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Abstract

As the shift to environmentally friendly electric and hybrid vessels powered by
lithium-ion batteries is taking place globally, there is a growing need for reliable
digital tools to monitor battery health and enable safe operation at sea. The
total capacity is a measure of battery’s maximum energy storage capability
and it degrades over time due to several factors. It can be estimated from
ordinary linear regression of integrated current measurements on differences in
battery’s state of charge. Since measurements always have some uncertainty
associated with them, the ordinary linear regression gives a capacity estimate
biased towards zero by not taking these uncertainties into account. The total
least squares approach proposed by Plett (2011) is aimed at correcting for
errors in the observed measurements and has other advantages such as recursive
implementation and low computational costs. We implement this method
and apply it to real battery sensor data. The obtained results are sensitive
towards the assumption on the magnitudes of the measurement uncertainties
but a goodness of fit criterion helps in better understanding which values are
reasonable if additional information is not available. Finally, we compare the
results to one annual test and discuss possible improvements of the method’s
performance.
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CHAPTER 1

Introduction and Outline

The transition to renewable energies in the maritime transportation sector is
an important contribution to the green shift. The Norwegian Government’s
ambition as outlined in the Norwegian National Action Plan for Green Shipping
is to reduce emissions from domestic shipping and fishing vessels by half by 2030
and promote the development of zero- and low-emission solutions for all vessel
categories (Departementene 2022). Although Norway is a world leader within
green shipping, the pace of this shift must be increased in order to achieve
these climate goals. Electric or hybrid ships using batteries are emerging as
an attractive alternative to fossil fuels due to their significant environmental
benefits.

Currently lithium-ion batteries are the leading energy storage technology
and thanks to their development, transportation including maritime is becoming
increasingly battery driven. A key safety aspect of battery-powered ships is
ensuring that the available energy stored in the batteries is sufficient to cover
the required power demand at all times, as loss of propulsion power in critical
situations can lead to serious accidents (Vanem et al. 2021). Lithium-ion
batteries are subject to ageing processes and these affect both the amount of
charge that can be stored as well as the performance of the power delivery.
Therefore, reliable estimation and prediction of actual available energy of a
battery is crucial for safe and sustainable operation of battery-powered ships.
Most maritime systems are designed with an expected lifetime of 10 years with
the end of life typically defined as SOH = 70-80%, where SOH stands for the
ratio of remaining capacity to the initial capacity (Vanem et al. 2021). Annual
capacity tests can be conducted to measure battery capacity but they are very
time-consuming and typically require the ship to be taken out of operation for
one full day per year. Hence new data-driven approaches to SOH monitoring
and prediction utilizing sensor data need to be explored to estimate the effect
of degradation of the batteries.

The most common tools for assessing battery health are calculations of
“State of Health” and “State of Charge”. In order to obtain these, it is important
to estimate the total capacity of the batteries well and in real time. In this
thesis, we will work with improved estimation of total capacity. It has been
shown that error-in variables models are well suited for this problem and yield
the most precise estimates of total capacity (Plett 2011). The main goal of
this thesis is to construct methods for estimating total capacity of maritime
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batteries while taking into account the uncertainty of measurements. We
will present measurement error regression and compare it to the total least
squares methods derived by Plett (2011) which we will implement and try out
on real battery sensor data from the Norwegian battery producer Corvus Energy.

We now give an outline of the thesis. Firstly, in Chapter 2 we illustrate how
a lithium-ion battery works and introduce some related terminology. In Chapter
3 we describe measurement error models and the consequences of ignoring
measurement error for naive statistical analysis. In Chapter 4 we present the
total least squares methods introduced by Plett (2011). In Chapter 5, we try to
come up with a model for the measurement uncertainties for the variables we
will be using in our analysis. In Chapter 6, we describe the different measures
that had to be taken in the data preparation stage. In Chapter 7, we apply the
methods to our data. We then compare the estimates of these methods to one
annual test and describe a goodness-of-fit criterion. Finally, we summarize and
discuss our findings, addressing the strengths and weaknesses of our proposed
methods as well as possible improvements for future research.
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CHAPTER 2

Lithium-ion battery terminology

2.1 Overview

This chapter gives general information on batteries that will be required as
background knowledge for the rest of the thesis. A lithium-ion battery is a
widely used energy storage system that converts chemical energy into electrical
energy and vice versa, by means of an electrochemical reaction. As the world is
becoming electrified, rechargeable lithium-ion batteries have gained a dominant
position in the energy storage market and have replaced other batteries in many
application areas due to their high energy density which means that they can
store more energy in a given volume (Mikolajczak et al. 2012, chapter 2). They
typically consist of many battery cells which again can be divided into a few
main components. In this chapter, we will describe how a lithium-ion battery
works, define other battery related quantities as well as mechanisms that cause
battery degeneration.

2.2 Main components of a lithium-ion battery cell

The main function of a lithium-ion battery is to store and then release energy by
converting chemical energy into electric energy. The basic unit of a lithium-ion
battery is a battery cell that exerts electric energy by charging and discharging
(Mikolajczak et al. 2012, chapter 1). A single cell can be sufficient for many
portable electronic devices whereas for large scale applications, many cells
integrated into packs or modules are required to meet the energy and power
demands (Zhang and Lee 2011, chapter 2). A lithium-ion battery cell consists
of the following main components: the positive and negative electrodes, often
referred to as the cathode and anode, respectively, the electrolyte, a separator
and current collectors (Korthauer 2018, chapter 2).

The cell’s active materials reside in the electrodes, where the oxidation, loss
of electrons, and reduction, gain of electrons, processes take place in order to
liberate or bind lithium ions Li+ and electrons e− (Vanem et al. 2021). These
reversible redox reactions between the cathode and anode are the basis for
the rechargeability of the battery cell (Zhang and Lee 2011, chapter 2). The
liberated lithium ions are allowed to diffuse between the electrodes through the
electrolyte, and the electrons as electricity carriers can be transported by the
current collectors to generate a potential between the battery terminals and
hence drive a current in an outer circuit. The main function of the electrolyte
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2.3. Battery terminology

is therefore to transport lithium ions between the electrodes while the separator
electrically isolates both electrodes to prevent self-discharge from the cell
(Vanem et al. 2021).

A rechargeable battery cell operates in two modes, that is charging and
discharging. A schematic view of a typical lithium-ion cell in these two modes
is shown in Figure 2.1 below. During discharging, the lithium ions migrate
from the negative electrode through the electrolyte and the separator to the
positive electrode, while at the same time, the electrons are transported from
the negative electrode via an outer electrical connection to the positive electrode
(Korthauer 2018, chapter 2). During charging, this process is reversed and the
lithium ions migrate from the positive to the negative electrode through the
electrolyte and the separator. When the battery is fully charged, the active
lithium ions reside in the anode, and when it is fully discharged, they reside in
the cathode.

Figure 2.1: Illustration of a typical lithium-ion battery during charge and
discharge

For a rechargeable battery, these two processes at the positive and negative
electrodes can be repeated many times in a sequence of charge-discharge cycles.
The cycle life of a rechargeable battery refers to the number of full discharge-
charge cycles the battery can experience before its end of life and it is influenced
by many different factors such as rate and depth of the cycles, temperature and
humidity (Vanem et al. 2021).

2.3 Battery terminology

Battery systems are typically equipped with a battery management system,
BMS, whose main function is to protect the battery cells from overcharging
and extreme temperatures, and thereby increase their lifetime. It uses sensor
technology to monitor and control the battery to ensure it is always operating
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2.3. Battery terminology

within safe limits and that any risk of damage to the battery is prevented. It
measures the battery cell control parameters such as current, voltages and
temperatures, and enables the switching on and off of the battery system
(Korthauer 2018, chapter 2). Besides, it monitors and controls the battery’s
charging and discharging process and the condition of the battery in terms of
its available capacity for energy storage (Vanem et al. 2021).

Many battery cells are necessary to generate the amount of power needed
to propel an electric vessel. The composition of an electric vessel battery
might vary slightly but generally they are are composed of cells, modules
and packs. Eventually, packs can be integrated into arrays. Cells, modules,
packs and arrays are units of clustered batteries. In simple terms, a cluster
of assembled cells forms a module, and a cluster of modules forms a pack.
Finally, packs bundled into an array are the final form of the battery installed
in the electric vessel together with a battery management system and a cooling
system that controls and manages for example the battery’s temperature and
voltage (Mikolajczak et al. 2012, chapter 1). The purpose of connecting several
battery cells in a system is to increase the energy and power of the battery and
moreover, to facilitate easy replacement of faulty parts of larger battery packs
(Mikolajczak et al. 2012, chapter 1).

The cells and modules can be connected in series or in parallel as Figure
2.2 shows, or a mixture of both. This impacts the voltage and capacity of
the battery system. A battery system wired in series will have the voltages of
individual cells added together, so that the overall voltage is increased, but the
capacity stays the same. In contrast, a battery system wired in parallel will
have the individual capacities added together while the battery voltage remains
the same (Mikolajczak et al. 2012, chapter 1). Altogether, connecting cells in
series increases the potential of the battery system while connecting cells in
parallel increases the capacity of the system.

Figure 2.2: Illustration of battery cells connected in series (left) and in parallel
(right)

In the following we will define various quantities which describe the present
condition of a battery and may be monitored by a condition monitoring system
through collected sensor data.
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2.3. Battery terminology

• Total capacity
The total capacity of a battery cell, denoted by Q, indicates the maximum
electrical charge that the battery cell is capable of holding (Plett 2011).
The value of battery capacity is commonly expressed in ampere-hours (Ah)
or ampere-seconds (As). It is important to note that the total capacity is
not a fixed quantity but it decays over time as the battery wears out.

• Nominal capacity
The nominal capacity Qnom is a constant quantity specified by the battery
manufacturer and it describes the capacity of a new battery cell (Plett
2011).

• State of Health (SOH)
The capacity of a battery to store energy will typically degrade over time,
and the state of health, SOH, is measure of such degradation. There are
alternative definitions of SOH, some related to capacity, other related
to internal resistance or power. In this thesis we will define SOH as a
measure of the battery’s total capacity relative to its nominal capacity
(Plett 2011). Its value is typically given in % by

SOH = Q

Qnom
· 100(%). (2.1)

In other words, SOH indicates which point the battery has reached in its
life cycle and how well it performs compared to a fresh battery.

• State of Charge (SOC)
With a rechargeable batter system, the amount of energy available at
all times will vary continuously as the battery is repeatedly charged and
discharged. SOC is a unitless value between 0% and 100 % that indicates
the relative level of charge presently held by the battery cell (Plett 2011).
Hence, SOC of 100% corresponds to a fully charged cell while SOC of 0%
corresponds to an empty discharged cell. SOH and SOC depend on each
other and influence the battery performance. Moreover, SOC is not to be
confused with the battery cell total capacity but they are related through
an equation which we will state later.

• C-rate
The C-rate is a measure of the rate at which a battery is being charged
or discharged related to its nominal capacity. It is defined as the current
through the battery divided by the current draw under which the battery
would theoretically deliver its nominal capacity in one hour (Team 2008).
As follows, a C-rate of 1C means that the battery is fully charged, or
fully discharged within one hour, so a battery of capacity 150 Ah would
provide 150 A of current for one hour at 1C.

Usually, SOC cannot be measured directly but it can be inferred based on
other measured variables. An accurate SOC and SOH estimation method will
help improve a battery’s performance and reliability, and ultimately prolong its
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2.3. Battery terminology

lifetime. Moreover, estimation of battery capacity is closely related to that of
SOC, as SOC is usually defined as the ratio between available capacity and the
total cell capacity (Zhang and Lee 2011). The main methods for SOC estimation
of lithium-ion batteries can be divided into three: a current-based method,
a voltage-based method, and a fusion of these two approaches which seeks
to combine the information obtained from voltage and current measurements
using non-linear filters, such as the extended Kalman filter (Movassagh et al.
2021). Kalman filter uses a recursive algorithm that continuously predicts the
future state of charge and corrects it using measurements performed on the
system, including current, voltage and temperature. An accurate dynamic
model including dependencies on operating and environmental conditions is
required for the Kalman filter to function correctly (Movassagh et al. 2021). We
will look at the current-based method, commonly known as Coulomb counting,
in more detail.

Electric current I is a measure of the flow of electric charge q and it is given
in amperes. A flow is a rate, meaning an amount over an elapsed time t, so
current can be expressed as the partial derivative

I(t) = ∂q(t)
∂t

. (2.2)

When we integrate on both sides, we obtain the formula

q =
∫ t2

t1

I(τ) dτ. (2.3)

which represents the amount of charge flowing between times t1 and t2. We
define current I(t) to be positive when charge is being transported into the
battery, i.e. when battery is being charged, and a negative value when it
is being discharged. Accordingly, q > 0 corresponds to charging and q < 0
corresponds to discharging.

The Coulomb counting method, also known as ampere hour counting or
current integration, is the most common technique for calculating the SOC (Lu
et al. 2013). It works by integrating the current flowing over time to derive
the total sum of energy entering or leaving the battery. During a full charging
cycle, when the battery goes from being fully discharged to fully charged, this
method integrates the current flowing to or from the battery to estimate the
total battery capacity Q directly, according to the basic relation

Q =
∫ t1

t0

I(τ) dτ, (2.4)

where I(τ) is the current at time τ , and t0 and t1 refer to times where SOC =
0% and SOC=100%, respectively (Vanem et al. 2021).

This equation can be modified to include the Coulomb efficiency factor
η which is equal to 1 while discharging and is smaller than 1 while charging
(Lu et al. 2013). Using this approach, a full cycle is required to be able to
estimate the total capacity which is rarely the case in actual operations, and
also the measurements need to be performed under controlled conditions, with
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2.3. Battery terminology

constant, typically low, C-rate and a specific temperature. Moreover, any errors
in current measurements will accumulate and subjecting the battery to full
cycles may contribute to accelerated degradation and shortening of the battery
lifetime (Vanem et al. 2021).

However, total capacity estimation can be based on Coulomb counting of
not necessarily full cycles. By definition, SOC can be considered as the rate
of the integral of the current flowing in and out of the cell of a battery over
the total capacity. Starting from a fully discharged battery with SOC = 0% at
time t0, SOC at time t can be computed as the ratio of integrated current from
t0 until t by

SOC(t) = 1
Q

∫ t

t0

ηI(τ) dτ. (2.5)

The relationship between the total capacity Q and SOC at times t1 and t2
is then as follows

SOC(t2) = SOC(t1) + 1
Q

∫ t2

t1

ηI(τ) dτ (2.6)

where I(τ) is the battery cell current at time τ measured in amperes, which
is positive when charging and negative when discharging, and η is a unitless
Coulomb efficiency factor (Lu et al. 2013). If the time is measured in seconds,
then the unit of total capacity Q will be ampere-seconds. In order to obtain a
total capacity Q given in ampere-hours, the factor 3600 is required to convert
the time measured in seconds to hours and the resulting formula is as follows

SOC(t2) = SOC(t1) + 1
Q

∫ t2

t1

ηI(τ)
3600 dτ (2.7)

The formula above is the mathematical basis for most battery capacity
estimation methods and by rewriting it, we obtain the following equation∫ t2

t1

ηI(τ)
3600 dτ︸ ︷︷ ︸
y

= Q (SOC(t2)− SOC(t1))︸ ︷︷ ︸
x

. (2.8)

The linear structure y = Qx of this equation allows us to compute an
estimate of Q by using a regression technique (Plett 2011). However, both
the integrated current values y and the difference between the SOC values x
have sensor noise or estimation noise associated with them and ordinary least
squares regression which does not take into account measurement errors may
lead to inaccurate and biased estimate of the total capacity.
Besides, the Coulomb counting formulas above illustrate the mutual dependence
between the SOC and total capacity estimates. An accurate estimate of Q is
needed to give accurate estimates of SOC and vice versa. Therefore, when the
goal is to estimate the total capacity Q, the Coulomb counting method for SOC
estimation may be inappropriate since it leads to such circular dependencies
and hence unstable estimates (Plett 2011). Plett recommends the use of
Kalman filter based methods for SOC estimation which seem to be sensitive to
errors in the capacity estimates as it corrects for the estimates using voltage
measurements.
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2.4. Battery ageing

2.4 Battery ageing

The performance of Li-ion batteries deteriorates with time and usage due to
the degradation of their electrochemical components, which leads to a capacity
and power fade. This is called battery ageing and is a consequence of various
ageing mechanisms influenced by different factors such as battery chemistry and
manufacturing, as well as environmental and operating conditions. Accurate
health diagnostic and prognostic tools are crucial to ensure the safety and
reliability of batteries despite ageing. These are then implemented in the
battery management system for online condition monitoring and enable the
users to keep track of the performance of the battery and schedule maintenance
and repairs in advance.

Various degradation processes contribute to aging of lithium-ion batteries
and they affect different elements of a battery. Battery aging can be divided into
two modes, calendar and cyclic aging. Calendar aging comprises all processes
that occur regardless of battery’s charge-discharge cycling, therefore even when
the battery is not in use (Li et al. 2019). In contrast, cyclic aging refers to the
ageing from the continuous battery charge and discharge cycles and is affected
by additional factors such as overcharge and -discharge, current rate and cycling
depths. Very deep cycles, that is larger variations in SOC, typically increase
the rate of battery degradation, compared to shallow cycles. For example, high
SOC implies low Li content in the active material of the cathode which then
increases its tendency to chemically decompose the electrolyte components (Lu
et al. 2013). Furthermore, higher levels of current, that is charging/discharging
the battery at higher C-rates, will accelerate the degradation (Vanem et al.
2021). Overcharging the cell can generate significant heat and this can trigger a
series of side reactions at both electrodes. Cells are also exposed to other stress
factors, such as damage caused during manufacturing, or electrode material
expansion during operation (Li et al. 2019). Mechanical loads might form
cracks within the active materials where the lithium ions are intercalated,
causing them to no longer be electrically connected (Korthauer 2018, chapter 2).

The lifetime of a battery depends on the operating conditions, the applied
materials, the electrolyte composition, and the quality of the production
process (Korthauer 2018, chapter 2). The literature on maritime battery
systems specifically is rather scarce. Nevertheless, many parallels can be drawn
from other battery application areas such as electric vehicles, and the overall
degradation mechanisms are believed to be very similar (Vanem et al. 2021). The
differences between maritime batteries and others are mainly related to battery
size and designs, different operational environments and loading profiles, and
different safety aspects (Vanem et al. 2021). The cycles of maritime batteries will
vary according to the type of operation and also the environmental conditions
under which it is operated. It has not yet been fully explored to what extent
exposure to factors such as humid and saline environments or ship motions may
influence battery degradation. Furthermore, the temperatures and loads may
not be evenly distributed within a battery system consisting of several modules
and battery cells. The overall degradation will likely depend on the battery
design and different cells may experience different degradation trends (Vanem
et al. 2021).
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CHAPTER 3

Measurement Error Modelling

3.1 Overview

Every measurement has some random noise associated with it. This uncertainty
in the measurement may arise for different reasons such as limitations of various
measuring devices, environmental factors or carelessness of the experimenter.
The consequences of ignoring measurement error can range from negligible to
more extensive. If measurement error is large, estimations of coefficients and the
variable selection of a statistical model may be greatly affected. This chapter
presents different types of measurement errors, summarizes some of the known
results about the effects of measurement error in linear regression and describes
a way of modelling measurement error as well as some of the statistical methods
used to correct for its effects. Measurement error in explanatory variables has
many effects ranging from attenuation of the slope estimates to a loss of power
for detecting interesting relationships among variables and masking of features
of the data in nonlinear models (Carroll, Ruppert et al. 2006, chapter 1). In
simple linear regression in particular, measurement errors cause bias of the slope
estimate in the direction towards zero, meaning underestimation of its absolute
value. Such a bias is commonly referred to as attenuation or attenuation to
the null (Carroll, Ruppert et al. 2006, chapter 3). The main objectives of this
chapter are to find out what are the consequences of measurement error for
naive statistical analyses and how one can correct for it.

3.2 General concept and notation

Firstly, we broadly look at different types of errors and the motivation behind
modelling measurement errors. Measurement error occurs when one cannot
measure exactly a variable of interest that enters into a model. There are many
reasons measurement errors occur, and they can be classified into random and
systematic error depending on how the measurements are obtained. Random
errors are fluctuations which may vary from observation to observation due to
uncontrolled factors such as limited precision of the measurement instruments
while systematic errors are reproducible inaccuracies caused by imprecise
instruments and faulty equipment (Bevington and Robinson 1992, chapter 1).

There are different ways of expressing measurement error and characterizing
the accuracy of measurements. One way of quantifying error is the absolute error,
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3.3. Models for true values

defined as the absolute difference between the true and measured value. Since
we usually do not know the the actual true value, we use the maximum possible
error. The relative error is the error proportional to the true value and is
defined by absolute error divided by the observed measurement (Bevington and
Robinson 1992, chapter 1). Relative error is often written as a percentage. In
our thesis, when defining measurement error, we will speak of the absolute error.

Statistical regression models define a mathematical relationship between
one or more independent explanatory variables X and a dependent response
variable Y . When the true value of one of these variables is not observable
for some reason, it is common to substitute them with observed variables
which contain measurement error. This substitution complicates the statistical
analysis of the observed data when the purpose is statistical inference about
a model defined in terms of the true values. Measurement error modelling
seeks to fit a model described in terms of the true values given the observed
error-prone data (Stefanski 2000).

The key components of measurement error modelling are a statistical model
for the true values, a measurement error model which specifies the relationship
between the true and observed values, and additional assumptions or extra data
such as replicate values or standard errors of the error-prone variables needed
to correct for the error (Buonaccorsi 2010, chapter 1).

Many different notations are being used for measurement errors which make
it rather difficult to read different literature on this topic. Carroll, Ruppert
et al. (2006), for example, write X and W, Fuller (1987) uses x and X, and
lastly, Buonaccorsi (2010) uses x and W, for the true value and its error-prone
measurement, respectively. Throughout the thesis, we will use our own notation
consistently, where we denote the true values by x∗ and y∗, and the observed
measurements by x and y. We will denote the measurement errors in x and y,
by ∆x and ∆y, respectively. Further we will follow the common notation of
upper case letters for random variables and lower case for observed values.
One important distinction has to be made between two ways of modelling the
true variables, namely the functional case, where the true values x∗ are regarded
as fixed unknown constants, and the structural case, where the true x∗ are
treated as random variables, hence written as X∗, which are usually assumed
to be independent and identically distributed with mean µX∗ and a covariance
ΣX∗ (Buonaccorsi 2010, chapter 1).

3.3 Models for true values

The general regression model for the true values y∗ and x∗ is commonly defined
by

Y ∗i |x∗i = f(x∗i , β) + εi (3.1)

where the function f(x∗i , β) defines the type of regression model and εi is a
random independent error term with E(εi) = 0 and V ar(εi) = v(x∗i , β, σ) for
some variance function v (Buonaccorsi 2010, chapter 6). In case of constant
variance it is common to write v(x∗i , β, σ) = σ2. Specific classes of models
include for example linear models, nonlinear models and generalized linear
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3.4. Measurement error models

models such as logistic, probit and Poisson models. Linear models are linear in
the parameters and the most simple one is linear regression which we will explore
in more detail in the rest of the chapter. Statistical analysis that is conducted
by ignoring measurement error is called a naive approach (Buonaccorsi 2010).
The effects of measurement error are determined by its distribution and the
appropriate methods used for correcting for these effects will vary depending
on the model.

3.4 Measurement error models

There is a wide variety of ways of modelling measurement errors. First
differentiation can be made between how the true and observed variables
are related to each other, namely whether one makes an assumption about the
distribution of observed values x given the true values x∗ or vice versa. If the
true values x∗ are fixed or we condition on them, then the classical measurement
error model applies (Buonaccorsi 2010, chapter 1). It models the conditional
distribution of x given the true x∗. On the contrary, when for example an
experimenter is trying to achieve a target value x but the true value achieved
is x∗ which varies in repeated sampling, then the Berkson model applies. It
models the conditional distribution of x∗ given the target x (Buonaccorsi 2010,
chapter 1). In our thesis, we will further focus on the classical measurement
error model.

Measurement error can affect covariates in many different ways. If we
consider measurement error in x, the simple general definition of the linear
measurement error model states, written in our notation, that

X|x∗ = θ0 + Θ1x∗ + ∆x (3.2)

where ∆x is a random measurement error with E(∆x|x∗) = 0. (Buonaccorsi
2010, chapter 6)
Hence it follows that

E(X|x∗) = θ0 + Θ1x∗. (3.3)

Nonlinear measurement error includes the types of error where

E(X|x∗) = g(θ,x∗) (3.4)

where g(θ,x∗) is nonlinear in the θ’s (Buonaccorsi 2010, chapter 6).

Much of the literature is based around classical additive measurement error,
in which the truth is measured with additive error, usually with constant
variance. The classical additive measurement error is a special case of the linear
measurement error with θ0 = 0 and Θ1 = I where I is the identity matrix
(Buonaccorsi 2010, chapter 6).
Therefore, the classical additive measurement error is defined as

X|x∗ = x∗ + ∆x. (3.5)

Since here again we assume zero-mean measurement error ∆x with E(∆x|x∗) =
0, it follows that

E(X|x∗) = x∗, (3.6)
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3.5. Simple linear regression and additive measurement error

so X is unbiased for the unobserved x∗.

Further differentiation can be made about the form of measurement error
variances, denoted σ2

∆x, and possibly covariances. In a homoscedastic model,
the variance of X given x∗ is constant while in the heteroscedastic model the
variance varies across observations (Buonaccorsi 2010, chapter 6).

As mentioned before, in this thesis we will focus on classical measurement
error, specifically additive error. Firstly, we will allow for measurement error
both in predictor and response and possibly varying measurement error variances,
then we will narrow it down to special cases and present well-known results
for the additive measurement error model with no error in the response or
uncorrelated measurement errors. With continuously measured variables, as
in our case, the classical additive error model where the measurement error
structure is approximately normal with constant variance is often assumed.
How one could check this assumption is an open question with many possible
solutions. It has been suggested, in order to determine whether the normality
assumption holds and whether measurement errors have constant variance, to
assess the normality of the differences in replicates of a single measured value
by plotting the intra-individual standard deviation against the mean and seeing
if there are any obvious trends indicating otherwise, or by forming a qq-plot
of the differences across individuals (Carroll, Ruppert et al. 2006, chapter 1).
However, replicates required for these kinds of checks are not always available.

3.5 Simple linear regression and additive measurement
error

Consider a simple linear regression model which assumes that there is no
measurement error. Suppose we observe n data pairs {(y∗i , x∗i ), i = 1, ..n} which
denote the true values without measurement error. Then the model is defined
by

Y ∗i |x∗i = β0 + β1x
∗
i + εi, i = 1, ...n (3.7)

where Y ∗ is the response variable, x∗ the predictor and εi are independent
random variables with mean 0 and variance σ2

ε . The error term εi denotes the
error in equation, also called residual, which accounts for the lack of fit when the
model does not fully represent the actual relationship between the independent
and the dependent variables, and it has to be distinguished from potential
measurement error in the response variable (Buonaccorsi 2010, chapter 4).

Regression models are most commonly analyzed using the least squares
and maximum likelihood approach where maximum likelihood requires an
assumption about the distribution of Y ∗|x∗. The least squares method may be
either unweighted or weighted. Unweighted least squares minimizes the sum
of squared residuals to estimate the coefficients while weighted least squares
minimizes the weighted squared residuals. In the case of a heteroscedastic model
with nonconstant variance, the weighting often leads to iteratively reweighted
least squares (Buonaccorsi 2010, chapter 6).

Using the ordinary, unweighted, least squares approach, we minimize the
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3.5. Simple linear regression and additive measurement error

sum of squared residuals
n∑
i=1

(Y ∗i − β0 − β1x
∗
i )2 (3.8)

to obtain the following estimators

β̂0 = Ȳ ∗ − β̂1x̄
∗ (3.9)

and
β̂1 =

∑n
i=1(x∗i − x̄∗)(y∗i − ȳ∗)∑n

i=1(x∗i − x̄∗)2 . (3.10)

When there is no measurement error in any variables, these estimators are
unbiased (Buonaccorsi 2010, chapter 3).

The classical measurement error model, also called additive measurement
error model, assumes that one is unable to observe the true values of the
predictor and/or response variable directly but rather with some additive error.
For observation i, we define Xi as the error-prone measurement of X∗i , and if
there is error in the response, we define Yi as the error-prone measurement of
Y ∗i .

Now we substitute the error-prone measurements for the true values and
similarly, using the least squares approach, we obtain the following naive
estimators of the coefficients and the error variance

β̂0naive = Ȳ − β̂1naiveX̄ (3.11)

and
β̂1naive =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
(3.12)

σ̂2
naive =

n∑
i=1

(Yi − (β̂0naive + β̂1naiveXi))2/(n− 2) (3.13)

They are called naive because they ignore the effects of measurement error.
Without any measurement errors, these are again unbiased estimators.

Given the true x∗i and y∗i , the classical measurement error model specifies
the joint behavior of Xi and Yi as the sums of the true value and measurement
error (Buonaccorsi 2010, chapter 4). We define that given x∗i and y∗i ,

Xi = x∗i + ∆xi (3.14)

Yi = y∗i + ∆yi (3.15)
with

E(∆xi|x∗i ) = 0
E(∆yi|y∗i ) = 0

V ar(∆xi|x∗i ) = σ2
∆xi

V ar(∆yi|y∗i ) = σ2
∆yi

Cov(∆xi,∆yi|x∗i , y∗i ) = ρi.
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3.5. Simple linear regression and additive measurement error

In the above, ∆xi and ∆yi are the measurement errors in Xi and Yi,
respectively. In addition, we assume that the measurement errors (∆xi,∆yi)
are independent over i and uncorrelated with εi (Buonaccorsi 2010, chapter 4).

If either of the variables is observed exactly without any error, then the
corresponding measurement error as well as its variance and covariance is set
equal to 0.

We allowed in our definition above for a heteroscedastic measurement error
model in which the measurement error variances and covariances vary with
observation i. This could occur in practice due to many reasons such as a
change in sampling effort, change in variability in the measuring instrument or
the fact that the variance may be related to the true value. (Buonaccorsi 2010,
chapter 4)

However, since it is difficult to state any general results on the exact behavior
of naive analyses in this case, the majority of the literature has focused on
special cases of measurement error models where there is no measurement error
in y or the measurement variances do not change with i (Buonaccorsi 2010,
chapter 4). Let us look at at the special case of normal structural model with
normal additive measurement error with constant measurement error variances
as defined in Buonaccorsi (2010, chapter 4).

Normal structural model with normal additive measurement error
and constant measurement error variances/covariance

We will here consider a structural model. Assume that X∗1 , ..X∗n are independent
normally distributed random variables with mean µX∗ and variance σ2

X∗ > 0,
and that the error term εi is normally distributed with mean 0 and variance
σ2
ε . Further we assume that given the true values (y∗i , x∗i ), the measurement

errors ∆xi and ∆yi are bivariate normal and their variances, denoted by σ2
∆x

and σ2
∆y, respectively, are constant for all i, as well as their covariance ρ.

As Buonaccorsi (2010) in chapter 4 shows, if the true values (Y ∗i , X∗i ) are
distributed normally with(

Y ∗i
X∗i

)
∼ N

[(
µY ∗

µX∗

)
,

(
σ2
Y ∗ σX∗Y ∗

σX∗Y ∗ σ2
X∗

)]
(3.16)

where N stands for normal distribution, and if given y∗i , x∗i ,(
Yi
Xi

)
∼ N

[(
y∗i
x∗i

)
,

(
σ2

∆y ρ

ρ σ2
∆x

)]
, (3.17)

it follows that (Yi, Xi), as defined in Equations 3.14 and 3.15, are bivariate
normal with (

Yi
Xi

)
∼ N

[(
µY ∗

µX∗

)
,

(
σ2
Y ∗ + σ2

∆y σX∗Y ∗ + ρ

σX∗Y ∗ + ρ σ2
X∗ + σ2

∆x

)]
(3.18)

Using the assumptions from linear regression

E[Y ∗|X∗ = x∗] = β0 + β1x
∗ and V ar(Y ∗|X∗ = x∗) = σ2

ε (3.19)
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3.5. Simple linear regression and additive measurement error

which imply that

µY ∗ = β0 + β1µX∗

σ2
Y ∗ = V ar(β0 + β1x

∗ + ε) = β2
1σ

2
X∗ + σ2

ε and

β1 = σX∗Y ∗/σ
2
X∗ ,

we can rewrite Equation (3.18) as(
Yi
Xi

)
∼ N

[(
β0 + β1µX∗

µX∗

)
,

(
β2

1σ
2
X∗ + σ2

ε + σ2
∆y β1σ

2
X∗ + ρ

β1σ
2
X∗ + ρ σ2

X∗ + σ2
∆x

)]

Now applying the well-known results about conditional distribution from a
bivariate normal distribution, we have that the conditional distribution of
Yi|Xi = xi is normal with mean

µY |X = β0 + β1µX∗ + (β1σ
2
X∗ + ρ)(σ2

X∗ + σ2
∆x

)−1(xi − µX∗)

= β0 + β1µX∗ −
µX∗(β1σ

2
X∗ + ρ)

σ2
X∗ + σ2

∆x
+ x∗i (β1σ

2
X∗ + ρ)

σ2
X∗ + σ2

∆x

= β0 +
β1µX∗σ

2
X∗ + β1µX∗σ

2
∆x
− µX∗β1σ

2
X∗ − µX∗ρ

σ2
X∗ + σ2

∆x

+ xi(β1σ
2
X∗ + ρ)

σ2
X∗ + σ2

∆x

= β0 + µX∗

σ2
X∗ + σ2

∆x
(β1σ

2
∆x − ρ)︸ ︷︷ ︸

γ0

+xi
β1σ

2
X∗ + ρ

σ2
X∗ + σ2

∆x︸ ︷︷ ︸
γ1

(3.20)

and variance
σ2
ξ = σ2

ε + β2
1σ

2
X∗ −

(β1σ
2
X∗ + ρ)2

σ2
X∗ + σ2

∆x
(3.21)

This leads to the model

Yi|xi = γ0 + γ1xi + ξi (3.22)

where the error term ξi is normally distributed with mean 0 and variance σ2
ξ ,

and γ0 and γ1 are bias expressions for the naive estimators in that

E(β̂0naive) = γ0, E(β̂1naive) = γ1 and E(σ̂2
naive) = σ2

δ (3.23)

under the given assumptions (Buonaccorsi 2010, chapter 4).

Special case: no error in the response or uncorrelated
measurement errors

We assume that there is no correlation between measurement error ∆xi and
∆yi, so that ρ = 0. Then the naive slope becomes

γ1 = ( σ2
X∗

σ2
X∗ + σ2

∆x
)β1 = κβ1 (3.24)
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3.5. Simple linear regression and additive measurement error

where κ is called the reliability ratio (Buonaccorsi 2010). Since κ < 1,
we see that the naive simple linear regression of Y on X gives an estimate
which is attenuated, meaning biased, towards zero with κ defining the degree of
attenuation. The larger the measurement error, meaning the larger its variance
σ2

∆x, the stronger the attenuation of the regression slope (Buonaccorsi 2010,
chapter 4).

One expects that because X is an error-prone predictor, it has a weaker
relationship with the response than x∗. This can be seen by the attenuation as
well as by the residual variance of this regression of Y on X which is

σ2
ξ = σ2

ε + β2
1σ

2
X∗ −

(β1σ
2
X∗)2

σ2
X∗ + σ2

∆x
= σ2

ε + β2
1σ

4
X∗ + β2

1σ
2
X∗σ

2
∆x − β2

1σ
4
X∗

σ2
X∗ + σ2

∆x
=

= σ2
ε + β2

1σ
2
X∗σ

2
∆x

σ2
X∗ + σ2

∆x
= σ2

ε + κβ2
1σ

2
∆x > σ2

ε .

It is not surprising to see that measurement error, as an additional source
of error, increases the variability about the line and makes the data more noisy.

Illustration of the bias

We illustrate the bias in the coefficients by looking at a simple model similar
to the example presented by Carroll, Ruppert et al. 2006 in chapter 3. We
consider a simple regression model

Y ∗|x∗ = x∗ + ε (3.25)

where the true values x∗ are standard normally distributed with µx = 0, σ2
x = 1,

and the error term ε is independent of x∗ and has mean zero and variance
σ2
ε = 1. We assume that there is only measurement error in the single covariate
x∗ and it has mean zero and measurement error variance σ2

∆x = 0.25.

Figure 3.1: Illustration of bias in simple linear regression with measurement
error in x

In the Figure 3.1 we plotted both true and error-prone datasets together.
The solid circles and solid line display the true data (y∗, x∗) and their ordinary

17



3.6. Correcting for measurement error

regression line while the empty circles and the dashed line display the error-
contaminated data (y∗, x∗ + ∆x) and their regression line. We can clearly see
the slope attenuation and the bias in the regression line due to the additive
measurement error in the predictor since the least squares regression of y∗ on
x∗ + ∆x gives an estimate that is attenuated to zero. We can also see that the
error-prone data has much more variability about the line than the true data
due to the additional variance from measurement error. This shows that the
error-prone predictor has a weaker relationship with the response than the true
predictor (Carroll, Ruppert et al. 2006). As an effect of measurement error, the
slope is attenuated and the data are more noisy.

3.6 Correcting for measurement error

In order to correct for measurement error, additional data or knowledge of some
of the measurement error variances or their reliability ratio is required. We
have shown in Equation 3.24 that the expected value of the naive estimator of
the slope β1 in the special case of uncorrelated measurement errors is γ1 = κβ1,
that is the true β1 multiplied by the reliability ratio κ.
If the reliability ratio κ is known or can be estimated, then one will obtain an
unbiased estimate of β1 simply by dividing it by κ. The corrected estimator of
the slope becomes

β̂MM = κ̂−1β̂1naive (3.26)

where κ̂ is the estimated reliability ratio (Buonaccorsi 2010, chapter 4). It is
also called the method of moments estimator and it requires knowledge or at
least estimability of the measurement error variance in x, σ2

∆x (Carroll, Ruppert
et al. 2006, chapter 3).

The price for reducing bias is an increased variance. This is commonly
referred to as bias-variance-tradeoff. Let us assume that the naive slope estimate
β̂1naive from ordinary least squares regression of the observed variables has
mean

E(β̂1naive) = κβ1 (3.27)

for a known reliability ratio κ, and variance

V ar(β̂1naive) = σ2
β1naive

. (3.28)

The method of moments estimator of β1 which corrects for attenuation bias is
given as defined above by β̂MM = κ−1β̂1naive with mean

E(β̂MM ) = β1 (3.29)

and variance
V ar(β̂MM ) = κ−2σ2

β1naive
. (3.30)

Hence we see that the bias was reduced to zero but the variance increased
relative to the variance of the uncorrected estimate (Carroll, Ruppert et al.
2006, chapter 3).

Alternative methods for correcting bias are regression calibration or SIMEX,
which is short for simulation extrapolation. Regression calibration replaces
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3.6. Correcting for measurement error

the true x∗ by approximation of the regression of x∗ on the observed x, which
requires accurate estimates of x∗ (Carroll, Ruppert et al. 2006, chapter 4). The
basic idea of the SIMEX method is to add simulated measurement error with
increasing variance to the original data, run the statistical models with these
increasingly error-prone data, identify a trend of the model parameter estimates
versus the variance of the added measurement error, and extrapolate the trend
back to the point with no measurement error (Shang 2012). This approach is
computationally intensive as it is based on simulations but it can be applied to
measurement error models of various forms (Shang 2012).
Another method for correcting bias due to measurement error is orthogonal
regression, also known as total least squares, which we will present in the next
chapter.
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CHAPTER 4

Total Least Squares

4.1 Overview

This chapter introduces several methods proposed by Gregory L. Plett
specifically for estimation of battery cell total capacity, from traditional weighted
total least squares to approximate weighted total least squares (Plett 2011).
Total least squares is a generalization of the least squares approach in ordinary
regression which allows for measurement error in both explanatory and response
variables and is hence well suited in situations when the data are corrupted by
noise which is very often the case in engineering (Van Huffel and Lemmerling
2002, chapter 1).

4.2 Total least squares

Total least squares is a modelling technique in which measurement errors in
both dependent and independent variables are taken into account. It is closely
related to the concept of measurement error modelling discussed in the previous
chapter, which is also known as error-in-variables regression in the field of
statistics. While measurement error modelling provides statistical analysis, total
least squares is more application-oriented and it is widely used in engineering
fields like signal processing, system identification where the data modification
idea is explained from a geometric point of view independent from its statistical
interpretation (Van Huffel and Lemmerling 2002, chapter 1). In the following
section, we will present a formal definition of the total least squares method
which is the basis for Plett’s methods.

Generally speaking, total least squares is a numerical tool for finding an
approximate solution to an overdetermined system of equations Xβ ≈ y where
both the vector y and the matrix X are assumed to be measured with error
(Markovsky and Van Huffel 2007).

Assume we have a multivariate model described by the linear equation

x∗1β1 + ...+ x∗pβp = y∗ (4.1)

where the goal is to estimate the p-dimensional vector of unknown parameters
β = [β1, ...βp]T . When we measure n observations of all the variables such that
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n > p, then this model gives rise to an overdetermined set of n linear equations

X∗β ≈ y∗ (4.2)

where X∗ is an n × p data matrix and y∗ is an n-dimensional vector (Pešta
2018). It is called overdetermined because the number of equations exceeds
the number of unknown parameters. These systems are in most of total least
squares literature on purpose not formulated as an equation because in many
cases the exact solution does not exist. Therefore only an approximation can
be found and the solution yields the "best fit" of the overdetermined system
(Pešta 2018).

Ordinary east squares is the traditional approach to approximating such
an overdetermined system. It assumes that the data matrix X∗ is measured
exactly while the vector y∗ contains measurement errors ∆y, so instead of y∗
we observe the sum y = y∗ + ∆y.
The misfit in the dependent variable is minimized by

min
β∈Rp,∆y∈Rn

‖∆y‖2 such that y∗ + ∆y = X∗β. (4.3)

In the total least squares approach, we assume that both the explanatory and
response variables are observed with measurement errors ∆X and ∆y such that

X = X∗ + ∆X and y = y∗ + ∆y. (4.4)

Since instead of the true X∗ and y∗, we observe the error-prone X and y,
we can rewrite the model as

y∗ + ∆y = [X∗ + ∆X]β. (4.5)

Total least squares seeks to minimize the squares of errors in both the
dependent and independent variables by

min
[∆X∆y]∈Rn×(p+1),β∈Rp

‖[∆X∆y]‖F (4.6)

such that they satisfy the Equation (4.5) above (Pešta 2018).
The F stands for Frobenius norm which is commonly used to minimize the
measurement errors to construct the estimators. From a geometric point of
view, it tries to minimize the orthogonal distance between the observations and
a fitted hyperplane (Pešta 2013). It is defined for an n×m matrix A as

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

a2
ij . (4.7)

After a minimizing [∆X̂∆ŷ] has been found, any β satisfying the model
(4.5) is a TLS solution (Pešta 2018). A closed-form solution has been derived
to be

β̂ = ((X∗)>X∗ − σ2
p+1Ip)−1(X∗)>y∗ (4.8)

where σ2
p+1 is the smallest singular value of [X∗y∗] (Markovsky and Van Huffel

2007).
Comparing this expression to the well-known ordinary least squares solution

β̃ = ((X∗)>X∗)−1(X∗)>y∗, (4.9)
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4.3. Total least squares for battery capacity estimation

we see they are similar except for the term containing σ2
p+1. In the presence

of independently and identically distributed equally sized measurement errors,
TLS removes the bias in the OLS estimator due to measurement error by
subtracting the error covariance matrix estimated by σ2

p+1Ip from the data
covariance matrix (X∗)>X∗ (Markovsky and Van Huffel 2007).

Figure 4.1: Illustration of ordinary and total least squares methods

A graphical illustration of ordinary and total least squares can be seen in
Figure 4.1. As we can see in the OLS approach on the left side of the figure,
the independent variable is assumed to be measured without error, so a residual
represents the vertical distance between the observed point and the fitted
regression line. TLS on the other hand accounts for errors in observations on
both the x-axis and the y-axis. Hence a residual represents the shortest distance
between the data point and the fitted line, that is, the residual is perpendicular
to the line (Markovsky and Van Huffel 2007). For this reason TLS is often
called orthogonal regression.

Total least squares can be applied to both linear and non-linear models and
allows for any number of predictors and complicated error structures. It has
been extended to solve weighted, structured and regularized total least squares
problems (Markovsky and Van Huffel 2007). Weighted total least squares
which we will investigate in more detail later, should be considered when the
measurement errors are independent and have unequally sized variances. They
use appropriate scaling matrices in order to maintain consistency (Markovsky
and Van Huffel 2007). A special case of TLS for a two-dimensional dataset
(yi, xi) and independent errors is called Deming regression (Cornbleet and
Gochman 1979).

4.3 Total least squares for battery capacity estimation

Throughout this chapter we will seek to estimate the total cell capacity Q by
using the linear relationship between the explanatory variables xi, defined as
the estimated change in SOC over a time interval i = [t1, t2]

xi = SOC(t2)− SOC(t1), (4.10)
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4.3. Total least squares for battery capacity estimation

and response yi, defined as the accumulated ampere hours passing through the
cell over the same time interval,

yi =
∫ t2

t1

ηi(τ)
3600 dτ, (4.11)

as mentioned in Equation 2.8. Plett (2011) assumes the Coulomb efficiency
factor η to be approximately 1 and hence does not take its effect into considera-
tion. We will also assume η = 1 in our analysis but will later discuss how this
factor may be implemented to give more precise results.

We assume that both dependent and independent variables are measured
with error such that instead of the true values x∗i and y∗i we observe the sums

xi = x∗i + ∆xi and yi = y∗i + ∆yi. (4.12)

The goal is to find the coefficient Q in

y∗ = Qx∗ (4.13)

which can be written as

(y−∆y) = Q(x−∆x) (4.14)

where the n-dimensional vectors of measurement errors ∆y and ∆x consist of
zero-mean Gaussian random variables with known variances σ2

∆yi
and σ2

∆xi

(Plett 2011). The derivation of the linear relationship in Equation 4.13 was
presented in chapter 2 based on the Coulomb counting formula. Note that
Equation 4.13 states that if all variables are measured without any error, then
they are exactly linearly related, hence there is no error in equation. This is
typically considered to be the case in physics, where the variables are related
by certain physical laws. Plett assumes for his models that the total capacity Q
is an electrochemical property of the battery cell that is independent from both
temperature and C-rate (Plett 2011). This is a necessary assumption when
the model is defined without any error in equation. In practice, only in rare
circumstances does the real data fall exactly on the straight line in absence of
measurement error, and there is always equation error present (Carroll and
Ruppert 1996).

Plett (2011) formulates this as an optimization problem which seeks to
minimize the so-called merit function, denoted by χ2. The merit function is
a loss function commonly used in engineering and it measures the agreement
between data and the fitting model for a particular choice of parameters (Press
1992). Hence smaller merit function of a model means better fit for the data.
The parameters are usually adjusted based on the value of the merit function
until a smallest value is obtained, producing the "best fit" for the data.
Using the total least squares approach, Plett (2011) defines the merit function
as the weighted sum of squared errors ∆xi and ∆yi, therefore

χ2 =
n∑
i=1

(∆x)2

σ2
∆xi

+ (∆yi)2

σ2
∆yi

. (4.15)
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4.3. Total least squares for battery capacity estimation

In the following sections we will present three possible approaches suggested
by Plett on how to minimize this merit function. First, he applies numerical
methods to iteratively find the optimal estimate Q̂ since the merit function in
the form above does not have a closed-form analytical solution. Second, he
simplifies the merit function by assuming that the measurement error variances
σ2

∆xi
and σ2

∆xi
are proportional. Third, he derives an approximate solution to

this total least squares problem motivated by geometric relationships between
the uncertainties. We will refer to these methods by using Plett’s acronyms,
WTLS for numerical weighted total least squares, TLS for total least squares
with proportional uncertainties and AWTLS for approximate weighted total
least squares.
In addition, Plett adapts two of these methods, TLS and AWTLS, to include a
fading memory update by modifying the merit function with a forgetting factor
in such a way that it puts more emphasis on more recent rather than earlier
measurements. Furthermore, TLS and AWTLS approaches make recursive
implementation possible which may reduce storage and computational costs
when the number of measurements n becomes large. Without a recursive
update, the entire vectors x and y must be stored and the growing number of
computations becomes costly, making this method not well suited for real-time
application with limited storage and computational capabilities (Plett 2011).

Weighted total least squares - WTLS

We find an estimate of the cell total capacity Q̂ by minimizing the weighted
sum of squared errors ∆xi plus the weighted sum of squared errors ∆yi, that
is we want to find a coefficient Q̂ that minimizes the following merit function,
written in our notation as

χ2
WTLS =

n∑
i=1

(∆x)2

σ2
∆xi

+ (∆yi)2

σ2
∆yi

=
n∑
i=1

(xi − x∗i )2

σ2
∆xi

+ (yi − y∗i )2

σ2
∆yi

, (4.16)

where x∗i and y∗i are the unknown true values, and xi and yi are the noisy
measured data points (Plett 2011).

Plett’s approach is to use a Lagrange multiplier λi to augment the merit
function with the constraint that y∗i = Q̂x∗i which gives

χ2
WTLS,λ =

n∑
i=1

(xi − x∗i )2

σ2
∆xi

+ (yi − y∗i )2

σ2
∆yi

− λi(y∗i − Q̂x∗i ) (4.17)

By setting the partial derivatives of this augmented merit function equal to
zero

∂χ2
WTLS,λ

∂x∗i
=
∂χ2

WTLS,λ

∂y∗i
=
∂χ2

WTLS,λ

∂λi
= 0, (4.18)

Plett obtains the equations

x∗i =
xiσ

2
∆yi

+ Q̂yiσ
2
∆xi

σ2
∆yi

+ Q̂2σ2
∆xi

and y∗i = Q̂x∗i , (4.19)

and consequently, the merit function in Equation 4.16 can be written as
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4.3. Total least squares for battery capacity estimation

χ2
WTLS =

n∑
i=1

(yi − Q̂xi)2

Q̂2σ2
∆xi

+ σ2
∆yi

(4.20)

We minimize the merit function by setting its partial derivative

∂χ2
WTLS

∂Q̂
=

n∑
i=1

2(Q̂xi − yi)(Q̂yiσ2
∆xi

+ xiσ
2
∆xi

)
(Q̂2σ2

∆xi
+ σ2

∆yi
)2

(4.21)

equal to 0. Unfortunately deriving with respect to Q̂ does not give an expression
that would offer a closed-form solution and therefore a numerical method has
to be applied (Plett 2011).
Plett (2011) suggests to use the Newton-Raphson search to find the Q̂. It is a
numerical algorithm which iteratively approximates the roots of a differentiable
function f , meaning the solutions to f(x) = 0. When this method is applied to
the derivative f ′ of a twice-differentiable function f , it becomes an optimization
problem which numerically finds the solutions to f ′(x) = 0, hence the minima
or maxima of the function f . Starting with an initial guess x0, this optimization
method approximates at each step the function f by a second-order Taylor
expansion around the current value xt

f(x) ≈ f(xt) + (x− xt)f ′(xt) + 1
2(x− xt)2f ′′(xt) (4.22)

and constructs a sequence of updates

xt+1 = xt + f ′(xt)
f ′′(xt)

. (4.23)

As the number of iterations goes towards infinity, the sequence should converge
to a stationary point of the function f.

In our case, this sequence is constructed by iterating the equation

Q̂t+1 = Q̂t −
∂χ2

W T LS

∂Q̂

∂2χ2
W T LS

∂Q̂2

(4.24)

where the numerator is the Jacobian and the denominator the Hessian of the
merit function (Plett 2011). The iterations stop when a criterion is met, such
as the absolute convergence criterion, when the absolute difference between
the previous and current approximations is less than a predefined threshold,
|Q̂t+1 − Q̂t| < ε. The Newton-Raphson search can for example be initialized
with the ordinary least squares estimate of Q. Since the merit function is convex,
this method is guaranteed to converge to the global minimum (Plett 2011).

Since the Newton-Raphson search has to be performed on the entire data
every time new measurements are added to the vectors x and y, this method
does not allow a recursive update, which can have significant storage and
computational implications.
Plett adds the fading memory update by reformulating the merit function as

χ2
FMWTLS =

n∑
i=1

γn−i
(yi − Q̂xi)2

Q̂2σ2
∆xi

+ σ2
∆yi
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4.3. Total least squares for battery capacity estimation

where γ is the forgetting factor in the range 0 � γ ≤ 1. Hence early meas-
urements will contribute less to the merit function compared to more recent ones.

Since the weighted total least squares method does not provide a recurs-
ive solution, its application in real-time has limited storage capabilities. By
imposing additional assumptions on the form of the uncertainties in x and y,
Plett derives a simplified method to estimate battery cell total capacity which
we will present in the next section.

Simplified method with proportional uncertainties - TLS

We assume that the uncertainties on xi and yi are proportional, meaning that
there exists a constant k such that

σ∆xi
= kσ∆yi

(4.25)

where σ∆xi
and σ∆yi

denote the standard deviations of the random measurement
errors ∆xi and ∆yi for i = 1, ...n (Plett 2011). Therefore in this case, the
uncertainties must be proportionally related by a scaling factor k and cannot
be chosen arbitrarily.
The WTLS merit function in Equation 4.16 simplifies, as Plett (2011) writes, to

χ2
TLS =

n∑
i=1

(xi − x∗i )2

k2σ2
∆yi

+ (yi − y∗i )2

σ2
∆yi

=
n∑
i=1

(yi − Q̂xi)2

(Q̂2k2 + 1)σ2
∆yi

(4.26)

This merit function can again be minimized by setting the partial derivative
equal to zero, and consequently, Plett (2011) finds the exact solution to Q̂ to
be one of the roots

Q̂ =
−
(∑n

i=1(x2
i − k2y2

i )/(σ2
∆yi

)
)
± a

2
∑n
i=1 k

2(xiyi)/σ2
∆yi

with a =

√√√√( n∑
i=1

(x2
i − k2y2

i )/(σ2
∆yi

)
)2

+ 4k2

(
n∑
i=1

(xiyi)/(σ2
δyi

)
)2

.

(4.27)

Plett shows that this quadratic equation always has one positive root and one
negative root and argues that due to the form of the Routh array, the larger,
thus the positive root is the correct solution to Q̂ (Plett 2011).

This method can be implemented in a recursive way by defining running
sums which get updated whenever new measurements are obtained. Fading
memory can also be added to the merit function with the forgetting factor γ in
the same way as previously.

This method offers a closed-form solution without any numerical computations.
However, it puts a constraint on the relationship between the uncertainties in x
and y. In the next section, we will introduce an approximation to total least
squares which both gives an exact analytical solution and allows for arbitrary
uncertainties.
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4.3. Total least squares for battery capacity estimation

Approximate weighted total least squares - AWTLS

Figure 4.2 shows the geometric relationship between the noisy measurement
point (xi, yi) and its true value (x∗i , y∗i ) on the line y∗ = Q̂x∗ which motivates
this approximate solution derived by Plett (2011). We force the line connecting
the points (xi, yi) and (x∗i , y∗i ), denoted by Ri, to be perpendicular to the line
y∗ = Q̂x∗, as in TLS (Plett 2011).

Figure 4.2: Illustration of derivation of approximate WTLS

We define δxi to be the distance along the x-axis, and δyi to be the distance
along the y-axis between a data point i = (xi, yi) and the line, for all i = 1, ...n.
Then the slope of the line is

Q̂ = δyi
δxi

∀i = 1, ...n. (4.28)

The angle of the line is then

θ = tan−1 Q̂. (4.29)

The shortest distance between the line and a given data point (xi, yi) can be
computed as Plett (2011) writes, in our notation, by

Ri = δyi cos θ = δyi/
√

1 + tan2 θ = δyi/

√
1 + Q̂2. (4.30)

Let measurement errors in xi and yi be denoted as before by ∆xi and
∆yi. From Figure 4.2 we see that they are the x- and y-components of the
perpendicular distance between the noisy measurement points and the true
values on the line (Plett 2011). Hence they can be defined by

∆xi = Ri sin θ and ∆yi = Ri cos θ. (4.31)
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Using that

sin2 θ = 1− cos2 θ = Q̂2

1 + Q̂2
, (4.32)

we can write

∆x2
i =

(
δy2
i

1 + Q̂2

)(
Q̂2

1 + Q̂2

)
(4.33)

and
∆y2

i =
(

δy2
i

1 + Q̂2

)(
1

1 + Q̂2

)
. (4.34)

In addition, it holds that δyi = yi−Q̂xi (Plett 2011). By combining all these
equations above, the initial merit function in Equation 4.16 can be rewritten,
according to Plett (2011), as

χ2
AWTLS =

n∑
i=1

(∆x)2

σ2
∆xi

+ (∆yi)2

σ2
∆yi

=
n∑
i=1

(yi − Q̂xi)2

(1 + Q̂2)2

(
Q̂2

σ2
∆xi

+ 1
σ2

∆yi

)
. (4.35)

The partial derivative with respect to Q̂ becomes a quartic equation whose
roots are candidate solutions for Q̂. Plett proposes to use the Ferari method to
find the four roots and selects the optimum to be the one that gives the lowest
value of the merit function (Plett 2011).

This method allows a simplification of the merit function using trigonometric
identities and it has the same advantageous properties as TLS, such as a closed-
form solution, a recursive implementation and a fading memory update. Most
importantly, it allows for individual weighting on the data points.
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CHAPTER 5

Model for measurement
uncertainties

5.1 Overview

In this chapter, we present one possible way of modelling the measurement
uncertainties in x and y applicable to our data. For the variable x we are able
to derive bounds for the measurement error variance given information from our
data provider. For the response variable y we differentiate between regular and
irregular sampling intervals, and while the uncertainty in y is more complicated
to quantify, we are able to come to the conclusion that the measurement error
variance increases with the length of the time interval we integrate over. We
will show that our conclusion holds by creating simulations of current.

5.2 Error Quantification and Propagation

We obtained a large sample of observations of current and state of charge which
were all subject to error or uncertainty. However, the response and predictor
variables in our linear model are not these measurements directly, but functions
of them. When we want to determine a variable that is a function of one or
more different measured variables, we must carry over the uncertainties in these
individual measurements to determine the uncertainty in the target variable.
This is called propagation of errors. (Bevington and Robinson 1992, chapter 3).
Suppose we have two measured variables, u and v, which have variances σ2

u,
σ2
v and covariance σuv. We can express the variance of a dependent variable
x = f(u, v) for a function f in terms of the variances of u and v according to
Bevington and Robinson (1992) by

σ2
x = σ2

u

(
∂x

∂u

)2
+ σ2

v

(
∂x

∂v

)2
+ 2σuv

(
∂x

∂u

)(
∂x

∂v

)
(5.1)

If x is the weighted sum of u and v, defined as x = au+ bv for constants a, b,
then we obtain the following uncertainty in x

σ2
x = a2σ2

u + b2σ2
v + 2abσuv. (5.2)

The expression (5.1) is also known as the error propagation equation and we
will apply it in the next sections to approximate uncertainties in our x and y
variables.
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5.3. Measurement uncertainty in x

5.3 Measurement uncertainty in x

Assume that we have a set of n observations of state of charge, SOC, at sampling
times t = {t1, ...tn} and let SOCk denote the observed state of charge at time
tk for all k = 1, ....n.
We previously defined the predictor x as the difference between two SOC
values in a time interval. Assume that we are unable to observe the true SOC
measurement but rather observe the sum

SOCk = SOC∗k + δk ∀k = 1, ...n (5.3)

with SOC∗k as the true state of charge at time tk and δk as the measurement
error. Here we are modelling the functional case, as defined in chapter 3, where
the true values SOC∗k are fixed and not random variables. We were informed
by our data provider that δk is approximately a zero-mean Gaussian variable
with standard deviation σδ = 2.5, hence it has variance σ2

δ = 6.25.
For a chosen time interval i = [tm, tl] where tm, tl ∈ t, 1 ≤ m < l ≤ n, we then
define our input variable as

xi = SOCl−SOCm = (SOC∗l +δl)−(SOC∗m+δm) = (SOC∗l − SOC∗m)︸ ︷︷ ︸
x∗

i

+ (δl − δm)︸ ︷︷ ︸
∆xi

(5.4)
where x∗i is the difference between the true SOC values and ∆xi is the
measurement error in xi. Thus we see that the equation above has the same
form as equation (3.14) in chapter 3.
Since δk as a zero-mean Gaussian variable has E[δk] = 0, then

E(SOCk) = SOC∗k ∀k ∈ {1, ...n}, (5.5)

and
E[xi] = SOC∗l − SOC∗m ∀l,m ∈ {1, ..n}, 1 ≤ m < l ≤ n. (5.6)

The variance of xi is defined as

σ2
xi

= V ar(xi) = V ar((SOC∗l − SOC∗m) + (δl − δm)) (5.7)
= V ar(δl − δm) = E[(δl − δm)2]− E[(δl − δm)]2 = E[(δl − δm)2] (5.8)

since SOC∗k are fixed values for all k ∈ {1, ...n}, and therefore have variance 0.

The variance of measurement error ∆xi can be calculated by

σ2
∆xi

= E[(δl − δm)2]− E[δl − δm]2 = E[δ2
l − 2δlδm + δ2

m] =
E[δ2

l ]− 2E[δlδm] + E[δ2
m] = V ar(δl)− 2E[δlδm] + V ar(δm) =

2σ2
δ − 2E[δlδm] (5.9)

which is in accordance with the error propagation equation in (5.1) by which

σ2
∆xi

= 2σ2
δ − 2Cov(δl, δm) = 2σ2

δ − 2E[δlδm] (5.10)

If the individual measurement errors δk are independent for all k ∈ {1, ...n},
then 2E[δlδm] = 0 ∀l,m ∈ {1, ..n}, 1 ≤ m < l ≤ n and the variance of ∆xi
becomes the sum of the two variances

σ2
∆xi

= 2σ2
δ . (5.11)
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On the contrary, if they are fully dependent and the measurement error can
be modelled as a constant bias over the time span where we are generating the
xi’s, then 2E[δlδm] = 2σ2

δ and the measurement error variance becomes

σ2
∆xi

= 0. (5.12)

While there may be some dependency which we are unable to quantify
between SOC values measured close in time to each other, it is reasonable
to assume that the measurements become independent as the time interval
between them increases and the variance of their difference reaches the upper
bound of 2σ2

δ in (5.11). We conclude that the actual variance of the difference
between any two SOC measurements is somewhere in the range from 0 to 2σ2

δ ,
therefore σ2

∆xi
∈ [0, 12.5].

5.4 Measurement uncertainty in y

The response variable y is generated by integrating the current signal I(t) over
a given time interval. Assume that we have a set of n observations of current
at sampling times t = {t1, ...tn} and let Ik denote the current value at time tk
for all k = 1, ...n.
For a chosen time interval i = [tm, tl] where tm, tl ∈ t, 1 ≤ m < l ≤ n, we then
define our response variable as

yi =
∫ tl

tm

I(τ) dτ (5.13)

Since we only know the function I(t) at isolated measurement points, we
cannot determine the exact integral analytically but will have to use numerical
integration methods to approximate the integral with our observations. We will
use the simplest numerical integration method which calculates the area under
a function by partitioning the region into rectangles and then adding all of their
areas together. We will approximate the integral above using observed values
of current, Ik, obtained at sampling times tk within the integration interval i,
such that tm ≤ tk ≤ tl. The length of the integration interval is denoted as
∆i = tl − tm.

Again, we assume that the values of current we observe are not the true
values but they are are measured with a corresponding additive measurement
error. In the next sections, we will differentiate between two cases depending
on the sampling technique.

Current measurements obtained at regular intervals

We consider the case where the integral is calculated from measurements
obtained at regular intervals. Assume as before that we have a sequence
of n measurements of current, denoted Ik, obtained at sampling times tk,
k ∈ 1, ...n. Since we assumed that the sampling times are regular, the time
steps tk form a uniform partition of the sampling interval [t1, tn] and the step
length between any two consecutive measurements is constant and denoted
by θ = tk+1 − tk = (tn − t1)/n ∀k ∈ {1, ...n− 1}. Let N denote the number
of measurements observed in the integration interval i = [tm, tl], so that
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N = l − m + 1. Note that the length of the integration interval can be
written as ∆i = (l −m) · θ = (N − 1) · θ .
We are not able to observe the true current values I∗k but rather noisy
measurements which can be written as the sum

Ik = I∗k + ξk (5.14)

where I∗k is the fixed true current value and ξk is the random measurement
error. It is reasonable to assume that these measurement errors are independent
zero-mean random variables with

E[ξk] = 0 (5.15)

and
E[ξkξl] = 0 ∀k, l ∈ {1, ...n}, k 6= l. (5.16)

The variance of the measurement errors is constant and it is denoted by σ2
ξ .

Figure 5.1: Illustration of regular current measurements with the corresponding
numerical integral

The integral yi can be estimated using a first order numerical approximation

yi =
∫ tl

tm

I(τ) dτ ≈
l−1∑
k=m

Ik · θ =
l−1∑
k=m

(I∗k + ξk) · θ = y′i. (5.17)

Figure 5.1 shows regular current measurements I1, ...I5 and the blue filled areas
of the rectangles illustrate the numerical integral as we calculate it. We can
bring the expression above on the same form as (3.15) by writing

y′i =
l−1∑
k=m

(I∗k + ξk) · θ =
l−1∑
k=m

I∗k · θ︸ ︷︷ ︸
y′∗

i

+
l−1∑
k=m

ξk · θ︸ ︷︷ ︸
∆y′

i

(5.18)
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where the first sum describes the numerical approximation of the true y∗i and
the second sum is the aggregated measurement error. We have that the expected
value of y′i is

E

[
l−1∑
k=m

(I∗k + ξk) · θ
]

=
l−1∑
k=m

E[(I∗k + ξk) · θ] =
l−1∑
k=m

θ(E[I∗k ] +E[ξk]) =
l−1∑
k=m

θ · I∗k

(5.19)
and the variance of y′i is given by

σ2
y′

i
= V ar(

l−1∑
k=m

I∗k · θ +
l−1∑
k=m

ξk · θ) = V ar(
l−1∑
k=m

ξk · θ)

= θ2
l−1∑
k=m

V ar(ξk) + 2θ2
∑

m≤i<j≤l−1
Cov(ξi, ξj) = θ2

l−1∑
k=m

V ar(ξk)

= (l −m) · θ2 · σ2
ξ = (N − 1) · θ2 · σ2

ξ = ∆i · θ · σ2
ξ = ∆2

i

N − 1 · σ
2
ξ

(5.20)

The last two equalities hold since we have θ = ∆i/(N − 1). From this
expression we see that on one hand, for a fixed length of integration intervals,
∆i, the variance σ2

y′
i
of the numerical approximation decreases with a shorter

sampling interval θ, hence with an increasing number of samples N . Therefore
a higher frequency of samples in a given fixed integration interval ∆i gives lower
measurement uncertainty in the numerical approximation y′i. On the other
hand, if we want to analyze the effect of varying integration interval length ∆i,
we assume that the sampling interval θ is fixed, such that the number of samples
per second is fixed. The variance σ2

y′
i
which can be written as above ∆i · θ ·σ2

ξ is
then a linear function of ∆i and hence a linear function of the duration of the
integration interval. We can conclude that when integrating current over time,
the measurement uncertainty linearly increases with the integration interval
length if the sampling interval length θ is fixed. If the number of sampling
intervals is kept fixed at N , then the measurement uncertainty will increase
quadratically with the sampling interval length θ according to Equation 5.20.

When estimating the uncertainty in the integral yi, it is not sufficient to only
consider the propagated measurement error in the finite sum approximation.
The error introduced by the numerical integration also needs to be taken
into account. Thus the total error consists of two components, firstly the
measurement error, and secondly, the error in approximating the integral by a
finite sum. We call this the numerical integration error. This error depends
on the relationship between the dynamics and smoothness of the current as
well as the length of the sampling interval, and decreases when the sampling
intervals become shorter. If the sampling intervals were very small relative to
the change in the signal within this interval length, with a sampling rate of
a few milliseconds at most, one could assume that the numerical integration
error is negligible compared to the measurement error and that our numerical
approximation in (5.18) converges to the integral in (5.13). This is not the
case in our data, and without a proper lab setup to accurately quantify the
integration error, the numerical integration error remains unknown. We can
conclude that when the measurements are obtained at regular intervals, the
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5.4. Measurement uncertainty in y

measurement error variance is linear with integration time, and we will verify
the results we derived above with simulations in the next subsection.

Simulations of regular current measurements

We want to show that with a constant sampling rate θ, the measurement error
variance grows linearly with increasing integration interval length. We assume
that the true current signal I∗k has value zero over a time period. Then it
follows that the integrated current yi is also 0 over any integration interval
i. We generate 10 000 noisy zero-mean measurements of current, denoted Ik,
with variance σ2

ξ = 1 at regular timesteps tk as can be seen in 5.2, so that the
interval length between two measurements, θ, is constant and equal to 1 second.
We calculate the noisy numerical integrals over for instance 1000 seconds each,

Figure 5.2: Illustration of piecewise constant current measurements at regular
sampling frequency of 1 second

so that the integration interval length is fixed at ∆i = 1000, and compute the
variance of these. By resampling 100 times and averaging over these variances,
we will verify that our derivation of the measurement error variance σ2

y′
i
in

(5.20) is correct. Since true current I∗k is 0, the numerical integral we compute
is just the measurement error ∆y′i in (5.18).

The results of our simulations can be seen in figure 5.3. The blue circles
in the plot illustrate the measurement error variance computed numerically
for varying integration lengths from 60 s to 1200s, meaning for integration
lengths ∆i in the range [1, 20] min on the x-axis. The black line illustrates
the analytically computed measurement error variances as in (5.20) and it
corresponds well with the blue points, confirming our previous derivations.
These simulations verified that the measurement error variance grows linearly
with increasing ∆i.
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5.4. Measurement uncertainty in y

Figure 5.3: Illustration of measurement error variances computed analytically
and numerically for varying integration interval lengths ∆i at a constant
sampling frequency θ

Current measurements obtained at irregular intervals

Now we consider the case when we have irregular sampling frequency, meaning
that the current measurements are obtained at irregular intervals. The data
appears to be stored based on both asynchronous and synchronous sampling.
The former refers to a technique where samples are only stored when the current
value exceeds a certain threshold T . The latter describes a technique where
a new data point is stored at fixed time steps even when the value does not
change from the previous data point. Therefore the current is sampled regularly
with an underlying sampling frequency but no samples are stored unless the
measured current has changed more than T since the previous stored value.
This causes irregular sampling times.
Assume we have a sequence of n measurements of current, denoted Ik, obtained
at sampling times tk, k ∈ {1, ...n}. Further assume that a current measurement
Ik−1 is obtained at time tk−1. We know that until the next current measurement
is obtained at time tk, the actual current signal is somewhere inside the band
Ik−1 ± T as can be seen in figure 5.4.

Using the same numerical integration method as before, we integrate the
current between any two consecutive time steps tk−1 and tk by computing the
area of the rectangle

zk = Ik−1 · (tk − tk−1) = Ik−1 · θk ∀k ∈ {2, ...n} (5.21)

with initial value z1 = 0 since at time t1 the integral is 0. Here θk denotes the
time interval length between two measurements Ik and Ik−1. The error due to
numerical integration can for this single zk be bounded by

ek = T · θk ∀k ∈ {2, ..n}. (5.22)
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5.4. Measurement uncertainty in y

Figure 5.4: Illustration of irregular current measurements with threshold T and
the corresponding numerical integral

This error is proportional to the duration of the interval θk and the threshold
T .

When we calculate our response yi, we integrate over many of these time
intervals θk included in the integration interval i = [tm, tl]. Similarly as in the
case with regular measurements, we define

yi =
∫ tl

tm

I(τ) dτ ≈
l−1∑
k=m

zk+1 =
l−1∑
k=m

Ik ·θk+1 =
l−1∑
k=m

(I∗k +ξk) ·θk+1 = y′i. (5.23)

which can be written as (3.15) by writing

y′i =
l−1∑
k=m

(I∗k + ξk) · θk+1 =
l−1∑
k=m

I∗k · θk+1︸ ︷︷ ︸
y′∗

i

+
l−1∑
k=m

ξk · θk+1︸ ︷︷ ︸
∆y′

i

(5.24)

Assuming as before that the measurement errors ξk are independent mean-zero
random variables with variance σ2

ξ , we can derive the expected value of y′i

E

[
l−1∑
k=m

(I∗k + ξk) · θk+1

]
=

l−1∑
k=m

E[(I∗k + ξk) · θk+1] =
l−1∑
k=m

θk+1(E[I∗k ] + E[ξk])

=
l−1∑
k=m

θk+1 · I∗k

(5.25)
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and the variance by

σ2
y′ = V ar

(
l−1∑
k=m

ξk · θk+1

)
=

l−1∑
k=m

θ2
k+1V ar(ξk) =

l−1∑
k=m

θ2
k+1σ

2
ξ = σ2

ξ ·
l−1∑
k=m

θ2
k+1

(5.26)
due to the independence of ξk.

In addition to the propagated measurement errors in the finite sum, we need
to take into account the numerical integration error. We can approximate its
upper bound by adding ek defined in (5.22) over the time stamps included in
the integration interval by

l−1∑
k=m

ek+1 =
l−1∑
k=m

T · θk+1. (5.27)

Simulations of irregular current measurements

Here we will again only simulate measurement error, and not the additional
numerical integration error due to the asynchronous sampling. We assume that
the true current signal I∗k is constant zero over a time period. Then it follows
that the integrated current yi is also 0 over any integration interval i. The
current is measured at the start of each interval, with a measurement error of
variance σ2

ξ = 1. We generate 10 000 noisy zero-mean measurements of current,
denoted Ik, with variance σ2

ξ = 1 at irregular timesteps tk as can be seen in 5.4,
so that the interval lengths between two measurements, θk, are integers drawn
uniformly from θk ∈ [1, 60] seconds.

Figure 5.5: Illustration of simulated piecewise constant current measurements
obtained at irregular time steps
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For each partition of the entire sampling interval, we compute the
measurement error variance by taking the differences between the true and
error-prone integrals and then computing the variance of these. We resample
this process 100 times and take averages of the variances to get more consistent
estimates. The following plot shows the measurement error variance as a function
of increasing integration interval lengths ∆i on the x-axis, and motivates us to
believe that also for this irregular sampling strategy, the measurement error
variance is increasing with integration time. In fact, it increases faster than in
the case of regular sampling.

Figure 5.6: Illustration of measurement error variance for varying integration
interval lengths ∆i

Altogether, we can conclude that the uncertainty in y is a function of
measurement error and numerical integration error, and although we have to
assume it to be unknown due to lack of any additional information, we showed
that it increases with integration time. In the next chapter we will present our
datasets and the data cleaning steps we took.

38



CHAPTER 6

Data Preparation

6.1 Overview

Data cleaning is the process of preparing the data for statistical analysis and
it is a fundamental part of data science. To ensure that the data is of high
quality, it needs to pass a set of criteria. Incorrect, irrelevant, incomplete or
duplicated data is not very helpful in the analysis and may in fact provide
inaccurate results. There are various methods for cleaning data and in this
chapter, we will present our datasets and describe all measures taken in the
data preparation stage, such as the usage of a resampling strategy, handling
of outliers and data gaps, in order to maximize the data accuracy. One of the
main challenges in the data management and analysis has been the enormous
quantity of data available.

6.2 About datasets

We are working with real battery sensor data from the Norwegian battery
producer Corvus Energy. This data set is from four years of operation of an
electric vessel. The operational dataset we will use pertains to a hybrid vessel,
that is, a vessel that can combine electric and diesel propulsion system. The
battery system is composed of two arrays where each array has 9 packs in parallel.
The structure of a pack is illustrated in Figure 6.1. Each pack comprises 21
modules connected in series and each module has a 12s2p configuration of 75 Ah
cells, meaning that it is a series of 12 elements, each consisting of 2 parallel cells.
Then the capacity per module is 150 Ah. Since the pack is composed of modules
in series, the nominal capacity of each pack is also 150 Ah. For every year from
2015 to 2019 and for each of the nine battery packs we obtained two separate
large datasets of current and State of Charge (SOC) values. The datasets of one
pack in one year for both current and SOC values combined contain typically
around 10-15 million observations. The current measurements are given in
amperes while SOC values are given as integers expressing percentages. Data
of such a significant quantity present big challenges in terms of computational
time when loading, handling and modifying it.

Moreover, the datasets are not complete and the amount of collected
measurements is irregular and seems to vary depending on the time of the
year as can be seen in the histograms in Figure 6.2. Since the operating
schedule of a vessel may vary throughout the year, the frequency of the samples
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6.2. About datasets

Figure 6.1: Illustration of a pack of modules connected in series

Figure 6.2: Histograms illustrating the amount of SOC and current data points
collected for each month in years 2018 and 2019 for battery pack 1

is lower during some months or there are longer time windows when the vessel
is not operating at all. The completeness of the datasets should be considered
during the analysis and later we will present how we handled such data gaps.

The initial step in the cleaning process was the removal of duplicates and in-
valid data. By duplicates we mean multiple measurements which were recorded
at the exact same timestamp, and by invalid data we refer to measurements
which were generated incorrectly and do not conform to some range constraints.
For example, SOC values which are outside of the range [0, 100]% cannot
possibly be measured by the definition of SOC and should be removed if they
are found in the datasets.
Furthermore, we arranged the measurements chronologically based on the time
stamps at which they were collected and created subsets of datasets for each
year so that the SOC and current measurements cover the same time range,
that is they start and end at the same time stamp of the particular year.

Figures 6.3 and 6.4 show plots of SOC and current measurements during
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6.3. Resampling strategy

Figure 6.3: Example illustration of SOC values on February 5th 2019

Figure 6.4: Example illustration of current measurements on February 5th 2019

one full day of vessel operation. We can see how the cycles vary throughout the
day. Current measurements remain mostly within the range [−150, 150]A while
the SOC values vary between 50% and 90%. Current of 150 A corresponds
to a C-rate of 1 since the nominal capacity of the battery pack is 150 Ah.
Next we will present the steps we took to modify the raw SOC and current
measurements to bring them on the final form of the x and y variables required
for our statistical modelling.

6.3 Resampling strategy

The time intervals between individual measurements of current in the raw data
vary a lot which may lead us to believe that the data follows the asynchronuous
storage technique described in chapter 5. According to this technique, data
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6.4. Data gaps

is not immediately backed up if the new value is within a fixed band T of
the previously stored measurement. A simple and effective solution for such
irregularly sampled time series data is to apply a resampling strategy which we
will describe in the following section through various steps.

For our statistical model we defined the response variable y as integrated
current over a time interval and the explanatory variable x as the difference in
SOC values at the start and end of the same time interval. For measurement
data, it is not possible to determine the integral exactly since the function
of the current signal is only sampled at discrete time stamps. Therefore, we
need to use numerical integration to approximate the integral of the function,
as described in the previous chapter. If we assume that the measurements in
our data are only recorded if they exceed a certain band around the previous
observation, it is reasonable to approximate the integral with the left Riemann
sum. Left Riemann sum is computed by summing up areas of rectangles at
each measurement point where the height of each rectangle is determined by
the value of the current measured at the left endpoint of the interval.

We implemented the numerical integration in the following way. Let the
current measurements obtained at t = {t1, t2, ...tn} timestamps be denoted
I = {I1, I2, ...In}. At each timestamp ti for i = 1, ...n we compute a numerical
integral from t1 until ti using left Riemann sum, resulting in a vector of
cumulative sums R1, ..Rn, as described in the algorithm below.

Algorithm 1 Cumulative numerical integral sum
R1 ← 0
for k ← 2 to n do

Rk ← Rk−1 + Ik−1 · (tk − tk−1)
end for

Next we linearly interpolate the cumulatively integrated current R1, ..Rn
at time stamps which split the entire time range [t1, tn] uniformly into time
intervals of a chosen length. These time intervals are the integration intervals.
Finally, we generate the response variable y by taking successive differences of
the interpolated values in these newly constructed regular intervals.

We apply a similar procedure to the SOC and interpolate the values at
the same time stamps as we used for current. We get the target explanatory
variable x by taking successive differences between the interpolated values.

6.4 Data gaps

There are time windows of different lengths in the raw data in which no
measurements at all were recorded. An example of such a time period can be
seen in Figures 6.5a and 6.5b where no measurements were stored for 20 days.
After the linear interpolation of the datasets over an entire year described in the
previous step, artificial data points in these time windows are being constructed
which do not represent actual measurements and have no statistical meaning.
It is therefore reasonable to remove all variables x and y which fall inside these
datagaps. Given that one cycle is approximately one hour long, as can be seen
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(a) Current

(b) SOC

Figure 6.5: Illustration of a data gap between September 10th-30th 2019

in Figure 6.4, we decide to use a fixed limit of 15 minutes and remove all y and
x variables that were calculated over time intervals falling fully or just partly
into any such time gaps without any current measurements of minimum length
15 minutes.

6.5 Outliers

The datasets contain several bit errors due to an unknown cause. Some of the
bit errors appear in signal names and timestamps, and can easily be detected
and discarded. However, other errors appeared in the numerical values and
thus appeared as outliers in the measurements. Therefore, the raw datasets for
both current and SOC contain a few outliers which deviate significantly from
the overall pattern of the other observations. Outliers should be investigated
since they can contain valuable information about the data and its collection.
We find that the outliers in our current data represent actual measurements
that have been corrupted. Keeping them in the raw data may cause unusual
behavior in the integrated current.
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6.5. Outliers

In order to remove outliers from both current and SOC values, we wrote an
outlier detection algorithm that finds spikes in the data in the following way.
For each measurement of current Ij we compute the differences ∆Ij

= Ij − Ij−1
and ∆Ij+1 = Ij+1 − Ij , where Ij−1 and Ij+1 are the previous and following
measurement, respectively. If both of the ∆’s have opposite signs and their
absolute values exceed a certain fixed limit θI , this indicates that Ij is an outlier.
The question is how to choose such threshold θI . We find that a θI = 200 A is
sufficient to filter out the largest outliers in current which are incorrect with
high probability and may influence our analysis. Spikes in the current signal
can occur from a physical point of view due to for example sudden turning on
and off the load, and therefore we choose this limit high to make sure no real
observations are filtered away.
We apply the same algorithm to detect sudden spikes in SOC, filtering out
values using threshold θSOC = 30%. Furthermore, one needs to consider the
time steps between the measurements when computing the differences between
their values. For example, we saw that our current measurements as seen
in Figure 6.4 vary approximately from -150 A to 150 A, so the maximum
C-rate achieved is 1. The battery pack of capacity 150 Ah goes from fully
charged to fully discharged in one hour at a C-rate of 1, which corresponds to
a ∆SOCj

= 100/60 ≈ 1.67 in one minute. So an SOC change within a minute
which deviates greatly from this value seems unrealistic. Since we remove time
windows containing no measurements which exceed 15 minutes as discussed
in the previous chapter, the largest time step between two SOC values is 15
minutes. Hence, since the same C-rate of 1 would give a difference of 25 over a
15 min interval, a limit θSOC of 30 for SOC seems rather reasonable.
After finding all outliers in both current and SOC data, we remove all x and y
variables which were computed over time intervals including any outliers. By
discarding periods where an outlier occurs, not just the measurement itself, the
outlier removal will reduce the size of the dataset, but it should not affect the
estimates in other ways.

SOC value in % timestamp
61 2019-09-10 10:11:21.34
62 2019-09-10 10:12:31.44
63 2019-09-10 10:13:39.54
2 2019-09-10 10:14:31.38
63 2019-09-10 10:14:32.46
64 2019-09-10 10:14:47.35
65 2019-09-10 10:15:54.39

Table 6.1: Example of an outlier in the SOC

Tables 6.1 and 6.2 show examples of outliers found in the SOC and current
data for pack 1 from year 2019. SOC cannot realistically go from 63 to 2
percent in less than a minute since that would correspond to a C-rate of 36.6,
which is clearly outside the possible range. Besides, current of 992 A would
correspond to a C-rate of 6.6 which may be allowed for a few seconds but seems
rather unrealistic from a physical point of view. Both of these outliers are also
illustrated in Figures 6.6a and 6.6b.
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(a) Current outlier

(b) SOC outlier

Figure 6.6: Outliers in current and SOC

Current value in A timestamp
34 2019-07-09 02:52:20.22
34.9 2019-07-09 02:52:21.24
35.9 2019-07-09 02:52:23.21
992.1 2019-07-09 02:52:25.25
37.3 2019-07-09 02:52:27.18
36.8 2019-07-09 02:52:28.19
34.3 2019-07-09 02:52:30.18

Table 6.2: Example of an outlier in the current

An alternative way of removing outliers which we did not apply to our data
is to simply filter out unrealistic measurements which exceed the allowed range
of C-rates specified by the battery manufacturer. For the battery packs we
are working with, the maximum C-rate during discharge should not exceed 4,
while during charge, the maximum C-rate allowed is 3C, which corresponds to
maximum current of 600 A and 450 A, correspondingly. Over short periods
of a few seconds even higher C-rates are allowed as sudden changes can occur
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(a) Current

(b) SOC

Figure 6.7: Illustration of zero values in current measurements with correspond-
ing SOC values

when for example turning on and off the load. This approach provides a
straight-forward solution which is easy to implement.

6.6 Zero values in current

We decide to remove intervals where the batteries are not in use and therefore,
the current is not flowing and has value 0 over many consecutive measurements.
When there is no current flow, then in principle the SOC does not change, if
we disregard any self-discharge. Periods where the battery is not used, are not
valuable when estimating its state, and may skew the results of the analysis.

We remove them in the following way. In the integrated and interpolated
current data resulting in the final y variables, we find all values equal to 0
and check that the original current measurements are also all equal to 0 in the
corresponding time interval, thereby making sure that the zero is not just a
result of summing up positive and negative charge. For all y with value equal
to 0, if the raw current measurements collected over the time interval used for
numerical integration of the y variable are also all zero, then we remove the
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(a) Before (b) After

Figure 6.8: Illustration of variables before and after data cleaning from pack 1
in 2019 with regular 10 minute integration intervals

value from the final dataset. Finally, we also remove all x values obtained over
the same time interval. Figures 6.7a and 6.7b show such periods of several days
in the raw data where the current was measured to be equal zero while the
SOC stayed constant.

raw current 14728368
raw SOC 322679

y
After resampling 50600
After gap removal 47949

After irrelevant zeroes removal 45812
After outliers removal 45810

Table 6.3: Number of datapoints for pack 1 2019 after each data cleaning process

Table 6.3 shows the amount of data points left after each data cleaning
process for battery pack 1 in year 2019. Starting from very large samples of both
current and SOC, we resampled using integration intervals of 10 minutes and
obtained 50600 points of variable x and y each. For x and y each, approximately
5.2% of these data points were removed during data gap removal, other 4.2%
were removed during the removal of zero values in current and only two outliers
were found in the dataset, hence less than 10% of the data were removed in
total during data cleaning, which some might consider a negligible amount.

The Figure 6.8 illustrates the difference between the variables x and y as
obtained from the above described resampling strategy from battery pack 1 in
2019, and after we removed all data gaps, outliers and irrelevant zero current
values. Fitting a simple linear regression of y on x in both cases gives estimated
capacity Q̂before = 125.9 Ah and Q̂after = 125.8 Ah, so we see that data
cleaning affects the estimates to only a small extent.
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CHAPTER 7

Results

7.1 Overview

In this chapter we will present the results from the WTLS methods and compare
these to OLS. We will discuss how to approximate the measurement uncertainties
and evaluate which ones give a good fit based on a goodness of fit criterion.
Lastly we will compute confidence bounds to give an idea about the uncertainty
of our capacity estimates and compare our results with one annual SOH test.

7.2 Initial results using OLS

First we will ignore the presence of measurement errors and look at the naive
capacity estimates we obtain from ordinary linear regression. In Figure 7.1

Figure 7.1: Illustration of yearly OLS estimates of capacity Q for all battery
packs with 10 min integration intervals
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we computed an estimate for each year from 2015 to 2019 for each of the 9
packs, illustrated with different colors. Most of the packs show a moderate
degradation trend as expected. We will closer investigate battery pack 5.

Figure 7.2: Illustration of yearly OLS estimates of capacity Q for pack 5 with
10 minute integration intervals

Figure 7.2 illustrates capacity estimates computed for each year separately
for pack 5. We see that the capacity decreases from 138.25 Ah to 125.39 Ah,
which corresponds to an SOH degradation by approximately 9%, considering
the battery pack has nominal capacity of 150 Ah.

Figure 7.3: Illustration of monthly OLS estimates of capacity Q for pack 5 with
10 minute integration intervals
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Figure 7.3 illustrates capacity estimates computed for each month separately
instead of year. In 2015, no estimates were obtained in November and December
due to missing data. The overall trend is that the capacity is decreasing but the
estimates vary a lot. This variation may explained by variations in the operation
of the battery, seasonal variations in the temperature or other parameters not
taken into account in this work.

Figure 7.4: Current data for pack 2 in september 2018

From Figure 7.1 we notice that the results for packs 1 and 2 are not as
convincing as the others. The capacity estimates decrease in years 2017 and
2018, respectively, and then increase again. Such increases in the capacity
indicate that there is some unexpected behaviour taking place in the data since
battery capacity typically degrades over time. It may be caused by repairs but
we do not have sufficient information to conclude so.
We observed one possible cause of these dubious estimates in the raw current

Figure 7.5: Variables x and y of pack 2 in 2018 with integration length of 10
min

data and were informed by the data provider that there were faulty current

50



7.2. Initial results using OLS

sensors in some battery packs. Figure 7.4 illustrates such time periods in
battery pack 2 where the current measurements are too close to zero and after
integration, they do not correspond to the changes in SOC, as can be seen
in Figure 7.5 along the x-axis. For future research, this issue could be solved
by constructing an algorithm which filters out these peculiar data. We will
continue our analysis disregarding data from battery packs which show signs of
such faulty sensor behaviour.

In the following, we will return our focus to data from battery pack 5 in
2019 with integration length of 10 minutes and discuss the results from ordinary
least squares regression. Ignoring the measurement errors and applying OLS to
the error-prone (xi, yi)’s, we obtain a naive capacity estimate Q̂OLS of 125.39
Ah which corresponds to SOH of 83.6%, given that the nominal capacity is 150
Ah. We can see the plot of the variables including the regression line in Figure
7.6. This model gives a good fit with adjusted R2 of 97.9% but we know from
theory that due to measurement errors, this estimate is attenuated towards
zero, and that the statistical properties are disturbed.

Figure 7.6: Illustration of OLS regression line for pack 5 in 2019

In fact, the QQ plot of residuals from ordinary regression in Figure 7.7 can
be used to see that the normality assumption is violated. Ideally the residuals
will follow the straight dashed line. In our model the residuals tend to be larger
in the lower tails than what one should expect if they were normally distributed,
that is, they have heavier lower tails than they should, and the distribution is
left-skewed.

The sample variance for the ordinary linear regression can be computed by

s2 = 1
n− 1

n∑
i=1

(yi − Q̂OLS · xi)2, (7.1)
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Figure 7.7: Illustration of QQ plot

and for our data set for pack 5 in 2019 we obtain a sample variance s2 = 1.77.
Fitting a naive linear regression model of the error-prone y on x which does
not consider measurement error in x causes an increased variance of residuals
which are the vertical distances from the observed points to the naive regression
line. This variance estimate might be considered an approximation to the
upper bound of the measurement error variance in y. Later we will use Q̂OLS
as a rough guess of Q, in order to search for more information about the
measurement error variances σ2

∆x and σ2
∆y.

We have shown before that ordinary linear regression underestimates the
slope estimates when there is measurement error in the explanatory variables.
In the following section we will see if weighted total least squares yields more
precise capacity estimates.

7.3 WTLS

We will compare results from 2019, mainly focusing on the comparison between
OLS and WTLS since TLS is a special case of WTLS with proportional
uncertainties, and AWTLS is an approximation which should give the same
results as WTLS. The main advantage of these two alternative approaches is
their recursive implementation.

To start, in chapter 5 we derived a range for the uncertainties in x. We will
put these as parameters into our models and compute WTLS capacity estimates
on a grid of σ2

∆y and σ2
∆x. Since we look only to the year 2019, we include pack

1 and 2 here, since the current sensor did not show faulty behavior as in 2017
and 2018. The results for pack 1 are shown in Table 7.1. The OLS estimate
is 125.81 Ah. The WTLS estimates are higher and vary between 125.85 Ah
and 128.88 Ah. For fixed σ2

∆y, the estimates become larger with increasing
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σ2
∆x

σ2
∆y

0.1 0.5 1 2 5 10 12
0.1 127.71 128.55 128.71 128.80 128.85 128.87 128.88
0.5 126.56 127.71 128.16 128.48 128.71 128.80 128.82
1 126.23 127.18 127.71 128.16 128.55 128.71 128.74
2 126.04 126.69 127.18 127.71 128.28 128.55 128.60
5 125.91 126.23 126.56 127.01 127.71 128.16 128.26
10 125.86 126.04 126.23 126.56 127.18 127.71 127.84
12 125.85 126.00 126.17 126.46 127.04 127.57 127.71

Q̂OLS = 125.81 Ah

Table 7.1: WTLS results for pack 1 in 2019 for varying uncertainties in x and y

σ2
∆x, while for a fixed σ2

∆x they decrease with an increasing σ2
∆y. The lowest

estimate in the table was obtained in the bottom left corner for σ2
∆x = 0.1 and

σ2
∆y = 12. Since the ratio between the two error variances φ = σ2

∆x

σ2
∆y

here is very
close to 0, meaning that the measurement error in x is very small compared to
measurement error in y, the model is close to ordinary linear regression which
assumes no measurement error in x at all. On the other hand, for the inverse
ratio with σ2

∆x = 12 and σ2
∆y = 0.1 we obtain a capacity estimate of 128.88

Ah in the top right corner. Hence the larger this ratio φ is, the higher the
estimates become. Along the diagonal, we see that when the ratio is equal to 1,
the capacity estimates are equal to 127.71 Ah.
The OLS estimate for pack 2 for 2019 is 125.37 Ah as shown in Table 7.2.

σ2
∆x

σ2
∆y

0.1 0.5 1 2 5 10 12
0.1 126.85 127.51 127.63 127.70 127.75 127.76 127.76
0.5 125.94 126.85 127.20 127.45 127.63 127.70 127.71
1 125.69 126.43 126.85 127.20 127.51 127.63 127.66
2 125.54 126.05 126.43 126.85 127.29 127.51 127.55
5 125.44 125.69 125.94 126.30 126.85 127.20 127.28
10 125.40 125.54 125.69 125.94 126.43 126.85 126.95
12 125.40 125.51 125.65 125.87 126.32 126.74 126.85

Q̂OLS = 125.37 Ah

Table 7.2: WTLS results for pack 2 in 2019 for varying uncertainties in x and y

The WTLS estimates are again higher and vary between 125.40 Ah and 127.76
Ah depending on the size of the uncertainties while along the diagonal, the
capacity estimates are all equal to 126.85 Ah.

The results for pack 5 in 2019 are shown in Table 7.3 and they are similar
to pack 1 and pack 2. The WTLS estimates increase with an increasing ratio φ
and are within the range [125.42,128.06] Ah, while OLS estimates a capacity
of 125.39 Ah. The WTLS method showed similar results for the rest of the
battery packs in year 2019 and they can be found in Tables A.1, A.2, A.3, A.4,
A.5 and A.6 in appendix A.
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σ2
∆x

σ2
∆y

0.1 0.5 1 2 5 10 12
0.1 127.04 127.78 127.92 127.99 128.04 128.06 128.06
0.5 126.03 127.04 127.43 127.71 127.92 127.99 128.01
1 125.75 126.58 127.04 127.43 127.78 127.92 127.94
2 125.58 126.15 126.58 127.04 127.54 127.78 127.82
5 125.47 125.75 126.03 126.43 127.04 127.43 127.52
10 125.43 125.58 125.75 126.03 126.58 127.04 127.15
12 125.42 125.55 125.70 125.95 126.46 126.92 127.04

Q̂OLS = 125.39 Ah

Table 7.3: WTLS results for pack 5 in 2019 for varying uncertainties in x and y

Figure 7.8: Illustration of OLS and WTLS capacity estimates for three different
ratios of measurement error variances for pack 5 2015-2019

Figure 7.8 illustrates WTLS capacity estimates for pack 5 from year 2015
to 2019 with three different values for ratios of measurement error variances as
well as one estimate per year from ordinary linear regression. These results are
also given in Table 7.4 where WTLS min corresponds to a capacity estimate
obtained for the lowest ratio in our tables φ = σ2

∆x

σ2
∆y

= 0.1/12 ≈ 0.0083, and
WTLS max was obtained for ratio φ = 12/0.1 = 120. We see in the figure
that the black OLS and the green WTLS estimates with ratio close to 0
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are almost indistinguishable. This is expected since model where the meas-
urement error in y is increasingly dominating should become very similar to OLS.

2015 2016 2017 2018 2019
OLS 138.25 133.14 131.20 130.95 125.39

WTLS min 138.28 133.17 131.24 130.99 125.42
WTLS ratio φ = 1 139.42 134.42 133.01 133.19 127.04

WTLS max 140.01 135.13 134.03 134.47 128.06

Table 7.4: OLS vs. WTLS estimates of capacity Q in Ah for pack 5

These results are already interesting and demonstrate the usefulness of the
WTLS approach for handling measurement error regression. Using WTLS
estimates with ratio φ = 1 as reference points, we see that ignoring meas-
urement error and fitting OLS regression gives an underestimate of capacity
approximately between 1% and 1.5% which is of some practical importance for
the battery provider. We would, however like to understand more about the
magnitudes of the uncertainties in x and y, and will in the following pursue
some attempts.

Previously, we approximated an upper bound for σ2
∆y with the sample

variance. Another way of approximating the measurement error variances in x
and y from the naive linear regression model can be constructed from Figure
4.2. The measurement errors in each data point can be approximated by

∆xi = Ri sin θ = δyi cos θ sin θ (7.2)

and
∆yi = Ri cos θ = δyi cos θ cos θ (7.3)

where θ = tan−1 Q̂OLS and δyi is the vertical distance between the observed
(xi, yi) and the regression line Q̂OLS · x so that δyi = |Q̂OLS · xi − yi|. We can
easily compute the two variances of these approximations using our data and
the fitted regression model, and for the dataset for pack 5 in 2019 we obtain
the estimated measurement error variances σ̂2

∆x = 0.197 and σ̂∆y = 0.125,
which are much smaller than the previously assumed range of variances [0, 12.5].
However, we need to be aware that ordinary linear regression underestimates
the slope when there is measurement error in x and y, and hence these crude
estimates only serve as indications. In the next section we will describe a
goodness of fit criterion which can also give us an idea about the magnitude of
the uncertainties.

7.4 Chi-Square test for goodness of fit

There are a few methods to compute goodness of fit and confidence inter-
vals for total least squares but none of them are widely accepted and it is
still an area of research. The methods commonly used for ordinary linear
regression may not make any sense for errors-in-variables regression because
of the different model assumptions. Press (1992) argues that for a fitting
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procedure to be useful, it should provide parameters, error estimates on the
parameters, and a statistical measure of goodness-of-fit. When the goodness of
fit criterion suggests that the model gives a bad fit to the data, then the para-
meters and their error estimates are probably worthless (Press 1992, chapter 15).

For the WTLS model Plett (2011) proposes to use a chi-square test for
evaluating the goodness of fit. When we assume that the measurements errors in
x and y are uncorrelated and Gaussian, then the merit function χ2 in Equation
4.16 is a chi-squared random variable since it is a sum of n squares of normally
distributed quantities normalized to unit variance (Press 1992, chapter 15).
This knowledge of the distribution and number of degrees of freedom can be
used to determine from the optimized values of the merit functions how reliable
the model fit is. If we have chosen the estimate of capacity and the measurement
error variances correctly, we may expect that the value of the merit function
will be approximately equal to the number of degrees of freedom ν and we
can conclude that the data are well described by the hypothesized merit function.

The incomplete gamma function P (χ2|ν) is defined as the probability that
the observed chi-square for a correct model should be less than a value χ2 for ν
degrees of freedom. Its complement Q(χ2|ν) is the probability that the observed
chi-square will exceed the value χ2 by chance even for a correct model (Press
1992, chapter 6). The complementary incomplete gamma function is given by
the formula

Q(χ2|ν) = 1
Γ(ν/2)

∫ ∞
χ2/2

exp2 t(ν/2−1) dt, (7.4)

and gives a measure of the goodness of fit of a model (Plett 2011).

If on the one hand Q(χ2|ν) gives a small probability, then either the
model is wrong or the measurement error variances are larger than assumed.
Besides, Q(χ2|ν) does not measure the credibility of the assumption of normally
distributed measurement errors. Nonnormal errors may create outliers which
decrease the probability Q(χ2|ν). Therefore, other reasons for a low probability
could be that measurement errors are not normally distributed or they have
been underestimated (Press 1992, chapter 15). Since this is a fairly common
case, experimenters often accept low probabilities Q(χ2|ν) > 0.001 (Plett 2011).
If on the other hand Q(χ2|ν) is very close to 1, the data seems too good to be
true. According to Press (1992), the cause of too good a chi-square fit is almost
always that the experimenter has overestimated the measurement errors.
The χ2 statistic has a mean ν and a standard deviation

√
2ν, and, for large ν, it

approaches the normal distribution by the Central Limit Theorem. Therefore,
a general rule of thumb is that a typical value of χ2 for a moderately good fit
is χ2 ≈ ν (Press 1992, chapter 15). When the uncertainties associated with a
set of measurements are unknown, considerations related to χ2 fitting can be
used to derive an approximation to their value. This approach prohibits an
independent assessment of goodness of fit but it allows us to obtain some kind
of error bar to the observations.

We will compare the value of the merit function χ2 with a critical chi-square
value at significance level α, for which a common value is 5%, hence α = 0.05.
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If χ2 > χ2
ν,α for ν degrees of freedom, then the model does not describe the

data well or the measurement uncertainties have been underestimated. If
χ2 < χ2

ν,1−α, then either the data is “too good to be true” or the measurement
uncertainties have been too conservatively overestimated.

The merit function we minimize to obtain a WTLS capacity estimate in
Equation 4.16 is a chi-squared random variable with 2n− 1 degrees of freedom
since n observations xi and n observations yi were used to construct it and
one degree of freedom was lost when fitting Q̂ (Plett 2011). From the optimal
estimates we found and the uncertainties we assumed, the merit function can
easily be computed. For data of Pack 1 in 2019 there are n = 45810 observa-
tions of x and y each, meaning that the merit function χ2 has 2n− 1 = 91619
degrees of freedom. Critical chi-square values at significance level α = 0.05 are
χ2

91619,0.05 = 92324.24 and χ2
91619,0.95 = 90916.04.

On the same grid of measurement error variances σ2
∆x and σ2

∆y as before, we
compute the values of merit functions χ2 using the estimated capacities Q̂ from
Table 7.1. We see in Table 7.5 that for σ2

∆x, σ
2
∆y >1, much smaller values of

χ2 compared to the critical value of 90916 were obtained, leading us to believe
that the measurement uncertainties were overestimated. This confirms our
assumption from the previous section that the uncertainties are much smaller.
When we do the same computations for a smaller range of measurement error
variances, we see in Table 7.6 that the values of χ2 are closer to the critical
value.

σ2
∆x

σ2
∆y

0.1 0.5 1 2 5 10 12
0.1 340968 97815 51695 26604 10832 5448 4545
0.5 134828 68194 42075 23811 10339 5321 4456
1 76700 49377 34097 21038 9781 5169 4349
2 41176 31778 24689 17048 8827 4891 4150
5 17230 15340 13483 10845 6819 4208 3648
10 8750 8235 7670 6741 4938 3410 3033
12 7310 6948 6541 5854 4446 3169 2841

Table 7.5: Observed χ2 values for estimated Q̂ from pack 1 in 2019 for varying
uncertainties in x and y

By narrowing down the measurement error variances, we can also narrow
down the range of possible capacity estimates Q̂, from [125.85, 128.88]Ah as
computed in Table 7.1 to [126.23, 128.71]Ah in Table 7.7. In fact, we could
narrow down the measurement error variances even more but this would only
have a negligible effect on the capacity estimates.

We will do the same for pack 2 in 2019 to see if we obtain similar results.
We have n = 43596 observations of x and y each, hence the merit function χ2

should have value approximately around the corresponding number of degrees of
freedom to give a good fit, which is 2n−1 = 87191. Critical chi-square values at
significance level α = 0.05 are χ2

87191,0.05 = 87879.01 and χ2
87191,0.95 = 86505.26.
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σ2
∆x

σ2
∆y

0.1 0.2 0.4 0.5 0.6 0.8 1
0.1 340968 210377 119053 97815 83005 63711 51695
0.2 246887 170484 105188 88267 76033 59527 48907
0.4 158890 123444 85242 73799 65059 52594 44134
0.5 134828 108446 77839 68194 60669 49693 42075
0.6 117088 96688 71612 63373 56828 47091 40198
0.8 92688 79445 61722 55512 50432 42621 36900
1.0 76700 67414 54223 49377 45322 38920 34097

Table 7.6: Observed χ2 values for estimated Q̂ from pack 1 in 2019 for smaller
range of uncertainties in x and y

σ2
∆x

σ2
∆y

0.1 0.2 0.4 0.5 0.6 0.8 1
0.1 127.71 128.16 128.48 128.55 128.6 128.67 128.71
0.2 127.18 127.71 128.16 128.28 128.37 128.48 128.55
0.4 126.69 127.18 127.71 127.87 127.99 128.16 128.28
0.5 126.56 127.01 127.54 127.71 127.84 128.03 128.16
0.6 126.46 126.88 127.4 127.57 127.71 127.91 128.06
0.8 126.32 126.69 127.18 127.35 127.49 127.71 127.87
1.0 126.23 126.56 127.01 127.18 127.32 127.54 127.71

Q̂OLS = 125.81 Ah

Table 7.7: Estimated capacity Q̂ in Ah from pack 1 in 2019 for smaller range of
uncertainties in x and y

σ2
∆x

σ2
∆y

0.1 0.5 1 2 5 10 12
0.1 261092 75205 39779 20481 8341 4196 3500
0.5 102796 52218 32286 18300 7956 4096 3431
1 58422 37728 26109 16143 7520 3978 3347
2 31347 24239 18864 13055 6777 3760 3192
5 13113 11684 10280 8281 5222 3229 2801
10 6658 6269 5842 5140 3773 2611 2324
12 5563 5289 4982 4462 3395 2425 2176

Table 7.8: Observed χ2 values for estimated Q̂ from pack 2 in 2019 for varying
uncertainties in x and y

In Table 7.8 we see again that for σ2
∆x, σ

2
∆y >1 we obtained very small values

of χ2 compared to the critical chi-square values, indicating overestimation of
the uncertainties. The chi-square goodness of fit criterion shows that for smaller
measurement error variances, the model describes the data better, as can be
seen in Table 7.9.

Again we can narrow down the range of possible capacity estimates Q̂ from
[125.4, 127.76] Ah as in Table 7.2 to [125.69, 127.63] Ah. We see from these
results that assuming smaller measurement error variances based on the chi-
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σ2
∆x

σ2
∆y

0.1 0.2 0.4 0.5 0.6 0.8 1
0.1 261092 161430 91499 75205 63836 49015 39779
0.2 188641 130546 80715 67770 58401 45750 37602
0.4 121193 94321 65273 56551 49882 40358 33885
0.5 102796 82809 59562 52218 46483 38107 32286
0.6 89244 73796 54765 48499 43515 36092 30830
0.8 70618 60597 47160 42444 38582 32636 28275
1.0 58422 51398 41405 37728 34649 29781 26109

Table 7.9: Observed χ2 values for estimated Q̂ from pack 2 in 2019 for smaller
range of uncertainties in x and y

σ2
∆x

σ2
∆y

0.1 0.2 0.4 0.5 0.6 0.8 1
0.1 126.85 127.2 127.45 127.51 127.55 127.6 127.63
0.2 126.43 126.85 127.2 127.29 127.36 127.45 127.51
0.4 126.05 126.43 126.85 126.97 127.07 127.2 127.29
0.5 125.94 126.3 126.71 126.85 126.95 127.1 127.2
0.6 125.87 126.2 126.61 126.74 126.85 127 127.12
0.8 125.76 126.05 126.43 126.57 126.68 126.85 126.97
1.0 125.69 125.94 126.3 126.43 126.54 126.71 126.85

Q̂OLS = 125.37 Ah

Table 7.10: Estimated capacity Q̂ in Ah from pack 2 in 2019 for smaller range
of uncertainties in x and y

square goodness of fit criterion only has a small effect on the estimates. However,
it gives us a better understanding of the magnitude of the uncertainties.

7.5 Confidence limits

After finding a capacity estimate Q̂ using one of the weighted total least squares
methods, it is also important to estimate its uncertainty and confidence bounds.
If we assume that all errors are normally distributed, we can redefine the least
squares problem as maximum likelihood optimization. As Plett (2011) suggests,
we can form a vector d by concatenating the response vector y and the predictor
vector x and a diagonal matrix Σd formed by measurement error variances
σ2

∆y followed by σ2
∆x (Plett 2011). Then minimizing the merit function χ2 is

equivalent to maximizing the likelihood function

MLWTLS = 1
(2π)n|Σd|

1
2

exp
(
−1

2(d− d̂)TΣd
−1(d− d̂)

)
(7.5)

According to Cramer-Rao theorem, the lower bound to the variance of Q̂,
denoted by σ2

Q̂
, is given by the negative inverse of the second derivative of the

argument of the exponential function, evaluated at the Q̂ that minimizes χ2 or
maximizes MLWTLS (Plett 2011).
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(a) Pack 1 (b) Pack 2

Figure 7.9: Capacity estimates for packs 1 and 2 from OLS and WTLS with
varying measurement error variance ratios including confidence bounds

(a) Pack 3 (b) Pack 4

Figure 7.10: Capacity estimates for packs 3 and 4 from OLS and WTLS with
varying measurement error variance ratios including confidence bounds

Hence,

σ2
Q̂
≥ 2

(
∂χ2

WTLS

∂Q̂2

)
. (7.6)

Then we can compute confidence intervals as three-sigma bounds

(Q̂− 3σQ̂, Q̂+ 3σQ̂) (7.7)

which with a high probability contain the true total capacity Q.

Figures 7.9, 7.10, 7.11 and 7.12 illustrate the OLS estimates of capacity Q
for all packs between 2015 and 2019 as well as WTLS estimates for the same
three measurement error variance ratios φ as in Figure 7.8. We have plotted the
results together with their approximate confidence intervals using Equations
7.6 and 7.7, but these intervals are likely not very informative, as we do not
know if the measurement errors in the real data are normally distributed. Plett
(2011) has presented his results with such confidence intervals, but that is on
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(a) Pack 5 (b) Pack 6

Figure 7.11: Capacity estimates for packs 5 and 6 from OLS and WTLS with
varying measurement error variance ratios including confidence bounds

simulated data, where this is controlled. We see that the battery Packs 3, 4, 5,
8 and 9 show similar decreasing trends for both OLS and WTLS estimates.

(a) Pack 7 (b) Pack 8

(c) Pack 9

Figure 7.12: Capacity estimates for packs 7-9 from OLS and WTLS with varying
measurement error variance ratios including confidence bounds
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In the years 2015 and 2016 the OLS and WTLS estimates are relatively
close for all packs, but the gap between them widens over time and hence
their difference becomes more pronounced. The other packs show unexpected
behavior as the OLS estimates for these packs decrease greatly in years 2017
and 2018, and then increase again. This is similar to the anomaly we described
in the beginning of this chapter. We suspect it may again have been caused by
faulty sensors or a replacement of battery components. The effect of WTLS
compared to OLS is even greater here as WTLS is able to correct for the steep
decrease if we assume a higher measurement error variance ratio.

Additional information is required to assess the reliability of our estimates,
such as yearly independent capacity tests. We received results from one such
annual test and will check our estimates against these measured values in the
next section.

7.6 SOH annual test comparison

We have one annual test from January 6th 2017 which we can use to as-
sess how well our methods estimate the total capacity. The annual test in
Table 7.11 shows SOH values in percentage for each of the 9 packs. In order
to get comparable estimates, we will apply WTLS method to data from
December 2016 with the measurement error variances σ2

∆x, σ
2
∆y within the

range [0.1, 1] as we showed before that they give better goodness of fit and
smaller range of possible estimates Q̂. We will then transform the obtained
capacity estimates Q̂ to obtain SOH by diving them by nominal capacity 150 Ah.

Pack SOH test
1 92.7
2 92.0
3 91.5
4 92.1
5 92.0
6 92.4
7 92.0
8 91.7
9 91.9

Table 7.11: SOH annual test from January 6th 2017

For pack 1 our results do not agree with the annual test, which measured an
SOH value of 92.7%. OLS gave an estimate of SOH equal to 81.7% and WTLS
estimates spun over a wide range from 83% to 90.9%, all below the test value.
This may again be due to the faulty current sensors discussed in the beginning
of this chapter.

For pack 2 the annual test measured SOH of 92% while the OLS gave an
estimate of 90.6%, underestimating the test value by 1.4 %. WTLS results
for pack 2 are shown in Table 7.13. Again they are all higher than OLS,
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σ2
∆x

σ2
∆y

0.1 0.2 0.4 0.5 0.6 0.8 1
0.1 87.7 89.2 90.2 90.4 90.6 90.8 90.9
0.2 86 87.7 89.2 89.6 89.8 90.2 90.4
0.4 84.4 86 87.7 88.2 88.6 89.2 89.6
0.5 84 85.5 87.2 87.7 88.1 88.8 89.2
0.6 83.7 85 86.7 87.3 87.7 88.4 88.8
0.8 83.2 84.4 86 86.6 87 87.7 88.2
1.0 83 84 85.5 86 86.5 87.2 87.7

SOHOLS = 81.7%
SOHtest = 92.7 %

Table 7.12: WTLS estimates of SOH in % from pack 1 in December 2016 for
varying uncertainties in x and y

σ2
∆x

σ2
∆y

0.1 0.2 0.4 0.5 0.6 0.8 1
0.1 92.7 93.2 93.5 93.6 93.6 93.7 93.7
0.2 92.2 92.7 93.2 93.3 93.4 93.5 93.6
0.4 91.6 92.2 92.7 92.9 93 93.2 93.3
0.5 91.5 92 92.6 92.7 92.9 93.1 93.2
0.6 91.3 91.8 92.4 92.6 92.7 92.9 93.1
0.8 91.2 91.6 92.2 92.4 92.5 92.7 92.9
1.0 91.1 91.5 92 92.2 92.3 92.6 92.7

SOHOLS = 90.6%
SOHtest = 92.0 %

Table 7.13: WTLS estimates of SOH in % from pack 2 in December 2016 for
varying uncertainties in x and y

approximately in the range from 91.1% to 93.7%, covering the test result value
of 92%. Depending on the measurement error variances, WTLS can both
underestimate and overestimate the test value which is approximately in the
middle of this range of possible SOH estimates.

σ2
∆x

σ2
∆y

0.1 0.2 0.4 0.5 0.6 0.8 1
0.1 90.8 91.2 91.5 91.5 91.6 91.6 91.7
0.2 90.3 90.8 91.2 91.3 91.4 91.5 91.5
0.4 89.8 90.3 90.8 90.9 91 91.2 91.3
0.5 89.7 90.1 90.6 90.8 90.9 91.1 91.2
0.6 89.6 90 90.5 90.7 90.8 91 91.1
0.8 89.5 89.8 90.3 90.5 90.6 90.8 90.9
1.0 89.4 89.7 90.1 90.3 90.4 90.6 90.8

SOHOLS = 88.9 %
SOHtest = 91.5 %

Table 7.14: WTLS estimates of SOH in % from pack 3 in December 2016 for
varying uncertainties in x and y
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σ2
∆x

σ2
∆y

0.1 0.2 0.4 0.5 0.6 0.8 1
0.1 93 93.3 93.5 93.6 93.6 93.7 93.7
0.2 92.5 93 93.3 93.4 93.5 93.5 93.6
0.4 92.1 92.5 93 93.1 93.2 93.3 93.4
0.5 92 92.4 92.8 93 93.1 93.2 93.3
0.6 91.9 92.3 92.7 92.8 93 93.1 93.2
0.8 91.8 92.1 92.5 92.7 92.8 93 93.1
1.0 91.7 92 92.4 92.5 92.6 92.8 93

SOHOLS = 91.3 %
SOHtest = 92.1 %

Table 7.15: WTLS estimates of SOH in % from pack 4 in December 2016 for
varying uncertainties in x and y

Pack 3 has SOH of 91.5% according to the annual test and OLS estimates it
to be 88.9%. Table 7.14 shows WTLS results, ranging from 89.4% up to 91.7%
for varying uncertainties, which again include the measured test value. Similar
results were obtained for pack 4 with SOH value of 92.1% from the annual
test. OLS estimates the SOH to be 91.3%, underestimating it by 0.8%. Table
7.15 shows that WTLS gives higher estimates within the range [91.7,93.7]% for
varying uncertainties. Similar results were obtained for the rest of the packs
and can again be found in Tables A.7, A.8, A.9, A.10 and A.11 in the appendix.

Figure 7.13: Illustration of SOH estimates from OLS and WTLS with confidence
intervals compared to the annual test value for all 9 packs

Figure 7.13 summarizes the comparison of the annual test with the OLS
and WTLS estimates of SOH for all nine battery packs including the con-
fidence bounds. It shows that OLS underestimates SOH by approximately
2% on average, while the WTLS method, which takes into account meas-
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urement errors, gives estimates closer to the test value. With the exception
of pack 1, we see that the test value of SOH is included in the confidence
interval of estimate obtained for ratio of measurement error variances equal to 1.

From this comparison we see that WTLS has the potential of giving more
precise capacity estimates than OLS if we define the measurement uncertainties
correctly. However, one annual test is not sufficient evidence to prove good
performance of this method. In addition, we need to be aware that the SOH
test is not necessarily reliable since it is limited to a few sample points. In
particular, there may be variations in for example how the test is performed, the
environmental conditions or how well the crew adhere to the test specifications.
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CHAPTER 8

Discussion

In this chapter we will discuss the advantages and pitfalls of the total least
squares methods as well as its limitations on the SOC estimation algorithm
and other interesting future points of research.

8.1 General discussion

The total least squares method we implemented and applied to real battery
sensor data offers a simple solution for handling measurement errors and
estimating total battery capacity. The WTLS approach which utilizes Newton’s
method typically requires 4 to 5 iterations to find an optimal estimate which
is very computationally efficient. The total least squares method can also be
implemented recursively based on the AWTLS approximation and can then be
used for real-time monitoring of battery health, which makes it an attractive
tool for maritime battery systems. Besides, smaller batches of data are sufficient
to get good capacity estimates, which is helpful in maritime settings with
limited ship-to-shore connectivity. Although we applied it to battery data on
pack level, it can easily be adapted to data on cell or module level.
We came up with algorithms that handle missing data and remove large outliers,
but other ways of data cleaning could have been explored to filter away periods
of faulty data such as in Figure 7.4.
As we have seen in the results, while naive ordinary linear regression underes-
timates the true coefficient, total least squares corrects for the attenuation bias
and gives more accurate estimates, given one has reliable information on the
measurement error variances or is able to estimate them. This method needs the
uncertainties in x and y as input and it is not straightforward how to estimate
them. We tried to come up with innovative models for these uncertainties
in chapter 5 which we illustrated by simulations. However, without some
additional information on the SOC estimation algorithm, a high accuracy lab
set up to estimate the uncertainties with replicate measurements, or ideally
knowledge of the uncertainties themselves, it still remains an open question
how to best estimate them.
We have had one annual test to verify our results against, which of course is not
enough comparison for a reliable validation of this method. Spot tests such as
these annual tests also have measurement errors and may for example not catch
seasonal variations in the data. Longer time-series data with several annual
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tests are required in order to truly evaluate how well this method performs.

8.2 Error in equation

The statistical literature about measurement error models lists total least
squares, also called orthogonal regression, as one alternative way of correcting
for measurement error (Carroll, Ruppert et al. 2006, chapter 3). However, they
warn about its misuse in the errors-in-variables linear regression because it is
modelled from a pure measurement error perspective and does not account for
equation error which is an important component of variability (Carroll, Ruppert
et al. 2006, chapter 3). Total least squares assumes there is no additional vari-
ability about the line in addition to the measurement error, which is rarely the
case with real data. Due to this ignorance of equation error, total least squares
typically overcorrects for attenuation due to measurement error by exaggerating
its effects, and hence overestimates the regression slope (Carroll and Ruppert
1996). It is therefore important to not only estimate the measurement error
variances but also to carefully assess the equation error. If the ratio of the
measurement error variances in x and y is incorrectly specified, it can result in
unacceptably large under- or overcorrection as we have seen in our results in the
previous chapter. The statistical literature suggests to run additional studies to
observe replicates and use them to estimate the measurement error variances.
The method of moments estimator defined in Equation 3.26 may be preferable
since it only requires measurement error variance in x, and no equation error
or measurement error variance in y (Carroll and Ruppert 1996). Nevertheless,
here as well the measurement error variance can be incorrectly estimated when
one is not using truly replicate measurements (Carroll and Ruppert 1996).

Our linear model defines capacity as a function of integrated current and
change in SOC but it actually depends on other factors such as variations in
C-rate and temperature which are not accounted for in our model. These are
some of the possible sources of equation error in our data, and by including them
in the model, one may be able to obtain more accurate results. Every battery
module has several temperature sensors and data collected on these sensors can
be included in the models in different ways to get better estimates of the capacity.
The variable for temperature could be for example implemented by applying a
filter and only considering data within a narrow temperature and C-rate band.
When the temperature or C-rate exceed a certain limit, we can remove the
measured values and not use them to fit the models. Narrowing down the window
for used values and imposing such limits to keep the temperature consistent will
reduce the noise and will allow us to get more reliable capacity estimates from
the method. One could also try adding other factors as additional regression
terms in the regression model, for example as additive terms, multiplicative
terms or non-linear terms, and seeing how it affects the results.

8.3 Limitations of the methods on the SOC estimation

As discussed in chapter 2 the estimation of battery capacity with total least
squares is very sensitive to how SOC is calculated. The SOC of a battery
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cannot be directly measured but has to be derived from externally measurable
variables such as voltage, charge and discharge current, which can easily be
affected by factors such as temperature, cycle times, discharge rate and voltage
(Zhou et al. 2021). This makes it difficult to accurately estimate the SOC in real
time. Although our model does not consider how the SOC estimates used to
calculate the variables x have been derived, some estimation techniques are more
appropriate than others (Plett 2011). For example, the traditional Coulomb
counting method based on ampere-hour integration is not suitable because it
requires an accurate estimate of total capacity, which is ultimately what we
are trying to get with our model. This way it creates a circular dependence
between y and x. Plett (2011) prefers to use sigma-point Kalman filters which
combine voltage and current data and are insensitive to errors in the capacity
value used when making the SOC estimates.

8.4 Coulomb efficiency factor

Another interesting point of future research would be to include the Coulomb
efficiency (CE) factor η in Equation 2.8. Coulomb efficiency measures the
charge efficiency by which electrons are transferred in batteries (Buchmann
2016, chapter 8). It refers to the ratio of the discharge capacity after a full
charge cycle and the charge capacity of the same cycle, and it is usually a
fraction of less than 1 (Wang et al. 2021). As lithium-ions move between the
anode and cathode during charge and discharge, some are lost to side reactions
and prevent the efficiency from reaching 100 percent (Buchmann 2016, chapter
8). This means that the energy retrieved after charging a battery is always less
than what had been put in. Lithium-ion batteries as one of the most efficient
batteries can have CE of η = 0.99 or higher, meaning that when the battery
is being charged, 99% of charge is actually going in and 1% of charge is lost
(Geantil 2020). Overcharging, deep cycling, and extreme temperatures speed
up the aging process of a lithium-ion battery and decrease its efficiency further
(Geantil 2020). In our model we assumed the Coulomb efficiency factor to
be approximately 1, following Plett (2011), and omitting it from the current
integration. Yet when we ignore the Coulomb efficiency, the response variables
yi we obtain by integrating current measurements are not directly comparable
since the factor η can have different values depending on whether the battery
is being charged or discharged. Hence the actual charge or discharge may be
different from what we compute. It would be beneficial for the modelling to
differentiate between the two processes of charging and discharging. One way
of taking into account this factor and getting more precise capacity estimates
would be to look at charging and discharging periods separately. Then one
would obtain two capacity estimates, for charging and discharging each. In our
work, we assume that their difference is negligible and the capacity estimate we
obtain can then be regarded as the average between the charge and discharge
capacity. It would be interesting to extend the model in future work by looking
at charge and discharge intervals separately and making a distinction between
these two quantities.
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CHAPTER 9

Conclusion

In this thesis, we have studied improved methods of estimating total capacity of
maritime battery systems based on a linear model between integrated current
and the change in state of charge. When there is measurement error in both
response and explanatory variables, the traditional methods such as ordinary
linear regression, which only take into account measurement error in response
variable, are biased and underestimate the true regression coefficient.
The total least squares approach is aimed at handling this issue and correcting
for bias due to measurement errors in both x and y. We have seen that total
least squares is a simple and computationally efficient method which is able to
give more precise estimates of capacity than ordinary linear regression.
An important part of measurement error modelling is having good estimates
of the measurement error variances. These can for example be obtained
through replicates generated in a high accuracy lab. We have shown that
the measurement error variance in x can be bounded by an upper limit, and
that the measurement error variance in y increases with the length of the
integration interval. We note that numerical integration error is an additional
component of error in the variable y which we are unable to quantify without a
proper lab setup.
In case of insufficient information about the exact values of the measurement
uncertainties, a rule of thumb based on the chi-square goodness of fit criterion
can help narrow down the range of reasonable values for these uncertainties,
and hence of the capacity estimates. Finally, we note that longer time-series
data including annual tests is necessary for reliable evaluation of this method’s
performance.
Altogether, we find this method to provide an attractive solution to battery
capacity estimation in maritime settings since it can be implemented recursively
for real time application and used for online battery health monitoring.
Further adaptations can make this method even more precise by for example
incorporating additional factors such as temperature or Coulomb efficiency.
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APPENDIX A

Tables

σ2
∆x

σ2
∆y

0.1 0.5 1 2 5 10 12
0.1 129.14 131.03 131.39 131.58 131.70 131.74 131.75
0.5 126.54 129.14 130.16 130.87 131.39 131.58 131.61
1 125.82 127.95 129.14 130.16 131.03 131.39 131.45
2 125.39 126.84 127.95 129.14 130.42 131.03 131.15
5 125.10 125.82 126.54 127.57 129.14 130.16 130.38
10 124.99 125.39 125.82 126.54 127.95 129.14 129.44
12 124.97 125.31 125.68 126.32 127.64 128.84 129.14

Q̂OLS = 124.87 Ah

Table A.1: WTLS results for pack 3 in 2019 for varying uncertainties in x and y

σ2
∆x

σ2
∆y

0.1 0.5 1 2 5 10 12
0.1 130.04 130.95 131.12 131.22 131.28 131.29 131.30
0.5 128.76 130.04 130.53 130.87 131.12 131.22 131.23
1 128.4 129.46 130.04 130.53 130.95 131.12 131.15
2 128.18 128.91 129.46 130.04 130.66 130.95 131.01
5 128.03 128.4 128.76 129.27 130.04 130.53 130.64
10 127.98 128.18 128.4 128.76 129.46 130.04 130.18
12 127.97 128.14 128.33 128.65 129.31 129.89 130.04

Q̂OLS = 127.92 Ah

Table A.2: WTLS results for pack 4 in 2019 for varying uncertainties in x and y
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σ2
∆x

σ2
∆y

0.1 0.5 1 2 5 10 12
0.1 128.49 129.34 129.5 129.59 129.65 129.66 129.67
0.5 127.32 128.49 128.95 129.27 129.5 129.59 129.61
1 126.99 127.96 128.49 128.95 129.34 129.5 129.53
2 126.79 127.46 127.96 128.49 129.07 129.34 129.39
5 126.66 126.99 127.32 127.79 128.49 128.95 129.05
10 126.61 126.79 126.99 127.32 127.96 128.49 128.62
12 126.6 126.75 126.93 127.22 127.82 128.36 128.49

Q̂OLS = 126.56 Ah

Table A.3: WTLS results for pack 6 in 2019 for varying uncertainties in x and y

σ2
∆x

σ2
∆y

0.1 0.5 1 2 5 10 12
0.1 126.68 127.49 127.64 127.72 127.78 127.79 127.8
0.5 125.58 126.68 127.11 127.41 127.64 127.72 127.74
1 125.28 126.18 126.68 127.11 127.49 127.64 127.67
2 125.1 125.71 126.18 126.68 127.22 127.49 127.53
5 124.97 125.28 125.58 126.02 126.68 127.11 127.20
10 124.93 125.1 125.28 125.58 126.18 126.68 126.55
12 124.92 125.06 125.22 125.49 126.05 126.55 126.68

Q̂OLS = 124.87 Ah

Table A.4: WTLS results for pack 7 in 2019 for varying uncertainties in x and y

σ2
∆x

σ2
∆y

0.1 0.5 1 2 5 10 12
0.1 126.72 127.46 127.59 127.67 127.72 127.73 127.74
0.5 125.73 126.72 127.12 127.39 127.59 127.67 127.68
1 125.46 126.27 126.72 127.12 127.46 127.59 127.62
2 125.29 125.85 126.27 126.72 127.22 127.46 127.50
5 125.18 125.46 125.73 126.12 126.72 127.12 127.20
10 125.14 125.29 125.46 125.73 126.27 126.72 126.84
12 125.13 125.26 125.4 125.65 126.15 126.61 126.72

Q̂OLS = 125.09 Ah

Table A.5: WTLS results for pack 8 in 2019 for varying uncertainties in x and y
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σ2
∆x

σ2
∆y

0.1 0.5 1 2 5 10 12
0.1 128.2 129.06 129.22 129.31 129.36 129.38 129.38
0.5 127.02 128.2 128.66 128.98 129.22 129.31 129.32
1 126.69 127.66 128.2 128.66 129.06 129.22 129.25
2 126.49 127.16 127.66 128.2 128.78 129.06 129.11
5 126.35 126.69 127.02 127.49 128.2 128.66 128.76
10 126.31 126.49 126.69 127.02 127.66 128.2 128.33
12 126.3 126.45 126.63 126.92 127.52 128.06 128.2

Q̂OLS = 126.26 Ah

Table A.6: WTLS results for pack 9 in 2019 for varying uncertainties in x and y

σ2
∆x

σ2
∆y

0.1 0.2 0.4 0.5 0.6 0.8 1
0.1 92.4 92.8 93 93.1 93.1 93.2 93.2
0.2 91.9 92.4 92.8 92.9 92.9 93 93.1
0.4 91.4 91.9 92.4 92.5 92.6 92.8 92.9
0.5 91.3 91.7 92.2 92.4 92.5 92.6 92.8
0.6 91.2 91.6 92.1 92.2 92.4 92.5 92.7
0.8 91 91.4 91.9 92 92.2 92.4 92.5
1.0 90.9 91.3 91.7 91.9 92 92.2 92.4

SOHOLS = 90.5 %
SOHtest = 92.0 %

Table A.7: WTLS estimates of SOH in % from pack 5 in December 2016 for
varying uncertainties in x and y

σ2
∆x

σ2
∆y

0.1 0.2 0.4 0.5 0.6 0.8 1
0.1 91.7 92.1 92.3 92.3 92.4 92.4 92.5
0.2 91.3 91.7 92.1 92.1 92.2 92.3 92.3
0.4 90.8 91.3 91.7 91.8 91.9 92.1 92.1
0.5 90.7 91.1 91.6 91.7 91.8 92 92.1
0.6 90.6 91 91.5 91.6 91.7 91.9 92
0.8 90.5 90.8 91.3 91.4 91.5 91.7 91.8
1.0 90.4 90.7 91.1 91.3 91.4 91.6 91.7

SOHOLS = 90.0 %
SOHtest = 92.4 %

Table A.8: WTLS estimates of SOH in % from pack 6 in December 2016 for
varying uncertainties in x and y
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σ2
∆x

σ2
∆y

0.1 0.2 0.4 0.5 0.6 0.8 1
0.1 92.3 92.6 92.9 93 93 93.1 93.1
0.2 91.8 92.3 92.6 92.7 92.8 92.9 93
0.4 91.3 91.8 92.3 92.4 92.5 92.6 92.7
0.5 91.2 91.6 92.1 92.3 92.4 92.5 92.6
0.6 91.1 91.5 92 92.1 92.3 92.4 92.6
0.8 90.9 91.3 91.8 91.9 92.1 92.3 92.4
1.0 90.8 91.2 91.6 91.8 91.9 92.1 92.3

SOHOLS = 90.4 %
SOHtest = 92.0 %

Table A.9: WTLS estimates of SOH in % from pack 7 in December 2016 for
varying uncertainties in x and y

σ2
∆x

σ2
∆y

0.1 0.2 0.4 0.5 0.6 0.8 1
0.1 91.6 92 92.2 92.3 92.3 92.4 92.4
0.2 91.1 91.6 92 92.1 92.1 92.2 92.3
0.4 90.6 91.1 91.6 91.7 91.8 92 92.1
0.5 90.5 90.9 91.4 91.6 91.7 91.8 92
0.6 90.4 90.8 91.3 91.4 91.6 91.7 91.9
0.8 90.3 90.6 91.1 91.2 91.4 91.6 91.7
1.0 90.2 90.5 90.9 91.1 91.2 91.4 91.6

SOHOLS = 89.7 %
SOHtest = 91.7 %

Table A.10: WTLS estimates of SOH in % from pack 8 in December 2016 for
varying uncertainties in x and y

σ2
∆x

σ2
∆y

0.1 0.2 0.4 0.5 0.6 0.8 1
0.1 92.1 92.4 92.7 92.7 92.8 92.8 92.9
0.2 91.6 92.1 92.4 92.5 92.6 92.7 92.7
0.4 91.2 91.6 92.1 92.2 92.3 92.4 92.5
0.5 91.1 91.5 91.9 92.1 92.2 92.3 92.4
0.6 91 91.4 91.8 92 92.1 92.3 92.4
0.8 90.9 91.2 91.6 91.8 91.9 92.1 92.2
1.0 90.8 91.1 91.5 91.6 91.8 91.9 92.1

SOHOLS = 90.4 %
SOHtest = 91.9 %

Table A.11: WTLS estimates of SOH in % from pack 9 in December 2016 for
varying uncertainties in x and y
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APPENDIX B

Code

This chapter includes the most important R code used in this thesis. The total
amount of code created for the purpose of this thesis is naturally larger, but
for practical purposes only the code for cleaning the data and the total least
squares methods we applied in chapter 7 is included.

B.1 Data preparation

First we provide the code required to perform the data cleaning steps described
in Chapter 6. The function create_variables takes the raw SOC and current
data and returns the x and y data points ready for the analysis. Internally it
calls a few helping functions which are also included in the code below. The R
packages which were used in this code and which enable efficient handling of
large datasets are dplyr and data.table.

1 create_variables <- function(min,pack,year){
2 #Transforms raw SOC and current data into variables x and y and cleans the

data using help functions
3 #Arguments:
4 #min: chosen length of integration interval in minutes
5 #pack: number of battery pack
6 #year: year to read data from
7 #Returns:
8 #data: data frame containing final x and y variables with the initial

timestamp of the interval they were computed over in both unix and date
format

9 #reading files from working directory
10 soc_filename <- sprintf("soc_pack%d_%d.csv",pack,year)
11 current_filename <- sprintf("current_pack%d_%d.csv",pack,year)
12 soc <- fread(soc_filename)
13 current<- fread(current_filename)
14 #converting time stamps to unix format (numeric)
15 soc$numtime <- as.numeric(soc$timestamp)
16 current$numtime <- as.numeric(current$timestamp)
17
18 x <- create_x(soc,min)
19 y <- create_y(current,min)
20
21 #finding time gaps in data longer than 15 minutes
22 x_timegaps <- find_soc_timegaps(soc,x,min)
23 y_timegaps <- find_current_timegaps(current,y,min)
24 timegaps <- merge_timegaps(y_timegaps,x_timegaps)
25 #removing variables containing time gaps
26 x <- filter(x,!(x$interval_starts %in% timegaps))
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27 y <- filter(y,!(y$interval_starts %in% timegaps))
28
29 #finding current measurements with value equal to 0 and removing the

corresponding variables
30 zero_intervals <- find_zeroes(y,current,min)
31 zeroes <- get_zero_timestamps(y,zero_intervals,min)
32 x <- filter(x,!(x$interval_starts %in% zeroes))
33 y <- filter(y,!(y$interval_starts %in% zeroes))
34
35 #detecting and removing outliers
36 outliers <- find_outliers(soc,current,y,min)
37 x <- filter(x,!(x$interval_starts %in% outliers))
38 y <- filter(y,!(y$interval_starts %in% outliers))
39
40 data <- data.frame(x$x_val,y$y_val,x$interval_starts,x$timestamp)
41 colnames(data) <- c("x","y","interval_start","timestamp")
42 return(data)
43 }
44
45 #----------------------------------------------------------------------
46 create_x <- function(soc,min){
47 #Creates x variable by linearly interpolating SOC data and computing

differences in SOC over chosen interval length
48 #Arguments:
49 #soc: SOC data with unix timestamps
50 #min: chosen length of integration interval in minutes (same as for

current)
51 #Returns:
52 #x: data frame with computed variable x and their initial time stamps in

numeric and date format
53 time <- soc$numtime[nrow(soc)]-soc$numtime[1]
54 sec <- min*60
55 n <- round(time/sec)
56 #interpolate soc at regular intervals
57 lin.int_soc <-data.frame(approx(soc$numtime, soc$value,method="constant",f

=0, ties=mean,n=n))
58 x_val <- diff(lin.int_soc$y)
59 interval_starts <- soc$numtime[1]+sec*c(0:(length(x_val)-1))
60 #transforming unix timestamps to date format
61 timestamp <- as.POSIXct(interval_starts, origin ="1970-01-01",tz ="UTC")
62 x <- data.frame(x_val,interval_starts,timestamp)
63 return(x)
64 }
65
66 create_y <- function(current,min){
67 #Numerically integrates the current measurements over regular intervals
68 #Arguments:
69 #current: data frame containing raw current measurements with unix

timestamps
70 #min: chosen length of integration interval in minutes
71 #Returns:
72 #y: data frame with computed responses y and their initial time stamps in

numeric and date format
73 #Calculating time intervals between consecutive current measurements
74 intervals <- diff(current$numtime)
75 intervals <- intervals/3600 #converting secs to hours
76
77 #Computing the cumulative integral as left Riemann sum
78 product <- current$value[-nrow(current)]*intervals
79 product <- append(0,product)
80 current$integral <- cumsum(product)
81
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82 #number of intervals of chosen length to split the entire time frame into
83 time <- current$numtime[nrow(current)]-current$numtime[1]
84 sec <- min*60
85 n <- round(time/sec)
86
87 #interpolate current values
88 lin.int_current <-data.frame(approx(current$numtime,current$integral,method=

"constant",f=0, ties=mean,n=n))
89 y_val <- diff(lin.int_current$y)
90 interval_starts <- current$numtime[1]+sec*c(0:(length(y_val)-1))
91 #transforming unix timestamps to date format
92 timestamp <- as.POSIXct(interval_starts, origin ="1970-01-01",tz ="UTC")
93 y <- data.frame(y_val,interval_starts,timestamp)
94 return(y)
95 }
96
97 #----------------------------------------------------------------------
98 find_current_timegaps <- function(current,y,min){
99 #Finds time windows in the SOC data longer than 15 minutes

100 #Arguments:
101 #current: raw current data
102 #y: data frame of variable y including initial timestamps
103 #min: integration interval length
104 #Returns:
105 #y_gaps_list: a list of initial timestamps for y variables which are

inside any timegaps found in current data
106 intervals <- diff(current$numtime)
107 intervals <- intervals/3600
108 time_gap_start <- which(intervals>0.4)
109 time_gap_end <- time_gap_start + 1
110 start <- current$numtime[time_gap_start]
111 end <- current$numtime[time_gap_end]
112 current_gaps <- data.frame(start,end)
113 if (nrow(current_gaps)>0){
114 y_gaps_list <- NULL
115 for (i in (1:nrow(current_gaps))){
116 y_timegaps_middle <- y$interval_starts[current_gaps$start[i]<y$interval_

starts & current_gaps$end[i]>(y$interval_starts+60*min)]
117 y_timegaps_left <- y$interval_starts[current_gaps$start[i]>=y$interval_

starts & current_gaps$start[i]<=(y$interval_starts+60*min)]
118 y_timegaps_right <- y$interval_starts[current_gaps$end[i]>=y$interval_

starts & current_gaps$end[i]<=(y$interval_starts+60*min)]
119 y_timegaps <- c(y_timegaps_left,y_timegaps_middle,y_timegaps_right)
120 y_timegaps <- unique(y_timegaps)
121 y_gaps_list <- c(y_gaps_list, y_timegaps)
122 }
123 return(y_gaps_list)
124 }
125 else return("No timegaps found")
126 }
127
128 find_soc_timegaps <- function(soc,x,min){
129 #Finds time windows in the SOC data longer than 15 minutes
130 #Arguments:
131 #soc: raw SOC data
132 #x: data frame of variable x including initial timestamps
133 #min: integration interval length
134 #Returns:
135 #x_gaps_list: a list of initial timestamps for x variables which are

inside any timegaps found in SOC data
136 intervals <- diff(soc$numtime)
137 intervals <- intervals/3600

76



B.1. Data preparation

138 time_gap_start <- which(intervals>0.25)
139 time_gap_end <- time_gap_start + 1
140 start <- soc$numtime[time_gap_start]
141 end <- soc$numtime[time_gap_end]
142 soc_gaps <- data.frame(start,end)
143 if (nrow(soc_gaps)>0){
144 x_gaps_list <- NULL
145 for (i in (1:nrow(soc_gaps))){
146 x_timegaps_middle <- x$interval_starts[soc_gaps$start[i]<x$interval_

starts & soc_gaps$end[i]>(x$interval_starts+60*min)]
147 x_timegaps_left <- x$interval_starts[soc_gaps$start[i]>=x$interval_

starts & soc_gaps$start[i]<=(x$interval_starts+60*min)]
148 x_timegaps_right <- x$interval_starts[soc_gaps$end[i]>=x$interval_starts

& soc_gaps$end[i]<=(x$interval_starts+60*min)]
149 x_timegaps <- c(x_timegaps_left,x_timegaps_middle,x_timegaps_right)
150 x_timegaps <- unique(x_timegaps)
151 x_gaps_list <- c(x_gaps_list, x_timegaps)
152 }
153 return(x_gaps_list)
154 }
155 else return ("No timegaps found")
156 }
157
158 merge_timegaps <- function(y_timegaps, x_timegaps){
159 #Merges the timegaps found in SOC and current data and returns a list of

initial timestamps for variables x and y inside these timegaps
160 timegaps <- c(y_timegaps,x_timegaps)
161 timegaps <- unique(timegaps)
162 return(timegaps)
163 }
164
165 #----------------------------------------------------------------------
166
167 find_zeroes <- function(y,current,min){
168 #Finds intervals where the current has value 0 over a longer period
169 #Arguments:
170 #y: y variable with initial time stamps
171 #current: raw current data
172 #min: integration interval length in minutes
173 #Returns:
174 #time_ind: data frame containing first and last timestamp of the period

with current equal to 0
175 time_ind <- data.frame(from = numeric(0),to = numeric(0))
176 y_zero <- y[y$y_val == 0,]
177 n <- nrow(y_zero)
178 print(n)
179 more <- TRUE
180 i <- 1
181 while(more){
182 from <- y_zero$interval_starts[i]
183 while(i+1<= n & y_zero$interval_starts[i+1] - y_zero$interval_starts[i] ==

(60*min)){
184 i <- i+1
185 if (i%%1000 == 0){
186 print(i)
187 }
188 }
189 to <- y_zero$interval_starts[i]+ min*60
190 curr <- current[current$numtime >= from & current$numtime<to,]
191 if (all(curr$value == 0)){
192 time_ind <- rbind(time_ind,c(from,to))
193 }
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194 i <- i+1
195 more <- (i<= n)
196
197 }
198 colnames(time_ind) <- c("from","to")
199 return(time_ind)
200 }
201
202 get_zero_timestamps <- function(y,zero_intervals,min){
203 #Finds initial timestamps of x and y variables which were computed over

longer periods with current equal to 0
204 zero_timestamps <- NULL
205 for (i in (1:nrow(zero_intervals))){
206 timestamps <- y$interval_starts[zero_intervals$from[i]<= y$interval_starts

& zero_intervals$to[i]>(y$interval_starts+60*min)]
207 zero_timestamps <- c(zero_timestamps,timestamps)
208 }
209 return(zero_timestamps)
210 }
211
212 #----------------------------------------------------------------------
213 find_outliers <- function(soc,current,y,min){
214 #Detects outliers in the raw current and SOC data and returns timestamps of

x and y variables which were computed over time periods with these
outliers

215
216 curr_deltas <- diff(current$value)
217 soc_deltas <- diff(soc$value)
218 soc_outliers <- which(diff(sign(soc_deltas))!=0 & abs(soc_deltas[-1])>30 &

abs(soc_deltas[-length(soc_deltas)])>30)
219 curr_outliers <- which(diff(sign(curr_deltas))!=0 & abs(curr_deltas[-1])>200

& abs(curr_deltas[-length(curr_deltas)])>200)
220
221 soc_outliers <- soc_outliers + 1
222 curr_outliers <- curr_outliers + 1
223
224 soc_out_timestamps <- soc$numtime[soc_outliers]
225 curr_out_timestamps <- current$numtime[curr_outliers]
226
227 outliers <- c(soc_out_timestamps,curr_out_timestamps)
228 outliers <- unique(outliers)
229
230 if (length(outliers)>0){
231 out_list <- NULL
232 for (i in (1:length(outliers))){
233 out <- y$interval_starts[outliers[i]>= y$interval_starts & outliers[i]<(

y$interval_starts+60*min)]
234 out_list <- c(out_list,out)
235 }
236 return(out_list)
237 }
238 else return("No outliers found")
239 }

Listing B.1: Data cleaning and creation of variables x and y

B.2 WTLS,TLS and AWTLS functions

We also provide functions for the three methods proposed by Plett which we
described in detail in chapter 4. WTLS, TLS and AWTLS take the variables x
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and y and standard deviations of measurement errors as input and return the
optimal estimate of capacity Q̂ as well as upper and lower confidence bounds of
the estimate.

1 wtls <- function(x,y,sigma_x,sigma_y) {
2 #Performs TLS to find a capacity estimate Q
3 #Arguments:
4 #x: vector of explanatory variable x
5 #y: vector of response variable y
6 #sigma_x <- a numeric vector of measurement error standard deviations

in x
7 #sigma_y <- a numeric vector of measurement error standard deviations

in y
8 #Returns:
9 #Q_est: optimal capacity estimate Q

10 #upper_CI: upper confidence bound for the capacity estimate
11 #lower_CI: lower confidence bound for the capacity estimate
12 #initial value for capacity Q from ordinary linear regression
13 Q_init <- lm(y ~ x-1)$coefficients
14 Q_list <- Q_init
15 Numit <- 0 #number of iterations
16 eps <- 1e-10 #absolute stopping criterion
17 more = TRUE
18 while(more)
19 {
20 #first derivative of the merit function
21 first_der <- sum(2*(Q*x-y)*(Q*y*sigma_x^2+x*sigma_y^2)/((Q^2*sigma_x^2 +
22 sigma_y^2)^2))
23 #second derivative of the merit function
24 second_der <- 2*sum((x^2*sigma_y^4 + sigma_x^4*(3*Q^2*y^2 - 2*Q^3*x*y) -

sigma_x^2*sigma_y^2*(3*Q^2*x^2 - 6*Q*x*y + y^2))/((Q^2*sigma_x^2 + sigma_

y^2)^3))
25 #iteration based on Newton’s method
26 Q_new <- Q - first_der/second_der
27 more = abs(Q-Q_new) > eps
28 Q <- Q_new
29 Numit <- Numit+1
30 if (more == TRUE) {
31 Q_list <- c(Q_list, Q_new)
32 }
33
34 }
35 Q_est <- Q_new
36 #computing merit function with the obtained capacity estimate
37 merit <- sum((y-Q_est*x)^2/(Q_est^2*sigma_x^2+sigma_y^2))
38 #Confidence intervals as 3-sigma bounds
39 Hessian <-2*(sum((x^2*sigma_y^4 + sigma_x^4*(3*Q_est^2*y^2 -
40 2*Q_est^3*x*y) - sigma_x^2*sigma_y^2*(3*Q_est^2*x^2 -
41 6*Q_est*x*y + y^2))/(Q_est^2*sigma_x^2 + sigma_y^2)^3))
42 sigma_Q <- sqrt(2/Hessian)
43 lower_CI <- Q_est - 3*sigma_Q
44 upper_CI <- Q_est + 3*sigma_Q
45 res <- c(lower_CI, Q_est,upper_CI,merit)
46 return(res)
47 }

Listing B.2: Weighted total least squares method using Newton-Raphson search

1 tls <- function(x,y,sigma_x,sigma_y) {
2 #Performs TLS to find a capacity estimate Q
3 #Arguments:
4 #x: vector of explanatory variable x
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5 #y: vector of response variable y
6 #sigma_x <- a numeric vector of measurement error standard deviations in

x
7 #sigma_y <- a numeric vector of measurement error standard deviations in y
8 #Returns:
9 #Q_est: optimal capacity estimate Q

10 #upper_CI: upper confidence bound for the capacity estimate
11 #lower_CI: lower confidence bound for the capacity estimate
12 k <- sigma_x/sigma_y #ratio of measurement error st.deviations
13 c1 <- sum(x^2/sigma_y^2)
14 c2 <- sum(x*y/sigma_y^2)
15 c3 <- sum(y^2/sigma_y^2)
16 #roots of derivative of merit function are candidate solutions for Q
17 first_root <- (-(c1-k^2*c3)+ sqrt((c1-k^2*c3)^2 + 4*k^2*c2^2))/(2*k^2*c2)
18 second_root <- (-(c1-k^2*c3)- sqrt((c1-k^2*c3)^2 + 4*k^2*c2^2))/(2*k^2*c2)
19 #choosing the positive root as the capacity estimate Q
20 if (first_root>0) {
21 Q_est <- first_root
22 } else {
23 Q_est <- second_root
24 }
25 #Confidence intervals as 3-sigma bounds
26 Hessian <- (-4*k^4*c2*Q_est^3+6*k^4*c3*Q_est^2+(-6*c1+12*c1)*k^2*Q_est +2*(

c1-k^2*c3)/(Q_est^2*k^2+1)^3)
27 sigma_Q <- sqrt(2/Hessian)
28 lower_CI <- Q_est - 3*sigma_Q
29 upper_CI <- Q_est + 3*sigma_Q
30 res <- c(lower_CI, Q_est,upper_CI)
31 return(res)
32 }

Listing B.3: Total least squares method with proportional uncertainties

1 awtls <- function(x,y,sigma_x,sigma_y) {
2 #Performs AWTLS method to find a capacity estimate Q
3 #Arguments:
4 #x: vector of explanatory variable x
5 #y: vector of response variable y
6 #sigma_x <- a numeric vector of measurement error standard deviations in

x
7 #sigma_y <- a numeric vector of measurement error standard deviations in y
8 #Returns:
9 #Q_est: optimal capacity estimate Q

10 #defining running sums to simplify the formulas
11 c1 <- sum(x^2/sigma_y^2)
12 c2 <- sum(x*y/sigma_y^2)
13 c3 <- sum(y^2/sigma_y^2)
14 c4 <- sum(x^2/sigma_x^2)
15 c5 <- sum(x*y/sigma_x^2)
16 c6 <- sum(y^2/sigma_x^2)
17 #computing the roots of the derivative of the merit function which is a

quartic polynomial
18 poly_coeff <- c(-c2, c1-2*c3+c6, 3*c2-3*c5, 2*c4-c1-c6, c5)
19 roots <- polyroot(poly_coeff)
20 #the positive roots are candidate solutions for Q
21 roots <- roots[which(Re(roots)>0)]
22 roots <- Re(roots)
23 merit <- NULL
24 #computing the value of the merit function for all candidates Q
25 for (Q in roots){
26 merit <- c(merit, sum(((y-Q*x)^2/(1+Q^2)^2)*((Q^2/sigma_x^2)+(1/sigma_y^2)

)))
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27 # alternatively computing merit function using the recursive sums
28 #merit <- c(merit, (1/(Q^2+1)^2)*(c4*Q^4 - 2*c5*Q^3+(c1+c6)*Q^2-2*c2*Q+c3)

)
29 }
30 #choosing the root which minimizes the merit function
31 Q_est <- roots[which.min(merit)]
32 return(Q_est)
33 }

Listing B.4: Approximate weighted total least squares method
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