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Abstract

In this thesis we review some fractional and non-fractional stochastic models
for describing mortality rates in several countries. In particular, we provide
empirical evidence that the geometric fractional Ornstein-Uhlenbeck process is
not well suited for modeling the mortality rate in Norway.

As a natural continuation, we compute reserves of life insurance claims under
Markovian mortality. Taking the classical approach from the theory of partial
differential equations (PDEs), we derive the corresponding Thiele’s PDE for
prospective reserves under stochastic mortality. As Thiele’s PDE is in general
difficult to solve analytically, we give two algorithms to numerically approximate
the solution surface. We finish by giving an application to premium calculation
and reserving with a pension policy, given a geometric Ornstein-Uhlenbeck
process.

Lastly, we have included extensive background material in order to introduce
newcomers to actuarial life insurance and justify its mathematical foundation
in a rigorous fashion.
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CHAPTER 1

Introduction

1.1 A brief summary of the thesis

Uncertainty is the only certainty there is in the discipline of actuarial science
and the task of an actuary is to provide security where there is insecurity.
Predicative models which have a solid mathematical and statistical foundation
are necessary in order for an actuary to assess a company’s future liabilities.
However, it is a common misconception among practitioners to believe that
newer models with more accurate predictions are better than previously derived
models. Indeed, that is not necessarily the case as there exist examples of
models which are extremely computational demeaning and time consuming.
That brings us over to the next point, which is that a good model should also
be efficient and simple. Efficient in the sense that the model can provide quick
information about a dynamic market and simple in the sense that the model is
easy to implement, recalibrate and understand.

In life insurance, it is well known that there are two main risk factors for
long term policies. Those are the returns on investments from the company
and the population’s mortality. In this thesis, we will first provide necessary
preliminaries before focusing on the latter risk factor which we will tackle from
two different perspectives.

The first approach, is to consider the difference in mortality rate from older
generations to newer generations. The authors of [DO19] propose a stochastic
mortality which follows a geometric fractional Ornstein-Uhlenbeck process
in order to capture the generational effects such as medical advancements or
global pandemics. We will in particular illustrate that Norwegian mortality
generational rates do not seem to exhibit self-similarity, which is a characteristic
property of fractional noises.

The second way, is to consider the insured’s mortality rate. We will develop
a general Markov model under the framework of Itô calculus. In particular,
we have derived Thiele’s PDE for prospective reserves under general insurance
policies and Markovian mortality. We finish up with some important applications
to pension schemes using a geometric Ornstein-Uhlenbeck process and highlight
the importance of algorithmic efficiency.

1



1.2. Chapter overview

1.2 Chapter overview

Chapter 2: The aim of this chapter, is to provide a simple and sufficient
mathematical framework for our needs. We start with measure theory, where
we follow the notation in [Lin17]. Fundamental, yet important concepts
like measures and σ-algebras are introduced together with some important
properties. We will then construct the Lebesgue integral from a measure
theoretical standpoint and give some classical integration results which allow
us to interchange the order of a limit and an integral. Secondly, we will discuss
stochastic processes, conditional expectations as random variables and the
different notions of martingales following [Øks03], in the sections on probability
theory and stochastic analysis. An important process in Itô calculus, is the
Brownian motion (Bm) which has many interesting properties. The reference
we will use for stochastic calculus is [Bal17], which gives a thorough introduction
to the stochastic integral and stochastic differential equations (SDEs). Lastly,
we will go over some well established results regarding regular Markov chains.

Chapter 3: In this chapter, we will focus on fractional stochastic processes.
We begin with a generalization of the Brownian motion known as the fractional
Brownian motion (fBm) and explore some of its key properties as presented
in [Nua95]. In particular, we will represent the fractional Brownian motion
as a pathwise Riemann-Stieltjes integral for deterministic integrands, via an
isometry between Hilbert spaces. Next we will look at the fractional general-
ization of the Ornstein-Uhlenbeck process and simulate some paths using the
Euler-Maruyama method. Lastly, we will make sense of stochastic integrals with
respect to a fractional Brownian motion as a pathwise Riemann-Stieltjes integral.

Chapter 4: We explore the assumptions made in the model for fractional
mortality proposed by [DO19]. Furthermore, we present a simple estimation
procedure for key parameters. Lastly, we conduct our own simulation study in
order to get an intuition for the distribution of the estimators.

Chapter 5: [Gar18] emphasizes that the underlying and perceived Hurst para-
meter are not equal, which was assumed in [DO19]. As a consequence, we must
take the Hurst parameter as an exogenous variable in the fractional mortality
model. We divide the analysis in two cases and present the corresponding
results. Finally, we conclude that fractional mortality might be a large popula-
tion phenomenon and thus not a well suited model for Norwegian mortality rates.

Chapter 6: A brief introduction on life insurance mathematics in continuous
time is given following [Kol12]. The main takeaway from this chapter is
the explicit formula for prospective reserves and Thiele’s ordinary differential
equation (ODE), given that the states of the insured are deterministic quantities.
An applications to premium calculation and reserving is also given under the
Gompertz-Makeham’s law of mortality in Norway.
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1.2. Chapter overview

Chapter 7: Thiele’s PDE is derived under the assumption that the mortality
rate is given as the solution of an Itô stochastic differential equation (SDE).
As numerical methods are required in order to get an approximate solution of
Thiele’s PDE, we give a general algorithm for the explicit method and implicit
method in our insurance setting. Lastly, we give an example related to pension
where the mortality rate follows a geometric Ornstein-Uhlenbeck process and
highlight different reserving methods.

Chapter 8: A short summary of the research conducted in this thesis together
with some remarks on ideas for future work which expand on our model.

Appendix A: An attachment containing all the code we have implemented for
simulations and computations throughout this thesis.
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CHAPTER 2

Framework

We will start this chapter by giving an overview of the theory, notation and
assumptions used throughout this thesis. We will assume that the reader is
familiar with probability theory, integration theory and stochastic analysis. For
more details about measure theory the reader should consult [Lin17] which
most of the results here are gathered from.

2.1 Measure theory

Measure theory is the study of measures, which seeks to generalize the intuitive
notion of size. This includes classical concepts from Euclidean geometry such
as length, area and volume, but also more abstract ideas including probability.
Definition 2.1.1 (σ-algebra) Assume that X is a non-empty set. We say that
a collection A of subsets of X is a σ-algebra if it satisfies:

(i) ∅ ∈ A,
(ii) If A ∈ A =⇒ Ac ∈ A,
(iii) If A ∈ A =⇒

⋃∞
i=1Ai ∈ A.

The sets in A are called the measurable sets of X and are the sets which are
well enough behaved to be assigned a meaningful notion of size. The pair (X,A)
is called a measurable space.
A σ-algebra is used to model the possible events of an experiment. For
instance, if we are interested in modelling the possible health states of an
insured person, then the associated σ-algebra would contain all the possible
information regarding the individual’s health states.
Definition 2.1.2 (Generated σ-algebra) Let X 6= ∅ and let B be a collection
of subsets of X. Then we define the σ-algebra generated by B, denoted by σ(B),
to be the smallest σ-algebra containing B. That is

σ(B) =
⋂
B⊆A

A,

for all σ-algebras A on X.
This definition is particularly interesting for describing σ-algebras of events
through observing random variables.
Example 2.1.3 (Borel σ-algebra on R) Let B be the collection of all open
subsets of R. We say that σ(B) is the Borel σ-algebra on R and we will denote
it by B(R).
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2.1. Measure theory

Definition 2.1.4 (Measure) Assume (X,A) is a measurable space, we say that
a function µ: A → [0, ∞] is a measure on (X, A) if it satisfies:

(i) µ(∅) = 0
(ii) (Countable additivity) If {Ai}∞i=1 ∈ A and Ai ∩Aj = ∅ for all
natural numbers i 6= j then:

µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai).

We call the triple (X,A, µ) a measure space.
Definition 2.1.5 (Finite measure) We say that a measure is finite on the
measurable space (X,A) if and only if

µ(X) <∞.

Definition 2.1.6 (Probability space) We say that a measure space (X,A, µ) is
a probability space if µ is finite and in particular µ(X) = 1. We will denote
probability spaces by (Ω,A, P ).
Probability spaces will be essential in our modeling situations as they contain all
the information of an experiment. In most of the cases, our σ-algebras will be
generated by observable random variables and the probabilities defined through
the distributions of these random variables.
Definition 2.1.7 (σ-finite measure) We say that a measure is σ-finite if there
exists a sequence {Ai}∞i=1 ∈ A with µ(Ai) <∞ for all i ∈ N such that

X =
⋃
i∈N

Ai.

Definition 2.1.8 (Null set) Let (X,A, µ) be a measure space. We say that
a set N ⊆ X is a null set if there exists a set A ∈ A such that N ⊆ A with
µ(A) = 0.
We will denote the collection of all null sets by N . And we say that the measure
space is complete if N ⊆ A.
Example 2.1.9 (Lebesgue measure) Let us consider a concrete example where
our measure space is (R,B(R), λ). Here R is the set of real numbers. B(R) is
the Borel σ-algebra of subsets of R. The Lebesgue measure λ: B(R) → [0, ∞]
defined by

λ((a, b)) = b− a

for a ≤ b.
Note that the Lebesgue measure on R is an example of a non-finite measure
since λ(R) =∞. However it is still σ-finite since

R =
⋃
n∈N

(−n, n)

is a countable covering of R with measurable sets, each with Lebesgue measure
2n.
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2.1. Measure theory

Proposition 2.1.10 (Continuity of measure) Let {An}n∈N ∈ A be a monotonic
sequence on a measure space (X,A, µ).

(i) If the sequence is increasing, then

µ(
∞⋃
n=1

An) = lim
n→∞

µ(An).

(ii) If the sequence is decreasing and µ(A1) <∞, then

µ(
∞⋂
n=1

An) = lim
n→∞

µ(An).

Terminology 2.1.11 (Almost everywhere) Let (X,A, µ) be a measure space.
We say that a property P holds almost everywhere, abbreviated to a.e., if

µ({x ∈ X : ¬P}) = 0.

Definition 2.1.12 (Absolutely continuous measures) Let µ and ν be measures
on (X,A). We say that ν is absolutely continuous with respect to µ if

µ(A) = 0 =⇒ ν(A) = 0, ∀A ∈ A.

Symbolically we will write ν � µ. Moreover we say that ν and µ are equivalent
measures if they share all the same null sets. This means that ν � µ and µ� ν
which we will denote as ν ∼ µ.
Definition 2.1.13 (Singular measures) Let µ and ν be measures on (X,A).
We say that ν is singular with respect to µ if there exists N ∈ A such that
µ(N) = 0 and ν(NC) = 0. We will write this as ν ⊥ µ.
Theorem 2.1.14 (Lebesgue’s decomposition theorem) Let µ and ν be σ-finite
measures on (X,A). Then there are two distinct measures µac, µs : A → [0,∞]
such that

µ = µac + µs, µac � ν, µs ⊥ ν.

We say that µ has been Lebesgue decomposed with respect to ν.
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2.2. Integration theory

2.2 Integration theory

It is usually the case when learning mathematics that one encounters Riemann
integrals before measure theory. The intuition is that the integral measures the
area under some function. However, a different approach would be to generalize
our understanding of size using measures and then use measures to define the
Lebesgue integral. This will be our goal in this section. We will also include
some applications of this theory. For more information about integration with
measures read [Lin17].
Definition 2.2.1 (Measurable function) We say that a function f : X →
[−∞,∞] on a measure space (X,A, µ) is measurable if

f−1[−∞, r) ∈ A

for all r ∈ R.
Definition 2.2.2 (Simple function) We say that f(x) =

∑n
i=1 ai1Ai(x) is a

nonnegative simple function whenever {Ai}ni=1 ∈ A make a partition of X and
ai ≥ 0 for all i ∈ {1, ..., n}, n ∈ N. We define the integral of a simple function
as ∫

X

fdµ =
n∑
i=1

aiµ(Ai).

Definition 2.2.3 (Integral of a nonnegative function) For a nonnegative
measurable function f we define the integral as∫

X

fdµ = lim
n→∞

∫
X

fndµ,

where fn is a nondecreasing sequence of simple functions converging pointwise
to f .
Remark 2.2.4 (Existence of simple functions) We can always find a nonnegative
sequence of simple functions fn converging pointwise to f by cutting the interval
[0, 2n) into the followings subintervals of length 1

2n

Ik =
[ k

2n ,
k + 1

2n
)
,

for k ∈ [0, 22n). Then the sets

Ak = f−1(Ik)

are measurable and we can construct

fn(x) =
22n−1∑
k=0

k

2n 1Ak(x) + 2n1{x:f(x)≥2n}.

By construction fn is a nonnegative simple function approaching f from bellow
pointwise. This is because for each unit increase of n, we cover more of [0,∞)
and the intervals Ik get smaller. This is nondecreasing since each time we split
the interval Ik into two new parts we either follow the same function values or
make an upwards jump.
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2.2. Integration theory

Definition 2.2.5 (Integrable function) We say that a nonnegative function f
is integrable if it is both measurable and

∫
X
fdµ <∞.

Observation 2.2.6 (Nonnegative decomposition) Let f+, f− be nonnegative
functions given by

f+(x) =
{
f(x), f(x) > 0
0, f(x) ≤ 0

f−(x) =
{
−f(x), f(x) < 0
0, f(x) ≥ 0

.

Then any function f : X → [−∞,∞] can be written as f = f+− f−. Also note
that |f | = f+ + f−.

Definition 2.2.7 (Integral of a real valued function) A function f : X →
[−∞,∞] is called integrable if it is measurable and f+ and f− are integrable.
Then the integral of f is given by∫

X

fdµ =
∫
X

f+dµ−
∫
X

f−dµ.

Observe that if ∫
X

|f |dµ <∞ =⇒
∣∣∣ ∫
X

fdµ
∣∣∣ <∞,

which yields that f is integrable. Although it is a stronger statement, this is
often a standard requirement.

Radon-Nikodym
Theorem 2.2.8 (Radon-Nikodym) Let µ and ν be measures on (X,A). If µ is
σ-finite then the following two statements are equivalent:

(i) ν � µ.
(ii) There exists a measurable function f : X → [0,∞] such that f = dν

dµ .

The Radon-Nikodym theorem is extremely useful as it gives a necessary and
sufficient condition to guarantee the existence of a density function. We will use
this theorem later on to apply a change of measure when computing integrals
with respect to distribution functions.

Definition 2.2.9 (Density function) Let (X,A, µ) be a measure space. Let
f : X → [0,∞] be a measurable and µ-integrable function. We define a new
measure ν: A → [0,∞] by

ν(A) =
∫
A

fdµ, A ∈ A.

We say that f is the density function µ-a.e. We will denote the density by
f = dν

dµ and also refer to it as the Radon-Nikodym derivative.
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2.2. Integration theory

Product spaces
Definition 2.2.10 (Product σ-algebra) Let (X1,A1) and (X2,A2) be measur-
able spaces. We say that A1 ⊗A2 is the product σ-algebra generated by the
Cartesian product of measurable sets in A1 and A2. That is

A1 ⊗A2 = σ({A1 ×A2 : A1 ∈ A1, A2 ∈ A2}).

Definition 2.2.11 (Product measure) Let (X1,A1, µ1) and (X2,A2, µ2) be
measure spaces. We say that µ1 × µ2 is a product measure on the measurable
space (X1 ×X2,A1 ⊗A2) if it satisfies the property

µ1 × µ2(A1 ×A2) = µ1(A1)µ2(A2),

for all A1 ∈ A1, A2 ∈ A2.

Theorem 2.2.12 (Tonelli-Fubini’s theorem) Let (X1,A1, µ1) and (X2,A2, µ2)
be σ-finite measure spaces and let f : X1 ×X2 → R be a A1 ⊗A2-measurable
function. Then

∫
X1

(∫
X2

|f |dµ2

)
dµ1 =

∫
X2

(∫
X1

|f |dµ1

)
dµ2 =

∫
X1×X2

|f |d(µ1 × µ2).

Furthermore, if one of the integrals above are finite then f is integrable and we
have that

∫
X1

(∫
X2

fdµ2

)
dµ1 =

∫
X2

(∫
X1

fdµ1

)
dµ2 =

∫
X1×X2

fd(µ1 × µ2).

9



2.2. Integration theory

Convergence theorems
We would like to interchange limits and integrals so that the following equation
holds

lim
n→∞

∫
X

fn(x)dµ =
∫
X

lim
n→∞

fn(x)dµ =
∫
X

f(x)dµ.

Unfortunately the above equation does not hold in general as we will see in this
next example.
Example 2.2.13 (Limits and integrals do not commute) Let λ be the usual
Lebesgue measure on R and define the sequence of functions fn : R→ R by

fn(x) =
{
n2, x ∈ (0, 1

n2 )
0, else.

We see that for all x ∈ R∫
R

lim
n→∞

fn(x)dλ =
∫
R

0dλ = 0.

However, the same is not true if we interchange the limit and integral above
since

lim
n→∞

∫
R
fn(x)dλ = lim

n→∞
1 = 1.

Fortunately this problem of interchanging limits and integrals is already well
studied in measure theory. We will therefore state some key results.
Theorem 2.2.14 (Monotone convergence theorem) If {fn(x)}n∈N is an
increasing sequence of nonnegative, measurable functions such that f(x) =
limn→∞ fn(x) for all x ∈ X and f is µ-integrable, then

lim
n→∞

∫
X

fn(x)dµ =
∫
X

lim
n→∞

fn(x)dµ =
∫
X

f(x)dµ.

Theorem 2.2.15 (Fatou’s lemma) If {fn(x)}n∈N is a sequence of nonnegative
measurable functions, then

lim inf
n→∞

∫
X

fn(x)dµ ≥
∫
X

lim inf
n→∞

fn(x)dµ.

Theorem 2.2.16 (Dominated convergence theorem) Assume g : X → [0,∞]
is a nonnegative, integrable function and that {fn(x)}n∈N is a sequence of
measurable functions converging pointwise to f . If |fn(x)| ≤ g(x) for all n, then

lim
n→∞

∫
X

|fn(x)− f(x)|dµ = 0.

Since convergence in norm implies convergence of the norms, we have that

lim
n→∞

∫
X

fn(x)dµ =
∫
X

lim
n→∞

fn(x)dµ =
∫
X

f(x)dµ.
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2.3. Probability theory

2.3 Probability theory

Probability theory is a part of measure theory with additional structure. We
will in this section apply our knowledge of measure theory to motivate the
Riemann-Stieltjes integral and other probabilistic results. This section is based
on the books [Wal12], [Øks03] and [Bal17].
Definition 2.3.1 (Filtration) We say that a collection of σ-algebras F =
{Ft}t≥0 ⊆ A is a filtration on (Ω,A) if

0 ≤ s ≤ t =⇒ Fs ⊆ Ft.

In insurance one can think of σ-algebras as information. A filtration extends
this idea by modeling the development of information by time.
Definition 2.3.2 (P -augmented filtration) A filtration F = {Ft}t≥0 on
(Ω,A, P ) is called P -augmented if the collection of all nullsets under the
probability measure P , denoted by N , is contained in F0. That is

N ⊆ F0.

Definition 2.3.3 (Right continuous filtration) A filtration F = {Ft}t≥0 on
(Ω,A) is called right continuous if

Ft =
⋂
u>t

Fu, t ≥ 0.

Definition 2.3.4 (Random variable) A mapping X : Ω → R which is
measurable with respect to A is called a random variable.
Remark 2.3.5 (Pushforward measure) Every random variable induces a
probability measure µX on B(R) defined by

µX(B) = P (X−1(B)), B ∈ B(R).

The pushforward measure is also called the law of X.
Theorem 2.3.6 (Image measure) Let (X,A, µ) be a measure space and let (Y, C)
be a measurable space. Assume also that we have a measurable transformation
T : X → Y and a measurable function f : Y → R. Then the integral of f exists
as a function on (Y, C, µT ) if and only if the integral of f ◦T exists as a function
on (X,A, µ). If that is the case the following equation holds∫

X

f ◦ Tdµ =
∫
Y

fdµT .

Notice that f is integrable if and only if f ◦ T is integrable.
Definition 2.3.7 (Distribution function) We define F : R → [0, 1] as the
distribution function of a random variable X given by

F (x) = P (X(ω) ≤ x).
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2.3. Probability theory

Remark 2.3.8 (Important relation) When working with abstract probability
spaces it is often a good idea to use the induced probability measure µX to prove
theoretical results. However, in practical applications it is often convenient to
characterize the distribution of a random variable by its distribution function.
An important and trivial relationship between the two concepts is

F (x) = P (X(ω) ≤ x) = P (X−1(−∞, x]) = µX(−∞, x]).

Definition 2.3.9 (Expectation) Let X : Ω → R be a random variable and
f : R→ R be a measurable function. If∫

Ω
|f(X(ω))|dP <∞,

we define the expectation of f(X) by

E[f(X)] =
∫

Ω
f(X(ω))dP =

∫
R
f(x)dµX .

If µX � λ we can simplify the expectation to a Lebesgue-integral by using the
Radon-Nikodym theorem to find a density g.

E[f(X)] =
∫
R
f(x)dµX =

∫
R
f(x)dµX

dλ
dλ =

∫
R
f(x)g(x)dx.

Definition 2.3.10 (Variance) Let X be a random variable with finite second
moment, i.e E[X2] <∞, then we define the variance of X as

V ar(X) = E
[(
X − E[X]

)2] = E[X2]− E[X]2.

Definition 2.3.11 (Covariance) Let X, Y be two random variables. We define
their covariance by

Cov(X,Y ) = E
[(
X − E[X]

)(
Y − E[Y ]

)]
= E[XY ]− E[X]E[Y ].

Definition 2.3.12 (Moment generating function) Let X be a random variable.
We define the moment generating function M : R→ R of X by

MX(t) = E[etX ],

whenever the expectation exists.
Definition 2.3.13 (Characteristic function) Let X be a random variable. We
define the function φX : R→ C as its characteristic function by

φX(t) = E[eitX ], t ∈ R.

Remark 2.3.14 (Characteristic functions and moment generating functions)
An important observation about the characteristic function is that it always
exists unlike the moment generating function. While the moment generating
function may run into integrability problems, the characteristic functions does
not as in the latter case we integrate around the unit circle. However, both
functions are useful for studying distributional properties of a random variable.
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2.3. Probability theory

Borell-Cantelli
Definition 2.3.15 (Limit superior) Let (X,A) be a measurable space. We
define the limit superior of a sequence of sets {An}n∈N ⊆ A by

lim sup
n→∞

An =
∞⋂
n=1

∞⋃
k=n

An = {An happens for infinitely many n}.

Definition 2.3.16 (Limit inferior) Let (X,A) be a measurable space. We
define the limit inferior of a sequence of sets {An}n∈N ⊆ A by

lim inf
n→∞

An =
∞⋃
n=1

∞⋂
k=n

An = {An happens for all but finitely many n}.

Definition 2.3.17 (Independent sets) Let (Ω,A, P ) be a probability space. We
say that a sequence of sets {An}n∈N ⊆ A are independent if

P
( ∞⋂
n=1

An

)
=
∞∏
n=1

P (An).

Theorem 2.3.18 (Borel-Cantelli lemma) Assume {An}n∈N is a sequence of
events.

(i) If
∞∑
i=1

P (An) <∞, then P
(

lim sup
n→∞

An

)
= 0.

(ii) If
∞∑
i=1

P (An) = ∞ and the events An’s are independent, then

P
(

lim sup
n→∞

An

)
= 1.

Borel-Cantelli lemma is a well known result from probability theory and is often
referred to as a 0-1 law.

Riemann-Stieltjes integral
Definition 2.3.19 (Mesh) Let Π = {xi}n−1

i=0 ⊆ [a, b] be a partition,
a = x0 < ... < xn−1 = b. We define its mesh by

|Π| = max
0≤i≤n−1

|xi+1 − xi|.

Definition 2.3.20 (p-variation) Let Π = {xi}n−1
i=0 ⊆ [a, b] be a partition and

f : [a, b]→ R a function. We define the p-variation V p[a,b](Π, f) by

V p[a,b](Π, f) = lim
|Π|→0

n−1∑
i=0
|f(xi+1)− f(xi)|p, p ≥ 1.

We will say that f has bounded total variation if the sum above converges for
p = 1. Likewise we will say that f has bounded quadratic variation if it has
bounded 2-variation.
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Definition 2.3.21 (Riemann-Stieltjes integral) Let f, g : [a, b] → R be real
valued functions. We define the Riemann-Stieltjes integral of f with respect to
g by ∫ b

a

fdg = lim
|Π|→0

n−1∑
i=0

f(ci)
(
g(xi+1)− g(xi)

)
,

whenever the limit exists for all partition Π of [a, b] and each ci ∈ [xi, xi+1].
Remark 2.3.22 (Existence of the Riemann-Stieltjes integral) We would like
to impose that

∫ b
a
fdg is well-defined. A sufficient condition for the existence of

the Riemann-Stieltjes integral is that g is of bounded total variation and that
f is continuous on [a, b]. Indeed it can be checked that

∣∣∣ ∫ b

a

fdg
∣∣∣ =

∣∣∣ n−1∑
i=0

f(ci)
(
g(xi+1)− g(xi)

)∣∣∣

≤ sup
c∈[a,b]

|f(c)|
n−1∑
i=0

∣∣∣g(xi+1)− g(xi)
∣∣∣ ≤ sup

c∈[a,b]
|f(c)|V 1

[a,b](Π, g) <∞.

Where we have used the triangle inequality. That f is continuous on a compact
set such that f must be bounded by the extreme value theorem. Finally, that g
is of bounded total variation.
Remark 2.3.23 (Computing Riemann-Stieltjes integral) Let f, g : R→ R. If
f is continuous and g is a.e. differentiable with at most a finite number of
discontinuities occurring at x1, x2, x3, ..., xn ∈ R, then we define the Riemann-
Stieltjes integral of f with respect to g by∫

R
f(x)dg(x) =

∫
R
f(x)g′(x)dx+

n∑
i=1

f(xi)(g(xi)− g(xi−)).

Here g(xi−) = limx↑xi g(x) denotes the left limit of g at xi. If we are fortunate
enough that g is continuous and a.e. differentiable on the whole domain, then
the Riemann-Stieltjes integral is simply just a Riemann integral.

Inequalities
Theorem 2.3.24 (Chebyshev’s inequality) LetX be a centered random variable
and let p, λ > 0, then

P (|X| ≥ λ) ≤ 1
λp
E[|X|p].

In particular, for p = 2 we have that

P (|X| ≥ λ) ≤ 1
λ2V ar(X).

Chebyshev’s inequality can be useful in applications since it yields an upper
bound on the probability that the absolute deviation from the mean is outside
of a given threshold. On the other hand, the upper bound may often be too
coarse.

14
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Theorem 2.3.25 (Schwarz’s inequality) Let X,Y be random variables with
finite absolute second moments, then

E[|XY |] ≤ E[X2] 1
2E[Y 2] 1

2 .

Schwarz’s inequality is perhaps the most important inequality when operating
with inner product spaces.
Theorem 2.3.26 (Jensen’s inequality) Let φ : (a, b)→ R be a convex function
and let X : Ω→ (a, b) be a random variable . If both X and φ(X) are integrable,
then

φ(E[X]) ≤ E[φ(X)].

Jensen’s inequality is vital for convex analysis but also in probability
theory. Important applications in probability theory include the derivation of
Lyapunov’s inequalities and the existence of characteristic functions.
Theorem 2.3.27 (Lyapunov’s inequalities) Let X be a random variable and
let 1 ≤ p ≤ q, then

(i) E[|X|]p ≤ E[|X|p] (ii) E[|X|p]
1
p ≤ E[|X|q]

1
q .

Lyapunov’s inequalities are useful when doing analysis in Lp- spaces.

Convergence in what sense?
We are often interested in convergence of a random variable of the type
lim
n→∞

Xn = X. However this notation is ambiguous without specifying what type
of convergence we are exploring. To avoid confusion, we will briefly summarize
the most important types of convergence as well as the relationships between
them.
Definition 2.3.28 (Pointwise convergence) We say that a sequence {Xn}n∈N
of random variables converges pointwise to X if for all ω ∈ Ω we have that

lim
n→∞

Xn(ω) = X(ω).

Definition 2.3.29 (Convergence almost surely) We say that a sequence
{Xn}n∈N of random variables converges almost surely, often abbreviated a.s.,
to X if there exists a null set N , under the probability measure P , such that
for all ω /∈ N .

lim
n→∞

Xn(ω) = X(ω).

Definition 2.3.30 (Convergence in probability) We say that a sequence
{Xn}n∈N of random variables converges in probability to X if for all ω ∈ Ω we
have that

lim
n→∞

P (|Xn −X| ≥ ε) = 0,

for every ε > 0.
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Definition 2.3.31 (Convergence in Lp) Let p ≥ 1, we say that a sequence
{Xn}n∈N of random variables converges in Lp to X if for all ω ∈ Ω we have
that

lim
n→∞

E[|Xn −X|p] = 0.

Definition 2.3.32 (Convergence in distribution) Let {Fn}n∈N and F be
distribution functions of the random variables {Xn}n∈N and X respectively.
We say that {Xn}n∈N converges to X in distribution whenever

lim
n→∞

Fn = F,

at all points where F is continuous.

Convergence relations
(i) If {Xn}n∈N converges to X in Lp or almost surely, then {Xn}n∈N converges
to X in probability.

(ii) If {Xn}n∈N converges to X in probability, then {Xn}n∈N converges to X in
distribution.

(iii) If {Xn}n∈N converges to X in probability, then there exists a subsequence
{Xnk}k∈N converging to X almost surely.
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2.4 Stochastic analysis

The goal of this section is to explore stochastic processes and their properties.
We will focus on Brownian motion and martingale theory which will be vital
for what is to come. The content is gathered from [Øks03] and [Bal17].
Definition 2.4.1 (Stochastic process) A stochastic process {Xt}t∈T is a
collection of random variables indexed by T . Common choices of T include

T = N ∪ {0}, T = [0, T ], T = [0,∞), T > 0.

Note that a stochastic process can be viewed as a measurable mapping X:
Ω× T → R. By fixing t ∈ T and letting ω 7→ Xt(ω) we get a random variable.
By fixing ω ∈ Ω and letting t 7→ Xt we get a function, known as a sample path
of the process, or also called a trajectory.
Definition 2.4.2 (Adapted process) A stochastic process {Xt}t∈T is adapted
to a filtration {Ft}t∈T provided that Xt is Ft-measurable for all t ∈ T .
Definition 2.4.3 (Modification) Let X = {Xt}t∈T and Y = {Yt}t∈T be
stochastic processes. We say that X is a modification of Y if

P (Xt = Yt) = 1, ∀t ∈ T .

Definition 2.4.4 (Hölder continuity) Let f : R → R be a function. We say
that f is Hölder continuous if there exist constants C, γ > 0 such that

|f(x)− f(y)| < C|x− y|γ , ∀x, y ∈ R.

Theorem 2.4.5 (Kolmogorov’s continuity theorem) Let X = {Xt}t∈T be a
stochastic process with constants α, β, C > 0 satisfying the equation

E[|Xt −Xs|β ] ≤ C|t− s|1+α s ≤ t.

Then there exists almost surely a modification Y = {Yt}t∈T of X that is Hölder
continuous for all γ ∈ (0, αβ ) on every bounded time interval.
Definition 2.4.6 (Brownian motion) A stochastic process B = {Bt}t∈[0,∞) is
called a Brownian motion starting in x ∈ R if

(i) P (B0 = x) = 1.
(ii) Bt −Bs is independent of Fs for all s ≤ t.
(iii) Bt −Bs is normally distributed with mean zero and variance t− s,
i.e Bt −Bs ∼ N(0, t− s).

Example 2.4.7 (Brownian motion has a continuous modification) First note
that the Brownian motion can be written in the following form

Bt −Bs = (t− s) 1
2Z, Z ∼ N(0, 1),

where the equality is in the sense of law.
Now we take the absolute value and exponentiate both sides by β. Lastly, we
apply the expectation on both sides which yields

E[|Bt −Bs|β ] = (t− s)
β
2 E[|Z|β ].
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This is in the form of Kolmogorov’s continuity theorem with α = β
2 − 1 and

C = E[|Z|β ] < ∞. Thus there is almost surely a modification of a Brownian
motion which is Hölder continuous with γ ∈ (0, 1

2 −
1
β ). Since β > 1

2 , we have
that γ ∈ (0, 1

2 ).
Example 2.4.8 (Brownian motion is not differentiable) Recall the definition
of a differentiable function f : R→ R. We say that f is differentiable at a point
x ∈ R if the following limit exists and is finite,

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

.

We will show that the Brownian motion is not differentiable in distribution.
Define a random variable Xh by

Xh = Bt+h −Bt
h

.

Then it is straight forward to compute its expectation and variance using the
properties of Brownian motion.

E[Xh] = E
[Bt+h −Bt

h

]
= 1
h
E[Bh] = 0.

V ar(Xh) = V ar
(Bt+h −Bt

h

)
= 1
h2V ar(Bh) = 1

h2h = 1
h
.

Since a linear combination of independent normal random variables is again a
normal random variable, we can write the following equality in distribution

Xh = Z√
h
, Z ∼ N(0, 1).

We claim that Xh is unbounded in probability and as a result nowhere
differentiable. Indeed for an arbitrary large number N ∈ N we have that

lim
h→0

P (|Xh| > N) = lim
h→0

P (| Z√
h
| > N) = lim

h→0
P (|Z| >

√
hN)

= lim
h→0

P (Z < −
√
hN) + P (Z >

√
hN) = lim

h→0
2P (Z >

√
hN)

= lim
h→0

2
∫ ∞
√
hN

1√
2π
e

−z2
2 dz = 2√

2π
lim
h→0

∫ ∞
−∞

1{z>√hN}e
−z2

2 dz

= 2√
2π

∫ ∞
−∞

lim
h→0

1{z>√hN}e
−z2

2 dz = 2√
2π

∫ ∞
0

e
−z2

2 = 2√
2π

√
π√
2

= 1.

Where we have used the dominated convergence theorem to justify the
interchange of limit and integral in the seventh equality. Note that the integrand
is bounded by e−z2

2 which is integrable. It is possible to prove that Brownian
motion is almost surely nowhere differentiable. The result is significantly
stronger, but it comes with the cost of a more technical proof which can be
found in [Wal12].
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Example 2.4.9 (Brownian motion has bounded quadratic variation) We will
show that the quadratic variation of Brownian motion converges in L2(P ) to
the length of the time interval. With out loss of generality we will consider the
case where Π = {ti}n−1

i=0 ⊆ [0, T ].

E[(
n−1∑
i=0

(Bti+1 −Bti)2 − T )2]

= E[(
n−1∑
i=0

(Bti+1 −Bti)2)2 − 2T
n−1∑
i=0

(Bti+1 −Bti)2 + T 2]

Using (
∑
i

ai)2 =
∑
i

a2
i + 2

∑
i

∑
j<i

aiaj we can simplify the expression by linearity

and independence.

=
n−1∑
i=0

E[(Bti+1 −Bti)4] + 2
n−1∑
i=0

i−1∑
j=0

E[(Bti+1 −Bti)2]E[(Btj+1 −Btj )2]

−2T
n−1∑
i=0

E[(Bti+1 −Bti)2] + T 2

We will now use that if X ∼ N(0, σ2), then E[X2] = σ2 and E[X4] = 3σ4.

=
n−1∑
i=0

3(ti+1 − ti)2 + 2
n−1∑
i=0

i−1∑
j=0

(ti+1 − ti)(tj+1 − tj)− 2T
n−1∑
i=0

(ti+1 − ti) + T 2

We apply (
∑
j

aj)2 =
∑
j

a2
j + 2

∑
j

∑
i<j

ajai in reverse and notice the following

telescoping sum
∑n−1
i=0 (ti+1 − ti) = T .

= 2
n−1∑
i=0

(ti+1 − ti)2 + (
n−1∑
i=0

(ti+1 − ti))2 − 2T 2 + T 2 = 2
n−1∑
i=0

(ti+1 − ti)2

Finally we bound the sum by its mesh.

2
n−1∑
i=0

(ti+1 − ti)2 ≤ 2|Π|
n−1∑
i=0

(ti+1 − ti) = 2|Π|T → 0, |Π| → 0.

The random variable (
∑n−1
i=0 (Bti+1 −Bti)2−T )2 is nonnegative by construction

and since it approaches 0, it must be equal to 0 in L2(P ).
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Example 2.4.10 (Brownian motion has unbounded total variation) Assume
that Brownian motion has bounded variation. The following estimate shows
that this can not be the case as

V 2
[0,T ](Π, Bt) =

n−1∑
i=0
|Bti+1 −Bti |2 ≤ max

0≤i≤n−1
|Bti+1 −Bti |V 1

[0,T ](Π, Bt).

Since Brownian motion has continuous paths max0≤i≤n−1 |Bti+1 −Bti | → 0 as
|Π| → 0. This would mean that the quadratic variation must also converge
to zero, which is a clear contradiction! Thus our assumption about bounded
variation must be false.

Definition 2.4.11 (Stopping time) We say that a mapping τ : Ω→ [0,∞] is a
stopping time if

{τ ≤ t} ∈ Ft,

for all t ≥ 0.

Intuitively speaking, a stopping time is a rule for when to make a decision
without requiring knowledge of future events.

Definition 2.4.12 (Càdlàg process) A process X = {Xt}t≥0 is called a càdlàg
process if it has right-continuous paths and existing left limits everywhere.

Definition 2.4.13 (Martingale, submartingale and supermartingale) An
integrable and adapted process X is called

(i) a martingale if for all s ≤ t, then E[Xt|Fs] = Xs a.e.
(ii) a submartingale if for all s ≤ t, then E[Xt|Fs] ≥ Xs a.e.
(iii) a supermartingale if for all s ≤ t, then E[Xt|Fs] ≤ Xs a.e.

It is useful to think of martingales as a process modeling a fair game. For
example, tossing an unbiased coin where we gain 1$ for each heads and lose 1 $
for each tails. On the other hand, submartingales and supermartingales can be
used to model profitable or disadvantageous games respectively.

Example 2.4.14 (Brownian motion is a martingale) We will prove the
martingale property of the Brownian motion.

E[Bt|Fs] = E[Bt −Bs +Bs|Fs] = E[Bt −Bs|Fs] + E[Bs|Fs]

= E[Bt −Bs] +Bs = Bs

Where we have added and subtracted Bs in the first equality. Linearity of
conditional expectations in the second equality. Independent increments and
measurability of Bs in the third equality. Normally distributed increments with
mean zero in the last equality.
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Definition 2.4.15 (Predictable process) A stochastic process A : [0,∞)×Ω→
R is called predictable with respect to a filtration {Ft}t≥0 if A is measurable
with respect to the predictable σ-algebra given by

P = σ
(

(s, t]× F : s ≤ t, F ∈ Fs
)
.

Theorem 2.4.16 (Doob-Meyer decomposition) Let Π = {ti}n−1
i=0 ⊆ [0, t] be a

partition and let M = {Mt}t≥0 be a square integrable martingale. Then there
exists a unique stochastic process A = {At}t≥0 which is increasing, predictable
and continuous such that

(i) A0 = 0,

(ii) M2
t −At is a martingale for all t ≥ 0,

(iii) At = lim|Π→0|
∑n−1
i=0 |Mti+1 −Mti |2 in probability.

We call A the predictable compensator of M . Note that A can be computed as
the quadratic variation of M , which is often written with the following notation

At = [M,M ]t = [M ]t. (2.4.1)

Definition 2.4.17 (Local martingale) An adapted càdlàg process M = {Mt}t≥0
is a local martingale if there are increasing stopping times τn, n ∈ N with
P (limn→∞ τn =∞) = 1 such that

(i) the process stopped on {τn > 0}

Mτn
t = Mt∧τn1{τn>0}

is a martingale for all n, that is

E[Mτn
t |Fs] = Mτn

s , s ≤ t.

(ii) And that the stopped process satisfies uniform integrability. That is

lim
m→∞

sup
t≥0

E[|Mτn
t |1{|Mτn

t |≥m}] = 0.

Definition 2.4.18 (Semimartingale) An F-adapted càdlàg process X is a
semimartingale if

Xt = X0 +At +Mt, t ≥ 0.

Where A and M are càdlàg adapted processes such that A is of bounded
variation with probability one and M is a local martingale.

Semimartingales are more informally known as "good integrators", that is
processes for which one can define stochastic integrals. In the next chapter, we
will review the construction of the Itô integral, i.e. with respect to a Brownian
motion, which is one of the simplest examples of semimartingales. However,
the construction of the stochastic integral can be extended to any general
martingale.
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2.5 Itô calculus

This section aims to construct Itô’s integral which is a type of stochastic integral.
The construction will be done for a general martingale integrator for the sake of
generality before tackling the special case with a Brownian motion. We will also
illuminate some application of Itô’s calculus for solving stochastic differential
equations. The source material has been gathered from [Øks03] and [Bal17].

Construction of the stochastic integral
We would like to define a stochastic integral of a process X with respect to a
martingale M often denoted by ∫ T

0
XsdMs.

However this is not a simple task as it gives rise to the following questions
which we will tackle one by one:

(i) What does integration with respect to a martingale mean?
(ii) Is the integral well-defined and in what sense?
(iii) What types of problems can we solve with stochastic integrals?

It is natural to wonder if we can interpret the stochastic integral as a Riemann-
Stieltjes integral with respect to a trajectory of a martingale. Unfortunately,
this is not well-defined as the paths of a martingale are not of bounded variation.
Which is a common assumption in constructing the Riemann-Stieltjes integral.
Therefore, it is necessary to make sense of the stochastic integral in a different
way and see its limitations.
Definition 2.5.1 (Mp-spaces) Let [a, b] ⊂ [0,∞) and p ≥ 1. Then we define
Mp[a, b] as the space of equivalent classes of predictable processes such that

E
[ ∫ b

a

|Xs|pd[M ]s
]
<∞,

where [M ] denotes the quadratic variation of M as defined in (2.4.1).
We will mostly work with M2[a, b] ⊂ L2([a, b]× Ω,B[a, b]⊗A, d[M ]t × P

)
.

Definition 2.5.2 (Elementary processes) Let Π = {ti}n−1
i=0 be a partition of

[a, b] and let ϕi : Ω→ R be bounded Fti-measurable random variables. Then
we define an elementary process X : Ω× [a, b]→ R by

Xt =
n−1∑
i=0

ϕi1[ti,ti+1)(t), n ∈ N.

Moreover, we define the stochastic integral of an elementary process with respect
to a martingale process M ∈ L2(Ω,A, P ) by∫ b

a

XsdMs =
n−1∑
i=0

ϕi(Mti+1 −Mti).
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Lemma 2.5.3 (Existence of an approximating sequence) Let Π = {ti}n−1
i=0 be

a partition of [a, b] and let for all i, {ϕi,n}n∈N be a sequence of bounded
Fti-measurable random variables. If φ ∈ M2[a, b], then there exists an
approximating sequence of elementary processes {φn}n∈N ⊆ M2[a, b] of the
form

φn =
n−1∑
i=0

ϕi,n1[ti,ti+1)(t), n ∈ N,

such that

||φ− φn||L2(P×d[M ]t) → 0, n→∞.

Proposition 2.5.4 (Itô isometry for elementary processes) Let {φn}n∈N be an
elementary process and M ∈ L2(P ) a martingale. Then

E
[( ∫ b

a

φndMs

)2]
= E

[ ∫ b

a

φ2
nd[M ]s

]
.

Proof. By definition we have that

E
[( ∫ b

a

φndMs

)2]
= E

[( n−1∑
i=0

ϕi,n(Msi+1 −Msi)
)2]

= E
[ n−1∑
i=0

ϕ2
i,n(Msi+1 −Msi)2

]
(2.5.1)

+2E
[ n−1∑
i=0

∑
j<i

ϕi,n(Msi+1 −Msi)ϕj,n(Msj+1 −Msj )
]
. (2.5.2)

We expand the square in (2.5.1) and use the martingale property such that

E
[ n−1∑
i=0

ϕ2
i,n(Msi+1 −Msi)2

]
= E

[ n−1∑
i=0

ϕ2
i,n(M2

si+1
+M2

si − 2Msi+1Msi)
]

= E
[ n−1∑
i=0

ϕ2
i,n(M2

si+1
+M2

si − 2MsiE[Msi+1 |Fsi ])
]

= E
[ n−1∑
i=0

ϕ2
i,n(M2

si+1
−M2

si)
]
.

By Doob-Meyer decomposition we can write a martingale as the difference
between a submartingale and the predictable compensator. This yields

E
[ n−1∑
i=0

ϕ2
i,n(M2

si+1
−M2

si)
]

= E
[ n−1∑
i=0

ϕ2
i,n

(
M2
si+1
− [M ]si+1 − (M2

si − [M ]si) + [M ]si+1 − [M ]si
)]
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= E
[ n−1∑
i=0

ϕ2
i,n

(
Msi+1 −Msi + [M ]si+1 − [M ]si

)]

= E
[ n−1∑
i=0

ϕ2
i,n

(
E[Msi+1 −Msi |Fsi ] + [M ]si+1 − [M ]si

)]

= E
[ n−1∑
i=0

ϕ2
i,n

(
[M ]si+1 − [M ]si

)]
= E

[ ∫ b

a

φnd[M ]s
]
.

The result now follows since (2.5.2) is zero. Indeed

2E
[ n−1∑
i=0

∑
j<i

ϕi,n(Msi+1 −Msi)ϕj,n(Msj+1 −Msj )
]

= 2E
[ n−1∑
i=0

∑
j<i

ϕi,nE[Msi+1 −Msi |Fsi ]ϕj,n(Msj+1 −Msj )
]

= 0.

�

We can now define the stochastic integral using a limit argument of elementary
processes.
Step 1. (Existence) By Lemma 2.5.3 we know that the elementary functions
are dense in M2[a, b].

Step 2. (Convergence) Let I(φn) ∈ L2(P ) be a sequence of stochastic integrals
of elementary processes given by

I(φn) =
n−1∑
i=0

ϕi,n(Msi+1 −Msi),

then {I(φn)}n∈N is a convergent sequence, i.e. the following L2(P ) limit exists

I(φn)→ I(φ), n→∞.

Since L2(P ) is a Hilbert space, we know that all Cauchy sequences converge by
completeness. Thus it suffices to show that {I(φn)}n∈N is a Cauchy sequence
in order to prove convergence and existence of the limit. For n,m ∈ N we have
that

E
[(
I(φn)− I(φm)

)2]

= E
[( n−1∑

i=0
φi,n(Msi+1 −Msi)−

n−1∑
i=0

φi,m(Msi+1 −Msi)
)2]

= E
[( n−1∑

i=0
(φi,n − φi,m)(Msi+1 −Msi)

)2]
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= E
[ ∫ b

a

(ϕn − ϕm)2d[M ]s
]

= ||ϕn − ϕm||2L2(P×d[M ]s) → 0, m, n→∞.

In the computation above, we have used linearity, Itô isometry and that {φn}n∈N
is converging to φ in L2(P × [M ]s). Hence we have a Cauchy sequence.

Step 3. (Well-defined limit) We must show that the stochastic integral is
well-defined as the limit of a stochastic integral of elementary processes. This
means that

I(φn)→ I(φ), n→∞,

is independent of the choice we make for the approximating sequence of
elementary processes.

Let {φn}n∈N, {φ′n}n∈N ∈ L2(P ×d[M ]s) be two distinct sequences of elementary
processes that approximate φ ∈ L2(P × d[M ]s). Then

E
[(
I(φn)− I(φ′n)

)2]
= E

[(
I(φn − φ′n)

)2]
= E

[ ∫ b

a

(φn − φ′n)2d[M ]s
]

= E
[ ∫ b

a

(φn − φ+ φ− φ′n)2d[M ]s
]

≤ 2E
[ ∫ b

a

(φn − φ)2d[M ]s
]

+ 2E
[ ∫ b

a

(φ− φ′n)2d[M ]s
]
→ 0, n→∞,

where we have used the following inequality

|x+ y|p ≤ 2p−1(|x|p + |y|p), x, y ∈ R, p ≥ 1.

This concludes the construction of the stochastic integral for a martingale
integrator. But we will also mention some important properties of the stochastic
integral.

Proposition 2.5.5 (Linearity) Let X,Y ∈ M2[a, b] and let M ∈ L2(P ) be a
martingale, then

∫ b

a

(xXs + yYs)dMs = x

∫ b

a

XsdMs + y

∫ b

a

YsdMs, x, y ∈ R.

Proof. We start by showing the result for elementary processes.

∫ b

a

(xXs + yYs)dMs =
n−1∑
i=0

(
xϕi(Msi+1 −Msi) + yϕ′i(Msi+1 −Msi)

)
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2.5. Itô calculus

= x

n−1∑
i=0

(
ϕi(Msi+1 −Msi)

)
+ y

n−1∑
i=0

(
ϕ′i(Msi+1 −Msi)

)

= x

∫ b

a

XsdMs + y

∫ b

a

YsdMs.

The result for a general X,Y ∈M2[a, b] follows by applying the limit argument
for elementary processes.

�

Proposition 2.5.6 (Itô isometry) Let X,Y ∈M2[a, b] and let M ∈ L2(P ) be
a martingale, then

E
[( ∫ b

a

XsdMs

)2]
= E

[ ∫ b

a

X2
sd[M ]s

]
, (2.5.3)

E
[ ∫ b

a

XsdMs

∫ b

a

YsdMs

]
= E

[ ∫ b

a

XsYsd[M ]s
]
. (2.5.4)

Proof. (2.5.3) follows from our previous proof of Itô’s isometry using elementary
processes and then applying the limit argument which we have constructed.
In order to prove (2.5.4) we use the general Itô isometry together with the
polarization identity

xy = 1
4

(
(x+ y)2 − (x− y)2

)
, x, y ∈ R.

This yield

E
[ ∫ b

a

XsdMs

∫ b

a

YsdMs

]

= E

[
1
4

((∫ b

a

XsdMs +
∫ b

a

YsdMs

)2
−
(∫ b

a

XsdMs −
∫ b

a

YsdMs

)2
)]

= E

[
1
4

((∫ b

a

(Xs + Ys)dMs

)2
−
(∫ b

a

(Xs − Ys)dMs

)2
)]

= E

[
1
4

(∫ b

a

(Xs + Ys)2d[M ]s −
∫ b

a

(Xs − Ys)2d[M ]s

)]

= E

[
1
4

(∫ b

a

(
(Xs + Ys)2 − (Xs − Ys)2d[M ]s

))]

= E

[
1
4

∫ b

a

4XsYsd[M ]s

]
= E

[∫ b

a

XsYsd[M ]s

]

�

26



2.5. Itô calculus

Proposition 2.5.7 (Mean zero) Let X ∈ M2[a, b] and let M ∈ L2(P ) be a
martingale, then

E
[ ∫ b

a

XsdMs

]
= 0.

Proof. We once again start by showing the result for elementary processes.

E
[ ∫ b

a

XsdMs

]
= E

[ n−1∑
i=0

ϕi(Msi+1 −Msi)
]

= E
[ n−1∑
i=0

ϕiE[Msi+1 −Msi |Fsi ]
]

= 0.

The result for a general X ∈M2[a, b] follows by applying the limit argument
for elementary processes.

�
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2.5. Itô calculus

Stochastic differential equations
Now that we have defined the stochastic integral for a general martingale
integrator, we will restrict the analysis to the Brownian motion. We have
already seen that the stochastic integral is well-defined. If the integrator of a
stochastic integral is a Brownian motion, we get the Itô integral, i.e.∫ b

a

XsdBs.

The Brownian motion has independent increments and constant mean, which
implies that it is a martingale. In particular, having the property of independent
increments simplifies many proofs from the construction of the stochastic integral
as for example the proof of Proposition 2.5.4, but what is really crucial for the
construction of a stochastic integral is the martingale property.

Now we will turn to defining the stochastic differential of Brownian motion.
The naive candidate for a stochastic differential dBtdt does not work as Brownian
motion is almost surely nowhere differentiable. However, we will define the
stochastic differential when working with an Itô process.
Definition 2.5.8 (Itô process) Let u be a stochastic process with a.s. integrable
trajectories and v a stochastic process such that

E
[ ∫ b

a

|v(s)|2ds
]
<∞.

Then the well-defined process

Xt = X0 +
∫ b

a

u(s)ds+
∫ b

a

v(s)dBs, s ∈ [a, b], X0 ∈ R,

is called an Itô process. If we choose deterministic functions b, σ such that

u(s) = b(s,Xs), v(s) = σ(s,Xs),

we obtain the relation

Xt = X0 +
∫ b

a

b(s,Xs)ds+
∫ b

a

σ(s,Xs)dBs, s ∈ [a, b], X0 ∈ R. (2.5.5)

The above definition makes sense since it is a semimartingale or a sum of a
Lebesgue integral and an Itô integral. However, it is often convenient to write
the equation in differential form

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t ∈ [a, b]. (2.5.6)

This is just a matter of notation and terminology, the differential form in (2.5.6)
has no other meaning than the integral form in (2.5.5). Equation (2.5.6) is
called a stochastic differential equation, abbreviated to SDE, and is used to
model the dynamics of a random system which evolves in time. Moreover, it
is common to refer to b(t,Xt) as the drift and σ(t,Xt) as the diffusion of the
process.
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2.5. Itô calculus

Theorem 2.5.9 (Itô’s formula) Let f ∈ C1,2([0, T ]× R) and X an Itô process.
Then

f(t,Xt) = f(0, X0) +
∫ t

0

( ∂
∂s
f(s,Xs)

)
ds+

∫ t

0

( ∂
∂x
f(s,Xs)

)
dXs

+1
2

∫ t

0

( ∂2

∂x2 f(s,Xs)
)
d[X,X]s.

Or in differential form

df(t,Xt) = ∂

∂t
f(t,Xt)dt+ ∂

∂x
f(t,Xt)dXt + 1

2
∂2

∂x2 f(t,Xt)d[X,X]t.

Itô’s formula can be thought as the chain rule for stochastic calculus and is
often the key to solving stochastic differential equations.
Example 2.5.10 (Ornstein-Uhlenbeck) The solution of the following SDE is
known as the Ornstein-Uhlenbeck process

dXt = −λXtdt+ σdBt,

X0 = x0,

where λ, σ > 0 and x0 ∈ R. The solution of this SDE can be obtained by Itô’s
formula using f(t,Xt) = eλtXt. It is then easy to check that

∂

∂t
f = λf,

∂

∂x
f = eλt,

∂2

∂x2 f = 0, d[X,X]t = σ2dt.

Inserting into Itô’s formula we see that all the drift terms vanish and we are
left with a diffusion term of the form

df = σeλtdBt.

Integrating on both sides we get

eλtXt −X0 =
∫ t

0
σeλsdBs.

Finally we isolate Xt and make use of the initial condition to get the final
answer

Xt = x0e
−λt + e−λt

∫ t

0
σeλsdBs.

From the last expression, it is easy to calculate the mean and variance of the
process. Indeed

E[Xt] = E
[
x0e
−λt + e−λt

∫ t

0
σeλsdBs

]
= x0e

−λt + e−λtE
[ ∫ t

0
σeλsdBs

]
= x0e

−λt,
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2.5. Itô calculus

where we have used that the Itô integral of a deterministic function has
expectation zero. Moreover,

V ar(Xt) = E
[(
e−λt

∫ t

0
σeλsdBs

)2]
= e−2λtσ2

∫ t

0
e2λsds = σ2

2λ (1− e−2λt),

where we have used Itô isometry in the second equality to arrive at a
deterministic integral.
The solution process we found for the Ornstein-Uhlenbeck SDE is called a
strong solution. We will end this section by defining the concept of a strong
solution here below.
Definition 2.5.11 (Strong solution) A stochastic process {Xt}t≥0 is called a
strong solution of the following SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt
X0 = x0,

whenever the following conditions are satisfied.

(i) {Xt}t≥0 is adapted to Ft on (Ω,A, P ) for all standard Brownian motions.

(ii) P
(
X0 = x0

)
= 1.

(iii) P
( ∫ t

0 |b(s,Xs)|ds <∞
)

= 1.

(iv) P
( ∫ t

0 |σ(s,Xs)|2ds <∞
)

= 1.

(v) P
(
Xt = x0 +

∫ t
0 b(s,Xs)ds+

∫ t
0 σ(s,Xs)dBs

)
= 1.

We end this section by stating an important result regarding existence and
uniqueness of strong solutions.
Theorem 2.5.12 (Existence and uniqueness of strong solutions) Assume that
the drift and diffusion of a SDE satisfies the global Lipschitz property and have
at most linear growth. That is

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ L|x− y|,

for all t ∈ [0, T ], x, y ∈ R and L > 0.

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|),

where C > 0.
If

E[X2
0 ] <∞,

then there exists a unique strong solution of SDE such that E[X2
t ] <∞, for all

t ∈ [0, T ].
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2.6. Markov chains

2.6 Markov chains

This section will give a brief introduction to Markov chains and some of its
applications to actuarial modelling in life insurance. The material is mostly
gathered from [Kol12] with a few alternation of notation to better fit our
framework.
Definition 2.6.1 (Markov chain with finite state space) Let Xt be a stochastic
process taking values on a finite metric space S. We say that Xt is a Markov
chain if

P (Xtn+1 = in+1|Xt1 = i1, ..., Xtn = in) = P (Xtn+1 = in+1|Xtn = in)

for all t1 < t2 < ... < tn+1 ∈ R and i1, i2, ..., in+1 ∈ S with

P (Xt1 = i1, ..., Xtn = in) 6= 0.

One says that a Markov chain is "memoryless" since the future transition is
independent of the past transitions. All that matters is the present state of the
Markov chain.
Definition 2.6.2 (Transition probability). We say that a function is a transition
probability if

pij(s, t) = P (Xt = j|Xs = i), s ≤ t, i, j ∈ S.

Here, pij(s, t) denotes the probability that X will be in state j at time t given
that X was in state i at a previous time s.
Example 2.6.3 (Markov chain in insurance) We will apply the Markov chain
to model the health of the insured in continuous time. Using actuarial notation
we can define S = {∗, �, †} where ∗ means the insured is in good health, �
signifies that the insured is sick or disabled and † means that the insured is
deceased.

Figure 2.1: A sample path of the Markov chain.
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We can see from the figure that the insured has been healthy up to the age of
20. Then some event happened which made him permanently disabled, this
could be due to an accident or an underlying disease. Lastly at the age of 50
the individual has perished. With a life insurance policy each transition would
initiate an insurance payout determined by the contract.

Figure 2.2: A transition diagram of the Markov chain.

By convention we only draw the transitions which can happen with a nonzero
probability between time s and time t. We will also assume that once the
insured dies, there is no possibility of resurrection. We say that state † is an
absorbing state of the Markov chain since once the insured has entered this
state, then the insured cannot leave it.

Definition 2.6.4 (Transition probability matrix) A matrix P (s, t) =
{pij(s, t)}i,j∈S is called a transition probability matrix if

(i) pij(s, t) ≥ 0,

(ii)
∑
j∈S pij(s, t) = 1, for all i ∈ S,

(iii) pij(s, s) = 1i=j , whenever P (Xs = i) 6= 0.

Theorem 2.6.5 (Chapman-Kolmogorov equation) Let X = {Xt}t∈R be a
Markov chain with transition probability matrix P (s, t). Then the following
equation holds

P (s, t) = P (s, u)P (u, t), s ≤ u ≤ t.

Chapman-Kolmogorov gives us a way of decomposing transition probabilities
into transition probabilities going through a middle time step.
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2.6. Markov chains

Definition 2.6.6 (Transition rates) Let X = {Xt}t∈R be a Markov chain with
finite state space S. The transition rates are functions µi, µij defined by

µi(t) = lim
h→0+

1− pii(t, t+ h)
h

, t ∈ R, i ∈ S,

µij(t) = lim
h→0+

pij(t, t+ h)
h

, t ∈ R, i, j ∈ S, i 6= j,

whenever the limits exist and are finite. Moreover, we define µii by

µii(t) = −µi(t), for all i ∈ S.

Definition 2.6.7 (Regular Markov chain) We say that a Markov chain
X = {Xt}t∈R is regular if the the transition rates µi(t), µij(t) exist as continuous
functions of t.
Remark 2.6.8 (Connecting rates and probabilities) In insurance, transition
probabilities play a vital role in pricing policies. However they are not directly
observable as in the case of transition rates. The key relation is to notice that
transition rates are derivatives of the transition probabilities. Indeed for i 6= j

µij(t) = lim
h→0+

pij(t, t+ h)
h

= lim
h→0+

pij(t, t+ h)− pij(t, t)
h

= d

ds
pij(s, t)

∣∣∣
s=t

.

Thus we may interpret µij(t)h ≈ pij(t, t+ h) for infinitesimal small h > 0. This
means that µij(t)h is the probability of entering state j at time t+h given that
we are in state i at time t. We may informally say that µij(t) is the "speed" of
the transition. Similarly µi(t)h can be understood as the probability of leaving
state i in the infinitesimal time interval [t, t+ h].
Definition 2.6.9 (Homogeneous Markov chain) We say that a Markov chain
X = {Xt}t∈R is homogeneous if it is time homogeneous. This means that
the following equation hold for all s, t ∈ R, h > 0 and i, j ∈ S whenever
P (Xs = i) > 0 and P (Xt = i) > 0

P (Xs+h = j|Xs = i) = P (Xt+h = j|Xt = i).

Example 2.6.10 (Homogeneous Markov chains) Intuitively, the transition
probabilities in a homogeneous Markov chain only depend on the length of the
time increment and not on the starting time. For instance, the probability of
tossing heads on a fair coin is a homogeneous Markov chain. On the other
hand, the probability of an individual surviving one more year certainly is not a
homogeneous Markov chain since we know that mortality increases exponentially
with age.
Definition 2.6.11 (Generator matrix) Let X = {Xt}t∈R be a homogeneous
Markov chain with finite state space. We say that the matrix Λ(t) =
{µij(t)}i,j∈S is the generator matrix of X.
Observation 2.6.12 Indeed the generator matrix generates the behavior of
the Markov chain. In particular Λ(0) is given by the equation

Λ(0) = lim
h→0+

P (h)− Idn
h

.
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Where Idn denotes the identity matrix of dimension n. Using the equation
above together with a Taylor expansion we can completely reconstruct P (t) by

P (t) = exp(tΛ(0)) =
∞∑
n=0

tn

n!Λ(0)n.

Theorem 2.6.13 (Kolmogorov’s differential equations) For a continuous time
regular Markov chain X = {Xt}t∈R with finite state space S, the following
statements holds:

(Kolmogorov’s backward equation)

d

ds
P (s, t) = −Λ(s)P (s, t), s, t ∈ R, s < t.

(Kolmogorov’s forward equation)

d

dt
P (s, t) = P (s, t)Λ(t), s, t ∈ R, s < t.

Proof. We start with Kolmogorov’s backward equation. Let h > 0, such that
s < s+ h < t. Then for small h:

P (s+ h, t)− P (s, t)
h

= 1
h

(P (s+ h, t)− P (s, s+ h)P (s+ h, t))

= Idn − P (s, s+ h)
h

P (s+ h, t) −→ −Λ(s)P (s, t).

Where we have used Chapman-Kolmogorov’s equation in the first equality and
continuity of matrix multiplication to evaluate the limit as h −→ 0+.
Now we do the same for Kolmogorov’s forward equation.

P (s, t+ h)− P (s, t)
h

= 1
h

(P (s, t)P (t, t+ h)− P (s, t))

= P (s, t)P (t, t+ h)− Idn
h

−→ P (s, t)Λ(t).

Where we again have used Chapman-Kolmogorov’s equation in the first equality
and continuity of matrix multiplication to evaluate the limit as h −→ 0+.

�

Theorem 2.6.14 (Calculating pjj(s, t)) Let X = {Xt}t∈R be a regular Markov
chain. Then

pjj(s, t) = exp

(
−
∑
k 6=j

∫ t

s

µjk(u)du
)
, ∀s ≤ t,

whenever P (Xs = j) > 0.
Proof. The result follows from Kolmogorov’s equations. The complete proof
can be found in [Kol12].

�
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CHAPTER 3

Fractional noise

This chapter will deal with fractional noise processes. First, we will introduce the
fractional Brownian motion which we will then use to construct the fractional
Ornstein-Uhlenbeck process.

3.1 Fractional Brownian motion

This section will offer a short introduction to a stochastic process known as
the fractional Brownian motion. It is a generalisation of the Brownian motion
in the sense that we are dealing with a centered Gaussian process. The main
difference between these two processes is that fractional Brownian motion does
not have independent increments. For a thorough guide to fractional Brownian
motion and advanced stochastic calculus the reader can consult [Nua95] which
we will follow in this section.
Definition 3.1.1 (Fractional Brownian motion) A centered Gaussian process
starting from zero, BH = {BHt , t ≥ 0} is called a fractional Brownian motion,
abbreviated to fBm, of Hurst parameter H ∈ (0, 1) if the covariance function is
given by

RH(s, t) = Cov(BHs , BHt ) = E[BHs BHt ] = 1
2(t2H + s2H − (t− s)2H) s ≤ t.

Proposition 3.1.2 (fBm’s covariance function is homogeneous) For any α > 0
the covariance function of fBm is homogeneous of degree 2H. Meaning that
the following equation holds

Cov(BHαs, BHαt) = α2HCov(BHs , BHt ).

Proof. Indeed this is easy to check by direct computation

Cov(BHαs, BHαt) = 1
2

(
(αt)2H + (αs)2H − (αt− αs)2H

)
= α2H 1

2

(
t2H + s2H − (t− s)2H

)
= α2HCov(BHs , BHt ).

�
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Corollary 3.1.3 (fBm is self-similar of order H) For any α > 0 the law of BHt
and α−HBHαt are equal.
Proof. Recall that Gaussian distributions are uniquely determined by their
mean and covariance function, hence it suffices to check that they are equal.
The expectation is easy,

E[α−HBHαt] = α−HE[BHαt] = 0.

The covariance follows from the previous proposition

Cov(α−HBHαs, α−HBHαt) = α−2HCov(BHαs, BHαt)

= α−2Hα2HCov(BHs , BHt ) = Cov(BHs , BHt ).

�

The self-similarity property is also reffered to as the fractal property of fBm.
Proposition 3.1.4 (Variance of a fBm increment) The variance of a fBm
increment is given by

V ar(BHt −BHs ) = (t− s)2H , s ≤ t.

Proof. By simple computations we have that

V ar(BHt −BHs ) = E[(BHt −BHs )2] = E[(BHt )2 − 2BHt BHs − (BHs )2]

= E[(BHt )2]− 2E[BHt BHs ] + E[(BHs )2]

= t2H − (t2H + s2H − (t− s)2H) + s2H = (t− s)2H .

�

Corollary 3.1.5 (fBm has stationary increments) The two processes BHt −BHs
and BHt−s have the same law.
Proof. It is clear that both processes have mean 0 since they are centered
Gaussian processes. What remains to show is that V ar(BHt−s) = V ar(BHt −BHs ).
This is an immediate consequence of the previous proposition

V ar(BHt −BHs ) = V ar(BHt ) + V ar(BHs )− 2Cov(BHs , BHt )

= t2H + s2H − 2(1
2(t2H + s2H − (t− s)2H)) = (t− s)2H .

�
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Proposition 3.1.6 (fBm has a continuous modification) There exists a
continuous modification of the fBm.
Proof. This is a generalised proof of the case for the Brownian motion. Note
that the fBm can be written in law as

BHt −BHs = (t− s)HZ, Z ∼ N(0, 1).

Now we take the absolute value and exponentiate both sides by β. Lastly, we
apply the expectation on both sides which yields

E[|BHt −BHs |β ] = (t− s)HβE[|Z|β ].

This is in the form of Kolmogorov’s continuity theorem with α = Hβ − 1 and
C = E[|Z|β ] < ∞. Thus there is almost surely a modification of a Brownian
motion which is Hölder continuous with γ ∈ (0, H − 1

β ). Since β > 1
H , we have

that γ ∈ (0, H).

�

Remark 3.1.7 (Choosing H = 1
2 ) We observe that for the choice H = 1

2 the
fBm coincides with the standard Brownian motion. Moreover, the covariance
function in the case of a Brownian motion gives 0 for all s ≤ t. Thus the jointly
normal increments of a Brownian motion are independent in disjoint intervals,
which we already knew. However, this is not true for H 6= 1

2 .
Definition 3.1.8 (Long range dependence) We say that a stationary process
Xt has long range dependence if the autocovariance function ρH(n) =
Cov(Xk, Xk+n) satisfies the following equation for some constants α, β ∈ (0, 1)

lim
n→∞

ρ(n)
αn−β

= 1.

Remark 3.1.9 (fBm has long range dependence) It is not hard to compute the
autocovariance function of the fBm. In fact it is given by

ρH(n) = Cov(BHs −BHs−1, B
H
s+n−BHs+n−1) = 1

2 [(n+ 1)2H + (n− 1)2H − 2n2H ].

We see that for H < 1
2 the increments of the fBm are negatively correlated as

ρH(n) < 0. One can use this property to model chaotic oscillating behavior
like turbulence in aerodynamics. For H > 1

2 we have positively correlated
increments as ρH(n) > 0. This property can be useful when modeling stock
prices with speculating investors.

Using Taylor series of second order we can approximate the asymptotic behaviour
of the autocovariance function. This yields

ρH(n) ∼ H(2H − 1)n2H−2, |n| → ∞.

Setting α = H(2H − 1) and β = 2− 2H we that the fBm exhibits long range
dependency for H ∈ ( 1

2 , 1), because
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3.1. Fractional Brownian motion

lim
n→∞

ρH(n)
H(2H − 1)n2H−2 = 1.

Some immediate consequences we can draw by comparing ρH(n) to the
asymptotic behavior is that the p-series n2H−2 converges for 2H − 2 < −1 =⇒
H < 1

2 . Hence
∞∑
n=1
|ρH(n)| =∞, H >

1
2 ,

and
∞∑
n=1
|ρH(n)| <∞, H <

1
2 .

Lemma 3.1.10 (Useful properties of p-variation) Let 1 ≤ p < q and V p[a,b](Π, f)
be the p-variation. Then

(i) V q[a,b](Π, f) ≤ V p[a,b](Π, f),
(ii) V p[a,b](Π, f) <∞ =⇒ V q[a,b](Π, f) = 0.

Proposition 3.1.11 (fBm is not a semimartingale) The fBm is not a
semimartingale for H 6= 1

2 .
Proof. Let p > 0 and define the following sequence of random variables

Xn,p = npH−1
n∑
i=1
|BHi

n
−BHi−1

n

|p, n ≥ 1.

By the self-similarity property of fBm we have that Xn,p has the same
distribution as Yn,p, where

Yn,p = n−1
n∑
i=1
|BHi −BHi−1|p, n ≥ 1.

Using that fBm has stationary and eregodic increments, it follows from the
eregodic theorem that Yn,p converges in L1(Ω) to E[|BH1 |p] as n goes to infinity.
Since Xn,p has the same distribution it must converge to the same limit as Yn,p.
This yields that the p-variation

Vn,p = lim
n→∞

n∑
i=1
|BHi

n
−BHi−1

n

|p =
{

0, pH > 1
∞, pH < 1

.

In the case where H < 1
2 , we can choose p > 2 such that pH < 1. Thus by part

(i) of the Lemma 3.1.10 we have that

V p[0,T ](Π, B
H) =∞ =⇒ ∞ ≤ V 2

[0,T ](Π, BH) =⇒ V 2
[0,T ](Π, BH) =∞.

If H > 1
2 we can choose 1

H < p < 2 such that pH > 1. By part (i) of the
Lemma 3.1.10 we have that

V p[0,T ](Π, B
H) = 0 =⇒ V 2

[0,T ](Π, f) ≤ 0 =⇒ V 2
[0,T ](Π, f) = 0.
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3.1. Fractional Brownian motion

However, if we choose 1 < p < 1
H such that pH < 1. Then by the contrapositive

statement of part (ii) in Lemma 3.1.10 we have that

V p[0,T ](Π, B
H) 6= 0 =⇒ V 1

[0,T ](Π, BH) =∞.

Remembering that all semimartingales have bounded quadratic variation, we
conclude that fBm can not be a semimartingale for H 6= 1

2 .

�

The largest class of processes for which the Itô integral is well-defined is the
class of semimartingales. As the fBm is not a semimartingale, we will need to
develop a new meaning for the stochastic integral of the fBm. One approach is
to make use of an isometry at the cost of considering deterministic integrands.

Fractional Brownian motion and isometry
Consider the interval [0, T ] with a fraction Brownian motion BH = {BHt , t ∈
[0, T ]}. We will be interested in studying the set of step functions, denoted by
E , on [0, T ]. We will also consider the Hilbert space H = E , that is the closure
of set of step functions on [0, T ] with respect to the inner product

RH(s, t) = 〈1[0,s], 1[0,t]〉H.

We see that the mapping 1[0,t] → BHt can be extended to an isometry between H
and the Gaussian space H1 associated to BHt . Where H1 is the closed subspace
of L2(Ω,A, P ) whose elements are Gaussian random variables with mean zero.
We will adopt the notation φ→ BH(φ) for this isometry.
Definition 3.1.12 (Isonormal Gaussian process) We say that a stochastic
process W = {W (h), h ∈ H} defined in a complete probability space (Ω,A, P )
is an isonormal Gaussian process if W is a centered Gaussian family of random
variables such that

E[W (h)W (g)] = 〈h, g〉H, ∀h, g ∈ H.

It is the case that {BH(φ), φ ∈ H} is an isonormal Gaussian process.

Moreover the standard Brownian motion on [0, T ] can be recovered by
considering the Hilbert space of square integrable functions L2([0, T ]). We
can choose

h = 1[0,t], g = 1[0,s],

such that

W (h) =
∫ T

0
1[0,t](s)dWs,

and

E[W (h)W (g)] = t ∧ s.
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3.1. Fractional Brownian motion

We will now consider the special case where H > 1
2 . Then we can represent the

covariance function of fBm as

RH(s, t) = H(2H − 1)
∫ t

0

∫ s

0
|r − u|2H−2dudr.

This implies that for any pair of step functions φ, ψ ∈ E their inner product on
H is given by

〈φ, ψ〉H = H(2H − 1)
∫ T

0

∫ T

0
|r − u|2H−2φ(r)ψ(u)dudr.

Furthermore, one can show that

|r − u|2H−2 = (ru)H− 1
2

β(2− 2H,H − 1
2 )

∫ r∧u

0
v1−2H(r − v)H− 3

2 (u− v)H− 3
2 dv,

where β denotes the beta function defined as

β(x, y) = Γ(x)Γ(y)
Γ(x+ y) , x, y > 0,

with Γ being the gamma function.

We will be interested in the properties of the following square integrable kernel

KH(s, t) = cHs
1
2−H

∫ t

s

(u− s)H− 3
2uH−

1
2 du, s < t.

Where cH is the following H dependent constant

cH =
[

H(2H − 1)
β(2− 2H,H − 1

2 )

] 1
2

.

By combining the integral representation of |r − u|2H−2 and RH(s, t) one can
verify that

RH(s, t) =
∫ s∧t

0
KH(s, u)KH(t, u)du.

An important fact is that the kernel KH is differentiable with the following
expression

∂KH

∂t
(s, t) = cH

( t
s

)H− 1
2 (t− s)H− 3

2 .
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3.1. Fractional Brownian motion

This is important as it can be used to define the linear operator K∗H : E →
L2([0, T ]) defined by

K∗H(φ)(s) =
∫ T

s

φ(t)∂KH

∂t
(t, s)dt, φ ∈ E .

Notice that K∗H applied to the indicator function yields

K∗H(1[0,t])(s) = KH(t, s)1[0,t](s).

We see that the operator K∗H is an isometry that can be extended to the Hilbert
space H. Indeed

〈K∗H1[0,s],K
∗
H1[0,t]〉L2([0,T ]) = 〈KH(s, ·)1[0,s],KH(t, ·)1[0,t]〉L2([0,T ])

=
∫ s∧t

0
KH(s, u)KH(t, u)du = RH(s, t) = 〈1[0,s], 1[0,t]〉H.

Inspect the process B = {Bt, t ∈ [0, T ]} defined by

Bt = BH((K∗H)−1(1[0,t])).

Then B is a Brownian motion. Indeed for s, t ∈ [0, T ] we have that

E[BsBt] = E[BH((K∗H)−1(1[0,s]))BH((K∗H)−1(1[0,t]))]

= 〈(K∗H)−1(1[0,s]), (K∗H)−1(1[0,t])〉H = 〈1[0,s], 1[0,t]〉L2([0,T ]) = s ∧ t.

We now have the tools to give the following integral representation of fBm

BHt =
∫ t

0
KH(s, t)dWs.

Generalizing for any φ ∈ H we get that

BH(φ)(t) =
∫ t

0
K∗H(φ)(s)dWs.
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3.2. Fractional Ornstein-Uhlenbeck process

3.2 Fractional Ornstein-Uhlenbeck process

This section will deal with the fractional Ornstein-Uhlenbeck process which
can be obtained by solving a SDE with fBm as noise. The material gathered
is based on [CKM03] which is an article covering advanced results on the
fractional Ornstein-Uhlenbeck process. For our applications, we will need the
result regarding existence and uniqueness of the Riemann-Stieltjes integral with
respect to fBm.
Proposition 3.2.1 (Existence, uniqueness and continuity) Let BH = {BHt , t ∈
R} be a fBm with Hurst parameter H ∈ (0, 1). Let ξ ∈ R, a ∈ [−∞,∞) and
λ, σ > 0. Then for almost all ω ∈ Ω, the following statements hold.

(i) For all a < t ∫ t

a

eλudBHu (ω),

exists as a Riemann-Stieltjes integral. Furthermore, the integral is explicitly
given by

eλtBHt (ω)− eλaBHa (ω)− λ
∫ t

a

eλuBHu (ω)du.

(ii) The function ∫ t

a

eλudBHu (ω), a < t,

is almost surely continuous in t.

(iii) The distinct continuous function f that solves

f(t) = ξ − λ
∫ t

0
f(s)ds+ σBHt (ω), t ≥ 0,

has the solution

f(t) = e−λt
(
ξ + σ

∫ t

0
eλudBHu (ω)

)
, t ≥ 0.

(iv) The distinct continuous function that solves

f(t) = σ

∫ 0

−∞
eλudBHu (ω)− λ

∫ t

0
f(s)ds+ σBHt (ω), t ≥ 0,

is given by

f(t) = σ

∫ t

−∞
e−λ(t−u)dBHu (ω), t ≥ 0.

Remark 3.2.2 (Langevin equation) Let ξ ∈ R and λ, σ > 0. The following
SDE is called the Langevin equation

Xt = ξ − λ
∫ t

0
Xsds+Nt, t ≥ 0.
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3.2. Fractional Ornstein-Uhlenbeck process

What is worth noticing is that the integral is with respect to the Lebesgue
measure and not a stochastic process. This allows us to find path-wise solutions
for the Langevin equation for more complicated noise processes N = {Nt, t ≥ 0}
than the Brownian motion.
Example 3.2.3 (Fractional Ornstein-Uhlenbeck process) Let λ, σ > 0, ξ ∈ R,
H ∈ (0, 1) and a ∈ [−∞,∞). By Proposition 3.2.1 we know that∫ t

a

eλudBHu , a < t,

makes sense as a path-wise Riemann-Stieltjes integral, which we recall is almost
surely continuous in t. Moreover, the distinct almost surely continuous process
that solves the Langevin equation with fBm as noise, that is

Xt = ξ − λ
∫ t

0
Xsds+ σBHt , t ≥ 0,

is given by

Y H,ξt = e−λt
(
ξ + σ

∫ t

0
eλudBHu

)
, t ≥ 0.

Another solution to the Langevin equation with fBm as noise is

Y Ht = σ

∫ t

−∞
e−λ(t−u)dBHu , t ≥ 0,

with initial condition ξ = Y H0 . It follows directly from the Gaussianity and
stationary increments of the fBm that Y Ht is a stationary Gaussian process.
Since

Y Ht − Y
H,ξ
t = e−λt(Y H0 − ξ)→ 0, as t→∞, almost surely,

it is implied that all stationary solutions to the Langevin equation with fBm
as noise must have the same distribution as Y Ht . Finally, we say that Y H,ξt

is a fractional Ornstein-Uhlenbeck process with initial condition ξ and Y Ht a
stationary fractional Ornstein-Uhlenbeck process.
Example 3.2.4 (Simulating paths) Let λ, σ > 0. In order to get some intuition
of how the paths of the fractional Ornstein-Uhlenbeck process behave for different
values of H ∈ (0, 1), we will simulate some paths using Euler-Maruyama’s
method. Without loss of generality, we will work with the following SDE

dXt = −λXtdt+ σdBHt , t ∈ [0, 1],
X0 = 0.

Using Euler-Maruyama’s method the numerical scheme becomes

Xti+1 −Xti ≈ −λXti(ti+1 − ti) + σ(BHti+1
−BHti ),

for any partition t0 = 0 < ... < tn = 1 of [0, 1]. In particular, for a uniform
partition of [0, 1] we have that ti = i

n . Hence ti+1 − ti = 1
n , i ∈ {0, ..., n}.

Thus the method

Xti+1 ≈ Xti −
λ

n
Xti + σ(BHti+1

−BHti ).
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3.2. Fractional Ornstein-Uhlenbeck process

Figure 3.1: Simulated paths of the fractional Ornstein-Uhlenbeck process for
mean reversion rate λ = 2, volatility σ = 1 and n = 1000 time steps using
Euler-Maruyama’s method. We observe that the paths get smoother as we
increase H.

Remark 3.2.5 (Integration is well-defined) We refer to [PT00] where it is
shown that for H ∈ ( 1

2 , 1) and two real-valued and measurable functions f, g
satisfying

f, g ∈
{
f :
∫
R

∫
R
|f(u)||f(v)||u− v|2H−2dudv <∞

}
,

then the two integrals ∫
R
f(u)dBHu ,

∫
R
g(u)dBHu

are well-defined as limits of integrals of elementary functions. Finally, it is
shown that

E
[ ∫

R
f(u)dBHu

∫
R
g(u)dBHu

]
= H(2H − 1)

∫
R

∫
R
f(u)g(v)|u− v|2H−2dudv.
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CHAPTER 4

Modeling mortality

In this chapter we propose an exponential fractional Ornstein-Uhlenbeck process
to model Norwegian mortality rates.

4.1 Fractional mortality

This section is inspired by the work of [DO19] where the authors have used the
exponential fractional Ornstein-Uhlenbeck process to model Italian mortality
rates. The main reason for choosing such a model is that morality rates
across generations are highly correlated albeit not perfectly correlated. Some
explanations of this phenomenon include medical advancement and technological
innovation which tend to increase life expectancy of future generations.
Remark 4.1.1 (Model assumptions and previous results) We will denote by
T > 0 a fixed time horizon and by µ : [0, T ]×Ω→ R a stochastic process which
models the mortality on the time span [0, T ]. Given the mortality rate and an
ω ∈ Ω, then by Theorem 2.6.14 the survival probability of an individual of age
x in the time period [s, t] ⊆ [0, T ] is given by

pω∗∗(x+ s, x+ t) = e
−
∫ x+t

x+s
µ(u,ω)du = e

−
∫ t
s
µ(x+u,ω)du

.

Unfortunately, µ is not necessarily adapted to the available information denoted
by Ft. To circumvent this measurability issue, we will consider the adapted
projection on to Ft. This gives rise to the following conditional expectation

p∗∗(x+ s, x+ t) = E
[
e
−
∫ t
s
µ(x+u)du

∣∣∣Ft].
In this thesis, we will model the mortality rate µ by a generalisation of the
Milevsky-Promislow model. This means that µ will be of the following form

µ(t) = µ0e
α0t+α1Y

H
t , t ∈ [0, T ],

where µ0, α0, α1 ∈ R are parameters. Y Ht = {Y Ht }t∈[0,T ] is a fractional Ornstein-
Uhlenbeck process with dynamics given by

dY Ht = −λY Ht + σdBHt ,

Y H0 = 0,
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4.1. Fractional mortality

where BHt = {BHt }t∈[0,T ] is a fBm with with Hurst parameter H ∈ ( 1
2 , 1) and

λ, σ > 0.
Interested readers may seek out [MP01] for the authentic paper written by
Milevsky and Promislow where they instead consider the Ornstein-Uhlenbeck
process driving the noise of the proposed mortality rate.
Recall that the meaning of the dynamics are given by the Langevin equation in
integral form, that is

Y Ht = −λ
∫ t

0
Y Hs ds+ σBHt .

Furthermore, the authors of [CKM03] have shown that the solution of the
Langevin equation with fBm as noise is given by

Y Ht = σ

∫ t

0
e−λ(t−u)dBHu .

We have seen in the previous chapter that the stochastic integral is well-defined
as a pathwise Riemann-Stieltjes integral. By Proposition 3.2.1 we also know
that Y Ht is unique and has almost surely continuous paths. Although Y Ht
does not have the nice properties of being Markovian or a semimatingale for
H ∈ ( 1

2 , 1), we do at least have that Y Ht is Gaussian and ergodic. It can be
shown using Fourier transforms, see [ZCY12] for details, that the variance of
Y Ht has an explicit representation of the form

V ar(Y Ht ) = 2Hσ2e−2λt
∫ t

0
s2H−1e2λsds.

In the special case where H = 1
2 we get that

V ar(Y Ht ) = σ2

2λ (1− e−2λt),

which coincides with the expression we calculated in Example 2.5.10 using Itô
isometry, as expected.
Proposition 4.1.2 (Bounding the variance) Let λ, σ > 0 and α1 = T−H .
Furthermore, let Y Ht = {Y Ht }t∈[0,T ] be a fractional Ornstein-Uhlenbeck process
with H ∈ (0, 1). Then

V ar(α1Y
H
t ) ≤ σ2.

Proof. A simple calculation gives that

V ar(α1Y
H
t ) = α2

1V ar(Y Ht ) = α2
12Hσ2

∫ t

0
s2H−1e−2λ(t−s)ds

≤ α2
12Hσ2

∫ t

0
s2H−1ds = α2

12Hσ2 s
2H

2H

∣∣∣s=t
s=0

= α2
1σ

2t2H

= T−2Hσ2t2H = σ2
( t
T

)2H
≤ σ2, 0 ≤ s ≤ t ≤ T.

Hence V ar(α1Y
H
t ) is bounded by a time independent constant. We can use α1

as a tool to control the variance of Y Ht .

�
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4.2 Estimation of parameters

We will now focus on developing a method for estimating α0, α1, λ, σ and H
which all appear in the model for fractional mortality.
Assumption 4.2.1 (H is preserved) Since the estimation of H is quite
complicated and sensitive, we will make use of a simplifying assumption. The
authors of [Yer+14] have experimented with the assumption that the Hurst
parameter of the fBm BHt driving the Gaussian noise in the fractional Ornstein-
Uhlenbeck SDE and the fractional Ornstein-Uhlenbeck process Y Ht are equal.
Thus we will from now on assume that H can be chosen equal for both processes.
Although this is a critique worthy assumption, it is also a necessary assumption
for estimation purposes.
Remark 4.2.2 (Estimating α0) We want to find an estimator for α0 by
minimizing the square sum errors, abbreviated to SSE. Without loss of
generality, we will momentarily assume that α1 = 1. Taking the natural
logarithm of the mortality rate we obtain

ln µ(t) = ln µ0 + α0t+ Y Ht .

We will distinguish between the observed mortality rate µi and the expected
log-mortality rate ẑi = E[ln µi], both at time ti, where the latter is given by

ẑi = ln µ0 − α0ti, i = {1, ..., n}.

Then the SSE is given by

SSE =
n∑
i=1

(
ln µi − ẑi

)2
=

n∑
i=1

(
ln µi − ln µ0 − α0ti

)2
.

Differentiating SSE with respect to α0 and setting the result equal to zero we
obtain

∂SSE

∂α0
= −2

n∑
i=1

(
ln µi − ln µ0 − α0ti

)
ti = 0.

Finally, by solving the equation with respect to α0 we get the estimator

α̂0 =

∑n
i=1

(
ln µi − ln µ0

)
ti∑n

i=1 t
2
i

.

It is trivial that α̂0 minimizes SSE by looking at the second partial derivative
with respect to α0. Indeed, we have that

∂2SSE

∂α2
0

= −2
n∑
i=1
−t2i = 2

n∑
i=1

t2i > 0,

which shows that SSE is convex in α0.

We proceed by introducing some terminology which will come in handy when
estimating the remaining parameters.
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Definition 4.2.3 (C1+α) We denote by C1+α(R,R) the set of all functions
g : R→ R which are continuously differentiable and satisfy

sup
x
|g′(x)|+ sup

x 6=y

|g′(x)− g′(y)|
|x− y|α

<∞, α ∈ (0, 1), x, y ∈ R.

Definition 4.2.4 (First order quadratic variation) Let X = {Xt}t∈[0,T ] be a
real valued process. We define the first order quadratic variation of X by

V 1
n (X) =

n−1∑
i=0

(
Xti+1 −Xti

)2
, n ∈ N,

ti = i
T

n
, i = {0, ..., n}.

Theorem 4.2.5 If f : [0, T ] → R is a Lipschitz continuous function and
g ∈ C1+α([0, T ],R), then

lim
n→∞

n2H−1V 1
n (X) =

∫ T

0
g2(Xt)dt,

where X is the solution of

Xt = X0 +
∫ t

0
f(Xs)ds+

∫ t

0
g(Xs)dBHs , X0 ∈ R, H ∈

(1
2 , 1
)
.

Proof. See [Mel11] for proof.

�

Remark 4.2.6 (Estimating H) Let H ∈
(

1
2 , 1
)
, then a reasonable estimator

of H suggested in [Mel11] is given by

Ĥ = 1
2 −

1
2ln(2) ln

(V 1
2n(X)
V 1
n (X)

)
, n→∞,

where V 1
2n is the first order quadratic variation of the entire sample path and

V 1
n is the first order quadratic variation of the subset{

Xi : i = 2j, 0 ≤ j ≤
[n

2

]}
,

[x] denotes the integer part of a real number x.
The Hurst estimator relies heavily on the self-similarity property of the fBm
and the asymptotic behaviour of the first order quadratic variation. Indeed we
have that

V 1
n =

n−1∑
i=0

(
Xti+1 −Xti

)2
∼
n−1∑
i=0

X2
T
n
∼ nX2

T
n
∼ n

(T
n

)2H
X2

1 .
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Similarly

V 1
2n =

2n−1∑
i=0

(
Xti+1 −Xti

)2
∼

2n−1∑
i=0

X2
T
2n
∼ 2nX2

T
2n
∼ 2n

( T
2n

)2H
X2

1 .

Taking the ratio we get that

V 1
2n
V 1
n

∼ 2
( T

2n : T
n

)2H
= 2
(1

2

)2H
, n→∞.

Applying the logarithm on both sides yield that

ln
(V 1

2n
V 1
n

)
= (1− 2H)ln(2), n→∞.

Finally, we solve the equation with respect to H. This gives us the estimator

Ĥ = 1
2 −

1
2ln(2) ln

(V 1
2n(X)
V 1
n (X)

)
, n→∞.

Remark 4.2.7 (Estimating σ) We have as an immediate consequence of
Theorem 4.2.5 that we can estimate a constant volatility σ by rearranging
the integral equation

n2H−1V 1
n (X) =

∫ T

0
σ2dt = σ2T.

Solving for σ we get the estimator

σ̂ ≈
√
n2H−1V 1

n (X)
T

.

Remark 4.2.8 (Estimating λ) Hu and Nualart have shown in [HN10] that the
fractional Ornstein-Uhlenbeck process has the following long term variance

lim
T→∞

V ar(YT ) = lim
T→∞

E[Y 2
T ] = lim

T→∞

1
T

∫ T

0
Y 2
s ds

a.s.= σ2λ−2HHΓ(2H).

Rearranging the equation above with respect to λ, we arrive at the estimator

λ̂ =
(

1
σ2HΓ(2H)T

∫ T

0
Y 2
s ds

)− 1
2H

.

We will mostly work with discrete observations, therefore we will approximate
the second moment by the empirical second moment given by

µ̂2 = 1
N

N∑
i=1

X2
ti .

This gives rise to the discrete estimator

λ̂ =
(

µ̂2

σ2HΓ(2H)

)− 1
2H

.
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Theorem 4.2.9 (Strongly consistent estimators) Assume that the conditions
of Theorem 4.2.5 are satisfied and that H ∈ ( 1

2 ,
3
4 ). Then

lim
n→∞

(Ĥ, σ̂, λ̂) a.s.→ (H,σ, λ).

Example 4.2.10 (Numerical simulations) We have simulated 1 000 paths of
the fractional Ornstein-Uhlenbeck process each with 1 000 discrete observations
using Euler-Maruyama’s method, using a time horizon of 10 years, to see how
well the estimators perform in a controlled environment. We summarize our
findings in a table.

Estimate Ĥ σ̂ λ̂
Mean 0.599523 0.01258286 0.3280835
Median 0.6013932 0.01258386 0.2280266
Standard deviation 0.02752146 0.0003005425 0.3240334

Table 4.1: Summary of estimates. The true values were H = 0.6, σ = 0.01 and
λ = 0.4.

As we see the estimators produce fairly accurate estimates in the sense that
they are close to the true value and have a small standard deviation. The
most robust estimators seems to be Ĥ and σ̂ which become better the smaller
the mesh size becomes. In our simulations we used the mesh size |Π| = 0.01.
Finally, we see that λ̂ is difficult to estimate since it by construction relies on
the asymptotic behaviour of the fractional Ornstein-Uhlenbeck process. Indeed,
improving the performance of λ̂ would require a long time horizon and many
observations in order to maintain a small mesh size |Π|. Unfortunately, this
comes with a significant computational cost.
In the rest of this example we will try to determine the distribution of the
estimators using the R-package "fitdistrplus". In order to get a decent initial
guess of the distribution of Ĥ we will make a Cullen and Frey plot.

Figure 4.1: Cullen and Frey plot for Ĥ.
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4.2. Estimation of parameters

The plot seems to indicate that Ĥ follows a normal distribution which we will
analyze in more detail.

Figure 4.2: Normality check for Ĥ.

Once again the distribution of Ĥ does not differ significantly from a normal
distribution which makes normality a safe assumption.
Following the same procedure for σ̂, we make a Cullen and Frey plot.

Figure 4.3: Cullen and Frey plot for σ̂.
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4.2. Estimation of parameters

It seem that σ̂ is also closely related to the normal distribution, but by the
shape of the estimator it is possibly closer to a log-normal distribution. We
investigate this by doing a normality check of ln(σ̂).

Figure 4.4: Normality check for ln(σ̂).

The plots insinuates that our assumption regarding log-normality of σ̂ is realistic.
Finally, we determine the distribution of λ̂. We initiate by creating the Cullen
and Frey plot of λ̂.

Figure 4.5: Cullen and Frey plot for λ̂.
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4.2. Estimation of parameters

After inspecting the graph we see that the distribution has an extremely high
skewness. Fortunately, the blue data point is still close to the dashed line for a
log-normal distribution. We repeat the procedure by taking the logarithm and
check for normality.

Figure 4.6: Normality check for ln(λ̂).

The normality test checks out even in this extreme case. Thus we will work
under the assumption that λ̂ follows a strongly skewed log-normal distribution.
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CHAPTER 5

Modelling fractional mortality in
Norway

In this chapter we will apply our model of fractional mortality, developed
in Section 4.1, on Norwegian mortality rates. The data we have collected is
gathered from [SSBb] and includes mortality rates from 1996 to 2020. The
data will be used to calibrate the estimators we presented and tested using
simulations in Section 4.2. Furthermore, we will use the estimates we obtain to
run a new simulation study in which we will compare the historical mortality
rates with the estimated mortality rates given by our model.

5.1 Fractional Ornstein-Uhlenbeck log-mortality

We present the estimation results of the parameters that are independent of
the Hurst parameter H.
Remark 5.1.1 (Overview of the model) As a quick reminder we assumed
that mortality rate is given by a geometric type fractional Ornstein-Uhlenbeck
process of the form

µ(t) = µ0e
α0t+α1Y

H
t , t ∈ [0, T ],

where Y Ht is the fractional Ornstein-Uhlenbeck process which can be represented
as

Y Ht = σ

∫ t

0
e−λ(t−u)dBHu .

We also recall the following estimators which were derived by maximum
likelihood estimation and first order quadratic variation methods.

Ĥ = 1
2 −

1
2ln(2) ln

(V 1
2n(X)
V 1
n (X)

)
,

σ̂ =
√
n2H−1V 1

n (X)
T

,

λ̂ =
(

µ̂2

σ2HΓ(2H)

)− 1
2H

,
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5.1. Fractional Ornstein-Uhlenbeck log-mortality

α̂0 =

∑n
i=1

(
ln µi − ln µ0

)
ti∑n

i=1 t
2
i

,

Calculating α0 and α1 can be done directly from the observed mortality rates.
On the other hand, it is first necessary to transform our data into observations
of the fractional Ornstein-Uhlenbeck process in order to estimate H,σ and λ.
The reason being that the mortality rates follows a geometric type fractional
Ornstein-Uhlenbeck process by assumption. Transforming the data is easy since
the mortality function is injective, which we can use to invert the mortality
with respect to Y Ht . Discretizing the equation we get that

Y Hi = 1
α1

(
ln
(µi
µ0

)
− α0ti

)
.

Remark 5.1.2 (Initial results) We now present our findings of how the
endogenous parameters depend on age and gender. As the parameter α0
is easy to estimate we present it first.

Figure 5.1: Plot showing the evolution of α̂0 for men (blue) and women (red). It
is reasonable that α̂0 is negative for the most part at early ages as this indicates
a deterministic decrease in mortality rate. After the age of 80 we see that α̂0 is
positive, reflecting a deterministic increase in mortality rate.

As we have previously discussed α1 is an exogenous variable as it can be chosen
arbitrarily. Note that we still have a degree of freedom in the parameters
appearing in the fractional Ornstein-Uhlenbeck process. For simplicity, and in
order to avoid changing the interpretation of the fractional Ornstein-Uhlenbeck
parameters, we will set α1 = 1.

The estimation of the Hurst parameter proved to be troublesome for our data,
we will explain why later. As a consequence we are forced to consider H as
an exogenous variable. A naive approach would be to consider the three cases
H = { 1

4 ,
1
2 ,

3
4}.
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5.1. Fractional Ornstein-Uhlenbeck log-mortality

The first case H = 1
4 does not make much sense as it would entail a mortality

rate with anti persistent behaviour and negative correlation between generations
at the time of same age. Empirically, it is observed in most countries that the
mortality rates tends to decrease for newer generations as advancements in
medicine and technology improve living conditions. Hence it seems reasonable
to restrict ourselves to the last two cases.

As for the estimated volatility σ̂ and the estimated drift λ̂ we have a dependency
on the Hurst parameter H. We will therefore consider them separately for each
H = { 1

2 ,
3
4}.
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5.2. Results of fractional mortality in Norway for H = 0.5

5.2 Results of fractional mortality in Norway for H = 0.5

The remaining parameters are estimated and presented with the main result of
this model given that H = 0.5.
Remark 5.2.1 (Results for H = 1

2 ) We start this remark by presenting the
estimated volatility and estimated drift.

Figure 5.2: Plot showing the evolution of σ̂ for men (blue) and women (red). It
is reasonable that σ̂ is largest for the earliest and oldest ages as the spread in
mortality rate becomes huge. In addition, we see that woman tend to have a
higher volatility compared to men until age 80.

Figure 5.3: Plot showing the evolution of λ̂ for men (blue) and women (red).
We observe that λ̂ tends to follow the shape of σ̂.
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5.2. Results of fractional mortality in Norway for H = 0.5

Subsequently we present the main result of this model for men and women given
the selected representative ages {0, 15, 30, 50, 70, 90}. We have simulated 10 000
paths of the mortality rates in order to compare the simulated mean mortality
rate with the historical mortality rate. We will also include an empirical 95%
confidence interval.

Figure 5.4: Results for women. The simulated mean mortality rate (red),
historical mortality rate (blue) and an empirical 95% confidence interval (black).
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5.2. Results of fractional mortality in Norway for H = 0.5

Figure 5.5: Results for men. The simulated mean mortality rate (red), historical
mortality rate (blue) and an empirical 95% confidence interval (black).

First, we observe that the 95% confidence interval for men and women is wide,
but yet there are instances of rare events where the historical mortality rate
intersects the 95% confidence interval. The simulated mean mortality lies close
to the historical mortality rate for our selected ages.
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5.3. Results of fractional mortality in Norway for H = 0.75

5.3 Results of fractional mortality in Norway for H = 0.75

The remaining parameters are estimated and presented with the main result of
this model given that H = 0.75.
Remark 5.3.1 (Results for H = 3

4 ) We repeat the analysis with H = 3
4 . First,

we present the estimated volatility and estimated drift.

Figure 5.6: Plot showing the evolution of σ̂ for men (blue) and women (red). It
is reasonable that σ̂ is largest for the earliest and oldest ages as the spread in
mortality rate becomes huge. In addition, we see that woman tend to have a
higher volatility compared to men until age 80. Finally, we see that σ̂ increases
with H.

Figure 5.7: Plot showing the evolution of λ̂ for men (blue) and women (red).
We observe that λ̂ tends to follow the shape of σ̂. And once again, we see that
λ̂ increases with H.
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5.3. Results of fractional mortality in Norway for H = 0.75

For the last time, we present the main result of this model for men and women
given the selected representative ages {0, 15, 30, 50, 70, 90}. We have simulated
10 000 paths of the mortality rates in order to compare the simulated mean
mortality rate with the historical mortality rate. We will also include an
empirical 95% confidence interval.

Figure 5.8: Results for women. The simulated mean mortality rate (red),
historical mortality rate (blue) and an empirical 95% confidence interval (black).
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5.3. Results of fractional mortality in Norway for H = 0.75

Figure 5.9: Results for men. The simulated mean mortality rate (red), historical
mortality rate (blue) and an empirical 95% confidence interval (black).

Since both σ̂ and λ̂ increase with H, we see a tremendous amount of uncertainty.
So much that we are forced to question the underlying assumptions made in
this model together with the validity of our results.
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5.4. Discussion of the model

5.4 Discussion of the model

It is pointed out in [Gar18] that there exist different notions of a Hurst parameter,
which we will use to criticize the model for fractional mortality in Norway.
Moreover, as Norwegian mortality rates do not seem to be self-similar, we
will also explore the possibility that larger countries exhibit more self-similar
mortality rates.
Definition 5.4.1 (Underlying Hurst exponent) Let Y be a time series with
underlying noise stemming from a fractional Brownian motion BH . Then we
say that H is the underlying Hurst exponent of Y , that is the Hurst exponent
of BH .
Definition 5.4.2 (Perceived Hurst exponent) Let Ĥ(BH) be an estimator of
the fractional Brownian motion’s Hurst exponent and let Y be a time series
with underlying noise stemming from a fractional Brownian motion BH . Then
we define Ĥ(Y ) as the perceived Hurst exponent of Y .

The interpretation of the Hurst exponent H is different for BH and Y . As
usual, we say that a fBm with H > 1

2 is persistent. This simply means that
increments of the fBm have a positive autocorrelation. However, this does not
mean that the increments of Y have positive autocorrelated increments. Even
more alarming is the fact that any attempt to estimate the underlying Hurst
parameter from observations of Y are utterly meaningless, as the fBm is not
well specified for Y . The main problem is that Y only behaves similarly to a
fBm on small scales. Whereas a mean reversion effect dominates the dynamics
of Y at high scales. Hence if Y has a perceived H > 1

2 we can only expect
autocorrelation to be positive between close increments of short time duration.

We will now go into details regarding the estimation problems of the Hurst
parameterH. Recall that the Hurst parameter is a measurement of self-similarity
in a stochastic process. Mathematically, that is

Bt = α−HBαt, ∀α > 0, t ≥ 0.

If we think of the fractional Brownian motion BHt , we have already shown that
it is self-similar of order H in Corollary 3.1.3. A simple way to verify this fact
would be to generate one path of the fractional Brownian motion and plot

Bαt
BHt

= αH ,

which should be similar to a constant straight line. Keeping this in mind, we
can see from the Langevin representation of the fractional Ornstein-Uhlenbeck
process that Y Ht is not self-similar. Indeed, we have that

Y Hαt
Y Ht

=
Y H0 − λ

∫ αt
0 Y Hs ds+ σBHαt

Y H0 − λ
∫ t

0 Y
H
s ds+ σBHt

,

which is clearly not a constant. The difficulty here resides with the complexity
of the integral.
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5.4. Discussion of the model

The non self-similarity of the mortality observations from Y Ht , is in itself not
problematic as it is only the underlying noise from the fractional Brownian
motion which is required to be self-similar. However, there is no reason to
believe that the perceived Hurst parameter from Y Ht is equal to the underlying
Hurst parameter from BHt . Unless we are dealing with a negligible drift of
course, resulting in Y Ht and BHt being similar processes. Thus the assumption
that we adopted from [Yer+14], in Assumption 4.2.1 in order to estimate the
underlying Hurst parameter, was dubious.
As a consequence of the dubious assumption, the only choice we had to proceed
forward was to fix the Hurst parameter of the underlying self-similar noise
in Y Ht outside of the model. The dubious assumption is also the reason our
attempt to estimate the underlying Hurst parameter, with the estimator we
gave in Remark 4.2.6, led to nonsensical values.

Figure 5.10: Plot showing the evolution of Ĥ for men (blue) and women (red).
We see that the estimation of the perceived Hurst exponent is problematic as it
oscillates around zero which would indicate that Norwegian mortality is not
self-similar.

We will in view of this model’s poor results in Norway investigate the possibility
that fractional mortality is a large population phenomenon.

Remark 5.4.3 (Comparing Hurst parameters of large populations) From [HMD]
we have gathered a vast collection of mortality rates from different developed
countries in order to compare their underlying Hurst parameter. Moreover,
we will divide the estimates based on age, gender and country. Although the
database provided is open access, it does require the user to create a free
account.
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5.4. Discussion of the model

Figure 5.11: Fractionality of large populations. Results for male (blue) and
female (red) given an age and a country.

We see that the results of our new model are quite reasonable in large countries
within the age group 0 to 80 years. For elderly individuals and small countries
the estimation has been shown to be difficult as few people live on, making
the data scarce and sensitive to outliers. This is particularly apparent when
negative Hurst parameters occur and is a direct consequence of our imperfect
Hurst estimator.

Some other difficulties have been in the data itself where some mortality rates
where exactly 0. This is problematic as we need to apply the logarithm in the
transformation of data and estimation procedure. In order to circumvent this
issue, we have replaced zero values within an age group with the mean of the
non-zero mortality rates for the same age group. This is not ideal in order
to maintain the integrity of our data, but this solution avoids the problem
of creating outliers when taking the logarithm of small positive values. The
alternative of removing zero valued data in also not appealing as the analysis
would require us to work with data of different length.

The difference in fractionality between men and women is surprisingly small
within the same country. Men might have a slightly higher Hurst parameter
than woman of the same age and country. However, it seems that the choice
of country influences fractionality more than the choice of gender given two
individuals of same age.
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5.4. Discussion of the model

Lastly, we will comment on the shape of the Hurst parameter plots. We can
observe an increasing trend in the age group 0 to 30 where it peaks in the latter.
Afterwards the Hurst parameter tends to steadily decline until reaching the age
of 100. The big variations in the ages 100+ stem from the problems regarding
highly sensitive and scarce data. Also note that the data in Russia differs
from the rest in the sense that it reaches it peak around age 20 and decreases
rapidly. This might be a consequence of the fact that Russia is the country
with the lowest life expectancy of the four countries we choose to compare in
this remark.

As the Hurst parameter of a large population seems to be close to H = 0.5, we
will treat this case in more detail under the framework of Itô calculus. But first,
we will give a quick introduction on how to calculate prospective reserves in
insurance.
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CHAPTER 6

Mathematical reserves
The focal point of this chapter will be to develop an explicit formula for insurance
mean reserves, that is the expected value of the future liability distribution, in
continuous time. This should not be confused with the term reserve or solvency
capital which is the capital an insurer is required to set aside by regulators
in order to cover future liabilities with high probability. Moreover, we will
see that the mean reserving formula can be used to price insurance contracts
using the equivalence principle. In what follows, we will adopt the notation and
construction of mean reserves given in [Kol12].

6.1 Insurance model in continuous time

This section will introduce the mathematical tools we will need in order to
prove the explicit pricing formula.
Let (Ω,A, P ) be a complete probability space. We emphasize the importance
of the completeness as we can not create prefect hedges without the knowledge
of nullsets. Let T > 0 be a fixed maturity time for when an insurance contract
expires. Furthermore, we denote the stochastic process that models the insured’s
state at any time t by X = {Xt, t ∈ [0, T ]}. We equip the probability space
with the P -augmented and right continuous filtration generated by X, which
we will denote by FX = {FXt , t ∈ [0, T ]}. With only this information available,
it is reasonable to let A = FXT . In particular, the stochastic process X is an
example of a Markov chain with finite state space S described by the insurance
contract. Thus all the theory we covered about Markov chains in Section 2.6
can be applied to our setting.
We continue working with the insurance setting described above and note the
innately FX adapted processes. First of we have the indicator process defined
by

IXi (t) = 1{Xt=i}, i ∈ S, t ≥ 0.

This is a binary process which encodes whether or not the insured is in state i
at time t. The second process is called the jump counting process and is defined
by

NX
ij (t) = #{s ∈ (0, t) : Xs− = i,Xs = j}, i, j ∈ S, j 6= i,

where # is the counting measure on (R,B(R)) which keeps track of the number
of transitions from state i to state j the insured has in a given time interval
(0, t).
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6.1. Insurance model in continuous time

Definition 6.1.1 (Stochastic cash flow) Let A = {A(t), t ∈ [0, T ]} be a
stochastic process. We say that A is a stochastic cash flow if almost all
trajectories are of bounded variation.
In particular, we will consider the setting of insurance where the insured’s cash
flow is determined by policy functions described in the insurance contract.
Definition 6.1.2 (Policy functions) Let ai, aij : [0,∞) → R be functions of
bounded variation, where i, j ∈ S and i 6= j. We say that the functions are
policy functions if

ai(t) = the accumulated payments from the insurer to the insured up to
time t, given that the insured has only been in sate i.

aij(t) = the punctual payments that must be paid the moment the insured
transitions from state i to state j at time t.

For our applications, we will take the policy functions to be deterministic
functions. This implies that the cash flow of the insured is completely known
and uniquely generated by the policy functions for a fixed state.
Remark 6.1.3 (Modelling cash flow from the insured’s perspective) We will
follow the convention that payments from the insurer to the insured carries a
positive sign, whereas payments from the insured to the insurer constitutes a
negative sign. Hence, by the convention it follows that premium payments are
of negative sign and insurance benefits are of positive sign.
Example 6.1.4 (Permanent disability insurance) We will continue Example
2.6.3 by determining the relevant policy functions. Recall that in our disability
insurance model we have the following state space S = {∗, �, †}, where ∗ means
the insured is active, � signifies that the insured is disabled and † means
that the insured is dead. The permanent disability insurance contract we will
consider states that the insurer must pay the insured a periodic benefit of D
monetary units as long as the insured is disabled, this also includes the case
where the insured enters the contract disabled. In return, the insurer will
receive a periodic premium of π monetary units from the insured while the
insured is active. Therefore, the following policy functions uniquely determine
the insurance payouts

a∗(t) =
{
−πt, t ∈ [0, T )
−πT, t ∈ [T,∞)

a�(t) =
{
Dt, t ∈ [0, T )
DT, t ∈ [T,∞)

.

As usual, T denotes the maturity date of the insurance contract. It is even
possible to consider a contract without maturity date, that is the case when T
is infinity. In practice however, most disability contract are no longer than a
lifespan which insurance companies set around 114 years.
Definition 6.1.5 (Policy cash flow) Let ai, aij be policy functions. Then the
(stochastic) policy cash flow of an insurance contract is defined by

A(t) =
∑
i∈S

Ai(t) +
∑
i,j∈S
j 6=i

Aij(t),

where

Ai(t) =
∫ t

0
IXi (s)dai(s), Aij(t) =

∫ t

0
aij(s)dNX

ij (s).
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6.1. Insurance model in continuous time

Both integrals make sense as Riemann-Stieltjes integrals since both ai and
NX
ij are of bounded variation. Intuitively, Ai is the accumulated liabilities

associated with the insured being in state i and Aij for the case where the
insured transitions from state i to state j.
Definition 6.1.6 (Discount factor) Let v : [0,∞)→ [0,∞) and r : [0,∞)→ R
be deterministic functions. If r is an integrable function modelling interest rate,
then we define the discount factor v by

v(t) = exp
(
−
∫ t

0
r(u)du

)
, t ≥ 0.

Definition 6.1.7 (Stochastic prospective value of cash flow) Let A be a
stochastic cash flow at time t and v an appropriate discount factor. Then
we denote the stochastic prospective value of cash flow by V +(t, A) and define
it by

V +(t, A) = 1
v(t)

∫ ∞
t

v(s)dA(s), t ≥ 0.

Remark 6.1.8 (Stochastic mean reserve) We can express the stochastic
prospective value of cash flow more explicit by applying Definition 6.1.5. Indeed,
we can write

V +(t, A) = 1
v(t)

[∑
i∈S

∫ ∞
t

v(s)dAi(s) +
∑
i,j∈S
j 6=i

∫ ∞
t

v(s)dAij(s)
]
, t ≥ 0.

Furthermore, by the definition of Ai and Aij we have that

V +(t, A) = 1
v(t)

[∑
i∈S

∫ ∞
t

v(s)IXi (s)dai(s) +
∑
i,j∈S
j 6=i

∫ ∞
t

v(s)aij(s)dNX
ij (s)

]
,

where t ≥ 0.

It is also common to call V + the stochastic mean reserve of an insurance policy.
The formula we have derived should be intuitive. First, we calculate the future
value of an insurance policy by continuously discounting the future payments
ai while the insured is in state i. Secondly, we continuously discount the future
payments aij for all transitions the insured makes from state i to state j. Lastly,
we correct the time value to time t by undiscounting the sum of all payments
over all possible states.

Notice that V + is not adapted. Therefore, in order to obtain an estimate of
V + we must apply the conditional expectation with respect to the available
information Ft. In our case, we will only consider the information generated by
the insured’s state. Using that X is Markovian the expression becomes

V +
Ft(t, A) = E[V +(t, A)|Ft] = E[V +(t, A)|σ(Xt)] = H(t,Xt),
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6.1. Insurance model in continuous time

for some Borel-measurable function H.
Some authors write the previous conditional expectation as

V +
i (t, A) = H(t, i), i ∈ S,

or simply

V +
i (t, A) = E[V +(t, A)|Xt = i]. i ∈ S.

For the sake of keeping the notation simple and clean, we will adopt the latter
notation. We now turn to simplifying the mean reserve formula step by step.
Theorem 6.1.9 (First step) Let J = [α, β] ⊆ [t,∞) and i, j, k ∈ S. For an
integrable function b and a function c of bounded variation we have that

(i) E
[ ∫

J

b(s)dNX
jk(s)

∣∣∣Xt = i
]

=
∫
J

b(s)pij(t, s)µjk(s)ds.

(ii) E
[ ∫

J

1{Xs=j}dc(s)
∣∣∣Xt = i

]
=
∫
J

pij(t, s)dc(s).

Proof. (i) We know from linear analysis that the step functions are dense in
L1(R). Moreover, by linearity of the integral it suffices to prove the equality for
the simple case where b(t) = 1[α,β]. Define the function f : [t,∞)→ Z+ by

f(s) = E[NX
jk(s)|Xt = i], s ≥ t.

Then for h > 0 we have that

f(s+ h)− f(s) = E[NX
jk(s+ h)−NX

jk(s)|Xt = i]

=
∑
l∈S

E[1{Xs=l}(N
X
jk(s+ h)−NX

jk(s))|Xt = i]

=
∑
l∈S

P (Xs = l)
P (Xt = i)E[1{Xt=i}(N

X
jk(s+ h)−NX

jk(s))|Xs = l]

=
∑
l∈S

P (Xs = l)
P (Xt = i)E[1{Xt=i}|Xs = l]E[NX

jk(s+ h)−NX
jk(s)|Xs = l]

=
∑
l∈S

E[NX
jk(s+ h)−NX

jk(s)|Xs = l]pil(t, s).

Here we have used the Markov property, also note that the last conditional
expectation is of order o(h) for all l 6= j. In addition we know that the mapping
s 7→ Xs(ω) is càdlàg with finite state space S, this yields that

lim
h→0+

E[NX
jk(s+ h)−NX

jk(s)|Xs = l]
h

=
{
µlk(s), l = j

0, l 6= j
.

Hence the derivative of f is given by

f ′(s) = lim
h→0

f(s+ h)− f(s)
h

= pij(t, s)µjk(s).
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6.1. Insurance model in continuous time

By the fundamental theorem of calculus we have that

f(β)− f(α) =
∫ β

α

f ′(s)ds =
∫ β

α

pij(t, s)µjk(s)ds =
∫ β

α

b(s)pij(t, s)µjk(s)ds.

Using the definition of f we can also compute the increment directly. Indeed,

f(β)− f(α) = E[NX
jk(β)−NX

jk(α)|Xt = i]

= E
[ ∫ β

α

dNX
jk(s)|Xt = i

]
= E

[ ∫ β

α

b(s)dNX
jk(s)|Xt = i

]
.

Ergo,

E
[ ∫ β

α

b(s)dNX
jk(s)

∣∣∣Xt = i
]

=
∫ β

α

b(s)pij(t, s)µjk(s)ds.

(ii) The second statement is a direct application of Tonelli-Fubini’s theorem.
First, we must check Tonelli-Fubini’s integrability assumption. This is easy,∫ β

α

E
[
|1{Xs=j}|

∣∣∣Xt = i
]
dc(s) =

∫ β

α

E
[
1{Xs=j}

∣∣∣Xt = i
]
dc(s)

=
∫ β

α

pij(t, s)dc(s) ≤
∫ β

α

dc(s) = c(β)− c(α) <∞.

Above we have used that the indicator function is nonnegative in the first
equality. That |pij | ≤ 1 in the first inequality. Finally, we have used that c is of
bounded variation in the last inequality.
Thus we can safely interchange the integral and expectation such that

E
[ ∫ β

α

1{Xs=j}dc(s)
∣∣∣Xt = i

]
=
∫ β

α

E
[
1{Xs=j}

∣∣∣Xt = i
]
dc(s) =

∫ β

α

pij(t, s)dc(s).

�

Corollary 6.1.10 (Second step) Let x be the insured’s age when entering the
insurance contract and t ∈ [0,∞) be the time spent in the contract. If the
insured is in state i at time t, then the present value of cash flows Aj and Ajk
are given by

(i) V +
i (t, Aj) = 1

v(t)

∫ ∞
t

v(s)pij(t+ x, s+ x)daj(s).

(ii) V +
i (t, Ajk) = 1

v(t)

∫ ∞
t

v(s)pij(t+ x, s+ x)µjk(s+ x)ajk(s)ds.

Proof. The result is an immediate consequence of Theorem 6.1.9 by inserting

b(s) = v(s)ajk(s), c(s) =
∫ s

0
v(u)daj(u).

�
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6.1. Insurance model in continuous time

Finally, by combining the previous results in this section we obtain the following
theorem which summarizes the mean reserve formula in an explicit manner.
Theorem 6.1.11 (Explicit formula for prospective mean reserves) Let x be
the insured’s age at the beginning of an insurance policy. If the insured is in
state i at time t, then the value associated with the liability A at time t with
respect to policy functions ai and aij , i, j ∈ S, j 6= i, is given by

V +
i (t, A) = 1

v(t)

[∑
j∈S

∫ ∞
t

v(s)pij(t+ x, s+ x)daj(s)

+
∑
j,k∈S
k 6=j

∫ ∞
t

v(s)pij(t+ x, s+ x)µjk(s+ x)ajk(s)ds
]
.

We end this section by providing some applications of the mean reserve formula
to insurance policies.
Example 6.1.12 (Pricing permanent disability) We consider the permanent
disability contract established in Example 6.1.4 and shift our attention to pricing
the contract. Assuming that the insured is active when entering the contract
we have the following prospective mean reserve

V +
∗ (t, A) = V +

∗ (t, A∗) + V +
∗ (t, A�) + V +

∗ (t, A†), t ∈ [0, T ].

Since there is no cash flow associated with with state †, it is trivial that
V +
∗ (t, A†) = 0 for all t ∈ [0, T ]. Furthermore, by Theorem 6.1.11 we can

explicitly express the remaining present values as

V +
∗ (t, A∗) = 1

v(t)

∫ T

t

v(s)p∗∗(t+ x, s+ x)da∗(s), t ∈ [0, T ].

V +
∗ (t, A�) = 1

v(t)

∫ T

t

v(s)p∗�(t+ x, s+ x)da�(s), t ∈ [0, T ].

In addition, we have that the policy functions are differentiable almost
everywhere

a′∗(t) =
{
−π, t ∈ (0, T )
0, else

a′�(t) =
{
D, t ∈ (0, T )
0, else

.

Using Remark 2.3.23 for computing Riemann-Stieltjes integrals, noting that
the policy functions are continuous and a.e. differentiable and using linearity of
integrals, we can simplify the present values to the following Riemann integrals

V +
∗ (t, A∗) = −π 1

v(t)

∫ T

t

v(s)p∗∗(t+ x, s+ x)ds, t ∈ [0, T ].

V +
∗ (t, A�) = D

1
v(t)

∫ T

t

v(s)p∗�(t+ x, s+ x)ds, t ∈ [0, T ].

72



6.1. Insurance model in continuous time

To find the fair price of this policy we will use the equivalence principle which
states that the value of premiums are determined such that the policy has null
present value at the onset of the contract. In particular, at the start of the
contract we have that

V +
∗ (0, A) = V +

∗ (0, A∗) + V +
∗ (0, A�) = 0.

Solving the resulting equation with respect to π we get the fair premium

π = D

∫ T
t
v(s)p∗�(t+ x, s+ x)ds∫ T

t
v(s)p∗∗(t+ x, s+ x)ds

.

Intuitively, the premium is determined by the size of the disability pension D
and whether p∗� is large compared to p∗∗.
Example 6.1.13 (Endowment insurance in Norway) We will consider an
endowment insurance which has the following state space S = {∗, †}. The
policy yields a payoff of B monetary units to the insured in the case of an
early death and E monetary units in the case of reaching the maturity date T .
Continuing quid pro quo, the insured pays a periodic premium of π monetary
units to the insurer. Then the relevant policy functions which completely
determine this insurance are given by

a∗(t) =
{
−πt, t ∈ [0, T )
−πT + E, t ∈ [T,∞)

a∗†(t) =
{
B, t ∈ [0, T )
0, else

.

The mean reserve of this policy is given by

V +
∗ (t, A) = V +

∗ (t, A∗) + V +
∗ (t, A∗†), t ∈ [0, T ].

Using Theorem 6.1.11 we have the following representation for the present
values of each benefit

V +
∗ (t, A∗) = 1

v(t)

∫ T

t

v(s)p∗∗(t+ x, s+ x)da∗(s), t ∈ [0, T ].

V +
∗ (t, A∗†) = 1

v(t)

∫ T

t

v(s)p∗∗(t+ x, s+ x)µ∗†(s+ x)a∗†(s)ds, t ∈ [0, T ].

It is easy to compute the a.e. derivative of the policy function a∗, which is
given by

a′∗(t) =
{
−π, t ∈ (0, T )
0, else

.

We observe that a∗ is discontinuous at time T and a.e. differentiable. Therefore
we can apply Remark 2.3.23 and linearity of the integral to simplify the formula
for V +

∗ (t, A∗). In the case of V +
∗ (t, A∗†) we just need linearity of the integral.

For t ∈ [0, T ] we get the following present values

V +
∗ (t, A∗) = 1

v(t)

[
− π

∫ T

t

v(s)p∗∗(t+ x, s+ x)ds+ Ev(T )p∗∗(t+ x, T + x)
]
.
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6.1. Insurance model in continuous time

V +
∗ (t, A∗†) = 1

v(t)B
∫ T

t

v(s)p∗∗(t+ x, s+ x)µ∗†(s+ x)ds.

The fair premium of this insurance is once again given by the equivalence
principle which boils down to solving the following equation with respect to π

V +
∗ (0, A) = V +

∗ (0, A∗) + V +
∗ (0, A∗†) = 0.

After rearranging the terms we arrive at the solution

π =
Ev(T )p∗∗(x, T + x) +B

∫ T
0 v(s)p∗∗(x, s+ x)µ∗†(s+ x)ds∫ T

0 v(s)p∗∗(x, s+ x)ds
.

Finally, the present value of benefits, the present value of premiums and the
mean reserve of this policy are given by

V +
∗ (t, Abenefit) = 1

v(t)

[
B

∫ T

t

v(s)p∗∗(t+ x, s+ x)µ∗†(s+ x)ds

+Ev(T )p∗∗(t+ x, T + x)
]
.

V +
∗ (t, Apremium) = −π

v(t)

∫ T

t

v(s)p∗∗(t+ x, s+ x)ds.

V +
∗ (t, A) = V +

∗ (t, Abenefit) + V +
∗ (t, Apremium).

We have collected data regarding Norwegian mortality rates from [SSBa].
Moving forward, we proceed by making a plot of the combined mortality
rate for both genders in Norway.

Figure 6.1: Scatter plot of Norwegian mortality rates from 2020 for both genders
combined.
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6.1. Insurance model in continuous time

The mortality rate seems to grow exponentially with age as one could expect.
Therefore a suitable model would be Gompertz-Makeham’s law of mortality
which states that the rate of transitioning from alive to dead is given by the
function

µ(t) = α0 + α1e
α2t, α0, α1, α2 > 0, t ≥ 0.

We will use the software package "mosaic" in R to estimate the parameters
of the curve that best fit the data. After doing so we obtain the following
estimates

α̂0 = 2.962978 · 10−4, α̂1 = 1.178166 · 10−5, α̂2 = 1.028398 · 10−1.

Now we plot the estimated curve with the data.

Figure 6.2: Data together with the best fitted Gompertz-Makeham curve.

We see in Figure 6.2 that the curve fits the data well up to age 80. After
80 the curve tends to underestimate the empirical mortality. Moreover, the
data suggests that the empirical mortality rate increases at a decreasing rate.
This phenomenon is known as late-life mortality deceleration in the field of
gerontology and was first proposed in human aging by Gompertz himself in the
paper [Gom25]. Although this phenomenon has become a disputed topic in
recent years, for instance see the following paper [GG11].

Finally, it is worth commenting that we see a clear outlier at the age of 106.
The outlier might stem from lack of reliable data at such high ages and it would
therefore be reasonable to exclude it when performing statistical analysis.

Proceeding forward, we have that the survival probability in our model is
computed by Theorem 2.6.14 as

p∗∗(t, s) = exp
(
−
∫ s

t

µ(u)du
)

= exp
(
−α0(s− t)− α1

α2
(eα2s−eα2t)

)
, t ≤ s.
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6.1. Insurance model in continuous time

We finish this example by calculating the yearly premium and plotting the
present values with the mean reserve in the case where the insured enters the
endowment contract at age 30 with maturity date in 40 years. Moreover, we
will assume that the interest rate remains fixed at 2% during the whole contract.
Finally, we set the endowment to be 100 000 NOK and the death benefit to
200 000 NOK. Using the expressions we have derived and computing the integrals
numerically by Simpson’s rule we obtain the yearly premium

π ≈ 2 062 NOK.

We summarize the present values in one final plot given the parameters above.

Figure 6.3: Plot showing the present value of benefits (blue), mean reserve
(black) and present value of premiums (red).

All values obtained are reasonable. Note that the computations were made well
inside the age window where Gompertz-Makeham’s mortality rate fits the data
fairly well.
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6.2. Thiele’s ordinary differential equation

6.2 Thiele’s ordinary differential equation

We will end this chapter with a powerful result known as Thiele’s ordinary
differential equation. It is a linear differential equation for finding V +

i , at each
time t, without invoking transition probabilities, but rather transition rates.
Theorem 6.2.1 (Thiele’s ODE) Let x be the insured’s age at the beginning of
the contract, t the time passed since the contract started and T the contract’s
maturity date. Assume that ai, aij , i, j ∈ S are policy functions. If ai is almost
everywhere differentiable with at most one discontinuity at time t = T , then
the mean reserve V +

i (t) is given by

d

dt
V +
i (t) = r(t)V +

i (t)− a′i(t)−
∑
j∈S
j 6=i

µij(x+ t)
(
aij(t) + V +

j (t)− V +
i (t)

)
,

with terminal condition

V +
i (T ) = ai(T )− ai(T−).

Proof. First, we use that ai is a.e. differentiable with at most one discontinuity
at time t = T . By using Remark 2.3.23 in conjunction with Theorem 6.1.11 we
can write the explicit formula for the prospective mean reserve as

V +
i (t) = 1

v(t)

[∑
j∈S

v(T )pij(t+ x, T + x)
(
aj(T )− aj(T−)

)

+
∑
j∈S

∫ T

t

v(s)pij(t+ x, s+ x)θxj (s)ds
]
,

where

θxj (s) = a′j(s) +
∑
k∈S
k 6=j

µjk(s+ x)ajk(s).

Next, we rewrite the equation for V +
i in the following compressed form

v(t)V +
i (t) = GTi (t) +

∫ T

t

F si (t)ds, (6.2.1)

where

GTi (t) = v(T )
∑
j∈S

pij(t+ x, T + x)
(
aj(T )− aj(T−)

)
,

F si (t) = v(s)
∑
j∈S

pij(t+ x, s+ x)θxj (s).

Since each sum in GTi and F si is finite, we can differentiate with respect to t
yielding
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6.2. Thiele’s ordinary differential equation

d

dt
GTi (t) = v(T )

∑
j∈S

d

dt
pij(t+ x, T + x)

(
aj(T )− aj(T−)

)
,

d

dt
F si (t) = v(s)

∑
j∈S

d

dt
pij(t+ x, s+ x)θxj (s).

Kolmogorov’s backward equation implies that

d

dt
pij(t+ x, s+ x) = µi(t+ x)pij(t+ x, s+ x)−

∑
k∈S
k 6=i

µik(t+ x)pkj(t+ x, s+ x)

=
∑
k∈S
k 6=i

µik(t+ x)
(
pij(t+ x, s+ x)− pkj(t+ x, s+ x)

)
.

Inserting the former identity into d
dtF

s
i we get that

d

dt
F si (t) = v(s)

∑
j∈S

(∑
k∈S
k 6=i

µik(t+ x)
(
pij(t+ x, s+ x)− pkj(t+ x, s+ x)

))
θxj (s)

(6.2.2)

=
∑
k∈S
k 6=i

µik(t+ x)
(
F si (t)− F sk (t)

)
.

A similar computation gives that

d

dt
GTi (t) =

∑
k∈S
k 6=i

µik(t+ x)
(
GTi (t)−GTk (t)

)
. (6.2.3)

The next step is to differentiate (6.2.1). On the left hand side we have that

d

dt

[
v(t)V +

i (t)
]

= −r(t)v(t)V +
i (t) + v(t) d

dt
V +
i (t). (6.2.4)

Define the following integral function by

I(z, w) =
∫ T

z

F si (w)ds.

Computing the partial derivatives of I yield that

∂zI(z, w) = −F zi (w), ∂wI(z, w) =
∫ T

z

∂wF
s
i (w)ds.

Combining the chain rule with the fundamental theorem of calculus, allows us
to evaluate

d

dt
I(t, t) = ∂zI(z, w)

∣∣∣
(z,w)=(t,t)

+∂wI(z, w)
∣∣∣
(z,w)=(t,t)

= −F ti (t)+
∫ T

t

∂tF
s
i (t)ds.
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6.2. Thiele’s ordinary differential equation

We see that

F ti (t) = lim
s→t+

F si (t) = v(t)
∑
j∈S

pij(t+ x, t+ x)θxj (t)

= v(t)θxi (t) = v(t)
(
a′i(t) +

∑
k∈S
k 6=i

µik(t+ x)aik(t)
)
.

Finally, we differentiate the right-hand side of (6.2.1) and obtain that

∂t

(
GTi +

∫ T

t

F si (t)ds
)

= ∂tG
T
i (t)−v(t)a′i(t)−v(t)

∑
k∈S
k 6=i

µik(t+x)aik(t) (6.2.5)

+
∫ T

t

∂tF
s
i (t)ds.

Setting (6.2.4) equal to (6.2.5) and isolating the integral term gives that

∫ T

t

∂tF
s
i (t)ds = −r(t)v(t)V +

i (t) + v(t) d
dt
V +
i (t)− ∂tGTi (t) (6.2.6)

+v(t)a′i(t) + v(t)
∑
k∈S
k 6=i

µik(t+ x)aik(t).

To find another expression for the integral above, we will integrate (6.2.2) on
both sides with respect to s on the interval [t, T ]. Also by interchanging the
order of integration and summation together with the relation (6.2.1), we can
write ∫ T

t

∂tF
s
i (t)ds = v(t)

∑
k∈S
k 6=i

µik(t+ x)
(
V +
i (t+ x)− V +

k (t+ x)
)

−
∑
k∈S
k 6=i

µik(t+ x)
(
GTi (t)−GTk (t)

)
.

However, last term above can be rewritten using (6.2.3) such that

∫ T

t

∂tF
s
i (t)ds = v(t)

∑
k∈S
k 6=i

µik(t+x)
(
V +
i (t+x)−V +

k (t+x)
)
−∂tGTi (t). (6.2.7)

Lastly, we set (6.2.6) equal to (6.2.7), cancel redundant terms and isolate the
term d

dtV
+
i . This gives the desired result

d

dt
V +
i (t) = r(t)V +

i (t)− a′i(t)−
∑
j∈S
j 6=i

µij(x+ t)
(
aij(t) + V +

j (t)− V +
i (t)

)
.

�
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CHAPTER 7

Insurance policies with stochastic
mortality

Finally we have reached the final chapter of this thesis. We will now deal
with actuarial computations regarding reserving and pricing under stochastic
mortality. For our applications, we will limit the analysis of insurance contracts
to the simple case where S = {∗, †}. This simplifies the formula for the mean
reserve to the following expression

V +
∗ (t) = 1

v(t)

[∫ ∞
t

v(s)p∗∗(x+ t, x+ s)da∗(s)

+
∫ ∞
t

v(s)p∗∗(x+ t, x+ s)µ∗†(x+ s)a∗†(s)ds
]
,

where the survival probability is given by

p∗∗(x+ t, x+ s) = exp

(
−
∫ s

t

µ∗†(x+ u)du
)
, t ≤ s.

In our context, the mortality µ∗† is replaced by the stochastic mortality µ.
Thus, we need to apply conditional expectation in order to obtain adapted
reserves. That is,

V +
∗ (t, µt) =

∫ T

t

v(s)
v(t)E

[
e
−
∫ s
t
µudu

∣∣∣Ft]da∗(s)
+
∫ T

t

v(s)
v(t)E

[
e
−
∫ s
t
µuduµs

∣∣∣Ft]a∗†(s)ds.
Computing the survival probability is a demanding task in general, which
requires numerical integration. For that reason it is more practical to use
Thiele’s differential equation, which only requires µ(t). In our case Thiele’s
differential equation becomes

d

dt
V +
∗ (t) = r(t)V +

∗ (t)− a′∗(t)− µ∗†(x+ t)
(
a∗†(t) + V +

† (t)− V +
∗ (t)

)
,

with terminal condition

V +
∗ (T ) = a∗(T )− a∗(T−).
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7.1 General stochastic mortality model

In this section, we will consider the case of a general Markov mortality in order
to derive an analytic formula for the prospective reserve. Before proceeding
with the analysis however, we wish to caution the reader against two important
details. Firstly, what we denote by µ in this chapter is not the generational
mortality of a given age, but rather the mortality of an individual of a given
age as time passes. Secondly, that we are working with a Wiener process which
satisfies the Markov property and the framework of Itô calculus.

Let µ be the insured’s mortality rate. We will assume that µ can be modeled
by the following stochastic differential equation

dµt = b(t, µt)dt+ σ(t, µt)dWt,

where b and σ are measurable functions for which a unique strong solution
exists.

We introduce some examples of mortality rate models which fit our framework
and also restrict µ to positive values.

Example 7.1.1 (Geometric Brownian motion) The solution of the following
SDE is known as the geometric Brownian motion

dµt = bµt dt+ σµt dWt, b, σ ∈ R, µ0 > 0.

The geometric Brownian motion is a well known SDE which is useful in predicting
the prices of future commodities.

Example 7.1.2 (Cox-Ingersoll-Ross) The solution of the following SDE is
known as the CIR model

dµt = a(b− µt)dt+ σ
√
µtdWt, a, b, σ > 0.

The CIR model is often used to describe the evolution of interest rates and is
an extension of the Vasicek model.

Example 7.1.3 (Log-Ornstein-Uhlenbeck) The solution of the following SDE
is known as the log-Ornstein-Uhlenbeck process

dµt = µt

(
α+ 1

2σ
2 +λln(µ0)+αλt−λln(µt)

)
dt+σµtdWt, µ0, λ, σ > 0, α ∈ R.

This SDE will be the topic of the final section in this thesis which explores
applications to insurance contracts. In particular computing the fair premium
and prospective reserves given the log-Ornstein-Uhlenbeck mortality rate model.
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7.2 Thiele’s PDE for stochastic mortality models

Next theorem is the corresponding Thiele’s differential equation when the
mortality is seen as a Markovian Itô process and it is one of the main
contributions of this thesis.
Theorem 7.2.1 (Thiele’s PDE) Let V +

∗ (t, x) be the value of the insurance
contract at time t with mortality level x, given that the insured is alive. Assume
that the insured’s mortality rate µ satisfy the following stochastic differential
equation

dµt = b(t, µt)dt+ σ(t, µt)dWt,

where b and σ are measurable functions for which a unique strong solution exists.
If a∗, a∗† are policy functions, where a∗ is almost everywhere differentiable,
and r is a measurable function modeling the interest rate, then V +

∗ solves the
following PDE

∂tV
+
∗ (t, x) = r(t)V +

∗ (t, x)− a′∗(t) +
[
V +
∗ (t, x)− a∗†(t)

]
x

−b(t, x)∂xV +
∗ (t, x)− 1

2σ
2(t, x)∂2

xV
+
∗ (t, x),

with terminal condition

V +
∗ (T, x) = a∗(T )− a∗(T−).

Proof. Fix T > 0 and let b, σ : [0, T ]× R→ R be Borel measurable functions.
Consider the following stochastic differential equation

dµt = b(t, µt)dt+ σ(t, µt)dWt.

Furthermore, we define the function u : [0, T ]× R→ R by

uΨ
T (t, x) = E

[
e
−
∫ T
t
µsdsΨ(µT )

∣∣∣µt = x
]
,

where Ψ : R → R is a deterministic and Borel measurable function. By
Markovianity we have that

uΨ
T (t, x) = E

[
e
−
∫ T
t
µsdsΨ(µT )

∣∣∣σ(µs, 0 ≤ s ≤ t)].
Let L be the differential operator defined by

L(u) = b(t, x)∂xu+ 1
2σ

2(t, x)∂2
xu, u ∈ C1,2([0, T ]× R).

Then, by the Feynman-Kac formula, the function (t, x) 7→ uΨ
T (t, x) solves the

following partial differential equation

∂tu+ L(u) = xu,

with terminal condition

u(T, x) = Ψ(x).
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Combining our expression of the adapted reserve with the Feynman Kac PDE we
obtain a new expression for the prospective reserve with respect to µt. Indeed,

V +
∗ (t, µt) =

∫ T

t

v(s)
v(t) u

Ψ1
s (t, µt)da∗(s) +

∫ T

t

v(s)
v(t) u

Ψ2
s (t, µt)a∗†(s)ds,

where Ψ1 is the constant function 1 and Ψ2 is the identity function. Since
the prospective reserve V +

∗ ∈ C1,2([0, T ]× R) we can apply Itô’s formula and
evaluate at (t, x) = (t, µt). This yields

dV +
∗ = ∂tV

+
∗ (t, µt)dt+ ∂xV

+
∗ (t, µt)dµt + 1

2∂
2
xV

+
∗ (t, µt)d[µ, µ]t.

Inserting the dynamics of µ we get

dV +
∗ = ∂tV

+
∗ (t, µt)dt+ ∂xV

+
∗ (t, µt)

(
b(t, µt)dt+ σ(t, µt)dWt

)
+1

2∂
2
xV

+
∗ (t, µt)σ2(t, µt)dt

=
[
∂tV

+
∗ (t, µt) + b(t, µt)∂xV +

∗ (t, µt) + 1
2∂

2
xV

+
∗ (t, µt)σ2(t, µt)

]
dt+ σ(t, µt)dWt.

The next step, is to calculate the partial derivatives. Differentiating once in
space gives

∂xV
+
∗ =

∫ T

t

v(s)
v(t) ∂xu

Ψ1
s (t, x)da∗(s) +

∫ T

t

v(s)
v(t) ∂xu

Ψ2
s (t, x)a∗†(s)ds.

Similarly after differentiating twice in space we obtain

∂2
xV

+
∗ =

∫ T

t

v(s)
v(t) ∂

2
xu

Ψ1
s (t, x)da∗(s) +

∫ T

t

v(s)
v(t) ∂

2
xu

Ψ2
s (t, x)a∗†(s)ds.

Before computing the partial derivative in time, we will for convenience work
under the assumption that a∗ is a.e. differentiable with at most one discontinuity
at t = T . This assumption allows us to write

da∗(s) = ∆a∗(s)δT (s)ds+ a′∗(s)ds,

where δT (s) is the Dirac measure on T such that∫ T

t

∆a∗(s)δT (s)ds =
{
a∗(T )− a∗(T−), s = T

0, else.

Thus when a∗ is a.e. differentiable with a discontinuity at t = T we can burn
the Lebesgue-Stieltjes integral appearing in the expression of V +

∗ (t, x) into a
Lebesgue integral. Using linearity of the Lebesgue integral we arrive at
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7.2. Thiele’s PDE for stochastic mortality models

V +
∗ (t, x) = v(T )

v(t) u
Ψ1
T (t, x)∆a∗(T )+

∫ T

t

v(s)
v(t)

[
uΨ1
s (t, x)a′∗(s)+uΨ2

s (t, x)a∗†(s)
]
ds

= v(T )
v(t) u

Ψ1
T (t, x)∆a∗(T ) +

∫ T

t

v(s)
v(t) u

Ψs
s (t, x)ds,

where we have introduces the following notations

uΨs
s (t, x) = uΨ1

s (t, x)a′∗(s) + uΨ2
s (t, x)a∗†(s),

Ψs(x) = a′∗(s)Ψ1(s) + a∗†(s)Ψ2(s) = a′∗(s) + a∗†(s)x.

We call attention to the notation Ψs in order to remember the dependence on
s, however we recall that s is fixed when solving the PDE with respect to u.
That is uΨs

s is a function of (t, x) which solves the PDE

∂tu+ L(u) = xu,

with terminal condition

u(s, x) = Ψs(x).

We now turn our attention back to finding the partial derivative in time for the
prospective reserve. To simplify the computation, we send the discount factor
v(t) to the left side of the equation yielding

V +
∗ (t, x)v(t) = v(T )uΨ1

T (t, x)∆a∗(T ) +
∫ T

t

v(s)uΨs
s (t, x)ds.

Finally, we use the product rule on the left side and the fundamental theorem
of analysis on the right side to compute the partial derivative in time. This
gives

∂tV
+
∗ (t, x)v(t)− V +

∗ (t, x)r(t)v(t)

= v(T )∆a∗(T )∂tuΨ1
T (t, x)− v(t)uΨt

t (t, x) +
∫ T

t

v(s)∂tuΨs
s (t, x)ds,

where we have used that

∂tv(t) = ∂te
−
∫ t

0
r(u)du = −r(t)v(t).

Note that we can exchange ∂tu by rearranging the Feynman-Kac formula as

∂tu = xu− L(u).

Furthermore, we will make use of the relation

uΨt
t (t, x) = Ψt(x) = a′∗(t) + a∗†(t)x.
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After inserting the two identities, we have that

∂tV
+
∗ (t, x)v(t)− V +

∗ (t, x)r(t)v(t) = v(T )∆a∗(T )
[
xuΨ1

T (t, x)− L
(
uΨ1
T (t, x)

)]

−v(t)
(
a′∗(t) + a∗†(t)x

)
+
∫ T

t

v(s)
[
xuΨs

s (t, x)− L
(
uΨs
s (t, x)

)]
ds.

Collecting terms containing x and L gives

∂tV
+
∗ (t, x)v(t)− V +

∗ (t, x)r(t)v(t)

=
[
v(T )∆a∗(T )uΨ1

T (t, x) +
∫ T

t

v(s)uΨs
s (t, x)ds− v(t)a∗†(t)

]
x

−L

(
v(T )∆a∗(T )uΨ1

T (t, ·) +
∫ T

t

v(s)uΨs
s (t, ·)ds

)

−v(t)a′∗(t),

where we have used linearity of the operator L.
We observe that

v(t)V +
∗ (t, x) = v(T )∆a∗(T )uΨ1

T (t, x) +
∫ T

t

v(s)uΨs
s (t, x).

Inserting the previous observation we achieve the formula

∂tV
+
∗ (t, x)v(t)− V +

∗ (t, x)r(t)v(t)

=
[
v(t)V +

∗ (t, x)− v(t)a∗†(t)
]
x− L

(
v(t)V +

∗ (t, ·)
)
− v(t)a′∗(t).

Since v(t) appears in all terms and L is a linear operator, we can remove v(t)
from the equation. Hence, we get the PDE

∂tV
+
∗ (t, x) = r(t)V +

∗ (t, x) +
[
V +
∗ (t, x)− a∗†(t)

]
x− L

(
V +
∗ (t, ·)

)
− a′∗(t).

Ultimately, we apply the differential operator L on V +
∗ resulting in the second

order parabolic linear PDE

∂tV
+
∗ (t, x) = r(t)V +

∗ (t, x) +
[
V +
∗ (t, x)− a∗†(t)

]
x− a′∗(t)

−b(t, x)∂xV +
∗ (t, x)− 1

2σ
2(t, x)∂2

xV
+
∗ (t, x).

�

85



7.3. Numerical methods for solving Thiele’s PDE

7.3 Numerical methods for solving Thiele’s PDE

The goal of this section will be to explain how we can approximate the solution
surface of Thiele’s PDE along a grid of points. Recall that Thiele’s PDE in the
context of stochastic mortality is given by

∂tV
+
∗ (t, x) = r(t)V +

∗ (t, x) +
[
V +
∗ (t, x)− a∗†(t)

]
x− a′∗(t)

−b(t, x)∂xV +
∗ (t, x)− 1

2σ
2(t, x)∂2

xV
+
∗ (t, x),

with terminal condition

V +
∗ (T, x) = a∗(T )− a∗(T−).

Let {(ti, xj)}j=1,...,m
i=0,...,n ⊆ [0, T ]× [0,∞) be a partition of time and space where we

wish to approximate (t, x) 7→ V +
∗ (t, x). We will denote by ∆t a fixed increment

in time and similarly ∆x for a fixed increment in space.

The information at our disposal is the terminal condition, which states a payoff
at the end of the contract at time T . Although it is essential information, it is
not enough to solve Thiele’s PDE numerically without also imposing boundary
conditions. These conditions are not given, but must be chosen with reasonable
economical considerations. For instance, we can choose the mortality level
µt = x0 = 0 as the lower boundary condition and for the upper boundary
condition, a fixed maximum mortality level µt = xm.

We are now ready to explain the general idea behind the numerical schemes
associated with Thiele’s PDE.

Figure 7.1: Grid of point where we approximate V +
∗ . In blue, we have the

boundary conditions. In red, we see the terminal condition. In green, we find
the initial value of the contract for different mortality levels. In yellow, we
initiate the first iteration of unknown points using the points from the red and
blue line. Also note that the integration is backwards in time.
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Example 7.3.1 (Boundary conditions in a pure endowment insurance) In the
case of a pure endowment with payoff E at time t = T , the policy function is
given by

a∗(t) =
{

0, t ∈ [0, T )
E, t ∈ [T,∞)

=⇒ a′∗(t) =
{

0, t ∈ (0, T )
E, else

.

The contract’s terminal condition is given by

V +
∗ (T, x) =

{
0, x = xm

E, else
.

The discontinuity at x = xm happens for a large enough mortality level due to
the fact that the insured must be alive in order to claim the endowment.

Next, we get that the lower boundary condition for the mortality level x = 0 is
given by the explicit pricing formula for the prospective reserve. Hence

V +
∗ (t, 0) = 1

v(t)

∫ ∞
t

v(s)p∗∗(x0 + t, x0 + s)da∗(s) = 1
v(t)

∫ ∞
t

v(s)a′∗(s)ds

= 1
v(t)

[∫ ∞
t

v(s) · 0 ds+ v(T )(E − 0)
]

= v(T )
v(t) E, t ∈ [0, T ].

This should be intuitive as V +
∗ (t, 0) mimics the behavior of a zero coupon bond

with face value E being paid at time t = T .

The upper boundary condition is simpler since

V +
∗ (t, xm) = 1

v(t)

∫ ∞
t

v(s)p∗∗(x0 + t, x0 + s)da∗(s)

= 1
v(t)

∫ ∞
t

v(s) · 0 da∗(s) = 0, t ∈ [0, T ].

Above we have used that the insured’s survival probability is zero for a large
enough mortality level.
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7.3.1 Explicit method

As previously stated, we will not attempt to solve Thiele’s PDE analytically.
Instead we will focus on approximating V +

∗ on a grid of points. That is

V +
∗ (t, x) ≈ V +

∗ (ti, xj), i = {0, ..., n}, j = {0, ...,m},

where {ti}ni=0 ⊆ [0, T ] and {xj}mj=0 ⊆ [0,∞) are partitions.

Figure 7.2: Explicit method to compute V +
∗ . Given V +

∗ (ti+1, xj−1), V +
∗ (ti+1, xj)

and V +
∗ (ti+1, xj+1) we can estimate V +

∗ (ti, xj).

We will approximate the partial derivatives by the following incremental
procedure

∂tV
+
∗ (t, x) ≈ V +

∗ (t+ ∆t, x)− V +
∗ (t, x)

∆t ,

∂xV
+
∗ (t, x) ≈ V +

∗ (t, x+ ∆x)− V +
∗ (t, x)

∆x ,

∂2
xV

+
∗ (t, x) ≈ V +

∗ (t, x+ ∆x)− 2V +
∗ (t, x) + V +

∗ (t, x−∆x)
(∆x)2 ,

where ∆t,∆x > 0 are suitably small.
Substituting our approximations in Thiele’s PDE we get

V +
∗ (t+ ∆t, x)− V +

∗ (t, x)
∆t ≈ r(t)V +

∗ (t, x) +
[
V +
∗ (t, x)− a∗†(t)

]
x− a′∗(t)

−b(t, x)V
+
∗ (t, x+ ∆x)− V +

∗ (t, x)
∆x

−1
2σ

2(t, x)V
+
∗ (t, x+ ∆x)− 2V +

∗ (t, x) + V +
∗ (t, x−∆x)

(∆x)2 .
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Moreover, we evaluate V +
∗ at the points (ti+1, xj) on the right hand side of the

equation and make use of the fact that

ti+1 = ti + ∆t, xj+1 = xj + ∆x.
This gives the numerical scheme

V +
∗ (ti+1, xj)− V +

∗ (ti, xj)
∆t ≈ r(ti+1)V +

∗ (ti+1, xj)+
[
V +
∗ (ti+1, xj)−a∗†(ti+1)

]
xj

−a′∗(ti+1)− b(ti+1, xj)
V +
∗ (ti+1, xj+1)− V +

∗ (ti+1, xj)
∆x

−1
2σ

2(ti+1, xj)
V +
∗ (ti+1, xj+1)− 2V +

∗ (ti+1, xj) + V +
∗ (ti+1, xj−1)

(∆x)2 .

V +
∗ (tn, xj) is known for all j, assuming that we have boundary conditions and

the terminal condition. Hence, we can for a fixed timeline (ti+1, xj) compute
V +
∗ (ti, xj) explicitly, as the name of the method suggests, for all i and j

recursively. Isolating V +
∗ (ti, xj) gives

V +
∗ (ti, xj) ≈ V +

∗ (ti+1, xj)−∆t
[
r(ti+1)V +

∗ (ti+1, xj)− a∗†(ti+1)xj

+V +
∗ (ti+1, xj)xj − a′∗(ti+1)− b(ti+1, xj)

V +
∗ (ti+1, xj+1)− V +

∗ (ti+1, xj)
∆x

−1
2σ

2(ti+1, xj)
V +
∗ (ti+1, xj+1)− 2V +

∗ (ti+1, xj) + V +
∗ (ti+1, xj−1)

(∆x)2

]
.

Thus the explicit method can simply be implemented as

V +
∗ (ti, xj) ≈ f

(
V +
∗ (ti+1, xj−1), V +

∗ (ti+1, xj), V +
∗ (ti+1, xj+1)

)
.

Unfortunately, this method is not stable. That is to say that we may not get a
numerical solution for arbitrary choices of ∆t and ∆x, but only for very small
and specific choices.
In the specific case of solving the heat equation, it is shown in [Cra75] that the
explicit method is both numerically stable and convergent whenever

∆t
(∆x)2 ≤

1
2 .

Moreover, the explicit method has a numerical error

ε = O
(

∆t
)

+O
(

(∆x)2
)
.

Since Thiele’s PDE is in the same family as the heat equation, we could expect
similar results depending on the complexity of the policy functions.
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7.3.2 Implicit method

Since the explicit method is not stable for arbitrary choices of ∆t and ∆x, we
will also overview the implicit method which is always stable. The main idea
of the implicit method is to simultaneously solve a system of linear equations
which consists of as many unknowns as spacial points in the grid.

Figure 7.3: Implicit method to evaluate V +
∗ . Given the point V +

∗ (ti+1, xj) we
can solve a system of equations involving three unknown points V +

∗ (ti, xj−1),
V +
∗ (ti, xj) and V +

∗ (ti, xj+1).

The implicit method is obtained by evaluating the right hand side of the
approximation to the PDE at the points (ti, xj), instead of the points (ti+1, xj)
which was the case with the explicit method. We get

V +
∗ (ti+1, xj)− V +

∗ (ti, xj)
∆t ≈ r(ti)V +

∗ (ti, xj) +
[
V +
∗ (ti, xj)− a∗†(ti)

]
xj

−a′∗(ti)− b(ti, xj)
V +
∗ (ti, xj+1)− V +

∗ (ti, xj)
∆x

−1
2σ

2(ti, xj)
V +
∗ (ti, xj+1)− 2V +

∗ (ti, xj) + V +
∗ (ti, xj−1)

(∆x)2 .

The next step is to group all terms with V +
∗ on the left hand side of the equation

and put the remaining terms on the right hand side. After simplifying the
notation a little bit, we arrive at an equation of the following form

AjiV
j−1
i +Bji V

j
i + Cji V

j+1
i = Dj

i ,

where

V ji = V +
∗ (ti, xj),
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Aji = ∆t
2 σ2(ti, xj),

Bji = −(∆x)2 − (∆x)2∆t r(ti)− (∆x)2∆t xj −∆x∆t b(ti, xj)−∆t σ2(ti, xj),

Cji = ∆x∆t b(ti, xj) + ∆t
2 σ2(ti, xj),

Dj
i = (∆x)2∆t

(
− a∗†(ti)xj − a′∗(ti)

)
− (∆x)2V ji+1,

It is important to see that the system of equations is only well-defined for
j = {1, ...,m− 1} as for j = 0 and j = m we have the nonsensical terms V −1

i

and V m+1
i respectively. Therefore it would at a first glance appear that we have

a system of linear equations consisting of m− 1 equations and m+ 1 unknowns,
V 0
i , ..., V

m
i .

Fortunately, that is not the case after a closer inspection. The two missing
equations which stem from the boundary conditions also reduce the amount
of unknowns by two. Indeed, the variables V 0

i and V mi are known from the
boundary conditions for all i. Writing our system of linear equations in matrix
form, we get

MiVi + Ei = Di, i = {n, ..., 0},
where

Mi =



B1
i C1

i 0 0 · · · 0 0
A2
i B2

i C2
i 0 · · · 0 0

0 A3
i B3

i C3
i · · · 0 0

...
...

. . . . . . . . .
...

...
0 0 0 0 · · · Cm−3

i 0
0 0 0 0 · · · Bm−2

i Cm−2
i

0 0 0 0 · · · Am−1
i Bm−1

i


,

Vi =


V 1
i

V 2
i
...

V m−2
i

V m−1
i

 , Ei =


A1
iV

0
i

0
...
0

Cm−1
i V mi

 , Di =


D1
i

D2
i
...

Dm−2
i

Dm−1
i

 .

Finally, by simple linear algebra we can compute the vector of unknowns Vi as

Vi = M−1
i (Di − Ei), i = {n, ..., 0}.

The implicit method is always numerically stable and convergent which is a big
advantage. However, it is also more costly than the explicit method in terms of
computational power. In the case of the heat equation, it is known that the
numerical error of the implicit method is also of size

ε = O
(

∆t
)

+O
(

(∆x)2
)
.
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7.4 Applications to insurance contracts

In this section, we will focus on calculating the mean reserve with stochastic
mortality.
We will in the following examples assume that mortality follows a log-Ornstein-
Uhlenbeck process of the form

µt = µ0e
αt+Xt , t ∈ [0, T ],

where X solves the SDE

dXt = −λXtdt+ σdWt, X0 = 0, t ∈ [0, T ],

and W is the standard Brownian motion. In order to apply our numerical
methods, we need to derive the associated SDE for µ. The way forward is a
simple application of Itô’s formula using the function

f(t, x) = µ0e
αt+x.

Computing the partial derivatives gives

∂tf = αf, ∂xf = f, ∂2
xf = f.

Inserting in Itô’s formula and evaluating at (t, x) = (t, µt) we have

dµt = αµtdt+ µt[−λXtdt+ σdWt] + 1
2d[X,X]t.

Calculating the quadratic variation and collecting terms yield

dµt = µt

[(
α+ 1

2σ
2 − λXt

)
dt+ σdWt

]
.

Finally, we rewrite the expression by adding terms and using the formula of µ
to obtain

dµt = b(t, µt)dt+ σ(t, µt)dWt.

where the drift and volatility are given by

b(t, µt) = µt

(
α+ 1

2σ
2 + λln(µ0) + αλt− λln(µt)

)
,

σ(t, µt) = σµt.

We must of course remember to incorporate the information about the insured’s
age x0, in the parameter µ0 which appears in the drift.
Example 7.4.1 (Stochastic pension insurance) Assume for simplicity a constant
risk-free interest rate such that

v(t) = e
−
∫ t

0
r(u)du = e−rt.

For a pension insurance without premiums, the only policy function that
contributes is given by
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a∗(t) =


0, t ∈ [0, T0)
P (t− T0), t ∈ [T0, T )
P (T − T0), t ∈ [T,∞)

=⇒ a′∗(t) =
{
P, t ∈ (T0, T )
0, else

.

The last order of business is to specify terminal and boundary conditions for
the mean reserve. For our pension insurance, the terminal condition is

V +
∗ (T, x) = 0, ∀x.

This should make sense as the contract expires and no more payments are made
regardless of the insured’s health.
In the case where the insured’s health is frail and the mortality level is high,
we get the upper boundary condition

V +
∗ (t, xm) = 0, ∀t.

Practically speaking this means that the insurer knows that the insured will
die instantaneously after signing the pension policy. Hence all pension payouts
happen with probability zero and there is no reason to set aside money. This
assumption requires xm to be large enough to mimic the limit

lim
x→∞

V +
∗ (t, x) = 0

.
On the other extreme, if the insured is in shape and the mortality level is low,
we get the lower boundary condition

V +
∗ (t, 0) = 1

v(t)

∫ ∞
t

v(s)p∗∗(x0 + t, x0 + s)da∗(s) = 1
v(t)

∫ ∞
t

v(s)a′∗(s)ds

= P

v(t)

[
δ[0,T0)(t)

∫ T

T0

v(s)ds+ δ[T0,T ](t)
∫ T

t

v(s)ds
]

=


−P
re−rt

(
e−rT − e−rT0

)
, t ∈ [0, T0)

−P
re−rt

(
e−rT − e−rt

)
, t ∈ [T0, T ]

.

Hence the insured will obtain full pension with probability one.

Without loss of generality, we will use the data collected from [HMD] in order
to illustrate the shape of the prospective reserve surface. We will consider a 30
year old male in 2019 with a pension policy paying P = 100 000 NOK starting
from T0 = 40 years with maturity date T = 70 years. Note that the data we
have used does not aim to forecast future mortality based on past observations.
That is our 71 data points consist of the mortality of a 30 year old male in
2019, mortality of a 31 year old male in 2019,..., mortality of a 100 year old
male in 2019.
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Recall that we are working with a mortality rate that follows a log-Ornstein-
Uhlenbeck process. Thus we can once again use the estimation procedure
developed in Section 4.2 to calibrate α, σ and λ. Since we are not dealing with
generation mortality any more, but rather individual mortality of a given age
as time passes by, we should expect that α > 0.

Figure 7.4: V +
∗ using the explicit method. Time units in years and monetary

units in 1 000 NOK. P = 100, r = 3%, x0 = 30, T0 = 40, T = 70, α = 0.0693,
λ = 1.1129 · 10−5, σ = 0.03031, µ0 = 0.001837, ∆t = 0.0002 and ∆x = 0.02.

In Figure 7.4 we observe that V +
∗ decreases with the mortality level. For a fixed

mortality, we see the typical shape of a pension present value. First we have
to put aside more and more money in order to meet the liabilities starting at
time t = T0 when we start paying out pensions. At time t = T0 we obtain the
maximum, since pension payments begin, and the value there is the expected
cost for the remaining time of the contract. Then it decreases to 0 as time goes
by since the maturity date approaches.

Lastly, the resolution of V +
∗ could have been better by choosing ∆x and ∆t

smaller. However, the computational cost and runtime of such a program is
considerably higher.
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Example 7.4.2 (Deterministic pension insurance) We are interested in
comparing the behaviour of the mean reserves when applying Thiele’s PDE
versus Thiele’s ODE. The first case deals with stochastic mortality while the
second is for deterministic mortality. In order to obtain a deterministic model,
we simply apply the expected value. Using the same mortality as the previous
example we get that

µ̃t = E
[
µt
]

= µ0e
αtE

[
eXt
]

= µ0exp

(
αt+ σ2(1− e−λt)

4λ

)
, t ∈ [0, T ],

where we have used that Xt is normally distributed.

Figure 7.5: µ̃ using the same estimates as in Figure 7.3.

Applying Thiele’s ODE to our pension policy we get that

d

dt
V +
∗ (t) = rV +

∗ (t)− a′∗(t) + µ̃tV
+
∗ (t), t ∈ [0, T ]

with terminal condition

V +
∗ (T ) = 0.

Finally, we use Euler’s method to iterate backwards in time for a partition
ti ∈ [0, T ].

V +
∗ (ti)− V +

∗ (ti−1)
∆t = rV +

∗ (ti)− a′∗(ti) + µ̃tiV
+
∗ (ti), i ∈ {0, 1, ..., n}.

Isolating V +
∗ (ti−1) we get the numerical scheme

V +
∗ (ti−1) = V +

∗ (ti)−∆t
[
rV +
∗ (ti)− a′∗(ti) + µ̃tiV

+
∗ (ti)

]
,

V +
∗ (tn) = V +

∗ (T ) = 0.
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Figure 7.6: V +
∗ using Thiele’s ODE and the same estimates as in Figure 7.3.

Time units in years and monetary units in 1 000 NOK. V +
∗ (0, µ̃0) = 222.0283.

We see in Figure 7.6 that V +
∗ (t, µ̃) is a smooth curve. Moreover, this method

has the added benefits of being easy to implement and quick execution time.

On the other hand, we could also estimate the prospective reserve from Thiele’s
PDE. Indeed, the way forward would be to trace the curve V +

∗ (t, µ̃t) along the
surface. However, this method has some notable problems. The first obstacle is
the fact that the surface generated is only a finite approximation along a grid
of points. For each partition point in time, it would be extremely unlikely that
µ̃ti would hit one of the fixed partition points in mortality. The natural way of
assigning meaningful values to the prospective reserve in these cases, would be
to extrapolate by means of convex combinations. Mathematically, we calculate
the following weighted average

V +
∗ (ti, µ̃ti) ≈ wV +

∗ (ti, xi+1) + (1− w)V +
∗ (ti, xi), ∀ti ∈ [0, T ],

where

w = µ̃ti − xi
xi+1 − xi

, µ̃ti ∈ [xi, xi+1].

The second problem lies with truncation. In general µ : [0, T ]→ [0,∞], but in
order to numerically compute a finite approximate to the solution of Thiele’s
PDE, we have to consider a bounded set for the codomain of mortality. In our
case, we made the arbitrary choice of indexing the non-negative real numbers
by the interval [0, 1]. We know that such a bijection is possible, for instance by
a stereographic projection, since both sets have the same cardinality which is
uncountably infinite.
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7.4. Applications to insurance contracts

Figure 7.7: Stereographic projection of the interval [0, 1] onto the non-negative
real number line.

We note that the enumeration we have chosen has an inescapable downside of
being highly sensitive as we approach one from bellow. We will however argue
that this is not a problem as the high mortality rates will yield prospective
reserves close to zero in the case of our pension example. On the other hand,
we see from Figure 7.5 that the mortality rate µ̃t takes values approximately in
the interval [0, 0.25] which have indexes near zero when the sensitivity is low.
In fact, we will for simplicity work under the assumption that the sensitivity
is so low close to zero that the inverse map of the stereographic projection is
negligible.

Figure 7.8: V +
∗ (t, µ̃t) traced on the surface we got in Figure 7.4. Time units in

years and monetary units in 1 000 NOK. V +
∗ (0, µ̃0) = 585.4846.
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7.4. Applications to insurance contracts

The results that we got clearly do not align with Figure 7.6. The most likely
reason for this discrepancy is that the partition on the mortality axis is not
refined enough. Indeed the mortality rates used in the estimation of parameters
were of the scale of 10−6 while the partition we chose was of scale 10−2.
Unfortunately, the computational power and time it would take to run a
program with such a refined partition is extremely high regardless of the
numerical method we use to solve the PDE. Thus, for real life applications with
deterministic mortality we conclude that Thiele’s ODE should be preferred over
Thiele’s PDE.

Example 7.4.3 (Monte Carlo simulations of pension insurance) We will explore
the possibility of simulating random mortality paths following a log Ornstein-
Uhlenbeck process. To do so, we introduce a new probability space (Ω′,A′, P ′)
where µt(ω′) lives. This is necessary in order for us to treat the map ω′ 7→ µ(ω′)
deterministic for each fixed ω′ ∈ Ω′. The main idea being that we can then for
each µt(ω′) compute V +

∗ (t, µt(ω′)) by means of Thiele’s ODE.

Figure 7.9: Using the same parameters as in Figure 7.3, we have simulated
m = 10 paths of µt(ω′) with the associated prospective reserves V +

∗ (t, µt(ω′)).

The small number of simulations were purely chosen for visibility purposes. For
a larger simulation, we can expect more reliable data which we can use to assess
risk in the pension contract.

Figure 7.10: Using the same parameters as in Figure 7.3, we have simulated
m = 100 paths of µt(ω′) with the associated prospective reserves V +

∗ (t, µt(ω′)).
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7.4. Applications to insurance contracts

It is easy to spot the trend of increasing uncertainty in the mortality rate as
time passes.

On the other hand, the uncertainty in the prospective reserve exhibits two
distinct behaviours. On the interval [0, T0] we see an increasing trend of
uncertainty due to the increasing risk of longevity which peaks at t = T0. After
making the first payment, the uncertainty diminishes quickly on the interval
(T0, T ]. The reason being that we are approaching the maturity date of the
contract where we know with 100% certainty that the prospective reserve is
zero.

Finally, we plot the mean prospective reserve E[V +
∗ (t, µt)].

Figure 7.11: E[V +
∗ (t, µt)] using Thiele’s ODE and the same estimates as

in Figure 7.3. Time units in years and monetary units in 1 000 NOK.
E[V +

∗ (0, µ0)] = 221.409.

Using the simulations we can approximate the 99% reserve of the policy by
taking the empirical 99% percentile of the distribution V +

∗ (0, µ0). In our
simulation, the 99% solvency capital turned out to be 278.3506 thousand NOK.
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CHAPTER 8

Conclusions and further work

To conclude, we have provided a general framework for the computation of
prospective reserves under deterministic and stochastic mortality. The fractional
mortality model did not bear fruit in our research as Norwegian mortality did
not seem to exhibit the self-similarity property, which is crucial for fractional
noise models. In addition, the estimation of the Hurst parameter turned out to
be a non trivial matter in the case of a fractional Ornstein-Uhlenbeck process
where we must distinguish the underlying Hurst parameter from the perceived
Hurst parameter.

On the other hand, we had great success deriving the theoretical result on
Thiele’s PDE with a general Markovian stochastic mortality. Two algorithms
were constructed for solving Thiele’s PDE and we implemented the explicit
method in the case of a pension insurance with a geometric Ornstein-Uhlenbeck
process. Since the implicit method proved to be too computational expensive
and time consuming, we excluded its implementation.

Lastly, we ran Monte Carlo simulations in order to grasp the risk involved with
reserving. The results we obtained are highly useful as the insurance company
is obliged to maintain enough liquidity in order to meet its future liabilities
under the Solvency II directive.

A natural extension of this theory would be to include financial risk. For
instance, we could have considered unit-linked insurance policies where the
payouts depend on the performance of a fund or some other financial derivative.
Computing analytical prospective reserves, or at least simulating them, could
be a model of high utility for the insurance sector.

Moreover, we have worked under the assumption that the company’s return
on investment is risk free and constant under the whole contract period. The
assumption on risk-free interest rate is not unrealistic as the company can
invest in the money market with risk-free interest rate or buy treasury bonds.
However, the interest rate tends to be dynamic over larger time periods and
stochastic models such as the Vasicek model could be incorporated to fit our
setting.

A final though would be to expand the stochastic mortality from the class of
Itô processes to the more general class of Lévy processes. The main benefit of
this generalization would be that it allows us to consider jumps in the mortality
rate which seems reasonable after a global pandemic.
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APPENDIX A

Appendix

Code used in Example 3.2.4
1 # Import package
2 l ibrary (MASS)
3
4 # I n i t i a t e parameters
5 T = 1 # Final time
6 n = 1200 # Amount o f time s t e p s
7 lambda = 0 # Mean r e v e r s i o n ra te
8 sigma = 1 # V o l a t i l i t y parameter
9 H = 0.5 # Hurst parameter

10
11 # I n i t i a t e v e c t o r s
12 time_vec = rep (0 , n+1)
13 fOU_vec = rep (0 , n+1)
14
15 # F i l l time v e c t o r
16 for ( i in 1 : ( n+1) ) {
17 time_vec [ i ] = ( i −1)∗T/n
18 }
19
20 # I n i t i a t e covar iance func t ion
21 R_H = function ( s , t ) {
22 return (1/2∗ ( abs ( t ) ^(2∗H)+abs ( s ) ^(2∗H)−abs ( t−s ) ^(2∗H) ) )
23 }
24
25 # I n i t i a t e covar iance matrix
26 C = matrix ( data = 0 ,nrow = n+1, ncol = n+1)
27
28 # F i l l covar iance matrix
29 for ( i in 1 : ( n+1) ) {
30 for ( j in 1 : ( n+1) ) {
31 C[ i , j ] = R_H( time_vec [ i ] , time_vec [ j ] )
32 }
33 }
34
35 # Draw r e a l i s a t i o n s o f fBm
36 set . seed (100) # Fix omega to generate same path
37 fBm_vec = mvrnorm(n = 1 , mu = rep (0 , n+1) , Sigma = C) # Remember to

import MASS package
38
39
40 # Simulate paths o f fOU−process us ing the Euler−Maruyama method
41 for ( i in 1 : n ) {
42 fOU_vec [ i +1] = fOU_vec [ i ]− lambda∗fOU_vec [ i ] ∗1/n+sigma∗ (fBm_vec [

i +1]−fBm_vec [ i ] )
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43 }
44
45 # Plot a path o f the fOU−process f o r a g iven H
46 plot ( time_vec , fOU_vec , type = " l " , x lab = " Time " , ylab = " Value " ,

col = " blue " , main = paste ( "H = " , t o S t r i n g (H) ) )
47 abline (h = 0)

Code used in Example 4.2.10
1 # Import MASS package
2 l ibrary (MASS)
3 l ibrary ( f i t d i s t r p l u s )
4
5 # I n i t i a t e parameters
6 T = 10 # Final time
7 n = 1000 # Amount o f time s t e p s
8 lambda = 0 .4 # Mean r e v e r s i o n ra te
9 sigma = 0.01 # V o l a t i l i t y parameter

10 H = 0.6 # Hurst parameter
11 m = 1000 # Simulat ions
12 fOU_start = 0 # I n i t i a l cond i t i on
13
14 # I n i t i a t e v e c t o r s
15 time_vec = rep (0 , n+1)
16 fOU_vec = rep (0 , n+1)
17 fOU_vec [ 1 ] = fOU_start
18
19 H_est imate_vec = rep (0 ,m)
20 sigma_est imate_vec = rep (0 ,m)
21 lambda_est imate_vec = rep (0 ,m)
22
23 # F i l l time v e c t o r
24 for ( i in 1 : ( n+1) ) {
25 time_vec [ i ] = ( i −1)∗T/n
26 }
27
28 # I n i t i a t e covar iance func t ion
29 R_H = function ( s , t ) {
30 return (1/2∗ ( abs ( t ) ^(2∗H)+abs ( s ) ^(2∗H)−abs ( t−s ) ^(2∗H) ) )
31 }
32
33 # I n i t i a t e covar iance matrix
34 C = matrix ( data = 0 ,nrow = n+1, ncol = n+1)
35
36 # F i l l covar iance matrix
37 for ( i in 1 : ( n+1) ) {
38 for ( j in 1 : ( n+1) ) {
39 C[ i , j ] = R_H( time_vec [ i ] , time_vec [ j ] )
40 }
41 }
42
43 # Make m s i m u la t i o n s
44 for ( k in 1 :m) {
45
46 # Draw r e a l i s a t i o n s o f fBm
47 set . seed ( k ) # Fix omega to generate same path
48 fBm_vec = mvrnorm(n = 1 , mu = rep (0 , n+1) , Sigma = C)
49
50
51 # Simulate paths o f fOU−process us ing Euler ’ s method
52 for ( i in 1 : n ) {
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53 fOU_vec [ i +1] = fOU_vec [ i ]− lambda∗fOU_vec [ i ] ∗1/n+sigma∗ (fBm_
vec [ i +1]−fBm_vec [ i ] )

54 }
55
56 # Estimators
57 H_hat = function (X) {
58 X2n = X
59 dX2n = X2n[ −1] − X2n[− length (X2n) ]
60 Xn = X2n[−c ( seq (2 , length (X2n) ,2 ) ) ]
61 dXn = Xn[ −1] − Xn[− length (Xn) ]
62 V2n = sum(dX2n^2)
63 Vn = sum(dXn^2)
64 return (1/2 − 1/(2∗log (2 ) )∗log (V2n/Vn) )
65 }
66
67 sigma_hat = function (X) {
68 V = 0
69
70 for ( i in 1 : n ) {
71 V = V + (X[ i +1]−X[ i ] ) ^2
72 }
73
74 return ( sqrt (n^(2∗H−1)∗V/T) )
75 }
76
77 lambda_hat = function (X) {
78 return ( (sum(X^2) /(n∗sigma ^2∗H∗gamma(2∗H) ) ) ^( −1/(2∗H) ) )
79 }
80
81 # Estimates
82 H_est imate_vec [ k ] = H_hat (fOU_vec )
83 sigma_est imate_vec [ k ] = sigma_hat (fOU_vec )
84 lambda_est imate_vec [ k ] = lambda_hat (fOU_vec )
85 print ( k )
86 }
87
88 # Make p l o t s
89 d e s c d i s t (H_est imate_vec , d i s c r e t e = FALSE)
90 plot ( f i t d i s t (H_est imate_vec , " norm " ) )
91
92 d e s c d i s t ( sigma_est imate_vec , d i s c r e t e = FALSE)
93 plot ( f i t d i s t ( sigma_est imate_vec , " norm " , lower = c ( 0 , 0 ) ) )
94
95 d e s c d i s t ( lambda_est imate_vec , d i s c r e t e = FALSE)
96 plot ( f i t d i s t ( log ( lambda_est imate_vec ) , " norm " ) )

Code used in Remark 5.1.2
1 # Import packages
2 l ibrary ( r eadx l )
3 l ibrary ( pracma )
4 l ibrary (MASS)
5
6 # Norwegian m o r t a l i t y data
7 d o d l i g h e t s d a t a_menn_og_kvinner = read_e x c e l ( " d o d l i g h e t s d a t a_menn_

og_kvinner . x l s x " ,
8 col_types = c ( " t ex t " , " t ex t " , " numeric " , " sk ip " , " numeric " ) )
9

10 # We assume t h a t m o r t a l i t y i s s t r i c t l y p o s i t i v e to avoid −I n f
problems
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11 zero_elements = which( d o d l i g h e t s d a t a_menn_og_kvinner $ M o r t a l i t e t %
in% 0)

12
13 # Extrapo la t e data
14 for ( i in zero_elements ) {
15 blokk = cei l ing ( i /55)
16 d o d l i g h e t s d a t a_menn_og_kvinner $ M o r t a l i t e t [ i ] = mean(

d o d l i g h e t s d a t a_menn_og_kvinner $ M o r t a l i t e t [ ( 5 5 ∗ ( blokk −1)+1) : ( 5 5
∗blokk ) ] )

17 }
18
19 # Prepare data c o l l e c t i o n
20 time_vec = 0:54 # Year 1966−2020
21 age_vec = 0:106
22 n = length ( time_vec )
23 m = length ( age_vec )
24
25 alpha_est imate_matrix = matrix (0 , ncol = 2 , nrow = m)
26 sigma_est imate_matrix = matrix (0 , ncol = 2 , nrow = m)
27 lambda_est imate_matrix = matrix (0 , ncol = 2 , nrow = m)
28 mu_0_est imate_matrix = matrix (0 , ncol = 2 , nrow = m)
29
30 # Estimators
31 H_hat = function (fOU_vec ) {
32 return ( 0 . 5 ) # Fixed va lue
33 }
34
35 sigma_hat = function (fOU_vec ) {
36 V = 0
37
38 for ( i in 1 : ( n−1) ) {
39 V = V + (fOU_vec [ i +1]−fOU_vec [ i ] ) ^2
40 }
41
42 return ( sqrt (n^(2∗H_hat (fOU_vec ) −1)∗V/n) )
43 }
44
45 lambda_hat = function (fOU_vec ) {
46 return ( (sum(fOU_vec ^2) /(n∗sigma_hat (fOU_vec ) ^2∗H_hat (fOU_vec )∗

gamma(2∗H_hat (fOU_vec ) ) ) ) ^( −1/(2∗H_hat (fOU_vec ) ) ) )
47 }
48
49 alpha_hat = function ( mor ta l i ty_vec ) {
50 sum_1 = sum( ( log ( mor ta l i ty_vec )−log ( mor ta l i ty_vec [ 1 ] ) )∗time_vec )
51 sum_2 = sum( time_vec ^2)
52 return (sum_1/sum_2)
53 }
54
55 # Estimate a lpha
56 for ( i in 1 : ( 2 ∗m) ) {
57 dod_vec = d o d l i g h e t s d a t a_menn_og_kvinner $ M o r t a l i t e t [ ( 5 5 ∗ ( i −1)+1)

: ( 5 5 ∗ i ) ] # Group data by year
58
59 i f ( i <= m) {
60 alpha_est imate_matrix [ i , 1 ] = alpha_hat ( dod_vec ) # Men
61 fOU_data_vec = log ( dod_vec /dod_vec [ 1 ] )−alpha_est imate_matrix [ i

, 1 ] ∗time_vec # Transform data
62 sigma_est imate_matrix [ i , 1 ] = sigma_hat (fOU_data_vec )
63 lambda_est imate_matrix [ i , 1 ] = lambda_hat (fOU_data_vec )
64 mu_0_est imate_matrix [ i , 1 ] = dod_vec [ 1 ]
65 }
66
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67 i f ( i > m) {
68 alpha_est imate_matrix [ i−m, 2 ] = alpha_hat ( dod_vec ) # Women
69 fOU_data_vec = log ( dod_vec /dod_vec [ 1 ] )−alpha_est imate_matrix [ i

−m, 2 ] ∗time_vec # Transform data
70 sigma_est imate_matrix [ i−m, 2 ] = sigma_hat (fOU_data_vec )
71 lambda_est imate_matrix [ i−m, 2 ] = lambda_hat (fOU_data_vec )
72 mu_0_est imate_matrix [ i−m, 2 ] = dod_vec [ 1 ]
73 }
74 }
75
76 # Plot parameters a g a i n s t age f o r men and women t o g e t h e r
77 plot ( age_vec , alpha_est imate_matrix [ , 1 ] , type = " l " , col = " blue " ,

yl im = c ( −0 .06 ,0 .15) , x lab = " Age " , ylab = expression ( hat (
alpha ) [ 0 ] ) )

78 l ines ( age_vec , alpha_est imate_matrix [ , 2 ] , type = " l " , col = " red " )
79 abline (h = 0)
80
81 plot ( age_vec , sigma_est imate_matrix [ , 1 ] , type = " l " , col = " blue " ,

yl im = c ( 0 , 2 . 5 ) , x lab = " Age " , y lab = expression ( hat ( sigma ) )
)

82 l ines ( age_vec , sigma_est imate_matrix [ , 2 ] , type = " l " , col = " red " )
83 abline (h = 0)
84
85 plot ( age_vec , lambda_est imate_matrix [ , 1 ] , type = " l " , col = " blue "

, yl im = c (0 , 2 . 5 ) , x lab = " Age " , ylab = expression ( hat (
lambda ) ) )

86 l ines ( age_vec , lambda_est imate_matrix [ , 2 ] , type = " l " , col = " red "
)

87 abline (h = 0)
88
89
90
91 # Simulat ions
92 age_index = 15 # 0 ,15 ,30 ,50 ,70 ,90
93 m = 10000 # Number o f s i m u l a t i on s
94 n = 55 # Number o f years
95 gender = 0 # {male , female } = {0 ,1}
96
97 # Prepare data c o l l e c t i o n
98 fOU_s imu la t i on = rep (0 , n )
99 fOU_matrix = matrix (0 , nrow = n , ncol = m)

100 mean_morta l i ty_vec = rep (0 , n )
101
102 # I n i t i a t e covar iance func t ion
103 R_H = function ( s , t ) {
104 return (1/2∗ ( abs ( t ) ^(2∗H_hat (1 ) )+abs ( s ) ^(2∗H_hat (1 ) )−abs ( t−s ) ^(2∗

H_hat (1 ) ) ) )
105 }
106
107 # I n i t i a t e covar iance matrix
108 C = matrix ( data = 0 ,nrow = n , ncol = n)
109
110 # F i l l covar iance matrix
111 for ( i in 1 : n ) {
112 for ( j in 1 : n ) {
113 C[ i , j ] = R_H( time_vec [ i ] , time_vec [ j ] )
114 }
115 }
116
117 # I n i t i a t e s i m u la t i o n s
118 for ( k in 1 :m) {
119
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120 # Draw r e a l i s a t i o n s o f fBm
121 set . seed ( k ) # Fix omega to generate same path
122 fBm_vec = mvrnorm(n = 1 , mu = rep (0 , n ) , Sigma = C) # Requires

the MASS package
123
124
125 # Simulate paths o f fOU−process us ing Euler ’ s method
126 # Adjust f o r age and gender in es t imate_vec
127 for ( i in 1 : ( n−1) ) {
128 fOU_s imu la t i on [ i +1] = fOU_s imu la t i on [ i ]− lambda_est imate_

matrix [ age_index+1, gender +1]∗fOU_s imu la t i on [ i ] ∗1/n+sigma_
est imate_matrix [ age_index+1, gender +1]∗ (fBm_vec [ i +1]−fBm_vec [ i
] )

129 }
130
131 fOU_matrix [ , k ] = fOU_s imu la t i on
132 }
133
134 row_so r t e d_fOU_matrix = t ( apply (fOU_matrix , 1 , sort ) )
135
136 # Extract 95% conf idence i n t e r v a l
137 lower_p e r c e n t i l e = row_so r t e d_fOU_matrix [ , 2 . 5 / 1 0 0 ∗m]
138 upper_p e r c e n t i l e = row_so r t e d_fOU_matrix [ , 9 7 . 5 / 1 0 0 ∗m]
139
140 # Make p l o t s
141 for ( t in 1 : n) {
142 mean_morta l i ty_vec [ t ] = mu_0_est imate_matrix [ age_index+1, gender

+1]∗exp( alpha_est imate_matrix [ age_index+1, gender +1]∗ ( t −1)+
rowMeans (fOU_matrix ) [ t ] )

143 lower_p e r c e n t i l e [ t ] = mu_0_est imate_matrix [ age_index+1, gender +1]
∗exp( alpha_est imate_matrix [ age_index+1, gender +1]∗ ( t −1)+lower_
p e r c e n t i l e [ t ] )

144 upper_p e r c e n t i l e [ t ] = mu_0_est imate_matrix [ age_index+1, gender +1]
∗exp( alpha_est imate_matrix [ age_index+1, gender +1]∗ ( t −1)+upper_
p e r c e n t i l e [ t ] )

145 }
146
147 plot ( 0 : ( n−1) , mean_morta l i ty_vec , type = " l " , x lab = " Time " , ylab

= " Morta l i ty " , yl im = c (0 ,max(upper_p e r c e n t i l e ) ) , col = " red " ,
main = paste ( " Age " , t o S t r i n g ( age_index ) ) ) # Simulated mean

m o r t a l i t y
148 l ines ( 0 : ( n−1) , d o d l i g h e t s d a t a_menn_og_kvinner $ M o r t a l i t e t [ ( 5 5 ∗age_

index+1+5885∗gender ) : ( 5 5 ∗age_index+55+5885∗gender ) ] , type = " l
" , col = " blue " ) # H i s t o r i c a l m o r t a l i t y

149 l ines ( 0 : ( n−1) , lower_p e r c e n t i l e , type = " l " , col = " black " ) # 2.5
% p e r c e n t i l e

150 l ines ( 0 : ( n−1) , upper_p e r c e n t i l e , type = " l " , col = " black " ) # 97.5
% p e r c e n t i l e

Code used in Example 6.1.13
1 # Import package
2 l ibrary ( mosaic )
3
4 # Norwegian m o r t a l i t y year 2020
5 # I n i t i a t e data
6 age_vec = 0:106
7
8 # Sum m o r t a l i t y o f men and women
9 # Morta l i t y data SSB 2020

10 dead_vec =
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11 c ( 1 7 0 , 1 6 , 1 4 , 3 , 5 , 3 , 8 , 1 1 , 2 , 3 , 6 , 6 , 8 , 1 7 , 1 2 , 1 7 , 2 5 , 3 7 , 3 8 , 2 6 , 3 9 , 4 0 ,
12 25 ,35 ,30 ,52 ,55 ,36 ,38 ,49 ,36 ,48 ,47 ,52 ,54 ,51 ,58 ,58 ,81 ,64 ,71 ,
13 100 ,95 ,102 ,77 ,92 ,122 ,141 ,160 ,175 ,163 ,171 ,215 ,213 ,244 ,267 ,
14 327 ,335 ,335 ,384 ,450 ,450 ,536 ,606 ,615 ,681 ,814 ,903 ,930 ,1020 ,
15 1122 ,1259 ,1398 ,1530 ,1687 ,1780 ,1870 ,2105 ,2315 ,2466 ,2871 ,
16 2849 ,3349 ,3524 ,3872 ,4157 ,3933 ,4270 ,4503 ,4737 ,4493 ,4206 ,
17 4120 ,3759 ,3402 ,2866 ,2401 ,2072 ,1519 ,1114 ,859 ,476 ,344 ,
18 234 ,135 ,82 ,152)
19
20 a l i v e_vec =
21 c (100000 ,99830 ,99813 ,99799 ,99796 ,99791 ,99788 ,99780 ,99768 ,99767 ,
22 99764 ,99758 ,99752 ,99744 ,99727 ,99715 ,99697 ,99672 ,
23 99636 ,99598 ,99572 ,99533 ,99492 ,99467 ,99433 ,99403 ,99351 ,
24 99296 ,99259 ,99221 ,99172 ,99137 ,99089 ,99042 ,98990 ,
25 98936 ,98885 ,98827 ,98769 ,98688 ,98624 ,98553 ,98453 ,98358 ,
26 98256 ,98179 ,98087 ,97965 ,97825 ,97665 ,97490 ,97327 ,97157 ,
27 96941 ,96728 ,96484 ,96218 ,95891 ,95556 ,95221 ,94837 ,94387 ,
28 93937 ,93401 ,92795 ,92180 ,91500 ,90686 ,89783 ,88853 ,87833 ,
29 86711 ,85452 ,84054 ,82524 ,80837 ,79057 ,77188 ,75082 ,72767 ,
30 70301 ,67430 ,64581 ,61232 ,57708 ,53836 ,49679 ,45745 ,41475 ,
31 36972 ,32235 ,27743 ,23537 ,19417 ,15658 ,12256 ,9390 ,6989 ,
32 4917 ,3398 ,2284 ,1424 ,948 ,604 ,370 ,235 ,152)
33
34 morta l i ty_vec = dead_vec / a l i v e_vec
35
36 # Examine p l o t
37 plot ( age_vec , mor ta l i ty_vec , xlab = " Age " , y lab = " Morta l i ty r a t e "

, t i t l e ( " Norway 2020 " ) )
38 grid ( l t y = 1)
39
40 # Create dataframe
41 morta l i ty_df = data . frame ( age_vec , mor ta l i ty_vec )
42
43 # Use mosaic package to f i t the curve to our data
44 f = f i tMode l ( mor ta l i ty_vec ~ a+b∗exp( c∗age_vec ) , data = morta l i ty_

df , start=l i s t ( a =0.00127529 , b=2.51137∗10^−6,c =0.1271853) )
45
46 print ( coef ( f ) )
47
48 # Estimated curve
49 mu = function ( t ) {
50 return ( coef ( f ) [1 ]+ coef ( f ) [ 2 ] ∗exp( coef ( f ) [ 3 ] ∗t ) )
51 }
52
53 # Plot curve with d a t a po i n t s
54 curve (mu, from = min( age_vec ) , to = max( age_vec ) , col = " red " , add

= TRUE)
55
56
57 # Estimated s u r v i v a l p r o b a b i l i t y
58 s u r v i v a l_p r o b a b i l i t y = function ( t , s ) {
59 return (exp(−coef ( f ) [ 1 ] ∗ ( s−t )−coef ( f ) [ 2 ] / coef ( f ) [ 3 ] ∗ (exp( coef ( f )

[ 3 ] ∗s )−exp( coef ( f ) [ 3 ] ∗t ) ) ) )
60 }
61
62 # Insurance data
63 E = 100000 # Endowment b e n e f i t
64 B = 200000 # Death b e n e f i t
65 T = 40 # Maturity date
66 x = 30 # Insured ’ s age
67 r = 0 .02 # I n t e r e s t ra t e
68
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69 # Discount f a c t o r
70 v = function ( t ) {
71 return (exp(−r∗t ) )
72 }
73
74 # Integrands
75 in tegrand_b e n e f i t = function ( t , s ) {
76 return ( v ( s )∗ s u r v i v a l_p r o b a b i l i t y ( t+x , s+x )∗mu( s+x ) )
77 }
78
79 in tegrand_premium = function ( t , s ) {
80 return ( v ( s )∗ s u r v i v a l_p r o b a b i l i t y ( t+x , s+x ) )
81 }
82
83 # Numeric i n t e g r a t i o n
84 simpsons_r u l e = function ( f , t , a , b ) {
85 i f ( i s . function ( f ) == FALSE) {
86 stop ( ’ f must be a f u n c t i o n with one parameter ( v a r i a b l e ) ’ )
87 }
88
89 n = 120000 # Higher n g i v e s b e t t e r accuracy
90 h = (b − a ) / n
91
92 xj = seq . i n t ( a , b , length . out = n + 1)
93 xj = xj [ −1]
94 xj = xj [− length ( x j ) ]
95 approx = (h / 3) ∗ ( f ( t , a ) + 2 ∗ sum( f ( t , x j [ seq . i n t (2 , length ( x j

) , 2) ] ) ) + 4 ∗ sum( f ( t , x j [ seq . i n t (1 , length ( x j ) , 2) ] ) ) + f ( t , b
) )

96
97 return (approx )
98 }
99

100 # Cal cu la t e y e a r l y premium
101 y e a r l y_premium = (E∗v (T)∗ s u r v i v a l_p r o b a b i l i t y (x ,T+x )+B∗simpsons_

r u l e ( integrand_b e n e f i t , 0 , 0 ,T) ) /( simpsons_r u l e ( integrand_
premium , 0 , 0 ,T) )

102
103 # Make p l o t
104 PV_b e n e f i t = rep (0 ,T+1)
105 PV_premium = rep (0 ,T+1)
106 mean_r e s e r v e = rep (0 ,T+1)
107
108 for ( i in 0 :T) {
109 PV_b e n e f i t [ i +1] = 1/v ( i )∗ (B∗simpsons_r u l e ( integrand_b e n e f i t , i , i ,

T)+E∗v (T)∗ s u r v i v a l_p r o b a b i l i t y ( i+x ,T+x ) )
110 PV_premium [ i +1] = −y e a r l y_premium/v ( i )∗simpsons_r u l e ( integrand_

premium , i , i ,T)
111 }
112
113 mean_r e s e r v e = PV_b e n e f i t + PV_premium
114
115 plot ( 0 :T,PV_b e n e f i t , x lab = " Contract time " , ylab = " Present va lue

in NOK" , col = " blue " , yl im = c (min(PV_premium ) ,E) )
116 l ines ( 0 :T, PV_premium , type = " p " , col = " red " )
117 l ines ( 0 :T, mean_rese rve , type = "p " , col = " black " )
118 grid ( l t y = 1)

Code used in Example 7.4.1
1 # Import package
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2 l ibrary ( r eadx l )
3
4 # Read m o r t a l i t y data o f a 30 year o ld male in 2019
5 dod_30 = read_e x c e l ( " Jobb/STK/dod_30. x l s x " ,
6 col_types = c ( " numeric " ) )
7
8 # I n i t i a t e parameters
9 n = length ( dod_30$data )

10 time_vec = 0 : ( n−1)
11
12 # Define es t imator s
13 H_hat = function (Z_vec ) {
14 return (1/2)
15 }
16
17 alpha_hat = function ( mor ta l i ty_vec ) {
18 sum_1 = sum( ( log ( mor ta l i ty_vec )−log ( mor ta l i ty_vec [ 1 ] ) )∗time_vec )
19 sum_2 = sum( time_vec ^2)
20 return (sum_1/sum_2)
21 }
22
23 sigma_hat = function (Z_vec ) {
24 V = 0
25
26 for ( i in 1 : ( n−1) ) {
27 V = V + (Z_vec [ i +1]−Z_vec [ i ] ) ^2
28 }
29
30 return ( sqrt (n^(2∗H_hat (Z_vec ) −1)∗V/n) )
31 }
32
33 lambda_hat = function (Z_vec ) {
34 return ( (sum(Z_vec ^2) /(n∗sigma_hat (Z_vec ) ^2∗H_hat (Z_vec )∗gamma(2∗

H_hat (Z_vec ) ) ) ) ^( −1/(2∗H_hat (Z_vec ) ) ) )
35 }
36
37 # Transform data
38 alpha = alpha_hat ( dod_30$data )
39
40 OU_vec = rep (0 , n )
41
42 for ( i in 1 : n ) {
43 OU_vec [ i ] = log ( dod_30$data [ i ] / dod_30$data [ 1 ] )−alpha∗time_vec [ i ]
44 }
45
46 # I n i t i a t e parameter es t imat ion
47 mu_0 = dod_30$data [ 1 ]
48 sigma = sigma_hat (OU_vec )
49 lambda = lambda_hat (OU_vec )

Code used in Example 7.4.1 and Example 7.4.2
1 # So lv ing Thie le ’ s PDE f o r p r o s p e c t i v e r e s e r v e s
2
3 # Define geometr ic OU parameters
4 alpha = 0.0692813492
5 lambda = 1.112907144∗10^( −5)
6 s i g = 0.0303133478
7 mu_0 = 0.001837 # Insured ’ s m o r t a l i t y at age 30 at con t rac t s t a r t
8
9 # Define con t rac t in format ion f o r pension
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10 P = 100 # Pension
11 T_0 = 40 # Retirement date
12 T = 70 # Maturity date
13 r = 0 .03 # Constant i n t e r e s t ra t e
14
15 # For s t a b i l i t y we need t h a t dt /dx^2 <= 0.5
16 # I n i t i a t e space and time v e c t o r s
17 dt = 0.00005
18 time_vec = seq (0 ,T, dt )
19
20 dx = 0.01
21 space_vec = seq (0 , 1 , dx )
22
23 # Define p o l i c y func t i on
24 a_prime = function ( t ) {
25 i f ( time_vec [ t ] >= 0 & time_vec [ t ] < T_0){
26 return (0 )
27 }
28 i f ( time_vec [ t ] >= T_0 & time_vec [ t ] < T) {
29 return (P)
30 }
31 i f ( time_vec [ t ] >= T) {
32 return (0 )
33 }
34 }
35
36 # Define d r i f t and v o l a t i l i t y
37 b = function ( t , x ) {
38 return ( space_vec [ x ] ∗ ( alpha + 0 .5 ∗ s i g ^2 + lambda∗log (mu_0) +

alpha∗lambda∗time_vec [ t ] − lambda∗log ( space_vec [ x ] ) ) )
39 }
40
41 sigma = function ( t , x ) {
42 return ( s i g ∗ space_vec [ x ] )
43 }
44
45 # Reserve matrix
46 V = matrix (NA, nrow = length ( time_vec ) , ncol = length ( space_vec ) )
47
48 # Impose lower boundary cond i t i on
49 lower_boundary = function ( t ) {
50 i f ( time_vec [ t ] >= 0 & time_vec [ t ] < T_0){
51 return(−P/( r∗exp(−r∗time_vec [ t ] ) )∗ (exp(−r∗T)−exp(−r∗T_0) ) )
52 }
53
54 i f ( time_vec [ t ] >= T_0 & time_vec [ t ] <= T) {
55 return(−P/( r∗exp(−r∗time_vec [ t ] ) )∗ (exp(−r∗T)−exp(−r∗time_vec [ t

] ) ) )
56 }
57 }
58
59 # F i l l in lower boundary cond i t i on
60 for ( i in 1 : length ( time_vec ) ) {
61 V[ i , 1 ] = lower_boundary ( i )
62 }
63
64 # F i l l in upper boundary cond i t i on
65 for ( i in 1 : length ( time_vec ) ) {
66 V[ i , length ( space_vec ) ] = 0
67 }
68
69 # F i l l in termina l cond i t i on
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70 for ( j in 1 : length ( space_vec ) ) {
71 V[ length ( time_vec ) , j ] = 0
72 }
73
74 # E x p l c i t method
75 m = length ( space_vec )
76 n = length ( time_vec )
77
78 for ( i in (n−1) : 1 ) {
79
80 for ( j in 2 : (m−1) ) {
81 p a r t i a l _1 = (V[ i +1, j +1]− V[ i +1, j ] ) /dx
82 p a r t i a l _2 = (V[ i +1, j +1]− 2∗V[ i +1, j ] + V[ i +1, j −1]) /dx^2
83
84 V[ i , j ] = V[ i +1, j ] − dt∗ ( r∗V[ i +1, j ]+V[ i +1, j ] ∗ space_vec [ j ]−a_

prime ( i +1)−b( i +1, j )∗ p a r t i a l _1−0.5∗sigma ( i +1, j )∗ p a r t i a l _2)
85 }
86 print ( i )
87 }
88
89 # Plot s u r f a c e with c o l o r
90 l ibrary ( f i e l d s )
91
92 par ( bg = " white " )
93 nrz = nrow(V)
94 ncz = ncol (V)
95
96 # Create a func t i on i n t e r p o l a t i n g c o l o r s in the range o f s p e c i f i e d

c o l o r s
97 j e t . colors = colorRampPalette ( c ( " red " , " orange " , " ye l low " , " green

" , " b lue " , " purp le " ) )
98
99 # Generate the d e s i r e d number o f c o l o r s from t h i s p a l e t t e

100 nbcol = 100
101 c o l o r = j e t . colors ( nbcol )
102
103 # Compute the z−va lue at the f a c e t c e n t r e s
104 z f a c e t = (V[ −1 , −1] + V[ −1 , −ncz ] + V[−nrz , −1] + V[−nrz , −ncz ] ) /4
105
106 # Recode f a c e t z−v a l u e s i n t o c o l o r i n d i c e s
107 f a c e t c o l = cut ( z f a c e t , nbcol )
108 persp ( time_vec , space_vec , V, col = c o l o r [ f a c e t c o l ] , phi = 30 ,

theta = −30, axes=T, t i c k t y p e = " d e t a i l e d " , border = NA, xlab
= " Time " , ylab = " Morta l i ty " , z lab = " " )

109 ## add c o l o r bar
110 image . plot ( legend . only = TRUE, z l im=range ( z f a c e t ) , col=co lor ,

legend . args = l i s t ( text = "V" , cex = . 8 , s i d e = 3 , l i n e = . 5 ) )
111
112 # Expected m o r t a l i t y
113 mu = function ( t ) {
114 return (mu_0∗exp( alpha∗t+( s i g ^2− s i g ^2∗exp(−lambda∗t ) ) /(4∗lambda ) )

)
115 }
116
117 mu_vec = rep (0 , length ( time_vec ) )
118
119 for ( i in 1 : ( length ( time_vec ) ) ) {
120 mu_vec [ i ] = mu( time_vec [ i ] )
121 }
122
123 plot ( time_vec ,mu_vec , type = " l " )
124
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125
126 # Projec t expec ted m o r t a l i t y under s u r f a c e and e x t r a p o l a t e V by

convex combinations
127 V_vec = rep (0 , length ( time_vec ) )
128
129
130 for ( i in 1 : length ( time_vec ) ) {
131
132 i f (0 <= mu_vec [ i ] & mu_vec [ i ] < 0 . 0 2 ) {
133 w = (mu_vec [ i ] −0)/dx
134 V_vec [ i ] = w∗V[ i ,2]+(1 −w)∗V[ i , 1 ]
135 }
136
137 i f ( 0 . 0 2 <= mu_vec [ i ] & mu_vec [ i ] < 0 . 0 4 ) {
138 w = (mu_vec [ i ] −0.02) /dx
139 V_vec [ i ] = w∗V[ i ,3]+(1 −w)∗V[ i , 2 ]
140 }
141
142 i f ( 0 . 0 4 <= mu_vec [ i ] & mu_vec [ i ] < 0 . 0 6 ) {
143 w = (mu_vec [ i ] −0.04) /dx
144 V_vec [ i ] = w∗V[ i ,4]+(1 −w)∗V[ i , 3 ]
145 }
146
147 i f ( 0 . 0 6 <= mu_vec [ i ] & mu_vec [ i ] < 0 . 0 8 ) {
148 w = (mu_vec [ i ] −0.06) /dx
149 V_vec [ i ] = w∗V[ i ,5]+(1 −w)∗V[ i , 4 ]
150 }
151
152 i f ( 0 . 0 8 <= mu_vec [ i ] & mu_vec [ i ] < 0 . 1 0 ) {
153 w = (mu_vec [ i ] −0.08) /dx
154 V_vec [ i ] = w∗V[ i ,6]+(1 −w)∗V[ i , 5 ]
155 }
156
157 i f ( 0 . 1 0 <= mu_vec [ i ] & mu_vec [ i ] < 0 . 1 2 ) {
158 w = (mu_vec [ i ] −0.10) /dx
159 V_vec [ i ] = w∗V[ i ,7]+(1 −w)∗V[ i , 6 ]
160 }
161
162 i f ( 0 . 1 2 <= mu_vec [ i ] & mu_vec [ i ] < 0 . 1 4 ) {
163 w = (mu_vec [ i ] −0.12) /dx
164 V_vec [ i ] = w∗V[ i ,8]+(1 −w)∗V[ i , 7 ]
165 }
166
167 i f ( 0 . 1 4 <= mu_vec [ i ] & mu_vec [ i ] < 0 . 1 6 ) {
168 w = (mu_vec [ i ] −0.14) /dx
169 V_vec [ i ] = w∗V[ i ,9]+(1 −w)∗V[ i , 8 ]
170 }
171
172 i f ( 0 . 1 6 <= mu_vec [ i ] & mu_vec [ i ] < 0 . 1 8 ) {
173 w = (mu_vec [ i ] −0.16) /dx
174 V_vec [ i ] = w∗V[ i ,10]+(1 −w)∗V[ i , 9 ]
175 }
176
177 i f ( 0 . 1 8 <= mu_vec [ i ] & mu_vec [ i ] < 0 . 2 0 ) {
178 w = (mu_vec [ i ] −0.18) /dx
179 V_vec [ i ] = w∗V[ i ,11]+(1 −w)∗V[ i , 1 0 ]
180 }
181
182 i f ( 0 . 2 0 <= mu_vec [ i ] & mu_vec [ i ] < 0 . 2 2 ) {
183 w = (mu_vec [ i ] −0.20) /dx
184 V_vec [ i ] = w∗V[ i ,12]+(1 −w)∗V[ i , 1 1 ]
185 }
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186
187 i f ( 0 . 2 2 <= mu_vec [ i ] & mu_vec [ i ] < 0 . 2 4 ) {
188 w = (mu_vec [ i ] −0.22) /dx
189 V_vec [ i ] = w∗V[ i ,13]+(1 −w)∗V[ i , 1 2 ]
190 }
191
192 }
193
194 plot ( time_vec ,V_vec , type = " l " , x lab = " Time " , ylab = " Present

va lue " )

Code used in Example 7.4.3
1 # Monte Carlo s im u l a t i o n s o f p r o s p e c t i v e r e s e r v e
2 # Define parameters
3 alpha = 0.0692813492
4 lambda = 1.112907144∗10^( −5)
5 sigma = 0.0303133478
6
7 P = 100 # Pension payout
8 T_0 = 40 # F i r s t pension payout
9 T = 70 # Maturity date

10 r = 0 .03 # Risk f r e e i n t e r e s t ra t e
11 mu_0 = 0.001837 # Morta l i t y o f 30 year o ld male
12
13 # Define p o l i c y func t i on
14 a_prime = function ( t ) {
15 i f ( t >= 0 & t < T_0){
16 return (0 )
17 }
18 i f ( t >= T_0 & t < T) {
19 return (P)
20 }
21 i f ( t >= T) {
22 return (0 )
23 }
24 }
25
26 # Simulate Ornstein Uhlenbeck process
27 m = 100 # Number o f s i m u l a t i on s
28 dt = 0.0002
29 time_vec = seq (0 ,T, dt )
30 n = length ( time_vec )
31
32 bm_matrix = matrix (0 , ncol = m, nrow = n)
33 ou_matrix = matrix (0 , ncol = m, nrow = n)
34 mu_matrix = matrix (0 , ncol = m, nrow = n)
35 V_matrix = matrix (0 , ncol = m, nrow = n)
36
37 for ( j in 1 :m) {
38 ou_vec = rep (0 , n )
39 mu_vec = rep (0 , n )
40
41 ou_vec [ 1 ] = log (mu_0)
42
43 # Generate Brownian motion s t a r t i n g at 0
44 bm_vec = cumsum( c (0 ,rnorm(n−1, mean = 0 , sd = sqrt ( dt ) ) ) )
45
46 # Generate Orste in Uhlenbeck process s t a r t i n g in l o g (mu_0)
47 for ( i in 1 : ( n−1) ) {
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48 ou_vec [ i +1] = ou_vec [ i ] − lambda∗ou_vec [ i ] ∗dt + sigma∗ (bm_vec [
i +1]−bm_vec [ i ] )

49 }
50
51 # Generate l o g Ornstein Uhlenbeck process s t a r t i n g at mu_0
52 for ( i in 1 : n ) {
53 mu_vec [ i ] = exp( alpha∗time_vec [ i ]+ou_vec [ i ] )
54 }
55
56 # Solve Th ie l e s ODE f o r each r e a l i s a t i o n
57 V = rep (0 , n )
58
59 for ( i in (n−1) : 1 ) {
60 V[ i ] = V[ i +1] − dt∗ ( r∗V[ i +1]−a_prime ( time_vec [ i +1])+mu_vec [ i

+1]∗V[ i +1])
61 }
62
63 # Store data
64 bm_matrix [ , j ] = bm_vec
65 ou_matrix [ , j ] = ou_vec
66 mu_matrix [ , j ] = mu_vec
67 V_matrix [ , j ] = V
68 }
69
70 # Find mean r e s e r v e
71 expected_V = rowMeans (V_matrix )
72
73 # Make p l o t o f a l l paths and mean r e s e r v e
74 c o l s = rainbow (m)
75
76 matplot ( time_vec , bm_matrix , type = " l " , col = co l s , l t y = 1 , xlab

= " Time " , ylab = " Brownian motion " )
77 matplot ( time_vec , ou_matrix , type = " l " , col = co l s , l t y = 1 , xlab

= " Time " , ylab = " Ornste in Uhlenbeck " )
78 matplot ( time_vec , mu_matrix , type = " l " , col = co l s , l t y = 1 , xlab

= " Time " , ylab = " Morta l i ty " )
79 matplot ( time_vec , V_matrix , type = " l " , col = co l s , l t y = 1 , xlab

= " Time " , ylab = " Present va lue " )
80
81 plot ( time_vec , expected_V, type = " l " , col = " black " , x lab = " Time

" , ylab = " Present va lue " )
82
83 # Cal cu la t e expec ted premium and 99 % r e s e r v e
84 expected_premium = expected_V[ 1 ] # 221.409
85 r e s e r v e _99 = sort (V_matrix [ 1 , ] ) [ 9 9 ] # 278.3506
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