. Extended calculations chapter 5

pψq+1(yq+1|xq+1, xq)pψq+1(xq+1|xq)
eL∏

s=q+2
pψs (ys|xs)pψs (xs|xs−1)

=p(y1|x1)ψ̃b1ψ̃b01
ψb1

p(x1)ψb1
ψ̃b01

L∏
s=2

p(ys|xs)ψ̃bs
ψbs

p(xs|xs−1)ψbs
ψ̃bs−1

p(yL+1|xL+1)ψ̃bL+1ψ̃
b
02

ψbL+1

p(xL+1|xL)ψbL+1

ψ̃b02

2L∏
s=L+2

p(ys|xs)ψ̃bs
ψbs

p(xs|xs−1)ψbs
ψ̃bs−1

...

p(yq+1|xq+1)ψ̃bq+1ψ̃
b
0E

ψbq+1

p(xq+1|xq)ψbq+1

ψ̃b0E

eL∏
s=q+2

p(ys|xs)ψ̃bs
ψbs

p(xs|xs−1)ψbs
ψ̃bs−1

=
[
p(y1|x1)p(x1)

L∏
s=2

p(ys|xs)p(xs|xs−1)
]
ψ̃bL[

p(yL+1|xL+1)p(xL+1|xL)
2L∏

s=L+2
p(ys|xs)p(xs|xs−1)

]
ψ̃b2L

...[
p(yq+1|xq+1)p(xq+1|xq)

eL∏
s=q+2

p(ys|xs)p(xs|xs−1)
]
ψ̃beL

=
[
p(y1|x1)p(x1)

L∏
s=2

p(ys|xs)p(xs|xs−1)
]

[2L∏
s=L+1

p(ys|xs)p(xs|xs−1)
]

...[
eL∏

s=q+1
p(ys|xs)p(xs|xs−1)

]

=p(y1|x1)p(x1)
eL∏
s=2

p(ys|xs)p(xs|xs−1).

Optimal batch twisting functions

We use the same intuition as in the offline setting, following Naesseth, Lindsten,
and Schön (2019). Iteration q+ 1 is here the first iteration and iteration eL the
last in batch e. We then start by inserting the recursively defined f̃ bt+1(x1:t+1)
into the same integral that the unnormalised optimal batch twisting target
distribution is defined by. This gives the recursive structure

f̃ bt (x1:t) =
∫
f̃ bt+1(x1:t+1)dxt+1 (A.1)

134

A.3. Extended calculations chapter 5

=
∫
f̃ bt (x1:t)φt+1(xt+1, xt)

ψ̃bt+1(xt+1)
ψ̃bt (xt)

dxt+1

ψ̃b∗t (xt) =
∫
φt+1(xt+1, xt)ψ̃b∗t+1(xt+1)dxt+1. (A.2)

We consider the iteration t = eL which is the last in the batch. Recall that the
recursively defined twisting target distribution is equal to the twisting target
distributions from the twisted model. We then have because of batch target
equivalence for iteration eL that

f̃ beL(x1:eL) = p(x1:eL, y1:eL) = p(x1:eL−1, y1:eL−1)p(yeL|xeL)p(xeL|xeL−1)
f̃ beL−1(x1:eL−1) = p(x1:eL−1, y1:eL−1)ψ̃beL−1(xeL−1).

We substitute these expressions into equation (A.1). Then we have

f̃ beL−1(x1:eL−1) =
∫
f̃ beL(x1:eL)dxeL

ψ̃b∗eL−1(xeL−1) =
∫
p(yeL|xeL)p(xeL|xeL−1)dxeL

= p(yeL|xeL−1).

For the remaining iterations t = eL− 1, . . . , q+ 1 we use the recursive structure
in equation (A.2) and have that

ψ̃b∗t (xt) = p(yt+1:eL|xt) for t = eL− 1, . . . , q + 1.

By setting the standard definition of the normalising function from Defini-
tion 4.2.1 equal to the optimal ψ̃b∗t (xt), that is ψ̃t(xt) = ψ̃b∗t (xt) we have
that

ψb∗t (xt) = p(yt:eL|xt) for t = eL, . . . , q + 1.

By continuing the recursive structure we also get

ψ̃b∗0e(xq) =
∫
p(yq+1|xq+1)p(xq+1|xq)ψ̃b∗q+1(xq+1)dxq+1

=
∫
p(yq+1|xq+1)p(xq+1|xq)p(yq+1:eL|xq+1)dxq+1

= p(yq+1:eL|xq).

135

APPENDIX B

Calculations for numerical
examples

B.1 Alternative psi estimation for Poisson observations

Mode

We have that

∂

∂x
p(yt|x) = ∂

∂x

(ex)yt

yt!
e−e

x

= 1
yt!
e−e

x+xyt(yt − ex)

and

∂

∂x
p(yt|x) = 0

1
yt!
e−e

x+xyt(yt − ex) = 0

yte
−ex+xyt = e−e

x+xyt+x

x = log yt.

Laplace approximation

We consider the derivatives needed for the function f(xt) = log p(yt|xt)

f (0)(xt) = ytxt − ext − log yt!
f (1)(xt) = yt − ext

f (2)(xt) = −ext .

136

Bibliography

Ala-Luhtala, J. et al. (2016). “An Introduction to Twisted Particle Filters and
Parameter Estimation in Non-Linear State-Space Models”. eng. In: IEEE
transactions on signal processing vol. 64, no. 18, pp. 4875–4890.

Andrieu, C., Doucet, A., and Holenstein, R. (2010). “Particle Markov chain
Monte Carlo methods”. eng. In: Journal of the Royal Statistical Society.
Series B, Statistical Methodology vol. 72, no. 3, pp. 269–342.

Brewer, M. J. (2000). “A Bayesian model for local smoothing in kernel density
estimation”. eng. In: Statistics and Computing vol. 10, no. 4, pp. 299–309.

Briers, M., Doucet, A., and Maskell, S. (2010). “Smoothing algorithms
for state–space models”. eng. In: Annals of the Institute of Statistical
Mathematics vol. 62, no. 1, pp. 61–89.

Cappé, O., Moulines, E., and Rydén, T. (2005). Inference in Hidden Markov
Models. eng. First Edition. Springer Series in Statistics. New York, NY:
Springer New York.

Chopin, N. (2004). “Central Limit Theorem for Sequential Monte Carlo Methods
and Its Application to Bayesian Inference”. eng. In: The Annals of statistics
vol. 32, no. 6, pp. 2385–2411.

Chopin, N. and Papaspiliopoulos, O. (2020). An Introduction to Sequential
Monte Carlo. eng. Springer Series in Statistics. Cham: Springer International
Publishing AG.

Creal, D. (2012). “A Survey of Sequential Monte Carlo Methods for Economics
and Finance”. eng. In: Econometric Reviews vol. 31, no. 3, pp. 245–296.

Crisan, D. and Miguez, J. (2014). “Particle-kernel estimation of the filter density
in state-space models”. eng. In: Bernoulli : official journal of the Bernoulli
Society for Mathematical Statistics and Probability vol. 20, no. 4, pp. 1879–
1929.

Devore, J. L. and Berk, K. N. (2012). Modern Mathematical Statistics with
Applications. eng. Second Edition. Springer Texts in Statistics. New York,
NY: Springer New York.

Douc, R. et al. (2011). “SEQUENTIAL MONTE CARLO SMOOTHING FOR
GENERAL STATE SPACE HIDDEN MARKOV MODELS”. eng. In: The
Annals of Applied Probability vol. 21, no. 6, pp. 2109–2145.

Doucet, A., Freitas, N. d., and Gordon, N. (2001). “An Introduction to Sequential
Monte Carlo Methods”. eng. In: Sequential Monte Carlo Methods in Practice.
Ed. by Doucet, A., Freitas, N. d., and Gordon, N. Information Science and
Statistics. New York, NY: Springer New York, pp. 3–14.

137

Bibliography

Doucet, A., Godsill, S., and Andrieu, C. (2000). “On sequential Monte Carlo
sampling methods for Bayesian filtering”. eng. In: Statistics and Computing
vol. 10, no. 3, pp. 197–208.

Fearnhead, P., Wyncoll, D., and Tawn, J. (2010). “A sequential smoothing
algorithm with linear computational cost”. eng. In: Biometrika. Biometrika
vol. 97, no. 2, pp. 447–464.

Gelman, A. et al. (2013). Bayesian Data Analysis. eng. Third Edition. CRC
Press.

Givens, G. H. and Hoeting, J. A. (2013). Computational Statistics. eng. Second
Edition. Wiley Series in Computational Statistics. Hoboken, N.J: Wiley.

Guarniero, P., Johansen, A. M., and Lee, A. (2017). “The Iterated Auxiliary
Particle Filter”. eng. In: Journal of the American Statistical Association
vol. 112, no. 520, pp. 1636–1647.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. eng. Second Edition.
Springer Series in Statistics. New York: Springer.

Heng, J. et al. (2020). “Controlled sequential Monte Carlo”. eng. In: The Annals
of Statistics vol. 48, no. 5, pp. 2904–2929.

Johansen, A. M. and Doucet, A. (2008). “A note on auxiliary particle filters”.
eng. In: Statistics & Probability Letters vol. 78, no. 12, pp. 1498–1504.

Kantas, N. et al. (2015). “On Particle Methods for Parameter Estimation in
State-Space Models”. eng. In: Statistical Science vol. 30, no. 3, pp. 328–351.

Kitagawa, G. (1987). “Non-Gaussian State-Space Modeling of Nonstationary
Time Series”. eng. In: Journal of the American Statistical Association vol. 82,
no. 400, pp. 1032–1041.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles
and Techniques. eng. Adaptive Computation and Machine Learning.
Cambridge, Mass: MIT Press.

Koller, D. and Lerner, U. (2001). “Sampling in Factored Dynamic Systems”.
eng. In: Sequential Monte Carlo Methods in Practice. Ed. by Doucet, A.,
Freitas, N. d., and Gordon, N. Information Science and Statistics. New York,
NY: Springer New York, pp. 445–464.

Kong, A., Liu, J. S., and Wong, W. H. (1994). “Sequential Imputations
and Bayesian Missing Data Problems”. eng. In: Journal of the American
Statistical Association vol. 89, no. 425, pp. 278–288.

Lin, M., Chen, R., and Liu, J. S. (2013). “Lookahead Strategies for Sequential
Monte Carlo”. eng. In: Statistical Science vol. 28, no. 1, pp. 69–94.

Lindsten, F., Helske, J., and Vihola, M. (2018). “Graphical model inference:
Sequential Monte Carlo meets deterministic approximations”. eng. In:
Advances in Neural Information Processing Systems. Ed. by Bengio, S.
et al. Vol. 31.

Liu, J. and West, M. (2001). “Combined Parameter and State Estimation in
Simulation-Based Filtering”. eng. In: Sequential Monte Carlo Methods in
Practice. Ed. by Doucet, A., Freitas, N. d., and Gordon, N. Information
Science and Statistics. New York, NY: Springer New York, pp. 197–223.

Luethi, D. et al. (2021). FKF: Fast Kalman Filter. R package version 0.2.2.
Lutz, M. (2014). Python pocket reference. eng. Sebastopol, California.
Metropolis, N. and Ulam, S. (1949). “The Monte Carlo Method”. eng. In:

Journal of the American Statistical Association vol. 44, no. 247, pp. 335–341.

138

Bibliography

Naesseth, C. A., Lindsten, F., and Schön, T. B. (2019). “Elements of Sequential
Monte Carlo”. eng. In: FOUNDATIONS AND TRENDS IN MACHINE
LEARNING vol. 12, no. 3, pp. 307–392.

Pitt, M. K. and Shephard, N. (1999). “Filtering via Simulation: Auxiliary
Particle Filters”. eng. In: Journal of the American Statistical Association
vol. 94, no. 446, pp. 590–599.

R Core Team (2021). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. Vienna, Austria.

Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods. eng.
Second Edition. Springer Texts in Statistics. New York, NY: Springer New
York.

Rue, H., Martino, S., and Chopin, N. (2009). “Approximate Bayesian
inference for latent Gaussian models by using integrated nested Laplace
approximations”. eng. In: Journal of the Royal Statistical Society. Series B,
Statistical Methodology vol. 71, no. 2, pp. 319–392.

Skare, Ø., Bølviken, E., and Holden, L. (2003). “Improved Sampling-Importance
Resampling and Reduced Bias Importance Sampling”. eng. In: Scandinavian
Journal of Statistics. Scandinavian Journal of Statistics vol. 30, no. 4, pp. 719–
737.

Spall, J. C. (2003). Introduction to stochastic search and optimization:
estimation, simulation, and control. eng. Wiley-interscience series in discrete
mathematics and optimization. Hoboken, N.J: Wiley.

Wickham, H. (2016). ggplot2: elegant graphics for data analysis. eng. 2nd ed.
2016. Use R! Cham: Springer International Publishing.

139

	Abstract
	Acknowledgements
	Contents
	Introduction
	Structure
	Notation

	Monte Carlo methods and state space models
	State space models
	Special distributions
	The Monte Carlo method
	Weights
	Importance sampling concepts
	Sequential Monte Carlo

	Inference in state space models
	Motivation
	Filtering recursions
	Particle filters
	Smoothing recursions
	Likelihood estimation in particle filters

	Twisting target distributions
	Motivation
	Twisting target distributions
	Optimal twisting functions
	Twisting target distributions in the particle filter framework
	Approximation of the optimal twisting functions
	Calculating the approximations
	Lookahead setting
	Iterated auxiliary particle filter
	Example: instability in estimation

	Twisting targets in a batch setting
	Motivation
	The batch sequence
	Batch twisted model
	Optimal batch twisting functions
	Likelihood
	Connection to the offline setting
	Outline of the batch algorithm

	Alternative twisting functions
	Motivation
	Alternative twisting functions
	Approximation of the alternative twisting functions
	Laplace-based approximations
	Example: Laplace approximations

	Numerical experiments
	Experiment 1: offline setting
	Experiment 2: batch setting
	Experiment 3: univariate stochastic volatility
	Experiment 4: multivariate setting
	Experiment 5: discrete observations
	Experiment 6: multivariate setting with higher dimensionality
	Experiment 7: effective sample size
	Experiment 8: batch likelihood

	Conclusions
	Summary
	Further work

	Appendices
	Extended calculations
	Extended calculations chapter 2
	Extended calculations chapter 4
	Extended calculations chapter 5

	Calculations for numerical examples
	Alternative psi estimation for Poisson observations

	Bibliography

