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Abstract

Replacing the index parameter of a Lévy process (called a base process) with an
increasing positive stochastic process (called a time process) gives rise to new
stochastic processes. Such processes are called time changed Lévy processes.
We examine the properties of such processes with a special focus on the Markov
property. A variety of time processes are under study. A time changed Lévy
process of particular interest in this thesis, is the sort where the time process is a
Lévy process (the concept of subordination). A proof is presented showing that
the resulting process is a Lévy process, and therefore it possesses the Markov
property. We are interested in filtrations with respect to which the time changed
Lévy process is measurable and with respect to which the Markov property can
be expressed. We arrive at a filtration which can be expressed in terms of the
natural filtration of the time process and the base process, respectively, and
with respect to which the time changed Lévy process is adapted. With this
filtration we obtain a result, that is relevant in the investigation of the Markov
properties of time changed Lévy processes.
Concurrently, we investigate whether solutions of stochastic differential
equations driven by time changed Brownian motion possess the Markov property.
Cases of interest in the sequel are Brownian motion time changed with a
subordinator, and cases where the time process is continuous.
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CHAPTER 1

Introduction

Let (Lt)t≥0 be a Lévy process and (Tθ)θ≥0 an increasing positive stochastic
process. We study the properties of the time changed process (Yθ)θ≥0, defined
by Yθ := LT (θ). Our main focus is to show in which cases, processes of this
type possess the Markov property, that is, the property

E[f(Yθ2)|Fθ1 ] = E[f(Yθ2)|Yθ1 ],

for 0 ≤ θ1 ≤ θ2 and f is a bounded and measurable mapping from Rd to R.
Here (Yθ)θ≥0 is adapted to (Fθ)θ≥0. We show the well established result that a
Lévy process is a Markov process, so the question can be reformulated to: What
properties of the process T preserves the Markov property of the resulting time
changed Lévy process? In the cases where T is deterministic, a Lévy process, or
a process with independent increments, the time changed process is a Markov
process. The case where T is a Lévy process (i.e. a subordinator) is examined
thoroughly.
In order to learn about the filtration generated by the time changed process,
we exploit filtrations expressed in terms of FT and FL with respect to which
the time changed Lévy process is measurable. The Markov property of Y with
respect to such a filtration will immediately secure the Markov property with
respect to the filtration generated by the time changed process.
Solutions to specific types of stochastic differential equations can be shown
to be Markov processes. In the cases where it is possible to integrate with
respect to a time changed Brownian motion, we replace the Brownian motion
by the time changed Brownian motion in the stochastic differential equation.
We investigate if there are solutions of such types of processes and whether the
Markov property can be demonstrated in these instances.
In order to make a theoretical basis for examining the Markovianity for the
time changed Lévy processes, sections on Lévy processes and Markovianity,
respectively, are included.
The main advanced literature that I have followed in the project is [BS15],
[Sat13], [Bal17], and [App09]. Also, I have used [Ped20] (lecture notes from
Aarhus University) extensively for the study of both Lévy processes and the
Markov property. [BS15] has been used as inspiration to motivate the concept
of time change and see some of the possibilities it gives. [Bal17] has been useful
for both the study of stochastic differential equations, and for general results
about filtrations and stochastic processes and the Markov property. [Sat13] has
been the main reference in the study of Lévy processes. Additionally, the proof
for the fact that a subordination process is a Lévy process comes from this
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1.1. Outline of the Thesis

book. [App09] has primarily been used to study the Lévy-Itô decomposition and
integration with respect to Lévy processes. For general results in probability
theory, measure theory and the theory of stochastic processes, I have primarily
consulted [Tho14], [Tho19], and [Ped20]. [Tho19] and [Ped20] are lecture notes
from Aarhus University. The results that I have used from these books are
long-established results from probability theory and can be found in other
material as well. The book [Kal21] has been consulted for results in measure
theory. [Gra76] was used to introduce the concept of random measures, in order
to be able to introduce Poisson processes and Cox processes. The book [Rei93]
was included briefly in this presentation.
A lot of attention has been put into the arguments of the proofs, generally
making them more extensive than the ones found in the referenced literature. A
prime example is the proof of the uniqueness of Lévy-Khintchine representation
Proposition 4.3.7, where several arguments are left out in the original material.
The rule of thumb regarding the level of detail has been to give arguments that
would be useful for a peer reader. There are exceptions for this high degree of
detail. In the sections 2.7, 2.8, 4.5, and 5.5 I rely heavily on results and proofs
from [Bal17], [App09], and [IW89]. These sections are the ones concerning the
theoretical basis for stochastic integration and stochastic differential equations.
The most original material in the thesis is contained in Section 5.4. Here I work
with finding filtrations with respect to which the time changed Lévy processes
are measurable. By combining theory on stopping times, Lévy processes and the
Freezing Lemma we reach an interesting result, that is interesting in the study
of Markovianity of time changed Lévy processes. The idea comes from working
with the measurability of time changed progressively measurable stochastic
processes and from the assumption in [BS15] that the elements of the time
process are stopping times.
In most cases, the results, examples, and definitions (numbered entities) are
inspired by or taken from the literature to which I refer. The reference will either
be written in text above, or at the top of, the numbered entity. It is not always
clear from the proofs to what extend the ideas are my own or whether they
come from the literature in reference (although there is often an explanatory
text before a result that comments on the literature in reference). In order
to clarify this, there is a rating mark before each of the proofs and examples,
either (§), (§§) or (§§§), ranging from low to high contribution. To clarify:
(§): The ideas and arguments comes from the literature in reference.
(§§): I have contributed with substantial arguments or I have made it myself
following the ideas put forward in the referenced literature.
(§§§): I have made the proof or example independently.
Note that this system says nothing about the originality of the result or the
complexity of the proof.

1.1 Outline of the Thesis

The chapters are organized as follows:

Chapter 2 contains preliminary material, which are relevant for the rest of
the thesis. In this chapter, we give assumptions that will be standing
throughout the thesis. Some practical remarks on the notation are given.
The chapter contains a couple of practical definitions regarding stochastic
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1.1. Outline of the Thesis

processes and general probability theory. Moreover, we give proofs of
certain lemmas and theorems, which are important for proofs in subsequent
chapters. For example, we give some measurability results, e.g. that a
right continuous stochastic process is progressively measurable. Moreover,
in this chapter we introduce the concepts of point processes and elements
of stochastic calculus.

Chapter 3 contains material on the Markov property of stochastic processes
that takes values in Rd. We introduce Markov transition functions, i.e.
mappings defined on the space Rd × B(Rd). Markov semigroups will
allow us to define a Markov process uniquely from its finite dimensional
distribution. The chapter also contains a full proof of the Freezing Lemma.
This lemma comes in handy several times in the sequel. In the last part of
the chapter, we present a proof showing that a diffusion process (a class of
solutions to a stochastic differential equation) is in fact a Markov process.

Chapter 4 deals with Lévy processes. This class of stochastic processes contains
many important processes including the Brownian motion and the Poisson
process. We present a proof showing that Lévy processes are time
homogeneous Markov processes. Moreover we establish a correspondence
between Lévy processes and infinitely divisible distributions. In this
context we present the form of the characteristic function of a Lévy
process, which can be represented by a generating triplet (the Lévy-
Khintchine representation). We study the Markovianity of stochastic
processes with independent increments. In the last part we present and
discuss the Lévy-Itô decomposition and use this to define integration with
respect to Lévy processes.

Chapter 5 contains material on time changed stochastic processes, that is,
stochastic processes in continuous time, where we instead of time (t)
insert a new stochastic process. We will aim to define such a process in a
meaningful way. We need to make sure that the elements are definable
and measurable. The Markov property is expressed in terms of conditional
expectation. We only need to be certain that the process is adapted to the
filtration we take the conditional expectation with respect to. We work
with filtrations that can be expressed in terms of the filtrations generated
by the time process and the base process. This examination makes us
able to retrieve a structure that is relevant in the study of Markovianity
of time changed Lévy processes. The chapter also contains a proof of the
well known result that a Lévy process time changed with a subordinator
is a Lévy process, that is, a Markov process.

In the appendices I included important results and definitions, to which I refer
throughout the thesis, but that need no commenting or elaboration. Some of
the results are well-known and can be referenced by name. An example of this
is Fubini’s Theorem. Moreover I have included results, where several hypothesis
need to be checked in order to draw a conclusion. Reporting such results makes
it more transparent for the reader to see we arrive at the conclusions.
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CHAPTER 2

Preliminaries

The purpose of this chapter is to lay the mathematical foundation for the thesis.
By not having to introduce new notions as they appear in the later chapters, we
can focus on the subject under examination. The current chapter contains a mix
of explanations of notation, definitions, results and presentations of advanced
topics. The presented material will either be referred to or simply serve as basis
for the mathematics throughout the thesis.

2.1 Remarks on Notation

Denote vectors in Rd as x or y (not in boldface), also in the case where d = 1.
The i’th coordinate of x is denoted xi. Let x, y ∈ Rd. Equip Rd with the inner
product, 〈·, ·〉, defined by

〈x, y〉 :=

√√√√ d∑
i=1

xiyi.

| · | denotes the Euclidean norm induced by the inner product above, and is
defined as

|x| :=

√√√√ d∑
i=1

x2
i ,

for x ∈ Rd. Mat(d,m) denotes the space of real d×m matrices.

Define M (Rd,R) to be the space of measurable functions from Rd to R.
Let Mb(Rd,R) and Mc(Rd,R) be the space of functions from M (Rd,R) that
are bounded and continuous, respectively.

Let (E,E ) and (G,G ) be measurable spaces. Define the mapping Φ : E → G,
and let B ∈ G . The preimage of B through Φ is the set {x ∈ E : Φ(x) ∈ B}
and it is denoted Φ−1(B).

F := (Ft)t≥0, where (Ft)t≥0 is a filtration on the probability space (Ω,F ,P).
FY is the filtration generated by the stochastic process (Yt)t≥0.

Y will in general denote the stochastic process (Yt)t≥0, but will in some
cases denote a stochastic variable or a stochastic vector. What Y denotes will
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2.2. Probability Spaces

be clear from the context. The same holds true for X,T and L.

N denotes the natural numbers including 0; that is {0, 1, 2, ...}.

Let C be a collection of subsets of a space E. σ(C ) denotes the σ-algebra
generated by C (i.e. the smallest σ-algebra containing C ). Let F and
G be two σ-algebras on E. F ∨ G is defined as σ(F ∪ G ). If F and G
are σ-algebras on different spaces, we write F ⊗ G for σ(F × G ), where
F × G := {A × B : A ∈ F , B ∈ G }. Moreover, if we let µ be a measure on
(E,E ) and ν be a measure on (G,G ). Then µ⊗ ν denotes the unique measure
on the space (E ×G,E ⊗ G ) such that µ ⊗ ν(A × B) = µ(A)ν(B) for A ∈ E
and B ∈ G (see e.g. [Tho14, Theorem 6.3.3]).

B(Rd) is the Borel σ-algebra on Rd. That is, the σ-algebra generated by
the open subsets of Rd. In short we write Bd.

Let t ≥ 1, and denote by Lt(µ) the spaces of functions, f , such that∫
|f |tdµ <∞. We say that a stochastic vector is integrable if it is in L1(P) and

square integrable if it is L2(P).

M2[0, T ] denotes the space of stochastic processes in L2(λ[0,T ] ⊗ P), that
are progressively measurable.

SDEs are an abbreviation for ’Stochastic differential equations’.

2.2 Probability Spaces

Throughout the thesis (Ω,F ,P) denotes the underlying probability space on
which the random elements are defined. The following definitions are general
and many of them can be found in, for example, [Bal17, Section 2.1].

Definition 2.2.1. A stochastic vector is a measurable mapping from (Ω,F ,P)
to (Rd,B(Rd)). A stochastic process on Rd, (denoted (Yt)t≥0) is a family of
indexed stochastic vectors.

�

Definition 2.2.2. Let Y := (Yt)t≥0 and Y ′ := (Y ′t )t≥0 be stochastic processes
defined on (Ω,F ,P) and (Ω′,F ′,P′) respectively. Then we say that Y and Y ′
are equivalent if for all n ∈ N and 0 ≤ t1 < ... < tn and B1, ..., Bn ∈ B(Rd),

P(Yt1 ∈ B1, ..., Ytn ∈ Bn) = P(Y ′t1 ∈ B1, ..., Y
′
tn ∈ Bn).

Or in short
(Yt1 , ..., Ytn) d= (Y ′t1 , ..., Y

′
tn).

�

Definition 2.2.3. [Bal17, p. 32] Two stochastic processes, X and Y defined on
the same probability space are modifications if P(Xt = Yt) = 1 for all t ≥ 0.

�
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2.2. Probability Spaces

Definition 2.2.4. A filtration, (Ft)t≥0, is an increasing collection of sub σ-
algebras of F , indexed by t ≥ 0. A stochastic process, (Yt)t≥0 is said to be
adapted to the filtration if Yt is Ft-measurable for all t ≥ 0. A filtration is right
continuous if Ft = ∩s>tFs.

�

Definition 2.2.5. Let Y be s stochastic process. FY := (FY
t )t≥0 denotes the

natural filtration or the filtration generated by Y . It is defined as

FY
t :=

∨
u≤t

σ(Yu),

where
σ(Yu) = {Y −1

u (B) : B ∈ B(Rd)}.

Remark 2.2.6. {Y −1
u (B) : B ∈ B(Rd)} is a σ-algebra by [Kal21, Lemma 1.3].

�

Definition 2.2.7. A probability space, (Ω,F ,P), is complete if A ∈ F for all
A ⊆ B, where B ∈ F and P(B) = 0. In words, the probability space contains
all null sets.

�

Definition 2.2.8. Let (Ω,F ,P) be a complete probability space. Let N :=
{A ∈ F : P(A) = 0}. The filtration (Ft)t≥0 is said to be P-augmented if for all
t ≥ 0; Ft = Ft ∨N .

�

The assumption that the probability space is complete is useful in many
situations. For instance, the following lemma that will be used throughout the
thesis depends on this assumption. The theorem is an extension of a result
from [Kal21] (Theorem A.2.1).

Lemma 2.2.9. Let (fn)n∈N be a sequence of stochastic vectors (on Rd) defined
on a complete probability space, (Ω,F ,P), and assume that f is a mapping
from Ω to Rd. If fn converges to f almost surely then f is a stochastic vector.

Proof. (§§) Let Ω0 be the subset of Ω such that fn(ω) converges to f(ω) for
ω ∈ Ω0. As the probability space is assumed to be complete, we get that Ω0 is
in F because ΩC0 is a null set. Let B ∈ Rd

f−1(B) = (Ω0 ∩ {f ∈ B}) ∪ (ΩC0 ∩ {f ∈ B}).

Ω0 ∩ {f ∈ B} ∈ F by Theorem A.2.1 and ΩC
0 ∩ {f ∈ B} is a null set and

thereby it is contained in F . �

It will be a standing assumption that the probability space, on which the
random elements are defined, is complete, and that the filtrations that are
given are P-augmented and right continuous. Moreover, we assume that the
stochastic processes take values in the measurable space (Rd,B(Rd)).
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2.3. Independence

2.3 Independence

Let F1, ...,Fn be sub σ-algebras of F . By [Bal17, p. 6] they are independent
if for all A1 ∈ F1, ..., An ∈ Fn

P(A1, ..., An) =
n∏
i=1

P(Ai).

This means that if we let X1, X2, ..., Xn be random vectors that takes values
in Rdi for i ∈ {1, 2, ..., n}. They are independent if σ(X1), ..., σ(Xn) are
independent. Remark that all sets from σ(Xi) can be written as {Xi ∈ B} for
some B ∈ B(Rdi).
The following consideration comes from [Bal17, Remark 1.1] and is crucial
throughout the thesis. Let X and Y denote stochastic processes (FX

t )t≥0 and
(FY

t )t≥0 denote their natural filtrations. Write FX
∞ for ∨t≥0FX

t and note that
it is generated by sets of the form {Xt ∈ B} for t ≥ 0 and B ∈ B(Rd). Sets of
this form is contained in the intersection stable system of sets

C := {{Xt1 ∈ B1, ..., Xtn ∈ Bn} : n ∈ N, 0 ≤ t1 < ... < tn, B1, ..., Bn ∈ Bd}.

Clearly C is contained in FX
∞ . We say that X and Y are independent if

FX
∞ and FY

∞ are independent, which they are if and only if (Xt1 , ..., Xtn) and
(Ys1 , ..., Ysm) are independent for all 0 ≤ t1 < ... < tn and 0 ≤ s1 < ... < sm for
n,m ∈ N.

It is possible to construct independent elements by using the properties
of the product space (see e.g. [Tho19, Exercise 1.11]). In general, stochastic
elements can be chosen in a way, such that are independent. This is justified in
the two following lemmas.

Lemma 2.3.1. [Tho19, Exercise 1.11] Let X and Y be stochastic elements,
taking values in the measurable space (E,E ). Let them be defined on the two
probability spaces (Ω1,F1,P1) and (Ω2,F2,P2) respectively (might be the same
probability space). Then there exist X ′ ∼ X and Y ′ ∼ Y such that X ′ is
independent of Y ′.

Proof. (§) Define the probability space (Ω,F ,P) := (Ω1×Ω2,F1⊗F2,P1⊗P2).
Let (ω1, ω2) = ω ∈ Ω and define X ′(ω) = X ′(ω1, ω2) := X(ω1) and
Y ′(ω) = Y ′(ω1, ω2) := Y (ω2). Let A1, A2 ∈ E . Then

P(X ∈ A1) = P(X−1(A1)× Ω2) = P1(X−1(A1))P2(Ω2) = P1(X−1(A1)),

so X ∼ X ′. The analogous arguments shows that Y ′ ∼ Y . Also

P(X ′ ∈ A1, Y
′ ∈ A2) = P((X−1(A1)× Ω2) ∩ (Ω1 × Y −1(A2)))

= P1 ⊗ P2(X−1(A1)× Y −1(A2))
= P1(X ∈ A1)P2(Y ∈ A2),

which shows they are independent. �

If we let X and Y be stochastic processes, one can make the same
construction. Then one obtain that for all n,m ∈ N, s1, ..., sn, t1, ..., tm ∈ [0,∞),
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2.4. Properties of Stochastic Processes

where si < si+1 and ti < ti+1 for all i ∈ {1, ..., n − 1}, (Xs1 , ..., Xsn) and
(Yt1 , ..., Ytm) are independent.
The following lemma is a direct consequence of [FG97, Corollary 17] and the
proof is omitted here.

Lemma 2.3.2. Let Z be a random variable. Then there exist a sequence of
independent stochastic variables, (Zn)n∈N, on some probability space, (Ω,F ,P),
such that Zi ∼ Z.

�

2.4 Properties of Stochastic Processes

We give definitions and various results regarding the measurability of stochastic
processes.
In this section Y denotes an F-adapted stochastic process taking values in Rd.

Definition 2.4.1. [Bal17, p. 33] We say that Y is measurable if the function

Φ : [0,∞)× Ω→ Rd

(s, ω) 7→ Ys(ω).

is (B([0,∞))⊗F ,Bd)-measurable.

�

Definition 2.4.2. [Bal17, p. 33] Let T > 0, and define the function

ΦT : [0, T ]× Ω→ Rd

(s, ω) 7→ Ys(ω).
(2.1)

We say that Y is progressively measurable if ΦT is (B([0, T ])⊗FT ,B(Rd))-
measurable for all T > 0.

�

Lemma 2.4.3. [Bal17, Proposition 2.1] A right continuous process is progress-
ively measurable.

Proof. (§) Let Y be right continuous and define ΦT for a T > 0 as in
Equation (2.1). Let n ∈ N and define the function an(s) : [0, T ] → [0, T ]
as

an(s) =
n∑
k=1

kT

n
1[ k−1

n T, knT )(s) + T1{s=T}(s).

Set Φ(n)
T (s, ω) := Yan(s)(ω) and let B ∈ Bd. Then

(Φ(n)
T )−1(B) = (∪nk=1[k − 1

n
T,
k

n
T )× Y −1

k
n

(B)) ∪ ({T} × Y −1
T (B)),

which is a set from B([0, T ])⊗FT . Let (s, ω) ∈ [0, T )× Ω. Then because of
right continuity, we get that

Φ(n)
T (s, ω) = Yan(s)(ω)→ Ys(ω),

9



2.5. Random Measures

for n→∞, as an(s) > s and an(s)→ s. If s = T , then Φ(n)
T (T, ω) = YT (ω) for

all n ∈ N. As Y : [0,∞)× Ω→ Rd is a limit of measurable functions, we get
that it is measurable by Theorem A.2.1. �

The idea for the proof of the following lemma is similar to the one behind
the proof of the previous lemma.

Lemma 2.4.4. Let d,m ∈ N and define the function

Φ : Rm × Ω→ Rd

be a continuous function for all fixed ω ∈ Ω and let it be a stochastic vector for
fixed x ∈ Rm. Then Φ is (Bm ⊗F ,Bd)-measurable.

Proof. (§§) Define the function for n ∈ N:

Φ(n) : [−n, n)m × Ω→ Rd

(s, ω) 7→
n2−1∑

i1,...,im=−n2

1[ i1n ,
i1+1
n )×···×[ imn , im+1

n )(s)Φ(( i1
n
, ...,

im
n

), ω).

As Φ(n) is a sum of measurable functions, it is measurable. As Φ is continuous
for fixed ω, it is not hard to see that Φ(n)(s, ω) → Φ(s, ω) for n → ∞ for all
(s, ω) ∈ Rm × Ω. By Theorem A.2.1 Φ is (Bm ⊗F ,Bd)-measurable. �

The following two results are claimed in [Bal17, pp. 33–34]. Here, we give
detailed arguments for the assertions.

Lemma 2.4.5. A progressively measurable stochastic process is measurable.

Proof. (§§§) Let (Yt)t≥0 be a progressively measurable stochastic process on
(Rd,Bd) adapted to the filtration (Ft)t≥0. Let Y be progressively measurable
and define for N ∈ N the function:

ΦN : [0, N ]× Ω→ Rd

(t, ω) 7→ Yt(ω).

By assumption this function is (FN ⊗B([0, N ]),B(Rd)). Let B ∈ B(Rd) and
consider the set ∪N∈NΦ−1

N (B), and note that it is a set in F ⊗B([0,∞)). We
show that ∪N∈NΦ−1

N (B) = Y −1(B).
We show that Y −1(B) ⊆ ∪N∈NΦ−1

N (B): Let (t, ω) ∈ Y −1(B), that is Yt(ω) ∈ B.
Let K ∈ N be such that t ≤ K. Then ΦK(t, ω) = Yt(ω) ∈ B. The inverse
inclusion is obvious. �

2.5 Random Measures

The introduction of Poisson processes and Cox processes will be based on the
theory of random measures, including point processes. The introduction given
here will be based mainly on the one given in [Gra76], but for some of the
notions we consult [Rei93].
Let (E,E ) be a measurable space, here denoted the state space. Let M be the
space of all measures on (E,E ) that are finite on compact sets. Let M be a
σ-algebra on M .

10



2.5. Random Measures

Definition 2.5.1. [Gra76, Definition I.2] A random measure, N, is a measurable
mapping from Ω to M . That is, for A ∈M , N−1(A) ∈ F .
Remark 2.5.2. We write Nω := N(ω).

�

Definition 2.5.3. [Gra76, p. 4] Let πN be a probability measure on (M,M ). It
is called the distribution of N if πN (B) = P({ω ∈ Ω : N(ω) ∈ B}) for B ∈M .

�

Definition 2.5.4. [Gra76, Definition I.2] Let Mn ⊆M be the set of measures on
(E,E ), where for m ∈Mn and A ∈ E , m(A) ∈ N ∪ {∞}. Let N be a random
measure with distribution πN . If πN (Mn) = 1, then N is a point process.

�

From now on, we let N be a point process. By [Rei93, p. 6], we assume
that Mn is the σ-algebra generated by sets of the form {m ∈M : m(A) ∈ B},
where A ∈ E and B ⊆ N ∪ {∞}. This way of constructing the Mn allows us to
introduce the following lemma, which is presented as Criterion 1.1.1 in [Rei93].
This lemma connects the abstract definition of a point process given above to a
more intuitive definition.

Lemma 2.5.5. N is a point process if the mapping N(B) is measurable for all
B ⊆ E and if Nω is a N ∪ {∞}-valued measure for almost all ω ∈ Ω.

Proof. (§) The condition that Nω is a N ∪ {∞}-valued measure for almost all
ω ∈ Ω is needed in order for πN (Mn) = 1. Assume that N(B)−1(A) ∈ F for
all A ⊆ N ∪ {∞}. Then

N(B)−1(A) = {ω ∈ Ω : Nω(B) ∈ A} = N−1({m ∈M : m(B) ∈ A}).

As {m ∈M : m(B) ∈ A} generates Mn, N−1(A) ∈ F for all A ∈Mn. �

The concept of Poisson random measures are central in the theory of point
processes. Late we introduce the Poisson process based on this definition

Definition 2.5.6. [Gra76, Definition I.3] A random measure is called completely
random if for n ∈ N and disjoint sets B1, ..., Bn ∈ E , (N(B1), ..., N(Bn)) is a
collection of independent random variables.

�

Definition 2.5.7. [Rei93, p. 46] Let µ be a σ-finite measure on (E,E ), which
are finite on compact sets. N is a Poisson random measure if it is completely
random and for all k ∈ N

P(N(A) = k) = e−µ(A) (µ(A))k

k! 1{µ(A)<∞},

for A ∈ E .

�
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We present the result and proof from [Sat13, Proposition 19.4]. He shows
the statement for a general σ-finite measure. We only present the proof in the
case where µ is a finite measure.

Lemma 2.5.8. Let µ be a σ-finite measure on a measurable space (E,E ). Then
there exist a Poisson random measure with intensity measure µ on some
probability space.

Proof. (§) Assume that µ(E) < ∞. Let (Zn)n∈N be independent stochastic
variables with distribution µ/µ(E) and let Y be a Poisson random variable
with parameter µ(E) (this can be constructed on some probability space by
Lemma 2.3.2). Define for B ∈ E , N(B) :=

∑Y
i=1 1B(Zi), then for each ω ∈ Ω,

Nω(·) =
∑Y (ω)
i=1 1·(Zi(ω)) is a N ∪ {∞}-valued measure. Moreover for for

fixed B ∈ E , N(B) is a stochastic variable. We need to show that the
N is completely independent. Let k, n ∈ N and B1, ..., Bk ∈ E be disjoint
such that ∪ki=1Bi = E. Then N(B1) + ... + N(Bk) = N(E) = Y . Let
n1, ..., nk ∈ N such that n1 + ... + nk = n. Remark that for fixed n ∈ N,
(
∑n
i=1 1B1(Zi), ...,

∑n
i=1 1Bk(Zi)) is multinomial distributed with parameter

(µ(B1)
µ(E) , ...,

µ(Bk)
µ(E) ).

P(N(B1) = n1, ..., N(Bk) = nk)

= P(
n∑
i=1

1B1(Zi) = n1, ...,

n∑
i=1

1Bk(Zi) = nk|Y = n)P(Y = n)

= P(
n∑
i=1

1B1(Zi) = n1, ...,

n∑
i=1

1Bk(Zi) = nk)P(Y = n)

= n!
n1! · · ·nk! (

µ(B1)
µ(E) )n1 · · · (µ(Bk)

µ(E) )nke−µ(E)µ(E)n

n!

As e−µ(E) =
∏k
i=1 e

−µ(Bi), one can reduce the expression above to obtain

P(N(B1) = n1, ..., N(Bk) = nk) =
k∏
i=1

e−µ(Bi)µ(Bi)ni
ni!

.

Assume that ∪ki=1Bk 6= E , and define Bk+1 := E \ ∪ki=1Bk. Then

P(N(B1) = n1, ..., N(Bk) = nk, N(Bk+1) = nk+1) =
k+1∏
i=1

e−µ(Bi)µ(Bi)ni
ni!

.

Letting n1, ..., nk be fixed and summing over nk+1 on both sides, we obtain

P(N(B1) = n1, ..., N(Bk) = nk) =
k∏
i=1

e−µ(Bi)µ(Bi)ni
ni!

.

This also gives us that P(N(B) = n) = e−µ(B) µ(B)n
n! , which shows the complete

randomness and Poisson distribution of N . �
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2.6. The Freezing Lemma

2.6 The Freezing Lemma

Several times throughout the thesis, we refer to the Freezing Lemma in order
to show that certain processes possess the Markov property. The result is given
in [Bal17, Lemma 4.1] for general measurable spaces (E,E ), but only a sketch
of a proof is presented. Because of the importance of the theorem, we will here
give a full proof of it. We do it a little differently than the method he has in
mind.

Lemma 2.6.1. [Bal17, Lemma 4.1] Let (Ω,F ,P) be a probability space and
G and D independent σ-algebras contained in F . Let Z be a D-measurable
random variable that takes values in a measurable space (Rd,B(Rd)). Now let
ψ : Rd × Ω→ R be an B(Rd)⊗ G -measurable function such that the function
ω 7→ ψ(Z(ω), ω) is integrable. Then we have that

E[ψ(Z, ·)|D ] = Φ(Z),

where Φ(z) = E[ψ(z, ·)]. Φ(z) is a E -measurable function.
Remark 2.6.2. The lemma also holds in the case where X takes its values in the
complex plane. Then ψ(Z, ·) = ψ1(Z, ·) + iψ2(Z, ·) where ψ1 and ψ2 are real
random functions. Using the linearity of the conditional expectation and the
result of the lemma, one can obtain

E[ψ(Z, ·)|D ] = E[ψ1(Z, ·)|D ] + iE[ψ2(Z, ·)|D ] = Φ1(Z) + iΦ2(Z).

Where Φ1(z) = E[ψ1(z, ·)] and Φ2(z) = E[ψ2(z, ·)]. As

E[ψ1(z, ·)] + iE[ψ2(z, ·)] = E[ψ(z, ·)] = Φ(z),

we have it. This will come in handy when we shall use the lemma in the setting
of characteristic functions.

Proof. (§§) Define H to be the space of bounded measurable mappings from
Rd × Ω to R for which the theorem holds true. Define the class of sets

C := {A×B : A ∈ B(Rd), B ∈ G }.

We show that the conditions in the Monotone Class Theorem (Theorem A.2.4)
is fulfilled in this situation. Let A×B ∈ C and define the function

ψ(z, ω) := 1A×B(z, ω) = 1A(z)1B(ω).

Remark that 1A(Z) is D-measurable and 1B(ω) is independent of D .

E[1A×B(Z, ω)|D) = 1A(Z)E(1B(ω)|D) = 1A(Z)P(B) =: Φ(Z),

and for z ∈ Rd:

E[1A×B(z, ω)] = 1A(z)E[1B(ω)] = 1A(z)P(B) = Φ(z),

as 1A(z) is a constant. Remark by the linearity of the conditional expectation
and the expectation that H is a vector space. Let (ψn)n∈N ∈H be positive
and increasing such that limn→∞ ψn is bounded. Then for all n ∈ N

E[ψn(Z, ·)|D ] = ψn(Z), where Φn(z) = E[ψn(z, ·)].

13



2.7. Integration With Respect to Martingales

As ψn is B(Rd) ⊗ G -measurable, limn→N ψn is B(Rd) ⊗ G -measurable
as well. Taking the limit on both sides using bounded convergence for
conditional expectations ([Bal17, Proposition 4.2(c)]) and Bounded Convergence
(Theorem A.2.2), we obtain

E[ lim
n→∞

ψn(Z, ·)|D ] a.s.= lim
n→∞

ψn(Z),

where
lim
n→∞

ψn(z) = E[ lim
n→∞

ψn(z, ·)].

That the equality holds almost surely is sufficient in this case, as we are working
with conditional expectations. We conclude that the lemma holds true for all
bounded B(Rd)⊗ G -measurable functions.
Let ψ be a (B(Rd)⊗G )-measurable function, such that ψ(Z(ω), ω) is integrable.
Define ψ+(z, ω) := 0 ∨ ψ(z, ω) and ψ−(z, ω) = −(ψ(z, ω) ∧ 0), which are both
(B(Rd) ⊗ G )-measurable functions and ψ+(Z(ω, ), ω) and ψ−(Z(ω), ω) are
integrable. Remark that for K ∈ N, ψ+(z, ω) ∧K ∈ H as it is bounded and
(B(Rd) ⊗ G )-measurable. Therefore the lemma holds true for ψ+(z, ω) ∧K.
As ψ+(z, ω) ∧K goes to ψ+(z, ω), and ψ+(Z(ω), ω) is integrable, we refer to
[Bal17, Proposition 4.2(a)] to conclude that

E[ψ+(Z, ·)|D ] a.s.= lim
K→∞

Φ+
K(Z),

where
lim
K→∞

Φ+
K(z) = lim

K→∞
E[ψ+(z, ·) ∧K] = E[ψ+(z, ·)],

by Monotone Convergence (Theorem A.2.3). The same argument applies for
ψ−, so by linearity of conditional expectation and expectation, we obtain the
theorem for ψ. �

2.7 Integration With Respect to Martingales

introduce integration of predictable processes with respect to square integrable
martingales. The introduction relies heavily on [IW89, section II.2]. A lot of
details will be omitted. In order to make an introduction we will need to be
familiar with the following definitions:

Definition 2.7.1. [Bal17, Definition 3.3] A stopping time with respect to the
filtration (Ft)t≥0 is a mapping

τ : Ω→ [0,∞],

such that for all t ≥ 0, {τ ≤ t} ∈ Ft. The optional σ-algebra for τ is defined as

Fτ = {A ∈
∨
t≥0

Ft : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}.

We say that τ is finite if P(τ <∞) = 1.

�
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2.7. Integration With Respect to Martingales

Definition 2.7.2. [Bal17, Definition 5.1 and Definition 7.3] Let M := (Mt)t≥0
be a stochastic process adapted to the filtration (Ft)t≥0. M is a martingale if
Mt is integrable for all t ≥ 0 and that for all 0 ≤ s ≤ t

E[Mt|Fs] = Ms.

M is a local martingale if there exist a sequence of stopping times, (τn)n∈N,
such that for all ω ∈ Ω, τn(ω) → ∞ for n → ∞, and such that for all n ∈ N,
(Mt∧τn)t≥0 is a martingale. Such a sequence is called a reducing sequence of
M . Using the wording of [IW89, Definition II.1.7] a locally square integrable
martingale is a local martingale such that for all n ∈ N and t ≥ 0, E[M2

τn∧t] <∞.

�

The following definition comes from a lecture in the course MAT4720
(autumn semester 21/22).

Definition 2.7.3. A stochastic process (φt)t≥0 that is adapted to the filtration
F := (Ft)t≥0 is predictable if it is measurable with respect to the σ-algebra

PF := σ{(s, t]× F : s ≤ t, F ∈ Fs}.

�

Let M := (Mt)t≥0 be a right continuous square integrable martingale,
adapted to the filtration (Ft)t≥0, such that M0 = 0 almost surely. Let M2 be
the space of martingales of this type. This space is complete with the metric

‖M ‖M2=
∞∑
n=1

2−n(E[M2
n]1/2 ∧ 1),

for M ∈ M2. There exists a process (A := (〈M〉t)t≥0) that almost surely is
increasing, right continuous and starting at 0. This process is integrable and
M2
t − At is a martingale. Let L2(M) be the space of predictable processes

((φt)t≥0) such that for all T > 0,

E[
∫ T

0
φ2
tdAt] <∞.

This integration can be done pathwise, as A has finite variation. Define the
metric on L2(M) by

‖ φ ‖L2(M):=
∞∑
n=1

2−n(
∫ n

0
φ2
tdAt ∧ 1)

Identity two elements φ and φ′ in L2(M) if ‖ φ− φ′ ‖L2(M)= 0.
Define elementary processes as processes in L2(M) of the form

φE(t) = ϕ01{t=0}(t) +
∞∑
i=1

ϕti1(ti,ti+1](t)

for 0 = t0 < t1 < t2 < ... and ϕ′tis that are Fti-measurable. Remark that
such functions are measurable with respect to PF and that all left continuous

15



2.7. Integration With Respect to Martingales

adapted processes from L2(M) can be approximated by functions of this type.
Let φ ∈ L2(M) be left continuous. Then the sequence

φ(k)(t) = φ01{t=0}(t) +
∞∑
i=0

φ i
n
1( in ,

i+1
n ](t)

is of the desired form and approximates φ pointwise. By [IW89] the space
of elementary processes from L2(M) is dense in L2(M) with respect to the
metric given. This means that if we let a stochastic process from L2(M) be
given, there exist a sequence of functions (φ(k)

E )k∈N on the form above such that
‖ φ(k)

E − φ ‖L2(M)→ 0 for k →∞. For elementary functions from L2(M), we
define the integral with respect to M as∫ T

0
φE(t)dM(t) =

n−1∑
i=0

ϕti(M(ti+1)−M(ti)) + ϕtn(M(tn+1 ∧ T )−M(tn)),

where T ∈ (tn, tn+1].

Definition 2.7.4. We denote the integral of φE with respect to M from 0 to T
as I(T ).

�

In what follows, it will be implied that we integrate an elementary function.
The computations of the proof of the following lemma are similar to the ones I
delivered as a mandatory exercise in the course MAT4720 (autumn semester
21/22).

Lemma 2.7.5. I(T ) is a martingale and E[(I(T ))2] = E[
∫ T

0 φ2
E(t)dAt].

Proof. (§) Let s ≤ T and remark that if ti ≥ s then by the use of the Tower
Property (Proposition A.1.11)

E[ϕ(ti)(M(ti+1)−M(ti))|Fs] = E[E[ϕ(ti)(M(ti+1)−M(ti))|Fti ]|Fs]
= E[ϕ(ti)E[M(ti+1)−M(ti)|Fti ]|Fs] = 0,

and if ti ≤ s ≤ ti+1, then

E[ϕ(ti)(M(ti+1)−M(ti))|Fs] = ϕ(ti)(M(s)−M(ti))

We take a look at the expression E[I(T )2]. Squaring the integral expression
above (

∫ T
0 φE(t)dM(t)) gives rise to a sum of quadratic terms of the form

ϕ2(ti)(M(ti+1)−M(ti))2 and mixed terms of the form

ϕ(tk)ϕ(tl)(M(tk+1)−M(tk))(M(tl+1)−M(tl)).

It is not hard to show (again by the use of the Tower Property) that the
expectation of the mixed terms are 0. This means we just need to take the
expectation of the sum

n−1∑
i=0

ϕ(ti)2(M(ti+1)−M(ti))2 + ϕ(tn)2(M(tn+1 ∧ T )−M(tn))2.
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2.7. Integration With Respect to Martingales

By utilizing the fact that M2
t −At is a martingale we obtain for t ≥ s

E[M2
t −At|Fs] = M2

s −As = E[M2
s −As|Fs],

which implies that

E[M2
t −M2

s |Fs] = E[At −As|Fs].

Moreover, remark that (again using the Tower Property)

E[ϕ2
ti(Mti+1 −Mti)2] = E[ϕ2

ti(M
2
ti+1

+M2
ti − 2MtiMti+1)]

= E[ϕ2
ti(E[M2

ti+1
|Fti ] +M2

ti − 2MtiE[Mti+1 |Fti)]]
= E[ϕ2

ti(E[M2
ti+1
|Fti ] +M2

ti − 2M2
ti)]]

= E[ϕ2
ti(M

2
ti+1
−M2

ti)].

This means that

E[ϕ2
ti(M

2
ti+1
−M2

ti)] = E[ϕ2
ti(Ati+1 −Ati)] = E[

∫ ti+1

ti

ϕ2
tidAs].

Conclude that
E[I(T )2] = E[

∫ T

0
φ2
E(t)dAt] <∞.

This relies on the fact that such integrals can be split up on disjoint time
intervals. �

This secures that ‖ I ‖M2=‖ φ2
E ‖L2(M). Now let φ ∈ L2(M) and choose a

sequence of elementary processes (φ(k))k∈N that approximates φ. Remark that
subtraction of one elementary process from another leads to a new elementary
process. Also, we have that the integral operation of elementary processes is
linear. Denote by In the stochastic process

∫ ·
0 φ

(n)(s)dMs We obtain that

‖ In − Im ‖M2=‖ φ(n) − φ(m) ‖L2(M)→ 0 for m,n→∞.

This makes (In)n∈N a Cauchy sequence in M2 space. Consequently, as M2
is complete [IW89, Lemma II.1.2], there is an element I ∈ M2 such that
‖ In − I ‖→ 0 for n → ∞. We will just state that such a limit is unique
(independent of the choice of approximating sequence), and we define the
integral of φ with respect to M as this limit I.

Still following the presentation from [IW89] closely, the theory can be ex-
panded to integration with respect to local martingales. Let M loc

2 be the space
of (Ft)t≥0-adapted locally square integrable martingales that are 0 at time 0
almost surely. There exist a process locally square integrable process (At)t≥0
that is F-adapted, right continuous, increasing and 0 at 0 almost surely such
that (M2

t −At)t≥0 is a local martingale. Let M ∈M loc
2 . Define L loc

2 (M) to be
the space of predictable stochastic processes, φ such that there exists a sequence
of stopping times, (σn)n∈N such that σn →∞ almost surely for n→∞ and∫ σn∧T

0
φ2
tdAt <∞
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for all T > 0 and n ∈ N. If we (γn)n∈N be a reducing sequence of M . Choosing
the sequence (τn)n∈N to be τn := σn ∧ γn this sequence is both a reducing
sequence of M by [Bal17, Proposition 5.6] and

∫ τn∧T
0 φ2

tdAt <∞ for all n ∈ N
and T > 0 as the integral is increasing. Therefore for φ ∈ L loc

2 it is possible to
define the integral of 1{t≤τn}(t)φt with respect to Mτn := (Mt∧τn)t≥0 for all
n ∈ N. It is possible to obtain that there exists a stochastic process I loc(t) (see
[IW89, p. 57]), such that I loc(t ∧ τn) is the stochastic integral of 1{t≤τn}(t)φt
with respect to Mτn (so it is a martingale). Thereby, I loc is a locally square
integrable martingale.

2.8 Stochastic Differential Equations

This section relies on [Bal17] and [Øks03]. Let B be a standard Brownian
motion as defined in Definition A.3.2. As this is a martingale with At = t (one
can show that B2

t − t is a martingale), it is possible to define an integral of
(vt)t≥0 with respect to the Brownian motion if (vt)t≥0 is a predictable stochastic
process such that E[

∫ T
0 v2

sds] <∞ (see Section 2.7). It can be shown that the
integral is an element in L2(P). In fact the integration can be defined for a
broader class of stochastic processes, namely processes that are progressively
measurable and for which it holds that E[

∫ T
0 vtdBt] < ∞. This is proved in

[Bal17, Chapter 7].

Definition 2.8.1. [Øks03, Definition 4.1.1] LetB be a standard Brownian motion.
(Yt)t∈[0,T ] is a real Itô process if it can be written on the form

Yt = Y0 +
∫ t

0
usds+

∫ t

0
vsdBs, t ∈ [0, T ].

Here (ut)t∈[0,T ] and (vt)t∈[0,T ] are real stochastic processes, where
∫ t

0 |us|ds <∞
for all t ∈ [0, T ] almost surely and

∫ t
0 u

2
sds <∞ for all t ∈ [0, T ] almost surely.

�

It can be proved that the space of Itô processes is closed under smooth
mappings, a result better known as the Itô formula. We state it here without a
proof:

Theorem 2.8.2. [Øks03, Equation (4.1.9)] Let Y be a Itô process as defined in
Definition 2.8.1. Let

g : [0,∞)× R→ R
be a function, that is two times continuously differentiable. That is

∂g(t, x)
∂t

,
∂g(t, x)
∂x

,
∂2g(t, x)
∂x∂t

,
∂2g(t, x)
∂x2 ,

∂2g(t, x)
∂t2

are all continuous functions in both variables. Then (g(t, Yt))t∈[0,T ] is an Itô
process and

g(t, Yt) = g(0, Y0)+
∫ t

0
(∂g
∂s

(s, Ys) + us
∂g

∂x
(s, Ys) + 1

2vs
∂2g

∂x2 )ds

+
∫ t

0
vs
∂g

∂x
(s, Ys)dBs, t ∈ [0, T ].

(2.2)
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�

It is also possible to define the multi dimensional stochastic integral with
respect to a Brownian motion. We introduce it as done in [Bal17, Section 8.4]).
Let (Bt)t≥0 be anm-dimensional Brownian motion and let (Ft)t≥0 be the sigma-
algebra generated by B. Let (Σ(t))t∈[0,T ] be a Mat(d,m)-valued stochastic
process. Let (i, j) ∈ {1, ..., d} × {1, ...,m} and assume that (Σi,j(t))t∈[0,T ] are
progressively measurable and that E[

∫ T
0 Σ2

i,j(s)ds] < ∞ (In this case we also
write Σ ∈M2[0, T ]). We can define the stochastic integral of Σ with respect to
B, as a d-dimensional vector, where for i ∈ {1, ..., d}:

(
∫ T

0
Σ(s)dB(s))i =

m∑
j=1

∫ T

0
Σi,j(s)dBj(s).

We introduce the concept of stochastic differential equations, which is a
differential equation containing a path integral part and a stochastic integral
part.

Definition 2.8.3. [Bal17, Definition 9.1] A stochastic differential equation is an
expression on the form

dζt = b(t, ζt)dt+ σ(t, ζt)dBt, t ∈ [u, T ],
ζu = η.

(2.3)

Here b and σ are measurable mappings, that are defined on [u, T ] × Rd. b
takes values in Rd and σ takes values in Mat(d,m). We assume that η is
Fu-measurable. A solution to Equation (2.3) is a stochastic process (ξt)s∈[u,T ],
where

ξt = η +
∫ t

u

b(s, ξs)ds+
∫ t

u

σ(s, ξs)dBs,

for all t ∈ [u, T ].

�

For a full proof of the following theorem, see [Bal17, Theorem 9.2]. We will
just give the main idea for the proof, because it is constructive and we will use
it in Section 3.5 to prove other results.

Theorem 2.8.4. Assume there exist anM > 0 such that for t ≥ 0 and x, y ∈ Rd:

(i) |σ(t, x)|, |b(t, x)| ≤M(1 + |x|) (Global linear growth).

(ii) |σ(t, x)− σ(t, y)|, |b(t, x)− b(t, y)| ≤M |x− y| (Lipschitz condition).

Then there exists a stochastic process from M2[u, T ], which is a solution
to Equation (2.3). The solution is unique in the sense, that if there exist
two processes (ζt)t∈[u,T ] and (ζ ′t)t∈[u,T ] from M2[u, T ] that are solutions to
Equation (2.3), then ζt = ζ ′t for all t ≥ 0 almost surely. We call such a solution
a diffusion.
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Proof. (§) The idea of the proof is to follow an iteration process (Picard
iteration). Let ζ(0)

t := η for t ∈ [u, T ]. Define for m ∈ {1, 2, ...}:

ζ
(m)
t := η +

∫ t

u

b(s, ζ(m−1)
s )ds+

∫ t

u

σ(s, ζ(m−1)
s )dBs,

for t ∈ [u, T ]. It can then be shown that limm→∞ ζ(m) is a continuous element
in M2[u, T ], and that it is a solution to the stochastic differential equation
Equation (2.3). �
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CHAPTER 3

Markovianity

In this chapter we let Y := (Yt)t≥0 be an adapted stochastic process defined
on the filtered probability space (Ω,F , (Ft)t≥0,P). Moreover FY := (FY

t )t≥0
denotes the filtration generated by Y . Assume that Y takes values in the
measurable space (Rd,B(Rd)).
The aim of this chapter is to introduce the Markov property for stochastic
processes in continuous time.

3.1 Conditional Distributions

In the following section we define the concept of conditional laws.

Definition 3.1.1. [Bal17, page 98] Let X and Y be stochastic vectors on a
probability space, (Ω,F ,P), that takes values in (Rm,B(Rm)) and (Rd,B(Rd))
respectively. The family of probability measures (η(y, dx))y∈Rd is the condi-
tional law of X given Y if the following two conditions are met:

(a) For every A ∈ B(Rm), η(y,A) is a B(Rd)-measurable function.

(b) For every A ∈ B(Rm) and B ∈ B(Rd),

P(X ∈ A, Y ∈ B) =
∫
B

η(y,A)PY (dy).

�

The following lemma and proof is inspired by the arguments presented
in [Bal17, Section 4.3] and creates the connection between the conditional
distribution with respect to Y and the conditional expectation with respect to
σ(Y ).

Lemma 3.1.2. Let X and Y be defined as in Definition 3.1.1. Define

η : Rd ×B(Rm)→ [0, 1]

and assume that η(y,A) is measurable for fixed A ∈ B(Rm). (η(y, dx))y∈Rd is
the conditional law of X given Y if and only if

E[f(X)|Y ] =
∫
E

f(x)η(Y, dx)

for all f ∈Mb(Rd,R).
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3.2. The Markov Property

Proof. (§) We start off showing the ’only if’ part of the proof. Let η(y, dx)y∈Rd
be the conditional distribution of X given Y . We show that

∫
Rm f(x)η(Y, dx)

is σ(Y )-measurable and that

E[E[f(X)|Y ]1D] = E[
∫
Rm

f(x)η(Y, dx)1D]

for D ∈ σ(Y ). This is sufficient by [Bal17, Remark 4.2]. It is possible to rewrite
condition (b) to

E[1{X∈A}1{Y ∈B}] =
∫
B

∫
Rm

1A(x)η(y, dx)PY (dy).

By Monotone Class Theorem (Theorem A.2.4) we obtain

E[f(X)1{Y ∈B}] =
∫
B

∫
Rm

f(x)η(y, dx)PY (dy),

for f ∈Mb(Rm,R), because
∫
B
η(y, ·)PY (dy) is a measure on B(Rm). Remark

that as
∫
Rm f(x)η(y, dx) is B(Rd)-measurable, then

∫
Rm f(x)η(Y, dx) is σ(Y )-

measurable. Also we have

E[f(X)1{Y ∈B}] = E[E[f(X)|Y ]1{Y ∈B}]

because 1{Y ∈B} is σ(Y )-measurable and that∫
B

∫
Rm

f(x)η(y, dx)PY (dy) = E[
∫
Rm

f(x)η(Y, dx)1{Y ∈B}].

As all sets from σ(Y ) can be written as {Y ∈ B}, this is sufficient.
On the other hand, assume that

E[f(X)|Y ] =
∫
Rm

f(x)η(Y, dx)

for all f from Mb(Rd,R). Let B ∈ B(Rd).

P(X ∈ A, Y ∈ B) = E[1A(X)1B(Y )]
= E[1B(Y )E[1A(X)|Y ]]
= E[1B(Y )η(Y,A)]

=
∫
B

η(y,A)PY (dy).

�

3.2 The Markov Property

In both [Bal17] and [Sat13] the definition of the Markov property is expressed
in terms of Markov transition functions. Here we give a well known alternative
definition. Later in the chapter, we show that the definitions are equivalent.
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3.3. Transition Kernels

Definition 3.2.1. Let Y be a stochastic process that takes values in Rd and
assume it is adapted to the filtration F. It is said to be an F-Markov process if

E[f(Yt)|Fs] = E[f(Yt)|Ys], (3.1)

for all t ≥ s ≥ 0 and all f ∈Mb(Rd,R). In this situation it is also said that Y
possess the Markov property.
Remark 3.2.2. If Y is a Markov process with respect to the filtration F it is
also a Markov process with respect to its natural filtration, FY . This comes
from taking the conditional expectation on both sides with respect to FY

s and
using the Tower Property (Proposition A.1.11).

E[E[f(Yt)|Fs]|FY
s ] = E[f(Yt)|FY

s ]

because FY
s ⊆ Fs. Also

E[E[f(Yt)|Ys]|FY
s ] = E[f(Yt)|Ys]

because σ(Ys) ⊆ FY
s .

Remark 3.2.3. If for all t ≥ s ≥ 0,

E[f(Yt)|Fs] = gs,t ◦ f(Ys)

for real measurable functions gs,t, then Y is a Markov process with respect to F.
This is true because the equality implies that E[f(Yt)|Fs] is σ(Ys)-measurable,
which secures Equation (3.1).

�

3.3 Transition Kernels

As mentioned above, Markov transition functions are often used to express the
right hand side in equation Equation (3.1). Markov transition functions are
based on the concept of transition kernels, which we start off defining.

Definition 3.3.1. [Ped20, Definition 4.1] A mapping

P : Rd ×B(Rd)→ [0, 1]

is a transition kernel if the following conditions hold:

(i) A 7→ P (x,A) is a probability measure for x ∈ Rd.

(ii) x 7→ P (x,A) is a measurable function for A ∈ B(Rd).

�

The following lemma and proof are based on [Ped20, Remark 4.4].

Lemma 3.3.2. Let P be a transition kernel and let f : Rd → R be a bounded
and measurable function. For x ∈ Rd it is possible to integrate f with respect to
the measure P (x, ·). We write

Pf(x) :=
∫
Rd
f(y)P (x, dy). (3.2)

Pf(x) is measurable.
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3.3. Transition Kernels

Proof. (§§) Let x ∈ Rd. We argue that Pf(x) is measurable function by
Monotone Class Theorem (Theorem A.2.4).

∫
1A(y)P (x, dy) = P (x,A) is

by the definition above a measurable function. Assume that f and g are
bounded and measurable and that Pf(x) and Pg(x) are measurable, then
P (f(x) + g(x)) = Pf(x) + Pg(x) are measurable and P (cf(x)) = cPf(x) are
measurable by the properties of integrals. Let (fn(x))n∈N be an increasing
sequence of bounded and measurable functions such that Pfn(x) is measurable
and such that limn→∞ fn(x) is bounded. Pfn(x) is an increasing measurable
function. Then we have, that limn→∞ Pfn(x) = Pf(x) is measurable
and bounded by Bounded Convergence (Theorem A.2.2). Thus Pf(x) is a
measurable function for all measurable and bounded functions, f . �

Define for (x,A) ∈ (Rd,B(Rd)) PQ(x,A) :=
∫
Q(y,A)P (x, dy) as in [Ped20,

Definition 5.1]. We show that this is in fact a transition semigroup. As
Q(y,A) is a measurable and bounded function, we must have that PQ(x,A) =∫
Q(y,A)P (x, dy) is a measurable and bounded function with respect to x by

the previous lemma. Also PQ(x,A) is a probability measure because

PQ(x,Rd) =
∫
Q(y,Rd)P (x, dy) =

∫
1P (x, dy) = P (x,Rd) = 1.

We also have by an analogous calculation that PQ(x, ∅) = 0. Let (An)n∈N be a
sequence of disjoint sets from B(Rd).

PQ(x,∪n∈NAn) =
∫
Q(y,∪n∈NAn)P (x, dy)

=
∫

lim
k→∞

k∑
i=0

Q(y,Ai)P (x, dy)

= lim
k→∞

∫ k∑
i=1

Q(y,Ai)P (x, dy)

=
∞∑
i=1

PQ(x,Ai),

where Monotone Convergence (Theorem A.2.3) is applied. By the definition of
measures (see e.g. Definition A.1.2) PQ(x, ·) is a probability measure. It is not
hard to see that if R is also a transition kernel, we have that (RP )Q = R(PQ)
(associativity).

Definition 3.3.3. [Sat13, Definition 10.1] A family of transition kernels
(Ps,t)t≥s≥0 is called an Markov transition function if it fulfills the follow-
ing two properties.

(i) Ps,s(x,A) = δx(A) for all s ≥ 0.

(ii) Pu,sPs,t = Pu,t for all t ≥ s ≥ u ≥ 0.
Remark 3.3.4. For t ≥ s ≥ u ≥ 0 and f ∈Mb(Rd,R):∫

Rd

∫
Rd
f(z)Ps,t(y, dz)Pu,s(x, dy) = Pu,sPs,tf(x)
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3.3. Transition Kernels

= Pu,tf(x) =
∫
Rd
f(y)Pu,t(x, dy).

Remark 3.3.5. In the case where Pt,t+s = Pt′,t′+s for all s, t, t′ ≥ 0, the Markov
semigroup can be written more compactly as (Ps)s≥0, where Ps = Pt,t+s for
t, s ≥ 0. In this case the group is called a time homogeneous Markov transition
function.

�

The following definition of the Markov property is most common and is the
content of for example [Bal17, Definition 6.1].

Definition 3.3.6. Y is an F-Markov process with respect to the Markov
transition function (Ps,t)t≥s≥0 if for any bounded measurable functions f :
Rd → R, we have that

E[f(Yt)|Fs] = Ps,t(f(Ys)), (3.3)

for t ≥ s ≥ 0.
Remark 3.3.7. By Lemma 3.3.2 Ps,t(f(x)) is a measurable function, so by
Remark 3.2.3, Equation (3.3) secures that Y is indeed a F-Markov process.

�

We show now that the Markov property that are given in Equation (3.1)
and Equation (3.3) are equivalent.

Lemma 3.3.8. Let (Yt)t≥0 be a an F-Markov process. Then there exist a Markov
transition function (Ps,t)t≥s≥0, such that Y is a Markov process with respect
Markov transition function (Ps,t)t≥s≥0.

Proof. (§§§) Let (ηs,t(y, dx))y∈Rd be the conditional distribution of Yt given Ys.
We show that this is the Markov transition function we are looking for. Then
by Lemma 3.1.2 for f ∈Mb(Rd,R),

E[f(Yt)|Ys] =
∫
Rd
f(x)ηs,t(Ys, dx).

If we use the notation ηs,t(f(Ys)) :=
∫
Rd f(x)ηs,t(Ys, dx) we see that it

fits Equation (3.3). We just need to show that (ηs,t)t≥s≥0 lives up to
Definition 3.3.3.Let 0 ≤ u ≤ s ≤ t.

E[f(Yt)|Yu] = E[E[f(Yt)|Fs]|Yu]
= E[E[f(Yt)|Ys]|Yu]

= E[
∫
f(x)ηs,t(Ys, dx)|Yu]

=
∫ ∫

f(x)ηs,t(y, dx)ηu,s(Yu, dy)

Thus ηu,sηs,t = ηu,t, because ηu,t(f(Yu)) = E[f(Yt)|Yu]. Moreover

E[f(Yu)|Yu] = f(Yu) =
∫
Rd
f(x)δYu(dx).
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3.4. Distribution of Markov Processes

We conclude that (ηs,t)t≥s≥0 is the Markov transition function associated to
Y . �

A third equivalent way of expressing the Markov property is the one given
in the following lemma. It is for example noted in [Bal17, Remark 6.1]. The
proof is a straight forward application of the Monotone Class Theorem, but for
completeness we give the full proof.

Lemma 3.3.9. Let (Ps,t)t≥s≥0 be a Markov transition function. Y is a F-Markov
process associated with (Ps,t)t≥s≥0 if and only if for all A ∈ B(Rd)

P(Yt ∈ A|Fs) = Ps,t(Ys, A). (3.4)

Proof. (§§) Let A ∈ B(Rd) and f(x) := 1A(x), which is obviously measurable
and bounded. If we set f(x) into (3.3) we obtain 3.3.
On the other hand, we assume that Equation (3.4) holds true. We prove it by
using the Monotone Class Theorem (Theorem A.2.4). We choose H to be the
set of functions for which Equation (3.3) hold true. As

Ps,t(Ys, A) =
∫
1A(y)Ps,t(Ys, dy)

and
E(1A(Yt)|Fs) = P(Yt ∈ A|Fs),

we get that 1A ∈ H for all A ∈ B(Rd). We need to verify (2) and (3)
from Theorem A.2.4 holds true. Property (2) is obvious by the linearity of
conditional expectation. Assume that (fn)n∈N ∈H is a sequence of positive,
non decreasing functions and define f := limn→∞ fn, which is bounded. Then
by [Bal17, Proposition 4.2]

lim
n→∞

E[fn(Yt)|Fs] = E[f(Yt)|Fs]

almost surely, and by Monotone Convergence

lim
n→∞

∫
Rd
fn(x)Ps,t(Ys, dx) =

∫
Rd
f(x)Ps,t(Ys, dx).

This validates property (3). �

3.4 Distribution of Markov Processes

Definition 3.4.1. Let Y be a Markov process. The measure µ := PY0 is called
the initial distribution of Y .

�

The following theorem shows how to express the finite dimensional
distribution of a Markov process in terms of the corresponding Markov transition
function. The result is taken from [Ped20, p. 48] and the proof is generalized
from the proof of the similar result for Markov processes in discrete time ([Ped20,
Theorem 4.17]).
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3.4. Distribution of Markov Processes

Lemma 3.4.2. Y := (Yt)t≥0 is a Markov process associated to the Markov
transition function (Ps,t)t≥s≥0 if and only if for all 0 ≤ t1 < t2 < t3 < ... < tn
and A1, A2, ..., An ∈ B(Rd)

P(Yt1 ∈ A1, ..., Ytn ∈ An) =
∫
Rd

∫
A1

· · ·
∫
An

1

Ptn−1,tn(yn−1, dyn) · · ·P0,t1(y0, dy1)PY0(dy0).
(3.5)

Proof. (§§) Assume that E[f(Yt)|Fs] = Ps,t(f(Ys)) for all f ∈Mb(Rd,R) and
t ≥ s ≥ 0. We prove the ’only if’ part of the statement by induction in n. Let
n = 1, t > 0 and A ∈ B(Rd). Then we have that

P(Yt ∈ A) = E[1A(Yt)] = E[E[1A(Yt)|F0]] = E[P0,t(1A(Y0))]

=
∫
Rd

∫
A

1P0,t(y, dx)PY0(dy).

We start off proving that if for A1, ..., An ∈ B(Rd):

E(1A1×···×An(Yt1 , ..., Ytn)) =
∫
Rd

∫
1A1×···×An(y1, ..., yn)P(t1,...,tn)(dy)µ(dy0),

where
P(t1,...,tn)(dy) := Ptn−1,tn(yn−1, dyn) · · ·P0,t1(y0, dy1)

then we have that

E[f(Yt1 , ..., Ytn)] =
∫
Rd

∫
f(y1, ..., yn)P(t1,...,tn)(dy)µ(dy0) (3.6)

for all f ∈Mb(Rd,R).
Define A := {A1×· · ·×An : A1, ..., An ∈ B(Rd)} and let H be the collection of
measurable functions fulfilling (3.6). We will show that (1)-(3) in Theorem A.2.4
holds true for this choice of A and H .
(1): A set from A has the form A1 × · · · × An, and we have assumed that
functions of the form 1A1×···×An are in H .
(2): By the general properties of integrals, we have that if f, g is bounded and
measurable and fulfills equation (3.6), then we have that

E[f(Yt1 , ..., Ytn) + g(Yt1 , ..., Ytn)] = E[f(Yt1 , ..., Ytn)] + E[g(Yt1 , ..., Ytn)]

=
∫
Rd

∫
f(y1, ..., yn)P(t1,...,tn)(dy)µ(dy0)

+
∫
Rd

∫
g(y1, ..., yn)P(t1,...,tn)(dy)µ(dy0)

=
∫
Rd

∫
(f(y1, ..., yn) + g(y1, ..., yn))P(t1,...,tn)(dy)µ(dy0).

The same principle applies for cf .
(3): We let (fk)k∈N be an increasing sequence in H . By Monotone Convergence
(Theorem A.2.3)

E[ lim
n→∞

fk(Yt1 , ..., Ytn)] = lim
k→∞

E[fk(Yt1 , ..., Ytn)]

= lim
k→∞

∫
Rd

∫
fk(y1, ..., yn)P(t1,...,tn)(dy)µ(dy0)

=
∫
Rd

∫
lim
k→∞

fk(y1, ..., yn)P(t1,...,tn)(dy)µ(dy0).
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3.4. Distribution of Markov Processes

We conclude that H contains all bounded functions that are measurable with
respect to σ(A ) = B(Rd)n. Now assume that the statement holds true for
n ≥ 1. Let 0 < t1 < t2 · · · < tn < tn+1 and A1, ..., An, An+1 ∈ B(Rd).

P(Yt1 ∈ A1, ..., Ytn ∈ An, Ytn+1 ∈ An+1)
= E[E[1A1×···×An×An+1(Yt1 , ..., Ytn , Ytn+1)|Ftn ]]
= E[1A1×···×An(Yt1 , ..., Ytn)E[1An+1(Ytn+1)|Ftn ]]
= E[1A1×···×An(Yt1 , ..., Ytn)Ptn,tn+1−tn(1An+1(Ytn))].

Here we used the Tower Property, the Markov property of Y and that
1A1×···×An = 1A1×···×An−11An . By the induction assumption and the fact
that

f(Yt1 , ..., Ytn) := 1A1×···×An(Yt1 , ..., Ytn)Ptn,tn+1−tn(1An+1(Ytn))

is bounded and measurable we can write

E[1A1×···×An(Yt1 , ..., Ytn)Ptn,tn+1−tn(1An+1(Ytn))]

=
∫
Rd

∫
· · ·

∫
1A1×···×An(y1, ..., yn)Ptn,tn(1An+1(yn))

Ptn−1,tn(yn−1, dyn) · · ·P0,t1(y0, dy1)PY0(dy0),

which can be rewritten to the desired form.
We show the ’if part’ of the statement. We assume that we can write the finite
dimensional distribution of (Yt)t≥0 as in Equation (3.5). We want to show that

E[1A1{Yt∈B}] = E[1APs,t(Ys, B)]

for all A ∈ FY
s and t ≥ s. We start of showing the identity for a intersection

stable generator system for FY
s , namely G := {{Yu1 ∈ R1, ..., Yun ∈ Rn} : n ∈

N, 0 ≤ u1 < · · · < un ≤ s,R1, ..., Rn ∈ B(Rd)} (see Section 2.3). Now we
choose a set A ∈ G . Remark we can always assume that un = s. We write
1A(ω) = 1R1×···×Rn(Yu1 , ..., Yun). For h > 0, we have that

E[1A1{Yt∈B}] = E[1R1×···×Rn×B(Yu1 , ..., Yun−1 , Ys, Yt)]

=
∫
Rd

∫
R1

· · ·
∫
Rn

∫
B

1Ps,t(yn, dyn+1)Pun−1,s(yn−1, dyn)

· · ·P0,u1(y0, dy1)µ0(dy0)

=
∫
Rd

∫
R1

· · ·
∫
Rn

Ps,t(yn, B)Pun−1,s(yn−1, dyn)

· · ·P0,u1(y0, dy1)µ0(dy0)
= E[1APs,t(Ys, B)].

This shows the Markov property (P(Yt ∈ B|FY
s ) = Ps,t(Ys, B)) by in [Bal17,

Remark 4.4] because for A ∈ FY
s

E[1AE[1{Yt∈B}|F
Y
s ]] = E[1A1{Yt∈B}]

and that Ps,t(Ys, B) is FY
s -measurable. �
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The proof of the following theorem is by and large the same as given in
[Ped20, Lemma 7.3].

Theorem 3.4.3. Let (Ps,t)t≥s≥0 be an Markov transition group on (Rd,B(Rd)).
Then there exist a stochastic process, (Yt)t≥0, that meets the condition that

E[f(Yt)|FY
s ] = Ps,t(f(Ys))

for all t ≥ s ≥ 0 and for all measurable functions, f . Here (FY
t )t≥0 is the

natural filtration for (Yt)t≥0.

Proof. (§) Define the measure on Rdn

νtσ(1),...,tσ(n)(Bσ(1) × · · · ×Bσ(n))

=
∫
Rd

∫
B1

· · ·
∫
Bn

1Ptn−1,tn(yn−1, dyn) · · ·P0,t1(y0, dy1)µ0(dy0).

for all permutations, σ, on {1, ..., n}, where 0 ≤ t1 < t2 < · · · < tn. Let
(s1, ..., sm) ∈ [0,∞)m. If s1 = s2 we define

νs1,s2,s3,...,sm(B1 ×B2 ×B3 × · · · ×Bm)
= νs1,s3,...,sm(B1 ∩B2 ×B3 × · · · ×Bm),

for all B1, ..., Bm ∈ B(Rd).
We want to show that this measure fulfills the two conditions in Theorem A.1.15.
We see right away that this measure fulfills (A.1).
We want to show that it also fulfills (A.2). It will be sufficient to show that

νt1,...,ti,...,tn(B1 × · · · × Rd × · · · ×Bn)
= νt1,...,ti−1,ti+1,...,tn(B1 × · · ·Bi−1 ×Bi+1 × · · · ×Bn),

for all n ∈ N and 0 ≤ t1 < t2 < · · · < tn. We make the following calculation:∫
Rd
· · ·

∫
Bi−1

∫
Rd

∫
Bi+1

· · ·
∫
Bn

1Ptn−1,tn(yn−1,dyn)

· · ·Pti,ti+1(yi, dyi+1)Pti−1,ti(yi−1, dyi) · · ·P0,t1(y0, dy1)µ0(dy0)

=
∫
Rd
· · ·

∫
Bi−1

∫
Bi+1

· · ·
∫
Bn

1Ptn−1,tn(yn−1,dyn)

· · ·Pti−1,ti+1(yi−1, dyi+1)Pti−2,ti−1(yi−2, dyi−1)
· · ·P0,t1(y0, dy1)µ0(dy0),

which gives us that

νt1,...,ti−1,ti,ti+1,...,tn(B1 × · · · ×Bi−1 × Rd ×Bi+1 × · · · ×Bn)
= νt1,...,ti−1,ti+1,...,tn(B1 × · · · ×Bi−1 ×Bi+1 × · · · ×Bn).

By Theorem A.1.15 we have that there exist a probability space (Ω,F ,P) and
a stochastic process (Yt)t≥0 on the space such that for all n ∈ N, 0 ≤ t1 < t2 <
· · · < tn and B1, ..., Bn ∈ B(Rd):

P(Yt1 ∈ B1, ..., Ytn ∈ Bn) = νt1,...,tn(B1 × · · · ×Bn).

By Lemma 3.4.2 we have that (Yt)t≥0 is a Markov process with the Markov
transition group (Ps,t)t≥s≥0. �
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3.4. Distribution of Markov Processes

Remark 3.4.4. We notice here, that we can choose the distribution of Y0 freely.

In [Bal17, Example 6.1] the example of a Brownian motion as a Markov
process is given. This is shown by specifying the Markov transition function of
the Brownian motion and then showing that Equation (3.3) holds true in this
case. Instead, in the following example, we show that the finite dimensional
distribution of a Brownian motion can be expressed as in Lemma 3.4.2, with
the Markov transition function given in [Bal17, Example 6.1].

Example 3.4.5. (§§) Define a transition kernel (Pt)t≥0 as

Pt(x,A) :=
∫
A

1√
2πt

exp(− (y − x)2

2t )dy,

for t > 0, x ∈ R and A ∈ B(R). In [Bal17, Example 6.1] they show it is a
Markov transition function.
Let B = (Bt)t≥0 be a one-dimensional Brownian motion and let (Ft)t≥0 be
the filtration generated B. We show that the finite dimensional distribution
of the Brownian motion has the distribution described in Equation (3.5). Let
A1, ..., An ∈ B(R), t1 < ... < tn and let µX|Y be the conditional law of X given
Y . By using theory for conditional Gaussian laws from [Bal17, Section 4.4], we
find that

Btn |(Btn−1 , ..., B1) ∼ N(Btn−1 , tn − tn−1) = Ptn−tn−1(Btn−1 , ·).

This gives us that
Btn |(Btn−1 , ..., B1) ∼ Btn |Btn−1

So we have that

E[1{Btn∈An}|(Btn−1 , ..., Bt1)] = Ptn−tn−1(Btn−1 , An),

and that

E[1{Btn−1∈An−1}Ptn−tn−1(Btn−1 , An)|(Btn−2 , ..., Bt1)]

=
∫
An−1

Ptn−tn−1(y,An)Ptn−1−tn−2(Btn−2 , dy),

and then we can take the conditional expectation of the expression

1{Btn−2∈An−2}

∫
An−1

Ptn−tn−1(y,An)Ptn−1−tn−2(Btn−2 , dy)

with respect to (Btn−3 , ..., Bt1) to arrive at∫
An−2

∫
An−1

Ptn−tn−1(yn−1, An)Ptn−1−tn−2(yn−2, dyn−1)Ptn−2−tn−3(Btn−3 , dyn−2).

By successive use of the Tower Property and by using the system we just derived,
we obtain:

P(Bt1 ∈ A1, ..., Bt1 ∈ An) = E[1{Btn∈An,...,Bt1∈At1}]

=
∫
A1

· · ·
∫
An

1Ptn−tn−1(xn−1, dxn) · · ·Pt1(0, dx1).

The 0 comes from the fact that B0 almost surely. By Lemma 3.4.2 we obtain
that the Brownian motion is a Markov process.

�
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3.5 Example: Diffusion

We argue that a diffusion (defined in Theorem 2.8.4) is a Markov process,
following the presentation from [Bal17, Section 9.7].
Let B := (Bt)t≥0 be an m-dimensional Brownian motion and let (Ft)t≥0 be
the filtration generated by B. Let σ and b be defined as in Section 2.8 fulfilling
condition (i) and (ii) from Theorem 2.8.4. By Theorem 2.8.4 there exists a
stochastic process ξ := (ξs)s∈[u,T ] ∈M2[u, T ], such that

ξt = η +
∫ t

u

b(s, ξs)ds+
∫ t

u

σ(s, ξs)dBs, t ∈ [u, T ]. (3.7)

We show that the multidimensional stochastic integral can be approximated
almost surely by a multidimensional integral of elementary processes (as it is
the case for the one dimensional stochastic integral).

Lemma 3.5.1. Let (Σ(t))t∈[0,T ] ∈ M2[0, T ] be a stochastic process, that takes
values in Mat(d,m). Then there exist a sequence of elementary stochastic
processes (Σ(k))k∈N, that takes values in Mat(d,m), such that

∫ T
0 Σ(k)(s)dBs →∫ T

0 Σ(s)dBs almost surely for k →∞.

Proof. (§§§) Let (i, j) ∈ {1, ...,m} × {1, ..., d}. As Σi,j is in M2[0, T ], the
stochastic integral

∫ T
0 Σi,j(s)dBj(s) is defined as the L2 limit of the sequence∫ T

0 Σ(n)
i,j (s)dBj(s), where (Σ(n)

i,j )n∈N is an approximating sequence of elementary
processes (see [Bal17, Lemma 7.2] for existence of such a sequence of processes).
By [Bal17, Proposition 1.5] this implies that there exist a subsequence (ni,jk )k∈N
such that the convergence is almost sure, that is∫ T

0
Σ(ni,j

k
)

i,j (s)dBj(s)
a.s.→

∫ T

0
Σi,j(s)dBj(s), (3.8)

for k →∞. Recall that the multidimensional stochastic integral is a vector of
sums of one dimensional stochastic integrals. This leads to the conclusion that
if we let (Σ(k))i,j := Σ(ni,j

k
)

i,j for all (i, j) ∈ {1, ..., d} × {1, ...,m}, then∫ T

0
Σ(k)
s dBs →

∫ T

0
ΣsdBs

almost surely for k →∞. �

Lemma 3.5.2. [Bal17, Lemma 9.3] Let (Bt)t≥0 be an m-dimensional Brownian
motion. Let N be the null sets of F . Let G u := σ(N , {Bt − Bu : t ≥ u})
for u ≥ 0 be the sigma algebra generated by the increments of B after u. Let
Σ := (Σt)t≥0 ∈M2[0, T ] be a stochastic process that takes values in Mat(d,m).
Assume for all s ≥ u, that Σs is G u measurable. Then

∫ t
u

ΣsdBs is G u-
measurable.

Proof. (§) Assume that (Σs)u≤s≤T is of the form
∑n
i=1 ϕi1[ti,ti+1) (elementary

process), where ϕi is G u-measurable. This gives us that∫ t

u

ΣsdBs =
n∑
i=1

ϕi(Bti+1 −Bti),
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3.5. Example: Diffusion

which is again G u-measurable because Bti+1 −Bti can be written as (Bti+1 −
Bu)− (Bti − Bu). Let (Σ(n))n∈N be a sequence of elementary processes such
that

∫ t
u

Σ(n)
s dBs converges almost surely to

∫ t
u

ΣsdBs. Such a sequence exist by
Lemma 3.5.1. By Lemma 2.2.9 we conclude that

∫ t
u

ΣsdBs is G u-measurable. �

The following consideration and calculation is taken directly from [Bal17,
pp. 275–276]: We can write ξη,ut for the solution of Equation (3.7). Let s ∈ [u, t].
By utilizing the linearity of integrals, we obtain:

ξu,ηt = η +
∫ s

u

b(v, ξu,ηt )dv +
∫ s

u

σ(v, ξu,ηt )dBv

+
∫ t

s

b(v, ξu,ηt )dv +
∫ t

s

σ(v, ξu,ηt )dBv

= ξu,ηs +
∫ t

s

b(v, ξu,ηt )dv +
∫ t

s

σ(v, ξu,ηt )dBv = ξ
s,ξu,ηs
t ,

making ξs,ξ
u,η
s

t a solution to the stochastic differential equation

dζt = b(t, ζt)dt+ σ(t, ζt)dBt, t ∈ [s, T ],
ζs = ξu,ηs .

The next result is a consequence of Theorem 2.8.4, as a process from M2[u, T ]
is adapted. But as we have not shown this result, it is still relevant to give a
proof here.

Lemma 3.5.3. ξu,ηs is Fs-measurable.

Proof. (§§) We argue that if (ζt)t∈[u,T ] is progressively measurable, then∫ ·
u
b(v, ζv)dv and

∫ ·
u
σ(v, ζv)dBv are progressively measurable as well.∫ r

u
σ(v, ζv)dBv is the L2-limit of Fr-measurable stochastic variables, so there

exist a subsequence, such that it is the almost sure limit of Fr-measurable
stochastic variables. By Lemma 2.2.9

∫ r
u
σ(v, ζv)dBv is Fr-measurable. This

holds for all r ∈ [u, T ], so it is adapted to (Ft)t≥0. By
∫ ·
u
σ(v, ζv)dBv we

understand the continuous modification of the process ([Bal17, page 195]).
This implies by Lemma 2.4.3 it is progressively measurable. The following
considerations on the Lebesgue integral of stochastic processes is given in [Bal17,
Example 2.2]. As the integral

∫ r
u
b(v, ζv)dv is defined ω by ω it is continuous in

r. As

Φs : [u, s]× Ω→ Rd

(v, ω) 7→ b(v, ζv(ω))

is (B([u, s])⊗Fs,Bd)-measurable (b(t, x) is measurable). By Fubini’s Theorem,
the mapping

ω 7→
∫ s

u

Φs(v, ω)dv =
∫ s

u

σ(v, ζv)dv

is Fs-measurable. So it is progressively measurable. As the first element in the
Picard iteration ζ(0)

t = η is progressively measurable, the statement is true for
all n ∈ N, and therefore also holds true for the limit. �
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The relation between a solution to a stochastic differential equation and
its starting value will now be examined. We take a look at the stochastic
differential equation with the starting value being a constant:

dζt = b(t, ζt)dt+ σ(t, ζt)dBt, t ∈ [s, T ],
ζs = x x ∈ Rd

(3.9)

A solution to this differential equation can be written as (ξs,xt )t∈[s,T ].

The idea for the proof of the following lemma is given in [Bal17, p. 276].
It is written in full length below.

Lemma 3.5.4. ξs,xt is independent of Fs for all t ∈ [s, T ].

Proof. (§) Let N be the null sets of the complete probability space (Ω,F ,P).
Remark that G s := σ(N , {Bt −Bs : t ≥ s}) is independent of Fs. Again we
prove this by using the Picard iteration. We show by induction, that ζ(n)

t is
G s-measurable for t ∈ [s, T ] and n ∈ N. Set ζ(0)

t := x for all t ∈ [s, T ]. Assume
for an n ∈ N, that ζ(n)

t is G s-measurable for all t ∈ [s, T ]. By Lemma 3.5.2
we have that

∫ t
s
σ(v, ζ(n)

v )dBv is G s-measurable. Also x and
∫ t
s
b(v, ζ(n)

v )dv
are G s-measurable, which makes ζ(n+1)

t G s-measurable. As G s is a σ-algebra,
ξt := limn→∞ ζ

(n)
n is G s-measurable and a solution to Equation (3.9). �

In [Bal17, Theorem 9.9] it is shown that for every ω ∈ Ω; ζs,xt is continuous
in all three variables (t, s, x). Especially it is continuous in x. Define
ψ(x, ω) := ζs,xt (ω). Conclude that the function

ψ : Rd × Ω→ Rd

(x, ω) 7→ ψ(x, ω),

is (B(Rd) ⊗ F ,B(Rd))-measurable (see Lemma 2.4.4). Conclude that
ψ(X(·), ·) : Ω→ Rd is also measurable by Lemma 5.1.3, as it is the composition
of two measurable functions (Lemma A.1.8(ii)).

Theorem 3.5.5. [Bal17, p. 276] (ξu,ηt )t∈[u,T ] is an (Ft)t≥0 Markov process.

Proof. (§) Let u ≤ s ≤ t ≤ T and remark that ξu,ηt = ξ
s,ξu,ηs
t . By the previous

argument, we have that
ψ(ξu,ηs (·), ·) := ξ

s,ξu,ηs
t

is measurable. By Lemma 3.5.4 and Lemma 3.5.3 we have that ψ(x, ω) is
independent of Fs and that ξu,ηs is Fs-measurable. Let f ∈Mb(Rd,R) and use
Lemma 2.6.1 to conclude that

E[ξu,ηt |Fs] = E[ξs,ξ
u,η
s

t |Fs] = Φ(ξu,ηs ),

where Φ(x) = E[φ(x, ·)], which is a measurable function by Fubini’s Theorem
(Theorem A.1.10). Thus E[ξu,ηt |Fs] is σ(ξu,ηs )-measurable. Hence it is a Markov
process with respect to (Ft)t≥0. �
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The following example of the geometric Brownian motion as the solution to
a differential equation is examined in many textbooks on stochastic calculus (see
[Bal17, Example 9.2]). In the following example we will not solve a stochastic
differential equation, but instead turn it around and show that the geometric
Brownian motion can be written as the solution to a differential equation using
the Itô formula.

Example 3.5.6. (§§) Let B be a one dimensional Brownian motion and let
x0, a, b ∈ R. Define the process

ξt := x0 exp(at+ bBt),

for t ∈ [0,∞). Now define the function

g(t, x) = x0 exp(at+ bx)

for (t, x) ∈ [0,∞) × R. This function is continuously differentiable infinitely
often in both variables. Remark also that Bt =

∫ t
0 dBs. So it is a Itô process

with u = 0 and v = 1. By Theorem 2.8.2 we get that

ξt = x0 +
∫ t

0
(aξs + 1

2b
2ξs)ds+

∫ t

0
bξsdBs.

This makes (ξt)t≥0 a solution to the differential equation

dζt = (a+ 1
2b

2)ζtdt+ bζtdBt, t ∈ [0,∞)

ζ0 = x0.

Remark that the functions y 7→ (a+ 1
2b

2)y and y 7→ by satisfies the conditions
from Theorem 2.8.4, namely global linear growth and the Lipschitz condition.
We show that ξt ∈M2[0, T ] for all T > 0. Obviously ξt is right continuous and
thereby progressively measurable. As ξt is either positive or negative everywhere,
we can utilize Fubini’s Theorem (Theorem A.1.10) to conclude that

E[
∫ T

0
|ξs|2ds] =

∫ T

0
E[|x0|2 exp(2at+ 2bBt)]ds

= |x0|2
∫ T

0
exp(2(b+ a)t)ds <∞.

We conclude that (ξt)t≥0 is a diffusion. Especially it is an example of a Markov
process.

�

As we shall see later, a sufficient condition for a process to be a Markov
process is the one of independent increments. It is easy, by the Freezing Lemma
to check that this is the case. The following example serves as an example
to show that the condition is not necessary. The example is the one of the
Brownian bridge. As an exercise we show that the Brownian bridge is a diffusion
and that it does not have independent increments.
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Example 3.5.7. [Bal17, Example 8.5](§§) The Brownian bridge (see for example
[Bal17, Exercise 4.15]) is a well known example of a Gaussian process. We let B
be a standard Brownian motion. We define the Brownian bridge for t ∈ [0, 1] as

bt = Bt − tB1.

We look at the stochastic differential equation

dζt = − ζt
(1− t)dt+ dBt

ζ0 = 0
(3.10)

for t < 1. We start off solving the homogeneous differential equation;
dζt = − ζt

(1−t)dt. By the chain rule of differentiation and the fundamental

rule of fundamental rule of calculus, ξ1(t) := e
−

∫ t

0
1

(1−s)ds can be shown to solve
it. We can compute that ξ1(t) = (1− t). Let ξ2(t) be another stochastic process
and define ξt = ξ1(t)ξ2(t). As in [Bal17, Example] we will choose ξ2(t) such
that ξt is a solution to the stochastic differential equation in 3.10. By [Bal17,
Proposition 8.1] (with 〈ξ1, ξ2〉t), we get that

dξt = ξ1(t)dξ2(t) + ξ2(t)dξ1(t) = ξ1(t)dξ2(t)− ξ2(t)ξ1(t)
(1− t) dt.

. Now assume that dξ2(t) = 1
(1−t)dBt. Then ξ2(t) =

∫ t
0

1
(1−s)dBs, and

ξt = ξ1(t)ξ2(t) = (1− t)
∫ t

0
1

(1−s)dBs is a solution to Equation (3.10). Remark
that ξ0 = 0. We conclude that the Brownian bridge is a diffusion, and therefore
a Markov process. We show that b and Y are both Gaussian and that their
finite dimensional distribution have the same covariance matrix. As 1

(1−s) are a
deterministic function, by [Bal17, Proposition 7.1] Yt is Gaussian with mean 0.
Let 0 ≤ s ≤ t < 1.

E[YsYt] = (1− t)(1− s)E[(
∫ s

0

1
1− v dBv)

2]

= (1− t)(1− s)
∫ s

0

1
(1− v)2 dv = s(1− t).

Here we used the Itô isometry and that E[(
∫ s

0
1

1−vdBv)(
∫ t
s

1
(1−v)dBv)] = 0

because
∫ s

0
1

1−vdBv and
∫ t
s

1
(1−v)dBv are independent. Moreover we calculate

E[btbs] = E[(Bt − tB1)(Bs − sB1)] = s− st− ts+ ts = s(1− t).

We conclude that b and Y are equivalent.
At last we show that the Brownian bridge does not have independent increments.
Let 0 ≤ u < s < t < 1:

E[(bt − bs)(bs − bu)] = E[(Bt −Bs − (t− s)B1)(Bs −Bu − (s− u)B1)]
= (t− s)(s− u)− (s− u)E[(Bt −Bs)B1]− (t− s)E[B1(Bs −Bu)]
= (t− s)(s− u)− 2(s− u)(t− s) = −(t− s)(s− u),

which is different from 0.

�
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CHAPTER 4

Lévy Processes

Lévy processes are stochastic processes enjoying certain properties. Examples
of such processes are Brownian motions and Poisson processes. Throughout
the thesis, Lévy processes will play the role as base process in the time changed
process under examination. Also choosing the time process to be a Lévy process
serves as an interesting example, and is the concept known as subordination.
In this chapter, let again Y := (Yt)t≥0 be a stochastic process taking values
in (Rd,Bd) defined on a filtered probability space (Ω,F ,F,P). We let Y be
F-adapted.

4.1 Definition of Lévy Processes

In the following we define Lévy processes, F-Lévy processes and Lévy processes
in law.

Definition 4.1.1. [Sat13, Definition 1.6] and [Ped20, Definition 9.5].
Consider the following conditions:

(1) Independent increments: Let n ∈ N. For 0 ≤ t0 < t1 < t2 < ... < tn,
Lt0 , Lt0 − Lt1 , ..., Ltn − Ltn−1 are independent.

(1’) For t, s ≥ 0. Lt+s − Lt is independent of Ft.

(2) L0 = 0 almost surely.

(3) Stationary increments: Lt+s − Ls
d= Lt for s, t ≥ 0.

(4) Stochastic continuity: Let ε > 0 and t0 ≥ 0. Then

lim
t→t0

P(|Lt0 − Lt| > ε) = 0.

(5) F-adapted.

(6) The càdlàg property: There exist Ω0 ∈ F such that P(Ω0) = 1 and
for all ω ∈ Ω0, Lt(ω) has left limits and is right continuous.

If L meets (1), (2), (3) and (4) it is a Lévy process in law.
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If L meets (1’), (2), (3), (5) and (6), we call it an F-Lévy process.
If L meets (1), (2), (3) and (6) it is called a Lévy process.
Remark 4.1.2. An (Ft)t≥0-Lévy process is a Lévy process, and a Lévy process
is an FL-Lévy process, where FL is its natural filtration (see e.g. [Ped20,
Proposition 9.6]).
Remark 4.1.3. If L is a Lévy process in law, there exist another process L′ that
is a Lévy process and such that the two processes are modifications. This is
stated and proved in [Sat13, Theorem 11.5]

�

In [Sat13] condition (4) is included in the definition of a Lévy process but it
is not included in the definition in [Ped20]. The following argument shows that
one can omit this condition, when one has the condition of càdlàg paths. This
gives us one less condition to check when demonstrating that a given process
is a Lévy process. In [Sat13, p. 4] he claims that if a stochastic process meets
condition (1)-(3), condition (4) can be reduced to

lim
t↓0

P(|Lt| > ε) = 0,

for all ε > 0. This seems reasonable, but in the following lemma we proof it
and use it.

Lemma 4.1.4. A Lévy process is a Lévy process in law.

Proof. (§§) The statement is equivalent to the statement that a Lévy process
fulfills condition (4). We deduce it by using the condition of stationary
increments and the càdlàg property. The condition of stochastic continuity can
be reformulated to this: For all δ, ε > 0 and t0 ≥ 0, there exist a γ > 0 such
that

P(|Lt0 − Lt| > ε) < δ for |t0 − t| < γ.

Let ε, δ > 0 be given. Let Ω0 be the space where L is càdlàg and where L0 = 0.
Then

P(|L1/k − L0| > ε) = P(|L1/k| > ε).

Define the sets Ak = Ω0 ∩ {|Lt| ≤ ε for 0 ≤ t ≤ 1
k} for all k ∈ N. Remark that

Ak ⊆ Ak+1 for all k ∈ N. For ω ∈ Ω0, there exists a k ∈ N such that ω ∈ Ak by
the right continuity of the paths. Consequently ∪k∈NAk = Ω0. By properties of
measures (see [Tho14, Theorem 1.3.4(v)])

1 = P(Ω0) = lim
k→∞

P(∪ki=1Ai).

This ensures the existence of aK ∈ N such that P(AK) > 1−δ. Thus P(ACK) < δ.
ACK = ΩC

0 ∪ {|Lt| > ε for some 0 ≤ t ≤ 1
K }. As {|Lt| > ε} is contained in this

set for t ≤ 1
K , clearly P(|Lt| > ε) < δ for 0 ≤ t ≤ 1

K .
Now let t0 ≥ 0 be given and let t be such that σ := |t0 − t| < 1

K . Then as
|Lt0 − Lt| = |Lt − Lt0 | and by stationary increments, we obtain:

P(|Lt0 − Lt| > ε) = P(|Lσ − L0| > ε) = P(|Lσ| > ε) < δ.

�
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By the definition of an F-Lévy process we have that Lt+s−Ls is independent
of Fs and that Lt+s−Ls is equal in distribution to Lt. In the following lemma
we show that the definition of an F-Lévy process actually secures us that the
whole process (Lt+s − Ls)t≥0 is independent of Fs. Also we show that the
process (Lt+s−Ls)t≥0 is equivalent to (Lt)t≥0. The following lemma is a special
case of [Ped20, Theorem 9.15], we give a different proof here. The idea of the
matrix transformation comes from [Ped20] and will also be used in later proofs.

Lemma 4.1.5. Let L be an F-Lévy process and s be a positive real number. Then
(Lt+s − Ls)t≥0 is independent of Fs and is equivalent to L.

Proof. (§§) Assume that L is an F-Lévy process. Let n ∈ N and 0 ≤ t1 < t2 <
· · · < tn. By stationary increments of L, we have that

Lti+s − Lti−1+s
d= Lti−ti−1

d= Lti − Lti−1 ,

which by the property of independent increments allows us to conclude that

(Lt1+s−Ls, Lt2+s−Lt1+s, ..., Ltn+s−Ltn−1+s)
d= (Lt1 , Lt2−Lt1 , ..., Ltn−Ltn−1).

There exist a 1 − 1 matrix transformation sending the left hand side to
(Lt1+s−Ls, Lt2+s−Ls, ..., Ltn+s−Ls) and the right hand side to (Lt1 , ..., Ltn).
This matrix (A) is n × n with Ai,j = 1 when i ≤ j and 0 else. This is an
invertible matrix, so by the properties of characteristic functions of transformed
random vectors (see Lemma A.1.4(3)), we conclude that

(Lt1+s − Ls, Lt2+s − Ls, ..., Ltn+s − Ls)
d= (Lt1 , ..., Ltn).

We conclude that L is equivalent to the processes (Ls+t − Ls)t≥0.
We show that (Ls+t − Ls)t≥0 is independent of Fs. Let X be an Fs-
measurable stochastic vector. We look at the characteristic function of the vector
(Lt1+s − Ls, Lt2+s − Lt1+s, ..., Ltn+s − Ltn−1+s, X). Let θ1, ..., θn, θn+1 ∈ Rd.

E[ei〈θn+1,X〉
n∏
i=1

ei〈θi,(Lti+s−Lti−1+s)〉],

where t0 := 0. By use of the Tower Property (Proposition A.1.11) with Ftn−1+s,
we obtain

E[ei〈θn+1,X〉
n∏
i=1

ei〈θi,(Lti+s−Lti−1+s)〉]

= E[ei〈θn+1,X〉
n−1∏
i=1

ei〈θi,(Lti+s−Lti−1+s)〉]E[ei〈θi,(Ltn+s−Ltn−1+s)〉].

Doing this successively (exactly as it is done in the proof [Ped20, Proposition
9.6]) with Ftn−2+s, ...,Fs we obtain that (Lt1+s−Ls, Lt2+s−Lt1+s, ..., Ltn+s−
Ltn−1+s) is independent of X, as the characteristic function can be split into a
product of their characteristic functions. As (Lt1+s − Ls, ..., Ltn+s − Ls) is a
measurable transformation of (Lt1+s − Ls, Lt2+s − Lt1+s, ..., Ltn+s − Ltn−1+s)
it is also independent of X (see [Tho14, Corollary 13.5.5]). �
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In the following example we introduce the Poisson process building on
the theory of random measures, as is the case in [Gra76]. It will be
verified that the Poisson process can be defined as a Poisson random measure
on ((0,∞),B((0,∞))) with intensity measure being the Lebesgue measure.
Although this example is well studied, it is an exercise to show that all the
properties of the Lévy process are in fact fulfilled.

Example 4.1.6. (§§) Let (E,E ) = ((0,∞),B(0,∞)). Let µ be a σ-finite
measure on ((0,∞),B(0,∞)). Then by Lemma 2.5.8, there exist a completely
random point process, N , such that for B ∈ B((0,∞)),

P(N(B) = k) = e−µ(B)µ(B)k

k! ,

for k ∈ N. We call µ the intensity measure of N . Denote N(t) := N((0, t]).
Let ω ∈ Ω be fixed. Denote by Nω(A) the measure N(ω) utilized on the set
A ∈ B(0,∞). We have that

Nω(t)−Nω(s) = Nω((0, s]) +Nω((s, t])−Nω((0, s]) = Nω((s, t]),

for s ≤ t. This ensures that

P(N(t)−N(s) = k) = e−µ((s,t])µ((s, t])k

k! ,

for k ∈ N. Moreover

Nω(0) = Nω((0, 0]) = Nω(∅) = 0.

Let t > 0 and (tn)n∈N be a decreasing sequence of positive numbers such that
ti > t for i ∈ N and tn → t for n→∞. By [Tho14, Theorem 1.3.4(vi)]

lim
n→∞

Nω(tn) = Nω(∩n∈N(0, tn]) = Nω((0, t]) = Nω(t).

This shows right continuity of the process. Let (sn)n∈N be an increasing sequence
of positive numbers such that 0 < si < t and sn → t. Then by [Tho14, Theorem
1.3.4(v)]

lim
n→∞

Nω(sn) = Nω(∪n∈N(0, sn]) = Nω((0, t)).

This shows that the process has left limits. Let n ∈ N and 0 ≤ s1 < t1 ≤ s2 <
t2 ≤ ... ≤ sn < tn. Let A1, ..., An ⊆ N. Then

P(N(t1)−N(s1) ∈ A1, ..., N(tn)−N(sn) ∈ An)
= P(N((s1, t1]) ∈ A1, ..., N((sn − tn]) ∈ An)
= P(N((s1, t1]) ∈ A1) · · ·P(N((sn − tn]) ∈ An),

because N is completely random. This shows that the process has independent
increments.
If we choose µ to be the Lebesgue measure (denoted λ), then for s ≤ t

P(N(t)−N(s) = k) = e−µ((s,t])µ((s, t])k

k!

= e−(t−s) (t− s)k

k! = P(N(t− s) = k),
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4.1. Definition of Lévy Processes

for k ∈ N. Thus the process has stationary increments.
To sum up, the process N with Lebesgue measure as intensity measure is a
Lévy process, because it fulfills (1), (2), (3) and (6) of Definition 4.1.1. As it is
a Lévy process, it holds true that if another process has the same properties, it
is equivalent to N .

�

We can generalize the notion of a Brownian motion, making us able to vary
the mean and the variance. This construction is very general and can be used
to model financial asset prices (see for example [BS15, p. 9]).

Example 4.1.7. (§§) Let (Bt)t≥0 be a d-dimensional Brownian motion. Let
θ ∈ Rd and σ ∈ R. We define a Brownian motion with drift θ and volatility σ
as Bθ,σ := (Bθ,σt )t≥0, where

Bθ,σt := θt+ σBt.

We show that this is a Lévy process. Bθ,σ0 is zero whenever B0 is zero. The
stationary increments comes from the fact that Bθ,σt −Bθ,σs ∼ Nd(θ(t−s), σ2(t−
s)I). For all the ω, where Bt(ω) is càdlág, Bθ,σt (ω) is as well. We see that
θ·(t−s)+σ·(Bt−Bs) is independent of FB

s whereas θs+σBs is FB
s -measurable,

which secures the independent increments of the process.

�

We introduce the inverse Gaussian distribution. This is an infinitely divisible
distribution, and therefore it gives rise to a Lévy process. We call this an inverse
Gaussian process. In [BS15, p. 13], the distribution and the Laplace transform
of the distribution is given. In [Car+03, p. 349] the Laplace transform and an
interpretation of the process are given. We connect the two presentations (i.e.
find common parameters) in order to connect interpretation of the parameters
with the distribution parameters.
The inverse Gaussian process can be shown to be a subordinator. Later we will
time change a Brownian motion with positive drift and volatility σ with an
inverse Gaussian distribution. We will then obtain a Normal inverse Gaussian
process, which is a Lévy process.

Example 4.1.8. (§§) An inverse Gaussian variable, X with parameter a, b > 0
(written IG(a, b)) has the density (given in [BS15, p. 13])

fX(x) =
√

b

2πx3 exp(−
√
ab(ax+ b/x

2 )), x ∈ (0,∞).

Let (Bθ,1t )t≥0 be a one-dimensional Brownian motion with drift θ and volatility 1.
Define the process (Iα)α≥0, where Iα = inf{t : Bθ,1t = α}. Then Iα ∼ IG(θ2, α2)
for all α > 0. We call this an inverse Gaussian process with parameter θ > 0.
By [Car+03, Section 2.1] the Laplace transform is of the form

LI(α)(λ) = E[exp(−λIα)] = exp(−α(
√

2λ+ θ2 − θ)),

for λ > 0. We show this directly:

LI(α)(λ) =
∫ ∞

0

α√
2πx3

exp(θα) exp(−θ
2x+ α2/x

2 ) exp(−λx)dx
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4.2. Regular Convolution Semigroups

=
∫ ∞

0

α√
2πx3

exp(θα) exp(− (θ2 + 2λ)x+ α2/x

2 )dx

Abbreviate by γ the term θ −
√
θ2 + 2λ and calculate:

LI(α)(λ) =
∫ ∞

0

α√
2πx3

exp((γ +
√
θ2 + 2λ)α) exp(− (θ2 + 2λ)x+ α2/x

2 )dx

= exp(γα)
∫ ∞

0

α√
2πx3

exp((
√
θ2 + 2λ)α) exp(− (θ2 + 2λ)x+ α2/x

2 )dx

= exp(γα) = exp(−α(
√
θ2 + 2λ− θ)).

Inside the integral on the second line we have an inverse Gaussian density with
parameters θ2 + 2λ > 0 and α2 > 0.
Remark that I is an increasing process almost surely. Let Ω0 be a subset
of Ω such that P(Ω0) = 1 and for all ω ∈ Ω0, Bθ,10 (ω) = 0 and Bθ,1t (ω) is
continuous. Then for all ω ∈ Ω0; inf{t : Bθ,1t (ω) = α1} ≤ inf{t : Bθ,1t (ω) = α2},
for 0 ≤ α1 ≤ α2.

�

4.2 Regular Convolution Semigroups

A regular convolution semigroup is a family of probability measures enjoying
certain properties. There is a one-to-one correspondence between Lévy processes
and regular convolution semigroups, which will be established in the current
section. In order to introduce regular convolution semigroups, we introduce the
concept of convolution between probability measures. In this section we follow
the introduction in [Ped20] closely.

Definition 4.2.1. [Ped20, p. 106] Let µ and ν be probability measures on Rd.
The convolution between µ and ν (µ ∗ ν) is defined as follows: Let B ∈ B(Rd):

µ ∗ ν(B) =
∫
Rd

∫
Rd
1B(x+ y)µ(dx)ν(dy). (4.1)

�

We will need certain properties for the convolution operation between
measures. The following properties are mentioned without proof on [Sat13,
p. 8]. It is a good exercise to verify the assertions.

Proposition 4.2.2. Let µ and ν be probability measures on (Rd,B(Rd)).

(1) µ ∗ ν is a probability measure on (Rd,B(Rd)).

(2) µ ∗ ν = ν ∗ µ.

(3) Let X and Y be independent stochastic vectors, that takes values in
Rd. Then PX+Y = PX ∗ PY .

Proof. (§§§) of (1):

µ ∗ ν(∅) =
∫
Rd

∫
Rd
1∅(x+ y)µ(dx)ν(dy) =

∫
Rd

∫
Rd

0µ(dx)ν(dy) = 0.
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4.2. Regular Convolution Semigroups

Also

µ ∗ ν(Rd) =
∫
Rd

∫
Rd
1Rd(x+ y)µ(dx)ν(dy) =

∫
Rd

∫
Rd

1µ(dx)ν(dy) = 1.

Let (Ai)i∈N ∈ B(Rd) be a sequence disjoint sets.

µ ∗ ν(∪i∈NAi) =
∫
Rd

∫
Rd
1∪i∈NAi(x+ y)µ(dx)ν(dy)

=
∫
Rd

∫
Rd

lim
k→∞

k∑
i=1

1Ai(x+ y)µ(dx)ν(dy)

= lim
k→∞

∫
Rd

∫
Rd

k∑
i=1

1Ai(x+ y)µ(dx)ν(dy)

=
∞∑
i=1

µ ∗ ν(Ai),

where we usedMonotone Convergence (Theorem A.2.3) and linearity of integrals.
of (2) : Let B ∈ B(Rd), then by Fubini’s Theorem (Theorem A.1.10), we obtain

µ ∗ ν(B) =
∫
Rd

∫
Rd
1B(x+ y)µ(dx)ν(dy)

=
∫
Rd

∫
Rd
1B(x+ y)ν(dx)µ(dy) = ν ∗ µ(B).

of (3) : As X and Z are independent, it holds true for A,B ∈ B(Rd) that
P(X,Y )(A,B) = PX(A)PY (B). Thus for f(x, y) := x + y and B ∈ B(Rd) we
obtain:

P(X + Y ∈ B) =
∫
Rd×Rd

1B(f(x, y))P(X,Y )(dx, dy)

=
∫
Rd

∫
Rd
1B(x+ y)PX(dx)PY (dy) = PX ∗ PY (B).

�

Definition 4.2.3. [Ped20, p. 62] Let d ∈ N. A family of probability measures
(νt)t≥0 on (Rd,B(Rd)) is a regular convolution semigroup if it meets the
following conditions:

(a) ν0 = δ0.

(b) νt+s = νt ∗ νs for t, s ≥ 0, and if tn ≥ 0 and tn → 0, then νtn
w→ δ0.

�

The proof of Lemma 4.2.4 follows the one given in [Ped20, p. 63] closely.

Lemma 4.2.4. Let L be a Lévy process and define νt := PLt for t ≥ 0, then
(νt)t≥0 is a convolution semigroup.
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4.2. Regular Convolution Semigroups

Proof. (§) We need to show that (νt)t≥0 fulfills the conditions above. As L0 = 0
almost surely, then for A ∈ B(Rd)), PL0(A) = δ0(A). Also we have for s, t ≥ 0,
that

νt+s = PLt+s = PLt+s−Ls+Ls
= PLt+s−Ls ∗ PLs
= PLt+s−s ∗ PLs
= PLt ∗ PLs = νt ∗ νs.

Here we used that Lt+s − Ls is independent of Ls, and that Lt+s − Ls
L= Lt.

Let tn ≥ 0 and tn → 0 for n→∞. Then Ltn(ω)→L0(ω) for all ω ∈ Ω, because
it has right continuous paths. By [Bal17, Proposition 1.5], this gives that

νtn = PLtn
w→ PL0 = δ0 = ν0,

which we wanted. �

We prove that a Lévy process is a Markov process and go forward as in
[Ped20, pp. 63–64]. Let (Lt)t≥0 be a Lévy process, and define (νt)t≥0 to be
the regular convolution semigroup where νt := PLt for all t ≥ 0. Now define
(Pt)t≥0, as:

Pt(x,A) := νt(A− x) (4.2)

for A ∈ B(Rd), t ≥ 0 and x ∈ Rd.

Lemma 4.2.5. [Ped20, theorem 9.10(1)] Let (νt)t≥0 be a regular convolution
semigroup. Define (Pt)t≥0 as in (4.2), then it is a time homogeneous Markov
transition function.

Before proceeding, we must make sure that the construction made in
Equation (4.2) has the properties that makes it a Markov transition function.

Lemma 4.2.6. Let Z be a stochastic variable that takes values in Rd. Let
A ∈ B(Rd). Then the function

PZ : Rd ×B(Rd)→ [0, 1]
(x,A) 7→ PZ(A− x)

is a transition kernel.

Proof. (§§§) Fix an x in Rd and let A ∈ B(Rd). A− x = {y − x ∈ Rd : y ∈ A}.
This is just a translation of A by −x, so A − x is a set in B(Rd). Thus
PxZ(·) := PZ(· − x) is a measure on (Rd,B(Rd)).
Fix an A in B(Rd). Consider the function

f : Rd × Rd → R
(x, y) 7→ 1A(x+ y).

This is a B(Rd) ⊗ B(Rd)-measurable function. By Fubini’s Theorem
(Theorem A.1.10)

x 7→
∫
Rd
1A(x+ y)PZ(dy)
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4.2. Regular Convolution Semigroups

is a B(Rd)-measurable function. As∫
Rd
1A(x+ y)PZ(dy) =

∫
Rd
1A−x(y)PZ(dy) = PZ(A− x),

we have the desired properties in order for PZ to be a transition kernel on
(Rd,B(Rd)). �

Now we are equipped to prove Lemma 4.2.5 as in [Ped20, p. 64].

Proof of Lemma 4.2.5. (§) Let νxt (A) := νt(A − x). By an application of the
Monotone Class Theorem (Theorem A.2.4) it holds for every f ∈ Mb(Rd,R)
that ∫

Rd
f(y)Pt(x, dy) =

∫
Rd
f(y)νxt (dy) =

∫
Rd
f(x+ y)νt(dy). (4.3)

We prove that PtPs = Ps+t by using (4.3). Let t, s ≥ 0, A ∈ B(Rd) and x ∈ R.
Then

PtPs(x,A) =
∫
Rd
Ps(y,A)Pt(x, dy) =

∫
Rd
νs(A− y)Pt(x, dy)

By properties of the transition kernels. By the use of (4.3) where we set
f(y) := νs(A− y), which is a bounded and measurable function from Rd → R
by Lemma 4.2.6, then we obtain that f(x+y) = νs(A−x−y) = νs((A−x)−y).
This gives us∫

Rd
νs(A− y)Pt(x, dy) =

∫
Rd
νs((A− x)− y)νt(dy) = νt ∗ νs(A− x)

As νt ∗ νs = νt+s because it is a regular convolution semigroup, we arrive at
PtPs(x,A) = Pt+s(x,A). For the second property we consider that

P0(x,A) = ν0(A− x) = δ0(A− x) = δx(A),

as we wished. �

Now we show that a Lévy process has the Markov property. We use the
ideas an calculations put forward in [Ped20, p. 64].

Theorem 4.2.7. A Lévy process is a Markov process.

Proof. (§) Let L and Y be stochastic processes adapted to the filtration (Ft)t≥0.
Assume that (Lt)t≥0 is a Lévy process on Rd and define νt := PLt for t ≥ 0.
Let (Yt)t≥0 be a Markov process on Rd with the Markov transition function
(Pt)t≥0 defined in (4.2) and let P(Y0 = 0) = 1. Remark that by Theorem 3.4.3
such a process exist. Let f : Rd → R be a measurable and bounded function
and t ≥ s ≥ 0. Then

E[f(Yt)|Fs] = Pt−s(f(Ys)) =
∫
f(y)Pt−s(Ys, dy) =

∫
f(y + Ys)νt−s(dy),

(4.4)

by Equation (4.3). We can easily expand this equality to hold true for functions
taking values in the complex plane by linearity of conditional expectation and
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4.2. Regular Convolution Semigroups

of the integral. We let f(θ) := ei〈θ,Yt−Ys〉. We can now use this identity in the
following calculation:

E(ei〈θ,Yt−Ys〉|Fs) = e−i〈θ,Ys〉E(ei〈θ,Yt〉|Fs)

= e−i〈θ,Ys〉
∫
ei〈θ,z+Ys〉νt−s(dz)

= ei〈θ,Ys−Ys〉
∫
ei〈θ,z〉νt−s(dz)

=
∫
ei〈θ,z〉νt−s(dz)

We take the expectation on both sides:

E(ei〈θ,Yt−Ys〉) =
∫
ei〈θ,z〉νt−s(dz), (4.5)

which by Lemma A.1.4(1) shows that Yt − Ys ∼ νt. The following calculation
shows that Yt − Ys is independent of Fs and presents a solution to [Ped20,
Exercise 46]. Let X be a real Fs-measurable random variable and let θ1 ∈ Rd
and θ2 ∈ R. Then we have, that

E[ei〈(θ1,θ2),(Yt−Ys,X)〉] = E[ei〈θ1,Yt−Ys〉ei〈θ2,X〉]
= E[E[ei〈θ1,Yt−Ys〉ei〈θ2,X〉|Fs]]
= E[ei〈θ2,X〉E[ei〈θ1,Yt−Ys〉|Fs]]

= E[ei〈θ2,X〉]
∫
ei〈θ,z〉νt−s(dz).

As
∫
ei〈θ,z〉νt−s(dz) is the characteristic function of Yt − Ys, we conclude by

Lemma A.1.4(2) that Yt − Ys is independent of every random variable, that
are Fs-measurable, that is Yt − Ys is independent of Fs, hence (Yt)t≥0 has
independent increments. We set s = 0 and obtain that Yt−s

d= Yt − Ys ∼ νt−s.
Conclude that Yt

d= Lt for all t ≥ 0.
Let n ∈ N and 0 ≤ t1 < t2 < ... < tn. The aim of the following considerations
is to show that

Y(t1,t2,...,tn) := (Yt1 , Yt2 , ..., Ytn)T d= (Lt1 , Lt2 , ..., Ltn)T =: L(t1,t2,...,tn).

By the previous considerations

(Yt1 , Yt2 − Yt1 , ..., Ytn − Ytn−1)T d= (Lt1 , Lt2 − Lt1 , ..., Ltn − Ltn−1)T ,

because of the independent increments of the processes. It is not hard to see
that the dn× dn matrix A, satisfying that

A · (Yt1 , Yt2 , ..., Ytn)T = (Yt1 , Yt2 − Yt1 , ..., Ytn − Ytn−1)T

is invertible. Lemma A.1.4(3) secures that

P̂Y(t1,t2,...,tn)(A
T · s) = P̂L(t1,t2,...,tn)(A

T · s)
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for s ∈ Rdn. Let s′ = (AT )−1 · s, and set s′ instead of s we get that

P̂Y(t1,t2,...,tn)(s) = P̂L(t1,t2,...,tn)(s).

By Lemma A.1.4(1) we obtain that Y(t1,...,tn)
d= L(t1,...,tn) for all choices of

t1, ..., tn.
By Lemma 3.4.2 we conclude that for A1, A2, ..., An ∈ Rd:

P(Lt1 ∈ A1, ..., Ltn ∈ An) = P(Yt1 ∈ A1, ..., Ytn ∈ An)

=
∫
Rd

∫
A1

· · ·
∫
An

1Ptn−tn−1(yn−1, dyn) · · ·Pt1−0(y0, dy1)µ(dy0),

which again by Lemma 3.4.2 makes L a Markov process with Markov transition
function (Pt)t≥0. �

Remark 4.2.8. From the proof it is clear that a Lévy process (Lt)t≥0 is a Markov
process with the time homogeneous Markov transition function, (Pt)t≥0, defined
as

Pt(x,A) = PLt(A− x)

for x ∈ Rd and A ∈ B(Rd).

The following example is inspired by [Ped20, Example 9.13]

Example 4.2.9. (§§) Let (Nt)t≥0 be a Poisson process with parameter λ > 0.
In Example 4.1.6 we showed that this is a Lévy process. Define Pt(k,A) :=
PNt(A−k) for k ∈ N and A ⊆ N. By Remark 4.2.8 (Nt)t≥0 is a Markov process
with Markov transition function (Pt)t≥0. We calculate:

Pt(k,A) =
∑

l∈(A−k)∩N

e−lλt
(λt)l

l!

=
∑

l∈A,l≥k

e−(l−k)λt (λt)(l−k)

(l − k)! .

Let (FN
t )t≥0 be the filter generated by the process (Nt)t≥0. For s, t ≥ 0 and

j ∈ N;

P(Nt+s = j|FN
t ) = Ps(Nt, j) = e−(j−N(t))λs (λs)(j−N(t))

(j −N(t))! 1{j≥N(t)}.

Especially

P(Nt+s = j|Nt = k) = Ps(k, j) = e−(j−k)λs (λs)(j−k)

(j − k)! 1{k≥j}.

That is P(Nt+s = j|Nt = k) = P(X = j − k), , where X ∼ Pois(λs).

�
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4.3. Infinitely Divisible Distributions

4.3 Infinitely Divisible Distributions

Infinitely divisible distributions are a class of distributions, that can be written
as a convolution between n identical measures for any n ∈ N. We will show
that the distribution Lt, where L is a Lévy process, is infinitely divisible. Key
references in this section is [Sat13] and [Ped20].

Definition 4.3.1. [Sat13, Definition 7.1] The probability measure µ is called an
infinitely divisible distribution if for all n ∈ N there exists a probability measure
µn such that µ = µnn (µn convoluted with itself n times).

�

In [Ped20, Proposition 9.20] we see that if L is a Lévy process then PLt is
infinitely divisible. Set νt := PLt for all t ≥ 0 and note by Lemma 4.2.4 that
(νt)t≥0 is a regular convolution semigroup. Hence νt = (νt/n)n.

We will need some properties of the characteristic function in conjunction with
the concept of convolution. We state them here without a proof. For proofs of
the statements see [Sat13, Proposition 2.5 (i), (iii), (vii), (viii), page 34 and
Lemma 7.8].

Lemma 4.3.2. [Sat13] Let ν, µ, (µk)k∈N be probability measures on (Rd,B(Rd)):

(a) µ̂ ∗ ν(z) = µ̂(z) · ν̂(z) for all z ∈ Rd.

(b) Assume that µ̂n(z) → µ̂(z) for n → ∞ for all z ∈ Rd. Then µn
w→ µ

for n→∞.

(c) Let ψ be a complex function that is continuous in 0. Assume that
µ̂n(z) → ψ(z) for n → ∞ for all z ∈ Rd. Then ψ(z) is a characteristic
function of some distribution on (Rd,B(Rd)).

(d) If µ is infinitely divisible and µ = µnn. Then µn is unique and
µ̂n(z) = µ̂(z)1/n.

(e) If µ and ν are infinitely divisible µ ∗ ν is infinitely divisible as well.

(f) (Bochner’s Theorem) Let ψ(z) be a complex valued function on Rd, continu-
ous in 0 and ψ(0) = 1. Further assume that for all n ∈ N:

n∑
l,k=1

ψ(zl − zk)ζlζk ≥ 0, for z1, ..., zn ∈ Rd and ζ1, ..., ζn ∈ C. (4.6)

Then ψ(z) is a characteristic function of some distribution on (Rd,B(Rd)).
Also if µ is a distribution on (Rd,B(Rd)), µ̂ is 1 in 0, continuous in 0 and
meets Equation (4.6).

(g) If (µn)n∈N is a sequence of infinitely divisible probability measures and
µn

w→ µ for n→∞, then µ is infinitely divisible.

�
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The following lemma is a combination of [Sat13, Lemma 7.9 and Lemma
7.10(i)]. The proof presented here is an elaboration of the ones given in [Sat13].

Lemma 4.3.3. Let µ be an infinitely divisible distribution on (Rd,B(Rd)).
The definition of the measure µn for n ∈ N can be naturally expanded to
µt for t ∈ [0,∞) and µt is infinitely divisible. Moreover let (Lt)t≥0 be a Lévy
process and define µ := PL1 , then PLt = µt, and the characteristic function
P̂Lt(z) = µ̂(z)t for all z ∈ Rd.

Proof. (§) We let µ1/n be the measure on (Rd,B(Rd)) such that µ = (µ1/n)n,
then this measure will also be infinitely divisible. This comes from the fact that
for k ∈ N, there exist a measure, µ1/kn, such that (µ1/kn)kn = µ. We then have
that ((µ1/kn)k)n = µ by associativity of convolution. Thus (µ1/kn)k has the
same property as µ1/n. By Lemma 4.3.2 (d), µ1/n is unique. Thus

(µ1/kn)k = µ1/n.

This shows that µ1/n is infinitely divisible. By Lemma 4.3.2 (e), µm/n :=
(µ1/n)m is infinitely divisible. Let t ∈ R and (rn)n∈N ∈ Q be a sequence of
rational numbers such that rn → t for n→∞. We have by Lemma 4.3.2 (a) and
(d) that µ̂m/n(z) = µ̂(z)m/n and that µ̂(z)rn → µ̂(z)t. As µ̂(z)rn is continuous
in 0 by Lemma 4.3.2 (f), then µ̂t is continuous in 0 as well. By Lemma 4.3.2
(c) µ̂t is a characteristic function of some distribution on (Rd,B(Rd)). We can
define µt to be the measure having the characteristic function µ̂t. Thus by
Lemma 4.3.2 (b) and (g) µt is infinitely divisible.
By stationary and independent increments of Lévy processes, we can write
µ = (PL1/n)n. That makes PL1/n = µ1/n and PLm/n = µm/n. Now we let
(rn)n∈N ∈ Q such that t ≤ rn and rn → t for n→∞. As L has right continuous
paths, Lrn → Lt almost surely, and by [Bal17, Proposition 1.5] the convergence
also holds true in law. As a consequence

lim
n→∞

P̂Lrn (z) = P̂Lt(z)

for every z ∈ Rd. As PLrn = µrn and thus for all z ∈ Rd, P̂Lrn (z) = µ̂rn(z).
Taking the limit on both sides gives us P̂Lt(z) = µ̂t(z). Again by properties of
the characteristic function PLt = µt. �

Here we present the Lévy-Khintchine representation of infinitely divisible
distributions. The theorem will allow us to characterize Lévy processes. We
state the theorem without giving a proof. Later we will give a full proof of the
uniqueness of the representation (Proposition 4.3.7).

Theorem 4.3.4. [Sat13, Theorem 8.1] Let µ be an infinitely divisible distribution
on (Rd,B(Rd)), then we can write the characteristic function of µ as

µ̂(z) = exp(−1
2 〈z,Az〉+ i〈γ, z〉+∫

Rd
(ei〈z,x〉 − 1− i〈z, x〉1{x:|x|≤1}(x))ν(dx)),

(4.7)
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for z ∈ Rd. A is a d× d positive semi-definite matrix, γ ∈ Rd and ν is a Lévy
measure, i.e. ν({0}) = 0 and∫

Rd
min(1, x2)ν(dx) <∞. (4.8)

This representation is known as the Lévy-Khintchine representation, and (A, ν, γ)
is called the generating triplet of µ.
Remark 4.3.5. If

∫
{|x|≤1} |x|ν(dx) <∞, we can write

µ̂(z) = exp[−1
2 〈z,Az〉+ i〈γ0, z〉+

∫
Rd

(ei〈z,x〉 − 1)ν(dx)],

where A and ν is as in Equation (4.7), but γ0 is different that γ. We call γ0 the
drift, and we can write the alternative generating triple (A, ν, γ0)0, where the
zero in the subscript in the triple indicates that we have changed the 1{x:|x|≤1}
to 0 in the representation.
Remark 4.3.6. By [Sat13, Remark 8.4] there exists a broad class of functions,
C , that we can set instead of the function 1{x:|x|≤1}(x) in the representation of
the characteristic function of µ. If we set f ∈ C instead of 1{x:|x|≤1}(x), we can
find a new generating triplet for µ, (Af , γf , νf )f , where Af = A and νf = ν.
It will be useful in the proof of the theorem that the family of functions,
{1D(ε)(x)}ε∈(0,1), where D(ε) = {x : |x| ≤ ε}, is contained in C .

�

Proposition 4.3.7. [Sat13, Theorem 8.1(ii)] Let µ be an infinitely divisible
distribution on (Rd,B(Rd)). Then the generating triplet, (A, γ, ν), from the
representation Equation (4.7) is unique.

�

For making a proof of the proposition we will need some technical results.
The results are either given as lemmas in [Sat13] or it is taken as given in the
proof of [Sat13, Theorem 8.1(ii)].

Lemma 4.3.8. [Sat13, pp. 40–41] Let x ∈ Rd. Then we have the following
equality: ∫

[−1,1]d
(1− ei〈x,w〉)dw = 2d(1−

d∏
i=1

sin(xi)
xi

),

if xi 6= 0 for all i ∈ {1, ..., d}. If xi = 0 for an i ∈ {1, ..., d}, then set 1 in the
expression instead of sin(xi)/xi.

Proof. (§§§) By [Pou15, Definition 2.25] we have that ei〈x,w〉 = cos(〈x,w〉) +
i sin(〈x,w〉). So∫

[−1,1]d
(1− ei·〈x,w〉)dw

=
∫

[−1,1]d
1dw −

∫
[−1,1]d

[cos(〈x,w〉) + i sin(〈x,w〉)]dw

= 2d −
∫

[−1,1]d
cos(〈x,w〉)dw − i

∫
[−1,1]d

sin(〈x,w〉)dw.
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We can write 〈x,w〉 =
∑d
i=1 xiwi. From [Pou15, Theorem 2.17] (the

trigonometric addition formulas) we have that

sin(s+ t) = sin(s) cos(t) + sin(t) cos(s)

and
cos(s+ t) = cos(s) cos(t)− sin(s) sin(t)

for s, t ∈ R. We also recall the following properties of cosine and sine:
cos(−x) = cos(x) and sin(−x) = − sin(x) for a real number x. Thus∫

[−x,x]
sin(t)dt =

∫
[0,x]

sin(t)dt−
∫

[0,x]
sin(t)dt = 0

and ∫
[−x,x]

cos(t)dt = 2
∫

[0,x]
cos(t)dt = 2 · sin(x).

Keeping these properties in mind we can proceed. First we want to show that∫
[−1,1]d

cos(〈x,w〉)dw = 2d
d∏
i=1

sin(xi)
xi

.

We prove this by induction. Let d = 1 and assume x 6= 0. We use integration
by substitution to calculate the expression

∫
[−1,1] cos(xw)dw. See for example

[Pou15, Theorem 8.22(a)]. Let g(w) = xw. Then we have g′(w) = x.∫
[−1,1]

cos(xw)dw = 1
x

∫
[−1,1]

x cos(xw)dw

= 1
x

∫
[g(−1),g(1)]

cos(g(w))g′(w)dg(w)

= 1
x

[sin(u)]x−x = 2 · sin(x)
x

.

If x = 0 then ∫
[−1,1]

cos(xw)dw =
∫

[−1,1]
cos(0)dw = 2.

We note that by doing a calculation like the one above we obtain that∫
[−1,1] sin(xw)dw = 0 for x ∈ R.

Assume the expression holds true for d− 1 ≥ 1:∫
[−1,1]d

cos(〈x,w〉)dw =
∫

[−1,1]d
cos(

d∑
i=1

xiwi)dw1 · · · dwd

=
∫

[−1,1]d
cos(x1w1) cos(

d∑
i=2

xiwi)dw1 · · · dwd

−
∫

[−1,1]d
sin(x1w1) sin(

d∑
i=2

xiwi)dw1 · · · dwd

=
∫

[−1,1]
cos(x1w1)dw1

∫
[−1,1]d−1

cos(
d∑
i=2

xiwi)dw2 · · · dwd
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−
∫

[−1,1]
sin(x1w1)dw1

∫
[−1,1]d−1

sin(
d∑
i=2

xiwi)dw2 · · · dwd

= 2 · sin(x1)
x1

∫
[−1,1]d−1

cos(
d∑
i=2

xiwi)dw2 · · · dwd − 0

= 2d
d∏
i=1

sin(xi)
xi

.

In the last equality we used the induction assumption.
By induction we can show that i

∫
[−1,1]d sin(〈x,w〉)dw = 0 again using the

trigonometric addition formulas. We leave out this part.
By putting the calculations together, we obtain the expression stated in the
lemma. �

In [Sat13] it is asserted that ρ(dx) = 2d(1 −
∏d
i=1

sin(xi)
xi

)dx is a finite
measure. The following lemma is a part of showing that.

Lemma 4.3.9. Let d ∈ N \ {0} and x ∈ Rd be given such that |x|2 < 1. Then

(1−
d∏
i=1

sin(xi)
xi

) ≤ |x|2,

where it is assumed that sin(xi)
xi

= 1 if xi = 0.

Proof. (§§§) Assume that |x| = 0. Then xi = 0 for all i, and both the right
hand and the left hand side becomes 0. As |x|2 =

∑d
i=1 x

2
i , the assumption

that |x|2 < 1 implies that x2
i < 1 for all i ∈ {1, ..., d}. The Taylor series of the

sine function is given by

sin(x) =
∞∑
k=1

(−1)k−1 x2k−1

(2k − 1)! .

This immediately gives us that sin(x) < x and sin(x) > x− x3/3! for x ∈ (0, 1).
We show the lemma by induction in d.
Let d = 1 and x ∈ (0, 1) such that 0 < |x|2 < 1.

(1− sin(x)
x

) < (1− x− x3/3!
x

) < x2

3! < x2 = |x|2.

This calculation also holds true for x ∈ (−1, 0) because both x 7→ sin(x)/x and
x 7→ (x− x3/3!)/x are symmetric around zero.
Now assume that d > 1 and assume that the claim holds true for d− 1. Also
assume that |x|2 > 0. If xd = 0, the statement is obvious. Otherwise we
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4.3. Infinitely Divisible Distributions

calculate.

(1−
d∏
i=1

sin(xi)
xi

) < (1−
d−1∏
i=1

sin(xi)
xi

(xd − x
3
d/3!

xd
))

= (1−
d−1∏
i=1

sin(xi)
xi

) + x2
d

3!

≤
d−1∑
i=1

x2
i + x2

d

3! < |x|
2,

where we used the induction assumption in the last line. �

Lemma 4.3.10. Let x ∈ Rd. Then∫
[−1,1]d

〈x,w〉dw = 0.

Proof. (§§§) We compute∫
[−1,1]d

〈x,w〉dw =
∫

[−1,1]d

d∑
k=1

xkwkdw1 · · · dwd

=
d∑
k=1

∫
[−1,1]

xkwkdwk = 0.

�

Lemma 4.3.11. [Sat13, Lemma 8.6]

eiu =
n−1∑
k=0

(iu)k

k! + θ · |u|
n

n! ,

where u ∈ R, n ∈ N and θ ∈ C, where |θ| ≤ 1.

Proof. (§§) Prove first that for each u ∈ R and n ∈ N:

in

(n− 1)!

∫ u

0
(u− v)n−1eivdv = θ · |u|

n

n! .

| in

(n− 1)!

∫ u

0
(u− v)n−1eivdv| ≤ | in

(n− 1)! |
∫ u

0
|(u− v)n−1eiv|dv

≤ 1
(n− 1)!

∫ u

0
|u− v|n−1dv

= 1
(n− 1)!

∫ u

0
|v|n−1dv = |u|

n

n! .

As the expression on the left hand side inside the norm is a complex number, it
can be written on the form: a+ ib, where a, b are real numbers. If u = 0, then
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a, b = 0. If u 6= 0 there exist real numbers c, d such that a+ ib = (c+ id) |u|
n

n! .
It follows that

|(c+ id) |u|
n

n! | = |a+ ib| ≤ |u|
n

n! ,

making |c+ id| ≤ 1, thus we have the integral expression on the desired form.
The only thing left to show now is that

eiu =
n−1∑
k=0

(iu)k

k! + in

(n− 1)!

∫ u

0
(u− v)n−1eivdv.

Fix n ∈ N and u ∈ R. First we show that the integral part on the right hand
side can be split up into a new sum:

in

(n− 1)!

∫ u

0
(u− v)n−1eivdv =

n+k∑
j=n

(iu)j

j! + in+k

(n+ k − 1)!

∫ u

0
(u− v)n+k−1eivdv.

It will be sufficient to show the property for k = 1 because n is arbitrary. By
integration by parts, we obtain:

in

(n− 1)!

∫ u

0
(u− v)n−1eivdv

= in

(n− 1)! [−
1
n

(u− v)neiv]u0 + in+1

n!

∫ u

0
(u− v)neivdv

= (iu)n

n! + in+1

n!

∫ u

0
(u− v)neivdv.

Fix l, n ∈ N. Using the triangular inequality for complex numbers and the first
property and the equality just shown, we obtain:

|eiu−(
n−1∑
k=0

(iu)k

k! + in

(n− 1)!

∫ u

0
(u− v)n−1eivdv)|

= |eiu −
n+l−1∑
k=0

(iu)k

k! + in+l

(n+ l − 1)!

∫ u

0
(u− v)n+l−1eivdv|

≤ |eiu −
n+l−1∑
k=0

(iu)k

k! |+ |
in+l

(n+ l − 1)!

∫ u

0
(u− v)n+l−1eivdv|

= |eiu −
n+l−1∑
k=0

(iu)k

k! |+
|u|n+l

(n+ l − 1)! .

As eiu =
∑∞
k=0

(iu)k
k! both parts on the right hand side goes to zero as l goes

to infinity. As l can be chosen arbitrarily big, the desired equality must hold
true. �

Now we are ready to prove the uniqueness of the Lévy-Khintchine
representation. The following is an elaboration of the proof given in [Sat13,
Theorem 8.1(ii)].
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Proof of Proposition 4.3.7. (§§) We start off proving that ei〈z,x〉 − 1 −
i〈z, x〉1D(x) is integrable with respect to ν. Here D denotes {x : |x| ≤ 1}
We assume that |x| ≤ 1. We use Lemma 4.3.11 with n = 2 to write

ei〈z,x〉 = 1 + i〈z, x〉+ θ

2 |〈z, x〉|
2.

Thus

|ei〈z,x〉 − 1− i〈z, x〉| = |1 + i〈z, x〉+ θ

2 |〈z, x〉|
2 − 1− i〈z, x〉|

≤ 1
2 |〈z, x〉|

2 ≤ 1
2 |x|

2|z|2.

The last inequality follows from Cauchy-Schwartz’ inequality for inner products
(see e.g. [Tho14, Theorem 9.1.4(iii)]). For x > 1 we can just use the fact that
|eiu| ≤ 1 for u ∈ R. Thus

|ei〈z,x〉 − 1| ≤ |ei〈z,x〉|+ 1 ≤ 2,

using the triangular inequality for norms. Now we can write

|
∫
Rd
ei〈z,x〉 − 1− i〈z, x〉1D(x)ν(dx)| ≤

∫
Rd
|ei〈z,x〉 − 1− i〈z, x〉1D(x)|ν(dx)

=
∫
D

|ei〈z,x〉 − 1− i〈z, x〉1D(x)|ν(dx)

+
∫
Dc
|ei〈z,x〉 − 1|ν(dx)

≤
∫
D

1
2 |x|

2|z|2ν(dx) +
∫
Dc

2ν(dx)

= 1
2 |z|

2
∫
D

|x|2ν(dx) + 2
∫
Dc

1ν(dx)

≤ max(1
2 |z|

2, 2)
∫
Rd

(|x|2 ∧ 1)ν(dx) <∞.

In the first inequality we use [Tho14, Theorem 5.4.6(iv)] and at last we use the
property of Lévy measures.
If we let 0 ≤ ε < 1, we can let D(ε) := {x : |x| ≤ ε} we can obtain the more
general inequality:

|
∫
Rd
ei〈z,x〉 − 1− i〈z, x〉1D(ε)(x)ν(dx)|

≤ 1
2 |z|

2
∫
D(ε)
|x|2ν(dx) + 2

∫
D(ε)c

1ν(dx) <∞.

The fact that it is less than infinity needs an elaboration. The first part of the
expression is obviously less that infinity. We show that the latter part of the
expression is less than infinity as well:

2
∫
D(ε)c

1ν(dx) = 2
ε2

∫
D(ε)c

ε2ν(dx)

≤ 2
ε2

∫
D(ε)c

(|x|2 ∧ 1)ν(dx) <∞.
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Now let s > 0, then

log(µ̂(sz)) = −1
2s

2〈z,Az〉+ is〈γ, z〉

+
∫
Rd

(ei〈sz,x〉 − 1− i〈sz, x〉1D(x))ν(dx)

In general we can not be sure that the logarithm of a complex number is
unique, but [Sat13, Lemma 7.6] secures in this case that the logarithm is
unique. We just need to observe that µ̂(z) is continuous, log(µ̂(0)) = 0 and
exp(log(µ̂(z))) = µ̂(z).
We want to show that

lim
s→∞

|s−2 log(µ̂(sz)) + 1
2 〈z,Az〉| = 0.

If we take an ε ∈ (0, 1), we can obtain the generating triplet, (A, γε, ν)ε that
fits the representation where we use the function 1D(ε)(x). We write

|s−2 log(µ̂(sz)) + 1
2 〈z,Az〉|

= |s−1i〈γε, z〉+ s−2
∫
Rd

(ei〈sz,x〉 − 1− i〈sz, x〉1D(ε)(x))ν(dx)|

≤ s−1|i〈γε, z〉|+ s−2|
∫
Rd

(ei〈sz,x〉 − 1− i〈sz, x〉1D(ε)(x))ν(dx)|.

We note that lims→∞ s−1|i〈γε, z〉| = 0, so we can turn the attention to the
second part of the upper bound:

s−2|
∫
Rd

(ei〈sz,x〉 − 1− i〈sz, x〉1D(ε)(x))ν(dx)|

≤ s−2 1
2 |sz|

2
∫
D(ε)
|x|2ν(dx) + s−2[2

∫
D(ε)c

1ν(dx)]

= 1
2 |z|

2
∫
D(ε)
|x|2ν(dx) + s−2[2

∫
D(ε)c

1ν(dx)].

Again we can note that lims→∞ s−2[2
∫
D(ε)c 1ν(dx)] = 0. To sum up we get

that

lim
s→∞

|s−2 log(µ̂(sz)) + 1
2 〈z,Az〉| ≤

1
2 |z|

2
∫
D(ε)
|x|2ν(dx), ∀ε ∈ (0, 1).

As ν({0}) = 0 and ∫
D(ε)
|x|2ν(dx) ≤

∫
D

|x|2ν(dx) <∞,

we must have that
lim
ε→0+

∫
D(ε)
|x|2ν(dx) = 0.

To sum it up we get

lim
s→∞

s−2 log(µ̂(sz)) = 1
2 〈z,Az〉
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for all z ∈ Rd. Thus A is uniquely determined by µ.
Now we define the function

ψ(z) := log(µ̂(z)) + 1
2 〈z,Az〉,

and note that

ψ(z)− ψ(z + w) =
∫
Rd

(ei〈z,x〉 − ei〈z+w,x〉 + i〈w, x〉1D(x))ν(dx)− i〈γ,w〉.

We check that the integrand is integrable. We only have to consider the case
where |x| ≤ 1.

|ei〈z,x〉−ei〈z+w,x〉 + i〈w, x〉|
= |ei〈z,x〉(1− ei〈w,x〉) + ei〈z,x〉i〈w, x〉+ (1− ei〈z,x〉)i〈w, x〉|
≤ |1− ei〈w,x〉 + i〈w, x〉|+ |〈w, x〉||1− ei〈z,x〉|

≤ 1
2 |w|

2|x|2 + |z||x|2|w|

≤ max(1
2 |w|

2, |w||z|) · |x|2.

Here we have used previous calculations and Lemma 4.3.11 with n = 1. From
this we can conclude that the integral is well defined and finite. I integrate with
respect to w:∫

[−1,1]d
ψ(z)− ψ(z + w)dw

=
∫

[−1,1]d
[
∫
Rd

(ei〈z,x〉 − ei〈z+w,x〉 + i〈w, x〉1D(x))ν(dx)− i〈γ,w〉]dw

=
∫

[−1,1]d

∫
Rd

(ei〈z,x〉 − ei〈z+w,x〉 + i〈w, x〉1D(x))ν(dx)dw

− i
∫

[−1,1]d
〈γ,w〉dw

=
∫
Rd

[
∫

[−1,1]d
ei〈z,x〉(1− ei〈w,x〉)dw + i

∫
[−1,1]d

〈w, x〉1D(x)dw]ν(dx)

=
∫
Rd

[ei〈z,x〉
∫

[−1,1]d
(1− ei〈w,x〉)dw]ν(dx)

= 2d
∫
Rd
ei〈z,x〉(1−

d∏
i=1

sin(xi)
xi

)ν(dx).

During this calculation, both Lemma 4.3.10 and Lemma 4.3.8 was used.
The expression can be recognized as the Fourier transform of the measure

ρ(dx) := 2d(1−
d∏
i=1

sin(xi)
xi

)ν(dx). (4.9)

We will show that this is a finite measure, because then we know it is uniquely
determined by it’s Fourier transform (see Lemma A.1.4(1)). It is understood
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by Lemma 4.3.8 that if xi = 0 for some i ∈ {1, ...d}, then set sin(xi)/xi = 1.
Remark that the density of ρ with respect to ν is positive for all x 6= 0. For
x = 0 it is 0. This means that ν is uniquely determined by ρ because we know
already that ν({0}) = 0. Generally we have that

2d(1−
d∏
i=1

sin(xi)
xi

) ≤ 2d+1,

for all x ∈ Rd. By the properties of a Lévy process, this means we only need to
concentrate on the part where 0 < |x|2 < 1. In Lemma 4.3.9 it is shown that

(1−
d∏
i=1

sin(xi)
xi

) ≤ |x|2,

which is enough because we know that ν is a Lévy measure.
As ψ is completely determined from A and µ, we get that ν is unique for µ. As
both ν and A is uniquely determined, γ can be determined as well. �

As Lt is infinitely divisible for all t ≥ 0, PLt will have a generating triplet.
we call this the generating triplet of L.

Remark 4.3.12. [EK19, Section 2.2] For a Lévy process L, the characteristic
function of L1 can be written as exp(ψ(u)), so by Lemma 4.3.3 we have that
the characteristic function of Lt is exp(tψ(u)) for all t ≥ 0.

The following Lévy-Khintchine representation of the Poisson process is given
in [EK19, Section 2.4]. We show that the representation can be found by
calculating the characteristic function directly and recognizing the different
parts.

Example 4.3.13. (§§) Let (Nt)t≥0 be a Poisson process with parameter λ > 0.
We calculate the characteristic function of N1:

E[exp(izN1)] =
∞∑
k=0

e−λ
λk

k! exp(izk)

= e−λ
∞∑
k=0

(λ exp(iz))k

k!

= exp(λeiz − λ)
= exp(λ · (eiz − 1)),

for z ∈ R.
Consider the Lévy-Khintchine representation (0, λ, λδ1). This gives rise to the
characteristic function:

exp(izλ+
∫
R

(eizx − 1− izx1{x:|x|≤1})λδ1(dx))

= exp(izλ+ λ(eiz − 1− iz))
= exp(λ(eiz − 1)).

Thus (Nt)t≥0 has (0, λ, λδ1) as its Lévy-Khintchine representation.

�

57



4.4. Processes with Independent Increments

4.4 Processes with Independent Increments

As we have seen, a Lévy process is a time homogeneous Markov process. It turns
out that we can loosen up on the Lévy conditions and still keep the Markov
property. Actually, we can be content with the condition of independent
increments.

Theorem 4.4.1. Let X be a stochastic process that takes values on Rd defined
on the probability space (Ω,F ,P). Assume that X has independent increments.
Then it is a Markov process.

The Markov transition function associated with this Markov process will
be specified here, before we prove that the process is in fact a Markov process.
Some of the calculation are similar to the ones int he proof of Lemma 4.2.5.

Lemma 4.4.2. Let X be a stochastic process with independent increments.
Define for (x,A) ∈ (Rd,B(Rd)) the group (Ps,t)t≥s≥0 as

Ps,t(x,A) := PXt−Xs(A− x).

Then (Ps,t)t≥s≥0 is a Markov transition function.

Proof. (§§) First remark that by Lemma 4.2.6 (Ps,t)t≥s≥0 is a family of transition
kernels. We calculate

Ps,s(x,A) = PXs−Xs(A− x) = P0(A− x) = δ0(A− x) = δx(A).

Also we have that for t ≥ s ≥ u ≥ 0

Pu,sPs,t(x,A) =
∫
Rd
Ps,t(y,A)Pu,s(x, dy)

=
∫
Rd

PXt−Xs(A− y)Pu,s(x, dy)

=
∫
Rd

PXt−Xs(A− y − x)PXs−Xu(dy)

= PXs−Xu ∗ PXt−Xs(A− x)
= PXt−Xs+Xs−Xu(A− x)
= PXt−Xu(A− x) = Pu,t(x,A).

We used that X has independent increments, which gives us that (Xt −Xs) is
independent of (Xs −Xu). So we have shown what we set out to show. �

Now we show that X is in fact the Markov process associated with the
Markov transition function that was just defined. The arguments utilized below
are in essence the same as the ones used to show that a Lévy process is a
Markov process (Theorem 4.2.7). Thus, the ideas again come from [Ped20].

Proof of Theorem 4.4.1. (§) Let (Xt)t≥0 be a stochastic process with independ-
ent increments and define the group (Ps,t)t≥s≥0 by Ps,t(x,A) := PXt−Xs(A−x)
for all t ≥ s ≥ 0 and (x,A) ∈ (Rd,B(Rd)). Then by Lemma 4.4.2 this is
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a Markov transition function. By Theorem 3.4.3 we have that there exist a
Markov process (Yt)t≥0 such that for all t ≥ s ≥ 0 and f ∈Mb(Rd,R)

E[f(Yt)|FY
s ] = Ps,t(f(Ys)).

We choose the process (Yt)t≥0 such that Y0
d= X0. We want to show that (Yt)t≥0

and (Xt)t≥0 are equivalent. We notice that

E[f(Yt)|FY
s ] =

∫
f(x+ Ys)PXt−Xs(dx).

By letting f(θ) = ei〈θ,x〉 for a θ ∈ Rd we get that

E[e〈y,Yt−Ys〉|FY
s ] = e−i〈θ,Ys〉E[ei〈θ,Yt〉|FY

s ] =
∫
ei〈θ,x〉PXt−Xs(dx).

As shown in the proof for Theorem 4.2.7, this gives us that (Yt)t≥0 has
independent increments and that Yt − Ys ∼ Xt − Xs. Conclude that for
all n ∈ N and 0 < t1 < t2 < · · · < tn

(X0, Xt1 −X0, ..., Xtn −Xtn−1)T d= (Y0, Yt1 − Y0, ..., Ytn − Ytn−1)T ,

which secures that

(X0, Xt1 , ..., Xtn)T d= (Y0, Yt1 , ..., Ytn)T .

By Lemma 3.4.2 we have that (Yt)t≥0 is a Markov process with Markov transition
group (Ps,t)t≥s≥0. �

4.5 The Lévy-Itô Decomposition and Lévy Integration

In the following section, define D(I) := {x ∈ Rm : |x| ∈ I}, where I is a interval
in [0,∞]. In this section we aim to make sense of integration with respect to
Lévy processes. In order to do this properly, we start of with a presentation of
the Lévy-Itô decomposition. The Lévy-Itô decomposition shows how a Lévy
process can be decomposed into two independent processes, namely a jump
process and a continuous process. We state and discuss the result without giving
a proof. The result is presented and proved both in [Sat13] and [App09]. In
[Sat13] he make use of the Lévy-Khintchine representation to prove it, whereas
in [App09], he does not. We use the result to make sense of integration with
respect to a Lévy process.
Let (Lt)t≥0 be a fixed m-dimensional Lévy process with generating triplet
(A, ν, γ). Denote by (H,H ) the spaceH := (0,∞)×(Rm\{0}) and H := B(H).
We let an A ∈H be given and define the random element:

N(A) := #{s : (s,∆L(s)) ∈ A}1Ω0 ,

where ∆Lt := L(t)−L(t−) and Ω0 is the space where L is càdlàg. As L is a Lévy
process, the characteristic function function of Lt can be represented by the
triplet (At, νt, γt) = (tA, tν, tγ) by Remark 4.3.12. In [Sat13, Theorem 19.2(i)]
he claims that N is a Poisson random measure on (H,H ), with an intensity
measure, µ, for which it holds that µ((0, t]×A) = νt(A), for A ∈ B(Rm \ {0}).
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In [Sat13, Remark 9.9] he claims that such an extension exists in the general
case (for additive processes) and he touches on how it can be proved. We are
only interested in the case where νt = tν (the case of a Lévy process). We
prove that such a measure exist by showing that the measure coincides with
the product measure (λ⊗ ν, where λ is the Lebesgue measure).

Lemma 4.5.1. There exist a unique measure µ on (H,H ) such that µ((0, t]×
B) = tν(B) for B ∈ B(Rm \ {0}).

Proof. (§§) Assume there exists a measure, µ, on (H,H ) such that for all t ≥ 0,
µ((0, t]×B) = tν(B), where B ∈ B(Rm \ {0}). Remark that such a measure
must fulfill for t ≥ s that

µ((s, t]×B) = µ((0, t]×B)− µ((0, s]×B) = (t− s)ν(B).

Define the product measure on B((0,∞))⊗B(Rm \ {0}), λ⊗ ν. In the proof
of Proposition 4.3.7 we showed that ν is a finite measure outside an arbitrarily
small neighbourhood around 0. By letting An := D( 1

n ,∞) for all n ∈ N, we have
a sequence of sets, such that ν(An) <∞ and such that ∪n∈NAn = Rd \{0}. We
conclude that both λ and ν are σ-finite measures on B((0,∞)) and B(Rm\{0}),
respectively. This secures by [Tho14, Theorem 6.3.3] that λ⊗ ν exists and is
unique.
Define the system of sets

D := {(s, t]×B : 0 ≤ s ≤ t, B ∈ B(Rd \ {0})}.

We have that for a (s, t]×B ∈ D that λ⊗ ν((s, t]×B) = (t− s)µ(B). We show
properties (a)-(d) of Theorem A.1.14 in order to conclude that µ = λ⊗ ν. (a)
D is stable to intersection. (b) D generates H . This is secured by [Tho14,
Theorem 6.1.6] as the system {(s, t] : 0 ≤ s ≤ t <∞} generates B((0,∞)) and
∪n∈N(0, n] = (0,∞) and ∪n∈N[−n, n]d \ {0} = Rd \ {0}. (c) We have shown
that µ and λ⊗ ν coincide on D . As for condition (d) let An = (0, n]×D( 1

n ,∞).
We have that ∪n∈NAn = H, and that λ⊗ ν(An) = nν(( 1

n ,∞)) = µ(An) <∞
for all n ∈ N.
Together (a)− (d) secures that λ⊗ ν and µ are identical on (H,H ). �

The following statements come from [Sat13, Theorem 19.2]. For almost all
ω ∈ Ω the limit

lim
ε↓0

∫
(0,t]×D(ε,1]

x(N(d(s, x), ω)− µ(d(s, x)))

+
∫

(0,t]×D(1,∞)
xN(d(s, x), ω),

(4.10)

exists and is a Lévy process with generating triplet (0, ν, 0). We can call this
process (L(J)

t )t≥0. Moreover the process (L(C)
t )t≥0, where L(C)

t = Lt−L(J)
t is a

continuous Lévy process with the Lévy-Khintchine representation (A, 0, γ) and
L(C) and L(J) are independent processes.
In [App09] he defines for fixed t ≥ 0 the measure on B(Rm \ {0}), Ñ(t, B) :=
N((0, t]×B)−µ((0, t]×B). This is a martingale values measure for B ⊆ D(ε, 1)
for ε > 0 by [App09, p. 105]. Moreover he defines N(t, B) := N((0, t]×B) for
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B ⊆ D[1,∞) and he writes the decomposition of the i’th coordinate of the
m-dimensional Lévy process as

Li(t) = λit+
r∑

k=1
θi,kBk(t)

+
∫ t

0

∫
|x|<1

xiÑ(ds, dx) +
∫ t

0

∫
|x|≥1

xiN(ds, dx),
(4.11)

where λ ∈ Rm, θ ∈ Mat(m, r) and B is an r-dimensional Brownian motion.
Here the first two terms corresponds to L(C) and the two last terms to L(J).
The term

∫ t
0

∫
|x|<1 xiÑ(ds, dx) is the limit written in Equation (4.10). By

[App09, p. 121] this convergence takes place in the M2 space. Remark that∫ t
0

∫
|x|<1 xiÑ(ds, dx) can be written as

∫
|x|<1 xiÑ(t, dx).

By [App09] it is possible to define Lévy type integrals. That is integrals
of the form

Yi(t) = Yi(0) +
∫ t

0
Gi(s)ds+

r∑
j=1

∫ t

0
Fi,j(s)(dBs)j

+
∫ t

0

∫
|x|<1

Hi(s, x)Ñ(ds, dx) +
∫ t

0

∫
|x|≥1

Ki(s, x)N(ds, dx),

for all i ∈ {1, ..., d} Ki, Gi, Fi,j and Hi is predictable and P(
∫
|Gi|ds <∞) = 1,

P(
∫
|Fi,j(s)|2ds <∞) = 1 and P(

∫ t
0

∫
|x|<1 |Hi(s, x)|2ν(dx)ds <∞) = 1.

In this thesis we are only interested making sense of integration in the
′t′ parameter with respect to a Lévy process. In practice this means we will only
consider the case where G = M(t)λ, F = M(t)θ (takes values in Mat(d, r)),
K(s, x) = H(t, x) = M(t)x and H(t, x) = M(t)x (see [App09, Section 6.3]).
Here M(t) is a Mat(d,m)-valued predictable matrix and x is m-dimensional
vector.
We discuss integration with respect to each of the elements in the decomposition
individually. The first two parts corresponds to Lebesgue integration and
integration with respect to Brownian motion, which we worked with in Sec-
tion 2.8. We can define this integration with respect to progressively measurable
processes from L2(λ[0,T ] ⊗ P) for T > 0.
As

∫
|x|<1 xiÑ(t, dx) is an element in M2, by Section 2.7 we can define an

integration with respect to this element. This holds for predictable stochastic
matrices, (Mt)t≥0, taking values in Mat(d,m) and such that for T > 0

E[
∫ T

0

∫
|x|<1

|(M(t)x)i|2dtν(dx)] <∞

for i ∈ {1, ..., d} by [App09, Theorem 4.3.4(2)].
By [App09, 105 and 106], when A ⊆ D[1,∞) then N(t, A) is a Poisson process
and P (t) :=

∫
A
xN(t, dx) is a compound Poisson process. For predictable

mappings K defined on [0,∞)× Rd × Ω it is possible to define for T ≥ 0∫ T

0

∫
|x|≥1

K(t, x)N(dt, dx) =
∑

0≤u≤T
K(u,∆P (u))1A(∆P (u)).
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This is a finite random sum because P (t) is a compound Poisson process with
associated Poisson process N(t, {|x| ≥ 1}), which is finite (see the proof of
[App09, Theorem 2.3.9]). These considerations leads us to conclude that under
the right assumptions, we can define integration with respect to a Lévy process.

Corollary 4.5.2. Let (Mt)t≥0 be an Mat(d,m)-valued predictable process such
that

E[
∫ T

0

∫
|x|<1

|(Mtx)i|2dtν(dx)] <∞.

for i ∈ {1, ..., d}. Moreover assume that E[
∫ T

0 Mi,j(t)2dt] < ∞ for all
i ∈ {1, ..., d} and j ∈ {1, ...,m}. We can integrate this process with respect
to a Lévy process. This gives rise to a d-dimensional process X(t), where for
i ∈ {1, ..., d}

dXi =
m∑
k=1

Mi,k(t)dLk(t).

For a fixed l ∈ {1, ...,m}

Mi,l(t)dLl = Mi,l(t)λldt+
r∑

k=1
Mi,l(t)θl,kdBk(t)

+
∫
|x|<1

Mi,l(t)xlÑ(dt, dx) +
∫
|x|<1

Mi,l(t)xlÑ(dt, dx).

�
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CHAPTER 5

Time Changed Processes

5.1 Introduction to Time Change

In the current chapter, we work with a collection of indexed elements of the form
Y := (LT (θ))θ≥0, where (Lt)t≥0 is a Lévy process (we call it the base process),
and (T (θ))θ≥0 is a real stochastic process, that meets certain properties to
be defined. It will be shown that if T is a time change process, then Y is a
stochastic process. In this case we call Y a time changed process. The aim of
this chapter is to examine which conditions on T that are sufficient to ensure
that the time changed process is a Markov process. An important aspect of our
examination of the Markov property of time changed Lévy processes is a study
of filtrations with respect to which the time changed Lévy processes is adapted.
The time change processes of interest are Lévy processes, deterministic processes,
and processes with independent increments.
There are different ways of defining time change processes. In [BS15] they
demand that the process takes values in the space [0,∞] and that it for all
indices is a stopping time with respect to (Ft)t≥0 (a filtration with respect to
which, the base process is adapted). We will return to a discussion of their
definition, but for now, we give a more general definition of a time change
process.

Definition 5.1.1. Let (Tθ)θ≥0 be a stochastic process. We call it a time change
process if for almost all ω ∈ Ω the function θ 7→ Tθ(ω) is non-decreasing and
[0,∞)-valued.
Remark 5.1.2. Later in the thesis we shall add two more conditions on the time
change process, namely right-continuity and that T (0) = 0.

�

We start off examining the general situation, where the base process is
not necessarily a Lévy process. Let Ω0 be the space on which the function
θ 7→ Tθ(ω) is non-decreasing and [0,∞)-valued. Remark that P(Ω0) = 1, and
that Ωc0 is measurable, because (Ω,F ,P) is complete. A simple useful lemma
when making the time change composition is the following one.
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Lemma 5.1.3. Let X be a stochastic vector, that takes values in Rd. Then the
process

T : Ω→ Rd × Ω
ω 7→ (X(ω), ω)

is (F ,B(Rd)⊗F )-measurable.

Proof. (§§§) B(Rd)×F is a generator system for B(Rd)⊗F , so let R×A ∈
B(Rd)×F .

{ω ∈ Ω : (X(ω), ω) ∈ R×A} = {X ∈ R} ∩A ∈ F ,

by the properties of σ-algebras. This is sufficient (see Lemma A.1.8(i)). �

We show that a time changed progressively measurable stochastic process is
measurable.

Lemma 5.1.4. Let (Xt)t≥0 be a progressively measurable stochastic process that
takes values on Rd, and let (Tθ)θ≥0 be a time change process. We define for all
θ ≥ 0 and ω ∈ Ω; Yθ(ω) := XTθ(ω)(ω)1Ω0(ω). Yθ is a stochastic variable for all
θ ≥ 0.

Proof. (§§§) Let (Xt)t≥0, (Tθ)θ≥0 and (Yθ)θ≥0 be defined as above. Now let
θ ≥ 0 be given. We want to show that Yθ is a stochastic variable, meaning that
we need to show that the following function is measurable:

Yθ : Ω→ Rd

ω 7→ XTθ(ω)(ω)1Ω0(ω)

We define the functions

Λ : Ω→ [0,∞)× Ω
ω 7→ (Tθ(ω), ω),

and

Θ : [0,∞)× Ω→ Rd

(s, ω) 7→ Xs(ω)1Ω0(ω).

As X is progressively measurable, then it is also measurable by Lemma 2.4.5
and as the probability space is complete, 1Ω0 is measurable as well, so Θ is
measurable. By Lemma 5.1.3 Λ is measurable as well. As the composition of
two measurable mappings are measurable, we obtain the desired result. �

We start off by studying the simplest time change processes, namely the
deterministic ones. A simple example of such a process is given below.

Example 5.1.5. (§§§) We consider an (FN
t )t≥0-Poisson process N with

parameter 1. Define for a positive λ the deterministic process Λ(t) = λ · t. Then
the time changed process Nλ(t) := N(Λ(t)) is an (FN

λt )t≥0-Poisson process with
parameter λ. Remark Nλ(0) = N(0) = 0. As λ · t is a continuous, increasing
function, Nλ(t) preserves the properties càdlàg, non-increasing and N0-valued
for fixed ω ∈ Ω. Let s ≤ t. Nλ(t)−Nλ(t) = N(λ·t)−N(λ·s) ∼ Pois(λ·t−λ·s) =
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Pois(λ · (t− s)). {N(Λ(s)) : 0 ≤ s ≤ t} = {N(s) : 0 ≤ s ≤ λ · t}, thus we easily
obtain that N(Λ(t)) is FN

λ·t-measurable and N(Λ(t))−N(Λ(s)) is independent
of FN

λ·s.
If λ > 1 we have an acceleration of time and if λ < 1 it is a deceleration of time.

We show that a Lévy process time changed by a deterministic process is a
Markov process. Actually, the weaker assumption that the base process is a
Markov process is sufficient to show that the time changed process is a Markov
process. Before giving the argument for this assertion, we need the following
lemma for conditional expectation.

Lemma 5.1.6. Let X be a bounded stochastic variable and let E[X|F1] =
E[X|F2], where F1 and F2 are sigma algebras where F1 ⊆ F2. Then we have
that E[X|F1] = E[X|G ] if F1 ⊆ G ⊆ F2.

Proof. (§§§) We take the conditional expectation with respect to G on both
sides and using the Tower Property (Proposition A.1.11).

E[X|F1] = E[E[X|F1]|G ] = E[E[X|F2]|G ] = E[X|G ].

�

Theorem 5.1.7. Let (Yt)t≥0 be a Markov process. Let g : R≥0 → R≥0 be an
increasing function. Then (Yg(t))t≥0 is a Markov process with respect to the
filtration (FY (g)

g(t) )t≥0 where F
Y (g)
g(t) := σ{Yg(s) : s ≤ t} for all t ≥ 0.

Proof. (§§§) We show that E[f(Yg(t))|F
Y (g)
g(s) ] = E[f(Yg(t)|Yg(s)] for t ≥ s ≥ 0.

Let k1 := g(s) and k2 := g(t). We know that E[f(Yk2)|Fk1 ] = E[f(Yk2)|Yk1 ].
Now we remark that σ(Yg(s)) ⊆ F

Y (g)
g(t) ⊆ FY

g(t). Thus from the lemma above
we have that E[f(Yg(t))|F

Y (g)
g(s) ] = E[f(Yg(t))|Yg(s)], which gives us the Markov

property. �

5.2 Conditional Stationary Independent Increments and
the Cox Process

We show that a time changed Lévy process has conditional stationary
independent increments and that a process with conditional stationary
independent increments can be written as a time changed Lévy process. We
use this characterisation to show the equivalence of two different definitions of
the Cox process.
In [Ser72, Section 2] the definition of conditional stationary independent
increments is given for stochastic variables. The definition given below is
for stochastic vectors, which is the relevant case in this thesis.

Definition 5.2.1. Let (Tθ)θ≥0 be a non-negative real valued stochastic process
with non-decreasing right continuous paths, where T0 = 0 almost surely. Let
FT = σ(Tθ : θ ≥ 0) and (Yθ)θ≥0 be an Rd-valued stochastic process, for which
the following two assertions hold true:
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(a) For any n ∈ N, 0 ≤ α1 < β1 ≤ ... ≤ αn < βn and B1, ..., Bn ∈ B(Rd):

P[Yβ1 − Yα1 ∈ B1, ..., Yβn − Yαn ∈ Bn|FT ] =
n∏
i=1

P[Yβi − Yαi ∈ Bi|FT ].

(b) For any 0 ≤ α ≤ β and ζ ∈ Rd.

E[exp[i〈ζ, (Yβ − Yα)〉]|FT ] = φ(ζ)Tβ−Tα ,

where φ is the characteristic function of an infinitely divisible distribution.
Then we say that (Yθ)θ≥0 has conditionally stationary independent increments
with respect to T .

�

Together Lemma 5.2.2 and Lemma 5.2.3 makes a characterisation of time
changed Lévy processes. In [Ser72, Section 2] he states the two following
assertions as one. He presents ideas for a proof of the statements, but does not
make the actual calculation. We give a full proof for the assertions.

Lemma 5.2.2. Let Y := (Yθ)θ≥0 be a time changed process with base process
L := (Lt)t≥0 and time process T := (Tθ)θ≥0. Let L and T be independent and
assume that L is a Lévy process. Then Y has conditional stationary independent
increments with respect to T .

Proof. (§§) We show that Y fulfills condition (a) and (b) of Definition 5.2.1.
Remark that the time change process of Y fulfills the restrictions on the T
process in the definition. Let FT be defined as in Definition 5.2.1.
of (a): Define for 0 ≤ s1 ≤ t1 ≤ · · · ≤ sn ≤ tn the following functions:

ψ((s1, t1, ..., sn, tn), ·) := 1{Lt1−Ls1∈B1} · · ·1{Ltn−Lsn∈Bn},

and
Φ(s1, t1, ..., sn, tn) := E[ψ((s1, t1, ..., sn, tn), ·)]

Define also for i ∈ {1, ..., n}:

ψi((s1, t1, ..., sn, tn), ·) := 1{Lti−Lsi∈Bi}.

and
Φi(s1, t1, ..., sn, tn) := E[ψi((s1, t1, ..., sn, tn), ·)].

As L has independent increments, it holds true that
n∏
i=1

Φi(s1, t1, ..., sn, tn) =
n∏
i=1

P(Lti − Lsi ∈ Bi)

= P(Lt1 − Ls1 ∈ B1, ..., Ltn − Lsn ∈ Bn)
= Φ(s1, t1, ..., sn, tn).

As T is an increasing process, we have that
n∏
i=1

Φi(Tα1 , Tβ1 , ..., Tαn , Tβn) = Φ(Tα1 , Tβ1 , ..., Tαn , Tβn).
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Using the Freezing Lemma (Lemma 2.6.1) to calculate the left hand side of the
Definition 5.2.1 (a),

P(Yβ1 − Yα1 ∈ B1, ..., Yβn − Yαn ∈ Bn|FT )
= E[ψ((Tα1 , Tβ1 , ..., Tαn , Tβn), ·)|FT ]
= Φ(Tα1 , Tβ1 , ..., Tαn , Tβn)

and the right hand side
n∏
i=1

P(Yβi − Yαi ∈ Bi|FT ) =
n∏
i=1

E[ψi((Tα1 , Tβ1 , ..., Tαn , Tβn), ·)|FT ]

=
n∏
i=1

Φi(Tα1 , Tβ1 , ..., Tαn , Tβn)

= Φ(Tα1 , Tβ1 , ..., Tαn , Tβn).

of (b): As L is a Lévy process, the characteristic function of L1 is infinitely
divisible. Define the characteristic function φ(ζ) := E[exp(i〈ζ, L1〉)]. Then by
Lemma 4.3.3 we have that the characteristic function of Lt is φt. Again using
Lemma 2.6.1, and the fact that it also holds for complex functions we obtain
for ζ ∈ Rd and 0 ≤ α ≤ β:

E[exp(i〈ζ, LTβ − LTα〉)|FT ] = Ψ(Tα, Tβ),

where

Ψ(s, t) = E[exp(i〈ζ, Lt − Ls〉)] = E[exp(i〈ζ, Lt−s〉)] = φt−s(ζ).

This gives us the desired equality:

E[exp(i〈ζ, LTβ − LTα〉)|FT ] = φTβ−Tα(ζ).

�

Lemma 5.2.3. Let Y ′ be a stochastic process with conditional stationary
independent increments with respect to the stochastic process (Tθ)θ≥0. Let
φ be the infinitely divisible characteristic function given in Definition 5.2.1.
Then there exist a stochastic process L that is independent of T , such that
(Yθ)θ≥0 := (LT (θ))θ≥0 is equivalent to (Y ′θ − Y ′0)θ≥0.

Proof. (§§) Let Y ′ be a stochastic process with independent stationary
increments. As φ is the characteristic function of an infinitely divisible
distribution, there is a Lévy process L, such that L1 has the characteristic
function φ. Chose this Lévy process such that it is independent of T . We define
Y := (Yθ)θ≥0 to be (LT (θ))θ≥0. Consequently, by Lemma 5.2.2, Y satisfies
Definition 5.2.1. By taking the expectation in condition (b), we get for β ≥ α
and ζ ∈ Rd that

E[exp(i〈ζ, (Yβ − Yα)〉)] = E[φ(ζ)Tβ−Tα ] = E[exp(i〈ζ, (Y ′β − Y ′α)〉)].

That is Yβ − Yα
d= Y ′β − Y ′α. By the definition of conditional expectation, it

holds true for B ∈ Bd that

P(Yβ − Yα ∈ B|FT ) = P(Y ′β − Y ′α ∈ B|FT ).
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Let n ∈ N, 0 ≤ α1 < β1 ≤ ... ≤ αn < βn and B1, ..., Bn ∈ Bd:

P[Y ′β1
− Y ′α1

∈ B1, ...,Y
′
βn − Y

′
αn ∈ Bn|F

T ] =
n∏
i=1

P[Y ′βi − Y
′
αi ∈ Bi|F

T ]

=
n∏
i=1

P[Yβi − Yαi ∈ Bi|FT ]

= P[Yβ1 − Yα1 ∈ B1, ..., Yβn − Yαn ∈ Bn|FT ].

By taking the expectation on both sides, we obtain

(Y ′β1
− Y ′α1

, ..., Y ′βn − Y
′
αn) d= (Yβ1 − Yα1 , ..., Yβn − Yαn).

Let α1 = 0 and αi = βi−1 for i ∈ {2, ..., n}. Now transform the two vectors of
stochastic variables by the quadratic matrix A, defined as Ai,j = 1 if i = j or
i + 1 = j. Let it be 0 in other cases. As this matrix is invertible, using the
same argument as in the proof for Theorem 4.2.7, gives us that

(Y ′β1
− Y ′0 , Y ′β2

− Y ′0 , ..., Y ′βn − Y0) d= (Yβ1 − Y0, Yβ2 − Y0, ..., Yβn − Y0)
= (Yβ1 , Yβ2 , ..., Yβn).

�

Before we define the Cox process, we give an example of a Poisson process
time changed with a deterministic time change process.

Example 5.2.4. (§§§) Let (N(t))t≥0 be a Poisson process with parameter 1. As
seen in Example 5.1.5 the process Nλ(θ) := N(λθ) is a Poisson process with
parameter λ. This can also be written as N(

∫ θ
0 λdu). Let now λ : [0,∞)→ R+

be a deterministic function. Then Λ(θ) =
∫ θ

0 λ(u)du is an increasing continuous
function. Define a new process NΛ(θ) := N(Λ(θ)). Arguing as in Example 5.1.5,
we obtain that the new process fulfills all the conditions for it to be a
Poisson process, except it does not have stationary increments. For α ≤ β,
NΛ(β)−NΛ(α) ∼ Poi(

∫ β
α
λ(u)du).

�

Let Nµ be a Poisson random measure with intensity measure µ, and let
πµ be the distribution of Nµ. Let (M,M ) be the space of measures on
((0,∞),B((0,∞))), that are finite on compact sets. Let (Mn,Mn) ⊆ (M,M )
be the measures that are N∪ {∞}-valued. Fix an A ∈Mn. By [Gra76, Lemma
I.1], the function µ 7→ πµ(A) is measurable. Remark that πµ(Mn) = 1. A Cox
process, also called a doubly stochastic Poisson process, is in [Gra76, Definition
I.5] defined as follows:

Definition 5.2.5. Let Λ : Ω → M be a random measure with distribution πΛ.
A random measure Π is called a Cox process corresponding to Λ if it has the
distribution

∫
M
πµ(·)πΛ(dµ). That is, for all A ∈Mn,

P(Π ∈ A) =
∫
M

πµ(A)πΛ(dµ).
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Remark 5.2.6. Write Πt for Π((0, t]) for t ≥ 0. Then (Πt)t≥0 is a stochastic
process. Remark that Π0 = Π(∅).

�

We give an alternative definition of the Cox process as a Poisson process
with parameter 1, time changed with an increasing process.

Definition 5.2.7. [Gra76, Definition I.5’] Let N := (N(t))t≥0 be a Poisson
process with parameter 1. Let (Λ(θ))θ≥0 be an increasing, non-negative, right
continuous stochastic process independent of N . Let also Λ(0) = 0. A Cox
process can be defined as NΛ(θ) := N(Λ(θ)).

�

We will show that the two definitions are equivalent. In both definitions we
use the symbol Λ. In Definition 5.2.5 it is used for a random measure and in
Definition 5.2.7 we use it for a stochastic process. In the following lemma we
show that there can be established a one-to-one correspondence between these
elements, thereby justifying the choice of notation.

Lemma 5.2.8. Let (T (θ))θ≥0 be a non-decreasing, right continuous stochastic
process with T (0) = 0. Then there exist a random measure, Λ on
((0,∞),B((0,∞))), such that for all 0 ≤ α ≤ β, Λ((α, β]) = T (β)− T (α).

Proof. (§§§) First notice that by Lebesgue Stieltjes measures (see [Kal21,
Theorem 2.14]) for each ω ∈ Ω, there exists a unique measure ν on
((0,∞),B((0,∞))), such that ν((α, β]) = Tβ(ω)−Tα(ω) for all 0 < α ≤ β. This
means that we only have to show that Λ(A) is measurable for all A ∈ B((0,∞)).
In order to show this, we use the setting of Definition A.1.12 and Theorem A.1.13.
We show that the class of sets, A ∈ B((0,∞)) where Λ(A) is measurable is a
λ-system in (0,∞). Denote this class D . If we can also show that the system
of sets C := {(α, β] : 0 ≤ α ≤ β} is a π-system in (0,∞), we are satisfied, as
we know that C generates B((0,∞)).
We start off showing that (0,∞) ∈ D .

Λ((0,∞)) = Λ(∪n∈N(0, n]) = lim
n→∞

Λ((0, n]).

This is the limit of measurable functions, and by Theorem A.2.1 this is
measurable. Secondly show that for A,B ∈ D , where A ⊆ B, B \ A ∈ D :
Λ(B \ A) = Λ(B) − Λ(A), by properties of measures. The third thing is to
show that if A1 ⊆ A2 ⊆ ... ∈ D , then ∪n∈NAn ∈ D . Again by the properties
of measures Λ(∪n∈NAn) = limn→∞ Λ(An). As it is the limit of measurable
functions, it is again measurable.
Now we show that C is a π-system, which is the case as it is obviously closed
under intersection. We get that B((0,∞)) ⊆ D , which we were to show. �

Lemma 5.2.9. Π defined in Definition 5.2.5 and NΛ defined in Definition 5.2.7
are equivalent.
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Proof. (§§§) Let n ∈ N and α0 := 0 < α1 < ... < αn. We start off giving the
finite dimensional distribution of NΛ. Let k1, k2, ..., kn ∈ N. Let FΛ be the
filtration generated by the whole process (Λ(θ))θ≥0.

P(NΛ(α1)−NΛ(0) = k1, ..., N
Λ(αn)−NΛ(αn−1) = kn)

= E[P(NΛ(α1)−NΛ(0) = k1, ..., N
Λ(αn)−NΛ(αn−1) = kn|FΛ)]

= E[
n∏
i=1

P(NΛ(αi)−NΛ(αi−1) = ki|FΛ)].

Remark that Λ(β) ≥ Λ(α) for β ≥ α. Then by Lemma 2.6.1

P(N(Λ(αi))−N(Λ(αi−1)) = ki|FΛ) = Φ(Λ(αi−1),Λ(αi)),

where

Φ(z1, z2) = P(N(z2)−N(z1) = ki)

= P(N(z2 − z1) = ki) = e−(z2−z1) (z2 − z1)ki
ki!

.

That is

E[
n∏
i=1

P(N(Λ(αi))−N(Λ(αi−1)) = ki|FΛ)]

= E[
n∏
i=1

e−(Λ(αi)−Λ(αi−1) (Λ(αi)− Λ(αi−1))ki
ki!

].

Now we look at the process defined in Definition 5.2.5.

P(Πt1 −Π0 = k1, ...,Πtn −Πtn−1 = kn)
= P(Π((0, t1]) = k1, ...,Π((tn, tn−1]) = kn)

=
∫
M

πµ({ν : ν((0, t1]) = k1, ..., ν((tn−1, tn]) = kn})πΛ(dµ).

Remark that as πµ is the distribution of a Poisson process with intensity measure
µ, then

πµ({ν :ν((0, t1]) = k1, ..., ν((tn−1, tn]) = kn})

=
n∏
i=1

e−µ((ti−1,ti])µ((ti−1, ti])ki
ki!

.

So we obtain∫
M

πµ({ν :ν((0, t1]) = k1, ..., ν((tn−1, tn]) = kn})πΛ(dµ)

=
∫
M

n∏
i=1

e−µ((ti−1,ti])µ((ti−1, ti])ki
ki!

πΛ(dµ)

= E[
n∏
i=1

e−Λ((ti−1,ti]) Λ((ti−1, ti])ki
ki!

]
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= E[
n∏
i=1

e−(Λ(ti)−Λ(ti−1)) (Λ(ti)− Λ(ti−1))ki
ki!

],

which was required. �

The following lemma shows how a Cox process is distributed using
Definition 5.2.7. In [Gra76, p. 7] it is shown by using Definition 5.2.5.

Lemma 5.2.10. Let (NΛ(θ))θ≥0 be the Cox process defined in Definition 5.2.7.
Let n ∈ N. Then for θ ≥ 0

P(NΛ(θ) = n) = E[e−Λ(θ) Λ(θ)n

n! ],

and the characteristic function of the process is of the form

E[exp(iζNΛ(θ))] = E[(1− eiζ)Λ(θ)],

for ζ ∈ R.

Proof. (§§) In both cases we use the Tower Property followed by the Freezing
Lemma as the processes are independent of each other.

P(NΛ(θ) = n) = E[P(NΛ(θ) = n|Λ(θ))]
= E[φ(Λ(θ))],

where φ(z) = P(N(z) = n) = e−z z
n

n! , because N(z) is Poisson distributed with
parameter z.
Let θ ≥ 0.

E[exp(iζNΛ(θ))] = E[E[exp(iζNΛ(θ))|Λ(θ)]] = Φ(Λ(θ)),

where Φ(z) = E[exp(iζN(z))] = exp((1− eiζ)z). So

E[exp(iζNΛ(θ))] = E[(1− eiζ)Λ(θ)].

�

5.3 Subordination

Subordination is the concept of letting both the base process and the time
process be Lévy processes. In this case the time process is called a subordinator.
The time changed process is called a subordination process. These types of
processes are in fact Markov processes, which we will show in this section.
In the following section we let both the base process L := (Lt)t≥0 and the time
process T := (Tθ)θ≥0 be Lévy processes. In order to simplify the considerations
define the processes on the probability space (Ω0,F0,P0), where

Ω0 = {L0 = 0} ∩ {T0 = 0} ∩ {ω : Lt(ω) is càdlàg} ∩ {ω : Tθ(ω) is càdlàg}.

As unions of null sets are null sets, we have that P(Ω0) = 1. As (Ω,F ,P) is
complete, Ω0 ∈ F . Define the σ-algebra F0 := {A ∩ Ω0 : A ∈ F} and define
the measure P0 on (Ω0,F0) to be P0(A) = P(A) for all A ∈ F0. In this section
we take (Ω0,F0,P0) to be the given probability measure. The consideration
above comes from [Sat13, Chapter 6].
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5.3. Subordination

Definition 5.3.1. [Sat13, Definition 21.4, Definition 30.2] Assume that L and T
are given as above and define the process Y := (Yθ)θ≥0 on (Ω0,F0,P0), where
Yθ := LT (θ) for all θ ≥ 0. We call Y a subordination process and we call T a
subordinator.

�

In the sequel we will need the following lemma.

Lemma 5.3.2. Let n ∈ N and let f, f1, ..., fn ∈ Mb(Rd,R). Let L be a d-
dimensional Lévy process and T be a subordinator. Let FT be the σ-algebra
generated by T . Let θ ≥ 0 and 0 ≤ θ1 < · · · < θn < θn+1. Then the following
three assertions hold true:

(1) E[f(LT (θ))] = E[g(Tθ)], where g(s) = E[f(Ls)], for s ≥ 0.

(2) E[f(LT (θ2) − LT (θ1))] = E[h(Tθ1 , Tθ2)], where h(s1, s2) = E[f(Ls2 − Ls1)],
for s2 ≥ s1.

(3) E[
∏n
i=1 fi(LT (θi+1)− LT (θi))] = E[G(Tθ1 , ..., Tθn+1)], where

G(s1, ..., sn+1) = E[
n∏
i=1

fi(Lsi+1 − Lsi)],

for s1 ≤ s2 ≤ · · · ≤ sn+1.

Proof. (§§) The lemma is a consequence of the Freezing Lemma (Lemma 2.6.1).

of (1): Let ψ(s, ·) = f(Ls) for s ≥ 0 and observe that

E[ψ(Tθ, ·)|FT ] = g(Tθ),

where g(s) = E[ψ(s, ·)]. Taking the expectation reveal E[ψ(Tθ, ·)] = E[g(Tθ)].

of (2): Let ψ((s1, s2), ·) = f(Ls2 − Ls1) for s1 ≤ s2 and observe that

E[ψ((Tθ1 , Tθ2), ·)|FT ] = h(Tθ1 , Tθ2),

where h(s1, s2) = E[ψ((s1, s2), ·)]. Again taking the expectation on both sides,
we obtain

E[ψ((Tθ1 , Tθ2), ·)] = E[h(Tθ1 , Tθ2)].
Remark that we can be certain that Tθ1 ≤ Tθ2 .

of (3): Let ψ((s1, ..., sn, sn+1), ·) =
∏n
i=1 fi(Lsi+1 −Lsi), where s1 ≤ · · · ≤ sn ≤

sn+1 and observe that

E[ψ((Tθ1 , ..., Tθn , Tθn+1), ·)|FT ] = G(Tθ1 , ..., Tθn , Tθn+1),

where G(s1, ..., sn, sn+1) = E[
∏n
i=1 fi(Lsi+1 − Lsi)]. Taking the expectation on

both sides reveal that

E[ψ((Tθ1 , ..., Tθn , Tθn+1), ·)] = E[G(Tθ1 , ..., Tθn , Tθn+1)].

�
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The following theorem shows how one can express the distribution of Yθ in
terms of the distribution of L and T . The theorem is a part of [Sat13, Theorem
30.1] and in the proof we go forward as he does with some elaborations. Our
presentation is though based on Lemma 5.3.2 instead of a similar result [Sat13,
Proposition 1.16]. This is in practise a significant simplification of the proof.

Theorem 5.3.3. [Sat13, Theorem 30.1] Let Y be a subordination process taking
values in Rd consisting of the base Lévy process L and the subordinator T .
Assume that L and T are independent. Letting µ := PL1 and ν := PT1 we have
for t ≥ 0 and B ∈ B(Rd) that

P(Yθ ∈ B) =
∫

[0,∞)
µs(B)νθ(ds). (5.1)

Proof. (§) Let t ≥ 0 be fixed and assume that f is a real bounded function
defined on Rd. From Lemma 5.3.2(1) we have

E[f(LTθ )] = E[g(Tθ)], where g(s) = E[f(Ls)]. (5.2)

Letting f(x) = 1B(x) for B ∈ Bd, g(s) = E[1B(Ls)] = P(Ls ∈ B) = µs(B).
µs(B) is measurable as a function of s. This is due to the fact that Ls is
progressively measurable and by Lemma 2.4.5 (F ⊗B([0,∞)),Bd)-measurable.
1B is (Bd,B(R))-measurable. By Fubini’s Theorem (Theorem A.1.10), we
obtain that the function

s 7→ µs(B) = P(Ls ∈ B) = E[1B(Ls)]

is (B([0,∞)),B(R))-measurable. We obtain

P(Yθ ∈ B) = E[1B(Yθ)] = E[1B(LTθ )] = E[µTθ (B)] =
∫

[0,∞)
µs(B)νθ(ds).

�

The following simple example shows how the theorem can be utilized to
calculate the distribution of a subordination process.

Example 5.3.4. (§§§) Let (Bt)t≥0 be a one dimensional Brownian motion and
let (Nθ)θ≥0 be a Poisson process with intensity 1. µ := PB1 = N(0, 1), then
µn is distributed as the sum of n independent standard normally distributed
random variables. That is µn = N(0, n). Moreover Nθ is a Poisson stochastic
variable with parameter θ. So for a θ ≥ 0 and A ∈ B(R):

P(BNθ ∈ A) =
∫

[0,∞)
µs(A)PNθ (ds) =

∞∑
n=0

µn(A)e−θ θ
n

n! .

Let n ∈ N and let Z1, ..., Zn ∼ N(0, 1) be independent.

µn(A) = P(
n∑
i=1

Zi ∈ A) = P(
√
n(
∞∑
i=1

Zi/
√
n) ∈ A).

If A = [−a, a] for a ≥ 0, then

µn(A) = P(Z1 ∈ [−a√
n
,
a√
n

]).
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So if we let Z ∼ N(0, 1), we get

P(BNt ∈ [−a, a]) = e−t
∞∑
n=1

tn

n!PZ([−a√
n
,
a√
n

])

�

The claim that a Lévy process time changed with a subordinator is again a
Lévy process is stated in [Sat13, Theorem 30.1]. The proof given below is an
elaboration of the one he gives.

Theorem 5.3.5. A subordination process is a Lévy process.

Proof. (§) Let Y := (Yθ)θ≥0 be the subordination process described in The-
orem 5.3.3. We show that Y fulfills the conditions required in Definition 4.1.1
in order for it to be a Lévy process.

Y0 = 0: Y0 = LT0 = L0 = 0, because L and T are Lévy processes.

Y is càdlàg: Let ω ∈ Ω and θ ∈ (0,∞). Now we take the left limit. We
know that the left limit lT := limθ′↑θ Tθ′(ω) exists. As Tθ′(ω) is increasing we
have that when θ′ goes to θ from the left, then Tθ′(ω) goes to lT from the left.
We take the limit:

lim
θ′↑θ

Yθ′(ω) = lim
θ′↑θ

LTθ′ (ω)(ω) = lim
s↑lT

Ls(ω),

which again exists because L is a Lévy process. Let θ ≥ 0. Then by the right
continuity of T and L, and as T is increasing:

lim
θ′↓θ

Yθ′(ω) = lim
θ′↓θ

LTθ′ (ω)(ω) = LTθ(ω)(ω).

for all ω ∈ Ω.

Y has stationary increments: As in the proof of Theorem 5.3.3 we let
g(s) := E[f(Ls)] for s ≥ 0 for an f ∈ Mb(Rd,R). By Lemma 5.3.2 (2),
as the processes L and T are independent we can write for 0 ≤ θ1 < θ2

E[f(Yθ2 − Yθ1)] = E[h(Tθ1 , Tθ2)], where h(s1, s2) := E[f(Ls2 − Ls1)]

for s1 ≤ s2, because Tθ1(ω) ≤ Tθ2(ω) as it is an increasing process. We note
that

h(s1, s2) = E[f(Ls2 − Ls1)] = E[f(Ls2−s1)] = g(s2 − s1),

where we used that (Lt)t≥0 has stationary increments. We can write

E[f(Yθ2−Yθ1)] = E[h(Tθ1 , Tθ2)] = E[g(Tθ2−Tθ1)] = E[g(Tθ2−θ1)] = E[f(Yθ2−θ1)],

by the stationary increments of (Tθ)θ≥0. Thus Yθ2 − Yθ1 ∼ Yθ2−θ1 , and thus we
have the stationary increments.

Y has independent increments: We define for an n ∈ N: f1, f2, ..., fn ∈
Mb(Rd,R). Let 0 = θ1 < θ2 < ... < θn < θn+1 and define for i ∈ {1, 2, ..., n}:
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hi(si, si+1) := E[fi(Lsi+1 − Lsi)] for si+1 ≥ si and gi(s) := E[fi(Ls)]. Thus we
have gi(si+1 − si) = hi(si, si+1). Because of the independence of L and T we
can write (by Lemma 5.3.2 (3)):

E[
n∏
i=1

fi(Yθi+1 − Yθi)] = E[G(Tθ1 , ..., Tθn , Tθn+1)], (5.3)

where G(s1, ..., sn, sn+1) = E[
∏n
i=1 fi(Lsi+1 − Lsi)], where s1 = 0. By utilizing

the independent increments of L, we obtain:

E[
n∏
i=1

fi(Lsi+1 − Lsi)] =
n∏
i=1

E[fi(Lsi+1 − Lsi)] =
n∏
i=1

hi(si, si+1).

Thus

E[
n∏
i=1

fi(Yθi+1 − Yθi)] = E[
n∏
i=1

hi(Tθi , Tθi+1)] = E[
n∏
i=1

gi(Tθi+1 − Tθi)]

=
n∏
i=1

E[gi(Tθi+1 − Tθi)] =
n∏
i=1

E[fi(Yθi+1 − Yθi)],

where we used that that the process T has independent increments. This gives
us independent increments of the subordination process Y . �

We can now draw the conclusion that a subordinated process possess the
Markov property.

Corollary 5.3.6. The process (Yθ)θ≥0 described in Theorem 5.3.3 is a Markov
process.

Proof. (§§§) As (Yθ)θ≥0 is a Lévy process, by Theorem 4.2.7 it is also a Markov
process with transition semigroup, (Pθ)θ≥0 defined as:

Pθ(x,A) = PYθ (A− x), (5.4)

for (x,A) ∈ Rd ×B(Rd). �

Remark 5.3.7. We note here that PYθ (A) =
∫

[0,∞) λ
s(A)νθ(ds), where λ = PL1

and ν = PT1 .
Actually, it is possible to leave out some of the conditions of the Lévy process.

The only assumption that is needed is the one of independent increments.

Theorem 5.3.8. Let (Lt)t≥0 be a Lévy process and let (Tθ)θ≥0 be a time process
with independent increments. Let L and T be independent processes. Then we
have that (Yθ)θ≥0, where Yθ := LT (θ) for all θ ≥ 0, is a Markov process with
respect to its natural filtration.

Proof. (§§§) We can mimic the proof for Theorem 5.3.5. Here we showed
that the subordination process has independent increments, only using the
independent increments of T . As (Yθ)θ≥0 has independent increments, we refer
to Theorem 4.4.1 to conclude that (Yθ)θ≥0 is a Markov process. �

75



5.4. The Filtrations of Time Changed Processes

The following example of a subordination process can be found in both
[Car+03], [BS15] and in [EK19]. Here we give all the details of the calculations,
which are not given in the literature mentioned.

Example 5.3.9. [Car+03, Section 2.1](§§) Let I := (Iα)α≥0 be an inverse
Gaussian process with parameter θ > 0. This process is described in
Example 4.1.8. Let Bν,σ be a one dimensional Brownian motion with drift ν ∈ R
and volatility σ > 0 independent of I. Then (Bν,σ(Iα))α≥0 is a Normal inverse
Gaussian process. We show this by calculating the characteristic function of
B(I1). We use the Freezing Lemma to obtain

E[eiuB
ν,σ(I1)] = E[E[eiuB

ν,σ(I1)]|F I
1 ]] = E[Φ(I1)],

where
Φ(z) = E[eiu(νz+σBz )] = eiuνz−u

2σ2z/2 = e(iuν−u2σ2/2)z,

as (νz + σBz) is normally distributed. Therefore

E[eiuB
ν,σ(I1)] = E[e(iuν−u2σ2/2)I1 ] = E[e−(u2σ2/2−iuν)I1 ]

This is close to the Laplace transform of I1 but instead of a positive λ, we have
a complex number, where the real part is positive. By [BS15, Remark 8.1], we
can set u2σ2/2− 2iuν instead of λ in the Laplace transform in Example 4.1.8.
By doing this, we obtain:

E[eiuB
ν,σ(I1)] = exp(−1(

√
2(u2σ2/2− iuν) + θ2 − θ)). (5.5)

By [EK19, Equation (2.63)] the characteristic function of an Normal inverse
Gaussian distributed variable, X, takes the form

E[eiuX ] = exp(iµu+ δ(
√
γ2 − β2 −

√
γ2 − (β + iu)2)), (5.6)

where γ, δ > 0, β ∈ (−γ, γ) and µ ∈ R. We make computations on (5.5) with
the purpose of getting it on the form in (5.6):

exp(−(
√

2(u2σ2/2− iuν) + θ2 − θ)) = exp(θ −
√
θ2 + (u2σ2 − 2iuν))

= exp(θ −
√
θ2 + ν2

σ2 − (ν
σ

+ iuσ)2)

= exp(σ( θ
σ
−

√
θ2

σ2 + ν2

σ4 − ( ν
σ2 + iu)2)),

so we have arrived at the desired form with δ = σ, γ2 = θ2

σ2 + ν2

σ4 and β = ν
σ2 .

We conclude that the process (νIα + σBIα)α≥0 is a Normal inverse Gaussian
process.

�

5.4 The Filtrations of Time Changed Processes

In the section above we made a construction on the probability space, such that
both the time process and the base process was 0 at time 0 and that they were
càdlàg on the whole space. In Lemma 5.1.4 the time process was defined as
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LT (θ)1Ω0 , where Ω0 is the space, where Tθ has the desired properties. Instead
of this construction, that complicates the notation, the time changed process
will only be defined on the space Ω0. On this space we assume that Tθ has the
desired properties. As the probability space on which the processes are defined
is complete it is straight forward to reduce the probability space. We still call
this probability space (Ω,F ,P). This means that the assumptions on T will
hold true for all ω ∈ Ω. Remark that this will not be the case for the base
process. We are content with working on a probability space on which certain
assumptions on the base process only holds almost surely (for a Lévy process
these assumptions are L0 = 0 and càdlàg paths).
Let FT := (FT

θ )θ≥0 and FX := (FX
t )t≥0 be the filtrations generated by (Tθ)θ≥0

and (Xt)t≥0 respectively. Preferably, the filtration generated by the time
changed process can be written in terms of the filtrations FX and FT . We define
a filtration with respect to which the time changed process is adapted.
The filtration below is inspired by a direct proof that a time changed process is
measurable, if one does not use the knowledge that a progressively measurable
process is measurable.

Definition 5.4.1. Let (Xt)t≥0 be a progressively measurable stochastic process
taking values on Rd, and let (Tθ)θ≥0 be a right continuous time process. Define
the set

Hθ := {A ∈ FT
θ ∨FX

∞ : A ∩ {Tθ ≤ t} ∈ FT
θ ∨FX

t for all t ≥ 0}.

�

Lemma 5.4.2. (Hθ)θ≥0 is a filtration.

Proof. (§§§) We show that Hθ is a σ-algebra, that Hθ1 ⊆Hθ2 for θ1 ≤ θ2, and
that it is right continuous. We show that Hθ meets the three conditions of
Definition A.1.1. Let t, θ ≥ 0 be fixed values.

(i) Ω ∈Hθ: Obviously, Ω ∈ FT
θ ∨FX

∞ and

Ω ∩ {Tθ ≤ t} = {Tθ ≤ t} ∈ FT
θ ⊆ FT

θ ∨FX
t .

(ii) A ∈Hθ ⇒ AC ∈Hθ: Assume that A ∈Hθ. We have that Ω ∩ {Tθ ≤ t} ∈
FT
θ ∨FX

t , and

Ω ∩ {Tθ ≤ t} = (A ∪AC) ∩ {Tθ ≤ t} = (A ∩ {Tθ ≤ t}) ∪ (AC ∩ {Tθ ≤ t}).

As FT
θ ∨FX

t is a sigma-algebra we have that

(AC ∩ {Tθ ≤ t}) = ((A ∩ {Tθ ≤ θ}) ∪ (AC ∩ {Tθ ≤ t})) \ (A ∩ {Tθ ≤ t}),

which is an element in FT
θ ∨FX

t .

(iii) (Ai)i∈N ∈Hθ ⇒ ∪i∈NAi ∈Hθ:

(∪i∈NAi) ∩ {Tθ ≤ t} = ∪i∈N(Ai ∩ {Tθ ≤ t}) ∈ FT
θ ∨FX

t

because Ai ∩ {Tθ ≤ s} ∈ FT
θ ∨FX

t and FZ
θ ∨FX

t is a sigma-algebra.

77



5.4. The Filtrations of Time Changed Processes

We show that (Hθ)θ≥0 is an increasing sequence of σ-algebras. Let θ1 ≤ θ2 and
A ∈Hθ1 . Let Ω0 be the space, where T is increasing and such that P(Ω0) = 1.
Remark that Ω0 ∩ {Tθ2 ≤ t} ⊆ Ω0 ∩ {Tθ1 ≤ t}, as T is increasing. Then we
have that

A ∩ {Tθ2 ≤ t} ∩ Ω0 = A ∩ {Tθ1 ≤ t} ∩ {Tθ2 ≤ t} ∩ Ω0 ∈ FT
θ2
∨FX

t , (5.7)

because A ∩ {Tθ1 ≤ t} ∈ FT
θ1
∨FX

γ which is obviously contained in FT
θ2
∨FX

t

and {Tθ2 ≤ t} ∈ FT
θ2
⊆ FT

θ2
∨FX

t . Ω0 is also contained in FT
θ2
∨FX

t , because
we work with augmented filtrations of complete probability spaces. Thus
A ∈ Hθ2 , as we just need to add a null set in Equation (5.7) to obtain that
A ∪ {Tθ2 ≤ t} ∈ FT

θ2
∨FX

t .

It is clear that Hθ is contained in ∩θ′>θHθ′ . Let A ∈ ∩θ′>θHθ′ . This
means that A ∩ {Tθ+ 1

n
≤ t} ∈ FT

θ+ 1
n
∨FX

t for all n ∈ N and t ≥ 0. As T is
increasing A ∩ {Tθ+ 1

n1
≤ t} ⊆ A ∩ {Tθ+ 1

n2
≤ t} for n1 ≤ n2. This means that

n⋃
k=1

A ∩ {Tθ+ 1
k
≤ t} ∈

n⋂
k=1

FT
θ+ 1

k
∨FX

t .

Taking the limit on both sides and using the right continuity of (FT
θ ∨FX

t )θ≥0
and T , we get that A ∩ {Tθ ≤ t} ∈ FT

θ ∨FX
t . �

Lemma 5.4.3. Let (Xt)t≥0 be a progressively measurable stochastic process, that
takes values in Rd, and let (Tθ)θ≥0 be a time process. Let Y be the time changed
process with X as the base process and T as the time process. Then Yθ is
Hθ-measurable for all θ ≥ 0.

Proof. (§§§) Let (Xt)t≥0, (Tθ)θ≥0 and (Yθ)θ≥0 be as described above. Now let
θ ≥ 0 be given. We want to show that Yθ is a stochastic variable, meaning that
we need to show that the following function:

Yθ : Ω→ Rd

ω 7→ XTθ(ω)(ω)

is measurable. We define for all λ ≥ 0 the following two functions:

Λλ : Ω→ [0, λ]× Ω
ω 7→ (Tθ(ω)1{Tθ≤λ}(ω), ω),

and

Θλ : [0, λ]× Ω→ Rd

(s, ω) 7→ Xs(ω)1Ω0(ω)

We show that both of these functions are measurable. As we know that (Xt)t≥0
is progressively measurable, we conclude that Θλ is (B([0, λ]) ⊗ FX

λ ,B
d)-

measurable.
Now we prove that Λλ is (FT

θ ∨ FX
λ ,B([0, λ]) ⊗ FX

λ )-measurable. By
Lemma A.1.8(i), we just need to show that (Λλ)−1(D) ∈ FT

θ ∨ FX
λ for all

D ∈ B([0, λ]) × FX
λ because B([0, λ]) × FX

λ is a generator system for the
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σ-algebra B([0, λ]) ⊗FX
λ . We write D as a product set D = R × A where

R ∈ B([0, λ]) and A ∈ FX
λ . We write

(Λλ)−1(R×A) = {ω ∈ Ω : (Tθ(ω)1{Tθ≤λ}(ω), ω) ∈ (R×A)}
= {ω ∈ Ω : Tθ(ω)1{Tθ≤λ}(ω) ∈ R} ∩A
= {Tθ1{Tθ≤λ} ∈ R} ∩A ∈ FT

θ ∨FX
λ .

By Lemma A.1.7 we have that Θλ ◦ Λλ is (FT
θ ∨FX

λ ,B
d)-measurable.

Remark that if ω ∈ {Tθ ≤ λ}, then XTθ(ω)(ω) = Φλ ◦ Λλ(ω). Let B ∈ Bd. So
for all λ ≥ 0

{Tθ ≤ λ} ∩ {Yθ ∈ B} = {Tθ ≤ λ} ∩ {XTθ ∈ B, Tθ ≤ λ}
= {Tθ ≤ λ} ∩ (Φλ ◦ Λλ)−1(B) ∈ FT

θ ∨FX
λ ,

The only thing left to show is that (Yθ)−1(B) ∈ FT
θ ∨FX

∞ . Define for n ∈ N:

Qn := {Tθ ≤ n} ∩ (Θn ◦ Λn)−1(B) ∈ FT
θ ∨FX

n ⊆ FT
θ ∨FX

∞ .

Thus we have that ∪k∈NQk ∈ FT
θ ∨FX

∞ as FT
θ ∨FX

∞ is a sigma algebra. We show
that (Yθ)−1(B) = ∪k∈NQk. Let ω ∈ (Yθ)−1(B). Then there exist an n ∈ N such
that Tθ(ω) ≤ n. This secures that ω ∈ Qn, because Θn ◦ Λn(ω) = Yθ(ω) ∈ B.
Assume that ω ∈ ∪k∈NQk. Then there exist an n ∈ N such that ω ∈ Qn. This
means that Yθ(ω) = Θn◦Λn(ω) ∈ B. Conclude that (Yθ)−1(B) ∈ FT

θ ∨FX
∞ . �

In [BS15] they introduce the setup to time changed processes a little
differently than it is done in this thesis. They introduce a progressively
measurable stochastic process (Xt)t≥0 that is adapted to the filtration (Fθ)t≥0.
The time process (Tθ)θ≥0 is defined as a non-decreasing, right continuous, [0,∞]-
valued, stochastic process, that is adapted to the filtration (Gθ)θ≥0. Moreover,
they demand that for all θ ≥ 0, T (θ) is a stopping time with respect to the
filtration (Ft)t≥0. These assumptions secure that XT (θ) is FT (θ)-measurable
([BS15, p. 4]). FT (θ) is the optional σ-algebra

FT (θ) := {A ∈ F∞ : A ∩ {T (θ) ≤ t} ∈ Ft for all t ≥ 0}.

Often we will assume that the base process and the time process are independent
processes. In this case we can say, that T (θ) is not a stopping time with respect
to the σ-algebra generated by the base process, (FX

t )t≥0. So if one will demand
this assumption, an expansion of the filtration might be in place.
An easy way to secure that the assumption is always fulfilled is to define the
filtration (FX,T

t )t≥0, where

FX,T
t := FX

t ∨FT
∞. (5.8)

Remark that (Xt)t≥0 is adapted to that σ-algebra and that T (θ) is a stopping
time with respect to it as {T (θ) ≤ t} ∈ FT

∞ for all t ≥ 0. This filter gives rise
to the optional σ-algebra

FT (θ) := {A ∈ FX,T
∞ : A ∩ {T (θ) ≤ t} ∈ FX

t ∨FT
∞ for all t ≥ 0}.

We will show that this σ-algebra makes sense to use in some settings. First we
show a useful lemma, which is posed as an exercise in [Bal17].
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Lemma 5.4.4. [Bal17, Exercise 4.1] Let X be a real stochastic variable on the
probability space (Ω,F ,P). Let G ,H ⊆ F be sub σ-algebras of F . Assume
that σ(X) ∨ G is independent of H . Then

E[X|G ∨H ] = E[X|G ].

Remark 5.4.5. This Lemma can be expanded to hold for complex random
variables as well by linearity of the conditional expectation.

Proof. (§) By [Bal17, Remark 4.2] we need to make sure that E[X|G ] is G ∨H -
measurable, which is by definition the case. We show that

E[E[X|G ∨H ]1D] = E[E[X|G ]1D]

for all D ∈ G ∨H . We start off showing the identity for sets of the form A∩B
for A ∈ G and B ∈H . We calculate

E[E[X|G ∨H ]1A1B ] = E[X1A1B ] = E[X1A]P(B),

because X1A is σ(X) ∨ G -measurable, and this σ-algebra is independent of H .
As E[X1A|G ] is G -measurable, we get that

E[E[X|G ]1A1B ] = E[E[X1A|G ]1B ] = E[X1A]P(B).

Again by [Bal17, Remark 4.2] it has to be shown that D := {A∩B : A ∈ G , B ∈
H } (i) generates G ∨H , (ii) is stable to intersection and (iii) contains Ω. (i)
and (iii) is satisfied. As for (ii), let (A1 ∩B1), (A2 ∩B2) ∈ D ;

(A1 ∩B1) ∩ (A2 ∩B2) = (A1 ∩A2) ∩ (B1 ∩B2),

which is in D as G and H are both σ-algebras. �

In [Bal17, Theorem 3.3] he proves that for an (Ft)t≥0-stopping time, τ ,
and a d-dimensional (Ft)t≥0-Brownian motion B the process (Bτ+t −Bτ )t≥0
is again a Brownian motion. In the proof of this theorem, he does not use other
properties than the ones of a Lévy process, so in this section the theorem is
reproved with general Lévy processes instead of Brownian motion.
As in [Bal17, Lemma 3.3] we show that a finite stopping time can be
approximated from the right by a sequence of discrete valued stopping times.
Define for all n ∈ N and s ≥ 0 the function

τn(s) =
∞∑
i=0

i+ 1
2n 1( i

2n ,
i+1
2n ](s).

For each ω ∈ Ω, τn(τ(ω)) ≥ τ(ω) and τn(τ(ω)) → τ(ω) for n → ∞.
We just need to show that τn(τ) is a stopping time. Let t ≥ 0 and let
M := max{i ∈ N : t > i

2n }

{τn(τ) ≤ t} = {τ ≤ M

2n } ∈ FM/2n ⊆ Ft.
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Lemma 5.4.6. [Bal17, Theorem 3.3] Let L be a d-dimensional (Ft)t≥0-Lévy
process and let τ be a finite (Ft)t≥0 stopping time. Then (Lτ+t − Lτ )t≥0 is a
Lévy process equivalent to L and it is independent of Fτ .

Proof. (§) As above let τn be a decreasing sequence of discrete valued stopping
times approximating τ . Let k, n ∈ N, C ∈ Fτ ⊆ Fτn (see [Bal17, Proposition
3.5(c)]) and remark that

{τn = (i+ 1)/2n}∩C = {τn ≤ (i+ 1)/2n}∩C \ ({τn ≤ i/2n}∩C) ∈ F(i+1)/2n .

Let t1, ..., tk and A := A1 × · · · ×Ak for Ai ∈ Bd.

E[1A(Lτn+t1 − Lτn , ..., Lτn+tk − Lτn)1C ]
= P(Lτn+t1 − Lτ1 ∈ A1, ..., Lτn+tk − Lτn ∈ Ak, C)

=
∞∑
i=0

P(L i
2n+t1 − L i

2n
∈ A1, ..., L i

2n+tk − L i
2n
∈ Ak, C ∩ {τn = i

2n }).

We have from Remark 4.1.2 and Lemma 4.1.5 that (L i
2n+t1 −L i

2n
, ..., L i

2n+tk −
L i

2n
) is independent of F i

2n
and distributed as (Lt1 , ..., Ltk). Moreover

C∩{τn = i
2n } is F i

2n
-measurable. Applying these observations to the expression

above

E[1A(Lτn+t1 − Lτn , ..., Lτn+tk − Lτn)1C ]

=
∞∑
i=0

P(L i
2n+t1 − L i

2n
∈ A1, ..., L i

2n+tk − L i
2n
∈ Ak)P(C ∩ {τn = i

2n })

= P(Lt1 ∈ A1, ..., Ltk ∈ Ak)
∞∑
i=0

P(C ∩ {τn = i

2n })

= E[1A(Lt1 , ..., Ltk)]P(C).

By setting C = Ω we see that

(Lτn+t1 − Lτn , ..., Lτn+tk − Lτn) d= (Lt1 , ..., Ltk),

and therefore we conclude that (Lτn+t1 − Lτn , ..., Lτn+tk − Lτn) is independent
of Fτ . Let f ∈Mc(Rd,R)∩Mb(Rd,R) be positive. As Lévy processes are right
continuous we obtain by Bounded Convergence, that

E[f(Lτ+t1 − Lτ , ..., Lτ+tk − Lτ )]
= lim
n→∞

E[f(Lτn+t1 − Lτn , ..., Lτn+tk − Lτn)] = E[f(Lt1 , ..., Ltk)].

By [Tho19, Theorem 5.2.3] (independence is preserved for weak convergence
limits). (Lτ+t1 − Lτ , ..., Lτ+tk − Lτ ) is independent of Fτ , and by [Tho19,
Theorem 5.1.4] (convergence in distribution) that (Lτ+t − Lτ )t≥0 is equivalent
to (Lt)t≥0. �

Theorem 5.4.7. Let (Lt)t≥0 be a d-dimensional Lévy process and let (FL
t )t≥0

be its natural filtration. Let (Tθ)θ≥0 be a time process, and let (FT
θ )θ≥0 be the
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filtration generated by T . Assume that T is independent of L. Then for all
f ∈Mb(Rd,R) and t ≥ 0:

E[f(LT (θ)+t)|FT (θ)] = Φ(LT (θ)),

where Φ is a measurable function and

FT (θ) := {A ∈ FL
∞ ∨FT

∞ : A ∩ {T (θ) ≤ t} ∈ FL
t ∨FT

∞ for all t ≥ 0}.

Proof. (§§§) We define the σ-algebra FL,T where FL,T
t := FL

t ∨FT
∞. We show

that L is a Lévy process with respect to (FL,T
t )t≥0. Obviously we have that

it is adapted to it. We only need to show that (Lt+s − Lt) is independent
of FL,T

t . We take a look at the function ei〈(Lt+s−Lt),u〉 for u ∈ Rd which is
σ(Lt+s−Lt)-measurable. Consequently, σ(ei〈(Lt+s−Lt),u〉)∨FL

t is independent
of FT

∞. Therefore by Lemma 5.4.4 (for complex random elements)

E[ei〈(Lt+s−Lt),u〉|FL
t ∨FT

∞] = E[ei〈(Lt+s−Lt),u〉|FL
t ].

As Lt+s − Ls is independent of FL
t , we obtain that

E[ei〈(Lt+s−Lt),u〉|FL
t ∨FT

∞] = E[ei〈(Lt+s−Lt),u〉].

By [Bal17, Exercise 4.5] we obtain that (Lt+s−Lt) is independent of FL
t ∨FT

∞.
So (Lt)t≥0 is an (FL

t ∨FT
∞)t≥0-Lévy process.

Let θ ≥ 0, then Tθ is obviously a FL,T
t -stopping time. By Lemma 5.4.6

(LT (θ)+t − LT (θ))t≥0 is a Lévy process independent of FT (θ). Let f be a
function from Mb(Rd,R). By the Freezing Lemma

E[f(LT (θ)+t)|FT (θ)] = E[f(LT (θ)+t − LT (θ) + LT (θ))|FT (θ)] = Φ(LT (θ)),

for all t ≥ 0. �

Remark 5.4.8. Let (Gθ)θ≥0 be a filtration generated by the process (LT (θ))θ≥0.
Then

E[f(LT (θ)+t)|Gθ] = Φ(LT (θ)).

5.5 SDEs Driven by Time Changed Brownian Motion

In Section 2.8 we considered stochastic differential equations driven by Brownian
motion. In this section we are interested in stochastic differential equations
driven by time changed Brownian motion, that is, expressions of the type

dYθ = F (T (θ))dθ +M(Y (θ))dBT (θ).

We start considering the case where the time process is a Lévy process. As
Brownian motion is a Lévy process BT is a subordination process.

Let B be an m-dimensional Brownian motion and let T be an increasing
Lévy process (a subordinator). By Theorem 5.3.5, BT (θ) is an m-dimensional
Lévy process. We write it on the form of Equation (4.11). Let M(x) be a
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measurable mapping from Rm to Mat(d,m). We seek càdlàg solutions to the
stochastic differential equation

dYθ = M(Y (θ−))dBT (θ).

The integration on the right hand side is defined in Section 4.5. Define
Q1(x, y) := M(x)λλTM(y)T and Q2(x, y) = M(x)TM(y) for x, y ∈ Rd and
λ is the Rm vector from Equation (4.11). These are Mat(d, d)-valued and
Mat(m,m)-valued, respectively. By [App09, section 6.3], this differential
equation has an adapted càdlàg solution under the following conditions: There
exist D1, D2 > 0 such that for all x, y ∈ Rd:

(1) ‖ Q1(x, x)− 2Q1(x, y) +Q1(y, y) ‖≤ D1|x− y|2

(2) maxi,j∈{1,...,m} |Q2
i,j(x, x)− 2Q2

i,j(x, y) +Q2
i,j(y, y)| ≤ D2|x− y|2.

Here

‖ A ‖=
m∑
i=1
|Ai,i| (the absolute value of Ai,i)

for A ∈ Mat(d, d). Remark that as the solution Y is càdlàg, the left limit
exists for all t ≥ 0. Consequently, it makes sense to define the process Y (θ−),
which is left continuous. As M is measurable, this secures that the integrand is
predictable.
By [App09, Theorem 6.4.5], the solution to the stochastic differential equation
above is in fact a Markov process.
We move on to consider another situation, namely the case where the time
process is a continuous process.

Let B be an m-dimensional Brownian motion and T be a continuous time
process. As we are interested in stochastic differential equations driven by BT ,
we need to make sure that it makes sense to integrate with respect to BT . In
[BS15, Section 8.2] it is shown (without details) that BT is a local martingale
with the localizing sequence (σn)n∈N where

σn := inf{θ ≥ 0 : |BT (θ)| ≥ n}.

We show the same statement but with another localizing sequence.
As in the section above we let (FT,B

t )t≥0 be the filtration with respect to which
we define the optional σ-algebras FT (θ) for θ ≥ 0. By the stopping theorem
([Bal17, Theorem 5.13]) we obtain for all K ∈ N and θ2 ≥ θ1 that

E[BT (θ2)∧K |FT (θ1)∧K ] = BT (θ1)∧K , (5.9)

as T (θ1) ∧K ≤ T (θ2) ∧K and T (θ2) ∧K is a bounded stopping time.
Moreover by [IW89, Proposition 5.5 (5.4)] if σ and τ are stopping times and X
an integrable variable. Then

E[1{σ>τ}X|Fτ ] = 1{σ>τ}E[X|Fσ∧τ ]. (5.10)

These statements will be used to show that BT is a local martingales.
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Lemma 5.5.1. Let B be a Brownian motion and T be a continuous time process,
where T (0) = 0, that goes to infinity when θ goes to infinity and define the
filtration (FT (θ))θ≥0 as above. Then BT is a local martingale with the localizing
sequence (τK)K∈N where τK := inf{θ ≥ 0 : T (θ) = K}.

Proof. (§§) Define the stopping time τK := inf{θ : T (θ) = K} and observe that
T (θ ∧ τK) = T (θ) ∧K by the continuity of T . We show that BT (θ) is a local
martingale with respect to the filtration (FT (θ))θ≥0 with the localizing sequence
(τK)K∈N. By [Bal17, Exercise 5.6] BT (θ)∧K is integrable for all K ∈ N. We can
thereby define the conditional expectation E[BT (θ2∧K)|FT (θ)]. We use equation
(5.10) to show that

E[1{T (θ2)∧K>T (θ1)}BT (θ2)∧K |FT (θ1)]
= 1{T (θ2)∧K>T (θ1)}E[BT (θ2)∧K |FT (θ1)∧T (θ2)∧K ]
= 1{T (θ2)∧K>T (θ1)}E[BT (θ2)∧K |FT (θ1)∧K ]
= 1{T (θ2)∧K>T (θ1)}BT (θ1)∧K .

In the second equality we use that T (θ1)∧T (θ2) = T (θ1) and in the last equality
we used equation (5.9).
Define the new stopping time τ := (T (θ2)∧K)1{T (θ2)∧K≤T (θ1)}. This stopping
time is less that T (θ1) securing that Bτ is FT (θ1)-measurable. Remark that
B0 = 0 almost surely and therefore

Bτ = BT (θ2)∧K1{T (θ2)∧K≤T (θ1)}

almost surely. It follows then that

E[BT (θ2)∧K1{T (θ2)∧K≤T (θ1)}|FT (θ1)] = BT (θ2)∧K1{T (θ2)∧K≤T (θ1)}.

Remark that

BT (θ2)∧K1{T (θ2)∧K≤T (θ1)} = BT (θ1)∧K1{T (θ2)∧K≤T (θ1)}

as T (θ1) ≤ T (θ2). Putting the two conditional expectations together, we obtain

E[BT (θ2)∧K |FT (θ1)] = BT (θ1)∧K .

Consequently BT is a local Martingale with the localizing sequence (τK)K∈N.
Remark that τK →∞ as K →∞ because T (θ) goes to ∞ for θ →∞. �

By Section 2.7 this secures that we can define integration of functions from
L loc

2 (BT ) with respect to BT , and that the integral is a local martingale.
Define the mapping

M(θ, x) : [0,∞)× Rd →Mat(d,m).

Let M be measurable and assume for all x ∈ Rd that θ 7→ M(θ, x) is right
continuous and has left limits. Moreover assume that there exist a k > 0 such
that for all i ∈ {1, ..., d}, j ∈ {1, ...,m} and θ ≥ 0

|M(θ, x)−M(θ, y)| ≤ k|x− y| for x, y ∈ Rd.
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By [Pro90, Theorem V.7] the stochastic differential equation

dYθ = M(θ, Yθ−)dBT (θ)

has a unique adapted càdlàg solution, that is a semimartingale. That is, there
exist a d-dimensional semimartingale (Yθ)θ≥0 such that for i ∈ {1, ..., d}

Yi(θ) = Yi(0) +
m∑
k=1

∫ θ

0
Mi,k(v, Yv−)d(BT )k(v).

It is not obvious, that such processes possess the Markov property in general.
Some subcases that could be investigated is the case where T is deterministic
and continuous, and the case where T is on the form

∫ t
0 Svdv, where S is

a positive stochastic process. Remark that if T is deterministic, BT has
independent increments. In Section 4.4 it was shown that this is sufficient
to secure Markovianity of the process. It is then a natural thought, that a
solution to a stochastic differential equation driven by this type of time changed
Brownian motion is a Markov process.
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APPENDIX A

Appendix

A.1 Definitions and Theorems

Definition A.1.1. [Øks03, Definition 2.1.1] Definition of a sigma algebra] Let Ω
be a given set. A sigma algebra F in Ω is a family of subsets of Ω with the
following properties:

(i) ∅ ∈ F .

(ii) F ∈ F ⇒ FC ∈ F .

(iii) (Ai)i∈N ∈ F ⇒ ∪i∈NAi ∈ F .

�

Definition A.1.2. [Tho14, Definition 1.3.2] Let (Ω,F ) be a measurable space.
A measure µ on (Ω,F ) is a mapping µ : F → [0,∞] such that:

(1) µ(∅) = 0.

(2) If (An)n∈N is a disjoint sequence of sets from F , then µ(∪n∈NAn) =∑n
i=1 µ(Ai).

�

Definition A.1.3. [Sat13, Definition 2.1] Let µ be a probability measure on
(Rd,Bd). The characteristic function of µ is defined as:

µ̂(θ) =
∫
Rd
ei〈θ,x〉µ(dx), θ ∈ Rd.

�

Lemma A.1.4. [Tho19, 1.2.5(ii), Corollary 1.2.6 and Corollary 1.1.7(iv)]

(1) Let µ and ν be two measures on (Rd,B(Rd)). If µ̂(θ) = ν̂(θ) for all
θ ∈ Rd. Then µ = ν.

(2) Let Y and X be stochastic vectors on Rm and Rd respectively. If
P̂(X,Y )(θ1, θ2) = P̂X(θ1)P̂Y (θ2), for all θ1 ∈ Rm and θ2 ∈ Rd. Then X
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and Y are independent.

(3) Let X be a stochastic vector on Rd and let A ∈ Mat(m, d). Then
P̂AX(θ) = P̂X(AT θ) for all θ ∈ Rm.

�

Definition A.1.5. [Sat13, p. 10] Let µ be a probability measure on [0,∞). Then
the Laplace transform of µ is defined as

Lµ(u) =
∫

[0,∞)
e−uxµ(dx),

for u ≥ 0.

�

Lemma A.1.6. [Sat13, p. 10] Let µ1 and µ2 be probability measures on [0,∞).
Assume that Lµ1(u) = Lµ2(u) for all u ≥ 0. Then µ1 = µ2.

�

Lemma A.1.7. [Tho14, Theorem 4.2.4(ii)] Let (EE ) be a measurable space and
f, g : E → R be measurable mappings and c ∈ R. Then cf, f + g, fg, f ∧ g, f ∨ g
are measurable mappings.

�

Lemma A.1.8. [Tho14, Theorem 4.1.6(iv) and (v)] Let f : E → G and
g : G → H be mappings where (E,E ), (G,G ) and (H,H ) are measurable
spaces. Then the following assertions holds true.

(i) Let D be a generator set of a E and assume that f−1(D) ∈ E for all
D ∈ D . Then f is measurable.

(ii) If f and g are measurable mappings, then g ◦ f is (E ,H )-measurable.

�

Lemma A.1.9. [Øks03, Lemma 2.1.2] If X,Y : Ω→ Rn are two given functions,
then Y is σ(X)-measurable if and only if there exist a measurable function
g : Rn → Rn such that Y = g(X).

�

Theorem A.1.10 ([Bal17, Theorem 1.2] Fubini). Let µ1 and µ2 be measures on
the measurable spaces (E1,E1) and (E2,E2) respectively. Let f : E1×E2 → R be
a E1⊗E2-measurable function such that at least one of the two conditions is true:

(1) f is integrable with respect to µ1 ⊗ µ2.

(2) f is positive. Then

x1 7→
∫
E2

f(x1, z)µ2(dz)
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is E1-measurable and analogously

x2 7→
∫
E1

f(z, x2)µ2(dz)

is E2-measurable.
Moreover ∫

E1×E2

fdµ1 ⊗ µ2 =
∫
E1

∫
E2

fdµ2dµ1 =
∫
E2

∫
E1

fdµ1dµ2.

�

Proposition A.1.11 ([Bal17, Proposition 4.1] Tower property). Let X be
integrable and let D and D ′ be sigma algebras such that D ⊆ D ′. Then

E[E[X|D ]|D ′] = E[E[X|D ′]|D ] = E[X|D ].

�

Definition A.1.12. [Kal21, p. 10] Let S be a space. A π-system in S is a
collection of subsets of S, that is closed under intersection.
A λ-system, D , in S is a collection of subsets of S that meets the following
conditions:

(i) S ∈ D .

(ii) A,B ∈ D , A ⊆ B ⇒ B \A ∈ D .

(iii) A1, A2, ... ∈ D , An ↑ A⇒ A ∈ D .

�

Theorem A.1.13. [Kal21, Theorem 1.1] Let S be a space, and assume that C
is a π-system in S and that D is a λ-system in S. Then if C ⊆ D, it follows
that σ(C ) ⊆ D .

�

Theorem A.1.14. [Tho14, Theorem 2.2.2] Let (H,H ) be a measurable space
and let µ and ν be measures on the space. Let D be a system of subsets such that:

(a) D is stable to finite intersection.

(b) σ(D) = H .

(c) µ(A) = ν(A) for all A ∈ D .

(d) There exist a sequence of sets of D such that ∪i∈NAi = H and such
that µ(Ai) = ν(Ai) <∞.

Then µ(A) = ν(A) for all A ∈H .

�
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Theorem A.1.15. [Øks03, Theorem 2.1.5] Let n ∈ N and t1, t2, ..., tn ∈ [0,∞).
Define the νt1,t2,...,tn on Rdn such that

νtσ(1),...,tσ(n)(F1 × · · · × Fn) = νt1,...,tn(Fσ−1(1) × · · · × Fσ−1(n)) (A.1)

for all F1, ..., Fn ∈ B(Rd) and all permutations on {1, 2, ..., n} and that

νt1,...,tn(F1×· · ·×Fn) = νt1,...,tn,tn+1,...,tn+m(F1×· · ·×Fn×Rd×· · ·×Rd), (A.2)

for all m ∈ N. Then there exist a stochastic process (Yt)t≥0 on a probability
measure (Ω,F ,P), that takes values in Rd such that

νt1,...,tn(F1 × · · · × Fn) = P(Yt1 ∈ F1, ..., Ytn ∈ Fn),

for all n ∈ N and t1, ..., tn ∈ [0,∞).

�

A.2 Limiting Results

Theorem A.2.1. [Kal21, Lemma 1.11] Let E be a measurable space and S be a
metric space. Let for all n ∈ N

fn : E → S

be measurable functions. Assume that fn(x) converges for all x ∈ E. Then
limn→∞ fn is a measurable function.

�

Theorem A.2.2. (Bounded convergence Theorem)[Tho14, p. 5.5.3] Assume that
g, f, (fn)n∈N ∈M (Rd,R) and assume that limn→∞ fn = f almost surely. Let
µ be a measure on (Rd,B(Rd) and assume that

(a) |fn| ≤ g for all n ∈ N.

(b)
∫
gdµ <∞.

Then f, (fn)n∈N ∈ L1(µ) and

lim
n→∞

∫
fndµ =

∫
fdµ.

�

Theorem A.2.3. [Tho14, Theorem 5.2.4] Let µ be a measure on (Rd,B(Rd)).
Let (fn)n∈N be a sequence of (B(Rd),B(R))-measurable, positive and increasing
functions. Then limn→∞ fn is (B(Rd),B(R ∪ {∞}))-measurable and∫

Rd
lim
n→∞

fn(x)µ(dx) = lim
n→∞

∫
Rd
fn(x)µ(dx).

�
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Theorem A.2.4. ([Ped20, Appendix E] Monotone Class Theorem) Let A be a
collection of subsets of Ω which is stable under intersection. We also assumes
that A contains Ω. Now let H be a collection of real valued functions that
satisfies the following three criteria:

(1) If A ∈ A then 1A ∈H .

(2) If f, g ∈H and c ∈ R then f + g, cf ∈H .

(3) If (fn)n∈N is a non decreasing sequence of positive functions from H
and f := limn→∞ fn is bounded, then f ∈H .

Then we have that H contains all bounded functions that are measurable
with respect to σ(A ).

�

A.3 Brownian Motion and Compound Poisson Processes

Definition A.3.1. A stochastic vector, X, is d-dimensional normally distributed
with covariance matrix A (d × d) and mean vector µ (d-dimensional) if the
following properties holds true:

(i) E[Xi] = µi and Cov(Xi, Xj) = Ai,j for all i, j ∈ {1, ..., d}.

(ii) t1X1 + ...+ tdXd is normally distributed for all t1, ..., td ∈ R.

We write X ∼ Nd(µ,A).

�

Definition A.3.2. [Sat13, Definition 5.1] An Rd-valued process (Bt)t≥0 adapted
to the filtered probability space (Ω,F , (Ft)t≥0,P) is a Brownian motion if it
meets the following conditions:

(i) (Bt)t≥0 is a Lévy process.

(ii) t 7→ Bt(ω) is continuous for almost all ω ∈ Ω

(iii) For all 0 ≤ s ≤ t, Bt −Bs is Nd(0, (t− s)I) distributed.
Remark A.3.3. If B is one dimensional, we sometimes call it a standard Brownian
motion.

�

Definition A.3.4. [Sat13] Let N be a Poisson process with intensity c > 0 and
let (Zn)n∈N be a sequence of independently identically distributed stochastic
vectors on Rd. Then the process

∑Nt
k=1 Zk is called a compound Poisson process

with associated Poisson process N .

�
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