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Abstract

In the optimal risk model, people usually are concerned about the dependent
risks to explore how the optimal reinsurance contracts vary with the degree of
dependence. In this thesis, we investigate this problem in bivariate case using
value-at-risk as risk measure further. There is no bundling of the two risks,
and each risk is insured under a separate reinsurance contract. It is possible to
formulate the optimization problem as an optimization task with two variables,
subject to a single constraint. Specifically, we present an efficient method for
estimating optimal contracts using importance sampling. The dependence is
modeled using a Gaussian copula. The optimal solution is evaluated by the
constraint curves and iso-curves of the objective function. The methods will be
illustrated on a suitable set of examples, including symmetric and asymmetric
cases as well as mixtures of distributions from Pareto, lognormal, truncated
normal and gamma distributions. The optimal reinsurance contract relies on the
correlation coefficient and the hazard rates of the risk distributions. With the
increase in correlation coefficient, the optimal solution for symmetric risks will
eventually be the balanced solution which means the insurance layer contracts
should be chosen. However, the optimal solution is usually unbalanced for
asymmetric risks for changing correlation coefficients. Furthermore, the more
asymmetric the risks are, the closer the optimal solution is to the boundary
and, therefore, the better the lighter-tailed risk should be covered by a stop-loss
contract.
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CHAPTER 1

Introduction

Reinsurance plays a vital role in the insurance business. Insurance companies
sign reinsurance contracts with reinsurance companies. The essence of the
contracts is to provide financial support to the less stable insurance companies
since it transfers the risks of the primary insurer to a reinsurance company.
The insurance companies pay out premiums to the reinsurance companies to
get corresponding protection from losses that may arise from natural disasters
or that the customer may face in the long run while using its products that are
deemed to have been expensively obtained.

In Actuarial Science, an optimal insurance contract is usually studied from
the perspective of the insurer by considering different contract types and risk
measures. Cheung et al.[3] considered the univariate optimal reinsurance
contract under four risk measures. It was shown that if average value-at-risk
or more generally, a law-invariant convex risk measure is used, a stop-loss
contract is optimal. On the other hand, an insurance layer contract is optimal
if value-at-risk or conditional tail expectation is used. Huseby and Christensen
[5] showed that the optimal reinsurance in the multivariate case must satisfy
certain conditions under value-at-risk.

In this thesis, we consider an insurance company with two business lines or
two policyholders. There are two types of bivariate reinsurances; reinsurance
with independent and dependent risks. Independent risks mean that the
occurrence of insurance risk events is regarded as independent events, resulting
in independent compensation. In dependent risk reinsurance, there can be
different types of dependency between risks. For example, the occurrence of a
single risk triggers the compensation of all the other events that are deemed to
be related and dependent on the risk. A case to point out of the dependent risks
is that if the insured goods are damaged due to the burning of the house caused
by natural disasters, the insurance company can compensate the customer for
the insured goods and any other insurance, such as house insurance.

This thesis mainly focuses on dependent bivariate reinsurance, and the
optimal reinsurance model is closely related to Huseby [4]. Firstly, we all have
the exact formulation of the optimal reinsurance model under value-at-risk as a
risk measure, and the objective function and constraint are the same. Secondly,
importance sampling is used for simulation. Finally, the concavity or convexity
of the objective function is determined by hazard rate. The difference is that
we study the bivariate case instead of its multivariate case. More importantly,
the correlation of risks will be modeled using a Gaussian copula.

The thesis is organized as follows. Chapter 2 expounds some concepts about
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reinsurance and risk measures. Methodology for optimizing reinsurance, both
in the univariate and multivariate case is reviewed in Chapter 3. Chapter 4
generalizes the methods for optimizing bivariate reinsurance proposed in Huseby
and Christensen [5] to cases with dependent risks. More specifically, we develop
Gaussian copula methods for quantifying the effect of dependence in relation
to reinsurance optimization. Chapter 5 uses numerical examples to describe
how the optimal reinsurance contracts vary with the degree of dependence on
symmetric and asymmetric risks. In particular, we present the preliminary
results. Chapter 6 concludes the thesis.
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CHAPTER 2

Notation and Theory

Insurance is the act of compensating for the loss of others. Reinsurance can
be defined as an act of contracting an insurance policy in order to protect an
insurer from loss. As opposed to insurance, cession simply refers to the transfer
of liability from an insurer to a reinsurer. This chapter will go through the basic
notations and definitions used when talking about spread risk and reinsurance
contracts.

2.1 Reinsurance Contracts

In the most basic sense, reinsurance is the insurance of insurance companies. The
insurance company transfers the risk of high claims to the reinsurance company
by paying a premium. Therefore, reinsurance contracts can be regarded as a
protective measure to avoid the bankruptcy of insurance companies. Insurance
companies are known as cedents, whereas reinsurance companies are known as
reinsurers.

Let R(x) be a reinsurance function if x is the realized loss. Here, we introduce
Cheung et al.[3]’s hypothesis, in order to avoid ethical issues and maintain
fairness, any viable reinsurance contract should meet certain characteristics.
First, the loss of one additional unit cannot result in more than one incremental
unit claim. Second, the reinsurance company’s compensation will not decrease
with the increase in loss. Mathematically, the hypothesis of the theory on viable
reinsurance contract R is as follows:

• R (x) −R (y) ⩽ x− y for any x ⩾ y ⩾ 0,

• R (0) = 0 and R is non− decreasing.

Moreover, we will mention two branches of reinsurance contracts, insurance
layer contracts and stop-loss insurance contracts.

2.1.1 Stop-loss Contracts

The stop − loss insurance coverage is insurance that protects the insurers
from having large claims being made by the insured clients. To put it crudely,
Stop-loss reinsurance means that the risk is borne by the insurance company
within a certain range, and the reinsurance company bears the risk once the risk
is greater than this range. For instance, a reinsurance company only assumes
a risk that is more than value a which is a positive constant, but claims for

3



2.2. Pricing Reinsurance Contracts

compensation amount (risk) is less than a, assumed by the insurance company.
Therefore stop-loss reinsurance can be defined as:

R (X) =
{

0 for X < a

X − a otherwise

It could also be written as:

R (x) = (x− a)+ = max {0, x− a}

2.1.2 Insurance Layer Contracts

Insurance layer contracts refer to the fact that the reinsurance company bears
the risks within a specific range, below which the Insurance company bears
the risks, and above which the insurer bears the risks. In other words, it is
to point to the former insurer and reinsurer agreement, to every dangerous
unit regulation assumes responsibility by former insurer leave the specified
amount oneself, exceed the part that leaves the specified amount above oneself
to call surplus, the agreement that surplus share gives reinsurer to assume. The
insurance layer contracts can be expressed as follow:

R (X) =


0 for X < a

X − a for a ⩽ X ⩽ b

b− a otherwise

or

R (X) = (X − a)+ − (X − b)+ = max (min (X, b) − a, 0) , 0 ⩽ a ⩽ b

. It is important to note that the stop-loss contracts are the special case of
insurance layer contracts.

2.2 Pricing Reinsurance Contracts

A Reinsurance contract is a contract that is signed between underwriter and
underwriter. One party is the cedent, the other party is the reinsurer. The
cedent is an insurer who, according to the reinsurance contract, must pay a
certain premium to the reinsurer and has the right to obtain compensation from
the reinsurer for the indemnity cost and other related expenses caused by the
original insurance contract; the reinsurer is the basis reinsurance contract, have
right to collect certain reinsurance costs from the cedent, have an obligation to
give the cedent at the same time by reinsurance contract place pay cost.

To measure the fee charged for transferring insurance risk, here introduce the
pure reinsurance premium concept where a break-even condition is implied:

E [R (X)]

For reinsurance company that receives the premium for bearing the risk,
the expected cost is E [R (X)] (this excludes the impact of operation cost and
financial earnings). Consequently, risk loading θ needs to be added to the
pure reinsurance premium. The value of θ > 0 is determined by the actuarial
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2.3. Risk for Insurer

pricing principle. Under such assumption, the reinsurance premium covered
by insurers is calculated as:

(1 + θ)E [R (X)]

θ E [R (X)] is considered as the cost of risk covered by the reinsurer. The pricing
assumptions are also affected by the fluctuation in market conditions[Bølviken
[2] p. 5].

2.3 Risk for Insurer

Let risk X be a nonnegative integrable random variable on a probability space.
The survival function will be defined and introduced to the model as:

SX (x) d= P (X > x) = 1 − FX (x)

where FX is the cumulative distribution function of X and is strictly increasing.
We assume SX is strictly decreasing on [0, supX]. In this case, supX represents
the essential supremum of X.

2.3.1 Retained Risk

During the reinsurance practice, the risk is transferred to companies. The
companies receiving the risk are also known as cedent. The logic behind the
practice needs to be considered, which is, in essence, transferring risk from
one relatively weaker entity to a stronger agent. The Original risk has been
analyzed in the previous section, and the reinsurer and the cedent share the
risk. We define I (X) d= X − R (X), where I (X) represents the retained risk
covered by the cedent. As a result, the loss borne by the cedent in stop-loss
contract is:

I (X) =
{
X for X < a

a otherwise
= min {X, a}

For a layer insurance the retained risk is given by:

I (X) =


X for X < a

a for a ⩽ X ⩽ b

X − (b− a) otherwise

= min {X, a} +min {X − b, 0}

The total retained risk for the cedent after risk exchange is given by:

I (X) + (1 + θ)E [R (X)]

2.4 Risk Measures

In insurance, the statistical analysis of the risks will make the companies that
offer insurance and reinsurance determine the risks they can insure against. If
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2.4. Risk Measures

a risk is potentially determined to be a high-risk one, then the company can
decide to insure a portion of it or none. Otherwise, the insurance companies will
be more than willing to offer insurance cover on low-risk factors. The high risk
factors increase the loss of the insurance companies and make the companies
vulnerable financially. Thus the insurance companies make a reliable decision
following the feedback from results under different risk measures.

2.4.1 Value-at-risk

V alue−at−risk(V aR) is the statistic that is used to quantify the extent of the
possible financial losses that a firm can incur in a portfolio or a given position
over a specified period of time. It is used in the public institutional services to
determine the amount and the extent of loss that can be incurred by the firm
over the given portfolio of the institutions see Bladt at al.[1]. The risk managers
use VaR to analyze the level of the risk exposure and implement strategies that
will be effective in controlling the level of the risk exposure. The calculations of
the VaR can be used to measure the wide risks of the firms.

The α-level VaR is defined as follows: Fix some level α ∈ (0, 1). For any
random variable X,

V aRα (X) d= S−1
X (α) d= inf {x : P (X > x) ⩽ α}

VaR has some significant properties which are widely used in this thesis as
a risk measure:

(i) Since SX is strictly decreasing, S−1
X (α) = r if only if

P (X > r) ⩽ α ⩽ P (X ⩾ r) (2.1)

In particular, since SX is strictly decreasing, S−1
X (α) = r if:

P (X > r) = α (2.2)

(ii) For any strictly increasing continuous function ϕ, we have

V aRα (ϕ (X)) = S−1
ϕ(X) (α) = ϕ

(
S−1

X (α)
)

2.4.2 Average Value-at-risk

Average value − at − risk(AV aR), also called conditional value − at −
risk(CV aR), is considered to be a special case of spectral risk measures as
it is superior to the VaR, as it works to satisfy all the variables and the
properties of the coherent risk measures. Therefore, it was created to address
the shortcomings of VaR.

For α ∈ (0, 1) , the average value-at-risk at level 1 − α is defined by:

AV aRα (X) d= 1
α

∫ α

0
V aRλ (X) dλ d= 1

α

∫ α

0
S−1

X (λ) dλ

As a result, AVaR can be thought of as the expected loss in a given percentage
of worst cases.

6



2.4. Risk Measures

2.4.3 General Law-invariant Convex Risk Measure

Law − invariant convex risk measures are risk measures that assign the same
value to multiple risky positions that have the same distribution in relation to
the measure of the probability of the risk positions. The law convex invariant
risk is considered as law invariant because it violates the laws of risk variation
between the risk positions. It is considered as invariant due to the values
duplication that it has for the risks with the same probability measure.

Definition 2.4.1. (Law − invariant convex risk measure) A convex risk
measure is a function ρ : L∞ → R which satisfies the following for each
X,Y ∈ L∞:

(i) (Convexity) ρ (λX + (1 − λ)Y ) ⩽ λρ (X) + (1 − λ) ρ (Y ) for λ ∈ [0, 1]

(ii) (Monotonicity) If X ⩽ Y, then ρ (X) ⩽ ρ (Y )

(iii) (Translation Invariance) If m ∈ R, then ρ (X +m) = ρ (X) +m

(iv) (Law Invariance) If Y1 and Y2 have the same distribution under P,then
ρ (Y1) = ρ (Y2)

Any law-invariant convex risk measure can be expressed as

ρ (X) d= sup
µ∈M

(∫ 1

0
AV aRα (X)µ (dα) − β (µ)

)
where M is the set of probability measures on (0, 1], and β is a function defined
on M .

2.4.4 Conditional Tail Expectation

Conditional tail expectation(CTE), also known as Tail value − at −
risk(TV aR), is used in the analysis of the risk exposure to describe the amount
of risk which can be experienced, provided that the potential risk is beyond the
threshold in excess value. The CTE is mostly used in the multivariate financial
analysis method to analyze the extent of the risk exposure of the firms using
the equations and models that will use the calculations in the analysis of the
risks. The analysis can then be used to make concrete decisions on how to
minimize the risks and their extent, before they occur to cause great damage.

Fix an level α ∈ (0, 1). CTE of any random variable X at level 1 − α is
defined by:

CTEα (X) d= E [X | X ⩾ V aRα (X)]

In other words, CTE represents the expected value of the loss in the event that
an event outside of a given level of probability occurred.
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CHAPTER 3

Optimizing Reinsurance

It is well-known that actuarial science has been extensively concerned with
determining what reinsurance contracts are optimal based on some reasonable
criteria. This chapter will review the methodology for optimizing reinsurance,
both in the univariate and multivariate cases. Most of the theory in this chapter
is obtained from Cheung et al.[3], Huseby and Christensen [5] and Huseby [4].

3.1 The Univariate Case

Univariate cases focus on the analysis of a single risk, which contributes to
the financial contribution of the regular operation of the insurance company.
Therefore, there is only one non-negative random variable X, which is reinsured.
Next, we will study the optimal reinsurance under different risk measures. In
the rest of this section, we denote stop-loss contract and insurance layers by Ra

and Ra,b, respectively. Additionally, the corresponding retained risks of these
two contracts are IRa

and IRa,b
.

3.1.1 Under VaR

The total retained loss under α-level VaR is denoted by:

Vα (R) d= V aRα (I (X) + (1 + θ)E [R (X)])

By the translation invariant property of V aR, we have:

Vα (R) = V aRα (I (X)) + (1 + θ)E [R (X)]

We start out by considering which reinsurance is optimal to minimize the
Vα. If SX (0) ⩽ α ⩽ 1, then the optimal contract is R∗ (X) = 0. That is, the
risk X should not be reinsured.

Now we turn to consider the case where 0 < α < SX (0). It is important
to note that the insurance layers are always smaller than other reinsurance
contracts, such that Ra,b ⩽ R, where R is any feasible reinsurance contract. By
making a difference between Vα (R) and Vα (Ra,b), we then obtain an insurance
layer that is the best reinsurance contract under VaR. The optimization model
can be formulated as

Minimize : Vα (Ra,b)
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3.1. The Univariate Case

Subject to : 0 ⩽ a ⩽ b

Ready to find optimal contract parameter values a* and b*.

Theorem 3.1.1 (Theorem 4.3 in Cheung et al.[3]). The optimal reinsurance
contract under V aR satisfies:

(i) R∗ (x) =
(
x− S−1

X

(
1

1+θ

))+
−
(
x− S−1

X (α)
)+ , if α < 1

1+θ .

(ii) R∗ (x) = 0, otherwise.

3.1.2 Under AVaR

The mathematical expression of curve equation of the optimal reinsurance under
α-level AVaR can be given as

Tα (R) d= AV aRα [I (X) + (1 + θ)E [R (X)]]

By the translation invariant property of AV aR and I is continuous increasing
function, we get

Tα (R) = 1
α

∫ α

0
I
(
S−1

X (λ)
)
dλ+ (1 + θ)E [R (X)]

We first consider the case where SX (0) ⩽ α ⩽ 1. If α < 1
1+θ , then the

optimal contract is R∗ (X) = X. That is, the risk X should be fully reinsured.
If α > 1

1+θ , then the optimal contract is R∗ (X) = 0. Refer to Cheung et al.[3]
for details.

We then consider the case where 0 < α < SX (0) and make the substitution
x = S−1

X (λ) which implies that λ = SX (x) and dλ = −dFX (x). The upper
and lower integral limits become respectively S−1

X (α) = b and S−1
X (0) = supX.

Hence, we get:

Tα (R) − Tα (Ra)

= 1
α

∫ sup X

b

[IR (x) − IRa (x)] dFX (x) + (1 + θ)E [R (X) −Ra (X)]

= 1
α
E [IR (X) − IRa

(X)] − 1
α

∫ b

0
[IR (x) − IRa

(x)] dFX (x)

+ (1 + θ)E [R (X) −Ra (X)]

= 1
α
E [Ra (X) −R (X)] − 1

α

∫ b

0
[IR (x) − IRa

(x)] dFX (x)

+ (1 + θ)E [R (X) −Ra (X)]

Assume there exists a unique a ∈ [0, supX], such that E [R (X)] = E [Ra (X)].
It follows that

Tα (R) − Tα (Ra) = 1
α

∫ b

0
[IRa

(x) − IR (x)] dFX (x)

= 1
α

∫ b

0
[R (x) −Ra (x)] dFX (x) ⩾ 0
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3.1. The Univariate Case

It shows that an optimal reinsurance contract can be found in the stop-loss
contracts Ra, where a ∈ [0, supX]. Thus the optimal reinsurance under α-level
AVaR is defined by:

Minimize : Tα (Ra)
Subject to : 0 ⩽ a ⩽ supX

Theorem 3.1.2 (Theorem 3.3 in Cheung et al.[3]). The optimal retention level
a∗ satisfies

(i) a∗ = S−1
X

(
1

1+θ

)
for α < 1

1+θ

(ii) a∗ = supX for α > 1
1+θ

(iii) Any a∗ ⩾ S−1
X

(
1

1+θ

)
for α = 1

1+θ

3.1.3 Under Law-invariant Convex Risk Measure

The corresponding optimal reinsurance under general law-invariant convex risk
measures can be solved as

ρ (I (X) + (1 + θ)E [R (X)])

Based on the definition of ρ, the above formula can be simplified as

sup
µ∈M

(∫ 1

0
AV aRα (I (X) + (1 + θ)E [R (X)])µ (dα) − β (µ)

)
To find the optimal reinsurance under general law-invariant convex risk measures,
we consider the following optimization problem

Gα
d= sup

µ∈M

(∫ 1

0
Tα (R)µ (dα) − β (µ)

)
Note that exists a ∈ [0, supX] such that Tα (R) ⩾ Tα (Ra) for any α ∈ [0, 1].

We see that

Gα (R) −Gα (Ra) = sup
µ∈M

∫ 1

0
[Tα (R) − Tα (Ra)]µ (dα) ⩾ 0

which means the stop-loss contract is the optimal reinsurance under this risk
measure. In order to find the optimal solution a∗, we assume Φ be the supremum
probability measure on (0, 1] with density ψ. The law-invariant convex risk
measure can be formulated by:

ρ (IRa (X)) =
∫ 1

0
AV aRα (IRa (X)) Φ (dα) − β (Φ)

Theorem 3.1.3 (Proposition 3.8 in Cheung et al.[3]). There is an optimal
solution a∗ of the following minization problem:

Minimize : ρ (IRa
(X) + (1 + θ)E [Ra (X)])
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3.1. The Univariate Case

Subject to : 0 ⩽ a ⩽ supX

where Φ is a probability measure on (0, 1] with density ψ. If
∫ 1

α0
1

(1+θ)α Φ (dα) > 1
for α0 ∈ [0, 1], then the optimal value choosed in interval of a∗ lies in[
S−1

X

(
1

1+θ

)
, sup X

)
. Otherwise a∗ = supX.

3.1.4 Under CTE

CTE of the insurer’s total risk at the confidence level α is defined by

Cα (R) d= CTEα (I (X) + (1 + θ)E [R (X)])

Using the translation invariance property of CTE and I is increasing and
continuous, we may write

Cα (R) = E [I (X) + (1 + θ)E [R (X)] | I (X) ⩾ V aRα (I (x))]

= b−R (b) + (1 + θ)E [R (X)] + E [I (X) − I (b)]+

P (I (X) ⩾ I (b))

If SX (0) ⩽ α ⩽ 1, then the optimal contract is R∗ (X) = 0. That is, the
risk X should not be reinsured. In the case where 0 < α < SX (0), we define
an insurance layer contract

R̂ (x) d=
{

(x− b+R (b))+
for x ∈ [0, b]

R (x) for x ∈ [b,∞)

By making a difference between Cα (R) and Cα

(
R̂
)

, it can be shown that the
optimal reinsurance contract under CTE is a layer insurance contract. Hence
we have

Cα (Ra,b) = a+ (1 + θ)E [Ra,b (X)] + E [I (X) − I (b)]+

P (I (X) ⩾ I (b))

= a+ (1 + θ)E [Ra,b (X)] + E [X − b]+

P (X ⩾ a)
The mathematical model we use to study optimal reinsurance is to minimize
the CTE of an insurer’s total risk:

Minimize : Cα (Ra,b)
Subject to : 0 ⩽ a ⩽ b

Theorem 3.1.4 (Theorem 5.3 in Cheung et al.[3]). Assume that a∗ and b∗ are
the optimal contract parameter values. The chosen of a∗ should meet the below
requirement

0 ⩽ a∗ ⩽ min
{
b, S−1

X

(
1

1 + θ

)}
We denote S−1

X (α) as b. The optimal solution can be further explained as

11



3.2. The Multivariate Case

(i) If a∗ ̸= S−1
X

(
1

1+θ

)
, then the optimal contract is R∗ (x) = (x− a∗)+ −

(x− b∗)+ where b∗ = b .

(ii) If a∗ = S−1
X

(
1

1+θ

)
, then the optimal contract is R∗ (x) = (x− a∗)+ on

[0, b].

3.2 The Multivariate Case

The multivariate situation where the cedent has different risks cannot be
packaged together. We only solve the case where VaR is used as a risk measure.
Because an insurance layer contract is optimal from section 3.1.1, we concentrate
on such contracts in the multivariate case as well. The risks covered by the
reinsurer are as follows: intervals are used to characterize. This implies that we
have two parameters in each contract that correspond to the bounds of these
intervals. The main conclusion of this case is that any optimal solution must
meet certain conditions. The material in this chapter is obtained from Huseby
and Christensen [5] and Huseby [4].

3.2.1 The Model

Assume the insurer has n lines of business. We then let the random variable
Xi denote the loss in line i, with i = 1, . . . , n. Moreover, when we consider the
individual risk model, in which the total loss of the insurer is given by

X1 + . . .+Xn

The insurer has to apply for a reinsurance strategy R(x) to transfer risks of big
losses to the reinsurer. Ri(x) is called the reinsurance strategy of line i. Because
an insurance layer contract is optimal from section 3.1.1, we concentrate on
such contracts in the multivariate case as well. Similar to the univariate case,
the function Ri is given by:

Ri (Xi) =


0 for Xi < ai

Xi − ai for ai ⩽ Xi ⩽ bi

bi − ai otherwise

Where 0 ⩽ ai < bi ⩽ supXi. Moreover, the insurer retains the loss Ii (Xi) for
risk i, denoted Ii (Xi) = Xi −Ri (Xi) , i = 1, . . . , n. This is given by:

Ii (Xi) =


Xi for Xi < ai

ai for ai ⩽ Xi ⩽ bi

Xi − (bi − ai) otherwise

(3.1)

We also let X = (X1, . . . , Xn). The total premium paid by the insurer which
is so called premium term, is denoted by πX, is given by:

πX = (1 + θ)
n∑

i=1
E [Ri (Xi)]

12



3.2. The Multivariate Case

where the risk loading θ ⩾ 0. The total retained loss of insurer is then:
n∑

i=1
Ii (Xi) + (1 + θ)

n∑
i=1

E [Ri (Xi)]

The optimal reinsurance under α-VaR is defined by:

Vα = V aRα

(
n∑

i=1
Ii (Xi)

)
+ (1 + θ)

n∑
i=1

E [Ri (Xi)]

where the first term is the retained risk term, the rest is the premium term.
The objective is to solve following VaR-minization problem:

Minimize Vα

3.2.2 Optimal Reinsurance under VaR

The main objective now is to find a∗ = (a∗
1, . . . , a

∗
n) and b∗ = (b∗

1, . . . , b
∗
n) so

that Vα is minimized. We start out by considering the retained risk term. By
Eq.(3.1), the ith risk retained by the cedent is less than, equal to and greater
than ai in different intervals. Therefore, according to the contracts parameters
a = (a1, . . . , an) ,b = (a1, . . . , an), we define:

A =
{

X :
n∑

i=1
Ii (Xi) <

n∑
i=1

ai

}

B =
{

X :
n∑

i=1
Ii (Xi) =

n∑
i=1

ai

}

C =
{

X :
n∑

i=1
Ii (Xi) >

n∑
i=1

ai

}
where X = (X1, . . . , Xn).

Since SXi
are strictly decreasing for all i, it follows that P (X ∈ C ∪ B) and

P (X ∈ C) are strictly decreasing in ai for all i. From Eq.(2.1) (2.2), if the
contracts parameters a and b are selected as follows:

P

(
n∑

i=1
Ii (Xi) ⩾

n∑
i=1

ai

)
= P (X ∈ C ∪ B) ⩾ α

P

(
n∑

i=1
Ii (Xi) >

n∑
i=1

ai

)
= P (X ∈ C) ⩽ α

or

P

(
n∑

i=1
Ii (Xi) >

n∑
i=1

ai

)
= P (X ∈ C) = α

then we have:

V aRα

(
n∑

i=1
Ii (Xi)

)
= S−1∑n

i=1
Ii(Xi)

(α) =
n∑

i=1
ai

13



3.2. The Multivariate Case

The following important result has been demonstrated by Huseby and
Christensen [5].

Theorem 3.2.1 (Theorem 2.1 in Huseby [4]). Let a∗
1, b

∗
1, . . . , a

∗
n, b

∗
n be optimal

contract parameter values for line i, and let

P

(
n⋂

i=1
(Xi > a∗

i )
)

⩾ α (3.2)

Then the following conditions must be met:

a∗
i = S−1

Xi

(
1

1 + θ

)
, i = 1, . . . , n (3.3)

and:
P (X ∈ C) = α (3.4)

Note thatXis’ are positively upper orthant dependent(see Shaked [6]) which
contains a special case of independence, the assumption follows that:

P

(
n⋂

i=1
(Xi > a∗

i )
)

⩾
n∏

i=1
P (Xi > a∗

i ) = (1 + θ)−n

Thus, in this case, the following is a sufficient condition for Eq.(3.2) to hold:

(1 + θ)−n ⩾ α (3.5)

In general, the condition Eq.(3.5) is satisfied whenever the risk premium θ
which is charged by the reinsurance company, is not too large. Without this
condition Eq.(3.5) being satisfied, the cedent has little or nothing to gain, and
therefore should not purchase reinsurance contracts. Thus we let θ = 0.2, when
we later deal with the optimal solution in the bivariate case.

Theorem 3.2.2 (Theorem 2.2 in Huseby [4]). Base on Eq.(3.3), assume that the
optimal values a∗

1, . . . , a
∗
n satisfy Eq.(3.2). Then b∗

1, . . . , b
∗
n can be determined

by solving the following minimization problem:

Minimize :
n∑

i=1
E [Ri (Xi)] . (3.6)

Subject to : P (X ∈ C) = α (3.7)

Proof. The constraint Eq.(3.7) is the same as Eq.(3.4) in Theorem 3.2.1.
Moreover, we know the constraint Eq.(3.7) can be writen as:

P

(
n∑

i=1
Ii (Xi) >

n∑
i=1

a∗
i

)
= α

which means the retained risk term is given by:

S−1∑n

i=1
Ii(Xi)

(α) =
n∑

i=1
a∗

i

14



3.2. The Multivariate Case

Thus the total α-level VaR becomes:

Vα =
n∑

i=1
a∗

i + (1 + θ)
n∑

i=1
E [Ri (Xi)]

This implies that minimizing Vα is equivalent to minimizing
∑n

i=1 E [Ri (Xi)]
with respect to b1, . . . , bn. ■

According to Theorem 3.2.2, we can find that the optimal value a∗ is fixed
and unique, but there are countless values of b satisfying Eq.(3.7).

3.2.2.1 Unrestricted Solutions

It is convenient to denote the common value of P (Xi > a∗
i ) by A:

A = SXi
(a∗

i ) = (1 + θ)−1
, i = 1, . . . , n

We search for solutions where the Bi does not have to be equal to Bj for i ̸= j
and 1 ⩽ i, j ⩽ n. We then introduce:

Bi = SXi
(bi) , i = 1, . . . , n

where Bi ∈ [0, 1]. Note that:

C ⊆
n⋃

i=1
(Xi > bi)

Then it is easy to get that:

An −
n∏

i=1
(A−Bi) ⩽ P (X ∈ C) ⩽ 1 −

n∏
i=1

(1 −Bi) (3.8)

Thus, given Bj for j ̸= i, the lower bound BL
i for the correct value of Bi is

then:

BL
i = 1 − 1 − α∏

j ̸=i (1 −Bj)

Given Bj for j ̸= i, the upper bound BU
i for the correct value of Bi is then:

BU
i = A− An − α∏

j ̸=i (A−Bj)

In the high dimensional case, the global optimal solution could be a
complicated task because we have many Bi that should be determined. In the
bivariate case, we choose a suitable B1 value. Then it is simple to compute
B2 given B1 by using the well-known bisection method, so that the fraction
of simulations belonging to C is about equal to α. That is the reason we use
upper and lower bounded. We then iterate the value B1 to find the optimal
reinsurance contract that minimizes Vα.
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CHAPTER 4

Reinsurance Simulation in the
Dependent Bivariate Case

The thesis will focus on how reinsurance optimization is affected by dependence
between the two risks. Only the bivariate case, i.e., the case where n = 2 will
be considered. This chapter will first generalize the methods for optimizing
bivariate reinsurance proposed in Huseby [5]. Then we will develop methods
for quantifying the effect of dependence in relation to reinsurance optimization.

4.1 Problem Description

Assume the insurer has n = 2 lines of business. We let the random variable
Xi denote the loss in line i, for i = 1, 2. The reinsurance contract of line i is
Ri (Xi). Therefore, the insurer retains the loss is calculated by I1 (X1)+I2 (X2)
and the total risk covered by the insurer is then:

2∑
i=1

Ii (Xi) + (1 + θ)
2∑

i=1
E [Ri (Xi)]

In the 2-dimensional case, the total reinsurance risk under α-VaR can be
formulated by:

Vα(a,b) = V aRα[
2∑

i=1
Ii (Xi)] + (1 + θ)

2∑
i=1

E [Ri (Xi)]

where a = (a1, a2) and b = (b1, b2). Our goal is to find a∗ = (a∗
1, a

∗
2) and

b∗ = (b∗
1, b

∗
2) so that Vα(a,b) is minimized. As in the multivariate case, we

focus on the retained risk term V aRα[
∑2

i=1 Ii (Xi)] and define:

A =
{

X :
2∑

i=1
Ii (Xi) <

2∑
i=1

ai

}

B =
{

X :
2∑

i=1
Ii (Xi) =

2∑
i=1

ai

}

C =
{

X :
2∑

i=1
Ii (Xi) >

2∑
i=1

ai

}
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4.2. Plan for the Simulation Study

Figure 4.1: The sets A, B and C .

Figure 4.1 illustrates their distribution. Furthermore, the white area represents
set A. The dark gray area represents set C. Set B is represented by the light
gray area and the solid line between A and C. See Theorem 3.2.1 3.2.2 that in
order to minimize Vα(a,b), b∗ should be chosen so that:

P (I1 (X1) + I2 (X2) > a1 + a2) = α (4.1)

The optimal value a∗
i = S−1

Xi

(
1

1+θ

)
, i = 1, 2. In conclusion, the optimization

problem is equivalent to:

Minimize : E [R1 (X1)] + E [R2 (X2)]

Subject to : P

( 2∑
i=1

Ii (Xi) >
2∑

i=1
a∗

i

)
= α

To solve the problem above, we should

(i) determine b so that P
(∑2

i=1 Ii (Xi) >
∑2

i=1 a
∗
i

)
= α holds.

(ii) minimize E [R1 (X1)] + E [R2 (X2)] with respect to b.

4.2 Plan for the Simulation Study

Let X be a random variable with values in X which is a set of all possible values
of X, and distribution FX , and let ϕ = ϕ (b,X) be a known function of X and
a deterministic variable b. We also introduce:

h (b) = E[ϕ (b,X)]

17



4.2. Plan for the Simulation Study

It is important to note that both X and b may be scalars or vectors. Since we
study bivariate risks, these two variables are replaced by 2-dimensional vectors
in the rest of the thesis. We then consider two problems related to h:

• Problem 1. Determine b so that h(b) = c, for some constant c.

• Problem 2. Minimize h(b) with respect to b.

Both problems can in principle be solved simply by calculating:

h (b) =
∫

X
ϕ (b,X) dFX (x)

for each value of b. However, unless the integral is easy to calculate, this may
not be the best approach.

4.2.1 Monte Carlo Simulation

Monte Carlo method is an available tool in the field of insurance. It relies on
repeated random sampling to study the results of uncertain events. Thus, we
can use Monte Carlo simulation to estimate h(b).

Let X1, . . . , XN be a sequence of independent variables from the distribution
FX on the set X , and estimate h(b) by the standard (crude) Monte Carlo
estimate:

ĥ (b) = 1
N

N∑
j=1

ϕ (b,Xj) (4.2)

Then it is easy to see that:

E[ĥ (b)] = 1
N

N∑
j=1

E[ϕ (b,Xj)] = 1
N

N∑
j=1

h (b) = h (b)

and that:

V ar[ĥ (b)] = 1
N2

N∑
j=1

V ar[ϕ (b,Xj)] = 1
N
V ar [ϕ (b,X)]

When N approaches to infinity, V ar[ĥ (b)] is equal to 0. Thus, ĥ (b) is an
unbiased and consistent estimator for h(b). Still, the estimate ĥ (b) may be
too unstable for solving the two problems due to sampling uncertainty. Then
we use importance sampling to solve the two problems.

4.2.2 Importance Sampling

Importance sampling is used to estimate the expectation based on some known
and easily sampled distribution to avoid Monte Carlo’s defect. Assume that
there exists a subset D ⊂ X and E = X \D such that:

• pD = P (X ∈ D) and pE = P (X ∈ E) = 1 − pD are known quantities.

• It is possible to sample efficiently from the conditional distributions of X
given the events {X ∈ D} and {X ∈ E}.

18



4.2. Plan for the Simulation Study

We then generate a sample X1, . . . , XN1 from the conditional distribution of X
given the event {X ∈ D} and another sample Y1, . . . , YN2 from the conditional
distribution of X given the event {X ∈ E}, where N1 +N2 = N . The function
h(b) can then be estimated by:

h̃ (b) = pD
1
N1

N1∑
j=1

ϕ (b,Xj) + pE
1
N2

N2∑
j=1

ϕ (b, Yj) (4.3)

We then get:

E[h̃ (b)] = pD
1
N1

N1∑
j=1

E[ϕ (b,Xj)] + pE
1
N2

N2∑
j=1

E[ϕ (b, Yj)]

= pDE[ϕ (b,X) | X ∈ D] + pEE[ϕ (b,X) | X ∈ E]
= E [ϕ (b,X)]
= h(b)

and that:

V ar[h̃ (b)] = p2
D

1
N2

1

N1∑
j=1

V ar[ϕ (b,Xj)] + p2
E

1
N2

2

N2∑
j=1

V ar[ϕ (b, Yj)]

= p2
D

N1
V ar[ϕ (b,X) |X ∈ D] + p2

E

N2
V ar[ϕ (b,X) |X ∈ E]

V ar[h̃ (b)] will approach 0 as N1 and N2 increase. Thus, h̃ (b) is an unbiased
and consistent estimator for h(b) as well.

4.2.2.1 Special Cases

We now consider a case which is related to Problem 2 in 4.2, where it is known
that:

ϕ (b, x) = c0, for all x ∈ E

where c0 is a known constant. This obviously implies that:

E[ϕ (b,X) | X ∈ E] = c0

V ar[ϕ (b,X) |X ∈ E] = 0

In this case we may let N1 = N , and estimate h(b) by a simplified version of
h̃ (b) given by:

h̃ (b) = pD
1
N

N∑
j=1

ϕ (b,Xj) + pEc0

We still get that E
[
h̃ (b)

]
= h (b). In order to calculate the variance, it is

convenient to introduce ID = 1(X ∈ D). That is, ID = 1 if X ∈ D and zero
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otherwise. Since V ar[ϕ (b,X) |X ∈ E] = V ar[ϕ (b,X) |ID = 0] = 0, we may
write:

V ar[h̃ (b)] =
p2

D

N
V ar[ϕ (b,X) |ID]

= pD

N
(pDV ar[ϕ (b,X) |ID = 1] + pEV ar[ϕ (b,X) |ID = 0])

= pD

N
E[V ar[ϕ (b,X) |ID]]

= pD

N
(V ar[ϕ (b,X)] − V ar [E[ϕ (b,X) |ID]])

⩽
pD

N
V ar[ϕ (b,X)] = pDV ar[ĥ (b)]

If pD is small, then V ar[h̃ (b)] will typically be much smaller than V ar[ĥ (b)].

We now turn our attention to another special case related to Problem 1 in
4.2, where we let C = C (b) ⊆ D ⊂ X . That is, C(b) is a subset of X which in
some way depends on the deterministic variable b. Moreover, define ϕ (b, x) as
an indicator function as before:

ϕ (b,X) = 1(X ∈ C(b))

Then it follows that:

h (b) = E[ϕ (b,X)] = E [1(X ∈ C(b))] = P (X ∈ C (b))

The objective is to determine b so that:

h (b) = P (X ∈ C (b)) = α

Furthermore, we let E = X \D. Since C (b) ⊆ D, it follows that C (b) ∩ E = ∅,
and hence:

ϕ (b,X) = 1 (X ∈ C (b)) = 0, for all X ∈ E

This obviously implies that:

E[ϕ (b,X) | X ∈ E] = 0
V ar[ϕ (b,X) |X ∈ E] = 0

In this case we generate X1, . . . , XN from the conditional distribution of X
given that X ∈ D, and estimate h(b) by:

h̃ (b) = pD
1
N

N∑
j=1

ϕ (b,Xj) + pE · 0

= pD
1
N

N∑
j=1

1 (Xj ∈ C (b))
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On the other hand, we still get that E
[
h̃ (b)

]
= h (b) and V ar[h̃ (b)] is

samller than V ar[ĥ (b)] when pD is small. The solution to the equation
h (b) = P (X ∈ C (b)) = α can then be estimated by instead solving the equation:

h̃ (b) = pD
1
N

N∑
j=1

1 (Xj ∈ C (b)) = α

This is typically done using some iterative method like the bisection method.

4.2.3 Random Number Generator

Let X = (X1, X2) be a bivariate absolutely continuously distributed random
variable, and where X = R+ × R+. Assume that X1 and X2 are independent
and given its cumulative distribution function that Xi ∼ FXi

, for i = 1, 2.
Then the independent vectors (X1,1, X2,1) , . . . , (X1,N , X2,N ) have the same
joint distribution as (X1, X2). can be generated as follows:

Let (U1,1, U2,1) , . . . , (U1,N , U2,N ) be independent vectors such that U1,j , U2,j

are independent and uniformly distributed on [0, 1] , j = 1, . . . , N . We then let:

Xj = (X1,j , X2,j) =
(
F−1

X1
(U1,j) , F−1

X2
(U2,j)

)
for j = 1, . . . , N.

It is then easy to verify that the samples (X1,1, X2,1) , . . . , (X1,N , X2,N ) get
the correct joint distribution. To show this, we first note that if U ∼ R [0, 1]
which means the uniform distribution on the interval [0, 1], then:

P (U < u) =
∫ u

0
1 · dv = u for all u ∈ [0, 1]

We then consider Y = F−1
X (U) where U ∼ R [0, 1], where FX is the cumulative

distribution function of an absolute continuously distributed random variable
X. We then have:

P (Y ⩽ y) = P
(
F−1

X (U) ⩽ y
)

= P
(
FX

(
F−1

X (U)
)
⩽ FX (y)

)
= P (U ⩽ FX (y))
= FX (y)

which proves that the random variable Y = F−1
X (U) has the cumulative

distribution function FX , i.e.:

Y
d= X

Note that since X is assumed to be absolutely continuously distributed, the
mapping from a bivariate uniformly distributed U = (U1, U2) to X = (X1, X2)
is one− to− one. Thus, the mapping has a unique well − defined inverse:

u = (u1, u2) =
(
FX1

(x1) , FX2
(x2)

)
Hence, for any set S ⊆ X and corresponding set:

S′ = {(u1, u2) =
(
FX1

(x1) , FX2
(x2)

)
: (x1, x2) ∈ S}
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4.2. Plan for the Simulation Study

the events {X ∈ S} and {U ∈ S′} are equivalent, and thus, we have:

P (X ∈ S) = P (U ∈ S′)

Moreover, note that we also have:

S = {(x1, x2) =
(
F−1

X1
(u1) , F−1

X2
(u2)

)
: (u1, u2) ∈ S′}

If U = (U1, U2) is uniformly distributed on [0, 1] × [0, 1], then U has a density,
fU (u1, u2) = 1 for all (u1, u2) ∈ [0, 1] × [0, 1]. This implies that for any
A ∈ [0, 1] × [0, 1], we have:

P (U ∈ A) =
∫

A

∫
fU (u1, u2) du1du2 = m (A) = The area of A

Moreover, for any B ⊆ A, the conditional probability that U ∈ B given that
U ∈ A becomes:

P(U ∈ B|U ∈ A) = P (U ∈ A ∩B)
P (U ∈ A) = P (U ∈ B)

P (U ∈ A) = m (B)
m (A)

Hence, (U|U ∈ A) is uniformly distributed on the set A.

Figure 4.2: The sets D′ and E′.

We then choose ρ ∈ [0, 1], and define:

D′ = {(u1, u2) : 1 − ρ ⩽ ui ⩽ 1, i = 1, 2}
E′ = {(u1, u2) : 0 ⩽ ui ⩽ 1 − ρ, i = 1, 2}

Since U is uniformly distributed, two sets D′ and E′ have probabilities:

P (U ∈ D′) = m (D′) = 1 − (1 − ρ)2
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P (U ∈ E′) = m (E′) = (1 − ρ)2

As is shown in Figure 4.2, the set D′ = {(u1, u2) : 1 − ρ ⩽ ui ⩽ 1, i = 1, 2} is
partitioned into three subsets:

D′
1 = {(u1, u2) : 1 − ρ ⩽ u1 ⩽ 1, 0 ⩽ u2 ⩽ 1 − ρ}

D′
2 = {(u1, u2) : 0 ⩽ u1 ⩽ 1 − ρ, 1 − ρ ⩽ u2 ⩽ 1}

D′
3 = {(u1, u2) : 1 − ρ ⩽ u1 ⩽ 1, 1 − ρ ⩽ u2 ⩽ 1}

We have already shown that (U|U ∈ D′) is uniformly distributed on the set D′.
Hence, it follows that:

P(U ∈ D′
1|U ∈ D′) = m (D′

1)
m (D′) = ρ · (1 − ρ)

1 − (1 − ρ)2 = ρ · (1 − ρ)
2ρ− ρ2 = 1 − ρ

2 − ρ

P(U ∈ D′
2|U ∈ D′) = m (D′

2)
m (D′) = ρ · (1 − ρ)

1 − (1 − ρ)2 = ρ · (1 − ρ)
2ρ− ρ2 = 1 − ρ

2 − ρ

P(U ∈ D′
3|U ∈ D′) = m (D′

3)
m (D′) = ρ2

1 − (1 − ρ)2 = ρ2

2ρ− ρ2 = ρ

2 − ρ

We now describe how to generate samples from the conditional distribution
of a bivariate uniformly distributed variable U = (U1, U2) given that U ∈ D′.
We start out by sampling from which of three sets D′

1, D
′
2, D

′
3 the vector U

should be sampled. This is done by sampling an auxiliary variable U0 which is
uniformly distributed on the interval [0, 2 − ρ].

• If 0 ⩽ U0 < 1 − ρ, then U is sampled from D′
1

• If 1 − ρ ⩽ U0 < 2(1 − ρ), then U is sampled from D′
2

• If 2(1 − ρ) ⩽ U0 < 2 − ρ, then U is sampled from D′
3

As a result, the three subsets D′
1, D

′
2, D

′
3 get the correct probabilities.

Note that for k = 1, 2, 3, (U|U ∈ D′
k) is uniformly distributed on the set

D′
k. After the subset D′

k has been determined, the variable U is sampled as
follows:

• If U ∈ D′
1, then U1 ∼ R [1 − ρ, 1] and U2 ∼ R [0, 1 − ρ]

• If U ∈ D′
2, then U1 ∼ R [0, 1 − ρ] and U2 ∼ R [1 − ρ, 1]

• If U ∈ D′
3, then U1 ∼ R [1 − ρ, 1] and U2 ∼ R [1 − ρ, 1]

where R [γ, δ] denotes the uniform distribution on the interval [γ, δ].
We then transform the sets D′ and E′ using the mapping from U to X:

D = {(x1, x2) =
(
F−1

X1
(u1) , F−1

X2
(u2)

)
: (u1, u2) ∈ D′}

E = {(x1, x2) =
(
F−1

X1
(u1) , F−1

X2
(u2)

)
: (u1, u2) ∈ E′}

By the one-to-one correspondence between the sets D′ and E′ and the
transformed sets D and E, it follows that:

pD = P (X ∈ D) = P (U ∈ D′) = m (D′) = 1 − (1 − ρ)2

pE = P (X ∈ E) = P (U ∈ E′) = m (E′) = (1 − ρ)2
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4.2. Plan for the Simulation Study

Thus, both pD and pE are known quantities. By choosing ρ sufficiently large,
e.g., ρ ⩾ 2α, we can ensure that:

C (b) ⊆ D, for all b

where b = (b1, b2) in bivariate case.
We assume that Uj = (U1,j , U2,j) , j = 1, . . . , N are N independent vectors

sampled from the conditional distribution of U given that U ∈ D′ as previously
described, and let:

Xj = (X1,j , X2,j) =
(
F−1

X1
(U1,j) , F−1

X2
(U2,j)

)
j = 1, . . . , N

We then let S ⊆ D be arbitrarily chosen, and define:

S′ = {(u1, u2) =
(
FX1

(x1) , FX2
(x2)

)
: (x1, x2) ∈ S}

By the one-to-one correspondence between the sets S′ and S it follows that:

P(Xj ∈ S) = P (Uj ∈ S′) = P (U ∈ S′)
P (U ∈ D′) = P (X ∈ S)

P (X ∈ D) , j = 1, . . . , N

Since this holds for any subset S of D, we conclude that Xj has the same
distribution as (X|X ∈ D) for j = 1, . . . , N .

4.2.4 Gaussian Copula

The dependence between X1 and X2 is modeled using a Gaussian Copula. Let
U1 and U2 be independent and Ui ∼ R [0, 1] , i = 1, 2, and introduce:

Gi = Φ−1 (Ui) , i = 1, 2

where Φ denotes the cumulative distribution function of a standard Gaussian
distribution. This implies that G1 and G2 are independent and Gi ∼
N (0, 1) , i = 1, 2.

We introduce the following linear transformation of G1 and G2:

H1 = c1G1 + c2G2

H2 = c2G1 + c1G2

where c1 and c2 are chosen so that:

E [Hi] = 0, V ar [Hi] = 1, i = 1, 2 and Cov [H1, H2] = k

Since normal distributions are preserved under linear transformations, it follows
that H1 and H2 are both N (0, 1)-distributed marginally. This implies that we
always have E [Hi] = 0 for this linear transformation. Thus we focus on the
variances and the covariance. In order to get the correct variances, c1 and c2
must satisfy:

V ar [H1] = c2
1V ar [G1] + c2

2V ar [G2] = c2
1 + c2

2 = 1
V ar [H2] = c2

2V ar [G1] + c2
1V ar [G2] = c2

2 + c2
1 = 1
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4.2. Plan for the Simulation Study

where we have used that V ar [G1] = V ar [G2] = 1. Furthermore, in order to
get the correct covariance, c1 and c2 must satisfy:

Cov [H1, H2]
= Cov [c1G1 + c2G2, c2G1 + c1G2]
= c1c2Cov [G1, G1] + c2

1Cov [G1, G2] + c2
2Cov [G2, G1] + c1c2Cov [G2, G2]

= 2c1c2 = k

where we have used that Cov [Gi, Gi] = V ar [Gi] = 1 for i = 1, 2, and that
Cov [G1, G2] = 0. Thus, we have the following equations:

c2
1 + c2

2 = 1
2c1c2 = k

Adding and subtracting these two equations yield:

(c1 + c2)2 = 1 + k

(c1 − c2)2 = 1 − k

It is then easy to verify that one possible solution is:

c1 = 1
2

(√
1 + k +

√
1 − k

)
c2 = 1

2

(√
1 + k −

√
1 − k

)
We then transform H1 and H2 over to the variables V1 and V2 given by:

Vi = Φ (Hi) , i = 1, 2

Since H1 and H2 are both N(0, 1)-distributed marginally, it follows that V1
and V2 are both R[0, 1]-distributed marginally. However, since H1 and H2
are correlated, this implies that V1 and V2 are correlated as well. Finally, we
transform V1 and V2 over to the variables X1 and X2 given by:

Xi = F−1
Xi

(Vi) , i = 1, 2

Since V1 and V2 are both R[0, 1]-distributed marginally, it follows that X1
and X2 get the correct marginal distributions. However, since V1 and V2 are
correlated, this implies that X1 and X2 are correlated as well. If we sample the
initial random variables U1 and U2 from the conditional distribution given that
(U1, U2) ∈ D′, then it is easy to verify that X1 and X2 get the corresponding
the conditional distribution given that (X1, X2) ∈ D. This follows since there
still is a one-to-one mapping between (U1, U2) and (X1, X2) (even though this
mapping is much more complicated in the case of correlation).

4.2.5 Risk Distributions

In the insurance business, different distributions are often used to model
insurance losses X. When the potential claims of insurance companies are
very high, we can use the heavy tail distributions for modelling, such as Pareto
distribution and lognormal distribution. For the simulation of extreme losses,
especially in more risky insurance types, heavy tailing is essential. When the
high claim risk does not occur frequently, we use light tails such as truncated
normal and gamma for modelling.
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4.2. Plan for the Simulation Study

Definition 4.2.1. Pareto Distribution
If X is a positive random variable with a Pareto distribution, then the probability
density function of X is given by:

fX (x) =
{

τxτ
m

xτ+1 for x ⩾ xm

0 otherwise

where the parameter τ is positive and xm is the lower bound value of X.

Cumulative distribution function of X is given by

FX (x) =
{

1 −
(

xm

x

)τ
for x ⩾ xm

0 otherwise

The mean and variance of X are:

E (X) =
{

∞ for τ ⩽ 1
τxm

τ−1 for τ > 1

V ar (X) =

∞ for 1 < τ ⩽ 2(
xm

τ−1

)2
τ

τ−2 for τ > 2

Note that when τ ⩽ 1, the variance does not exist.
We can estimate the Pareto parameters xm and τ by the following method.

Assuming that we are given that E (X) = m > 0 and SD(X) = s > 0, we can
find the corresponding parameter values, xm and τ by solving the equations:

m = xmτ

τ − 1

s2 = x2
mτ

(τ − 1)2 (τ − 2)

We square both sides of the first equation and divide the resulting equation by
the second equation. As a result we get:

m2

s2 = τ (τ − 2)

or equivalently:

τ2 − 2τ + 1 = (τ − 1)2 = m2

s2 + 1

Hence, we get:

τ = 1 ±
√
m2

s2 + 1

Since τ is assumed to be positive, the negative root can be neglected, and we
get the unique solution:

τ = 1 +
√
m2

s2 + 1
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4.2. Plan for the Simulation Study

Having determined τ , it also follows that:

xm = m (τ − 1)
τ

Note that the parameter formulas are valid for all possible combinations of m
and s as long as m, s > 0. Moreover, since m2/s2 + 1 > 1, it follows that τ > 2.
Thus, V ar[X] exists.

Definition 4.2.2. Lognormal Distribution
If the random variable Y = ln (X) is a normal distribution with mean µ and
variance σ2, then the positive random variable X is said to be log-normally
distributed. The probability density function of X is given by:

fX (x) =
{

1
xσ

√
2π
exp

(
− (lnx−µ)2

2σ2

)
for x ⩾ 0

0 otherwise

The cumulative distribution function is

FX (x) =
{

Φ
(

(lnx)−µ
σ

)
for x ⩾ 0

0 otherwise

where Φ is the cumulative distribution function of the standard normal
distribution. The mean and variance of X are:

E (X) = eµ+ 1
2 σ2

V ar (X) = (E (X))2
(
eσ2

− 1
)

The next step is to determine the parameters µ and σ such that E (X) = m
and V ar (X) = s2. We get the fellow equations:

m = eµ+ 1
2 σ2

s2 = (E (X))2
(
eσ2

− 1
)

A short calculation revealed that

σ =

√
log

(
s2

m2 + 1
)

µ = log (m) − 1
2 log

(
s2

m2 + 1
)

Definition 4.2.3. Truncated Normal distribution
Assume Y has a normal distribution with mean µ and variance σ2, and falls
inside the interval (a, b), with −∞ ⩽ a < b ⩽ ∞. Then Y in [a, b] is a truncated
normal distribution with probability density function:

fX (x) =

 1
σ

ϕ( x−µ
σ )

Φ( b−µ
σ )−Φ( a−µ

σ ) for a ⩽ x ⩽ b

0 otherwise

where Φ and ϕ are the cumulative distribution function and probability density
function of standard normal distribution respectively. In this thesis, we only
consider the case where a = 0 and b = ∞.
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4.2. Plan for the Simulation Study

The inverse cumulative distribution function for the truncated normal
distribution, truncated to the interval [0,∞), is given by:

X = µ+ σ · Φ−1
[
Φ
(

−µ

σ

)
+ U ·

(
1 − Φ

(
−µ

σ

))]
It is easy to see that X is an increasing function of U . Moreover, if U = 0, then:

X = µ+ σ · Φ−1
[
Φ
(

−µ

σ

)]
= µ+ σ ·

(
−µ

σ

)
= µ− µ = 0

Hence, X is non-negative with probability 1. In order to verify the distribution
X, we let X ⩾ 0 and consider the probability P (X > x). We then get:

P (X > x) = P
(
X − µ

σ
> −x− µ

σ

)
= P

(
Φ−1

[
Φ
(

−µ

σ

)
+ U ·

(
1 − Φ

(
−µ

σ

))]
> −x− µ

σ

)
= P(Φ

(
−µ

σ

)
+ U · (1 − Φ

(
−µ

σ

)
) > Φ

(
x− µ

σ

)
)

= P(U >
Φ
(

x−µ
σ

)
− Φ

(−µ
σ

)
1 − Φ

(−µ
σ

) )

= 1 −
Φ
(

x−µ
σ

)
− Φ

(−µ
σ

)
1 − Φ

(−µ
σ

)
=

1 − Φ
(

x−µ
σ

)
1 − Φ

(−µ
σ

) = P (Y > x)
P (Y > 0)

Moreover, we let τ = −µ/σ. The mean and variance of truncated normal
variable X can be shown that:

E (X) = µ+ σ · ϕ (τ)
1 − Φ (τ) (4.4)

V ar (X) = σ2 ·

[
1 + τ

(
ϕ (τ)

1 − Φ (τ)

)
−
(

ϕ (τ)
1 − Φ (τ)

)2
]

(4.5)

We now want to determine µ and σ such that E (X) = m and V ar (X) = s2.
Inserting m and s2 into Eq.(4.4) and Eq.(4.5), these equations may be rewritten
as:

m

σ
= −τ + ϕ (τ)

1 − Φ (τ) = ϕ (τ) − τ (1 − Φ (τ))
1 − Φ (τ) (4.6)

s2

σ2 =
[

1 + τ

(
ϕ (τ)

1 − Φ (τ)

)
−
(

ϕ (τ)
1 − Φ (τ)

)2
]

(4.7)

We then divide the left-hand side of Eq.(4.7) by the square of the left-hand side
of Eq.(4.6). Similarly, we divide the right-hand side of Eq.(4.7) by the square
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4.3. The Model

of the right-hand side of Eq.(4.6). This yields the following equation:

s2

m2 =

[
1 + τ

(
ϕ(τ)

1−Φ(τ)

)
−
(

ϕ(τ)
1−Φ(τ)

)2
]

[
ϕ(τ)

1−Φ(τ) − τ
]2 (4.8)

We observe that Eq.(4.8) contains only one unknown quantity, τ . Moreover, τ
can easily be determined numerically from this equation. Having determined τ
we may insert this into Eq.(4.6) and obtain:

σ = m · 1 − Φ (τ)
ϕ (τ) − τ (1 − Φ (τ))

Finally, the parameter µ is given by:

µ = µ

σ
· σ = −τ · σ

Definition 4.2.4. Gamma Distribution
If X is a positive random variable with a gamma distribution, then the
probability density function of X is given by:

fX (x) =
{

βτ

Γ(τ)x
τ−1e−xβ for x > 0

0 otherwise

where Γ (τ) =
∫∞

0 xτ−1e−xdx and τ is the shape parameter and β is the scale
parameter.

Mean and variance of gamma variables are

E (X) = τ/β V ar (X) = τ/β2

Let E (X) = m > 0 and SD(X) = s > 0, we can find the corresponding
parameter values, τ and β are given by:

τ = m2

s2

β = τ

m
= m

s2

4.3 The Model

We now return to the main problem where X = (X1, X2) is a bivariate absolutely
continuously distributed random variable, and where X = R+ × R+. We start
out by considering the constraint. The retained risk covered by the cedent for
line i, denoted:

Ii (Xi) = min (Xi, ai) + min (Xi − bi, 0) , i = 1, 2

where 0 ⩽ ai ⩽ bi for i = 1, 2. By subsection 4.2.1, C(b) is given by:

C (b) = C (b1, b2) = {(x1, x2) : I1 (x1) + I2 (x2) > a1 + a2}
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4.3. The Model

Figure 4.3: The sets A, B and C(b).

which is illustrated in Figure 4.3. For any given b = (b1, b2) we estimate:

h (b) = E[ϕ (b,X)] = E [1(X ∈ C(b))] = P (X ∈ C (b))

based on a sample Xj = (X1,j , X2,j) for j = 1, ..., N , by:

h̃ (b) = pD
1
N

N∑
j=1

1 (Xj ∈ C (b))

= pD
1
N

N∑
j=1

1 (I1 (X1,j) + I2 (X2,j) > a1 + a2)

We now introduce B = (B1, B2) where:

Bi = 1 − FXi (bi) = SXi (bi) , i = 1, 2

where SXi (x) = 1 − FXi (x) denotes the survival probability function of Xi.
We then express h̃ as function of B instead, and our equivalent objective is to
determine B so that:

h̃ (B) = P (X ∈ C (B)) = α (4.9)

Note that there is a one-to-one correspondence between b and B:

bi = S−1
Xi

(Bi) , i = 1, 2

Thus, solving the problem for B immediately gives us a solution for b as well.
Typically, there exists infinitely many combinations of B1 and B2 which satisfy
Eq.4.9. Thus, we instead consider the problem where B1 is given, and we want
to determine the corresponding value of B2 such that Eq.4.9 holds.
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We finish by considering the objective function, where we let:

Ri (Xi) = Xi − Ii (Xi) = max (min (Xi, bi) − ai, 0) , i = 1, 2

and where 0 ⩽ ai ⩽ bi for i = 1, 2, and introduce:

ψ (b,X) = R1 (X1) +R2 (X2)

As before, a1 , a2 are considered to be fixed and known, while b = (b1, b2) is
the solution to the optimization problem:

Minimize : g (b) = E[ψ (b,X)]
Subject to : h (b) = E[ϕ (b,X)] = P (X ∈ C (b)) = α

We still let:

D′ = {(u1, u2) : 1 − ρ ⩽ ui ⩽ 1, i = 1, 2}
E′ = {(u1, u2) : 0 ⩽ ui ⩽ 1 − ρ, i = 1, 2}

D = {(x1, x2) =
(
F−1

X1
(u1) , F−1

X2
(u2)

)
: (u1, u2) ∈ D′}

E = {(x1, x2) =
(
F−1

X1
(u1) , F−1

X2
(u2)

)
: (u1, u2) ∈ E′}

Moreover, we assume that ρ is chosen sufficiently large so that:

C (b) = {(x1, x2) : I1 (x1) + I2 (x2) > a1 + a2} ⊆ D for all b

The blue region in Figure 4.4 below represents the set E , while D = X \ E.
Here C (b) ⊆ D, at least for all values of b we need to consider given the

Figure 4.4: Blue Region and C(b).

constraint that P (X ∈ C (b)) = α.
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Remark 4.3.1. The blue region is not rectangular if risks X1 and X2 are
dependent. Based on the premise that the blue region does not interfere with
the gray region, the blue region needs to be as large as possible to get much
importance sampling.

In order to estimate g(b) we generate a sample X1, . . . ,XN from the
conditional distribution of X given the event X ∈ D and another sample
Y1, . . . ,YM from the conditional distribution of X given the event X ∈ E,
and estimate g(b) by:

g̃ (b) = pD
1
N

N∑
j=1

ψ (b,Xj) + pE
1
M

M∑
j=1

ψ (b,Yj)

Note, Xj = (X1,j , X2,j) for j = 1, ..., N and Yj = (Y1,j , Y2,j) for j = 1, ...,M ,
however, that if X ∈ E, then

ψ (b,X) =
2∑

i=1
max (min (Xi, bi) − ai, 0) =

2∑
i=1

max (Xi − ai, 0)

Hence, ψ (b,X) is constant given distributions of Xi for i = 1, 2 and does not
depend on b for all X ∈ E. Thus, in order to minimize g(b), we can focus on
minimizing the term:

1
N

N∑
j=1

ψ (b,Xj)

This implies that simulation errors related to the second term of g̃ (b) will not
affect the minimization. As a result, we may choose M ≪ N without losing
any precision. In fact, if we are only interested in the minimization of g(b), and
not the resulting minimal value of g(b), we may even let M = 0.

We now have all the needed tools available to solve the optimization problem.
We assume that we have determined an interval [BL

1 , B
U
1 ] where we know that

the optimal value of B1 must be located.

• We run an iteration where we let B1 go through a suitable sequence of
values in [BL

1 , B
U
1 ].

• For each B1-value we calculate the corresponding B2-value such that
h̃ (b) = α. Furthermore, Eq.(3.8) indicates that for a given B1 the lower
and upper bounds of B2 are:

BL
2 = α−B1

1 −B1
, BU

2 = α−A ·B1

A−B1

• For each B1-value and B2-value we calculate g̃ (b).

• Having calculated g̃ (b) for all combinations of B1 and B2, we choose the
combination which minimizes g̃ (b).

• The total reinsurance risk under α-VaR is:

Vα(a∗,b) = a∗
1 + a∗

2 + (1 + θ) g̃ (b)

32



4.3. The Model

In order to see the optimal solution more intuitively, we will plot the iso-
curves for the objective function g(B) and constraint curve h(B). It is worth
noting that the shape of the iso-curves depends on the hazard rates of risks
from Huseby [4]. The corresponding theorem is as follows.

Theorem 4.3.2 (Theorem 2.3 in Huseby [4]). Risks X1 and X2 with decreasing
hazard rates, g is known as quasiconvex functions of B. Risks X1 and X2 with
increasing hazard rates, g is known as quasiconcave functions of B.
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CHAPTER 5

Numerical Examples

This chapter will estimate the optimal reinsurance in the bivariant case for
different risk distributions by using importance sampling. It is worth noting
that the two risks random variables X1 and X2 are dependent on the same
type or different types of distributions. We use Gaussian cupola to construct
correlation. More specifically, we would like to describe how the optimal
reinsurance contracts vary with the degree of dependence. In all of these tasks,
numerical examples will be selected and investigated in detail. Let θ = 0.2 and
the values of correlation coefficient Cov [H1, H2] = k are taken as -0.8, -0.5, 0,
0.5 and 0.8 respectively. To visualize the location of the optimal solution, we
will plot the iso-curves of expected insured risk E(R1 (X1) +R2 (X2)) and the
constraint curve under different k values.

5.1 Symmetric Risks

Two risks are chosen from heavy-tailed distributions such as Pareto, lognormal
distribution, and light-tailed distributions such as truncated normal and gamma
distribution. Due to the fact that X1 and X2 are symmetric risks, the optimal
values a∗

1 and a∗
2 will be equal. We can calculate the a∗ by using

a∗
1 = a∗

2 = S−1
X1

(
1

1 + θ

)
= S−1

X2

(
1

1 + θ

)
5.1.1 Under Pareto Distribution

First we check the following risks:

X1 ∼ Pareto (m = 50, s = 50)
X2 ∼ Pareto (m = 50, s = 50)

The optimal results are given in Table 5.1 below. In Table 5.1, all optimal
solutions are balanced solutions. When k = 0, the optimal VaR equals 105.60,
the maximum value compared with the other four values. This means that the
risk of optimal reinsurance is the highest when the symmetric Pareto risks are
independent under VaR.
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5.1. Symmetric Risks

k a∗ b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 31.59 255.71 258.41 0.005 0.005 105.52 21.18 21.17
-0.5 31.59 253.84 269.00 0.005 0.005 105.57 21.16 21.23
0 31.59 262.49 261.90 0.005 0.005 105.60 21.22 21.21

0.5 31.59 254.94 258.12 0.005 0.005 105.53 21.17 21.18
0.8 31.59 244.43 242.45 0.006 0.006 105.35 21.10 21.08

Table 5.1: Results summary where symmetric risks are Pareto distribution with
mean 50 and standard deviation 50.
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Figure 5.1: Iso-curves and constraint where symmetric risks are Pareto
distribution with mean 50 and standard deviation 50.

Now we decrease the standard deviation of Xi, and calculate the optimal
values of following risks:

X1 ∼ Pareto (m = 50, s = 10)
X2 ∼ Pareto (m = 50, s = 10)

The results are presented in Table 5.2. We conclude that all the optimal solutions
are balanced, and the Vα is highest if the Pareto risks are uncorrelated.

k a∗ b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 43.07 97.96 98.16 0.006 0.006 102.77 8.32 8.31
-0.5 43.07 97.92 100.14 0.005 0.005 102.78 8.32 8.32
0 43.07 99.51 99.42 0.005 0.005 102.80 8.33 8.32

0.5 43.07 98.44 98.92 0.005 0.005 102.79 8.32 8.32
0.8 43.07 96.81 96.50 0.006 0.006 102.76 8.31 8.31

Table 5.2: Results summary where symmetric risks are Pareto distribution with
mean 50 and standard deviation 10.

In Figure 5.1 and Figure 5.2, iso-curves are locus of different combinations

35
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of two factors B1 and B2 giving the same level of reinsurance premiums. The
characteristic of the iso-curves is that they are slope downwards and convex
to the origin since two risks have decreasing hazard rates. In case of different
iso-curves the level of reinsurance premiums differs. Higher the iso-curve, lower
the level of premiums. Moreover, iso-curves cannot intersect each other. With
the decrease of standard deviations for both risks, the curvature of iso-curves
becomes smaller.
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Figure 5.2: Iso-curves and constraint where symmetric risks are Pareto
distribution with mean 50 and standard deviation 10.

In Figure 5.1 and Figure 5.2, the difference in k value leads to a slight
difference in the constraint curves. As a result, it can be shown that the set
of B1 and B2 is almost a straight line when k = 0. By increasing the k value,
the constraint curve changes from being slightly convex to the origin to being
concave to the origin. If we put the constraint curves and iso-curves in the same
plot, it is not difficult to find the constraint curves always bend significantly
from iso-curves. Thus, the optimal solutions for any correlation should be in
the middle, which is balanced.

On the premise that k is negative, if the value of k is increased, the amount
of total α-level VaR will increase. At the same time, when the correlation has a
high negative value, the constraint curve itself is further away from the origin.
Thus, the value of the objective function still becomes smaller compared to the
independent case. On the premise that k is positive, if we increase the value of
k, then the constraint curve bends more away from the origin. As a result, the
value of B is increasing and the total risk covered by reinsurer is decreasing.
Moreover, for k ⩽ 0, the range of Vα is small. This shows that there is little
difference between choosing balanced solution and unbalanced solution.

5.1.2 Under Lognormal Distribution

Assume that we have two random risks:
X1 ∼ Lognormal (m = 50, s = 50)
X2 ∼ Lognormal (m = 50, s = 50)
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Table 5.3 lists the optimal values under different k values. Based on the fifth
and sixth columns of Table 5.3, we can see that the balanced solutions are
optimal.

k a∗ b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 15.80 299.67 283.65 0.006 0.006 114.26 41.41 41.25
-0.5 15.80 296.69 297.46 0.005 0.005 114.35 41.39 41.35
0 15.80 300.95 300.48 0.005 0.005 114.41 41.42 41.39

0.5 15.80 298.55 295.76 0.005 0.005 114.38 41.41 41.37
0.8 15.80 286.46 285.69 0.006 0.006 114.24 41.33 41.31

Table 5.3: Results summary where symmetric risks are lognormal distribution
with mean 50 and standard deviation 50.

Figure 5.3 illustrates how the optimal solution approaches balanced solutions
for different k values. In this example, the risks have decreasing hazard rates.
Thus, iso-curves in the isoplane are quasiconvex. When the correlation has
a high negative value, the constraint curve bends slightly against the origin.
The constraint curve clearly bends away from the origin when the correlation
has a high positive value. With the increase of k, the constraint curve change
from slightly convex to the origin to straight line and then to concave to the
origin. As long as the constraint curves either bend away from the origin or the
curvatures of convex constraint curves are not as significant as that of iso-curves,
the optimal solution is always balanced.
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Figure 5.3: Iso-curves and constraint where symmetric risks are lognormal
distribution with mean 50 and standard deviation 50.

Now we turn to solve two risks as follow:
X1 ∼ Lognormal (m = 50, s = 25)
X2 ∼ Lognormal (m = 50, s = 25)
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Table 5.4 displays the optimal values under various k values. We can see that
all results point out that the optimal solutions are balanced.

k a∗ b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 28.32 145.41 147.55 0.006 0.006 110.615 27.00 26.98
-0.5 28.32 145.81 147.13 0.006 0.006 110.62 27.00 26.98
0 28.32 150.14 149.99 0.005 0.005 110.677 27.03 27.01

0.5 28.32 150.04 149.25 0.005 0.005 110.676 27.03 27.01
0.8 28.32 147.48 145.48 0.006 0.006 110.63 27.01 26.98

Table 5.4: Results summary where symmetric risks are lognormal distribution
with mean 50 and standard deviation 25.

From Figure 5.4, we can see the iso-curves are slightly quasiconvex. When
k is -0.8, -0.5 and 0, the constraint curves are approximately linear, and the
corresponding optimal values are close to balanced solutions. By the way,
when the correlation coefficient k is negative, the constraint curve gradually
approaches the origin as k goes 0, leading to an increase in the value of Vα.
Additionally, the constraint curves bend away from the origin for k is positive,
and When the correlation has a high positive value, the constraint curve clearly
bends. Therefore, balanced solutions are always optimal. A future novel finding
is that the constraint curve gradually shifts toward x = y = 0.01 while changing
the curvature. This implies that the maximum value of Vα is in the correlation
k between 0 and 0.5.
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Figure 5.4: Iso-curves and constraint where symmetric risks are lognormal
distribution with mean 50 and standard deviation 25.

Now we continue to reduce the standard deviations of risks, and calculate
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the optimal values of following risks:
X1 ∼ Lognormal (m = 50, s = 5)
X2 ∼ Lognormal (m = 50, s = 5)

Table 5.5 shows the results. According to the results, it is not difficult to find
that if k = -0.8, -0.5, 0, the optimal solution is at the boundary, and in other
cases, the optimal solutions could lie in the middle.

k a∗ b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 45.18 inf 62.32 0 0.012 102.8131 6.25 6.21
-0.5 45.18 inf 62.32 0 0.012 102.8135 6.25 6.21
0 45.18 62.53 inf 0.011 0 102.817 6.22 6.24

0.5 45.18 62.94 67.55 0.010 0.001 102.82 6.23 6.24
0.8 45.18 63.39 64.59 0.008 0.004 102.816 6.23 6.23

Table 5.5: Results summary where symmetric risks are lognormal distribution
with mean 50 and standard deviation 5.
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Figure 5.5: Iso-curves and constraint where symmetric risks are lognormal
distribution with mean 50 and standard deviation 5.

Figure 5.5 shows the expected reinsured risk iso-curves of the sets of B1
and B2. X1 and X2 have increasing hazard rates. According to Theorem 4.3.2,
the iso-curves are concave towards the origin. It is notable that the set of B1
and B2 satisfying the constraint is almost a straight line when k is equal to
-0.8, -0.5 and 0. This implies that the best solution can be determined at the
boundary. When k is equal to 0.5 and 0.8, the constraint curves are concave to
the origin. In addition, the constraint curve for k=0.5 and iso-curves almost
coincide. Therefore, all solutions are optimal when we keep the result to two
decimal places. Moreover, the constraint curve with k = 0.8 is bending more
away from the origin than the iso-curves. This will allow the best solution to
be determined in the middle. The result is that the optimal solution changes
from boundary to balanced as k goes from negative to positive.
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5.1.3 Under Truncated Normal Distribution

Let the symmetric risks be as follows:

X1 ∼ Truncnormal (m = 50, s = 50)
X2 ∼ Truncnormal (m = 50, s = 50)

The optimal results are shown in Table 5.6. We found that the optimal solutions
are close to balanced solutions when k = 0.5, 0.8. For the remaining cases,
the optimal solutions are at the boundary. To find out the reason, we draw
iso-curves and constraint curves in Figure 5.6.

k a∗ b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 10.03 inf 202.50 0 0.012 119.01 49.76 49.19
-0.5 10.03 inf 205.38 0 0.011 119.05 49.77 49.22
0 10.03 208.67 inf 0.010 0 119.09 49.32 49.72

0.5 10.03 234.15 232.96 0.005 0.005 119.11 49.55 49.50
0.8 10.03 238.20 221.10 0.006 0.006 119.04 49.57 49.42

Table 5.6: Results summary where symmetric risks are truncated normal
distribution with mean 50 and standard deviation 50.
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Figure 5.6: Iso-curves and constraint where symmetric risks are truncated
normal distribution with mean 50 and standard deviation 50.

The risks have increasing hazard rates. Thus, iso-curves in Figure 5.6 are
quasiconcave and slope downward from left to right. When the iso-curve is
higher, the expected reinsured risk level is lower. The sets of B1 and B2 are
almost straight lines when k takes -0.8, -0.5 and 0, so the corresponding optimal
solutions are unbalanced and located at the boundary. Although the slopes of
the constraint curve are almost the same, the closer the constraint curve is to
the origin with k going to 0, which causes increased Vα. On the other hand,
the sets of B1 and B2 are bending away from the origin when k is 0.5 and 0.8.
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However, the constraint curves have greater bend than iso-curves, implying that
the optimal solutions are balanced.

After reducing the standard deviation of Xi, we calculate the optimal values
of the following risks:

X1 ∼ Truncnormal (m = 50, s = 10)
X2 ∼ Truncnormal (m = 50, s = 10)

Table 5.7 shows the optimal solutions under different k. All solutions except
k=0.8 correspond to unbalanced boundary solutions. When k is 0.8, the
balanced solution is optimal.

k a∗ b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 40.33 inf 72.58 0 0.012 105.945 12.68 12.61
-0.5 40.33 inf 72.58 0 0.012 105.946 12.68 12.61
0 40.33 inf 72.84 0 0.011 105.951 12.68 12.62

0.5 40.33 73.25 inf 0.01 0 105.957 12.64 12.66
0.8 40.33 74.26 76.20 0.006 0.006 105.95 12.65 12.65

Table 5.7: Results summary where symmetric risks are truncated normal
distribution with mean 50 and standard deviation 10.
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Figure 5.7: Iso-curves and constraint where symmetric risks are truncated
normal distribution with mean 50 and standard deviation 10.

As shown in Figure 5.7, the iso-curves are clearly quasiconcave and descend
from left to right. When k is non-positive, B1 and B2 are approximately linearly
related. Therefore, their corresponding optimal solutions are at the boundary.
Other times, the constraints bend away from the origin. When k is 0.5, the
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constraint curve and the iso-curves nearly coincide. Thus, the difference between
choosing a balanced solution and an unbalanced solution is negligible. When k
is 0.8, the constraint curve has a greater curvature than iso-curves. In other
words, the optimal solution occurs in the middle.

In the case of truncated normal distributions, the hazard rates always
increase. By Theorem 4.3.2, the iso-curves are always quasiconcave. The
curvature of the iso-curves increase with the decrease of standard deviation.
Furthermore, as the k value increases, the optimal solution moves from boundary
to balanced.

On the other hand, both examples above show that the constraint curve
gradually shifts to x = y = 0.01 as k increases when the correlation is slightly
greater than 0. Thus, the value of the objective function with a small negative
correlation still becomes larger then the independent case.

5.1.4 Under Gamma Distribution

Assume we have the following risks:

X1 ∼ Gamma (m = 50, s = 100)
X2 ∼ Gamma (m = 50, s = 100)

The optimal results are presented in Table 5.8. In this case, we can see that the
value of a∗ is very small. Most of the results indicate that the optimal solutions
are close to balanced solutions, except for the case where k = -0.8.

k a∗ b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 0.10 inf 471.81 0 0.011 117.74 59.85 57.68
-0.5 0.10 589.93 608.57 0.005 0.005 117.83 58.78 58.84
0 0.10 596.73 602.31 0.005 0.005 117.89 58.83 58.85

0.5 0.10 588.01 592.96 0.005 0.005 117.78 58.78 58.80
0.8 0.10 576.42 562.96 0.006 0.006 117.51 58.71 58.60

Table 5.8: Results summary where symmetric risks are gamma distribution
with mean 50 and standard deviation 100.

An illustration of how the optimal solution approaches balanced or
unbalanced solutions for different k values is provided in Figure 5.8. In this
example, the symmetric risks have decreasing hazard rates. Then the iso-curves
are quasiconvex. However, increasing the correlation coefficient causes the
constraint curve to change from slightly convex to the origin to concave to the
origin. In particular, the constraint curve of k = -0.8 bends more against the
origin than iso-curves which is why the optimal solution is at the boundary.
The constraint for other k values is either close to linear or concave towards
the origin. Thus the corresponding optimal solutions are balanced.
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Figure 5.8: Iso-curves and constraint where symmetric risks are gamma
distribution with mean 50 and standard deviation 100.

Now we decrease the standard deviation and assume the following risks:

X1 ∼ Gamma (m = 50, s = 45)
X2 ∼ Gamma (m = 50, s = 45)

The optimal results are presented in Table 5.9. We can determine that the
balanced solution is optimal for any k.

k a∗ b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 11.85 226.20 231.60 0.006 0.006 116.85 46.59 46.56
-0.5 11.85 239.29 225.33 0.006 0.006 116.90 46.67 46.52
0 11.85 208.95 325.87 0.010 0.0006 116.96 46.43 46.83

0.5 11.85 229.34 239.41 0.006 0.006 116.94 46.61 46.64
0.8 11.85 237.94 221.32 0.006 0.006 116.87 46.66 46.52

Table 5.9: Results summary where symmetric risks are gamma distribution
with mean 50 and standard deviation 45.

An illustration of how the optimal solution approaches balanced or
unbalanced solutions for different k values is provided in Figure 5.9. Since the
risks have increasing hazard rates, the iso-curves are qusiconcave. Moreover,
the iso-curves are approximately linear. The constrain curves, which bend away
from the origin, correspond to the optimal balanced solution. When k is 0.5
and 0.8, there will be one optimal solution in the middle of the constraint curve.
The constraint curve for k=-0.8, -0.5 and 0 tend to linearity. There is a very
slight gap between all the solutions. When we keep 2 decimal places for all
solutions, the errors are negligible. This means that all solutions are optimal,
with k being non-positive.

Moreover, when k is slightly greater than 0 the constraint curve bends away
from the origin while gradually moving to the position of x = y = 0.01. This
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Figure 5.9: Iso-curves and constraint where symmetric risks are gamma
distribution with mean 50 and standard deviation 45.

leads to the fact that the Vα value corresponding to the independent risks is
not the maximum.

Now we continue to reduce the standard deviation s and calculate the
optimal values of following risks:

X1 ∼ Gamma (m = 50, s = 10)
X2 ∼ Gamma (m = 50, s = 10)

According to the results in Table 5.10, it is not difficult to find that if k= -0.8,
-0.5, 0, the optimal solution is then at the boundary. When k is increasing from
0 to 1, the optimal value shifts from the boundary to the balanced solution.

k a∗ b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 40.35 inf 75.24 0 0.012 105.51 12.45 12.37
-0.5 40.35 inf 75.24 0 0.012 105.51 12.45 12.37
0 40.35 75.72 inf 0.010 0 105.523 12.39 12.44

0.5 40.35 78.67 79.79 0.006 0.006 105.526 12.42 12.41
0.8 40.35 77.50 80.04 0.006 0.006 105.518 12.41 12.42

Table 5.10: Results summary where symmetric risks are gamma distribution
with mean 50 and standard deviation 10.

It should be noted that the iso-curves are quasiconcave in Figure 5.10. When
k is -0.8, -0.5, 0, the constraints approach the linear functions, which lead to
the boundary optimal solutions, and increasing k will not reduce the optimal
Vα value. When k is positive, the constraint curve becomes concave to the
origin. Furthermore, the larger the positive correlation is, the more concave
the constraint curve is. When k is 0.5, the constraint curve and the iso-curves
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Figure 5.10: Iso-curves and constraint where symmetric risks are gamma
distribution with mean 50 and standard deviation 10.

basically overlap but the middle of the constraint curve is slightly bending more
away than the iso-curves. Thus, balanced solutions could be optimal. However,
the constraint curve for k=0.8 has a more significant bend than iso-curves. In
other words, when k is equal to 0.8, it is best to choose a solution in the middle.

As correlation increases to 0, the constraint curve gradually moves toward
the origin. More specifically, when k is slightly greater than 0, the constraint
curve bends from the origin while continuing to move closer to the origin until
the curve stops moving at the position x = y = 0.01. Thus, the optimal value
Vα has a process of increasing and then decreasing in the interval from 0 to 0.5
for k. Alternately, it could simply mean that the risks with a small positive
correlation correspond to the largest value of Vα.

5.2 Asymmetric Risks

Since X1 and X2 are asymmetric risks, the optimal values a∗
1 and a∗

2 are not
equal and can be calculated from

a∗
1 = S−1

X1

(
1

1 + θ

)
a∗

2 = S−1
X2

(
1

1 + θ

)
5.2.1 From Same Type of Distributions

To ensure the asymmetry of risks, we will change the expected value, standard
deviation and both of them for each of the risks X2 from the four distributions
to observe the optimal reinsurance contract.
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5.2. Asymmetric Risks

5.2.1.1 Under Pareto Distribution

First we check the following risks:

X1 ∼ Pareto (m = 50, s = 50)
X2 ∼ Pareto (m = 60, s = 50)

The optimal results are given in Table 5.11, which shows that all optimal
solutions are unbalanced solutions. The risk with a higher expected value is
that with higher a∗ and premium. Moreover, the value of πX2 , and in particular,
a∗

2, has increased from Table 5.1 following the increase of expectation to X2.
This has resulted in an increase in the premium and retained risk compared to
Table 5.1. Therefore, the optimal Vα values are larger than those in Table 5.1.

k a∗
1 a∗

2 b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 31.59 39.28 264.27 250.23 0.0049 0.0056 116.03 21.23 23.74
-0.5 31.59 39.28 263.49 258.81 0.0049 0.0051 116.07 21.22 23.80
0 31.59 39.28 269.40 255.57 0.0047 0.0053 116.10 21.26 23.79

0.5 31.59 39.28 260.40 252.88 0.0051 0.0055 116.03 21.20 23.77
0.8 31.59 39.28 248.15 239.02 0.0057 0.0063 115.85 21.12 23.64

Table 5.11: Results summary where X1 is Pareto distribution with mean 50
and standard deviation 50, while X2 is Pareto distribution with mean 60 and
standard deviation 50.
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Figure 5.11: Iso-curves and constraint where X1 is Pareto distribution with
mean 50 and standard deviation 50, while X2 is Pareto distribution with mean
60 and standard deviation 50.

Figure 5.11 shows iso-curves and the constraint curves for variant value
k. The Pareto distributions always have decreasing hazard rates. Thus, the
iso-curves are quasiconvex. With the increase of k, the constraint curve changes
from slightly convex towards the origin to concave to the origin. Although the
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5.2. Asymmetric Risks

risks are asymmetric, the expected value change keeps the iso-curves appear to
be approximately symmetric around line y = x, making the optimal solution
unbalanced and laying close to the middle. Additionally, as k increases, the
optimal solution Vα first increases and then decreases.

Now we decrease the standard deviation of X2, and calculate the optimal
values of following risks:

X1 ∼ Pareto (m = 50, s = 50)
X2 ∼ Pareto (m = 50, s = 40)

k a∗
1 a∗

2 b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 31.59 33.01 235.70 286.06 0.007 0.004 105.46 21.04 19.94
-0.5 31.59 33.01 240.45 240.45 0.006 0.004 105.50 21.07 19.96
0 31.59 33.01 241.38 290.88 0.006 0.004 105.53 21.08 19.98

0.5 31.59 33.01 244.88 270.15 0.006 0.005 105.46 21.10 19.90
0.8 31.59 33.01 223.62 270.97 0.007 0.005 105.30 20.93 19.90

Table 5.12: Results summary where X1 is Pareto distribution with mean 50
and standard deviation 50, while X2 is Pareto distribution with mean 50 and
standard deviation 40.
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Figure 5.12: Iso-curves and constraint where X1 is Pareto distribution with
mean 50 and standard deviation 50, while X2 is Pareto distribution with mean
50 and standard deviation 40.

The results are presented in Table 5.12. We conclude that balanced solutions
are no longer optimal. The risk with the lower standard deviation is the one
with lower premiums and higher a∗ and b∗ values. In addition, the retained risk
term has been raised, and the premium term has been decreased compared to
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5.2. Asymmetric Risks

Table 5.1. The decreasing amount is larger than the increasing amount which
leads to the value of Vα being slightly less than that in Table 5.1.

Although iso-curves are quasiconvex and constraint curves change from
convex to the origin to concave to the origin with increasing k, we can find
that the iso-curves are asymmetric around line y = x in Figure 5.12. Thus,
no matter what value k takes, the optimal solution is always the unbalanced
solution. When k ⩽ 0, the increase of k will cause the constraint curve to move
to the origin. Thus the optimal solution Vα gradually increases. When k > 0,
the rise of k will make the constraint curve more concave to the origin, which
leads to the reduction of Vα.

Now we increase the expectation and decrease the standard deviation of X2,
and calculate the optimal values of following risks:

X1 ∼ Pareto (m = 50, s = 50)
X2 ∼ Pareto (m = 60, s = 40)

k a∗
1 a∗

2 b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 31.59 41.19 235.70 285.55 0.007 0.004 115.89 21.04 22.12
-0.5 31.59 41.19 240.29 289.54 0.006 0.004 115.93 21.07 22.14
0 31.59 41.19 241.34 290.89 0.006 0.004 115.96 21.08 22.16

0.5 31.59 41.19 244.88 270.15 0.006 0.005 115.90 21.10 22.07
0.8 31.59 41.19 223.70 270.81 0.007 0.005 115.72 20.93 22.07

Table 5.13: Results summary where X1 is Pareto distribution with mean 50
and standard deviation 50, while X2 is Pareto distribution with mean 60 and
standard deviation 40.

The results are presented in Table 5.13. We conclude that all the optimal
solutions are unbalanced and lie between the middle and the boundary. Changes
in expected value and standard deviation act on the retained risk term. Moreover,
the results of b∗ are very similar to what we saw in Table 5.12. As a result,
the standard deviation appears to be the most significant determinant of the
outcomes of a∗ and b∗. Thus, the expected value dominates the value of a∗.
Because of the increase of a∗

2 and πX2 , the optimal solution Vα is significantly
higher than its value in Table 5.1.

Figure 5.13 illustrates that, while iso-curves are convex and constraint curves
change from a bend against the origin to a bend away from the origin as k
increases, the range of iso-curves on the y-axis is greater than that on the
x-axis which has the almost same iso-curves as changing standard deviation.
So, standard deviation plays a leading role in changing the range of iso-curves.
Therefore, there are no longer optimal balanced solutions, regardless of the
value of k.
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Figure 5.13: Iso-curves and constraint where X1 is Pareto distribution with
mean 50 and standard deviation 50, while X2 is Pareto distribution with mean
60 and standard deviation 40.

5.2.1.2 Under Lognormal Distribution

Assume that we have two random risks:

X1 ∼ Lognormal (m = 50, s = 50)
X2 ∼ Lognormal (m = 60, s = 50)

k a∗
1 a∗

2 b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 15.80 22.83 257.70 348.67 0.009 0.003 125.24 41.08 45.56
-0.5 15.80 22.83 268.83 339.56 0.007 0.003 125.32 41.18 45.54
0 15.80 22.83 268.43 357.87 0.007 0.003 125.40 41.18 45.62

0.5 15.80 22.83 279.03 320.82 0.007 0.004 125.37 41.27 45.49
0.8 15.80 22.83 266.94 312.34 0.008 0.004 125.23 41.16 45.45

Table 5.14: Results summary where X1 is lognormal distribution with mean 50
and standard deviation 50, while X2 is lognormal distribution with mean 60
and standard deviation 50.

Table 5.14 lists the optimal values under different k values. We can find that
the unbalanced solutions are optimal. The higher the expected value, the higher
the a∗, b∗ values and premium π. This results in a significant improvement in
Vα compared to Table 5.3.

Two risks X1 and X2 have decreasing hazard rates. Thus, iso-curves are
quasiconvex as shown in Figure 5.14. The constraint curves are change from
convex towards the origin to concave towards the origin for increasing k.
However, the optimal solution is the point farthest from the origin where
constraint curve and iso-curves intersect. It is evident that the optimal solution
is between the middle and the boundary. Furthermore, with the increase of the
k value, the changing trend of Vα increases first and then decreases.
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Figure 5.14: Iso-curves and constraint where X1 is lognormal distribution with
mean 50 and standard deviation 50, while X2 is lognormal distribution with
mean 60 and standard deviation 50.

Now we turn to solve two risks as follow:

X1 ∼ Lognormal (m = 50, s = 50)
X2 ∼ Lognormal (m = 50, s = 40)

k a∗
1 a∗

2 b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 15.80 19.77 242.88 470.32 0.010 0.001 113.73 40.91 37.31
-0.5 15.80 19.77 245.77 508.95 0.010 0.001 113.80 40.95 37.33
0 15.80 19.77 249.21 514.82 0.010 0.001 113.86 40.99 37.35

0.5 15.80 19.77 255.22 412.42 0.009 0.002 113.85 41.05 37.32
0.8 15.80 19.77 262.71 323.08 0.008 0.004 113.75 41.13 37.25

Table 5.15: Results summary where X1 is lognormal distribution with mean 50
and standard deviation 50, while X2 is lognormal distribution with mean 50
and standard deviation 40.

Table 5.15 displays the optimal values under various k values. We can see
that most results point out that the optimal solutions are close to the boundary.
Since the standard deviation of X2 has been decreased to 40, the value of πX2

is less than πX1 and a∗
2, b∗

2 are larger than a∗
1, b∗

1 in Table 5.15. Compared to
Table 5.3, the retained risk has been increased, and the premium has decreased,
resulting in a slightly smaller value of Vα. .

Figure 5.15 indicates that the iso-curves are quasiconvex, and constraint
curves change from approximately linear to concave to the origin. If k is not
positive, the constraint curves are approximately linear, and the curve gradually
moves closer to the origin with increasing k. If k is positive, the constraint
curves become more concave to the origin with increasing k. Moreover, when
k is slightly greater than 0, the constraint curve changes the curvature while
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0.000 0.002 0.004 0.006 0.008 0.010 0.012
B1

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

B2
Iso-curves

g = 66.0
g = 65.85
g = 65.71
g = 65.57
g = 65.44
g = 65.32
g = 65.19
g = 65.07

(a) Iso-curves

0.000 0.002 0.004 0.006 0.008 0.010
B1

0.000

0.002

0.004

0.006

0.008

0.010

0.012

B2

Constraint
Constraint

(b) k = −0.8

0.000 0.002 0.004 0.006 0.008 0.010
B1

0.000

0.002

0.004

0.006

0.008

0.010

B2

Constraint
Constraint

(c) k = −0.5

0.000 0.002 0.004 0.006 0.008 0.010
B1

0.000

0.002

0.004

0.006

0.008

0.010

B2

Constraint
Constraint

(d) k = 0

0.000 0.002 0.004 0.006 0.008 0.010
B1

0.000

0.002

0.004

0.006

0.008

0.010

B2

Constraint
Constraint

(e) k = 0.5

0.000 0.002 0.004 0.006 0.008 0.010
B1

0.000

0.002

0.004

0.006

0.008

0.010

B2

Constraint
Constraint

(f) k = 0.8

Figure 5.15: Iso-curves and constraint where X1 is lognormal distribution with
mean 50 and standard deviation 50, while X2 is lognormal distribution with
mean 50 and standard deviation 40.

gradually moving towards x = y = 0.01. Thus, as the k value goes from negative
to positive, the changing trend of Vα first increases and then decreases.

Now we change the mean and the standard deviation of X2, and calculate
the optimal values of following risks:

X1 ∼ Lognormal (m = 50, s = 50)
X2 ∼ Lognormal (m = 60, s = 40)

Table 5.16 shows the results. According to the results, it is not difficult to
find that the optimal solutions are unbalanced. Although the premium πX2 is
smaller than πX1 and b∗

2 value is larger than b∗
1 , we obtain the result is more

similar to Table 5.15 than Table 5.14. The standard deviation seems to be
the more important factor in this regard. However, the value of Vα is much
larger than that in Table 5.15, mainly due to the difference of a∗

2 value. Thus,
a change in the expected value and standard deviation acts on the value of a∗,
which affects the optimal Vα value.

It can be seen from Figure 5.16 that the iso-curves have a greater range on
the y-axis than on the x-axis, unlike constraint curves which always have the
symmetric ranges. If we put the constraint curve and iso-curves in the same
plot, it is not difficult to find that the constraint curves are more flat than the
iso-curves for any k. Thus, the point where the constraint curve touches an
iso-curve will typically be close to the right boundary.

Note that the lognormal risk with the higher standard deviation has a
heavier tail. The heavier tail acts on a larger premium, which means that the
corresponding reinsurance contract is more expensive.
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k a∗
1 a∗

2 b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 15.80 27.77 235.16 457.49 0.011 0.0001 124.43 40.80 40.06
-0.5 15.80 27.77 240.30 468.53 0.011 0.0001 124.50 40.87 40.03
0 15.80 27.77 244.79 476.09 0.010 0.0001 124.560 40.93 40.06

0.5 15.80 27.77 248.12 359.54 0.010 0.0006 124.562 40.97 40.03
0.8 15.80 27.77 255.37 267.04 0.009 0.003 124.49 41.05 39.87

Table 5.16: Results summary where X1 is lognormal distribution with mean 50
and standard deviation 50, while X2 is lognormal distribution with mean 60
and standard deviation 40.
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Figure 5.16: Iso-curves and constraint where X1 is lognormal distribution with
mean 50 and standard deviation 50, while X2 is lognormal distribution with
mean 60 and standard deviation 40.

5.2.1.3 Under Truncated Normal Distribution

Let the asymmetric risks be as follows:

X1 ∼ Truncnormal (m = 50, s = 50)
X2 ∼ Truncnormal (m = 60, s = 50)

The optimal results are shown in Table 5.17. It is found that the optimal
solutions are unbalanced. All of them lie at the boundary except k=0.8.
Moreover, a risk with a higher expected value is the one with higher a∗, b∗

values, as well as higher premiums. In comparison with Table 5.6, this results
in a significant improvement in Vα.

According to Figure 5.17, iso-curves are quasiconcave since the hazard rates
of truncated normal distributions are always increasing. The constraint curves
are approximately linearly and move to the origin gradually when k is equal
to -0.8, -0.5 and 0 in that order. However, constraint curves are concave to
the origin with k being positive. The optimal solution is where the constraint
curve intersects the farthest iso-curve. Thus, the optimal solution Vα increases
at first but decreases after that by increasing k.
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k a∗
1 a∗

2 b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 10.03 13.62 205.87 292.22 0.011 0.001 129.91 49.29 56.98
-0.5 10.03 13.62 205.87 322.98 0.011 0.0004 129.93 49.29 57.01
0 10.03 13.62 208.44 516.24 0.010 5E-07 130.00 49.32 57.03

0.5 10.03 13.62 209.39 inf 0.010 0 130.01 49.33 57.04
0.8 10.03 13.62 218.99 242.02 0.008 0.004 129.97 49.42 56.89

Table 5.17: Results summary where X1 is truncated normal distribution with
mean 50 and standard deviation 50, while X2 is truncated normal distribution
with mean 60 and standard deviation 50.
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Figure 5.17: Iso-curves and constraint where X1 is truncated normal distribution
with mean 50 and standard deviation 50, while X2 is truncated normal
distribution with mean 60 and standard deviation 50.

After reducing the standard deviation of X2, we calculate the optimal values
of the following risks:

X1 ∼ Truncnormal (m = 50, s = 50)
X2 ∼ Truncnormal (m = 50, s = 40)

k a∗
1 a∗

2 b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 10.03 12.03 205.87 292.22 0.011 0.001 118.05 49.27 46.73
-0.5 10.03 12.03 205.87 327.61 0.011 0.0004 118.07 49.29 46.72
0 10.03 12.03 208.40 515.43 0.010 5E-07 118.11 49.31 46.73

0.5 10.03 12.03 209.53 667.55 0.010 1E-09 118.12 49.31 46.74
0.8 10.03 12.03 213.62 261.01 0.009 0.002 118.10 49.35 46.74

Table 5.18: Results summary where X1 is truncated normal distribution with
mean 50 and standard deviation 50, while X2 is truncated normal distribution
with mean 50 and standard deviation 40.
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Table 5.18 shows that the optimal solutions under different k are close to the
right boundary. The risk with the lower standard deviation is the one with the
higher a∗ and b∗ value, it is still the risk with the lower premium. On the other
hand, when the standard deviation of X2 is decreased to 40, it can be seen that
the value of a∗

2 has increased and π2 has decreased from Table 5.6. This has
resulted in a reduction in the premium term, and a substantial increase in the
retained risk term. Consequently, there has been little change from Table 5.6
to the optimal solution Vα.
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Figure 5.18: Iso-curves and constraint where X1 is truncated normal distribution
with mean 50 and standard deviation 50, while X2 is truncated normal
distribution with mean 50 and standard deviation 40.

When the standard deviation is changed, the range of the x-axis of the
iso-curve is much smaller than the y-axis. See Figure 5.18 for details. When k
is -0.8, -0.5 and 0, the constraint curves are approximately linear. However, the
constraint curve gradually becomes more concave to the origin for increasing k.
Together, the present findings confirm that the optimal solution is unique and
unbalanced.

After reducing the standard deviation and increasing the expectation of X2,
we calculate the optimal values of the following risks:

X1 ∼ Truncnormal (m = 50, s = 50)
X2 ∼ Truncnormal (m = 60, s = 40)

Table 5.19 shows that the optimal solutions under different k are close to the
boundary. a∗

2 is much larger than the previous two examples, which means that
both the expected value and standard deviation act on the retained risk term.
We also get the higher value of πX2 which is closer to the value of decreasing
the standard deviation. Therefore, standard deviation plays a leading role in
the results of the premium term.
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k a∗
1 a∗

2 b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 10.03 19.43 205.87 292.22 0.011 0.001 129.25 49.29 50.52
-0.5 10.03 19.43 205.87 292.22 0.011 0.001 129.26 49.29 50.53
0 10.03 19.43 208.12 300.24 0.010 1E-06 129.28 49.32 50.55

0.5 10.03 19.43 209.38 564.72 0.010 8E-08 129.329 49.33 50.55
0.8 10.03 19.43 210.09 299.92 0.010 0.001 129.327 49.33 50.55

Table 5.19: Results summary where X1 is truncated normal distribution with
mean 50 and standard deviation 50, while X2 is truncated normal distribution
with mean 60 and standard deviation 40.
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Figure 5.19: Iso-curves and constraint where X1 is truncated normal distribution
with mean 50 and standard deviation 50, while X2 is truncated normal
distribution with mean 60 and standard deviation 40.

When we change the mean and standard deviation, Figure 5.19 indicates
that the y-axis of the iso-curve has a larger range than the x-axis. Although the
constraint curves change from linear to concave to the origin with the increase
of k value, the optimal solutions are always unbalanced.

The asymmetric risks from the truncated normal distributions show that
the constraint curve gradually shifts toward x = y = 0.01 while changing the
curvature when k is slightly greater than 0. Consequently, when the correlation
is positive, Vα increases and then decreases with increasing k.

5.2.1.4 Under Gamma Distribution

Assume we have the following risks:

X1 ∼ Gamma (m = 50, s = 45)
X2 ∼ Gamma (m = 60, s = 45)

The optimal results are presented in Table 5.20. It is not difficult to find that
the insurance layer contracts are optimal. From Table 5.20, where the expected
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k a∗
1 a∗

2 b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 11.85 20.07 203.45 303.33 0.011 0.001 127.68 46.36 49.41
-0.5 11.85 20.07 203.45 333.61 0.011 0.0005 127.72 46.36 49.45
0 11.85 20.07 206.18 613.79 0.010 6E-07 127.78 46.39 49.47

0.5 11.85 20.07 214.74 273.32 0.008 0.002 127.79 46.48 49.40
0.8 11.85 20.07 219.08 241.52 0.0076 0.004 127.73 46.52 49.30

Table 5.20: Results summary where X1 is gamma distribution with mean 50
and standard deviation 45, while X2 is gamma distribution with mean 60 and
standard deviation 45.

of X2 is increased to 60, it can be seen that the value of a∗
2 and specifically b∗

2
has increased from Table 5.9. Moreover, the risk with a higher expected value
is the one with a higher premium. In the end, the optimal Vα has increased
greatly from Table 5.9.
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Figure 5.20: Iso-curves and constraint where X1 is gamma distribution with
mean 50 and standard deviation 45, while X2 is gamma distribution with mean
60 and standard deviation 45.

Figure 5.20 shows that iso-curves are slightly quasiconcave since both risks
have increasing hazard rates, whereas constraint curve changes from linear
to concave to the origin with increasing k. when the correlation coefficient
goes from negative to positive, the optimal value Vα first increases and then
decreases. However, we also find that the range of constraint curves are between
0 to around 0.01, but the iso-curves have a longer range on the y-axis. That
means if we draw the curves in the same plot, the point where the constraint
curve touches an iso-curve will typically be unbalanced and skewed to the right.

Now we continue to reduce the standard deviation and calculate the optimal
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values of following risks:

X1 ∼ Gamma (m = 50, s = 45)
X2 ∼ Gamma (m = 50, s = 35)

k a∗
1 a∗

2 b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 11.85 18.54 203.45 303.33 0.011 0.001 115.80 46.36 39.08
-0.5 11.85 18.54 203.45 349.83 0.011 0.0003 115.83 46.36 39.09
0 11.85 18.54 206.37 619.46 0.010 5E-07 115.89 46.40 39.11

0.5 11.85 18.54 207.32 inf 0.010 0 115.90 46.40 39.11
0.8 11.85 18.54 212.72 261.32 0.009 0.003 115.88 46.46 39.11

Table 5.21: Results summary where X1 is gamma distribution with mean 50
and standard deviation 45, while X2 is gamma distribution with mean 50 and
standard deviation 35.
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Figure 5.21: Iso-curves and constraint where X1 is gamma distribution with
mean 50 and standard deviation 45, while X2 is gamma distribution with mean
50 and standard deviation 35.

According to Table 5.21, it is not difficult to find that a balanced solution is
no longer optimal. A risk with lower standard deviation can contribute to higher
a∗, b∗ and lower premium. As a result, the difference between the optimal
solution Vα and that in Table 5.9 is very small.

Due to the increasing hazard rates of two risks, the iso-curves are
quasiconcave. In Figure 5.21, as the standard deviation is decreased, the
range of iso-curves on the y-axis is much higher than that of the constraint
curves forces the optimal solutions are unique and much closer to the x-axis
than the y-axis. Furthermore, the value of Vα is related to the correlation
coefficient. It is pointed out that the optimal solution first increases and then
decreases with the increase of k.
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Now we continue to change the expectation and the standard deviation of
X2, then calculate the optimal values of the following risks:

X1 ∼ Gamma (m = 50, s = 45)
X2 ∼ Gamma (m = 60, s = 35)

k a∗
1 a∗

2 b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 11.85 27.72 203.45 303.33 0.011 0.001 126.32 46.36 40.41
-0.5 11.85 27.72 203.45 318.68 0.011 0.001 126.33 46.36 40.42
0 11.85 27.72 206.15 400.45 0.010 6E-07 126.40 46.39 40.44

0.5 11.85 27.72 207.32 697.57 0.010 7E-08 126.41 46.40 40.44
0.8 11.85 27.72 209.88 281.17 0.009 0.002 126.40 46.43 40.45

Table 5.22: Results summary where X1 is gamma distribution with mean 50
and standard deviation 45, while X2 is gamma distribution with mean 60 and
standard deviation 35.
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Figure 5.22: Iso-curves and constraint where X1 is gamma distribution with
mean 50 and standard deviation 45, while X2 is gamma distribution with mean
60 and standard deviation 35.

According to the results, it is not difficult to find that the optimal solutions
are unbalanced. Most of them are at the boundary except that k is 0.8. Table
5.22 shows that it is cheaper to reinsurance X2 than X1, which points out the
same result as only changing the standard deviation of X2. As a consequence,
the standard deviation dominates the premium term. Nevertheless, Vα has
a much larger value than in Table 5.21, primarily due to the larger a∗

2 value.
From Table 5.20 and Table 5.21, we know that the risk with a higher expected
value or lower standard deviation has the higher a∗ values. In this case, we
both increase the expected value and decrease the standard deviation for X2,
which results in the higher a∗

2 values.
The iso-curves are quasiconcave as two risks have increasing hazard rates.

Observe in Figure 5.22 that the range of iso-curves on the y-axis is much broader
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than that of the constraint curves resulting in corresponding iso-curves being
much steeper than the constraint curves for any k. Thus, the optimal solutions
are closer to the extreme solution.

The above three examples all point out that if k is non-positive, the constraint
curve is approximately linear, and the less negative the value of k, the constraint
curve closer to the origin. On the other hand, constraint curves are concave to
the origin for k is positive. When k is slightly greater than 0, the constraint
curve changes the curvature while gradually moving towards x = y = 0.01.
Therefore, the optimal solution decreases initially, and then increases when k
changes from negative to positive.

5.2.2 From Different Types of Distributions

Assume we have following risks:

X1 ∼ Pareto (m = 50, s = 50)
X2 ∼ Lognormal (m = 50, s = 50)

k a∗
1 a∗

2 b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 31.59 15.80 212.93 331.21 0.008 0.003 109.84 20.85 41.52
-0.5 31.59 15.80 226.15 315.85 0.007 0.003 109.91 20.95 41.45
0 31.59 15.80 227.20 324.46 0.007 0.003 109.96 20.97 41.52

0.5 31.59 15.80 230.45 297.84 0.007 0.004 109.92 20.99 41.38
0.8 31.59 15.80 220.68 277.16 0.008 0.004 109.76 20.91 41.23

Table 5.23: Results summary where X1 is Pareto distribution with mean 50
and standard deviation 50, while X2 is lognormal distribution with mean 50
and standard deviation 50.

The results are presented in Table 5.23. Since two risks have different
distributions, we conclude that all the optimal solutions are unbalanced.
Although X1 and X2 are from the light tail distributions, X2 has a lighter
tail and the difference between the a∗

2 and b∗
2 is significantly larger than the

difference between the a∗
1 and b∗

1, which means the reinsurance contract for X2
covers more risk. Moreover, the premium for X2 is higher.

Figure 5.23 shows iso-curves and constraint curves for different correlation
k. The risks X1 and X2 have decreasing hazard rates. Thus the iso-curves are
quasiconvex. The constraints curve bends slightly against the origin when k is
less than 0 and bends away from the origin when k is larger than 0. Nevertheless,
we may observe by looking at the x and y-axis that a negative value of k results
in the constraint curve approaching the origin as k increases. Overall, increasing
k increases the optimal value Vα at first and decreases after that.

Now we turn to solve two risks as follow:

X1 ∼ Gamma (m = 50, s = 10)
X2 ∼ Truncnormal (m = 50, s = 10)
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Figure 5.23: Iso-curves and constraint where X1 is Pareto distribution with
mean 50 and standard deviation 50, while X2 is lognormal distribution with
mean 50 and standard deviation 50.

Table 5.24 displays the optimal values under various k values. We can see that
all results indicate that the optimal solutions are unbalanced and close to the
boundary. Although X1 is from the heavier tail distributions than X2 and the
values of a∗

1 and a∗
2 are very close, b∗

2 is significantly larger than b∗
1 which means

that the reinsurance contract for X2 allows more risk to be transferred from
the insurer to the reinsurer. Since the difference between premiums is tiny, the
risk X2 gets a better reinsurance coverage than the risk X1.

k a∗
1 a∗

2 b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 40.35 40.33 75.29 86.72 0.012 0.0001 105.723 12.38 12.67
-0.5 40.35 40.33 75.29 86.72 0.012 0.0001 105.723 12.38 12.67
0 40.35 40.33 75.71 86.96 0.011 1E-04 105.729 12.38 12.67

0.5 40.35 40.33 76.17 86.27 0.010 1E-04 105.734 12.39 12.67
0.8 40.35 40.33 76.70 78.02 0.009 0.003 105.732 12.39 12.66

Table 5.24: Results summary where X1 is gamma distribution with mean 50
and standard deviation 10, while X2 is truncated normal distribution with
mean 50 and standard deviation 10.

There are increasing hazard rates associated with risks X1 and X2. Thus,
it follows from Theorem 4.3.2 that the iso-curves are quasiconcave. According
to Figure 5.24, it is not difficult to determine that when k is non-positive,
the constraint curves are approximately linear. In particular, the constraint
curve moves toward the origin as k gradually increases to 0. In other cases,
the constraint curve is bending away from the origin. It is worth noting that
the constraint curve gradually shifts toward x = y = 0.01 while changing
the curvature. Thus when the correlation is positive, Vα increases and then
decreases with increasing k. Due to the fact that the two risks derive from
different distributions, the optimal solution is unique and unbalanced.
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Figure 5.24: Iso-curves and constraint where X1 is gamma distribution with
mean 50 and standard deviation 10, while X2 is truncated normal distribution
with mean 50 and standard deviation 10.

It is also essential to observe that the range of the y-axis representing Vα

in this case is negligible. The optimal value for varied k is quite small. Thus,
there is no significant amount to gain from choosing an unbalanced solution
over a balanced solution for all correlation k.

In the final example, we let the asymmetric risks be as follows:

X1 ∼ Lognormal (m = 50, s = 40)
X2 ∼ Truncnormal (m = 50, s = 20)

The optimal results are shown in Table 5.25. It is found that the optimal
solution lies at the right boundary. In this case, the reinsurance contract for
X2 covers more risk and is cheaper to buy.

k a∗
1 a∗

2 b∗
1 b∗

2 B∗
1 B∗

2 min Vα πX1 πX2

-0.8 19.77 30.20 195.57 342.27 0.011 0.001 112.278 36.62 25.70
-0.5 19.77 30.20 195.57 342.27 0.011 0.001 112.270 36.60 25.70
0 19.77 30.20 199.10 1214.03 0.010 5E-07 112.327 36.65 25.70

0.5 19.77 30.20 200.58 inf 0.010 0 112.342 36.66 25.71
0.8 19.77 30.20 200.58 inf 0.010 0 112.341 36.66 25.71

Table 5.25: Results summary where X1 is lognormal distribution with mean
50 and standard deviation 40, while X2 is truncated normal distribution with
mean 50 and standard deviation 20.

Note that the risk X1 has a decreasing hazard rate and the risk X2 has
an increasing hazard rate. The iso-curves in Figure 5.25 indicate that the
sublevel sets are neither convex nor concave for this particular combination
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of risks. Although constraint curves vary from linear to concave to the origin
with increasing k, we can find that the range of iso-curves is significantly
larger than that of constraint curves from the y-axis in Figure 5.25. Still, it is
straightforward to see that no matter what value k takes, the optimal solution
is a boundary solution in this case.
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Figure 5.25: Iso-curves and constraint where X1 is lognormal distribution with
mean 50 and standard deviation 40, while X2 is truncated normal distribution
with mean 50 and standard deviation 20.

Obviously, when k is slightly greater than 0, the constraint curve bends
from the origin while gradually moving towards x = y = 0.01. This leads to
the Vα value corresponding to the independent risks is not the maximum value.
Consequently, when the correlation is positive, Vα increases and then decreases
with increasing k.

5.3 Summary

This chapter presents the optimal reinsurance contract by constructing
dependent bivariate risks from combinations of four different distributions.
In the symmetric risks situation, iso-curves and constraint curves are symmetric
around the line y = x. Their concavity and convexity will affect the position
and size of the optimal solution. Due to symmetry, when the optimal solution
is at the boundary, there will be two optimal unbalanced solutions. When the
optimal solution is in the middle, there is only one optimal balanced solution.

The quasiconvex iso-curves where risks have decreasing hazard rates
correspond to Pareto distributions, lognormal distribution with a large standard
deviation and gamma distributions with a large standard deviation. As long as
the constraint curves are either concave to the origin or approximately linear,
the optimal solution is always the balanced solution. This suggests that the
balanced solution will always be optimal when the correlation is non-negative.
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In the case of negative correlation, the constraint curve, in addition to always
being close to linear, may also be slightly convex to the origin and gradually
approach a straight line as k goes to 0. If the negatively correlated constraint
curve is close to linear, the balanced solution is of course the optimal solution. If
the constraint curve bends more against the origin than iso-curves, the optimal
solution is at the boundary. In this case, the optimal solution changes from
boundary to balanced as the correlation coefficient goes from negative to 0,
e.g., the symmetric risks are gamma distribution with mean 50 and standard
deviation 100.

The quasiconcave iso-curves where risks have increasing hazard rates
correspond to truncated normal distributions, lognormal distribution with
a small standard deviation and gamma distributions with a small standard
deviation. As long as the constraint curves are either slightly convex to the
origin or approximately linear, the optimal solutions are always the unbalanced
boundary solutions. This implies that the boundary solution will always be
optimal when the correlation is negative and 0. Furthermore, the small positive
correlation corresponds to a constraint curve that is slightly concave toward
the origin. If the constraint curve bends less away from the origin than the
iso-curves, the optimal solution is still at the boundary. However, the balanced
solution is easier to be determined as optimal when k is large because the
constraint curve for large positive correlation bends significantly away from the
origin than the iso-curves.

Note that typically when two risks are symmetric, the intersection of the
constraint curves passes through fewer iso-curves, which means that the range of
the y-axis representing Vα is tiny. Therefore, for any correlation between these
two risks, especially a non-positive correlation, there is no significant benefit
in choosing a balanced or unbalanced solution. However, when the iso-curves
are quite quasiconvex, such as the symmetric risks come from a heavy-tailed
distribution with large variance, which leads to a more extensive range of Vα,
then the balanced solution is a better choice.

There are two cases in the asymmetric risks situation, such as two risks
from the same type of distribution and different types of distributions. In either
case, the unbalance solution is optimal. For the first case, no matter what kind
of distribution the risks come from, we have found the following rules. If only
change the expected value, the risk with a higher expectation is the one with
higher a a∗ and premium. If only change standard deviation, the risk with
a lower standard deviation is the one with higher a∗, b∗ and lower premium.
Because changes in the standard deviation will affect the tails. The risk with a
smaller standard deviation has a lighter tail and is therefore cheaper to reinsure.
Additionally, its corresponding reinsurance contract has better coverage. If
change both standard deviation and expectation, then the risk with a lower
standard deviation and higher expectation is the one also with higher a∗, b∗

values, and its corresponding reinsurance contract can cover more risks.
For asymmetric risks, the constraint curve approximates symmetry about

y = x. However, the iso-curves are asymmetric about y = x. When the two
risks are more asymmetric, the difference between the x-axis range and the
y-axis of iso-curves is more significant. Therefore, the optimal solutions are
always unbalanced, and for most of k, they lie at the boundary.

On the other hand, if the risks are more asymmetric, the range of the y-axis
representing Vα is more extensive. The reason for this is that the constraint
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curve will cross more iso-curves. Consequently, regardless of the correlation
coefficient, the unbalanced solution is preferred.

We also have an interesting finding of how the constraint curve moves with
variant correlation coefficients. The constraint curves for negatively dependent
risks get closer to the origin, with the correlation coefficient going to 0. Therefore,
the value of Vα does not decrease with the increase of negative correlation.
On the other hand, less negative correlation coefficients correspond to the
constraint curves closer to the origin, which leads to smaller values of B∗ and
correspondingly larger values of b∗, implying that the reinsurance contracts
cover more risks and the cost of reinsurance is higher and are more expensive
to reinsure. It is worth noting that if the left and right boundaries of the
constraint curve are greater than 0.01 at k = 0, then as the positive correlation
coefficient increases, the constraint curve becomes more concave to the origin
while gradually moving toward the origin until the boundary of the constraint
curve is at 0.01, after which the constraint curve only changes curvature with
further increase in k. Therefore, in this case, the optimal value Vα first increases
and then decreases with the increase of positive correlation. If not, the constraint
curve does not move but only bends more away from the origin as k increases.
Therefore, the optimal value Vα does not increase with an increase in positive
correlation. In conclusion, the optimal value of Vα first increases and then
decreases when the correlation coefficient turns from negative to positive.
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CHAPTER 6

Conclusion

This thesis investigates how reinsurance optimization is affected by dependence
between the two risks under the value-at-risk measure. In particular, the
bivariate risks are typically modeled through heavy and light-tailed distributions
such as the Pareto, lognormal, truncated normal and gamma distributions. By
the lead of Huseby [4], we have laid out the importance sampling, which is
an efficient simulation method to solve the numerical part of the problem.
Additionally, the Gaussian copula models the dependence of risks. We also use
unrestricted solutions from Huseby and Christensen [5] to solve the general
optimization problem. To intuitively see the optimal solution of different risks,
we plot the relevant iso-curves of reinsured expected risks and constraint curves
for varying correlation coefficient k. Optimal reinsurance contracts can be found
by Lagrange optimization or a simple search along the constraint curve.

It is worth mentioning that the optimal reinsurance contract relies on the
hazard rates of the risk distributions and the correlation coefficient k. In other
words, the optimal solution depends on the shapes of iso-curves and constraints
curves. On the premise that the risks are positively correlated, the greater the
correlation coefficient is, the constraint curve bends more away from the origin.
Therefore, the optimal solution for the symmetric risks will eventually be the
balanced solution when the correlation has a high positive value, no matter
what iso-curves look like. Under the premise of negative risk correlation, the
constraint curve has changing patterns. In the first case, with the correlation
increase of 0, the curve gradually changes from slightly convex to the origin to
approximately linear. In the second case, the curve is always close to a straight
line. The specific performance can be analyzed according to different risk
distributions. In either of these cases, the constraint curve gradually approaches
the origin as k increases which indicates that the optimal value Vα does not
decrease.

Whether the risks are symmetric, the general trend of the optimal value Vα

increases and then decreases as the correlation increases. This result is directly
related to the change in the constraint curve. More specifically, more negative
and positive correlation coefficients lead to the more considerable corresponding
B∗ and smaller b∗ values, which means the reinsurance contracts cover less risk
and are cheaper to reinsure.

The insurance layer contracts are optimal for any correlation coefficient when
the symmetric risks come from heavy-tailed distributions, such as the Pareto
and lognormal distributions with large standard deviations. The corresponding
iso-curves are quasiconvex because of the decreasing hazard rates, and the
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constraint curves always bend away from the iso-curves, so the optimal solution
must be balanced. Furthermore, for each correlation coefficient, especially
when k is not positive, the difference between the balanced and the unbalanced
solutions is relatively significant. Therefore, the insurance layer contracts
corresponding to the balanced solution should be chosen when an insurance
company encounters such a situation.

In the case of asymmetric risks, the optimal solutions are all unbalanced.
The reinsurance contract corresponding to the risk with a lighter tail covers
more risk. It should be noted that the more asymmetric the risks are, the
optimal solution is at the boundary. Together, the present findings confirm that
when the two risks are obviously asymmetric, the risk with a heavier tail should
be covered by an insurance layer contract, and the other risk should be covered
by a stop-loss contract, regardless of the correlation between the two risks.

Future work in this area includes the optimal contract of bivariate correlated
risk under other risk measures, and how to use other types of copulas to deal
with dependent risks. As well as how to optimize reinsurance in a multivariate
case under different risk measures.
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APPENDIX A

Python Codes

A.1 Distributions List

1 from random import *
2 from math import *
3 from scipy.optimize import minimize
4 from scipy.stats import gamma
5 from cmath import pi
6
7 import numpy as np
8
9

10
11 SQRTPI: float = 1.77245385090551602729816748334 # sqrt(pi)
12 SQRT2PI: float = 2.50662827463100029 # sqrt(2*pi)
13
14 EULER_MASCHERONI: float = 0.57721566490153286060
15
16
17
18 def gaussian_pdf(x) -> float:
19 return exp(-x * x / 2.0) / SQRT2PI
20
21
22 def gaussian_cdf(x) -> float:
23 if x >= 0.0:
24 t = 1.0/(1.0 + 0.33267 * x)
25 return 1.0 - gaussian_pdf(x) * (0.4361836*t - 0.1201676*t*t +

0.9372980*t*t*t)
26 else:
27 t = 1.0/(1.0 - 0.33267 * x);
28 return gaussian_pdf(x) * (0.4361836*t - 0.1201676*t*t + 0.9372980*t*t*

t)
29
30
31 def gaussian_sdf(x) -> float:
32 if x >= 0.0:
33 t = 1.0/(1.0 + 0.33267 * x)
34 return gaussian_pdf(x) * (0.4361836*t - 0.1201676*t*t + 0.9372980*t*t*

t)
35 else:
36 t = 1.0/(1.0 - 0.33267 * x);
37 return 1.0 - gaussian_pdf(x) * (0.4361836*t - 0.1201676*t*t +

0.9372980*t*t*t)
38
39
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40 def gaussian_invcdf(u) -> float:
41 if u < 0.5:
42 t = sqrt(log(1.0/(u*u)))
43 return -t + (2.515517 + 0.802853*t + 0.010328*t*t) / (1.0 + 1.432788*t

+ 0.189269*t*t + 0.001308*t*t*t)
44 elif u == 0.5:
45 return 0.0
46 else:
47 t = sqrt(log(1.0/((1.0 - u)*(1.0 - u))))
48 return t - (2.515517 + 0.802853*t + 0.010328*t*t) / (1.0 + 1.432788*t

+ 0.189269*t*t + 0.001308*t*t*t)
49
50
51
52
53 ###############################################################
54 # Generate a univariate uniform variable restricted to #
55 # the importance sample region: #
56 # D = [1-r, 1] #
57 ###############################################################
58 def uni_uniform_D(r):
59 return uniform(1-r,1)
60
61
62 ###############################################################
63 # Generate a univariate uniform variable restricted to #
64 # the importance sample region: #
65 # E = [0, 1-r] #
66 ###############################################################
67 def uni_uniform_E(r):
68 return uniform(0,1-r)
69
70
71 ###############################################################
72 # Generate bivariate uniform variables restricted to #
73 # the importance sample region: #
74 # D = ([1-r, 1] x [0, 1]) union ([0, 1] x [1-r, 1]) #
75 ###############################################################
76 def bi_uniform_D(r):
77 u0 = uniform(0,1) * (2-r)
78 u1 = uniform(0,1)
79 u2 = uniform(0,1)
80 v1 = 0
81 v2 = 0
82 if u0 < (1-r):
83 v1 = 1-(r * u1)
84 v2 = (1-r) * u2
85 elif u0 < 2*(1-r):
86 v1 = (1-r) * u1
87 v2 = 1-(r * u2)
88 else:
89 v1 = 1-(r * u1)
90 v2 = 1-(r * u2)
91 return v1, v2
92
93 ###############################################################
94 # Generate bivariate uniform variables restricted to #
95 # the complement of importance sample region: #
96 # E = [0, 1-r] x [0, 1-r] #
97 ###############################################################
98 def bi_uniform_E(r):
99 u1 = uniform(0,1-r)
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100 u2 = uniform(0,1-r)
101 return u1, u2
102
103
104 ################################################################
105 # #
106 # The base Distribution class #
107 # #
108 ################################################################
109
110 class Distribution:
111 def __init__(self, name, mean, stdev):
112 self.name: str = name
113 self.mean: float = mean
114 self.stdev: float = stdev
115 self.min: float = -np.inf
116 self.max: float = np.inf
117
118 def print_name(self):
119 print(self.name, "(", self.mean, ",", self.stdev, ")")
120
121 def get_name(self):
122 namestr = self.name + "({0}, {1})"
123 return namestr.format(self.mean, self.stdev)
124
125 def getMean(self) -> float:
126 return self.mean
127
128 def getStdev(self) -> float:
129 return self.stdev
130
131 def getMin(self) -> float:
132 return self.min
133
134 def getMax(self) -> float:
135 return self.max
136
137 def getPDF(self, x) -> float:
138 pass
139
140 def getCDF(self, x) -> float:
141 pass
142
143 def getSDF(self, x) -> float:
144 pass
145
146 def getHazardRate(self, x) -> float:
147 f = self.getPDF(x)
148 s = self.getSDF(x)
149 if s > 0:
150 return f/s
151 else:
152 return 0
153
154 def lowerPercentile(self, p) -> float:
155 pass
156
157 def getLowerPercentile(self, p) -> float:
158 if p <= 0:
159 return self.min
160 elif p >= 1:
161 return self.max
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162 else:
163 return self.lowerPercentile(p)
164
165 def getUpperPercentile(self, p) -> float:
166 if p <= 0:
167 return self.max
168 elif p >= 1:
169 return self.min
170 else:
171 return self.lowerPercentile(1-p)
172
173 def getStochasticValue(self) -> float:
174 u = uniform(0,1)
175 return self.getLowerPercentile(u)
176
177
178 ################################################################
179 # #
180 # The Pareto distribution class #
181 # #
182 # For details see: #
183 # Huseby (2021) Pareto distributions #
184 # or alternatively: #
185 # https://en.wikipedia.org/wiki/Pareto_distribution #
186 # #
187 ################################################################
188
189 class Pareto(Distribution):
190 def __init__(self, mean, stdev):
191 super().__init__("PARETO", mean, stdev)
192 self.tau: float = sqrt((mean * mean) / (stdev * stdev) + 1) + 1
193 self.Xm: float = mean * (self.tau - 1) / self.tau
194 self.min = self.Xm
195 print(self.name, "(mean = ", self.mean, ", stdev = ", self.stdev, ",

tau = ", self.tau, ", Xm = ", self.Xm, ")")
196
197 def getPDF(self, x) -> float:
198 if x > self.min:
199 return self.tau * (self.min**self.tau) / (x**(self.tau+1))
200 else:
201 return 0
202
203 def getCDF(self, x) -> float:
204 if x > self.min:
205 return 1 - (self.min / x)**self.tau
206 else:
207 return 0
208
209 def getSDF(self, x) -> float:
210 if x > self.min:
211 return (self.min / x)**self.tau
212 else:
213 return 1
214
215 def lowerPercentile(self, p) -> float:
216 return self.Xm * ((1-p)**(-1/self.tau))
217
218 ################################################################
219 # #
220 # The Lognormal distribution class #
221 # #
222 ################################################################
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223
224 class Lognormal(Distribution):
225 def __init__(self, mean, stdev):
226 super().__init__("LOGNORMAL", mean, stdev)
227 self.h = 1.0 + (stdev * stdev) / (mean * mean)
228 self.sigma = sqrt(log(self.h))
229 self.mu = log(self.mean) - 0.5 * log(self.h)
230 self.min = 0
231 print(self.name, "(mean = ", self.mean, ", stdev = ", self.stdev, ",

logmean = ", self.mu, ", logstdev = ", self.sigma, ")")
232
233 def getPDF(self, x) -> float:
234 if x > self.min:
235 return gaussian_pdf((log(x)-self.mu) / self.sigma) / (self.sigma *

x)
236 else:
237 return 0
238
239 def getCDF(self, x) -> float:
240 if x > self.min:
241 return gaussian_cdf((log(x)-self.mu) / self.sigma)
242 else:
243 return 0
244
245 def getSDF(self, x) -> float:
246 if x > self.min:
247 return gaussian_sdf((log(x)-self.mu) / self.sigma)
248 else:
249 return 1
250
251 def lowerPercentile(self, p) -> float:
252 return self.mean * exp(self.sigma * gaussian_invcdf(p)) / sqrt(self.h)
253
254
255 ################################################################
256 # #
257 # The Truncnormal distribution class #
258 # #
259 ################################################################
260
261 class Truncnormal(Distribution):
262 def __init__(self, mean, stdev):
263 super().__init__("TNORMAL", mean, stdev)
264 alpha = find_alpha(mean, stdev)
265 self.sigma = mean * (1 - gaussian_cdf(alpha)) / (gaussian_pdf(alpha) -

alpha*(1 - gaussian_cdf(alpha)))
266 self.mu = -alpha * self.sigma
267 self.omega = gaussian_cdf(-self.mu/self.sigma)
268 self.min = 0
269 print(self.name, "(mean = ", self.mean, ", stdev = ", self.stdev, ",

sigma = ", self.sigma, ", mu = ", self.mu, ")")
270
271 def getPDF(self, x) -> float:
272 if x > self.min:
273 return (gaussian_pdf((x-self.mu) / self.sigma) / self.sigma) / (1

- self.omega)
274 else:
275 return 0
276
277 def getCDF(self, x) -> float:
278 return 1 - self.getSDF(x)
279
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280 def getSDF(self, x) -> float:
281 if x > self.min:
282 return gaussian_sdf((x-self.mu) / self.sigma) / (1 - self.omega)
283 else:
284 return 1
285
286 def lowerPercentile(self, p) -> float:
287 return self.mu + self.sigma * gaussian_invcdf(self.omega + p * (1 -

self.omega))
288
289
290 ################################################################
291 # #
292 # The Gamma distribution class #
293 # #
294 ################################################################
295
296 class Gamma(Distribution):
297 def __init__(self, mean, stdev):
298 super().__init__("GAMMA", mean, stdev)
299 self.tau = (mean * mean) / (stdev * stdev)
300 self.beta = self.tau / mean
301 self.min = 0
302 print(self.name, "(mean = ", self.mean, ", stdev = ", self.stdev, ",

tau = ", self.tau, ", beta = ", self.beta, ")")
303
304 def getPDF(self, x) -> float:
305 if x > self.min:
306 return gamma.pdf(self.beta * x, self.tau) * self.beta
307 else:
308 return 0
309
310 def getCDF(self, x) -> float:
311 if x > self.min:
312 return gamma.cdf(self.beta * x, self.tau)
313 else:
314 return 0
315
316 def getSDF(self, x) -> float:
317 if x > self.min:
318 return 1 - gamma.cdf(self.beta * x, self.tau)
319 else:
320 return 1
321
322 def lowerPercentile(self, p) -> float:
323 return gamma.ppf(p, self.tau) / self.beta

A.2 Reinsurance Functions List

1
2
3 #############################################
4 # RETAINED AND INSURED RISK #
5 #############################################
6 def get_retained_risk(x, a, b) -> float:
7 if x < a:
8 return x
9 elif x < b:

10 return a
11 else:
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12 return x - (b - a)
13
14
15 def get_insured_risk(x, a, b) -> float:
16 if x < a:
17 return 0
18 elif x < b:
19 return x - a
20 else:
21 return b - a
22
23
24 def get_expected_risk(xx) -> float:
25 s: float = 0
26 for i in range(len(xx)):
27 s += xx[i]
28 return s / len(xx)
29
30
31 def get_expected_retained_risk(xx, a, b) -> float:
32 s: float = 0
33 for i in range(len(xx)):
34 s += get_retained_risk(xx[i], a, b)
35 return s / len(xx)
36
37
38 def get_expected_insured_risk(xx, a, b) -> float:
39 s = 0
40 for i in range(len(xx)):
41 s += get_insured_risk(xx[i], a, b)
42 return s / len(xx)
43
44
45 # The set C is the set of points where retained risk is greater than (aa1 +

aa2)
46 # NOTE: We assume that len(xx1) = len(xx2)
47 def getCCount(xx1, aa1, bb1, xx2, aa2, bb2) -> float:
48 count = 0
49 for i in range(len(xx1)):
50 rr: float = get_retained_risk(xx1[i], aa1, bb1) + get_retained_risk(

xx2[i], aa2, bb2)
51 if rr > aa1 + aa2:
52 count += 1
53 return count
54
55 def getCFraction(xx1, aa1, bb1, xx2, aa2, bb2) -> float:
56 count = 0
57 for i in range(len(xx1)):
58 rr: float = get_retained_risk(xx1[i], aa1, bb1) + get_retained_risk(

xx2[i], aa2, bb2)
59 if rr > aa1 + aa2:
60 count += 1
61 return count / len(xx1)

A.3 Optimal Reinsurance Contracts

1 ###########################################################################
2 # #
3 # Optimizing bivariate reinsurance contracts in the unbalanced, #
4 # bivariate case using total value at risk as objective #
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5 # function. #
6 # #
7 # #
8 ###########################################################################
9

10
11 from math import *
12 from dist import *
13 from insureutils import *
14
15 import matplotlib.pyplot as plt
16 import numpy as np
17
18
19 seed_num = 135246780
20 num_points = 1000000
21 num_iter = 50
22 epsilon = 0.000001
23
24 print_results = False
25 print_counter = True
26 plot_scatter = True
27
28 alpha = 0.01
29 gamma = 0.10
30 theta = 0.20
31 delta = 0.00
32
33 corr = 0.8
34 c1 = 0.5 *(sqrt(1+corr) + sqrt(1-corr))
35 c2 = 0.5 *(sqrt(1+corr) - sqrt(1-corr))
36
37
38 rho = 0.05 # Determines the size of the importance sample region
39
40
41 mean1: float = 50
42 stdev1: float = 50
43 mean2: float = 50
44 stdev2: float = 50
45
46 dist1 = Lognormal(mean1, stdev1)
47 dist2 = Lognormal(mean2, stdev2)
48
49
50 # Alternative distributions found in dist
51 # Truncnormal(mean, stdev)
52 # Lognormal(mean, stdev)
53 # Gamma(mean, stdev)
54 # Pareto(mean, stdev)
55
56
57
58 probD = 1 - (1-rho)*(1-rho)
59 probE = (1-rho)*(1-rho)
60
61 seed(seed_num)
62
63 A = 1 / (1+theta)
64 a1 = dist1.getUpperPercentile(A)
65 a2 = dist2.getUpperPercentile(A)
66
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67 print("--------")
68 print("a1 = ", a1, ", a2 = ", a2)
69
70
71 #############################################################
72 # Generate risks sampling from the set D #
73 #############################################################
74
75 print("--------")
76 print("Generate risks sampling from the set D")
77
78 x1 = np.zeros(num_points)
79 x2 = np.zeros(num_points)
80
81 for i in range(num_points):
82 u = bi_uniform_D(rho)
83 g1 = gaussian_invcdf(u[0])
84 g2 = gaussian_invcdf(u[1])
85 h1 = c1 * g1 + c2 * g2
86 h2 = c1 * g2 + c2 * g1
87 v1 = gaussian_cdf(h1)
88 v2 = gaussian_cdf(h2)
89 x1[i] = dist1.getLowerPercentile(v1)
90 x2[i] = dist2.getLowerPercentile(v2)
91
92 expectedRiskD1 = probD * (get_expected_risk(x1))
93 expectedRiskD2 = probD * (get_expected_risk(x2))
94 expectedRiskD = expectedRiskD1+expectedRiskD2
95 print("--------")
96 print("expectedRiskD = ", expectedRiskD)
97
98
99 #############################################################

100 # Generate risks sampling from the set E #
101 #############################################################
102
103 print("--------")
104 print("Generate risks sampling from the set E")
105
106 y1 = np.zeros(num_points)
107 y2 = np.zeros(num_points)
108
109 for i in range(num_points):
110 u = bi_uniform_E(rho)
111 g1 = gaussian_invcdf(u[0])
112 g2 = gaussian_invcdf(u[1])
113 h1 = c1 * g1 + c2 * g2
114 h2 = c1 * g2 + c2 * g1
115 v1 = gaussian_cdf(h1)
116 v2 = gaussian_cdf(h2)
117 y1[i] = dist1.getLowerPercentile(v1)
118 y2[i] = dist2.getLowerPercentile(v2)
119
120 insuredRiskE1 =probE * (get_expected_insured_risk(y1, a1, np.inf))
121 insuredRiskE2 =probE * (get_expected_insured_risk(y2, a2, np.inf))
122 insuredRiskE = insuredRiskE1 + insuredRiskE2
123
124
125 expectedRiskE = probE * (get_expected_risk(y1)) +probE * (get_expected_risk(y2

))
126
127 print("--------")
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128 print("expectedRiskE = ", expectedRiskE, ", expectedRiskDE = ", expectedRiskD
+ expectedRiskE,)

129
130
131 ######################################
132 # Determine B1_max and b1_min #
133 ######################################
134
135 print("--------")
136 print("Determine B1_max and b1_min")
137
138 b1 = dist1.getUpperPercentile(A/2)
139 b2 = dist2.getUpperPercentile(0)
140
141 B1_L = alpha # B1_L = 0
142 B1_U = alpha / A # B1_U = A
143 B1 = (B1_L + B1_U) / 2
144
145 while B1_U - B1_L > epsilon:
146 probC = getCFraction(x1, a1, b1, x2, a2, b2) * probD
147 if probC > alpha:
148 B1_U = B1
149 else:
150 B1_L = B1
151 B1 = (B1_L + B1_U) / 2
152 b1 = dist1.getUpperPercentile(B1)
153
154 B1_max = max(B1, alpha)
155 b1_min = dist1.getUpperPercentile(B1_max)
156
157 countC = getCCount(x1, a1, b1_min, x2, a2, b2)
158
159 probC_given_D = countC / num_points
160 probC = probC_given_D * probD
161
162 print("--------")
163 print("P(D) = ", probD, ", P(E) = ", probE)
164 print("p(C | D) = ", probC_given_D, ", P(C) = ", probC)
165
166 print("--------")
167 print("b2 = ", b2, ", b1_min = ", b1_min, ", B1_max = ", B1_max)
168
169
170 # Create scatter plot
171 if plot_scatter:
172 C1 = np.zeros(countC)
173 C2 = np.zeros(countC)
174 AB1 = np.zeros(num_points - countC)
175 AB2 = np.zeros(num_points - countC)
176
177 j: int = 0
178 k: int = 0
179
180 for i in range(num_points):
181 rr: float = get_retained_risk(x1[i], a1, b1_min) + get_retained_risk(

x2[i], a2, b2)
182 if rr > a1 + a2:
183 C1[j] = x1[i]
184 C2[j] = x2[i]
185 j += 1
186 else:
187 AB1[k] = x1[i]
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188 AB2[k] = x2[i]
189 k += 1
190
191 plt.scatter(AB1, AB2, c ="blue")
192 plt.scatter(C1, C2, c ="red")
193 plt.show()
194
195
196 ######################################
197 # Determine B2_max and b2_min #
198 ######################################
199
200 print("--------")
201 print("Determine B2_max and b2_min")
202
203 b1 = dist1.getUpperPercentile(0)
204 b2 = dist2.getUpperPercentile(A/2)
205
206 B2_L = alpha # B2_L = 0
207 B2_U = alpha / A # B2_U = A
208 B2 = (B2_L + B2_U) / 2
209
210 while B2_U - B2_L > epsilon:
211 probC = getCFraction(x1, a1, b1, x2, a2, b2) * probD
212 if probC > alpha:
213 B2_U = B2
214 else:
215 B2_L = B2
216 B2 = (B2_L + B2_U) / 2
217 b2 = dist2.getUpperPercentile(B2)
218
219 B2_max = max(B2, alpha)
220 b2_min = dist2.getUpperPercentile(B2_max)
221
222 countC = getCCount(x1, a1, b1, x2, a2, b2_min)
223
224 probC_given_D = countC / num_points
225 probC = probC_given_D * probD
226
227 print("--------")
228 print("P(D) = ", probD, ", P(E) = ", probE)
229 print("p(C | D) = ", probC_given_D, ", P(C) = ", probC)
230
231 print("--------")
232 print("b1 = ", b1, ", b2_min = ", b2_min, ", B2_max = ", B2_max)
233
234
235 # Create scatter plot
236 if plot_scatter:
237 C1 = np.zeros(countC)
238 C2 = np.zeros(countC)
239 AB1 = np.zeros(num_points - countC)
240 AB2 = np.zeros(num_points - countC)
241
242 j: int = 0
243 k: int = 0
244
245 for i in range(num_points):
246 rr: float = get_retained_risk(x1[i], a1, b1) + get_retained_risk(x2[i

], a2, b2_min)
247 if rr > a1 + a2:
248 C1[j] = x1[i]
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249 C2[j] = x2[i]
250 j += 1
251 else:
252 AB1[k] = x1[i]
253 AB2[k] = x2[i]
254 k += 1
255
256 plt.scatter(AB1, AB2, c ="blue")
257 plt.scatter(C1, C2, c ="red")
258 plt.show()
259
260
261 #########################################
262 # Determine optimal b2 given b1 #
263 #########################################
264
265 print("--------")
266 print("Determine optimal b2 given b1")
267
268 BB1 = np.zeros(num_iter)
269 BB2 = np.zeros(num_iter)
270
271
272 PC = np.zeros(num_iter)
273 VAR = np.zeros(num_iter)
274
275 opt_B1 = 0
276 opt_B2 = 0
277 minVAR = np.inf
278
279
280 for ii in range(num_iter):
281 if print_counter:
282 print(".", end = "")
283 B1 = B1_max * ii / (num_iter - 1)
284 b1 = dist1.getUpperPercentile(B1)
285
286 B2_L = (alpha - B1) / (1 - B1)
287 B2_U = (alpha - A * B1) / (A - B1)
288 B2 = (B2_L + B2_U) / 2
289 b2 = dist2.getUpperPercentile(B2)
290
291 while B2_U - B2_L > epsilon:
292 probC = getCFraction(x1, a1, b1, x2, a2, b2) * probD
293 if probC > alpha:
294 B2_U = B2
295 else:
296 B2_L = B2
297 B2 = (B2_L + B2_U) / 2
298 b2 = dist2.getUpperPercentile(B2)
299
300 BB1[ii] = B1
301 BB2[ii] = B2
302
303 PC[ii] = getCFraction(x1, a1, b1, x2, a2, b2) * probD
304
305 insuredRiskD = probD * (get_expected_insured_risk(x1, a1, b1) +

get_expected_insured_risk(x2, a2, b2))
306
307 VAR[ii] = a1 + a2 + (1 + theta) * (insuredRiskD + insuredRiskE)
308
309 if VAR[ii] < minVAR:
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310 opt_B1 = B1
311 opt_B2 = B2
312 minVAR = VAR[ii]
313
314 if print_results:
315 print("B1 = ", BB1[ii], ", B2 = ", BB2[ii], ", P(C) = ",PC[ii], ",

VAR = ", VAR[ii])
316
317
318 opt_b1 = dist1.getUpperPercentile(opt_B1)
319 opt_b2 = dist1.getUpperPercentile(opt_B2)
320 insuredRiskD1=probD * (get_expected_insured_risk(x1, a1, opt_b1))
321 insuredRiskD2=probD * (get_expected_insured_risk(x2, a2, opt_b2))
322
323 print("opt_b1 = ", opt_b1, ", opt_b2 = ", opt_b2, ", opt_B1 = ", opt_B1, ",

opt_B2 = ", opt_B2, ", minVAR = ", minVAR
324 ,", PI1 = ",(1 + theta) * (insuredRiskD1 + insuredRiskE1),
325 ", PI2 = ",(1 + theta) * (insuredRiskD2 + insuredRiskE2))
326
327
328
329
330 plt.plot(BB1, BB2, label=’Constraint’)
331 plt.xlabel(’B1’)
332 plt.ylabel(’B2’)
333 plt.title("Constraint")
334 plt.legend()
335 plt.show()
336
337 plt.plot(BB1, PC, label=’P(C)’)
338 plt.xlabel(’B1’)
339 plt.ylabel(’P(C)’)
340 plt.title("P(C) versus B1")
341 plt.legend()
342 plt.show()
343
344 plt.plot(BB1, VAR, label=’Value-at-risk’)
345 plt.xlabel(’B1’)
346 plt.ylabel(’V@R’)
347 plt.title("V@R as a function of B1")
348 plt.legend()
349 plt.show()
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