
UNIVERSITY OF OSLO
Department of Informatics

Free-Variable
Calculi for the
Modal Logics K45
and S5
Extended to the Logic of
Only Knowing

Master’s thesis

Martin G.
Skjæveland

18th August 2006

Abstract

This thesis presents a free-variable sequent calculi for the modal logics
K45, S5 and the logic of Only Knowing. Labels act as placeholders for
points in models, using label variables to postpone the choice of point un-
til more knowledge of a putative satisfying model is gathered, allowing a
least commitment search. The relation of contextually equivalents is used
to obtain variable-sharing derivations baring tight connections to matrix
systems and the goal directed Connection calculus. A system of indexed
formulae is employed to enforce reuse of label parameters, establishing an
upper bound for the search space. The calculus of the logic of Only Know-
ing is defined by combining the calculi established for K45 and S5, and
utilizing an auxiliary derivation to test models for maximality.

iii

Acknowledgements

First and foremost I thank my supervisor Arild Waaler for providing me
with an interesting and demanding problem, and for being helpful and
encouraging throughout my work.

Sincere thanks to Roger Antonsen, Espen H. Lian and Morten R. Strand for
hints, corrections and for being agile discussion partners.

Lastly I am grateful to all the logicians at the University of Oslo and Uni-
versity of Bergen, where I first was introduced to the field of theoretical
logic, for the stimulation learning environment made available to me.

iv

Contents

1 Introduction 1
1.1 The Modal Logics K45 and S5 1
1.2 The Logic of Only Knowing 2
1.3 The LC-calculi . 2

2 Preliminaries on K45 and S5 9
2.1 Syntax . 9
2.2 Semantics . 10

3 Groundwork on the LC-calculi 15
3.1 Syntax . 15
3.2 Semantics . 18
3.3 Calculus . 24
3.4 Soundness and Completeness 26

4 The Calculus LCg 29
4.1 Soundness . 43
4.2 Completeness . 46

5 The Calculus LCgt 49
5.1 Soundness . 59
5.2 Completeness . 61

6 The Calculus LCfv 63
6.1 Cycle elimination . 80
6.2 Soundness . 81
6.3 Termination . 83
6.4 Completeness . 85

7 Preliminaries on ONL 87
7.1 Syntax . 87
7.2 Semantics . 88

8 The Calculus LCfv
ONL 91

v

8.1 Syntax . 91
8.2 Semantics . 92
8.3 Calculus . 94
8.4 Soundness and Completeness 99

9 Future work 101

vi

Chapter 1

Introduction

1.1 The Modal Logics K45 and S5

Propositional modal logic [Blackburn et al. 2005, Hughes and Cresswell
1968, Mints 1992] is syntactically obtained by extending classical propo-
sitional logic, adding two unary modal operators 2 (necessarily) and 3

(possibly) to the language. Formulae of the form 2P and 3P are read re-
spectively “necessarily P” and “possibly P”. For this reason modal logic is
often referred to as the logic of necessity and possibility, a characterization
which does not reveal its true capabilities. A more well serving and wide
ranging description is the one found in Blackburn et al. [2005]: “Modal lan-
guages are simple yet expressive languages for talking about relational structures.”
Relational structures are found almost everywhere: time, knowledge, tran-
sitions, networks are all but a few areas which can be modelled using re-
lational structures. Together with the intuitive semantical interpretation
accredited to Kripke, they explain the big crowd of supporters modal logic
enjoy.

Modal logic forms the basis of a large family of logics. Temporal logic, epis-
temic logic and doxastic logic are just a few which arise from modal logic
by adjusting the interpretation of the two modal operators and the relation
on the worlds. Instead of reading 2P as “necessarily P”, other interpreta-
tions are “P is provable” or “the agent knows/believes that P holds” making
modal logics also interesting from a philosophical viewpoint. The expres-
siveness, together with its low complexity, explains the popularity modal
logics have obtained in the computer science community. By using simple
modal logics one is capable of expressing rather complex notions as e.g.,
deadlock, livelock, liveness, fairness, termination and invariance, features
exceedingly relevant for any computer program in a time where correctness
of computer systems is becoming more and more important. Moreover the

1

2 CHAPTER 1. INTRODUCTION

SAT-problem [Garey and Johnsen 1979] of normal modal logics is a mem-
ber of the set of PSPACE-hard problems [Ladner 1977], a highly favourable
membership compared to the undecidable nature of first-order logic.

Of the normal modal logics, this thesis only concerns the modal logics K45
and S5 and calculi for these logics. They form in turn the basis for the epis-
temic and doxastic logic of Only Knowing (ONL) [Levesque 1990], a logic
which is presented in the last chapters of this thesis together with a calcu-
lus established by extending the calculus for K45 and S5 to suit ONL. The
modal logics K45 and S5 represent some of the simpler modal logics, made
apparent by their NP-complete SAT-problem [Garey and Johnsen 1979], but
also by how simple some of concepts we will make use of in this thesis are,
in contrast to the more elaborate calculi as the ones found in [Beckert and
Goré 1997, Massacci 2000] designed to apply to the whole family of normal
modal logics.

1.2 The Logic of Only Knowing

The logic of Only Knowing (ONL) [Levesque 1990, Rosati 2001] is an au-
toepistemic logic, making agents capable of reasoning about their own
knowledge and beliefs. For this reason the logic is of special interest to the
artificial intelligence community. The logic includes two unary modalities
B (belief) and C (co-belief), where BP is read “the agent believes at least P”,
while the co-belief operator, is easiest expressed by C¬P which reads “the
agent believes at most P”. Combining these operators we obtain the oper-
ator “all I know” O-operator originating from Levesque [1990]. OP is read
“the agent believes exactly P” and can be expressed by means of B and C,
(BP ∧ C¬P) “the agent believes at least P and at most P”. Additionally, the
logic has the distinct feature that every possible world is comprehensive
by the agent, either by belief or co-belief. Technically this forces a model in
ONL to be maximal, meaning that every valuation of propositional letters
is represented in the model.

1.3 The LC-calculi

Most logical calculi are instruments testing whether a given set of formulae
is valid. The calculi presented in this thesis, the Labelled Calculus—LC for
short—inspired by the sequent calculus LK of Gentzen [1934-35], is no dif-
ferent. The method we use is a systematical search comprised by repeated
analysis of the input formulae, refining the information for the construction
of a putative countermodel, a model bearing witness of the non-validity of

1.3. THE LC-CALCULI 3

the input formulae. This search may end in the discovery that no such
model can exist, from which we can conclude that we have a proof of the
validity of the input formulae. The expositions emphasis is not on creating
a mere calculi for K45 and S5, but constructing an efficient calculi ready for
implementation in an automated theorem prover for the logics K45, S5 and
ONL. To aid such achievements three properties of LC stand out as impor-
tant in describing the mechanics separating the calculi in this thesis from
others.

The first is the use of labels.1 A label is always associated with a formula
and names a possible world where the formula is satisfied. The set of labels
consists of both ground labels and label variables. Ground labels pin down a
specific point in the set of possible worlds and are used by existentially quan-
tified formulae as a witness of their satisfiability. Label variables2 are used
by universally quantified formula bearing information that the formula is sat-
isfied in every, if any, possible world. The use of variables in proof search
dates back to Prawitz and Kanger [1983] who used “dummies” as place-
holders for arbitrary terms. By using label variables the choice of world is
postponed until more knowledge of the putative countermodel is gathered
through the analysis of the initial input formulae. The use of label vari-
ables allows us to be least committing, a feature important for the efficiency
of a calculus: We do not choose until we have to, lowering the possibil-
ity of erroneous choices by reducing both the search space and the non-
determinism destructive for automated reasoning. Specifically, the choice
is made by a unification of labels. The use of label variables and the resulting
efficiency is in stark contrast to the early pioneering destructive systems for
modal logics, the labelled system of Fitting [1983], and the ground system
by Massacci [2000], where a least committing search strategy is impossible.

Additionally, we introduce the notion of contextually equivalent formulae,
originally established in [Waaler 2001]. This notion relates formulae in a
derivation having been subject to an implicit replication by the rule appli-
cation to a different formula. Two contextually equivalent formulae are
really the same formula occurring in different places in a derivation and
are required to abide by a set of conditions making sure that two such
related formulae are syntactically equal. These conditions make deriva-
tions variable-sharing and the calculi invariant under rule application [ibid]
or, equivalently, allows for full permutation of inferences in derivations.
This quality is crucial for the transformation of LC into the matrix system of
Wallen [1990]. The matrix system is superior in the compact representation
of derivations, and is the reason why we have to keep strict control over
the implicitly copied formulae in LC. Matrix systems are in turn applicable

1Sometimes called prefixes in literature, e.g. by Massacci [2000], Rosati [2001].
2Often called free-variables.

4 CHAPTER 1. INTRODUCTION

to the connection calculus [Bibel 1987], a connection driven calculi exploit-
ing the permutability of inferences aiming in its proof search directly at the
constructs in a derivation bearing evidence of the proof of the validity of
the input formulae. Such search method is called goal-directed, the search is
to focus on actively “constructing” connections (which we will call axioms)
and not passively finding them. The connection calculus is thought to be
a worthy opponent [Holen 2005, Kreitz and Otten 1999, Otten 1997] to the
well-established position that resolution [Robinson 1965] has in the field of
automated theorem proving. The problem with resolution and modal logic
is that resolution require the input formulae on some normal form, which
does not exist for modal logics.

Finally a clever indexing system of formulae is employed inspired by
[Wallen 1990]. This system gives us full control of the introduction of labels
in derivations easing the enforcement of the conditions concerning con-
textual equivalence and allows for establishment of upper bounds on the
search space granted by an efficient reuse of label parameters. This method
can be understood as a variant of the finite diamond-rule found in [Beckert
and Goré 1997] where the gödelization of a formula is introduced as label,
resulting in equal formulae introducing equal labels, hence resulting in a
recycling of labels. The use of indices in LC makes the calculi readily avail-
able for application to the splitting calculus [Antonsen and Waaler 2006], an
application whose result would allow for a significant reduction in size of
derivation by setting the upper limit of permissible formulae replications of
branch-wise and not by considering the whole derivation as we are forced
to in LC.

Creating a free-variable calculus invariant under order of rule application
for the modal logic K45 carries with it a problem which does not arise in
first-order logic, but is obvious to the logicians working with free-logic
[Bencivenga 1986], a logic were an empty domain is allowable. The prob-
lem is that a universally quantified formula in K45 may quantify over an
empty set of points. This means that deducting from “P is satisfied in all
points” to “P is satisfied in the point U, where U is a dummy for an arbi-
trary point” is not in general sound. Our solution is to make the function
assigning points to label variables (dummies) defined also when the set
of points is empty, allowing us to discover those cases where there are no
points for U.

Chapter guide

Chapter 2 establishes the basics of syntax and semantics for the modal logics
K45 and S5. Note however that of the normal modal logic we only care for

1.3. THE LC-CALCULI 5

K45 and S5 and make use of a simplified model suited for these logics.

Chapter 3 provides groundwork for all the calculi in the thesis establishing
the syntax and semantics for the language of labelled formulae employed
in all LC-calculi, defining the instruments and mechanics of LC and provid-
ing the important notions of soundness and completeness.

Chapter 4 is the exposition if the simplest calculus in this thesis, the LCg-
calculus. This is a straightforward ground calculus, with one exception,
it implements the contextual equivalence relation, the relation which all LC-
calculi abide by. Soundness and completeness are established using stan-
dard methods.

Chapter 5 provides the LCgt-calculus, a slightly more complicated calculus
compared to LCg. The calculus LCgt introduces the use of indexed formulae
which are used to control the introduction of label parameters by existen-
tially quantified formula. The calculus is defined as an intermediate step
towards the realization of the free-variable calculus LCgt. LCgt represents
the sound and complete ground version of the LCfv-calculus.

Chapter 6 establishes the free-variable calculus LCfv for the modal logics
K45 and S5. Throughout this chapter a comparison between the LCfv- and
LCgt-calculi is made, making the strengths of the free-variable calculus es-
pecially apparent. This comparison has it’s finale in the syntactical proof
sketch of soundness for LCfv, showing that every LCfv-proof is transferable
to an LCgt-proof. Semantical proofs of soundness and completeness are also
given.

Chapter 7 provides the basics for the logic of Only Knowing.

Chapter 8 represents the work in progress of this thesis. the chapter defines
LCfv

ONL, the free-variable calculus for the logic of Only Knowing. It is es-
tablished by arguing that a compound K45/S5-calculus, with an additional
test of the maximality condition of models, are sufficient means for pro-
viding an ONL-calculus. Luckily, K45/S5-calculi are all we have available
in this thesis, so merging the correct mechanics for a free-variable ONL-
calculus is easily established by relying on the results in earlier chapters.
However, the time limit has restricted me to only give a sketch of the sys-
tem making the exposition suffer from a lack of examples and intuitions
compared to the chapters on the calculi for K45 and S5. The test for max-
imality of models is established through a conjecture, by which the proof
sketches of both soundness and completeness of LCfv

ONL rely.

6 CHAPTER 1. INTRODUCTION

Reader’s guide

The thesis is written such that examples and remarks may be dropped
when reading. This is also the reason why many remarks and examples
contain a lot of text. The reader comfortable with skipping examples and
remarks may do so without missing vital notions.

The reader familiar with modal logic, the logic of Only Knowing and the
automated theorem proving notions introduced in the introduction, should
be able to grasp the chapters 6 and 8 directly. However important defini-
tions are

• Definition 2.7 on page 10,

• Definition 3.9 on page 18,

• Definition 3.10 on page 19 and

• Definition 3.11 on page 19.

These definitions concern the conceptions of models and the interpretation
of labels. I recommend going through these definitions, referring to suc-
ceeding examples and remarks if intuitions are desirable, and then reading
through the examples 4.18 on page 41, 5.15 on page 57 and 6.24 on page 79
before embarking on the chapters 6 and 8. These three examples are deriva-
tions over the same input formula in respectively LCg, LCgt and LCfv. These
should provide the reader with insights of the calculi. They also display
how the systems handle the case where a universally quantified formula
quantifies over a possible empty domain.

The following layout of different textual environments are used:

Definition 1.1
This is a definition. �

Theorem 1.2
This is a theorem. �

Lemma 1.3 This is a lemma. �

Corollary 1.4 This is a corollary. �

Proof. This is a proof containing a claim and the proof of the claim.

Claim. The claim. ◦

1.3. THE LC-CALCULI 7

Proof. Proof of claim. 2

This concludes the proof of Corollary 1.4. 2

Example 1.5 This is an example. ◦

Remark. This is a remark. ◦

Scientific acknowledgements

The LCfv
K45/S5-calculi is derived mainly from the systems discussed in [Waaler

2001]. This thesis provides however a clear and instructive exposition on
the construction of calculi, by working through the process of a simple
ground calculus and iteratively improving and refining to obtain an effi-
cient free-variable calculus. The exposition contains several examples pro-
viding the reader with valuable insights on how the different calculi relate,
and how the different features of the calculi are obtained.

More specifically the contributions made by this thesis are:

• We establish termination bounds for LCfv by employing greater reuse
of label parameters than in the systems of [Waaler 2001].

• The semantical proof given of soundness of LCfv is not found else-
where in literature.

• The semantical proof relies partly on the “syntactical point” � added
to the codomain of the label variable assignment function ρ. This
symbol makes an otherwise partial function total, and allows univer-
sally quantifies formulae to quantify over an empty domain. I later
discovered that Beckert and Goré [1997] uses a similar approach.

• The main idea providing the LCfv
ONL-calculus, namely explicitly test-

ing models for maximality, is found in [Rosati 2001] where a ground
system for ONL is given. I provide a solution to interpret the modal-
ities B and C as alternately K45- and S5-modalities, by requiring ax-
ioms to be closed by two different label substitutions. Furthermore,
an attempt to apply the AUX-tableau by Rosati [2001] to the LCfv-
calculi is given. This thesis provides a sketch of the first free-variable
calculus of the logic of Only Knowing to the author’s knowledge.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries on the Modal
Logics K45 and S5

2.1 Syntax

Syntax is a set of symbols, the language, and a set of rules that govern how
symbols are combined to form new symbolic structures. The formula is the
fundamental syntactical structure.

Formulae of the modal logics K45 and S5 are defined in the usual way from
a countable infinite set of propositional letters P, the classical connectives
¬ (not), → (implies), ∨ (or) and ∧ (and), the modal operators 2 (necessar-
ily) and 3 (possibly), and the punctuation symbols ‘(’ and ‘)’. We call this
language the core language and the formulae in this language core formulae.

Definition 2.1 (Core formula)
The set of formulae in the core language is the smallest set Σ such that

1. P ⊂ Σ, where P is the set of propositional letters,

2. if X ∈ Σ, then ¬X ∈ Σ, 2X ∈ Σ and 3X ∈ Σ, and

3. if X, Y ∈ Σ, then (X → Y) ∈ Σ, (X ∨Y) ∈ Σ and (X ∧Y) ∈ Σ.

If F ∈ P, then F is called atomic. F is called non-atomic if F ∈ Σ \ P. �

Example 2.2 (Core formula) The following are examples of core formulae:

• (P ∧ (Q ∨ R))

• R

• 2Q

9

10 CHAPTER 2. PRELIMINARIES ON K45 AND S5

• 3(P → 2P) ◦

Definition 2.3 (Immediate subformulae)
Let F be a core formula. If F is of the form ⊕X, where X is a core formula
and⊕ ∈ {¬, 2, 3}, then X is the immediate subformula of F. If F is of the form
(X ⊕ Y), where X, Y are core formulae and ⊕ ∈ {∧,∨,→}, then X and Y
are the immediate subformulae of F. Atomic formulae have no immediate
subformulae. �

Example 2.4 (Immediate subformulae) The immediate subformulae of
(P ∧ (Q ∨ R)) are P and (Q ∨ R). The immediate subformula of 2Q is Q
and the immediate subformula of 3(P → 2P) is (P → 2P). ◦

Definition 2.5 (Subformula relations)
Let <1 be a binary relation on formulae defined such that X <1 Y if and
only if Y is an immediate subformula of X. Let < be the transitive closure of
<1 and call it the proper subformulae relation. Let ≤, named the subformulae
relation, denote the reflexive and transitive closure of <1. �

The subformulae of a formula X is the set of formulae Ψ such that Y ∈ Ψ if
and only if X ≤ Y. The proper subformulae of X is Ψ \ {X}.

Example 2.6 (Subformulae) The subformulae of 2Q are {2Q, Q}whereas the
proper subformulae of 2Q is the set {Q}. The subformulae of 3(P → 2P)
is the set {3(P → 2P), (P → 2P), P, 2P}. The proper subformulae of
3(P → 2P) is the set {(P → 2P), P, 2P}. ◦

Notice that the definition of different types of subformulae and subformula
relations are defined for the general notion of a formula. We will later use
these definitions on other kinds of formulae.

2.2 Semantics

Semantics is the mechanism used to give meaning to syntax. How and
when can we say that a formula true and when is it false? A model is the
context in which formulae obtain meaning.

Definition 2.7 (Model)
A K45-model for the core language is a triplet M = (W, W+, V) where
W is a non-empty set of elements we call points or worlds, W+ ⊆ W and
V : P → P(W).

2.2. SEMANTICS 11

An S5-model for the core language is a K45-modelM = (W, W+, V), where
W+ = W. �

The set W is called the domain of a model and the function V is called a
valuation. Intuitively V(P) is the set of points in the domain of a model
where the propositional letter P is satisfied. This function is extended to
arbitrary formulae by the satisfaction relation.

Definition 2.8 (Satisfaction)
Each modelM = (W, W+, V) defines a satisfaction relation � (2 denotes its
complement) as the weakest relation closed under the following clauses:

M, w � P iff w ∈ V(P), P ∈ P,
M, w � (X ∧Y) iff M, w � X and M, w � Y,
M, w � (X ∨Y) iff M, w � X or M, w � Y,
M, w � ¬X iff M, w 2 X,
M, w � (X → Y) iff M, w 2 X or M, w � Y,
M, w � 2X iff M, w′ � X for all w′ ∈ W+,
M, w � 3X iff M, w′ � X for at least one w′ ∈ W+,

where w ∈ W. �

Intuitively—and to establish the correct vocabulary—M, w � F asserts that
the core formula F is satisfied by the model M, in the point w, which is a
member of the domain of M. We say that M satisfies F in w, by which it
follows that F is satisfiable in w.

Example 2.9 (Satisfaction) Let {P, Q, R} be a set of propositional letters,M =
(W, W+, V) be a K45-model where W = {w1, w2, w3, w4}, W+ = {w2, w3, w4},
and V be such that V(P) = {w2, w3}, V(Q) = {w1, w3, w4} and V(R) =
{w1, w2}. See Figure 2.1 for an illustration of this model. We will now
test whether the following holds: (1) M, w2 � R, (2) M, w3 � 2Q, and (3)
M, w1 � 3(P → 2P).

(1) M, w2 � R holds since w2 ∈ V(R).

(2) M, w3 � 2Q does not hold, since M, w3 � 2Q iff M, y � Q for all
y ∈ W+, but M, w2 2 Q.

(3) M, w1 � 3(P → 2P) holds, since
M, w1 � 3(P → 2P)
iff M, x � (P → 2P) for one x ∈ W+

iff M, x 2 P or M, x � 2P, for one x ∈ W+

iff M, x 2 P for one x ∈ W+, or; if W+ 6= ∅, M, y � P for all y ∈ W+

The last assertion holds given thatM, w2 2 P. The reader should also
observe that 3(P → 2P) is satisfiable in every point of the model as

12 CHAPTER 2. PRELIMINARIES ON K45 AND S5

asdf

W+

W

w1

w2 w3

w4

Q, R

P, R P, Q

Q

1

Figure 2.1: Graphical display of the K45-model (W, W+, V) used in Ex-
ample 2.9. W = {w1, w2, w3, w4}, W+ = {w2, w3, w4} and V is such that
V(P) = {w2, w3}, V(Q) = {w1, w3, w4} and V(R) = {w1, w2}.

M, x 2 P for one x ∈ W+ holds no matter what point we test for
satisfaction in, and that this is sufficient to satisfy the formula. ◦

Remark (to Example 2.9). In above example the statement

M, x 2 P or M, x � 2P, for one x ∈ W+

occurs in the dissection of the formula marked (3). This statement may
seem as a claim which is always true: "Either there is a point in W+ which
does not satisfy P, or all points in W+ satisfy P." But this translation misses
one important subtlety, "all points in W+ satisfy P" must be asserted under
the assumption that W+ is non-empty. If we let W+ = ∅ then the formula
3(P → 2P) is trivially not satisfiable in any model as there are no points
in W+ to satisfy (P → 2P). The case W+ = ∅ is a special case concerning
K45-models and requires special attention throughout the thesis. ◦

The structure of a model by Definition 2.7 may be unfamiliar even to the
reader familiar with modal logic. The reason for this relatively simple
model is that we only care for the logics K45 and S5, in contrast to the more
common definition of a model in model logic which is designed to apply
to a wider range of modal logics. To give insights to how our definition
relates to the common definition of a model, a discussion follows.

Remark. The common way of defining a model for modal logics is by re-
quiring that a model is M = (W, R, V), where W and V are as in Defi-
nition 2.7; W is a non-empty set and V is a valuation, and R is a binary

2.2. SEMANTICS 13

relation on W [Blackburn et al. 2005]. The relation R is often called the ac-
cessibility relation and plays a major role in the definition of formulae of
the form 3F and 2F. A formula of the form 2F is satisfied by a model in
a point x if every point accessible from x satisfies F, and 3F is satisfiable
in x if there is at least one point accessible from x satisfying F. A point y
is accessible from x if (x, y) ∈ R. By varying R we obtain different modal
logics, e.g., if (x, x) ∈ R for all x ∈ W, the relation R is reflexive, meaning
that every point is related to itself. This modal logic is referred to as the
logic T. In K45, R is transitive: {(x, y), (y, z)} ⊆ R implies (x, z) ∈ R for
all x, y, z ∈ W, and Euclidean: {(x, y), (x, z)} ⊆ R implies (y, z) ∈ R for all
x, y, z. In S5 R is reflexive, transitive and Euclidean, which is the same as
saying that R is an equivalence relation.

In our definition of model and satisfaction we see that by explicitly giving
the set of accessible points we let the set W+ play the role the relation R has
in the above model. In contrast to the accessibility relation where the set
of accessible points from two point may differ, the set of accessible points
from any point in our model is always the set W+. The difference between a
K45-model and an S5-model by our definition is that in S5 W = W+, while
W+ ⊆ W in K45. What does this mean? We should be able to show that the
points in W are related in the same way as they would have been if we had
defined our model in the more the common way. Let us adapt the notion
of accessibility on the relation the satisfaction relation defines in the cases
of formulae of the form 2F or 3F, i.e., all points in W+ is accessible from
every point in W. Let us first look at S5. As W = W+, every point in W
is related to every point in W. This is amounts to an equivalence relation.
In K45, W+ ⊆ W implies that the points in W \W+ are not related by the
accessibility relation, meaning that we in this case loose reflexivity, but that
the relation is still transitive and euclidean.

Consult Figure 2.2. The arrows between points in the models in the figure
display the relation we for reasons of instruction temporarily have named
the accessibility relation. This relation is not a part of the model but is
encoded by the set W+ and the satisfaction relation on formulae of the form
2F or 3F. In both models every point in W is related to all points in W+

and no other points. This means that a point in W+ is related to every point
in W+, including itself. A point in W \W+ is also related to all points in
W+, but not to any point in W \W+. ◦

14 CHAPTER 2. PRELIMINARIES ON K45 AND S5

asdf

W
+

W

w1

w2 w3

w4

1

(a) K45-model. W = {w1, w2, w3, w4} and W+ = {w2, w3, w4}.

asdf

W
+

W

w1

w2 w3

w4

1

(b) S5-model. W = W+ = {w1, w2, w3, w4}.

Figure 2.2: Both figures display two models over the same domain W =
{w1, w2, w3, w4}. (a) illustrates a K45-model as W ⊂ W+ and, (b) shows an
S5-model. The outermost rectangle illustrates the set W. W+ is denoted
by the rectangle contained in W. The lowercase letters characterize the el-
ements in the sets and the arrows represent the accessibility relation dis-
cussed in the remark on page 13. Although present in every model, these
figures do not consider the function V.

Chapter 3

Groundwork on the LC-calculi

The calculi established in this thesis will be called LC-calculi. Every calculus
will be denoted LCX

Y where X is used to identify a distinct member of the
LC-family and Y characterizes the logic it complies to. The LC-calculi are
mainly inspired by the sequent calculus LK (Logische Kalküle) pioneered
by Gentzen Gentzen [1934-35] from which also the name LC is inspired. LC
is an abbreviation for the Labelled Calculus. A label is coupled with a formula
and is used to identify points in a model satisfying the companionating
formula. From this viewpoint the LC-calculi can be seen as a mapping of
modal logic into a first-order logic of only unary predicates. This relation to
first-order logic lets us adapt already established techniques and mechanics
of automated reasoning in first-order logic to the field of modal logics. The
idea of labels is by no means new, although perhaps occurring under a
different name, see e.g. [Beckert and Goré 1997, Gabbay 1996, Massacci
2000].

The LC-calculi will in this thesis be established for three logics: K45, S5
and the logic of Only Knowing (ONL) [Levesque 1990, Rosati 2001]. The
systems for these logics will be very similar, so L will be used as a fusion
symbol for ’K45’, ’S5’ and ’ONL’. In the same spirit LCL is used to prefix
general notions meant for application to all LCL-calculi.

3.1 Syntax

The labelled language extends the core language by including the symbols
‘ε’, a countable infinite set of variables denoted Var, a countable infinite set
of parameters denoted Par and the punctuation symbols ‘[’ and ‘]’.

15

16 CHAPTER 3. GROUNDWORK ON THE LC-CALCULI

Definition 3.1 (Label)
If s ∈ Var ∪ Par ∪ {ε}, then s is called a label. If s ∈ Par ∪ {ε}, then the label
s is called ground. �

We call Var the set of label variables, Par the set of label parameters and ε the
empty label. Uppercase letters U, V, W, . . . are used to denote label variables
and label parameters are denoted by lowercase letters a, b, c, The letters
s and t are used to denote arbitrary labels.

Definition 3.2 (Signed formula)
If F is a formula, then F⊥ and F> are signed formulae. > (top) and ⊥ (bot-
tom) are called polarities. The polarity of F⊥ is ⊥ and the polarity of F> is >.
A formula with no polarity is called unsigned. �

Definition 3.3 (Labelled formula)
A labelled formula is a signed core formula with a label and where every
subformulae of the core formula is assigned a distinct formula number. If
F is a core formula, s is a label and i is a formula number, then F

i
[s]> and

F
i
[s]⊥ are labelled formulae, assuming also the proper subformulae of F are

given formula numbers. A labelled formula is called atomic (non-atomic)
if its underlying core formula is atomic (non-atomic). �

Example 3.4 (Labelled formula) The following are examples of labelled for-
mulae:

• 2
1

Q
2
[U]>

• 3
1
(P

3
→
5

2
2

P
7
)[c]>

• (P
4
→
2

(Q
3
∨
1

(P
7
∧
2

R
10

)))[s]> ◦

Notation. We often do not display the formula numbers of labelled formu-
lae. The formula numbers exist because of two reasons, preparation for
the more complicated calculi in this thesis and because of distinctness and
identification of formulae. We want two labelled formulae with equal core
formulae, labelling and polarity to coexist in a set of formulae as two dif-
ferent elements and we want to be able to uniquely identify them. This
is done by assigning different formula numbers to two otherwise syntacti-
cally equal formulae. ◦

Every formula in the LC-calculi is a formula with a label and a polarity.
(Such a formula is not necessarily a labelled formula. Later we will extend
the notion of labelled formulae to indexed formulae.) This means that if not

3.1. SYNTAX 17

explicitly stated otherwise a formula occurring without a label or a polarity
is in fact labelled and does in fact have a polarity, but what these values are
not important in the current context, so we may say that P is a labelled
formula even though no label or polarity is indicated.

α α1 α2

(X ∧Y)[s]> X[s]> Y[s]>
(X ∨Y)[s]⊥ X[s]⊥ Y[s]⊥
(X → Y)[s]⊥ X[s]> Y[s]⊥
¬X[s]> X[s]⊥
¬X[s]⊥ X[s]>

β β1 β2

(X ∨Y)[s]> X[s]> Y[s]>
(X ∧Y)[s]⊥ X[s]⊥ Y[s]⊥
(X → Y)[s]> X[s]⊥ Y[s]>

ν ν0(t)
2X[s]> X[t]>
3X[s]⊥ X[t]⊥

π π0(t)
3X[s]> X[t]>
2X[s]⊥ X[t]⊥

Figure 3.1: Labelled formula types and their components. X and Y are
arbitrary core formulae with formula numbers.

Definition 3.5 (Type)
Every non-atomic formula is of either type α, β, ν or π, depending on its po-
larity and outermost connective/modal operator, as defined in Figure 3.1. �

Example 3.6 (Type) The following are examples of the type of different for-
mulae. The main connective/modal operator and polarity are underlined
to indicate that these features determine the type of the formulae.

• 2Q[U]> is a ν-formula,

• 3(P → 2P)[c]> is a π-formula, and

• (P→(Q ∨ (P ∧ R)))[s]> is of type β. ◦

Remark. Types originate from Smullyan who established the types α, β, γ, δ
for first-order logic [Smullyan 1968]. They were later extended to modal
logic by Fitting [1983], adding the types π and ν. ◦

For each type we define either one or two components. If X is an α-formula
its components are α1 and α2, except the case where X is of the form ¬Y[s]⊥
or ¬Y[s]>, where Y is some core formula. In this case the α-formula X has
α1 as its single component. The components of a β-formula is β1 and β2,
while the component of a ν-formula and a π-formula is respectively ν0(t)
and π0(t), where t is some label. The components of the different types of
formulae are defined in Figure 3.1.

18 CHAPTER 3. GROUNDWORK ON THE LC-CALCULI

Example 3.7 (Components) We use the same formulae as in Example 3.6
above. The component of 3(P → 2P)[c]> is π0 = (P → 2P)[t]>, and Q[t]>
is the component of 2Q[U]>. The components of (P → (Q ∨ (P ∧ R)))[s]>
is β1 = P[s]⊥ and β2 = (Q ∨ (P ∧ R))[s]>. ◦

Definition 3.8 (Immediate subformulae)
Let F be a labelled formula. The immediate subformulae of F are the com-
ponents of F as defined in Figure 3.1. �

By using Definition 3.8, the subformula relations defined in Definition 2.5
are easily lifted to labelled formulae, defining the notions of subformulae
and proper subformulae also for labelled formulae.

Throughout this thesis we will use the different types as shorthand notation
for an arbitrary labelled formulae of the given type. If α is said to be a
formula, then α denotes an arbitrary formula of type α.

3.2 Semantics

A label is a placeholder for a possible point or points in the set of worlds
where the formula connected to the label is satisfied. This causes the need
for some kind of translation of these labels into the set of worlds. The solu-
tion is to define a function, a label interpretation, mapping labels into the set
of points W. This function is composed of two separate functions ρ and φ,
where ρ, called a label variable assignment, interprets label variables, while
φ, called a ground label interpretation, assigns ground labels to points in W.

Definition 3.9 (Label interpretation)
Let M = (W, W+, V) be a model for the core language. A label variable
assignment ρ is a total function ρ : Var → W+ ∪ {�}, such that ρ(U) =
� only if W+ = ∅. A ground label interpretation φ is defined as a total
function φ : Par ∪ {ε} → W such that φ(a) ∈ W+ if a ∈ Par. φρ is then a
label interpretation φρ = φ ∪ ρ, i.e., φρ(a) = φ(a) for every a ∈ Par ∪ {ε} and
φρ(U) = ρ(U) for every U ∈ Var. �

Remark. The definition of a label interpretation is compact and not very
transparent, so we make some instructive observations. Notice that every
label parameter is mapped to a point in W+, making ε is the only label
which can be mapped to a point in W \W+, a set which can be non-empty
only if the model in question is a K45-model. In S5 ε is necessarily mapped
to W+ by φ, since W = W+ in every S5-model.

The reason for adding the symbol � to the codomain of the variable as-
signment ρ is not obvious. The role of � in the definition to ensure that ρ is

3.2. SEMANTICS 19

always defined for all legal input. The need for this is because of the special
case of W+ being empty in a model M = (W, W+, V). If the label variable
assignment was defined as ρ : Var → W+ and W+ = ∅, then ρ(U) would
in this case be undefined for any label variable U. The incorporation of �
is a way of making an otherwise partial function total, and hence a way of
being able to address the case of W+ being empty. ◦

Definition 3.10 (L-Model)
An L-model for the labelled language is a pair (M, φ), where
M = (W, W+, V) is an L-model for the core language and φ is a ground
label interpretation defined relative to M. �

Truth and satisfaction of labelled formulae are defined relative to a label vari-
able assignment. This allows us to pass judgement on all labelled formulae,
including formula labelled with label variables.

Definition 3.11 (Truth)
Let � be a satisfaction relation defined on labelled formulae relative to an L-
model for the labelled language. The symbol 2 denotes its complement. Let
(M, φ) be an L-model for the labelled language and ρ some label variable
assignment.

Let F[s] be an arbitrary unsigned labelled formula. F
i
[s]> is satisfied in (M, φ)

under ρ, written (M, φ) �ρ F
i
[s]>, if and only if M, φρ(s) � F or φρ(s) = �.

F
i
[s]⊥ is satisfied in (M, φ) under ρ, written (M, φ) �ρ F

i
[s]⊥, if and only

if M, φρ(s) 2 F or φρ(s) = �. We say that a formula is satisfiable if it is
satisfied in some L-model under some label variable assignment.

A set of formulae Γ is satisfied in (M, φ) under ρ, denoted (M, φ) �ρ Γ,
if every formula in the set is satisfied in (M, φ) under ρ. We say that Γ
is satisfiable if there is an L-model and a label variable assignment that
satisfies it.

Let F now be an arbitrary labelled formula. We write (M, φ) � F and say
that F is true in (M, φ), provided (M, φ) �ρ F for every ρ.

A set of formulae Γ is true in (M, φ), denoted (M, φ) � Γ, if every formula
in the set is true in (M, φ). �

Remark. Note that we overload the symbol �. When we say that (M, φ) �
F
i
[s]> (1) if and only if M, φ(s) � F (2), the relation in (1) is a relation on

labelled formulae and L-models, and is defined in Definition 3.11, while (2)
contains the relation defined in Definition 2.8.

20 CHAPTER 3. GROUNDWORK ON THE LC-CALCULI

Observe also that formula numbers of labelled formulae are not taken un-
der consideration when discussing truth:

(M, φ) � F
i
[s]> ⇔ M, φ(s) � F ⇔ (M, φ) � F

j
[s]>

for all i, j. ◦

Example 3.12 (L-Model) Let (M, φ) be an L-model let M = (W, W+, V) be
the model in Example 2.9. Now we test if (M, φ) satisfies 3(P → 2P)[c]>.
Even though we have not specified φ, we can conclude that the formula is
satisfied in (M, φ). Since we know from Example 2.9 that M, x � 3(P →
2P) for any x ∈ W, then no matter what point φ(c) denotes the labelled
formula is satisfied in the model (M, φ).

Next test if (P ∧ ¬P)[U]> is satisfiable. Immediately the formula looks
as though it is not satisfiable, P ∧ ¬P is perhaps the simplest contradic-
tion available in classical propositional logic, but let us not jump to any
conclusions yet. Let (M, φ) be some L-model, M = (W, W+, V) and ρ
some label variable assignment. First assume ρ(U) = w ∈ W+, then
(M, φ) �ρ (P ∧ ¬P)[U]> does not hold, since M, w � P ∧ ¬P obviously
cannot be true as both M, w � P and M, w � ¬P cannot hold. But now
assume W+ = ∅—again the special case of K45—then ρ(U) = � by Defi-
nition 3.9, and by Definition 3.11 the formula is satisfiable. ◦

In some calculi we restrict the set of labels in a language to only Par and
ε, i.e., the set of ground labels, thus interpretation of label variables is not
necessary. Observe that in such restricted languages a labelled formula is
either ’true’ in an L-model or ’not satisfied’.

The reason for classifying formulae into types and identifying their com-
ponents is because different formula occurrences of the same type adhere
to the same behaviour—as Lemma 3.15 will show. Before we commence on
this lemma and its proof we need to establish the notion of an extension of
a function and a result concerning the extension of ground label interpreta-
tions in relation to the same L-model in the core language, as we need this
result in Lemma 3.15.

Definition 3.13 (Extension)
A function f ′ is an extension of the function f if f ′(x) = f (x) for every x
in the domain of f . f ′ is an extension by c if only possibly c is added to the
domain of f . �

Notice that by Definition 3.13 every function is its own extension.

3.2. SEMANTICS 21

Lemma 3.14 If φ′ is an extension of a ground label interpretation φ, then
(M, φ) �ρ Γ only if (M, φ′) �ρ Γ, where (M, φ) is an L-model, ρ a label
variable assignment and Γ a set of formulae. �

Proof. Assume (M, φ) �ρ Γ, then (M, φ) �ρ F[s] for all F[s] ∈ Γ and by
definition of satisfaction M, φρ(s) � F for all F[s]> ∈ Γ and M, φρ(s) 2 F
for all F[s]⊥ ∈ Γ. Since φ′ is an extension of φ, M, φ′ρ(s) � F for all F[s]> ∈ Γ
and M, φ′ρ(s) 2 F for all F[s]⊥ ∈ Γ by which it follows that (M, φ′) �ρ F[s]
for all F[s] ∈ Γ and (M, φ′) �ρ Γ. 2

As we have seen in the definition of a label interpretation and the observa-
tions given following it, the symbol ε plays different roles in the two logics
K45 and S5. It is therefore convenient to define a set of labels relative to the
logic L. Let ParL denote a set of ground labels such that ParK45 = Par and
ParS5 = Par ∪ {ε}.

Lemma 3.15 (Satisfaction of components) Let Γ be a set of labelled formu-
lae, (M, φ) an L-model where M = (W, W+, V), and ρ some variable as-
signment. For all α-, β-, ν- and π-formulae, and their respective compo-
nents:

1. if α ∈ Γ, then Γ ∪ {α1, α2} is satisfiable in (M, φ) under ρ, iff Γ is
satisfiable in (M, φ) under ρ,

2. if β ∈ Γ, then Γ ∪ {β1} is satisfiable in (M, φ) under ρ or Γ ∪ {β2} is
satisfiable in (M, φ) under ρ, iff Γ is satisfiable in (M, φ) under ρ,

3.1. if ν ∈ Γ, W+ 6= ∅ and Γ is satisfiable in (M, φ) under ρ, then Γ ∪
{ν0(s)} is satisfiable in (M, φ) under ρ for every label s ∈ ParL,

3.2. if ν ∈ Γ and Γ is satisfiable in (M, φ) under ρ, then Γ ∪ {ν0(U)} is
satisfiable in (M, φ) under ρ for every U ∈ Var, and

4. if π ∈ Γ, then Γ ∪ {π0(c)}, where c is an arbitrary label parameter not
occurring in Γ, is satisfiable in (M, φ′) under ρ for some extension φ′

by c of φ, iff Γ is satisfiable in (M, φ) under ρ. �

Proof. There is one case for each type and one subcase for each of the differ-
ent forms of formulae for the respective types. Only one subcase for each
type is proven here, the remaining cases are easily obtained by following
the same pattern as the provided subcase, and are left for the reader to
establish.

Let the L-model (M, φ), where M = (W, W+, V), satisfy Γ under the label
variable assignment ρ.

1. Assume that α ∈ Γ and that α is of the form (X ∧Y)[s]>.

22 CHAPTER 3. GROUNDWORK ON THE LC-CALCULI

(M, φ) �ρ α ⇔ (M, φ) �ρ (X ∧Y)[s]>
⇔ M, φρ(s) � (X ∧Y) (Def. 3.11)
⇔ M, φρ(s) � X and M, φρ(s) � Y, (Def. 2.8)
⇔ (M, φ) �ρ X[s]> and (M, φ) �ρ Y[s]> (Def. 3.11)
⇔ (M, φ) �ρ α1 and (M, φ) �ρ α2

Since (M, φ) �ρ α if and only if (M, φ) �ρ α1 and (M, φ) �ρ α2,
the set Γ ∪ {α1, α2} is satisfiable in (M, φ) under ρ if and only if Γ is
satisfiable in (M, φ) under ρ.

2. Assume that β ∈ Γ and that β is of the form (X ∨Y)[s]>.

(M, φ) �ρ β ⇔ (M, φ) �ρ (X ∨Y)[s]>
⇔ M, φρ(s) � (X ∨Y) (Def. 3.11)
⇔ M, φρ(s) � X or M, φρ(s) � Y (Def. 2.8)
⇔ (M, φ) �ρ X[s]> or (M, φ) �ρ Y[s]> (Def. 3.11)
⇔ (M, φ) �ρ β1 or (M, φ) �ρ β2

Since (M, φ) �ρ β if and only if (M, φ) �ρ β1 or (M, φ) �ρ β2, then
Γ ∪ {β1} or Γ ∪ {β2} must be satisfiable in (M, φ) under ρ if and only
if Γ is satisfiable in (M, φ) under ρ.

3. Assume that ν ∈ Γ and that ν is of the form 2X[t]>

First we let the set W+ be non-empty, and prove the claims 3.1 and 3.2
under this assumption. Secondly, to complete the proof, we assume
that W+ = ∅ and prove the claim 3.2 under this assumption.

First, let W+ 6= ∅.

(M, φ) �ρ ν ⇔ (M, φ) �ρ 2X[t]>
⇔ M, φρ(t) � 2X (Def. 3.11)
⇒ M, x � X for all x ∈ W+ (Def. 2.8)

Since φ′ρ′(s) ∈ W+ for all s ∈ Var ∪ ParL and every label interpretation
φ′ρ′ ,M, φρ(s) � X must hold for arbitrary s ∈ Var∪ParL. By definition
of truth, (M, φ) �ρ X[s]> for all s ∈ ParL, and (M, φ) �ρ ν0(s) for all
s ∈ ParL.

Given that (M, φ) �ρ ν ⇒ (M, φ) �ρ ν0(s) for arbitrary label variable
s ∈ Var ∪ ParL when W+ 6= ∅, and (M, φ) �ρ Γ by assumption, then
Γ ∪ {ν0(s)} is satisfiable in the L-model (M, φ) under ρ for arbitrary
s ∈ Var ∪ ParL, given a non-empty W+.

Remark. The claim M, φρ(s) � X does not hold when W+ is empty
for any label s; there are no points in W+ to satisfy the formula X,
and moreover in the case of s ∈ Var in which ρ(s) = �, � is no point
in W and hence M,� is deliberately not defined for the satisfaction

3.2. SEMANTICS 23

relation on core formula. On the other hand M, φρ(s) � 2X holds,
since M, x � X for all x ∈ W+ holds trivially if W+ = ∅. ◦

Now assume that W+ = ∅ and direct attention to case 3.2. This is
a special case given custom care by the definition of the satisfaction
relation (Definition 3.11). ν0(U) is satisfied in (M, φ) under ρ for ar-
bitrary U by the fact that φρ(U) = � when W+ = ∅. Thus, by Defini-
tion 3.11, ν0(U) is satisfied in (M, φ) under ρ for any U ∈ Var.

4. Assume that π ∈ Γ and that π is of the form 3X[s]>.

(M, φ) �ρ π ⇔ (M, φ) �ρ 3X[s]>
⇔ M, φρ(s) � 3X (Def. 3.11)
⇔ M, y � X for some y ∈ W+ (Def. 2.8)

Now we extend the language with a fresh label parameter c, i.e., we
add c which does not occur in Γ to the language, and construct a new
L-model (M, φ′) by requiring that φ′(c) = y and φ′(s) = φ(s) if s 6= c.
The point y is the witness to the satisfaction of the π-formula. By as-
sumption, such a witness must exist since the π-formula is satisfied.
Now by construction of φ′ in the newly created L-model (M, φ′), the
π0-formula is also satisfied, since φ′(c) captures the existence of the
point y ∈ W+. Given that (M, φ) agrees with (M, φ′) on all the for-
mulae in Γ, (M, φ′) satisfies the set Γ ∪ {X[c]>}. We conclude that
Γ ∪ {π0(c)} is satisfied in (M, φ′) under ρ for a label variable c fresh
to Γ, if and only if Γ is satisfiable in (M, φ) under ρ. 2

We say that α-formulae act conjunctively and β-formulae behave disjunc-
tively, as Lemma 3.15 shows. ν-formulae act universally and π-formulae are
said to behave existentially. For the reader familiar with first-order logic,
and not modal logic, it can be fruitful to think of ν-formulae as γ-formulae
and π-formulae as δ-formulae [Smullyan 1968].

The elaborate claim for the case of ν-formulae in the previous Lemma dis-
plays one of greatest difficulties the LC-calculi have to overcome. (M, φ) �
ν holds trivially if W+ is empty, while (M, φ) � ν(s) for any ground label
s will not hold exactly because there are no points φ(s) in W+ to satisfy
the formula. In free variable calculus for first-order logic, see e.g., [Fit-
ting 1996], this problem does not arise since the definition of a model in
first-order logic requires a non-empty domain. But as in many free variable
calculi for first-order logic [Fitting 1996] and modal logic [Beckert and Goré
1997] we want to be able to make use of variables in universally quantified
formulae as the ν-formulae are. This explains the existence of the symbol�
which only comes into play when W+ is empty: We want ν to be satisfiable
if and only if ν0(U) is satisfiable, for any label variable U, and as we see
of the proof of claim 3.2 of the Lemma, this is made possible by the defini-

24 CHAPTER 3. GROUNDWORK ON THE LC-CALCULI

tion of the interpretation function ρ and the satisfaction relation on labelled
formulae when W+ is empty.

3.3 Calculus

A calculus is a system of syntactic manipulation of formulae and sequents.
Through syntax we are able to obtain semantic knowledge of the analysed
formulae. The link between syntax and semantics is established by the
notions of soundness and completeness of the calculus, defined at the end of
this chapter.

The exposition in this section is an introduction to the core elements of the
LC-calculi and also serves as a general roadmap for the expositions of the
calculi to come.

The smallest building block in the calculi is the sequent.

Definition 3.16 (Sequent)
A sequent is a set of formulae. �

We will frequently use Γ as notation for a sequent. When writing sequents
the curly brackets will be dropped. Γ, F, where F is a formula, will be used
as shorthand for Γ ∪ {F}.

The syntactic manipulation or analysis of sequents is defined through the
notion of an inference.

Definition 3.17 (Inference)
A set of inferences is a set I such that I ⊆ (S × S) ∪ (S × (S × S)) where
S is the set of sequents. �

Typically we only want a few inferences to be admissible in a given calcu-
lus. Allowing every inference to be applicable at any time would clearly
produce an incorrect calculus. The set of permissible inferences is specified
through a set of inference schemata.

Definition 3.18 (Inference schema)
An inference schema specifies a set of inferences R ⊆ I , where I is the set
of inferences, by indicating on what form the inferences R must adhere to.
An inference schema is on one of the following forms

〈Γ ∪ F, Γ ∪Ψ〉 or 〈Γ ∪ F, 〈Γ ∪Ψ, Γ ∪Ψ′〉〉,

where Γ is an arbitrary set of formulae, Ψ and Ψ′ are non-empty sets of
formulae and F is a formula. Only the form, i.e., type, labelling and num-
bering, of the formulae in Ψ, Ψ′ and F are specified, making Γ a placeholder

3.3. CALCULUS 25

for any set of formulae, while the formulae in Ψ, Ψ′ and F have to abide by
the form specification given by the schema. �

A set of inference schemata will also be called the rules of a calculus—or
just rules, as the schemata will be the constructs governing the syntactic
manipulation in a calculus. In the same spirit an inference may also be
called a rule application.

Notation. The inference schemata 〈Γ ∪ F, Γ ∪Ψ〉 and 〈Γ ∪ F, 〈Γ ∪Ψ, Γ ∪Ψ′〉〉
will be written

Γ, Ψ
Γ, F and

Γ, Ψ Γ, Ψ′

Γ, F

respectively. ◦

The two parts of an inference schema divided by the horizontal line are
the numerator, placed above the line, and the denominator situated below.
The formula F occurring in the denominator is called the principal formula.
Ψ and Ψ′ are called the set of active formulae. All other formulae in the
inference schemata, denoted by Γ, are called extra formulae. The notions
of principal, active and extra formulae, and numerator and denominator
will be used in the same way concerning inferences as when addressing
inference schemata.

We say that an inference is applied to a denominator and a principal formula
resulting respectfully in a numerator and active formulae. If an inference
results in the introduction of a label in the numerator, the introduced label
will be introduced by an active formula and is said to belong to its inference.
This is emphasised by marking the horizontal line to which the inference
corresponds with the introduced label. There will be exactly one calculus
rule per type of formula in the calculi in this thesis, so we name a rule by
the type of its principal formula and call it e.g. the α-rule. Also, an infer-
ence is said to be of the same type as its principal formula, and will e.g. be
called an α-inference. When discussing the relationship between formulae
in the denominator and numerator it is natural to view the occurrence of
extra formulae in an inference as an implicit copy of formulae from the de-
nominator to the numerator as the extra formulae are left unchanged by
the inference. If the same formula occurs as both principal and an active
formula in an inference, we say that the formula is explicitly copied by this
inference.

A skeleton is a tree of sequents bearing close relations to the LK-derivation,
the proof object of the calculus LK, but similar also to the proof object of
tableaux systems [Beckert and Goré 1997, Fitting 1983]. The construction
of a skeleton is regulated by the inferences applied to the sequents in the
skeleton.

26 CHAPTER 3. GROUNDWORK ON THE LC-CALCULI

Definition 3.19 (Skeleton)
A skeleton is a finitely branching, but possibly infinite, tree where all nodes
are sequents regulated by the rules of a calculus. �

A skeleton has its name because it may not carry any logical force. It is just
a tree of sequents. We will later define structures making skeletons conform
to certain rules and conditions.

3.4 Soundness and Completeness

Soundness and completeness are two core notions in the development of
every calculus. To establish these notions we need first to build a greater
vocabulary than what is currently available.

Definition 3.20 (L-countermodel)
Let (M, φ) be an L-model.

• (M, φ) is an L-countermodel for a sequent Γ if (M, φ) � Γ.

• (M, φ) is an L-countermodel for the branch θ in skeleton if (M, φ) is
an L-countermodel for every sequent occurring on θ.

A branch θ is satisfied in (M, φ) under a label variable assignment ρ if
(M, φ) �ρ Γ holds for all sequents in θ.

• (M, φ) is an L-countermodel for a skeleton δ, if (M, φ) satisfies a
branch in δ for every label variable assignment ρ. �

Remark. The reader familiar with some logic may find this definition str-
ange; An L-model is an L-countermodel for a sequent if every formulae in
the sequent is true?! The reason for this peculiarity is the use of polarity
and the definition of satisfiability of formulae with polarity ⊥. If we write
a sequent using “standard” notation Γ ` ∆, then Γ would denote the for-
mula in the sequent having polarity > and ∆ the formulae with polarity ⊥.
A countermodel for Γ ` ∆ is a model satisfying every formulae in Γ and
falsifying every formulae in ∆. By how we have formulated satisfaction of
labelled formulae, this amounts exactly to the definition above. ◦

Definition 3.21 (L-Valid)
A sequent is L-valid if it has no L-countermodel. �

Through application of inferences defined by the rules of the calculus we
construct a skeleton. A skeleton is a merely a tree of sequents. In order to
apply some structure and guarantee that a skeleton conforms to the rules

3.4. SOUNDNESS AND COMPLETENESS 27

of the calculus, and also to be able to provide extra conditions on a skeleton
in a particular calculus, we define the notion of a LCL-derivation.

Definition 3.22 (LCL-derivation)
A skeleton is an LCL-derivation if it conforms to the conditions set by the
calculus LCL. �

Apart from defining a set of rules, a calculus also needs to define the re-
quirements for a proof in the calculus—what conditions needs to be met in
order to call a derivation a proof. This requirement is called the closure con-
dition of the calculus and is in all calculi in this thesis defined through the
notion of an axiom.

Definition 3.23 (Axiom, LCL)
An axiom in the calculus LCL is a sequent of a specified form. �

Definition 3.24 (LCL-proof)
An LCL-derivation δ is a LCL-proof if every branch of δ contains an axiom. �

If a branch θ in an LCL-derivation contains a sequent categorized as an ax-
iom in the LCL-calculus, we say that θ is closed. If a branch is not closed, it
is open.

A sequent Γ is said to beLCL-provable if there exists a LCL-proof δ where Γ is
the root sequent of δ. We say that δ is a proof of Γ.

Now we are ready to define soundness and completeness of a calculus.

Definition 3.25 (Soundness)
A calculus LCL is sound if every LCL-provable sequent is L-valid. �

Definition 3.26 (Completeness)
A calculus LCL is complete if every L-valid sequent is LCL-provable. �

To give more meaning to these important notions before commencing on
the first calculus in this thesis, a remark containing an informal discussion
of soundness and completeness follows.

Remark. A calculus is sound if it does not do anything wrong. A complete
calculus is one that inhibits the strength to do everything which is right.
As extreme examples a calculus which can prove nothing is sound and a
calculus which proves every sequent is complete. What we realize is that
a sound and complete calculus is a system with the correct balance, it does
nothing wrong and it can do everything which is right. An instructive “real
world” example can be found in [Walicki 2006].

28 CHAPTER 3. GROUNDWORK ON THE LC-CALCULI

When designing calculi one has to be careful to add enough restrictions to
the system to make it sound. On the other hand if the system becomes too
restrictive, loss of completeness is at stake. From an automated reasoning
viewpoint, from which this thesis should be read, concern is put into relax-
ing the restrictions as much as possible, arranging for quick and efficient
reasoning without destructing soundness. One is also preoccupied estab-
lishing upper bounds on the size of search space, as this allows for early
termination of the search. As restriction of search space may lead to the
inability of finding countermodels, any carelessness here may result in lack
of completeness. ◦

Chapter 4

The Calculus LCg

The LCg-calculus is the first calculus presented in this thesis and is also the
simplest. The simplicity is obtained by the fact that the calculus is ground—
hence the superscript g in LCg—the calculus utilizes only ground labels in
contrast to a free-variable calculus where also label variables are employed.
The groundedness allows for a more direct connection of syntax and se-
mantics making the arguments necessary to establish soundness and com-
pleteness of the calculus easier than if label variables were present. Also, by
including this exposition of a completely independent ground calculus, the
mechanics of the other LC-calculi in this thesis should appear more trans-
parent, as many of the constructs introduced in this chapter are later reused
in a more complex form.

Remark. The LCg-calculi is essentially a ground version of the system estab-
lished for K45 and S5 in [Waaler 2001], so many of the concepts used in this
chapter can be found there. The main focus of this chapter is to explore a
simple calculus implementing the contextually equivalent relation. The expo-
sition is rich in examples illustrating this condition, the lack of invariance
of rule application order in a ground system, and several derivations and
proofs in LCg. Thorough proofs of soundness and completeness are estab-
lished. Results on which the chapters to come rely. ◦

We start by defining a sequent of labelled formulae, the labelled sequent.

Definition 4.1 (Labelled sequent)
A labelled sequent is a set of labelled formulae. A labelled sequent is called
ground if every label in the sequent is ground, and it is called empty labelled
if every formula in the sequent is labelled with ε and every formula num-
ber occurring in the sequent is distinct. If a formula in a labelled sequent
appears unlabelled, the formula is by convention labelled with ε. �

29

30 CHAPTER 4. THE CALCULUS LCg

Example 4.2 (Sequent) The following is a labelled sequent:

P[s]>, (Q → P)[U]>, R[t]⊥, P[s]⊥, R[V]⊥, S⊥.

The apparently unlabelled formula S⊥ is labelled with ε, giving S[ε]⊥. The
sequent is not ground, as it contains the label variables U and V, and it is
not empty labelled since ε is not the label of every formulae in the sequent. ◦

Notation. To reduce notation and increase readability we will in the remain-
ing examples use the standard notation, Γ ` ∆, when displaying sequents.
Γ ` ∆ denotes the sequent Γ∪∆, where Γ is the set of all formulae in the se-
quent having polarity > and ∆ is the set of formulae having polarity ⊥. Be-
cause of this we do not display the polarity of formulae in sequents. Also,
the “unnecessary” outermost parentheses are dropped whenever possible.
Using this notation the sequent in above example 4.2 would be

P[s], Q → P[U] ` R[t], P[s], R[V], S. ◦

The rules of LCg are listed in Figure 4.1. α, β, ν, π and their respective com-
ponents (see Figure 3.1) are all labelled formulae of the respective types.
These rules apply to both the K45 and S5, but as we will see, different side
conditions apply to the two logics. Notice that no rule manipulates formula
numbers.

Γ, α1, α2
Γ, α

Γ, β1 Γ, β2

Γ, β

Γ, ν
i
, ν0(s)

Γ, ν
i

s
Γ, π0(c)

Γ, π
c

Figure 4.1: Rules of LCg. The rules left to right: α-, β-, ν- and π-rule. Γ is a
set of labelled formulae. The formula numbers of the principal and active
ν-formulae are displayed to indicate that the ν-formula is explicitly copied
such that also the formula numbers occurring in the active ν-formula are
the same and assigned in the same way as in the principal ν-formula. s is a
label and c is a label parameter.

The following definition originally defined in [Waaler 2001] is the relation
bridging the world of sequent calculi like LC and matrix systems [Wallen
1990].

Definition 4.3 (Contextually equivalent)
The relation contextually equivalent is defined on formulae in a skeleton as
the least equivalence relation such that:

1. an extra formula occurrence in the denominator of an inference r is
contextually equivalent to its copy occurring in every sequent in the

31

numerator of r (also occurring as extra formula, i.e., the formula is
implicitly copied in an inference on a different formula),

2. let r and r′ be inferences on two contextually equivalent principal for-
mula occurrences. Then an active formula of r is contextually equiv-
alent to exactly one active formula of r′ assuming the formulae are
syntactically equal.

Two inferences are contextually equivalent if their principal formulae are
contextually equivalent. �

One should intuitively think of a set of contextually equivalent formulae as
a way of expressing that the formulae are the same formula just occurring
in different sequents in a skeleton. By this observation, contextually equiv-
alent formulae should share some features. These features will be proved
and exploited later.

Example 4.4 (Contextually equivalent formulae) The formulae in the following
skeleton are superscripted only for ease of identification and are not part
of the formulae. Formulae marked with the same boldface superscript are
contextually equivalent. The decimal number (not bold) in the superscript
uniquely identifies a formula in the skeleton.

P
1

1.10, P
2

4.11 ` 3
5

P
6

6.12, P
6
[a]7.13

a
P
1

1.4, P
2

4.5 ` 3
5

P
6

3.6

P
1

1.18, Q
4

5.19 ` 3
5

P
6

8.20, P
6
[b]9.21, P

6
[a]7.22

b
P
1

1.14, Q
4

5.15 ` 3
5

P
6

6.16, P
6
[a]7.17

a
P
1

1.7, Q
4

5.8 ` 3
5

P
6

3.9

P
1

1.1, P
2
∨
3

Q
4

2.2 ` 3
5

P
6

3.3

The formulae in {3P3.3, 3P3.6, 3P3.9}1 of formula are contextually equiva-
lent since 3P3.6 and 3P3.9 are extra formulae in a β-inference on P∨QP3.2 in
the root sequent. {P1.1, P1.4, P1.7, P1.10, P1.14, P1.18}, {P4.4, P4.11}, {Q5.8, Q5.15, Q5.19}
and {P[a]7.17, P[a]7.22} are contextually equivalent because they are implic-
itly copied as extra formulae. Since 3P7.6 is contextually equivalent to 3P7.9

and their components P[a]7.13 are P[a]7.17 are syntactically equal, the formu-
lae in {P[a]7.13, P[a]7.17, P[a]7.22} are contextually equivalent. This causes also
the inferences marked with a to be contextually equivalent, since their prin-
cipal contextually equivalent.

1Since formulae are uniquely identified by superscripts, and for reasons of readability,
we do not display the polarity of the formulae in this example.

32 CHAPTER 4. THE CALCULUS LCg

Observe that {3P3.6, 3P6.12}, {3P3.9, 3P6.16} and {3P6.16, 3P8.20} are not sets
of contextually equivalent formulae since one of the formulae in the sets
is an explicit copy of the ν-formula in a ν-inference. Notice also that al-
though both P1.4 and P4.6 seem syntactically equal and are copied as extra
formulae in the same inference, they are not contextually equivalent as they
are assumed differently formula numbered and therefore not syntactically
equal. ◦

Next, we prove the intuition given earlier: contextually equivalent formu-
lae are in many ways the same formula, and should thus be syntactically
equal and furthermore be satisfied in the same model.

Lemma 4.5 Let Ψ be a a set of contextually equivalent formulae. All for-
mulae in the set are syntactically equal. �

Proof. Let X, Y ∈ Ψ and assume they are contextually equivalent by point 1
in Definition 4.3. Then, since the contextually equivalent formulae are im-
plicitly copied, X and Y must be syntactically equal.

Now assume X and Y are contextually equivalent by point 2 in Defini-
tion 4.3. Then they are active formulae in two contextually equivalent infer-
ences, and by the same point in the definition they are syntactically equal. 2

Corollary 4.6 (Satisfiability of contextually equivalent formulae) Let Ψ be
a set of contextual equivalent formulae. If F ∈ Ψ is satisfiable in a model
(M, φ) under a label interpretation ρ, then (M, φ) satisfies Ψ under ρ. �

Proof. Since contextually equivalent formulae are syntactically equal, by
Lemma 4.5, the result is immediate. 2

Having established the notion of contextually equivalent, we are ready to
define the conditions necessary to categorize a skeleton as an LCg-derivation.

Definition 4.7 (LCg
L-derivation)

If δ is a skeleton having an empty labelled root and every inference in
δ respects the following conditions set by the logic L, we call it an LCg

L-
derivation:

• every inference is an instance of a rule in the LCg-calculus,

• the contextually equivalent condition: The inferences r and r′ belong to
the same label if the respective inferences are contextually equivalent,

• the ground label condition: A ν-inference may only introduce labels
t ∈ ParL,

33

• the eigenparameter condition: A π-inference may only introduce label
parameters fresh to the denominator, and

• the non-empty W+ condition: A ν-inference r is applicable only if there
is a label s ∈ ParL in r. �

The ground label condition ensures that LCg is a ground calculus. Since ev-
ery label in a skeleton conforming to the rules of LCg belongs to a π- or a ν-
rule, and π-inferences may only introduce label parameters, we only have
to control the label introduction of ν-inferences to make sure the calculus
is ground. As mentioned in the introduction of the thesis, the contextually
equivalent condition is of importance for making the LC-calculi available
to matrix systems [Wallen 1990]. The eigenparameter and non-empty W+

condition are vital for establishing soundness of LCg. The eigenparameter
condition restricts a π-inference to only introducing fresh label parameters.
This is necessary to stay in control of the interpretation of the introduced
label, and is best explained by reading through the proof of Lemma 3.15,
satisfaction of components, and seeing how a satisfying model for a π0(c)-
formula is constructed by using the fact that the introduced label param-
eter c is fresh. The non-empty W+ condition is only of interest to LCg

K45-
derivations, since in an LCg

S5-derivation the ground label ε ∈ ParS5 occurs
in every branch of an LCg

L-derivation, meaning that the condition is trivially
met in S5. The intuitions behind the non-empty W+ condition is as follows:
Consider a construction of a branch in an LCg-derivation as the gathering
of information to build an L-countermodel, an L-model satisfying every
formula on the branch. If there are no label parameters occurring in the
branch, then we cannot assume that the constructed L-model’s W+-set is
non-empty. If W+ is empty, then applying the ν-rule in LCg is not sound.2

Example 4.8 (Contextually equivalent condition) The contextually equivalent
condition plays a key role in all the LC-calculi. This example gives insights
to it’s effects on LCg-derivations. Consider the three skeletons δ1, δ2 and δ3
below, which all have the same root sequent P∨Q ` 3R, and direct special
attention to the inferences on 3R⊥. The explicit copy of this ν-formula is
not displayed.

2For a explanation of this, read the proof of Lemma 3.15 and the discussion following it.

34 CHAPTER 4. THE CALCULUS LCg

P ` R[a]
a

P ` 3R
Q ` R[b]

bQ ` 3R
P ∨Q ` 3R

δ1

P ` R[a] Q ` R[a]
P ∨Q ` R[a]

a
P ∨Q ` 3R

δ2

P ` R[a]
a

P ` 3R
Q ` R[a]

a
Q ` 3R

P ∨Q ` 3R
δ3

The skeleton δ1 violates the contextually equivalent condition, since the two
inferences on 3R in each branch of δ1 introduce different labels, a and b.
These inferences are contextual equivalent, as their principal formulae are
contextual equivalent, and they should therefore belong to the same la-
bel. The skeleton δ2 does not violate the contextually equivalent condition.
What remedies the situation is the order of application of inferences. In δ2
we first apply a ν-inference, introducing the label a to the skeleton, and pro-
ceed by applying a β-inference. Since the ν-inference in δ2 is contextually
equivalent to no other inference at the time of application, it cannot break
the contextually equivalent condition by introducing an “incorrect” label.
In δ1 we first apply a β-inference and continue by applying ν-inferences
to two contextually equivalent formulae in both branches. By having two
ν-inferences in different branches the possibility of introducing different la-
bels in each branch is present. This is a possibility we want to remove, and
this is what the contextually equivalent condition does, by requiring that
the two inferences belong to the same label. δ3 has the same order of rule
application as δ1, but in contrast to δ1, it upholds the contextually equiva-
lent condition, introducing a in both branches.

Observe that the leaf sequents of δ2 and δ3 are equal, while the leaves of
δ1, the skeleton not complying with the contextually equivalent condition,
differs from the other’s leaves. This serves as an early indication that the
condition is necessary to have the desired invariance of rule application
order in skeletons. ◦

The lesson learned from the example above is that the contextually equiva-
lent condition is necessary to obtain skeletons with equal leaf sequents even
though inferences may have been applied in different order. This feature
is of key importance in the free-variable calculi we will introduce in chap-

35

ter 6. We want our derivations to be invariant under order of rule application
[Waaler 2001], i.e., the form of the leaf sequents in a skeleton should not
depend on the order rules are applied. In most calculi of similar type in the
literature, one does not require the introduction of equal labels as required
by the contextual equivalence condition. This requirement does in some
cases in fact give longer derivations than if the requirement is dropped.

So why do we want this seemingly unnecessary restriction? What is the
gain of working with skeletons invariant under order of rule application?
The reason is that of automated reasoning efficiency. Invariance under or-
der of rule application in a sequent calculus as the LC-calculi makes it con-
vert easily into a system of matrices as described in [Wallen 1990]. The
conversion is performed by a set of simple rewriting rule listed in [Waaler
2001, p. 1504]. The matrix systems inhibit the enjoyable feature of being
readily available for application by a goal-directed connection driven search
method. For more on connection driven search and the connection calcu-
lus consult [Bibel 1987, Holen 2005, Kreitz and Otten 1999]. As this thesis’
focus is not implementation, we will not go into these aspects in detail. Al-
though not mentioned more than this, it is important to bear in mind that
implementation of the LC-calculi is the ultimate goal of this work.

The contextually equivalent condition is necessary in order to have invari-
ance of order of rule application. This condition is however not enough and
the feature of invariance will first be obtained by the free-variable LCfv-
calculus in chapter 6. The reason why the LCg-calculus is not invariant
under order of rule application is because of the eigenparameter condition
and the non-empty W+ condition. The reason is quite simple: The eigenpa-
rameter condition allows for label parameters to be introduced only when
the label does not occur in the denominator. The freshness of a label in-
troduced depends entirely on what labels are already introduced to the
skeleton, and this depends in turn on what order inferences are applied.
The non-empty W+ condition represents a kind of inverted eigenparame-
ter condition, so a similar argument is applicable to why invariance of rule
application is impossible to obtain in LCg.

Example 4.9 (Invariance of rule application order) Consider the skeletons δ4, δ5
and δ6 all over the same root sequent, but with a different order of infer-
ences and introduced labels. The order of rule application is indicated by
marking the horizontal line to which the inference corresponds with both
its type and belonging label.

36 CHAPTER 4. THE CALCULUS LCg

2P, P[a] ` Q[a]
ν, a

2P ` Q[a]
π, a

2P ` 2Q

2P, P[a] ` Q[a]
π, a

2P, P[a] ` 2Q
ν, a

2P ` 2Q

2P, P[a] ` Q[b]
π, b

2P, P[a] ` 2Q
ν, a

2P ` 2Q
δ4 δ5 δ6

The skeletons δ4 and δ6 both comply with the eigenparameter condition,
but δ5 is not an LCg

L-derivation as it does not meet the eigenparameter con-
dition by letting the π-formula 2Q⊥ introduce an unfresh label parameter.
Notice that δ4 and δ5 have the same leaf sequents, implying that the eigen-
parameter condition needs to be broken in order to gain invariance of rule
application order. δ6 does not break the eigenparameter condition, since
the label parameter belonging to the π-inference on 2Q⊥ is fresh to the de-
nominator, but it does not have the same leaves as δ4, since it because of
this required freshness must introduce a label parameter different from a.

The skeletons δ5 and δ6 both break the non-empty W+ condition in K45, by
applying ν-rules to a sequents containing no labels in ParK45.

As we see, the LCg-calculus is not invariant under rule application order,
since a change in the order of the inferences on a skeleton, if it is admissible,
results in the leaves ending up different. ◦

Remark (to Example 4.9). The example 4.9 may not convince the reader—
and it does not intend to either—of the necessity of the eigenparameter
condition, only that it hinders the desired invariance of inferences. The
fatal consequence of removing this condition is that the LCg-calculus be-
comes unsound; we will be able to prove sequents which are not valid. An
example of this is delayed until we have established the necessary notions
of axiom and proof in LCg. ◦

Example 4.10 (LCg
L-derivation) We have now seen six examples of skeletons,

but only in the spirit of illustrating the eigenparameter, contextually equiv-
alent condition and how these affect the (lack of) invariance of rule applica-
tion order. The approach of the following example on the same set of skele-
tons is to exemplify which of the skeletons are LCg

K45- and LCg
S5-derivations.

Of the skeletons δ1–δ6 immediately above

• δ1 is no LCg
L-derivation as it does not adapt the contextual equivalent

condition,

• δ2 and δ3 are no LCg
K45-derivations since they fail to conform to the

non-empty W+ condition when introducing the label parameter a.
They are both LCg

S5-derivations.

• The skeleton δ4 is an LCg
K45-derivation, while

37

• δ5 and δ6 break the non-empty W+ condition and are hence no LCg
K45-

derivations.

• δ5 is not an LCg
L-derivation because it does not agree with the eigen-

parameter condition, but

• δ4 and δ6 are both LCg
S5-derivations. ◦

To be able to define what a proof is in the LCg-calculus, we need to establish
the notion of an axiom.

Definition 4.11 (Axiom, LCg)
An axiom in the LCg-calculus is a labelled sequent of the form Γ, F[s]>, F[s]⊥,
i.e., a sequent containing two labelled formulae comprised by the same
core formula and labelling, but having different polarity. The formulae
F[s]>, F[s]⊥ are referred to as a closing pair. �

Lemma 4.12 An axiom is not satisfiable. �

Proof. Assume that the axiom Γ, P[s]>, P[s]⊥ is true3. Then there must exist
a model (M, φ) such that (M, φ) � Γ, P[s]>, P[s]⊥. This is a contradiction,
since it means that both M, φ(s) � P and M, φ(s) 2 P hold. 2

Remark. Lemma 4.12 may come as a surprise to the reader. Axioms are
normally thought of as valid, but not being satisfiable seems to contradict
this. Well, this is not true. A sequent which is not satisfiable has by Def-
inition 3.20 no L-countermodel, and quoting Definition 3.21: “A sequent is
L-valid if it has no L-countermodel.” So axioms are valid after all. See also the
remark on page 26. ◦

If a branch in an LCg
L-derivation contains an axiom, we say that the branch

is closed. This is the closure condition of the calculus LCg. If every branch
in an LCg

L-derivation δ is closed, δ is an LCg
L-proof.

Definition 4.13 (LCg
L-proof)

An LCg
L-proof is a finite LCg

L-derivation where every branch contains an
axiom. �

The empty labelled sequent Γ is LCg
L-provable if there exists an LCg

L-proof δ
where Γ is the root sequent of δ.

Next we do a series of examples of LCg-derivations and -proofs. We indi-
cate a closed branch by placing a cross × above it, while open branches are
indicated by ◦.

3Remember that a ground sequent is either true in an L-model or not satisfied.

38 CHAPTER 4. THE CALCULUS LCg

Remark. In axiomatic systems different modal logics are identified by a set
of formulae in these systems called axioms, where these formulae define
the relation on the set of worlds, i.e., the accessibility relation, see e.g.
[Blackburn et al. 2005, Chellas 1988]. The formula called K, 2(P → Q) →
(2P → 2Q), holds in all normal modal logics, which both K45 and S5
are considered to be. Furthermore, S5 is often identified by the formulae
2P → P, 2P → 22P and 3P → 23P, called respectively T, 4 and 5. K45
is identified by K, 4 and 5, which is the reason for its name. These formu-
lae form a natural starting point for the first display of the mechanics of
the LCg-calculus. The first four examples presented below show that the
correct set of formulae is LCg-provable in the two logics. ◦

Example 4.14 (T-axiom: LCg
S5-proof, K45-countermodel) The formula 2P → P

is the standard axiom of reflexivity in axiomatic systems. By this obser-
vation the sequent ` 2P → P should be LCg

S5-provable, and not LCg
K45-

provable.

×
2P, P ` P

ε
2P ` P

` 2P → P

Remember that unlabelled formulae in labelled sequents are labelled with
ε. We see that P⊥ must be one of the formulae in the closing pair of a pos-
sible axiom since it is the only formula having polarity ⊥, and no formula
with polarity ⊥ can arise from an inference on 2P>. This means that the
only closing pair for a proof of 2P → P⊥ must be P>, P⊥. The side con-
ditions on ν-inferences allow for the introduction of ε only in S5, hence
the above skeleton is an LCg

S5-derivation and an LCg
S5-proof, but not an

LCg
K45-derivation and hence no LCg

K45-proof either. The following is LCg
K45-

derivation of the sequent.

◦
2P ` P

` 2P → P

By the open branch in the derivation we conclude that the LCg
K45-derivation

is not an LCg
K45-proof. Since we claim that the sequent is not LCg

K45-provable,
we should be able to find a K45-countermodel satisfying the sequent. A
good starting point is to find a K45-model satisfying the leaf sequent of an
open branch in the skeleton. To satisfy the sequent 2P ` P, a model needs
every point in W+ to satisfy P> in order for 2P> to be satisfied, and the
point to which the ground label interpretation φ assigns ε needs to satisfy
P⊥ (†). One such K45-countermodel is (M, φ) where M = (W, W+, V) and
where φ(ε) 6∈ V(P), and wi ∈ V(P) for all wi ∈ W+ 6= ∅.

39

An attempt to construct an S5-countermodel for the sequent would fail. By
(†) every point in W+ must satisfy P⊥ and the point φ(ε) must satisfy P⊥.
But in an S5 model, φ(ε) ∈ W+, hence φ(ε) must satisfy both P⊥ and P>.
This is of course impossible. Note that this is the exact same observation
the LCg

S5-proof of the sequent ` 2P → P makes in its leaf sequent. ◦

Example 4.15 (K-axiom: LCg
K45- and LCg

S5-proof) The sequent

` 2(P → Q) → (2P → 2Q)⊥

is both LCg
K45- and LCg

S5-provable. We let χ abbreviate the explicit copy of
the ν-formula 2(P → Q)>.

×
χ, 2P, P[a] ` P[a], Q[a]

a
χ, 2P ` P[a], Q[a]

×
χ, Q[a], 2P ` Q[a]

χ, P → Q[a], 2P ` Q[a]
a

2(P → Q), 2P ` Q[a]
a

2(P → Q), 2P ` 2Q
2(P → Q) ` 2P → 2Q

` 2(P → Q) → (2P → 2Q)

The skeleton conforms to the conditions set by an LCg
L-derivation in both

K45 and S5, and every branch contains an axiom, so the skeleton is both
an LCg

K45- and LCg
S5-proof, hence K is both LCg

K45- and LCg
S5-provable. The

closing pair in the left branch is P[a]>, P[a]⊥, and P[b]>, P[b]⊥ the closing
pair in the right branch. ◦

Example 4.16 (4-, 5-axiom: LCg
K45- and LCg

S5-proof) The left skeleton is an LCg
K45-

and LCg
S5-proof of the sequent ` 2P → 22P. The right skeleton shows that

the sequent ` 3P → 23P is LCg
K45- and LCg

S5-provable.

×
2P, P[b] ` P[b]

b
2P ` P[b]

b
2P ` 2P[a]

a
2P ` 22P

` 2P → 22P

×
P[a] ` 3P[b], P[a]

a
P[a] ` 3P[b]

bP[a] ` 23P
a

3P ` 23P
` 3P → 23P

In order to quickly obtain a closing pair a good strategy is often to apply
π-inferences first, introducing fresh label parameters, and proceed by intro-
ducing the same labels by ν-inferences. This strategy is used on both of the

40 CHAPTER 4. THE CALCULUS LCg

skeletons displayed above, and avoids breaking the non-empty W+ condi-
tion or breaking the eigenparameter condition by letting π-inferences intro-
duce label parameter already occurring in the denominator. If ν-inferences
are applied before π-inferences, and it is not required by the structure of
the formulae, the result is often that more rule applications than strictly
necessary are needed in order to obtain a proof. ◦

Remark (to Example 4.16). Notice that the labelling of π- and ν-formulae is
“overwritten” when subject to a rule application, i.e., every label is at most
one character long. This is an indication of the relatively low complexity
of the SAT-problem—namely NP-complete [Garey and Johnsen 1979]—the
logics K45 and S5 enjoy [Ladner 1977]. ◦

Example 4.17 (Eigenparameter condition, L-countermodel) The following is an
example of the importance of the eigenparameter condition as promised in
the remark succeeding Example 4.9.

×
χ, P[a] ` P[a], 2Q

◦
χ, P[b], Q[a] ` P[a], Q[b]

×
χ, Q[b], Q[a] ` P[a], Q[b]

χ, (P ∨Q)[b], Q[a] ` P[a], Q[b]
b

χ, Q[a] ` P[a], Q[b]
b

χ, Q[a] ` P[a], 2Q
χ, (P ∨Q)[a] ` P[a], 2Q

a
2(P ∨Q) ` P[a], 2Q

a
2(P ∨Q), ` 2P, 2Q
2(P ∨Q) ` 2P ∨2Q

No further rule application will succeed in creating an LCg
L-proof. In fact

using the LCg
L-derivation at hand and looking at the open branch, creating

an L-countermodel is easy. An K45-countermodel is model (M, φ), where
φ is the identity function and M = (W, W+, V) is such that W+ = {a, b},
W = W+ ∪ {ε}, and V(P) = {b} and V(Q) = {a}. An S5-model is obtained
from the adjusting the K45-model such that W = W+ = {a, b, ε}. Both
models satisfy the set P[b]>, Q[a]>, P[a]⊥, Q[b]⊥ and the root sequent of the
skeleton.

Now we present an LCg-“proof” of the same sequent by violating the eigen-
parameter condition.

41

×
χ, P[a] ` P[a], 2Q

×
χ, Q[a] ` P[a], Q[a] a, ∗
χ, Q[a] ` P[a], 2Q

χ, (P ∨Q)[a] ` P[a], 2Q
a

2(P ∨Q) ` P[a], 2Q
a

2(P ∨Q), ` 2P, 2Q
2(P ∨Q) ` 2P ∨2Q

The inference marked with ∗ does not respect the eigenparameter condition
since it belongs to a label parameter occurring in the denominator, hence
the skeleton is not an LCg-derivation or an LCg-proof. ◦

Example 4.18 (Non-empty W+ condition, LCg
S5-proof) First we display an LCg

S5-
proof of the labelled sequent ` 2(P → P) ∧3(P → P)⊥ and afterwards
show and explain why the same sequent is not LCg

K45-provable.

×
P[a] ` P[a]

` P → P[a]
a

` 2(P → P)

×
P[b] ` P[b], 3(P → P)

` P → P[b], 3(P → P)
b` 3(P → P)

` 2(P → P) ∧3(P → P)

The above skeleton is an LCg
S5-derivation as it does not break any of the

conditions set by an LCg
S5-derivation, and since it contains an axiom in ev-

ery branch, it is also an LCg
S5-proof. Since the label ε ∈ ParS5 occurs in the

branch of every LCg-derivation, the non-empty W+ is trivially met by an
LCg

S5-derivation.

The reason why the skeleton is not also an LCg
K45-derivation is because the

introduction of the label b in the right branch violates the non-empty W+

condition. b does not occur in the branch prior to its introduction by the
ν-inference on 3(P → P)⊥. The only label occurring in the right branch
at this stage is ε, but an introduction of ε by an inference on the ν-formula
is, as Example 4.14 shows, not permissible by a ν-inference in K45. An ad-
missible LCg

K45-derivation with the same root sequent as above is displayed
below.

×
P[a] ` P[a]

` P → P[a]
a

` 2(P → P)
◦
` 3(P → P)

` 2(P → P) ∧3(P → P)

42 CHAPTER 4. THE CALCULUS LCg

No rule is applicable to the ν-formula in the right branch, and as we see by
the lack of axiom in this branch the LCg

K45-derivation is not an LCg
K45-proof.

A K45-countermodel for 2(P → P) ∧3(P → P)⊥ is a model where W+ =
∅. Let M = (W, W+, V), where W+ is empty. From the definition of a
ground label interpretation function φ we know that φ(ε) ∈ W \W+. The
model (M, φ) satisfies the right leaf sequent, (M, φ) � 3(P → P)⊥, since
M, φ(ε) � 3(P → P)⊥ given that M, w′ � (P → P)⊥ holds trivially for all
w′ ∈ W+, when W+ = ∅. Since (M, φ) � 3(P → P), it follows that (M, φ)
satisfies the root sequent. ◦

Example 4.19 (Non-empty W+ condition) This example displays the consequ-
ences of the non-empty W+ condition in regards to the lack of invariance
under order of rule application in the LCg-calculus. The skeleton will also
serve as a comparison of the shortened proof lengths we can achieve in the
free variable calculus LCfv presented in chapter 6. The sequent ` 3(P →
2P), 2Q is valid in both K45 and S5, but ` 3(P → 2P) is only S5-valid.
These sequents and observations will follow us through chapter 5 and espe-
cially chapter 6. χ is an abbreviation for the explicit copy of 3(P → 2P)⊥.

×
P[a], P[b] ` P[b], 2P[b], χ, Q[a]

P[a] ` P[b], P → 2P[b], χ, Q[a]
bP[a] ` P[b], χ, Q[a]

bP[a] ` 2P[a], χ, Q[a]
` P → 2P[a], χ, Q[a]

a
` 3(P → 2P), Q[a]

a
` 3(P → 2P), 2Q

The derivation is both an LCg
K45- and LCg

S5-proof. Below we display the
same skeleton as above, except the inference on 2Q⊥ is the lowermost in
the skeleton above, while it is the uppermost in the skeleton below.

P[a], P[b] ` P[b], 2P[b], χ, Q[a]
a

P[a], P[b] ` P[b], 2P[b], χ, 2Q
P[a] ` P[b], P → 2P[b], χ, 2Q

bP[a] ` P[b], χ, 2Q
bP[a] ` 2P[a], χ, 2Q

` P → 2P[a], χ, 2Q
a

` 3(P → 2P), 2Q

4.1. SOUNDNESS 43

This skeleton is not an LCg
K45-derivation, as it violates the non-empty W+

condition by the lowermost inference introducing a label parameter. This
inference is a ν-inference and can only be applied if there is a label s ∈
ParL occurring in the denominator. Observe that the leaf sequents of the
two skeletons above are equal. This shows that we do not have invariance
under rule application in LCg

K45, a feature whose absence the non-empty
W+ condition is partly to blame.

Note that without the presence of the π-formula 2Q⊥ we would not be
able to construct an LCg

K45-proof at all.4 The lack of label parameter in the
branch at the stage of rule application to 3(P → 2P)⊥ would cause the
search to terminate. In S5 the non-empty W+ condition is trivially satisfied.
The skeleton gathered from erasing the formulae 2Q⊥ and Q[a]⊥ from the
above example is an LCg

S5-proof of 3(P → 2P)⊥. An LCg
S5-proof of this

sequent is displayed below.

×
P[a], P[b] ` P[b], 2P[b], χ

P[a] ` P[b], P → 2P[b], χ

P[a] ` P[b], χ
bP[a] ` 2P[a], χ

` P → 2P[a], χ
a

` 3(P → 2P)

◦

4.1 Soundness

Soundness of the LCg-calculus means that if the calculus proves a sequent
in the logic L, the sequent is true in every L-model—or equivalently, it has
no L-countermodel.

A common way of proving soundness of a calculus is to show that all its
single steps are correct. If every step it takes is correct then the whole can-
not do anything wrong. The steps of the LCg-calculus is of course its infer-
ences, the conditions on an LCg-derivation and its closing condition. The
proof is established by showing that if a skeleton has an L-countermodel,
then a rule application to the skeleton results in an another skeleton having
an L-countermodel, in other words, showing that an LCg-proof cannot arise
from a sequent which has an L-countermodel. This technique is similar to
the soundness proof found in many standard logic textbooks concerning
ground sequent calculi, see e.g., [Fitting 1996].

4A K45-countermodel is found in Example 2.9.

44 CHAPTER 4. THE CALCULUS LCg

Since all labels in the LCg-calculus are ground, we need to specialize
Lemma 3.15 to such formulae and the fact that they are either true or not
satisfied.

Corollary 4.20 (Satisfaction of grounded components) Let Γ be a set of
ground labelled formulae and (M, φ) an L-model where M = (W, W+, V).

1. If α ∈ Γ, then Γ ∪ {α1, α2} is true in (M, φ), iff Γ is true in (M, φ).

2. If β ∈ Γ, then Γ ∪ {β1} is true in (M, φ) or Γ ∪ {β2} is true in (M, φ),
iff Γ is true in (M, φ).

3. If ν ∈ Γ and W+ 6= ∅, then Γ∪ {ν0(s)} is true in (M, φ) for every label
s ∈ ParL.

4. If π ∈ Γ, then Γ ∪ {π0(c)} is true in (M, φ′) for some extension φ′ by
c of φ, iff Γ is true in (M, φ), where c is an arbitrary label parameter
not occurring in Γ. �

Proof sketch. All cases of the lemma can easily be proven by using Lemma 3.15.
We present a only general proof here. Let Γ be a set of ground labelled for-
mulae and assume Γ is true in the L-model (M, φ), whereM = (W, W+, V),
under the conditions stated in the claim. Then Γ is satisfied in (M, φ) for
every label variable assignment ρ. Conclude by applying Lemma 3.15.

The other direction of the points 1, 2 and 4 is similar. 2

Now we are ready to prove the lemma which carries the greatest burden in
the proof of soundness of LCg, the result that rule applications preserve the
satisfaction of skeletons.

Lemma 4.21 (Countermodel preservation) Assume that there is an L-coun-
termodel for the branch θ in the LCg

L-derivation δ, and let Γ be a leaf sequent
of δ. Apply an admissible inference to Γ creating the branch θ′ in the LCg

L-
derivation δ′. Then there is an L-countermodel for δ′. �

Proof. First assume that Γ is not the leaf sequent of the branch θ. Then θ
must be a branch in δ′, and δ′ must have an L-countermodel.

In the following assume that Γ is the leaf sequent of θ, and that (M, φ) is
an L-countermodel for θ. We prove the remaining cases of the lemma by
checking for each possible type of inference r on Γ producing the branch θ′

in δ′ that there exists an extension φ′ of φ such that there is an L-counter-
model (M, φ′) for θ′.

α. Assume that α ∈ Γ and that r is an inference on α. By Corollary 4.20
Γ ∪ {α1, α2} is true in (M, φ). Then (M, φ) is an L-countermodel for θ′ and
δ′.

4.1. SOUNDNESS 45

β. Assume that r is a β-inference on some formula β ∈ Γ. By Corollary 4.20
Γ ∪ {β1} or Γ ∪ {β2} is true in the model (M, φ). (M, φ) is then an L-
countermodel for at least one of the branches in δ′.

ν. This case splits in two. First assume that r is a rule application to some
ν-formula occurring in Γ and that W+ 6= ∅. By the ground label condition
a ν-inference may only introduce labels from the set ParL, so θ is extended
with the sequent Γ, ν(s), where s ∈ ParL. By Corollary 4.20 Γ ∪ {ν0(s)} is
true in (M, φ) for any label s ∈ ParL. Thus (M, φ) is an L-countermodel for
θ′.

Now assume that W+ is empty. Then L must be the logic K45, as W+ is
non-empty in every S5-model. By the non-empty W+ condition in K45
there must exist a label parameter in Γ. Since W+ is empty and (M, φ)
is by assumption a K45-countermodel for the branch θ, we claim that no
ν-inference is applicable.

Claim. If W+ = ∅, then no ν-inference is applicable. ◦

Proof. Aiming for a contradiction assume that a ν-inference is applica-
ble. Then there must, by the non-empty W+ condition, exist some la-
bel parameter c labelled to a formula P in Γ. Since (M, φ) is a K45-
countermodel for θ, P[c] is true in (M, φ) and by the definition of truth
there is a point φ(c) in W+ satisfying P. This is a contradiction since W+

is assumed empty. 2

Since no ν-inference is applicable to θ, the lemma is in this case trivial.

π. Assume r is a π-inference on some formula π ∈ Γ. The branch θ is then
extended by the sequent containing a formula π0(c). By the eigenparam-
eter condition, the label parameter c is fresh to the denominator. Then, by
Corollary 4.20, there is an extension φ′ by c of φ such that Γ ∪ {π0(c)} is
true in (M, φ′), making (M, φ′) an L-countermodel for δ′. 2

Theorem 4.22 (Soundness of LCg)
Let δ be an LCg

L-proof of a sequent Γ. Then Γ is L-valid. �

Proof. Aiming at a contradiction assume that there is an LCg
L-proof δ of Γ,

but that Γ is not L-valid. Given that Γ is not L-valid, δ0, the LCg
L-derivation

comprised of Γ as root sequent and only node, must have an L-counter-
model. By repeated application of Lemma 4.21 on δ0, every resulting LCg

L-
derivation from application of inferences on δ0 must have an L-countermo-
del. Thus δ must have an L-countermodel.

By the assumption that δ is an LCg
L-proof of Γ, every branch is closed, i.e.,

every branch contains an axiom. By Lemma 4.12 no axiom is satisfiable,

46 CHAPTER 4. THE CALCULUS LCg

so there can be no L-countermodel for any branch of δ. This contradicts
the fact that δ has an L-countermodel and the assumption of Γ not being
L-valid; hence, Γ is L-valid. 2

4.2 Completeness

Completeness of the LCg
L-calculus is the result that we are able to prove ev-

ery L-valid sequent in LCg
L. This means showing that every L-valid sequent

is LCg
L-provable. What we do is to show the equivalent contrapositive ar-

gument, that if a sequent is not LCg
L-provable, it is not L-valid, i.e., it has an

L-countermodel.

To formalize the repetitive application of inferences to a skeleton, we define
the notion of an LCL-derivation construction rule.

Definition 4.23 (LCL-derivation construction rule)
The application of an LCL-derivation construction rule R on an LCL-deri-
vation δ0 produces a sequence of LCL-derivations 〈δ0, δ1, . . . , δn, δn+1, . . .〉
where δi+1 is the resulting LCL-derivation from applying an admissible in-
ference to δi, i ≥ 0.

If the sequence a LCL-derivation construction rule R produces is finite, the
last derivation in the sequence is called the limit object of R. If the sequence
of R is infinite, the limit object is the minimal derivation that the sequence
approximates. �

To be able to conclude that no proof can be found, we need to know that
every possibility is examined. We do so by requiring that a fair construction
rule is used. The following definition is a modified version of the ones
found in [Fitting 1996, Hansen 2005].

Definition 4.24 (Fairness)
An LCL-derivation construction ruleR is fair provided that the sequence of
LCL-derivations 〈δ0, δ1, . . .〉 which R constructs, is such that the following
holds for every δi in the sequence:

1. An inference is eventually applied to every non-atomic formula in
every branch of δi.

2. An inference introducing s is eventually applied to every ν-formula
for every label s admissible in LCL and for every branch in δi on which
the formula occurs. �

4.2. COMPLETENESS 47

The proof of completeness goes by the following lines: First we assume
that the LCg

L-derivation at hand is not LCg
L-provable. A fair LCg

L-derivation
construction rule lets us conclude that we have applied every admissible
inference to the derivation. Since the derivation is not a proof, there must
be an open branch in the derivation. This branch is the basis for the con-
struction of an L-countermodel. As the root sequent occurs in every branch
of the LCg

L-derivation, the constructed L-countermodel is necessarily also
an L-countermodel for the root sequent.

Theorem 4.25 (Completeness of LCg
L)

If a labelled sequent is not LCg
L-provable, it has an L-countermodel. �

Proof. Let Γ be an empty labelled sequent. Apply a fair LCg
L-derivation con-

struction rule to Γ producing the limit object δ∞. Since Γ is not L-provable,
there must be an open branch in δ∞. Let θ denote this open branch and let
θfml be the set of formulae occurring on θ.

Let θParL be the set of ground labels in ParL occurring on θ. From the open
branch θ we construct a model (M, φ), where M = (W, W+, V), by the
following. Let

• W+ be the set ground labels t ∈ θParL ,

• W = W+ ∪ {ε},

• θAt.fml
> denote the set of atomic formulae in θ having polarity >,

• V be such that c ∈ V(F) iff F[c] ∈ θAt.fml
> ,

• φ be the identity function, i.e., φ(s) = s for all labels s.

Now we claim that this constructed L-model is an L-model satisfying the
set of formulae occurring on θ.

Claim. Every formulae in θfml is true in (M, φ). ◦

Proof. By induction on the formulae in θfml.

Base step. Assume F is an atomic formula with polarity >, e.g. the for-
mula Q[s]>. Q[s]> is true in (M, φ), (M, φ) � Q[s]>, if and only if
M, φ(s) � Q if and only if φ(s) ∈ V(Q) and s ∈ W. This holds by
construction of (M, φ).

Now assume that F is an atomic formula having polarity⊥. Then (M, φ) �
Q[s]⊥ if and only if M, φ(s) 2 Q if and only if φ(s) 6∈ V(Q) and s ∈ W.
This holds by construction of (M, φ).

48 CHAPTER 4. THE CALCULUS LCg

Induction step.

α. Let F be an α-formula. Given the assumption that a fair LCg
L-deriva-

tion construction rule has been applied, the components of F, α1 and α2
must occur on θ. By the induction hypothesis they are both true in the
L-model (M, φ). Now conclude by Corollary 4.20; F is true in (M, φ).

β. Assume F is a β-formula. Since a fair LCg
L-derivation construction

rule has been applied, one of the components of F, βi (i = 1, 2), must
occur on θ. By the induction hypothesis βi is true in the L-model (M, φ)
and by Corollary 4.20 F is true in (M, φ)

ν. Let F be a ν-formula. Since we have applied a fair LCg
L-derivation con-

struction rule, F0(t), where F0(t) is the component of F, must occur on θ
for every label parameter t ∈ θParL . By the induction hypothesis every F0-
formula occurring on the branch θ is true in (M, φ), i.e., (M, φ) � F0[t]
for every t ∈ θParL . Since θParL is exactly the set of points in W+ we con-
clude that F is true in (M, φ).

π. Assume F is of type π. Then, by the application of a fair LCg
L-

derivation construction rule, the component of F, F0, occurs on θ and
is true in (M, φ) by the induction hypothesis. By Corollary 4.20 we con-
clude F is true in (M, φ). 2

Since the root sequent occurs in every branch, an L-countermodel for a
branch in an LCg

L-derivation is automatically an L-countermodel for the
root sequent of the same LCg

L-derivation. By this observation, given that
every formula in θfml is true in (M, φ), every formulae in the empty la-
belled sequent Γ must be true, hence (M, φ) is an L-countermodel for Γ. 2

Chapter 5

The Calculus LCgt

The LCgt-calculus is an intermediate step towards the realization of the free-
variable calculus LCfv defined in the next chapter. As we saw in the proof
of completeness of LCg, the possibility of obtaining infinite LCg-derivations
is present. The groundwork for the removal of this possibility is laid by the
LCgt-calculus and is in the next chapter implemented by the LCfv-calculus.
The termination result established is also crucial for the development of
the calculus for the logic of Only Knowing. The LCgt-calculus is a ground
calculus, and termination is reason for the t in LCgt, although we do not
establish the termination results for the LCgt-calculus.

We need some kind of indexing of formulae to keep track of the number
of copies of a formula and thereby be able to prevent an infinite replication
of formulae. What we do is to associate a copy history to every formula
occurring in a sequent.

Definition 5.1 (Indexed formula)
An indexed formula is a formula of the form Fκ where κ is a copy history and
F is a labelled formula. Copy histories are sequences of natural numbers.
The index of an indexed formula Fκ is the pair (i, κ), where i and κ are re-
spectively the formula number and copy history of F. An indexed formula
Fκ is atomic (non-atomic) if the labelled formula F is atomic (non-atomic).
The type of Fκ is the same as the type of F. �

The definitions of indexed formula in [Antonsen and Waaler 2006, Hansen
2004], both inspired by the indexing system of formulae used in [Wallen
1990], amount to the same definition above, except the underlying formu-
lae are first-order. The intuition behind indices is that formula numbers
identify labelled formulae of the same form, and copy histories keep track
of the explicit copying of formulae. Together they form an index capable of
identifying formulae of the same form occurring in the same context. Later

49

50 CHAPTER 5. THE CALCULUS LCgt

we will see that indexed formulae with the same index are contextually
equivalent.

Notation. When the copy history of Fκ is irrelevant we will just denote the
formula by F, but we will then explicate that the formula is in fact an in-
dexed formula (and not a core or labelled formula). When identification
of the formula number is needed it will be placed below the formula, F

i
κ.

When Fκ is a non-atomic formula, the formula number will be placed under
the main connective/modal operator of F. Copy histories will be written
n1.n2.nm. If κ is a copy history, κ + n, where n is a natural number, de-
notes the copy history obtained by adding n to the last number of κ. κ.κ′

denotes the copy history resulting from concatenating the two the copy
histories κ and κ′. If a copy history is 0, it will not be displayed. ◦

Two indexed formulae are syntactically equal only if their labelled formu-
lae and indices are equal and their subformulae are assigned formula num-
bers in the same way.

Example 5.2 (Indexed formula) The following formulae are all examples of
distinct indexed formulae:

• 3
10

(P
6
→
4

2
2

P
9
)[c]>

• (P
1
→
2

(Q
3
∨
4

(P
5
∧
6

R
7
)))[s]2>

• 2
6

Q
4
[U]2.2

> (1)

• 2
6

Q
4
[U]1.0

> (2)

• 2
2

Q
3
[U]2.2

> (3)

Notice especially that the three last formulae, marked (1), (2) and (3) are
different: The two formulae (1) and (2) differ since their copy histories are
not equal, and (1) and (3) are distinct given that they have different formula
numbers. ◦

Definition 5.3 (Immediate subformulae)
Let Xκ and Yκ′ be two indexed formulae. We write Xκ <1 Yκ′ and say that
Yκ′ is an immediate subformula of Xκ only if X <1 Y holds for the labelled
formulae X and Y, and κ′ = κ or κ′ = κ.n, where n ≥ 0. �

As done with core and labelled formulae, we use the definition of immedi-
ate subformulae together with the subformula relations defined in Defini-
tion 2.5 to define the notions of subformulae and proper formulae also for
indexed formulae.

51

Example 5.4 (Subformulae) Let ψ denote 22Q[U]0>. The formula 2Q[s]0.0
> is

an immediate subformula of ψ, and 2Q[s]0.1
> is also an immediate subfor-

mula of ψ, since the labelled formula 2Q[s]> is an immediate subformula
of the labelled formula 22Q[s]> and the copy history of the proposed sub-
formula is κ.0, where κ is the copy history of ψ. The formula 2Q[s]0.1

> is not
a subformula of 2Q[s]0.0

> , given that their labelled formulae are not imme-
diate subformulae and that 0.0 is not a prefix of 0.1.

Every subformulae of 2Q[s]0> and 2Q[s]1> is a subformula of ψ, while there
is no subformula relation between any pair in the sets of subformulae of
2Q[s]0> and 2Q[s]1>. ◦

Remark (to Example 5.4). Figure 5.2 displays the above information visually.
The reader may consult this figure now, but note that the figure also illus-
trates the rules of LCgt which are established on the next page. ◦

The satisfaction relation defined on labelled formulae and models of the
labelled language (Definition 3.11) are easily extended to indexed formulae.

Definition 5.5 (Truth)
Let � be the relation defined in Definition 3.11 and (M, φ) be an L-model
for the labelled language. An indexed formula Fκ is satisfied in (M, φ),
(M, φ) � Fκ, if and only if the labelled formula F is satisfied in (M, φ),
(M, φ) � F. �

Using this definition, the notions of satisfaction for sets of indexed formula,
and satisfiable and true for both indexed formulae and sets of indexed for-
mula are obvious and are left for the reader.

Example 5.6 (Truth) Recall the formulae in Example 5.2 marked (1), (2) and
(3). These formulae differ because they have different indices, but if one of
the formula is satisfied in a model (M, φ), then all of the indicated formu-
lae is satisfied in (M, φ) since they are identical when removing formula
numbers and copy histories. ◦

Definition 5.7 (Indexed sequent)
An indexed sequent is a set of indexed formulae. An empty labelled indexed
sequent is an indexed sequent in which every formula is labelled with ε, the
copy history of every formula is 0 and every formula number occurring
in the indexed sequent is distinct. An unlabelled formula occurring in an
indexed sequent is by default labelled with ε. �

52 CHAPTER 5. THE CALCULUS LCgt

Example 5.8 (Empty labelled indexed sequent) The following two indexed se-
quents are empty labelled. Remember that we by default do not display
copy histories equal to 0.

P
1

, Q
2
→
3

P
4

, P
5
` R

6
, D

7
P
1
→
4

(Q
2
∧
5

R
3
) ` P

9
∧
7

R
6

The indexed sequent
P
1
→
4

(Q
2
∧
5

R
3
) ` P

9
∧
1

R
6

1

is not empty labelled for two reasons: The copy history of every formula is
not 0 and not all formula numbers are distinct as 1 is the formula number
of two formulae, P and P ∧ R. ◦

Γ, ακ
1, ακ

2

Γ, ακ

Γ, βκ
1 Γ, βκ

2

Γ, βκ

Γ, ν
i

κ+1, ν0(s)κ.0

Γ, ν
i

κ s
Γ, πκ

0(ci)
Γ, πκ

i

ci

Figure 5.1: Rules of LCgt. Γ is a set of indexed formulae. The label s in
the ν-rule is an arbitrary label, while the label parameter ci occurring in the
π-rule is the letter c subscripted with the formula number of the principal
formula π.

The rules of LCgt are listed in Figure 5.1. All formulae are indexed formulae
of the indicated type. Γ is a placeholder for a possibly empty set of indexed
formulae. No rule introduces new formula numbers. Only ν-inferences
manipulate copy histories, setting the copy history of the active ν-formula
equal to the copy history of the principal ν-formula incremented by one
and adding a new last number 0 to the copy history to the ν0-formula. This
means that from a formula’s copy history one can read how many times
it has gone through an explicit copy—perhaps as the subformula of the
formula being copied—and how many ν-formulae it is a subformula of.

The other important thing to notice in the rules of LCgt is that the π-rule
introduces a parameter ci where i is the formula number of the princi-
pal formula of the inference. This means that two (differently) indexed
π-formulae with equal formula numbers will introduce the same label pa-
rameter. This permits a reduction in the amount of label parameters oc-
curring in a skeleton and is the key factor in establishing the termination
bounds of the calculus LCfv.

Remark. In [Beckert and Goré 1997] π-formulae introduce the gödelization
of itself as label. This is not too different from our approach, as the formula
number can be interpreted as the gödelization of the formula. However,
we formula enumerate every formula differently—even formulae where

53

22Q[U]0
⊤

2Q[s]0.0

⊤

Q[s]0.0.0

⊤

2Q[s]0.1

⊤

Q[s]0.1.0

⊤

2Q[s]0.2

⊤

22Q[U]1
⊤

2Q[s]1.0

⊤

Q[s]1.0.0

⊤

2Q[s]1.1

⊤

22Q[U]2
⊤

<1

<1 <1

<1 <1 <1 <1

<1

Figure 5.2: Copy histories and subformulae. The solid arrows denote the
immediate subformula relation, the dotted arrows explicit copying, and
the dashed lines depict how formulae are generated by rule application.
All formulae in the figure are ν-formulae. There are two active formulae in
a ν-inference, so every inference is in the figure denoted by two outwards
dashed arrows.

their labelled formulae are syntactically equal, forcing all differently for-
mula numbered π-formulae to introduce different labels. ◦

Consult Figure 5.2. What we can see from the figure, and as was exempli-
fied in Example 5.4, is how copy histories control the subformula relation:
if a formula X is explicitly copied, then no subformula relation between X
and its explicit copy X′ is formed, nor between X and any of the resulting
formulae from rule application on X′. But if Y is a proper subformula of
X, then every formula, even explicitly copied formulae, resulting from rule
application on Y is a subformula of X.

Definition 5.9 (LCgt
L -derivation)

A skeleton of indexed sequents having an empty labelled root is an LCgt
L -

derivation if it respects the following conditions set by the logic L:

• every inference is an instance of a rule in the LCgt-calculus,

• the contextually equivalent condition: The inferences r and r′ belong to
the same label if the respective inferences are contextually equivalent,

• the ground label condition: A ν-inference may only introduce ground
labels t ∈ ParL,

54 CHAPTER 5. THE CALCULUS LCgt

• the neighbourhood condition: A ν-inference may only introduce the
ground label s if it already occurs in the branch or if s belongs to a
ν-inference in a different branch, and

• the non-empty W+ condition: A ν-inference r is applicable only if there
is a label s ∈ ParL in r. �

Compare the above definition to the definition of an LCg
L-derivation (Def-

inition 4.7) and observe that an LCgt
L -derivation does not require a skele-

ton to respect the eigenparameter condition, nor does the new neighbour-
hood condition added in Definition 5.9 preserve the immediate effects of
the missing condition. Since the label parameter that a π-inference intro-
duces is governed by a formula number, adding side conditions to ensure
the “freshness” of the label makes no sense, thus an eigenparameter con-
dition is in this case of no use. Instead we could have made sure that the
label was fresh by restricting the label introduction by ν-formulae to only
“unfresh” labels, i.e., labels already occurring in the branch. But, as there
already is a restriction on what ground labels a ν-inference may introduce,
namely the contextually equivalent condition, such a “freshness” condi-
tion may cause a “deadlock” in the proof search: A ν-inference may not be
applicable as it must by the contextually equivalent condition introduce a
certain label, but this violates the unfreshness-condition as the label does
not occur in the branch. An example of such a deadlock is displayed below.

Example 5.10 (Freshness condition in LCgt causes deadlock) This example illus-
trates a deadlock situation obtained if a freshness condition equivalent to
the eigenparameter condition were to be upheld in LCgt. The sequent 2P `
22P ∧22P is K45-valid. For reasons of readability only the formula num-
bers of π-formulae are indicated. Copy histories are neglected.

×
2P, P[c2] ` P[c2] c2

2P ` P[c2] c2
2P ` 2

2
P[c1]

c1
2P ` 2

1
2
2

P

◦
2P ` P[c4] c4
2P ` 2

4
P[c3]

c3
2P ` 2

3
2
4

P

2P ` 2
1
2
2

P ∧2
3
2
4

P

Observe that the ν-formula in the right leaf sequent is caught in a dead-
lock: it cannot introduce the label c4, which would close the skeleton since
it’s contextually equivalent formula in the other branch belongs to c2, and
it cannot introduce c2 as it does not occur in the right branch, making the
search come to a halt. Since the sequent is valid, this example indicates a

55

lack of completeness of an LCgt-calculus where a freshness condition equiv-
alent to the eigenparameter condition is included.

The skeleton below displays that if we instead use the neighbourhood con-
dition as a freshness condition, a continuation in the search is granted.

×
2P, P[c2] ` P[c2] c2

2P ` P[c2] c2
2P ` 2

2
P[c1]

c1
2P ` 2

1
2
2

P

×
2P, P[c4], P[c2] ` P[c4] c4

2P, P[c2] ` P[c4] c2
2P ` P[c4] c4
2P ` 2

4
P[c3]

c3
2P ` 2

3
2
4

P

2P ` 2
1
2
2

P ∧2
3
2
4

P

The introduction of c2 is now allowed in the right branch by the neighbour-
hood condition, since the label already belongs to a ν-inference in the other
branch. The introduction of c2 in the right branch is enforced by the contex-
tually equivalent condition, but in the uppermost inference in right branch,
the ν-inference may, by the neighbourhood condition introduce any of the
label parameters c2, c3, c4, and since the principal formula of this inference
is not contextually equivalent to any other formula in the skeleton, it may
freely choose which of these labels to introduce. ◦

Remark. As we saw in Example 4.17, the eigenparameter conation is a nec-
essary condition to ensure soundness of LCg. Is it safe to remove this con-
dition from LCgt? What remedies the situation are two things:

1. the freshness condition the neighbourhood condition constitutes: A
ν-inference may only introduce the ground label s if it already occurs in the
branch or if s belongs to a ν-inference in a different branch. This means
that every label parameter in an LCgt-derivation is first introduced to
the skeleton by a π-inference, and

2. the new π-rule in LCgt, which hinders two not contextually equiva-
lent π-formulae to introduce equal label parameters.

This is in fact enough to preserve soundness of LCgt despite the removal of
the eigenparameter condition. ◦

Having defined LCgt
L -derivation we are ready to establish results concern-

ing derivations in LCgt and the indices of formulae.

56 CHAPTER 5. THE CALCULUS LCgt

Lemma 5.11 Let X and Y be indexed formulae with equal formula num-
bers occurring in the LCgt-derivation. The formulae are equal up to la-
belling and copy history. �

Proof. Since every formula and subformula occurring in the empty labelled
root of an LCgt-derivation are distinctly formula numbered and no infer-
ence manipulates formula numbers—through either implicit or explicit copy
of formulae—the claim holds. 2

The following corollary is used in the proof of soundness of LCgt together
with the contextually equivalent condition and the neighbourhood condi-
tion to preserve the effects of the eigenparameter condition.

Corollary 5.12 If two indexed π-formulae X and Y in an LCgt-derivation
have equal formula numbers, their respective π0-formulae, X0 and Y0 are
identical up to copy history. �

Proof. By Lemma 5.11 X and Y are identical up to labelling and copy his-
tory. Then X0 and Y0 are also identical up to labelling and copy history as
they have the same index. By the π-rule in LCgt, X0 and Y0 are labelled
using the same label parameter, given that X and Y have equal formula
numbers. 2

Remark (Conservation of the eigenparameter condition). This remark gives in-
sights to why neglecting to include the eigenparameter condition in LCgt is
not hazardous for the soundness of LCgt. Assume the eigenparameter con-
dition is violated by a LCgt-derivation letting a π-inference r introducing a
label parameter c occurring in the denominator. If the label c in the denom-
inator belongs to a π-inference r′, when r and r′ have equal formula num-
bers and their active formulae are identical up to copy history, by Corol-
lary 5.12. If c belongs to a ν-inference, there must, by the neighbourhood
condition, be a π-inference in the skeleton with the same formula number
as the principal formula of r, which has introduced c to the skeleton when
c was fresh denominator. These results are vital for establishing soundness
of LCgt. ◦

The indexing of formulae is only used for keeping track of copies and con-
textually equivalent formulae, and thereby also the admissibility of deriva-
tions and proofs. There is no need to revise the semantical interpretation
of indexed formulae: An indexed formula is satisfiable if and only if its
underlying labelled formula is satisfiable, i.e., when examining the truth of
indexed formulae one can treat the formulae as labelled formula by disre-
garding their copy histories all together. The same method is used when
identifying axioms in LCgt.

57

Definition 5.13 (Axiom, LCgt)
An axiom in LCgt is an indexed sequent Γ such that the labelled sequent
obtained by disregarding all copy histories in Γ is an axiom in LCg. �

It immediately follows by Lemma 4.12 that an axiom in LCgt is not satisfi-
able.

Definition 5.14 (LCgt
L -proof)

An LCgt
L -proof is an LCgt

L -derivation where there in every branch exists an
axiom. �

When calling an indexed formula or sequent labelled we address the la-
belled formula or labelled sequent gathered by removing every copy his-
tory from the indexed object in question.

Example 5.15 (LCgt
S5-proof, ground label condition, axiom) This is an LCgt

S5-proof
where its labelled root sequent is the same as the root sequent found in
Example 4.18.

×
P
2
[c1] ` P

4
[c1]

` P
2
→
3

P
4
[c1]

c1` 2
1
(P

2
→
3

P
4
)

×
P
7

0.0 ` P
9

0.0, 3
6
(P

7
→
8

P
9
)1

` P
7
→
8

P
9

0.0, 3
6
(P

7
→
8

P
9
)1

ε
` 3

6
(P

7
→
8

P
9
)

` 2
1
(P

2
→
3

P
4
) ∧

5
3
6
(P

7
→
8

P
9
)

The differences between the two proofs, except the obvious, that indexed
sequents are indexed and labelled sequents are not, is the difference in the
introduced labels. The label parameter introduced in the left branch is and
must be c1 since 1 is the formula number of the π-formula which introduces
the label. In the right branch, the ν-formula with index (6, 0) can only intro-
duce ε given that ε is the only label occurring in the branch at this stage. As
a result the derivation is an LCgt

S5-proof. The skeleton is no LCgt
K45-derivation

and thus no LCgt
K45-proof as it violates the ground label condition in K45 by

introducing ε.

Observe that the indexed sequents P
2
[c1] ` P

4
[c1] and P

7
0.0 ` P

9
0.0, 3

6
(P

7
→
8

P
9
)1

are axioms even though their closing pairs are differently indexed. ◦

Example 5.16 (LCgt
S5-proof, neighbourhood-, non-empty W+ cond.) Recall Exam-

ple 4.19. This is the same example adapted to the LCgt-calculus. χ is an
abbreviation for 3

1
(P

2
→
3

2
4

P
5
).

58 CHAPTER 5. THE CALCULUS LCgt

×
P
2
[c6]0.0, P

2
[c4]1.0 ` P

5
[c4]0.0, 2

4
P
5
[c4]1.0, χ2, Q

7
[c6]

P
2
[c6]0.0 ` P

5
[c4]0.0, P

2
→
3

2
4

P
5
[c4]1.0, χ2, Q

7
[c6]

c4
P
2
[c6]0.0 ` P

5
[c4]0.0, χ1, Q

7
[c6]

c4
P
2
[c6]0.0 ` 2

4
P
5
[c6]0.0, χ1, Q

7
[c6]

` P
2
→
3

2
4

P
5
[c6]0.0, χ1, Q

7
[c6]

c6` 3
1
(P

2
→
3

2
4

P
5
), Q

7
[c6]

c6` 3
1
(P

2
→
3

2
4

P
5
), 2

6
Q
7

Notice that as opposed to what was the case in the LCg
S5-derivation in Ex-

ample 4.19, where we by removing 2Q and its subformulae occurring in
the skeleton obtained an LCg

S5-proof of ` 3(P → 2P), the removal of 2Q
and Q[c6] in the current example does not result in an LCgt

S5-proof. The rea-
son for this is that the neighbourhood condition makes the introduction of
c6 by the ν-formula 3

1
(P

2
→
3

2
4

P
5
)⊥ illegal. But clearly as the formula is LCg

S5-

provable, it should also be LCgt
S5-provable, given that a L-countermodel for

an LCg
L-derivation is also an L-countermodel for an LCgt

L -derivation. The
remedy is that the introduction of ε by a ν-formula in LCgt

S5 is always le-
gal, since ε ∈ ParS5 occurs in every branch of every LCgt-derivation. An
LCgt

S5-proof of 3(P → 2P)⊥ is obtained by the following LCgt
S5-derivation.

×
P
2

0.0, P
2
[c4]1.0 ` P

5
[c4]0.0, 2

4
P
5
[c4]1.0, χ2

P
2

0.0 ` P
5
[c4]0.0, P

2
→
3

2
4

P
5
[c4]1.0, χ2

P
2

0.0 ` 2
4

P
5

0.0, χ1

` P
2
→
3

2
4

P
5

0.0, χ1

ε
` 3

1
(P

2
→
3

2
4

P
5
)

The skeleton below displays the attempt of proving ` 3
1
(P

2
→
3

2
4

P
5
) in LCgt

K45.

◦
` 3

1
(P

2
→
3

2
4

P
5
)

The skeleton is an LCgt
K45-derivation, but as we see the proof attempt had to

be abandoned at a very early stage because of the non-empty W+ condition:
There are no label parameters s ∈ ParK45 in the skeleton to be introduced

5.1. SOUNDNESS 59

by a ν-inference applied to the only formula in the root sequent. A K45-
countermodel for the formula is a model where W+ = ∅. ◦

Observe that by removing the copy histories from the LCgt-derivations in
the above examples, thus transforming the indexed sequents into labelled
sequents, the LCgt

L -proofs in these examples transform into LCg
L-proofs. Al-

though it does not apply for all LCgt-derivations, it is no coincidence. This
observation forms the basis for the soundness and completeness proofs of
LCgt.

5.1 Soundness

The differences between LCg and LCgt is that LCgt implements a greater
reuse of label parameters than LCg. This may seem as a restriction as we
do not have the same choice of what label parameter to introduce by a π-
inference, but it may just as well be though of as an added liberty since no
eigenparameter condition needs to be enforced in LCgt. The point is that
soundness of LCgt does not immediately follow by soundness of LCg, as it
would if LCgt clearly was a restricted version of LCg.

The proof of soundness of LCgt follows the same lines as the soundness
proof of LCg. To simplify the proof we introduce the notion of a balanced
skeleton.

Definition 5.17 (Balanced skeleton)
Let δ be a skeleton and X be a formula in δ to which a rule is applied. The
skeleton δ is balanced only if rule is applied to every contextually equiva-
lent formula of X in δ. �

If a skeleton contains only one branch, it is trivially balanced. The notion is
important when there are multiple branches in a skeleton. If such a skele-
ton is balanced we know that if an inference is applied on a formula in
one branch, then there are contextually equivalent inferences applied in
every branch. Notice that every skeleton can be balanced. If a skeleton δ
is not balanced, then there are at least two branches in δ where one of the
branches contains a formula to which a rule has been applied and an other
branch contains a contextually equivalent formula analysed by no rule. Ap-
ply a rule to the latter formula and repeat the process until the skeleton is
balanced.

Lemma 5.18 (Countermodel preservation) Assume there is an L-counter-
model for the branch θ in the LCgt

L -derivation δ, and let Γκ be a leaf sequent
of δ. Then there is an L-countermodel for the LCgt

L -derivation δ′, the skele-
ton resulting from applying an admissible inference on Γκ. �

60 CHAPTER 5. THE CALCULUS LCgt

Proof. If Γ is not the leaf of θ, the proof is trivial (see Lemma 4.21), so assume
Γ is the leaf sequent of θ. Let θ′ be the branch in δ′ obtained from δ by
adding a sequent of the numerator in the inference on Γ. We prove the
lemma by checking for each possible type of inference r on Γκ producing
the branch θ′ in δ′, that there is an L-countermodel for δ′.

α, β, ν. Assume the inference r is of either type α, β or ν. Observe that by
removing the indices from the α-, β- and ν-rules of LCgt they are identical to
the same rules in LCg, and that the restrictions set by the conditions govern-
ing inferences of type α, β or ν in an LCgt-derivation also meet the restric-
tions set by the conditions for the same inferences in an LCg-derivation. By
the definition of truth for indexed formulae (Definition 5.5) we know that
every L-countermodel for the indexed sequent Γκ is an L-countermodel for
the labelled sequent Γ, and vice versa. Apply Lemma 4.21 (Countermodel
preservation [in LCg]) and we are done.

π. The π-rule and the same as the conditions it has to abide by in LCgt are
not as in LCg, thus we cannot use the exact same argument as done for the
types α, β and ν in this proof.

Let r be of type π and assume that δ is balanced. There are two cases to
consider. The first case is the simplest one: Assume the label parameter r
introduces is fresh to the denominator, then r enforced the eigenparameter
condition in LCg, and the claim holds by the proof of Lemma 4.21.

Now the second case. Assume that the label parameter c introduced by r is
not fresh to the skeleton, and that the label c occurring in the denominator
is introduced by a ν-formula. By the neighbourhood condition the label
parameter must have been present in the skeleton prior to the introduction
by the ν-formula. The initial introduction of c to δ, when c was fresh to
the skeleton, must have been done by a π-inference r′, also by conclusion
of the neighbourhood condition. The active formulae of r and r′ must, by
Corollary 5.12, be equal up to copy history, since the principal formula of
r and r′ have equal formula numbers be the fact they introduce the same
label. Given that δ is balanced, a formula X contextually equivalent to the
active formula of r′, must occur on θ. By Corollary 4.6 and 5.12, X and
the active formula or r′ are equal up to copy history. Then, as there by
assumption is an L-countermodel for θ which satisfies X, the same L-model
satisfies the active formula of r′ and is an L-countermodel for θ′.

If the label parameter c introduced by r is not fresh because occurs in the
denominator and has been introduced by a π-inference, the claim follows
from a simplified version of the above argument. 2

Theorem 5.19 (Soundness of LCgt)
Let δ be an LCgt

L -proof of an indexed sequent Γ. Then Γ is L-valid. �

5.2. COMPLETENESS 61

Proof sketch. Utilize Lemma 5.18 and arrive at similar argumentation as in
the proof of soundness of LCg (Theorem 4.22). 2

5.2 Completeness

Completeness of LCgt is established by adapting the proof of completeness
in the previous chapter to LCgt.

Theorem 5.20 (Completeness of LCgt)
If a labelled sequent is not LCgt-provable, it has an L-countermodel. �

Proof sketch. A proof is found by carrying out the exact same steps as in
the proof of completeness of LCg (Theorem 4.25): Let Γ be a sequent which
is not LCgt

L -provable. Then there is an open branch in the LCgt
L -derivation

obtained by application of a fair LCgt
L -derivation construction rule. From

this branch we construct an L-model—also done in the same manner as in
Theorem 4.25—satisfying every formula on the branch. Since Γ is a sequent
on this branch, the L-model is an L-countermodel for Γ. 2

62 CHAPTER 5. THE CALCULUS LCgt

Chapter 6

The Calculus LCfv

The LCfv-calculus is a free-variable calculus of indexed formulae allowing
tight control over both the relation of contextually equivalence and the in-
troduction of label parameters by π-formulae. By utilizing label variables
the calculus conforms to the least commitment requirement set in the intro-
duction of this thesis by postponing the choice of label parameter to intro-
duce by ν-formulae and later decide on what label parameter to introduce
by a substitution of labels.

Throughout this chapter we compare the two calculi LCgt and LCfv along-
side each other. This constitutes the scarlet thread of this chapter, making
it apparent where the efficiency and flexibility of LCfv lies.

Γ, ακ
1, ακ

2

Γ, ακ

Γ, βκ
1 Γ, βκ

2

Γ, βκ

Γ, ν
i

κ+1, ν0(U(i,κ))κ.0

Γ, ν
i

κ
U(i,κ)

Γ, πκ
0(ci)

Γ, πκ

i

ci

Figure 6.1: Rules of LCfv. Γ is a set of indexed formulae. The label variable
U(i,κ) in the ν-rule is the letter U subscripted with the index of the principal
ν-formula, while the label parameter ci occurring in the π-rule is the letter
c subscripted with the formula number of the principal formula π.

The rules of the calculus LCfv are displayed in Figure 6.1. They are the same
rules as for the LCgt-calculus, only differing in the label introduced by a
ν-inference: The LCfv-calculus requires the introduced label to be a label
variable and the label is always the label variable U subscripted with the
index of the principal formula of the inference. Only ν-inferences manipu-
late copy histories, setting the copy history of the active ν-formula equal to
the copy history of the principal ν-formula incremented by 1, and adding a

63

64 CHAPTER 6. THE CALCULUS LCfv

new last digit 0 to the copy history of the active ν0-formula.

Even though the formula numbers of the two ν-formulae occurring in the
ν-rule are different, we still say that the ν-formula is explicitly copied from
the denominator to the numerator.

Label variables are really a way of postponing the choice of label param-
eters introduced by ν-inferences. The choice is done by applying a label
substitution to a set of label variables. A label substitution is a function
mapping label variables to labels.

Definition 6.1 (Label substitution)
Let σ be a partial function σ : Var → Var ∪ Par ∪ {ε} and let DOM(σ) denote
the set of label variables U ∈ Var such that U ∈ DOM(σ) if and only if
Uσ 6= U. We call σ a label substitution if it accepts the following conditions
when extended to all labels:

1. cσ = c for every c ∈ Par ∪ {ε}, and

2. Uσ = U, if U 6∈ DOM(σ). �

Let X[s] and F be indexed formulae, Γ an indexed sequent and δ a skele-
ton. We extend a label substitution σ to indexed formulae, sequents and
skeletons as follows;

• X[s]σ = X[sσ],

• Γσ = {Fσ | F ∈ Γ} and

• δσ is the skeleton obtained by applying σ to every sequent in δ.

We say that a label substitution grounds or is grounding for X, if Xσ does not
contain any label variables.

Remark. Throughout this chapter we will use the sequent

3
1
(P

2
→
3

2
4

P
5
)⊥, 2

6
Q
7
⊥

in examples. To focus attention on the notions being exemplified, skele-
tons with this sequent as root sequent may be simplified in one or more
of the following ways: Indices may not displayed, more readable labels
than subscripted c’s and U’s are introduced, and the explicit copies of ν-
formulae may not be shown. In examples using this sequent, the letters
c, b, U and V will respectively abbreviate the labels c4, c6, U(1,0) and U(2,0).
Example 6.23 on page 78 displays a fully annotated skeleton over the above
sequent. Fully annotated in the sense that all formula numbers, copy his-
tories and explicit copies are shown, and labels are not abbreviated. ◦

65

Example 6.2 (Label substitution) Let Γ = {P[U], Q[V], P[V], R[c], S[W], Q[U]}
and σ2 = {V 7→ b, W 7→ U}. Then Γσ2 = {P[U], Q[b], P[b], R[c], S[U], Q[U]}.

The two skeletons below illustrate the result of applying the label substitu-
tion σ = {U 7→ b} to a skeleton.

P[U] ` P[c], Q[b]
c

P[U] ` 2P[U], Q[b]
` P → 2P[U], Q[b]

b` P → 2P[U], 2Q
U` 3(P → 2P), 2Q

P[b] ` P[c], Q[b]
c

P[b] ` 2P[b], Q[b]
` P → 2P[b], Q[b]

b` P → 2P[b], 2Q
b` 3(P → 2P), 2Q

δ δσ

Call the left skeleton δ. The skeleton to the right is the skeleton δσ obtained
by applying σ to δ. ◦

Example 6.3 (Order of inferences) The skeleton δσ to the right in the previ-
ous example might look like an LCgt

L -derivation, but since the lowermost
rule application is an ν-inference introducing a label parameter fresh to the
skeleton, δσ does not comply with the neighbourhood condition manda-
tory for an LCgt

L -derivation. Observe that it is possible to apply the inference
in δ to which the label variable U belongs and the inference introducing b
in the opposite order, i.e., first applying an inference to 2Q⊥ and then to
3(P → 2P)⊥, obtaining the skeletons δ′ and δ′σ in the example below.

Let δ′ be the skeleton δ in Example 6.2, except that the two lowermost in-
ferences are interchanged. σ = {U 7→ b} is the same label substitution as
in Example 6.2.

P[U] ` P[c], Q[b]
c

P[U] ` 2P[U], Q[b]
` P → 2P[U], Q[b]

U` 3(P → 2P), Q[b]
b` 3(P → 2P), 2Q

P[b] ` P[c], Q[b]
c

P[b] ` 2P[b], Q[b]
` P → 2P[b], Q[b]

b` 3(P → 2P), 2Q[b]
b` 3(P → 2P), 2Q

δ′ δ′σ

As opposed to the skeleton δσ of Example 6.2, δ′σ is an LCgt-derivation. The
lesson learned is that order of inferences is crucial. This is exactly what we
want to relax in LCfv. Notice that the leaf sequents of δ in Example 6.2 and
δ′ are equal, indicating that the skeletons are invariant under order of rule
application.

66 CHAPTER 6. THE CALCULUS LCfv

The skeleton δσ′ is not an LCgt-proof as it misses an axiom. A more promis-
ing label substitution in creating an LCgt

L -proof is σ′ = {U 7→ c}.

P[c] ` P[c], Q[b]
c, †

P[c] ` 2P[c], Q[b]
` P → 2P[c], Q[b]

c, ‡
` 3(P → 2P), Q[b]

b` 3(P → 2P), 2Q
δ′σ′

Now the leaf sequent contains an axiom, but the skeleton is still not an
LCgt

L -proof. This time it is the introduction of c in the second lowermost in-
ference which breaks the neighbourhood condition. Notice that we cannot
create an admissible LCgt-derivation by changing the order of inferences, as
we did in when we created δ′σ from δσ, displayed by the two skeletons ear-
lier in this example. To create an admissible LCgt-derivation from δ′σ′ we
would have to change the order of inferences such that the label c belong-
ing to the inference marked † is introduced before the inference marked
‡. This is impossible as the principal formula of † is a subformula of the
principal formula of ‡. ◦

One of the main objectives in the construction of the free-variable calculus
LCfv is to make derivations invariant under rule application order. As we
see from the skeletons in Examples 6.2 and 6.3 there are dependencies be-
tween the inferences. To be able to express such dependencies we define
the notion of a reduction ordering on inferences in a skeleton.

Definition 6.4 (Reduction ordering)
Let r1 and r2 be two inferences on the same branch in a skeleton and σ be a
label substitution. The reduction ordering induced by σ is denoted �σ and
is defined as the transitive closure of � ∪ ≺σ where

• � is the weakest binary relation such that r1 � r2 if the principal
formula of r2 is an active formula of r1, and

• ≺σ is the weakest binary relation such that r1 ≺σ r2 if s belongs to r1,
U belongs to r2 and Uσ = s. �

Let ≪ denote the transitive closure of �, and call the principal formula of
r2 a descendant of the principal formula of r1, if r1 ≪ r2. Notice that the set
of descendants of X is not necessarily a set of proper subformulae of X, as
the explicit copy of a ν-formula is a descendant of its origin, but not one of
its proper subformulae.

67

Let δ be a skeleton and σ a label substitution. The �σ-relation encodes the
order of inferences applied to δσ necessary to achieve an LCgt-derivation.
We say that the pair 〈δ, σ〉 conforms to �σ if r1 �σ r2 implies that r1 is below
r2 in the skeleton δ. The�-relation reflects the fact that an inference cannot
be applied directly to a proper subformula of a formula in a sequent, e.g.,
we cannot apply an inference to ¬Q in P ∧ ¬Q before a rule is applied to
P ∧ ¬Q. The ≺σ-relation relates to the eigenparameter condition in LCg: if
a label variable is mapped to a label parameter, the label parameter must
be introduced before the label variable to ensure that π-inferences do not
introduce label parameters which are not fresh to the denominator.

Example 6.5 (Reduction ordering) The skeletons δ and δ′ from Example 6.2
and Example 6.3 are redisplayed below. The inferences are in both skele-
tons named rx, where x is either the label it introduces or the main connec-
tive of its principal formula.

P[U] ` P[c], Q[b] rc
P[U] ` 2P[U], Q[b] r→` P → 2P[U], Q[b] rb` P → 2P[U], 2Q rU` 3(P → 2P), 2Q

P[U] ` P[c], Q[b] rc
P[U] ` 2P[U], Q[b] r→` P → 2P[U], Q[b] rU` 3(P → 2P), Q[b] rb` 3(P → 2P), 2Q

δ δ′

The�-relation on the inferences in both δ and δ′ is�= {〈rU , r→〉, 〈r→, rc〉}.
That the same relation holds for both skeletons is of course no coincidence
as the �-relation really is the immediate subformula relation recasted into
dependencies on an order of inferences. What the �-relation for the two
skeletons encodes in these particular cases is that rU must be applied prior
to r→, and rc must be applied after r→.

Let σ = {U 7→ b}, causing ≺σ = {〈rb, rU〉} and �σ to be the transitive
closure of {〈rb, rU〉, 〈rU , r→〉, 〈r→, rc〉}. We see that 〈δ′, σ〉 does conform to
�σ, while 〈δ, σ〉 does not. This complies with the results from the examples
6.2 and 6.3, where we saw that δσ was not an LCgt-derivation, while δ′σ
was. ◦

Having established the reduction ordering induced by a label substitution
on inferences in a skeleton we are ready to define an LCfv

L -derivation.

Remark. Notice that we in the following bend the definition of an LCL-
derivation (Definition 3.22) a bit, requiring that an LCfv

L -derivation is not
just a skeleton abiding by some conditions, but a pair comprised of a skele-
ton and a label substitution where both need to conform to a set of condi-
tions. ◦

68 CHAPTER 6. THE CALCULUS LCfv

Definition 6.6 (LCfv
L -derivation)

Let δ be a skeleton and σ be a label substitution. The pair 〈δ, σ〉 is an LCfv
L -

derivation if the root sequent of δ is empty labelled and the following con-
ditions are met:

• every inference in δ is an instance of a rule in the LCfv-calculus,

• σ is an LCfv
L -admissible label substitution. The admissible substitu-

tions in K45 and S5 differ:

– σ is an LCfv
K45-admissible label substitution, if σ satisfies the con-

ditions:

* the groundness condition: Uσ ∈ Par for every label variable U
in the domain of σ,

* the neighbourhood condition: if σ(U) = c, then there is a branch
in the skeleton containing an occurrence of c and an occur-
rence of U, and

* the non-empty W+ condition: if the reduction ordering �σ in-
duced by σ is reflexive, there is an inference rc belonging
to the label parameter c for which there is no inference rU
belonging to a label variable U such that rU ≪ rc.

– No restrictions apply to a label substitution in an admissible
LCfv

S5-derivation. �

Example 6.7 (LCfv-derivation) Let δ, δ′, σ and σ′ be as in the previous exam-
ples (Example 6.2, 6.3 and 6.5). Then 〈δ, σ〉, 〈δ, σ′〉, 〈δ′, σ〉 and 〈δ′, σ′〉 are all
LCfv-derivations.

Recall, as stated in the Examples 6.2 and 6.3, that of the skeletons δ′σ, δ′σ′

and δσ only the last is an LCgt
L -derivation. This should serve an early indi-

cation of the increased flexibility of LCfv compared to LCgt. ◦

Given that what label an inference introduce is entirely decided by the in-
dex of its principal formula, a skeleton abiding by the rules of LCfv has leaf
sequents invariant under order of rule application.

Example 6.8 (Invariance under rule application) The skeletons δ′2–δ′5 below are
the same as the skeletons δ2–δ5 found on the pages 34 and 36, except the
skeletons below are adapted to the rules of LCfv. Formula numbers are only
displayed in the root sequent and copy histories are neglected altogether.

69

P ` R[c4] Q ` R[c4]
P ∨Q ` R[c4] c4P
1
∨
2

Q
3
` 3

4
R
5

P ` R[c4] c4P ` 3R
Q ` R[c4] c4Q ` 3R

P
1
∨
2

Q
3
` 3

4
R
5

δ′2 δ′3

2P, P[U1] ` Q[c3]
ν, U1

2P ` Q[c3] π, c3
2
1

P
2
` 2

3
Q
4

2P, P[U1] ` Q[c3] π, c3
2P, P[U1] ` 2Q

ν, U1
2
1

P
2
` 2

3
Q
4

δ′4 δ′5

Observe that the leaf sequents of the skeletons δ′2 and δ′3 are equal. The
important feature to notice is that the π-inferences in each branch introduce
the same label parameter, since their principal formulae have equal formula
numbers. The leaf sequents of δ′4 and δ′5 are also equal. Here it the fact that
ν-formulae introduce label variables that provides the remedy. The strict
control of what label to introduce, enforced by the rules of LCfv through the
aid of indices, gives us the desired result of invariance of rule application
order. ◦

How LCfv- and LCgt-derivations are related are explained in detail in the
following pages. The discussion is divided into the points

• grounding,

• the contextually equivalent condition,

• permutation,

• cycles, and

• the non-empty W+ condition.

Grounding, permutation and cycles are concepts yet to be defined. The
two latter concepts are especially crucial instruments in explaining the in-
creased efficiency of LCfv.

Grounding. One difference between LCgt and LCfv is that an LCfv
L -derivation

may contain label variables, which is not the case for an LCgt
L -derivation.

An LCfv
S5-derivation does not require its label substitution to be grounding

for its skeleton, if 〈δ, σ〉 is an LCfv
S5-derivation, then the skeleton δσ may con-

tain label variables. The next lemma inspired by [Antonsen 2003, Lemma
2.11] provides the remedy.

Lemma 6.9 (Grounding) Let 〈δ, σ〉 be an LCfv
L -derivation, then there is an

LCfv
L -derivation 〈δ, σ′〉 where σ′ grounds δ. �

70 CHAPTER 6. THE CALCULUS LCfv

Proof. Let 〈δ, σ〉 be an LCfv
L -derivation. If 〈δ, σ〉 is an LCfv

K45-derivation, then
σ is grounding for δ by assumption, see Definition 6.6, so assume 〈δ, σ〉
is an LCfv

S5-derivation and that σ is not ground for δ. Let ψ denote the la-
bel variables which occur in δ but not in DOM(σ), i.e., every label variable
which is not mapped to a ground label. Let σψ be such that ψσψ = {ε},
and let σ′ = σ ◦ σψ. Since no restrictions apply to an LCfv

S5-admissible label
substitution, 〈δ, σ′〉 is indeed an LCfv

S5-derivation, and σ′ grounds δ. 2

Contextually equivalent condition. The contextually equivalent condition pr-
esent in LCgt is missing in LCfv. This condition is superfluous in LCfv as the
condition is enforced by the rules of the calculus.

Lemma 6.10 Formulae with identical indices in an LCfv-derivation are con-
textually equivalent. �

Proof. Let X and Y be two different indexed formulae in an LCfv-derivation
δ having equal indices. As every formula in the root sequent of δ is given
a distinct formula number and no calculus rule manipulates formula num-
bers, X and Y must occur in different sequents of δ. There are two ways in
which this may happen.

The base case is that X and Y are extra formulae in a β-inference, i.e., X
and Y denote the same formula in the denominator of an inference, while
in the numerator X occurs in one of the sequents and Y in the other. By the
definition of contextually equivalent (Definition 4.3 on page 30), X and Y
are contextually equivalent.

Now let r and r′ be two inferences of the same type applied to two sequents
where the principal formulae in the inferences have equal indices. Let X be
an active formula in r and Y be an active formula in r′. This is the sec-
ond way two different formulae may have the same index. By assumption
the principal formulae of r and r′ are contextually equivalent as they are
indexed identically. If X and Y introduce any labels, then by the rules of
LCfv and given that X and Y have equal indices, they belong to the same
label. Conclude by the rules of LCfv and Definition 4.3, that X and Y are
syntactically equal and contextually equivalent. 2

Let r and r′ be two contextually equivalent inferences in the same skeleton.
Using Lemma 6.10 and the fact that r and r′ are applied to formulae having
the same index (since they are contextually equivalent), the two inferences
must by the rules of LCfv introduce the same label. This complies with the
contextually equivalent condition and explains why we do not need this
condition in LCfv.

Permutation. The neighbourhood condition in LCgt concerns the introduc-
tion of labels by ν-inferences. From Example 6.7 we learned that 〈δ, σ〉,

71

〈δ, σ′〉 and 〈δ′, σ〉 are LCfv-derivations, but of the skeletons δσ, δ′σ′ and δ′σ,
only the latter one is an LCgt-derivation. The only difference between the
skeletons δ and δ′ is the applied order of inferences.

Permutation is used to relate skeletons which differ only in the order of
inferences [Waaler 2001]. If this is the case, we call the skeletons permu-
tation variants of each other. We need to be able to permute the skeleton
δ of an LCfv

L -derivation 〈δ, σ〉 such that the skeleton δ′σ, where δ′ is a per-
mutation variant of δ, complies with the conditions in LCgt and becomes
an LCgt

L -derivation. Figure 6.2 on the following page displays the permuta-
tion schemata for permuting two sets of contextually equivalent inferences
in a skeleton complying to the rules of LCfv. All the skeletons in the fig-
ure have a root containing two formulae of special interest which we in the
following call X and Y. The figures 6.2(a), 6.2(b) and 6.2(c) all contain two
skeletons where the leftmost skeletons in 6.2(a) and 6.2(b) and upper skele-
ton in 6.2(c) are obtained by first applying an inference to X succeeded by
applying inferences to Y in every sequent resulting from the rule applica-
tion to X. The rightmost skeletons in 6.2(a) and 6.2(b), and lower skeleton
in 6.2(c) are the results of applying inferences by starting with an applica-
tion to Y and continuing with X in every resulting branch of the inference
on Y. It is easy to see that if the skeletons follow the rules of LCfv such that
contextually equivalent inferences belong to the same label, then skeletons
in the same subfigure agree on leaf sequents.

Now we generalize the result of permutation to arbitrary skeletons. To do
so we use the notion of a balanced skeleton. This notion simplifies the expo-
sition as it allows us to assume that we can use the permutation schemata in
Figure 6.2 to permute inferences which are branching: Consider the skele-
ton on the right in Figure 6.2(b). If the inference rω was not applied in the
left branch and the left leaf sequent Γ, Ω, β1 was missing, then permuting
rω downwards would not be possible by our formulation. If we require
that the skeleton is balanced, we know that the inference rω is also present
in the left branch and permutation follows easily by the schema.

Lemma 6.11 (Permutation) Let F be a non-atomic formula occurring in the
root of a balanced skeleton δ conforming to the calculus rules of LCfv and let
r be an inference in δ with principal formula F Then there is a permutation
variant δ′ of δ where F is principal formula in the root sequent of δ. �

Proof sketch. (See proof of Lemma 2.14 in [Waaler 2001, p. 1509].) Assume
δ and r is as in the Lemma and let R denote the set of all inferences in δ
contextually equivalent to r. Note that r ∈ R. All r′ ∈ R occur in differ-
ent branches of δ. Repeatedly choose the uppermost inference r′ ∈ R and
permute downwards using the permutation schemata in Figure 6.2. This
produces the desired skeleton δ′. 2

72 CHAPTER 6. THE CALCULUS LCfv

Γ, Ω1, Ω2

Γ, Ω1, ω2
rω2

Γ, ω1, ω2
rω1

Γ, Ω1, Ω2

Γ, ω1, Ω2
rω1

Γ, ω1, ω2
rω2

(a) Permutation schema for two non-branching in-
ferences, rω1 and rω2 .

Γ, Ω, β1 Γ, Ω, β2

Γ, Ω, β
rβ

Γ, ω, β
rω

Γ, Ω, β1

Γ, ω, β1
rω

Γ, Ω, β2

Γ, ω, β2
rω

Γ, ω, β
rβ

(b) Permutation schema for one branching, rβ, and one non-
branching inference, rω .

Γ, β1
1, β2

1 Γ, β1
1, β2

2

Γ, β1
1, β2

rβ2
Γ, β1

2, β2
1 Γ, β1

2, β2
2

Γ, β1
2, β2

rβ2

Γ, β1, β2
rβ1

Γ, β1
1, β2

1 Γ, β1
2, β2

1

Γ, β1, β2
1

rβ1
Γ, β1

1, β2
2 Γ, β1

2, β2
2

Γ, β1, β2
2

rβ1

Γ, β1, β2
rβ2

(c) Permutation schema for two branching inferences,
rβ1 and rβ2 .

Figure 6.2: Permutation schemata. In the following let i ∈ {1, 2, _}. Γ is a
set of indexed formulae. ωi is an arbitrary indexed formula of type α, π or
ν. Ωi is the set of components of ωi. βi

1 and βi
2 are the components of βi.

The possible labels introduced by the inferences are not indicated, instead
we identify an inference by letting the principal formula of an inference be
subscripted in the name of the inference, and position the inference name
by the horizontal line to which the inference corresponds.

73

The following corollary and proof is gathered from [Waaler 2001].

Corollary 6.12 (Permutation) Let 〈δ, σ〉 be an LCfv
L -derivation such that the

reduction ordering �σ induced by σ is irreflexive. Then there is permuta-
tion variant δ′ of δ such that 〈δ′, σ〉 conforms to �σ. �

Proof sketch. Induction on the sub-skeletons of δ, using Lemma 6.11. 2

Permutation is the explanation of why both 〈δ, σ〉 and 〈δ′, σ〉 may be LCfv
L -

derivations, while of δσ and δ′σ, only δ′σ is an LCgt-derivation (See Exam-
ple 6.7). The reason is that δ and δ′ are permutation variants, so δ′ is obtain-
able by application of Lemma 6.11 to δ. This is an example of the relaxed
restrictions in LCfv compared to LCgt, we do not require the inferences of a
skeleton to be applied in the correct order according to an LCgt-derivation
because we know that the correct order is obtainable by interchanging in-
ferences. An irreflexive reduction ordering ensures that the inferences in
an LCfv-derivation are interchangeable. However, the reduction ordering
may be reflexive. This is characterized by a cycle in the derivation.

Cycles. Permutation is an important result in establishing the link between
LCfv and LCgt. The other important result needed is the ability to eliminate
cycles. Cycles arise when a label variable U is mapped to a label introduced
by an inference on a subformula of the formula to which the inference in-
troducing U was applied.

Definition 6.13 (Cycle)
Let 〈δ, σ〉 be an LCfv

L -derivation. The derivation contains a cycle if there is an
inference rU belonging to a label variable U and an inference rs belonging to
s, such that rU �σ r1 �σ . . . �σ rn �σ rs, rs ≺σ rU and r′s ≪ rs for no inferences
r′s 6= rs in δ belonging to s, for a finite set of inferences rU , rs, r1, . . . , rn in δ.
We identify this cycle by the pair (U, s). �

Remark. The difference from our definition compared to the ones found in
[Antonsen 2003, Antonsen and Waaler 2006] is if there is a cycle (U, s) in
δ then the inference to which U belongs only is always related to the low-
ermost inference in δ introducing s. This extra condition is necessary given
the fact that different π-formulae may introduce the same label resulting in
a branch containing multiple occurrences on the same label. ◦

We call it a cycle because the reduction ordering on a LCfv
L -derivation 〈δ, σ〉

containing a cycle is reflexive. Using the intuition that the reduction order-
ing encodes the order of inferences needed to obtain an LCgt

L -derivation in
the skeleton δσ, reflexivity in the order of rule application makes no sense
since it implies that there is an inference in the skeleton which must be ap-
plied before itself. This indicates that we must be able to eliminate cycles
in order to obtain the desired transformation of LCfv- to LCgt-derivations.

74 CHAPTER 6. THE CALCULUS LCfv

Example 6.14 (Cycle) The skeletons δ′ and δ′σ′ from Example 6.3 are redis-
played below. σ′ is {U 7→ c}.

P[U] ` P[c], Q[b]
c

P[U] ` 2P[U], Q[b]
` P → 2P[U], Q[b]

U` 3(P → 2P), Q[b]
b` 3(P → 2P), 2Q

P[c] ` P[c], Q[b]
c

P[c] ` 2P[c], Q[b]
` P → 2P[c], Q[b]

c
` 3(P → 2P), 2Q[b]

b` 3(P → 2P), 2Q
δ′ δ′σ′

The LCfv
L -derivation 〈δ′, σ′〉 contains the cycle (U, c), given that U is mapped

to c by σ, and the inference introducing c is applied to a proper subfor-
mula of the principal formula of the inference to which U belongs. In the
skeleton δσ′ this amounts to a failure in meeting the neighbourhood condi-
tion as explained in Example 6.3. This failure reflects that a ν-formula has
broken “unfreshness”-requirement by introducing a fresh label parameter,
allowing of the possibility that a π-formula cannot abide by a freshness
requirement, since it has no choice of what label parameter to introduce.
This is the inherent problem of a cycle: a label variable U is mapped to a
label which is by formula structure forced to be introduced above U in the
skeleton, hence possibly violating the neighbourhood condition in LCgt. ◦

The problem with cycles is that permutation cannot help us. If an LCfv
L -

derivation 〈δ, σ〉 contains a cycle (U, s) it is impossible to permute the in-
ference introducing s below the inference introducing U to obtain a deriva-
tion 〈δ′, σ〉where δ′σ is an LCgt

L -derivation. It is impossible since this would
mean obtaining a skeleton δ′ where a rule is applied directly to a subfor-
mula in a sequent. Notice that the definition of LCfv

L -derivation does not
require the reduction ordering to be irreflexive, and in fact there are ways
to eliminate cycles, but not by permutation alone.

Example 6.15 (Cycle elimination) The skeleton δ2 below is the same as δ′ in
the previous example extended by three extra inferences. The three new
inferences are applied to the explicit copy χ of the ν-formula 3(P → 2P)⊥,
the principal formula of the inference to which U belongs.

75

P[U], P[V] ` P[c], P[c], χ2, Q[b]
c, r′cP[U], P[V] ` P[c], 2P[V], χ2, Q[b]

r′→P[U] ` P[c], P → 2P[V], χ2, Q[b]
V, rV

P[U] ` P[c], χ1, Q[b] c, rc
P[U] ` 2P[U], χ1, Q[b] r→

` P → 2P[U], χ1, Q[b]
U, rU` 3(P → 2P), Q[b]

b, rb` 3(P → 2P), 2Q

Let σ2 = {U 7→ b, V 7→ c}. The LCfv
L -derivation 〈δ2, σ2〉 conforms to �σ2 .

Notice that (V, c) is not a cycle, even though rV ≪ r′c and r′c ≺σ rV . This
is because there is an inference rc to which the label c also belongs and
rc ≪ r′c. Observe also that the cycle was eliminated by “replicating” the
inferences rU , r→ and rc to the new inferences rV , r′→ and r′c, which are ap-
plied to an explicit copy of the principal formula of rU and its descendants.

We display the skeleton δ2σ2 below.

P[b], P[c] ` P[c], P[c], χ2, Q[b]
c

P[b], P[c] ` P[c], 2P[c], χ2, Q[b]
P[b] ` P[c], P → 2P[c], χ2, Q[b]

c
P[b] ` P[c], χ1, Q[b]

c
P[b] ` 2P[b], χ1, Q[b]

` P → 2P[b], χ1, Q[b]
b` 3(P → 2P), 2Q[b]
b` 3(P → 2P), 2Q

Observe that the skeleton conforms to the conditions set by an LCgt
L -deriva-

tion. No label parameter introduced by a ν-inference is fresh to the skele-
ton. The skeleton is in fact a simplified version of the LCgt

L -proof found in
Example 5.16.

The example suggests that it is possible to eliminate a cycle (U, c) by explic-
itly copying the ν-formula introducing U and letting V, the label variable
introduced by the explicit copy, take the place of U and breaking the cycle
(U, c) by removing {U 7→ c} from the label substitution. Given that all
of the π-descendants of an explicit copy of a formula X introduce labels
already occurring in the skeleton, (V, c) does not identify any cycle. ◦

The conjecture and a proof sketch of cycle elimination is delayed until after
we have established the notion of an LCfv

L -proof. Se also [Antonsen 2003,
ch. 3] for a thorough and illustrative exposition on cycles and cycle elimi-
nation in first-order logic, yet no proof of cycle elimination is found.

76 CHAPTER 6. THE CALCULUS LCfv

Non-empty W+ condition. The last point in this discussion concerns the non-
empty W+ condition of LCfv-derivations, which is only applicable in K45.
In the definition of an LCgt

K45-derivation 〈δ, σ〉, the non-empty W+ condi-
tion requires that if the reduction ordering �σ induced by σ is reflexive, there
is an inference rc belonging to the label parameter c for which there is no infer-
ence rU belonging to a label variable U such that rU ≪ rc. Intuitively this
means that if there are cycles in an LCfv

K45-derivation, then there must exist
a π-inference which is capable of being permuted downwards as the first
inference introducing a label in the branch containing the cycle. This condi-
tion relates to the non-empty W+ condition which LCgt

K45-derivations have
to conform to; the condition in LCgt

K45 states that ν-inferences are applicable
only if there exists a label parameter in the denominator. This indicates that
no ν-inference may be applied to a branch prior to the application of some
π-inference in the same branch. The π-inference ensures that a putative sat-
isfying model has a non-empty W+-set, making it “safe” to apply ν-rules.
This in turn explains the role of the condition in LCfv. In order to eliminate
cycles, ν-formulae must be copied to introduce new label variables, which
are used to break the cycle created partly by a label substitution. But to be
able to copy ν-formulae we must have a guarantee for a non-empty W+.
A π-inference which relies on to be applicable in a branch provides this
guarantee, this is how the effects of the non-empty W+ condition in LCfv

K45
should be understood.

Example 6.16 (Non-empty W+ condition, K45) The skeleton below is the same
as δ in Example 6.2 except that the formulae 2Q⊥ and Q[b]⊥ are removed.
χ denotes the explicit copy of 3(P → 2P)⊥.

P[U] ` P[c], χ
c

P[U] ` 2P[U], χ

` P → 2P[U], χ
U` 3(P → 2P)

The skeleton together with the label substitution σ = {U 7→ c} creates the
cycle (U, c). Let rc be the inference introducing c and rU be the inference
introducing the label variable U. The inference rc is the only inference in
the skeleton introducing a label parameter. As the principal formula of rc
is a descendant of the principal formula of rU , the inferences rc and rU are
related such that rU ≪ rU holds. Since there is no inference introducing
a label parameter and where its principal formula is not a descendant of a
ν-formula, the skeleton violates the non-empty W+ condition. Hence 〈δ, σ〉
is not an LCfv

K45-derivation.

Expanding the explicit copy of the ν-formula and its descendants will not
help. This is displayed in the skeleton below.

77

P[U], P[U1]1 ` P[c], P[c]1, χ2
c

P[U], P[U1]1 ` P[c], 2P[U1]1, χ2

P[U] ` P[c], P → 2P[U1]1, χ2
U1

P[U] ` P[c], χ1
c

P[U] ` 2P[U], χ1

` P → 2P[U], χ1

U` 3(P → 2P)

Further expanding explicitly copied formulae does not help in introducing
new label parameters, in the attempt of finding a label parameter b such
that V ≪ b for no label variable V. Since π-formulae with the same for-
mula number introduce the same label parameter and formula numbers
are always left unchanged by explicit copying. In the skeleton immediately
above, we need to let σ either map the label variable U or U1 to the label
parameter c. Either ways there are no means possible to permute an infer-
ence belonging to a label parameter such that b such that V ≪ b for no
label variable V.

The skeleton δ′′ displayed below is the same as the first skeleton given in
this example, except 2Q⊥ is added to the root sequent and is expanded
in the uppermost inference of the skeleton. The skeleton is a permutation
variant of both δ and δ found in Example 6.5.

P[U] ` P[c], Q[b]
bP[U] ` P[c], 2Q

c
P[U] ` 2P[U], 2Q

` P → 2P[U], 2Q
U` 3(P → 2P), 2Q

Let σ = {U 7→ c} be a label substitution, then 〈δ, σ〉 is an LCfv
l -derivation.

The reduction ordering contains the cycle (U, c), but the for the inference
rb belonging to the label parameter b there is no inference r′ such that
r′ ≪ rb. This means that the derivation complies with the non-empty
W+-condition, even though a cycle exists. ◦

This concludes the discussion started on page 69. Next we construct the
necessary parts for the definition of LCfv

L -proofs.

Definition 6.17 (Unifier)
Let Ψ denote a set of labels and Ψσ be the set Ψσ = {sσ | s ∈ Ψ}. A label
substitution σ is a unifier for a non-empty set of labels Ψ if Ψσ is singleton,
i.e., a set containing exactly one element. �

78 CHAPTER 6. THE CALCULUS LCfv

Example 6.18 (Unifier) If s and t are labels, σ is a label substitution and sσ =
tσ, then σ is a unifier for {s, t}.

If U is a label variable, then any label substitution unifies {U}, even the
label substitution σ = ∅. ◦

Definition 6.19 (σ-axiom)
A sequent of the form Γ, A[s]>, A[t]⊥ is a σ-axiom if σ unifies {s, t}. The
formulae A[s]>, A[t]⊥ are then referred to as a closing pair. �

Lemma 6.20 A σ-axiom is not satisfiable. �

Proof. Assume that the σ-axiom Γ, A[s]>, A[t]⊥ is satisfiable. Then there
must exist an L-model (M, φ) and a label interpretation ρ such that
(M, φ) �ρ (Γ, A[s]>, A[t]⊥)σ. This is impossible, since both (M, φ) �ρ

A[σs]> and (M, φ) �ρ A[σt]⊥ cannot hold, given that σ is a unifier for
{s, t} 2

Definition 6.21 (LCfv
L -proof)

An LCfv
L -proof is a finite LCfv-derivation 〈δ, σ〉 where every branch of δ con-

tains a σ-axiom. �

Example 6.22 (LCfv
l -proof) Of the derivations listed in Example 6.7 〈δ, σ′〉 and

〈δ′, σ〉 are both LCfv
K45- and LCfv

S5-proofs. ◦

If a branch in an LCfv-derivation 〈δ, σ〉 contains a σ-axiom, σ is said to close
this branch. If σ closes every branch of 〈δ, σ〉, we say that σ closes the
skeleton δ.

In the following examples all skeletons at hand are denoted δ and every
label substitution is denoted by σ. In all but the first example, formula
numbers are only displayed in the root sequent and labels are simplified.

Example 6.23 (LCfv
L -proof) The skeleton below displays a skeleton comply-

ing to the rules of LCfv with all formula numbers, copy histories, explicit
copies and no abbreviated label introductions.

79

P
2
[U(1,0)](0.0) ` 3

1
(P

2
→
3

2
4

P
5
)1, P

5
[c4](0.0), Q

7
[c6]

c4
P
2
[U(1,0)](0.0) ` 3

1
(P

2
→
3

2
4

P
5
)1, 2

4
P
5
[U(1,0)](0.0), Q

7
[c6]

` 3
1
(P

2
→
3

2
4

P
5
)1, P

2
→
3

2
4

P
5
[U(1,0)](0.0), Q

7
[c6]

U(1,0)` 3
1
(P

2
→
3

2
4

P
5
), Q

7
[c6]

c6` 3
1
(P

2
→
3

2
4

P
5
), 2

6
Q
7

The lowermost inference introduces the label c6 since 6 is the formula num-
ber of the principal π-formula. The second lowermost inference introduces
the label variable U(1,0) as 1 and 0 is respectively the formula number and
copy history of the principal formula. An LCfv

L -proof is obtained by the
LCfv

L -derivation 〈δ, σ〉, where σ = {U(1,0) 7→ c4}. Compare this proof with
the proofs found in Example 4.19 and 5.16 and observe that the LCfv

L -proof
is shorter than both the LCg

L- and LCgt
L -proof. ◦

Example 6.24 (LCfv
S5-proof) The LCgt

S5-derivation displayed below is over the
same root sequent as found in Example 5.15.

P[c1] ` P[c1]
` P → P[c1] c1` 2(P → P)

P[U6]0.0 ` P[U6]0.0, 3(P → P)1

` P → P[U6]0.0, 3(P → P)1
U6` 3(P → P)1

` 2
1
(P

2
→
3

P
4
) ∧

5
3
6
(P

7
→
8

P
9
)

The LCfv-derivation 〈δ, σ〉, where σ = {U6 7→ b}, σ = {U6 7→ c1} or σ = ∅,
is an LCfv

S5-proof, as all these label substitutions unify {U6} making both
leaf sequents σ-axioms. In K45 we fail to find a closing substitution: σ = ∅
fails in meeting the condition of U6σ = U6 being ground, and both σ =
{U6 7→ c1} and σ = {U6 7→ b} violate the neighbourhood condition since
no branch contains both c1 and U6; or b and U6.

A K45-countermodel for the skeleton is an L-model (M, φ), where M =
(W, W+, V) and W+ = ∅. This K45-model is a countermodel for the leaf se-
quent in the right branch of the skeleton. Removing indices and subscripts
from the this sequent we obtain the sequent {P[U]>, P[U]⊥, 3(P → P)⊥}.
The formula P[U]> is satisfied in (M, φ), since φρ(U) = � for any φρ and
any label variable U when W+ is empty. If the label of a formula is in-
terpreted to the symbol �, the formula is by Definition 3.9 satisfiable. By
the same observation, the formula P[U]⊥ is also satisfiable in (M, φ). Lastly
3(P → P)⊥ is trivially satisfied, as all points in W+ (which are none) satisfy
the formula (P → P)⊥. ◦

80 CHAPTER 6. THE CALCULUS LCfv

6.1 Cycle elimination

Cycles are possible because of the use of label variables adding flexibil-
ity to the free-variable calculus compared to the ground calculus. The
ability to eliminate cycles is the last obstacle to be able to transform an
LCfv

L -derivation into an LCgt
L -derivation. This allows for a syntactical proof

sketch of soundness, by relying on the already established soundness of
the LCgt-calculus. This transformation can also be used to research the effi-
ciency of LCfv compared to LCgt, and may provide valuable proof theoreti-
cal insights.

The succeeding conjecture indicates that cycles can be eliminated by repli-
cating parts of the skeleton in the derivation containing a cycle.

Conjecture 6.25 (Cycle elimination) Let 〈δ, σ〉 be an LCfv
L -proof containing

a cycle (V, s). Then there is an LCfv
L -proof 〈δ2, σ2〉 containing less cycles than

〈δ, σ〉. Especially, 〈δ2, σ2〉 does not contain the cycle (V, s). �

Remark. We provide a highly informal plan of how to establish a proof.
Consult also [Antonsen 2003, ch. 3].

Let 〈δ, σ〉 be an LCfv-derivation where a branch θ contains the cycle (V, s).
The inference r1 introduce the label variable V. The principal formula of r1
is called Fκ and is a ν-formula, since it introduces the label variable V.

• Assume the skeleton δ is balanced and permute the inference r1 up-
wards in θ such that every inference above r1 in θ is applied to a de-
scendant of Fκ.

• Let all inferences above r1 constitute a subskeleton δF of δ. In the
leaf sequent of θ there is a explicit copy of F, possibly through many
explicit copies. Call this formula F′.

• “Copy the subskeleton δF, creating a new skeleton δF′ , and put δF′ on
top of the branch θ.” This done by applying “the same” inferences
applied to F and its descendants in θ, to F′ and the descendants of F′.

• Let every label variable introduced by a descendant of F′ be mapped
to what the “equivalent” descendant of F is mapped to by σ. This
is done to ensure that every branch of δF′ is closed, and that no new
cycles are created.

• Remove the cycle (V, s) by removing {V 7→ s} from the label substi-
tution.

• Since 〈δ, σ〉 is an LCfv
L -proof, all branches in δF is closed under σ. The

new skeleton δ2, obtained by extending θ with δF′ ; and the new label

6.2. SOUNDNESS 81

substitution extended to ensure that δF′ is closed, is then an LCfv
L -proof

without the cycle (V, s).

Consult also Figure 6.3 on the next page. ◦

6.2 Soundness

We give a semantical proof of soundness of LCfv. The proof is easily es-
tablished by using the groundwork and foundations already laid in the
preceding chapters.

Lemma 6.26 (Countermodel preservation) Let δ be a skeleton conforming
to the rules of LCfv, and assume there is an L-countermodel for δ. Then
there is an L-countermodel of δ′, the result of applying an LCfv-inference r
to δ. �

Proof. Assume (M, φ) satisfies the branch θ of δ under the label variable
assignment ρ and that r is applied to the leaf sequent Γ of θ. If r is applied
to a different branch than θ, then the branch occurs untouched in δ′ and
(M, φ) is an L-countermodel for δ′.

Given that (M, φ) satisfies θ under the label variable assignment ρ, Γ is
satisfied in (M, φ) under ρ. Check for each type of inference r, that δ′,
the resulting skeleton applying a rule to a leaf sequent of δ, has an L-
countermodel.

α, β, ν. Γ is satisfiable in (M, φ) under the label variable assignment ρ. Ap-
ply Lemma 3.15 and conclude that Γ′ is satisfiable in (M, φ) under ρ.

π. This case follows by the π-case in the proof of Lemma 5.18 (Counter-
model preservation [in LCgt]). 2

Theorem 6.27 (Soundness of LCfv
L)

Let 〈δ, σ〉 be an LCfv
L -proof of an indexed sequent Γ. Then Γ is L-valid. �

Proof. Aiming for a contradiction, assume that there is an LCfv
L -proof 〈δ, σ〉

of Γ, but that Γ is not L-valid. Given that Γ is not L-valid, δ0, the skeleton
comprised of Γ as root sequent and only node, must have an L-countermo-
del. By repeated application of Lemma 6.26 on δ0, every resulting skeleton
from a rule application to δ0 must have an L-countermodel. Thus δ must
have an L-countermodel.

By the assumption that 〈δ, σ〉 is an LCg
L-proof of Γ, every branch in δ is

closed by σ. This is a contradiction: By Corollary 6.28 there is an LCfv
L -proof

82 CHAPTER 6. THE CALCULUS LCfv

A
A

A
A

A
A

A
A

A
A

A
A

A
A

�
�
�
�
�
�
�
�
�
�
�
�
�
�

δ

A
A

A
A

AA

�
�

�
�

��δF

Γ0

θ

V

s

�
�
�
�
�
�
�
�
�
�
�
�
�
�

A
A

A
A

A
A

A
A

A
A

A
A

A
A

�
�
�
�
�
�
�
�
�
�
�
�
�
�

δ′

A
A

A
A

AA

�
�

�
�

��δF

Γ0

θ

s

V′

�
�
�
�
�
�
�
�
�
�
�
�
�
�
A

A
A

A
AA

�
�

�
�

��δF′

Γ′0

Figure 6.3: Cycle elimination. The skeletons illustrate the constructs used
in the proof sketch of Conjecture 6.25. The left skeleton δ contains the cycle
(V, s) indicated by V and s in the figure. The cycle occurs in δF, a sub-
skeleton of δ, and on the branch θ. Γ0 is the denominator of the inference
introducing the label variable V to θ. Intuitively a cycle is broken by “copy-
ing” the subskeleton δF and “placing” the copy, δF′ , on top of Γ′0, the leaf
sequent of θ in δ, creating the skeleton δ′ displayed as the right skeleton. By
permuting inferences we have constructed the skeleton δ such that by ap-
plying nearly the exact same inferences to Γ′0 as applied when creating the
subskeleton δF, the desired copy subskeleton δF′ is obtained. Since every
branch in δF is closed, every branch in δF′ is also closed by extending the la-
bel substitution closing δ to the label variables introduced in δF′ . Finally we
remove V from the label substitution, thus breaking the cycle (V, s). Given
that every branch in δF′ is closed, every branch through θ must be closed.

6.3. TERMINATION 83

〈δ, σ′〉 where σ′ is grounding for δ. Let ρ be such that ρ(U) = φ(Uσ′) for
all U in δ. By Lemma 6.20 no σ′-axiom is satisfiable, so cannot be (M, φ)
an L-countermodel as there is no branch θ in δ where (M, φ) satisfies every
sequent in θ under ρ. Γ is L-valid. 2

We proceed by showing soundness of LCfv by indicating that we can con-
vert every LCfv

L -proof into an LCgt
L -proof. Since LCgt is proven sound, sound-

ness of LCfv follows under the assumption that Conjecture 6.25 holds.

We first need to show that the grounding of an LCfv
L -proof does not destroy

the proof.

Corollary 6.28 (Grounding) Let 〈δ, σ〉 be an LCfv
L -proof. Then there is an

LCfv
L -proof 〈δ, σ′〉 where σ′ grounds δ. �

Proof. Use Lemma 6.9 and create the LCfv
L -derivation 〈δ, σ′〉 where σ′ grou-

nds δ. Now to show that 〈δ, σ′〉 is an LCfv
L -proof. Assume X[s], Y[t] is a

closing pair in 〈δ, σ〉, and sσ and tσ are not ground labels. Then X[s], Y[t] is
still a closing pair in 〈δ, σ′〉, as sσ′ = tσ′ = {ε}. 2

The syntactical proof of soundness goes by the same lines as the proof of
soundness in [Waaler 2001], except the proof in [ibid] has one shortcoming:
the reduction ordering is assumed well founded and the need for cycle
elimination is not appreciated.

Proof sketch (of Theorem 6.27, syntactical). Use Corollary 6.28 to construct an
LCfv

L -derivation 〈δ, σ′〉 from 〈δ, σ〉, where σ′ is grounding for δ. Utilize Con-
jecture 6.25 to repeatedly remove all cycles in 〈δ, σ′〉 obtaining the cycle free
LCfv

L -proof 〈δ′, σ′′〉 of Γ. Use Corollary 6.12 to permute 〈δ′, σ′′〉 into an LCfv
L -

proof 〈δ′′, σ′〉 conforming to �σ′ . Then δ′′σ′′ is an LCgt
L -proof. Conclude by

soundness of LCgt
L , Theorem 5.19, Γ is L-valid. 2

6.3 Termination

This section establishes a termination condition applicable to skeletons in
LCfv-derivations. We present the condition and the results concerning it
here, after having proved soundness, to emphasize the fact that the ter-
mination condition plays no role in the notion of soundness.1 However a
termination criterion imposes a threat to completeness as the proof search
may be stopped to early, hindering the discovery of a proof.

1In fact as pointed out in the remark of soundness and completeness in chapter 3 if we
impose the termination criterion that “no rule is applicable” we end up with a sound (and
dull) calculus.

84 CHAPTER 6. THE CALCULUS LCfv

We state the termination condition as follows: Let 〈δ, σ〉 be an LCfv
L -deriva-

tion, and let ψ be the set of all ν-inferences in a branch in δ having identical
formula numbers. The number of label variables introduced by all the in-
ferences in a set ψ, may not exceed the number of labels s ∈ ParL occurring
in δ, for all such set ψ constructed from δ.

If we regard a ν-formula and all its explicit copies as the same formula, the
condition simplifies to: a ν-formula may not introduce more label variables
in a branch than the number of labels s ∈ ParL occurring in the skeleton.

Remark. A more technical variant is: No digit in the copy history of a for-
mula in δ may be greater than the number of labels occurring in δ and in
ParL.

As pointed out in the discussion of the rules or LCgt in chapter 5, a copy his-
tory contain information on how many times a formula has gone through
the explicit copy of a ν-inference or been the active formula—or the subfor-
mula of an active formula—in a ν-inference. Copy histories are therefore
efficient means of controlling the replication of ν-formulae. ◦

This condition is present solely to prevent an unlimited reproduction of
formulae, which the explicit copying of formulae in ν-inferences may be
responsible for. As we will see from the completeness proof of LCfv, the
upper bound of formula copying that the termination condition imposes,
does not compromise completeness.

That the condition in fact is a termination condition is easy to see. There
can only be a limited number of π-formulae occurring in a sequent, and
since π-formulae of the same formula number introduce the same label
parameter, there is also an upper limit to how many label parameters there
may be in a skeleton. This limit is adapted to the number of label variables
ν-formulae may introduce.

Example 6.29 (Termination condition) This is the LCfv
S5-proof of the T-axiom.

An LCg
S5-proof is found in Example 4.14.

2P1, P[U(1,0)]0.0 ` P
U(1,0)

2P ` P
` 2

1
P
2
→
3

P
4

The only closing substitution for 〈δ, σ〉 is σ = {U(1,0) 7→ ε}. This substitu-
tion is only admissible in S5, hence 〈δ, σ〉 is an LCfv

S5-proof.

The skeleton below is obtained by applying an inference to the ν-formula
in the leaf sequent of the above skeleton.

6.4. COMPLETENESS 85

2P2, P[U(1,1)]1.0, P[U(1,0)]0.0 ` P
U(1,1)

2P1, P[U(1,0)]0.0 ` P
U(1,0)

2P ` P
` 2

1
P
2
→
3

P
4

The skeleton breaks the termination condition as the ν-formula having for-
mula number 1 is explicit copied once, as we can see from the copy number
of the ν-formula in the leaf sequent, but of the set ParS5, only present in the
skeleton. Thus the set of ν-inferences having formula number 1 has intro-
duced 2 label variables, while there is only one label parameter s ∈ ParS5 in
the skeleton. ◦

Definition 6.30 (Complete skeleton)
A skeleton δ is said to be a complete skeleton for LCfv

L , if it conforms to the
termination condition in L and every resulting skeleton obtained from δ
by rule application of one or finitely many more inferences will violate the
termination condition in L. �

By complete we imply that there are no more rules applicable to the skele-
ton, either because there are no non-atomic formulae in the leaves of δ or
that applying more inferences to δ would cause a condition set by the def-
inition of LCfv

L -derivation to be broken. Notice that a skeleton violating the
termination condition, may conform to the condition after one or more rule
applications.

6.4 Completeness

Completeness of LCfv is established following the same approach as done
in the completeness proofs of LCg and LCgt. What is important in the case
of LCfv is of course the treatment of label variables and how to handle
the restrictions we have introduced by the termination condition. We as-
sume that a sequent is not LCfv-provable, and construct a LCfv-derivation
where its skeleton is complete, ensuring that we have introduced the max-
imal amount of label variables. Then we construct a label substitution in
which the different label variables introduced by ν-formulae having the
same formula numbers are mapped to different label parameters. This
way we achieve a maximal “diffusion” of label parameters introduced by
ν-formulae having equal formula numbers, and can easily construct an L-
countermodel on the basis of an open branch, just as we did in the com-
pleteness proof of LCg.

86 CHAPTER 6. THE CALCULUS LCfv

Theorem 6.31 (Completeness of LCfv)
If an indexed sequent is not LCgt

L -provable, it has an L-countermodel. �

Proof. Let Γ be an empty labelled indexed sequent, and let 〈δ, σ0〉 be an LCfv
L -

derivation, where δ is a complete skeleton over the sequent Γ. Because of
the termination condition the skeleton δ is finite. For every ν-formula in
δ there occurs as many ν0-formulae as there are label parameters in the
skeleton, and every introduced label variable is different since every label
variable in a branch is uniquely subscripted. Let Parδ denote the set of
ground labels occurring in the skeleton δ.

Since Γ is not LCfv
L -provable, there can be no label substitution σ closing δ.

Construct a label substitution σ such that Uσ ∈ Parδ for all label variables
U occurring in δ and let σU(i,κ.m.λ) 6= σU(i,κ.n.λ) if n 6= m. The constructed
σ ensures that for a set of ν0-formulae with equal formula numbers the
label variable of every formula is mapped to a different ground label. By
construction of σ and by the fact that δ is a complete skeleton, we know
that by disregarding indices, every ν-formula under σ in every branch has
introduced ν0(t) for all t ∈ ParL ∩ Parδ.

〈δ, σ〉 is an LCfv
L -derivation, but no LCfv

L -proof, so there is a branch θ in δ
which is not closed by σ. Let θσ be the branch from which an L-model is
created on the basis of the recipe found in the completeness proof of LCg

L
(Theorem 4.25). This L-model is an L-countermodel for the skeleton δ and
the sequent Γ. 2

Chapter 7

Preliminaries on the Logic of
Only Knowing

The logic of Only Knowing, ONL, is an autoepistemic logic providing
means of introspecting on an agent’s own knowledge and ignorance; or
belief and co-belief. As the semantics of ONL assume that models are
maximal, meaning that every possible point is represented in the model,
the logic is of importance to defeasable reasoning and to the field of artifi-
cial intelligence. Consult [Levesque 1990, Rosati 2001, Solhaug 2004, Waaler
2005; 1994, Waaler et al. 2004] for papers and theses concerning ONL and
other autoepistemic logics.

7.1 Syntax

The language of ONL includes four modalities denoted B (belief) , C (co-
belief), b and c. For reasons of simplicity do not include the modalities 2

and 3. They act as abbreviation symbols in the language of ONL.

Definition 7.1 (Core ON L-formula)
The set of core ONL-formulae is the smallest set Σ such that

1. P ⊂ Σ, where P is the set of propositional letters,

2. if X ∈ Σ, then ¬X ∈ Σ, BX ∈ Σ, bX ∈ Σ, CX ∈ Σ and cX ∈ Σ, and

3. if X, Y ∈ Σ, then (X → Y) ∈ Σ, (X ∨Y) ∈ Σ and (X ∧Y) ∈ Σ.

If F ∈ P, then F is called atomic. F is called non-atomic if F ∈ Σ \ P. �

87

88 CHAPTER 7. PRELIMINARIES ON ONL

Remark. The formula BP is read “I believe at least P” and CP is read “I be-
lieve at most ¬P”. Combining these we obtain the “all I know” expression
OP [Levesque 1990], an abbreviation for BP∧C¬P, asserting that “I believe
precisely P”.

This thesis is not of philosophical character, so we do not defend our in-
terpretation of the new modalities, but refer instead to [Waaler et al. 2004,
cp. 3] for a thorough exposition of the interpretation of modalities in the
modal logic Æ, a logic in the family of “Only Knowing” logics. ◦

7.2 Semantics

Next we define a model and satisfaction relation for the language of ONL.

Definition 7.2 (ON L-model)
AONL-modelM for the coreONL-language is a quadruple (W, W+, W−, V)
where W+ ∪W− = W and V : P → P(W). AnONL-model satisfying these
conditions is called weak.

An ONL-model M = (W, W+, W−, V) is maximal if W is the set of all pos-
sible points. �

We call W+ the set of plausible points in a core model and W− the set of
implausible points. The condition stating that W is the set of all possible
points, is called the maximality condition for a model. “The set of all possi-
ble points” means that every possible valuation of propositional formulae
is represented in the model. If we only consider two propositional letters
P and Q, a maximal model contains at least four points: one point where
both P and Q are satisfied, one there both P and Q are not satisfied, one
where only P is satisfied and a last point only satisfying Q.

The maximality demand is a model condition for ONL-models. We allow
the notion of a weak model, such that we can address ONL-models which
are not necessarily maximal.

Remark. The maximality condition is the solution to what is called
Levesque’s diamond axiom: 3P is provable, if P is consistent in the system,
i.e., ` 3P, if P 6` ⊥. ◦

Since new formulae and a new model is introduced we need to redefine the
satisfaction relation.

7.2. SEMANTICS 89

Definition 7.3 (Satisfaction)
A satisfaction relation � is defined by eachONL-modelM = (W, W+, W−,
V) as the weakest relation closed under the following clauses. 2 represents
the compliment of �.

M, w � P iff w ∈ V(P), P ∈ P,
M, w � (X ∧Y) iff M, w � X and M, w � Y,
M, w � (X ∨Y) iff M, w � X or M, w � Y,
M, w � ¬X iff M, w 2 X,
M, w � (X → Y) iff M, w 2 X or M, w � Y,
M, w � BX iff M, w′ � X for all w′ ∈ W+,
M, w � bX iff M, w′ � X for at least one w′ ∈ W+,
M, w � CX iff M, w′ � X for all w′ ∈ W−,
M, w � cX iff M, w′ � X for at least one w′ ∈ W−,

where w ∈ W. �

From these to definitions we see that B, b, C and c are K45-modalities, as
their set of “accessible points”1 is either the set of plausible or implausible
points, both being a subset of the domain W of a model.

As for the core formulae defined in chapter 2,M, w � F is read “F is satisfied
by the ONL-model M’, in the point w”. The ONL-formula M is said to
satisfy F, hence F is satisfiable.

Example 7.4 (ONL-model) Let {P, Q} ⊂ P and M = (W, W+, W−, V) be
a ONL-model, where W+ = {w1, w2}, W− = {w3, w4, w5} and V is such
that V(P) = {w1, w3, w5}, V(Q) = {w1, w2, w4, w5}. The ONL-model is
not maximal as there is no point wx in W such that wx 6∈ V(P) ∪ V(Q).
The points w1 and w5, and w2 and w4 are equivalent as the same set of
propositional letters are satisfied in these points.

• M, x � BQ holds for any x ∈ W since M, w′ � Q for all w′ ∈ W+.

• M, x � cQ is holds for every x ∈ W. There is a point w′ ∈ W−, e.g.,
w4, such that M, w′ � Q holds.

• M, x � c(Q ∧ BP) does not hold for any x ∈ W as BP is not satisfied
in any point of M.

We include a point w6 in W+ such that w6 6∈ V(P) ∪ V(Q) to create the
new maximal ONL-model M2. The formula BQ is not satisfied in M2 as
M2, x � Q does not hold for every w′ ∈ W+. M2, x � cQ holds, and
M2 � c(Q ∧ BP) does not hold, by the fact that M, x � BP does not hold
for any point x in M. ◦

1See the discussion on page 13.

90 CHAPTER 7. PRELIMINARIES ON ONL

Because of the demand on ONL-models that W = W+ ∪W−, the modal-
ities 2 and 3 are superfluous. They are instead defined as abbreviation
symbols, where 2P is abbreviated by BP ∧CP and bP ∨ cP abbreviates 3P.
If the satisfaction relation were to be defined also for formulae of the form
2X and 3X if would be as follows:

M, w � 2X iff M, w′ � X for all w′ ∈ W,
M, w � 3X iff M, w′ � X for at least one w′ ∈ W,

where w ∈ W. Of this we can conclude that 2 and 3 are S5-modalities in
ONL.

Remark. Let M = (W, W+, W−, V) be an ONL-model. An observation
which makes the interpretation and understanding of the semantics ofONL
easier to comprehend, is that the constructs M1 = (W, W+, V) and M2 =
(W, W−, V) are models are described in Definition 3.10 on page 19. W is
a non-empty set of points, W+ and W− are subsets of W and V is a val-
uation. The possibility of W+ or W− being equal to the set W creates the
opportunity ofM1 and M2 being S5-models, otherwise the models are K45.
The condition W+ ∪W− = W on the ONL-model M lets us conclude that
W+ and W− cannot both be empty as this contradicts the fact that W is
non-empty. ◦

Chapter 8

The Calculus LCfv
ONL

8.1 Syntax

The syntax of LCL includes a set of labels, but in order to capture the added
richness of the model in the logic of ONL compared to the K45- and S5-
model, we need to fine grain the notion of a label in LCfv

ONL from the defi-
nition in LCL. The set of label parameters is comprised by two disjoint sets
of label parameters denoted Par+ and Par−, as are the set of label variables:
Var+ ⊆ Var, Var− ⊆ Var and Var+ ∩ Var− = ∅.

To simplify the exposition let ± be either + or −, e.g. so that Var± ei-
ther represents the set Var+ or the set Var−. Note that ± must be treated
as parameterized placeholders for the indicated symbols: The statement
’Par± = Par±’ is never an abbreviation for ’Par+ = Par−‘ or ’Par− = Par+‘,
but always ’Par+ = Par+‘ and ’Par− = Par−‘.

Uppercase letters denote label variables, U±, V±, W±, . . . ∈ Var±, and low-
ercase letters represent label parameters, c±, d±, e± . . . ∈ Par±. s± and t± are
used to denote labels in Var± ∪ Par±, while s and t will be used to indicate
an arbitrary label.

The notion of an indexedONL-formula is easily lifted from Definition 5.1 by
requiring that the underlying formula is a core ONL-formula.

As in the labelled language every non-atomic ONL-formula is of a specific
type. The α- and β-formulae are in LCfv

ONL defined as in LCL, but new types
ν+, ν−, π+ and π− are added. With the new types, new components are
also specified.

Definition 8.1 (Type, Component)
The type and component of a non-atomic indexedONL-formula is defined

91

92 CHAPTER 8. THE CALCULUS LCfv
ONL

by its outermost connective/modal operator as defined by the tables for the
types α and β in the Figure 3.1 and the types in Figure 8.1. �

ν+ ν+
0 (t)

BX[s]> X[t+]>
bX[s]⊥ X[t+]⊥

π+ π+
0 (t)

bX[s]> X[t+]>
BX[s]⊥ X[t+]⊥

ν− ν−0 (t)
CX[s]> X[t−]>
cX[s]⊥ X[t−]⊥

π− π−
0 (t)

cX[s]> X[t−]>
CX[s]⊥ X[t−]⊥

Figure 8.1: ONL-formula types ν+, ν−, π+ and π−, and their components.

By Definition 8.1 the notions of immediate subformula and (proper) sub-
formula are easily defined by using Definition 3.8 and 5.3.

8.2 Semantics

The introduction of the new more fine grained labels are followed up by a
more sensitive label interpretation then used for the modal logics K45 and
S5..

Definition 8.2 (Label interpretation)
Let φρ be a label interpretation function where φρ = φ ∪ ρ, and φ and ρ are
defined the following functions:

• φ+ : Par+ → W+,

• φ− : Par− → W−,

• φ : Par ∪ {ε} → W such that φ(c±) = φ±(c±) for all c± ∈ Par±.

φ is called a ground label interpretation. To interpret label variables we define
the following functions:

• ρ+ : Var+ → W+,

• ρ− : Var− → W−,

• ρ : Var → W such that ρ(U±) = ρ±(U±) for all U± ∈ Var±,

We call ρ a label variable assignment. �

8.2. SEMANTICS 93

Definition 8.3 (ON L-model)
An ONL-model is a pair (M, φ), where M = (W, W+, W−, V) is a model in
the core ONL-language and φ is a ground label interpretation on M.

An ONL-model (M, φ) is weak if M is weak, and maximal if M is maxi-
mal. �

Truth of an ONL-formula in an ONL-model (M, φ) is always defined rel-
ative to a label variable assignment ρ on M. The definition is the result of
extending the definition of truth in Definition 3.11 (truth for labelled for-
mulae) and 5.5 (truth for indexed formulae) in the obvious way to indexed
ONL-formulae using Definition 7.3 and 8.3.

Now we are ready to extend Lemma 3.15 (Satisfaction of components) to
all the types of indexed ONL-formulae.

Lemma 8.4 (Satisfaction of components) Let Γ be a set of indexed ONL-
formulae, (M, φ) an ONL-model where M = (W, W+, W−, V), and ρ
some variable assignment. For all α-, β-, ν±- and π±-formulae, and their
respective components:

1. if α ∈ Γ, then Γ ∪ {α1, α2} is satisfiable in (M, φ) under ρ, iff (M, φ)
satisfies Γ under ρ,

2. if β ∈ Γ , then Γ ∪ {β1} is satisfiable in (M, φ) under ρ or Γ ∪ {β2} is
satisfiable in (M, φ) under ρ, iff (M, φ) satisfies Γ under ρ,

3.1. if ν± ∈ Γ, W± 6= ∅ and (M, φ) satisfies Γ, then Γ ∪ {ν±0 (s)} is satisfi-
able in (M, φ) under ρ for every label s ∈ Par± ∪ {ε},

3.2. if ν± ∈ Γ and (M, φ) satisfies Γ, then Γ ∪ {ν±0 (U±)} is satisfiable in
(M, φ) under ρ for every U± ∈ Var±, and

4. if π± ∈ Γ, then Γ ∪ {π±
0 (c±)} is satisfiable in (M, φ′) under ρ, iff

(M, φ) satisfies Γ under ρ, where c± is an arbitrary label parameter
not occurring in Γ or π, and φ′ is an extension by c± of φ. �

Corollary 8.5 (Satisfaction of grounded components) Let Γ be a set of gro-
und indexed ONL-formulae and (M, φ) an ONL-model where
M = (W, W+, W−, V).

1. If α ∈ Γ, then Γ ∪ {α1, α2} is true in (M, φ), iff Γ is true in (M, φ).

2. If β ∈ Γ, then Γ ∪ {β1} is true in (M, φ) or Γ ∪ {β2} is true in (M, φ),
iff Γ is true in (M, φ).

3. If ν± ∈ Γ and W± 6= ∅, then Γ ∪ {ν±0 (s±)} is true in (M, φ) for every
label s± ∈ Par±.

94 CHAPTER 8. THE CALCULUS LCfv
ONL

4. If π± ∈ Γ, then Γ ∪ {π±
0 (c±)} is true in (M, φ′) iff Γ is true in (M, φ),

where c± ∈ Par± is an arbitrary label parameter not occurring in Γ or
π and φ′ is an extension by c± of φ. �

Proof sketch (of Lemma 8.4 and Corollary 8.5). The proofs are almost identical
to the proofs of Lemma 3.15 and Corollary 4.20, and are left to the reader.
The proofs of cases 1 and 2 are obtained by rewriting the proofs found in
chapter 3 and 4 using the an ONL-model and applying definitions estab-
lished for formulae in LCfv

ONL, and not the formulae in LCK45 and LCS5 to
show the equivalence steps used in the proofs. For the cases 3.1, 3.2 and 4
one additionally has to put ’±’ as superscript on the correct places. 2

8.3 Calculus

The proof search in LCfv
ONL is comprised by two steps. First we search for

a weak ONL-model satisfying the root sequent. This is done through the
use of a derivation similar to the one defined in the calculi defined in earlier
chapters. The derivation combines two label substitutions, each simulating
one of the modalities B and C as a S5-modality by positioning the point
to which ε is interpreted to either the set W+ or the set W−. If this search
is successful, we have found a weak model satisfying the root sequent of
the derivation. The second step is to test this model for maximality. This is
done by an Aux-derivation looking for the existence of a point w 6∈ W+ ∪W−.
If such a point can exist in the weak model retrieved by the first step in the
proof search, the model is not maximal and the root sequent is hence not
satisfiable in a maximal model. If every weak model with the root sequent
is found not maximal, there is no maximal ONL-model satisfying the root
sequent and the sequent must be ONL-valid.

Remark. The idea of an Aux-derivation is gathered from Rosati [2001] no-
tion of an auxiliary tableau. The construction of a free-variable Aux-deriva-
tion and the ideas of finding a weak model using nearly exact same con-
structs as in LCfv

K45/S5 together with the use of two label substitutions, are
due to me. ◦

Definition 8.6 (ON L-sequent)
An ONL-sequent is an indexed sequent (Definition 5.7) of indexed ONL-
formulae. �

The rules of LCfv
ONL is the set of rules listed in Figure 8.2. These rules oper-

ate on skeletons of indexed sequents of ONL-formulae.

8.3. CALCULUS 95

Γ, ακ
1, ακ

2

Γ, ακ

Γ, βκ
1 Γ, βκ

2

Γ, βκ

Γ, ν±
i

κ+1, ν0(U±
(i,κ))

κ.0

Γ, ν±
i

κ
U±

(i,κ)
Γ, π±κ

0 (c±i)

Γ, π±
i

κ c±i

Figure 8.2: The rules of LCfv
ONL. The rules from left to right are: the α- β-

ν+- and ν−-, and π+- and π−-rule.

Note that the ν±- and π±-rules are specializations of the ν- and π-rules
formulated in LCfv

K45/S5, and by consulting Lemma 8.4 and Corollary 8.5
observe that the semantics of the types ν± and π± in ONL share the same
qualities as the related types in LCfv

K45/S5 except they are limited to restricted
subsets of the Par and Var.

Definition 8.7 (σB, σC)
Let σ± and σε± be label substitutions such that σ± : Var± → Par± and
σ±ε : Var± → Par± ∪ {ε}. Then σB and σC are the label substitutions σB =
σ+

ε ∪ σ− and σC = σ−ε ∪ σ+. �

The intuitions behind the label substitutions σB and σC are that σ+ treats
B and b as K45-modalities and σ+

ε treats them as S5-modalities, while σ−

acts as though C and c are K45-modalities and σ−ε as they are S5-modalities.
This gives us that σB treats B and b as S5-modalities, and C and c as K45-
modalities. σC treats the modalities vice versa. The technical difference
between them is that σB only may map label variables U+ ∈ Par+ to ε,
while σC only may map label variables U− ∈ Par− to ε.

In the LC-calculi the label ε represents the initial or start point in W, the
point from with we start the search for a countermodel. In the cases of the
logic being K45 ε was always interpreted to a point in W \W+ to ensure
that the model would not be reflexive. The situation in an ONL-model
is slightly different. Because of the condition W = W+ ∪W−, ε is always
interpreted to either W+ or W− (or both1). This has consequences for the
satisfaction of modalized formulae. Assume ε is interpreted to W+, then
the formula BP → P holds, making B an S5-modality. But we cannot as-
sume that ε is in fact interpreted to a point in W+, so BP → P should not

1No condition states that W+ ∩W− = ∅, that the model is bisected [Waaler et al. 2004],
and this is not a model condition for a (core) ONL-model. However, the model is perhaps
more comprehendible if one thinks of the sets W+ and W− as disjunct, at least if this thesis
is one’s first encounter with an ONL-model. If W+ ∩W− 6= ∅, then there are points with
are both plausible and implausible, quoting [Waaler et al. 2004, p. 13]: “A non-bisected model
may be interpreted as a model of a subject that has discrepancy between caution and belief; between
caution to not accept evidence and actual acceptance. In a bisected model , however, there is a co-belief
to match every belief; just the right amount of caution to match what is believed”.

96 CHAPTER 8. THE CALCULUS LCfv
ONL

be (and is not) provable in LCfv
ONL. However, in every ONL-model (M, φ)

either BP → P or CP → P should be provable, as ε must be interpreted to
either W+ or W−. By this observation the formula (BP → P) ∨ (CP → P)
should be valid in an ONL-model. In fact (BP → P) ∨ (CP → P) is equiv-
alent to the formula (BP∧CP) → P, to which 2P → P abbreviates, making
2 an S5-modality which is exactly what we want.

Given that the label substitutions σB and σC consider the modalities B, b,
C and c as either S5- and K45-modalities, the ONL-calculus can be seen as
a compound calculus of LCfv

K45/S5-calculi with one exception addressed by
the Aux-derivation defined later: in contrast to an ONL-model a K45/S5-
model is not required to be maximal. By these observations an LCfv

ONL-
derivation is defined as follows.

Definition 8.8 (LCfv
ON L-derivation)

The triplet 〈δ, σB, σC〉, where δ is a skeleton, and σB = σ+
ε ∪ σ− and σC =

σ−ε ∪ σ+ are label substitutions as defined in Definition 8.7, is an LCfv
ONL-

derivation if

• the root sequent of δ is empty labelled,

• every inference in δ is an instance of a rule in the LCfv
ONL-calculus,

• δ is a complete skeleton,

• σ± conform to the same conditions as for an LCfv
K45-admissible label

substitution σ adapted to the domain and codomain of σ±. �

Definition 8.9 ((σB, σC)-axiom)
Let σB and σC be label substitutions as defined in Definition 8.7. A sequent
Γ is a (σB, σC)-axiom if Γ is a σB- and a σC- axiom by Definition 6.19. �

Lemma 8.10 A (σB, σC)-axiom is not satisfiable in anyONL-model (M, φ). �

Proof. Left for the reader. Study proof of Definition 6.19. 2

If every branch in the skeleton of an LCfv
ONL-derivation contains a (σB, σC)-

axiom we say the derivation is closed, otherwise the derivation is open.

Conjecture 8.11 (Satisfiability of open LCfv
ON L-derivation) An LCfv

ONL-
derivation 〈δ, σB, σC〉 is closed if and only if there is no weak ONL-model
(M, φ) satisfying the root sequent of δ. �

Proof sketch. Use Lemma 8.4 and 8.10 and conclude by soundness and com-
pleteness of LCfv

K45 and LCfv
S5. 2

8.3. CALCULUS 97

Example 8.12 (2 is an S5-modality) Call the skeleton below δ. The root se-
quent is the rewritten T-axiom for the modal operator 2 using the abbre-
viation 2X ≡ BX ∧ CX. Formula numbers and copy histories are not dis-
played.

BP, P[U+], CP, P[U−] ` P
U−

BP, P[U+], CP ` P
U+

BP, CP ` P
BP ∧ CP ` P

` (BP ∧ CP) → P

Let σB = {U+ 7→ ε} and σC = {U− 7→ ε} then 〈δ, σB, σC〉 is an LCfv
ONL-

derivation and it is closed since the leaf sequent of δ is a (σB, σC)-axiom. By
Conjecture 8.11 there is no weak ONL-model satisfying the root sequent.
Thus, there can be no ONL-model satisfying the root sequent, hence the
sequent is ONL-valid. ◦

Definition 8.13 (Aux-derivation)
An Aux-skeleton δAux for a set of formulae Γ is a skeleton whose leaf se-
quents Γi, are constructed as follows: Let ΓVar be the set of atomic formulae
of Γ whose label is a label variable, and let c be a label parameter. For all
F[U] ∈ ΓVar construct a leaf sequent Γi such that

Γi =

ΓVar ∪ {F[c]⊥} if the polarity of F
i
[U] is >

ΓVar ∪ {F[c]>} if the polarity of F
i
[U] is ⊥.

Let σ+
c : Var+ → {c} and σ−c : Var− → {c}.

An Aux-derivation is a triplet 〈δAux, σ+
c , σ−c 〉. An Aux-derivation is closed if

all leaf sequents in the Aux-skeleton δAux is both a σ+
c - and a σ−c -axiom by

Definition 6.19. �

Note that an Aux-derivation with no leaves is trivially closed.

Conjecture 8.14 (Maximality test) Assume (M, φ) is a weak ONL-model
satisfying the leaf sequent Γ of an open branch in the complete skeleton of
an LCfv

ONL-derivation. There is no closed Aux-derivation for Γ, if and only
if (M, φ) is not maximal. �

Before of proof sketch is given we first explain the ideas behind the makings
of an Aux-derivation. Let Γ be as in the Lemma. The formulae in Γ labelled
with label variables guide the construction of the sets W+ and W− of a

98 CHAPTER 8. THE CALCULUS LCfv
ONL

possible ONL-countermodel for Γ. If the formulae P[U+]> and Q[U−]>
occur in Γ, then P> is satisfied in every point in W+ and Q> is satisfied in
every point in W− of a weak ONL-model satisfying Γ. If an ONL-model
is to be maximal, there can be no point where both ¬P and ¬Q is satisfied,
since this implies the existence of a point not in W+ ∪W−. To check this we
test if the set {P[U+]>, Q[U−]>, 3(¬P∧¬Q)>} is satisfied in a weakONL-
model. Applying rules to this sequent, without using the abbreviation for
the 3-symbol and assuming the inference on the π-formula belongs to the
label parameter c, we obtain exactly the leaves as described in the definition
of an Aux-derivation. Omitting the rewriting of the π-formula to one π+-
and one π−-formula is compensated by the label substitutions σ+

c and σ−c .

If a leaf sequent of the Aux-derivation is no (σ+
c , σ−c)-axiom, then there is a

weak ONL-model satisfying the set {P[U+]>, Q[U−]>, 3(¬P ∧ ¬Q)>}. If
such an ONL-model is found, it means that the initial model satisfying Γ
cannot be maximal, since the formulae in Γ do not force the weak model
for Γ to be a maximal. If no such model is found, i.e., the Aux-derivation is
closed, then the initial weak model satisfying Γ is maximal.

Proof sketch (of Conjecture 8.14). Conclude by soundness and completeness
of LCfv

K45/S5. 2

Definition 8.15 (LCfv
ON L-proof)

An LCfv
ONL-derivation 〈δ, σB, σC〉 is an LCfv

ONL-proof if for every branch θ in
δ,

1. θ contains a (σB, σC)-axiom, or

2. if θ does not contain a (σB, σC)-axiom, there is no closed Aux-deriva-
tion of the leaf sequent of θ. �

Example 8.16 (Complete skeleton, LCfv
ONL-proof) The skeleton δ displayed be-

low is a complete skeleton. We do not display formula numbers or copy
numbers in the skeleton, but use subscripts to indicate explicit copies, de-
scendants of explicit copies and labels introduced by explicit copied formu-
lae.

As the skeleton contains one label parameter from the set Par+ formulae of
the type ν+ may introduce two label variables.

8.4. SOUNDNESS AND COMPLETENESS 99

Q[c+], CP, P[U−] ` P[c+]
U−

Q[c+], CP ` P[c+]

Q[c+], B¬Q3, ` P[c+], Q[U+], Q2[U+
2]

Q[c+], B¬Q3,¬Q2[U+
2] ` P[c+], Q[U+]

U+
2Q[c+], B¬Q2 ` P[c+], Q[U+]

Q[c+], B¬Q2,¬Q[U+] ` P[c+]
U+

Q[c+], B¬Q ` P[c+]
Q[c+], CP ∨ B¬Q ` P[c+]

¬P[c+], Q[c+], CP ∨ B¬Q `
¬P ∧Q[c+], CP ∨ B¬Q `

c+
b(¬P ∧Q), CP ∨ B¬Q `
b(¬P ∧Q), CP ∨ B¬Q `

The LCfv
ONL-derivation 〈δ, σB, σC〉, where σB = σC = {U+ 7→ c+} has open

branches. The right branch contains an (σB, σB)-axiom, the leaf sequent,
while the left branch is not closable. (Note that we cannot map U− to c+ to
close the left branch.)

Since the left branch is open we perform a maximality test to check if the
weak model satisfying the open branch of δ is maximal. P[U−]> is the only
formula in the leaf sequent of the open branch, giving {P[U−]>, P[s]⊥} as
the only leaf sequent in the Aux-derivation. This sequent is not a (σ+

s , σ−s)-
axiom as the label substitution σ+

s does not create a closing pair. Since
the Aux-derivation of the leaf sequent of an open branch is not closed, the
LCfv

ONL-derivation is an LCfv
ONL-proof. ◦

8.4 Soundness and Completeness

The soundness and completeness results for LCfv
ONL are established by re-

lying on the Conjecture 8.11 and 8.14.

Conjecture 8.17 (Soundness of LCfv
ON L) Let 〈δ, σB, σC〉 be an LCfv

ONL-deri-
vation be a proof on the indexed ONL-sequent Γ. Then Γ is ONL-valid. �

Proof. Let 〈δ, σB, σC〉 and Γ be as in the theorem. We split the proof in
two. First assume 〈δ, σB, σC〉 is an LCfv

ONL-proof because every branch in
〈δ, σB, σC〉 contains an (σB, σC)-axiom. By Conjecture 8.11 there is no weak
model satisfying Γ, and there can be no ONL-model satisfying Γ. Γ has no
ONL-countermodel, hence Γ is ONL-valid.

Lastly assume 〈δ, σB, σC〉 is an LCfv
ONL-proof and that one of more of the

branches in the proof is open. Then there is a weak ONL-model for every
open branch which by Conjecture 8.11 satisfies Γ. But since 〈δ, σB, σC〉 is an
LCfv

ONL-proof, there is no closed Aux-derivation for any of the leaf sequents

100 CHAPTER 8. THE CALCULUS LCfv
ONL

of the open branches, which let us conclude by Conjecture 8.14 that none
of the weak ONL-models satisfying Γ are maximal. No ONL-model is an
ONL-countermodel for Γ, Γ is ONL-valid. 2

The next lemma is an easy adaptation of a result in LCfv
K45/S5 and is needed

in the proof of completeness of LCfv
ONL.

Lemma 8.18 (Weak model preservation of inferences in LCfv
ON L) If there

is a weak ONL-model satisfies the denominator of an inference, then there
is a weak ONL-model satisfying one of the sequents in the numerator. �

Proof sketch. Adapt the proof of Lemma 6.26, countermodel preservation
[in LCfv

K45/S5]. 2

Conjecture 8.19 (Completeness of LCfv
ON L) If an indexedONL-sequent is

not LCfv
ONL-provable, it has an ONL-countermodel. �

Proof. Let Γ be an indexed ONL-sequent which is not LCfv
ONL-provable.

When there exists no LCfv
ONL-proof 〈δ, σB, σC〉 where Γ is the root sequent

of δ.

Let 〈δ, σB, σC〉 be an LCfv
ONL-derivation where Γ is the root sequent of Γ.

Then there is an open branch in 〈δ, σB, σC〉. By Conjecture 8.11 and in turn
Lemma 8.18 there is a weak ONL-model (M, φ) satisfying Γ and all the
sequents in a branch θ in δ. Since 〈δ, σB, σC〉 is no LCfv

ONL-proof, there
is an open branch where there is no closed Aux-derivation of the leaf se-
quent of the open branch. Let θ be such a branch. By Conjecture 8.14 the
weakONL-model satisfying Γ is maximal, and is hence an maximalONL-
countermodel for Γ. 2

Chapter 9

Future work

The work on this thesis has given valuable knowledge concerning difficult
issues, and opened up for new interesting problems.

LCfv
ONL-calculus. The sketch on the LCfv

ONL-calculus needs to be further de-
veloped.

Cycle elimination. Establishing cycle elimination for LCfv.

Removal of the neighbourhood condition. There are reasons to believe that the
neighbourhood condition adapted from [Waaler 2001] may be dropped en-
tirely in LCgt, and also in LCfv, but here on the account of a small alteration
in the non-empty W+-condition to better accommodate the non-empty W+

condition in LCgt. The reason why the author thinks the neighbourhood
condition may be dropped from LCgt, is that there exists an eigenparam-
eter condition between π-inferences which is upheld by the fact that only
equally formula numbered π-formulae introduce equal label parameters.
This is believed to be as a sufficient condition to ensure soundness of the
system. The time of discovery for this feature was however to late to es-
tablish a complete proof of the countermodel preservation lemma for π-
inferences. The problem is that an unfresh label parameter introduction by
a π-inference can no longer be traced back to a fresh introduction of the
same label by another π-inference, an assumption which is present due to
the neighbourhood condition in LCgt.

Splitting calculus. Applying the splitting calculus [Antonsen and Waaler
2006] to the LCfv-calculus. The splitting calculus provides a branch-wise
restriction to the search space. This quality would lower the upper bounds
used in the termination condition dramatically. The indexing of formulae
and reduction ordering used in this thesis are similar to constructs used in
[ibid].

101

102 CHAPTER 9. FUTURE WORK

The sequent
2P ` 22P ∧22P ∧ . . . ∧22P

creates a derivation containing one branch for each conjunction in the large
conjunct. In LCfv the formula will cause the ν-formula in one of the branches
to be replicated as many times as there are conjuncts in the large conjunc-
tion. This is because of the regulations enforced by the contextually equiv-
alent relation. The splitting calculus liberates this regulation leading to a
decrease in the necessary explicit copies. The proof in the splitting calculus
would in all likelihood require no explicit copying of ν-formulae.

The author believes that the application of the splitting calculus can result
in a dramatic reduction on the size of derivation, by making explicit copy-
ing a redundant action. This may however require the input formula to be
rewritten to a normal form without nested modalities.

Implementation. The goal of every constructor of calculi should is to prop-
erly test it, and the best way to do so is build a prototype implementation.

Bibliography

Roger Antonsen. Free variable sequent calculi. Master’s thesis, University
of Oslo, 2003.

Roger Antonsen and Arild Waaler. Liberalized variable splitting. To appear
in Journal of Automated Reasoning 2006, 2006.

Bernhard Beckert and Rajeev Goré. Free variable tableaux for propositional
modal logics. In Proc. International Conference on Theorem Proving with An-
alytic Tableaux and Related Methods, Pont-a-Mousson, France, volume 1227,
pages 91–106. Springer-Verlag, 1997.

E. Bencivenga. Free logic. In D. Gabbay and F. Günther, editors, Handbook
of Philsophical Logic, volume 3. Kluwer, Dordrecth, 1986.

Wolfgang Bibel. Automated Theorem Proving. Vieweg, Braunschweig, 2nd
revised edition, 1987.

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cam-
bridge University Press, 2nd paperback edition, 2005.

Brian F. Chellas. Modal logic: an introduction. Cambridge University Press,
1988.

Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer-
Verlag, 2nd edition, 1996.

Melvin C. Fitting. Proof Methods for Modal and Intuitionistic Logics. D. Reidel
Publishing Co., Dordrecht, 1983.

D. Gabbay. Labelled Deductive Systems. Oxford University Press, 1996.

Michael R. Garey and David S. Johnsen. Computers and Intractability. A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company,
1979.

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathe-
matische Zeitschrift, 39:176–210, 405–431, 1934-35. English translation in

103

104 BIBLIOGRAPHY

M.E. Szabo The Collected Papers of Gerhard Gentzen, North-Holland, Ams-
terdam, 1969.

Christian Mahesh Hansen. Incremental Proof Search in the Splitting Calcu-
lus. Master’s thesis, Dept. of Informatics, University of Oslo, 2004.

Christian Mahesh Hansen. Completeness for First-Order Tableaux. Lecture
notes INF4170, University of Oslo, 2005.

Bjarne Holen. A Reflective Theorem Prover for the Connection Calculus.
Master’s thesis, Dept. of Informatics, University of Oslo, 2005.

G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen,
London, 1968.

S. Kanger. A Simplified Proof Method of Elementary Logic. In J. Siek-
mann and G. Wrightson, editors, Automation of Reasoning 1: Classical Pa-
perss in Computational Logic 1957–1966, pages 364–371. Berlin Heidelberg:
Springer, 1983.

Christoph Kreitz and Jens Otten. Connection-based Theorem Proving in
Classical and Non-classical Logics. Journal of Universal Computer Science,
5(3):88–112, 1999.

Richard E. Ladner. The Computational Complexity of Provability in Sys-
tems of Modal Propositional Logic. SIAM J. Comput., 6(3):467–480, 1977.

Hector J. Levesque. All I Know: A Study in Autoepistemic Logic. Artificial
Intelligence, 42:263–306, 1990.

Fabio Massacci. Single Step Tableaux for Modal Logics. Journal of Automated
Reasoning, 24:319–364, 2000.

Grigori Mints. A Short Introduction to Modal Logic. The University of
Chicago Press, 1992.

Jens Otten. ileanTAP: An Intuitionistic Theorem Prover. In TABLEAUX,
pages 307–312, 1997.

John Alan Robinson. A Machine-Oriented Logic Based on the Resolution
Principle. J. ACM, 12(1):23–41, 1965.

Riccardo Rosati. A Sound and Complete Tableau Calculus for Reasoning
about only Knowing and Knowing at Most. Studia Logica, 69:171–191,
2001.

Raymond M. Smullyan. First-Order Logic, volume 43 of Ergebnisse der Math-
ematik und ihrer Grenzgebiete. Springer-Verlag, New York, 1968.

BIBLIOGRAPHY 105

Bjørnar Solhaug. Logical Spaces in Multi-Modal Only Knowing Logics.
Master’s thesis, Dept. of Linguistics, University of Oslo, 2004.

Arild Waaler. Connections in Nonclassical Logics. In Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated Reasoning, volume II,
chapter 22, pages 1487–1587. Elsevier Science, 2001.

Arild Waaler. Consistency proosf for systems of multi-agent only knowing.
Advances in Modal Logic, 5, 2005.

Arild Waaler. Logical studies in Complementary Weak S5. PhD thesis, Univer-
sity of Oslo, 1994.

Arild Waaler, Johan W. Klüver, Tore Langholm, and Espen H. Lian. Only
Knowing with Degrees of Confidence. To appear in Journal of Applied
Logic, 2004.

Michal Walicki. Introduction to Logic. http://www.ii.uib.no/~michal/und/
i227/book/book.pdf, 2006. Lecture notes IN-227, University of Bergen.

Lincoln A. Wallen. Automated Deduction in Nonclassical Logics. MIT Press,
1990.

106 BIBLIOGRAPHY

List of Definitions

Definition 2.1 Core formula. .9
Definition 2.3 Immediate subformulae . 10
Definition 2.5 Subformula relations . 10
Definition 2.7 Model . 10
Definition 2.8 Satisfaction . 11
Definition 3.1 Label . 16
Definition 3.2 Signed formula . 16
Definition 3.3 Labelled formula. .16
Definition 3.5 Type . 17
Definition 3.8 Immediate subformulae . 18
Definition 3.9 Label interpretation . 18
Definition 3.10 L-Model . 19
Definition 3.11 Truth . 19
Definition 3.13 Extension . 20
Definition 3.16 Sequent . 24
Definition 3.17 Inference. .24
Definition 3.18 Inference schema . 24
Definition 3.19 Skeleton . 26
Definition 3.20 L-countermodel . 26
Definition 3.21 L-Valid . 26
Definition 3.22 LCL-derivation . 27
Definition 3.23 Axiom, LCL . 27
Definition 3.24 LCL-proof . 27
Definition 3.25 Soundness . 27
Definition 3.26 Completeness . 27
Definition 4.1 Labelled sequent . 29
Definition 4.3 Contextually equivalent . 30
Definition 4.7 LCg

L-derivation . 32
Definition 4.11 Axiom, LCg .37
Definition 4.13 LCg

L-proof . 37
Definition 4.23 LCL-derivation construction rule . 46
Definition 4.24 Fairness. .46
Definition 5.1 Indexed formula . 49

107

108 BIBLIOGRAPHY

Definition 5.3 Immediate subformulae . 50
Definition 5.5 Truth . 51
Definition 5.7 Indexed sequent . 51
Definition 5.9 LCgt

L -derivation . 53
Definition 5.13 Axiom, LCgt . 57
Definition 5.14 LCgt

L -proof . 57
Definition 5.17 Balanced skeleton . 59
Definition 6.1 Label substitution . 64
Definition 6.4 Reduction ordering . 66
Definition 6.6 LCfv

L -derivation . 68
Definition 6.13 Cycle . 73
Definition 6.17 Unifier . 77
Definition 6.19 σ-axiom . 78
Definition 6.21 LCfv

L -proof . 78
Definition 6.30 Complete skeleton . 85
Definition 7.1 Core ONL-formula . 87
Definition 7.2 ONL-model . 88
Definition 7.3 Satisfaction . 89
Definition 8.1 Type, Component . 91
Definition 8.2 Label interpretation . 92
Definition 8.3 ONL-model . 93
Definition 8.6 ONL-sequent . 94
Definition 8.7 σB, σC . 95
Definition 8.8 LCfv

ONL-derivation . 96
Definition 8.9 (σB, σC)-axiom . 96
Definition 8.13 Aux-derivation . 97
Definition 8.15 LCfv

ONL-proof .98

Lemma 3.14 . 21
Lemma 3.15 Satisfaction of components . 21
Lemma 4.5 . 32
Lemma 4.12 . 37
Lemma 4.21 Countermodel preservation . 44
Lemma 5.11 . 56
Lemma 5.18 Countermodel preservation . 59
Lemma 6.9 Grounding . 69
Lemma 6.10 . 70
Lemma 6.11 Permutation . 71
Lemma 6.20 . 78
Lemma 6.26 Countermodel preservation . 81
Lemma 8.4 Satisfaction of components . 93
Lemma 8.10 . 96
Lemma 8.18 Weak model preservation of inferences in LCfv

ONL 100

Corollary 4.6 Satisfiability of contextually equivalent formulae 32

BIBLIOGRAPHY 109

Corollary 4.20 Satisfaction of grounded components 44
Corollary 5.12 . 56
Corollary 6.12 Permutation . 73
Corollary 6.28 Grounding . 83
Corollary 8.5 Satisfaction of grounded components 93

Theorem 4.22 Soundness of LCg .45
Theorem 4.25 Completeness of LCg

L . 47
Theorem 5.19 Soundness of LCgt . 60
Theorem 5.20 Completeness of LCgt . 61
Theorem 6.27 Soundness of LCfv

L . 81
Theorem 6.31 Completeness of LCfv . 86

Conjecture 6.25 Cycle elimination . 80
Conjecture 8.11 Satisfiability of open LCfv

ONL-derivation 96
Conjecture 8.14 Maximality test . 97
Conjecture 8.17 Soundness of LCfv

ONL . 99
Conjecture 8.19 Completeness of LCfv

ONL . 100

110 BIBLIOGRAPHY

List of Examples

Example 2.2 Core formula. .9
Example 2.4 Immediate subformulae . 10
Example 2.6 Subformulae . 10
Example 2.9 Satisfaction . 11
Example 3.4 Labelled formula. .16
Example 3.6 Type . 17
Example 3.7 Components . 18
Example 3.12 L-Model . 20
Example 4.2 Sequent . 30
Example 4.4 Contextually equivalent formulae . 31
Example 4.8 Contextually equivalent condition . 33
Example 4.9 Invariance of rule application order 35
Example 4.10 LCg

L-derivation . 36
Example 4.14 T-axiom: LCg

S5-proof, K45-countermodel 38
Example 4.15 K-axiom: LCg

K45- and LCg
S5-proof . 39

Example 4.16 4-, 5-axiom: LCg
K45- and LCg

S5-proof . 39
Example 4.17 Eigenparameter condition, L-countermodel 40
Example 4.18 Non-empty W+ condition, LCg

S5-proof 41
Example 4.19 Non-empty W+ condition . 42
Example 5.2 Indexed formula . 50
Example 5.4 Subformulae . 51
Example 5.6 Truth . 51
Example 5.8 Empty labelled indexed sequent . 52
Example 5.10 Freshness condition in LCgt causes deadlock.54
Example 5.15 LCgt

S5-proof, ground label condition, axiom.57
Example 5.16 LCgt

S5-proof, neighbourhood-, non-empty W+ cond. 57
Example 6.2 Label substitution . 65
Example 6.3 Order of inferences. .65
Example 6.5 Reduction ordering . 67
Example 6.7 LCfv-derivation . 68
Example 6.8 Invariance under rule application . 68
Example 6.14 Cycle . 74
Example 6.15 Cycle elimination . 74

111

112 BIBLIOGRAPHY

Example 6.16 Non-empty W+ condition, K45 . 76
Example 6.18 Unifier . 78
Example 6.22 LCfv

l -proof . 78
Example 6.23 LCfv

L -proof . 78
Example 6.24 LCfv

S5-proof . 79
Example 6.29 Termination condition . 84
Example 7.4 ONL-model . 89
Example 8.12 2 is an S5-modality . 97
Example 8.16 Complete skeleton, LCfv

ONL-proof . 98

List of Figures

2.1 Illustration of a K45-model . 12
2.2 K45 vs. S5: “Accessibility relation” 14

3.1 Labelled formula types and their components. 17

4.1 Rules of LCg. 30

5.1 Rules of LCgt . 52
5.2 Copy histories and subformulae. 53

6.1 Rules of LCfv . 63
6.2 Permutation schemata . 72
6.3 Cycle elimination . 82

8.1 ONL-formula types . 92
8.2 Rules of LCfv

ONL . 95

113

