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Abstract

Developments in high-throughput technology have made multi-omics data
available on a large scale. Multi-omics data are datasets consisting of different
types of high-dimensional molecular variables, such as transcriptomic, proteomic,
and methylation data. In recent decades, predictive modeling incorporating
different types of data has attracted much attention. This thesis presents two
novel boosting approaches to build a regression model for high-dimensional
data consisting of multiple groups of variables such as multi-omics data. One
method is priority boosting and the other is Lasso-based block boosting.

Priority boosting processes data in a hierarchical manner by setting the
priority order among groups, which builds a model incorporating prior knowledge
and/or practical constraints. On the other hand, Lasso-based block boosting
(hereinafter called LBboost) does not have a hierarchical structure. In this
method, fitting will be performed in each group separately at each boosting
round, and iteratively updates the model via comparing the estimates by
each group and selecting the group that gives the best update, by what we
call the subset-updating approach. Both priority boosting and LBboost have
several desirable properties especially in the high-dimensional setting, such as
automated variable selection, shrinkage of estimates and interpretability of the
resulting models.

We applied these two methods on simulation data and a real multi-omics
dataset, and compared their prediction performances with three other methods,
priority-Lasso, Lasso and componentwise gradient boosting (glmboost). Priority
boosting tended to provide sparser prediction models that favor predictors
in blocks with higher priorities over predictors in blocks with lower priorities.
These results suggest that priority boosting can be regarded as a practical
method that is easy to apply and interpret. On the other hand, the resulting
models of LBboost tended to be less sparse than the other methods. However,
in terms of the prediction accuracy, it showed relatively good results. It could
often reach better or similar prediction accuracy compared to the priority
boosting and priority-Lasso in our datasets. Furthermore, the results show that
LBboost works well in the situations where glmboost and Lasso are prone to
be overfitting.
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CHAPTER 1

Introduction

Recent technological developments have brought many data-intensive discip-
lines. A conspicuous instance is biomedical science, where high-throughput
technologies have made it possible to obtain omics data, i.e., data stemming
from molecular processes on a large scale. A characteristic of omics data is a
sheer number of explanatory variables (predictors), which often have more than
1 000, 10 000 or even 100 000 variables, but a smaller sample size such as several
decades or hundreds. Data in which the number of predictors p is larger than
the number of observations n are termed as high-dimension low-sample-size
data or simply high-dimensional data. In this setting, it is known that most
conventional estimation methods for regression break down (Mayr et al., 2014).
Methods used to build prediction models for omics data require the ability to
handle data in the p > n setting.

In addition to the p > n problem, this place demands the integration of
different types of data into a prediction model. The derivation of regression
models where different data sources are available is one of the most recent
challenges in applied statistics. In the context of handling omics data, there
are different types of high-throughput molecular variables are available, such
as transcriptomic, proteomic, and methylation data. Omics data consisting
of different groups of variables are called multi-omics data. In recent decades,
prediction modelling incorporating a single type of omics data has been a
well-studied topic, and further several methods to handle multi-omics data have
been proposed (Herrmann et al., 2020).

One strategy to build prediction models with data consisting of multiple
groups of variables is processing the data in a hierarchical manner; It assigns
priorities to each of the groups (blocks) and process data according to the
priority order. This strategy was introduced by Klau et al. (2018) as the
principle of priority-Lasso. The process starts from the group with the highest
priority, which is the group consisting of “favorite” variables for some reasons.
Once the information from the block has been exploited, the remaining blocks
are processed in turn, until the block with the lowest priority. For example,
variables that are easy to measure or expected to have high prediction accuracy
are assumed as favorites. Via the priority order among blocks, this modelling
incorporates the user’s preference. The resulting model may be regarded as
a compromise between “what the data tell us” and “prior knowledge and/or
realistic constraints in practice” (Klau et al., 2018).

In this thesis, we present two novel approaches to process high-dimensional
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data consisting of multiple groups of variables such as multi-omics data. One
method is priority boosting and the other is Lasso-based block boosting. As the
names indicates, while priority-Lasso is a method based on Lasso regression,
priority boosting is based on boosting. Priority boosting was devised seeking to
combine the above strategy in priority-Lasso and boosting algorithms.

Boosting is one of the advanced methods for data analysis. It was advent as a
powerful prediction method for classification in the machine learning community,
and it has extended to deal with statistical problems, triggering a lot of research
in the recent decades. In the context of regression problems, boosting has
several advantages. Some of boosting approaches are applicable and stable in
the p > n setting (Hastie et al., 2009). They incorporate automated variable
selection and shrinkage of estimates. These are desirable characteristics to have
a sparse model and to avoid overfitting. Further, their resulting models have
the form of the generalized additive model (GAM), which is interpretable in
definition. Interpretability often gives us insight into the data. The aim of
priority boosting is to build a prediction model that incorporates advantages
from both boosting and the hierarchical strategy in priority-Lasso.

On the other hand, Lasso-based block boosting (hereinafter called LBboost)
does not take the hierarchical strategy. This method processes high-dimensional
data containing multiple groups, but does not assign priorities to each of
the groups. After dividing variables in data into several groups, LBboost
processes the data, updating the effect of predictors in each blocks separately
which is purely data-driven. This method is useful in the cases where there
is no reasonable basis for setting priorities among groups. We do not have an
opportunity to use prior knowledge unlike priority-Lasso or priority boosting,
but can listen to what the data tell us more clearly.

The main purpose of this thesis is to introduce the two methods, priority
boosting and LBboost, and evaluate the prediction performances on simulation
data and real data. This thesis is structured as follows.

In Chapter 2, we review background materials in statistical methodologies
for the following chapters. We start with boosting. One of the most prominent
boosting algorithms, the gradient boosting is mainly described. Next, survival
analysis is covered. A Boosting algorithm in the cases where responses are
survival times is explained there. We then discuss Lasso and priority-Lasso.

In Chapter 3, we present the novel approaches: priority boosting in Section
3.1 and LBboost in Section 3.2. In each section, we first provide a brief
introduction in subsection “Principles”, which gives key characteristics of
the method and a succinct overview of its algorithm. Then, in subsection
“Algorithm”, we introduce the algorithm formally.

We implemented these methods in R functions priorityboost and
LBboost, which used in analysis in Chapter 4 and Chapter 5. In Chapter
4, we conduct a simulation study to evaluate the prediction performances of
priority boosting and LBboost. Simulation design has two parts; one part is
for Gaussian responses and the other is for survival times. Their performances
are compared with three other methods, priority-Lasso, Lasso and gradient
boosting.

In Chapter 5, we asses the two methods’ prediction abilities on real multi-
omics data, the responses which of are survival times. Their prediction
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performances are compared again with the three methods, priority-Lasso, Lasso
and gradient boosting.

Finally, in Chapter 6, we present our conclusion summarizing our findings
and ideas for future work. In addition, we provide two appendices. Appendix A
presents the R implementation for priority boosting and LBboost. Appendix B
shows the R codes to generate the simulation data that we discussed in Chapter
4.

3



CHAPTER 2

Preliminaries

2.1 Boosting

Boosting is referred to as one of the most promising methodological approaches
for data analysis developed in the past few decades (Mayr et al., 2014). Boosting
has its roots in the machine learning field, and evolved from a black-box
algorithm to a flexible method to construct interpretable statistical models. The
main aim of this section is to introduce gradient boosting, starting with a short
historical overview. In Section 2.1.4, the componentwise approach is discussed,
which works for high-dimensional data where the number of predictors exceeds
the number of observations. With the tuning parameters, how shrinkage and
automated variable selection can be done in the componentwise approach is
described in Section 2.1.5. Boosting for survival analysis is covered in Section
2.2.4.

2.1.1 AdaBoost: answer to question in machine learning

Kearns & Valiant (1989) posed a question: Could any “weak” learning algorithms
for classification be converted into a “strong” learner? A weak learner may be
considered as a method that predicts slightly better than random guess. In
binary classification, its accuracy would be just better than a coin flip. A strong
learner, by contrast, should be able to perform a nearly perfect prediction.
Answering to this question, Schapire (1990) and Freund (1990) introduced
the first boosting algorithms. While these were rather theoretical constructs
than tools intended for practical use, in 1997, a concrete solution for binary
classification task was developed in the form of AdaBoost, the first practical
boosting algorithm (Freund & Schapire, 1996).

The basic idea of boosting is to iteratively train with simple learning
algorithms, called weak base learners, and then combine those solutions to
improve prediction accuracy. In the iterations, one does not manipulate the
base learner itself, but the training data. In the AdaBoost algorithm, the data
modification at each boosting iteration is performed by applying weight to each
observation. The base learner (base procedure) G is sequentially applied to the
data modified at each iteration, to obtain a sequence of fitted weak learners
G[m] for m = 1, . . . , M .

Assume that we have a dataset (xi, yi) for i = 1, . . . , n , where n is the
sample size, xi ∈ Rp is a p-dimensional predictor vector, and yi ∈ {−1, 1} is a
binary response. A classifier G(xi) produces a prediction taking one of the two
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2.1. Boosting

values {−1, 1}. Firstly, all the weights wi are initialized as 1/n. Since these are
the same values for all observations, at the first iteration, the base learner G[1]

are simply fitted on the training data in the usual manner. In each iteration
m = 1, 2, . . . , M , we compute the following error rate,

err[m] =
∑n

i=1 wiI(yi ̸= G[m](xi))∑n
i=1 wi

(2.1.1)

and the iteration-specific coefficient,

α[m] = log 1− err[m]

err[m] , (2.1.2)

which shows the classification performance of the weak learner G[m]. With this
coefficient, the weights wi are updated to wi exp

{
α[m]I(yi ̸= G[m](xi))

}
. The

weights for the observations that were misclassified at the previous iteration
are increased, while the weights for those that were correctly classified are not.

The final classifier GAdaboost is expressed as the weighted sum of all the
weak learners G[m],

GAdaboost = sign
[

M∑
m=1

α[m]G[m](x)
]

. (2.1.3)

From equation (2.1.2), we can see that the coefficient α[m] becomes smaller
as the error rate err[m] becomes larger, so that the base classifier G[m] with
smaller error rate will have a greater impact on the final classification compared
to classifiers with larger error rate. For a schematic overview of Adaboost, see
Algorithm 2.1.1.

By increasing the weights of the observations that were misclassified in
the previous round, the algorithm keeps shifting the focus on observations
that are difficult to predict. This leads to dramatically improved performance
compared to training by a single base learner such as simple classification trees
or stumps. The introduction of AdaBoost attracted a great deal of attention
in the machine learning community. Breiman, a pioneer in machine learning,
referred to AdaBoost as the “best off-the-shelf classifier in the world” (Hastie
et al., 2009).

2.1.2 From black box to statistical modeling

Adaboost was originally regarded as a black-box algorithm like most of machine
learning algorithms. Friedman et al. (2000) provided a statistical perspective on
Adaboost by showing that this algorithm indeed minimizes the exponential loss
L(y, f(x)) = exp(−yf(x)) via the forward stagewise additive modeling. The
forward stagewise additive modeling is a method to seek an additive expansion
in a set of basis functions that minimizes the empirical risk. An additive
expansion is expressed as

M∑
m=1

βmb(x; γm), (2.1.4)
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2.1. Boosting

Algorithm 2.1.1 Adaboost
1. Initialize the observation weights wi = 1/n for i, . . . , n.
2. For m = 1, . . . , M

1) Fit classifier G[m](x) to the training data with weights wi.
2) Compute error rate,

err[m] =
∑n

i=1 wiI(yi ̸= G[m](xi))∑n
i=1 wi

3) Compute the iteration-specific coefficient,

α[m] = log 1− err[m]

err[m] ,

4) Update individual weights

wi ← wi · exp
{

α[m]I(yi ̸= G[m](xi))
}

.

3. Compute the final classifier

GAdaboost(x) = sign
[

M∑
m=1

α[m]G[m](x)
]

.

where βm, for m = 1, . . . , M , are the expansion coefficients and b(x; γm) are
basis functions of the multivariate argument x with parameters γm. The
emperical risk is a loss function averaged over a training dataset, (xi, yi) for
i, . . . , n

f̂ = argmin
f

{
1
n

n∑
i=1

L(yi, f(xi))
}

. (2.1.5)

The forward stagewise additive modeling approximately solves the optimization
problem,

f̂ = argmin
f

n∑
i=1

L

(
yi,

M∑
m=1

βmb(x; γm)
)

. (2.1.6)

Generally, solving this problem requires computationally intensive numerical
optimization techniques, but the forward stagewise additive modeling can
be a reasonable alternative. This algorithm is a simple iterative method
by sequentially adding new basis function to the current expansion without
adjusting the previously added terms, which provides an approximation of the
solution. For a detailed explanation of the equivalence between AdaBoost and
the forward stagewise additive modeling with the exponential loss function,
we refer to Hastie et al. (2009). Mayr et al. (2014) emphasized that this
interpretation by Friedman et al. (2000) is the most important view in the
context of the evolution of boosting from a black-box algorithm to a statistical
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2.1. Boosting

method. This work provided the basis for understanding boosting in a statistical
framework.

2.1.3 Gradient boosting

The statistical view of boosting led to the extension of the principle of boosting
to regression problems. A regression model aims at quantifying the relation
between the predictors and the response through an interpretable function
f(x) = E(Y |X = x), known as the regression function, where Y ∈ R denotes a
random output variable, X ∈ Rp a p-dimensional random input vector and x
is a particular realization of X.

In general, to estimate the regression function, we seek a function that
minimizes the expectation of a loss function L,

f̂ = argmin
f
{EX,Y [L(Y, f(x))]} . (2.1.7)

In practice, we minimize the empirical risk,

f̂ = argmin
f

{
1
n

n∑
i=1

L(yi, f(xi))
}

. (2.1.8)

Friedman (2001) defined one of the most prominent statistical boosting
approaches, gradient boosting. Gradient boosting estimates f by iteratively
updating its value, to (approximately) minimizes the empirical risk. As
the solution of gradient boosting, we obtain the estimate of f as the form
f̂ = C +

∑M
m=1 h[m], where C is an initial guess of f and h[m] are the increments

called step, which improve the estimate iteratively.
To understand the gradient boosting algorithm, analogy to steepest descent

method may be useful. In the following, gradient boosting and functional
gradient descent (FGD) are used as equivalent terminology for the same
method (Algorithm 2.1.2). Steepest descent is a well-known iterative method for
minimization of a function. Consider that we would like to find the minimum of
a function g(x), where x ∈ Rp and g : Rp → R. Let g′(x) denote the gradient
of g evaluated point x. The opposite direction of g′(x) indicates the steepest
direction downhill on the surface of g at the point x. The method minimizes g
by repeatedly taking a step in the direction of the negative gradient of g. The
updating equation is expressed as

x[m+1] = x[m] − ν[m]g′(x[m]).

where ν[m] > 0.
FGD algorithm has similar structure to steepest descent method, but for

the directions of the steps, FGD does not use the negative gradient itself. The
negative gradient of the objective function, i.e., a specific loss function, is defined
only at the data points in a training set. Since the aim of FGD is to build a
model for any input variables x ∈ Rp, we want to have a generalized version of
the negative gradient that is defined in any x values other than the training
sample points. One way to do is to fit base learners to the negative gradient.

As an example of the base learners, consider a multivariate linear model
fitted by least squares. Let the negative gradient vector in the mth iteration
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2.1. Boosting

be denoted by u[m] = (u[m]
1 , . . . , u

[m]
n ). The component u

[m]
i for i = 1, . . . , n is

expressed as

u
[m]
i = − ∂L(yi, f(xi))

∂f(xi)

∣∣∣∣
f(xi)=f̂ [m−1](xi)

, (2.1.9)

where xi ∈ Rp is a p-dimensional input vector. With the base learner, we
estimate β̂[m] = (XT X)−1Xu[m], where X is n×p matrix, whose component
Xij represents the jth predictor for the ith sample. Estimating β̂[m] means to
draw a regression surface using the data points in a training set, which shows
a relation between u[m] and X. Then, for any x ∈ Rp, the fitted base learner
will be defined as b̂[m] = xβ̂[m]. b̂[m] may be regarded as a function to give an
approximation of u[m] for x ∈ Rp, where x need not be a value in the training
set. Using this function in each step, FGD iteratively improves the estimate.

The updating equation in FGD becomes

f̂ [m] = f̂ [m−1] + νb̂[m], (2.1.10)

and the final estimate is expressed as

f̂ [mstop] = f̂ [0] + ν

mstop∑
m=1

b̂[m]. (2.1.11)

FGD has two tuning parameters; ν and mstop. The parameter 0 < ν < 1 is
called boosting step size or step-length factor, and controls the learning rate of
the boosting procedure. The stopping iteration mstop, which is the main tuning
parameter, is often chosen by evaluating the models with cross-validation or
bootstrapping. Too large mstop may lead to overfitting of the final estimate.
More details on these tuning parameters will be discussed in section 2.1.5.

In this algorithm, we can apply any regression technique as the base learners.
Common choices are the linear least-squares model with b = xβ[m], smoothing
splines or stumps. Also any loss function that is convex and differentiable
can be used. An example is the L2 loss, L(yi, f) = 1

2 (y − f)2, which is called
also squared error loss. L2Boosting, the gradient boosting with L2 loss, is the
simplest and one of the most used boosting algorithm. The negative gradient of
the L2 loss is equivalent to the residual, y − f̂ . Thus, in each boosting iteration
m, L2Boosting fits the base learner to the residuals from the previous iteration,
y − f̂ [m−1]. Here, we can find a common concept for gradient boosting and
Adaboost; both boosting algorithms improve their performance by focusing
on observations that are difficult to predict in the previous update. While
AdaBoost gives higher weight to observations that were misclassified before,
L2Boosting iterates refitting the residuals given previous estimates. More details
on L2Boosting can be found in Bühlmann & Hothorn (2007).

2.1.4 Componentwise boosting

The componentwise boosting is an effective method for building models for
high-dimensional data where the number of input variables exceeds the number
of observations. This algorithm incorporates variable selection during model
estimation. The fundamental concept of the componentwise boosting is to
update the effect of only one predictor at a time, instead of updating the
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2.1. Boosting

Algorithm 2.1.2 generic FGD algorithm
1. Set iteration counter m = 0. Specify loss function L(yi, f). Initialize the
estimate f̂ [0]. Common choices are f̂ [0] = 0 or

f̂ [0] = argmin
c

1
n

n∑
i=1

L(yi, c).

2. For m = 1, . . . , mstop,
1) Compute the negative gradient of the loss function evaluated in

the previous iteration.

u
[m]
i = − ∂

∂f
L(yi, f)

∣∣∣∣
f=f̂ [m−1](xi)

for i = 1, . . . , n.

2) Fit the negative gradient vector u = (u1, . . . , un) to
x = (x1, . . . , xn) by the base learner (base procedure), giving the
fitted base learner b̂[m]

(xi, ui)n
i=1

base learner→ b̂[m]

3) Update the estimate f̂ [m] = f̂ [m−1] + ν · b̂[m] , where 0 < ν < 1.
3. The final estimate is f̂ [mstop] = f̂ [0] + ν

∑mstop

m=1 b̂[m].

effect of all predictors. The componentwise method can be applied to different
boosting algorithms, but in this section, we will only consider the componentwise
version of the gradient boosting.

The componentwise gradient boosting was firstly introduced by Bühlmann
& Yu (2003). Their concept was to apply componentwise base learners to
the functional gradient descent (FGD). Assume that we have a training set
(xi, yi) for i, . . . , n, where xi = (xi1, . . . , xip) ∈ Rp and yi ∈ R. Setting an
initial guess f [0], computing the negative gradient u[m] of a loss function in each
iteration, m = 1, . . . , mstop, is the same as the procedures in FGD. Then, in both
the componentwise gradient boosting and FGD, we approximate the negative
gradient, but the way of approximation makes difference between them. While
FGD fits u[m] to a single base learner, the componentwise boosting fits u[m]

to separate base learners corresponding to each component (each dimension)
of the predictors respectively. Then we obtain p fitted base learners b̂

[m]
j for

j = 1, . . . , p at each iteration m.
As an example of the base learners, consider a univariate linear model

fitted by least squares, and let β = (β1, . . . , βp) denote the coefficients of the
predictors. The estimate of the coefficient β1, for example, will be obtained as

β̂1 =
∑n

i=1 xi1ui∑n
i=1 xi12 . (2.1.12)

Then, for a p-dimensional predictor vector x = (x1, . . . , xp), the fitted base
learner b̂1

[m] will be defined as b̂1
[m](x1) = β1x1. Similarly, we obtain

b̂
[m]
2 , . . . , b̂

[m]
p .

9



2.1. Boosting

Among them, we select the base learner that fits u[m] the best. We usually
choose the base learner b̂

[m]
j∗ that minimizes the most the empirical risk, where

j∗ = argmin
j∈{1,...,p}

n∑
i=1

L(yi, f̂ [m−1] + b̂
[m]
j ). (2.1.13)

Setting that b̂[m] = b̂
[m]
j∗ , the updating equation becomes

f̂ [m] = f̂ [m−1] + νb̂[m] (2.1.14)

where 0 < ν < 1 is the step-length factor. The final estimation is

f̂ [mstop] = f̂ [0] + ν

mstop∑
m=1

b̂[m]. (2.1.15)

A schematic overview of the componentwise gradient boosting can be found in
Algorithm 2.1.3.

Here, we introduce one of the most important model classes, generalized
additive model (GAM), where the conditional distribution of the response is
assumed to follow an exponential family distribution. GAM has the form,

g(E(Y |x)) = β0 + h1(x1) + h2(x2) + · · ·+ hp(xp). (2.1.16)

Here, g is a link function that is strictly increasing and differentiable. β0 is
an intercept and h1(x1), . . . , hp(xp) are the effects of covariates x1, . . . , xp on
the transform of the expectation of the response. The right hand side of the
equation, β0 + h1(x1) + h2(x2) + · · ·+ hp(xp), is denoted by η(x). We highlight
that η(x), which is called additive predictor, is interpretable. The partial effect
of each covariate xj for j = 1, . . . , p on the response is represented by function
hj respectively. Based on hj , the direction, size and shape of the effect of xj

can be interpreted.
When the conditional distribution of the response is assumed to follow an

exponential family distribution, the componentwise gradient boosting fits GAM
where the link function g is the identity link,

E(Y |x) = β0 + h1(x1) + h2(x2) + · · ·+ hp(xp), (2.1.17)

which is often called additive model. Note that componentwise gradient
boosting can be used even though the distribution is not assumed to follow an
exponential family distribution. The resulting models have the same form as
the additive predictor in GAM and keep the interpretability. For more details
on GAM, we refer to Hastie & Tibshirani (1990).

The componentwise boosting algorithm may be slightly modified to update
the parameter estimate, instead of updating the function estimate. Assume that
we have a univariate least-squares estimator as the base learner and at each
iteration, we compute γ̂j =

∑n
i=1 xijui/

∑n
i=1 xij

2 for j = 1, . . . , p, where γ̂j

denotes the estimate of the coefficient of the linear model that is the fitted base

10



2.1. Boosting

Algorithm 2.1.3 Componentwise gradient boosting
1. Set iteration counter m = 0. Specify a loss function L(yi, f) and a

set of base learners b1, . . . , bp. Initialize the estimate f̂ [0]. Examples
of the starting value are f̂ [0] = 0 or

f̂ [0] = argmin
c

1
n

n∑
i=1

L(yi, c).

2. For m = 1, . . . , mstop,
1) Compute the negative gradient of the loss function evaluated at

the previous iteration.

u
[m]
i = − ∂

∂f
L(yi, f)

∣∣∣∣
f=f̂ [m−1](xi)

for i = 1, . . . , n.

2) Fit the negative gradient vector u[m] = (u[m]
1 , . . . , u

[m]
n ) separately

to each base learner b̂
[m]
j , j = 1, · · · , p,

(xij , ui)n
i=1

fitting by base learner→ b̂
[m]
j ,

where xij denotes the jth covariate for the ith ovservation.
3) Select the component j∗ that gives the best update. A common

choice is
j∗ = argmin

j∈{1,...,p}

n∑
i=1

L(yi, f̂ [m−1] + b̂
[m]
j ).

Set b̂[m] = b̂
[m]
j∗ .

4) Update the estimate f̂ [m] = f̂ [m−1] + νb̂[m] , where 0 < ν < 1 is
the step-length factor.

3. The final estimate is f̂ [mstop] = f̂ [0] + ν
∑mstop

m=1 b̂[m].

learner. Then, we choose the best γ̂j∗ among them. The updating equation is
expressed as

β̂j
[m] =

{
β̂j

[m−1] + νγ̂j
[m] if j = j∗

β̂j
[m−1] otherwise.

(2.1.18)

The final fitted linear predictor is

f̂ [mstop](xi) = xiβ̂
[mstop]. (2.1.19)

Algorithm 2.1.4 shows the overall procedure for the L2Boosting with the
componentwise least-squares base procedure as an example of this parameter-
updating approach.

2.1.5 Early stopping and variable selection

As with FGD, in the componentwise gradient boosting, two tuning parameters,
stopping iteration mstop and step-length factor ν, control the shrinkage of the
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Algorithm 2.1.4 L2Boosting with componentwise least-squares base procedure
1. Set iteration counter m = 0. The loss function is set to L2 loss,

1
2 (y − f)2. Initialize the estimate β̂[0] = (β̂[0]

1 , . . . , β̂
[0]
p ) = (0, . . . , 0)

and set f̂ [0](xi) = η̂
[0]
i = xiβ̂

[0] = 0.
2. For m = 1, . . . , mstop,

1) Compute the residual from the previous iteration,

u
[m]
i = yi − f̂ [m−1](xi) for i = 1, . . . , n.

2) Fit the residual vector u[m] = (u[m]
1 , . . . , u

[m]
n ) separately to the

base learners b̂
[m]
j that are univariate linear models for

j = 1, · · · , p. Obtain the coefficient estimates,

γ̂j
[m] =

n∑
i=1

xijui/

n∑
i=1

xij
2,

where xij is the jth predictor for the ith observation. γ̂j
[m]xij

can be seen as an approximation of u
[m]
i .

3) Select the best component j∗ such that

j∗ = argmin
j

n∑
i=1

(u[m]
i − γ̂j

[m]xij)2.

4) Update the estimates for the coefficients,

β̂j
[m] =

{
β̂j

[m−1] + νγ̂j
[m] if j = j∗

β̂j
[m−1] otherwise.

5) Compute the fitted linear predictor,

f̂ [m](xi) = f̂ [m−1](xi) + νγ̂
[m]
j∗ xij∗

= xiβ̂
[m].

3. The final fitted linear predictor is

f̂ [mstop](xi) = xiβ̂
[mstop].
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final estimate. Shrinkage generally reduces the variance of estimates, so that
enhances the stability and accuracy of predictions (Hastie et al., 2009).

There is a trade off between them; smaller values of ν requires larger value
of mstop. It has been empirically found that if ν is sufficiently small, the test
error potentially becomes better and almost never worse. We tipically set ν to
be 0.1. The parameter mstop is considered the main tuning parameter. If mstop
is too small, learning from the training data is not enough well, resulting in
underfitting. On the other hand, with large value of mstop, we can usually reduce
the empirical risk, but fitting the training data too much may lead to overfitting.
To avoid overfitting, it is important to evaluate the model not on the training
data, but on separated test data and select the optimal number of iterations
according to the test error (early stopping). We usually use cross-validation
(CV) or bootstrapping to choose mstop.

Parameter mstop also controls the sparsity of the final model. Consider the
componentwise gradient boosting. As seen above, the structure of the final
estimate is equivalent as the additive predictor in (2.1.16),

β0 + h1(x1) + h2(x2) + · · ·+ hp(xp).

Here, hj(xj) corresponds to

ν

mstop∑
m=1

I(j[m] = j∗[m])b̂j
[m](xj). (2.1.20)

Some of h1(x1), . . . , hp(xp) are equal to zero, when the corresponding base
learners have not been selected. If boosting iteration stops before all the
component are selected, then the resulting model incorporates variable selection.
As the value of mstop is smaller, we obtain a sparser model.
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2.2. Survival analysis and boosting for survival data

2.2 Survival analysis and boosting for survival data

2.2.1 Survival data

Survival analysis is the study of survival time, so called lifetime or time to event.
Examples of events are the death of a laboratory animal or the relapse of a
cancer patient in biostatistics, or failure of a machine part or burning out of
light bulbs in engineering. In context of econometrics and sociology, time to
events include duration of unemployment or time to divorce or birth of a child.

A key characteristic of survival analysis is that the data come as a mixture
of complete and incomplete observations. The event of interest occurs in some
individuals, but not in others. For example, some patients have a recurrence of
cancer during the study period, while others do not. Some couples get divorced,
whereas others remain happily married. Incomplete observations, in which the
event in question does not occur, are called censored.

There are several types of censoring; right-censoring occurs when we only
know that the survival endpoint exceeds a certain value, and left-censoring
results when the endpoint is known to be below a particular value but it is
unknown by how much. Right-censored survival dataset is the most common
setting, and we will deal with this type of data in the following sections. In
clinical studies, right-censored observations typically occur when individuals
still have no events at the end of the study, when they withdraw from the study,
or when they become untraceable. For further discussion on censoring, we refer
to Aalen et al. (2008)

The standard setup for right censored data for the ith individual i = 1, . . . , n
is the following. We denote the survival time by Ti and the potential censoring
time by Ci. Then, our observations of the survival data consist of the pairs

(T̃i, di)n
i=1,

where T̃i = min(Ti, Ci) and di = 1 if Ti ≤ Ci, and 0 otherwise. T̃i denotes
observed time which is either the true lifetime Ti (in the case that Ti ≤ Ci)
or the censoring time Ci (in the case that Ti > Ci). Censoring indicator for
observed time di indicates whether an event has occurred or not. di = 1 if we
observe the true survival time, and 0 if the observation is censored.

2.2.2 Survival function and hazard function

To analyze survival data, we introduce the survival function S(t) and the hazard
function α(t). The survival function gives the probability that the event in
question has not yet occurred by time t. Assume that random variable T that
denotes the lifetime is absolutely continuous and it has probability density
function f(t) and cumulative distribution function F (t). Then the survival
function is defined as

S(t) = P (T > t) = 1− F (t) =
∫ ∞

t

f(u)du. (2.2.1)

On the other hand, the hazard function, also called hazard rate or failure rate,
is defined by conditional probability. Given that the individuals have not yet
experienced the event in question by time t, the probability of experiencing the
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2.2. Survival analysis and boosting for survival data

event in a small time interval [t, t + h) becomes α(t)h. The formal definition of
the hazard rate is

α(t) = lim
h→0

1
h

P (t < T ≤ t + h | T > t). (2.2.2)

The cumulative hazard function A(t) is defined as

A(t) =
∫ t

0
α(u)du. (2.2.3)

Mathematical relation between the survival function and the hazard function
is straightforward to show. By equation (2.2.1), (2.2.2) and (2.2.3), we have

A′(t) = α(t) = lim
h→0

1
h

P (t < T ≤ t + h | T > t)

= lim
h→0

1
h

P (t < T ≤ t + h)
P (T > t)

= lim
h→0

1
h

S(t)− S(t + h)
S(t)

= −S′(t)
S(t) . (2.2.4)

And then,
d

dt
ln S(t) = −α(t)

ln S(t) = −
∫ t

0
α(u)du + ln S(0) = −

∫ t

0
α(u)du,

where the last equality is because S(0) is 1. We obtain

S(t) = exp
{
−
∫ t

0
α(u)du

}
= exp{−A(t)}. (2.2.5)

Note that since S′(t) = −f(t), α(t) = f(t)/S(t). Also note that α(t) can be
any non-negative function, while S(t) is a non-negative function that starts at
1 and decreases over time.

From observations of survival data, we may estimate the survival function
by the Kaplan-Meier estimator (Kaplan & Meier, 1958) and the cumulative
hazard rate by the Nelson-Aalen estimator (Nelson, 1969, 1972; Aalen, 1978).
In the following, we assume that there are no tied event times for simplicity.
Assume that we have a dataset including n individuals and that K individuals
have had the event in question, and n−K individuals have been censored. let
T(1) < T(2) < · · · < T(K) be the ordered times when an occurrence of the event
is observed. If an individual have not experienced the event before a given time
t, and have not been censored before time t, then we say that the individual is
at risk at time t. The set of individuals who are at risk is termed the risk set.
Let Y (t) denote the number of individuals who are at risk “just before” time t
and hence, might have the event at time t. Then, the Kaplan-Meier estimator
is expressed as

Ŝ(t) =
∏

T(k)≤t

(
1− 1

Y (T(k))

)
, (2.2.6)
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2.2. Survival analysis and boosting for survival data

and the Nelson-Aalen estimator is

Â(t) =
∑

T(k)≤t

1
Y (T(k))

. (2.2.7)

These are right-continuous step functions with jumps at observed event times
T(k). The hazard rate α(t) may be estimated by the “slope” of the plot of
the Nelson-Aalen estimator. More details on these estimators including formal
derivations can be found in Aalen et al. (2008).

2.2.3 Cox’s regression model

Clinical and epidemiological studies often assess the effect of many covariates
on survival in order to gain knowledge from a heterogeneous group of cases.
The most commonly used regression model for censored survival data is the
Cox’s proportional hazards model (Cox, 1972)

In this model, it is assumed that the hazard rate α(t) for an individual with
covariates x1, . . . , xp takes the form

α(t|x1, . . . , xp) = α0(t) exp{β1x1 + · · ·+ βpxp}. (2.2.8)

Here exp{β1x1 + · · ·+ βpxp} is called the relative risk function or hazard ratio,
and β1, . . . , βp are regression coefficients showing the effect of the covariates.
α0(t) is the baseline hazard rate that gives the shape of the hazard rate as a
function of time.

Consider two individuals, individual 1 and individual 2, with covariates
xi1, . . . , xip for i = 1 and 2. Assume all covariates are fixed over time. Then,
the ratio of their hazard rates is

α(t|x2)
α(t|x1) = α0(t) exp{β1x11 + · · ·+ βpx1p}

α0(t) exp{β1x21 + · · ·+ βpx2p}

= exp{β1x11 + · · ·+ βpx1p}
exp{β1x21 + · · ·+ βpx2p}

, (2.2.9)

which is constant over time. It shows that in the Cox model with fixed covariates,
the ratio of the hazard rates is assumed to be constant over time and it is called
the proportional hazards assumption.

Because of the nonparametric nature of the baseline hazard, we cannot use
ordinary likelihood methods to estimate the regression coefficients. Instead we
use a partial likelihood, which we will introduce. Consider n individuals that have
covariate vectors xi for i = 1, . . . , n. Assume that K individuals out of the n
have experienced the event and let T(1) < T(2) < · · · < T(K) be the ordered times
when an occurrence of the event is observed. x(1) < x(2) < · · · < x(K) denote
the covariate vectors for the corresponding individuals; the individual with x(k)
have had the event at T(k). The risk set at t is denoted by R(t) = {l|Yl(t) = 1},
where Yl(t) is 1 if the lth individual is at risk “just before” time t and 0 otherwise.

Then, the conditional probability of observing an event for individual i at
time t, given that an event is observed at that time for an individual in the
riskset at time t is expressed as

π(i|t) = α(t|xi)∑
l∈R(t) α(t|xl)
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= exp(xiβ)∑
l∈R(t) exp(xlβ) . (2.2.10)

The partial likelihood for β is defined by multiplying the conditional probabilities
over all observed event times,

PL(β) =
K∏

k=1

exp
(
x(k)β

)∑
l∈R(T(k)) exp(xlβ) . (2.2.11)

The partial log-likelihood becomes

pl(β) =
K∑

k=1

x(k)β − log
∑

l∈R(T(k))

exp(xlβ)

 . (2.2.12)

Or equivalently, by setting R(i) = R(T̃i), where T̃i is the observed time for
individual i,

pl(β) =
n∑

i=1
di

xiβ − log
∑

l∈R(i)

exp(xlβ)

 , (2.2.13)

where di denotes the censoring indicator; di = 1 if we observe the true survival
time, and 0 if the observation is censored. Via maximizing the partial log-
likelihood, β can be estimated without considering the baseline hazard.

2.2.4 Boosting for Cox regression model

Maximizing the likelihood is equivalent to minimizing the loss function defined
as the negative likelihood. To perform Cox regression, gradient boosting sets
the negative partial log-likelihood as the loss function, and seek the estimation
of the coefficients β by iteratively updating the values by the base learners
(Ridgeway, 1999). Consider the survival data,

(T̃i, di, xi) for i = 1, . . . , n,

where T̃i is the observed survival time, di is the censoring indicator, which has
value 1 if the individual is not censored, and 0 otherwise. xi is the p-dimensional
predictor vector for the ith individual. From equation (2.2.13), the negative
gradient vector ui of the negative partial log-likelihood is computed as

ui = ∂

∂xiβ

n∑
v=1

dv

xvβ − log
∑

l∈R(v)

exp(xlβ)


= di −

n∑
v=1

dvI(i ∈ R(v))
exp{xiβ}∑

l∈R(v)

exp{xlβ}
, (2.2.14)

where v = 1, . . . , n are indices of the observations as well as i = 1, . . . , n.
By computing the negative gradient vector ui as above, function glmboost

in the R package mboost performs componentwise gradient boosting for survival
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times, where pre-built function CoxPH are set for the option family. The base
learners of glmboost are least-squares estimators. The overall procedure of
glmboost for Cox regression is described in Algorithm 2.2.1. For more details on
glmboost for the Cox regression, we refer to De Bin (2016) and a comprehensive
tutorial of R package mboost is given in Hofner et al. (2014).

Algorithm 2.2.1 glmboost for Cox regression
1. Set iteration counter m = 0. Initialize the estimate

β̂[0] = (β̂[0]
1 , . . . , β̂

[0]
p ) = (0, . . . , 0).

2. For m = 1, . . . , mstop,
1) Compute the gradient vector of the partial log-likelihood

evaluated in the previous iteration,

ui = di −
n∑

v=1
dvI(i ∈ R(v))

exp{xiβ}∑
l∈R(v)

exp{xlβ}

∣∣∣∣∣∣∣
β=β̂[m−1]

.

2) By applying the least-squares estimator to the negative gradient
vector u[m] = (u[m]

1 , . . . , u
[m]
n ) separately for j = 1, · · · , p, obtain

γ̂
[m]
j ,

γ̂j
[m] =

n∑
i=1

xijui/

n∑
i=1

xij
2,

where xij is the jth component for the ith observation.
3) Select the best component j∗ such that

j∗ = argmin
j

n∑
i=1

(u[m]
i − γ̂j

[m]xij)2.

4) Update the estimates,

β̂j
[m] =

{
β̂j

[m−1] + νγ̂j
[m] if j = j∗

β̂j
[m−1] otherwise,

where 0 < ν < 1 is the step-length factor.
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2.3 Lasso

Lasso is a regularized linear regression method, which was introduced by
Tibshirani (1996). This method shrinks the regression coefficients by penalizing
their size measured in the L1 norm. Let yi ∈ R denote the response variable,
xij ∈ R be the jth predictor for the ith observation and βj denote the coefficient
of the jth predictor. The lasso regression estimates the coefficients by minimizing
a penalized residual sum of squares,

β̂ = argmin
β


n∑

i=1
(yi − β0 −

p∑
j=1

xijβj)2 + λ

p∑
j=1
|βj |

 , (2.3.1)

where
∑p

j=1 |βj | is called L1 penalty term and λ ≥ 0 is a complexity parameter.
As the value of λ increases, the amount of shrinkage increases and the coefficients
shrink toward zero. If λ is 0, then the Lasso estimate is equivalent to the ordinary
least-squares estimate, which tends to have low bias but high variance. The
purpose of shrinkage is to control the complexity of the regression model,
avoiding high variance at the expense of a slightly larger bias to enhance the
overall prediction accuracy (Hastie et al., 2009). To find the optimal value of
the complexity parameter λ, cross-validation (CV) is often used.

Equivalently, the Lasso estimates can be rewritten as

β̂ =argmin
β


n∑

i=1
(yi − β0 −

p∑
j=1

xijβj)2


subject to

p∑
j=1
|βj | ≤ t, (2.3.2)

where the size constraint on the coefficients is explicit. Due to the nature of
this constraint, when t is sufficiently small, some of the coefficient estimates will
be exactly zero, i.e., some predictors are eliminated from the model. Therefore,
Lasso does a type of automated variable selection during the model estimation.
It is a desirable characteristic in terms of interpretability, especially in the
high-dimensional setting. Among a huge number of possible predictors, Lasso
regression provides a smaller subset of predictors that exhibit the strongest
effects, which allow the model easy to interpret.

A problem of Lasso appears when there are strong correlations among subsets
of the predictors. Hastie et al. (2009) presented that a regularization path of
Lasso in this situation, which displays the transition of the coefficients against
the strength of the regulation, fluctuate widely. It shows that the coefficients of
the predictors selected by lasso are not stable. Lasso tends to suffer from the
multi-collinearity problem.
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2.4 Priority-Lasso

2.4.1 Principles

Priority-Lasso is a practical analysis strategy to build a regression model based
on Lasso, which uses a hierarchical approach to process multi-omics data (Klau
et al., 2018). In recent years, there has been a lot of interest in incorporating
high-dimensional omics data into predictive models, not only using one type of
biomarkers, but also dealing with different types of markers, such as clinical
data, gene expression data, methylation data, etc. Priority-Lasso has been
developed to handle several groups of different types of variables including
high-throughput molecular data. This makes a difference from standard Lasso,
which does not consider such a group structure in data, i.e., Lasso does not
distinguish different groups of data, while priority-Lasso does.

An important characteristic of priority-Lasso is that it favors models
consisting of a small number of input variables selected from specific sets
of “favorite” variables. It is often assumed that medical professionals have prior
knowledge of the disease under study and they are aware of some variables that
are expected to yield high prediction accuracy. Furthermore, variables that are
easier and cheaper to collect, such as age and common clinical variables, may
be preferred over those collected with newer technologies, even if they lead to
(slightly) lower prediction accuracy.

In order to incorporate prior knowledge and/or practical constraints to
the prediction model, we group the predictors into several blocks and assign
priorities to each of the blocks. The principle of priority-Lasso is to process
data in the hierarchical structure according to the priority order.

2.4.2 Algorithm

Here, we assume continuous input variables and continuous responses for
simplicity. Also assume that each variable is centered to have mean zero.
Let xi ∈ Rp denote the p-dimensional predictor vector and yi ∈ R denote the
response for the ith individual, i = 1, . . . , n. Before running priority-Lasso, we
need to specify the block structure of the data, i.e., to group the predictors
into several blocks so that each predictor belongs to only one block. Assume
that we divide the predictors into B blocks and the bth block has pb predictors
for b = 1, . . . , B, where p =

∑B
b=1 pb. The predictors from block b for the

ith individual are denoted as x
(b)
i = (x(b)

i1 , . . . , x
(b)
ipb

). Furthermore,we set the
priority order among the blocks. Let π = (π1, . . . , πB) denote the permutation
of (1, . . . , B) that indicates the priority order of blocks. π1 is the index of the
block with the highest priority, while πB is that with the lowest priority.

Then, the prediction model is fitted through a hierarchical approach. Let
β

(b)
j denote the Lasso regression coefficient for the jth predictor from block b

for j = 1, . . . , pb. First, a Lasso regression model is fitted to block π1, the block
with the highest priority, i.e., we estimate β̂(π1) = β̂

(π1)
1 , . . . , β̂

(π1)
pπ1

, the Lasso
coefficients for the predictors in block π1, that minimize

n∑
i=1

yi −
pπ1∑
j=1

x
(π1)
ij β

(π1)
j

2

+ λ(π1)
pπ1∑
j=1

∣∣∣β(π1)
j

∣∣∣ . (2.4.1)
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2.4. Priority-Lasso

We compute the fitted linear predictor, called also linear score, in the first step,

η̂1,i(π) = β̂
(π1)
1 x

(π1)
i1 + . . . + β̂(π1)

pπ1
x

(π1)
ipπ1

. (2.4.2)

Next, Lasso is fitted to the block with the second highest priority, using
the fitted linear predictor from the first step as an offset. We estimate
β̂

(π2)
1 , . . . , β̂

(π2)
pπ2

, the Lasso coefficients for the predictors in block π2, that
minimize

n∑
i=1

yi − η̂1,i(π)−
pπ2∑
j=1

x
(π2)
ij β

(π2)
j

2

+ λ(π2)
pπ2∑
j=1

∣∣∣β(π2)
j

∣∣∣ . (2.4.3)

The linear predictor in the second step is computed as

η̂2,i(π) = η̂1,i(π) + β̂
(π2)
1 x

(π2)
i1 + . . . + β̂(π2)

pπ2
x

(π2)
ipπ2

. (2.4.4)

Then similarly, a Lasso model is fitted to the block with the third highest
priority, using the linear score from the second step as offset. All remaining
blocks are treated in the same manner. When fitting is done until the block
πB, we obtain the set of the coefficient estimates β̂(πb) for b = 1, . . . , B, and
the final fitted linear predictor becomes

f̂PL = η̂B,i(π) =
B∑

b=1

pπb∑
j=1

β̂
(πb)
j x

(πb)
ij . (2.4.5)

Due to the hierarchical structure, the predictors from the first block are
used to explain the largest possible part of the variability in the responses, and
the predictors from the subsequent blocks enter the model only if they explain
variability that could not be explained by the blocks with higher priorities. Thus,
priority-Lasso builds models where predictors in blocks with higher priorities
play a more important role.

2.4.3 Cross-validated offsets

As discussed previously, priority-Lasso processes data by setting the priority
order among blocks, which allows the model to incorporate prior knowledge.
However, this hierarchical structure may affect prediction accuracy negatively
because there is possibility to underestimate the influences of predictors in
blocks with lower priorities and to eliminate useful predictors in these blocks.

This problem is due to the fact that the linear score in each block (the offset
for the next block ), η̂b,i(π), tends to be over-optimistic with respect to the
effects of the predictors in the bth block on the response yi (Klau et al., 2018).
This problem is similar to the well-known overoptimism regarding prediction
error, i.e, if we compute the prediction error on the training dataset where we
built the prediction model, it is presumed that the error shows a smaller value
than the generalization error. Similarly, the overoptimism problem of the linear
scores arises from the fact that yi were included in the data used to estimate
the coefficients β̂

(πb)
1 , . . . , β̂

(πb)
pπb

, which are then used to compute the linear score
η̂b,i(π). This overly optimistic estimate η̂b,i(π) is presumed to include some of
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2.4. Priority-Lasso

variability in yi that cannot actually be explained by this block, but might be
explained by the following blocks. Using this estimate as offset deprives the
opportunity for the following blocks to explain this part of variability in yi.

To solve this problem, the cross-validated offsets, η̂b,i(π)CV , which are
estimated using cross-validation (CV) were devised. Consider that we have
dataset S and use K-fold CV to compute offsets. The cross-validated offsets
are obtained as follows.

1. Split the dataset S randomly into K parts, S1, . . . , SK .

2. For k = 1, . . . , K, estimate Lasso coefficients β̂
(πb)
S\Sk,1, . . . , β̂

(πb)
S\Sk,pπb

by
using the training data S \ Sk for i ∈ Sk, where S \ Sk is the set obtained
by removing the the observations of Sk from S.

3. Compute the cross-validated offsets,

η̂b,i(π)CV = η̂b−1,i(π)CV + β̂
(πb)
S\Sk,1x

(πb)
i1 + · · ·+ β̂

(πb)
S\Sk,pπ1

x
(πb)
ipπb

, (2.4.6)

where η̂0,i(π)CV = 0.

Priority-Lasso is implemented in the function prioritylasso from R
package of the same name. This function has the option cvoffset, where
we select whether to use the cross-validated offsets or the standard offsets
estimated without cross-validation, which are shown in the algorithm in the
previous section,

η̂b,i(π) = η̂b−1,i(π) + β̂
(πb)
1 x

(πb)
i1 + . . . + β̂(πb)

pπb
x

(πb)
ipπb

, (2.4.7)

where η̂0,i(π) = 0
The version with cross-validated offsets helps to avoid underestimating the

influence of blocks with lower priorities. On the other hand, this version is more
computationally expensive, and therefore it may not be easily applicable to
all cases. Also, the version with the standard offsets may be a more practical
choice when there are groups where one would preferably like to reduce the
number of predictors, e.g., blocks consisting predictors that are costly to collect
(Klau et al., 2018).
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CHAPTER 3

Novel approaches

3.1 Priority boosting

3.1.1 Principles

Priority boosting is a practical regression method for high-dimensional data
consisting of multiple groups of variables, such as multi-omics data. It was
developed based on the same strategy as priority-Lasso. Namely, we define the
priority order among the groups and process the data according to the order.
The aim of the strategy is to build a model that (preferably) includes predictors
from particular groups consisting of “favorite” variables. Thus, this approach
enables the model to incorporate user’s preference.

Priority boosting builds a prediction model based on the componentwise
boosting. Some characteristics of the componentwise boosting are passed on to
priority boosting. One key characteristic is that it performs automated variable
selection during the model estimation. Another property is that the resulting
model of priority boosting has the same form of the additive predictor in the
generalized additive model (GAM),

β0 + h1(x1) + h2(x2) + · · ·+ hp(xp), (3.1.1)

which is interpretable as discussed in Section 2.1.4.

Here, we provide a succinct overview of the priority boosting algorithm,
while a formal description can be found in Section 3.1.2. The structure of
priority boosting is quite similar to priority-Lasso. Firstly, we define the group
structure (block structure) of the predictors, i.e., divide predictors into multiple
blocks so that each predictor belongs to only one block. Then, we specify the
priority order of these blocks. For example, the block with common clinical
variables that are easier to collect might be set higher priority than the block
consisting of variables measured with expensive technologies.

According to the priority order, the prediction model is fitted in a stepwise
manner. Fitting starts with the block with the highest priority and proceeds
until the block with the lowest priority, where the prediction model, f̂P B, is
obtained. While in priority-Lasso, fitting with each block is performed by
applying Lasso regression, priority boosting applies the componentwise gradient
boosting.

To apply the componentwise gradient boosting to each block, we should
define the base learners (base procedures). One choice is to use least-squares
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3.1. Priority boosting

estimators. Then, where the conditional distribution of the response is assumed
to follow an exponential family distribution, this componentwise gradient
boosting fits a generalized linear model (GLM), which has the form

g(E(Y |x)) = β0 + β1x1 + β2x2 + · · ·+ βpxp, (3.1.2)

where η(x) = β0 + β1x1 + β2x2 + · · ·+ βpxp is called the linear predictor and
g is a link function that is strictly increasing and differentiable. Note that
GLM, which only models linear effects of variables, is a model class included in
GAM. The componentwise gradient boosting that uses least-squares estimators
as base learners is implemented by function glmboost in R package mboost
(Hothorn et al., 2021). If we want to model nonlinear effects of variables,
then the function gamboost in mboost can be used, which implements the
componentwise gradient boosting that fits GAM. However, in the following, we
focus on priority boosting that uses glmboost, i.e., the componentwise gradient
boosting that uses least-squares estimators as the base learners. Note that as
discussed in Section 2.1.4, glmboost and gamboost can be used even though
the distribution is not assumed to follow an exponential family distribution.
The resulting models have the same form as the linear predictor in GLM and
the additive predictor in GAM respectively.

In addition to setting the base learners, to perform the componentwise
gradient boosting, we need to define the loss function and compute its negative
gradient. For continuous response Y and continuous input variables X, if we
assume that Y |X = x is normally distributed, then we define the L2 loss as
the loss function, which is equivalent to the negative Gaussian log-likelihood.
For the cases where responses are survival times, our aim is to estimate the
linear predictor η = xβ in the hazard rate (the relative risk function) α(t|x)
in the Cox regression model under the proportional hazards assumption. As
expressed in equation (2.2.8), the hazard rate in the Cox model takes the form,

α(t|x) = α0(t) exp{xβ}.

We can perform the Cox regression by setting the negative partial log-likelihood
as the loss function, which was discussed in Section 2.2.4 The algorithm of
glmboost for Cox model is shown in Algorithm 2.2.1.

3.1.2 Algorithm

Here, we assume continuous input variables xi = (xi1, . . . , xip) and continuous
responses yi for i = 1, . . . , n. Also assume that variables are centered for
simplicity. We refer the componentwise gradient boosting with least-squares
base learners and L2 loss as the L2 glmboost shortly. Consider the same notation
as those in Section 2.4; Suppose that we have B blocks and π = (π1, . . . , πB)
denotes the permutation of (1, . . . , B) that indicates the priority order of blocks.
π1 is the index of the block with highest priority, while πB is that with the
lowest priority. The bth block has pb predictors for b = 1, . . . , B. The predictors
from block b for the ith individual are denoted as x

(b)
i = (x(b)

i1 , . . . , x
(b)
ipb

). Let
β

(b)
j be the coefficient of the jth predictor from block b for j = 1, . . . , pb.

First, we apply the L2 glmboost to block π1, the block with the highest
priority, and obtain β̂

(π1)
1 , . . . , β̂

(π1)
pπ1

, the coefficient estimates of the variables
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from block π1. Then, we compute the fitted linear predictor from the first step,

η̂1,i(π) = β̂
(π1)
1 x

(π1)
i1 + . . . + β̂(π1)

pπ1
x

(π1)
ipπ1

. (3.1.3)

Next, we apply the L2 glmboost to block π2, using the fitted linear predictor from
the first step as an offset, and obtain β̂

(π2)
1 , . . . , β̂

(π2)
pπ2

, the coefficient estimates
of the variables from block π2. The fitted linear predictor from the second step
is computed as

η̂2,i(π) = η̂1,i(π) + β̂
(π2)
1 x

(π2)
i1 + . . . + β̂(π2)

pπ2
x

(π2)
ipπ2

. (3.1.4)

Then, similarly we apply the L2 glmboost to block π3, using the fitted linear
predictor from the second step as an offset, estimating β̂

(π3)
1 , . . . , β̂

(π3)
pπ3

, the
coefficient estimates of the variables from block π3. Priority boosting proceeds
in the same way for the remaining block until the block with the last priority,
estimating the coefficients of the predictors from the corresponding block. The
final fitted linear predictor is expressed as

f̂PB(xi) = η̂B,i(π) =
B∑

b=1

pπb∑
j=1

β̂
(πb)
j x

(πb)
ij . (3.1.5)

A schematic overview is shown in Algorithm 3.1.1.
Extension to time-to-event responses can be done by replacing the L2

glmboost with the glmboost for Cox model, which is mentioned above. f̂PB is
the estimate of the linear predictor in the hazard rate.

Note that the hyper parameters of priority boosting are the parameters of
glmboost that we apply to each block; the step-length factor ν and the stopping
number of iteration mstop. These parameters control shrinkage of the estimate
and also the model sparsity, which we discussed in section 2.1.5. A comprehensive
tutorial of glmboost is given in Hofner et al. (2014). We implemented priority
boosting for continuous responses and time-to-event responses in R function
priorityboost. The code of priorityboost is shown in Appendix A.
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3.1. Priority boosting

Algorithm 3.1.1 Priority boosting
1. Specify the block structure of the predictors, where each predictor

belongs to only one of the B blocks.
Specify the priority order of these blocks π = (π1, ..., πB).

2. For block π1,
1) Estimate β̂

(π1)
1 , . . . , β̂

(π1)
pπ1

, the coefficients of the predictors from
block π1, by running glmboost for block π1.

2) Compute the fitted linear predictor,

η̂1,i(π) = β̂
(π1)
1 x

(π1)
i1 + . . . + β̂(π1)

pπ1
x

(π1)
ipπ1

.

3. From block π2 to block πB ,
1) Estimate β̂

(πb)
1 , . . . , β̂

(πb)
pπb

, the coefficient of the predictors πb, by
running glmboost for block πb with η̂b−1,i(π) , the linear
predictor fitted in the previous step, as an offset.

2) Compute the fitted linear predictor,

η̂b,i(π) = η̂b−1,i(π) + β̂
(πb)
1 x

(πb)
i1 + . . . + β̂(πb)

pπb
x

(πb)
ipπb

.

4. Using the coefficient estimates obtained from each block,
β̂

(πb)
1 , . . . , β̂

(πb)
pπb

, the final fitted linear predictor is computed as

f̂P B(xi) = η̂B,i(π) =
B∑

b=1

pπb∑
j=1

β̂
(πb)
j x

(πb)
ij .

26



3.2. Lasso-based block boosting

3.2 Lasso-based block boosting

3.2.1 Principles

Lasso-based block boosting (hereinafter called LBboost) is a regression method
for high-dimensional data consisting of multiple groups. LBboost uses the
block structure in data, that is, distinguishes the different groups in predictors.
However, unlike priority-Lasso and priority boosting, it does not assign priorities
to each of the groups.

As discussed in Section 2.4 and Section 3.1, defining the priority order
among the groups allows us to build a model taking prior knowledge and/or
practical constraints into account. In that sense, the resulting models of two
priority methods are not derived completely data-driven. These methods favor
to select predictors from specific sets consisting of “favorite” variables, and it
might lead to lower predictive accuracy. We assume that LBboost will be an
alternative method in the cases where it is wise to distinguish the different
groups in data, but we have no basis for setting an appropriate priority order
among the groups, or we hope to perform estimation purely data-driven.

Here, we introduce some key features of this method. First, LBboost inherits
some useful features from Lasso regression. As with other boosting methods,
LBboost estimates the regression function f via iteratively updating its value
by applying the base learners at each boosting iteration. The base learners
(base procedures) of LBboost are L1 penalized least-squares estimator. Namely,
a Lasso regression model is obtained as the fitted base learner at each iteration.
Then, the resulting model of LBboost f̂LB(xi) is the linear combination of the
Lasso models, and it is expressed as

f̂LB(xi) = β̂
[mstop]
0 + β̂

[mstop]
1 xi1 + . . . + β̂[mstop]

p xip, (3.2.1)

which is the same form as the linear predictor in GLM in equation (3.1.2),

g(E(Y |x)) = β0 + β1x1 + β2x2 + · · ·+ βpxp.

We can see that LBboost provides an interpletable model. LBboost incorporates
automated variable selection, which is also a feature inherited from Lasso
regression.

Another key characteristic is that LBboost processes data by what we
call the subset-updating approach. Assume that we divide predictors into B
disjoint subsets (blocks). At each iteration, fitting is performed separately
for each block. Namely, every fitting is done only using the predictors in the
corresponding block. Consequently, we obtain B fitted base learners and choose
the base learner that provides the “best” update. The best update is selected,
for example, in terms of giving the smallest empirical risk.

To get a big picture of the subset-updating approach, it may be useful to
consider again the difference between the updating manner in FGD (Algorithm
2.1.2) in Section 2.1.3 and that in componentwise gradient boosting (Algorithm
2.1.3) in Section 2.1.4. In each boosting iteration, FGD updates the coefficients
of all the predictors, whereas the componentwise boosting updates the coefficient
of only one predictor at a time. The updating manner of LBboost lies between
FGD and componentwise boosting; It updates the coefficient from only one
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3.2. Lasso-based block boosting

subset of predictors at each iteration. If the number of subsets B is 1, then
LBboost will update all the coefficients of predictors, and if B is equal to the
number of predictors, then it updates the coefficient of only one predictor, which
is the exactly componentwise approach.

Note that here, we used FGD and componentwise gradient boosting for
analogies of updating manner, but we will not introduce LBboost as gradient
boosting. Rather, LBboost is defined as a boosting with offset-based procedure,
such as a well-known boosting algorithm, likelihood-based boosting. At each
iteration, we compute the function estimate (the fitted linear predictor) f̂ , and
the value is included as an offset in the fit at the next iteration. We provide
the algorithm of LBboost formally in section 3.2.2.

3.2.2 Algorithm

In the following, we assume continuous input variables xi = (xi1, . . . , xip) and
continuous responses yi for i = 1, . . . , n. Also assume that variables are centered
for simplicity. The first step of LBboost is to specify the block structure of the
predictors, namely, to divide predictors into B blocks so that each predictor
belongs to only one block. In the case of multi-omics analysis, we may divide
predictors by specific data types, such as block for clinical variables or block for
gene expression variables. Let b denote the index of the blocks, b = 1, . . . , B,
and assume that block b consists of pb predictors. Let x

(b)
i be the pb-dimensional

vector consisting of the predictors in block b for the ith observation, and x
(b)
ij

denotes the jth component of x
(b)
i .

We set the initial guess of the coefficient estimates, β̂[0] = (β̂[0]
1 , . . . , β̂

[0]
p ) =

(0, . . . , 0) and initialize the fitted linear predictor, f [0](xi) = 0 for all i. At the
first iteration, a Lasso regression model is fitted to each block b. Namely, we
estimate coefficients γ̂(b)[1] = (γ̂(b)[1]

1 , . . . , γ̂
(b)[1]
pb ), that minimize

n∑
i=1

yi −
pb∑

j=1
x

(b)
ij γ̂

(b)[1]
j

2

+ λ(b)[1]
pb∑

j=1

∣∣∣γ̂(b)[1]
j

∣∣∣ . (3.2.2)

Among B blocks, we select the block b∗ that gives the best update. For example,
we may choose the block that minimizes the empirical risk the most,

b∗ = argmin
b∈{1,...,B}

n∑
i=1

L

yi,

pb∑
j=1

x
(b)
ij γ̂

(b)[1]
j


= argmin

b∈{1,...,B}

n∑
i=1

L
(

yi, x
(b)
i γ̂(b)[1]

)
. (3.2.3)

One common choice of the loss function in equation (3.2.3) is L2 loss.
As in gradient boosting, to obtain small updates, we update the coefficient

estimates with step-length factor 0 < ν < 1.

β̂j
(b)[1] =

{
νγ̂j

(b)[1] if b = b∗

0 otherwise,
(3.2.4)
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where β̂j
(b)[1] denotes the coefficient estimate for the jth predictor in block b for

j = 1, . . . , pb at the first iteration. Let β̂(b)[1] denote the pb dimensional vector
consisting of β̂j

(b)[1]. The fitted linear predictor at the first iteration is

f̂ [1](xi) = f̂ [0](xi) + νx
(b∗)
i γ̂(b∗)[1]

=
B∑

b=1
x

(b)
i β̂(b)[1] = xiβ̂

[1]. (3.2.5)

In the fit at the second iteration, the fitted linear predictor (also called
linear score), f̂ [1], is included as an offset. Namely, we estimate coefficients
γ̂(b)[2] = (γ̂(b)[2]

1 , . . . , γ̂
(b)[2]
pb ) that minimize

n∑
i=1

yi − f̂ [1](xi)−
pb∑

j=1
x

(b)
ij γ̂

(b)[2]
j

2

+ λ(b)[2]
pb∑

j=1

∣∣∣γ̂(b)[2]
j

∣∣∣ . (3.2.6)

By including f̂ [1] as an offset, a Lasso model will be fitted to the residuals from
the first iteration. Then, we select the block b∗ that gives the best update, e.g.,

b∗ = argmin
b∈{1,...,B}

n∑
i=1

L

yi, f̂ [1](xi) +
pb∑

j=1
x

(b)
ij γ̂

(b)[2]
j


= argmin

b∈{1,...,B}

n∑
i=1

L
{

yi, f̂ [1](xi) + x
(b)
i γ̂(b)[2]

}
. (3.2.7)

The updating equation is

β̂j
(b)[2] =

{
β̂j

(b)[1] + νγ̂j
(b)[2] if b = b∗

β̂j
(b)[1] otherwise.

(3.2.8)

Compute the fitted linear predictor at the second iteration

f̂ [2](xi) = f̂ [1](xi) + νx
(b∗)
i γ̂(b∗)[2]

=
B∑

b=1
x

(b)
i β̂(b)[2] = xiβ̂

[2]. (3.2.9)

Similarly, at the third iteration, fitting is performed including the fitted
linear predictor at the second iteration, f̂ [2], as an offset. This procedure is
repeated to reach the stopping iteration mstop, where we obtain the final fitted
linear predictor, f̂LB(xi) = f̂ [mstop](xi) = xiβ̂

[mstop]. A schematic overview of
LBboost is shown in Algorithm 3.2.1.

Extension to time-to-event responses can be done using a variant of Lasso
for Cox regression model (Tibshirani, 1997). In this case, when selecting the
best update at each iteration, we may set the negative partial likelihood as
the loss function. The final model f̂LB(xi) = xiβ̂

[mstop] estimates the linear
predictor in the hazard rate.
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Algorithm 3.2.1 Lasso-based block boosting
1. Specify the block structure of the predictors, where each predictor

belongs to only one of the B blocks.
Set iteration counter m = 0. Initialize the coefficient estimates;
β̂[0] = (β̂[0]

1 , . . . , β̂
[0]
p ) = (0, . . . , 0), and initialize the fitted linear

predictor; f̂ [0](xi) = xiβ̂
[0] = 0.

2. For m = 1, . . . , mstop,
2) For b = 1 . . . , B, apply Lasso regression to block b with the fitted

linear predictor at the previous iteration as an offset, i.e.,
estimate coefficients γ̂(b)[m] = (γ̂(b)[m]

1 , . . . , γ̂
(b)[m]
pb ) that minimize

n∑
i=1

yi − f̂ [m−1](xi)−
pb∑

j=1
x

(b)
ij γ̂

(b)[m]
j

2

+ λ(b)[m]
pb∑

j=1

∣∣∣γ̂(b)[m]
j

∣∣∣ ,
where x

(b)
ij denotes the jth component of x

(b)
i that is the

pb-dimensional vector consisting of the predictors in block b for
the ith observation.

3) Select the block b∗ that gives the best update, e.g., the block that
minimizes the empirical risk the most.

4) Update the estimates for the coefficients,

β̂j
(b)[m] =

{
β̂j

(b)[m−1] + νγ̂j
(b)[m] if b = b∗

β̂j
(b)[m−1] otherwise,

where β̂j
(b)[m] denotes the coefficient estimate for the j th

predictor in block b for j = 1, . . . , pb at iteration m, and
0 < ν < 1 is the step-length factor.

4) Compute the fitted linear predictor,

f̂ [m](xi) = f̂ [m−1](xi) + νx
(b∗)
i γ̂(b∗)[m]

=
B∑

b=1
x

(b)
i β̂(b)[m] = xiβ̂

[m].

3. The final fitted linear predictor is

f̂LB(xi) = f̂ [mstop](xi) =
B∑

b=1
x

(b)
i β̂(b)[mstop] = xiβ̂

[mstop].
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CHAPTER 4

Simulation study

In this chapter, we asses the performances of priority boosting and Lasso-based
block boosting (LBboost) on simulation data. Our simulation study has two
parts; Part I is for Gaussian responses and Part II is for time-to-event responses.
In the part for Gaussian cases, we have simulation data as pairs (yi, xi) for
i = 1, . . . , n, where yi ∈ R is the response variable and xi ∈ Rp is the input
vector for the ith observation, and n is the number of observations. We assume
that yi is expressed as

yi = xiβ + ϵi,

where β is the coefficient vector and ϵi is a random noise that follows a normal
distribution. In the part for survival data, we generate the simulation data as

(T̃i, di, xi) for i = 1, . . . , n,

where T̃i is the observed time and di is the censoring indicator, which has value
1 if the individual is not censored, and 0 otherwise. In the following sections,
we explain the simulation study design including how to generate data, and
evaluate the prediction abilities of the above two methods comparing three
other methods, priority-Lasso, Lasso and gradient boosting.

4.1 Simulation design: data and scenarios

4.1.1 Scenarios

When dealing with multi-omics datasets, various correlations need to be
considered. There may be correlations within clinical variables or within
gene expression variables. There may also be overlap of predictive information
among different types of data, such as between clinical covariates and omics
covariates. To simulate a multi-omics datasets, we consider three settings in
terms of correlation structure.

Setting 1. Independent variables: All variables are independent.
Setting 2. Dependencies within each group: There are dependencies

between variables within a group, but no dependency
between variables belonging to different groups.

Setting 3. Dependencies among groups: There are dependencies
among groups, namely, there are dependencies between
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4.1. Simulation design: data and scenarios

variables, regardless of whether they are in the same group
or in different groups.

Furthermore, we consider two settings regarding the number of the input
variables. We assume that the predictors are grouped into four blocks. 1) LLLH:
block 1 to block 3 consists of 10 variables and block 4 consists of 1000 variables,
2) LHHH: block 1 consists of 10 variables and block 2 to block 4 consists of
1000 variables. These settings mimic data consisting of low-dimensional clinical
variables and low- or high-dimensional omics variables.

Then, we have the three settings regarding the correlation structure among
variables and the two settings in terms of the dimension of predictors in each
block, which summed up in six scenarios;

Scenario 1. LLLH, Independent variables
Scenario 2. LLLH, Dependencies within each group
Scenario 3. LLLH, Dependencies among groups
Scenario 4. LHHH, Independent variables
Scenario 5. LHHH, Dependencies within each group
Scenario 6. LHHH, Dependencies among groups

Following these six scenarios, we generated the predictors, which are common
in the part for Gaussian cases and in the part for survival analysis.

4.1.2 Data generation

Generating predictors

To generate input variables in the simulation study, we define the variance-
covariance matrix corresponding to each scenario, and then sample multivariate
normally distributed random values following the correlation structure. We
assume to generate n× p design matrix X, i.e, predictor matrix consisting of p
variables for n individuals. Further, the p predictors are grouped into B blocks
and block b consists of pb predictors. X(b) denotes the design matrix consisting
of the variables in block b.

In setting 1, since there is no correlation between the variables, the
corresponding variance-covariance matrix Σ will be the p× p identity matrix,

Σ = 1p. (4.1.1)

Then, we sample the p-dimensional predictor vector for the ith observation, xi,
from the multivariate normal distribution,

xi ∼ N(µ, Σ), (4.1.2)

where we set the mean vector µ to the p-dimensional zero vector.
Sampling from a multivariate normal distribution is available by R package

MASS. By running mvrnorm(n, mu, sgm), where mu is the mean vector and
sgm is the variance-covariance matrix, we obtain a design matirix X consisting
of normally distributed variables. Alternatively, since here the covariance matrix
is the identity matrix, matrix(rnorm(n*p),n,p) can be used.
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4.1. Simulation design: data and scenarios

In setting 2, we need to specify the correlation between variables within a
group. Let denote the covariance matrix corresponding to block b by Σ(b) and
the r, c component of Σ(b) by σ

(b)
rc . Note that Σ(b) is a pb × pb matrix. Here, we

set σ
(b)
rc = 0.9|r−c| for all b = 1, . . . , B, nemely,

Σ(b) = σ(b)
rc = 0.9|r−c| =


1 0.91 . . . 0.9|1−pb|

0.91 1 . . . 0.9|2−pb|

...
... . . . ...

0.9|pb−1| 0.9|pb−2| . . . 1

 . (4.1.3)

Then, we sample x
(b)
i , the pb-dimensional normally distributed predictors in

block b for the ith observation,

x
(b)
i ∼ N(µ(b), Σ(b)), (4.1.4)

setting the mean vector to the pb-dimensional zero vector. Note that x
(b)
i is the

ith row of X(b). Then, by combining X(1), . . . , X(B), we obtain the predictor
matrix X including all variables,

X =
(

X(1) X(2) . . . X(B) ) . (4.1.5)

The covariance matrix Σ in setting 3 is defined by σrc = 0.9|r−c|, where σrc

denotes the r, c component of Σ,

Σ = σrc = 0.9|r−c| =


1 0.91 . . . 0.9|1−p|

0.91 1 . . . 0.9|2−p|

...
... . . . ...

0.9|p−1| 0.9|p−2| . . . 1

 . (4.1.6)

Note that Σ is a p×p matrix. Setting the mean vector µ to the p-dimensional zero
vector, we sample xi following a multivariate normal distribution, xi ∼ N(µ, Σ).

Generating Gaussian responses

The response variables yi for Gaussian cases were computed as

yi = xiβ + ϵi, (4.1.7)

where β is the coefficient vector, and ϵi denotes Gaussian noise, which follows
the standard normal distribution with the mean is 0 and the variance is 1,
ϵi ∼ N(0, 1). We set the coefficients as follows.

1) Scenario 1-3
Block 1 (10 variables): β1 = (0.9, 0.9, 0.9, 0.9, 0.9, 0, 0, 0, 0, 0)
Block 2 (10 variables): β2 = (0.7, 0.7, 0.7, 0.7, 0.7, 0, 0, 0, 0, 0)
Block 3 (10 variables): β3 = (0.3, 0.3, 0.3, 0.3, 0.3, 0, 0, 0, 0, 0)
Block 4 (1000 variables): β4 = (0.1, 0.1, 0.1, 0.1, 0.1, 0,. . . , 0)

2) Scenario 4-6
Block 1 (10 variables): β1 = (0.9, 0.9, 0.9, 0.9, 0.9, 0, 0, 0, 0, 0)
Block 2 (1000 variables): β2 = (0.7, 0.7, 0.7, 0.7, 0.7, 0,. . . , 0)
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4.1. Simulation design: data and scenarios

Block 3 (1000 variables): β3 = (0.3, 0.3, 0.3, 0.3, 0.3, 0,. . . , 0)
Block 4 (1000 variables): β4 = (0.1, 0.1, 0.1, 0.1, 0.1, 0,. . . , 0)

As can be seen above, the coefficients were set assuming that five predictors in
each block have effect on the responses and predictors in Block 1 has the largest
effect and those in Block 4 has the smallest effect. With these coefficients and
setting the number of individuals n = 300, we generated simulation datasets for
Gaussian cases.

Generating survival times and censoring indicators

In the simulation study for survival data, we need to generate the observed
survival time T̃i and the censoring indicator di. First, we generate survival
times based on the Cox regression model, which is discussed in section 2.2.

Survival times in the Cox model can be simulated using inverse transform
sampling (Bender et al., 2005). Assume that we have p-dimensional predictor
vector x and coefficient vector β. From equation (2.2.5) and equation (2.2.8),
the survival function in the Cox regression is

S(t|x) = exp {−A0(t) exp(xβ)} , (4.1.8)

where
A0(t) =

∫ t

0
a0(t)dt

is the cumulative baseline hazard function. Then, the cumulative distribution
function F (t|x) in the Cox regression is

F (t|x) = 1− S(t|x) = 1− exp {−A0(t) exp(xβ)} . (4.1.9)

We assume that a0(t) > 0 for all t > 0, then A0(t) can be inverted. Let U
be a random variable that follows a uniform distribution on [0, 1], and let
T denote the (potential) survival time in the Cox regression model. Setting
F (t|x) = F (T ) = U ,

T = F −1(U) = A−1
0

(
− log(U)

exp(xβ)

)
. (4.1.10)

By equation (4.1.10), we can convert uniformly distributed random numbers
into survival times in the Cox model. The random numbers are available in R,
for example, runif(100) can be used to generate one hundred random numbers
that follow a uniform distribution on [0, 1]. Now, to obtain T , what remains to
be done is to insert A−1

0 , the inverse of the cumulative baseline hazard function,
into equation (4.1.10).

A common choice of the the baseline hazard function is the Weibull baseline
hazard. The probability density function of the Weibull distribution is

f(t) = ξωtω−1e−ξtω

, (4.1.11)

where ξ > 0 is called the scale parameter and ω > 0 is the shape parameter.
The hazard function is expressed as

a(t) = ξωtω−1, (4.1.12)
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4.2. Method configurations and evaluation metric

which is increasing for ω > 1, decreasing for 0 < ω < 1 and constant for ω = 1.
The cumulative hazard function becomes

A(t) = ξtω. (4.1.13)

Then, the inverse of the cumulative hazard function is expressed as

A−1(t) = (ξ−1t) 1
ω . (4.1.14)

From equation (4.1.10) and equation (4.1.14), the survival time in the Cox
model with the Weibull baseline hazard is given by

T =
(
− log(U)
ξ exp(xβ)

) 1
ω

. (4.1.15)

By equation 4.1.15, we can sample potential life times T for n individuals. To
simulate potential censoring times C, we specify a censoring time distribution,
e.g., exponential distribution or Weibull distribution. Drawing censoring times
from the distribution, we obtain n pairs of potential life time and potential
censoring time, (Ti, Ci) for i = 1, . . . , n. Then, the observed time T̃i is defined as
min(Ti, Ci). The censoring indicator is set up such that di = I(Ti ≤ Ci), which
has value 1 if the potential life time is less than or equal to the potential censoring
time, i.e., 1 if the individual is not censored, and 0 otherwise. Consequently, we
obtain data that has the form,

(T̃i, di, xi) for i = 1, . . . , n.

Setting the censoring time distribution to the exponential distribution, and
setting the number of individuals n = 300, we generated the survival data for
the simulation study. The coefficients β were set to the same as those in the
simulation data for Gaussian cases.

4.2 Method configurations and evaluation metric

In the simulation study, we compared five methods according to the six scenarios.
The methods are LBboost, priority boosting, priority-Lasso, Lasso and gradient
boosting by R function glmboost. The specification of the five methods is
given as follows.

glmboost To evaluate the performance of gradient boosting, we used
function glmboost in R package mboost. Function glmboost implements
componentwise gradient boosting that uses least-squares estimators as the base
learners. The stopping number of iterations, mstop, was chosen via internal
25 bootstrap iterations (default), and the step-length parameter ν was set to
the default value of 0.1. More details on componentwise gradient boosting are
described in section 2.1.4 and the algorithm of glmboost for Cox model is
shown in Algorithm 2.2.1.

Lasso R package glmnet was used. The complexity parameter λ was
chosen via internal 10-fold CV (default). Lasso is explained in Section 2.3.
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4.2. Method configurations and evaluation metric

priorityboost For priority boosting, R function priorityboost was used,
the R codes of which are shown in Appendix A.1. The priority order of the
blocks was set to (1, 2, 3, 4); Block 1 has the highest priority, block 2 has the
second highest priority, block 3 has the third highest priority and block 4 has
the lowest priority. For each block, the stopping iteration mstop was chosen via
internal 25 bootstrap iterations and the step-length parameter ν was set to
0.1. The option cvoffset is set to FALSE as default. For details on priority
boosting, refer to Section 3.1.

prioritylasso To run priority-Lasso, R package prioritylasso was used.
The priority order was set in the same way as priority boosting; Block 1 has
the highest priority, block 2 has the second highest priority, block 3 has the
third highest priority and block 4 has the lowest priority. For each block, the
complexity parameter λ was selected by 10-fold CV. The option cvoffset is
set to FALSE as default. Details on priority-Lasso is discussed in Section 2.4.

LBboost We used function LBboost the R codes of which are shown in
Appendix A.2. The stopping iteration mstop was chosen via 5-fold CV and
the step-length parameter ν was set to 0.1 for Gaussian responses, and set to
0.2 for survival times to make the computation time shorter. The fitted base
learners are Lasso regression models and the complexity parameter λ of the
Lasso models were selected by 10-fold CV. For details on LBboost, see Section
3.2.

These methods are divided into three types in terms of how to handle the
block structure in predictors;

1. Naive method: glmboost and Lasso
Methods that do not use the block structure in predictors, i.e., They
process all predictors not distinguishing types of data.

2. Priority method: priorityboost and prioritylasso
Methods that take the block structure in predictors into account, and
further define the priority order among blocks.

3. Blocked method: LBboost
Methods that take the block structure into account, but do not assign
priorities to each of the blocks.

In each scenario, as described in section 4.1.2, we generated 100 simulation
datasets. Each dataset were divided into a training set and a test set. The
five methods learned from the training set and built prediction models. The
performances of the models that each method provided were primarily evaluated
on the test set.

The prediction accuracy is assessed via the mean squared error (MSE) for
Gaussian responses and the integrated Brier score (IBS) for survival times.
MSE and IBS were computed in the training sets as well to evaluate possible
overfitting. Overfitting occurs when random noise is incorporated into the
model rather than the relationship between the predictors and the responses.
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4.3. Results

If a model is overfitting, the model explains the training data well, but the
prediction accuracy for new data is low. We also compared the number of
predictors selected by each method to see the sparsity of the resulting models.

4.3 Results

We show the results for Gaussian responses in Section 4.3.1 and the results
for survival times in Section 4.3.2 according to the six scenarios. Table 4.1
- Table 4.12 show the summary of the prediction errors (MSE for Gaussian
responses and IBS for survival times) and the number of selected predictors by
the five prediction methods, priorityboost, prioritylasso, LBboost, glmboost and
Lasso, besides the reference method. For Gaussian responses, as the reference
method, we used the mean model, i.e., the estimation of response is the mean
of the responses over all the observations in the training data, so that it use no
predictors to estimate. The reference method for survival times is Kaplan-Meier
Estimates, which is discussed in Section 2.2.

In these tables, we can see the values of the mean and the standard deviation
(SD) of MSE or IBS over the test sets in columns under ‘test error’ and the
training sets under ‘training error’. Column ‘total’ shows the average of the
total numbers of selected predictors and the subsequent columns represents the
numbers of selected predictors in the respective blocks. Figure 4.1 - Figure 4.24
show the distributions of the errors or the distributions of the total number of
selected predictors as box plots. In these plots, the distributions of the errors by
the reference method are not included. All the five methods provided smaller
errors than the reference in any scenarios, and the values by reference were
sometimes too much larger to keep the visibility of the plots.
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4.3. Results

4.3.1 Part I. Simulation for Gaussian responses

Scenario 1. LLLH, Independent variables

Table 4.1. Summary of MSE and selected predictors in Scenario 1 for Gaussian responses

test error training error selected predictors
Method Mean SD Mean SD ALL Block 1 Block 2 Block 3 Block 4
priorityboost 1.312 0.260 1.046 0.111 23.99 7.82 7.64 7.64 0.89
prioritylasso 1.339 0.262 1.007 0.142 28.95 8.03 7.92 7.93 5.07
LBboost 1.347 0.262 1.067 0.111 50.44 9.08 9.06 8.78 23.52
glmboost 1.636 0.340 0.831 0.075 58.33 5.21 5.22 4.99 42.91
Lasso 1.631 0.343 0.683 0.222 83.95 5.33 5.34 5.19 68.09
Reference 7.817 1.289 8.008 0.788 - - - - -

(a) test error (b) training error

Figure 4.1: MSE in Scenario 1 for Gaussian responses

Figure 4.2: Total number of selected predictors in Scenario 1 for Gaussian responses

38



4.3. Results

Part I. Scenario 2. LLLH, Dependencies within each group

Table 4.2. Summary of MSE and selected predictors in Scenario 2 for Gaussian responses

test error training error selected predictors
Method Mean SD Mean SD ALL Block 1 Block 2 Block 3 Block 4
priorityboost 1.511 0.367 1.219 0.179 24.38 6.22 6.45 5.83 5.88
prioritylasso 1.609 0.405 1.229 0.237 28.36 6.54 6.46 5.96 9.40
LBboost 1.275 0.259 0.994 0.111 45.97 8.36 8.21 7.46 21.94
glmboost 1.266 0.268 0.892 0.114 35.56 5.57 5.63 5.13 19.23
Lasso 1.209 0.249 0.832 0.147 40.90 5.66 5.67 5.27 24.30
Reference 30.014 5.130 30.805 1.976 - - - - -

(a) test error (b) training error

Figure 4.3: MSE in Scenario 2 for Gaussian responses

Figure 4.4: Total number of selected predictors in Scenario 2 for Gaussian responses
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4.3. Results

Part I. Scenario 3. LLLH, Dependencies among groups

Table 4.3. Summary of MSE and selected predictors in Scenario 3 for Gaussian responses

test error training error selected predictors
Method Mean SD Mean SD ALL Block 1 Block 2 Block 3 Block 4
priorityboost 3.455 0.600 2.928 0.294 22.72 7.63 7.37 6.19 1.53
prioritylasso 3.488 0.599 2.838 0.341 25.51 7.40 7.64 6.64 3.83
LBboost 1.521 0.261 1.204 0.127 44.63 9.02 9.01 7.74 18.86
glmboost 1.277 0.257 0.952 0.116 28.30 5.95 5.89 5.33 11.13
Lasso 1.165 0.221 0.848 0.133 35.68 6.49 6.12 5.71 17.36
Reference 47.073 7.812 48.154 3.004 - - - - -

(a) test error (b) training error

Figure 4.5: MSE in Scenario 3 for Gaussian responses

Figure 4.6: Total number of selected predictors in Scenario 3 for Gaussian responses
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4.3. Results

Part I. Scenario 4. LHHH, Independent variables

Table 4.4. Summary of MSE and selected predictors in Scenario 4 for Gaussian responses

test error training error selected predictors
Method Mean SD Mean SD ALL Block 1 Block 2 Block 3 Block 4
priorityboost 1.825 0.351 0.971 0.216 56.07 7.89 34.01 13.56 0.61
prioritylasso 1.859 0.357 0.954 0.288 69.10 8.04 32.87 24.45 3.74
LBboost 2.038 0.398 1.272 0.212 136.00 8.89 56.47 49.41 21.23
glmboost 1.889 0.384 0.736 0.098 75.19 5.15 24.74 24.82 20.48
Lasso 1.897 0.382 0.610 0.282 105.57 5.20 34.95 34.74 30.68
Reference 7.779 1.408 8.088 0.670 - - - - -

(a) test error (b) training error

Figure 4.7: MSE in Scenario 4 for Gaussian responses

Figure 4.8: Total number of selected predictors in Scenario 4 for Gaussian responses
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4.3. Results

Part I. Scenario 5. LHHH, Dependencies within each group

Table 4.5. Summary of MSE and selected predictors in Scenario 5 for Gaussian responses

test error training error selected predictors
Method Mean SD Mean SD ALL Block 1 Block 2 Block 3 Block 4
priorityboost 1.784 0.419 1.246 0.198 31.74 5.97 10.26 9.51 6.00
prioritylasso 1.900 0.473 1.271 0.243 37.00 6.00 11.57 10.54 8.89
LBboost 1.454 0.297 0.999 0.113 87.66 8.04 32.00 27.68 19.94
glmboost 1.310 0.290 0.901 0.114 36.36 5.48 11.22 10.67 8.99
Lasso 1.258 0.273 0.812 0.181 48.43 5.54 15.35 14.71 12.83
Reference 29.733 5.096 30.621 2.224 - - - - -

(a) test error (b) training error

Figure 4.9: MSE in Scenario 5 for Gaussian responses

Figure 4.10: Total number of selected predictors in Scenario 5 for Gaussian responses
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4.3. Results

Part I. Scenario 6. LHHH, Dependencies among groups

Table 4.6. Summary of MSE and selected predictors in Scenario 6 for Gaussian responses

test error training error selected predictors
Method Mean SD Mean SD ALL Block 1 Block 2 Block 3 Block 4
priorityboost 3.677 0.736 2.675 0.373 30.36 7.90 11.97 8.15 2.34
prioritylasso 3.756 0.839 2.453 0.496 42.44 7.65 18.64 10.67 5.48
LBboost 1.873 0.385 1.287 0.167 92.93 8.91 36.31 28.34 19.37
glmboost 1.359 0.253 0.948 0.126 32.24 5.94 9.95 9.19 7.16
Lasso 1.262 0.238 0.836 0.164 43.82 6.13 13.49 13.12 11.08
Reference 41.280 7.180 42.094 2.932 - - - - -

(a) test error (b) training error

Figure 4.11: MSE in Scenario 6 for Gaussian responses

Figure 4.12: Total number of selected predictors in Scenario 6 for Gaussian responses
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4.3. Results

4.3.2 Part II. Simulation for survival times

Scenario 1. LLLH, Independent variables

Table 4.7. Summary of IBS and selected predictors in Scenario 1 for survival times

test error training error selected predictors
Method Mean SD Mean SD ALL Block 1 Block 2 Block 3 Block 4
priorityboost 0.0831 0.0285 0.0633 0.0177 22.68 7.51 7.41 6.86 0.90
prioritylasso 0.0834 0.0287 0.0626 0.0179 24.58 7.63 7.50 7.46 1.99
LBboost 0.0775 0.0269 0.0596 0.0167 33.74 8.94 8.67 8.39 7.74
glmboost 0.0882 0.0289 0.0536 0.0143 33.18 5.18 5.10 2.71 20.19
Lasso 0.0885 0.0284 0.0429 0.0152 55.68 5.28 5.17 3.60 41.63
Reference 0.1877 0.0208 0.1738 0.0178 - - - - -

(a) test error (b) training error

Figure 4.13: IBS in Scenario 1 for survival times

Figure 4.14: Total number of selected predictors in Scenario 1 for survival times
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4.3. Results

Part II. Scenario 2. LLLH, Dependencies within each group

Table 4.8. Summary of IBS and selected predictors in Scenario 2 for survival times

test error training error selected predictors
Method Mean SD Mean SD ALL Block 1 Block 2 Block 3 Block 4
priorityboost 0.0604 0.0271 0.0502 0.0176 17.39 5.27 5.74 4.43 1.95
prioritylasso 0.0614 0.0264 0.0490 0.0166 19.63 5.34 5.75 4.77 3.77
LBboost 0.0482 0.0204 0.0381 0.0151 33.88 7.91 7.58 6.57 11.82
glmboost 0.0486 0.0223 0.0388 0.0163 19.46 5.49 5.34 4.00 4.63
Lasso 0.0485 0.0209 0.0303 0.0126 45.13 5.67 5.66 4.50 29.30
Reference 0.2273 0.0108 0.2206 0.0119 - - - - -

(a) test error (b) training error

Figure 4.15: IBS in Scenario 2 for survival times

Figure 4.16: Total number of selected predictors in Scenario 2 for survival times
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4.3. Results

Part II. Scenario 3. LLLH, Dependencies among groups

Table 4.9. Summary of IBS and selected predictors in Scenario 3 for survival times

test error training error selected predictors
Method Mean SD Mean SD ALL Block 1 Block 2 Block 3 Block 4
priorityboost 0.0576 0.0251 0.0523 0.0181 17.73 6.77 5.96 4.21 0.79
prioritylasso 0.0574 0.0245 0.0515 0.0194 19.44 6.73 6.00 4.71 2.00
LBboost 0.0404 0.0216 0.0340 0.0125 33.88 7.91 7.58 6.57 11.82
glmboost 0.0367 0.0179 0.0301 0.0121 21.33 6.49 5.91 4.78 4.15
Lasso 0.0377 0.0184 0.0231 0.0107 46.00 6.41 5.92 4.90 28.77
Reference 0.2339 0.0079 0.2293 0.0095 - - - - -

(a) test error (b) training error

Figure 4.17: IBS in Scenario 3 for survival times

Figure 4.18: Total number of selected predictors in Scenario 3 for survival times
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4.3. Results

Part II. Scenario 4. LHHH, Independent variables

Table 4.10. Summary of IBS and selected predictors in Scenario 4 for survival times

test error training error selected predictors
Method Mean SD Mean SD ALL Block 1 Block 2 Block 3 Block 4
priorityboost 0.0970 0.0288 0.0578 0.0163 35.70 7.58 23.90 3.26 0.96
prioritylasso 0.0968 0.0288 0.0604 0.0163 35.38 7.64 21.03 4.81 1.90
LBboost 0.0960 0.0298 0.0642 0.0164 62.92 8.57 33.56 13.72 7.07
glmboost 0.1003 0.0278 0.0460 0.0107 42.98 5.05 15.10 12.25 10.58
Lasso 0.1002 0.0283 0.0392 0.0108 60.89 5.09 20.59 18.47 16.74
Reference 0.1891 0.0187 0.1706 0.0189 - - - - -

(a) test error (b) training error

Figure 4.19: IBS in Scenario 4 for survival times

Figure 4.20: Total number of selected predictors in Scenario 4 for survival times
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4.3. Results

Part II. Scenario 5. LHHH, Dependencies within each group

Table 4.11. Summary of IBS and selected predictors in Scenario 5 for survival times

test error training error selected predictors
Method Mean SD Mean SD ALL Block 1 Block 2 Block 3 Block 4
priorityboost 0.0629 0.0294 0.0412 0.0147 27.46 5.30 12.24 7.94 1.98
prioritylasso 0.0634 0.0304 0.0406 0.0141 27.17 5.37 10.81 7.43 3.56
LBboost 0.0656 0.0331 0.0371 0.0115 62.98 7.59 24.65 19.25 11.49
glmboost 0.0506 0.0249 0.0368 0.0141 24.13 5.44 7.92 6.52 4.25
Lasso 0.0515 0.0260 0.0261 0.0109 54.54 5.52 18.29 16.30 14.43
Reference 0.2250 0.0127 0.2191 0.0113 - - - - -

(a) test error (b) training error

Figure 4.21: IBS in Scenario 5 for survival times

Figure 4.22: Total number of selected predictors in Scenario 5 for survival times
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4.3. Results

Part II. Scenario 6. LHHH, Dependencies among groups

Table 4.12. Summary of IBS and selected predictors in Scenario 6 for survival times

test error training error selected predictors
Method Mean SD Mean SD ALL Block 1 Block 2 Block 3 Block 4
priorityboost 0.0556 0.0261 0.0400 0.0141 36.37 7.07 20.10 7.34 1.86
prioritylasso 0.0555 0.0260 0.0407 0.0147 35.68 6.78 16.71 8.46 3.73
LBboost 0.0443 0.0283 0.0408 0.0120 67.35 8.16 30.65 16.19 12.35
glmboost 0.0417 0.0223 0.0307 0.0136 24.67 6.48 7.95 6.34 3.90
Lasso 0.0431 0.0230 0.0215 0.0118 55.19 6.28 18.69 15.94 14.28
Reference 0.2318 0.0105 0.2269 0.0106 - - - - -

(a) test error (b) training error

Figure 4.23: IBS in Scenario 6 for survival times

Figure 4.24: Total number of selected predictors in Scenario 6 for survival times
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4.4 Discussion

We discuss our findings from the results in six key points. Firstly, in most of
the scenarios for both Gaussian responses and survival times, the two priority
methods, priorityboost and prioritylasso, selected fewer predictors than other
three methods. The priority methods provided sparser models. In contrast,
Lasso and LBboost often selected more predictors than other three methods.
The number of predictors selected by glmboost varied across scenarios, but
it was always fewer than predictors by Lasso and sometimes even fewer than
those by the prioritylasso.

Secondly, the two priority methods tended to select more predictors from
blocks with higher priorities than from blocks with lower priorities. Let us
consider the two settings with dependencies. In the scenarios where there
are dependencies among blocks (Scenario 3 and 6), the total number of pre-
dictors chosen from Block 1-3 increased, and the number of predictors from
Block 4 decreased in most cases, compared with the scenarios where there are
dependencies within each block (Scenario 2 and 5). This may be from the
hierarchical structure in the priority methods; Predictors from blocks with low
priorities are incorporated in the model only if they explain variability that
cannot be explained by blocks with higher priority. This result is consistent
with description of priority-Lasso in Klau et al. (2018), “An important feature
of priority-Lasso is that it directly addresses the problem of redundancies in
the predictive information across different blocks”.

Thirdly, the naive methods, especially Lasso, showed a tendency toward
overfitting in the settings where all variables are independent. In the results of
Scenario 1 and 4, Lasso provided the smallest training error, but the largest or
the second largest test error. We can see that Lasso selected more predictors
in Block 4, which was assigned the lowest priority, than other methods. For
example, in Scenario 1 for Gaussian responses, the average number of predictors
selected from Block 4 by prioritylasso is 5.07 and that by Lasso is 68.09. Note
that in our simulation design, we assume that there are five predictors that
have effects on the responses in Block 4. These results suggest that Lasso was
unable to distinguish the effects of predictors from noise and selected more
irrelevant predictors than other methods, leading to overfitting. The results
from glmboost, while not as pronounced as those from Lasso, show a similar
trend.

On the other hand, the results of other three methods did not show the
tendency of overfitting. It is not surprising for the priority methods not to
be overfitting, considering that they selected fewer predictors. Let us discuss
LBboost with the above example, Scenario 1 for Gaussian responses. The
average number of selected predictors from Block 4 by LBboost is 23.52, which
is fewer than Lasso. As discussed in Section 3.2, in each boosting iteration,
LBboost compares the candidate updates by each block and incorporates only
the effects of predictors from the block that provided the best update. It seems
that this screening enabled the prediction models to avoid having too much
irrelevant predictors from Block 4 unlike the naive methods.

Fourthly, in the scenarios where there are dependencies regardless within
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each block or among blocks, i.e, in Scenario 2, 3, 5 and 6, LBboost and the two
naive methods tended to provide lower test errors than the priority methods.
By contrast with the results in Scenario 1 or 4, Lasso and glmboost seems to
work well there in terms of prediction accuracy.

As we see in Section 4.1.2, the simulation data were generated assuming
that five predictors in each block have effect on the responses. However, in
these scenarios, due to the correlation structures in the predictors, there are
more than five predictors that are relevant to the responses. The “effects” of
the correlated predictors are “spurious”, not effect itself, but they still have
ability to describe some part of the variability in the responses. One possibility
of the reason why the naive methods worked better in these scenarios is that the
number of relevant predictors selected by these methods increased than Scenario
1 or 4, where it is seemed that they selected more predictors by random noises.

In terms of prediction accuracy, the priority methods have advantages and
disadvantages. In this simulation study, we generated the data assuming that
predictors in Block 1 has the largest effect and those in Block 4 has the smallest
effect. The priority methods incorporate this “prior knowledge” via setting
the priority order among blocks. On the other hand, due to the hierarchical
structure, these methods might underestimate the influences of blocks with
lower priority. There is possibility that they eliminate predictors that have
effect in blocks with lower priority, which leads to sparser model, but also
makes their prediction accuracy worse. This might be one reason why the
test errors by the priority methods were larger than the other three methods
in these scenarios. (Note that function prioritylasso and priorityboost
have option cvoffset to avoid the influences on the prediction accuracy due to
underestimating the impact by blocks with lower priorities, which is discussed
in 2.4.3. In this simulation study, we did not use this option as mentioned in
Section 4.2.)

Fifthly, in most of the scenarios, LBboost provided relatively smaller test
errors. LBboost and the priority methods often gave smaller test errors than
the naive methods in scenarios where all variables are independent (Scenario
1 and 4), whereas LBboost and the naive methods tended to provide smaller
test errors than the priority methods in scenarios where there are dependencies
(Scenario 2, 3, 5 and 6). The exceptions are Scenario 4 for Gaussian responses
and Scenario 5 for survival times, where the mean value of the test errors by
LBboost was the largest of the five methods. However, it may be assumed that
the differences among the methods are not large in these scenarios. We can
say that LBboost had no scenarios that yield considerably larger test errors
compared to the other four methods.

Finally, we compare the results of priorityboost with those of prioritylasso.
In most of the scenarios, priorityboost selected fewer predictors and provided
smaller test errors than prioritylasso. However, the differences seem to be
small and it can be seen that their results are the almost same regarding both
prediction accuracy and sparsity of the resulting model.
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CHAPTER 5

Application to real multi-omics
data

In this chapter, we evaluate the performances of priority boosting and Lasso-
based block boosting (LBboost) on a real multi-omics dataset. The dataset
is regarding acute myeloid leukemia (AML) patients, which is described in
Section 5.1. AML is a heterogeneous disease characterized by a large number
of cytogenetic and molecular genetic aberrations, which result in significant
differences in responses and survival after treatment among the patients. On the
dataset, we compare the results by the above two methods with the other three
methods, priority-Lasso, Lasso and gradient boosting. We assess the prediction
accuracy via the integrated Brier score, and the sparsity of the resulting models.

5.1 Acute myeloid leukemia data

We consider the dataset consisting of AML patients collected in Germany.
Hereinafter, we call it the AML dataset. The patients were treated
in the multicenter randomized phase III trial (clinicaltrials.gov identifier
NCT00266136) by the German Acute Myeloid Leukemia Cooperative Group
(AMLCG) between 1999 and 2005 (Büchner et al., 2006). The gene expression
data corresponding to the patients can be found in genomics data repository
Gene Expression Omnibus (GSE37642). The outcome of the dataset is the
overall survival time and patients with translocation t(15;17) or myelodysplastic
syndrome are excluded (Klau et al., 2018). Also, patients with missing values
are excluded, resulting in 359 observations. The number of the observation with
events is 257 and the number of the censored observations is 102. The dataset
consists of 44812 predictors; clinical variables, cytogenetics, gene mutations and
gene expression variables.

In the following sections, we compared five prediction methods on the dataset.
Priority boosting, priority-Lasso and Lasso-based block boosting are methods
that take the block structure of the variables into account. The block structure
on the AML dataset were defined as follows.

• Block 1: the three-categorical MRC score. It is represented by 2 dummy
variables.

• Block 2: 8 clinical variables measured on different scales, binary or
continuous.
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• Block 3: 48 binary variables, each representing the mutation status for a
certain gene.

• Block 4: 44754 continuous variables, each representing the expression value
of a certain gene.

Block 1 consists of two dummy variables which represent three risk groups
of AML patients, favorable, intermediate and adverse. This risk groups were
defined on the basis of certain cytogenetic aberrations according to 2010 UK
Medical Research Council (MRC) classification (Grimwade et al., 2010).

Priority boosting and priority-Lasso require to define the priority order
among blocks on data. We set the priority order to (1, 2, 3, 4); Block 1 has the
highest priority, block 2 has the second highest priority, block 3 has the third
highest priority and block 4 has the lowest priority.

5.2 Method configurations and evaluation metric

On the AML data, we evaluated the performance of the five methods, which
are the same in the simulation study in Chapter 4; LBboost, priority boosting,
priority-Lasso, gradient boosting and Lasso. The specification of these five
methods is listed below.

glmboost In common with the simulation study, to assess the perform-
ance of gradient boosting, we used function glmboost in R package mboost,
which implements the componentwise gradient boosting that uses least-squares
estimators as the base learners. The stopping iteration mstop was chosen via
internal 25 bootstrap iterations (default), and the step-length parameter ν was
set to the default value of 0.1. The componentwise gradient boosting approach
is discussed in section 2.1.4 and the algorithm of glmboost for the Cox model
is described in algorithm 2.2.1.

Lasso R package glmnet was used. The complexity parameter λ was
chosen via internal 10-fold CV (default). Lasso is explained in Section 2.3.

priorityboost Priority boosting is implemented by function priorityboost.
The R codes are shown in Appendix A and details on priority boosting are
discussed in Section 3.1. For each block, the stopping iteration mstop was
selected via internal 25 bootstrap iterations, and the step-length parameter ν
was set to 0.1. The option cvoffset is set to FALSE as default.

prioritylasso For priority-Lasso, R package prioritylasso was used. For
each block, the complexity parameter λ was chosen by 10-fold CV. The option
cvoffset is set to FALSE as default. For details on priority-Lasso, see in
Section 2.4.

LBboost We used function LBboost. The R codes are shown in Appendix
A. The stopping iteration mstop was chosen via 5-fold CV and the step-length
parameter ν was set to 0.2 to make the computation time shorter. The base
learners of LBboost are Lasso regression models and the complexity parameter
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λ of the Lasso models were selected by 10-fold CV. For details on LBboost,
refer to Section 3.2.

In common with the simulation study, these five methods are divided into
three types in terms of how to handle the block structure in predictors; 1)
Naive method: glmboost and Lasso, 2) Priority method: priorityboost and
prioritylasso, 3) Blocked method: LBboost. Description of the three type is in
Section 4.2.

To compare the prediction performance of these methods, we performed
five repetitions of 5-fold cross-validation. Hence, each method runs 5 · 5 = 25
times. The prediction performances were assessed via the integrated Brier score
(IBS). IBS were computed in the training sets as well as the test set. To see
the sparsity of the resulting models, we compared the number of the predictors
chosen by each method.

5.3 Results

Table 5.1 shows the summary of IBS and the number of selected predictors by
the five methods, priorityboost, prioritylasso, LBboost, glmboost and Lasso,
besides the reference method. These values are evaluated on five repetitions of
5-fold crossvalidation (CV). The reference method is Kaplan-Meier estimate,
which is discussed in Section 2.2.

In this table, we can see the values of the mean and the standard deviation
(SD) of IBS over the test sets in columns under ‘test error’ and the training sets
under ‘training error’. Column ‘total’ shows the average of the total numbers
of selected predictors and the subsequent columns represents the numbers of
selected predictors in the respective blocks. Figure 5.1 displays the distributions
of the test errors and the training errors as box plots. Figure 5.2 presents the
distribution of the total number of selected predictors.

Table 5.1. Summary of IBS and selected predictors on AML data

test error training error selected predictors
Method Mean SD Mean SD ALL Block 1 Block 2 Block 3 Block 4
priorityboost 0.1534 0.0025 0.1335 0.0026 19.24 2.00 5.96 2.44 8.84
prioritylasso 0.1544 0.0044 0.1330 0.0031 24.68 2.00 5.80 3.48 13.40
LBboost 0.1561 0.0049 0.1246 0.0024 50.92 1.28 6.80 5.72 37.12
glmboost 0.1613 0.0022 0.1106 0.0017 33.72 0.32 1.84 0.32 31.24
Lasso 0.1616 0.0025 0.1088 0.0034 38.88 0.24 1.96 0.40 36.28
Reference 0.2065 0.0007 0.2054 0.0000 - - - - -
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(a) test errors (b) training errors

Figure 5.1: IBS on AML data

Figure 5.2: Total number of selected predictors on AML data

5.4 Discussion

In the results, we can see that all the five methods provided smaller mean values
of test errors than the Kaplan-Meier estimate. Let us check the number of
selected predictors. The two priority methods selected fewer predictors than
other methods, which is consistent with the result of the simulation study in
Chapter 4. Block 1, which was assigned the highest priority, consists of two
variables, and the priority methods selected both of these variables over all the
25 runs. From Block 4, which consists of 44754 variables, priorityboost chose
8.84 predictors in average and prioritylasso 13.40 predictors, which are fewer
than other three methods. This could be the result of setting the priority order
among the blocks.

The mean values of test errors by the priority methods and LBboost are
smaller than those by the naive methods, Lasso and glmboost. On the AML
data, the priority methods seem to have worked well in terms of both prediction
accuracy and model sparsity, taking advantage of prior knowledge. It should
be noted that the naive methods, Lasso and glmboost, appear to overfit the
training data. Two variables in Block 1 are known to yield good prediction
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accuracy. However, the average number of selected predictors from this block by
these naive methods were fewer than the other methods, i.e, 0.32 by glmboost
and 0.24 by Lasso. On the other hand, these methods chose more than 30
predictors from Block 4 in average. Considering that these methods provided
smaller training errors, but larger test errors than the other three methods, it
seems that they selected irrelevant predictors that do not explain the variability
of the responses.

In contrast, the results of LBboost show no obvious sign of overfitting, which
is consistent with the result of the simulation study. The number of selected
predictors by LBboost is larger than those by the other methods. It seems that
while the naive methods tended to select irrelevant predictors, LBboost selected
more relevant predictors than irrelevant ones. This result is consistent with
the findings of the simulation study in Chapter 4 and this may be caused by
the subset-updating approach in LBboost. We can see that the mean value of
the test errors by LBboost is as small as those by the priority methods. Note
that LBboost did not use the prior knowledge and derive the estimates purely
data-driven.
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CHAPTER 6

Conclusion and future work

6.1 Conclusion

In this thesis, we introduced priority boosting and Lasso-based block boosting
(LBboost), which are two novel approaches to build regression models for
datasets that contain different types of data, such as multi-omics data. We
evaluated their prediction abilities on simulation data and a real multi-omics
dataset, the AML data, comparing them with three other methods, priority-
Lasso, Lasso and glmboost.

The results in Section 4 and 5 show the following characteristics of
priority boosting. The resulting prediction models tend to be sparser. They
often have a smaller number of predictors compared to Lasso, glmboost and
LBboost. In addition, priority boosting favors predictors of blocks with higher
priorities, i.e., particular “favorite” blocks, over predictors in blocks with lower
priorities. This property might affect on the prediction accuracy positively and
negatively, as discussed in Section 4.4. Namely, incorporating prior knowledge
by setting favorite groups helps the model to enhance prediction ability, while
underestimating the influences of blocks with lower priorities might lead to
larger error.

In the simulation study, the priority methods showed larger test errors
than the other methods in some scenarios. However, in the application to the
AML data, priority boosting was able to provide the best prediction accuracy
of the five methods, taking advantage of prior knowledge. Through all the
simulation datasets and the AML dataset, priority-Lasso presented similar
results to priority boosting, in terms of prediction accuracy and the number of
selected predictors.

From examining the results, we conclude that priority boosting can be
regarded as a practical method that builds interpretable and relatively sparser
prediction models. The resulting models are built incorporating prior knowledge
and/or practical constraints via its hierarchical structure, which may affect
on the prediction ability positively and negatively. Interpretability of the
resulting models and implicit variable selection during model estimation are
the characteristics that are inherited from boosting.

LBboost is the boosting algorithm with the subset-updating approach that
is based on Lasso. It also provides interpretable prediction models and performs
automated variable selection. The following findings distinguish this methods
from the other methods. LBboost was able to reach as good prediction accuracy
as the two priority methods in the AML data, where glmboost and Lasso seems
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to have been overfitting. It is presumed that the subset-updating approach in
LBboost helped to select relevant predictors that explain the variability in the
responses, and resulting models were able to avoid overfitting. It should be
noted that LBboost did not use the prior knowledge unlike the priority methods,
but processed data purely data-driven.

Also in the simulation study, LBboost often showed relatively good results,
both in the scenarios where the naive methods, Lasso and glmboost, gave larger
errors and in the scenarios where the priority methods gave larger errors. When
it comes to the number of selected predictors, LBboost often chose the largest
or the second largest number of predictors of the five methods, in contrast to
the priority methods’ property of providing sparser models.

In summary, LBboost is a method that derives prediction models purely
data-driven, which can reach similar or better prediction accuracy compared to
the priority methods in our data. Further, the results suggests that LBboost
works well in the situations where the naive methods are overfitting.

6.2 Future work

Our findings presented the similarity of the properties of priority boosting
and priority-Lasso, while it remains to discuss the differences between the
two methods. One characteristic of boosting algorithms is their stability in
the high-dimensional data. It is known that Lasso tends to suffer from the
multi-collinearity problem (Hastie & Tibshirani, 1990). In the situation where
there are correlations among blocks of the predictors, the coefficients of the
predictors selected by Lasso fluctuate widely as the strength of regulation varies.
On the other hand, boosting’s regularization paths tend to monotone. It would
be interesting to compare priority boosting and priority-Lasso under different
correlation structures, to see if they inherit the characteristics of their “base”
methods.

Another boosting characteristic is flexibility derived from its modular nature,
i.e., boostings can basically combine any type of base learners and loss functions.
This thesis focus on the priority boosting algorithm defined based on glmboost
for simplicity. However, it is possible to consider priority boosting that is built
based on other boosting methods. For example, if we use gamboost instead of
glmboost, then it allows the resulting models to explain nonlinear effects of
predictors on the responses. It makes a difference from the prediction ability of
priority-Lasso.

In the appendix A, we present the R functions priorityboost. It is
presumed that the setting in the option cvoffset in priorityboost may have
an influence on prediction accuracy. As discussed in Section 2.4.3, with their
hierarchical structure, the resulting model of the priority methods tends to
underestimate the influences of blocks with lower priorities, which might make
the prediction accuracy worse. cvoffset is an option to address this problem
by implementing cross-validated offsets, which was devised by Klau et al. (2018).
(This option can be found also in function prioritylasso). In our simulation
study and the application to the AML data, we did not use the version with
cross-validated offsets because our aim is to see the impact of the hierarchical

58



6.2. Future work

structure clearly and using this version increases computational time. However,
it also makes sense to evaluate the prediction accuracy by this version.

Finally, the AML data is an illustrative example to see the properties of
priority boosting and LBboost on a real multi-omics dataset. In order to get a
solid answer on the evaluation of their prediction abilities on multi-omics data,
a large number of data sets need to be investigated. To achieve this purpose,
cancer datasets from the database ‘The Cancer Genome Atlas’ (TCGA) may
be used.
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APPENDIX A

R implementations for priority
boosting and LBboost

We present the R implementations for priority boosting and Lasso-based
block boosting (LBboost). Appendix A.1 displays function priorityboost,
which provides the coefficient estimates by priority boosting for continuous
responses and for time-to-event responses, and its supplementary function
makeCVdivision. Function makeCVdivision can be find in the package
prioritylasso, which was developed by Klau et al. (2020). Appendix A.2 shows
four functions that implemented LBboost. Function LBboost returns the
coefficient estimates for continuous responses and for time-to-event responses.
This requires a supplementary functions loss_offset.

A.1 priorityboost

1 priorityboost <- function(x, y, blocks, family, cvoffset=FALSE,
cvoffsetnfolds=5, nodes){↪→

2 # x: design matrix.
3 # y: vector of responses.
4 # blocks: list showing block structure in the format

{list(b1=...,b2=...,)}, where the dots represents the
indices of the predictors in this block.

↪→

↪→

5 # family: "gaussian" for continuous y, "cox" for y of type
Surv.↪→

6 # cvoffset: logical, whether the cross-validated offsets
should be used. Default is FALSE.↪→

7 # cvoffsetnfolds: the number of folds in the CV procedure
for the cross-validated offset. Default is 5.↪→

8 # nodes: the number of nodes used for parallel computing.
9

10 cl <- makeCluster(nodes)
11 coeff <- list()
12 mb.fit <- list()
13 offlist <- list(NULL) # list of offsets
14 for(i in 1:length(blocks)){
15 # Create matrix for the target block
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16 ind_block <- blocks[[i]]
17 x_block <- x[,ind_block]
18

19 # Fit glmboost with offset
20 if(family == "gaussian") {
21 fit <- glmboost(x=x_block, y=y, family=Gaussian(),

offset = offlist[[i]], control=boost_control(mstop =
300, nu = 0.1))

↪→

↪→

22 myApply <- function(dataset, glmboost ,...) {
23 myFun <- function(...) {
24 library("mboost")
25 glmboost(...)
26 }
27 parLapply(cl=cl, dataset, myFun, ...)
28 }
29 cvm <- cvrisk(fit, papply = myApply)
30 }
31

32 if(family == "cox") {
33 fit <- glmboost(x=x_block, y=y, family=CoxPH(), offset =

offlist[[i]],↪→

34 control=boost_control(mstop = 300, nu = 0.1))
35 myApply <- function(dataset, glmboost ,...) {
36 myFun <- function(...) {
37 library("mboost")
38 glmboost(...)
39 }
40 parLapply(cl=cl, dataset, myFun, ...)
41 }
42 cvm <- cvrisk(fit, papply = myApply)
43 }
44

45 mb.fit[[i]] <- fit[mstop(cvm)]
46

47 # Compute offset with CV for the next block
48 if(cvoffset) {
49 cvdiv <- makeCVdivision(n = nrow(x), K = cvoffsetnfolds,

nrep = 1)[[1]]↪→

50 pred <- matrix(nrow = nrow(x), ncol = 1)
51 for(k in 1:length(cvdiv)) {
52 # For the first block
53 if(is.null(offlist[[i]])){
54 if(family == "gaussian") {
55 fittemp <- glmboost(y=y[cvdiv[[k]]==1,],

x=x_block[cvdiv[[k]]==1,], offset = NULL,
family = Gaussian(),
control=boost_control(mstop = 300, nu=0.1))

↪→

↪→

↪→

56 }
57 if(family == "cox") {
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58 fittemp <- glmboost(y=y[cvdiv[[k]]==1,],
x=x_block[cvdiv[[k]]==1,], offset = NULL,
family = CoxPH(), control=boost_control(mstop
= 300, nu=0.1))

↪→

↪→

↪→

59 }
60

61 fittemp <- fittemp[mstop(cvm)]
62 coe <- coef(fittemp)
63

64 xx <- as.matrix(x_block)[cvdiv[[k]]==0,
65 names(coe[names(coe) != "(Intercept)"]), drop=FALSE]
66

67 if(length(coe)==0) {
68 lp <- rep(0, nrow(xx))
69 }else{
70 Intercept <- rep(1, nrow(xx))
71 xtemp <- t(rbind(Intercept,t(xx)))
72 colnames(xtemp)[1] <- "(Intercept)"
73 lp <- as.vector(xtemp[ ,names(coe), drop=FALSE]

%*% coe)↪→

74 }
75

76 pred[cvdiv[[k]] == 0,] <- lp
77 } else { # For the second block to the last block
78 if(family == "gaussian") {
79 fittemp <- glmboost(y=y[cvdiv[[k]]==1,],

x=x_block[cvdiv[[k]]==1,], offset =
offlist[[i]][cvdiv[[k]]==1,], family =
Gaussian(), control=boost_control(mstop = 300,
nu=0.1))

↪→

↪→

↪→

↪→

80 }
81 if(family == "cox") {
82 fittemp <- glmboost(y=y[cvdiv[[k]]==1,],

x=x_block[cvdiv[[k]]==1,], offset =
offlist[[i]][cvdiv[[k]]==1,], family = CoxPH(),
control=boost_control(mstop = 300, nu=0.1))

↪→

↪→

↪→

83 }
84 fittemp <- fittemp[mstop(cvm)]
85

86 coe <- coef(fittemp)
87 xx <- as.matrix(data_block)[cvdiv[[k]]==0,
88 names(coe[names(coe) != "(Intercept)"]), drop=FALSE]
89

90 if(length(coe)==0) {
91 lp <- rep(0, nrow(xx))
92 }else{
93 Intercept <- rep(1, nrow(xx))
94 xtemp <- t(rbind(Intercept,t(xx)))
95 colnames(xtemp)[1] <- "(Intercept)"
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96 lp <- as.vector(xtemp[ ,names(coe), drop=FALSE]
%*% coe)↪→

97 }
98

99 pred[cvdiv[[k]] == 0,] <-
offlist[[i]][cvdiv[[k]]==0] + lp↪→

100 }
101 }
102 }
103 else{ # Compute offset without CV
104 pred <- predict(mb.fit[[i]], type="link")
105 }
106

107 offlist[[i+1]] <- as.matrix(pred)
108

109 coe <- coef(mb.fit[[i]])
110 coeff[[i]] <- coe[names(coe) != "(Intercept)"]
111 }
112 stopCluster(cl)
113 coeff[[i]] <- coe
114 finallist <- list(coefficients = unlist(coeff), mboost.fit =

mb.fit, call = match.call())↪→

115 return(finallist)
116 }

1 makeCVdivision <- function(n=300, K=5, nrep=1) {
2 ngroup <- rep(floor(n/K), times=K)
3 if(n - sum(ngroup) != 0)
4 ngroup[1:(n - sum(ngroup))] <- ngroup[1:(n - sum(ngroup))]

+ 1↪→

5

6 cvlist <- list()
7

8 for(i in 1:nrep) {
9 indgroup <- sample(rep(1:K, times=ngroup))

10 cvlist[[i]] <- list()
11 for(j in 1:K) {
12 tempvec <- rep(0, n)
13 tempvec[indgroup!=j] <- 1
14 cvlist[[i]][[j]] <- tempvec
15 }
16 }
17 return(cvlist)
18 }
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A.2 LBboost

1 LBboost <- function(x, y, blocks, family, nu=0.1, itermax,
2 no_update_max=20, cv_frequency=1){
3 # x: design matrix
4 # y: vector for response variables
5 # blocks: list showing block structure in the format

{list(b1=...,b2=...,)}, where the dots represents the
indices of the predictors in this block.

↪→

↪→

6 # family: "gaussian" or "cox"
7 # nu: step length parameter
8 # itermax: the number of iterations to perform
9 # no_update_max: When the number of times LBboost does not

update the coefficients reaches no_update_max, it stops
iteration and returns the estimates.

↪→

↪→

10 # cv_frequency: parameter that specifies how often cv.glmnet
is used.↪→

11

12 # Set zero vector as initial values of coefficients for all
predictors↪→

13 coeall = rep(0, ncol(x))
14 names(coeall) <- colnames(x)
15 offlist <- list(NULL) # list of offsets for each iteration
16 coelist <-list() # list of coefficients for each

iteration↪→

17 cvmvec <- vector() # vector of minimum cvm that gmlnet
computes in each iteration↪→

18 loss_train <- vector() # vector of MSE or negative log
likelihood in each iteration with training set↪→

19 loss_valid <- vector() # vector of MSE or negative log
likelihood in each iteration with validation set↪→

20 count_no_update <- 0 # Counter for no update (adding 1
when cv.glmnet returns NULL models for all blocks in the
actual iteration)

↪→

↪→

21 no_coeff_count <- 0
22 lambda_temp1 <- vector()
23 lambda_temp2 <- vector()
24 lambda_list <- list(b1=NULL, b2=NULL, b3=NULL, b4=NULL)
25

26 itr <- 1
27 while(itr <= itermax){
28 loss_itr <- vector() # vector of MSE or deviance with

each candidate model in the actual iteration↪→

29 coelist_itr <- list() # list of coefficients with each
candidate model in the actual iteration↪→

30

31 if(itr%%cv_frequency==0 | itr==1 | itr==2){
32 for(i in 1:length(blocks)){
33 # model matrix for the target block
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34 block <- x[,blocks[[i]]]
35 # Fit lasso with offset
36 if(family=="gaussian"){
37 fitlasso <- cv.glmnet(block, y, family = "gaussian",

offset = offlist[[itr]], type.measure = "mse",
standardize = TRUE, parallel = TRUE)

↪→

↪→

38 }
39 if(family=="cox"){
40 fitlasso <- cv.glmnet(block, y, family = "cox",

offset = offlist[[itr]], type.measure =
"deviance", standardize = TRUE, parallel = TRUE)

↪→

↪→

41 }
42 if(itr==1){
43 lambda_temp1[i] <- fitlasso$lambda.min
44 lambda_list[[i]][[1]] <- fitlasso$lambda.min
45 }else if(itr==2){
46 lambda_temp2[i] <- fitlasso$lambda.min
47 lambda_list[[i]][[2]] <- fitlasso$lambda.min
48 }else {
49 lambda_temp1[i] <- lambda_temp2[i]
50 lambda_temp2[i] <- fitlasso$lambda.min
51 lambda_list[[i]][[length(lambda_list[[i]])+1]] <-

fitlasso$lambda.min↪→

52 }
53

54 # coefficients chosen from the target block
55 coe <- fitlasso$glmnet.fit$beta[,fitlasso$lambda ==

fitlasso$lambda.min]↪→

56 coelist_itr[i] <- list(coe[coe!= 0])
57

58 loss_itr[i] <- min(fitlasso$cvm)
59 }
60 }else{
61 for(i in 1:length(blocks)){
62 # model matrix for the target block
63 block <- x[,blocks[[i]]]
64

65 # Make lambda sequence
66 lambda <- c(lambda_temp1[i], lambda_temp2[i])
67 a <- lambda_temp1[i]/1
68 b <- lambda_temp2[i]/1
69 lambda <- c(a, b)
70

71 # Fit lasso with offset
72 if(family=="gaussian"){
73 fitlasso <- glmnet(block, y, family = "gaussian",

offset = offlist[[itr]], type.measure = "mse",
lambda=lambda, standardize = TRUE, parallel =
TRUE)

↪→

↪→

↪→

74 }
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75 if(family=="cox"){
76 fitlasso <- glmnet(block, y, family = "cox", offset

= offlist[[itr]], type.measure = "deviance",
lambda=lambda, standardize = TRUE, parallel =
TRUE)

↪→

↪→

↪→

77 }
78

79 # coefficients chosen from the target block
80 coe <- fitlasso$beta[,"s1"]
81 coelist_itr[i] <- list(coe[coe!= 0])
82 loss_itr[i] <- loss_offset(fitlasso, coelist_itr[[i]],

offlist[[itr]], x, y)↪→

83 }
84 }
85

86 # Update coefficients
87 ind <- which.min(loss_itr)
88 cvmvec[itr] <- loss_itr[ind]
89 coe <- coelist_itr[[ind]]
90 # If learners chose no coefficient in the current

iteration↪→

91 if(length(coe) == 0) {
92 print("No update")
93 count_no_update <- count_no_update + 1
94 if (count_no_update==no_update_max) {
95 print("No updates has been accumulated")
96 break # Stop iterations
97 }
98 if(itr!=1){
99 offlist[itr+1] <- list(offlist[[itr]])

100 coelist[itr] <- coelist[itr-1]
101 }else{
102 print("Chosen model has no coefficient.")
103 no_coeff_count <- no_coeff_count + 1
104 if(no_coeff_count==3){
105 print("LBboost chose no coefficient.")
106 finallist <- list(coefficients = coeall)
107 return(finallist)
108 }
109 next
110 }
111 }else{ # If leaner(s) chose coefficient(s) in the

current iteration↪→

112 for(j in 1:length(coe)){
113 coeall[names(coeall) == names(coe[j])] <-

coeall[names(coeall) == names(coe[j])]+ nu*coe[j]↪→

114 }
115 coe_nonzero <- coeall[coeall!=0]
116
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117 offlist[itr+1] <- list(as.matrix(x[,names(coe_nonzero),
drop=FALSE] %*% coe_nonzero))↪→

118 coelist[itr] <- list(coe_nonzero)
119 }
120 itr <- itr + 1
121 }
122 finallist <- list(lam=lambda_list, coefficients=coe_nonzero,

coefflist=coelist, iter=itr, cvm=cvmvec,
call=match.call())

↪→

↪→

123 return(finallist)
124 }

1 loss_offset <- function(object, coe, offset=NULL, new_x,
new_y){↪→

2 if(object$call$family == "gaussian"){
3 # Compute fitted linear predictor and MSE
4 if(length(coe)!=0) {
5 Intercept <- rep(1, nrow(new_x))
6 xtemp <- t(rbind(Intercept,t(new_x)))
7 colnames(xtemp)[1] <- "(Intercept)"
8 lp <- as.vector(xtemp[ ,names(coe), drop=FALSE] %*% coe)

+ offset↪→

9 loss <- sum((new_y - lp)^2)/ length(new_y) # MSE
10 } else{
11 lp <- offset
12 loss <- sum((new_y - lp)^2)/ length(new_y)
13 }
14 }
15 if(object$call$family == "cox"){
16 # Compute fitted linear predictor and negative partial log

likelihood↪→

17 if(length(coe)!=0) {
18 Intercept <- rep(1, nrow(new_x))
19 xtemp <- t(rbind(Intercept,t(new_x)))
20 colnames(xtemp)[1] <- "(Intercept)"
21 lp <- as.vector(xtemp[ ,names(coe), drop=FALSE] %*% coe)

+ offset↪→

22 dt <- as.data.frame(cbind(new_y, lp))
23 fit <- coxph(Surv(time, status)~lp, data=dt, x=TRUE)
24 loss <- (-fit$loglik[2]) # negative partial log

likelihood↪→

25 } else{
26 dt <- as.data.frame(as.matrix(new_y))
27 lp <- offset
28 fit <- coxph(Surv(time, status)~offset, data=dt, x=TRUE)
29 loss <- (-fit$loglik[1])
30 }
31 }

68



A.2. LBboost

32 return(loss)
33 }
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APPENDIX B

R codes to generate simulation
data

We present R codes to generate the data in our simulation study in Chapter 4.
The codes for Gaussian responses are in Appendix B.1 and for survival times in
Appendix B.2.

B.1 Simulation data for Gaussian responses

1 ###### parameters and blocks for the LLLH setting
2 # beta
3 beta_b1 <- c(rep(0.9, 5), rep(0, 5)) #10
4 beta_b2 <- c(rep(0.7, 5), rep(0, 5)) #10
5 beta_b3 <- c(rep(0.3, 5), rep(0, 5)) #10
6 beta_b4 <- c(rep(0.1, 5), rep(0, 995)) #1000
7 beta <- c(beta_b1, beta_b2, beta_b3, beta_b4)
8

9 # blocks
10 blocks <- list(b1=1:10, b2=11:20, b3=21:30, b4=31:1030)
11 n1 <- paste("A", 1:10, sep = "") # 10
12 n2 <- paste("B", 11:20, sep = "") # 10
13 n3 <- paste("C", 21:30, sep = "") # 10
14 n4 <- paste("D", 31:1030, sep = "") # 1000
15

16

17 ###### parameters and blocks for the LHHH setting
18 # beta
19 beta_b1 <- c(rep(0.9, 5), rep(0, 5)) #10
20 beta_b2 <- c(rep(0.7, 5), rep(0, 995)) #1000
21 beta_b3 <- c(rep(0.3, 5), rep(0, 995)) #1000
22 beta_b4 <- c(rep(0.1, 5), rep(0, 995)) #1000
23 beta <- c(beta_b1, beta_b2, beta_b3, beta_b4)
24

25 # blocks
26 blocks <- list(b1=1:10, b2=11:1010, b3=1011:2010,

b4=2011:3010)↪→

27 n1 <- paste("A", 1:10, sep = "") # 10
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28 n2 <- paste("B", 11:1010, sep = "") # 1000
29 n3 <- paste("C", 1011:2010, sep = "") # 1000
30 n4 <- paste("D", 2011:3010, sep = "") # 1000
31

32

33 ##### the number of individuals and predictors
34 n <- 300
35 p <- length(beta)

1 simgaussDepIng <- function(n=300, d=0.9, beta, blocks){
2 # Generate data for Gaussian responses where there are

dependencies within each group↪→

3 x <- NULL
4 for (i in 1:length(blocks)){
5 p <- length(blocks[[i]])
6 mu <- rep(0, p)
7 I <- diag(p)
8 sgm <- d^abs(row(I)-col(I))
9 x_block <- mvrnorm(n, mu, sgm)

10 x <- cbind(x, x_block)
11 }
12 x <- scale(x)
13 y <- x%*%beta + matrix(rnorm(n), nrow=n)
14 return(list(x,y))
15 }
16

17

18 simgaussDepAmg <- function(n=300, d=0.9, beta, blocks){
19 # Generate data for Gaussian responses where there are

dependencies among groups↪→

20 p <- length(beta)
21 I <- diag(p)
22 sgm <- d^abs(row(I)-col(I))
23 mu <- rep(0, p)
24 x <- mvrnorm(n, mu, sgm)
25 x <- scale(x)
26 y <- x%*%beta + matrix(rnorm(n), nrow=n)
27 return(list(x,y))
28 }

These functions require package MASS.

1 # Simulate independent data
2 X <- matrix(rnorm(n*p),n,p)
3 X <- scale(X)
4 colnames(X) <- c(n1,n2,n3,n4)
5 Y <- X%*%beta + matrix(rnorm(n),n,1)
6
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7

8 # Simulate data where there are dependencies within each group
9 dt <- simgaussDepIng(n=300, d=0.9, beta, blocks)

10 X <- dt[[1]]
11 Y <- dt[[2]]
12 colnames(X) <- c(n1,n2,n3,n4)
13

14

15 # Simulate data where there are dependencies among groups
16 dt <- simgaussDepAmg(n=300, d=0.9, beta, blocks)
17 X <- dt[[1]]
18 Y <- dt[[2]]
19 colnames(X) <- c(n1,n2,n3,n4)

B.2 Simulation data for survival times

1 ###### parameters and blocks for the LLLH setting
2 # beta
3 beta_b1 <- c(rep(0.9, 5), rep(0, 5)) #10
4 beta_b2 <- c(rep(0.7, 5), rep(0, 5)) #10
5 beta_b3 <- c(rep(0.3, 5), rep(0, 5)) #10
6 beta_b4 <- c(rep(0.1, 5), rep(0, 995)) #1000
7 beta <- c(beta_b1, beta_b2, beta_b3, beta_b4)
8

9 # blocks
10 blocks <- list(b1=1:10, b2=11:20, b3=21:30, b4=31:1030)
11 n1 <- paste("A", 1:10, sep = "") # 10
12 n2 <- paste("B", 11:20, sep = "") # 10
13 n3 <- paste("C", 21:30, sep = "") # 10
14 n4 <- paste("D", 31:1030, sep = "") # 1000
15

16

17 ###### parameters and blocks for the LHHH setting
18 # beta
19 beta_b1 <- c(rep(0.9, 5), rep(0, 5)) #10
20 beta_b2 <- c(rep(0.7, 5), rep(0, 995)) #1000
21 beta_b3 <- c(rep(0.3, 5), rep(0, 995)) #1000
22 beta_b4 <- c(rep(0.1, 5), rep(0, 995)) #1000
23 beta <- c(beta_b1, beta_b2, beta_b3, beta_b4)
24

25 # blocks
26 blocks <- list(b1=1:10, b2=11:1010, b3=1011:2010,

b4=2011:3010)↪→

27 n1 <- paste("A", 1:10, sep = "") # 10
28 n2 <- paste("B", 11:1010, sep = "") # 1000
29 n3 <- paste("C", 1011:2010, sep = "") # 1000
30 n4 <- paste("D", 2011:3010, sep = "") # 1000
31
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32

33 ##### the number of individuals and predictors
34 n <- 300
35 p <- length(beta)

1 simcoxIndep <- function(n=300, beta){
2 # Generate data for survival times where all variables are

independent↪→

3 p <- length(beta)
4 x <- matrix(rnorm(n*p), n, p)
5 x <- scale(x)
6 lp <- x%*%beta
7 u <- runif(n)
8 a=1; b=0.01 #parameter for Weibull distribution
9 lifetime <- (- log(u) / (b * exp(lp)))^(1 / a)/100

10

11 # censoring time
12 cen_time <- rexp(n, 0.3)
13

14 # observed time
15 time <- pmin(lifetime, cen_time)
16 status <- as.numeric(lifetime <= cen_time )
17

18 dat <- data.frame(time, status, x)
19 return(dat)
20 }
21

22

23 simcoxDepIng <- function(n=300, d=0.9, beta, blocks){
24 # Generate data for survival times where there are

dependencies within each group↪→

25 x <- NULL
26 for (i in 1:length(blocks)){
27 p <- length(blocks[[i]])
28 mu <- rep(0, p)
29 I <- diag(p)
30 sgm <- d^abs(row(I)-col(I))
31 x_block <- mvrnorm(n, mu, sgm)
32 x <- cbind(x, x_block)
33 }
34 x <- scale(x)
35

36 lp <- x%*%beta
37 u <- runif(n)
38 a=1; b=0.01 # parameters for Weibull distribution
39 lifetime <- (- log(u) / (b * exp(lp)))^(1 / a)/100
40

41 # censoring time
42 cen_time <- rexp(n, 0.3)
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43

44 # observed time
45 time <- pmin(lifetime, cen_time)
46 status <- as.numeric(lifetime <= cen_time )
47

48 dat <- data.frame(time, status, x)
49 return(dat)
50 }
51

52

53 simcoxDepAmg <- function(n=300, d=0.9, beta, blocks){
54 # Generate data for survival times where there are

dependencies among groups↪→

55 p <- length(beta)
56 I <- diag(p)
57 sgm <- d^abs(row(I)-col(I))
58 mu <- rep(0, p)
59 x <- mvrnorm(n, mu, sgm)
60 x <- scale(x)
61

62 lp <- x%*%beta
63 u <- runif(n)
64 a=1; b=0.01 # parameters for weibull distribution
65 lifetime <- (- log(u) / (b * exp(lp)))^(1/a)/100
66

67 # censoring time
68 cen_time <- rexp(n, 0.3)
69

70 # observed time
71 time <- pmin(lifetime, cen_time)
72 status <- as.numeric(lifetime <= cen_time )
73

74 dat <- data.frame(time, status, x)
75 return(dat)
76 }

Function simcoxDepIng and simcoxDepAmg require package MASS.

1 # Simulate independent data
2 data <- simcoxIndep(n=n, beta=beta)
3 Y <- Surv(data$time, data$status)
4 X <- as.matrix(data[,3:dim(data)[2]])
5 colnames(X) <- c(n1,n2,n3,n4)
6

7

8 # Simulate data where there are dependencies within each group
9 data <- simcoxDepIng(n=n, beta=beta, blocks=blocks)

10 Y <- Surv(data$time, data$status)
11 X <- as.matrix(data[,3:dim(data)[2]])
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12 colnames(X) <- c(n1,n2,n3,n4)
13

14

15 # Simulate data where there are dependencies among groups
16 data <- simcoxDepAmg(n=n, beta=beta, blocks=blocks)
17 Y <- Surv(data$time, data$status)
18 X <- as.matrix(data[,3:dim(data)[2]])
19 colnames(X) <- c(n1,n2,n3,n4)
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