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Abstract

In this work we have set out to examine the band gaps of potential
high-entropy stabilized transition metal silicides, based on the FeSi2
semiconductor. Here, we have performed a first principles study utilizing
density functional theory in combination with the special quasi-random
structures method. The band gaps has been evaluated primarily with the
PBE GGA functional, but also the SCAN meta-GGA functional and hybrid
functional HSE06 has been applied in this project. Potential alloys has been
examined by generating a set of distinct supercells of the FeSi2 structure,
where the iron sites are populated quasi-randomly by a combination of 3d
transition metals. The alloys we have studied in this project are comprised
of combinations of Cr, Fe, Mn, Ni, Co and Ti, most emphasis has been
put on the Cr-Fe-Mn-Ni-Si system. In the (CrFeMnNi)Si2 composition,
we can report several semiconducting supercells with band gaps ranging
between 0 - 0.05 eV using PBE GGA. The band gaps displayed significant
spin polarization, in the spin up direction most supercells pointed to a gap
around 0.3 eV. Contrary, the band gaps in spin down varied between 0
- 0.05 eV. Accordingly, we found a finite magnetic moment in this alloy
equal to 0.083 µB, this was attributed mainly to chromium and manganese
atoms in the lattice. Successive simulations of alloys based on the Cr-Fe-
Mn-Ni-Si system with non-equimolar distribution of 3d elements, resulted
most frequently in half-metallic structures with a spin up band gap ranging
between 0.1 eV and 0.5 eV. Of the different compositions we tested, the
ones either rich in manganese and/or poor in chromium showed the most
promise with respect to the band gap. In particular, we report a PBE total
band gap equal to 0.1 eV in the Cr3Fe5Mn5Ni3Si32 composition. Lastly, we
looked at compositions where either Cr, Mn or Ni were replaced by either
cobalt or titanium. This yielded predominately metallic compounds, where
the lack of band gaps could be ascribed to defect states at the band edges.
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Chapter 1

Introduction

A major concern in the energy sector is the loss of energy as waste heat.
For instance, [1] estimated that about 60 percent of the energy produced in
USA in 2012 was lost as waste heat. Contrary to common energy sources
that suffer from this problem of losing energy to heat, thermoelectricity
can generate electricity from heat by what’s known as the Seebeck effect
[2]. Hence, thermoelectricity can have many promising applications,
for example one could imagine a conjunction between thermoelectric
generators and mechanical generators to recover a portion of the waste
heat produced by the latter. However, currently thermoelectricity is of
limited practical use due to a lack of efficient thermoelectric materials. This
can be explained from the thermoelectric figure of merit, composed of the
Seebeck Coefficient S, electrical conductivity σ, working temperature T and
the thermal conductivity κ, in the following relation [3]

zT =
S2σT

κ
. (1.1)

An efficient thermoelectric material consists of three dependent vari-
ables: A high Seebeck coefficient, high electrical conductivity, and low
thermal conductivity. A popular strategy to achieve this relation is the
phonon-glass electron crystal approach [4], in which one will introduce
complexity and anharmonicity to the crystal lattice by some means to in-
crease levels of phonon scattering, without also increasing the scattering
of electrons. Furthermore, good thermoelectrics are narrow gap semicon-
ductors. [5] found highest zT values for semiconductors with band gap
between 6-10 kBT, which at room temperature equals around 0.2 eV.

In this project we will look at high-entropy alloys as potential ther-
moelectric materials. High-entropy alloys are a novel material class that
extends the concept of traditional binary-alloys such as steel, to multi-
component alloys. The name "high-entropy" stems from that the materi-
als are stabilized by high configurational entropy caused by alloying mul-
tiple constituents. These materials are in particular known for their strong
mechanical properties [6], such as high strength at elevated temperatures
and evidence of low thermal conductivity. Hence, provided that we can
find narrow gap high-entropy alloys, these could be relevant and prom-
ising high zT thermoelectric materials.
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Specifically, in this work we focus on high-entropy silicides. These are a
lesser studied subclass of high-entropy alloys. The first experimentally syn-
thesized high-entropy silicide was found in 2019 by Gild. et al [7]. He stud-
ied a first of its kind single-phase high-entropy disilicide (MoNbTaW)Si2.
This silicide adopted the hexagonal C40 crystal structure, and displayed
low thermal conductivity compared to conventional disilicides in the equi-
valent crystal structure. Additionally, very recently a master student at
the University of Oslo managed to synthesize three phases of non-cubic
high-entropy silicides based on Si, Co, Cr, Fe, and Ni in both hexagonal
and orthorhombic symmetries [8]. We base this project on silicides, firstly
from that silicon and various transition metal-silicides are environment-
ally sound, and silicon in particular is heavily applied in micro-electronic
devices and renewable energy technologies such as solar power, thus sil-
icon based alloys could readily be implemented into these technologies.
Secondly, transition metal silicides offer a good range of initial compounds
with suitable band gaps for thermoelectric application [9].

This project is based around ab initio methods in the framework of
density functional theory. The disordered structure of high-entropy alloys
are handled with a computational method called special quasi-random
structures. The particular materials we examine in this project are based
on the semiconductor β-FeSi2. The primary task will be to scrutinize the
band gaps of such alloys. For this purpose, we employ three functionals:
PBE GGA, SCAN meta-GGA and the hybrid functional HSE06. In addition
to the band gaps, we examine the stability and magnetism. The potential
high-entropy silicides are studied by constructing five distinct supercells
of the master compound, where the iron sites are populated by a quasi-
random distribution between 3d transition metals. Special emphasis are
placed on alloys comprised of Cr, Fe, Mn and Ni, as these along with silicon
are sustainable non-toxic elements.

We begin this project by reviewing the fundamentals and properties of
high-entropy alloys, thereafter we present a theoretical description of the
computational methods used in this project, SQS, and DFT. Following, we
discuss various practical aspects of DFT calculations, such as exchange-
correlation functionals and numerical convergence. Next, we include
a section on the computational settings and dependencies necessary to
reproduce the results of this project. Subsequently, we present and discuss
the results of this work, which begins with the high-entropy silicide
(CrFeMnNi)Si2, followed by various derivatives and alternative systems.
Lastly, we provide a brief summary of the work done in this project, and
discuss possible directions for future research.
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Part I

Theory
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Chapter 2

High-Entropy alloys

High-Entropy Alloys (HEAs) has become an increasingly popular field in
materials science, due to the large flexibility and possibilities for discovery
of new materials with unique properties. Since the staring point of high-
entropy alloys in 2004, as of 2015 there has been over 1000 published
journal articles on high-entropy alloys [10]. In the following section we will
cover the fundamentals and some applications of high-entropy alloys. This
section is based on the fantastic description of HEAs in the book "High-
Entropy Alloys - Fundamentals and Application", in particular chapters
1,2,3 and 7 [10], [11], [12], [13], and references therein.

2.1 Fundamentals

A high entropy alloy can in a way be compared to a smoothie. In a smoothie
one can produce unique combinations of flavors and nutritional values
based on both the properties of the individual fruits and vegetables, and
their interplay in the mixture. In materials science, a similar approach can
be applied to generate a large range of materials with tunable properties
depending on the intended application. In respect to HEAs, examples
can be increased strength, ductility, corrosive resistance and low thermal
conductivity. Moving on from the rather banal fruit analogy, a high-
entropy alloy can be defined from two conditions:

1. The material consists of at least 5 distinct elements, where each
element contribute between 5-35% of the composition.

2. The total configurational entropy is greater than 1.5R, where R is the
gas constant.

The latter is an especial case for high-entropy alloys. The ideal configura-
tional entropy of a random N-component solid-solution is described as

∆Sconfig = −R
N

∑
i=1

Xi ln Xi, (2.1)

where Xi is the mole fraction of the ith component. Its clear that ∆Sconfig
increase with a higher number of constituents in the mix. For instance,
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the ideal configurational entropy of a equimolar binary alloy is 0.69 R, as
opposed to 1.61 R in a five-component equimolar alloy. If we neglect the
other factors that influence the formation of solid solutions (will be covered
later), from Gibbs free energy

∆Gmix = ∆Hmix − T∆Smix, (2.2)

the two primary factors in formation of solid solution are the mixing
enthalpy, which is the driving force to form compounds, and the mixing
entropy which is the driving force to form random solid solutions. At
elevated temperatures especially, the energy associated to the entropy of
the system becomes comparative to the mixing enthalpy and can impact the
formation. In summary, the overall concept of high-entropy alloys is that
through alloying a greater number of elements, the gain in configurational
entropy of the system prohibits the formation of intermetallic compounds,
in favor of random solid solution. The random term simply relate to
the various components occupying lattice positions based on probability.
In fact, a narrower definition of high-entropy alloys would be structures
with a single-phase disordered solid solution. The two "definitions" given
previously, can be considered as guidelines for the latter.

Although the mixing entropy mentioned above plays a central role in
the formation, there are other factors to consider that can either favor or
oppose the formation of a single disordered phase. One of these is the
atomic size effect, which is related to the differences in atomic size between
constituents in the alloy. This quantity is denoted δ. Y. Zhang et al. in 2008
illustrated the relationship between ∆Hmix and δ. When δ is very small,
in other words when the alloys are comprised of elements with similar
atomic sizes, the elements have an equal probability to occupy lattice sites
to form solid solutions, but the mixing enthalpy is not negative enough to
promote formation of solid solution. Increasing δ results in greater ∆Hmix,
but leads to a higher degree of ordering. The formation of solid solution
high-entropy alloys occur in a narrow range of δ values, that satisfy both
the enthalpy of mixing and the disordered state. Recently, Yang and Zhang
proposed the parameter Ω to evaluate the stability of high-entropy alloys.
This quantity is a product of the melting temperature Tm, mixing entropy
and mixing enthalpy in the following relation

Ω =
TmδSmix

|∆Hmix|
. (2.3)

They found that the formation of single disordered solid solution occurs
at Ω ≥ 1.1 and δ ≤ 6.6%, while compounds such as intermetallics form for
greater values of δ and lesser values of Ω. Similarly, replacing the atomic
size effect with the number of elements results in an equivalent condition.
These findings are summarized in figure 2.1.
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(a) HEA formation based on Ω and the atomic size effect δ

(b) HEA formation based on Ω and the number of consituents N

Figure 2.1: Formation of HEAs based on Ω = TmδSmix
|∆Hmix| ., the atomic size effect

δ, and number of constituents N. Figures adopted from [11]

An important quantity in terms of characterizing high-entropy alloys,
is the total number of valence electrons VEC. Derived from the work of
Guo et al. on the phase stability of the AlxCrCuFeNi2 HEA, the VEC can
be directly related to the crystal structure of high-entropy alloys. A lower
VEC stabilize the BCC phase, while higher values stabilize FCC, in between
is a mixture of the two. Specifically values greater than 8.0 stabilize FCC,
and values bellow 6.87 favor BCC. However, these boundaries are not rigid
when including elements outside of transition metals, exceptions has also
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been found for high-entropy alloys consisting of manganese. Although a
heavy majority of reported high-entropy alloys that form solid solutions
has been found to adopt simple cubic structures, such as FCC and BCC.
In addition to the high-entropy silicides mentioned in the introduction,
recent studies has reported HEAs in less symmetric structures, such as
CoFeMnTixVyZrz, CrFeNiTiVZr and CoFeNiTi in HCP, as well as the
Ti35Zr27.5Hf27.5Ta5Nb5 HEA in the orthorhombic crystal system.

2.2 Core effects and properties

In this section, we will summarize the discussion above into four core
effects that can be used to explain high entropy alloys, and discuss
some of the properties observed in various HEAs. The first core effect
is called the "high-entropy effect", as explained in the previous section
the high configurational entropy of HEAs compared to traditional solids
or even binary alloys is central to stabilize the disordered phase ahead
of intermetalic or strongly ordered structures. This effect can result in
enhanced strength and ductility. From considerations of Gibbs free energy,
we see that this effect is most prominent at elevated temperatures.

The second effect is the "severe lattice distortion effect" that arises from
the fact that every element in a high-entropy structure is surrounded by
non-homogeneous elements, thus leading to severe lattice strain and stress.
The overall lattice distortion is additionally attributed to the differences
in atomic size, bonding energies and crystal structure tendencies between
the components. Therefore, the total lattice distortion observed in HEAs
are significantly greater than that of conventional alloys. This effect
mostly affects the strength and conductivity of the material, such that a
higher degree of distortion yields greater strength and greatly reduces the
electronic and thermal conductivity due to increased electron and phonon
scattering. An upside to this is that the scattering and following properties
become less temperature dependent given that it originates from the lattice
rather than thermal vibrations. The concept of lattice strain in high-entropy
alloys can be visualized as in figure 2.2.

The two remaining effects, "sluggish diffusion" and "cocktail effect" can
be summarized swiftly. The first is a direct consequence of the multi-
component layout of high-entropy alloys that results in slowed diffusion
and phase transformation because of the number of different elements that
is involved in the process. The most notable product from this effect is
an increased creep resistance. Lastly, we have the cocktail effect which
is identical to the smoothie analogy mentioned previously, in that the
resultant characteristics of a high-entropy alloy is a combination of both
the individual elements and their interplay. This is possible the most
promising concept behind high-entropy alloys, which fuels researchers
with ambitions to discover highly optimized materials by meticulously
combining and predicting properties from different elements. Examples
of this can be the refractory HEAs developed by the "Air Force Research
Laboratory" that significantly exceeded the melting points and strength of
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Figure 2.2: A schematic illustration of lattice distortion in high-entropy
alloys, compared to conventional materials. Figure from [14].

previous Ni or Co-based superalloys, by alloying specifically refractory
elements such as Mo. Nb and W. Another example is the research
conducted by Zhang et al. on the high-entropy system FeCoNi(AlSix), with
(0 < x0.8). In this HEA it was found that increased amount of either Al or
Si lowered the saturation magnetization of the alloy. By tuning the relative
amounts, it was found excellent properties for an x = 0.2 HEA in terms
of the magnetization, electrical resistivity and yield strength to produce a
promising soft-magnet. The same was also found in Al0–2CoCrFeNi HEAS,
where the addition of Al reduced the ferromagnetism of the alloy, and
in CoCrCuFeNiTix alloys where x = 0 was paramagnetic and x > 0.8
showed superparamagnetic properties. In general we find that that the
saturation magnetism is mostly dependent on the contents and distribution
of ferromagnetic elements such as Fe, Co and Ni while the addition of
anti-ferromagnets like Cr could be difficult to predict. For example in the
ferromagnetic HEA CoFeMnNiX, X = Al, Cr, Ga, Sn, studied in [15], Mn
pushed the material to the ferromagnetic phase, meanwhile addition of Cr
pushed the material to a paramagnetic phase. Likewise in the equimolar
system of CrMnFeCoNi [16], the local magnetic moment of Cr was found
to align antiferromagnetic, and the ferromagnetic character was attributed
to local magnetic moments around Fe and Mn.

As we have seen from the above examples, what makes high-entropy
alloys a particularly interesting and promising field, is that they possesses
the ability to be tuned for specific applications and properties, by testing
specific combinations and distributions of different elements. In many
ways, not indifferent to a smoothie or a cocktail.
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Chapter 3

Modeling of random alloys

The disordered structure of high-entropy alloys, in which the alloying ele-
ments occupy lattice sites by a random probability, pose a problem on con-
ventional numerical methods. Density functional theory in particular rely
heavily on the periodicity of crystalline solids, as we will discover later. In
a brute force approach, this could be solved by randomly distribute the
solute and solvent atoms over the lattice sites of a large supercell, and
average the energy and related properties over a large number of such
supercells with varying distributions. Obviously, despite of the compu-
tational means accessible today, this approach is far too computationally
demanding. Today, there exists a number of possible methods to more ef-
ficiently study such structures. Examples are the Virtual Crystal Approx-
imation (VCA), Coherent Potential Approximation (CPA), Special Quasi-
random Structure (SQS), and hybrid Monte-Carlo/Molecular Dynamics.
(MC/MD). A brief overview of the different methods are given in for ex-
ample [17]. In this project, we will employ the SQS method due to both easy
to use implementation and interpretation in the computational framework
of this project, in addition to other benefits that will become clear after the
following sections.

3.1 The Special Quasi-random Structures method

In the original paper published in 1990 describing the SQS method [18],
it was proposed a selective occupation strategy to design special periodic
quasi-random structures that exceeded previous methods in both accuracy
and cost. The key concept was to create a periodic unit cell of the various
components in a finite N lattice site single configuration such that the
structure most closely resemble the configuration average of an infinite
perfect random alloy. In an attempt to work under the 50 lattice sites
boundary of ab initio methods at that time, the working theory was that
if one can resemble an infinite perfect random alloy by a periodic finite N
cell, also the electronic properties would be similar between the two. The
solution to this problem, was that for each N, ie lattice site, to minimize
the difference of structural correlation functions between the approximated
cell and the perfect random alloy. There are obviously errors involved with
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approximating a random alloy by a periodic structure, but by a hierarchical
relation to the properties of the material, interactions between distant sites
offer negligible small contributions to the total energy of the system. Thus,
the aim of the SQS method is focused around optimizing the correlations
within the first few shells of a given site.

3.1.1 Mathematical description

Below we give a summary of the mathematical description of the special
quasi-random structures method, and cover various statistical methods
and notations. For a more comprehensive discussion on these topics and
the SQS method, we refer the reader to the article "Electronic properties of
random alloys: Special quasirandom structures", by Wei [18].

The different possible atomic configurations are denoted σ. The
physical properties of a given configuration is E(σ), and < E > is the
ensemble average over all configurations. In practice, this quantity is
unfeasible in terms of computational cost, seeing as the average require
calculations and relaxations of all possible configurations, for a binary alloy
this is 2N for a fixed N number of lattice sites. A solution to this is to use the
theory of cluster expansions and discretize each configuration into "figures"
f . A figure in the lattice is defined in terms of the number of atoms at each
vertex k, the order of neighbor distances separating them m, and position
in the lattice l. Further, each site in the figure is assigned a spin value Ŝi
to denote which element it holds (+1,-1 for a binary alloy). By defining the
spin product of spin variables in a figure at lattice position l as Π f (l, σ), we
can write the average of all locations in the lattice of a given figure f as

Π f (σ) =
1

ND f
∑

l
Π f (l, σ), (3.1)

where D f is the number of equivalent figures per site. The brilliance of this
notation is that we now can express the physical property E(σ) in terms of
the individual contributions ε f of a figure f .

E(σ) = ∑
f ,l

Π f (l, σ)ε f (l) (3.2)

The quantity ε f is called the "effective cluster property" and is defined as
(for a random binary alloy A1−xBx)

ε f (l) = 2−N
2N

∑
σ

Π f (l, σ)E(σ). (3.3)

Inserting the equation for Π f into that of E(σ), we can describe the previous
cluster expansion of E(σ) as

E = N ∑
f

D f < Π f > ε f . (3.4)

Thus, we have successfully managed to reduce the expensive task of
sampling all E(σ) into calculating the effective cluster properties and
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summing over all types of figures. Remembering that E(σ) can relate to
many physical properties, the most common and applied case is that E(σ)
is the total energy, while ε f are the many body interaction energies. The
cluster expansion above converge rather quickly with increasing number
of figures, an effective method is thus to select a set of configurations to
evaluate the effective cluster properties. The next step is to select a finite
largest figure denoted F, and "specialize" the cluster expansion to a set of
Ns periodic structures σ =s to obtain the two expressions for E(s) and ε f
using matrix inversion to obtain the result for ε f :

E(s) = N
F

∑
f

D f Π f (s)ε f (3.5)

ε f =
1

ND

Ns

∑
s
[Π f (s)]− 1E(s) (3.6)

Assuming now that the sum of figures F and Ns periodic structures are well
converged, E(σ) can be rewritten as a superposition of E(s) as

E(σ) =
Ns

∑
s

ξs(σ)E(s) (3.7)

ξs(σ) =
F

∑
f
[Π f (s)]−1Π f (σ), (3.8)

where ξ are the weights. Hence, we have effectively reduced the problem
to a convergence problem of the number of figures F and structures Ns.
This can be easily solved given that we are dealing with periodic crystal
structures s that can employ the general applications of ordered structures
from ab initio methods, and increasing F until the truncation error falls
bellow a desired threshold. However, this approach requires that the
variance of the observable property is much lower than the sample mean,
otherwise one would have to employ a much bigger sample size to reach
statistical convergence. Because of the different relationships between
various physical properties and the correlation functions, one observe
different convergence depending on the meaning of E. The idea behind
SQS was therefore to design single special structures with correlation
functions Π f (s) that most accurately match those of the ensemble average
of a random alloy < Π f >R.

The correlation functions of an perfect random infinite alloy, denoted as
R is defined as

Πk,m(R) =< Πk,m >R= (2x− 1)l , (3.9)

with k, m defined as before and x as the composition ratio of the alloy. In
the case of an equimolar alloy (x = 1

2 ), the functions equals 0 for all k
except < Π0,1 >R= 1. If we now randomly assign either atom A or B
to every lattice site, for a sufficiently large value of N, the goal is then to
create a single configuration that best match the random alloy. Keeping
with the x = 1

2 case, the problem is now that even though the average
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correlation functions of a large set of these structures approaches zero, like
for the random alloy. The variance of the average is nonzero meaning that
a selected structure of the sample is prone to contain errors. The extent of
these errors can be evaluated from the standard deviations

νk,m(N) = | < Π2
k,m > | 12 = (Dk,mN)−

1
2 . (3.10)

Given the computational aspects, its obvious that economical structures
with small N are prone to large errors. In fact, in some cases these errors
can result in correlation functions centering around 1, as opposed to 0 for a
perfect random alloy.

The degree to which a structure s fails to reproduce the property E of
the ensemble-averaged property of the random alloy can be described by a
hierarchy of figures

< E > −E(s) =
′

∑
k,m

Dk,m[(2x− 1)k −Πk,m(s)]εk,m, (3.11)

the prime is meant symbolize the absence of the value 0, 1 for k, m. The
contribution from the figure property ε is smaller in larger figures. In
disordered systems the physical property "E" at a given point R falls of
exponentially as |R− R′|/L, where L is a characteristic length scale relating
to the specific property. Using this, the approach of SQS is to specify a set
of correlation functions that hierarchically mimic the correlation functions
of the random alloy. Meaning that it prioritize the nearest neighbor
interactions. With the set of functions decided on, the objective it finally
to locate the structures that correspond to the selected structures.

With this approach, [18] managed by mimicking the correlation
functions exact for the first two shells, to reduce the computational
measures of an accurate model. In this exact study, they matched the results
of an N → ∞ alloy, by an N = 8 SQS. In the final section of this chapter, to
recover from this lengthy mathematical derivation, we will take a look at
recent advances made to the special quasi-random structures method and
applications to high-entropy alloys.
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3.1.2 Applications to high-entropy alloys

The success of the SQS method is in large part related to to the fact that we
can create simple periodic structures, this allows for the use of standard
DFT methods to calculate properties such as the total energy, charge
density and electronic band structure [19], [20]. Despite for the method
being developed in mind of a binary random alloy, the approach has
successfully been extended to multi-component alloys as well. However,
certain obstacles arise when trying to apply the SQS model to high-entropy
alloys. An exhaustive analysis discussing several of these factors and
comparing the SQS method to alternative methods is presented in [21], by
M.C Gao et al. In this section we will go through some of the major findings
of his research.

The first initial concern is the size of the supercell. This parameter
needs to be balanced between accuracy and cost. A larger SQS cell
consisting of a greater number of atoms better encapsulate the disordered
structure of HEAs, but both the generation and simulation of such large
SQSs come with an increased computational cost. M.C Gao discovered a
sensitivity between the registered stability and predicted crystal structures
of CoCrFeNi and CoCrFeMnNi HEAs, and the SQS size. Experimentally,
both of these are stabilized in FCC. By calculating the enthalpy of
formation, it was found that SQSs consisting of less than 64 atoms wrongly
predicted the HCP structure as the most stable structure, while larger SQSs
correctly predicted the FCC structure. Furthermore, similar outcomes was
found with respect to the pair distribution functions of the CoCrFeMnNi
HEA as well. This is displayed in figure 3.1, where the Cr-Mn bond is
clearly much better modeled in the larger SQS model.

(a) 20 atom SQS (b) 250 atom SQS

Figure 3.1: Pair distribution functions of (a) 20-atom and (b) 250-atom SQSs
of CoCrFeMnNi. Figure adopted from [21].

It was also observed a similar dependence to the SQS size for the
entropy and mechanical properties, however these topics are not relevant
for this project and will thus not be elaborated further.

Compared to hybrid Monte-Carlo/Molecular Dynamics, we observe
from the density of states of the CoCrFeMnNi HEA (figure 3.2), that the
SQSs method measures up very well with the much more complicated
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method. Furthermore, the SQS method yields comparative outcomes in
terms of the pair distribution functions to MC/MD, as seen in figure 3.3 for
HCP CoOsReRu.

Figure 3.2: Density of states of FCC CoCrFeNi with MC/MD and SQS.
figure adopted from [21].

Figure 3.3: Pair distribution functions of HCP CoOsReRu, from MC/MD
and SQS simulations. Figure adopted from [21].

The discrepancy in the PDFs between MC/MD simulations and SQS,
arises from the fact that SQS fails to include inter-atomic interactions and
preferences to the same extent as MC/MD. This is seen in figure 3.3 for the
HCP CoOsreRu alloy, in which clear preference of Co-Os and Re-Ru pairs is
apparent from MC/MD simulations but not in the SQS model. Compared
to the Coherent Potential Approximations, there is indication that the SQS
method is less equipped for dealing with specific compositions such as
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A1/3BCDE structures, and notably worse performance for paramagnetic
materials.

We have seen up until this point that the SQS method utilizes
an intelligent approach which allows for simple implementation and
calculations while providing results mostly on par to other more intricate
and complex methods. One distinct factor concerning SQS that does not
apply for CPA and MC/MD, is that one compound can obtain a number
of unique configurations (SQSs). For example, quaternary and quinary
alloys make for 24 and 124 unique configurations respectively, resulting
in an uncertainty of the energy regarding the different configurations. This
effect is most prominent in anisotropic lattices such as HCP and alloys with
chemically dissimilar constituents, and particularly in smaller SQSs.

Despite of its flaws, especially in recent years SQS have emerged as
a viable and trusted method of modeling disordered structures such as
HEAs. This is down to both the increasingly available computational
power and improvements to the SQS method. The latter in particular saw
a boost in 2013 with the introduction of the MC-SQS method [22], short
for Monte-Carlo Special Quasirandom Structures. Contrary to the original
SQS method that seeks to minimize the difference between the correlation
functions of the approximated cell and the true random alloy, this method
employ monte-carlo simulations to perfectly match a maximum number
of correlation functions. Furthermore, emphasizes an efficient and fast
implementation in addition to an exhaustive unbiased search of possible
atomic configurations. Following, this is the preferred and most widely
used implementation of the SQS method. This has resulted in an increased
number of studies utilizing SQSs to investigate high-entropy alloys in
recent times, for instance [23], [24], [25], and [26].
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Chapter 4

Density Functional Theory

The density functional theory (DFT) is recognized as an overwhelmingly
successful and important theory in quantum chemistry and the overall
study and understanding of materials. As illustrated in figure 4.1, this
is a increasingly popular method with rapid growth to this day due
to improvements to both the method and computational power. The
overarching goal of DFT is to efficiently solve the many-body Shrödinger
equation, therefore we begin this section by reviewing central concepts
of quantum mechanics such the Shrödinger equation and the various
approximations one can apply to it. Next, follows a derivation of the
Kohn-Sham density functional theory, and finally we discuss some of the
limitation of the DFT. The content in this section is based on the lecture
notes from the course FYS-MENA4111 - "Quantum Mechanical Modeling
of Nanomaterials" at the University of Oslo, written by Clas Persson [27],
and the book "A practical introduction to DFT", by Sholl [28].

Figure 4.1: Number of DFT studies per year from 1980 to 2021. Gathered
from [29].

16



4.1 Review of Quantum Mechanics

4.1.1 The Shrödinger equation

The fundamental equation that describes a material at microscopic level is
the Shrödinger equation. The time-dependent Shrödinger equation for one
electron is

ih̄
∂

∂t
Ψ(r, t) = Ĥ(r, t)Ψ(r, t), (4.1)

which consists of the the wavefunction Ψ(r, t) to describe the electron,
and the Hamiltonian Ĥ(r, t) where r and t are the spatial position and time.
The Hamiltonian describes the total energy of the system by a kinetic part
T = −h̄2∇2

2me
, where me is the electron mass and h̄ is the Planck constant, and

a potential energy operator U, typically an external potential denoted as
Vext(r, t).

Eigenfunctions of the Hamiltonian are denoted as ψκ(r, t), with an
energy eigenvalue εκ for the κ eigenstate. Above we included the time-
dependent Shrödinger equation, but almost all cases involving Quantum
physics employ rather the time-independent Shrödinger equation in which
the external potential is independent of time. This equation is described in
equation 4.2 for the eigenvalues Ek of the k-th eigenfunction ψk(r) as(

− h̄2∇2

2me
+ Vext(r)

)
ψκ(r) = Ekψk(r). (4.2)

Solving the single electron time-independent equation often results in
infinite eqienstates that an electron can occupy. The most probable state
to find the electron in is the lowest energy state called the ground state,
this state is indicated by κ = 0. Extending to a system comprised of
multiple particles we have the many-body wavefunction Ψen in equation
4.3 and the many-body Hamiltonian Hen in equation 4.4. In the many-
body wavefunction rj represents the coordinates of the j:th electron and
likewise Rα describes the coordinates of the α:th nucleus, and the subscript
"en" indicates that both electrons and nuclei are considered.

Ψen(r, R) = Ψen(r1, r2, . . . rNe , R1, R2, . . . RNn). (4.3)

The many-body Hamiltonian accounts for the kinetic energy Te of Ne
electrons, the interaction energy between electrons Uee, the kinetic energy
of Nn nuclei, the coulomb interaction between nuclei Unn, and finally the
attractive interaction between nuclei and electrons Uen, in final:

Hen = −

Te︷ ︸︸ ︷
Ne

∑
j=1

h̄2∇2
j

2me
−

Tn︷ ︸︸ ︷
Nn

∑
α=1

h̄2∇2
α

2mn
+

Uee︷ ︸︸ ︷
Ne

∑
j=1

∑
j′<j

q2

|rj − rj′ |

+
Nn

∑
α=1

∑
α′<α

q2ZαZα′

Rα − Rα′︸ ︷︷ ︸
Unn

−
Ne

∑
j=1

Nn

∑
α=1

q2Zα

|rj − Rα|︸ ︷︷ ︸
Uen

.

(4.4)
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Combining the many-body wavefunction and the many-body Hamilto-
nian we get the many body Schrodinger equation with total energy eigen-
value Een

κ of the whole system in eigenstate κ as

HenΨen
κ (r, R) = Een

κ Ψen
κ (r, R). (4.5)

4.1.2 Approximations to the many-body Shrödinger equation

The first step to solving the many-body problem is how the many body
wavefunction depends on the single electron wavefunctions. If we consider
a simplified system consisting of just two electrons, the problem is reduced
to finding Ψκ(r1, r2) that is a function of ψ1(r1) and ψ2(r2). In the Hartree
approach this is solved by assuming that the two electrons are independent
of each-other and employ variable separation to express the two particle
wavefunction as

Ψκ(r1, r2) = ψ1(r1)ψ2(r2). (4.6)

The flaw of the Hartree approach is that the electrons, which are
fermions, in this formulation are distinguishable and hence does not obey
the Pauli exclusion principle of fermions. This is corrected in the Harte-
Fock approximation which introduces a spin function χmp(s1, s2) to to make
it anti-symmetric with respect to the particle coordinates. The Hartree-Fock
approximation is expressed as

Ψκ(r1, r2) =
1
2
{ψ1(r2)ψ2(r2)± ψ1(r2)psi2(r1)} χ∓(s1, s2). (4.7)

The difference in energy from the improved wavefunction in Harte-
Fock compared to the Hartee approximation is called the exchange energy.
Note however that Hartee-Fock is not a complete description either as it
fails to model the electron correlations. For the next step we need to make
use the variational principle. This is an efficient method for finding the
ground state properties of a system. The method states that the energy of
any trial wavefunction will always be higher than the ground-state energy
E0, ie

E0 = 〈ψ0|H|ψ0〉 ≤ 〈ψ|H|ψ〉 = E. (4.8)

This enables us to find the ground state energy and corresponding
wavefunction by a minimization technique. We will apply the variational
principle to find the ground state energy Ψ0(r1, r2) of a two electron
Hartree problem. Here we skip the derivation and mechanism behind the
variational principle and simply state the final product. In final, the Hartree
single-electron equation is defined as

[
− h̄2∇2

2me
+ VH(r)−VSI(r) + Vext(r)

]
ψj(r) = εjψj(r), j = 1, 2. (4.9)
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Furthermore ,the total energy can be calculated by

E = ∑
j

εj −
1
2

∫
(VH(r)−VSI(r)) n(r)dr. (4.10)

In the above expressions VH and VSI are the Hartree potential and
the self-interaction potential. The self-interaction potential is subtracted
to account for that an electron can not interact with itself. The above
statements can also be applied for Hartree-Fock systems and is easily
extended to a NE electron problem by setting j equal to j = 1, 2, . . . Ne. In
this case its common to also include the self-interaction term to simply the
calculations by making the total potential equal for all electrons, however
this introduces a self-interaction error in the approximation. Moreover,
by employing the variational principle, the many body equation has been
transformed to a set of single electron equations. The use of the variational
principle means that this expression is valid only for the ground state of
the system.

A second essential approximation to the many-body equation is the
Born-Oppenheimer approximation. Given that the electron mass is
negligibly small in comparison to that of a nuclei, we can treat the nuclei
as point charges, enabling us to divide the eigenfunction into a separate
electronic and nuclear part

Ψen
k (r, R) ≈ Ψk(r, R).Θk(R), (4.11)

In equation 4.11, Ψk(r, R) is the electronic part and Θk(R) the nuclear
part. The R dependence in Ψk(r, R) originates from the fact that electrons
can respond instantaneously to updated positions of the nuclei. Writing
this in terms of the Hamiltonian yields

(Te + Uee + Uen)Ψk(r, R) = Ek(R)Ψk(r, R) (4.12)
(Tn + Unn + Ek(R))Θ(R) = Een

k (R)Θk(r, R). (4.13)

We observe that the two sections are interrelated through the electronic
energy Ek(R). Furthermore, the left hand side of the nuclear part can
be simplified to Unn + Ek(R), assuming that the kinetic energy of point
charges is zero.

4.2 Kohn-Sham density functional theory

With the Hartree, Hartree-Fock and Born-Oppenheimer approximations
we are finally ready to tackle the many-body Shrödinger equation.
However, despite the aforementioned approximations one can apply,
the many-body equation still pose a few obstacles to overcome both
numerically and theoretically. The first of which is how the immense
number of terms in equation 4.5 can be handled in a numerical manner.
As an example, a material of volume equal to 1cm3 contain about 1023

nucleus and electrons which makes for nearly 1040 terms to solve. A
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Second and more present concern is how the many-particle wavefunction
Ψen depend on the single-particle wavefunctions, and how we can operate
the Hamiltonian on Ψen. This is where the density-functional theory enters.
When people mention DFT today, most of the time they refer Kohn-Sham
density functional theory, that combines the concept of the original density
functional theory with the Kohn-Sham equation.

4.2.1 Density functional theory

The density functional theory was developed by Hohenberg and Kohn in
1964 and centers around the ground-state density of a system, expressed as

n0(r) = |Ψ0(r)|2. (4.14)

The working principles of DFT is outlined in two theorems known as
the Hohenberg-kohn theorems:

1. "All ground-state properties of the many-body system are determ-
ined by the ground state density n0(r). Each property is thus a func-
tional f[n] and the ground-state property is obtained from f [n0]".

2. "There exists a variational principle for the energy density functional
such that, if n is not the electron density of the ground-state, then
E[n0] < E[n]."

The first theorem states that the ground-state properties of a system
can be determined uniquely from the ground-state density, thus the
computational complexity of solving the many-body equation with 3Ne
variables is reduced to a problem comprised of just 3 variables (x, y, z) from
the density. While the second theorem provides a method of finding the
ground-state density. The total energy of the system can thus be expressed
as a functional of the density

E[n] = F[n] +
∫

Ven(r)n(r)dr, (4.15)

where F[n] = T[n] + Uee[n] make up the Hohenberg-Kohn functional
and

∫
Ven(r)n(r)dr) = Uen[n]. Note that F[n] is independent of the external

potential, hence it is universal for all systems.

4.2.2 The Kohn-Sham Equation

The working principle of Kohn-sham density functional theory is to utilize
the Kohn-Sham equation to determine the ground-state density, and then
invoke the theorems of DFT to find the ground state energy. The Kohn-
Sham approach begins by approximating the many-particle wavefunction
by Hartree type functions

Ψ(r1, r2, .., rNe) = ψKS
1 (r1)ψ

KS
2 (r2)...ψKS

Ne
(rNe), (4.16)
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where ψKS
j are auxiliary independent single-particle wavefunctions.

This means that the density can be calculated as

n(r) =
Ne

∑
j=1
|ψKS

j (r)|2. (4.17)

The idea behind the Kohn-Sham equation is to now rewrite the energy
expressed in equation 4.15 as

E[n] = Ts[n] + Us[n] + Uen[n] +
{
(T[n]− Ts[n]) + (Uee[n]−Us[n])

}
,

(4.18)
with the "s" subscript relating to that the wavefunctions are the

auxiliary single-particle wavefunctions, as described above. The enclosed
term in equation (4.18) is known as the exchange-correlation energy Exc
of the system, defined as Exc[n] = ∆T + ∆U. This quantity contains the
leftover energy between the exact energy and the energy corresponding to
the simpler terms Ts[n] + Us[n] + Uen[n]. This means that the exchange-
correlation must account for the more complex energies corresponding
to the many-electron interaction, the self-interaction term, and a kinetic
energy part. Thus, if Exc is exact, so is the total energy. In full, we can
write the energy functional as:

E[n] =

Ts[n]︷ ︸︸ ︷
∑

j

∫
ψKS∗

j
−h̄2∇2

2m
ψKS

j dr +

Us[n]︷ ︸︸ ︷
1
2

∫ ∫
q2 n(r)n(r′)
|r− r′| drr′

+
∫

Ven(rn(r)dr︸ ︷︷ ︸
Uen[n]

+ (T[n]− Ts[n]) + (Uee[n]−Us[n])︸ ︷︷ ︸
Exc[n]

. (4.19)

Analog to how we derived the single-particle Hartree equation, the
single-particle Kohn-Sham equation can be derived with the variational
principle to yield{

− h̄2

2me
∇2

s + vH(r) + Ven(r) + Vxc(r
}

ψKS
s (r) = εKS

s (r)ψKS
s (r). (4.20)

The ground-state density in equation 4.17 can now be calculated by
solving the single-particle Kohn-Sham equation for all ground state single
electron wavefunctions. Finally, we arrive at the total ground-state energy
of the system

E[n] = ∑
j

εKS
j −

1
2

∫
VH(r)n(r)dr + Exc[n]−

∫
Vxc(r)n(r)dr, (4.21)

where Vxc(r) =
∂Exc[n]

∂n is the exchange-correlation potential. This is the
Kohn-Sham density functional theory.
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4.3 Limitations of DFT

Obviously, the biggest drawback of the density functional theory is
that to this day we still don’t have the exact form of the exchange-
correlation energy. From the above derivations we recognize that this
term must account for several complex properties, such as the many-
body interaction and large amounts of kinetic energy. Additionally the
exchange-correlation energy must also include the self-interaction error
from applying Hartree-like wavefunctions in the Kohn-Sham equation.
Furthermore, this functional should be applicable in any material, ie
metals, semiconductors, liquids and gasses. In the next section we will
look at some of the most commonly used approximations to Exc. These
approximate functionals range from low-complex and computationally
cheap methods such as LDA, to heavy computational methods such as
hybrid functionals. This is therefore seen as a disagreement between
the theoretical philosophy of the DFT and the practical application of it,
ie in practice one must adapt the functional first to the type of system
and intention, for example if one wants to study the band gap, or weak
Wan-Der Waals interactions. Secondly the functional must be chosen as a
compromise between accuracy and cost.

However, even if the exchange-correlation functional was expressed
exactly and efficiently implemented, DFT would still serve a couple of
drawbacks. For instance the Kohn-Sham eigenfunctions in equations 4.17
are not the true single-electron eigenfunctions, thus also the corresponding
eigenvalues are not exact even with an exact expression of Exc. Meaning
that the band gap obtained from the eigenvalues is in nature inexact. In
fact, the estimation of the band gap of semiconductors is one of the major
short-comings of DFT. In addition to the eigenvalue problem, the band
gap is also subject to underestimation from a self-interaction term that
over-delocalize the occupied states and hence pushes them up in energy,
effectively reducing the band gap [30]. More advanced topics regarding the
under-estimation of the band gap in semiconductors from DFT calculations
can be read about in [31], by John P. Perdew and Mel Levy. Additionally,
DFT also have difficulties in simulating weak long-range Wan-der Waal
attraction [32], due to an emphasis on primarily the local density.

More practical limitations of DFT include factors such as the cal-
culations not being variational with respect to the functional, meaning
that a more complex functional does not guarantee higher accuracy [33].
Moreover the calculations of DFT only deliver a local minimum, in other
words the calculations only return the most stable energy for the given ini-
tial settings and parameters. An example of this is when studying mag-
netic materials, where the total energy of a DFT calculation vary between
each magnetic configuration of the material, meaning that to obtain the
true ground-state energy one must perform an exhaustive search of all pos-
sible/probable magnetic orderings. Similar is also the case when compar-
ing crystal structures and geometric features of materials. Finally, despite
the possibility of simulations of excited states exists today, DFT in its ori-
ginal formulation is only valid for the ground state. Thus, these calcula-
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tions has a lesser theoretical footing in comparison.
Nevertheless, DFT is still considered a widely successful method and

accordingly Walter Kohn and John A. Pope won the Nobel prize in
chemistry in 1998; "to Walter Kohn for his development of the density-
functional theory and to John Pople for his development of computational
methods in quantum chemistry." [34]
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Part II

Method
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Chapter 5

Practical aspects of DFT

5.1 The Exchange-Correlation functional

From the topics covered in chapter 4 we know that the missing piece of
the density functional theory is the complex exchange-correlation energy
Exc[n], that must account for all the simplifications and approximations
employed in Kohn-Sham DFT. In this section we will explore some of
the most commonly used approximations to the exchange-correlation
functional that we apply in this project. Specifically, we will look at 4 levels
of complexity: first is the local density approximation (LDA), followed by
the generalized gradient approximation (GGA). These two are the least
complex and most computationally affordable approximations to Exc[n].
Next, are the meta-GGA functionals and finally the very accurate, but
equally demanding hybrid-functionals.

Figure 5.1: Jacob’s ladder, developed by Perdew. Illustrating the relation-
ship between accuracy and complexity of different exchange-correlation
functionals. Figure from [35].

In addition, we have methods such as DFT+U, the Minnesota func-
tionals, double hybrids and more, but these are outside the scope of this
project. The different methods mentioned above of increasing complexity
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and accuracy, are often referred to as steps in Jacob’s ladder. This illustra-
tion/analogy of the different functionals was developed by Perdew [35],
the ladder is illustrated in figure 5.1.

5.1.1 Local density approximation

A homogeneous electron gas (HEG) is the sole case we know of where the
exchange-correlation functional can be determined exactly, because in this
simple case the electron density is constant. The LDA works by setting the
exchange-correlation potential VXC(r) at every position equal to that of the
homogeneous electron gas [27], ie

VXC(r) = VHEG
XC [n(r)]. (5.1)

Obviously the LDA is of limited use given that a large part of what
makes materials interesting is the variation in the electronic density [28].
For example, the LDA is well-known to both overestimate binding energies
and underestimate the band gap of semiconductors and insulators. On the
other hand, LDA generally provides adequate results of properties such as
equilibrium distances and vibrational frequencies in bulk materials with
slowly varying charge density. The biggest upside of LDA however, comes
from the low computational cost, and was one of the first big success-stories
with respect to practical applications of DFT.

5.1.2 Generalized gradient approximation

A natural succession to the local density approximation is the family of
generalized gradient approximation (GGA) that also includes the gradient
of the electron density

VGGA
XC (r) = VXC[n(r),∇n(r)]. (5.2)

The ways one can implement the gradient are plenty-full and complic-
ated. Two of the most common methods are the Perdew-Wang 91 (PW91)
[36] and the Perdew-Burke-Ernzerhof (PBE) GGA [37]. This project will
utilize the latter, which came to fruition in 1996 in an article by Perdew,
Burke and Ernzerhof appropriately named "Generalized Gradient Approx-
imation Made Simple". The key point regarding the PBE functional is that
it’s a non-empirical method thus providing reliable and adequate accur-
acy over a wide range of systems, as compared to for instance the BLYP
functional that provides excellent accuracy of organic molecules but fails
in other cases [38].

5.1.3 Meta-GGA

Meta-GGA functionals are the final level of complexity of the non-empirical
approximations to the exchange-correlation functional. In addition to the
constant density (LDA) and local gradient of the density (GGA), meta-GGA
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methods consider the kinetic energy density of the occupied Kohn-Sham
orbitals [39]

τω =
occ

∑
i

1
2
|∇ψi,ω |2. (5.3)

The importance of this quantity on the band gap is well described in
[40]. In this project we employ a meta-GGA functional named Strongly
Constrained Appropriately Normed, or SCAN. This functional is the only
known functional to satisfy all 17 known exact constraints of the XC
functional [41]. There is indication of that the SCAN functional provides
superior accuracy of energies and geometries, especially in diversely
bonded structures [42], and of improved accuracy of band gaps and
the electronic density of states compared GGA and LDA functionals
[43]. On the other, it delivers overall less accurate band gaps compared
to other meta-GGA functionals such as the modified Becke-Johnson [44].
Unfortunately, MBJ proved too difficult to converge for the particular
materials in this project.

5.1.4 Hybrid functionals

The most accurate functional we employ in this project belongs to the
family of hybrid functionals. This method consists of a hybrid between
simpler functionals such as LDA, PBE or even meta-GGA and the exact
treatment of exchange energy from Hartree-Fock, for example the global
hybrid functional PBE0 [45] described as

EPBE0
xc = (1− α)EPBE

x + αEHF
x + EPBE

c , (5.4)

where α is the mixing parameter to decide the balance between the
exchange energy, denoted x of Hartree-Fock with PBE. Similarly the last
term represents the correlation energy from the PBE functional. This
parameter α is determined empirically, thus this is a semi-empirical
model. Heyd-Scuseria-Ernzerhof improved the accuracy of the model
by separating the Coulomb interaction into long-range and short-range
interaction by a function erfc(µr). These are known as HSE functionals [46],
one of the superior methods for accurate band gaps is the HSE06 hybrid
functional [47], with α = 0.25 and µ = 0.11.

5.1.5 Outlook

In many cases LDA and GGA suffice, PBE especially is by most considered
the conventional standard for DFT calculations, for its balance of accuracy,
cost and wide range applicability. However, distinctly concerning the
band gap of solids, both of these fall short. This is because the band gap
of DFT calculations is complicated by the fact that the derivative of the
XC-functional is discontinuous with respect to the electron concentration
[48]. Thus, the simpler functionals fails to recall the experimental values
since the total band gap in DFT is the fundamental gap (valence -
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conduction) plus this contribution. This is corrected in meta-GGA and
hybrid functionals in the generalized Kohn-Sham scheme. Lastly, we
would like to refer the reader to the work of Borlido et al. who in 2019
conducted an exhaustive investigation of the band gap of over 470 unique
compounds in order to benchmark the relative performance of several
of the available and widely used XC-functionals [49]. In this large-scale
project they found overwhelming confirmation that the HSE06 functional
followed closely by Modified-Becke Johnson are the superior functionals
for accurate band-gap calculations. Regarding the SCAN functional, in
several cases this yielded outputs very comparable to MBJ, and produces
much better formation energies than PBE, but tends to overestimate in
magnetic alloys. On the other side, both LDA and PBE resulted in 50%
and 30% underestimation of the band gap or in several cases miss-classified
compounds as metals. This was particularly evident in materials consisting
of Ni and other 3d elements.

5.2 Plane waves and reciprocal space

In this section, we will cover some of the practical factors that are important
to consider when performing DFT calculations. The two most central topics
are the energy cutoff parameter of plane waves, and the number of points in
reciprocal space. More details on these parameters and relevant examples
can be read about in [28].

The Shrödinger equation for a free electron has a simple analytic
solution ψk = Aeikr. In a crystalline matter with a periodic potential
V(r) = V(r + R), the single-electron wavefunction takes the form

ψk(r) = uk(r)eikr, (5.5)

where uk(r) is a Bloch wave with the periodicity of the crystal and eikr

is called a plane wave. Because DFT apply plane waves as basis functions
of the electronic density, DFT calculations are often referred to as plane
wave calculations. The Bloch wave is the sum of all plane waves with wave
vector equal to the reciprocal wave vector G, described as

uk(r) = ∑
G

cGeiGr, (5.6)

which gives us the final expression for ψk(r)

ψk(r) = ∑
G

ck+Gei(k+G)r (5.7)

Clearly, the infinite summation over all G required to evaluate the
wavefunction at a single point in reciprocal space is computationally
unfeasible. In order to reduce this computational burden, we can introduce
a maximum cutoff value of the energy Ecut. This is possible because
equation 5.7 is the solution of the Shrödinger equation with corresponding
kinetic energy
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E =
h̄2

2m
|k + G|2. (5.8)

Assuming that the lower energy plane waves can represent the density
adequately, we can limit the calculations to plane waves with energy less
than Ecut:

Ecut =
h̄2

2m
Gcut. (5.9)

Thus, we can reduce the infinitely large sum above to a much more
feasible calculation

ψk(r) = ∑
|k+G|<Gcut

uk+G(r)ei(k+G)r. (5.10)

The cutoff energy can be determined by performing a number of
calculations with different cutoffs and observe the convergence with
respect to the total energy and other relevant properties of the system.
Another important parameter to specify in DFT calculations is the number
of k-points. As seen in the above expression the wavevector k plays a big
role in DFT. An other case that is more convinient to calculate in k-space is
integrals of the form

g =
Vcell

(2π)3

∫
BZ

g(k)dk, (5.11)

for instance the density of states. Note that "BZ" indicates that the integral is
evaluated for all k in the Brillouin zone. This integral can be approximated
by evaluating it at a set of discrete k-points in reciprocal space and
summing over the points with appropriately assigned weights. A larger
set of points leads to more exact approximations. The method for selecting
k-points in reciprocal space was developed by Monkhorst and Pack in
1976, where one specifies a number of points in each dimension N1xN2xN2.
Recalling that reciprocal space is inverse to regular space, supercells with
equal and large dimensions converge at smaller values of N, and inversely
for cells of small dimension. The total number of k-points required for
converged calculations can be reduced by utilizing the symmetry of the
cell, in which we can exactly approximate the entire BZ by extending a
lesser zone through symmetry of the crystal lattice. This reduced zone is
named the irreducible Brillouin zone (IBZ).

The required number of k-points for a given calculation can be found
alike the cutoff energy by performing convergence tests with respect to the
total energy of the system. Metals in particular require a large number of
k-points because of discontinues integrals in the Brillouin zone around the
Fermi surface where the states discontinuously change from occupied to
non-occupied. To reduce the cost of this operation, there are two primary
methods: efficient sampling with the tetrahedron method, and smearing.
The idea behind the tetrahedron method is to use a discrete set of k-points
to fill the reciprocal space with tetrahedra and interpolate the function
within each tetrahedron such that the function can be integrated in the
entire space rather than at discrete points. The latter approach for solving
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discontinuous integrals is to smear out the discontinuity at the Fermi level
and thus transforming the integral to a continuous one. A good analogy
to this method is the Fermi-Dirac function, in which a small variable σ
transforms a step-function into a continuous function that can be integrated
by standard methods.

A final consideration to how DFT is applied in practice is how the
core electrons are handled. Tightly bound core electrons as opposed to
valence electrons, demand a greater number of plane-waves to converge.
The most efficient method of reducing the expenses of core-electrons
are so-called pseudopotentials. This method works by approximating
the electron density of the core electrons by a fixed density that mimics
the properties of true ion core and core electrons. This density is then
fixed for all subsequent calculations, in other words only considering the
valence electrons while regarding the core electrons as frozen in. Two
very popular pseudopotentials used in DFT are currently so-called ultrasoft
psudopotentials (USPPs) developed by Vanderbilt, and the projector
augmented-wave (PAW) method by Blöchl [50], [51].

5.3 Self-consistent field calculation

Preceding this section, we have looked at the fundamental theory of
DFT and its practical ability to model various materials. In Figure 5.2,
we illustrate the self-consistent field calculation scheme for how DFT
calculations are performed in practice. The initial problem posed by DFT
is that all properties rely on the density, and are thus dependent on each
other. For instance, the effective potential is dependent on the density,
which again is dependent on the eigenfunctions, that rely on the effective
potential again. The cleaver approach begins with an initial guess to the
density from which we can solve the Kohn-Sham equations and obtain the
corresponding eigenfunctions. Following is an iterative method where we
apply the recently calculated eigenfunctions to determine a new density
and repeat the procedure above. This is repeated until the total energy is
converged, by an own-defined criterion. Equivalently, the optimal ionic
positions can be found by a similar approach. This method is based on
quasi-Newton algorithms to minimize the forces between ions.
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Figure 5.2: Flow chart of the self-consistent field calculation scheme of
DFT calculations. Figure adopted from the lecture notes of the course FYS-
MENA4111 at the University of Oslo [27].
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Chapter 6

Computational details

6.1 Settings and dependencies

The computations were performed on resources provided by Sigma2 -
the National Infrastructure for High Performance Computing and Data
Storage in Norway, utilizing the Vienna Ab initio Simulation Package
(VASP) [52], [53], [54], [55]. As discussed in chapter 5, we employ the
projector-augmented-wave method and PBE GGA, in addition to SCAN
and HSE06 in certain instances. For the structures studied in this project,
we found an energy cutoff of 300 eV and 400 eV suitable for electronic
and geometric relaxations respectively. In regards to the number of k-
points, we used a gamma centered mesh with a density of 4 per Å

−1
.

The convergence of these parameters with respect to the total energy can
be seen in table 6.1. The convergence tests were conducted for a 48-
atom supercell of a Cr4Fe4Mn4Ni4Si32 alloy, that is representative for all
alloys studied in this project. From table 6.1 we see that the cutoff energy
could be increased further for optimal convergence, however to spare
computational resources we opt for the lower value. Nevertheless, between
300 eV and 350 eV, the total energy only alters by 3 meV, which is around
the limits of computational accuracy of VASP calculations.

The geometric relaxation of ionic positions and cell volume was
carried out in two subsequent runs with convergence criterion of 1× 10−2

eV/Å for the forces and 1× 10−5 eV for the total energy, with Gaussian
smearing (ISMEAR = 0 in VASP) and smearing width σ equal to 0.05
eV. After successful geometric relaxation, the structures underwent a final
electronic relaxation with the tetrahedron method with Blöch corrections
(TBC, ISMEAR = -5 in VASP), and energy criterion of 1× 10−6 eV
between consecutive Kohn-Sham iterations. Calculations with the HSE06
functional in many instances proved difficult to converge electronically.
This was solved by two measures: firstly we reduced the density of
k-points from 4 Å

−1
to 2 per Å

−1
. Secondly, we found that HSE06

computations converged much quicker with Gaussian smearing compared
to the tetrahedron method. Thus, in order to successfully and economically
carry out calculations with HSE06 and the tetrahedron method, we first
calculated the charge density with Gaussian smearing and reapplied the
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calculated density in a subsequent HSE06 calculation with the tetrahedron
method. Magnetic materials consisting of ferromagnetic elements such
as iron, nickel and cobalt, were handled with the setting ISPIN = 2 and
the default value of MAGMOM = NIONS * 1.0 in VASP, which specifies
the initial magnetic moment for each atom. Further customization and
testing of magnetic orderings such as antiferromagnetic, ferrimagnetic and
ferromagnetic were considered beyond the scope of this project.

The SQS method was implemented through the generate − structure
script in the Temperature dependent effective potential (TDEP) package
[56], developed by Hellman and Shulumba. The CIF-file of β-FeSi2 that
we used to build are alloys were obtained from Materials Project [57].
Furthermore, Materials Project was used to compare and measure the
validity of calculations. To extract and post-process the VASP calculated
data, we relied on both VASPKIT [58] and pymatgen [59].

Cutoff energy
(eV)

Total energy
(eV)

200 -6.444
250 -6.568
300 -6.586
350 -6.589
400 -6.588
450 -6.589

K-points
(per Å

−1
)

Total energy
(eV)

3 -6.584
4 -6.586
5 -6.586
6 -6.586

Table 6.1: Convergence tests of the cutoff energy and density of k-points,
with respect to the total energy. The tests were conducted for a 48-atom
supercell of Cr4Fe4Mn4Ni4Si32.

6.2 Material

In this project we have constructed high-entropy silicides based on the β−
FeSi2 compound. The unit cell of this material adopts the orthorhombic
CMCE space group, and consists of 16 iron atoms and 32 silicon atoms. For
each composition, we generate five distinct SQSs of equivalent geometry
and composition, that only vary by the atomic configuration. We have
emphasized a particular composition of the 3d elements Cr, Fe, Mn, and
Ni in a Cr4Fe4Mn4Ni4Si32 alloy, where the 3d elements are distributed
equimolarly over the Fe-sites in the β− FeSi2 crystal structure. These SQSs
can be seen in figure 6.1. In addition to the (CrFeMnNi)Si2 composition,
we have tested alternative compositions with varying distributions of 3d
elements and different elements. These supercells has been generated by
an identical procedure and remain consistent with the 48 atom SQS model.
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(a) A (b) B

(c) C (d) D

(e) E

Figure 6.1: Five distinct 48-atom SQSs of Cr4Fe4Mn4Ni4Si32 based on the
β− FeSi2 crystal structure. Manganese atoms are represented as purple
spheres, chromium as dark blue and silicon as light blue, followed by iron
and nickel presented as gold and silver spheres respectively. The respective
SQSs are denoted as A, B, C, D and E. Figures illustrated with VESTA [60]
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Chapter 7

The high-entropy silicide
(CrFeMnNi)Si2

7.1 β-FeSi2

We begin with a brief overview of the master compound β−FeSi2 that
we have used as a foundation for the alloys in this project. In addition
this is the sole case where our methods and results can be compared to
experimental work and relevant literature.

β-FeSi2 is a well known semiconductor with an experimentally meas-
ured band gap of around 0.85 eV at room temperature [61]. The nature of
the band gap is under debate, although most ab initio studies result in an
indirect gap, experimental studies agree on a direct band gap. From our
own calculations we get an indirect band gap of 0.65 eV with the PBE GGA
functional. In comparison, Materials Project lists a band gap of 0.70 eV with
the same functional. This slight discrepancy is most likely down to use of
different parameters in the calculations, for instance Materials project use a
different pseudopotential with more valence electrions, and a larger cutoff
energy of 520 eV. In agreement with Materials Project our calculations re-
turn a final magnetic moment of the compound equal to 0. This can be seen
in the electronic density of states plotted in figure 7.1, by that the DOS and
hence band gap are identical in both spin directions.

The formation energy Eform of the compound can be calculated as the
difference in total energy between the product and the sum of reactants.
For the FeSi2 compound that consist of 16 iron atoms and 32 silicon we get

Eform = −327.72eV− (16×−8.32eV + 32×−5.42eV) = −21.16eV,

or formation energy per atom EFPA = 0.441eV from −21.16/48. The
total energy of iron and silicon were calculated separately for the respective
base elements with identical parameters as used for the FeSi2 calculation.
The total energies correspond well with the listed energies from materials
project of -8.4693 eV and -5.4234 eV for Fe, and Si respectively. Accordingly,
the formation energy per atom for β-FeSi2 of 0.441 eV is in good agreement
with materials project’s value of 0.444 eV.
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Figure 7.1: Density of states [states/eV] of β-FeSi2

7.2 (CrFeMnNi)Si2

The first alloy we will look at is the equimolar distribution of Cr, Fe, Mn
and Ni. For details on this alloy, and a visualization of the supercells we
refer the reader to section 6.2. Below in table 7.1 we list the total energy
per atom, final magnetic moment per atom, and band gap of five distinct
SQSs of the Cr4Fe4Mn4Ni4Si32 alloy. In addition we include the mean and
standard deviation (std) between the 5 supercells and the formation energy
calculated from the mean total energy.

SQS
Toten
(eV)

Mag
(µB)

EG
(eV)

A -6.608 0.083 0.028
B -6.614 0.083 0.052
C -6.606 0.083 0.034
D -6.616 0.083 0
E -6.609 0.083 0.050

Mean -6.611 0.083 0.033
Std 0.004 0.000 0.021

EFPA(eV) -0.293 - -

Table 7.1: Total energy per atom (Toten), final magnetic moment per
atom (Mag), band gap (EG) and formation energy (EFPA) of 5 SQS of
(CrFeMnNi)Si2.

From table 7.1 we observe that the total energy and magnetic moment
are quite similar in all 5 supercells, which could be expected from that the
only variable between supercells is the atomic configuration. On the other
hand, the atomic configuration has a larger impact on the band gap of the
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supercells. We find that the band gap ranges from a maximum value of 0.05
eV in SQS B, to a metal in SQS D, nevertheless much smaller than the band
gap of 0.65 eV in FeSi2. We will come back to the band gaps in section 7.2.1.

Contrary to the master compound, these supercells representing the
(CrFeMnNi)Si2 alloy contains a finite magnetic moment of around 0.083
µB. However, compared to a ferromagnet such as iron, with Mag =
2.2 µB according to Materials Project, we note that this is not a strong
ferromagnetic material. In contrast to the high-entropy alloys discussed
in section 2.2, we observe common for all supercells that the largest
local magnetic moments are ascribed to chromium and manganese atoms
in the lattice, while on the other hand both iron and nickel atoms
within the numerical accuracy of the calculations, accounts for negligible
contributions to the magnetic moment. Considering that the magnetic
moment is identical across all five distinct atomic configurations, in
addition to that the local magnetic moments displays very similar trends
between supercells, the observed magnetism is probably connected to the
specific crystal structure. It should be noted however that the magnetic
properties in this project could be prone to errors. As we discussed in
section 4.3, one of the major drawbacks of DFT in regards to magnetic
materials is the local minima problem. In this project we have overlooked
this concern, and applied a constant initial magnetic configuration to
all structures, disregarding for example antiferromagnetic or possible
permutations of ferrimagnetic orderings, to reduce the workload. Thus,
its possible that the final magnetic structure of the supercells adopts
local minima rather than global. Coupling this with the possible errors
associated with the special quasi-random structures method to model
the disordered magnetic structure means that the magnetic results and
following the total energy and corresponding stability are not immutable
nor necessarily accurate in respect to the hypothetical real alloy.

In terms of the total energy the most and least stable SQSs are "D"
and "A" respectively, meaning that SQS D is then the most representative
configuration of the real material. However, most likely all five SQSs and
other possible configurations would appear as local orderings in domains
of the real material with a certain probability. Therefore we will consider
and discuss the results of all 5 SQSs as well as the most stable supercell.
Further, the total energy alone is not sufficient to evaluate the stability
of the structure. In this project we have not considered factors such as
the configurational entropy or made any finite temperature considerations.
Additionally, the discussion above on the magnetic configuration could
affect the total energy. Thus, the relative stability between supercells
listed in table 7.1 could change. Nevertheless, we put the most effort
into analyzing the most stable supercells of each alloy, as according
to the considerations made in this project, are the most representative
configurations of the real material.
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7.2.1 The band gap

As seen from table 7.1, the band gap of the alloy is severely reduced from
the master compound, and varies between supercell to supercell. We
observed a maximum band gap of 0.05 eV in SQS B, and on the flip side
a 0 band gap in the most stable configuration, SQS D. The density of states
of SQS D and B are displayed in figures 7.2 and 7.3 below.

Figure 7.2: Density of states [states/eV] of SQS D of (CrFeMnNi)Si2.

Figure 7.3: Density of states [states/eV] of SQS B of (CrFeMnNi)Si2.

In figure 7.2 and 7.3 we observe that the band gap in both SQS D
and B, in accordance with the magnetic property differ between the spin

39



directions. Going forward we will refer to the band gap in spin up as Eup
G ,

and spin down as Edw
G . Clearly in both D and B Eup

G >> Edw
G as SQS D for

instance exhibits a band gap of around 0.3 eV in spin up, contrary to a 0 in
spin down. Comparing to the values in table 7.1 we find that the total band
gaps of the respective structures are limited by the narrow or nonexistent
band gap in spin down.

To obtain further and more precise information on the band gap we
look to the calculated Kohn-Sham eigenvalues. The band gaps found from
investigating the eigenvalues, denoted as Eeigen

G can be seen below in table
7.2 for all five SQS.

SQS Eup, eigen
G
(eV)

Edw, eigen
G
(eV)

Etot, eigen
G
(eV)

A 0.081 0.052 0.028
B 0.293 0.052 0.052
C 0.236 0.034 0.034
D 0.340 0 0
E 0.310 0.050 0.050

Table 7.2: Band gaps of five SQSs of (CrFeMnNi)Si2 in spin up, spin down
and total. The band gaps are calculated from the Kohn-Sham eigenvalues
of PBE simulations.

Continuing the trend described above we observe equivalent to SQS D
and B that Eup

G >> Edw
G for all supercells, par SQS A. In this supercell the

spin polarization of the band gap is dampened, despite the supercell being
equally magnetic to the other supercells. Moreover, in this case the total
band gap Etot

G = Eup
G − Edw

G , as opposed to the other supercells where the
total band gap is equal to the lesser spin down band gap of the structure.
This can be seen in the density of states in figure 7.4. DOS plots of SQS C
and E can be seen in appendix A.1, note that in SQS C we were required to
increase the number of points to calculate the density of states (NEDOS in
VASP) in order to observe the band gap.

Figure 7.4: Density of states [states/eV] of SQS A of (CrFeMnNi)Si2.
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In VASP the energy eigenvalues are listed for every energy band at
all k-points used in the calculation, with corresponding occupancy. An
occupancy of 1 represents a fully occupied eigenstate, while a completely
unoccupied (empty) eigenstate has occupancy equal to 0. We Recall that
occupied states belong to the valence band, and the conduction band
consists of unoccupied states (at 0 K). The highest energy valence band in
these structures are band 124 in spin down and 128 in spin up, following
the lowest energy valence band is 125/129 in spin down/up. The band gap
in spin down is then determined from the difference between the lowest
energy eigenvalue in band 125 and the highest energy eigenvalue in band
124, and likewise for the spin up band gap between bands 128 and 129.
In SQS D different from the semiconducting structures we observe some
partially occupied states at the band edges in bands 124 and 125 in spin
down. With partially occupied states we refer to eigenstates in the valence
band with occupancy less than 1 and states in the conduction band with
occupancy above 0. Specifically, the highest energy eigenvalue (9.01 eV) in
band 124 has occupancy equal to 0.94, and equivalently the lowest energy
eigenvalue (8.98 eV) in band 125 has occupancy equal to 0.08. This results
in a zero band gap. The Fermi energy of this structure is 8.99 eV, which
means that the partially occupied eigenstate in band 124 is above the Fermi
energy, and the partially unoccupied eigenstate in the conduction band
below the Fermi energy. This is a clear indication of a metal, in which
the conduction band and valence band overlap. In this project we will
refer to such eigenstates with partial occupancy as defect states. The effect
of the defect states on the band gap of SQS D can be seen in table 7.3.
Here we calculate the band gap as a function of the defect states by an
occupancy cutoff parameter occ, such that EG(0.99, 0.01) is the band gap
when only including eigenvalues with occupancy above 0.99 in the valence
band and below 0.01 in the conduction band. For simplicity we will write
this parameter as a single value, where occ = 0.01 represents occupancy
equal to 1 - 0.01 in the valence band and 0 + 0.01 in the conduction band.

occ Eup, eigen
G
(eV)

Edw, eigen
G
(eV)

Etot, eigen
G
(eV)

0.5 0.340 0 0
0.05 0.340 0.021 0.021
0.01 0.340 0.050 0.050
0.001 0.340 0.073 0.073

<0.0001 0.340 0.086 0.086

Table 7.3: Band gap of SQS D of (CrFeMnNi)Si2 as a function of occupancy
cutoff occ in the eigenvalues.

From table 7.3 we find clear evidence of the defect states prohibiting
the band gap in spin down in SQS D, compared to the semiconducting
supercells that contain only fully occupied and unoccupied eigenstates.
To investigate this effect to greater extent we compare the eigenvalues of
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SQS D to a pure metal, such as iron. In this case the energy bands (both
spins) around the Fermi energy (5.8 eV) are populated mostly by partially
filled eigenstates. Inside a single energy band we observe instances of
both more than half-filled states above EF, and less than half-filled states
above EF, thus a clear overlap between the conduction and valence band.
In contrast we find no instances of partial occupants in pure Si, as in
the semiconducting SQSs. Therefore we can firmly state that the "defect
states" are associated with a metallic character. Compared to the pure
metal however, the amount and severity of the partial occupants are very
dampened in SQS D. The concept of defect or impurity states in the band
gap has been found as a common feature of the band structure of random
alloys [62], however we have reservations about if this is a physical result or
related to numerical factors. In addition to partial occupants in Fe and SQS
D we observe a plural of unphysical states where the occupancy exceeds 1
and 0. Recalling that the discontinues Fermi surface of metals poses several
obstacles on DFT calculations with respect to the smearing and number of
k-points. This result could then be imagined as a consequence of numerical
methods. For instance in SQS B we conducted three separate electronic
calculations, one with the tetrahedron method (value listed in tables) and
two calculations with Gaussian smearing with smearing width 0.05 and
0.005 eV. With the Gaussian method and smearing width σ = 0.05eV we
get Eup, eigen

G = 0.299eV and Edw, eigen
G = 0.050eV. Further calculations

with the Gaussian method with smearing width of 0.005 eV results in
Eup, eigen

G = 0.293eV and Edw, eigen
G 0.052eV. Compared to the values in table

7.3 with TBC, we observe that Gaussian (0.005 eV) and TBC are identical,
while Gaussian (0.05 eV) show some deviation. Furthermore we find that
the eigenvalues of Gaussian 0.05 eV contain defect states, and that the
spin down band gap, as we experienced for SQS D, can be enlarged from
Edw, eigen

G (0.01) = 0.170eV. However, in this case we find no instances of
non-naturalistic states as we described above for SQS D with TBC.

In conclusion, the defect states observed in SQS D appear to be related
to a metallic structure, however from the discussion above we have seen
that the results could be subject to numerical factors as well. It would have
been instructive to visualize and analyze the eigenvalues by plotting the
band structure. Unfortunately this is neither simple to perform or interpret
for large supercells consisting of several elements and a large number of
energy bands. One solution could be band-unfolding, but this did not work
in conjunction with the implementation of the SQS method in this project.

7.2.2 Local and projected density of states

In this section we will analyze the local and projected density of states of
primarily SQS D (most stable). Below we include the local density of states
of silicon in figure 7.5, and the respective LDOS plots of the various 3d
elements of the compound in figure 7.6.
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Figure 7.5: Local density of states [states/eV] of Si, in SQS D of
(CrFeMnNi)Si2.

Figure 7.6: Local density of states [states/eV] of (a) Cr, (b) Mn, (c) Fe, (d)
Ni in SQS D of (CrFeMnNi)Si2.

In the local density of states of Si we see that the s-electrons in Si occupy
states in the lower energy regions and p electrons at slightly elevated
energies closer to the Fermi energy. Above EF states are occupied by s
and p electrons equally. Between the 3d electrons of the transition metals,
markedly manganese and chromium display a strong presence at energies
just above EF and manganese additionally below EF. Iron and Nickel
show largest contributions at energies further from the Fermi energy, most
notably bellow EF. In the spin up channel we see a similar trend where
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chromium lie closest to EF followed by manganese, iron and lastly nickel
at the lowest energies. The interplay between the 3d elements and silicon
can be seen from the projected density of states in figure 7.7.

Figure 7.7: Projected density of states [states/eV] of SQS D of (CrFeM-
nNi)Si2

Compared to bulk β-FeSi2 [63], we observe good agreement of the local
DOS of Fe and Si in this alloy. Moreover the relative positions are in
good agreement with observed trends in simpler Si-rich 3d transition metal
silicides [64]. In these compounds, the electronic structure tends to be
dominated by d electrons, and the valence band density of states are filled
by d states near EF. The p-d hybridization between Si and TM elements is
typically found at about 6 eV below EF, and Si s states about 10 eV below.
In our alloy we observe good agreement of s-electrons as seen in the local
density of states in figure 7.5, but the p electrons are pushed up in energy
closer to EF.

(a) SQS D (b) SQS B

Figure 7.8: Projected density of states [states/eV] of SQS D and B of
(CrFeMnNi)Si2 around the Fermi energy.

In figure 7.8 above we have plotted the projected DOS of the half-
metallic structure (SQS D) and the configuration with the largest Edw

G ) SQS
B around the Fermi energy. Compared to the semiconducting structure we
can distinctly observe a large number of Mn states in SQS D around EF,
most noticeably in spin down, but also in spin up. The projected density
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of states of SQSs A, B, and E are included in appendix A.2 (unable to plot
PDOS for SQS C).

7.2.3 The band gap of (CrFeMnNi)Si2 with SCAN and HSE06

As expressed previously, in this work we invoke 3 steps of Jacob’s
ladder: GGA (PBE), meta-GGA (SCAN) and hybrid functional (HSE06), to
determine the band gap. The outcome of these 3 functionals are showcased
in table 7.4.

SQS XC-functional Eup
G

(eV)
Edw

G
(eV)

Etot
G

(eV)

A
PBE 0.082 0.052 0.028

SCAN 0 0 0
HSE06 0.708 0.026 0.026

B
PBE 0.293 0.052 0.052

SCAN 0.147 0.089 0.089
HSE06 0.286 0.182 0.182

C
PBE 0.236 0.034 0.034

SCAN 0.069 0.112 0.112
HSE06 0.174 0.033 0.020

D
PBE 0.339 0 0

SCAN 0 0.108 0
HSE06 0.378 0 0

E
PBE 0.308 0.050 0.050

SCAN 0.154 0.111 0.105
HSE06 0.548 0.013 0.013

Table 7.4: Band gaps of five supercells of (CrFeMnNi)Si2 in spin up, spin
down and total, calculated with PBE, SCAN and HSE06 functionals.

We will begin dissecting table 7.4 by comparing SCAN to PBE. The
first distinction we make notice of is in SQS A. Here calculations with the
SCAN functional predicts a metallic compound, contrary to the the PBE
band gap of 0.03 eV. Alike the band gap of SQS D discussed previously,
the 0 band gap in this structure with SCAN is caused by defect states.
Neglecting such states and evaluating the band gap from exclusively
almost completely filled and empty eigenstates yield Eup,eigen

G, SCAN(0.01) =

0.032 eV and Edw,eigen
G, SCAN(0.01) = 0.053 eV, and a total band gap of 0.032 eV.

This value seems to agree better with the PBE band gap of this supercell,
but we observe that Eup

G is larger in PBE. This is a recurrent pattern with
SCAN across all five SQSs, where Eup

G, SCAN < Eup
G, PBE, and moreover

Edw
G, SCAN > Edw

G, PBE. This can be seen in figure 7.9, where we plot the density
of states of SQS E (a, b) and C (c, d). Note that the SCAN band gap in SQS
C has the opposite spin polarization of PBE; this is also the case in SQS D,
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as seen in table 7.4.

(a) SQS E PBE (b) SQS E SCAN

(c) SQS C PBE (d) SQS C SCAN

Figure 7.9: Density of states [states/eV] illustrating the difference between
band gaps of SQS E and D of (CrFeMnNi)Si2 with PBE and SCAN.

Figure 7.10: Density of states [states/eV] of SQS B of (CrFeMnNi)Si2 with
HSE06.

With the HSE06 functional we observe the opposite trend in SQS A and
E compared to SCAN, here Eup

G, HSE06 > Eup
G, PBE and Edw

G, HSE06 < Edw
G, PBE. But
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in other cases Eup
G, HSE06 is lesser (SQS C) or similar to PBE (SQS B and D). On

the other hand Edw
G, HSE06 is consistently smaller in all structures compared

to PBE, with the exception of SQS B. In this structure the HSE06 functional
predicts large band gaps in both spin directions, this can be seen in the
density of states plotted in figure 7.10 above.

As we discussed in section 5.1, hybrid functionals are much more com-
putationally demanding compared to both meta-GGA and GGA function-
als. In this project we experienced particular difficulty of converging cal-
culations with HSE06 of the compositionally complex SQSs. To reduce the
cost of the HSE06 functional we performed such calculations with a lower
density of k-points, see section 6.1. The small amount of k-points could
as discussed lead to numerical inaccuracies relating to the calculation of
the Fermi surface in metallic structures. Furthermore, the reduced mesh of
k-points could result in artificially exaggerated band gaps from failing to
encapsulate the exact minimum transition between the valence band and
conduction band.

XC-functional
Transition
(k-point)

PBE (1/4, 0, 1/4)→ (0, 0, 0)
SCAN (1/4, 0, 1/4)→ (0, 1/3, 0)
HSE06 (1/2, 0, 0)→ (0, 0, 0)

Table 7.5: Minimum gap between k-point in valence band and conduction
band in SQS B of (CrFeMnNi)Si2 from PBE, SCAN and HSE06 simulations.

In table 7.5 we list the transition between the highest occupied k-state
in the valence band and lowest unoccupied k-state in the conduction band
for SQS B with PBE, SCAN and HSE06 respectively. We observe that
all 3 functionals find different k-point transitions. A concerning factor is
that the highest energy k-point in the valence band from PBE calculations
(1/4, 0, 1/4) is not included in the HSE06 calculation with the narrow
mesh of 2x2x2 k-points. Thus, one may suspect that the HSE06 calculation
overlooks the minimum transition and hence returns an enlarged band gap
instead. This could be the case in Eup

G, A and Edw
G, B where HSE06 predicts

much larger values than PBE. However, without an experimental baseline
we can not conclude that this is the case. As in the other instances we find
that HSE06 produces similar or lower band gaps compared to PBE despite
of the smaller number of k-points.

As stated in section 6.2, we did not manage to converge the hybrid
calculations using the tetrahedron method. We overcame this problem by
first calculating the charge density using Gaussian smearing and utilizing
the charge density to expedite TBC HSE06 calculations. The respective
HSE06 band gaps of the five SQSs of of the (CrFeMnNi)Si2 system from
utilizing both methods are displayed in table 7.6. Here, the band gap
is calculated from the eigenvalues at different cutoff occupancy occ to
highlight the part of defect states.
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As we experienced for SQS B (PBE) in section 7.2.1, defect states are
only a factor in the calculations using Gaussian smearing with σ = 0.05 eV.
These band gaps contain defect states, and can consequently be enlarged.
By comparing Eup

G and Edw
G at occ = 0.5 and occ = 0.01, the defects appear

to have a lesser role in spin up, as par SQS C the band gap in spin up is
either consistent or only marginally different between the defect band gap
and the hypothetical defect less band gap. Edw

G on the other hand, increases
significantly by removing the defect states. The Gaussian smearing method
is generally in better agreement with TBC at lower smearing width. But
even in this case we observe several dissimilarities. In SQS A and E, Edw

G
is larger with the Gaussian method, additionally Eup

G is much lower in
SQS A. Furthermore, while the HSE06 band gap in SQS D using TBC is
in good agreement with PBE, where both results in a spin up half-metal.
The HSE06 calculation of this SQS using Gaussian smearing, predicts a
semiconductor with band gap equal to 0.07eV with σ = 0.005 eV. In this
project we have based our choice of numerical smearing on the advice on
the VASP manual stating that for accurate total energies and density of
states in semiconductors, one should opt for the tetrahedron method [65].
However, seeing as our system is comprised of metals in addition to Si, we
include the results from utilizing Gaussian smearing. There are of course
many more factors that affect the accuracy and reliability of both methods,
but these are outside the scope of this project.

The fact that the majority of functionals and SQS agree on the presence
of a band gap is in itself an overwhelmingly positive result, that allow
us to state with high certainty that the potential high-entropy silicide
(CrFeMnNi)Si2 is in fact a semiconductor, or possibly a half-metal based
on the observed spin polarization and the most stable configuration.
Regarding the 3 functionals applied in this project, we experience best
cohesion between PBE and HSE06 that both agree on a spin up polarization
of the band gap, while SCAN predicts more symmetric band gaps. This can
also be seen from the magnetic moment, whereas PBE and HSE06 yields a
final magnetic moment (per atom) of 0.083 µB across all SQSs, with SCAN
this is reduced to half the amount. In the nonmagnetic β-FeSi2 structure
we find better agreement between PBE and SCAN. Both correctly predicts
that the material is nonmagnetic, however compared to the experimental
value of about 0.85 eV and the PBE band gap of 0.65 eV, we get a smaller
band gap of 0.61 eV with SCAN. Thus, the SCAN functional does not
necessarily result in increased accuracy over PBE, even in the simpler
nonmagnetic structure. To conclude this section on the band gap of the
(CrFeMnNi)Si2 alloy, when studying the band gap with DFT, particularly
PBE is well known to underestimate the band gap of the real material as
we experienced for FeSi2. Therefore, a band gap found with PBE indicates
the existence of a band gap of at least the same size of the real material.
In the following sections, we will heavily emphasize the PBE functional
to determine the band gap from both the fast and reliable use in addition
to the points mentioned above. Furthermore, from our experiences in this
project in conjunction with the lack of support, the SCAN function looks to
perform quite poorly with respect to band gaps. The HSE06 functional on
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the other hand, yielded much more reliable results, however since it was
often to computationally expensive and troublesome to implement for the
structures in this project, we apply this scarcely in proceeding sections.

7.2.4 Pair distribution functions

The pair distribution functions of SQS D and B are included below in
figure 7.11. We compare the PDFs of the most stable configuration (SQS
D) with those of SQS B to investigate distinctions between the half-metallic
structure and the most stable semiconducting configuration (SQS B).

Figure 7.11: Pair distribution functions of SQS D (top) and B (bottom) of
(CrFeMnNi)Si2.

With the aid of the ICSD [66], we can compare the PDFs in figure
7.11 to a compilation of PDFs based on a large number of experimental
compounds. As these SQSs contains a total of 15 different bonds,
comparing each one to the ICSD values would be an exhaustive process.
According to the ICSD, the preferred bond-length of TM-Si bonds is
observed at two values, with the shorter length the most occurring.
Specifically Fe-Si bonds range between 2.25-2.75 Å and 4-5 Å, Mn-Si
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between 2.25-2.75 Å and 3.5-5 Å, Ni-Si between 2.25-2.5 Å and 3.85-5 Å, and
finally Cr-Si between 2.35-2.65 Å and 4-5 Å. Clearly, the PDFs of the SQSs
are in good agreement with the listed values of TM-Si bonds. The relative
occurrence of the bonds between SQS D and B are mostly consistent, other
than marginally reduced Fe-Si occurrence at 2.4 Å in B.

Nevertheless, we observe several differences between TM-TM bonds in
SQS D and B, such as Mn-Fe, Cr-Fe, and Ni-Mn bonds. This is simply a
consequence of how the SQSs are generated; the silicon atoms are placed
as before in the new supercells, but the TM elements are quasi-randomly
distributed. Thus, it’s reasonable that we would find the major differences
between TM-TM bonds. Recalling that manganese in particular had a
distinct presence in spin down around EF in SQS D, we observe that this
particular supercell compared to SQS B has a preference of Mn-Fe bonds at
3 Å compared to Fe-Cr in SQS B, and overall larger preference of Mn-Mn
bonds. However, the differences between PDFs are difficult to relate to the
observed properties. Firstly because of the shear number of total bonds to
analyze, and secondly considering the uniqueness of each SQS.

7.2.5 Charge density

Below we include the calculated charge density with PBE of SQS A, B, D
and E of the (CrFeMnNi)Si2 alloy. We note that the half-metallic configura-
tion (SQS D) appears to contain a marginally larger number of delocalized
electronic charges in the lattice ,compared to the semiconducting SQSs. The
charge density of SQS C is found in appendix A.3.

(a) SQS A (b) SQS B

(c) SQS D (d) SQS E

Figure 7.12: Contour plots of the Charge density of SQS A, B, D and E of
(CrFeMnNi)Si2.
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7.2.6 SQS size

Above we have presented the results of a high-entropy silicide (CrFeM-
nNi)Si2, investigated by five 48-atom SQSs with a volume of 700 Å

3
. This

intermediate size allowed for more computationally affordable computa-
tions, and enabled us to calculate the band gap by more complex and ex-
pensive functionals, moreover test different settings, computational factors
and compositions. However, as we discussed in section 4.3, the application
of the SQS method to HEAs is not necessarily straightforward The most
pressing concern is the size of the SQS model and if it’s sufficient enough
to correctly model the disordered multi-component structure. In this sec-
tion we will investigate factors of the SQS-method on the band gap and
related results, by studying the difference between the 48 atom SQSs dis-
cussed above, to that of 96 and 192-atom SQSs with volumes 1200 Å

3
and

2400 Å
3

respectively. The computational cost of the 3 models are displayed
below in figure 7.13 in terms of the number of CPU hours for both geomet-
ric and electronic relaxation of the structures.

Figure 7.13: CPU time of 48, 96 and 192-atom SQSs of (CrFeMnNi)Si2

like the 48-atom model, the 96 and 192-atom SQS were tested by five
unique configurations. In table 7.7 we list the mean and standard deviation
from the set of configurations for all three sizes, with respect to the total
energy per atom and final magnetic moment per atom, in addition to the
formation energy of the mean total energy. Clearly, the 3 properties show
minimal variation between the three sizes, furthermore we do not observe
any indication of convergence with respect to the size. Thus, we may
state that the 48-atom SQSs is sufficient for these materials. On the other
hand, we observe that the larger models contain larger deviation between
configurations, this can be expected given the increased total number of
atoms that can vary between configurations.
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SQS size
Toten
(eV)

Mag
(µB)

EFPA
(eV)

mean std mean std mean

48 atoms - 6.611 0.004 0.083 0.000 -0.292
96 atoms - 6.609 0.002 0.071 0.011 -0.292
192 atoms - 6.612 0.002 0.076 0.017 -0.295

Table 7.7: Total energy (Toten), magnetic moment (Mag) and formation
energy (EFPA) of 48, 96 and 192 atom SQSs of (CrFeMnNi)Si2

The band gap corresponding to SQSs of each size are listed in table
7.8. First and foremost the band gap is evident in all three and exhibits
analogous spin polarization, however appears to be less frequent and
smaller in the larger structures. This result could simply be related to the
uniqueness of each SQS, as also in the larger SQSs we observe sizable band
gaps in certain configuration. Additionally, the larger cells has an increased
possibility to create defect states.

SQS size SQS Eup,eigen
G (0.5)

(eV)
Edw,eigen

G (0.5)
(eV)

Etot,eigen
G (0.5)

(eV)

48 atoms

A 0.082 0.052 0.028
B 0.293 0.052 0.052
C 0.236 0.034 0.034
D 0.339 0 0
E 0.308 0.050 0.050

96 atoms

A 0.171 0.044 0.037
B 0.139 0.027 0.027
C 0.135 0.036 0.008
D 0.089 0.040 0.040
E 0.161 0 0

192 atoms

A 0.120 0.032 0.032
B 0.144 0 0
C 0.187 0 0
D 0.048 0.034 0
E 0.013 0.018 0.013

Table 7.8: Band gaps of SQSs of 48, 96 and 192-atoms of (CrFeMnNi)Si2.
The names are arbitrary, A in 48 does not equal A in 96 or A in 192. The
values listed in italic relate to a defect band gap. Structures listed in bold
text represents the most stable supercell of the set of SQSs.

Equivalent to structure D in the 48 atom SQS, we find that the 0 band
gap in SQS E in the 96 atom model suffers from defect states, without
defects we find Edw,eigen

G (0.01) = 0.016 eV. The same is true for SQS B
and C (192), but require occ = 0.001 to yield a small finite value. The
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band gap in SQS D and E (192) on the other hand, is finite at occ = 0.5,
but can be enlarged from increasing occ, as we described for calculations
utilizing Gaussian smearing with σ = 0.05 eV. Specially, In SQS D (192-
atoms), Eup,eigen

G (0.01) = 0.075 eV and Edw,eigen
G (0.01) = 0.05 eV, similarly

Eup,eigen
G (0.01) = 0.05 eV, and Edw,eigen

G (0.01) = 0.048 eV in SQS E (192-
atoms). In such cases where the eigenvalues inclusive of defect states return
a finite band gap, the density of states does not. This is seen in figure 7.14
for SQS E in the 192-atom model that clearly has nonzero DOS at EF in both
spin direction.

Figure 7.14: Density of states [states/eV] of SQS E of the 192-atom model
of (CrFeMnNi)Si2.

One could wonder if the very narrow band gap in SQS E (192) of 0.013
eV is subject to numerical precision in the DOS. But on the grounds of the
small value we calculated the DOS in this case by 20000 points over the
energy range -12 eV to 12 eV, which results in a resolution of about 8 points
per 0.01 eV. In other words this should not be a factor.

Drawing any conclusion on the band gaps is difficult seeing as we find
very different results within all 3 sizes. The most stable SQSs suggests
that the band gap converge towards a small or possible non-existent band
gap with increasing SQS size. On the other hand we also find evidence of
large band gaps in the larger cells in less stable configurations. This goes
back to section 3.3 where we mentioned that one particular difficulty of the
SQS method is the large number of possible atomic configurations of one
compositions.

Looking at the pair distribution functions of the most stable SQS in
each model (figure 7.15), we observe that short-range interactions is well
represented and identical across all three models. The distinctions between
preferences as discussed in section 7.2.4 are most likely a product of the
uniqueness of the SQSs more so than the size. On the other hand, the larger
SQSs clearly provide a better description of long-range interactions that is
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not nearly as present in the smaller supercell. But, as seen from the minimal
variation of the values in table 7.7 between the 3 models, in accordance with
the fundamental philosophy of the SQS method, the functional properties
are determined primarily from short-range interactions in the lattice. Thus,
despite the fact that the larger SQSs offer improvements over the smaller
SQSs, the gain is not justified by the increased computational cost.

Figure 7.15: Pair distribution functions of (CrFeMnNi)Si2 (top) 48-atom
SQS, (middle) 96-atom SQS, (bottom) 192-atom SQS.
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Chapter 8

Alternative compositions

Up until this point we have looked in detail at the high-entropy silicide
(CrFeMnNi)Si2. In this chapter we will broaden our search of compositions
based on the β-FeSi2 structure. First, we will look at various compositions
inside the quaternary phase diagram of Cr, Fe, Mn and Ni, then consider
some compositions where chromium, manganese or nickel are replaced by
cobalt or titanium.

8.1 Exploring the quaternary phase diagram of Cr, Fe,
Mn and Ni.

In this section, we aim to expand our search of this diagram by generating
SQSs of the 48 atom model slightly away from equimolar distribution
of 3d elements. The list of compositions are listed in table 8.1, with
corresponding total energy, magnetic moment and formation energy in the
familiar format. Ideally each composition would differ only by one element
to provide a clear view of each direction in the phase diagram, but the
TDEP implementation insisted in also reducing Nickel to stay consistent
with the 48 atom supercell.

Composition
Toten
(eV)

Mag
(µB)

EFPA
(eV)

mean std mean std mean

Cr3Fe3Mn7Ni3Si32 - 6.695 0.004 0.138 0.019 -0.300
Cr5Fe5Mn3Ni3Si32 - 6.671 0.003 0.113 0.022 -0.286
Cr5Fe3Mn5Ni3Si32 - 6.685 0.004 0.138 0.046 -0.271
Cr3Fe5Mn5Ni3Si32 - 6.680 0.004 0.094 0.021 -0.315
Cr3Fe3Mn3Ni7Si32 - 6.392 0.008 0.016 0.010 -0.285

Table 8.1: Total energy (Toten), magnetic moment (Mag) and formation
energy EFPA of various compositions of the Cr-Fe-Mn-Ni-Si system.

In table 8.1 we observe that moving away from the equimolar system
result in both less and more stable alloys. Clearly the lowest formation
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energies (most stable) correspond to compositions rich in manganese
and poor in chromium. Likewise the least stable compositions in table
8.1 contain either increased amounts of Cr or reduced amounts of Mn
compared to the equimolar system. In the equimolar composition the
magnetic moment was attributed to primarily Cr and Mn atoms in the
lattice. In table 8.1 we observe similarly that compositions rich in Cr and
Mn exhibits the largest magnetic moments and vice versa. The band gaps
of the respective compositions in five unique SQSs can be seen in table 8.2
below, calculated with PBE GGA.

Composition SQS Eup, eigen
G (0.5)

(eV)
Edw, eigen

G (0.5)
(eV)

Etot, eigen
G (0.5)

(eV)

Cr3Fe3Mn7Ni3Si32

A 0.339 0 0
B 0.475 0 0
C 0.134 0 0
D 0.195 0.006 0.006
E 0.421 0 0

Cr5Fe5Mn3Ni3Si32

A 0.003 0 0
C 0.210 0 0
D 0.067 0.041 0.037
E 0.362 0 0

Cr5Fe3Mn5Ni3Si32

A 0.208 0 0
B 0.405 0 0
C 0.466 0 0
D 0.084 0.012 0.012
E 0.301 0 0

Cr3Fe5Mn5Ni3Si32

A 0.392 0 0
C 0.129 0 0
D 0.260 0.100 0.100
E 0.359 0.100 0.085

Cr3Fe3Mn3Ni7Si32

A 0 0 0
B 0 0 0
C 0 0 0
D 0 0 0
E 0.040 0 0

Table 8.2: Band gaps of various compositions of the Cr-Fe-Mn-Ni-Si system.
The most stable SQS of a set is highlighted in bold text, defect/impurity
band gaps are listed in italic. Some SQSs were excluded from the table due
to unsuccessful calculations. All band gaps calculated with PBE GGA.

From table 8.2 we observe that most compositions are half-metals like
the equimolar system with a spin up polarization. Each composition shows
large variation between configurations. We note Eup

G, max ≈ 0.5 eV and
Eup

min ≈ 0.1 eV in both Cr3Fe3Mn7Ni3Si32 and Cr5Fe3Mn5Ni3Si32, and further
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Eup
G, max ≈ 0.4 eV and Eup

min ≈ 0.1 eV in Cr3FeMn5Ni3Si32. In all three
of these compositions the proportion of manganese is increased relative
to the equimolar system, and two out of the three compositions contain
reduced amounts of chromium. Looking at the two compositions with
the least indication of a band gap Cr5Fe5Mn3Ni3Si32 and Cr3Fe3Mn3Ni7,
these contain reduced amounts of manganese. Thus, based on the few
compositions tested in this experiment we can state a relation of the band
gap mainly to manganese, but also chromium.

Based on the most stable configuration of each composition, we observe
very encouraging results in the Cr3Fe3Mn7Ni3Si32 composition with the
largest Eup

G of the set of configurations. Likewise the most stable SQS of the
Cr3Fe5Mn5Ni3Si32 composition is a semiconductor with a total band gap
of about 0.1 eV. In the composition Cr5Fe5Mn3Ni3Si32, the most stable SQS
predicts a defect or impurity band gap as we discussed previously where
the eigenvalues return a finite band gap despite of defect states. However
we have not been able to investigate the nature and effect of this impurity
band gap to further extent, likewise for the similar impurity gaps listed
in table 8.2 and the 0 band gaps in spin down. Below in figures 8.1 and
8.2 we include the projected density of states around EF of the most stable
SQS of each composition. Because we only include and discuss the most
stable SQS, the features of these figures can be subject to the uniqueness of
that particular SQS rather than a distinct feature of the exact composition,
however as stated previously the most stable configuration provides the
most likely properties of the composition within the scope of this project.

Figure 8.1: Projected density of states [states/eV] of (a) Cr3Fe3Mn7Ni3Si32
(SQS B), (b) Cr5Fe5Mn3Ni3Si32 (SQS C), (c) Cr5Fe3Mn5Ni3Si32 (SQS A), (d)
Cr3Fe5Mn5Ni3Si32 (SQS D)
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The PDOSs are in good agreement with the listed values in table 7.2.
Both Cr3Fe3Mn7Ni3Si32 and Cr5Fe3Mn5Ni3Si32 display sizable band gaps in
spin up, while figure 8.1 d point to a total band gap around 0.1 eV for
SQS D of Cr3Fe5Mn5Ni3Si32. On the other hand, we observe as for the
192-atom SQS a dissimilarity between the density of states band gap in
Cr5Fe5Mn3Ni3Si32 SQS C (figure 8.1 b) and the eigenvalue defect band gap
listed in table 7.2. This can be better understood by figure A.3 in appendix
A.1, that clearly show small finite values at EF in spin up. This DOS may
resemble that of a doped material.

In figure 7.7 we observed that manganese distinctly occupied states in
the spin down channel around EF and was a key contributor as to why
the spin down channel of (CrFeMnNi)Si2 was metallic in the most stable
SQS. This is also largely the case in the compositions shown above in figure
8.1 and 8.2, and is particularly evident in figure 8.1 where Mn dominates
the spin down states around EF in the Cr3Fe3Mn7Ni3Si32 composition. By
reducing the number of Mn we still find that the Mn states prohibit the
band gap in spin down, as seen in figure 8.1 b. In the chromium rich
compositions plotted in figures 8.1 b and c, we observe that also Cr states
prohibit the spin down band gap, and dominate states near EF in spin up
as well. Contrary, in the Cr3Fe3Mn3Ni7Si32 composition plotted in figure
8.2, we do not observe any distinct peaks of elements, but rather consistent
small finite DOS around EF in all elements. The sole composition with clear
evidence of a spin down gap is from the chromium poor system plotted in
figure 8.1 d. Also in this structure we see that the effects of Mn around
EF is dominant in spin down from the relative large amounts of Mn, but
in comparison to the other composition these states are pushed away from
the Fermi energy.

Figure 8.2: Projected density of states [states/eV] of Cr3Fe3Mn3Ni7Si32
around the Fermi energy.

An important factor of these results is that because each composition
alters simultaneous elements, interpreting and relating the results to a
particular alteration is challenging. For example, is the result of the
Cr5Fe3Mn5Ni3Si32 permutation a consequence of less Fe or increments
to both Cr and Mn? Furthermore, is the large band gap in spin up
of Cr3Fe3Mn7Ni3Si32 a product of increasing manganese or reducing the
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other elements? From the comparatively large gaps in spin up of
Cr3Fe3Mn7Ni3Si32 and Cr3Fe5Mn5Ni3Si32, in combination with a larger
presence of Cr states in spin up in the Cr rich permutations, we here ascribe
the large band gaps to a reduction of chromium, more so than other effects.
However, we observe from both Cr5Fe5Mn4Ni3Si32 and Cr3Fe3Mn3Ni7Si32
(figure 8.2) in addition to the manganese rich composition, that Mn plays
a vital role on the band gap of these structures. It’s clear that the
Cr3Fe5Mn5Ni3Si32 alloy manages to strike a balance between 3d elements
that results in a specific interplay and correspondingly very promising
properties. It could have been instructive to look at for example the pair
distribution functions and compare to the equimolar system, but from the
factors discussed in section 7.2.4, we leave this to future work.

As stated previously, we have relied on the PBE GGA functional to
determine the band gap, from its reliability and favorable computation
cost. Nevertheless, we have conducted calculations with SCAN and HSE06
on some of the more promising structures. For instance, in SQS D of the
Cr3Fe5Mn5Ni3Si32 alloy, we get lower values in both spin up and down
with SCAN, specifically Eup

G, SCAN = 0.21 eV and Edw
G, SCAN = 0.08 eV. With

the HSE06 functional we get Eup
G, HSE06 = 0.53 eV and Edw

G, HSE06 = 0 eV. In
SQS B of the Cr3Fe3Mn7Ni3Si32 alloy, the PBE functional resulted in band
gaps equal to Eup

G, PBE = 0.47 eV and Edw
G, PBE = 0 eV. Contrary, SCAN

yields a small band gap in spin down of about 0.002 eV, and a 0 gap in
spin up of this structure. Similarly, the HSE06 band gaps of this structure
are Eup

G, HSE06 = 0.08 eV and Edw
G, HSE06 = 0.11 eV. Moreover, this is a defect

band gap, with Eup, eigen
G, HSE06(0.01) = 0.18 eV and Edw, eigen

G, HSE06(0.01) = 0.16 eV. The
density of states of the HSE06 band gaps discussed above are displayed in
figure 8.3. As we have experienced previously, in the case of the defect
band gap; Eeigen

G 6= Edos
G .

(a) Cr3Fe3Mn7Ni3Si32 (SQS B). (b) Cr3Fe5Mn5Ni3Si32 (SQS D).

Figure 8.3: Density of states [states/eV] of (a) SQS B of Cr3Fe3Mn7Ni3Si32,
and (b) SQS D of Cr3Fe5Mn5Ni3Si32, using the HSE06 functional.
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8.2 High-entropy silicides with cobalt/titanium

The compositions in this section are deliberate combinations, intended
to both investigate the role of individual elements in the (CrFeMnNi)Si2
system, and broaden our search of potential high-entropy silicides based
on β-FeSi2. In these alloys we replace Cr, Mn or Ni, with Co or Ti. Note that
the alloys contains a total of 48 atoms as before, with equimolar distribution
of 3d elements. In similar fashion to the preceding section, we begin by
presenting in table 8.3, the mean and standard deviation of the total energy
and magnetic moment of 5 distinct SQSs of each alloy

Composition
Toten
(eV)

Mag
(µB)

EFPA
(eV)

mean std mean std mean

(CrFeCoNi)Si2 - 6.466 0.006 0.008 0.016 -0.308
(CoFeMnNi)Si2 - 6.473 0.005 0.000 0.000 -0.355
(CrFeTiNi)Si2 - 6.422 0.009 0.031 0.029 -0.209
(CrFeMnTi)Si2 -6.699 0.007 0.114 0.064 -0.199
(CrFeMnCo)Si2 -6.769 0.003 0.133 0.033 -0.323

Table 8.3: Total energy (Toten), magnetic moment (Mag) and formation
energy (EFPA) of alloys based on combinations of Cr, Fe, Mn, Ni, Co, Ti
and Si.

In terms of the formation energy, we observe that cobalt evidently
yield the most stable alloys, with (CoFeMnNi)Si2 at the top and and
(CrFeCoNi)Si2 at the bottom. On the other side, both (CrFeTiNi)Si2
and (CrFeMnTi)Si2 where we introduce titanium in place of manganese
and nickel respectively, results in the overall least stable compositions.
A precise physical interpretation of the stability between compositions
is challenging from the shallow analysis in this project, but we note
that the two most stable alloys consists of the most chemically similar
elements, with respect to properties such as electronegativity and atomic
size. Accordingly, the least stable alloys are comprised of the most
chemically dissimilar elements. This is in good agreement with the
discussion in section 2.2, regarding phase formation of high-entropy alloys.
Additionally, in the compositions discussed in the previous section, we
observed that the most stable composition was Cr3Fe5Mn5Ni3Si32, where
the Cr proportion was reduced. In conjunction with the results of the
titanium alloys above, we may suspect that smaller elements are ill-suited
in these alloys constructed from the FeSi2 structure.

In line with the other compositions studied in this project, the
magnetization is clearly related to chromium and manganese also in this
case. This is seen by the overall lowest magnetic moments in the two
compositions without these elements, and reversely the highest magnetic
moments are associated to compositions comprised of both chromium
and manganese. Comparing the magnetic moments of (CrFeCoNi)Si2
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and (CoFeMnNi)Si2, it appears that chromium is most responsible for the
magnetism of these alloys. Furthermore, we observe that substituting Ni
with either Ti and Co yields increased magnetic moments. As we have
discussed previously, the uniqueness of each SQS makes it difficult to
draw conclusion on various properties. In table 8.4 below, we list the
magnetic moments of the most stable SQS of each alloy. Contrary to
the mean value of the set of configurations, the most stable supercell of
(CrFeCoNi)Si2, like the (CoFeMnNi)Si2 alloy is nonmagnetic. Moreover, the
(CrFeMnTi)Si2 composition is less magnetic relative to both (CrFeMnCo)Si2
and (CrFeMnNi)Si2, as opposed to the mean values.

Composition
Magnetic moment

(µB)

(CrFeCoNi)Si2 0
(CoFeMnNi)Si2 0
(CrFeTiNi)Si2 0.065
(CrFeMnTi)Si2 0.079
(CrFeMnCo)Si2 0.167

Table 8.4: Magnetic moment of the most stable SQS of alloys comprised of
combinations of Cr, Fe, Mn, Ni, Co, Ti and Si.

Thus, based on the most stable configurations of each composition, we
can state that replacing either Cr or Mn (with Co), removes the magnetic
moment of the alloy. Furthermore we find that the magnetic moment is
reduced when Ni is substituted with Ti, and increased by Co. However,
while substituting manganese with Co yields a nonmagnetic alloy, Ti for
Mn only slightly reduces the magnetic moment.

In regards to the band gaps of these alloys, the majority are metals with
the exception of the (CrFeMnCo)Si2 alloy. Here, we locate a band gap in the
spin up direction slightly below 0.5 eV. In addition, the (CrFeTiNi)Si2 also
exhibits a small band gap in the spin up direction. As have been the case
throughout this project, we learn that the metallic structures are caused by
defect states at the band edges. By removing said defect states analogous
to what we have done previously, we can find total band gaps of around
0.05 eV in the most stable supercell in each of five alloys. Furthermore,
both of the spin up band gaps found for the (CrFeTiNi)Si2 alloy and
(CrFeMnCo)Si2, are enlarged from neglecting defect states, deeming these
as defect band gaps equal to what we have experienced in other instances.
Following the discussion above on the magnetic moments of the different
compositions, we note the largest spin polarization of the hypothetical
band gaps in the (CrFeMnCo)Si2 and (CrFeTiNi)Si2 alloys. On the other
hand, the remaining three compositions exhibits identical hypothetical
band gaps in both spin directions. The results discussed above can be seen
in table 8.5. The projected density of states of the half-metallic supercell of
the (CrFeMnCo)Si2 alloy is displayed in figure 8.4.
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Composition occ Eup, eigen
G
(eV)

Edw, eigen
G
(eV)

Etot, eigen
G
(eV)

(CrFeCoNi)Si2

0.5 0 0 0
0.1 0.001 0.040 0.001
0.01 0.063 0.063 0.063

(CrFeTiNi)Si2

0.5 0.007 0 0
0.1 0.061 0.009 0.009
0.01 0.061 0.037 0.037

(CoFeMnNi)Si2

0.5 0 0 0
0.1 0.004 0.004 0.004
0.01 0.027 0.027 0.027

(CrFeMnTi)Si2

0.5 0 0 0
0.1 0.021 0.001 0
0.01 0.030 0.030 0.022

(CrFeMnCo)Si2

0.5 0.461 0 0
0.1 0.607 0.022 0.022
0.01 0.607 0.025 0.025

Table 8.5: The band gaps in spin up/down and total of the most stable
SQS of alloys comprised of combinations of Cr, Fe, Mn, Ni, Co, Ti and Si.
Calculated from eigenvalues with different occupancy cutoff occ using PBE
GGA.

Figure 8.4: Projected density of states [states/eV] of (CrFeMnCo)Si2.

As was generally the case for the Cr-Fe-Mn-Ni-Si alloys, this structure
displays a dominant number of manganese states in spin down at energies
just above EF, and a large number of Cr states right below EF in spin up.
Analog to the most stable supercell of the Cr5Fe5Mn3Ni3Si32 alloy discussed
in section 8.1, the presence of defect states in the spin up band gap of
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CrFeMnCoSi2, results in small finite DOS at the Fermi energy, and the band
gap calculated from the eigenvalues is shifted above EF, resembling that
of a doped material. The PDOSs of the other four alloys are displayed in
figure 8.5. In agreement with the values listed in table 8.5, we observe from
the PDOS that these are metallic compounds with finite DOS at EF in both
spins.

(a) Cr4Fe4Co4Ni4Si32 (b) Co4Fe4Mn4Ni4Si32

(c) Cr4Fe4Ti4Ni4Si32 (d) Cr4Fe4Mn4Ti4Si32

Figure 8.5: Projected density of states [states/eV] of alloys comprised of
combinations of Cr, Fe, Mn, Ni, Co, Ti and Si.

Above we have evaluated the band gaps of the different compositions
based solely on the most stable supercells. In (CrFeCoNi)Si2, (CrFeTiNi)Si2,
(CrFeMnTi)Si2 and (CrFeMnCo)Si2, we find similar properties across all
five configurations. On the other side, in the metallic alloy (CoFeMnNi)Si2,
we discover very narrow total band gaps in two lesser stable configurations
(SQS A and E) of 0.03 eV and 0.006 eV respectively. The density of states of
these structures are displayed in figure 8.6.

(a) SQS A (b) SQS E

Figure 8.6: Density of states [states/eV] of SQS A and E of (CoFeMnNi)Si2.
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8.3 Negative systems

In the above sections we have observed that aside from the (CrFeMnNi)Si2
alloy, we have had limited success in locating semiconducting alloys when
moving away from the (CrFeMnNi)Si2 alloy, and particularly from the
Cr-Fe-Mn-Ni-Si system. In addition to the alloys disused above, we
have carried out similar simulations on other alloys not included in this
report. In most of these alloys we experienced limited or no success with
respect to the band gap. All five SQSs of a (ScVMnZn)Si2 alloy based
on FeSi2 turned out metallic. In (VMnFeCu)Si2, we found one supercell
with a defect band gap of 0.007 eV. Furthermore, we tested various four-
element compositions such as Cr6Co6Ni4Si32, Cr6Fe6Co4Si32, Cr6Fe6Ni4Si32
and Fe6Co6Ni4Si32. Out of these four compositions and corresponding 20
total SQSs, noteworthy we found a defect band gap of 0.15 eV in the spin
up direction in one supercell of Cr6Fe6Co4Si32, and a spin up band gap of
0.27 eV in Cr6Fe6Ni4Si32. In the latter, we observed smaller single spin band
gaps in additional configurations as well. The other two compositions were
metallic across all tested supercells.

In this project, we have based our alloys on the Semiconductor β-
FeSi2. However, we started this project by examining high-entropy silicides
based on trigonal Fe2Si. Here, we constructed similarly five distinct
supercells of (CrFeCoNi)2Si and (CrFeMnNi)2Si. The supercells consisted
of a total of 54 atoms, with 18 silicon atoms and the remaining 32 sites
distributed equimolarly between 3d elements. Furthermore, we have
performed simulations of the (CrFeMnNi)Si2 composition in 72-atom SQSs
of hexagonal CrSi2, and 44-atom SQSs of tetragonal and orthorombic
Mn4Si7 as well. First and foremost, these systems were much more
computationally demanding than the FeSi2 based alloys, thus not all five
supercells of these systems succeeded. Of the structures successfully
relaxed and electronically converged, we found predominantly metallic
structures.
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Part IV

Conclusion and future work
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Chapter 9

Conclusion

High-entropy alloys has emerged as a rapidly growing interest in materials
science in recent years, due to both a large degree of flexibility and
promising properties. In this project we have set out to study the possibility
of narrow gap semiconducting high-entropy silicides with top of the line
computational power and methods, in the prospect of discovering efficient
thermoelectric materials. The materials in mind has been based on the
FeSi2 semiconductor, and modeled with the SQS method in the framework
of DFT. To examine potential alloys, we have generated five distinct
configurations of each composition and scrutinized the band gaps, mainly
with PBE GGA.

Our most successful effort were based around a 48-atom model of
chromium, iron, manganese, and nickel in the Cr-Fe-Mn-Ni-Si system.
In the equimolar composition (CrFeMnNi)Si2, we observed a significant
variation of the band gap between the five configurations. In the spin
up direction, the band gap varied between 0.08 - 0.34 eV. The most stable
supercell was a half-metal, with a spin up band gap of 0.34 eV, while the
other four supercells displayed small spin down gaps between 0.03 eV and
0.05 eV as well. Simulations with SCAN and HSE06 resulted in erratic
and unpredictable outputs that varied greatly between SQSs, with a larger
degree of uncertainty compared to the PBE calculations. However, with
HSE06 we found for the (CrFeMnNi)Si2 alloy, band gaps in the spin up
direction of 0.55 eV and 0.71 eV in two supercells, and a total band gap
of 0.18 eV in another. With the SCAN functional we found total band
gaps around 0.1 in three SQSs, one metallic supercell, and one half-metallic
structure with a spin down band gap of 0.1 eV.

Following the equimolar composition, we conducted a brief exploration
of the quaternary phase diagram of this composition. Contrary to
the equimolar system, we observed here more frequently half-metallic
structures. By analyzing the projected density of states we were able
to relate the metallic spin down channel to a dominant presence of
manganese states around the Fermi energy. Inside the number of
different compositions that we tested, we found evidence for that there
exists a positive relation between the band gap, most notably in spin
up, and compositions poor in chromium and/or rich in manganese.
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Specifically, we located two promising compositions: Cr3Fe3Mn7Ni3Si32
and Cr3Fe5Mn5Ni3Si32, where the most stable supercell of the former
displayed a spin up band gap of 0.47 eV, and the latter a total band gap
of 0.1 eV, with PBE.

Lastly, we examined compositions of FeSi2 based alloys comprised of
cobalt/titanium in place of either Cr, Mn or Ni. Based on the most stable
configurations of these compositions, the only band gaps we found in
this experiment was a spin up band gap of 0.46 eV in (CrFeMnCo)Si2.
By manually investigating the calculated eigenvalues of the different
compositions, we were able to relate the metallic compounds to defect
states. This is a familiar term in random alloys, in which eigenstates at
the band edges deviate slightly from completely full/empty occupancy, to
yield overlap between states in the valence band and conduction band.

In accordance with the spin polarization of the band gap, we noted a
finite magnetic moment in most alloys. Distinctly, the equimolar alloy of
the Cr-Fe-Mn-Ni-Si system had a magnetic moment of 0.083µB in all five
supercells. Upon investigating the local magnetic moments, we discovered
that the magnetism was mainly attributed to chromium and manganese
atoms in the lattice. This was found as a general trend for all alloys based
on the FeSi2 structure. From this severe spin polarization of the band gap,
a possible application of the Cr-Fe-Mn-Ni-Si alloys, could be as spintronics
[67].

In terms of thermoelectric applications, we find limited success in re-
spect to the band gap. Recalling that good thermoelectrics are semicon-
ductors with band gaps around 0.2 eV, the band gaps of the (CrFeMnNi)Si2
alloy are too small. However, we have found instances more suitable, such
as the HSE06 band gap of 0.18 eV in one of the supercells, and the 0.1 eV
band gap in the Cr3Fe5Mn5Ni3Si32 composition. Furthermore, we can ex-
pect that the band gap in the real material to be larger than the PBE value,
thus the Cr-Fe-Mn-Ni-Si system could have potential application as a ther-
moelectric.
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Chapter 10

Future work

In future studies, I would first and foremost try to resolve several of the
uncertainties circling the results presented in this project. This would
include a more thoughtful investigation of the true ground state of the
(CrFeMnNi)Si2 alloy. For example, this could include a broader search over
more configurations (SQSs), and examine a larger number of different SQS
sizes, in order to reduce the variance of the observed properties of the alloy,
and possibly obtain a converged value of the band gap. Secondly, to decide
on the most representative configuration, we should have put more effort
into correctly/optimally specify the magnetic ordering of each SQS. Also,
a possible extension could be to study excited states to account for entropic
contributions to the stability. Moreover, a test of different crystal structures
in addition to the orthorombic CMCE space group should be done, as the
local minima method of DFT does not guarantee that this is the most stable
conformation of the alloy. Another possibility, would be to study the Cr-Fe-
Mn-Ni-Si system by alternative computational methods, such as the virtual
crystal approximation, coherent potential approximation, or hybrid Monte-
Carlo molecular dynamics simulations.

The overarching motivation of this thesis has been to simply locate
a band gap in high-entropy silicides. Now that we have located such a
compound, in future work we could devote more effort into specifically
examine the band gap. Potentially, attempt to plot and analyze the band
structure, and qualitatively scrutinize the band gap by different band gap
specific functionals. Furthermore, we performed only a very limited search
of the quaternary phase diagram of the Cr-Fe-Mn-Ni-Si system, but found
promising results in the direction of less chromium and more manganese.
Thus, a future study on more deliberate compositions in these directions
would also be interesting. Provided that these results yielded positive
outcomes of the band gap, suitable for thermoelectric application. A future
project could be oriented towards performing a complete study of this
material as a thermoelectric, and consider properties such as the Seebeck
coefficient, electrical conductivity, and thermal conductivity.
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Appendix A

Appendix

A.1 Density of states

Figure A.1: Density of states [states/eV] of SQS E of (CrFeMnNi)Si2.
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Figure A.2: Density of states [states/eV] of SQS C (CrFeMnNi)Si2. NEDOS
represents the number of points in the DOS calculation.

Figure A.3: Density of states [states/eV] of SQS C of Cr5Fe5Mn3Ni3Si32,
illustrating the small finite DOS at EF due to the impurity gap.
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A.2 Projected density of states

Figure A.4: Projected density of states [states/eV] of SQS A of (CrFeM-
nNi)Si2

Figure A.5: Projected density of states [states/eV] of SQS B of (CrFeM-
nNi)Si2
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Figure A.6: Projected density of states [states/eV] of SQS E of (CrFeM-
nNi)Si2

A.3 Charge density

Figure A.7: Contour plot of the charge density of SQS C of (CrFeMnNi)Si2.
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