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Abstract

Platooning is when one or more follower vehicles follow a lead vehicle autonomously based
on information gained through sensors or communication. Due to being autonomous, the
vehicles in the platoon can react faster and drive closer to each other than usual. The faster
reaction increases safety. The smaller gap between the vehicles leads to less air drag, which
reduces fuel consumption.

In this thesis, two methods for leader-follower platooning control without inter-vehicle
communication were simulated and implemented on two Turtlebot3 Waffle-Pi robots. Both
controllers only relied on visual information and were prescribed performance controllers.
The first controller used the relative distance and bearing angle between the vehicles. The
second controller used the pixel coordinates of a feature point in the follower’s camera. Ex-
periments were done where the robots drove in different patterns to evaluate the controllers.

The original controllers only used visual information. Modifications were made so the
controllers could use a camera, LiDAR, or both. A moving average filter was added to
reduce noise. The filter caused issues in some cases because it introduced a delay, which
affected the system in situations where the velocity was dynamic. Using a LiDAR made the
methods more robust toward problems that could occur from using the camera but worse
at measuring angles. The LiDAR measurements were noisy, and the LiDAR in the physical
system had a bias, but using it was more stable than using the camera in cases where the
visual information was lost or affected by external factors.

Both controllers worked well in the simulations, with the pixel-based method being bet-
ter. There were issues with the pixel-based method in the physical experiments due to it
being sensitive to external factors that affected the camera, such as the robots driving over
uneven flooring. Because of this, the distance-based method was more suited for physical
implementation. Adding a LiDAR improved the physical pixel-based method’s stability, as
it negated the camera issues. If the trajectory of the robots in the experiments was curved,
the pixel-based method would shortcut more than the distance-based method.
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Chapter 1

Introduction

Platooning is the linking of two or more vehicles in a convoy. The lead vehicle can be
autonomous or human-driven. The followers are autonomously following the leader based on
sensor data or communication. The platooning vehicles are essentially linked with invisible
"chains" so they maintain a close distance to each other while in a platoon (ACEA, n.d.-b).
This distance is often constant. Platooning does not always require the vehicles to follow
directly behind the lead vehicle. They can also drive next to each other or in different
formations and patterns. A form of platooning can be seen in nature. Some birds fly in a V
formation because it conserves energy. They get less wind resistance, so they get less tired
and can fly longer distances without rest. Flying in a V formation also lets the birds keep
track of every individual in the formation, making it easier to communicate and coordinate
(Science Reference Section, Library of Congress, 2019). Platooning in vehicles can be viewed
as an advanced form of cooperative adaptive cruise control.

Platooning can be done longitudinally or laterally. Longitudinal platooning is when the
vehicles follow directly behind the leader. In some platoons, each of the vehicles follows the
vehicle in front of itself instead of a common leader. Longitudinal platooning is the most
common. Lateral platooning is when the following vehicles are on the sides of the leader
vehicle instead of directly behind. Different formations can be made by combining the two
types of platooning.

Platooning can have many benefits, such as reduced air drag, lower fuel consumption,
more security, less space between the vehicles, and increased driver comfort. Some of these
benefits become more apparent when looking at cargo trucks. The reduced air drag from
platooning leads to lower fuel consumption in trucks because air drag accounts for 25% of
the truck’s fuel consumption. Transport of cargo accounts for 1/4th of the greenhouse gas
emissions in European cities (Turck, n.d.). In the U.S, trucks are responsible for almost 3/4th
of the total freight energy use and greenhouse gas emission. It was discovered that 65% of
the miles that these trucks drive could be platooned, leading to a potential 4% reduction
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in total truck fuel consumption (Muratori et al., 2017). Truck platooning could potentially
reduce CO2 emissions by 10% according to (ACEA, n.d.-a).

Platooning leads to increased safety. Human error is reduced when the vehicles become
more automated. Almost 90% of all traffic accidents are due to human error (ACEA, n.d.-a).
Platoons can react quickly to potential obstacles. The follower vehicles only need 1/5th of
the time a human would need to react to the same situation, making platooning safer than
if a human was driving.

Due to the faster reaction time, trucks in platoons can drive closer to each other and be
as close as 12 meters. Therefore, platoons can use the roads more efficiently, as they take
up less space than non-platooning vehicles. Using the road more efficiently leads to fewer
traffic jams, and goods can be delivered faster (Pnorental, n.d.). A study from Korea in 2019
showed that truck platooning could result in annual benefits from travel time savings that
corresponded to 167.7 million U.S $ in 2020. This study was done in a simulation based on
Korean freeways with 3 or more lanes. (Jo, Kim, Oh, Kim, & Lee, 2019).

Platooning increases driver comfort, as the driver does not have to pay as much attention
to driving while in a platoon (Turck, n.d.). Under current legislation, truck drivers are either
driving or resting. If the vehicle is partially automated or self-driving, the driver can focus
on other tasks, such as administrative work or making calls (ACEA, n.d.-a). As technology
becomes more advanced, the follower vehicles could be fully automated, meaning they would
not need drivers. According to (News, n.d.), there is currently a shortage of truck drivers,
with a shortfall of 76,000 drivers in the U.K and 400,000 in total in Europe. Platoons could
help alleviate this problem, as fewer drivers would be needed if the following trucks in the
platoons were fully automated.

In truck platooning, it is common to assume that all trucks started in the same location
and are heading to the same destination. It is also common to assume that the entire platoon
is from the same business. The single-truck businesses can also benefit from platooning by
making plans and joining platoons that are heading in the same direction (Fullbay, n.d.).
The Global Truck Platooning Systems market size was at 1818.3 million U.S $ in 2020 and
is projected to reach 9269.9 million U.S $ by 2027. Some of the key companies in platooning
are Volvo, Peleton Technology, Scania, and Uber (WBOC, n.d.).

Platooning has many benefits, but there are also concerns and issues. Daimler, a large
truck manufacturer that was heavily involved in platooning research, published a press release
announcing that they were abandoning platooning and instead focusing on highly automated
trucks (Saracco, 2019). The reason was that newer truck models are more aerodynamic. This
made platooning less appealing, as one of the main reasons for platooning was the reduced
air drag, which reduced fuel consumption. Another reason Daimler abandoned platooning
was that it was impossible to keep a platoon together for the entire duration of travel. The
splitting and re-merging of platoons meant that vehicles had to accelerate, which decreased
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how much fuel was saved.

Reactions to platooning on the motorway were mixed, especially considering safety and
the dangers that may come with platooning. (Road Safety GB, 2017) shows stakeholder
reactions to platooning. While it mostly shows positive reactions from stakeholders, they
also come with some concerns. These concerns were that platoons might block the view
of important information, like signs, which disturb drivers outside of the platoon. A rush
towards platooning might jeopardize the safety of motorways if not implemented correctly.
The increase in cyber-crimes could lead to problems when vehicles are automated and rely on
communication and other data. There were also concerns about platoons exiting and entering
highways in busy areas with many exits/entries, and how regular non-platoon drivers should
behave around platoons.

There are many ways of implementing platoons. It is often implemented in two parts; a
control part and a vehicle tracking part. The follower tracks the leader’s position through
communication between the vehicles, with sensor data, or both. Some common tools used
in platooning are cameras, Light Detection and Ranging (LIDAR), Global Position System
(GPS), and neural networks.

In this thesis, there is one leader and one follower vehicle. The vehicles do not commu-
nicate, and the follower relies on sensors to track the leader. The vehicles are TurtleBot3
Waffle Pi robots and come with a Raspberry Pi camera and a 360-degree LiDAR. The cam-
era is attached to the front of the robot. Turtlebot is a low-cost, beginner-friendly robot.
The robots are well supported, straightforward to use, and have many ready-made packages
and resources. The two Turtlebot3 Waffle Pis are used to implement platooning control
methods. The methods only rely on visual information. They were first simulated and then
implemented on a physical setup.

The most popular vehicle tracking techniques used to be LiDAR-only techniques, accord-
ing to (Manz, Luettel, von Hundelshausen, & Wuensche, 2011). In the Defense Advanced
Research Projects Agency (DARPA) Urban Challenge 2007, mainly LiDARs were used for
vehicle tracking. Using only a LiDAR can be challenging when there’s more than one object
in front of the follower, as the LiDAR struggles to tell the difference between the lead vehicle
and other objects. Because of this, it can be better to use a camera instead. The problem
with using a camera is that if the lead vehicle leaves the Field of View (FoV) of the camera,
or the light and weather conditions are bad, vehicle tracking can be difficult. It can be hard
to track distances with only a camera. It is possible to combine the camera with a LiDAR to
let the camera do the main tracking and let the LiDAR find the distance. Radio Detection
and Ranging (RADAR) can also be used to find the inter-vehicle distance between the lead
and follower vehicles, as shown in (Kim, Jang, Jang, & Kim, 2020), where they present a
camera and RADAR-based perception system for platooning. They combine the RADAR
with a camera because RADARs have a hard time tracking laterally, and it is difficult to
know what type of object is detected using only a RADAR.
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In this thesis, first, earlier works concerning platooning will be presented. Then a closer
look at some ways of implementing platooning, both with and without inter-vehicle com-
munication. After that, theory and a closer look at two methods of platooning without
communication will be presented. Additions to the methods, like a filter and a LiDAR, will
also be made. These methods will then be simulated and implemented, and experiments
will be done. Finally, the results of the experiments will be presented and discussed. The
goal of this thesis is to simulate and implement the controllers, find the characteristics of
the controllers, and compare them.
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Chapter 2

Earlier works

When doing platooning, there are two main applications. The first is platooning on highways.
This field has been well researched. The second is off-road platooning. This will be the focus
of this thesis. This field is not as well-researched, and the biggest difference between the
implementations of the two applications is usually what type of sensors and equipment is
used. Platooning on highways often uses communication in addition to cameras and other
sensors, like LiDAR or RADAR. Here, every vehicle in the platoon can communicate with
each other. In off-road platooning, there is often no communication. Instead, the following
vehicles track and follow the leader based solely on information obtained by their sensors.
This type of follower vehicle is often called the "ego"-vehicle. In this chapter, some of the
earlier work that has been done will be presented.

2.1 Earlier projects and challenges

Many researchers have been looking into platooning on highways with trucks and off-road
platooning. Several big projects have been done on platooning and the tracking of vehicles.
Challenges have also been held to test platoons and see how far the research field has come.

Safe Road Trains for the Environment (SARTRE) was a project funded by the European
Commission. It explored platoons operating on highways, where they had mixed platoons
consisting of both cars and trucks. SARTRE’s main goal was to have platoons where the
drivers could do other tasks instead of driving. While convenience was the main goal of
SARTRE, it also had safety, reduction of fuel consumption, and reduction of energy as goals.
Another important goal for SARTRE was to avoid changes to infrastructure so motorways
did not have to be re-built with special lanes or have special equipment to accommodate
the platoons. Vehicle to vehicle (V2V) communication was a vital part of the platooning
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system for SARTRE, and SARTRE dealt with both longitudinal and lateral platoons. This
was a three-year project that started in 2009 and ended in 2012. (Bergenhem, Shladover,
Coelingh, Englund, & Tsugawa, 2012).

California Partners for Advanced Transportation Technology (PATH) is a research and
development program founded in 1986 at the University of California. PATH’s main goal
was to increase the throughput of vehicles so highways did not have to be reworked to fit
the growing number of vehicles on the road. Platoons would take up less space because the
vehicles could be closer to each other. The platoons consisted of either cars or trucks but
did not mix the two in one platoon. The platoons would also have dedicated lanes on the
highway. PATH’s studies showed that with platooning, they could fit 2-3 times more vehicles
on the highway if platoons of up to ten cars were made. (Bergenhem et al., 2012) (Gallagher,
n.d.) (UC Berkeley, n.d.).

In 2011, the Grand Cooperative Driving Challenge (GCDC) was held. The goal was
to accelerate the development and integration of cooperative driving systems based on a
combination of V2V and vehicle to infrastructure (V2I) communication. The challenge was
to increase the throughput of vehicles by reducing the spacing between vehicles. And to
demonstrate how traffic "shock waves" can be weakened. These shock waves propagate
along a line of vehicles and are generated by collisions or changes in velocity. They are a
result of traffic conditions changing (University of Idaho, n.d.). GCDC was held again in
2016; the challenges were cooperative platoon merging and cooperative intersection passing.
(Bergenhem et al., 2012) (Englund et al., 2016).

Energy-Intelligent Transport System (Energy-ITS) was a project by the Japanese Ministry
of Economics, Trade, and Industry. The goal was to save energy. The slower a vehicle is
traveling (up to 40-50 km/h), the more CO2 it emits. With ITS, vehicles can move at
more efficient speeds, making it so they emit less CO2. Another goal of Energy-ITS was to
mitigate the lack of skilled drivers on the road by having ITS help the flow of traffic. The
project started in 2008 and ended in 2012. (Bergenhem et al., 2012) (ITS Asia-Pacific, n.d.).

In 2016, the European truck challenge was held for the first time by the Netherlands to
promote platooning by bringing truck convoys to public roads for the first time. Six truck
manufacturers would bring platoons of semi-automated trucks, crossing borders from differ-
ent European cities to reach their destination of Port of Rotterdam (Acea, 2016). All six
platoons succeeded, and the challenge cleared the way for real-life convoys. The European
truck challenge was not held to test the technological aspect of platooning, as the organizers
were certain the technology was already there. It was held to prove that they could over-
come the institutional and operational challenges of running platoons in different countries.
(Roberts, 2016).

One of the earliest projects involving platooning was the German national project, KON-
VOI. The project lasted from 2005 to 2009 and focused on the platooning of heavy trucks
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with small gaps between each truck to improve aerodynamics. KONVOI studied driver ac-
ceptance, traffic flow, environment, and legal and economic implications of platoons. The
platoons were successfully developed and tested in 2009 and drove 3100 km in real traffic,
making it the first platoon system to be tested in real traffic. The KONVOI project was
inspired by the PROMOTE CHAUFFEUR I+II projects, which were the first projects in
the EU that dealt with platooning. The PROMOTE CHAUFFEUR I+II projects focused
on the technical feasibility of platoons. (TRIMIS, 2021).

European Land-Robot Trial (ELROB) is the longest-running field robotics and unmanned
systems event. It has been held since 2006. ELROB has trials reflecting real-world scenarios.
The event’s main purpose is for companies to demonstrate their equipment and for users to
see the equipment used in real-world scenarios (Schneider, Unknown). One of the ELROB
trials is a convoy scenario, where a highly automated vehicle follows a leading vehicle through
an unknown, unstructured domain. The leading vehicle is driven by a human through a non-
urban area. The winner of ELROB 2016 was Team MuCAR (Munich Cognitive, Autonomous
Robot Cars), their work will be further examined in section 2.3.1.

These were some projects and challenges involving platooning. There have been other
companies that have researched platooning that have not been looked at thoroughly here,
like Scania, Daimler Truck company, and DAF Trucks. (Dekra, 2018)

2.2 Platooning with communication

Even though this thesis will be focusing on platooning without communication, it is worth
going over some important works and concepts on platooning with communication to under-
stand platooning better. Communication in platooning mainly happens through V2V and
V2I communication.

An important concept in platooning, especially on highways and with several vehicles,
is string stability. When the lead vehicle in a platoon slows down, the following vehicles
should also slow down in such a way that they avoid a collision. A platoon is string stable
if disturbances are not amplified when they are propagated over vehicle strings. If the
disturbances are amplified, the platoon is not string stable. String stability is often used
to evaluate the performance of a platoon since it can show whether a platoon can handle
changes in traffic conditions. When it comes to research on off-road platooning, there is
little mention of string stability. It is hard to say why, but it might be because there is less
emphasis on traffic in off-road scenarios. (Feng et al., 2019).

A problem when using communication in platooning is communication delays. The per-
formance of the platoon is connected to the communication link. Because of noise and
reflections, information can be lost. This can lead to collisions within the platoon and loss of
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string stability. In (Vinel, Lyamin, & Isachenkov, 2018), they try to solve the issues caused
by the delay by making a model for the maximum tolerable delay that a platoon can have
before it starts having problems.

2.2.1 Implementations of platooning with communication

There are many ways of implementing platooning with communication. In (Rezgui, Gagné,
Blain, St-Pierre, & Harvey, 2020), it is implemented by having a V2I communication algo-
rithm and using a camera to determine the position of the following vehicle relative to the
leader. Ultrasound is used to determine the distance between the vehicles, and a convo-
lutional neural network is used to classify a pink marker behind the leader. They have a
custom-built robot with an Arduino. Data is transferred from different sensors to the in-
frastructure of the robot. The infrastructure then returns the decision that the robot should
make.

In (Torabi & Wahde, 2018), a method to optimize fuel efficiency is given. Instead of
having a fixed desired distance between the vehicles in a platoon, the speed profile of every
vehicle is calculated based on the route they are driving. The optimization is done through
evolutionary algorithms that ensure a minimum distance is kept to avoid collisions.

Vehicles in a platoon have three main actions, follow, merge and split. (Farag, Mahfouz,
Shehata, & Morgan, 2019) introduce a Robot Operating System (ROS) based protocol for
vehicles merging with or splitting from a platoon and show an algorithm for these actions.
(Bergenhem, 2015) compares three methods of sharing information within a platoon. The
standard method uses Cooperative Awareness Messages (CAM) and Decentralized Environ-
mental Notification Messages (DENM). The two new methods they propose are a minimal
and a full protocol. The new protocols address issues with the standard method; they have
a fixed update rate and extra data. The full protocol has two-way communication through
handshakes. The minimal protocol and standard method only have one-way communication.

In (Zhao, Yao, Li, & Wang, 2017), a system for following a lead vehicle by tracking the
leader’s path is designed. This path is made up of waypoints that give information about the
leader’s position and velocity; these are collected in intervals. The system mimics humans by
continually locating the leader and remembering the leader’s path. The waypoints are man-
aged by a waypoint management algorithm. The waypoints are pushed into a queue when
the leader’s pose is updated; it is updated at a fixed interval. The leader is equipped with a
GPS, inertial navigation, and odometer. An integrated Kalman Filter fuses all the measure-
ments for pose estimation and uses communication to transmit the pose. The vision-based
tracking initializes a region of interest with the help of the GPS and then uses Histogram
of Oriented Gradient (HOG) features. Combining this with LiDAR-based tracking, inter-
distance control, and trajectory following with object avoidance gives robust convoys.
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As previously mentioned, there can be communication problems such as delays. Another
problem is that the IEEE 802.11p protocol that is used for vehicle communication can be
vulnerable to attacks and jamming. In (Ucar, Ergen, & Ozkasap, 2018), they try to alleviate
the communication issues by using Visible Light Hybrid Communication. This method is a
hybrid between Visible Light Communication (VLC) and IEEE 802.11p. While this works,
they state that relying only on VLC can lead to degradation in platoon stability because it
is sensitive to environmental effects. In (Abualhoul, Marouf, Shagdar, & Nashashibi, 2013),
they study the applicability of VLC, where they build a complete model and investigate if
this is a good method for platooning. They use the rear lights of vehicles as a communication
link. They managed to get a Bit-Error-Rate of 10−6, but they had problems when the roads
curved too much.

2.3 Platooning without communication

As mentioned, communication cannot always be relied upon. Therefore, other ways of mak-
ing platooning systems that do not require communication must be explored. Since there is
no communication in these methods, there will be more weight on sensors like the LiDAR
and cameras. Platooning without communication can be implemented in different ways.

In (Benhimane, Malis, Rives, & Azinheira, 2005) they present a complete platooning
system with the use of visual tracking in an outside environment. The visual tracking is done
by estimating the homography between a selected reference template attached behind the
lead vehicle and the corresponding area in the current image. The relative pose is found by
using homography decomposition. For the control part, they use kinematic modeling with
Cartesian coordinates and path tracking. They also have an alternative for more robust
distance-based lateral path tracking. The control objective is to follow the leader’s path,
and the path tracking error is given in Cartesian coordinates.

In (Yang, Liu, & Jiang, 2018) they show an autonomous multi-vehicle following queue
control system that uses vision and lasers, simulated in ROS. Vision and laser measurements
are fused to keep the followers at a desired distance from the lead vehicle. The control is
done by finding control laws from kinematic models. The model is based on a 2-dimensional
top-down coordinate system and looks at the error between the follower’s desired position
behind the lead vehicle and its actual position. Two parameters must be found for the control
law; relative orientation and distance. The relative orientation is found with the camera by
finding the centroid of the target and looking at the orientation between the target and
camera source. The Camshift algorithm is used to track the target and decide if it should be
followed or not and can be used when the centroid is found. The relative distance is found
using the laser.

In (Baardseth, n.d.) they presented methods for vehicle detection and pose estimation.
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They find the pose of the lead vehicle relative to the ego-vehicle by using Pose from Or-
thography and Scaling (POS) and POS with iterations (POSIT). These methods require a
minimum of 4 known 3D feature point pairs and their corresponding 2D image coordinates.
Image geometry is used to convert 3D to 2D points, and Random Sampling Consensus
(RANSAC) is used to find good data points/inliers. Based on the visual and geometric
properties of the vehicles, 3D point cloud detection can be done with LiDAR. Using the
point cloud and the properties of the vehicles, relative pose estimation can be done. They
have two alternative methods for finding the relative distance between vehicles. One method
uses LiDAR, and the other uses POSIT. For model-based pose estimation, they use either a
model of the license plate or the vehicle.

A method that uses pre-trained neural networks is presented in (Mutz et al., 2017). The
method tracks the lead vehicle by using a Deep Neural Network (DNN) to find a bounding
box in the current image that is most likely to contain the lead vehicle. Then a LiDAR is
used to find the depth information since LiDARs are good at finding distances. Once the
current position of the leader is estimated, it is used to track the leader’s path. The position
estimate is evaluated, and if it is an inlier, it is incorporated into the leader’s path. The
method uses a localizer module to compute the follower’s current position in the environment.
Localization is done by using a GPS-Real Time Kinematic (GPS-RTK), an odometer, and
a LiDAR. Then a Monte Carlo Particle Filter is used to compute the follower’s pose. The
method has a mapper module to create representations of which areas do not have obstacles,
a module path tracker to track the leader’s path using the LiDAR, and a neural network. It
also has modules for obstacle avoidance, behavior selection, motion planning, and a low-level
controller. A big advantage of the method in this paper is that it does not require models
or adaptations of the leader vehicle.

2.3.1 ELROB 2016

In this section, the winners of the ELROB 2016 trial will be discussed in more detail. Team
MuCAR has been researching autonomous vehicles for more than 30 years and has partici-
pated in earlier ELROB trials with great success. (Elrob, n.d.).

In 2011, they released a paper (Manz et al., 2011) on how to do monocular model-based 3D
tracking that can deal with complex lighting, partial occlusion, and cluttered color images.
It is a 6DOF vehicle tracking problem. Tracking with only a LiDAR can be unreliable.
Because of this, they use a 3D model of the lead vehicle, which can result in a good tracking
method using only a camera. To accurately track the leader, the algorithm is given the
leader’s shape and appearance in a 3D model, which consists of vertices, edges, and colored
regions. They use a camera mounted on a moving platform and utilize a 4D approach in
addition to a particle filter.

They build further upon their work in (Fries, Luettel, & Wuensche, 2013). They present a
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template-based solution using different features to estimate 3D pose roughly but fast. They
then combine this method with their previous work, making a fast and accurate tracking
method. They do not use LiDAR or RADAR because it is expensive. They use their model-
based tracking system to do the main tracking, but this method needs to be re-initialized at
the start/at a loss of visual detection. For this purpose, they build a template-based solution.
The template-based tracking uses 3 sides of the vehicle that should be tracked (two sides
and the back). The template-based tracking estimates the pose and velocity based on this.
It uses feature matching, tries to match the template to the images in the camera, and uses
a classifier to improve the performance of the tracking. Then a Kalman Filter is used to
predict the vehicle pose and region of interest to improve the results. They then combine
the model- and template-based tracking methods.

In a later paper, they improve on their template-based model by adding pre-processing
steps that remove unnecessary image information. The improvements are made by attaching
2D templates to 3D models, adding image features, and training cascade classifiers. This
process generates a 3D template model. After the 3D template is generated, a Scaled Un-
scented Kalman Filter is applied to predict the relative vehicle pose. In addition, they use
rotated image features to enhance pose estimation. (Fries & Wuensche, 2014).

They extend their tracking system by using more than one camera sensor in (Fries &
Wuensche, 2015). They use low-light, thermal and daylight cameras to be able to detect
vehicles at nighttime. In addition, they get higher stability and accuracy by coupling a
Kalman filter with their particle filter. Apart from that, the tracking method is very similar
to their previous methods. They add a LiDAR to get depth information. The LiDAR is also
used if the lead vehicle drives out of the camera’s FoV.

In the ELROB 2016 trial, they mainly made use of the methods mentioned in this section
and fused measurements from different sensors. Their system had mission planning, vehicle
tracking, and path generation. The mission planning contained the convoy leader type, the
follower’s maximum velocity, and the minimum relative distance. For tracking, they had
tracking with a LiDAR-only method and a method for camera and LiDAR-based tracking.
They combined these with data fusion at the object level, which was done by a Gaussian
Mixture Probability Hypothesis Density filter. The path generation generated a path for the
follower based on ego-motion information and the tracking of the leader. (Fries et al., 2017).

2.4 Control

Until now, mainly the vehicle tracking aspect of platooning has been discussed. Another
important part of platooning is the control aspect. Platooning control is about how au-
tonomous vehicles are controlled based on sensor input and other information. The focus
of this thesis will be on control methods that do not require any communication. Many
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different strategies for control exist; some of them will be mentioned in this section. In
this thesis, two methods for platooning control without inter-vehicle communication will be
chosen, discussed in greater detail, simulated and implemented, and compared.

In (M’Sirdi, 2021), they show an overview of different control models. The main difference
between the models is what assumptions are made and what information is neglected. 1D
models are mostly used to study inter-vehicle safety distance, where it is assumed that the
platoon is in a straight line with no lateral movement, only longitudinal. Some 1D models
are the longitudinal double integrator, the longitudinal unidirectional model with simple
mass, and the longitudinal bidirectional model with a mass-spring-damper.

2D convoy models are more useful as they model both longitudinal and lateral movement.
The kinematic model is a popular 2D convoy model; here the dynamics are neglected. The
unicycle model, which uses a kinematic representation, is simple and used for vehicles with
two wheels on an axle. The bicycle model, or Ackermann’s model, is used for vehicles with
two axles, where the front wheels are controlling the lateral movement of the vehicle. There
is also the robotics model, which is composed of dynamic equations, kinematic transforms,
and geometric representation, which makes it more precise. In (M’Sirdi, 2021) they suggest
a new control model, saying that the current models that exist are too simple. They point
to how certain animals swarm or move in packs and that the formations are based on the
species and other factors. They propose a method that takes the geometrical differences of
the platoon vehicles into account.

In (M’Sirdi, 2021), they also show an overview of different strategies that can be used for
control, saying that these strategies can be classified into kinematic/dynamic, local/global,
uni, or bi-directional. The classifications are based on what information is used to control
each vehicle. For example, global methods use sensor information from all vehicles, while
local methods use information from neighbors only. Sometimes if the control laws are robust,
precise models are not needed (Nacer, Dahmani, & Nasser, 2020). Another classification of
control systems is decentralized/centralized. Decentralized control systems have no commu-
nication, while centralized control systems have communication (Yazbeck, Scheuer, Simonin,
& Charpillet, 2011).

Previously, how (Benhimane et al., 2005) implemented their vision-based control for car
platooning by using homography decomposition was presented. As mentioned, they use a
kinematic model with Cartesian coordinates. For control, they consider a car-like vehicle
that purely rolls without slipping, so the velocity vector always points perpendicular to the
rear wheel axis. They describe this kinematic model with the help of absolute Cartesian
coordinates, the longitudinal velocity, heading angle, and steering angle. They do path
tracking by attaching a moving reference frame to the lead vehicle and having a current
frame for the follower. The origin of the current frame is the current position of the follower,
and the origin of the reference frame is the desired position. The difference between the
origins is the path tracking error. By computing the derivatives of the error and combining
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this with the kinematic model, they get a local kinematic model. By using a simplified 1st
order model for vehicle dynamics, they get a model that is decoupled into a longitudinal
and lateral model. They swap the lateral model for a distance-based lateral model for more
robustness. To adapt the control approach to platooning, they set a reference frame rigidly
linked to the leading vehicle as the control objective.

Previously, (Yang et al., 2018), and their implementation was mentioned. The control in
their paper was done by finding control laws for the kinematic model and looking at the error
between the desired position of the follower behind the lead vehicle and the actual position.
They use a Proportional-Integral-Derivative (PID) controller to control the velocity of the
wheels of their robots. In (Mutz et al., 2017), as previously mentioned, they used different
modules. The most important module for control is the low-level controller module. This
module maintains two independent controllers, one for velocity and one for steering. The
velocity controller is a standard PID controller, and the steering is done by a Model Predictive
Controller (MPC). The MPC simulates the output some time steps ahead to decide which
steering wheel effort to apply in the current time step. They used a Neural-Based MPC
because the standard MPC could not handle latency and non-linearity. Another important
module for control is the motion planner. It receives a goal list produced by a behavior
selector module and computes a set of motion commands to achieve the goals. Each motion
command consists of a linear velocity, steering wheel angle, and duration for how long the
command should be applied.

In (Scheuer, Simonin, & Charpillet, 2009), a longitudinal controller is presented. This
controller is then built upon by combining it with lateral control in (Yazbeck et al., 2011).
Lateral and longitudinal control can be dealt with separately. In (Scheuer et al., 2009),
they started by taking the controller presented in (Daviet & Parent, 1996) and improving
upon it. The controller in (Daviet & Parent, 1996) computes acceleration as a function
of the follower’s velocity, the follower’s distance to the lead vehicle, and the lead vehicle’s
velocity. In (Scheuer et al., 2009), they improved this controller by ensuring collisions were
avoided by setting some constraints. In approaches to platoon control without inter-vehicle
communication, there can be issues with lateral deviation, which is accumulated along the
platoon. In (Yazbeck et al., 2011), they improve on this and minimize lateral deviation.
They use a kinematic model and assume that the wheels of their robots do not slip and
use odometry and a sensor like a camera/laser. The lateral control consists of the follower
memorizing the leader’s path. The leader’s position in a fixed frame corresponding to its
configuration at the start of the experiment is put into a First In, First Out (FIFO) list. The
positions in the list give a linear approximation of the path that the follower tries to follow.
Curvilinear distance to this path is computed and updated, and the FIFO list is updated
as the follower follows the path. Control law computation is used to track the leader’s path
more robustly by using it to reach a target position in the memorized path between the two
robots. The target is the first position whose inter-distance (distance between the vehicles)
with the current position is higher than a look-ahead distance. Since the position of the
lead vehicle is given in a fixed frame and computed according to the odometry, it will suffer
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from drift, and the position will become less accurate. The memorized position is not used
directly, only its backward projection. Therefore, the drift can be neglected.

In (Ali, Garcia, & Martinet, 2015) they use a Constant Time Heading (CTH) policy
for longitudinal control and sliding mode control for lateral control. The CTH policy is
given in (Swaroop & Rajagopal, 2001) and is a variable spacing policy where the desired
following distance is proportional to the speed of the vehicle. In (Ali et al., 2015), they
make a longitudinal dynamic model by using the control law given in (Sheikholeslam &
Desoer, 1993) and improve it by taking the model of the engine into account. For the lateral
model, they use the bicycle model and reformulate it by adjusting the model so that the
steering is not instantaneous. From this, they get a linear model for the lateral system.
Both these controllers need control inputs, so one input for the longitudinal controller and
one for the lateral controller. They propose a new way of modeling platoons with a flatbed
tow truck model. Here the forces between each vehicle in the platoon are represented by
a one-directional spring-damper system for the longitudinal controller. They add a virtual
truck into the model. The truck is assumed to move at a certain velocity, and the platooning
vehicles’ velocity must be subtracted from the truck’s velocity. They can then deal with
relative velocity instead of absolute velocity. The lateral platoon model consists of two
springs and two dampers. The springs and dampers model the error in the angle/heading
and the distance between the lead and following vehicle. By using a modified CTH and a
curvilinear spacing error, they find the control input for the longitudinal controller. By using
the sliding mode control, they find the control input for the lateral controller.

In (Kwon & Chwa, 2014), they use coupled sliding mode control, which is presented in
(Park & Chwa, 2009). In (Kwon & Chwa, 2014), they describe an interconnected system
with a constant distance between the vehicles, which is described by a non-linear dynamical
model given in (Stankovic, Stanojevic, & Siljak, 2000). From the dynamical model, (Kwon &
Chwa, 2014) design bi-directional control laws so that each vehicle keeps the desired distance
to the preceding vehicle and so string stability is guaranteed. They propose an adaptive bi-
directional control law using coupled sliding mode control, where the control objective is
to make the distance error converge towards zero. They first choose sliding surfaces, which
are needed to use the coupled sliding mode control. They can find information about the
derivatives of the sliding surfaces by filtering. The convergence of the sliding surface of one
vehicle to zero does not guarantee string stability, so they choose the coupled sliding surface
of the vehicles for control of the entire platoon. Using information about the sliding surfaces,
they design a control law that makes the coupled sliding surface converge to zero. They also
use parameter adaption laws for unknown variables in the control law. When the control law
is employed in the interconnected system, the distance errors converge to zero and guarantee
string stability if a weighting factor in the coupled sliding surface is between 0 and 1.

In (Petrov, 2008), they propose a mathematical model for control of an autonomous vehicle
convoy. They use the bicycle model and assume that the wheels of the vehicles do not slip.
They put non-holonomic constraints on the model. Through this, they create a kinematic
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model of the lead and following vehicles after doing some transformations and setting up
coordinate systems. A reference point is set between the vehicles. The point is some distance
behind the leader and some distance in front of the follower vehicle. Taking the difference
between the kinematic models of the leader and follower gives a relative kinematic model
with the error in position and angle. They take the derivative of the model to get the
error of the system in the next time step, giving them the inter-vehicle kinematics in error
coordinates. The velocity of the lead vehicle is unknown and unavailable for feedback control
design. Because of this, they propose an adaptive control law that achieves stabilization of
the system in error coordinates. To do this, they start by defining the kinematic models
and reducing them to adaptive control design. They use a Lyapunov function candidate and
derivate it. They then choose variables for the linear and angular velocity of the leader so
that every term containing them is eliminated from the function. This gives an adaptive
control system.

In (Belkhouche & Belkhouche, 2005), they use guidance law strategies to make control laws
for platooning. The guidance laws are velocity pursuit, deviated pursuit, and proportional
navigation. These guidance laws are used to derive control laws for the velocity and angular
velocity of the follower. They start by creating a kinematic model for the robots in Cartesian
coordinates and transferring it to polar coordinates. They look at the relative velocity
between two robots and use this to derive a kinematic model for the platoon. They then
use the guidance laws, which are based on geometry and kinematic equations. The velocity
pursuit is about making the velocity vector of the pursuer lie on the line of sight joining
the pursuer and target. Deviated pursuit is when there is a non-zero angle between the line
of sight and the velocity vector. Proportional navigation is a generalization of the velocity
pursuit, where the angular velocity of the pursuer is proportional to the rate of turn in the
sight angle. Using the laws, they get a control law based on the velocity pursuit because
it can be shown that the two other laws can be generalized to become the velocity pursuit.
They then create a second control law, which is derived from considering the kinematic
equation between successive robots under the guidance laws. The second control law is for
maintaining a constant distance between the vehicles.

Using the control method based on velocity pursuit in (Belkhouche & Belkhouche, 2005),
(Hung, Vinh, & Dung, 2012) creates a simple platoon control system. The system uses a
Sensory Input Map, where the follower can use a laser to find the relative distance and angle
between itself and the lead vehicle. Using the relative angle and distance between the two
vehicles, they can find the velocity and angular velocity of the lead vehicle.

In (Verginis, Bechlioulis, Dimarogonas, & Kyriakopoulos, 2015), they make decentralized
control laws where no communication is required, using only visual feedback. They assume
that the visual feedback is limited, meaning the follower can only detect the leader in a lim-
ited cone of vision. This method uses a unicycle model and only requires the distance and
bearing angle between the leader and follower to maintain a platoon. They add constraints
to the distance and bearing that help keep the platoon connected even with limited visual
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feedback. Based on the relative distance and bearing, they define distance and heading
errors. The controller used here is a prescribed performance controller (PPC). The pre-
scribed performance characterizes the evolution of the errors and is defined by a steady-state
performance and some positive parameters. The positive parameters are based on the min/-
max distance and bearing between the leader and follower. They then use the steady-state
performance function to normalize the errors and use these in the control laws.

In (Miao et al., 2021), they present a vision-based formation control method with FoV
constraints. This method only requires visual feedback and uses a unicycle model. The
method is based on detecting a feature point on the leader and making the pixel coordinates
of the feature point coincide with some pre-determined, desired pixel coordinates. The
desired pixel coordinates are chosen according to the desired position of the follower relative
to the leader. They use a PPC similarly to (Verginis et al., 2015), but they deal with
pixel coordinates instead of angles and distances. In (Miao et al., 2021), they present two
controllers. A Nussbaum Gain Adaptive controller and a Static Nonlinear Gain controller
and compare them. The Nussbaum Gain Controller has a dynamic control law, has control
matrices instead of constants, and is a little more advanced. In their results, when comparing
the two controllers, they found that the Static Nonlinear Gain controller gave the best results.
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Chapter 3

Background

This chapter will go deeper into two chosen control methods and look closer at how they
work. This chapter will also go over the theoretical background and the tools that are
important to implement and understand the methods

The first method is the one shown in (Verginis et al., 2015). The method does not use
communication and only relies on the relative distance and bearing angle between the two
robots. The second method is shown in (Miao et al., 2021). Here, the relative distance and
bearing are not needed, but the pixel coordinates of a feature point on the leader in the
follower’s camera are required. Both methods use the unicycle model and only require visual
feedback. The unicycle model is required when working with a Turtlebot3 because the robot
is a differential drive robot. A differential drive robot has two drive wheels mounted on a
common axis, and each wheel can be driven individually; forward or backward (Dudek &
Jenkin, 2010). The methods were first simulated in Gazebo and later implemented on the
physical Turtlebot3 robots.

These methods were chosen because they only use sensors that are already available on
the Turtlebot3, meaning a camera or LiDAR. Camera-based controllers were chosen because
most recent methods mainly use a camera, with a LiDAR sometimes used as a support-
ive sensor to find distances. Many other methods rely on additional information, such as
communication or a way to find the leader’s heading. The chosen methods only rely on
detecting the leader and finding the relative distance and bearing angle between the robots
or minimizing pixel positions. Another reason for picking these methods is that they use
the unicycle model to derive the control equations, as the Turtlebot3 must be modeled after
the unicycle model. The methods also had to be recent. The two methods that were chosen
are from 2021 and 2015. In addition, the controllers could not be too simple. A normal
PID controller would, for example, be too simple. The two methods chosen here were good
candidates.
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3.1 Theory and tools

Before going deeper into how the controllers work and how they are implemented, background
theory and the tools that are being used will be presented in this section.

3.1.1 Controllers

The controllers that are being implemented in this thesis both fall under the classification of
prescribed performance controllers. PPC was first proposed in (C. Bechlioulis & Rovithakis,
2008) as a tool to priori characterize the transient and steady-state performance. Usually,
repeated parameter regulation is required to get a good transient and steady-state per-
formance. In the PPC, some transient and steady-state performance indicators like the
overshoot, undershoot, and convergence rate of the system are characterized a priori by a
performance function designed by the user. This makes it so that complex parameter regula-
tion is not needed, lowering the complexity of the control design. The PPC method generates
a controller that guarantees the preassigned performance set by the user. The performance
function is designed offline. (Wei, Chen, Liu, & Yin, 2020).

In (Verginis et al., 2015), they use concepts and techniques from (C. P. Bechlioulis
& Rovithakis, 2014). In (Miao et al., 2021), they use concepts from (C. P. Bechlioulis,
Heshmati-alamdari, Karras, & Kyriakopoulos, 2019). In (C. P. Bechlioulis & Rovithakis,
2014), they design a universal, approximation-free state feedback control scheme that guar-
antees output tracking with prescribed performance and bounded closed-loop signals for any
initial condition. This control design has low complexity and does not use prior knowledge
of system nonlinearities or upper/lower bounding functions. An Image-Based Visual Servo-
ing scheme is proposed in (C. P. Bechlioulis et al., 2019), which can guarantee prescribed
transient and steady-state performance while satisfying FoV constraints despite camera cal-
ibration and depth measurement errors.

According to (C. P. Bechlioulis & Rovithakis, 2014), prescribed performance means that
the output converges to a predefined arbitrarily small residual set with a convergence rate
less or equal to a predefined value and with a maximum overshoot of a preassigned level.
These concepts are then adapted to achieve a predefined transient and steady-state response
for the errors while also avoiding violation of collision and connectivity constraints (Verginis
et al., 2015).

In (Miao et al., 2021) two controllers are proposed and tested. One is a static nonlinear gain
controller. The other is an adaptive controller based on Nussbaum gain. The Nussbaum gain
technique is a tool for handling unknown control directions or coefficients, and the Nussbaum
gain controller is a dynamic control law. The Nussbaum gain can sometimes be very large,
and in the Nussbaum gain controller, two 2x2 matrices have to be tuned instead of the two
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constants that have to be tuned for the static nonlinear gain controller. The Nussbaum
gain controller also needs to calculate the inverse of a matrix, while the static nonlinear gain
controller obtains all necessary information from the image errors. Because of this, the static
nonlinear gain controller is more attractive according to (Miao et al., 2021).

The static nonlinear controller can handle unknown feature height, and it is static in
that it is free of any parameter adaptation. It is based on a lemma in the presentation of
a nonlinear Proportional-Integral (PI) controller shown in (Ortega, Astolfi, & Barabanov,
2002). The lemma says that there is a class of functions that can be used instead of the
original function in one of the terms of the PI functions. The nonlinear PI controller is based
on having a perturbation function that can be driven to zero. When choosing the functions
that define the PI controller, they "shape" the perturbation function to exhibit at least one
root, and trajectories are forced to converge towards this root.

In (Miao et al., 2021), both controllers were chosen because the feature height was un-
known. Only the nonlinear static gain controller is implemented in this thesis because it
gave the best results in (Miao et al., 2021). It had a smaller overshoot, a faster convergence
speed of the formation error, smaller control inputs, and better performance.

3.1.2 Image geometry and pinhole camera model

To implement the controller shown in (Miao et al., 2021), knowledge about imaging geometry
and projection is necessary. If there is a point in the real world seen through a camera, what
would its pixel coordinates in the image be? And if a point is given in the image instead,
how could the real-world coordinates of the point be found based on pixel coordinates? To
model this, the pinhole camera model is used. It is the simplest camera model and describes
the projection of points in a 3D space onto an image plane.

To transform the world coordinates of a point to pixel coordinates, the transformation must
first be done from world coordinates to camera coordinates. Then from camera coordinates
to image coordinates, and finally from image coordinates to pixel coordinates. To transform
from pixel coordinates to world coordinates, the transforms would have to be done in reverse
order. The image and pixel coordinates are 2D coordinates, while the world and camera
coordinates are 3D coordinates. Figure 3.1 shows the pinhole camera model and the different
coordinate frames.
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Figure 3.1: A figure of the pinhole camera model. It shows the different coordinate frames
in the camera model and how a point on an object is projected into the image plane and
then to the pixel coordinate frame. The green point is a feature point. h is the height
difference between the point and the optical axis of the camera. Image inspired by Figure.1
in (Fernandez et al., 2017).
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Assume there is a point in the world frame given by P = (X, Y, Z), where X, Y , and Z are
known. Under the pinhole camera model, this can be projected into the image coordinates
p = (x, y) by x = f ∗ X

Z
, y = f ∗ Y

Z
. Here, f is the focal length (Collins, 2007). Z is called

the depth. In the case Z is unknown, stereo cameras or other methods can be used to find
it.

3.1.3 ArUco

An Augmented Reality University of Cordoba (ArUco) marker is a square marker composed
of a black border and a white inner binary matrix that determines the marker’s ID. The
IDs are predefined, and there are dictionaries of different IDs for markers. The black border
allows for fast detection of the marker in images, and the binary codification allows for
the identification and application of error and correction techniques. The markers were
developed in 2014 as a fiducial marker specially appropriated for camera pose estimation
(Garrido-Jurado, Muñoz-Salinas, Madrid-Cuevas, & Marín-Jiménez, 2014). The benefit of
using an ArUco marker is that a single marker and its four corners are enough to obtain the
camera pose. In addition, the inner binary codification makes them robust. The dictionaries’
main properties are the dictionary size, which is the number of different markers that compose
the dictionary, and the marker size, which is the size and number of bits the marker has.
For example, a 4x4 marker has 16 bits. (OpenCV, n.d.).

When it comes to marker detection, it is comprised of two steps. First, the detection has
to check what is and is not a marker in the image and find potential marker candidates.
This is done by checking for squares using computer vision techniques like adaptive thresh-
olding, segmentation, and contour extraction, in addition to filtering. After finding marker
candidates, the inner white binary codification is checked by dividing the marker into cells.
The cells are counted and extracted, and the black and white bits in the cells are used to
determine if the cell bit is black or white. The bits are analyzed, and it is determined if
the marker belongs in the specific dictionary. This process detects the marker. For pose
estimation, the calibration parameters of the camera must be known. A single pose can be
estimated for either a single marker or with several markers. (OpenCV, n.d.).

3.1.4 Camera calibration

When taking a picture or video with a camera, distortion can occur. There are two major
types of distortion, radial and tangential. Radial distortion causes straight lines to appear
curved in the image. Tangential distortion can cause areas in the image to look closer than
expected. Camera calibration can be used to undistort an image. To undistort the image,
the distortion coefficients and the camera’s extrinsic and intrinsic parameters are required.
OpenCV (Open-Source Computer Vision Library) explains how camera calibration works in
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(Detection of Aruco Markers , n.d.).

Intrinsic parameters are specific to the camera. These are parameters such as the focal
length or the optical center of the camera. These can be used to create a camera matrix
that can be used to remove distortion due to the lens of the camera. Extrinsic parameters
correspond to rotation and translation vectors which translate the coordinates of a 3D point.
The distortion coefficients and the intrinsic/extrinsic parameters can be found through cam-
era calibration. The calibration is done by holding a checkerboard up to the camera while
running a camera calibration program. A checkerboard is used because it has many corners.
Alternatives are a ChArUco (Chess + ArUco) board or a circular grid.

The camera calibration program takes in the 3D object points from the checkerboard and
the 2D image points in the image. It gets these points by using a corner finding algorithm.
The program gives out a camera matrix, distortion coefficients, and translation and rotation
vectors. After these parameters are given out, the image can be undistorted. After having
done camera calibration, the re-projection error can be found to check how good the cali-
bration is. The closer to 0 the re-projection error is, the better. A good re-projection error
is said to be under 1, even though this depends on the camera. The re-projection error can
be found by projecting the 3D points from the checkerboard to the 2D image points using
the parameters obtained by the calibration and calculating the absolute norm between this
projection and the corner finding algorithm.

Often, the camera calibration images are taken one by one with the checkerboard at
different angles and distances. The images must be evaluated before they are added to the
calibration. If the images decrease the re-projection error, they are added to the calibration.
ROS has a camera calibration package that makes the calibration easier for the user by
continuously taking samples and evaluating the calibration.

In the simulations, camera calibration is not necessary. This is because there is no dis-
tortion in the simulations. Here, the calibration matrix is already defined in the files that
describe the simulated camera. When moving to a physical setup, camera calibration is
necessary. This is both to deal with distortion and because the ArUco detection package
does not work without a calibration matrix.

3.1.5 LiDAR

An important tool that will be used later in this thesis is the LiDAR sensor. A LiDAR sends
out laser rays and is a remote sensing method based on the backscattering of light. This
means that it uses the reflection of the laser rays that hit something and travel back to the
direction they came from. The LiDAR has a laser source and a receiver that accepts the
laser reflection. By comparing the time delay and frequency shift in the emitted and reflected
light, the distance and movement of an object hit by the LiDAR sensor can be determined
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(Holtet, 2018). The output of a LiDAR can be a point cloud or a laser scan. The point
cloud is a 3D point representation of the LiDAR data, while a laser scan is a 2D point range
representation of the LiDAR data. The default data representation of the LiDAR used in
this thesis is laser scan data.

3.1.6 Moving Average Filter

In this thesis, a moving average filter will be applied to the velocity of the follower to reduce
noise. The moving average filter operates by averaging some points from the input signal to
produce each point in the output signal. In equation form it looks like this:

ṽi =
1

N

N−1∑
j=0

v(i−j) (1)

where v is the input and ṽ is the filtered output.

The moving average filter is very simple yet very effective. It is optimal for reducing
random white noise while keeping the sharpest step response. The moving average filter is
a good smoothing filter but a bad low pass filter because of its frequency response. (Smith,
1999).

Something to note with the filter is that since it uses contributions from the previous
velocities, the system puts less weight on the current calculated velocity. This introduces
a delay because the filtered velocities are based on an arbitrary combination of previous
velocities in addition to the current velocity. The delay could make the reaction time of the
system slower. This is because instead of putting all weight on the current information, the
system now uses a combination of old and new information.

3.1.7 Hough Circle Transform

The Hough Circle Transform is a deviation of the Hough Transform. The Hough Transform
is used to isolate features of a particular shape in the image. The Hough Circle Transform
is specialized for circles. This is the detection method used in (Miao et al., 2021), where
they use it to detect a red ball. The Hough Circle Transform can be used to determine the
parameters of a circle when several points that fall on the perimeter of a circle are known.
An image containing many points will have some of these points falling on the perimeter of
circles, then the detection program must find the center and radius to describe each circle
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(Rhody, 2015). After detecting the circles, the radius of each circle and their center points
in the image can be obtained in pixel coordinates.

3.1.8 ROS and ROS packages

ROS Noetic is used in the simulations and physical setup. It is a set of open-source software
libraries and tools that can be used to build robot applications (Open Robotics, n.d.). ROS
is essential, as it is an Operating Software that has everything needed for the robots to be
described and used. All communication between the components and sensors of a robot is
handled by ROS, and it has visualization and more. ROS has many useful packages that
are going to be used in this thesis. Packages contain nodes, launch files, and most also
have parameters that can be chosen. ROS also has tools like messages and topics, which let
nodes and packages use information from the components of the robots and other nodes and
packages. The packages that are used will be described in this section.

In the simulations, a custom marker model had to be created by making a square object and
setting the texture of the object as an image of the ArUco code. The gazebo_link_attacher
package can be used to attach the marker model to the back of the leader.

The TF2 package can be used to keep track of multiple coordinate frames and see how
they evolve over time. The package maintains the relationship between the frames in a tree
structure called a transformation (TF) tree. The TF2 package allows the user to get the
transformation between any two frames directly if they are connected in the TF tree. The
transforms are composed of the translation and rotation between the different frames. The
package can, for example, give the transformation between the base frame of the robot and
the camera frame.

While the TF2 package gives the transformation and relation between the links and co-
ordinate frames of the robots over time, the frames must first be defined somewhere. The
robot_state_publisher package publishes the state of the robot frames to the TF2 pack-
age. This means that the robot_state_publisher takes some description of the robot and
its frames and publishes this to the TF2 package. Publishing means sending informa-
tion to a topic. The robot_state_publisher requires a description of the robot and its
coordinate frames. When using a custom robot, this description can be custom-made to
suit the robot links and joints. The description of the Turtlebot is already given in the
turtlebot_description package.

The aruco_detect package is a sub-package of the fiducials package; it contains a detection
node with several parameters. If the aruco_detect package sees a marker with a predefined
ID and size, the marker is detected. If the ID and size parameters that are set for the
aruco_detect node do not match the ID and size of the ArUco code, the marker will not
be detected. When the aruco_detect package detects a marker, it detects the corners of the
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marker and gives out a transformation between the follower’s camera frame and the marker
frame. With the transformation between the marker and camera frames, the TF2 package
can be used to get the transformation between the follower’s base frame and the marker
frame. The aruco_detect package also gives the image position of the corners of the marker
in pixel coordinates.

The camera_calibration package makes calibrating the camera easier. The package has a
camera_calibration node. Running this node and holding a checkerboard up to the camera
at different distances and angles makes the node store new samples. The node shows how
well the calibration is going while taking the samples and what kind of samples are needed
by showing a bar that fills up depending on the type of samples that are taken. For example,
there is a bar showing if there is enough variety in the checkerboard distances of the sampled
images. When the bar is full for one specific type of sample, it means the node has enough
variety in the samples of this type. After the calibration is done, the package gives out a
camera calibration matrix. The package also has a node to check the re-projection error of
the calibration. The error is checked by running a calibration_check node while keeping the
checkerboard in view of the camera; the node gives out the error.

The camera_calibration package calibrates the camera and gives the camera calibration
matrix, but it does not rectify/undistort the image. To undistort the image, the image_proc
package must be used with the calibration matrix. This package handles image processing
and gives a rectified image out, which can be used instead of the raw image. The processed
image can, for example, be used by the aruco_detect package.

The pointcloud_to_laserscan package takes a 3D point cloud and transforms it into a 2D
laser scan. It can also go the other way by transforming a 2D laser scan into a 3D point
cloud, which can be used for operating with points instead of laser scan data. Operating
with points is useful because raw laser scan data can be hard to transform and perform other
operations on, and it can be easier to work with points.

Gazebo_ros_pkgs is a set of packages that provides everything required to run robot
simulations in Gazebo. The package also integrates ROS and uses tools provided by ROS,
such as ROS messages.

There is a Turtlebot3 package that has all the necessary descriptions, nodes, and scripts
to use the Turtlebots in simulations and on a physical setup. This package handles LiDAR
drivers, Turtlebot messages, and all other basic functionality of the Turtlebot. When using
the Raspberry Pi camera module, this package also contains everything required to make
use of the camera module. In the case where a USB camera is used, the cv_camera package
has to be used for the camera instead.

Documentation of the gazebo_link_attacher package can be found in (PAL Robotics,
n.d.). Documentation of the other packages can be found in (ROS Wiki , n.d.). When using
ROS, nodes and packages can be put into a .launch file to initialize all the necessary nodes
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and packages for the experiments simultaneously. Many packages also come with parameters
that can be changed or tuned, such as the arcuo_detect package allowing users to change
detection parameters. When including a node or package, the parameters can be changed in
the .launch file.

3.1.9 Topics, messages, and nodes

Topics and messages can be used to transfer information within the robot system, for exam-
ple, from sensors and frames to the robot or a node to the wheels of the robot.

As mentioned, a robot has coordinate systems that are connected in a TF tree in the
TF2 package. Some packages publish, describe, or make new frames and then publish them.
An example is the aruco_detect package, which defines a marker frame and publishes it
while the marker is detected. The transforms and frames are being written and updated by
publishers through topics. Topics are communication channels where messages can be sent
and received. The messages that are sent and received need to have a format that is specific
to the topic. Topics can be published to, meaning that something is sending information
to the topic, or subscribed to, meaning that something is waiting for messages on the topic
and reading the messages. Custom transforms and frames can be added if needed. This can
be done by publishing a new frame and a transformation between the new frame and an
existing frame.

Nodes can subscribe and publish to topics. A node is a program that can be used to send
or receive information to and from topics and use this information to perform operations.
For example, a node can subscribe to the /scan topic, which gives information about the
LiDAR sensor and what it is detecting. It can then transform the LiDAR data from the
base_scan frame to the base_link frame using the /tf topic, which gives the transforms
between frames. After this, it can calculate a velocity based on the sensor information and
then publish the velocity to the /cmd_vel topic, which controls the wheels of the robot. In
the same way, the TF2 package receives information from nodes and packages to keep track
of the transforms between the different frames of a robot.

Figure 3.2 shows a TF tree of the simulated leader Turtlebot. The world frame is connected
to the odom frame of the Turtlebot. The odom frame is connected to the base_footprint, and
the base_footprint is connected to the base_link frame. The base_link frame is connected
to the other frames of the Turtlebot, which is why it is used as the base frame of the
robot. In this figure, only half the TF tree is shown. The other half is the TF tree for
the follower Turtlebot. The two Turtlebots are connected through the world frame. In the
physical setup, the two Turtlebots are not connected through a world frame; their TF trees
are separate. When a marker is detected, its frame shows up as fiducial_0 and is connected
under the camera_rgb_optical frame of the follower. In the physical setup, the camera_link
of the follower and the frames connected under it are replaced by the custom USB camera
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frame. The TF tree also shows the broadcaster, which is the topic that the transformation
is published in.

3.1.10 Gazebo and RViz

Gazebo is an open-source 3D robotics simulator that simulates real-world physics. It allows
for testing and control of robots in simulations before implementation of the controllers on a
physical setup. Gazebo is designed to reproduce dynamic environments that the robots may
encounter. All simulated objects in Gazebo have mass, friction, velocity, etc. to let them
behave realistically when pushed, pulled, etc. The robots in Gazebo are dynamic structures
composed of rigid bodies connected via links and joints. Linear and angular forces can be
applied to the joints to make them move. (Koenig & Howard, 2004).

The environment in Gazebo is described by a .world file. This file contains the simulated
world, and the world can be populated with different models such as boxes, squares, and
more complicated custom models, such as robots. The models are described by URDF and
SDF files. These files can give the description of robots and how the different links and joints
of the robots are attached and should behave, the kinematics of the robots, the frames, etc.

RViz is a program similar to Gazebo where the robot can be modeled, and simulations
can be done. RViz is used less for simulations and more for debugging. This is because RViz
can visualize information given in topics, such as the laser scan data given by the LiDAR
in the /scan topic or the different coordinate frames given by the /tf topic. This is useful
to ensure that everything in the setup is as it should be, that the ArUco marker is being
detected properly, that custom transforms and frames are set properly, etc.

3.1.11 Turtlebot3 frames

When implementing controllers on a robot, it is important to know where the links and
joints are relative to each other to be able to transform data or do other types of transforms.
The frames are kept track of by the /tf topic, but not all the transforms are needed. In this
section, some of the important frames, links, and their location will be mentioned.

The base_footprint frame of the Turtlebot3 is located between the wheels and is on the
ground. The base_link frame, which is considered the base frame of the robot, is also located
between the wheels. It located is 0.01 meters above the base_footprint. Since the base_link
frame is considered the base frame of the robot, the sensor data must be transformed to the
base_link frame. This is so all data has a common frame of reference for calculations and
comparisons. The base_scan frame is located behind the base_link frame, a little above
it, directly on the Turtlebot3 LiDAR. This is the reference frame for the LiDAR data. To
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Figure 3.2: A figure of the TF tree of the leader robot in the simulations. The TF tree gives
information about the connection between frames, which topic is broadcasting the transform,
and the rate the transform is being broadcasted at.
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Figure 3.3: A figure of different frames of the robots in the simulations. The follower is
standing behind the leader while detecting the marker. This shows the relation between the
most important frames for control in this thesis.

transform LiDAR sensor data to the base frame of the robot, the transform between the
base_scan and the base_link is used.

The Raspberry Pi camera has several frames. The important one is the camera’s optical
sensor (camera_rgb_optical) frame. It is important to note that this is the frame of the
image sensor of the camera. This frame is also referred to as the camera frame and was shown
in figure 3.1. The base_link, footprint, and scan frames all have the same orientation, with
the x-axis pointing forwards. The camera frame is rotated relative to the base frame, so the
z-axis is pointing forward and the y-axis downwards. The camera sensor data is given in the
camera frame. To transform camera data to the base frame of the robot, the transformation
between the camera frame and the base_link frame is used.

In the physical setup, a USB camera is used instead of the Raspberry Pi camera. Since
the USB camera is not part of the Turtlebot3 description, it has no predefined frame or
transformation between it and the base_link. This means that a custom transformation and
frame have to be made by publishing the information. For this, a custom camera frame that
emulates the camera_rgb_optical frame of the Raspberry Pi is made. Since a USB camera
is different from the Raspberry Pi, the custom transformation between the camera and the
base_link frame is slightly different than in the Turtlebot3 description.

Figure 3.3 shows the relationship between some of the frames of the follower, as well as
the base_link of the leader. The fiducial_0 frame is the frame of the marker. The marker
frame is pointing to the camera_rgb_optical frame since this is the frame its pose is given
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in relation to. This image was taken while the robots were standing still in their initial
positions in the simulations, while the marker detection was running. The base_footprint
frames have not been included. If they were, they would be directly under the base_link
frames of the robots with the same orientations.

3.1.12 Unicycle model

The model used in both the chosen control methods is the unicycle model. The unicycle
model is used on systems with two wheels on an axle, like the robots in this thesis. If a system
with four wheels on two axles is used, the bicycle model is more appropriate. Working with
the movement and velocity of a differential drive robot with two wheels can be complicated.
Therefore, a model like the unicycle model is preferred to simplify the problem. In the
unicycle model, the robot is thought of as having a single wheel that can move with the
desired velocity v and an orientation θ. The model can be used to calculate the velocities of
the system (The Unicycle Model , n.d.).

The model is described as:

ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω
(2)

where (x, y) is the position, v is the velocity, ω is the angular velocity, and θ is the
orientation.

3.1.13 Motion capture

Motion capture is the process of digitally tracking and recording the movements of objects
in space. The motion capture system uses sensors to detect motion, processes the data, and
then stores the motion data.

There are different types of motion capture. Acoustic motion capture calculates the po-
sition based on time of flight, which measures the time between sending a signal from a
transmitter and the signal being picked up by a receiver. There is mechanical tracking,
where a mechanical construction measures the angle and distance between different mechan-
ical parts. This is mostly used for tracking people by using an exoskeleton with sensors on
it. There is also marker-based or marker-less optical tracking that uses cameras. In the
marker-less tracking, everything in the FoV of the cameras is detected. Segmentation and
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filtering are then used to get blobs. The blobs can be compared to predefined models of
objects that should be tracked, such as a human body.

In this thesis, marker-based optical motion capture with passive reflective markers is used.
Here, spherical markers are attached to the robots in patterns. A fixed pattern of several
markers can be used to identify rigid bodies. At least three spherical markers are needed to
define a rigid object, even though having more can make the tracking more robust in case
some markers are not detected. Passive markers are markers that reflect light from external
sources. There are also active markers that emit light. (Nymoen, 2013)

There are several cameras attached to the walls of the lab. All cameras point to the
area where the tracking should be done from different directions and angles. Each camera
produces a 2D black image where the spherical markers are detected as white pixels. To get
a reading of the pose of the rigid bodies, multiple cameras must have a clear view of the
markers that define the rigid body.

3.2 Distance-and-heading-based method

In (Verginis et al., 2015), they use multiple followers, and their equations are set up for
more than one follower. In this thesis, there is only one follower. This simplifies most of
the equations and models, making equations that used to be vector/matrix equations into
normal equations. The model they use for the vehicles is the unicycle model:

ẋi = vi cos θi
ẏi = vi sin θi

θ̇i = ωi

 , i = 1, . . . , N (2)

where (xi,yi) is the position of vehicle i. θi is the orientation. N = 2 since there is a
leader and one follower. vi and ωi are the linear and angular velocities. They introduce d(t)
and β(t), which are the relative distance and bearing angle between the two vehicles. The
bearing is the angle between the follower’s forward direction and the leader.

They define the desired distance between the two vehicles as ddes. The goal is to make
d(t)− > ddes and β(t)− > 0. So the desired position of the follower is directly behind
the leader at a distance ddes with the follower pointing at the leader. They define some
constraints for the distance: dcol < d(t) < dcon. dcon is the maximum distance; the follower
cannot detect the leader if the relative distance is greater than this. dcol is the minimum
distance; if the relative distance is smaller than this the follower cannot detect the leader,
and the robots risk colliding. They introduce similar constraints for the bearing between the
two vehicles: |β(t)| < βcon. βcon is the bearing where the leader stops being detected by the
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follower.

The constraints must be taken into account when initializing the system so that they are
not violated at initialization. Figure 3.4 shows a model of the leader and follower with the
constraints and frames. The leader is detected by having a marker attached behind it that
the follower can use to find the relative distance and bearing.

The distance between the two vehicles is defined as:

d(t) =
√

(xf (t)− xl(t))2 + (yf (t)− yl(t))2

where xl(t),yl(t),xf (t),yf (t) are the respective x and y positions of the leader and follower
in the world frame. The follower’s frame is used as a reference frame instead of the world
frame so that the position of the leader is relative to the follower. Using the follower’s frame
as a reference means that xf (t) and yf (t) can be set to 0.

With the previously given parameters, they define the distance and heading errors of the
follower as:

ed(t) = d(t)− ddes
eβ(t) = β(t)

}
(3)

It is possible to differentiate equation (3) with respect to time and insert equation (2) to
get the evolution of the error. This is not required for the control of the system, so it is not
presented here.

After defining the errors, the controller can be designed. The controller should achieve a
predefined transient and steady-state response for ed(t) and eβ(t) while avoiding violation of
the previously defined constraints. In Section III of (Verginis et al., 2015), they say prescribed
performance characterizes behavior where the errors evolve over a predefined region that is
bounded by absolutely decaying functions of time. The prescribed performance is given by
the inequalities:

−M jρj(t) < ej(t) < M jρj(t) (4)

for all t ≥ 0.

The subscript: j ∈ {d, β} is used to reduce the number of equations. When using j, it
means that the equation is the same for both d and β. The subscript is introduced to avoid
showing the same equation twice with different indexes.

M j and M j are positive parameters that are selected appropriately to satisfy the collision
and connectivity constraints represented by dcon, dcol and βcon. ρj(t) is the steady-state
performance and is defined as:
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ρj(t) = (1− ρj,∞

max{M j,M j}
)e−ljt +

ρj,∞

max{M j,M j}
(5)

It is a smooth, bounded, and decreasing positive function of time. It is always between 1
and 0. lj is the desired transient time constant, and ρj,∞ is the maximum steady-state error.
The value chosen for lj depends on how fast the system should converge. The value of ρj,∞
depends on what is an acceptable desired steady-state error. In (Verginis et al., 2015), they
say ρj,∞ can be chosen as an arbitrarily small number. M j and M j are selected as:

Md = ddes − dcol

Md = dcon − ddes
Mβ = Mβ = βcon

 (6)

After defining the performance function ρj(t) and selecting the positive parameters M j

and M j, the decentralized control equations can be set up.

They first define a normalized error:

ξj(ej, t) =
ej

ρj(t)
(7)

then the control equations can be written as:

v(ξd, t) = kdϵd(ξd)

ω(ξβ, t) = kβ(ρβ(t))
−1rβ(ξβ)ϵβ(ξβ) (8)

By inputting the calculated control velocities into the follower’s wheels, the follower can
be controlled. The controller of the system is divided into a linear velocity controller and an
angular velocity controller. kd and kβ are positive control gain variables that must be tuned.

rβ(ξβ) is defined as:

rβ(ξβ) =

 1
Mβi

+ 1
Mβi

(1 +
ξβi
Mβi

)(1− ξβi
Mβi

)


ϵj(ξj) is defined as:
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ϵj(ξj) = ln

1 +
ξj1
Mj1

1− ξj1
Mj1


With this, everything that is needed to implement the controller has been presented. If the

normalized error ξj becomes so big that 1− ξj1
Mj1

becomes negative, ϵj(ξj) becomes undefined.
This occurs when the error goes outside of the boundary/prescribed performance described
by equation (4) and causes the system to become unstable.

The term bearing (angle) will be used when talking about the relative angle between the
follower and leader. The term heading error will be used when talking about the follower’s
angular error. From now, this control method will be referred to as the distance-based
method.

34



Figure 3.4: Model of the leader and follower as seen from above. This shows the different
constraints, as well as the frames of the two robots. The x-axis of the robots points in the
direction they are facing. The controller should keep the distance and bearing angle between
the two robots within the constraints. Image inspired by Fig.1 in (Verginis et al., 2015).
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3.3 Pixel-based method

The second controller that will be implemented is given in (Miao et al., 2021). As previously
mentioned, the paper presents two controllers. The Nussbaum gain adaptive controller and
the static nonlinear gain controller. Only the static nonlinear gain controller will be used
in this thesis, as it was the controller that gave the best results in (Miao et al., 2021). In
this section, only the most relevant aspects to the implementation of the controller will be
presented.

In (Miao et al., 2021), they start by defining the unicycle model for the robots as shown
in equation (2) in section 3.2. ri = [xi, yi]

T and θi are the position and orientation of the
robots in the world frame. The motion of the leader in the follower’s frame can be described
as:

rlf =

[
cos θf sin θf
− sin θf cos θf

]
(rl − rf ). (9)

where i ∈ {l, f} is the subscript of the leader and follower respectively. The equation can
be derivated to obtain the relative kinematics, which is not presented here since it is not
required for the control of the system.

The follower has a camera where the z-axis of the camera frame is parallel to the x-axis of
the follower’s base frame, as shown in figure 3.3. This means that the camera’s optical axis
is pointing in the same direction as the follower. The controller requires a feature point P
on the leader to be able to detect and follow the leader. In (Miao et al., 2021), this feature
point is given by a colored ball attached to a pole on the leader; the camera detects the ball
by using the Hough Circle Transform. Their camera is attached to a pole on the follower.

The coordinates of the feature point P in the world frame transformed to the camera
frame are given as:

P = (X, Y, Z)world = (−ylf , h, xlf )camera (10)

where h is the height between the camera’s optical center and the feature point, as shown
in figure 3.1. h is a constant, and it is also referred to as the feature depth parameter. While
h is defined and known, it is assumed to be unknown and is not used in the control equations.
xlf and ylf are the x and y position of the leader relative to the follower’s frame.

According to the pinhole model of the perspective camera, the pixel coordinates s = (m,n)
of P can be found as:
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n =αn
Y

Z
+ n0

m =αm
X

Z
+m0 (11)

where αn and αm are constant scaling factors that are larger than 0. n0 and m0 are the
pixel coordinates of the camera’s principal point (projective center). The pixel coordinates
n and m are given directly from the image if the feature point is detected by the camera.

In the paper, they also define the normalized image coordinates p and q, and the derivative
of the pixel coordinates n and m. This is not necessary for the implementation of the static
nonlinear gain controller.

The pixel coordinates are subjected to some FoV constraints. They define these FoV
constraints as:

nmin ≤ n ≤ nmax, mmin ≤ m ≤ mmax (12)

where nmin, nmax mmin and mmax, are the minimum and maximum values of n and m.

The control objective is to make the pixel coordinates s = (m,n) converge as close as
possible to some desired pixel coordinates sdes = (mdes, ndes). It is assumed that the velocity
of the leader is bounded and that the feature point P is initially in the FoV of the follower’s
camera. It is also assumed that P does not pass through the optical center of the camera,
meaning that h ̸= 0. h must not be equal to 0, as this leads to singularities in the control
design.

They define pixel errors as e = [en, em]
T , with

en = n− ndes, em = m−mdes. (13)

There is a prescribed performance which characterizes the evolution of the pixel errors.
The prescribed performance is given by:

−Ckρk(t) <ek < Ckρk(t) (14)

The steady-state performance is given by:

ρk(t) =

(
1− ρk,∞

max{Ck, Ck}

)
e−lkt +

ρk,∞

max{Ck, Ck}
(15)
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where k ∈ {n,m}. lk > 0 and ρk,∞ > 0 and represent the convergence rate/desired
transient time constant and the maximum steady-state error respectively. Ck and Ck are
given as:

Cn =ndes − nmin, Cn = nmax − ndes

Cm =mdes −mmin, Cm = mmax −mdes. (16)

The prescribed performance part is very similar to what was shown in the distance-based
method.

Using the previous definitions, they define a error transformation function εk as:

εk = ln

(
ek + Ckρk(t)

Ckρk(t)− ek

)
. (17)

After getting this equation, they take the derivative of it and use it to show that the control
problem can be solved, which is not going to be presented here.

Finally, the control laws for the static nonlinear gain controller are given as:

[vf , ωf ]
T = [knM(εn),−kmεm]

T (18)

where kn and km are the control gains, with kn ̸= 0 and km > 0. M(εn) is a function that
has properties such that εn is bounded. In the paper, M(εn) = εncos(εn).

Again, it can be seen that the controller is split into a linear velocity controller and an
angular velocity controller. It can be seen from equation (17) that if ek becomes larger than
Ckρk(t), the equation becomes undefined. This can cause the system to become unstable.
It is therefore important that the error stays within the boundary/prescribed performance.
From now, this method will be referred to as the pixel-based method.
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Chapter 4

Methods

In this chapter, additions and improvements to the control methods that were made in an
attempt to make the controllers perform better, be more robust, or be more stable will be
shown.

The additions in this chapter consist of adding a filter to reduce noise, trying a LiDAR
sensor instead of using the camera, and then finally combining the LiDAR and filter with
the original camera version of the control methods to hopefully get an improved version.

4.1 Markers

In (Verginis et al., 2015), a white spherical marker is attached behind the leader to find
the relative distance and bearing between the leader and follower. Their marker detection
method is not described. In (Miao et al., 2021), a red ball is attached to a pole on the leader,
and the detection is done by using the Hough circle detection according to one of their earlier
works: (Lin et al., 2021). In (Miao et al., 2021) they show results from both simulations and
physical implementation, while in (Verginis et al., 2015) they only show simulation results.

In this thesis, an ArUco marker is attached behind the leader. As mentioned in section
3.1.8, the aruco_detect package gives the transformation between the marker and camera
frames when the marker is detected. Using the TF2 package, the transformation and relative
pose between the base_link and marker frames can be found. This is used to find the relative
distance and bearing between the follower and marker. The aruco_detect package also gives
the pixel coordinates of the corners of the marker, which can be averaged to get the center
of the marker. The center of the marker is used as feature point P . The benefit of using
ArUco detection is that it finds the pose of the marker relative to the camera frame, as well
as the pixel position of the marker in the image. This makes it so the same marker can be
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used in both control methods, despite them using different information. With Hough circle
detection, for example, only the pixel position of the center of a detected circle would be
found, and then additional techniques would have to be used to find the relative distance
and angle.

An issue that became apparent in early simulations of the system was that the camera
measurements could be noisy and have measurement error spikes in situations where the
marker was not easily detectable. Early in the simulations, the marker’s margin, which is
the white border around the marker, was 1 cm. Having a margin this small caused issues
with detection, such as noisy measurements, wrong measurements, and the marker not being
detected at all sometimes. The marker could be in perfect view of the follower. Despite this,
the detection would fail at times. If the marker stops being detected, the system keeps
calculating the velocities based on the previous measurements. When the marker is detected
again after some time, the measurements are updated, and this leads to a spike in the
measurements and error. If the error spikes too much, the system becomes unstable because
the error goes outside the boundaries set by the prescribed performance.

Later in the simulations, the marker detection was made more robust by increasing the
margin of the marker to 3 cm. This made the measurements considerably less noisy and
more accurate. It also made the detection more reliable, fixing the issue of the marker not
being detected at times. This is because the larger margin makes it easier for the detection
package to detect the corners of the marker, while the smaller margin made detecting the
corners harder. Since the earlier simulations showed that using only a camera for control
could become a problem in some situations, alternatives were tested.

4.2 Filtering

The first addition to the control methods is a filter to reduce the noise of the system. The
aruco_detect package has disturbances and uncertainty that create noise. The marker frame
can rotate and shift a little, or the pixel positions of the corners of the marker can have some
uncertainty, which causes measurement noise. In addition, the system can have noise from
other factors. This mostly applies in the physical setup. Examples of these are camera
shaking, velocity spiking because of bad measurements, bad lighting, which makes marker
detection worse, etc. Camera shaking will be used to refer to the camera shaking or moving
a little up or down for a moment when the robot is driving, especially over uneven flooring
such as tiny bumps or tile changes. In addition to the aforementioned sources of noise, there
could also be unknown sources of noise.

This makes it so the measurements that are used to calculate the velocities contain noise,
making the calculated velocities have more variation than they should. To remove some of
the noise, a moving average filter has been implemented. This filter, as mentioned in section
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3.1.6, generally has the form:

ṽi =
1

N

N−1∑
j=0

v(i−j) (1)

Where v is the input and ṽ is the filtered output. A simple 1st-degree version of the
moving average filter can be written as:

ṽi = avi−1 + bvi

where a and b weights. vi is the velocity the controller calculates based on the current
measurements. vi−1 is the previous velocity of the system. ṽi is the filtered velocity. The
average of the two velocities is taken when both a and b are set to 0.5. Instead of taking
the average, a choice can be made to put more weight on the current time-step by setting
b to a bigger number than a. The sum of the weights should always be equal to 1, and the
individual weights should be between 0 and 1. In this thesis, a second-degree moving average
filter is used as it removes more noise than the 1st order version. It looks like this:

ṽi = avi−2 + bvi−1 + cvi (19)

The input in the filter is the current velocity calculated by the controller and the two
previous velocities of the system. The filter is used on both the linear and angular velocities.

4.3 Adding and using a LiDAR

As mentioned in section 4.1, early simulations of the system had issues with marker de-
tection due to the marker margin being too small. Before a larger margin was tested, a
LiDAR version of the controllers was explored as an alternative to using the camera. Even
though increasing the margin size made the marker detection more robust, a LiDAR-based
version could still be useful in other situations where the marker detection is unreliable or
in situations where the camera-based version of the controller has other issues.

A LiDAR version of the controllers would not need to detect markers. As a result of not
having to rely on the camera and marker detection, the system should be more robust, as
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it does not have noise or spikes in the measurements due to unreliable marker detection or
other camera-related issues. LiDARs, as previously mentioned, work by sending out a laser
scan in a radius and checking if the lasers detect an object. If the laser rays detect an object,
the distance at which the object was detected and the bearing angle can be calculated. The
distance is given directly, while the bearing can be calculated based on which laser rays hit an
object. Depending on the resolution of the LiDAR, the angle calculations can be imprecise.

4.3.1 LIDAR measurements

When using the LiDAR, it is important to know how the robot is set up and how the different
frames on the robot are placed relative to each other. This was shown in section 3.1.11.
The LiDAR measurements are given relative to the base_scan frame of the robot, but all
measurements should be given in the base_link frame, as this is the base frame of the robot.
Two ways of transforming the data between the two frames were tested. The first is based
on transforming the LiDAR scan into a point cloud, then doing the transformation on the
point cloud and transforming back to a LiDAR scan. The second is based on trigonometry.

For the point cloud method, the pointcloud_to_laserscan package is used. The package
takes the laser scan data given by the LiDAR and transforms it into a point cloud. The point
cloud data consists of a set of points in space given in the base_scan frame. A transform
can be done on the point cloud by using the TF2 package. This transforms the point cloud
from the base_scan frame to the base_link frame. The transformed point cloud can be
transformed back to laser scan data by using the pointcloud_to_laserscan package again.
This gives the laser scan data in the base_link frame.

This method worked, but not well enough to be used. Sometimes, the measurements from
the transformed LiDAR scan data would be wrong, or the measurements would have spikes.
This could lead to the system becoming unstable. The reason for these spikes could be
because of the transformations that are done. When the laser scan data is transformed to
a point cloud and then back to a laser scan, some information could be lost, or erroneous
information could be added. The laser scan consists of 2D points and is a line of points. The
point cloud consists of 3D data points in space. It could be that the transformation from
2D to 3D and back to 2D causes the aforementioned issues.

The second method of transforming data from the base_scan to the base_link frame uses
trigonometry and is based on transforming the calculated distance and bearing measurements
instead of the raw laser scan data. The relative distance between the base_scan frame and
the detected object can be viewed as the hypotenuse in a right triangle, denoted by d̃. The
angle in the triangle is the bearing measured in the base_scan frame, denoted by β̃. The
base_link frame is 0.064 meters in front and 0.1 meters below the base_scan frame. Both
frames have the same orientation, as seen in figure 3.3. Because the LiDAR scan data is 2D
and does not consider height, the transformation between the two frames can be simplified
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to a −0.064-meter translation along the x-axis of the base_link frame.

With the relative distance between the follower’s base_scan frame and a detected object
as the hypotenuse, and the bearing between them as the angle in the triangle, the right
triangle can be decomposed into d̃x and d̃y. This gives:

d̃x = d̃ · cos(β̃)
d̃y = d̃ · sin(β̃) (20)

Since the transformation between the base_scan and base_link is only a translation along
the x-axis, it can be applied to d̃x as:

dx = d̃ · cos(β̃) +R

where dx is the transformed d̃x. R is the translation, which is -0.064 meters. The relative
distance and bearing in the base_link frame can be found as:

d =
√

d2x + d̃2y (21)

β = arctan
d̃y
dx

(22)

where d and β are the distance and bearing in the base_link frame. The d̃y component
remains the same in both frames, but the d̃x component is translated. In the simulation and
implementation, the method using trigonometry is used to transform the LiDAR data from
the base_scan frame to the base_link frame.

4.3.2 LIDAR in distance-based method

Implementing a LiDAR-only version of the distance-based method is straightforward. The
information required for this method was the relative distance and bearing between the
leader and follower. When the leader robot is in front of the follower, the LiDAR detects
that there is an object there because some of the laser rays are reflected. Checking the
measurements from only one laser ray can be noisy and unstable. Taking the average of all
the lasers that detect something is more robust. The issue with taking the average is if the
LiDAR detects additional objects. For example, if some of the laser rays detect a wall while
some detect the leader, the average can become skewed.
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To solve this, the measurements from the LiDAR can be thresholded. The threshold is
made by using both the bearing and distance measurements and is based on the previous
measurement. When the node starts, the first measurement is taken. All the individual laser
ray measurements are checked. Based on the measurement from the laser rays, the maximum
and minimum detected bearing angles are found, as well as the maximum detected distance.
After getting the minimum and maximum measurements, thresholds are made based on
them by adding a little to the measurement. The thresholds are set as:

tβ = max β + 3 deg Λ min β − 3 deg

td = dmax + 0.25dmax (23)

where tβ and td are the thresholds on the bearing and distance respectively. The thresholds
are updated in the next iteration so that the current bearing and distance measurements
are thresholded based on the thresholds made by using the previous measurements. If the
measured distance or bearing is bigger or smaller than the threshold, the measurement is
rejected. When using the previous measurements to threshold, the LiDAR must only detect
the leader at the start so that the thresholds are initialized correctly.

Initially, the LiDAR starts with a 60-degree detection cone in front of it, with a maximum
detection distance set at 2 meters. After thresholding, the cone becomes smaller, becoming
±3 degrees bigger and 0.25d meters longer than the previous min/max bearing and max
distance measurements from the object. Only detection within this cone will count. The
detection cone adjusts depending on where the leader is relative to the follower, but the cone
is restricted to the initial 60-degree detection cone

After thresholding the laser ray measurements and finding the average distance between
the follower and leader, the average bearing can be found. This is done by checking which
laser rays are detecting an object, finding the bearing angle of these, and taking the average
over all of them.

The laser ray bearing measurements are found by:

βlaser = θmin + (ilaser · θinc) (24)

The LiDAR has a minimum detection angle θmin. Since a 360-degree LiDAR is used in
this thesis, θmin is 0 degrees while the max angle is 360 degrees. ilaser is the individual laser
ray. θinc is the angle increment of the LiDAR, also called the angular resolution. With the
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LiDAR used in this thesis, the angular resolution is 1 degree. The equation gives the bearing
measurement for one laser ray, then the average of the calculated bearings can be taken.

With the relative distance and bearing between the two robots found using the LiDAR,
they can be used in the distance-based method directly to calculate the control equations
for the velocity.

4.3.3 LIDAR in pixel-based method

The pixel-based method requires the pixel coordinates m and n of a feature point instead of
the relative distance and bearing angle. Equation (10) in section 3.3 shows the relationship
between the point P in the world and camera frames. Equation (11) shows the feature point
in pixel coordinates.

P = (X, Y, Z)world = (−ylf , h, xlf )camera (10)

m =αm
X

Z
+m0

n =αn
Y

Z
+ n0 (11)

Using these equations, a LiDAR can be used to estimate the feature point P without using
the camera. This can be done by finding the relative position of the leader and follower with
a LiDAR. After the position has been found, the transformations in the equations can be
used to estimate P . P can then be used to calculate m and n, which can be used to calculate
the control velocities of the follower.

To implement the LiDAR version of the pixel-based method, X and Z have to be found,
meaning ylf and xlf . xlf and ylf are the relative x and y positions between the leader
and follower. h, which was the height difference between the camera optical axis and the
feature point, is known. Since the pixel coordinate of the marker center is used as P , h
can either be measured or found through a transformation between the marker frame and
the camera frame. Y is therefore also known. m0 and n0 were the camera’s projective
center and could be found through the camera calibration matrix. αm and αn are constant
scaling factors. Everything required to approximate P is known or can be found through
the LiDAR, assuming that the camera was used to find some constants first, such as m0 and
n0.

Trigonometry is used to create a right-angled triangle between the leader and follower
positions, where the relative distance is the hypotenuse, and the bearing angle is the angle
in the triangle. ylf and xlf can be found by decomposing the triangle.
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This results in:

Z = xlf = cos(β) · d
X = −ylf = −sin(β) · d (25)

where β and d are the bearing and relative distance found by the LiDAR. With all the
parameters obtained, they can be inserted into equation (11) to estimate the pixel coordinates
m and n using only the LiDAR:

m =αm
−sin(β) · d
cos(β) · d

+m0 = −αmtan(β) +m0

n =αn
h

cos(β) · d
+ n0 (26)

Since the image coordinates have been estimated with the LiDAR instead of taken directly
from the camera, this version might have more measurement errors than the camera version
of the method. However, it should be more robust because there is no issue if the marker
detection is unreliable. Other issues that could affect the camera, such as bad lighting or
camera shaking, do not affect this version.

4.4 Combining LiDAR and camera measurements

Now that the additions to the distance-based and pixel-based methods have been shown,
an idea could be to combine them to create a new version. As previously mentioned, many
previous works combine LiDAR and camera measurements to great effect. The LiDAR is
effective at tracking the relative distance between vehicles but less accurate at measuring the
bearing angle. Using only the LiDAR might not give the accuracy of a camera-only version
of the controller. The camera is good at measuring the relative distance and bearing but is
less robust towards external factors and unreliable marker detection. Using only a camera
might not give the stability and robustness of a LiDAR-only version. Combining the two
sensors could make the system more robust and accurate. In addition to combining the two
sensors, the moving average filter is added to remove noise.

From this, there are now four versions of both control methods. A camera-only version,
which only uses the camera. A LiDAR-only version, which only uses the LiDAR. A filtered
version that uses the camera and the filter. And a complete version, which uses the camera,
LiDAR, and filter.
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4.4.1 Combining measurements in the distance-based method

For the distance-based method, the implementation of the complete version is done by start-
ing with the camera-only version. The camera-only version gets its measurements of the
relative distance and bearing angle from the camera by detecting the marker. Then the
LiDAR-only version, where the measurements of the relative distance and bearing are found
from the LiDAR, is integrated with the camera-only version. The measurements from the
two sensors are then fused. This is done by making a new measurement that consists par-
tially of the measurements from the LiDAR and partially of the measurements from the
camera and combining them:

Combinedm = w1 ∗ Lm + w2 ∗ Cm (27)

Combinedm are the combined measurements from the LiDAR measurements Lm and the
camera measurements Cm. w1 and w2 are weights, the sum of them should be equal to 1, and
the weights should be between 0 and 1. The new measurements are a weighted combination
of the LiDAR and camera measurements, where w1 and w2 decide how much weight is put
on the LiDAR or camera measurements. After combining the measurements, the filter is
added, filtering the current velocities based on previous velocities, as shown in section 4.2.

4.4.2 Combining measurements in the pixel-based method

Implementing the complete version of the pixel-based method is very similar to how it was
done in the distance-based method. The difference is that the measurements here are the
pixel coordinates m and n instead of the relative distance and bearing. The measurements
from the camera come from detecting the marker center in pixel coordinates. The LiDAR
measurements come from estimating the pixel coordinates of the marker, as shown in section
4.3.3. The measurements are then fused like in the distance-based method. Finally, the filter
is added.
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Chapter 5

Experiments and results

In this chapter, the setup of the simulations, physical system, and experiments will be shown.
Parameter choices, software setup, specifications of the equipment, and experiment results
will also be presented.

5.1 Simulation Setup

Gazebo was used for simulation, and RViz was used for debugging the simulations and
the physical setup. In the simulations, only one computer was needed. All the nodes and
simulations were run by having several command terminals on the computer. The different
command terminals run the simulation, ROS master, and the different nodes. In the Gazebo
simulations, a world frame was placed in (0,0,0) as a reference between the two robots. To
simulate the controllers, the leader was initialized in the origin of the world frame, and the
follower was placed one meter directly behind the leader. When specifying that the follower
was one meter behind the leader in Gazebo, the base_link of the follower was 0.8 meters
behind the marker attached to the back of the leader. This is because the distance between
the marker and the base_link of the leader is 0.2 meters.

In the simulations, it is possible to custom define the noise of the sensors. This was
not done. The turtlebot_description package came with predefined noise for the simulated
LiDAR to model the physical LiDAR. The simulated LiDAR had Gaussian white noise with a
standard deviation of 10 mm, which matches the hardware specifications of the LiDAR given
in section 5.2.5. The aruco_detect package had detection noise, as previously mentioned.
The Turtlebots shook a little while driving in the simulations, this could cause noise, but it
was not notable.

To run the simulations, a launch file was set up. The launch file launched the simulation
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models of the Turtlebots, its sensors, and the world they were simulated in. It also initialized
all the necessary nodes and packages, such as the ArUco detection, the transforms, etc. The
simulated world was empty except for the Turtlebots. After the launch was completed and
the Turtlebots were initialized in their positions in the world, the marker was attached to
the leader using the gazebo_link_attacher package. After this, the simulations were ready,
and the nodes that make the leader move and the follower follow the leader could be run.

5.2 Experimental Setup

This section will go over some of the details of the physical setup.

For the physical implementation of the system, two Turtlebot3 Waffle Pis were used to-
gether with two laptops that were used as remote PCs and a desktop computer that was
used to control a motion capture system with a software called Qualisys Trackmanager. The
motion capture system was a Qualisys system with 21 Miqus M3 cameras mounted on the
ceiling and walls of the lab. The Turtlebots come equipped with a Raspberry Pi v2.1 camera
module and a 360-degree LDS-01 LiDAR. In the physical implementation, there were issues
with the Raspberry Pi v2.1 camera module and packages related to it. Because of this, a
Logitech C922 Pro USB camera was attached to the follower and used instead. ROS Noetic
was used to handle nodes, packages, etc. Both the robots had Raspberry Pi 3B, which are
single-board computers (SBC) that can be used to do light computations. The SBCs had SD
cards inserted with an Ubuntu image, which allowed the SBC to run the Ubuntu operating
system.

The Raspberry Pi SBC has limited RAM and computing power. Therefore, a remote
PC was used to communicate with the SBC and do the heavy calculations for it. Heavy
calculations on the SBC decreased performance and made the system and sensors connected
to it, like the USB camera, lag and publish information at a lower rate than usual. The
remote PC was therefore used to run most of the nodes and packages, such as the control
nodes, marker detection, etc. The leader and follower Turtlebots had their own remote
PCs, and the SBCs and remote PCs were connected through WI-FI and communicated via
ROS. The remote PC can launch a ROS master, which handles communication and allows
for publishing and subscribing of topics between the robot’s SBC and the remote PC. An
example of this would be the remote PC being able to publish velocities to the /cmd_vel
topic of the SBC, which controls the robot’s wheels. The SBC only had to launch a launch
file that initialized the Turtlebot’s base functionality and basic packages. The remote PC
could then launch a launch file that initialized the heavier packages and run the nodes.

In the physical system, similarly to in the simulations, the follower was placed so that
the distance between the base_link frame of the follower and the marker was 0.8 meters at
initialization. The marker was attached to the back of the leader with double-sided tape.
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The initial positions of the two robots in the lab were different depending on the experiment.
For example, in experiments where robots drove in a straight line, they started at one side of
the room and drove to the other. In other experiments, they started in positions where they
could drive in the desired pattern without hitting walls and still be detected by the motion
capture system. The world frame was placed in the middle of the lab.

The camera was calibrated, and the re-projection Root Mean Square (RMS) error was
around 0.15 pixels. It varied between 0.1 and 0.5 pixels depending on how the checkerboard
was held relative to the camera. This means that the calibration was satisfactory, as a re-
projection error under 1 pixel is good. The camera’s auto-focus was turned off to have a
fixed focus. The power line frequency of the camera was edited to fit the lights in the room
to make the image have less grain noise.

5.2.1 Physical space and motion capture

In the simulations, there were no walls or other objects aside from the Turtlebots. Because
of this, the robots could drive infinitely in any direction. In the real world, space is limited,
so some of the experiments had to be changed. The motion capture struggled with detection
when the robots were too close to the walls. This was because most of the motion capture
cameras focused on the middle of the room, making it so few cameras tracked along the
walls. The cameras were moved, adjusted, and the motion capture system was re-calibrated,
but detection close to walls was still unreliable.

When doing motion capture, sphere markers were used for tracking. The spheres were
placed on the robots, and a minimum of three had to be detected to define a rigid body.
A rigid body is required to find the pose. When an almost 20x20 cm ArUco marker was
attached to the back of the leader, some of the spherical markers became obscured for cameras
in certain positions. This led to the sphere markers not being detected, and with this, a rigid
body for the leader could not be defined. Adding more markers made the motion capture
more robust. Because of this, more spherical markers were added to the robots, both on the
top and on the sides of the robots. If there are five markers and one or two of them are
obscured, a rigid body can still be defined. Adding markers to the side of the leader made it
so that the ArUco marker did not get in the way of those spherical markers during motion
capture.

5.2.2 LiDAR and thresholding

In the simulations, the robots were the only objects in the world. Because of this, the
follower’s sensors only detected the leader. Therefore, thresholding was not necessary in the
simulations. In the real world, there are walls and other objects, and the LiDAR cannot
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discern between a wall and the leader. Because of this, the physical system required some
form of LiDAR thresholding, as mentioned in section 4.3.1.

In the simulation, if the LiDAR was not detecting anything beyond the max range of
the sensor, the range of the laser scan in this position was infinity. Using this, the LiDAR
detection in the control node worked by checking if the range of the laser was inf or not
to see if a laser ray was detecting anything. In the physical system, the LiDAR returned 0
range instead of inf when nothing was detected.

5.2.3 Physical camera and marker

In the simulations, a Raspberry Pi camera module was used. In the physical system, this
camera module was already installed on the Turtlebots. Some time was spent updating
packages, changing Ubuntu versions on the SBC, and trying other fixes to make the camera
module take pictures or videos, but the camera module did not work. Instead, the camera
module was removed and replaced by a USB camera that was taped to the robot in the
same position as the camera module. Because the USB camera is not described in the
turtlebot_description package, a new frame was defined for the USB camera by publishing
a custom frame. This new custom frame replaced the camera_rgb_optical frame that the
simulations used. The custom camera frame was the frame of the USB camera image sensor,
and the camera measurement data in the physical system were given in relation to this frame.
The custom frame was attached to the follower by publishing a custom static transformation
between it and the base_link frame.

The USB camera was large compared to the Raspberry Pi Camera module. This became an
issue when defining the transformation between the custom camera frame and the base_link
frame of the follower. When taking camera measurements, the measurement data is given in
the camera frame. This data should be transformed from the camera frame to the base_link
frame of the follower. The issue was that the position of the image sensor inside the USB
camera was unknown, so it had to be estimated. The height of the camera lens and image
sensor from the ground was assumed to be the same. The lens was measured to be 0.105
meters above the ground using a tape measure. Since the base_link is 1 cm over the ground,
the image sensor was assumed to be 0.0905 meters over the base_link.

The x-axis of the base_link is pointing in the direction the robot is facing, and the z-axis
is pointing up, as shown in Figure 3.3. The z translation of the image sensor relative to
the base_link frame was measured to be 0.0905 meters. It was assumed that there was no
translation of the camera frame in the y direction of the base_link frame. The x translation
of the camera frame relative to the base_link had to be estimated. Because of how big the
USB camera was, there could be a potential error of 2 cm in the translation of the x position
of the custom camera frame relative to the base_link frame depending on where the sensor
was assumed to be inside the camera. Because the camera measurements are transformed
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from the camera frame to the base_link frame, the assumption of the position of the sensor
in the camera would affect the measurement results.

The translation of the camera frame along the base_link frame’s x-axis was estimated by
using the LiDAR to find the distance d1 between the leader and the base_link frame and
by using the camera to find the distance d2 between the camera frame and the marker. The
LiDAR data was transformed from the base_scan to base_link, as mentioned in section
4.3.1. Taking d1 − d2 gives an estimate of the distance between the base_link and the
camera frames. Using this, the x translation of the camera frame relative to the base_link
was measured to be 4-5 cm. This was not possible. Using a tape measure, the camera was
at its closest 7 cm away from the base_link. The reason for the wrong measurements might
be that the LiDAR had a bias or that some laser ray measurements were unreliable.

Because the previous estimation of the translation of the image sensor with the LiDAR
was unreliable, another method was used. The follower was placed directly behind the leader
at a known distance, so the distance between the follower’s base_link and the marker was
known. A tape measure was used to find this distance. The translation of the custom camera
frame along the x-axis of the base_link frame was adjusted until the camera measured the
known distance between the base_link and the marker. This gave a translation of 0.079
meters. In addition to the translation, the custom camera frame was rotated to match the
orientation of the camera_rgb_optical frame. With this, the full transformation between
the custom camera frame and the base_link frame was known.

The marker was placed approximately 15 centimeters above the ground behind the leader.
In the simulations, the marker could be perfectly placed at a desired position behind the
leader. In the physical setup, the marker might not be placed perfectly vertically or hori-
zontally and might not be exactly 15 cm above the ground.

An issue with using the USB camera instead of the Raspberry Pi was that the USB camera
could tilt vertically, and it was hard to know when the camera was perfectly straight. The
vertical tilt of the camera was not an issue in the distance-based method; the distance
measurements might have been affected, but it was barely noticeable. In the pixel-based
method, vertically tilting the camera caused big changes in the measured n-coordinates,
which indicated the distance between the vehicles. The tilt had a big effect on the n-
coordinate measurements because tilting the camera down a little made the measured pixel
point in the image appear considerably further up than if the camera was not tilted. This
resulted in higher n-coordinate measurements and vice versa if the camera was tilted up.
The Raspberry Pi camera module was held in place by a camera mount and screws. The
USB camera was taped to the robot with double-sided tape. The camera being taped, in
addition to it being bigger than the Raspberry Pi camera, could lead to the USB camera
shaking more when the robot is driving than the Raspberry camera module.

After an experiment, the camera would tilt itself a little up or down because the robots
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were shaking while driving. Therefore, it was important to stay consistent with the tilt of the
camera throughout the experiments. This was done by placing the follower approximately
0.75 meters behind the leader, and then the transformation between the marker frame and
the base_footprint frame was checked. When the camera was approximately straight, it
measured the height difference between the follower’s base_footprint and marker to be 0.154-
0.155 meters. In addition to this, the desired distance and n-coordinates were used. If the
camera measured around 187.2 pixels on the n-coordinate and 0.75 meters in the distance
when the distance between follower and leader was set to 0.75 meters using a measuring
tape, the camera was pointing straight forward. Before every experiment, the camera tilt
was checked and set so that the camera was pointing straight forward.

5.2.4 External factors

When going from simulations to the physical setup, some external factors affected the system.

The lighting in the lab was not consistent. Half the room had slightly less light than the
other half. In addition, in two opposite sides of the room, close to the walls, the light was
stronger than in the rest of the room. The marker detection worked well in the lab, except
for in the area with the strong light close to the walls. Here the ArUco marker detection
struggled. The detection flickered, meaning that it lost track of the marker often. This did
not affect the experiments, as the only time they were under this type of light was in their
initial position for the experiments where they were driving in a line. They got out of the
strong light quickly in these experiments.

When the Turtlebots drove in the lab, dust and other debris could get stuck to the wheels.
This did not seem to affect the experiments. As a precaution, the wheels were cleaned after
a few experiments. An issue that could affect the experiments was slow WI-FI. Since the
remote PC and SBC were connected through WI-FI, slow WI-FI caused a delay between the
nodes being started and the robots reacting. This could also affect the experiments because
the information was sent at a slower rate. This was not much of an issue since it was rare
for the WI-FI to have so much traffic that it was slow enough to affect the system.

5.2.5 Specifications

Table 5.1 shows the hardware specifications of the Turtlebot3 Waffle Pi. The sensors of the
Turtlebot are also listed here.

The LiDAR measurement specifications are given in table 5.2. This table contains infor-
mation such as the max and min range of the LiDAR, precision, and accuracy.
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Turtlebot3 Waffle-Pi hardware specifications
Items Waffle Pi
Maximum translational velocity 0.26 m/s
Maximum rotational velocity 1.82 rad/s (104.27 deg/s)
Maximum payload 30kg
Size (L x W x H) 281mm x 306mm x 141mm
Weight (+ SBC + Battery + Sensors) 1.8kg
Threshold of climbing 10 mm or lower
Expected operating time 2h
Expected charging time 2h 30m
SBC (Single Board Computers) Raspberry Pi
MCU 32-bit ARM Cortex®-M7 with FPU (216 MHz, 462 DMIPS)
Remote Controller RC-100B + BT-410 Set (Bluetooth 4, BLE)
Actuator XM430-W210
LDS(Laser Distance Sensor) 360 Laser Distance Sensor LDS-01
Camera Raspberry Pi Camera Module v2.1
IMU Gyroscope 3 Axis

Accelerometer 3 Axis
Power connectors 3.3V / 800mA

5V / 4A
12V / 1A

Expansion pins GPIO 18 pins
Arduino 32 pin

Peripheral UART x3, CAN x1, SPI x1, I2C x1, ADC x5, 5pin OLLO x4
DYNAMIXEL ports RS485 x 3, TTL x 3
Audio Several programmable beep sequences
Programmable LEDs User LED x 4
Status LEDs Board status LED x 1

Arduino LED x 1
Power LED x 1

Buttons and Switches Push buttons x 2, Reset button x 1, Dip switch x 2
Battery Lithium polymer 11.1V 1800mAh / 19.98Wh 5C
PC connection USB
Firmware upgrade via USB / via JTAG
Power adapter (SMPS) Input : 100-240V, AC 50/60Hz, 1.5A @max

Output : 12V DC, 5A

Table 5.1: Hardware specifications for the Turtlebot3 Waffle Pi.

The specifications for the Raspberry Pi camera module are given in table 5.3. This module
was not used for the physical setup because of issues that made it unusable. This module
was, however, used in the simulations

54



LiDAR measurement specifications
Items Specifications
Distance Range 120 ∼ 3,500mm
Distance Accuracy (120mm ∼ 499mm) ±15mm
Distance Accuracy(500mm ∼ 3,500mm) ±5.0%
Distance Precision(120mm ∼ 499mm) ±10mm
Distance Precision(500mm ∼3,500mm) ±3.5%
Scan Rate 300±10 rpm
Angular Range 360deg
Angular Resolution 1deg

Table 5.2: Measurement performance specifications for the LiDAR

Raspberry Pi camera module hardware specifications
Items Specifications
Size Around 25 x 24 x 9 mm
Weight 3g
Still resolution 8 Megapixels
Video modes 1080p30, 720p60 and 640 x 480p60/90
Linux integration V4L2 driver available
C programming API OpenMAX IL and others available
Sensor Sony IMX219
Sensor 3280 x 2464 pixels
Sensor 3.68 x 2.76 mm (4.6 mm diagonal)
Pixel size 1.12 µm x 1.12 µm
Optical size 1/4”
Full-frame SLR lens equivalent 35 mm
S/N ratio 36 dB
Dynamic range 67 dB @ 8x gain
Sensitivity 680 mV/lux-sec
Dark current 16 mV/sec @ 60 C
Well capacity 4.3 Ke-
Fixed focus 1 m to infinity
Focal length 3.04 mm
Horizontal field of view 62.2 degrees
Vertical field of view 48.8 degrees
Focal ratio (F-Stop) 2.0

Table 5.3: Specification for the Raspberry Pi v2.1 camera module

Table 5.4 shows the specifications of the Logitech C922 Pro USB camera that was used in
the physical setup.
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Logitech C922 Pro specifications
Items Specifications
Height 44 mm
Width 95 mm
Depth 71 mm
Weight 162 g
Max Resolution 1080p/30fps - 720p/60fps
Camera Megapixel: 3
Diagonal Field of View (dFOV) 78◦

Table 5.4: Specification for the C922 Pro Logitech USB camera

5.2.6 Technical issues/ Bugs

There were some technical issues encountered in the physical system and simulations. The
first issue was using two Turtlebots at the same time in the simulations. At the time
when the simulations were being set up, the TF prefix parameter in ROS Noetic was not
supported. The TF tree of the robots would not be defined correctly, and ROS would have
issues differentiating between the frames of the two robots because there were no prefixes
for the robots or frames. This made it so that there was, for example, only one base_link
frame. But since both robot frames were published without prefixes, the single base_link
frame would switch between being the follower or leader’s frame constantly. To solve this,
the Turtlebot description files had to be edited so that they allowed prefixes to be set. An
example of the prefixes can be seen in figure 3.2, where the frames of the leader have the
tb3_0 prefix.

Another technical issue was with the aruco_detect package. In this package, there is a
parameter called maxMarkerPerimeterRate, which determines the maximum perimeter
rate for marker contours to be detected. According to the documentation, the default value
for this parameter is 4. There is a bug that does not let this parameter go over or be set
to anything over 1, so the parameter is set to 1 by default. Having a value of 1 on this
parameter made the marker detection stop detecting the marker if it got too close to the
camera, despite the marker still being in perfect view of the camera. To fix this bug, one
of the files in the aruco_detection package had to be edited so that the upper boundary for
the parameter was 4 instead of 1.

This bug affected the pixel-based method greatly. In this thesis, the FoV constraints for
the pixel-based method were found using the camera. The bug would make the measured
nmin be 170-180 pixels because the camera would stop detecting the marker if the camera
got too close. In the simulations, this issue affected the performance of the pixel-based
method, but the method was still stable. In the physical setup, however, this bug made it
so the system could not be kept stable for more than 30-40 seconds at max. After the bug
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was resolved, nmin would be measured to be around 140-145 pixels. The lower nmin made
the performance of the pixel-based method in the simulations considerably better, and the
method could be kept stable for the physical experiments.

In the physical system, there was an issue with the LiDAR that was not resolved and
persisted in the experiments. The LiDAR measured distances shorter (2-3 cm) than it
should. This was first thought to be noisy measurements pulling the measured distance
lower. An additional set of thresholds were tested to remove more noise. A threshold for
the minimum distance was set so that the LiDAR detection area became the edge of a cone
instead of a cone. This did not solve the issue. An attempt at setting the thresholds very
small was also made, but this removed legitimate measurements while still giving smaller
distance measurements.

When placing the follower 0.75 meters behind the leader, the LiDAR measured a distance
of a little under 0.73 meters. The transformation from the base_scan to base_link was
checked in case this was the reason for the lower distance. When using the non-transformed
LiDAR data and placing the follower 0.75 meters behind the follower, the distance in the
base_scan should measure 0.75+0.064 = 0.814 meters, since 0.064 meters is the translation
between the two frames. The distance measured was closer to 0.79 meters, showing that
there might be a bias in the LiDAR sensor.

5.3 Software Setup

Most of the code in this thesis was written in Python, and some minor nodes were also
written in C++. The main nodes will be presented in this section. The explanations will
assume that all parameters and constants for control have been set.

3 custom nodes were used to run the experiments in this thesis. A leader control node,
control nodes for the follower, and a position tracking node. The leader control node pub-
lished values to the leader’s /cmd_vel topic. There were four different experiments, with
four different patterns that the leader could drive in. There was a parameter in the leader
control node that could be set between 1 and 4 depending on the pattern that the leader
should drive in. This was set up with if statements. For example, if the parameter was set
to 1, the linear and angular velocities that were required for the leader to drive in circle
patterns were published to the leader’s /cmd_vel topic. The control of the robot was inside
a while loop that published velocities to the /cmd_vel topic at a certain rate, where the
published values were continuously updated. The 3 custom nodes were set to run at 10 Hz.

The second node was the control node of the follower. The node used here depends on
which controller and version (camera-only, LiDAR-only, etc.) of the controller should be
used. Because of this, there were 8 different control nodes for the follower. Four for the

57



distance-based method and four for the pixel-based method. For the camera-only version of
the distance-based method, the node first checked if the marker was detected. If the marker
was detected, the node could subscribe to the /fiducial_transforms topic. The topic gave
the pose of the marker in the camera frame. The pose was transformed to the follower’s
base_link frame and used to find the distance and bearing between the base_link frame
and the marker, which were sent to a control function. The control function calculated
the linear and angular velocities based on equation (8). The velocities were published to
the /cmd_vel topic of the follower. This was in a loop so that the velocities published
to the topic were continuously updated based on the measurements. The additions of the
other versions of the method were added to the nodes of the respective versions. For the
LiDAR-only version, the /scan topic was subscribed to, which gave raw information about
the LiDAR measurements. There was a callback function that received information from
the /scan topic and sent the distance and bearing measurements to the control function
after applying the transforms and thresholds, as shown in sections 4.3.1 and 4.3.2. In the
filtered version, the two previous velocities were stored so they could be used for filtering,
as mentioned in section 4.2. For the complete version, the camera-only and LiDAR-only
version nodes were merged and measurements from the LiDAR and camera were combined,
as shown in section 4.4.1. The previous velocities were stored to apply filtering.

For the pixel-based method, the control nodes were set up similarly to the distance-based
method. Information from sensors was sent to the control function, velocities were calculated,
and the control function published velocities to the /cmd_vel topic, and this process was
in a loop. The difference in the pixel-based method was that in the camera-only version,
instead of sending the distance and bearing measurements to the control function, the pixel
coordinates of the center of the marker were sent. This was done by subscribing to the
/fiducial_vertices topic, which was published by the aruco_detect package. This topic
published the pixel coordinates of the corners of the marker in the image, which were used
to find the marker center. After the pixel coordinates were sent to the control function, the
velocities were calculated based on equation (18). The other nodes for the different versions
of the controller were implemented in a similar way to how it was done for the distance-
based method. There was a difference in the versions that used the LiDAR because the pixel
coordinates had to be estimated, as shown in section 4.3.3. A race condition occurred if a
node tried to use information from a subscribed topic with no messages, because of this, the
nodes had to wait for the first message to appear on the topic.

The final node was a node that tracked the position of the two Turtlebots relative to
the world frame by using the TF2 package. For the physical experiments, only the nodes
controlling the leader and follower were used. This is because the motion capture system was
used to track the positions of the Turtlebots, so the final node was replaced by the motion
capture system in the physical setup.

An example of how the different nodes and topics were connected is shown in figure 5.1.
This figure is for the simulated complete version of the distance-based method. The custom
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nodes are the /simple_follow, /decentralized_complete, and /position_plotter, which are
the leader, follower, and position nodes respectively. In the figure, it can be seen how some
of the different topics, nodes, and packages mentioned in 3.1.8 and 3.1.9 are connected to
the custom nodes. For example, how the /decentralized_complete node is subscribing to
the /tf topic.

As seen in section 5.2.5, the Turtlebot Waffle Pis had maximum/minimum velocities.
If the Turtlebot’s velocity exceeds the maximum velocity, it should automatically be set
to the maximum velocity. In the simulations, this did not happen. Therefore, velocity
boundaries were set in the control nodes so that the velocity of the Turtlebots would not
exceed maximum velocity. In the physical setup, the Turtlebots cannot physically drive
faster than the maximum/minimum velocities.

Timing in the nodes was done by taking the difference between the node’s current time
and the start time of the node. In the physical system, these times followed the wall-clock
time. In the simulations, the times were kept track of by a simulated clock in ROS. Race
conditions could occur that set the start time of the node to 0. This occurred if the timing of
the node was initialized before the /clock topic. To avoid this, the node waited until the start
time of the node was a non-zero value. Handling time properly was important in all 3 of the
custom nodes presented in this section, both for control and to get accurate time-stamped
data.

5.3.1 Data collection

It is important to be able to store data to get tables and plots of the data. The nodes could
handle plotting directly. They did this by appending data values from every iteration of the
control loop into lists for that specific parameter and then plotting the lists. For example,
lists for the linear or angular velocities. An alternative to storing data in lists would be to
use Rosbag files, which are files that record the messages in the topics of the nodes. The
data that is going to be in the tables or be plotted was not published to topics, so it was
more effective to use lists. The leader control node stored the time and the leader’s linear
and angular velocity. The follower control nodes stored the time, the follower’s linear and
angular velocity, the errors and error boundaries, and the relative distance and bearing angle
between the follower’s base_link and marker frame. The boundaries and errors that were
stored depend on the method. For the distance-based method, the heading and distance
errors with the boundaries were stored. For the pixel-based method, the pixel errors and the
pixel error boundaries were stored. The position node stored the time and the leader and
follower’s positions.

After storing all the data in lists, these lists can either be plotted directly or be written
into Comma-Separated Values (CSV) files. The advantage of storing the lists in CSV files is
that the data is available at any time without having to run the experiments again, so the
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Figure 5.1: A figure of the different nodes and topics when running the simulated com-
plete version of the distance-based method. The circles are nodes, and the squares are
topics. The arrows in and out of the topics/nodes show which topics/nodes they are sub-
scribing and publishing to. The custom nodes are /simple_follow, /position_plotter, and
/decentralized_complete. /tb3_0 and /tb3_1 are the prefixes of the leader and follower
respectively.
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data stored in the files can be used later for plotting and making tables. It is easier to work
with the data and plot graphs of several runs in one plot when using CSV files. The new
data values were stored in the list every time the control loop/function was iterated.

In the simulations, the position node was used to store position data. In the physical
setup, the motion capture system was used to get the position data instead. The position
data in the physical setup was stored directly in Tab-Separated Values (TSV) files, which are
similar to CSV files. Using the position data, the RMS of the position error can be found.
The data from the motion capture system is almost identical to the data that would have
been obtained by the position node.

In the pixel-based method, the distance and bearing were measured during the experiments
but not used in the controller; they were only measured to compare the controllers. After
obtaining these measurements, the distance and heading errors in the pixel-based method
were found by subtracting the desired distance and desired bearing angle from the measure-
ments. The standard deviation was taken directly from the measurements. The sensors used
to gather the distance, bearing, and image coordinates data depend on the sensors used in
the experiment. In the camera-only and filtered versions of the controllers, the camera was
used to obtain the measurements. In the LiDAR-based method, the LiDAR was used. In the
complete version of the distance-based method, the controller used combined measurements
from the LiDAR and camera to measure distance and bearing. For the pixel-based complete
version, the LiDAR and camera measurements were combined when measuring the pixel
coordinates, but when the distance and bearings were measured, only the camera was used.

5.4 Experiments

The experiments consisted of making the leader drive in some pattern while the follower was
detecting the leader and following it based on measurements from sensors. The controller
took the measurements and calculated velocities to control the follower. The robots were
driving in 4 different, separate patterns. The different patterns were: the robots drive in a
circle. The robots drive in a straight line with constant velocity. The robots drive in a figure-
8 once. The robots drive in a straight line with a velocity that gradually accelerates up to
a certain velocity before slowing down gradually. Table 5.5 shows the different experiments,
controllers, and versions of the controllers.

In the simulations, for the experiment where the robots drove in a circle, the leader had
a constant angular velocity of 0.1 m/s and a constant linear velocity of 0.2 m/s. This
experiment lasted 300 seconds. For the experiment where the robots drove in a straight line
with constant velocity, the leader had a constant linear velocity of 0.2 m/s and an angular
velocity of 0 m/s. This experiment lasted 200 seconds. In the experiment where the robots
drove in a figure-8, the leader started by driving with a constant linear velocity of 0.2 m/s
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Methods Versions Patterns
Distance-based method Camera-only Circle

Pixel-based method LiDAR-only Line with constant velocity
Filtered Figure-8

Complete Line with dynamic velocity

Table 5.5: Table of methods, the version of these methods, and the different patterns in the
experiments.

and angular velocity of 0.1 m/s. When the leader had completed one circle, which took
64 seconds, the angular velocity changed to -0.1 m/s. After 128 seconds, the robots had
driven in a figure-8 pattern. In the experiment where the robots drove in a straight line with
dynamic velocity, the leader started with a velocity of 0.1 m/s. It drove with this velocity
for 40 seconds before accelerating to 0.15 m/s. After this, every 20 seconds, it added another
0.05 m/s until it reached a velocity of 0.25 m/s. Once this velocity was reached, the leader
started driving 0.05 m/s slower every 20 seconds until it finally stopped completely. This
experiment took 160 seconds in total.

The experiments in the physical setup had to be adjusted. The robots should not touch
the walls, and since a motion capture system was used, the experiments were adjusted so
that the robots were always in view of enough cameras for robust motion tracking. Some
areas closer to the walls had unreliable motion tracking because not enough cameras could
track the robots there. The circle experiment remained the same as in the simulations. In the
experiment where the robots drove in a line with constant velocities, the velocities remained
the same as in the simulations. The difference is that this experiment only lasted for 43
seconds here. For the figure-8 experiment, the leader drove with a linear velocity of 0.2 m/s
and angular velocity of -0.1 m/s for 66 seconds, then switched to an angular velocity of 0.1
m/s. The leader drove like this for another 66 seconds, creating a figure 8 after 132 seconds.
In the experiment where the robots drove in a line with dynamic velocity, the leader had
no angular velocity, and the linear velocity started at 0.1 m/s. The leader drove with this
velocity for 30 seconds, increasing to 0.15 m/s and 0.2 m/s at 30 and 40 seconds respectively.
After this, the velocity decreased to 0.15 m/s at 50 seconds and 0.1 m/s at 60 seconds. This
experiment lasted for 70 seconds.

Table 5.6 shows the different velocities in the experiments and the duration of the experi-
ments. Figure 5.2 shows the velocity profiles for the experiment where the robots drove with
dynamic velocity, both for the simulations and physical setup. As previously shown, there
were four different versions of the two methods. These four versions were tested in the four
experiments.
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Figure 5.2: A figure of the leader’s linear velocity profile in the experiment where the robots
drove with dynamic velocity. The plot on the left shows the velocity profile for the simula-
tions, and the right plot shows the velocity profile for the physical setup.
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Table of the different experiments.
Experiments Linear Veloc-

ity(m/s)
Angular Veloc-
ity(rad/s)

Duration(s)

Circle 0.2 0.1 300
Line with constant ve-
locity

0.2 0 200 (43)

Figure-8 0.2 0.1→-0.1
(-0.1→0.1)

128 (132)

Line with dynamic ve-
locity

0.1→0.25→0.1
(0.1→0.2→0.1)

0 160 (70)

Table 5.6: The table shows the experiments, the linear and angular velocities of the leader,
and the duration of the experiments, both for the simulations and physical experiments.
The bold numbers in the parentheses are for the physical experiment if there were changes
between the physical experiments and simulations. The → indicates a change in velocity
from the minimum velocity in the experiment to the max velocity.

5.4.1 Performance metrics

The results will be shown in the form of tables with mean and standard deviation. In
the experiment where the robots drove in a figure-8 and a line with dynamic velocity, the
velocities changed during the experiment. Because of this, the standard deviation was not
only affected by noise but also by how good the system was at adjusting to new velocities.
For these experiments, the mean is a bias or tracking error, while the standard deviation is
a variation around this.

When calculating the mean and standard deviation, the first 35 seconds of the runs were
removed. This is because at the start of the experiment there is a transient which should
not be included to get a more accurate sense of the mean and standard deviation. At 35
seconds, the transient was not completely gone, but taking more than this was not viable
because the physical experiment where the robots drove with constant velocity only lasted
for 43 seconds.

In most experiments, the RMS of the position error of the two robots was calculated.
When calculating the RMS of the position error, the leader was shifted back to the time
instance when its position was approximately in the same position as the follower. This was
done by adding a time delay to the leader’s position data to shift it back in time. Then the
position error between the two robots was taken. It was assumed that the linear velocity of
the two robots was constant so that a delay to the leader’s position data would shift it to
the position of the follower. Because of this, the RMS of the position error was not taken
for the experiment where the robots drove in a line with dynamic linear velocity.

The RMS of the position error is an estimate, and how good the estimate is depends on
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the accuracy of the time delay. The delay was found through testing. This was done by
testing different time delays and looking at the positions of the two robots so that they lined
up as much as possible when the leader’s position was shifted back. The delay was different
depending on if the pixel or distance-based method was used, and it also depended on the
relative distance between robots throughout the experiment.

When evaluating the experiments, different metrics are used to compare the results. The
controller is given measurements and calculates a measurement error and velocities based
on this in an attempt to minimize the measurement error. In the distance-based method,
the controller tried to minimize the distance and heading errors shown in equation (3). In
the pixel-based method, the controller tried to minimize the pixel coordinate errors shown
in equation (13). The linear and angular velocity error means shows the difference between
the leader and follower’s velocities, and how well the follower measures the leader’s velocities
and follows them. The noise/standard deviation of the data is important as it indicates the
stability of the system. The position error shows how well the follower is following the leader’s
trajectory. High position error means that the follower is not following the trajectory well.
The standard deviation of the position error will not be looked at closely. The measurement
and velocity errors, standard deviations of these errors, and position errors will be looked at
when comparing the versions and methods. In the pixel-based method, distance and heading
errors were also taken to have more metrics to compare the two controllers.

5.5 Choice of parameter values

In this section, the choice of the values for parameters will be looked at. In the controllers
there were parameters such as the control gain parameters, kd and kβ for the distance-based
method, and kn and km for the pixel-based method. Parameter values had to be chosen and
tuned for the controllers and the experiments. This had to be done for both controllers. The
main experiments in this thesis will use the parameters mentioned in this section. There
were also some experiments done to tune parameters or to show the effects of different
parameter values on the system. These will use most of the same parameter values as the
main experiments but will use different values on some of the parameters.

5.5.1 Choice of parameter values for simulations

For the distance-based method, the maximum steady-state errors were set to ρd,∞ = 0.2 and
ρβ,∞ = 8. βcon was set to AoV

2
, where angle of view (AoV) is the horizontal FoV of the camera.

AoV was found to be 60 degrees. The desired distance between the leader and follower was
ddes = 0.75 meters, and the desired bearing angle was 0 degrees. The collision distance
was set to dcol = 0.05ddes meters, and the distance where the camera stopped detecting the

65



marker was dcon = 3.15 meters. l, which is the convergence rate, was set to 0.1.

For the pixel-based method, the maximum steady-state errors were set to ρn,∞ = 20 and
ρm,∞ = 30. h, which was the height difference between the camera optical axis and the
marker center, was set to −0.0493 meters. h could be found through the transformation
between the marker and camera frames or measured directly. It could also be found by
placing the follower in a known position behind the leader, measuring the n-coordinate,
and using this to calculate h through equations (10) and (11). The desired position of
the follower was 0.75 meters directly behind the leader, but in this method, it had to be
converted into pixel coordinates. This was done by inserting the desired position of the
leader in the follower frame, (0.75,0), into equation (10) so that (X,Y,Z) = (−ylf , h, xlf )
= (0,-0.0493,0.75). Inserting this into equation (11) gave approximately mdes = 320 and
ndes = 199.5 pixels. An alternative way to find the desired pixel coordinates was to place the
follower in the desired position behind the leader and measure the desired pixel coordinates
directly with the aruco_detect package.

m0 and n0 were the pixel coordinates of the projective center of the camera and could be
found in the camera calibration matrix. In the simulations, the camera calibration matrix
was ideal. When using a 640x480 resolution with an ideal camera, m0 = 320 and n0 = 240
pixels, meaning exactly in the middle of the camera. αn and αm were set to 616. It was
not mentioned how αn and αm were selected in (Miao et al., 2021), just that they were
constant scaling factors. In this thesis, it was assumed that αn and αm were the focal
lengths expressed in pixel units and could be found in the camera calibration matrix. This
was assumed because equation (11) came from the pinhole camera model. The convergence
rate l was set to 0.1.

The FoV constraints of the pixel-based method had to be set. In (Miao et al., 2021), they
used a resolution of 640x480. It was not mentioned explicitly what the FoV constraints in
the paper were, but they were assumed to be mmax = 640, mmin = 0, nmax = 480, nmin = 0
pixels. These FoV constraints were tested but made the follower drive a couple of meters
backward before very slowly approaching the desired position behind the leader. This was
not ideal, as the follower could easily lose track of the leader if the leader was driving while
the follower was backing up initially. The follower did not back away initially in (Miao et al.,
2021) with the static gain controller, and it could be because of how their setup differed from
the one in this thesis. Their camera and tracking object were on poles of different heights,
which gave a larger height difference between the camera’s optical axis and the tracking
object.

New FoV constraints were tested and used. They were found by letting the follower stand
still while detecting the pixel positions of the leader’s marker center. The leader was moved
around on the ground while in view of the camera. The leader was moved as close, as far
away, and as far to the sides of the follower as possible while still being in the camera’s FoV.
The constraints were the pixel coordinates where the camera stopped detecting the marker if
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the marker went out of these coordinates. These were: mmax = 620, mmin = 20, nmax = 235,
nmin = 145 pixels. With these FoV constraints, the follower immediately followed the leader
without backing up initially. For the distance-based method, the AoV and dcon were found
in a similar way by using the distance and bearing measurements instead.

5.5.2 Choice of parameter values for physical setup

For the physical distance-based method, the maximum steady-state errors were set to ρd,∞ =
0.2 and ρβ,∞ = 12. The distance where the camera stopped detecting the marker was
dcon = 3.1. Aside from that, the same values as in the simulated distance-based method in
section 5.5.1 were used.

In the pixel-based method, the maximum steady-state errors were set to ρn,∞ = 30 and
ρm,∞ = 60. The center pixels n0 and m0, as well as the scaling factors αn and αm were
taken from the camera calibration matrix. These were n0 = 235.6 pixels, m0 = 315.26
pixels, αn = 651.61, and αm = 649.018. Other values were given as h = −0.0577 meters,
ndes = 187.2 pixels and mdes = 315.26 pixels. The FoV constraints were mmax = 620,
mmin = 20, nmax = 230, nmin = 140 pixels. ndes, mdes, h and the FoV constraints were found
in the same way as in section 5.5.1. Aside from that, the same values as in the simulated
pixel-based method in section 5.5.1 were used.

5.5.3 Choice of control loop frequency

The rate of the control loop had to be chosen. As mentioned, topics can be subscribed
or published to. The rate of the control loop decides the frequency at which the control
equations are calculated and velocities are published to the robot wheels. The rate of the
/scan topic was around 6-7 Hz. The publishing rate of the camera depends on its Frames
Per Second (FPS), this is usually 30 or 60 Hz but depends on the resolution and camera.
Since the physical Turtlebot’s SBC lacked computing power, the USB camera got less than
30 FPS. The FPS was around 20 with black and white video while the image processing was
active to rectify the image with the camera calibration. The image processing was done on
the SBC because it could not be done through the remote PC due to lag. Black and white
video was used in the physical system because this gave a little more FPS than colored video.
There was no lack of computing power in the simulations, so the camera had the full FPS.

Generally, choosing a high frequency for the control loop is good if the system has enough
computing power and a high rate of measurements. A high rate on the control loop can lead
to unnecessary noise, which must be filtered out. In this thesis, a lower frequency rate was
chosen. The physical Turtlebot would struggle with computing the control equations at 100
Hz, for example, since it has limited computing power. Even when using a remote PC to
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compensate for the computing power, publishing 100 velocities to the wheels every second
would be excessive. Another reason for not having a high control loop rate was that the
measurements from the sensors were updated around 5-20 times a second. If the control loop
ran 100 times a second, many of the control loop velocity computations would be done with
the same measurements. There would be no point in computing the velocities this often.

Having a too low rate on the control loop can cause issues. If the rate is too low and the
leader is moving fast, the follower could struggle to keep up with the leader when it comes
to publishing new velocities to the wheels. Another issue is if the control loop is so slow that
it misses many measurement updates. A rate of 135 Hz was tested in the simulations. This
gave more noise than usual, especially in the versions of the methods that were subscribing to
the /scan topic, which gave information about the LiDAR measurements. This was because
the LiDAR published at a low frequency. Having a rate this high was excessive, and it was
too high for the physical system. A rate of 5 Hz was tested for the control loop, but in some
cases, the system could not keep up with the leader with this rate. In the end, the loop
rate was set to 10 Hz. With this, the system managed to keep up with the leader while not
introducing too much noise.

5.5.4 Optimization of error boundaries and control gain

For the system to remain stable, the measurement error must not go outside the error
boundary. As such, the boundaries were chosen so that even if there were noise and error
spikes in the system, the error should not go outside the boundary set by the prescribed
performance. If the error went outside of the boundary, the follower would not be able to
follow the leader. This was because the system became unstable since values in the controller
became NaN or infinite. While keeping the boundaries large held the system stable in cases
with error spikes and noise, the boundaries should be pushed as low as possible. This
is because lower boundaries give better performance in the controller. It was possible to
optimize so that the error boundaries were as small as possible while still keeping the system
stable.

The prescribed performance boundaries are affected by the maximum steady-state errors.
These are ρd,∞ and ρβ,∞ for the distance-based method. The boundary equation is given in
(4). In addition to the steady-state error, the convergence rate l and the constraints given
in equations (6) also affect the boundaries, as seen in equation (5). The steady-state errors
are ρn,∞ and ρm,∞ for the pixel-based method, with the boundary given in (14). Here the
convergence rate l also affects the boundaries. In addition, the constraints given in (16)
affect the boundaries, as seen in equation (15).

An attempt at optimizing the boundaries and control gain values was made. For the
optimization, the circle experiment was used. This was because it was the most demanding
experiment, as it ran for 300 seconds while using both linear and angular velocity. When
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optimizing the two control methods, the LiDAR or camera-only versions of the controllers
were used depending on which was the most unstable and noisy. This was done under the
assumption that one of these versions was the most unstable and noisy since they were the
simplest versions without any additions, unlike the filtered and complete versions. This
was also done under the assumption that if the most unstable and noisy version of the
method could handle the optimized parameters, the other versions of the method could also
be kept stable under the same parameters. For the simulations, the LiDAR-only versions
were used to optimize both control methods. The LiDAR-only version was also used for the
optimization of the physical distance-based method. The camera-only version was used to
optimize the physical pixel-based method, as this was the least stable and most noisy version
of the method.

When optimizing the boundaries, the maximum steady-state errors were tuned to make
the boundaries as small as possible while still keeping the system stable. First, large values
of steady-state errors were tested in the circle experiment with different control gain values.
If these managed to keep the system stable for the entire duration of the experiment, the
steady-state errors were lowered a little. After adjusting the steady-state errors, they were
tested with different combinations of control gain values. If system instability occurred,
the steady-state error had to be readjusted by, for example, raising one of the steady-state
errors a little. This tuning process was repeated until the system could not be kept stable for
any tested control gain. After optimizing the steady-state errors with the circle experiment,
control gains were tested for the other experiments.

In the simulations, the maximum steady-state errors could be set quite low. Starting at
ρd,∞ = 0.4 , ρβ,∞ = 15 for the distance-based method and ρn,∞ = 30 , ρm,∞ = 60 for the
pixel-based method and ending at ρd,∞ = 0.2 , ρβ,∞ = 8 and ρn,∞ = 20 , ρm,∞ = 30. This
was because of the low noise levels in the simulations, which allowed the steady-state errors
to be pushed down considerably.

In the physical system, the maximum steady-state errors started with the same values as
in the simulations, and ended at ρd,∞ = 0.2 , ρβ,∞ = 12 and ρn,∞ = 30 , ρm,∞ = 60. The
distance-based method’s steady-state errors could be lowered, but not as much as in the
simulations. The physical pixel-based method did not handle a lowering of the steady-state
error at all. This was because the pixel-based method had a large amount of noise and error
spikes in its camera-only version. This made the system unstable if the boundaries were
lowered since the error became bigger than the boundary values.

When having the boundaries optimized, there were only a small number of control gain
combinations that could keep the system stable. As opposed to when having a larger bound-
ary, where a wider variety of control gain combinations could keep the system stable. An
example of this is the distance-based method in the simulations. With the maximum steady-
state errors ρd,∞ = 0.4 and ρβ,∞ = 15, the control gains could be chosen between kd = 0.3−0.5
and kβ = 0.5− 1. Most combinations of these would keep the system stable and could even
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Simulated distance-based method, robots driving in a circle, different ρd,∞ values.
ρd,∞ value 0.3 0.4
Velocity(m/s) 0.1906±

0.02015
0.18965±
0.01482

Angular Veloc-
ity(rad/s)

0.09937±
0.01526

0.0998±
0.0105

Velocity Error Mean
(m/s)

-0.0094±
0.02015

-0.01035±
0.01482

Angular Velocity Er-
ror Mean (rad/s)

-0.00063±
0.01526

-0.0002±
0.0105

Distance Error(m) 0.05112±
0.00622

0.0676±
0.00607

Heading Error(deg.) 4.14106±
0.59846

4.16899±
0.41416

RMS of position er-
ror(m)

0.07144±
0.00238

0.07968±
0.00194

Table 5.7: Table of runs of the simulated distance-based method, LiDAR version. The
robots drove in circles. Two different ρd,∞ values were tested. The table consists of the
mean± standard deviation.

keep the system stable in all of the four different experiments. When lowering the steady-
state errors to ρd,∞ = 0.2 and ρβ,∞ = 8, the combinations and range of variety of control
gains that could keep the system stable in the different experiments became lower. What
control gains can keep the system stable depend on the steady-state errors.

Table 5.7 shows the results of an experiment where the robots drove in a circle for 300
seconds with different error boundaries. The LiDAR version of the simulated distance-based
method was used with two different values for the ρd,∞ to show how different boundaries
affected the system. Only ρd,∞ was changed so that the effects of the change were clearer.
Changing this value changes the boundary for the distance error in the system. ρβ,∞ = 10,
kd = 0.3, and kβ = 0.7 here. The rest of the parameter values for this experiment were
chosen as described earlier for the simulated distance-based method.

5.5.5 Choice of control gain

The control gain values are important as they decide how much the system should react to
errors. These parameters are a form of scaling factor for the control velocity equations, as can
be seen in equations (8) and (18). Large control gain values can result in high velocities if the
error is big, and it also makes the system react more to small errors because the control gain
parameters scale the error up. This can result in the control velocity overshooting the target
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velocity by a large amount, which could lead to collisions. Another issue with having high
control gain is that it can cause oscillations. A little oscillation is expected. The ideal scenario
is that the system overshoots a little and then settles to the target velocity with minor to
no oscillations. In cases where the control gain parameters are too big, the oscillations can
become amplified after the system first overshoots. The system keeps undershooting and
overshooting as the controller is attempting to minimize the measurement error, amplifying
the oscillations until the system becomes unstable. A system with small gain values reacts
less to errors, but too small gain values can make the system have issues with following the
leader. This is because the gains are so small that the system does not react appropriately
until the error becomes big, and at that point, it could be that the follower has lost track of
the leader.

The different experiments required different control gains based on which experiment was
done. The control gains were chosen based on the trajectory of the leader. If the leader
is driving in a straight line with a high velocity, the control gain for the linear velocity
controller should be high, while the gain for the angular velocity controller should be low.
This is because the leader has no angular velocity, and having a high value for the angular
velocity gain could make the system have oscillations in the angular velocity, and in the
worst case, become unstable. The controller requires a high value in the linear velocity
controller to keep up with the leader. The same control gain values should not be used in an
experiment where the leader is driving in a circle since that requires high angular velocity.
The follower would not be able to keep up with the angular velocity of the leader. If the
leader is driving slowly in a circle, the large linear velocity gain could also cause oscillations
or instability in the linear velocity. Therefore, the control gains were chosen according to
the pattern in the experiment. An idea for getting the right gains could be to have a form
of adaptive parameter tuning. In this thesis, the control gains were found through trial and
error.

To show how different control gain values affected the system, an experiment was done
on the distance-based method, with the camera-only version. In the experiment, the robots
drove in a circle with different control gains in the simulations for 300 seconds. The control
gain pairs (kd, kβ) = (0.3, 0.5), (0.3, 0.7), (0.5, 1) were used. Here the maximum steady-state
errors were ρd,∞ = 0.4 and ρβ,∞ = 10. The rest of the parameter values for this experiment
were chosen as described earlier for the simulated distance-based method. Table 5.8 shows
the results of the experiments where different control gains were used. Only one pair of
control gains will be used when showing the results of the other experiments. This means
that for every experiment that is done, only one pair of control gains will be used for the
method and the particular experiment.

The control gain values that were chosen for the experiments with the simulated distance-
based method were (kd, kβ) = (0.2, 0.5) for the circle experiment, (0.25,0.1) for the experi-
ments where the robots drove in a line with constant velocity, (0.2,0.5) for the experiment
where they drove in a figure-8, and (0.2,0.15) for the experiment where they drove in a line
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Distance-based method, camera-only, circle experiment. Runs with different control gains
Control gains 0.3,0.5 0.3,0.7 0.5,1
Velocity (m/s) 0.19157±

0.00072
0.18957±
0.00094

0.18921±
0.01404

Angular Velocity
(rad/s)

0.09999±
0.00053

0.1± 0.00056 0.09913±
0.00544

Velocity Error Mean
(m/s)

-0.00843±
0.00072

-0.01043±
0.00094

-0.01079±
0.01404

Angular Velocity Er-
ror Mean (rad/s)

-1e-05± 0.00053 -0.0± 0.00056 -0.00087±
0.00544

Distance Error (m) 0.06764±
0.00122

0.06684±
0.00122

0.03792±
0.00311

Heading Error (deg.) 5.55776± 0.081 4.18741±
0.06857

2.91605±
0.17583

RMS of position error
(m)

0.06004±
0.00063

0.07422±
0.00051

0.08223±
0.00112

Table 5.8: Table of runs of the simulated distance-based method, camera-only version. Dif-
ferent control gains were used. The robots were driving in circles. The table consists of the
mean± standard deviation.

with dynamic velocity. For the simulated pixel-based method these were (kn, km) = (0.4, 0.1),
(0.4,0.02), (0.4,0.1) and (0.45,0.04) respectively. For the physical distance-based method,
they were chosen as (kd, kβ) = (0.2, 0.6) for the circle experiment, (0.2,0.1) for the experi-
ment where the robots drove in a line with constant velocity, (0.18,0.6) for the experiment
where they drove in a figure-8, and (0.17,0.1) for the experiment where they drove in a
line with dynamic velocity. For the physical pixel-based method the control gains were
(kn, km) = (0.4, 0.08), (0.4,0.02), (0.4,0.08), and (0.38,0.02) respectively. These were the
control gains that were used for the main experiments, meaning the four experiments with
the four versions of the methods.

5.5.6 Choice of weights in the filter and the complete version

In section 4.2, it was mentioned that a 2nd-degree filter would be used. This filter has 3
weights, a, b and c. Initially, 1st degree filters with the weights a = 0.3, b = 0.7 and a = 0.5,
b = 0.5 were tested, but this did not filter out noise very well. The 1st-degree filter was then
switched out with a 2nd-degree filter, which removed more noise. Different weights were
tested for the 2nd-degree filter. Taking the average across the three velocities gave a good
amount of filtering. Because of this, a = b = c = 1

3

When using the complete version of the methods, the weights w1 and w2 of the LiDAR and
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Simulated distance-based method, circle experiment. Runs with different weights
Weight coefficients 0.3,0.7 0.5,0.5 0.7,0.3
Velocity (m/s) 0.18951±

0.0017
0.18953±
0.00305

0.18958±
0.00536

Angular Velocity
(rad/s)

0.10003±
0.00063

0.10003±
0.00069

0.09999±
0.00242

Velocity Error Mean
(m/s)

-0.01049±
0.0017

-0.01047±
0.00305

-0.01042±
0.00536

Angular Velocity Er-
ror Mean (rad/s)

3e-05±
0.00063

3e-05±
0.00069

-1e-05±
0.00242

Distance Error (m) 0.05378±
0.00265

0.0538±
0.00311

0.05382±
0.00403

Heading Error (deg.) 3.7159±
0.0831

3.71639±
0.08502

3.71371±
0.14286

RMS of position error
(m)

0.07498±
0.00037

0.07496±
0.00052

0.07515±
0.00076

Table 5.9: Table of runs of the simulated distance-based method, complete version, where
different weights were used for the fusing of camera and LiDAR measurements. The robots
were driving in circles. The table consists of the mean± standard deviation.

camera measurements had to be chosen. Having a larger weight on the LiDAR would mean
that the measurements from the LiDAR would be focused on more than the measurements
from the camera. Vice versa if the larger weight was put on the camera, as shown in section
4.4. Experiments were done to determine what weights to use and to show how different
weights could affect the system. Another way to pick the weights could be to use the
error covariance of the measurements from the camera and LiDAR methods to weight the
measurements.

The experiments to tune the weights were done with the complete versions of the simu-
lated and physical control methods, and the robots drove in circles for 300 seconds. In the
experiments, the weights that were tested were: (w1, w2) = (0.3, 0.7), (0.5,0.5), and (0.7,0.3).
All parameter values used in the experiments were chosen according to what was described
earlier in this chapter for the respective control methods, with the control gains being the
same as in the main experiments where the robots drove in a circle.

In table 5.9, the runs with different weights for the simulated distance-based method are
shown. The weights were chosen as (0.3,0.7) for the main experiments of this method, as
this was the better option because of noise and performance.

Table 5.10 shows the runs with different weights for the simulated pixel-based method.
For this method, the weights were also chosen as (0.3,0.7).
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Simulated pixel-based method, circle experiment. Runs with different weights
Weight coefficients 0.3,0.7 0.5,0.5 0.7,0.3
Velocity (m/s) 0.18751±

0.00093
0.18751±
0.00248

0.18752±
0.00413

Angular Velocity
(rad/s)

0.09998±
0.00595

0.09999±
0.00928

0.09989±
0.01153

Velocity Error Mean
(m/s)

-0.01249±
0.00093

-0.01249±
0.00248

-0.01248±
0.00413

Angular Velocity Er-
ror Mean (rad/s)

-2e-05±
0.00595

-1e-05±
0.00928

-0.00011±
0.01153

Image coordinate n
Error (pixels)

0.94477±
0.06191

0.94785±
0.15626

0.95459±
0.25336

Image coordinate m
Error (pixels)

-
13.97566±
1.31241

-
13.92904±
2.00618

-13.8737±
2.49448

Distance Error (m) 0.01325±
0.00053

0.01304±
0.00109

0.01305±
0.00166

Heading Error (deg.) 1.23648±
0.10502

1.22424±
0.14999

1.22391±
0.18843

RMS of position error
(m)

0.08874±
0.00047

0.08885±
0.00045

0.08891±
0.00052

Table 5.10: Table of runs of the simulated pixel-based method, complete version, where
different weights were used for the fusing of camera and LiDAR measurements. The robots
were driving in circles. The table consists of the mean± standard deviation.

74



Phys. distance-based method, circle experiment. Runs with different weights
Weight coefficients 0.3,0.7 0.5,0.5 0.7,0.3
Velocity (m/s) 0.19495±

0.01794
0.19515±
0.01728

0.19518±
0.01931

Angular Velocity
(rad/s)

0.0986±
0.00849

0.09895±
0.01188

0.09956±
0.00973

Velocity Error Mean
(m/s)

-0.00505±
0.01794

-0.00485±
0.01728

-0.00482±
0.01931

Angular Velocity Er-
ror Mean (rad/s)

-0.0014±
0.00849

-0.00105±
0.01188

-0.00044±
0.00973

Distance Error (m) 0.05624±
0.00848

0.05632±
0.0091

0.05635±
0.01052

Heading Error (deg.) 6.56976±
0.45927

6.56605±
0.63645

6.60624±
0.59196

RMS of position error
(m)

0.05511±
0.00255

0.05524±
0.00329

0.05539±
0.00384

Table 5.11: Table of runs of the physical distance-based method, complete version, where
different weights were used for the fusing of camera and LiDAR measurements. The robots
were driving in circles. The table consists of the mean± standard deviation.

As in the simulations, the weights for the complete version of the physical methods were
tested to see which gave the best results. For the physical distance-based method, table 5.11
shows the results of these experiments. (0.3,0.7) were chosen as the weights for this method.

Table 5.12 shows the experiment for the physical pixel-based method. (0.7,0.3) were chosen
as the weights for this method. This was because putting the weight on the LiDAR gave
considerably less noise. Putting the weight on the camera here was not viable due to the
amount of noise and error spikes, which in some cases caused instability. The experiment had
to be done several times to obtain results for the run with the most weight on the camera.
Only once did it manage to keep itself stable enough to reach 300 seconds, becoming unstable
right after. There were also stability issues in the case where the LiDAR and camera sensors
had equal weight, but it was more stable than putting the weight on the camera.
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Phys. pixel-based method, circle experiment. Runs with different weights
Weight coefficients 0.3,0.7 0.5,0.5 0.7,0.3
Velocity (m/s) 0.18804±

0.02095
0.18797±
0.01569

0.188±
0.0101

Angular Velocity
(rad/s)

0.09809±
0.01973

0.0991±
0.0189

0.09876±
0.01654

Velocity Error Mean
(m/s)

-0.01196±
0.02095

-0.01203±
0.01569

-0.012±
0.0101

Angular Velocity Er-
ror Mean (rad/s)

-0.00191±
0.01973

-0.0009±
0.0189

-0.00124±
0.01654

Image coordinate n
Error (pixels)

6.59268±
1.66017

6.4404±
1.18996

6.37026±
0.82686

Image coordinate m
Error (pixels)

-
30.93663±
6.33033

-
31.21646±
6.15724

-
31.21432±
5.71072

Distance Error (m) 0.07678±
0.02353

0.09354±
0.01703

0.09565±
0.0109

Heading Error (deg.) 2.59945±
0.51586

2.89439±
0.51532

3.10458±
0.4652

RMS of position error
(m)

0.10177±
0.00401

0.10215±
0.00346

0.09947±
0.0028

Table 5.12: Table of runs of the physical pixel-based method, complete version, where differ-
ent weights were used for the fusing of camera and LiDAR measurements. The robots were
driving in circles. The table consists of the mean± standard deviation.
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5.6 Simulation results and sensor characteristics

In this section, the results of the simulated main experiments will be shown. The main
experiments used the parameters described in section 5.5 for the experiments and the simu-
lated distance-based and pixel-based controllers. In addition, the noise characterization and
measurement accuracy of the LiDAR and camera with marker detection was checked.

5.6.1 Sensor noise and measurement accuracy

The measurements and noise from the sensors in the simulations and physical setup were
checked. Usually, in simulations, the user defines the noise models of the sensors. This was
not the case in the simulations in this thesis. The LiDAR had predefined noise, and the
aruco_detect package had noise, as mentioned in section 5.1. The accuracy of the sensors
was measured by checking how well the sensors measured the desired distance, bearing, and
pixel coordinates while the follower was stationary in the desired position behind the leader.
As mentioned earlier, the desired distance was 0.75 meters, desired bearing was 0 degrees and
desired pixel coordinates were ndes = 199.5, mdes = 320 for the simulations and ndes = 187.2
and mdes = 315.26 for the physical setup.

The follower was placed 0.75 meters directly behind the leader while measurements with
the sensors were taken for 50 seconds. The measurements were only taken for 50 seconds
because the Turtlebots in the simulations would very slowly rotate if they stood still for
too long. This was because the wheel models of the robots caused integration errors to
accumulate. The rotation could affect the measurement. When simulations were being done
at an early stage, the size of the marker’s margin was 1 cm. It was later increased to 3 cm to
make the marker detection more robust. The measurement means and noise for both margin
sizes will be shown in the tables for the simulation measurements, in addition to LiDAR
measurements. Measurement results for the physical sensors will also be shown in tables.

For the simulations, the measurements for the distance-based method are shown in table
5.13, and the measurements for the pixel-based method are shown in table 5.14. For the
physical setup, the distance-based measurements are shown in table 5.15, and the pixel-based
measurements are shown in table 5.16.
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Measurements from simulation setup, distance-based measurements
Measurements Distance

(m)
Bearing
(deg.)

Camera measure-
ments, margin 3
cm

0.74963±
0.0001774

0.170078±
0.0033125

Camera measure-
ments, margin 1
cm

0.741866±
6.59581e-
05

0.197116±
0.00466967

LiDAR measurements 0.7516748±
0.0024659

-0.54408±
0.00014

Table 5.13: Measurements from the distance-based method in the simulation setup. The
follower was standing still 0.75 meters directly behind the leader, and measurements were
taken for 50 seconds. The table consists of the mean± standard deviation.

Measurements from simulation setup, pixel-based measurements
Measurements N-

coordinate
(pixels)

M-
coordinate
(pixels)

Camera measure-
ments, margin 3
cm

199.79352±
0.0105617

319.13306±
0.0234778

Camera measure-
ments, margin 1
cm

199.21905±
0.00669845

318.83617±
0.038889

LiDAR measurements 199.60152±
0.130541

325.84967±
0.001483

Table 5.14: Measurements from the pixel-based method in the simulation setup. The follower
was standing still 0.75 meters directly behind the leader, and measurements were taken for
50 seconds. The table consists of the mean± standard deviation.

Measurements from physical setup, distance-based measurements
Measurements Distance

(m)
Bearing
(deg.)

Camera measure-
ments

0.750319±
5.6103e-05

-0.00429±
0.000955

LiDAR measurements 0.72789±
0.0041311

-1.49757±
0.506110

Table 5.15: Measurements from the distance-based method in the physical setup. The
follower was standing still 0.75 meters directly behind the leader, and measurements were
taken for 50 seconds. The table consists of the mean± standard deviation.
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Measurements from physical setup, pixel-based measurements
Measurements N-

coordinate
(pixels)

M-
coordinate
(pixels)

Camera measure-
ments

187.19703±
0.06897

315.709029±
0.04174

LiDAR measurements 185.81204±
0.28944

331.36208±
3.00037

Table 5.16: Measurements from the pixel-based method in the physical setup. The follower
was standing still 0.75 meters directly behind the leader, and measurements were taken for
50 seconds. The table consists of the mean± standard deviation.

5.6.2 Main simulation results - Distance-based method

Table 5.17 shows the simulation results of the four different versions of the distance-based
method in the experiment where the robots drove in circles. Table 5.18 shows the simulation
results of the different versions of the method in the experiment where they drove in a line
with constant velocity. Table 5.19 shows the simulation results of the different versions of the
method in the experiment where they drove in a figure-8. Table 5.20 shows the simulation
results of the different versions of the method in the experiment where they drove in a line
with dynamic velocity.

The camera-only and filtered versions used the camera to gather data, and the LiDAR-only
version used the LiDAR to gather data. The complete version used a fusion of the sensors
with the weight on the camera to gather data. A node was used to gather the position data.
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Sim. distance-based method, robots driving in circle. All versions
Methods Camera-

only
Lidar-only Filtered Complete

Velocity (m/s) 0.18941±
0.00153

0.19012±
0.01915

0.18941±
0.0011

0.18951±
0.0017

Angular Velocity
(rad/s)

0.09999±
0.00063

0.0997±
0.01656

0.10003±
0.00059

0.10003±
0.00063

Velocity Error Mean
(m/s)

-0.01059±
0.00153

-0.00988±
0.01915

-0.01059±
0.0011

-0.01049±
0.0017

Angular Velocity Er-
ror Mean (rad/s)

-1e-05±
0.00063

-0.0003±
0.01656

3e-05±
0.00059

3e-05±
0.00063

Distance Error (m) 0.05373±
0.00244

0.05401±
0.00661

0.05374±
0.00249

0.05378±
0.00265

Heading Error (deg.) 3.71457±
0.08177

3.67657±
0.53755

3.71594±
0.08369

3.7159±
0.0831

RMS of position error
(m)

0.0757±
0.00034

0.07355±
0.00202

0.07569±
0.00034

0.07498±
0.00037

Table 5.17: Table of runs of the simulated distance-based method, with all versions of the
method and in the experiment where the robots were driving in circles. The table consists
of the mean± standard deviation.

Sim. distance-based method, robots driving in a line with constant velocity. All versions
Methods Camera-

only
Lidar-only Filtered Complete

Velocity (m/s) 0.20009±
0.00194

0.20026±
0.01422

0.20009±
0.00079

0.2001±
0.00312

Angular Velocity
(rad/s)

1e-05±
0.00013

0.00077±
0.00441

-5e-05±
3e-05

0.0±
0.00029

Velocity Error Mean
(m/s)

9e-05±
0.00194

0.00026±
0.01422

9e-05±
0.00079

0.0001±
0.00312

Angular Velocity Er-
ror Mean (rad/s)

1e-05±
0.00013

0.00077±
0.00441

-5e-05±
3e-05

0.0±
0.00029

Distance Error (m) 0.04472±
0.00249

0.04479±
0.00433

0.04471±
0.00245

0.04475±
0.00284

Heading Error (deg.) 0.00143±
0.02098

0.1819±
0.6809

-0.0085±
0.00687

0.00139±
0.07283

RMS of position error
(m)

0.01803±
0.00109

0.021±
0.00261

0.018±
0.00122

0.01833±
0.00135

Table 5.18: Table of runs of the simulated distance-based method, with all versions of the
method and in the experiment where the robots were driving in a line with constant velocity.
The table consists of the mean± standard deviation.
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Sim. distance-based method, robots driving in figure-8. All versions
Methods Camera-

only
Lidar-only Filtered Complete

Velocity Error Mean
(m/s)

-0.01045±
0.00369

-0.01116±
0.01653

-0.01043±
0.00343

-0.01064±
0.00413

Angular Velocity Er-
ror Mean (rad/s)

0.01007±
0.03488

0.01119±
0.05369

0.01114±
0.03774

0.01122±
0.03781

Distance Error (m) 0.05502±
0.00398

0.05487±
0.00673

0.05501±
0.00396

0.055±
0.00434

Heading Error (deg.) 0.0105±
2.78071

0.12842±
2.8346

0.02081±
2.7888

0.02728±
2.78873

RMS of position error
(m)

0.07882±
0.01417

0.08602±
0.01911

0.07892±
0.01416

0.08064±
0.01501

Table 5.19: Table of runs of the simulated distance-based method, with all versions of the
method and in the experiment where the robots were driving in a figure-8. The table consists
of the mean± standard deviation.

Sim. distance-based method, robots driving in a line with dynamic velocity. All versions
Methods Camera-

only
Lidar-only Filtered Complete

Velocity Error Mean
(m/s)

6e-05±
0.00811

8e-05±
0.01202

0.00014±
0.00915

3e-05±
0.01145

Angular Velocity Er-
ror Mean (rad/s)

0.00015±
0.00053

0.00153±
0.00375

4e-05±
0.0005

1e-05±
0.00049

Distance Error (m) 0.04885±
0.01497

0.04892±
0.01531

0.04896±
0.01552

0.04893±
0.01533

Heading Error (deg.) 0.01657±
0.05841

0.18476±
0.43062

0.00415±
0.05745

0.00186±
0.07422

Table 5.20: Table of runs of the simulated distance-based method, with all versions of the
method and in the experiment where the robots were driving in a line with dynamic velocity.
The table consists of the mean± standard deviation.
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Sim. pixel-based method, robots driving in circle. All versions
Methods Camera-

only
Lidar-only Filtered Complete

Velocity (m/s) 0.18739±
0.00055

0.18762±
0.0105

0.18739±
0.00035

0.18751±
0.00093

Angular Velocity
(rad/s)

0.1±
0.00116

0.09906±
0.03093

0.09999±
0.00118

0.09998±
0.00595

Velocity Error Mean
(m/s)

-0.01261±
0.00055

-0.01238±
0.0105

-0.01261±
0.00035

-0.01249±
0.00093

Angular Velocity Er-
ror Mean (rad/s)

-0.0±
0.00116

-0.00094±
0.03093

-1e-05±
0.00118

-2e-05±
0.00595

Image coordinate n
Error (pixels)

0.94025±
0.02093

0.96668±
0.34819

0.94013±
0.02119

0.94477±
0.06191

Image coordinate m
Error (pixels)

-
14.00601±
0.51863

-
13.63514±
3.63932

-
14.00611±
0.55083

-
13.97566±
1.31241

Distance Error (m) 0.01405±
0.00025

0.01844±
0.00669

0.01405±
0.00025

0.01325±
0.00053

Heading Error (deg.) 1.19238±
0.05058

1.26799±
0.33833

1.19253±
0.0535

1.23648±
0.10502

RMS of position error
(m)

0.08955±
0.00047

0.08876±
0.00045

0.08956±
0.00049

0.08874±
0.00047

Table 5.21: Table of runs of the simulated pixel-based method, with all versions of the
method and in the experiment where the robots were driving in circles. The table consists
of the mean± standard deviation.

5.6.3 Main simulation results - Pixel-based method

Table 5.21 shows the simulation results of the four different versions of the pixel-based
method in the experiment where the robots drove in circles. Table 5.22 shows the simulation
results of the different versions of the method in the experiment where the robots drove in a
line with constant velocity. Table 5.23 shows the simulation results of the different versions
of the method in the experiment where the robots drove in a figure-8. Table 5.24 shows the
simulation results of the different versions of the method in the experiment where the robots
drove in a line with dynamic velocity.

The camera-only and filtered versions used the camera to gather data and the LiDAR-only
version used the LiDAR to gather data. The complete version used a fusion of the sensors
with the weight on the camera to gather data. A node was used to gather the position data.

82



Sim. pixel-based method robots driving in a line with constant velocity. All versions
Methods Camera-

only
Lidar-only Filtered Complete

Velocity (m/s) 0.2±
0.0005

0.20004±
0.00362

0.2±
0.00028

0.2±
0.00061

Angular Velocity
(rad/s)

-5e-05±
6e-05

0.00019±
0.0012

-5e-05±
2e-05

-5e-05±
0.00049

Velocity Error Mean
(m/s)

0.0±
0.0005

4e-05±
0.00362

0.0±
0.00028

0.0±
0.00061

Angular Velocity Er-
ror Mean (rad/s)

-5e-05±
6e-05

0.00019±
0.0012

-5e-05±
2e-05

-5e-05±
0.00049

Image coordinate n
Error (pixels)

1.40473±
0.02388

1.41077±
0.14581

1.40476±
0.02422

1.40504±
0.04852

Image coordinate m
Error (pixels)

0.03961±
0.04561

-0.14143±
0.89725

0.04139±
0.03739

0.03849±
0.70822

Distance Error (m) 0.02048±
0.00037

0.02692±
0.0029

0.0205±
0.00035

0.02124±
0.00053

Heading Error (deg.) 0.08737±
0.00508

0.01315±
0.08345

0.08733±
0.00437

0.2871±
0.01345

RMS of position error
(m)

0.00624±
0.00047

0.00921±
0.00117

0.00624±
0.00029

0.00612±
0.00101

Table 5.22: Table of runs of the simulated pixel-based method, with all versions of the method
and in the experiment where the robots were driving in a line with constant velocity. The
table consists of the mean± standard deviation.
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Sim. pixel-based method, robots driving in figure-8. All versions
Methods Camera-

only
Lidar-only Filtered Complete

Velocity Error Mean
(m/s)

-0.01127±
0.00319

-0.01188±
0.00967

-0.01126±
0.0032

-0.01145±
0.00359

Angular Velocity Er-
ror Mean (rad/s)

0.01209±
0.03942

0.01129±
0.04694

0.01161±
0.03868

0.01091±
0.03739

Image coordinate n
Error (pixels)

0.99152±
0.11489

0.98524±
0.32615

0.99239±
0.12126

0.987±
0.15209

Image coordinate m
Error (pixels)

3.16369±
13.43758

3.21596±
13.66066

3.33295±
13.44139

3.43382±
13.42344

Distance Error (m) 0.01459±
0.00182

0.01879±
0.00628

0.01462±
0.00191

0.01443±
0.00258

Heading Error (deg.) -0.14909±
1.07047

-0.29909±
1.27032

-0.16442±
1.07174

0.0394±
0.92813

RMS of position error
(m)

0.08302±
0.01445

0.08885±
0.01607

0.08304±
0.0145

0.08486±
0.01478

Table 5.23: Table of runs of the simulated pixel-based method, with all versions of the method
and in the experiment where the robots were driving in a figure-8. The table consists of the
mean± standard deviation.

Sim. pixel-based method, robots driving in a line with dynamic velocity. All versions
Methods Camera-

only
Lidar-only Filtered Complete

Velocity Error Mean
(m/s)

8e-05±
0.01087

-4e-05±
0.01128

-3e-05±
0.01177

-6e-05±
0.01098

Angular Velocity Er-
ror Mean (rad/s)

-5e-05±
0.00057

0.00038±
0.00732

-6e-05±
0.00042

-4e-05±
0.00074

Image coordinate n
Error (pixels)

0.11632±
1.3737

0.11527±
1.37931

0.12369±
1.40248

0.12025±
1.39401

Image coordinate m
Error (pixels)

0.01848±
0.21642

-0.14039±
2.77977

0.02427±
0.20046

0.01497±
0.4572

Distance Error (m) -0.00234±
0.02506

0.00289±
0.02626

-0.00209±
0.02542

-0.00076±
0.02553

Heading Error (deg.) 0.0907±
0.02132

0.01306±
0.25855

0.08996±
0.01995

0.31321±
0.05044

Table 5.24: Table of runs of the simulated pixel-based method, with all versions of the method
and in the experiment where the robots were driving in a line with dynamic velocity. The
table consists of the mean± standard deviation.
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5.7 Physical setup results

In this section the results of the physical main experiments will be shown. The main ex-
periments used the parameters described in section 5.5 for the experiments and the physical
distance-based and pixel-based controllers.

5.7.1 Main physical setup results - Distance-based method

Table 5.25 shows the physical setup results of the four different versions of the distance-based
method in the experiment where the robots drove in circles. Table 5.26 shows the physical
setup results of the different versions of the method in the experiment where the robots drove
in a line with constant velocity. Table 5.27 shows the physical setup results of the different
versions of the method in the experiment where the robots drove in a figure-8. Table 5.28
shows the physical setup results of the different versions of the method in the experiment
where the robots drove in a line with dynamic velocity.

The camera-only and filtered versions used the camera to gather data and the LiDAR-only
version used the LiDAR to gather data. The complete version used a fusion of the sensors
with the weight on the camera to gather data. The motion capture system was used to
gather the position data.
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Phys. distance-based method, robots driving in circle. All versions
Methods Camera-

only
Lidar-only Filtered Complete

Velocity (m/s) 0.19508±
0.02084

0.19819±
0.04028

0.19513±
0.02711

0.19495±
0.01794

Angular Velocity
(rad/s)

0.09981±
0.00958

0.1114±
0.03895

0.10138±
0.016

0.0986±
0.00849

Velocity Error Mean
(m/s)

-0.00492±
0.02084

-0.00181±
0.04028

-0.00487±
0.02711

-0.00505±
0.01794

Angular Velocity Er-
ror Mean (rad/s)

-0.00019±
0.00958

0.0114±
0.03895

0.00138±
0.016

-0.0014±
0.00849

Distance Error (m) 0.05625±
0.00721

0.05804±
0.01449

0.0564±
0.01196

0.05624±
0.00848

Heading Error (deg.) 6.63174±
0.45289

6.96413±
1.24441

6.65484±
0.77865

6.56976±
0.45927

RMS of position error
(m)

0.05455±
0.00232

0.05719±
0.00713

0.05506±
0.00295

0.05511±
0.00255

Table 5.25: Table of runs of the physical distance-based method, with all versions of the
method and in the experiment where the robots were driving in circles. The table consists
of the mean± standard deviation.

Phys. distance-based method, robots driving in a line with constant velocity. All versions
Methods Camera-

only
Lidar-only Filtered Complete

Velocity (m/s) 0.20103±
0.00644

0.20248±
0.02825

0.201±
0.00241

0.19932±
0.00973

Angular Velocity
(rad/s)

0.00187±
0.00312

-0.00321±
0.00269

-0.00546±
0.00115

-0.00189±
0.00323

Velocity Error Mean
(m/s)

0.00103±
0.00644

0.00248±
0.02825

0.001±
0.00241

-0.00068±
0.00973

Angular Velocity Er-
ror Mean (rad/s)

0.00187±
0.00312

-0.00321±
0.00269

-0.00546±
0.00115

-0.00189±
0.00323

Distance Error (m) 0.07025±
0.00406

0.07143±
0.01222

0.07017±
0.00311

0.06974±
0.00628

Heading Error (deg.) 0.86766±
1.3316

-1.03541±
0.79261

-1.75441±
0.2636

-0.65913±
1.04441

RMS of position error
(m)

0.01342±
0.00344

0.02609±
0.00684

0.02724±
0.00121

0.02248±
0.00139

Table 5.26: Table of runs of the physical distance-based method, with all versions of the
method and in the experiment where the robots were driving in a line with constant velocity.
The table consists of the mean± standard deviation.
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Phys. distance-based method, robots driving in figure-8. All versions
Methods Camera-

only
Lidar-only Filtered Complete

Velocity Error Mean
(m/s)

-0.00694±
0.01296

-0.00732±
0.04166

-0.00737±
0.01371

-0.00755±
0.01226

Angular Velocity Er-
ror Mean (rad/s)

-0.01263±
0.03877

-0.01715±
0.05273

-0.01772±
0.05248

-0.01314±
0.04196

Distance Error (m) 0.06385±
0.00577

0.06437±
0.01686

0.06369±
0.00758

0.06369±
0.00737

Heading Error (deg.) 2.65718±
4.77272

2.49685±
4.8702

2.525±
4.71078

2.68571±
4.77692

RMS of position error
(m)

0.0562±
0.00933

0.07303±
0.02096

0.05653±
0.01

0.06105±
0.01208

Table 5.27: Table of runs of the physical distance-based method, with all versions of the
method and in the experiment where the robots were driving in a figure-8. The table consists
of the mean± standard deviation.

Phys. distance-based method, robots driving in a line with dynamic velocity. All versions
Methods Camera-

only
Lidar-only Filtered Complete

Velocity Error Mean
(m/s)

-0.00057±
0.01194

0.0006±
0.02961

6e-05±
0.01568

0.0004±
0.02076

Angular Velocity Er-
ror Mean (rad/s)

-0.0022±
0.00214

-0.00352±
0.00301

-0.00329±
0.00194

-0.00246±
0.00175

Distance Error (m) 0.05469±
0.01855

0.05565±
0.02139

0.05482±
0.01936

0.05504±
0.02024

Heading Error (deg.) -0.70035±
0.67495

-1.07073±
0.84001

-1.04732±
0.5843

-0.79956±
0.54723

Table 5.28: Table of runs of the physical distance-based method, with all versions of the
method and in the experiment where the robots were driving in a line with dynamic velocity.
The table consists of the mean± standard deviation.
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Phys. pixel-based method, robots driving in circle. Runs with different versions of method
Methods Camera-

only
Lidar-only Complete

Velocity (m/s) 0.18633±
0.032

0.18621±
0.01734

0.188±
0.0101

Angular Velocity
(rad/s)

0.09801±
0.01545

0.0997±
0.02786

0.09876±
0.01654

Velocity Error Mean
(m/s)

-0.01367±
0.032

-0.01379±
0.01734

-0.012±
0.0101

Angular Velocity Er-
ror Mean (rad/s)

-0.00199±
0.01545

-0.0003±
0.02786

-0.00124±
0.01654

Image coordinate n
Error (pixels)

6.67304±
2.11631

6.30239±
1.05067

6.37026±
0.82686

Image coordinate m
Error (pixels)

-
31.24326±
3.95961

-
31.25168±
6.99737

-
31.21432±
5.71072

Distance Error (m) 0.11118±
0.03132

0.11375±
0.02179

0.09565±
0.0109

Heading Error (deg.) 2.29336±
0.30957

2.7565±
0.61643

3.10458±
0.4652

RMS of position error
(m)

0.11442±
0.00734

0.1205±
0.00318

0.09947±
0.0028

Table 5.29: Table of runs of the physical pixel-based method, with all versions of the method
except the filtered version since it could not be kept stable, in the experiment where the
robots were driving in circles. The table consists of the mean± standard deviation.

5.7.2 Main physical setup results - Pixel-based method

Table 5.29 shows the physical setup results of three different versions of the pixel-based
method in the experiment where the robots drove in circles. The filtered version could not
be kept stable for 300 seconds, so it is not in the results. Table 5.30 shows the physical
setup results of the pixel-based method in the experiment where the robots drove in a line
with constant velocity. Table 5.31 shows the physical setup results of the method in the
experiment where the robots drove in a figure-8. Table 5.32 shows the physical setup results
of the method in the experiment where the robots drove in a line with dynamic velocity.

The camera-only and filtered versions used the camera to gather data and the LiDAR-only
version used the LiDAR to gather data. The complete version used a fusion of the sensors
with the weight on the LiDAR to gather data but used the camera to gather the distance
and heading error data. The motion capture system was used to gather the position data.
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Phys. pixel-based method, robots driving in a line with constant velocity. All versions
Methods Camera-

only
Lidar-only Filtered Complete

Velocity (m/s) 0.20423±
0.02804

0.19981±
0.00586

0.20089±
0.03316

0.2011±
0.01307

Angular Velocity
(rad/s)

-0.00544±
0.00224

-0.00144±
0.00291

-0.00052±
0.0037

-0.00543±
0.00212

Velocity Error Mean
(m/s)

0.00423±
0.02804

-0.00019±
0.00586

0.00089±
0.03316

0.0011±
0.01307

Angular Velocity Er-
ror Mean (rad/s)

-0.00544±
0.00224

-0.00144±
0.00291

-0.00052±
0.0037

-0.00543±
0.00212

Image coordinate n
Error (pixels)

7.32053±
2.07063

6.52588±
0.32598

8.08468±
3.07582

6.65101±
0.88808

Image coordinate m
Error (pixels)

9.64806±
3.4785

3.27375±
4.61559

1.68464±
6.21136

9.60065±
4.70317

Distance Error (m) 0.08032±
0.03307

0.11684±
0.00665

0.13586±
0.03918

0.07608±
0.01482

Heading Error (deg.) -0.75768±
0.28064

-0.28899±
0.40744

-0.13181±
0.4944

-0.10727±
0.42827

RMS of position error
(m)

0.04716±
0.01921

0.02348±
0.00075

0.02312±
0.00822

0.03764±
0.00393

Table 5.30: Table of runs of the physical pixel-based method, with all versions of the method
and in the experiment where the robots were driving in a line with constant velocity. The
table consists of the mean± standard deviation.
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Phys. pixel-based method, robots driving in figure-8. All versions
Methods Camera-

only
Lidar-only Filtered Complete

Velocity Error Mean
(m/s)

-0.01251±
0.03331

-0.01376±
0.0155

-0.01305±
0.02964

-0.01145±
0.0115

Angular Velocity Er-
ror Mean (rad/s)

-0.01168±
0.03906

-0.01473±
0.05176

-0.01323±
0.05197

-0.01403±
0.04442

Image coordinate n
Error (pixels)

6.80088±
2.21669

6.28766±
0.92685

6.93126±
2.46197

6.42332±
0.8825

Image coordinate m
Error (pixels)

-6.73295±
30.96185

-5.80126±
30.94373

-6.29257±
30.90391

-6.16991±
30.94994

Distance Error (m) 0.11005±
0.03936

0.11329±
0.01907

0.11257±
0.0418

0.08301±
0.01618

Heading Error (deg.) 0.49288±
2.28187

0.51197±
2.72897

0.46134±
2.28749

1.27611±
2.34317

RMS of position error
(m)

0.09825±
0.02548

0.10943±
0.0171

0.10055±
0.02666

0.08647±
0.01531

Table 5.31: Table of runs of the physical pixel-based method, with all versions of the method
and in the experiment where the robots were driving in a figure-8. The table consists of the
mean± standard deviation.

Phys. pixel-based method, robots driving in line with dynamic velocity. All versions
Methods Camera-

only
Lidar-only Filtered Complete

Velocity Error Mean
(m/s)

-5e-05±
0.03487

0.00063±
0.01569

0.00095±
0.03504

0.00111±
0.01787

Angular Velocity Er-
ror Mean (rad/s)

-0.002±
0.00145

-0.00211±
0.00276

-0.00202±
0.00154

-0.00146±
0.00183

Image coordinate n
Error (pixels)

5.24912±
2.78029

5.0401±
2.033

5.456±
3.1478

5.0728±
2.13496

Image coordinate m
Error (pixels)

4.01349±
2.19263

4.14988±
4.13699

4.03559±
2.59323

3.18234±
3.84937

Distance Error (m) 0.04791±
0.05328

0.08894±
0.03942

0.04657±
0.05899

0.04566±
0.04188

Heading Error (deg.) -0.3111±
0.17433

-0.36633±
0.36519

-0.31496±
0.20543

0.62514±
0.21384

Table 5.32: Table of runs of the physical pixel-based method, with all versions of the method
and in the experiment where the robots were driving in a line with dynamic velocity. The
table consists of the mean± standard deviation.
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Figure 5.3: A plot of the position of the leader and follower in the simulated distance-
based method experiment where the robots drove in circles with different control gains. The
y-position in meters is on the y-axis, and the x-position in meters is on the x-axis.

5.8 Plots

In addition to the tables, some plots will be presented to better show different aspects of
the controllers. Figures 5.3-5.5 show the positions of the Turtlebots in different experiments
with the simulated distance-based method. Figures 5.6, 5.7, and 5.9 show plots of the RMS
of the position error in different experiments. Figure 5.6 is from the simulation, and 5.7 and
5.9 are from the physical experiments. Plot 5.8 shows the velocity and angular velocity in
the experiment where the robots drove in a line with constant velocity with the pixel-based
method in the physical setup.
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Figure 5.4: A zoomed-in plot of the position of the follower and leader in the simulated
distance-based method experiment where the robots drove in circles, with all versions of the
method. y position in meters is given on the y-axis, and x position in meters is given on the
x-axis.
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Figure 5.5: A zoomed-in plot of the position of the follower and leader in the simulated
distance-based method experiment where the robots drove in a line with constant velocity,
with all versions of the method. y position in meters is given on the y-axis, and x position
in meters is given on the x-axis.
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Figure 5.6: A plot of the RMS of the position error in the simulated distance-based method
experiment where the robots drove in a figure-8, with all the versions of the method. The
RMS of the position error in meters is shown on the y-axis, and the time in seconds is shown
on the x-axis.
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Figure 5.7: A plot of the RMS of the position error in the physical distance-based method
experiment where the robots drove in a line with constant velocity, with all the versions of
the method. The RMS of the position error in meters is shown on the y-axis, and the time
in seconds is shown on the x-axis.
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Figure 5.8: A plot of the velocity and angular velocity of the different versions in the physical
pixel-based method experiment where the robots drove in a line with constant velocity. The
plot to the left shows the velocity. It has velocity in m/s on the y-axis and time in seconds
on the x-axis. The plot to the right shows the angular velocity. It has rad/s on the y-axis
and seconds on the x-axis.
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Figure 5.9: A plot of the RMS of the position error in the physical pixel-based method
experiment where the robots drove in a figure-8, with all the versions of the method. The
RMS of the position error in meters is shown on the y-axis, and the time in seconds is shown
on the x-axis.
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Chapter 6

Discussion

In this chapter, the results of the experiments will be discussed. The controllers and the
different versions of the controllers will be compared. The results of the controllers will also
be compared to the results in (Verginis et al., 2015) and (Miao et al., 2021).

6.1 Simulations

In this section, the results of the simulated experiments will be discussed, as well as the
results of the sensor accuracy check in the simulations and simulated experiments regarding
the tuning of parameters. When discussing the experiments, the performance metrics from
section 5.4.1 are used. When comparing the methods and controllers, the RMS of the position
error will be considered separately from the other errors. When speaking of noise, it means
the standard deviation of these errors.

6.1.1 Characteristics of the simulated sensors

In table 5.13, the mean and standard deviation of the distance and bearing measurements of
the camera and LiDAR in the simulations were checked. This was done with the camera on
a marker with a 3 cm margin, a marker with a 1 cm margin, and the LiDAR. This was done
to check the accuracy and noise of the sensors in the simulations. Accuracy was measured by
checking how well the sensor measured the desired distance, bearing, and pixel coordinates.
As previously mentioned, the packages in ROS set a default noise model for the simulated
LiDAR to model the physical LiDAR. In addition, the marker detection also had noise.

In the test in table 5.13, the camera measurements with the 1 cm margin had the least
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noise when it came to the distance measurements, but the mean was not close to what it
should be. It was almost 10 centimeters off from the desired mean of 0.75 meters. This
was because the detection package had issues detecting corners when using a small margin,
making the detection unreliable. The LiDAR and camera measurements with a 3 cm margin
were closer to the desired mean. When measuring the bearing, the camera did well with
both margin sizes. The LiDAR measured a mean bearing angle of around -0.5 degrees, while
the target was 0 degrees. This was most likely because of the LiDAR resolution since it had
an angular resolution of 1 degree. A LiDAR with better angular resolution would likely have
given more accurate angle measurements. In addition, while the camera only measured the
marker, the LiDAR measured everything within a cone of detection. This means that the
LiDAR measured the entire back of the leader.

The results of the sensor test for the pixel measurements are shown in table 5.14. The
m-coordinate measurements from the camera with both margin sized were accurate, with an
error of around one pixel. The LiDAR missed the target of 320 pixels by almost 6 pixels.
This was because the bearing measurements of the LiDAR were used to estimate the m-
coordinates with the LiDAR. If the bearing measurements are inaccurate, the m-coordinate
measurements will be inaccurate too. In both table 5.13 and table 5.14, the LiDAR had the
least noise when it came to measuring the bearing and m-coordinates but the most when
measuring distance and n-pixel coordinates. This could be a result of the LiDAR having
a high resolution and being very accurate in the distance measurements but having a low
resolution in the bearing measurements, giving it less noise in the bearing measurements
while the robots were stationary.

Since the measurements were taken while the robots were stationary, they give an idea of
the measurement noise and accuracy of the sensors. But the sensors might perform differently
when the robots move. For example, using the 1 cm margin caused the marker detection to
be less reliable and fail during the experiments. Therefore, it was important to use a big
enough margin so that the ArUco detection could detect the corners of the marker properly.

6.1.2 Effects of the maximum steady-state errors, weights, and con-
trol gains on the simulated system

Table 5.7 shows the results of the experiment where the simulated distance-based LiDAR
version was using different maximum steady-state errors ρd,∞ in the circle experiment. The
errors in the velocity and distance became smaller if ρd,∞ was smaller. This is because the
ρd,∞ affects the linear control and is the maximum steady-state error for the distance error.
Pushing ρd,∞ down increased the linear control performance. The performance in the angular
controller, which affected the angular velocity and heading errors, was about the same in
both runs. This was because ρβ,∞ was kept constant. When ρd,∞ was decreased, the system
noise increased. This means that performance is gained at the cost of stability. Noise can be
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reduced by adjusting the control gain, but this might also change the performance. When
tuning the boundaries, the gain must be tuned along with them. Lowering ρd,∞ lowers the
position error, as the distance error is decreased.

Table 5.8 shows the results of using different control gains in the distance-based method for
the circle experiment. Having larger gains gave more error in the velocities but less error in
the distance and heading. This can be seen when comparing the run with (kd, kβ) = (0.5, 1)
as gains to the others. Higher gains gave more noise due to more oscillations in the system.
The results of the runs with (0.3,0.5) and (0.3,0.7) as gains had similar distance error and
distance noise. This was similar because they both used kd = 0.3. The run with (0.3,0.7)
had a lower heading error due to having a higher kβ. Lower gains gave less position error.
This was likely connected to the heading error, as the run with (0.5,1) had less distance
error, but the position error was higher.

The position of the robots in the runs with different control gains is shown in figure 5.3.
The lower gain runs followed the circle made by the leader more closely, while the runs with
higher gains were closer to the middle of the circle. It was as if they were taking more of a
shortcut, and this led to a higher position error. The shortcutting was likely connected to
the heading error.

Tables 5.9 and 5.10 show the results of the experiments where the robots drove in a circle
with different weights on the complete version of the distance-based and pixel-based methods.
The runs with the different weights in the distance-based method had very similar errors
overall, and the differences in errors were almost negligible. The same also applies to the
errors between the runs in the pixel-based method. Looking at the noise shows that putting
weight on the camera gave considerably less noise than the alternatives. This applies for both
control methods. The low noise was because the camera and marker detection performed
very well in the simulations, with the camera having little noise. Because of this, the weight
was put on the camera for both methods in the simulations.

6.1.3 Distance-based

In this section, the results of the distance-based method in the simulations will be discussed.
The main experiments were the experiment where robots drove in a circle, in a line with
constant velocity, in a figure-8, and a line with dynamic velocity. The experiments were done
for all the versions of the method. Table 5.17 shows the results for the circle experiment,
5.18 shows the results for the experiment where the robots drove in a line with constant
velocity, 5.19 shows the results for the experiment where they drove in a figure-8, and 5.20
shows the results for the experiment where they drove in a line with dynamic velocity. The
respective experiments will be called the circle, constant, figure-8, and dynamic experiments
from now on.
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In the circle experiment, the filtered and camera versions were the best as they had the
least noise and errors. They were almost identical in terms of error, but the camera version
was a little better. The LiDAR version was the worst, as it had the most noise and errors.
The LiDAR version had the least heading error and the least RMS of position error. The
complete version also had a relatively low position error. This could be connected to these
versions using a LiDAR.

In section 6.1.2, the connection between the heading error and shortcutting was mentioned.
In the experiment in table 5.17, even with the heading error of the LiDAR version being
smaller, the position error was smaller. This could mean that using the LiDAR sensor led to
less shortcutting. In the circle experiment, shortcutting and distance errors were the main
contributors to the position error. Less shortcutting would explain why the LiDAR and
complete versions had more distance errors yet lower position errors in this experiment. In
figure 5.4, it can be seen that the LiDAR and complete versions shortcut a little less than
the camera-based versions. Shortcutting is a consequence of the follower following the leader
directly instead of following the leader’s trajectory. The follower cuts corners to minimize
the distance and heading errors, leading to it not being on the leader’s path.

In the constant experiment, the filtered version was the best as it had the least noise and
error. The camera and complete versions were close to the filtered version in terms of error.
The LiDAR version was the worst, as it had the most error and noise. The LiDAR version
had a higher position error than the other versions. This was because the LiDAR was worse
at detecting angles, making the LiDAR version struggle with driving directly behind the
leader when the leader was driving in a line. Figure 5.5 shows this.

In the figure-8 experiment, the complete and camera versions were the best since they had
the least error and noise respectively. In the circle experiment, the filtered version had a little
less noise in the angular velocity, but a little more in the heading error. When comparing the
noise of the camera and filtered versions in the figure-8 experiment, the filtered version had
a little more noise in the heading and angular velocity than the camera version and a little
less in the linear velocity and distance. This could be because the angular velocity changed
in this experiment, leading to the filtered version having more noise in these errors. This
was because of the delay introduced by the moving average filter, which made the versions
that used the filter reacts slower to changes in velocity since previous velocities were used to
calculate the new velocity.

The LiDAR version had the largest position error. This was because the LiDAR version
had issues adjusting after the angular velocity changed, as seen in figure 5.6. The position
error increased after the angular velocity switched. This was related to the LiDAR sensor
since the complete version shows similar behavior to a lesser degree. The higher position
error could be because the LiDAR was bad at measuring angles. It could also be because the
LiDAR sensor used the entire back of the leader to measure the bearing angle and distance,
not only the marker. When the angular velocity changed, the LiDAR measured the back
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and might also have detected a little of the sides of the leader. This could lead to the LiDAR
version shortcutting more after the switch in angular velocity.

In the dynamic experiment, the complete and camera versions were the best, as they had
the least error and noise respectively. In the constant experiment, the filtered version had
less noise in the distance and linear velocity. The moving average filter made it so that the
filtered and complete versions of the dynamic experiment had a little more noise in the linear
controller than if the velocity was constant. This was because when the leader’s velocity
changed, the follower tried to adjust to the new velocity, which caused oscillations. The
oscillations remained in the system longer with the moving average filter. Since the velocity
changed more frequently in the dynamic experiment than in the figure-8 experiment, the
effect of the moving average filter’s delay on the system might be more apparent in the
dynamic experiment.

It was mentioned earlier how in the figure-8 and dynamic experiments, the mean is a
bias or tracking error while the standard deviation is a variation around this because the
velocities change. The standard deviation/noise in these experiments is a combination of
the noise and how fast the method converges to the new velocity. Therefore, the filtered and
complete versions might have higher standard deviations in the linear or angular controllers
in these experiments because of the delay introduced by the moving average filter. This
effect seemed to be almost negligible in the figure-8 experiment but more apparent in the
dynamic experiment since the velocities changed more in the dynamic experiment.

In the simulations of the distance-based method, the filtered and camera-only versions were
the best, as they had the overall lowest noise and low errors. The camera version was better
than the filtered version if the velocities in the experiment were dynamic, as the filtered
version performed best when the velocities were constant due to the delay introduced by
the moving average filter. The LiDAR-only version was consistently the worst version, with
higher errors and noise. The complete version had the lowest errors in some experiments,
but since it partially used the LiDAR, it had more noise. Using the LiDAR sensor led to
less shortcutting in the circle experiment, but it also led to the LiDAR version not following
directly behind the leader in the constant experiment. Using the LiDAR also led to a higher
position error after switching the angular velocity in the figure-8 experiment.

6.1.4 Pixel-based

In this section, the results of the pixel-based method in the simulations will be discussed.
Table 5.21 shows the results for the circle experiment, table 5.22 shows the results for the
constant experiment, table 5.23 shows the results for the figure-8 experiment, and table 5.24
shows the results for the dynamic experiment.

In the circle experiment, the filtered and camera versions were the better versions, as they
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had the least error and noise, with very little difference between the errors. The complete
version was close behind in terms of errors. The LiDAR version was the worst version,
with the highest errors and noise. The LiDAR version had the least error in the m-pixel
coordinates, and in the distance-based circle experiment, the LiDAR version had the least
heading error. Both these parameters represent the error used in the angular control. It
could be that because the LiDAR detected the leader within a cone, it detected points on the
leader’s sides when the robots drove in a circle. This could cause the LiDAR to detect smaller
bearings/m-coordinates than the camera marker detection. It could also be that because the
LiDAR was detecting the entire back of the leader, this led to it measuring lower bearing
angles/m-coordinates in the circle experiment. The position error of the LiDAR version was
the lowest because this version did less shortcutting than the others.

In the constant experiment, the camera and filtered versions were the best, as they had the
least noise and error. They were almost identical in terms of error, and the filtered version
had a little less noise than the camera-only version. The complete version had a similar error
performance to the filtered and camera versions but had a little more error. The LiDAR
version was the worst, as it had the most noise and error. The LiDAR version’s position error
in this experiment was larger than the in the other versions. This was because the LiDAR
version had more distance errors than the other versions and also because the follower was
not directly behind the leader. This was similar to how the LiDAR version did not follow
directly behind the leader in the constant experiment for the distance-based method.

In the figure-8 experiment, the camera, filtered, and complete versions were the best and
were close in terms of both overall noise and error. The complete version had the overall
lowest errors, closely followed by the camera and filtered versions. The camera and filtered
versions had similar noise and had the lowest noise in the linear control. Despite using the
moving average filter, the complete version had the least noise in the angular control. The
LiDAR version had the same issue with the figure-8 experiment as shown in figure 5.6 when
it came to the position error. While the complete version also had this issue, it did not
have it to the same degree. It also made up for it by having a lower distance error than the
LiDAR version in this experiment, which kept the position error low.

In the dynamic experiment, the complete version was the best in terms of error, while
the filtered and camera versions were the best in terms of overall noise. The filtered version
had more noise in the linear control (linear velocity, n-coordinate, distance) than the camera
version. This was because the linear velocity in this experiment was dynamic, and the moving
average filter caused the filtered version to display the same behavior as previously discussed.
It is again apparent that the moving average filter affected the dynamic experiment more
than the figure-8 experiment.

Overall, the filtered and camera methods were the better versions when looking at the
overall noise and errors. The complete version gave low errors in some experiments, but due
to it using the LiDAR, it had more noise than the filtered and camera versions. The filtered
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version struggled a little when it came to changing velocities, making the camera version the
better version when the velocities were changing. The complete version struggled less in the
experiments with changing velocities in the pixel-based method than in the distance-based
method. Similar to the distance-based method, the versions that used the camera sensor
were better than the versions using the LiDAR. Other characteristics were also similar, like
the LiDAR and complete versions shortcutting less and having more position errors in the
latter half of the figure-8 experiment, and the LiDAR version having more position errors in
the constant experiment.

6.1.5 Comparing methods

When comparing the distance-based and pixel-based methods, the comparisons are going
to rely on the velocity errors, distance/heading errors, position errors, and noise. Both
methods gave good results. Overall, the pixel method had the better results here. In terms
of controller characteristics, the pixel-based method did more shortcutting, which could make
the distance-based controller a better choice.

The pixel-based method was the best. It had the least error and noise overall in all the
experiments, except for the dynamic experiment, where it had more noise. The pixel-based
method had less distance error than the distance-based method in every experiment. This
could be an effect of the FoV constraints introduced in section 5.5.1 and a low maximum
steady-state error for the linear control, which pushed the linear control boundaries low. It
could be that if the dcon and dcol of the distance-based method were adjusted, the controller
would have less distance error. The distance-based method had the least overall heading
error in the constant and dynamic experiments. This could mean that the distance-based
controller was better than the pixel-based controller at keeping the follower directly behind
the leader. The pixel-based method shortcutting more than the distance-based method could
be connected to this.

In the constant experiment, the m-coordinate error of the pixel-based LiDAR version
and the heading error of the distance-based LiDAR version were relatively low despite the
follower not following directly behind the leader. This might be because the LiDAR was bad
at measuring angles, so not being directly behind the leader did not contribute as much to
these errors.

The pixel-based method shortcuts more than the distance-based method. Comparing
tables 5.17 and 5.21 shows that the pixel-based method had a larger position error despite
having a much smaller distance error. Comparing the position error in tables 5.18 and 5.22,
the position error for the pixel-based method was smaller, which fits with the method having
less distance error. This is because the robots were driving in a line in this experiment, so
no shortcutting could happen. This means that the higher position error for the pixel-based
method in the circle experiment came from shortcutting. The pixel-based method also had
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a higher position error in the figure-8 experiment due to shortcutting.

The pixel-based method being based on keeping a single pixel in the desired pixel position
could be the reason why this method shortcuts more. Assume a square marker standing
parallel with the camera, with the marker’s z-axis pointing up. If the marker detection should
detect a point on the marker, and the marker is rotated along the z-axis a little without any
translation, the marker detection would have a hard time detecting the rotation. Rotating
the marker would not give a big difference from holding the marker straight when it comes to
the pixel coordinates because the pixel would still be in approximately the same coordinates
as before. This could lead to the pixel-based method being worse at keeping the follower in
the right position behind the leader, which could be the reason for the method shortcutting
more. A way to improve upon this could be to add more than one feature point pixel and
have some space between the pixels, as it would let the controller detect rotation better.

The heading error of the pixel-based method was low compared to the heading error of
the distance-based method in the circle and figure-8 experiments. When the robots are
driving in a path with a curved trajectory, having a larger heading error might be good.
When the robots drive in a curve, and the heading error is 0 while the follower is some
distance behind the leader, it means the follower is following the leader, not the leader’s
curved trajectory. This leads to the follower shortcutting, as previously discussed. This is
why the pixel-based method had less heading and distance errors but more position errors
in the circle and figure-8 experiments. Larger heading errors being good was also apparent
in some of the previous experiments with curved trajectories, where a lower heading error
led to larger position errors.

6.2 Physical experiments

In this section, the results of the physical experiments will be discussed, as well as the results
of the sensor accuracy check for the physical sensors and experiments regarding the tuning
of weights. The controllers and control versions will be compared in the same way as in
section 6.1.

6.2.1 External factors that affected the physical results

In section 5.2.4, some external factors and issues related to going from the simulations to the
physical system were mentioned. These included the WI-FI, lighting in the lab, and debris
getting stuck to the robot wheels. These factors did not affect the experiments. In this
section, the factors that affected the physical experiments and results will be mentioned.
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The most apparent external factor when doing the physical experiments was the floor of
the lab. In some parts of the room, the floor had long bumps. These bumps were mainly on
one side of the room and covered a quarter of the room. The bumps were big enough to affect
the experiments and mainly affected the pixel-based method. In addition to the bumps, the
tiling in the room was not completely smooth from one tile to another. Driving over the tile
changes made the robots and camera shake, which could also affect the pixel-based method.
Another external factor was the USB camera. Since this camera could tilt, was bigger than
the Raspberry Pi camera module, and was mounted with tape, this could also affect the
physical results.

Because the bumps on the floor could make the pixel-based method have issues and become
unstable, the experiments were done so that the bumps were avoided. An exception to this
was the figure-8 experiment. This experiment took up so much space that driving close to
or over the bumps was unavoidable without hitting the walls or going outside the motion
capture’s FoV. After adjustments to how the figure-8 experiment should be done, the robots
drove over the bumps in the last part of this experiment, but not enough to make the
pixel-based method unstable. The results of this experiment might still be affected by the
bumps.

6.2.2 Characteristics of the physical sensors

The camera and LiDAR sensor’s measurement accuracy and noise were checked for the
physical system in the same way as in the simulated system.

Table 5.15 shows the results of the camera and LiDAR sensors measuring the distance
and bearing angle. Compared to the simulated measurements, the physical camera and
marker detection was a little more accurate than in the simulations. The physical camera
measured closer to 0.75 meters and had less noise in the distance measurement. In the
bearing measurement, it was closer to the desired value of 0 with less noise. For the physical
LiDAR sensor, the distance measurement was off by a little more than 2 cm, with almost
double the noise of the simulated LiDAR. It was mentioned how the physical LiDAR sensor
most likely had a bias in section 5.2.6, and this was why it measured a lower distance.
The bearing measurement of the physical LiDAR was also worse by almost 1 degree more
compared to the simulations, with more noise. This means that the physical LiDAR was
considerably worse than the simulated LiDAR, which was supposed to model the physical
LiDAR of a Turtlebot.

Table 5.16 shows the results of the camera and LiDAR measuring the pixel coordinates.
In the physical system, the desired pixel coordinates were (187.2, 315.26). The camera mea-
surements were very close to the desired mean values, though the measurements were noisier
than in the simulations. For the physical LiDAR, the n-coordinate measurement was off by
a little more than one pixel, and the m-coordinate measurement was off by a little more than
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15 pixels. Since the LiDAR had a bias in the distance and was bad at finding the bearing
measurements, this might have affected the measurements in pixel coordinates. This is be-
cause the distance and bearing measurements from the LiDAR were used to estimate the
pixel coordinates. The LiDAR pixel measurements here also had more noise than in the
simulations.

The LiDAR’s distance measurement was off by a considerable amount. The LiDAR’s n-
coordinate measurement was off by only one pixel, despite using the distance measurement
to estimate the n-coordinate. This was due to the relation between the distance and n-
coordinate shown in equation (26), and that h was small. This means that a small change
in the pixel coordinate would be a large change in the distance.

6.2.3 Effects of weights on the physical system

The weights of the complete version were tested in the physical setup, as was done in the
simulations. Table 5.11 shows the weight test experiment for the distance-based method,
and table 5.12 shows the weight test experiment for the pixel-based method.

In the distance-based method, having more weight on the camera sensor gave the least
noise in most cases, while having more weight on the LiDAR never gave less noise. The overall
error was mixed, as having more weight on the LiDAR gave less error in some performance
metrics and having more weight on the camera gave less error in others. Because of the lower
noise, more weight was put on the camera sensor.

In the pixel-based version, having more weight on the LiDAR reduced the noise consid-
erably overall. Having the most weight on the LiDAR gave a little more error than the
alternatives, but the lower noise was worth it to keep the system stable. Having the most
weight on the camera barely kept the system stable, as mentioned in section 5.5.6. Having
equal weights on the sensors also gave minor stability issues. It was decided that having
more stability and less noise was more important than having lower errors with this version
of the pixel-based method. Because of this, the weight was put on the LiDAR sensor in the
experiments.

6.2.4 Distance-based

In this section, the results of the distance-based method in the physical setup will be dis-
cussed. Table 5.25 shows the results for the circle experiment, 5.26 shows the results of the
constant experiment, 5.27 shows the results of the figure-8 experiment, and 5.28 shows the
results of the dynamic experiment.
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In the circle experiment, the camera version was the best as it had the least overall
noise and errors. The complete version was close behind in both noise and error, while the
filtered version was close behind in errors. The LiDAR sensor had a bias in the distance
measurement; this could affect the results. It could affect the position error results, as the
follower in the LiDAR version would be further back than in the other versions. This is
because the LiDAR measures 0.75 meters when the follower is around 0.77 meters behind
the leader. This is assuming that the bias shown in table 5.15 was consistent during the
experiments. The LiDAR version had the most error in position. In the circle experiment
for this method in the simulations, it had the least position error due to the LiDAR making
the follower shortcut less. It could be that the LiDAR sensor made the follower shortcut less
like in the simulations, but it is hard to tell, as using the LiDAR led to more position errors
due to the bias.

The leader drove with more variety between the runs in the physical experiments than in
the simulations. This could be because of factors such as the floor and tiles of the lab. The
runs had some variety in the simulations too, but because the floor in the simulations was
ideal, the leader would drive more similarly through the different runs of the experiments.

In the constant experiment, the data were only taken over 8 seconds. Because of this, the
data might not be as reliable as in the other experiments where the robots drove for longer.
As mentioned, there was more variety between the runs of the physical experiment. When
only giving a linear velocity to the leader its trajectory in the run started curving a little
after a while. The variety in curving, in addition to the short sampling time of the data,
could lead to unreliable data. The curving also happened in the simulations, but it would be
more similar between the runs, so its effect on the simulated experiment would be negligible.

The complete and filtered versions were the best in the constant experiment, as they had
the lowest overall error and noise respectively. The filtered and LiDAR versions had high
position errors. For the LiDAR version, this might be the same case as in the simulations,
where the LiDAR struggled with keeping the follower directly behind the leader, which gave
a higher position error. In addition, the LiDAR sensor’s bias could lead to a higher position
error, as it caused the follower to be further behind the leader than it should. For the filtered
version, the higher position error was most likely a case of unfortunate sampling. Plot 5.7
shows that the filtered version’s position error was relatively low early in the run. The data
sampling was done between 35 seconds and 43 seconds. In this interval, the position error of
the filtered version was rising. Unfortunate sampling might also be why the complete version
had a high position error. In the plot, it started by having the least position error, but the
error increased in the sampling interval. The rise in the position error of the complete and
filtered versions could be due to the leader’s trajectory in the runs starting to curve more
during the sampling interval.

In the figure-8 experiment, there was no clear better version in terms of overall error, but
the camera version was the best as it had the least noise. The position error in the LiDAR
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version was larger than in the rest of the versions. This was for the same reason as discussed
in the simulations and shown in plot 5.6. The LiDAR struggled to keep its position after
the angular velocity in the experiment had changed. Some of this position error could also
be because of the LiDAR sensor’s bias.

In the dynamic experiment, the camera version was the best as it had the least error with
low noise. The complete version was close behind in overall noise and error. The camera
version had the least noise in the linear control. Because of the moving average filter, both
the complete and filtered versions had considerable noise in the linear control. They did,
however, have low noise in the angular control, with the complete version having the least
of all versions.

Overall, either the camera or complete version would be the best in the physical distance-
based method. These were the versions with the least noise and errors. The filtered version
had less noise in the constant experiment, but this experiment was said to be less reliable
than the others. The LiDAR version was the worst of the versions, with high noise and
errors. The LiDAR version also had a bias that affected the results. The physical LiDAR
version had the same issues as discussed in the simulations, like the higher position error in
the latter half of the figure-8 experiment and not following directly behind the leader in the
constant experiment.

6.2.5 Pixel-based

In this section, the results of the pixel-based method in the physical setup will be discussed.
Table 5.29 shows the results for the circle experiment, 5.30 shows the results for the constant
experiment, 5.31 shows the results for the figure-8 experiment, and 5.32 shows the results
for the dynamic experiment.

In section 6.2.1, it was mentioned that bumps and tile changes in the floor could affect the
pixel-based method. When the follower drove over bumps, the camera was lifted a little. In
section 5.2.3, it was mentioned how small changes in the tilt of the camera could affect the n-
coordinate measurements in the pixel-based method. When the camera got lifted by driving
over the bumps, it caused the pixel-based method to detect higher n-coordinates than it
should. Due to this, the follower would slow down, almost stopping when the follower drove
over bumps. The leader would keep driving, causing the distance between the robots to grow
bigger. In the worst case, this would cause the system to become unstable due to the spike
in n-coordinate errors if the follower could not catch up to the leader.

The robots driving over tile changes could similarly affect the follower but to a lesser
degree. The follower would slow down when driving over tile changes, but it would not cause
instability. Driving over tile changes caused the camera and robots to shake slightly. The
shaking mainly affected the detection of pixels in the n-coordinates, as they were sensitive to
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the camera shaking slightly up and down when the robot drove over tile changes. Due to the
camera shaking, the controller measured n-coordinates further up or down in the image for a
moment, which led to wrong measurements. This made the follower think that it was closer
to or further away from the leader than it was, causing the follower to slow down or speed
up. Since the camera was shaking when the follower was driving, and the shaking affected
the n-coordinates, the linear control of the pixel-based method contained more noise. Since
the USB camera was big and mounted with tape, it could be that using a Raspberry Pi
camera module would lead to less shaking, as it had a proper mount and was more compact.

It was mentioned how the FoV constraints of the pixel-based method were changed from
what was used in (Miao et al., 2021), as the old constraints made the follower drive backward
initially. The new constraints, especially for the n-coordinate, were smaller. It could be that
this affected the stability of the system when driving over bumps. The smaller constraints
gave smaller boundaries that the error had to pass before the system became unstable. Since
the boundaries also depend on the maximum steady-state error, it is not certain if the new
FoV constraints affected the stability when driving over bumps. The steady-state errors
could not be optimized in the physical pixel-based method due to noise and instability, so
they were quite high, making it so that the boundaries were not pushed low because of them.

In the circle experiment, there are only results from the camera, LiDAR, and complete
versions. This is because the filtered version could not be kept stable for 300 seconds.
The camera shaking combined with the moving average filter caused the follower to become
unstable in the filtered version. The moving average filter was tuned down to the point where
it barely filtered anything to verify that it was the filter that caused the issue. Without most
of the filtering, the system was stable.

The complete version was the best in the circle experiment, as it had the lowest overall
errors and the least noise in the linear control. The camera version had the least noise in the
angular control but most in the linear control. The complete version had more weight on the
LiDAR sensor in the physical pixel-based method, as previously mentioned. The noise results
can be explained by the camera shaking and the LiDAR being noisy in angle measurements.
Since the complete version put more weight on the LiDAR, it and the LiDAR version had
more noise in the angular control part. Due to camera shaking, the camera version had more
noise in the linear control. The LiDAR version had the most position error. This could be
due to the large measurement error the LiDAR had in the m-coordinates, as shown in table
5.16. The complete version had the least position error despite putting the most weight on
the LiDAR. This could be because the complete version used a combination of the camera
and LiDAR measurements, not only the LiDAR measurements.

An important thing to note is that the complete version of the pixel-based method used
the camera to measure the distance and bearing angle. As seen in table 5.15, there was a
difference between what the camera and LiDAR would measure the distance and bearing
as. This could affect the distance and heading error results of the complete version since
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this version put the weight on the LiDAR measurements but used the camera to measure
distance and bearing.

In the constant experiment, the data was only sampled for 8 seconds. Because of this,
the data might be less reliable than in the other experiments, as was discussed for the same
experiment for the physical distance-based method. The complete version had the least noise
overall, with the least error in some metrics, making it the best version. In terms of error,
there was no version that was better. However, the versions using the camera struggled more
with noise and errors in the linear control while the versions using the LiDAR struggled more
with angular control. The filtered version had the least error in the angular velocity and
m-coordinate error. The LiDAR version had the least velocity and n-coordinate error, and
the complete version had the least distance and heading error.

An example of how the pixel-based method slowed down due to camera shaking is shown in
figure 5.8. Around the 20-second mark, the versions using the camera slowed down heavily.
There were also instances where the follower slowed down a little less, as indicated by the
smaller spikes in the linear velocity. If the cause of the follower slowing down had been
random, the spikes indicating the breaking would have been more random in time between
the different versions. Since the spikes were consistent in time between the different runs,
this could mean that the robots drove over something like changes in tiles. Driving over tile
changes caused camera shaking, which could cause the follower to slow down, as previously
mentioned. The complete version was affected the least out of the versions using the camera
since it relied less on the camera. The overall velocity of the versions that used the camera
was higher than in the LiDAR version. There were several instances where the camera and
filtered versions reached the maximum velocity of the Turtlebot, as indicated by some of the
tops of the linear velocity being cut in the plot. Camera shaking might be the reason for
this, with the follower thinking it was further away from the leader than it was and speeding
up, or the follower having to catch up to the leader after slowing down.

In the figure-8 experiment, the complete version was the best, as it had low errors and
the least noise in the linear control. The camera version had the least noise overall in the
angular control but more overall errors. The noise results could again be a consequence of
the camera shaking and LiDAR being bad with angles. From figure 5.9, there were spikes
in the position error of the filtered and camera versions after switching velocity. These were
likely caused by the bumps on the floor. As mentioned in section 6.2.1, most experiments
were set up to avoid bumps, but in the figure-8 experiments, the robots had to drive over
them. Even though this did not make the versions that used the camera unstable, it could
make the follower stop or slow down for some time due to it thinking it was too close to
the leader. The filtered and camera versions also had higher overall position errors after the
switch. This came from them shortcutting more after switching velocity as they were trying
to catch up to the leader due to slowing down on the bumps. The figure also shows that the
LiDAR version had a high overall position error. This was most likely because of the same
reason as discussed in the circle experiment.
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In the dynamic experiment, the complete version was the best, as it had the lowest errors
overall, with low noise. The camera version had the least noise in the angular control. The
LiDAR version had the least noise in the linear control, with the complete version close
behind. The noise was like this because of the camera shaking and the LiDAR being bad
with angles, as was the case in the other experiments. The reason why the complete version
had a little more noise than the LiDAR version was most likely because of the moving average
filter’s delay.

The best version of the physical pixel-based method would be either the complete or the
LiDAR versions. The filtered version was not good enough, as it failed one of the experiments.
The camera and filtered versions had low noise and errors when it came to the angular control,
but they were very unstable with much noise when it came to the linear control. The camera
and filtered versions had notable issues, where camera tilt and bumps/tile changes on the
floor affected these versions of the pixel-based method because they were sensitive to small
disturbances to the camera. The versions using the camera were therefore not very robust.
Because of this, using the LiDAR was the better option. While using the LiDAR was worse
when it came to angles, it was more robust than using the camera. The LiDAR had issues
with measurements, as shown in the measurement tables 5.15 and 5.16, but using the LiDAR
made the physical pixel-based method more robust and stable.

6.2.6 Comparing methods

The distance-based method had the least distance error in all the experiments, except for
the dynamic experiment. The reason why the pixel-based method had more distance error
than the distance-based method in the physical setup when it had less in the simulations is
most likely because the maximum steady-state errors of the pixel-based method could not
be optimized in the physical setup. This led to the distance in the pixel-based method being
higher than in the distance-based method.

In terms of error, the physical distance-based method was better at linear control, while
the physical pixel-based method was better at angular control. The simulated pixel-based
method had lower overall errors than the simulated distance-based method, so why did the
physical pixel-based method not have lower overall errors than the physical distance-based
method? This was because, in the simulations, the versions of the pixel-based method that
used the camera were the best overall. In the physical pixel-based method, the versions
using the camera struggled with linear control because of the camera shaking and floor
bumps. The distance-based method was more robust towards the shaking or the camera
being lifted/lowered a little, as it did not use the image from the camera directly. In addition,
the LiDAR sensor struggled in the physical setup, making the performance of all the versions
that used the LiDAR worse. This made it so that the distance-based versions that used the
camera gave better overall results in the error, as they were not affected by issues the pixel-
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based camera versions and LiDAR sensor.

Overall, the pixel-based method had more noise in the linear control than the distance-
based method. This is again because the physical pixel-based versions that used the camera
struggled with camera shaking, making it so that there was more noise in the linear control.
The pixel-based method had lower noise in the angular control. The pixel-based method
had more position errors than the distance-based method. This was because the pixel-based
method had a larger distance error due to bad optimization. In the circle and figure-8
experiments, the higher position error also came from the pixel-based method shortcutting
more than the distance-based method, as discussed in section 6.1.5. This matches with the
pixel-based method having less heading error in these experiments than the distance-based
method.

The pixel-based method struggled with bumps on the floor and camera shaking to the
point where it made the system unstable or very noisy. This made the camera and filtered
versions of the pixel-based methods the worst in the physical experiments. Adding a LiDAR
improved the stability of the pixel-based method. The complete and LiDAR versions of
the pixel-based method were more stable than the versions using the camera. The issue
with solely relying on the LiDAR is that it is not good at handling angles. When using the
LiDAR, the pixel-based method became better in the linear control. In exchange, it became
worse in the angular control in most cases. In the distance-based method, using only the
LiDAR gave more noise and worse results than using the camera. The overall best method
in the physical setup would be the distance-based method with either the camera version
or the complete version, as these were the versions with the lowest errors and noise. The
pixel-based method with the complete version did well too, but it relied more on the LiDAR
than the camera, which had a bias and was bad at measuring angles.

6.3 Comparing results to other papers

In this section, the results from the experiments will be compared to the results in (Verginis
et al., 2015) and (Miao et al., 2021). Since the only sensor the papers use is the camera,
only the camera version of the controllers will be compared to their results.

In (Verginis et al., 2015), only simulations were done. They used different parameter
values for the controller than what was used in this thesis. They had smaller maximum
steady-state errors, ρd,∞ = 0.0625 and ρβ,∞ = 1.15. They also made the system converge
faster by setting l = 0.6, had different control gains, and used more than one follower. These
steady-state errors were not chosen in this thesis, as they could not keep the system stable,
and making the system converge this fast also caused issues with stability.

Their experiment was different, as they drove their robots with a curved trajectory con-
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sisting of two turns, as shown in Fig.3 in their paper. Because of this, it is hard to compare
their simulation results to the ones for the simulated distance-based method in this thesis.
What can be seen from Fig. 4 and 5 in their paper is that their errors converge very close
to 0. This is most likely due to their low maximum steady-state errors. The errors in this
thesis did not converge to values this low because of larger steady-state errors, even though
the errors were quite low.

In (Miao et al., 2021), they did both simulations and physical experiments. It was men-
tioned how the FoV constraints used in this thesis were different from the ones used in their
paper. Since their paper presents a formation controller, their desired position was not di-
rectly behind the leader but behind and a little to the side. Other values, such as the control
gain, desired transient time constant, maximum steady-state errors, etc. were also different.

In the simulations, they used maximum steady-state errors of 10 and a desired transient
time constant of l = 0.6. In this thesis, ρn,∞ = 20, ρm,∞ = 30, and l = 0.1, for the simulated
pixel-based method, due to stability. Figure 2. in their paper shows their simulation results
for an experiment where the robots drove in a straight line with constant velocity. The
noise levels between their simulations and the ones in this thesis for the camera version
seem similar. The difference is that while the simulations in this thesis had very little noise,
the simulations in (Miao et al., 2021) and (Verginis et al., 2015) did not seem to contain
any noise at all. It could be that they did not introduce noise to their simulations, while
the simulations in this thesis had noise from the ROS packages. The lack of noise in their
simulations could be why they could choose smaller steady-state errors and make the system
converge faster. The errors in the simulations in (Miao et al., 2021) seem to converge very
close to 0. The pixel coordinate errors in this thesis for the constant experiment were also
low. Theirs most likely converge to a smaller error due to the smaller steady-state errors.

Their physical results for the static gain controller are shown in Fig. 4 and 5. In their
physical experiment, the robots drove in a circle, l = 0.1, and their maximum steady-state
errors were set to 20. In the physical pixel-based method in this thesis, l = 0.1, ρn,∞ = 30,
and ρm,∞ = 60. Their physical system converged to a 7-pixel error in the n-coordinate and
an 18-pixel error in the m-coordinate. In this thesis, the n-coordinate and m-coordinate
errors converged to around 6.5 and 31 pixels respectively for the circle experiment with the
pixel-based camera version. The larger m-coordinate error was most likely due to the large
steady-state error ρm,∞, which could not be pushed lower due to stability issues. The lower
n-coordinate error, despite a larger steady-state error, could come from the FoV constraints
in this thesis being smaller, especially for the n-coordinate, which pushed the boundaries
lower.

Fig. 4 and 5 in (Miao et al., 2021) show that their physical system had a considerable
amount of noise. While their system had less noise than the camera version in this thesis,
it looks like it had the same issues with the follower slowing down. As previously discussed,
this was likely due to the camera shaking while the follower was driving. An example of
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this was shown in figure 5.8 in this thesis. Between the 20 and 40 second mark in Fig.4 in
their paper, the follower was slowing down. This also seems to have caused their angular
velocity to be noisy. In this thesis, the camera shaking was mitigated by adding the LiDAR
and was somewhat reduced by having the filter. If the physical pixel-based versions that
used the cameras in this thesis were excluded, the maximum steady-state errors could likely
be pushed lower to get better performance. In their paper, the static gain controller drove
forward instantly instead of backing up like it did in this thesis. This was most likely because
of their camera and tracking object being on poles of different sized, which gave a larger h.
The follower backing up initially was the reason why the FoV constraints in this thesis had
to be changed.
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Chapter 7

Conclusion

In this thesis, two methods for platooning control without inter-vehicle communication were
simulated and implemented with two Turtlebot3 Waffle-Pi robots. One method was based
on finding the distance and bearing angle between the leader and follower. The second
method was based on keeping a feature point in the desired pixel coordinates. ROS, ROS
packages, and Gazebo were used to simulate and implement the controllers. Both controllers
were prescribed performance controllers, and they only used visual sensor information. The
controllers were evaluated by doing experiments where the robots drove in different patterns.

Additions to the original control methods were made in an attempt to make the methods
more robust and less noisy. Adding a moving average filter reduced noise in some cases, but
caused issues in others due to the delay introduced by the filter. Using a LiDAR instead of
a camera made the controller more robust in cases where visual information was noisy or
lost. In cases where the camera was reliable, it had less noise than the LiDAR. The LiDAR
struggled with measuring angles, and in the physical setup, the LiDAR had a bias. A version
where the camera, LiDAR, and filter were combined was also used.

Both controllers worked well in the simulations, with the pixel-based method having less
error and noise. The pixel-based method struggled in the physical setup. It was sensitive
to the camera shaking when the follower drove over tile changes and uneven flooring. This
would cause noise or, in the worst case, instability. The method was also sensitive to camera
tilt. The tilt of the camera had to be adjusted before every physical experiment. Most of
these issues were reduced by making use of the LiDAR instead of the camera, and using the
complete version made this method more robust. The distance-based method was better in
the physical setup and easier to use than the pixel-based method due to the aforementioned
reasons. In addition, if the path the robots took was curved, the pixel-based method would
shortcut more.

In the simulations, the camera and filtered versions had the least noise and error in both
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control methods. The camera and marker detection had very little noise in the simulations,
making it so that these versions gave better, less noisy results. In the physical setup, the
camera and complete versions gave the least noise and error for the distance-based method;
the weight was on the camera in the complete version. Since the pixel-based method struggled
with using the camera in the physical experiments, the LiDAR version and complete version
with the weight on the LiDAR were better for the physical pixel-based method.

7.1 Future Works

Having adaptive control gain could be useful. In this thesis, the control gains in the con-
trollers were tuned and found through testing to fit each specific pattern that the robots
drove in. This makes it difficult to use the robots in real-world applications, as the gains
were manually adjusted through testing and a priori knowledge of the trajectory and ve-
locities of the leader. Generalized gains that would work for more patterns could be found
through testing. A better solution would be adaptive gain, which would make the controllers
more generalized and better at handling a larger variety of patterns.

Better sensors could be used to perform the experiments in the future. A camera that
is smaller and mounted better on the follower could lead to less shaking and issues for the
pixel-based method. Finding a way to make the Raspberry Pi camera module work could
help. Using a different LiDAR with better angular resolution could eliminate the bias that
the LiDAR in this thesis had, in addition to making the versions that used the LiDAR better
at angular control. Adding a constant to the LiDAR measurements could also help with the
bias. Adding more feature points to the pixel-based method could make it more robust and
shortcut less.

Both control methods shortcut, with the pixel-based method shortcutting more than the
distance-based. Ways to make the controllers shortcut less could be explored. For example,
adding a tolerance for the angular controllers or making the follower take the trajectory of
the leader into account instead of only following the leader directly.
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