
Saulo Soares de Toledo

Managing Architectural Technical
Debt in Microservices

Thesis submitted for the degree of Philosophiae Doctor

Department of Informatics
Faculty of Mathematics and Natural Sciences

2022

© Saulo Soares de Toledo, 2022

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 2538

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without
permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.

To my wife, Emanuele, and my family.

Abstract

Background: Software systems must continuously evolve to meet new business
requirements. A modular software architecture is key to facilitating the
evolution of the system. Many software development organizations also require
their software to be deployed on the cloud due to demands on scalability
and availability. Microservices is an architectural style that allows the
implementation of all these requirements. However, software architecture
is prone to sub-optimal solutions, because of several factors such as time
constraints, uncertainty, miscommunication, and the growing complexity of
software systems. Such factors may lead to architectural technical debt (ATD).
There are only a few studies about ATD in the context of microservices (MS-
ATDs).

Objective: This work aims to understand what MS-ATDs are, including
their costs and solutions, and investigate methods to support their quantifica-
tion, prioritization, and management.

Method: The reported studies combined qualitative and quantitative
research methods. We started with a multiple case study in seven large
software development organizations to identify MS-ATDs, costs, and solutions.
We then proceeded with an in-depth multiple case study in four large software
development organizations on how a specific MS-ATD, the misuse of shared
libraries, affects development agility. Next, we performed another multiple case
study in three large software development organizations in the early stages of
migration to microservices to understand how MS-ATDs occur during migration
and how they can be prioritized. Finally, we conducted a quantitative case
study in a large company before and after refactoring some MS-ATDs to
understand how the refactoring affected the occurrence of incidents. We used
incidents as a proxy of MS-ATD costs.

Results: Our results include a catalog of MS-ATDs, their causes, their
solutions, a quantification of the debts’ interest based on the number of incidents
resulting from the debts, and an approach to prioritize MS-ATDs. Examples
of MS-ATDs are the lack of communication standards among microservices,
the misuse of shared libraries, and an excessive number of small products. We
report negative effects of misusing shared libraries on development agility. We
also presented suggestions of how software development organizations could deal

iii

Abstract

with this problem. Finally, we proposed a systematic prioritization approach
for MS-ATDs based on factors such as the likelihood of their occurrence, the
difficulty of their resolution, and their importance for the practitioners.

Conclusion: Software development organizations are still learning how to
use microservices and pay a high interest due to the lack of experience with
this architectural style. Such organizations can use our catalog to identify
16 different MS-ATDs, their costs, and solutions. They can also integrate
our lightweight MS-ATD prioritization approach into their agile development
processes. Researchers can find our results valuable in understanding MS-ATDs
and contributing to reducing the current knowledge gap that leads to MS-ATD
high costs. Finally, we quantified part of the MS-ATD interest using incidents.
Such an approach might be helpful for companies and researchers when seeking
new ways of measuring the debt’s interest.

iv

Acknowledgments

First and foremost, thanks to Almighty God for all His blessings in uncountable
situations. Words like “coincidence” or “luck” cannot describe the numerous
circumstances in which things worked out when I needed them, especially in
the most challenging moments.

I also want to express my gratitude to the many people that made this
work possible. I will not be able to put all their names here, but I would like to
thank them all from this first beginning. This thesis will permanently engrave
their contributions.

I want to express deep and sincere gratitude to my primary supervisor,
Antonio Martini, for believing in me from the first day we met, in an online
interview, until today. He has been a unique supervisor and always seeks novel
and ground-breaking contributions to Software Engineering research. His effort
made it possible to conduct this research as an interaction between academy
and industry. This Ph.D. would never be possible without his support.

I want to thank Dag Sjøberg, my second supervisor. Dag has an impressive
knowledge of research in software engineering. I am still trying to learn more
about that knowledge from his papers, emails, and discussions. He has also
been supportive from day one of our conversations, not only in my research
and papers but far more in several other aspects of my life in Norway. I am
deeply grateful for Dag’s support.

I also want to thank my wife, Emanuele Montenegro Sales, for her patience
and support. She left many things behind to support me in this Ph.D. Nothing
would have been possible without her help. She finished her Ph.D. during my
first months in Norway, and I could not be present in her defense. However,
she shared many of her experiences with her Ph.D., which made things easier
for me.

A special thank you to Francisco Neto from the Chalmers University of
Technology, Sweden, a person I am glad to have as a friend. I am not sure
anymore when it was the first time we met. Still, I recall an interview for
a project to work for a company through one of the Federal University of
Campina Grande’s laboratories in Brazil. From that point forward, he helped
with my master’s degree, which was in progress, and later sent me the link for
applying to this Ph.D. position. We then had several long phone calls about

v

Acknowledgments

the Nordics and how it would be to have a Ph.D. here.
I also thank my parents and siblings for their support. First to my father,

Severino, who wanted me to finish this Ph.D., but unfortunately passed away
in 2020. I had the opportunity to meet him on his 93rd anniversary, yet in
good health, and stayed with him until his last day. I thank him for his support
and the many conversations we had. Then, I thank my mother, Zélia, for all
her dedication and help making things work. She helped me from the most
simple to the most complicated things before and during my stay in Norway, no
matter how tired she was. And finally, to my siblings, Zeneide, Sérgio, Sílvio,
Sidney, and Simões. They supported me in so many ways I can never repay.

Many thanks to all the professors and colleagues from the 10th floor in
the Department of Informatics. Our many lunch days together made me feel
comfortable in a new country. To mention a few: Victoria Stray, which was also
part of the evaluation committee that interviewed me, Dag Langmyhr, and Stein
Michael, who both brightened up my lunch hours with amazing conversations,
Stein Krogdahl, passed away, which left me with memories of a knowledgeable
and smiling person in every conversation we had, Yngve Lindsjørn, who I
kept trying to listen to understand Norwegian, Paulo Ferreira, who shared
many valuable ideas and information in my native language, Eric Jul, of whom
I could never tell the difference in the Norwegian accent as highlighted by
his colleagues, Siri Jensen, who had great patience in repeating Norwegian
words so that I could understand them, Herman Jervell, a very attentive
and knowledgeable person, Arne Maus, Geir Horn, Henrik Løvold, Gunnar
Bergersen, Dino Karabeg, Eyvind Axelsen, Marthe Berntzen, Raluca-Madalina,
Oleks Shturmov, Mahdieh Kamalian, and Lucas Paruch.

Also, thanks to Jan Bosch, director of the Software Center in Sweden,
for allowing me to participate in several Software Center events and for his
many insights during my mid-term evaluation. Thanks to Knut-Helge Rolland,
passed away, the second reviewer of my mid-term evaluation, who also gave
me valuable insights for my thesis. And thanks to Helena Holmström for the
valuable feedback on the final version of this thesis.

Thanks to my other primary papers coauthors, Agata Przybyszewska,
Johannes Skov Frandsen, and Phu Nguyen, for their support and contributions.
And thanks to the many researchers who invited me to external collaborations.
Starting with Wilhelm Hasselbring and Henning Schnoor from the University
of Kiel, which invited me to a visit to that university. The many circumstances,
including the unexpected Covid-19 outbreak, prevented us from working on
our original plans. However, the feedback I received during that visit was
helpful to my research efforts. And then to the professors and colleagues
from the GroWDebt workshop, in which we coauthored an IEEE paper: Paris

vi

Avgeriou, Davide Taibi, Apostolos Ampatzoglou, Francesca Fontana, Terese
Besker, Alexander Chatzigeorgiou, Valentina Lenarduzzi, Athanasia Moschou,
Ilaria Pigazzini, Nyyti Saarimaki, Darius Sas, and Angeliki Tsintzira.

Finally, thanks to all the contributors to this thesis who participated directly
with interviews or indirectly by setting up contacts and meetings. And thanks
to the many friends who helped make my life enjoyable outside work.

vii

List of Publications

Included papers

Chapter 5

de Toledo, S. S. and Martini, A. and Sjøberg, D. I. K. ‘Identifying
architectural technical debt, principal, and interest in microservices: A
multiple-case study’. In: Journal of Systems and Software 177 (2021). DOI:
10.1016/j.jss.2021.110968.

Chapter 6

de Toledo, S. S. and Martini, A. and Sjøberg, D. I. K. ‘Improving Agility
by Managing Shared Libraries in Microservices’. In: Paasivaara, Maria and
Kruchten, Philippe (Ed.), Lecture Notes in Business Information Processing.
Springer Berlin/Heidelberg. 396 (2020), pp. 195–202. DOI: 10.1007/978-3-030-
58858-8_20.

Chapter 7

de Toledo, S. S. and Martini, A. and Nguyen, P. H.
and Sjøberg, D. I. K. ‘Accumulation and prioritization of Architectural Debt
in three companies migrating to microservices’. In: IEEE Access 10 (2022),
pp. 37422–37445. DOI: 10.1109/ACCESS.2022.3158648.

Chapter 8

de Toledo, S. S. and Martini, A. and Sjøberg, D. I. K. and Przybyszewska, A. and
Frandsen, J. S. ‘Reducing Incidents in Microservices by Repaying Architectural
Technical Debt’. In: Proceedings of the 47th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE. (2021), pp. 196–205.
DOI: 10.1109/SEAA53835.2021.00033.

ix

http://dx.doi.org/10.1016/j.jss.2021.110968
http://dx.doi.org/10.1007/978-3-030-58858-8_20
http://dx.doi.org/10.1007/978-3-030-58858-8_20
http://dx.doi.org/10.1109/ACCESS.2022.3158648
http://dx.doi.org/10.1109/SEAA53835.2021.00033

List of Publications

Other papers

Avgeriou, P. C. and Taibi, D. and Ampatzoglou, A. and Fontana, F. A. and
Besker, T. and Chatzigeorgiou, A. and Lenarduzzi, V. and Martini, A. and
Moschou, A. and Pigazzini, I. and Saarimaki, N. and Sas, D. D. and de Toledo, S.
S. and Tsintzira, A. A. (2021). An ‘An Overview and Comparison of Technical
Debt Measurement Tools’. In: IEEE Software. 38(3), (2021), pp. 61–71. DOI:
10.1109/MS.2020.3024958.

de Toledo, S. S. and Martini, A. and Sjøberg, D. I. K. ‘Summary: Identifying
architectural technical debt, principal and interest in microservices – A multiple-
case study (short paper)’. In: Companion Proceedings of the 15th European
Conference on Software Architecture (ECSA). Journal First Track. 2978 (2021).
http://ceur-ws.org/Vol-2978/.

de Toledo, S. S. and Martini, A. and Przybyszewska, A. and Sjøberg, D. I.
K. ‘Architectural Technical Debt in Microservices: A Case Study in a Large
Company’. In: Avgeriou, Paris and Schmid, Klaus (Ed.) Proceedings of the
Second International Conference on Technical Debt. IEEE. (2019), pp. 78–87.
DOI: 10.1109/TechDebt.2019.00026.

x

http://dx.doi.org/10.1109/MS.2020.3024958
http://ceur-ws.org/Vol-2978/
http://dx.doi.org/10.1109/TechDebt.2019.00026

Contents

Abstract iii

Acknowledgments v

List of Publications ix

Contents xi

List of Figures xv

List of Tables xvii

1 Introduction 1

2 Background and related work 3
2.1 Technical Debt . 4
2.2 Microservice Architecture 7
2.3 Technical Debt and the development with microservices . 12

3 Research Questions and the Thesis Studies 15
3.1 Research studies addressing the definition of MS-ATDs

(RQ1) . 16
3.2 Research studies addressing the occurrence of MS-ATDs

(RQ2) . 20
3.3 Research studies addressing the prioritization of MS-ATDs

(RQ3) . 21
3.4 Research studies addressing the repayment of MS-ATDs

(RQ4) . 24

4 Research Methodology 27
4.1 Research context . 27
4.2 Case study research . 30
4.3 Interviews . 32
4.4 Document analysis . 36

xi

Contents

4.5 Validity and reliability 36

Papers 40

5 Identifying architectural technical debt, principal, and
interest in microservices: A multiple-case study 41
5.1 Introduction . 42
5.2 Background . 43
5.3 Methodology . 54
5.4 Results . 69
5.5 Discussion . 83
5.6 Related Work . 90
5.7 Conclusions and Future Work 92

6 Improving agility by managing shared libraries in mi-
croservices 95
6.1 Introduction . 96
6.2 Background . 97
6.3 Methodology . 97
6.4 Results . 98
6.5 Discussion and Threats to Validity 103
6.6 Conclusions and Future Work 104

7 Accumulation and prioritization of Architectural Debt in
three companies migrating to microservices 105
7.1 Introduction . 106
7.2 Background . 110
7.3 Research design . 117
7.4 Results and discussion 125
7.5 Limitations . 160
7.6 Related Work . 161
7.7 Conclusion . 162

8 Reducing Incidents in Microservices by Repaying Archi-
tectural Technical Debt 165
8.1 Introduction . 166
8.2 Background . 167
8.3 Methodology . 175
8.4 Results . 182
8.5 Discussion . 188

xii

Contents

8.6 Related work . 190
8.7 Conclusions and future work 190

9 Discussion and Conclusions 193
9.1 Research questions and contributions of the thesis 193
9.2 Future work . 198
9.3 Conclusion . 199

Bibliography 201

Appendices 211

A Study 1 Interview guide 213

xiii

List of Figures

1.1 The topics discussed in this thesis. 2

2.1 The relationship between TD and ATD. 3
2.2 Microservice characteristics and migration topics. 9
2.3 The most expressive references among the ones mentioned in

Sections 2.1 and 2.2. 14

3.1 The MS-ATD research gap and the research questions 16
3.2 Relationship between the RQs and the studies. 18
3.3 The MS-ATDs definition . 19
3.4 The occurrence of MS-ATDs 22
3.5 MS-ATDs prioritization . 23
3.6 The benefits of the MS-ATDs repayment 25

5.1 Monolithic and microservice architectures 44
5.2 Microservices synchronous communication 46
5.3 The API gateway . 46
5.4 Microservices asynchronous communication 47
5.5 Service discovery, registry and services instances 48
5.6 The circuit breaker . 49
5.7 ATD and the related concepts 52
5.8 Methodology overview . 55
5.9 Transforming quotations into codes through open coding . . . 58
5.10 Identifying the relationship among debt, interest and principal . 61
5.11 A message carrying metadata 70
5.12 The benefits of tracking dependencies among services 71
5.13 Common interests and principals among the debts. 87

6.1 Shared libraries example . 99
6.2 How to handle shared functionality 102

7.1 New ATD after migration to microservices 106
7.2 Research question and in the studied context 108

xv

List of Figures

7.3 An overview of the research process. 119
7.4 Percentage of practitioners who voted for each answer regarding

the debts found on each company 129
7.5 Values for the calculation of the ranking of MS-ATDs found for

each company. 135
7.6 Percentage of practitioners who voted for each answer regarding

the debts foreseen on each company 136
7.7 Values for the calculation of the ranking of MS-ATDs foreseen

for each company. 142
7.8 Percentage of practitioners who voted for each answer regarding

the debts practitioners know how to avoid on each company . 143
7.9 Values for the calculation of the ranking of MS-ATDs the

practitioners know how to avoid for each company. 148
7.10 Importance of the MS-ATDs as perceived by the practitioners 149
7.11 Priority ranking normalized between 1 and 10 153

8.1 Reduction of incidents reducing the total interest 170
8.2 Example of solution to solve ATDs 173
8.3 Data collection overview. 177
8.4 Categories of incidents. 179
8.5 Incidents by category . 185
8.6 Incidents per type distributed over time for both architectures. 186

xvi

List of Tables

2.1 The types of TD . 6

3.1 Research questions. 17

4.1 Overview of the included publications, the companies involved,
and the research methodologies. 27

4.2 Summary of interviews in this thesis by company. 33

5.1 Companies context . 57
5.2 Type and number of interviews and interviewees by company . 60
5.3 Architectural Technical Debt identified on each company. . . . 62
5.4 Catalog of Architectural Technical Debts, interest and principal. 65

6.1 Issues reported by companies as the result of using shared libraries 98

7.1 The MS-ATDs selected for this study. 113
7.2 Attendees for the first presentation. 121
7.3 The practitioners’ raw answers 126
7.4 Ranking of the most encountered MS-ATDs 130
7.5 Ranking of MS-ATDs foreseen in each company 137
7.6 Ranking of MS-ATDs that companies do not know how to avoid 141
7.7 Ranking of the most important MS-ATDs according to the

practitioners . 150
7.8 Priority rankings of the proposed MS-ATDs 154
7.9 The changes in the rankings when using different probabilities 158

8.1 Incidents by group and priority 183

A.1 Interview guide for Study 1. 214

xvii

Chapter 1

Introduction
Architectural technical debt (ATD) is present when architectural sub-optimal
solutions lead to a benefit in the short term but increase the overall costs
in the long run [MBC15]. Every software is prone to ATD: software
development organizations may accumulate ATD when trying to accelerate the
development of a software architecture or when an architecture is degraded
due to architectural choices that were optimal in the past but are currently
hindering architecture development [Ver+21].

Over the past years, we have seen a growth in the popularity of the
microservices architectural style [Dra+17]. A microservice architecture consists
of a suite of small and independent services working together and communicating
through lightweight mechanisms [LF14]. This architectural style facilitates
software scalability and reduces the length of testing, build and release phases,
among other advantages [Fow15]. Such advantages made several software
development organizations use microservice architectures in their solutions.

Still, architecting with microservices is not easy [DLM19]. Software
development organizations are still learning how to use them properly [TLP20].
Many of those organizations are developing microservices from scratch, while
others are migrating from other architectural styles. It is common to see success
stories in workshops, conferences, and other events worldwide for both cases1.

Like any architectural style, microservices are prone to ATD. However, the
current literature on the topic does not define ATD in microservices, their
causes, solutions, or how to avoid them (see the systematic mapping study
about architecting with microservices by Di Francesco et al. [DLM19] and
the systematic literature review about the management of ATDs by Besker et
al. [BMB18]). Software development organizations also do not know how to
deal with these debts.

Moreover, microservices are distinct from other architectural styles. Specific
characteristics lead to microservice-specific ATDs (MS-ATDs). Like any ATDs,
identifying and managing MS-ATDs are essential to prevent software failure.

1Some examples are the presentations “Mastering Chaos” by Josh Evans (Netflix, 2016,
available at https://youtu.be/CZ3wIuvmHeM), “Amazon and the Lean Cloud” by Werner
Vogels (Amazon, 2011, available at https://vimeo.com/29719577), and “What We Got Wrong:
Lessons from the Birth of Microservices” by Ben Sigelman (Google, 2018, available at
https://youtu.be/-pDyNsB9Zr0).

1

https://youtu.be/CZ3wIuvmHeM
https://vimeo.com/29719577
https://youtu.be/-pDyNsB9Zr0

1. Introduction

This work investigates what MS-ATDs are, how they occur, and how to prioritize
and repay them.

Figure 1.1 1 shows the main topics discussed in this thesis. The following
chapters will expand each of these topics.

Figure 1.1: The topics discussed in this thesis.

2

Chapter 2

Background and related work

Figure 2.1: The relationship between TD and ATD.

Architectural technical debt (ATD) is a specific type of technical debt (TD).
Figure 2.1 presents the relationship between TD and ATD, as well as related
concepts.

3

2. Background and related work

2.1 Technical Debt

The first mention of “technical debt,” or TD in short, dates back to
1992, in a report written and presented by Ward Cunningham at the
Object-Oriented Programming, Systems, Languages & Applications Conference
(OOPSLA) [Cun92]. Cunningham described TD as a metaphor to explain the
fragile balance between making decisions with short-term benefits and their
consequences: an increase in long-term software development costs. Since then,
researchers and industry practitioners worldwide have used the metaphor. The
first research studies on TD emerged in the early 2000s and the more significant
ones after 2010 [CLM21].

Several years after the original definition of TD, in 2007, Steve McConnell
wrote the first most noticeable refinement of the metaphor. He defined two
types of TD: the unintentional, which happens due to low-quality work and the
intentional, caused by strategic decisions. Later, in 2009, Martin Fowler defined
the “Technical Debt Quadrant,” classifying TD as deliberate or inadvertent
and reckless or prudent. The definition by McConnell and the Technical Debt
Quadrant by Fowler expanded the original interpretation given by Cunningham,
given space to interpret (intentional or unintentional, deliberate or inadvertent,
and reckless or prudent) TD also as part of an overall investment strategy to
speed up software development.

Several years later, in 2016, the Dagstuhl Seminar 16162 “Managing
Technical Debt in Software Engineering,” came up with the most recent and
well-used definition of TD [Avg+16]:

In software-intensive systems, technical debt is a collection of design
or implementation constructs that are expedient in the short term
but set up a technical context that can make future changes more
costly or impossible. Technical debt presents an actual or contingent
liability whose impact is limited to internal system qualities, primarily
maintainability and evolvability.

Essentially, the TD metaphor is composed of three main components:

• The debt is a contingent technical issue or sub-optimal implementation
that might or not incur intentionally. Practitioners might intentionally
take the debt to accelerate the development process. Alternatively, the

4

Technical Debt

debt might emerge due to technology degradation when an acceptable
solution in the past is not satisfactory anymore. One example of debt is
skipping the support for scalability in a web development platform due
to time-to-market constraints.

• The interest is the cost of taking the debt. Following the previous example
of debt, part of the interest could be the cost for handling maintenance
issues and potential loss of clients due to current platform limitations,
which cannot scale to support a higher number of clients.

• The principal is the cost of developing the optimal architecture from the
beginning or the cost of repaying the debt. In the example above, the
principal is the cost of rewriting the software to be scalable later, such as
costs due to effort spent on extra development and learning technologies.

Many have contributed to the state of the art of technical debt since the
definition of the term [CLM21]. Examples are the TD landscape by Kruchten et
al. [KNO12], which separates the concept of TD from other issues such as code
smells and coding style violations, the TD categorization by Li et al. [LAL15],
and the accumulation model of architectural TD by Martini et al. [MBC15].

2.1.1 Types of Technical Debt

Over the years, the research on TD classified the debts into distinct types.
Each type applies to different software artifacts, such as code, architecture, and
requirements. Alves et al. [Alv+14] and Li et al. [LAL15] are two secondary
studies that systematically identified TD types in the research literature. They
identified 13 and 10 distinct types of TD, respectively, as shown in Table 2.1.

Some TDs were studied more than others over the years. Li et al. [LAL15]
shows that code TD is the most cited type in the research literature (40% of
the studies assessed), followed by ATD (27% of the studies assessed). The
other types of debt are spread throughout the remaining 33% of the studies
assessed). Alves et al. [Alv+16] inferred that a plethora of tools for source code
analysis might explain the high amount of studies on code TD. Other types of
TD do not have such an abundance of tool support. ATD is the second most
studied TD type. However, answering how to identify, monitor, and manage
ATD is still an open research question [Ver+21]. There is increasing evidence
that ATD is the most challenging type of debt to handle [KNO12]. This thesis
assesses the management of ATDs in microservices, as described in Section 3.

On the other hand, Service Debt is the least studied type of TD, with a
single study on the topic by Alzaghoul and Bahsoon [AB13] as identified by

5

2. Background and related work

Table 2.1: The TD types according to Alves et al. [Alv+14] and Li et al. [LAL15].

Identified byDebt

Alves et
al.

Li et al.

Refers to

Architectural Debt X X Sub-optimal architectural decisions.

Build Debt X X Difficulties during the software building phase.

Code Debt X X Issues found in the software source code.

Defect Debt X X Defects found in the source code, usually
identified by test activities.

Design Debt X X Issues at the design level, such as complex
classes and methods or code smells.

Documentation Debt X X Lack of system documentation.

Infrastructure Debt X X Suboptimal infrastructure decisions.

People Debt X People and socio-technical decisions.

Process Debt X Inefficient processes.

Requirements Debt X X Inconsistencies between the actual implemen-
tation and its optimal requirements.

Service Debt X Issues regarding web service selection and
composition in cloud-based architectures.

Test Automation Debt X Issues with the test automation functionalities.

Test Debt X X Poor testing practices.

Versioning Debt X Incorrect source code versioning management.

Alves et al. [Alv+14]. At first hand, this type of TD seems related to the topic
of this thesis. However, the authors studied non-microservice SOA applications.
They investigated a scenario in which architects want to replace pieces of their
software with web services available in the cloud market. Different vendors
may have different but similar web services, and the architects have to decide
which one to use. According to the authors, selecting one of the web services
might incur TD. They propose an approach to support practitioners to decide
what web service to use. In this scenario, their applications might be monoliths
consuming web services. Furthermore, the term “web services” itself was strictly
defined as using specific technologies not commonly used in microservices (see

6

Microservice Architecture

the definition of web services by the W3C Working Group1).

2.1.2 Architectural Technical Debt

Software architecture plays a significant role in the development of large
systems [KNO12]. Therefore, it is important to manage ATDs. Examples of
ATDs are incorrect or not well-defined data structures, unexpected dependencies
among components, pieces of the architecture that do not satisfy the product
requirements (e.g., scalability), and misplaced functionality (e.g., business logic
in the software UI) [MB17].

Several tools can help with TD, and some of them expose architecture-
related issues such as coupling and circular dependencies [Avg+21]. However,
such tools primarily rely on analyzing the software source code [BMB16].
Therefore, they cannot capture whether architectural decisions, for example,
concerning the source-code framework used to build the application or database
technology in a particular setup lead to debts.

ATD might emerge from decisions made in previous phases of software
development. For example, frameworks chosen several years earlier might not
support newer scalability requirements or migration to the cloud. Modifications
in the business context, time pressure, or lack of understanding about a system’s
future business requirements might be causes for consequential changes in the
system requirements and, thus, new ATD. Regardless of the causes, ATDs
may be costly and require management to prevent the system from being
unmaintainable [MBC15].

2.2 Microservice Architecture

The microservice architectural style requires breaking down applications into
smaller, independent pieces. Each piece, called a microservice, provides
independence among teams, improved maintainability, and scalability. Over the
years, several authors proposed definitions for microservices. Di Francesco et
al. [DLM19] identified at least 27 authors using their own or informal definitions
of the term. However, the most used definition is the one provided by Lewis
and Fowler [LF14] in 2014: “an approach to developing a single application as
a suite of small services, each running in its own process and communicating
with lightweight mechanisms, often an HTTP resource API.”

Microservices are born in the industry. They were in use years before that
definition in 2014. According to Newman [New19], Lewis spotted the originally

1https://www.w3.org/TR/ws-arch/wsa.pdf

7

https://www.w3.org/TR/ws-arch/wsa.pdf

2. Background and related work

called “micro-apps” in a few companies to which he had access yet in 2011.
After that, “micro-apps” became a topic under discussion in a few circles. Later,
they were renamed “micro-services” (as one can still find them named in some
publications), and finally “microservices” [New19]. Sometime later, the most
well-accepted definition of the term was born.

In the subsequent years, microservices were better developed and adopted
and became a matter of interest by many companies worldwide. Many
of these companies gradually moved out from SOA-specific solutions in
favor of microservices. Not all these companies managed to have pure
microservice architecture, so it is somewhat common to see architectures
that mix microservices and other SOA-oriented solutions. According to Di
Francesco et al. [DLM19], the number of research papers on microservices
increased considerably after Lewis and Fowler’s [LF14] definition of the term.

Microservices are becoming increasingly popular and are frequently
described as an alternative to monolithic applications, which are built
and deployed as a single unit. However, microservices also bring some
challenges, such as the risk of increased data inconsistency and operational
complexity [Fow15]. Figure 2.2 highlights the topics discussed in the remainder
of this section.

8

Microservice Architecture
Fi
gu

re
2.
2:

M
ic
ro
se
rv
ic
e
ch
ar
ac
te
ris

tic
s
an

d
m
ig
ra
tio

n
to
pi
cs
.

9

2. Background and related work

2.2.1 Microservices characteristics

Lewis and Fowler [LF14] proposed a set of characteristics to describe
microservices. According to them, not all microservice architectures have
all the proposed characteristics, but they should exhibit most. We present
those characteristics below:

• Componentization via Services: A component is a unit of software
that can be updated or replaced independently. Examples are libraries
that can be linked to the running software. Although microservices
architectures can use libraries, their primary way of componentizing
is through services. These services are independently deployable, and
usually do not require changes in other services.

• Organized around Business Capabilities: The microservice architec-
ture is organized around atomic business functions, reducing dependencies
among components. Since each development team is independent, they
can develop their software at their own speed.

• Products not Projects: Many software development organizations
create software using a project model, in which a team works on the
project until its delivery. After that, the development team hands it over
to a maintenance team. In contrast, microservices shift the focus from the
project to the product. Teams working with microservices are responsible
for the whole lifetime of the product, including its maintenance and
evolution. Other software architectures can benefit from this approach,
but microservices are smaller, making it easier for teams to take ownership
of the services.

• Smart endpoints and dumb pipes: The mechanism used for
communication among services should not contain logic, acting as
“dumb pipes.” All the logic should be moved to the endpoints, i.e.,
the microservices themselves.

• Decentralized Governance: It is common on centralized governance
models that everything is standardized to use a single technology platform.
On the other hand, Microservice development teams prefer to take
advantage of different standards and technologies.

• Decentralized Data Management: Microservices prefer letting each
service manage its own database, which facilitates that conceptual models

10

Microservice Architecture

of the world differ between systems: “users” in one department may be
called “vendors” and “authors” in another department. Such decentralized
data management facilitates independence among services and teams,
but it also introduces some challenges, such as difficulties to manage
distributed transactions when needed.

• Infrastructure Automation: Microservices benefit significantly from
the use of infrastructure automation techniques. As the number of services
grows, it is increasingly necessary to have good infrastructure automation.

• Design for failure: Microservices should be designed for failure because
it is increasingly likely that one or more services become unavailable for
a number of reasons as the number of services grows.

• Evolutionary Design: Microservices can be created or extinguished
due to business needs. The microservice architecture should allow the
replacement, upgrade, or removal of services.

2.2.2 Microservices trade-offs

Microservices provide several benefits, but they have trade-offs. Fowler [Fow15]
proposed the following benefits:

• Strong Module Boundaries: If well-defined, microservices have strong
module boundaries and reinforce the modular structure of the product,
facilitating the management of microservice projects, especially the larger
ones.

• Independent Deployment: It is easy to deploy independent services.
They are autonomous and usually do not require deep knowledge of other
services to be deployed. If the architecture is well-defined, services that
go wrong after deployment should not affect the remainder of the system.

• Technology Diversity: Microservices allow developers to mix multi-
ple programming languages, development frameworks, communication
methods and protocols, databases, and other involved technologies.

However, those benefits have costs [Fow15]:

• Operational Complexity: The overall architecture is complex and
must be adequately managed. The company must have a mature
operations team to help with such management.

11

2. Background and related work

• Eventual Consistency: Distributed systems frequently rely on decen-
tralized data. It is common to have different databases with data that
is related, so the databases need to be synchronized. Synchronization is
needed when one of the databases receives the data before the others.
Eventually, all databases will be updated, and there will be consistency
in the data. Eventual consistency might be beneficial to some projects.
However, in many cases, such as when migrating from systems with strong
consistency, maintaining the desired consistency in the data may be too
costly.

• Distribution: Microservices are distributed systems, which brings many
challenges such as handling failures on remote calls and additional latency.

2.3 Technical Debt and the development with
microservices

Software development organizations adopt microservices aiming to work more
efficiently and gain all the benefits this architectural style provides. However,
architecting with microservices is not easy. It requires dealing with many
challenges, such as the management of network latency, data consistency, and
fault tolerance [DLM19]. There are trade-offs to be considered by practitioners
(see Section 2.2.2).

Moreover, it is clear from research and practice that every software
architecture is prone to ATD, and that is not different for microservices.
Some ATDs are specific to microservices due to this architectural style’s unique
characteristics. Therefore, managers, architects, developers, and other roles
must understand and manage the repayment of microservice-specific ATDs (MS-
ATDs) to develop their software architecture. Consequently, ATD management
is vital to increase the software life expectancy since ATD accumulation may
lead to a development crisis [MBC15].

Usually, Product Owners (POs)2 and architects3 (or equivalent roles,
depending on the software development method adopted by the company)

2The Product Owner (PO) is the customer’s representative in Scrum [SS20], an agile
framework. There are equivalent roles in other agile frameworks, such as the on-site customer
in eXtreme Programming (XP) [UKS19]. Among their functions, POs should prioritize the
work to be done by the development teams.

3Software architects are responsible for the technical solutions that satisfy the business
requirements and specific system qualities [McB07]. Examples of such qualities are scalability,
reusability, and responsiveness. As such, their architectural design may lead to more or less
ATD [LLA15].

12

Technical Debt and the development with microservices

are the ones responsible for prioritizing feature development and ATD
repayment [MB15]. Although knowing that ATD must be repaid and requires
management, such prioritization-responsible practitioners frequently down-
prioritize ATD repayment because of feature prioritization [MB15]. One reason
for such down-prioritization is that such roles use individual experience or
intuitive judgment to decide about ATD repayment, which makes it hard to
justify the decision for the management [MB17]. Another reason is that they
do not know the costs of the debts in the long run or that the debts exist.
Time pressure, reuse of legacy software, and lack of documentation might
contribute to this accumulation of debts [MBC15]. Therefore, POs, architects,
and equivalent roles need more information for practical prioritization of the
ATDs [MB15]. Nevertheless, as we will discuss next, the lack of knowledge
about MS-ATDs in the research literature indicates a research gap that requires
investigation.

Software developers are less involved in the prioritization than roles such
as POs and architects. However, they are responsible for the implementations
that may cause or repay ATD. Therefore, they also need more information
about ATDs and related costs to avoid or repay them properly.

Both ATD and microservices are reasonably recent areas of study; see
Figure 2.3 for reference. Despite being introduced in 1992, blog posts and
non-scientific discussions were the most relevant remarks regarding ATD in
the first 20 years. Only after that did TD become a topic under discussion
in pertinent research circles [CLM21]. Concerning ATD, one specific type of
TD, the lack of tools to identify it further narrowed the research efforts during
these years [CLM21]. On the other hand, microservices as a research topic
started to become popular a few years later, in 2014 [DLM19].

Due to the recent nature of both areas, previous research has not addressed
MS-ATDs satisfactorily. Researchers on microservices addressed complexity,
low flexibility, security needs, and other concerns [DLM19], but not from
an ATD point of view. Still, they lack in-depth discussions regarding when
such concerns are debts, when they are acceptable, and when they require
repayment. For example, two microservices might be highly dependent on
each other. The high coupling among those might be against the microservice
definition as independent services. However, this coupling might never be
debt and never cause problems or undesired costs to the software. On the
other hand, researchers on ATD have not yet started investigating MS-ATDs
in recent studies [BMB18]. Therefore, there is a gap in research revealing
missing knowledge regarding MS-ATDs that would benefit practitioners and
researchers.

13

2. Background and related work

Figure 2.3: The most expressive references among the ones mentioned in
Sections 2.1 and 2.2.

14

Chapter 3

Research Questions and the
Thesis Studies

As stated in Section 2.3, architecting with microservices is not easy and is
prone to MS-ATDs. If not managed, MS-ATDs may accumulate and lead to a
development crisis. Therefore, managing MS-ATDs is vital to increasing the
software life expectancy. In their systematic mapping study, Li et al. [LAL15]
described a set of activities for TD management found in the research literature.
Those activities include identifying and prioritizing debts.

Despite the importance of managing MS-ATDs, the previous research
literature does not describe what MS-ATDs are, how they occur, or how to
prioritize or repay them (see Figure 3.1 and Section 2.3). Practitioners trust
their individual experience or intuitive judgment to decide on debt repayment.
However, complex architectures involving many microservices might make this
task difficult.

We started searching for previous research regarding MS-ATDs in the
systematic mapping study by Di Francesco et al. [DLM19] and the systematic
literature review by Besker et al. [BMB18]. Later, we performed a lightweight
literature review for the years not covered by those studies. As we did not
find any relevant contributions to this research topic, we proposed four main
research questions (RQs) and eight subquestions, presented in Table 3.1.

Microservices introduced new ways of thinking about how to implement
the software architecture. Unique characteristics such as the focus of each
microservice on single business functionalities and the need for lightweight
communication mechanisms lead to specific ATDs not found in other
architectures. We call them MS-ATDs.

As shown in Figure 3.1, previous research literature on MS-ATD does
not describe what MS-ATDs are, how they occur, or how to prioritize or
repay them. A recent systematic mapping study about architecting with
microservices [DLM19] did not find research on ATD. Another recent systematic
literature review regarding the management of ATDs [BMB18] also did not find
contributions related to microservices. We performed a lightweight literature
review for the years not covered by those studies looking for research papers on
the area and did not find any relevant contributions. Therefore, we proposed

15

3. Research Questions and the Thesis Studies

four main research questions (RQs) and eight subquestions, presented in
Table 3.1.

Figure 3.1: The MS-ATD research gap and the questions answered in this
thesis.

This Ph.D. thesis presents four research studies named 1 to 4. Each research
study addresses fully or partially one or more RQs. Figure 3.2 provides an
overview of each RQ and the studies. We describe the general findings for each
RQ in Chapter 10. The remaining of this section describes how each study
answers each RQ in more detail.

3.1 Research studies addressing the definition of
MS-ATDs (RQ1)

The first main research question (RQ1) aims to understand what MS-ATDs
are, including their consequences and solutions, from distinct perspectives in

16

Research studies addressing the definition of MS-ATDs (RQ1)

Table 3.1: Research questions.

Main Re-
search Ques-
tion (RQ)
ID

Sub-question
ID

RQ description

1 What are MS-ATDs?

1.1 What are the most critical MS-ATDs?

1.2 What is the negative impact of such MS-ATDs?

2 How do MS-ATDs occur?

2.1 How do MS-ATDs occur in early-stage microservices?

2.2 How do MS-ATDs occur in mature microservice systems?

3 How to prioritize MS-ATDs?

3.1 Which MS-ATDs do practitioners consider risky?

3.2 Which methods can companies use to prioritize the
avoidance or repayment of MS-ATDs?

4 What are the solutions and effects of repaying or avoiding MS-ATDs?

4.1 What are possible solutions to repay or avoid MS-ATDs?

4.2 What are the effects of repaying MS-ATDs on their
interest?

the software industry. Figure 3.3 6 illustrates how we answer RQ1 by defining
MS-ATDs and is explained in the remainder of this section.

MS-ATDs are a subset of ATDs specific to the microservice architecture.
As any TD, MS-ATDs have interest and principal. There are no differences
between ATDs and MS-ATDs apart from the fact that the latter are instances
of ATDs that are not found on other architectures or, at least, not precisely
in the same way as seen in microservices. To define MS-ATDs concretely, we
created a catalog of them with their description, including their interest and
principal.

The following examples illustrate how MS-ATDs are different from debts in
other architectural styles:

Coupling among services may emerge on other Service-Oriented Architec-
tures (SOAs). However, microservices are smaller because they focus on a single
task each. There is no such limitation in SOA, in which a service can easily do

17

3. Research Questions and the Thesis Studies

Figure 3.2: Relationship between the RQs and the studies.

multiple jobs. The equivalent in microservices of the functionality provided
by a single SOA service is usually composed of many smaller services working
together. Therefore, more services are involved in a microservice architecture
than in equivalent SOA architectures. A more significant number of indepen-
dent services also raises the probability and costs of coupling. Therefore, the
costs with coupling are different for each architecture.

The communication among microservices should use dumb pipes, i.e., no
business logic in the communication layer. On the other hand, other SOA
approaches accept and even promote logic in the communication layer for
implementing data transformation capabilities, for example.

Both monolithic and microservice architectures may use shared libraries.
However, a monolith is a single application, while microservices are many
smaller independent applications. It is easier to upgrade the version of a library
in a single application than in many. Microservice applications are easily
composed of dozens to several hundreds of services, increasing the costs of such

18

Research studies addressing the definition of MS-ATDs (RQ1)

upgrades compared to monoliths.

Figure 3.3: Answering RQ1 by defining MS-ATDs, a subset of ATDs specific
to the microservices architecture and identifying their interest and principal.

The first main research question (RQ1) aims to understand what MS-ATDs
are, including their consequences and solutions, from distinct perspectives in
the software industry. We address this research question in Studies 1 and 2:

• Study 1 (Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study): In this study, we survey MS-ATDs
in seven large companies running microservices. We create a catalog of
the debts, the costs for taking them (interest), and solutions (principal).

• Study 2 (Improving agility by managing shared libraries in microservices):
In this study, we dive deep into one of the debts identified in Study 1 to
understand the impact on development agility.

19

3. Research Questions and the Thesis Studies

3.2 Research studies addressing the occurrence of
MS-ATDs (RQ2)

Starting a microservice architecture from the beginning is different from
migrating from an existing architecture. When migrating from existing
architectures, software development organizations frequently need to maintain
both the original and the new ones running until the migration is complete,
and sometimes they even keep part of the old architecture. On the other hand,
starting the implementation directly with microservices does not require this
effort. Therefore, there are differences in how MS-ATDs occur in each situation.

Yoder and Merson [YM20] investigated migrating approaches from mono-
lithic architectures to microservices. They stated that one of the first decisions
companies running such migrations have to make is completely rewriting the
monolith or gradually migrating functionalities to microservices. In the last
case, some functionalities remain in the monolith until migrated. Solutions
that practitioners would consider MS-ATDs, e.g., sharing databases with the
original implementation, may be a necessary step for the migration. Therefore,
the MS-ATDs during migration may differ from those in a complete rewrite of
the software architecture.

Furda et al. [Fur+18] named a gradual migration to microservices as
“incremental modernization.” This kind of migration poses a unique situation
where both the original and the new architectures coexist and work together.
The microservices may have to communicate with the legacy software using
suboptimal approaches because the legacy application may not have the proper
support for using the right approach. This situation raises a discussion about
whether the suboptimal communication is an MS-ATD because it is also a
necessary step to the migration, especially considering that the practitioners
should remove the suboptimal communication approach once they conclude
the migration. Sometimes, having a temporary debt is acceptable or the right
choice for the project.

As presented in Figure 3.4, the final microservices architecture accumulates
MS-ATDs already in early stages, either from a gradual migration or from
a complete rewrite of the architecture. However, MS-ATDs may accumulate
differently in different contexts. We, therefore, investigated how MS-ATDs
accumulate in these different contexts in Studies 1, 2, and 3 as follows:

• Study 1 (Identifying architectural technical debt, principal, and interest
in microservices: A multiple-case study): This study investigates how
the MS-ATDs occur in seven large companies running microservices. We

20

Research studies addressing the prioritization of MS-ATDs (RQ3)

describe the context of the companies and discuss the debts for each
company.

• Study 2 (Improving agility by managing shared libraries in microservices):
The definition of microservices does not discuss the use of shared libraries.
However, large companies make extensive use of them. Study 1 found
that misusing shared libraries may be an MS-ATD related to issues such
as breaking changes and dependencies among teams. The companies
from Study 1 that discussed the problem also reported how this debt
affected the development agility. Study 2 dives deep into the situation to
examine the occurrence of the misuse of shared libraries by the involved
companies.

• Study 3 (Accumulation and prioritization of Architectural Debt in
three companies migrating to microservices): Studies 1 and 2 only
investigate companies with mature microservice architectures. Study 3
complements them by presenting the occurrence of MS-ATDs in companies
incrementally migrating to microservices.

3.3 Research studies addressing the prioritization of
MS-ATDs (RQ3)

Companies remain competitive by constantly delivering value to their customers.
Software products provide value by meeting their consumer’s demands. Still,
the quantity of customer requirements that a software development organization
could implement in their software is frequently more extensive than the
personnel available to do the job. Additionally, several non-functional
requirements are also critical to the software, even though many stakeholders
ignore or down prioritize them at some point. Thus, software development team
members must correctly prioritize functional and non-functional requirements
if they want to deliver value to customers continuously.

MS-ATDs are not requirements, but they need management. But they
are invisible and thus hard to control. Fortunately, researchers invested time
in finding better ways to manage TD over the years. In 2011, for example,
Guo and Seaman [GS11] proposed an initial portfolio approach in which they
identify TDs as items, allowing visualization and tracking. Following this idea,
MS-ATDs can be prioritized together with other requirements. POs, architects,
and related roles have what to prioritize, but now they lack information on
how to do it.

21

3. Research Questions and the Thesis Studies

Figure 3.4: How MS-ATDs occur, either when developing microservices from
scratch or migrating from previous architectures. The final microservices
architecture contains the debts accumulated during the development of the
microservices.

MS-ATD prioritization is complex because different MS-ATDs have different
impacts in distinct contexts. For example, one project might depend much
more on asynchronous communication approaches than another. MS-ATDs
affecting asynchronous communication approaches are more impactful in the
former context than in the latter. Therefore, MS-ATDs demand prioritization
according to their specific context before repayment.

Practitioners involved in the MS-ATDs prioritization must know the ATDs’
impact to be able to prioritize them [Mar+18]. It is however a hard problem
to quantify the impact of debts. Practitioners frequently resort to informal
approaches to determine such impact [Ver+21].

Researchers have been trying to discover techniques to prioritize ATDs.
Martini et al. [Mar+18] proposed a systematic approach for prioritizing ATDs
through architectural smells. However, the tool used (Arcan) can only analyze
a small subset of ATDs identified through architectural smells in the source
code, and the debts analyzed are not related to microservices. As described in
Studies 1 and 2, we identify most MS-ATDs qualitatively, and tools such as

22

Research studies addressing the prioritization of MS-ATDs (RQ3)

Figure 3.5: MS-ATDs prioritization. Having an appropriate prioritization
method and a backlog of debts, practitioners may prioritize the repayment of
MS-ATDs.

Arcan cannot identify nor help to prioritize them. There is a need to create
prioritization methods for MS-ATDs.

Our third research question (RQ3) aims to investigate new ways of prioritiz-
ing MS-ATDs. Study 3, Accumulation and prioritization of Architectural Debt
in three companies migrating to microservices, addresses RQ3 by proposing
an approach for prioritizing MS-ATDs that is not dependent on tools. As
presented in Figure 3.5, practitioners may use our prioritization approach to

23

3. Research Questions and the Thesis Studies

select the MS-ATDs to prioritize repayment.

3.4 Research studies addressing the repayment of
MS-ATDs (RQ4)

ATD repayment concerns eliminating or mitigating the negative costs of a
specific ATD [LLA14]. An ATD may not be repaid at once because of the costs
involved in such repayment. Therefore, there are cases in which an ATD is
partially repaid.

As shown in Figure 3.6, repaying MS-ATDs involves identifying solutions
for the debt. The solution should lead to a reduction of the debt’s interest,
and the costs saved by avoiding interest should usually justify the costs of
repayment [MB16b]. We address this research question in Studies 1, 2, and 3:

• Study 1 (Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study): This study identifies solutions for
MS-ATDs repayment from seven large companies running microservices.

• Study 2 (Improving agility by managing shared libraries in microservices):
This study dives deep into the use of shared libraries in microservices.
It addresses how to repay the related MS-ATD to improve agility in
developing microservices with proper debt management.

• Study 4 (Reducing Incidents in Microservices by Repaying Architectural
Technical Debt): This study investigates the impact and benefits of
MS-ATD repayment in a case study in a large financial services company.

24

Research studies addressing the repayment of MS-ATDs (RQ4)

Figure 3.6: The benefits of the MS-ATDs repayment. Practitioners may apply
solutions to repay MS-ATDs. That leads to benefits that reduce the total
interest in the project.

25

Chapter 4

Research Methodology
This thesis aims to understand MS-ATDs, that is, how they occur and how
they can be prioritized and repaid. The thesis includes four studies in ten large
European companies named from A to J, summarized in Table 4.1 together
with the research methods and techniques used.

Table 4.1: Overview of the included publications, the companies involved, and
the research methodologies.

Study Paper Title (chapter) Companies
involved

Research
Method

Research Tech-
nique

1 Identifying architectural tech-
nical debt, principal, and in-
terest in microservices: A
multiple-case study (chapter 6)

A, B, C, D, E,
F, G

Case Study -
Qualitative

Semi-structured Inter-
views (n=25)

2 Improving Agility by Manag-
ing Shared Libraries in Mi-
croservices (chapter 7)

A, D, E, F Case Study -
Qualitative

Semi-structured Inter-
views (n=6)

3 Accumulation and prioritiza-
tion of Architectural Debt in
three companies migrating to
microservices (chapter 8)

H, I, J Case Study -
Mixed meth-
ods

Structured interviews
(n=47) + Validation
Semi-structured
group interviews
(n=16)

4 Reducing Incidents in Mi-
croservices by Repaying Archi-
tectural Technical Debt (chap-
ter 9)

A Case Study -
Mixed meth-
ods (mostly
quantitative)

Semi-structured Inter-
views (n=10) + Quan-
titative analysis (8330
incidents) + Member
checking (n=2)

The remainder of this section describes the research context, the companies
involved, and the factors that led to selecting the research approaches.

4.1 Research context

This thesis is based on collaborations with software companies located in
Europe working with microservices. For confidentiality reasons, we limit the

27

4. Research Methodology

description of the companies to the information approved by them. All those
companies are architecting with or migrating to microservices. Some of them
started microservices-like architectures before the official definition of the term
in 2014 by James Lewis and Martin Fowler. Examples of such companies are A,
E, and G in this study. Due to the old age of their systems, it is still possible to
find SOA-oriented solutions that are inadequate for microservices. Frequently,
these implementations are a source of MS-ATDs, as we can see later in this
thesis. Other companies started their architecture development shortly after
Lewis and Fowler [LF14] defined microservices. At that time, microservices
were a relatively new subject, and such companies had difficulties dealing with
them, accumulating ATD. Company F is an example of such in our study.

Yet other companies worked with many internal projects related to different
products. Some of their projects used monolithic architectures. Others used
old SOA approaches due to requirements such as scalability. Finally, especially
after 2014, when microservices became a trending topic, they started to develop
new products using this architectural style. As such, these companies acquired
valuable experience with microservices. Companies B, C, and D are examples.

Finally, some companies have monoliths and just started migrating to
microservices because they need to scale to attend to greater demand or other
reasons. These companies have their first experiences with microservices.
Examples of these companies are H, I, and J.

Companies A to J have different experiences with microservices and operate
in different contexts. By looking into them, we can further understand how
MS-ATDs affect software development from a broader perspective. Below you
will find a more detailed summary of each of those companies:

• Company A is a financial services institution that develops software
to assist users with financial operations, money management, payments,
insurance, and investments. The company employs more than 30 thousand
employees, mainly in Europe, with more than two thousand working in
IT-related positions. The project under investigation in the company
had approximately 1000 unique microservices, of which about 150 were
business-critical. This project has more than ten years on the market.

• Company B develops software as services available in the cloud to third-
party consumers. These consumers buy licenses for using the services
available. The company employs more than seven thousand employees
in Europe, but only about 200 employees worked in the project under
evaluation. This project consisted of 50 unique microservices and started

28

Research context

about two years before our research. The company, however, is several
years older.

• Company C develops software in the Internet of Things (IoT) domain.
Their software aims to manage IoT devices. The company also collects
and processes the information provided by the devices. Company C was
as big as Company A, with more than 30 thousand employees, mainly in
Europe. Approximately two-thirds of their employees work in IT-related
positions. About 500 employees worked on the project under investigation.
The project under investigation had about 80 unique microservices and
started two years before the research collaboration.

• Company D provides health services. Its portfolio includes software
for managing medical devices and medical data processing and storage.
About 250 people were involved in the project under investigation, which
had about 40 unique microservices and was started one and a half years
before the research collaboration. Company D also had more than 30
thousand employees and about 1200 of those work in IT-related positions.

• Company E develops software used in public services, such as payslip
management and taxes administration. The company is a significant
player in the sector, with more than 30 thousand employees. However,
they have a relatively small IT department, with only 250 employees, 150
of which were involved in their main project, which was investigated in
our research. They had about 400 unique microservices in a more than
ten years old project.

• Company F develops software used in trains, metros, and other transport
solutions mainly for people and goods. Its project was four years old and
had about 600 unique microservices. They had about 300 employees, and
about half worked in IT-related positions and were all involved in the
project under investigation.

• Company G is a software-oriented company with the more extensive
software among our case studies, counting approximately 3000 unique
microservices. The company develops software solutions to transport
people, goods, and services. They had more than 20 thousand employees,
and an unknown but undoubtedly large number of them work in IT-related
positions. Their solution is more than ten years old.

• Company H provides business software and IT-related development
and consultancy. It employs nearly a dozen thousand employees and

29

4. Research Methodology

has hundreds of thousands of customers, mainly in Northern Europe.
The project under investigation was a dynamic ERP system for large
companies, which was one of the company’s flagship products and was
under migration to microservices.

• Company I has more than 20 thousand employees and provides IT and
product engineering services. It serves thousands of customers in more
than 90 countries. We conducted our study in one of the company’s
branches located in a Nordic country developing financial services, such
as banking solutions.

• Company J is one of the largest financial services groups in the Nordic
region (mainly banking). The company has more than 9000 employees
and serves several millions of customers. We conducted our study with
software teams working at the core of their in-house software department.

4.2 Case study research

The overall research strategy adopted in this thesis is a mix of qualitative and
quantitative research, but primarily qualitative, based on case studies. The
remainder of this section explains the rationale behind selecting these methods.

Our primary research objective is exploratory, empirically identifying and
understanding MS-ATDs in the context of large companies. Such a context is
intensely industrial and requires a flexible research method adapted to distinct
companies and processes to observe the occurrence of MS-ATDs, their costs
and solutions, without disrupting the work environment.

Case studies investigate phenomena in their context [RH08; Yin18]. They
cannot identify causal relationships but provide a deeper understanding of the
phenomena under consideration [RH08]. Case studies were initially designed
to be used in social science research [Yin18] but started to be used for many
kinds of software engineering research over the years [RH08].

Changes in the software architecture depend on the projects’ context.
The software architecture for the internet of things (IoT) differs from the
architecture developed for a banking solution, which is in turn different from
software developed for an e-commerce platform, but all three examples may
use microservices. Therefore, the context of the project is important to identify
MS-ATDs. Understanding the phenomenon of MS-ATDs requires studying
the perception of individuals, which in turn requires qualitative methods.
According to Yin [Yin18], case studies are effective to investigate context-
dependent phenomena, including the perception of distinct individuals.

30

Case study research

Runeson and Höst [RH08] present three other major empirical research
strategies used in software engineering research: survey, experiment, and action
research. Each of those strategies has its advantages and disadvantages. We
briefly summarize them below and explain why we preferred case studies
instead.

• Case study versus survey: A survey is a collection of information
standardized for a specific population frequently done through question-
naires or interviews [Rob02]. Surveys provide an overview of the studied
field, not in-depth studies [RH08]. They are primarily quantitative and
aim to describe the population under consideration [RH08]. Our study,
however, has unclear boundaries between phenomena and context. Given
that surveys are designed beforehand, and we do not have prior knowl-
edge regarding MS-ATDs, we would have required running interviews or
pilots before finalizing the survey design to avoid missing critical factors
for understanding the context. We wanted to deeply understand the
companies’ context, but surveys only provide a more in-breadth overview.
Therefore, we found case studies to be a better option in this case.

• Case study versus action research: Action research is closely related
to case studies, but they aim to influence or change the objects in focus
in the research [RH08]. Action research requires mutual learning and
involvement of researchers and practitioners [SDJ07]. Case studies, on
the other hand, are solely observational [Yin18]. Our research aimed to
understand the phenomenon of MS-ATDs rather than being mutually
involved with practitioners in specific cases. In addition, action research
is a feasible alternative if the researchers and the companies involved
are long-term committed to each other because the time required for
evaluating the changes might be considerable. In our case, the companies
were involved in this thesis for a relatively short period. We focused on
obtaining evidence from multiple companies in order to capture as many
distinct contexts as possible, rather than focusing on a deep commitment
with one of them.

• Case study versus experiment: An experiment is an empirical inquiry
in which we manipulate one or more variables in the study while keeping
other variables under control in order to understand the effects of the
manipulation. Experiments require a certain level of control of the
environment under study. Generally, it collects valuable statistics through
many observations. There were not many projects available in our

31

4. Research Methodology

cases from which we could make valid statistical inferences, and the
understanding of MS-ATD is not mature enough for us to run experiments.
Case studies are observational and study phenomena in depth in a given
context. Therefore, they were a better option for our investigations.

4.3 Interviews

According to Yin [Yin18], interviews are one of the most important sources
of case study information. They are particularly useful for exploratory
research [RH08]. Interviews are also the primary source of information for
this thesis because our studies were mainly exploratory. They enabled us to
follow up on topics the practitioners commented on but we had not envisioned
beforehand. Table 4.2 summarizes all the interviews performed in this thesis.
We interviewed a total of 69 subjects in ten large European companies. We
reached out to several other companies, but not all decided to contribute to
our research. The remainder of this section details the information presented
in Table 4.2.

4.3.1 Types of Interviews

Interviews can be unstructured, semi-structured, and fully structured [Rob02].
Unstructured interviews develop the dialog based on the mutual interest of
the interviewee and the researcher. Fully structured interviews require all
questions prepared beforehand and asked in the same order as planned during
the interview. Semi-structured interviews lie between those two other options:
the method requires prior planning, but the researcher may ask new questions
during the interview and not follow the same strict order.

Interviews can also take place in a group context. Group interviews allow
the participants to interact with each other and increase the amount of data
the researchers may get by collecting from several people simultaneously.
Therefore, they are usually flexible and carry out the characteristics of both a
discussion and an interview, because the traditional format of question and
answer may eliminate the group interaction, one of the strengths of group
interviews [Rob02]. In a group interview, participants may see the differences in
perceiving the problem. However, there might be conflicts of personalities, and
some participants might agree with the stronger opinions instead of exposing
their own.

32

Interviews

Table 4.2: Summary of interviews in this thesis by company.

Comp. First interviews Follow-up interviews Mean #
weeks
between
inter-
view
rounds

TOTAL

interviewees Type # interviewees Type

A 10 Individual 3 Individual 30 13

B 2 Individual 1 Individual 26 3

C 3 Individual 1 Individual 29 4

D 3 Individual - - - 3

E 2 Individual - - - 2

F 1 Individual - - - 1

G 1 Individual - - - 1

H 9 Group 3 Group 12 12

I 19 Group 7 Group 6 26

J 19 Group 6 Group 4 25

TOTAL 69 21 90

4.3.2 The main interviews

We selected our interviewees by convenience sampling, i.e., from the collab-
oration network we had access to. The interviewees directly or indirectly
worked with the object of investigation, the MS-ATDs. We only interviewed
participants with an active role in their respective projects and relevant to our
studies.

The interviews performed were partially face-to-face and partially remote.
Face-to-face meetings allow the interpretation of non-verbal actions and support
the communication flow. Therefore, we preferred in-person meetings and
traveled to the interviewee locations when possible. However, in some cases,
the distance between researchers and the interviewees, and the influence of
external factors (such as incompatibility of travel schedule) required audio or
video interviews. We mostly had semi-structured interviews.

33

4. Research Methodology

The main interviews for Study 3 differ from the other studies. They
contained structured, closed questions to obtain quantitative data to rank the
MS-ATDs. We used the data collected from those interviews to propose an
approach to prioritize the MS-ATDs.

4.3.3 Case selection

A total of 10 companies named from A to J, as presented in Table 4.2,
participated in this study. We selected all the companies by convenience. The
first seven companies, A to G, had substantial experience with microservices,
a requirement for our first studies. Therefore, we just accepted companies
working with microservices.

Companies H, I, and J started migrating to microservices and have less
experience with this architectural style. Therefore, they participated in a
different kind of study in which we investigated the migration to microservices.

4.3.4 Data analysis

Qualitative data collection and respective analysis are frequently carried out in
parallel because the analysis can reveal the need for additional data. Commonly,
new insights arrive in later stages of the research, so new data must be
collected and analyzed. Therefore, the data analysis process must follow
a systematic approach, allowing researchers to navigate back and forth between
data collection and analysis and to be able to communicate their findings in a
way readers can follow the results and conclusions back to the data [Run+12].

We transcribed most of the interviews throughout the studies for posterior
analysis. Then, we used open coding, an approach that is part of grounded
theory, for our data analysis. Grounded theory is a systematic inductive
methodology that builds a theory grounded in the data to explain the topic
under investigation [CS15]. Open coding is usually the first step of coding
in exploratory studies and aims to produce a set of concepts that fit the
data [CS15]. We used it for its rigor as a systematic approach.

Open coding is an interpretive process by which one breaks the data and
labels them as codes. The codes enable researchers to continuously compare
concepts in the data [CS15]. The codes’ comparison already allowed us to
understand the data and draw our results and conclusions. We used the
computer-assisted qualitative data analysis software tool NVivo1 to process
the codes and categorize the data.

1 https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software

34

 https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software

Interviews

The structured interviews from Study 3 resulted in quantitative data. They
consisted of votes related to specific contextual information on MS-ATDs, such
as whether a specific debt is found in the context of the project in which
the practitioner is involved, or if the project participants consider the debt
important to be prioritized. We analyzed the data using descriptive statistics
and proposed an approach to prioritize debt repayment.

4.3.5 Follow-up interviews

We conducted follow-up interviews in all our studies with distinct purposes.
Studies 1, 2, and 4 (with Companies A to F) required a longer interval between
the main and follow-up interviews due to the amount of qualitative data to
process. Study 3 (with Companies H, I, and J) contained a dataset that
was easier to evaluate and required less time between the interview rounds.
Table 4.2 shows the mean weeks between the interview rounds for each company
in this thesis.

In Studies 1 and 2, the follow-up interviews were necessary to clarify aspects
not covered in the original interviews or to investigate missing details. For
example, some companies distinguished the impact of libraries developed by
the company from libraries from external parties, such as open-source software.
This distinction was not clear for certain companies interviewed before. Thus,
we conducted additional interviews to ask about this subject.

Study 3 developed a prioritization approach for MS-ATDs based on the
main (structured) group interviews. We presented the results from that group
interviews to a subset of the study’s original participants. After that, we
conducted follow-up semi-structured group interviews to validate the usefulness
of our approach. In that case, semi-structured interviews allowed us the
freedom to follow up on topics presented by the interviewees when answering
our questions.

Study 4 required a cleanup of the original dataset because, according to
previous interviews, there was duplicated or invalid data in the dataset. After
receiving the dataset, we performed a cleanup based on the information from
the earlier interviews. For example, some automatic tools reported the same
incident several times until fixed. However, many of our assumptions during
this cleanup were initially open to interpretation. Considering that changes in
those assumptions would affect the interpretations of the results, we contacted
two former interviewees with extensive knowledge about the solution to check
such assumptions. We conducted two separate interviews. We made the proper
adjustments in the dataset according to feedback from those interviewees.
Runeson and Höst [RH08] describe this approach as member checking.

35

4. Research Methodology

4.4 Document analysis

Initial interviews with participants in Study 4 raised concerns about incidents
as an effect of MS-ATDs. Therefore, we collected information about numerous
incidents for analysis. Company A assigned an architect to collect data
internally and send them to the researchers. This architect was also responsible
for removing sensitive data from the dataset before sharing it. We received the
following documents:

• Two spreadsheets, one containing details about the incidents with the
previous architecture and the other containing details about the incidents
in the new architecture.

• One set of slides from an internal training about how the incidents should
be registered by practitioners.

• Two text documents containing lists of critical incidents in the previous
and the refactored architecture, respectively.

We used the presentation and the list of incidents to clarify information
given during the initial interviews. The spreadsheets together contained more
than eight thousand entries of incidents, including a short description of the
incident, the date and time it was registered, the urgency, impact, and priority
of the incident according to internal guidelines, the type of the incident, and
the submitter (a human or an automatic software).

We organized the information in the spreadsheets as a dataset and used
graphs and descriptive statistics to understand them. We compared the number
of incidents before and after the repayment of the debts.

Measuring the actual interest of the debts is difficult due to the lack of
reliable metrics and data for such calculations. However, the incidents have
been reported as directly related to many MS-ATDs found in Company A.
They were one of the main drivers for the architectural refactoring. Therefore,
we used them as a proxy for part of the debts’ interest.

Study 4 was exploratory, so we did not conduct hypothesis testing. Future
research may be able to run hypothesis testing when the understanding of
MS-ATDs matures.

4.5 Validity and reliability

We designed and carried out all research activities according to well-known
guidelines for case studies [RH08; Yin18]. We reduced potential sources of bias

36

Validity and reliability

as discussed in the remainder of this section. Even so, potential threats to the
validity and reliability of the research remain and are impossible to avoid. The
remainder of this research discusses the potential threats to the validity and
reliability of this work and how we mitigated them when possible. We use the
criteria for judging the quality of research designs presented by Yin [Yin18]:
construct validity, internal validity, external validity, and reliability.

4.5.1 Construct validity

Construct validity concerns the definition of a concept and how it is measured
by a set of indicators [SB21]. Studies 1, 2, and 3 have threats to construct
validity because participants could have distinct understandings of the debts.
Therefore, if two different definitions of the same debt appeared in Studies 1
and 2, we enforced one single definition in the follow-up interviews. When the
participant discussed something with a different meaning, we considered both
distinct debts. For example, we separated the definition of shared libraries from
what we called external dependencies. Although the participants originally
discussed both as shared libraries, we separated the concepts, because they
have different meanings.

In Study 3, the votes of the participants could have different meanings,
invalidating our results. We mitigated this threat by presenting all the MS-ATDs
to the participants beforehand and asking if they understood the explanations.
We also collected data regarding that debt right after the explanation.

4.5.2 Internal validity

Internal validity threats concern the cause-effect phenomena [Yin18]. Most of
our studies were descriptive and exploratory. We did not try to prove causality.
Although we have some hypotheses that might indicate causality in some cases,
we do not claim to have any evidence on that. Therefore, internal validity
threats are not applicable for the studies in this thesis.

4.5.3 External validity

External validity threats concern to what extent it is possible to generalize the
study’s findings beyond the immediate study [Yin18].

This thesis is explorative in the sense that studies on MS-ATDs have not
been reported in the research literature before. It is too early to discuss the
generalization of the results. As explained by Yin [Yin18], researchers should
think of case studies as opportunities to shed empirical light on some theoretical

37

4. Research Methodology

concepts or principles. Therefore, analytic generalization, i.e., based on a theory,
is more relevant to case studies than statistical generalization. However, we
find it too early to propose a theory, even an initial one.

Still, regarding generalization, it is more likely to find the same MS-ATDs
in other companies if they were found in several of our investigated companies.

In this study, our interviewees formed only a fraction of all the employees in
the respective companies, so the debts we found may not represent the whole
MS-ATD spectrum of the projects under investigation. Consequently, even
though some MS-ATDs may be rare in our studies, they might have been more
common in the investigated companies but might have been undetected. In
any case, we recommend other researchers to replicate our studies to make the
results more generalizable.

4.5.4 Reliability

Reliability threats concern the extent to which the data and the respective
analysis depend on the involved researchers [RH08]. There might be factors
that the researchers were not aware of because the interviewees themselves
were also not aware of or did not express in the interviews, such as the quality
of the implementations and management issues. We mitigated this threat by
asking participants from the companies to confirm the results through member
checking in some cases.

Additionally, there is a threat in which the researchers may have interpreted
what the practitioners said in the interviews based on the researchers’
background. For example, the practitioners mentioned how they used a
particular service mesh technology to improve the visibility of microservices,
but they did not mention such a reason explicitly. Therefore, the researchers
assumed that the new service mesh was used to solve network issues, as reported
by a company in a previous study. We mitigated this threat by addressing our
inter-reliability by having at least two researchers present in most interviews.
We also discussed every result and interpretation among the researchers involved
in the research.

Furthermore, we designed some of our studies to contain validation phases
with member checking to prevent wrong interpretations of the results.

38

Papers

Chapter 5

Identifying architectural technical
debt, principal, and interest in
microservices: A multiple-case
study

Saulo S. de Toledo, Antonio Martini, Dag I. K. Sjøberg
Published in Journal of Systems and Software, April 2021, volume 177. DOI:
10.1016/j.jss.2021.110968.

1

Abstract

Background: Using a microservices architecture is a popular strategy
for software organizations to deliver value to their customers fast
and continuously. However, scientific knowledge on how to manage
architectural debt in microservices is scarce.

Objectives: In the context of microservices applications, this paper
aims to identify architectural technical debts (ATDs), their costs, and
their most common solutions.

Method: We conducted an exploratory multiple case study by
conducting 25 interviews with practitioners working with microservices
in seven large companies.

Results: We found 16 ATD issues, their negative impact (interest),
and common solutions to repay each debt together with the related costs
(principal). Two examples of critical ATD issues found were the use of
shared databases that, if not properly planned, leads to potential breaks
on services every time the database schema changes and bad API designs,
which leads to coupling among teams. We identified ATDs occurring in
different domains and stages of development and created a map of the
relationships among those debts.

Conclusion: The findings may guide organizations in developing
microservices systems that better manage and avoid architectural debts.

41

http://dx.doi.org/10.1016/j.jss.2021.110968

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

Contents

5.1 Introduction . 42
5.2 Background . 43
5.3 Methodology . 54
5.4 Results . 69
5.5 Discussion . 83
5.6 Related Work . 90
5.7 Conclusions and Future Work 92

5.1 Introduction

Microservice architecture is a relatively new architectural style that is becoming
increasingly popular in the industry. A microservice is a small component that
can be developed and deployed independently, is easy to scale, and has a single
responsibility [Dra+17]. Such characteristics make microservices particularly
convenient for continuous delivery [Thö15]. Microservices are built around
business capabilities and provide an architectural style capable of organizing
cross-functional teams around services [Dra+17]. Microservices are supposed to
support companies to deliver value to their customers in a fast and continuous
fashion.

Despite their advantages, microservices are still an emerging technology.
There are still drawbacks of using such an architectural style, such as data
inconsistency among various services [Fur+18]. As a simple example, suppose
an online bookstore has three services: one for managing the book catalog,
another to manage orders, and a third for deliveries to the customers. Each of
those services has its own database. When a client finishes an order, the book
must be removed from the stock by the book service, and the delivery must
be triggered. When the orders database is updated, the product remains in
an inconsistent state until the other services finish updating their databases.
Meanwhile, the client and the store own the book since it is still available in
the stock and orders databases, and there is a chance the company will sell
more books than it has, causing problems for the company.

Companies are still learning how to properly migrate from old monolithic
software to systems that use microservices. There are still several challenges
in implementing microservices from scratch to make them easy to maintain
and evolve [Bog+19a], which leads to a situation in which practitioners make
architectural sub-optimal decisions that lead to a benefit in the short term,

42

Background

but increase the overall costs in the long run, i.e., a situation described by a
metaphor known as Architectural Technical Debt (ATD) [VML18].

Di Francesco et al. [DLM19; DML17] state that fundamental principles,
claimed benefits, and quality (including maintainability) of microservices still
must be proven by research and envisioned further qualitative studies with
practitioners. Studies on managing ATD in microservices, which directly affects
software maintainability, would be part of such a request.

There is a body of grey literature and books that concern microservices,
migrations, and related practices. Still, such literature does not focus specifically
on ATD. In particular, it does not explore the diversity of challenges regarding
ATD and microservices across companies.

As a contribution to meeting the needs described above, we conducted
a multiple-case study in seven international Europe-based companies to
investigate ATD in microservices through the following research questions:

• RQ1: What are the most critical ATD issues in microservices?

• RQ2: What are the negative impacts of such ATD issues?

• RQ3: What are possible solutions to repay or avoid such ATD issues?

For each of the identified ATDs, we outlined how to determine interest and
principal, which is needed to develop metrics for quantifying the costs of the
ATDs. Our contributions may also support practitioners’ decision-making in
projects involving microservices.

5.2 Background

This section describes the concepts of microservices and architectural technical
debt.

5.2.1 Microservices

Lewis and Fowler [LF14] provide the most accepted definition of the
microservices architectural style: “an approach to developing a single
application as a suite of small services, each running in its own process
and communicating with lightweight mechanisms, often an HTTP resource
API”. Microservices are frequently described as an alternative to monolithic
applications, built and deployed as a single unit (see Figure 5.1), since well-
known companies, such as Amazon and Netflix, have been using microservices

43

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

Figure 5.1: Monolithic and microservice architectures

to overcome difficulties with their previous monolithic architectures [LF14].
Applications that use microservices are easier to scale, have shorter cycles
for testing, build and release, and are less frequently affected by downtime
than monolithic applications [Fow15]. These and other characteristics make
microservice applications particularly desirable for continuous delivery. In fact,
new features can be independently and continuously tested and delivered by
updating specific microservices without changing the whole product, which
drastically reduces lead time. Still, there are challenges, such as the risk of
increased data inconsistency and operational complexity [Fow15].

Microservice architecture may also be described as one way of implementing
Service Oriented Architecture (SOA), although there are different views on
this claim [Zim17]. Certainly, SOA describes a set of applications that
cannot be considered microservices. For example, many SOA applications
are implemented using an Enterprise Service Bus (ESB), an infrastructure that
mediates requests among services, intercepts communications, and provides
transformation capabilities, among other functions [NG05]. ESBs can be a
single monolithic artifact that can be deployed together with the services at the
same place [MW16]. In contrast, microservices employ what is called a dump
pipe or a communication layer without business logic. Other characteristics
can also describe SOA but not microservice architectures. Rademacher et

44

Background

al. [RSZ17] provide a list of such characteristics including the following: (i)
there is no guidance about the service granularity in SOA, while a microservice
architecture suggests that each service represents one capability only; (ii) SOA
may support transport protocol transformation, while microservices usually
apply REST over HTTP or a protocol supported by a message bus; (iii) there are
several service types in SOA (e.g., business, enterprise, application), while there
are only two types of microservices—that is, they are functional (representing
business capabilities) or infrastructure (providing technical capabilities like
authentication and authorization) services.

Despite such differences, there are several concepts and techniques in the
area of microservices that were borrowed from SOA, such as the approaches for
communication detailed in Section 5.2.1.1; the concepts of scalability, service
discovery, and service registry detailed in Section 5.2.1.2; and the concepts
of service availability and responsiveness detailed in Section 5.2.1.3. There
are some adaptations of those concepts and techniques in a microservice
architecture, such as a limited set of communication protocols. Other concepts
such as Service Mesh, explained in Section 5.2.1.4, emerged to support
microservice architectures [Li+19].

In summary, while there is an overlap, there are certainly many differences
in techniques and concepts between SOA and microservice architecture. In this
paper, we focus on microservices.

5.2.1.1 Microservices communication

In a microservice architecture, clients and services may communicate directly
with each other synchronously [New17] (Figure 5.2) or through an API
gateway [MW16] (Figure 5.3). They can also communicate asynchronously
through a message bus [New17], which holds the message in a queue until one
or more services consume(s) it, as shown in Figure 5.4. Such communication
may also be mixed: for example, by using a synchronous request with an
asynchronous response.

5.2.1.2 Scalability and service discovery

In the microservices context, scalability is the service’s ability to cope and
perform under high demand. A scalable microservice adapts itself to the needs
of its consumers [MVA18]. It is possible to scale those services by running
multiple instances of them; each instance of the same service should be able to
replace any other so that if one fails or already has high traffic, another working
instance may be used in its place (see service E in Figure 5.5). An available

45

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

Figure 5.2: Microservices synchronous communication

Figure 5.3: The API gateway

46

Background

Figure 5.4: Microservices asynchronous communication

instance of the service may be found by a service discovery mechanism in such
situations. The service discovery (i.e., the act of finding a running instance
of a service) may be performed by consulting a service registry (i.e., a service
that stores information about other services and their available and unavailable
instances; for example, service E instances 01–03 in Figure 5.5) [MW16]. One
way of performing the service discovery is exemplified in Figure 5.5. The API
gateway can query the registry to find a running instance of service E that
the client requires. The service discovery method exemplified before is called
server-side discovery, as opposed to the client-side discovery, in which the client
is responsible for querying the service registry [MW16].

5.2.1.3 Service availability and responsiveness

In the setting where one service (consumer) requests information from a remote
service (producer), service availability is the producer’s ability to accept the
request in a timely manner [Ric16]. Inversely, service responsiveness is the
consumer’s ability to receive a timely response [Ric16]. When a consumer makes
a request to a producer, the consumer does not know whether they will receive
a response. Since they cannot wait indefinitely, it is common for the consumer
to wait a specific period of time (the timeout) until they give up and consider

47

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

Figure 5.5: Service discovery, registry and services instances

the request as a failure. At this point, the consumer may try the request again.
When the producer has a very high load or is entirely inaccessible, consumers
may keep (i) repeatedly try to connect until the producer is available or (ii)
wait the whole timeout period until they can take some other action [MW16].
Both cases waste resources.

A better technique is to use circuit breakers. When services are down or
demonstrate high latency and are mostly unusable, a circuit breaker takes the
lead and immediately responds to the consumer (Figure 5.6). The consumer
uses fewer resources waiting for services that failed (i.e., they will not keep
running and waiting for an unavailable service that may never send a response).
Such a solution prevents network or service failure from cascading to other
services since some may depend on the consumer in our example [MW16].

48

Background

Figure 5.6: The circuit breaker

5.2.1.4 Service Mesh

Finally, service meshes have emerged with the popularization of microservice
architectures. Service meshes are dedicated infrastructure layers acting on
the service-to-service communication, designed to make the services safe,
reliable, and more observable. They usually implement several of the
mechanisms introduced in previous sections, as well as others such as service
discovery mechanisms, load balancing, encryption, circuit breaking, and service
observability [Li+19]. These mechanisms are not strictly required when
implementing microservices, but they might be beneficial, especially when
there are many microservices.

5.2.2 Architectural Technical Debt

This section gives an overview of ATD, its management, and its relationship to
related concepts.

5.2.2.1 An overview of ATD

ATD is a type of technical debt (TD) consisting of suboptimal architectural
solutions, which deliver benefits in the short-term but increase overall costs
in the long run. Identifying ATD is particularly important since problems
in the architecture may slow down new functionalities and raise the related
costs. Several authors [BMB17a; Ern+15; KNO12] describe ATD as the most
challenging type of TD to be unveiled and managed due to the lack of research
and practical tool support.

The three main concepts of TD are the debt itself and its interest and
principal [Avg+16]:

• Debt: A sub-optimal solution that has short-term benefits but will
generate future interest payment is called a debt. For example, suppose a

49

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

functionality is implemented using different components. If the developers
create the components without carefully planning their interfaces in order
to develop them faster, the solution may end up with tightly coupled
components. Such a solution may be easy and fast to develop, but the
product’s maintenance may be costly. Due to tightly coupled components,
changes in one of the components may cause consequential changes in
other components. When the product is updated, it may take a long
time to change and test all the components, slowing down the delivery of
new functionalities.

• Interest: The extra cost that must be paid because of a debt, or the
amount that will be saved if there is no such debt, is called interest. In
the previous example, the interest is the cost of the additional effort
needed to test and update all the dependent components each time a
component is changed.

• Principal: The cost of developing a solution that avoids the debt, or the
cost of refactoring a solution to avoid the debt, is called the principal. In
the previous example, the principal is the cost of the effort (e.g., time and
resources) required to develop the involved components’ interfaces so that
they are not tightly coupled and can be changed and tested independently
from each other.

It can be profitable in some particular circumstances to accumulate the
debt [Bes+18]. In theory, deciding whether to accumulate the debt is supported
by a simple calculation: If the interest is less than the principal, it is better to
accumulate the debt. If the interest is more significant than the principal, the
debt should be avoided [MB16b; Sch13]. However, it is not easy to know—or
measure—the actual costs in practice regarding either the principal or the
interest. It is still important for the involved stakeholders to be conscious of
a debt’s principal and interest. Practitioners need to make decisions on their
ATD.

It is difficult to avoid the accumulation of some of the ATDs during the
software’s life cycle [MBC15]. Thus, it is important to know when these debts
should be repaid and when to avoid their accumulation. Areas like microservices
still lack ways of identifying and measuring ATD [de +19], which motivates
this study.

50

Background

5.2.2.2 ATD Management

Managing ATD is difficult [BMB18] but it is important to repay the
debt [LLA14]. Li et al. [LLA14] describe the ATD management process through
the following activities:

• ATD identification: In this phase, the ATD items (including their
interest and principal) are detected and described.

• ATD measurement: In this phase, the debts’ costs and benefits are
analyzed and estimated.

• ATD prioritization: In this phase, the items are sorted by some criteria
(e.g., importance) to decide which ATD item must be repaid first or if
ATD should be repaid instead of investing in other activities, such as
developing new features.

• ATD repayment: In this phase, architectural decisions are made to
repay the debt, even if partially.

• ATD monitoring: In this phase, ATD items are monitored over time
regarding their costs and benefits.

In this study, we start this process by identifying ATD in microservices.
We then indicate what should be measured and contribute with information
helpful for ATD prioritization and monitoring. We also present solutions for
ATD repayment.

5.2.2.3 ATD versus related concepts

Figure 5.7 presents the relationship between ATD and other concepts such
as architectural patterns, anti-patterns, erosion, drift, and smells. All these
concepts have been associated with ATD. A few others, such as defects and
degraded system qualities, are also discussed in the TD literature and are
briefly discussed in this section. Although various studies exist on these
different concepts, there is no comprehensive work clarifying their relationships.
Therefore, we report our interpretation of such concepts based on the available
literature.

51

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

Fi
gu

re
5.
7:

AT
D

an
d
th
e
re
la
te
d
co
nc

ep
ts

52

Background

The most up-to-date definition of TD, available in the Dagstuhl seminar
report 16162 [Avg+16], states that “technical debt is a collection of design or
implementation constructs that are expedient in the short term, but set up
a technical context that can make future changes more costly or impossible.”
When discussing architecture, we focus on design constructs. Figure 5.7 shows
the relationship between what we call sub-optimal design constructs and some
well-known terms we discuss next.

Architectural smells are indicators of design problems; as such, they may
be symptoms of the presence of ATD [Mar+18] (see Figure 5.7). However,
architectural smells might not point to ATD in certain contexts. Martini
et al. [Mar+18] reported a situation in which a set of cyclic architectural
dependencies, found in a particular graphical user interface (GUI) component,
was not considered suboptimal. In that particular example, such a smell was
fairly common as a normal (good) pattern. The reported smells do not represent
ATD, as there is no interest and principal in such cases.

Architectural patterns are general, reusable architectural solutions [MA18].
When used correctly and with other context-defined needs, such as an
appropriate architecture design, they may be solutions to existing ATD.
However, many solutions are context-specific and should be discussed in the
context of the respective debts; for example, the design of good APIs (see, for
example, Mosqueira-Rey et al. [Mos+18]). An architectural pattern may or
may not be a proper solution to a known issue in such contexts. Each solution
has a cost, which in turn represents the principal of the debt it is removing
(Figure 5.7).

Architectural anti-patterns are repeatable suboptimal design constructs
that violate design principles and increase the likelihood of having bugs and
changes [Mo+19]. An anti-pattern might represent a debt if it generates
interest, but there might be cases in which the anti-pattern does not. Besides,
the suffered interest of ATD can consist of something else than bugs or changes,
for example, a loss of development speed or the degradation of other software
qualities [Mar+18]. In the example by Martini et al. [Mar+18] that we reported
when discussing architectural smells above, an anti-pattern could be causing
the cyclic dependencies disclosed, but no interest was reported. In fact, the
practitioners said the opposite: it was a solution (a pattern). The research on
anti-patterns in microservices is still in its infancy; for example, there is no
well-defined taxonomy [Bog+19b]. Bogner et al. [Bog+19b] identified 14 studies
on SOA patterns. Only one book and one paper focused on microservices,
although many of the SOA patterns presented in the studies seem relevant to
microservices.

Architectural erosion describes design changes in a system’s architecture that

53

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

violate the original architecture [VB02]. An example of architectural erosion is
the addition of workarounds to bypass the decided architecture. Architectural
drift describes the situation in which the rules implied by the architecture are
unclear, leading to divergences between parts of the architecture and making
it easier to have violations (i.e., erosion) [VB02]. Both terms represent how
the amount of suboptimal design constructs increases over time, but they do
not consider interest and principal, as in TD. Also, they become worse over
time, accumulating more debts. The debt, however, remains the same. Still,
its costs (interest and principal) may vary depending on the context (e.g., a
debt leading to a data leak in a bank system is far worse than the same debt
in a newsletter system in which, only the email addresses are compromised).
The notions of architectural erosion and drift are discussed in the literature
through different terms, such as architectural degeneration, software or design
erosion, and architectural or design decay [DB12].

Defects are conditions in a software product that need to be fixed because
they cause the software’s malfunction or produce unexpected results. As
explained by Kruchten et al. [KNO12], defects are visible for the customers
and are, therefore, different from any kind of TD, such as ATD. Defects, as
well as degraded system qualities and other issues perceived by customers, or
even internal issues such as reduced productivity, might be an effect caused by
the existence of some kind of TD. All these effects have a cost—the interest of
the debt which caused them (Figure 5.7).

Other concepts apart from those we discussed may also be used to perceive
the gap between the suboptimal and optimal constructs or solutions. For
example, misused architectural patterns (i.e., their use in a context they are
not suitable for) may also be responsible for such a gap. However, describing
such a gap between optimal and suboptimal design is not enough to formulate
the problem as ATD, which is focused on the financial variables related to its
costs (principal and interest) and dependent on the contexts.

5.3 Methodology

This study aims to identify the most common and critical ATD issues, interests,
and principals in products using microservice architectures. We investigated
which circumstances led to ATD and identified solutions and insights related
to its occurrence. We conducted an exploratory multiple-case study, where each
analyzed product represents a case. The remainder of this section presents the
cases and how the data was collected and analyzed. Figure 5.8 outlines our
methodology.

54

Methodology

Fi
gu

re
5.
8:

M
et
ho

do
lo
gy

ov
er
vi
ew

55

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

5.3.1 Case Selection

We studied seven different software products in seven large international
companies. Two products were provided by different sub-companies within
the same multinational conglomerate. All the products had a microservice
architecture. Although in some of the products, minor parts were previously
developed using a monolith design or SOA approaches, the overall architecture
was considered a microservice architecture, and such parts were in the process
of being migrated.

The various application domains of the products gave us diversity in
investigated contexts, which helped to understand whether the found problems
and solutions were widespread or domain-specific. Table 5.1 shows a summary
of the studied companies and products. For confidentiality reasons, we named
the companies A, B, C, D, E, F, and G, respectively. The application domains
of the microservices projects we investigated are as follows:

• Finance: The software was used to assist users with financial operations,
money management, payments, insurance, and investments.

• Cloud: The software provided a set of services to be used in the Cloud
by third-party consumers.

• IoT: A software in the Internet of Things domain that was used to
control, share information, and/or gather data from devices connected to
the internet.

• Health: The software was used to provide health services, such as user
profiles and medical information.

• Public services: The software was used to provide public services, such
as payslip management and taxes.

• Transport: The software was used to assist users of public and private
transport of both passengers and goods.

56

Methodology

Ta
bl
e
5.
1:

C
om

pa
ni
es

co
nt
ex
t

C
on

te
xt

C
om

pa
ny

A
B

C
D

E
F

G

A
pp

lic
at
io
n

do
m
ai
n

Fi
na

nc
e

C
lo
ud

Io
T

H
ea
lth

P
ub

lic
se
rv
ic
es

Tr
an

sp
or
t

Tr
an

sp
or
t

A
pp

ro
x.

nu
m
b
er

of
em

pl
oy
ee
s

>
30

00
0

>
70
00

>
30
00
0

>
30
00
0

>
30
00
0

32
0

>
20
00
0

A
pp

ro
x.

nu
m
b
er

of
em

pl
oy
ee
s

on
IT

>
20

00
20
00
0

12
00

25
0

15
0

A
pp

ro
x.

nu
m
b
er

of
em

pl
oy
ee
s

in
th
e
ca
se

20
00

20
0

50
0

25
0

15
0

15
0

A
pp

ro
x.

nu
m
b
er

of
un

iq
ue

m
i-

cr
os
er
vi
ce
s

in
th
e
ca
se

10
00

50
80

40
40
0

60
0

30
00

A
ge

of
th
e

pr
od

uc
t

>
10

ye
ar
s

>
2
ye
ar
s

>
2
ye
ar
s

>
1.
5
ye
ar
s

>
10

ye
ar
s

>
4
ye
ar
s

>
10

ye
ar
s

St
ag
e
of

de
-

ve
lo
pm

en
t

M
ig
ra
tio

n
In
it
ia
ld

ev
el
op

-
m
en
t

In
it
ia
ld

ev
el
op

-
m
en
t

In
it
ia
ld

ev
el
op

-
m
en
t

E
vo
lv
in
g

E
vo

lv
in
g

E
vo
lv
in
g

57

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

Fi
gu

re
5.
9:

Tr
an

sf
or
m
in
g
qu

ot
at
io
ns

fr
om

pr
ac
tit

io
ne

rs
in
to

co
de

s
th
ro
ug

h
op

en
co
di
ng

,a
nd

cl
as
sif
yi
ng

th
em

in
to

ca
te
go

rie
s.

T
hi
s
is

an
ex
am

pl
e
ex
tr
ac
te
d
fr
om

ou
r
an

al
ys
is,

so
th
e
nu

m
be

r
of

th
e
de

bt
s
em

ph
as
iz
ed

in
th
e

fig
ur
e
ar
e
re
fe
re
nc

es
to

ou
r
re
su
lts

in
Se

ct
io
n
5.
4.

T
he

re
st

of
th
e
an

al
ys
is

is
do

ne
in

th
e
sa
m
e
w
ay
.

58

Methodology

We also present the stage of each software project according to the following
classifications:

• Initial development: The software was developed using microservices
from the beginning.

• Migration: The software is migrating from an old solution, such as a
monolith or other service approach, to microservices.

• Evolving: The system is consolidated as a microservice approach and is
currently being maintained and evolved.

In this multiple-case study, a case is a given company’s specific product.
For simplicity reasons, cases are referred to by their company’s name.

5.3.2 Data Collection

We performed 25 interviews with 22 employees in different roles, as detailed in
Table 5.2. We selected the interviewees and companies through convenience
sampling (i.e., selecting from the collaboration network we had access to). All
the interviewees had several years of experience in their roles. They all gave
consent for the interviews to be recorded and transcribed (Step 1 in Figure 5.8).
We used the semi-structured interview guide presented in Appendix A. The
interviews lasted between one and two hours.

The study started with Company A, where we could access several employees.
This helped us have a solid understanding and a rich amount of details about
the initial set of existing ATDs. We then continued the study with additional
companies to investigate whether the results were general or differed across
contexts.

As we progressed with the interviews in different contexts, new aspects
emerged, such as additional ATD instances or further details for specific
instances. We updated the interview guide along the course of interviews
regarding Debts 8, 10.2, 11, and 12 and added Questions 7, 9, 10, and 11 for
the ensuing interviews. When all the cases were investigated, we returned
to the previous companies to interview additional subjects. If they were not
available, we asked for shorter complementary interviews (20–30 minutes) with
the subjects we had met before. We covered newly discovered aspects in
these interviews, as represented by Step 3 in Figure 5.8. For example, a later
interviewee clearly distinguished between internal shared libraries (produced
by the team) and external dependencies (produced by external parties), such

59

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

Table 5.2: Type and number of interviews and interviewees by company

C. Num.
Inter-
views

Interviewees Interviewers Type of interview

A 11 3 product
owners/managers
2 architects
5 developers

1st and 2nd authors
(main interviews)
1st author
(returning interview)

Face-to-face

B 3 1 product leader
1 architect

1st and 2nd authors
(main interviews)
1st author
(returning interview)

Audioconference

C 4 2 architects
1 software engineer

1st and 2nd authors
(first 2 interviews)
1st author
(third and returning
interviews)

Audioconference

D 3 1 product manager
2 architects

1st and 2nd authors
(first 2 interviews)
1st author
(third interview)

Audioconference

E 2 2 architects 1st and 2nd authors Face-to-face

F 1 1 architect 1st and 2nd authors Face-to-face

G 1 1 software engineer 1st and 2nd authors Videoconference

TOTAL:

7 25 22

as frameworks and open-source software. Since the previous interviews did not
clearly make this distinction, we returned to previous interviewees to ask for
additional clarifications and details.

We also returned to previous interviewees to ask about newly discovered
ATD items identified in later interviews. For example, we asked all the
interviewees whether they perceived the heterogeneity of approaches caused by
the services’ implementation neutrality nature as harmful.

During all the initial interviews, two researchers were present. For four
companies, where the distance did not allow us to have face-to-face interviews,
we conducted the interviews using audio or video conferencing tools, as detailed
in Table 5.2.

60

Methodology

We did not follow Steps 3 and 4 of our methodology (Figure 5.8 going
back to the interviewees for additional input) for Companies F and G. We did
not find information missing from the other contexts that required additional
interviews.

The final interview guide is presented in Appendix A.

5.3.3 Data Analysis

Steps 2 and 4 in Figure 5.8 show our data analysis, which was mainly performed
using open coding, an approach that is part of grounded theory [CS15]. Grounded
theory is a rich systematic methodology that involves several other steps not
followed in this study.

Open coding is usually the first step of coding in exploratory studies and
aims to produce a set of concepts that fit the data [CS15]. Figure 5.9 presents
a fragment of this analysis step: selected quotations in the transcriptions or
audio recordings are flagged with a label (a code). Later, we found that, despite
different wording, some findings were related to a more general topic coded at a
higher level category, as in the example in Figure 5.9. This last step allowed us
to identify related ATD issues. Finally, we associated these codes to categories
such as “ATD,” “Interest,” and “Principal” in a deductive manner.

We performed the open coding phase by finding relationships between the
codes in the categories above. Figure 5.10 shows an example. The open coding
provided us with three different codes: one for an instance of debt, another for
an instance of interest, and the last for an instance of principal. After the open
coding phase, we found that the interest and the principal were, respectively,
the consequence and the solution for the debt (e.g., there were costs with
multiple API versions (interest) because the APIs were poorly designed (debt),
so they were grouped together). The set of codes and their relationships were
used in our report phase that synthesized our results (Step 5, Figure 5.8).

Figure 5.10: Identifying the relationship among debt, interest and principal

61

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

Ta
bl
e
5.
3:

A
rc
hi
te
ct
ur
al

Te
ch
ni
ca
lD

eb
t
id
en
tifi

ed
on

ea
ch

co
m
pa

ny
.

ID
D
eb

t
C
om

p.
A

C
om

p.
B

C
om

p.
C

C
om

p.
D

C
om

p.
E

C
om

p.
F

C
om

p.
G

D
I

P
D

I
P

D
I

P
D

I
P

D
I

P
D

I
P

D
I

P

1.
In
su
ffi
ci
en
t
m
et
ad

at
a

in
th
e
m
es
sa
ge
s

1.
1.

In
su
ffi
ci
en
t

m
es
-

sa
ge

tr
ac
ea
bi
lit
y

X
X

X
X

X
X

1.
2.

Po
or

de
ad

le
tt
er

qu
eu
e
gr
ow

th
m
an

-
ag

em
en
t

X
X

X
X

X
X

2.
M
ic
ro
se
rv
ic
e
co
up

lin
g

X
X

X
X

X
X

X
X

X
X

X
X

X
X

3.
La

ck
of

co
m
m
un

ic
a-

tio
n
st
an

da
rd
s
am

on
g

m
ic
ro
se
rv
ic
es

X
X

X

4.
In
ad

eq
ua

te
us
e

of
A
P
Is

4.
1.

Po
or

R
ES

T
fu
lA

PI
de
si
gn

X
X

X
X

X
X

X
X

X

4.
2.

U
se

of
co
m
pl
ex

A
P
I

ca
lls

w
he
n

m
es
sa
gi
ng

is
a
sim

-
pl
er

so
lu
tio

n

X
X

X

C
on

tin
ue
d
on

ne
xt

pa
ge

62

Methodology
T
ab

le
5.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

ID
D
eb

t
C
om

p.
A

C
om

p.
B

C
om

p.
C

C
om

p.
D

C
om

p.
E

C
om

p.
F

C
om

p.
G

D
I

P
D

I
P

D
I

P
D

I
P

D
I

P
D

I
P

D
I

P

5.
U
se

of
in
ad

eq
ua

te
te
ch
no

lo
gi
es

to
su
p-

po
rt

th
e
m
ic
ro
se
rv
ic
es

ar
ch
it
ec
tu
re

X
X

X
X

X
X

6.
E
xc
es
si
ve

di
ve
rs
ity

or
he
te
ro
ge
ne
ity

in
th
e

te
ch
no

lo
gi
es

ch
os
en

ac
ro
ss

th
e
sy
st
em

X
X

X
X

X
X

X
X

X
X

X

7.
M
an

ua
l

pe
r

se
rv
ic
e

ha
nd

lin
g

of
ne
tw

or
k

fa
ilu

re
s
w
he
n

ta
rg
et

se
rv
ic
es

ar
e

un
av
ai
l-

ab
le

X
X

X
X

X

8.
U
np

la
nn

ed
da

ta
sh
ar
-

in
g
an

d
sy
nc
hr
on

iz
a-

tio
n
am

on
g
se
rv
ic
es

8.
1.

Sh
ar
in
g

pe
rs
is
-

te
nc
e
or

da
ta
ba

se
sc
he
m
a

X
X

X
X

X
X

X
X

8.
2.

U
np

la
nn

ed
da

ta
ba

se
sy
n-

ch
ro
ni
za
ti
on

X
X

X

9.
U
se

of
bu

si
ne
ss

lo
gi
c

in
co
m
m
un

ic
at
io
n

am
on

g
se
rv
ic
es

X
X

X

C
on

ti
nu

ed
on

ne
xt

pa
ge

63

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

T
ab

le
5.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

ID
D
eb

t
C
om

p.
A

C
om

p.
B

C
om

p.
C

C
om

p.
D

C
om

p.
E

C
om

p.
F

C
om

p.
G

D
I

P
D

I
P

D
I

P
D

I
P

D
I

P
D

I
P

D
I

P

10
.

R
eu
si
ng

th
ir
d-
pa

rt
y

im
pl
em

en
ta
tio

ns

10
.1
.

M
an

y
se
rv
ic
es

us
-

in
g

di
ffe

re
nt

ve
r-

si
on

s
of

th
e
sa
m
e

in
te
rn
al

sh
ar
ed

li-
br
ar
ie
s

X
X

X
X

X
X

X
X

X
X

X
X

10
.2
.

E
xt
er
na

l
de
pe

n-
de
nc
ie
s

w
it
h

va
ri
ou

s
lic
en
se
s

re
qu

ir
in
g
ap

pr
ov
al

X
X

X

11
.

O
ve
rw

he
lm

in
g

am
ou

nt
of

un
ne
ce
s-

sa
ry

se
tt
in
gs

in
th
e

se
rv
ic
es

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

12
.

E
xc
es
si
ve

nu
m
be

r
of

sm
al
lp

ro
du

ct
s

X
X

X
X

64

Methodology
Ta

bl
e
5.
4:

C
at
al
og

of
A
rc
hi
te
ct
ur
al

Te
ch
ni
ca
lD

eb
ts
,i
nt
er
es
t
an

d
pr
in
ci
pa

l.

ID
A
rc
hi
te
ct
ur
al

D
eb

t
C
on

se
qu

en
ce
s
(I
nt
er
es
t)

So
lu
ti
on

s
(P

ri
nc

ip
al
)

1.
In
su
ffi
ci
en
t

m
et
ad

at
a

in
th
e

m
es
sa
ge
s

1.
1.

In
su
ffi
ci
en
t
m
es
sa
ge

tr
ac
ea
bi
l-

ity
A
,
E
:i
m
po

ss
ib
ili
ty

to
id
en
tif
y
an

d
de
ac
ti
va
te

se
rv
ic
es

th
at

ar
e

no
t

ne
ce
ss
ar
y
an

ym
or
e

A
:i
m
po

ss
ib
ili
ty

to
tr
ac
k
th
e
so
ur
ce

of
m
es
sa
ge
s,

in
cu
rr
in
g
co
st
s
w
it
h,

fo
r
ex
am

pl
e,

da
ta

tr
ac
in
g
re
gu

la
-

tio
ns

A
,E

:a
dd

se
rv
ic
es

ow
ne
rs
hi
p
m
et
a-

da
ta

to
th
e
m
es
sa
ge
s,
al
lo
w
in
g
id
en
-

tifi
ca
tio

n
of

th
ei
r
so
ur
ce

A
:i
m
pl
em

en
ta
ti
on

of
a
C
an

on
ic
al

D
at
a
M
od

el
th
at

en
su
re

co
m
pl
ia
nc
e

1.
2.

Po
or

de
ad

le
tt
er

qu
eu
e
gr
ow

th
m
an

ag
em

en
t

A
,
E
:i
m
po

ss
ib
ili
ty

to
id
en
tif
y
th
e

so
ur
ce

of
m
es
sa
ge
s
an

d
de
te
rm

in
e

th
e
ca
us
es

of
th
e
m
es
sa
ge

lo
ss

in
th
e
de
ad

le
tt
er

qu
eu
e

A
:r
em

ov
al

of
th
e
de
ad

le
tt
er

qu
eu
e

an
d
to

m
ov
e
th
e
re
sp
on

si
bi
lit
y
of

th
e
m
es
sa
ge

de
liv

er
ie
s
to

th
e
en
d-

po
in
ts

A
,E

:a
dd

m
et
ad

at
a
to

id
en
tif
y
th
e

so
ur
ce

of
th
e
m
es
sa
ge
s

A
,
E
:
sp
lit
ti
ng

th
e

de
ad

le
tt
er

qu
eu
ei
nt
o
sm

al
le
rq

ue
ue
s,
m
an

ag
ed

by
di
ffe

re
nt

te
am

s
2.

M
ic
ro
se
rv
ic
e
co
up

lin
g

A
:
in
cr
ea
si
ng

am
ou

nt
of

un
ne
ce
s-

sa
ry

se
rv
ic
es

A
,
B
,
C
,
E
,
F
:
to
o

m
an

y
de
-

pe
nd

en
ci
es

am
on

g
te
am

s,
cr
ea
ti
ng

co
or
di
na

ti
on

ov
er
he
ad

;
ca
sc
ad

in
g

ch
an

ge
s
in

se
rv
ic
e
co
ns
um

er
s
w
he
n

pr
od

uc
er
s
ar
e
up

da
te
d;

ev
en
tu
al

br
ea
ki
ng

on
se
rv
ic
es

B
,
C
,
E
,
F
:e

ve
nt
ua

li
nc
id
en
ts

in
no

t
up

da
te
d
se
rv
ic
es

A
:u

se
so
m
e
tim

e
to

de
sig

n
ge
ne
ric

an
d
in
de
pe

nd
en
t
se
rv
ic
es

C
:
in
te
rn
al

tr
ai
ni
ng

ab
ou

t
A
P
I

de
ve
lo
pm

en
t

E
:
us
e
of

an
A
P
I-
fir
st

ap
pr
oa
ch

w
hi
le

de
si
gn

in
g
se
rv
ic
es

F
:
co
ns
id
er
in
g
sl
ot

fo
r
co
nt
in
uo

us
A
P
I
im

pr
ov
em

en
t
du

ri
ng

de
ve
lo
p-

m
en
t

C
on

tin
ue
d
on

ne
xt

pa
ge

65

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

T
ab

le
5.
4
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

ID
A
rc
hi
te
ct
ur
al

D
eb

t
C
on

se
qu

en
ce
s
(I
nt
er
es
t)

So
lu
ti
on

s
(P

ri
nc

ip
al
)

3.
La

ck
of

co
m
m
un

ic
at
io
n

st
an

-
da

rd
s
am

on
g
m
ic
ro
se
rv
ic
es

A
:
co
st

w
it
h

tr
an

sl
at
io
ns

am
on

g
se
rv
ic
es
;o

ve
rw

he
lm

in
g
am

ou
nt

of
m
es
sa
ge

fo
rm

at
s
fo
r
de
ve
lo
pe

rs

A
:
en
su
re

st
an

da
rd
iz
at
io
n
w
it
h
a

C
an

on
ic
al

D
at
a
M
od

el

4.
In
ad

eq
ua

te
us
e
of

A
P
Is

4.
1.

Po
or

R
E
ST

fu
lA

P
I
de
si
gn

C
,
D
:
A
P
Is

ar
e
no

t
st
ab

le
,
w
it
h

fr
eq
ue
nt

br
ea
ki
ng

ch
an

ge
s,

ha
rd

to
us
e
an

d
fr
eq
ue
nt
ly

no
t
ba

ck
w
ar
ds

co
m
pa

tib
le

B
:i
ns
ta
bi
lit
y
de
m
an

ds
th
e
cr
ea
tio

n
an

d
m
ai
nt
en
an

ce
of

m
ul
ti
pl
e
A
P
I

ve
rs
io
ns

B
,
C
:a

dd
iti
on

al
eff

or
t
to

st
ab

ili
ze

th
e
A
P
I
an

d
av
oi
d
ch
an

ge
s
in

th
e

fu
tu
re

C
:
m
an

ag
em

en
t
of

A
P
I
ve
rs
io
ns
;

tr
ac
ki
ng

of
in
te
rn
al

an
d

ex
te
rn
al

co
ns
um

er
s;
de
fin

it
io
n
of

cl
ea
r
de
p-

re
ca
tio

n
st
ra
te
gy

D
:d

efi
ni
ti
on

of
a
st
an

da
rd

fo
r
th
e

A
P
Is

4.
2.

U
se

of
co
m
pl
ex

A
P
I
ca
lls

w
he
n

m
es
sa
gi
ng

is
a
sim

pl
er

so
lu
tio

n
D
:a

dd
it
io
na

lc
ou

pl
in
g
am

on
g
se
r-

vi
ce
s;

te
st
s
ar
e
in
he
re
nt
ly

co
m
pl
ex

D
:
re
de
si
gn

of
se
rv
ic
es

us
in
g

a
m
es
sa
gi
ng

ap
pr
oa
ch

5.
U
se

of
in
ad

eq
ua

te
te
ch
no

lo
gi
es

to
su
pp

or
t
th
e

m
ic
ro
se
rv
ic
es

ar
ch
it
ec
tu
re

A
:b

ig
la
te
nc
y
in

th
e
se
rv
ic
es

co
m
-

m
un

ic
at
io
n;

ne
ed

of
a

de
di
ca
te
d

te
am

to
m
ai
nt
ai
n
th
e
th
ir
d-
pa

rt
y

to
ol

C
:
im

po
ss
ib
ili
ty

to
pr
ov

id
e
so
m
e

fu
nc
tio

na
lit
ie
s

A
,
C
:
pr
op

er
pl
an

ni
ng

ab
ou

t
th
e

te
ch
no

lo
gy

an
d
m
ig
ra
ti
on

as
so
on

as
po

ss
ib
le

6.
E
xc
es
si
ve

di
ve
rs
ity

or
he
te
ro
-

ge
ne
ity

in
th
e
te
ch
no

lo
gi
es

ch
o-

se
n
ac
ro
ss

th
e
sy
st
em

A
,
E
,
F
:
so
m
e

se
rv
ic
es

ca
nn

ot
co
m
m
un

ic
at
e
ea
ch

ot
he
r

E
,
F
:d

ev
el
op

er
s
ca
nn

ot
ea
si
ly

m
i-

gr
at
e
to

ot
he
r
te
am

s
A
,F

:r
es
ist

an
ce

to
ch
an

ge
te
ch
no

lo
-

gi
es

la
te
r

G
:
de
ve
lo
pe

r
ve
lo
ci
ty

sl
ow

s
do

w
n,

ne
ed

to
m
ai
nt
ai
n
di
st
in
ct

to
ol
s
an

d
ad

di
tio

na
ls

ou
rc
e
co
de

re
po

si
to
rie

s

A
,
F
:l
im

it
in
g
th
e
se
t
of

te
ch
no

lo
-

gi
es

us
ed

by
th
e
te
am

s
G
:
us
e
of

la
ng

ua
ge

sp
ec
ifi
c
m
on

o-
re
po

sit
or
ie
s
an

d
in
ce
nt
iv
e
th
ei
r
us
e

fo
r
re
la
te
d

pr
oj
ec
ts
:
re
la
te
d

so
ft
-

w
ar
e
w
ri
tt
en

in
th
e
sa
m
e
pr
og

ra
m
-

m
in
g
la
ng

ua
ge

ar
e
m
or
e
lik

el
y
to

us
e
th
e
sa
m
e
to
ol
in
g

C
on

ti
nu

ed
on

ne
xt

pa
ge

66

Methodology
T
ab

le
5.
4
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

ID
A
rc
hi
te
ct
ur
al

D
eb

t
C
on

se
qu

en
ce
s
(I
nt
er
es
t)

So
lu
ti
on

s
(P

ri
nc

ip
al
)

7.
M
an

ua
lp

er
se
rv
ic
e
ha

nd
lin

g
of

ne
tw

or
k

fa
ilu

re
s
w
he
n

ta
rg
et

se
rv
ic
es

ar
e
un

av
ai
la
bl
e

B
:e

xt
ra

co
st

on
m
ai
nt
ai
ni
ng

ad
di
-

ti
on

al
co
m
pl
ex
ity

in
th
e
ar
ch
it
ec
-

tu
re

B
,
C
:u

se
of

th
ir
d-
pa

rt
y
pr
od

uc
ts

(e
.g
.,
ci
rc
ui
t
br
ea
ke
rs
)
th
at

pr
ov
id
e

su
ch

m
ec
ha

ni
sm

s
B
:u

se
of

a
se
rv
ic
e
m
es
h

8.
U
np

la
nn

ed
da

ta
sh
ar
in
g

an
d

sy
nc
hr
on

iz
at
io
n
am

on
g
se
rv
ic
es

8.
1.

Sh
ar
in
g
pe

rs
ist

en
ce

or
da

ta
ba

se
sc
he
m
a

D
,
G
:
po

te
nt
ia
l
br
ea
ki
ng

on
se
r-

vi
ce
s

D
:
co
m
pl
ex

da
ta
ba

se
sc
he
m
a
an

d
di
ffi
cu
lty

to
tr
ac
k
se
rv
ic
es

us
in
g
th
e

da
ta

C
,
D
:h

av
in
g
se
pa

ra
te
d
da

ta
ba

se
s

fo
r
ea
ch

se
rv
ic
e

C
:
cr
ea
ti
on

of
di
st
in
ct

da
ta
ba

se
sc
he
m
es

fo
r
ea
ch

se
rv
ic
e
in
si
de

th
e

sa
m
e
da

ta
ba

se
G
:w

ra
pp

in
g
of

th
e
da

ta
ba

se
w
ith

in
a
se
rv
ic
e,

pr
ev
en
tin

g
di
re
ct

ac
ce
ss

8.
2.

U
np

la
nn

ed
da

ta
ba

se
sy
nc
hr
o-

ni
za
tio

n
C
:
sy
nc
hr
on

iz
at
io
n
is
su
es

m
ay

be
vi
si
bl
e
to

us
er
s

C
:
th
e
so
lu
ti
on

is
co
nt
ex
t
de
pe

n-
de
nt
,d

ep
en
di
ng

on
th
e
pr
ob

le
m
,a

sh
ar
ed

da
ta
ba

se
m
ig
ht

be
ne
ed
ed
,

or
a

m
or
e

co
m
pl
ex

tr
an

sa
ct
io
n

m
ec
ha

ni
sm

m
us
t
be

im
pl
em

en
te
d

9.
U
se

of
bu

sin
es
s
lo
gi
c
in

co
m
m
u-

ni
ca
tio

n
am

on
g
se
rv
ic
es

A
:
un

ne
ce
ss
ar
y

co
st

to
m
ai
nt
ai
n

bu
sin

es
sl
og
ic
in

th
ec

om
m
un

ic
at
io
n

la
ye
r

A
:
m
ov

in
g
su
ch

bu
si
ne
ss

lo
gi
c
to

th
e
se
rv
ic
es
,k

ee
pi
ng

th
e
co
m
m
un

i-
ca
tio

n
la
ye
r
as

th
in

as
po

ss
ib
le

10
.

R
eu
si
ng

th
ir
d-
pa

rt
y
im

pl
em

en
-

ta
tio

ns
C
on

tin
ue
d
on

ne
xt

pa
ge

67

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

T
ab

le
5.
4
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

ID
A
rc
hi
te
ct
ur
al

D
eb

t
C
on

se
qu

en
ce
s
(I
nt
er
es
t)

So
lu
ti
on

s
(P

ri
nc

ip
al
)

10
.1
.

M
an

y
se
rv
ic
es

us
in
g
di
ffe

re
nt

ve
rs
io
ns

of
th
e
sa
m
e
in
te
rn
al

sh
ar
ed

lib
ra
ri
es

A
,
E
:
co
st
s
to

pl
an

an
d

up
da

te
al
lr

el
at
ed

se
rv
ic
es
;s

ev
er
al

se
rv
ic
es

m
ay

no
t
be

up
da

te
d
an

d
m
ul
ti
pl
e

ve
rs
io
ns

of
th
e
lib

ra
ry

sh
ou

ld
be

m
ai
nt
ai
ne
d

A
:
co
st

of
is
su
es

ge
ne
ra
te
d

by
re
fu
sa
lt
o
ad

op
t
by

ea
rl
y
ad

op
te
rs

D
:c

os
t
to

ha
nd

le
br
ea
ki
ng

ch
an

ge
s

F
:d

ep
en
de
nc
y
be

tw
ee
n
se
rv
ic
e
an

d
lib

ra
ry

de
ve
lo
pe

r
te
am

s

A
,
D
,
E
,
F
:
re
du

ct
io
n
in

th
e
us
e

of
sh
ar
ed

lib
ra
ri
es

D
:
re
pl
ic
at
io
n
of

si
m
pl
e
co
de
,c

re
-

at
io
n
of

se
rv
ic
es

to
pe

rf
or
m

co
m
-

pl
ex

co
de

fu
nc
tio

na
lit
ie
s

10
.2
.

Ex
te
rn
al

de
pe

nd
en
ci
es

w
ith

va
r-

io
us

lic
en

se
s
re
qu

iri
ng

ap
pr
ov
al

B
:d

el
ay
sw

hi
le
w
ai
tin

g
fo
ra

pp
ro
va
l

of
ne
w

lib
ra
ri
es

B
:i
nv

es
tin

g
in

a
pr
oc
es
st

o
ev
al
ua

te
an

d
ap

pr
ov
e
ex
te
rn
al

de
pe

nd
en
ci
es

as
fa
st

as
po

ss
ib
le

11
.

O
ve
rw

he
lm

in
g
am

ou
nt

of
un

-
ne
ce
ss
ar
y

se
tt
in
gs

in
th
e
se
r-

vi
ce
s

A
,
B
,
C
,
E
,
F
:
co
m
pl
ex

en
vi
ro
n-

m
en
t

D
,
G
:
un

ex
pe

ct
ed

is
su
es

af
te
r
de
-

pl
oy

A
,
G
:
cr
ea
ti
on

of
re
po

si
to
ry

fo
r

co
nfi

gu
ra
tio

n
se
tt
in
gs

A
,
F
:
re
du

ci
ng

of
th
e
am

ou
nt

of
co
nfi

gu
ra
tio

n
se
tt
in
gs

on
se
rv
ic
es

G
:r
eq
ui
re
m
en
to

fp
ee
ra

pp
ro
va
lb

e-
fo
re

ac
ce
pt
in
g
ch
an

ge
s
on

se
tt
in
gs

C
:

cr
ea
ti
on

of
a

co
nfi

gu
ra
ti
on

se
rv
er

to
au

to
m
at
e
de
pl
oy

of
co
n-

fig
ur
at
io
n
se
tt
in
gs

12
.

Ex
ce
ss
iv
e
nu

m
be

ro
fs
m
al
lp

ro
d-

uc
ts

B
,

E
:

go
ve
rn
an

ce
on

m
ul
ti
pl
e

pr
oj
ec
ts

in
st
ea
d
of

on
e
(i
fa

m
on

o-
lit
h)

O
ur

st
ud

y
re
ve
al
s
no

so
lu
ti
on

to
th
is

pr
ob

le
m

68

Results

We performed the qualitative analysis with NVivo1, which tracks the links
between codes created on top of the data and to the original quotations to
which they were grounded.

Finally, we performed member checking, in which study participants could
review the findings [Run+12] to increase reliability (Step 6 in Figure 5.8). We
sent out a summary of our findings to at least one interviewee in each company
and asked for review and feedback. We updated our descriptions according to
the comments we received (Step 7 in Figure 5.8).

5.4 Results

Table 5.3 shows the companies’ most critical ATDs and how they are distributed.
For each company, an “X” in columns D (debt), I (interest), or P (principal)
indicates, respectively, that the company has accumulated the debt and has
identified (or paid/is paying) its interest and/or its principal. An empty cell in
the table means that the interviewees did not report the related debt, interest,
or principal for that company.

Table 5.4 shows the negative impact and the solutions for each ATD
according to each company. As our respondents could not provide an actual
numerical cost for the interest (i.e, the negative impact cost) and the principal
(i.e., the solution’s cost), we present the closest possible qualitative description
of these costs that we could extract from our data. All the proposed solutions
were applied successfully by practitioners in their projects.

The remainder of this section describes the identified debts and their interest
and principals.

Debt 1: Insufficient metadata in the messages

An ATD is present when messages contain insufficient metadata. A data packet
used in the communication through APIs, such as REST, may be considered
messages. However, all data packets were sent through a message bus in our
study. In such cases, the metadata is typically used to track messages and add
other useful information at the cost of increasing overall message size.

This debt may be accumulated because developers want to keep the message
lighter for performance reasons (Company A) or due to poor service planning
(Company E).

1https://www.qsrinternational.com/nvivo/home

69

https://www.qsrinternational.com/nvivo/home

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

Figure 5.11: A message carrying metadata that is updated every time it is
consumed and forwarded by a different service.

Debt 1.1: Insufficient message traceability

When messages contain insufficient metadata, developers might find it difficult
to track the messages’ source. Figure 5.11 shows services that deliver messages
through a message bus. If no traceability metadata is available, Service 2
consumes a message from the message bus, but the service does not know which
service produced the message.

Interest. The primary issue is the impossibility of tracking dependencies
among services. One interviewee exemplified this debt by saying that “there
is a regulatory requirement to document the traceability of data to the data
source, and the lack of metadata and a data dictionary make it difficult to fulfill
this requirement.” Figure 5.12 presents a set of services and their dependencies.
If Service 7 is no longer needed, Service 2 can also be deactivated because no
other services use it, but Service 4 cannot be deactivated because it is used by
Service 6. If it is impossible to track dependencies, it is not safe to deactivate
dependent services, as in the examples mentioned above (Companies A and
E). The number of services in the product will grow, and possible unused
services such as Service 2 in Figure 5.12 will remain deployed and consume
resources (Companies A and E). Besides, it is impossible to track the messages’
sources when necessary. This incurs costs related to, for example, data-tracing
regulations (Company A). In such a case, a financing company that, by law,
must track financial operations might find this impossible to do because no
available metadata indicates the sources.

Principal. Some interviewees described the primary solution as adding
service ownership metadata to the messages as the (Companies A and E).
Figure 5.11 gives an example of hypothetical metadata information attached

70

Results

Figure 5.12: In the absence of a tracking dependencies mechanism, it is
impossible to know that, if Service 7 is no longer necessary, Service 2 can also
be deactivated, but Service 4 cannot.

to the messages. The metadata allows Service 3 to know (i) the service from
which the message flow originated, (ii) the entire list of services that used that
information, and (iii) the last service that changed the message. Company A
went further and proposed defining such requirements with “the implementation
of the canonical [data] model design pattern” to “ensure compliance with data
traceability.” A canonical data model is a design pattern in which there is
agreement on and standardization of data definitions in different business
systems [HW12] to ensure that the services contain the required information.

Debt 1.2: Poor dead letter queue growth management

A dead letter queue receives messages sent to a nonexistent or full queue and
messages rejected for other reasons. A dead letter queue accumulates such
messages to facilitate their inspection. The lack of mechanisms to control the
dead letter queue’s growth represents an ATD issue because the queue becomes
“one place with lots of messages and no ownership.”

Interest. Dead letter queues grow so quickly that inspecting the messages
becomes impossible, so the queue consumes more and more resources. Cleaning
up the queue without losing important information may be impossible due to
the high number of dead messages. Besides, it may be difficult to predict the
causes that lead such messages to be sent to the dead letter queue instead of
their original destinations (Companies A and E).

Principal. The primary solution is to remove the dead letter queue, shifting

71

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

responsibility for message deliveries to the services (Company A). That would
help solve any issues that cause the queue to grow, such as services not caring
about the accumulation of messages. If that is impossible, Companies A and
E agree that there are still two possible solutions, as articulated by one of
our interviewees: “You should distribute this [the dead letter queue] either
by having ownership metadata on the message or having distributed queues.”
Therefore, adding metadata that identifies the messages’ sources would make it
easy to handle lost messages because it would be easier to track their creators.
Splitting single dead letter queues into smaller queues managed by different
teams helps “divide and conquer” the problem.

Debt 2: Microservice coupling

Microservices should be designed to be mostly independent of each other and
have well-defined boundaries and interfaces. A lack of knowledge or negligence
about good design practices may lead a company to accumulate ATD related
to tightly coupled microservices. One of our interviewees said, “How do you
decouple the dependencies is always something you need to work out.” We
found this debt more often in the products that use APIs.

Interest. The accumulation of this debt creates too many dependencies
among teams, so delays from one team may affect the other teams’ development
plans by, for example, delaying deliveries. Besides, someone with access to all
involved teams must handle the unnecessary coordination overhead. This was
exemplified by one case in which three teams were developing “three very tight
microservices,” and there was a “need to tightly coordinate the work between
them” (Companies A, B, C, E, and F). Another cost incurred by this debt is
the cascading effect of spending time and effort updating and deploying many
dependent services due to changes made to one service (Companies A, B, C,
E, and F). If accumulating this debt is a common practice in a company, the
number of services easily increases. Various services end up not being useful in
diverse situations because they are too solution-specific (Company A). Finally,
the debt may cause incidents into dependent services that are not updated as
required (Companies B, C, E, and F).

Principal. Designing services to be generic and independent usually incurs
a cost, which is the principal, as also mentioned by Company A. Company
E reduced the accumulation of the aforementioned debt by “being API first,”
which requires teams to consider what the service is instead of focusing on
the code. According to the interviewee who made the suggestion, “It is more
about orchestrating APIs,” and “what’s behind an API is no longer relevant.”
Company C considered using internal training about developing good APIs

72

Results

to mitigate the problem. Company F proposed setting aside some time slots
during development to continuously clean, refactor, and improve the APIs.

Debt 3: Lack of communication standards among microservices

When autonomous teams do not have proper guidelines or standard models for
creating APIs or message formats (depending on how their services communicate
with other services), the company may accumulate a debt in which many APIs
or message formats emerge from the various teams because, as stated by an
interviewee from Company D, “each message producer of messages is left to
define the format of the data themselves.” While this debt might not be a
problem in small systems, especially because microservices allow teams to
decide their standards, having many standards will incur additional costs and
become an issue. This is the “Tower of Babel problem” in our previous work
[de +19]. We found evidence of this problem in Company A’s use of messages.

Interest. Developers often exert unnecessary effort when translating
messages among distinct formats to allow different services to communicate.
According to our sources, this debt leads to “data duplication, lack of
consistency, and unwanted complexity.” The solution becomes overwhelmingly
complex due to too many API or message formats. Each time one service must
interact with another, the team that develops the first service must learn a
new message or API format to define the proper translations (Company A).

Principal. According to Company A, “this problem is typically solved
in organizations by using the canonical [data] model design pattern.” The
implementation must be properly policed, or this model may also become
complex and costly.

Debt 4: Inadequate use of APIs

Poor API design (i.e., failing to properly plan the API interface, error codes,
etc.) may be the easiest way to have working code initially, but this has negative
effects. In some cases, APIs are used in situations where other solutions, such
as messaging, would be preferable. Such situations constitute the debt of
inadequate API use. We present details below on each of those situations.

Debt 4.1: Poor RESTful API design

When using RESTful APIs, several conventions address their readability and
use. For example, the REST Uniform Interface standardizes implementing
create, retrieve, update, and delete operations in a resource. HTTP also includes

73

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

a list of status codes2 that should be used in the API’s responses. In our study,
some developers tried designing RESTful APIs without following the proper
conventions because they “were still focusing on the functional part of the
job,” resulting in a poor design (Companies B, C, and D). An example of this
problem was using operations that should have performed a resource update
but instead retrieved a collection of items (Companies B, C, and D)..

Interest. Poor API design causes several issues: (i) the API is difficult
to use because its results may not follow expected conventions (Companies C
and D); (ii) APIs are not stable, as one interviewee emphasized: “Should I
make any changes, I need to make a new revision of the API” (Companies C
and D); (iii) the API’s instability requires the creation of new API versions
and the need to maintain the old and deprecated versions (Company B); (iv)
such changes also make it difficult to maintain backward compatibility in new
versions of the API (Companies C and D); as a final result, (v) intentional and
unintentional breaking changes3 are common (Companies C and D).

Principal. Our interviewees suggested that APIs be standardized
(Company D), versioned (Company C), and kept as stable as possible so
that changes in the services do not affect their APIs (Companies B and C).
Our interviewees also suggested using an explicit deprecation strategy. In other
words, after the deprecation announcement, a previously defined period of
support should not be extended (Company C). It is also useful to track internal
and external consumers. Hence, it is possible to contact them directly and
request migration to a new and more stable version of the API (Company C).

Debt 4.2: Use of complex API calls when messaging is a simpler
solution

There are situations in which an asynchronous communication approach
is particularly appropriate, such as executing long-running jobs. In other
situations, such as when one service needs an immediate response from
another after updating a user’s address, synchronous communication is a
better choice. A REST call is synchronous, whereas the messaging approach is
asynchronous. Using REST when messaging is more appropriate constitutes
another architectural debt because there are costs associated with using an

2https://tools.ietf.org/html/rfc2616#section-6.1.1
3A breaking change is a change in one part of a software (e.g., in a microservice’s API)

that potentially causes incompatibility with other components, causing failure. Examples of
breaking changes for an API are changes in the response codes (e.g., 200 OK to 201 Created
in HTTP) and renaming the location of the resource (e.g., renaming /user to /users, so
previous clients are not able to find the related resource anymore).

74

https://tools.ietf.org/html/rfc2616##section-6.1.1

Results

improper solution. We found a specific instance of this problem in Company D,
which described “rather complex service calls back and forth where messaging
would have been a much better solution and allowed for much better testing.”

Interest. Instead of preparing services to respond to events (e.g.,
when a message arrives), API endpoints were created for each instance of
communication among the services (Company D). Such a situation increases
coupling among the services due to “a relatively complex handshake between
two different services.” In other words, all the involved services depend directly
on each other’s API endpoints instead of simply triggering an event (message).
Besides, the services are harder to test due to the aforementioned complexity.
Thus, the costs of maintaining such services increase.

Principal. According to Company D, the primary solution is “moving
completely, for these particular cases, to a message passing” approach. The
messages should be generic enough to be used by all the involved services
without complex processing.

Debt 5: Use of inadequate technologies to support the
microservices architecture

Technology choices may positively or negatively affect software architecture.
Technologies used in microservices are different from those used in other
architectural styles (for example, those ones used for service discovery and
circuit breaking, as well as others discussed in Section 5.2.1). There are
certainly technological similarities with other SOA approaches, but however,
there are also differences (e.g., ESBs should not be used in microservices, as
discussed in Section 5.2.1). For example, different cloud providers support
different sets of tools and technologies, such as operating systems and storage
software; some architectural choices simply do not work with them or face
limitations. One interviewee said, “The technological base that we built a
platform upon was not the best choice for what we wanted to offer.” Therefore,
selecting an inadequate set of technologies, such as a Platform-as-a-Service
or Infrastructure-as-a-Service provider that does not support the technology
required for the software architecture incurs a debt.

Interest. This debt’s interest is context-dependent. In our findings,
choosing the wrong technology as the message bus responsible for transferring
messages among services caused considerable latency in such communication,
with the consequent costs of requiring a team to maintain the third-party tool
instead of working on other priorities (Company A). Company C could not
provide certain new features because the previously selected platform did not
provide enough sufficiently managed services. The company had to deal with

75

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

the costs of implementing the required functionalities without the availability
of proper technologies.

Principal. Companies A and C reported that the primary solution should
be planning the architecture before selecting the technologies because it is
harder to change later on. Since that was impossible, they migrated to more
appropriate technologies as soon as possible to prevent the interest from growing.

Debt 6: Excessive diversity or heterogeneity in the technologies
chosen across the system

Selecting programming languages and related technologies are architectural
choices that must be made in any project. Microservices give developers the
freedom to choose different tools, programming languages, communication
technologies, API standards, messaging technologies, and other technologies
for each service. Although this is an advantage because some languages,
frameworks, and technologies are more appropriate to specific tasks, such
freedom can also lead to the interest described below. Such freedom may lead
to debt, causing the company to have an excessively diversified environment.

Interest. We found the following set of issues in four companies: (i) Services
that use one technology cannot communicate with services that use another,
such as cases with REST APIs on one side and messaging technologies on the
other (Companies A, E, and F). When services that use distinct technologies
must communicate, a workaround must be developed. (ii) Individuals from one
team cannot easily migrate to another because the necessary skills are quite
different (Companies E and F). (iii) It is difficult to change the technology
choices later because the services run for a long time and the teams become
accustomed to their own choices (Companies A and F). Finally, (iv) developer
performance decreases when teams must maintain distinct tools with potentially
divergent setups (e.g., languages or environments) and when there is a need to
maintain additional tooling source code repositories (Company G).

Principal. The primary solution reported by the companies was limiting
the set of technologies available to the teams, especially those technologies used
by multiple services and teams (Companies A and F). When talking about
limiting the set of available technologies, one of the interviewed practitioners
said, “I don’t want too much alignment on that, but we need to keep the
complexity under control and work to minimize the complexity of all parts.”
Besides, using programming language-specific monolithic repositories4 allows

4This is also known as monorepos; it is a single source code repository for storing many
projects.

76

Results

related software (e.g., different microservices for distinct payment methods such
as cash and credit cards) written in the same programming language to share
tools from the same repository. Such repositories encourage using the same
deployment tools, which may prevent a surge in different setups and support
the merging of services because they use the same technologies (Company G).

Debt 7: Manual per service handling of network failures when
target services are unavailable

When distinct microservices communicate synchronously (Section 5.2.1.1), they
usually contact each other through the network. Unfortunately, several issues
can occur during such communication. The communication channel may be
overloaded, or the target service may be unavailable for many reasons, such as
a lack of resources, crashes, or timeouts. One well-known approach is to create
a mechanism within the service to retry contacting the target a fixed number
of times. However, this approach has proven to be a debt because “every single
developer has to think about how to handle that case themselves,” leading to
the costs described below.

Interest. Our interviewees mentioned that implementing the retry
mechanisms manually on each service increased the code’s complexity because
developers must decide how the service handles the situation: “Should it
retry, give up, or send a signal error? What should it do?” This approach
increases the services complexity (and related maintenance cost) and increases
the architecture’s overall complexity (Company B).

Principal. The companies that reported this problem suggested reducing
the complexity by using third-party products that provide features with retry
mechanisms, such as circuit breakers (Section 5.2.1.3) (Companies B and C).
One interviewee from Company B declared, “That is why we introduce the
service mesh: to simplify that [the complexity created by developers when
they must think about handling the retries].” Service meshes are introduced in
Section 5.2.1.4 and usually contain circuit breaking mechanisms. Still, they
should be used carefully and only when needed because they may cause an
overhead, especially if the team does not have experience with them.

Debt 8: Unplanned data sharing and synchronization among
services

Microservices may have their own databases, but they can also share or
synchronize data with other services. In such situations, the company may
incur the debt of not planning data sharing or synchronization among services,

77

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

leading to various costs. This debt could be interpreted as a way of causing
coupling among services (Debt 2). Still, we consider it another because fixing
it does not necessarily solve the coupling issue, nor do the fixes we present for
solving Debt 2 solve the databases’ issues.

Debt 8.1: Sharing persistence or database schema

Sharing the same persistent storage or database schema with multiple
microservices is a critical architectural debt that can easily lead to high costs.
For example, one company recognized the following situation: “We still have a
common database today that is a technical debt that we are aware of, and we
will have to get rid of this common database.”

Interest. A service may require changes in the database schema or the
data stored in the database. Such modifications may potentially break other
services that use the same schema: “You easily break other services by changing
the structure without even noticing it or noticing it too late” (Company D and
G). If using the same database schema for different services is common in the
company, an unknown number of services may use the same database schema.
Therefore, it is difficult for a development team to know whether other services
use the schema due to the lack of tracking for such information. This increases
the odds of breaking other services (Company D). In such cases, the database
design is complex and contains information from multiple services (Company
D).

Principal. The ideal solution is to use separate databases for each service:
“We are trying to split up that common database so that each service is
responsible for its own database” (Companies C and D). It is also possible
to wrap the database in a service, exposing it through an API instead of
requiring direct access (Company G). Although the last solution does not solve
the database complexity problem (i.e., the database still contains data from
multiple services, which is more complex than having separate databases), it
does reduce direct database schema manipulation. If wrapping the databases
in this way is impossible for any reason (e.g., the services are business-critical
and the migration cannot be done at once), our interviewees suggested using
different database schemas for each service to enable the services to be changed
independently (Company C).

Debt 8.2: Unplanned database synchronization

Microservices increase the likelihood of having distributed databases, but they
may require synchronization. However, one interviewee said, “A big challenge is

78

Results

data consistency in use cases involving multiple services and multiple databases,
which must be somehow consistent or aligned to fulfill the use case successfully.”
In such a situation, the company may incur the debt of improperly planned
synchronization.

Interest. The software composed of multiple microservices will remain
inconsistent until all related databases are updated. This can lead to bugs.
An interviewee from Company C said, “There were cases in which we had
features that required us to basically align three databases to show the right
information on a [user’s] dashboard.” Because we cannot present the real use
case due to confidentiality restrictions, we explain the problem using a fictitious
example: an online bookstore has 10 copies of a particular book. The store is
developed using microservices and contains a microservice for purchases and a
microservice for managing its inventory. Two users purchase the same book
simultaneously, one for a single copy and the other for all 10 copies. Both users
pay for their orders simultaneously, but the one who is buying all 10 copies
finishes first. When the user buying a single copy finishes the payment, there
are no books left because there is no mechanism to synchronize the inventory
management and purchase services in this example. Company C encountered
a similar problem. The costs vary depending on the business criticality of the
affected product features.

Principal. Company C reported that distinct solutions could be considered
depending on feature criticality. In some cases, a database must be shared
by the services (see Debt 8.1), or a complex transaction mechanism must be
planned, but no approach to implementing such a transaction was reported.
We found no similar problems and solutions in other companies.

Debt 9: Use of business logic in communication among services

Microservices encourage the use of dumb pipes (i.e., simple message routers)
for communication. The communication layer used by microservices should not
include business logic. However, in projects like one developed by Company
A, “the data transported changed within the communication channel itself.”
The changes are made by the services communication channel using business
logic. Using business logic in the services communication layer constitutes an
architectural debt because such a logic is not supposed to exist.

Interest. Maintaining additional business logic apart from the services
is costly, as any changes to the services may also require changes to the
communication layer where the business logic is located. Besides, “each time a
new system is on-boarded, you need to set up the communication flow, requiring
the communication channel team to provide the flow and possibly set up some

79

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

business logic.” In other words, an external team—the communication channel
maintainers—must understand details about how the related services work to
implement the business logic (Company A).

Principal. Our interviewees suggested moving all business logic to the
services themselves, thus allowing the communication layer to act as a dumb
pipe. The costs involved are related to implementing such logic on each
service: each team must understand and implement the changes independently
(Company A).

Debt 10: Reusing third-party implementations

Reusing code can reduce resources while programming. In software development,
reuse may occur by developing libraries used in various microservices. We
call them shared libraries in the context of microservices because various
services usually share them. On the other hand, reusable code—such as
frameworks, language extensions, and libraries—may also be developed by
external parties. We call codes from external parties external dependencies.
For a single microservice, shared libraries and external dependencies can both
be considered third-party implementations. We found evidence that using such
third-party implementations may be an architectural debt and that the interest
differs depending on whether they are shared libraries or external dependencies.

Debt 10.1: Many services using different versions of the same internal
shared libraries

Companies may develop their own libraries to reuse code. Such libraries can
act as black boxes for complex operations, and other reasons exist for using
such libraries. One company states, “You could use REST, but if you want
to be efficient, you want a native binding because it is faster.” However, these
libraries may constitute architectural debt if many services use such libraries
and cause the interest described next.

Interest. Several negative impacts must be considered: (i) New releases
of the libraries may require updates on every service using them. A roadmap
must be established to handle such changes (Companies A and E). (ii) Several
versions of the libraries must be maintained, because replacing old versions in
all running services might be impossible for reasons like development priorities:
“Sometimes the clients are business-critical and, in their roadmap, upgrading to
a new version of a library it is not the top priority” (Companies A and E). (iii)
Early adopters may refuse to implement new versions, especially if breaking
changes exist (Company A). (iv) If library use cases are frequently unknown,

80

Results

breaks may occur due to unexpected situations. Such breaks lead to fixes that
may lead to breaking changes when libraries are updated (Company D). (v)
The service’s developers using the library depend explicitly on the team that is
developing the library, so delays in releasing library versions with some required
functionality will likely affect the service’s developer team (Company F).

Principal. All the companies that mentioned the problem agree that
they should avoid and discourage using shared libraries as much as possible
(Companies A, D, E, and F). Company D suggested that a complex shared
code should be transformed into services and that more straightforward codes
should be duplicated by the different teams. Several practitioners suggested
considering exceptions only when no better alternative exists “to keep the
amount of shared libraries as minimal as possible” (Companies A, D, E, and
F).

Debt 10.2: External dependencies with various licenses requiring
approval

External dependencies are any libraries, frameworks, or similar software
developed by external parties. We found evidence that their use might lead
to architectural debt when the types of licenses allowed to be used by the
company are strictly limited. Many products depend on some externally
developed software; not accumulating this debt is almost impossible, but steep
interest can be avoided.

Interest. All third-party codes’ licensing limitations must be documented:
“We need to document whether they are exportable in order to be able to
perhaps include them in the main application and send them to trial, or even
in order to be able to run them in a public cloud because that is also an export
from one country to another.” Eventually, some dependencies must be replaced
due to non-compliance with regulations. Licenses may limit business models
(e.g., it may not be possible to sell the product or service) and even prevent the
software’s distribution to some countries. Due to the high risk of regulation
issues, approving such dependencies may be time-consuming and cause delays
(Company B).

Principal. No current approach exists to handle this issue other than
investing in a process to evaluate and approve such dependencies as fast as
possible. Company B suggests that teams not use external dependencies whose
licenses were not approved in advance to avoid this issue.

81

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

Debt 11: Overwhelming amount of unnecessary settings in the
services

Microservices can be reused and deployed in various settings by tweaking
parameters. One company explained the situation: “Microservices tend to
expose some configuration settings that can basically be overridden. So, you can
set a default value, and then whoever is using or deploying your microservice
can override it at deployment time. When we add many microservices
together and aggregate them into big settings trees, handling these kinds
of parameters becomes very overwhelming.” For instance, allowing parameters
to be overridden in different environments adds some control over resource
usage. However, the company may incur debt caused by many unnecessary
configuration settings among the services, which leads to higher maintenance
costs.

Interest. Managing many parameters takes time and leads to overhead
while deploying products (Companies A, B, C, E, and F). Such debt also
increases the likelihood of unexpected issues caused by wrong setting values:
“It was a very frequent problem that deployments would go wrong because
somebody changed something in deployment scripts, and it would take a while
to figure out why it was going wrong.” The greater the number of values, the
greater the likelihood of mistakes. More value combinations will also need
to be tested. Mistakes require time to fix, and more tests will require more
development time (Companies D and G).

Principal. Some interviewees suggested creating a repository to keep
the configuration settings, usually managed by a control version system
(Companies A and G). Besides, peer approval for every change in the settings
repository before production helps prevent issues (Company G). Interviewees
also suggested reducing the number of configurable settings on each service
to the minimum necessary (Companies A and F). A configuration server to
automatically apply changes from the settings repository to the deployments
also simplifies managing the settings (Company C).

Debt 12: Excessive number of small products

By definition, a microservice is a small product with a single capability and
its own life cycle from development to deployment. It includes documentation
and any governance required for software products. For example, one company
reported that “each of the microservices effectively became a very small product,
and we have a full process for handling products.” This may lead to debt via
an excessive number of small products.

82

Discussion

Interest. Each microservice must be governed separately—which requires
overhead with dedicated management, development, deployment, and main-
tenance. This does not exist with monoliths because they require only one
deployment (Companies B and E).

Principal. Our study reveals no solution to this problem. The companies
reported that they “haven’t really found a good way to change our standard
ways of working and documenting to handle that yet,” and “these kinds of
aspects are a bit difficult when you have very small units of software flowing
all over the place.”

5.5 Discussion

This section discusses our ATDs in different contexts, how they relate overall,
how to avoid them, and the limitations of our study.

5.5.1 Debts in different contexts

We discuss the various ATDs in relation to the company application domain, the
project stage, and other specific context factors. We aim to help practitioners
understand, adapt, and apply our results to their specific contexts.

Difficulties with message traceability (Debt 1.1) affect financial systems
more than other product types. Poor management of dead letter queues (Debt
1.2) was more common in companies that migrated from older approaches.
Problems with coupling (Debt 2) affect most companies in this study; only
Company G did not report critical coupling issues among services, but we have
only one interviewee from this company.

The lack of communication standards among services (Debt 3) occurred
more frequently in applications with many services; smaller products seem to
avoid this problem (Table 5.1 shows each project’s number of microservices).
However, this conclusion requires more investigation because Companies F and
G, which have many services, did not report it as a problem.

The inadequate use of APIs (Debt 4) is a debt that requires attention every
time a new API is created or updated. Not all the companies reported it,
but it affected most companies using APIs in our investigation (some other
companies used primarily messaging approaches or a balance between APIs
and messaging). Our interviewees did not discuss techniques to design good
APIs. We focused on reporting our findings from the interviews. However,
we believe that the API design plays an important role in fixing this debt.
See, for example, the work of Mosqueira-Rey et al. [Mos+18], in which they

83

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

present a systematic approach for developing usable APIs. There might be
a relation between this debt and Debt 3 (lack of communication standards
among microservices), although it is not apparent from our data. Inadequate
technology use (Debt 5) is usually harder to fix because, for example, changing
an entire platform is hard. Many parts of a project may depend on chosen
technologies, so changing them may require an entirely new project. Therefore,
Debt 5 requires more attention at the project’s beginning, when technologies
are being chosen.

One solution proposed for solving the overwhelming diversity of technologies
(Debt 6) is limiting the number of technologies used. This might contradict
the definition of microservices because they are supposed to be independently
deployable units that give practitioners the freedom to choose the technologies
to use. However, the diversity should be reasonably limited in practice because
it may lead to various problems, such as difficulties migrating developers to
other teams in a company and a decrease in a team’s performance because
of the need to maintain potentially divergent setups. Additionally, despite
monolithic repositories being suggested as a solution for some cases of this debt,
there is a risk that using them for many microservices might lead to overloaded
repositories. Therefore, a good practice may be using monolithic repositories
with smaller subsets of microservices and only when such microservices share
the same technology stack.

Manually handling retries while trying to communicate a temporarily
unavailable service (Debt 7) may also require attention. This debt was only
found while using APIs because the messaging technologies do not require
direct access to another service—only to the message bus.

Issues with shared data (Debt 8) were rare, but their effects were some
of the most dangerous ones (e.g., breaking other services). They require
attention, especially while designing new services. Note that Debts 8.1 (Sharing
persistence or database schema) and 8.2 (Unplanned database synchronization)
are highly interconnected: Debt 8.2 might result from splitting a database, for
example, from solving Debt 8.1. On the other hand, sharing a database among
services, which is a solution proposed by some of the interviewees for Debt 8.2,
may incur Debt 8.1. The last case can be avoided by using different database
schemas.

Business logic in the communication layer (Debt 9) is dangerous, especially
for legacy systems, and companies developing new products seem to be aware
of this issue and are avoiding it successfully.

Misusing shared libraries (Debt 10.1) may generate high costs. Therefore,
we argue that they should be used carefully and only when needed. Our
interviewees did not report the same issues for shared libraries while discussing

84

Discussion

external dependencies, such as frameworks. This study does not identify the
reasons for differences among shared libraries and external dependencies. Issues
with external dependencies (Debt 10.2) seem to relate to licensing and are
restricted to companies with multiple deploys of the same software in various
regions worldwide.

A common problem for every project using microservices involves many
configurable settings in microservices (Debt 11). All the companies reported
that the services’ deployment is complex and error-prone because of the number
of settings to define.

The excessive number of products (Debt 12) is hard to avoid. It may relate
to the services’ granularity or other unknown factors. It might simply be a
drawback of using microservices. Thus, this problem must be investigated
further.

Many of the debts described here may be found in other architectural styles.
For example, poor RESTful API design (Debt 4.1) may be found in monoliths.
However, they may be different in microservices because each service is a
separate application, which adds to the costs. A monolith, for example, may
expose a single API, whereas the same functionality might require the existence
of multiple APIs in separate applications, with multiple points of failure instead
of a single one. Also, microservices use several additional technologies not
applied in other architectural styles. We introduced a general description of
those technologies in Section 5.2.1. Many of those technologies were originally
developed or adapted to support SOA, but others were created specifically to
support microservices, as discussed in Section 5.2.1.

Other approaches that have been proposed in grey literature can help
manage ATD. For example, regarding Debt 8.1, Newman [New19] suggests
using database views and creating a wrapping service. Newman [New19] also
discusses other patterns that we could not match with our findings, including
migration patterns, user interface composition, and database synchronization.
Although such patterns might have been used, they were not mentioned by our
respondents.

5.5.2 Common interests and principals among the debts

Understanding how debts are related is essential to better plan and analyze the
consequences of refactoring. Figure 5.13 illustrates the debts, their interests
and their principals. It shows which interests and principals are common
among the debts. It was built by grouping the interests described in Table 5.4
into higher-level categories. Then we connected all the debts to these high-
level interest categories to show which debts generated similar interests. For

85

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

example, the extra work for handling cascading changes and a higher number
of unnecessary services from Debt 2 and the overwhelming amount of message
formats for developers to handle from Debt 3 were both categorized into
“development overhead.” Some interviewees explicitly stated some relationships;
the researchers inferred others through the cross-case analysis.

Finally, we repeated the same procedure for the principals, but we found
only two principals shared between debts: the metadata standardization and
the design of generic services.

Development overhead is caused by nine out of the twelve debts we reported
(or eleven of sixteen, considering the sub-debts). Thus, it is not possible to
reduce such development overhead without investing in repaying many different
debts. The developers are the ones most affected by such overhead.

Potential breaks within the services are caused by four debts (Debts 2, 4,
8, and 10). Investing in paying those debts might reduce the probability of
having to deal with instability and cascading failures.

Dependencies among teams are caused by three debts (Debts 2, 4, and 10).
Such dependencies contribute to delays in the project as well as productivity
loss because the developers on one team must wait for another team to start
their work. Similarly, team velocity reduction is caused by three debts (Debts
4, 6, and 10). It may be advisable to pay extra attention to Debts 6 and 10
because they are responsible for many different interests.

Figure 5.13 also shows other specific interests and principals that are related
to only one or two debts.

We expect a mapping like the one shown in Figure 5.13 to help practitioners
to focus on the debts they want to manage according to the most costly issues
they perceive in their projects.

86

Discussion
Fi
gu

re
5.
13
:
C
om

m
on

in
te
re
st
s
an

d
pr
in
ci
pa

ls
am

on
g
th
e
de

bt
s.

87

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

5.5.3 Microservices coupling

We have found evidence that four debts (or six, considering the sub-debts) were
indirectly increasing the probability of microservices coupling (Debt 2) and its
consequences. Debt 3 (Lack of communication standards among microservices)
leads to an excessive number of APIs or message formats, increasing the
likelihood of having formats designed as coupled by default. As a result, the
involved services cannot communicate with ones other than those originally
developed for such interaction.

The main consequence of Debt 4 (Inadequate use of APIs) is having a
set of services whose boundaries are not well defined, leading to the creation
of functionalities in the wrong services. Thus, some services that should
work independently must work together (i.e., they are coupled because some
functionality required by one of them is in another service).

Debt 8 (Unplanned data sharing and synchronization among services) may
cause an indirect coupling through the database. Changes in the database
triggered by some change or additional functionality may eventually cause
breaks in the other services. The services that share the database depend on
each other’s database structure.

Finally, Debt 9 (Use of business logic in communication among services)
might lead to coupling because the logic is usually coupled to the services it is
designed for.

In our study, coupling seems to be a common issue to be handled by
microservices developers. It was mentioned several times by developers not
only as a debt itself as described in Debt 2 but also as an indirect consequence
of other debts. Investing in repaying the four debts (in addition to Debt 2)
above might reduce the probability of having coupling among services.

5.5.4 Approaches for avoiding ATDs in microservices

Some techniques described in the non-peer-reviewed literature may help handle
some ATDs reported in our research. Two techniques that may connect to
two ATDs reported by the companies in this work are Domain-Driven Design
(DDD) [Eva04] and Sagas [GS87].

One of the most significant challenges of using microservices relates to
boundaries between them. The wrong boundaries may increase coupling among
microservices (Debt 2.1). DDD is a powerful approach for defining microservices
boundaries, but using DDD off the shelf may be hard in practice. It deserves
more research, however.

88

Discussion

To remove Debt 8.1, some of the studied companies chose to separate
databases. None of the interviewees shared details about approaches they might
have been using to avoid inconsistencies in the data. However, three approaches
are: using the eventual consistency model (optimistic replication) [Vog08],
sagas [GS87], and two-phase commits [RK98].

Vogels [Vog08] explains that a system using an eventual consistency model
does not guarantee that subsequent accesses will return the last updated value
right away, but eventually all accesses to the data will return the last updated
value. The delay in the consistency is a trade-off versus high availability in
distributed systems.

Garcia-Molina and Salem [GS87] proposed sagas in 1987. Today, the
technique is adapted to microservices. Sagas involve implementing transactions
among the services via a sequence of local transactions in several services (a
saga). If one transaction fails, a set of compensating transactions may restore
the databases’ previous state.

Two-phase commits are discussed in distributed database research (e.g.,
[RK98]). This technique consists of preparing the commit (Phase 1) and
storing it permanently (Phase 2) after an agreement from all involved parties.
Newman [New19] argues against the use of two-phase commits mainly because
of the existence of a window of inconsistency that might lead to problems.
When the data must be in two different places, Newman [New19] suggests using
sagas instead. Regarding solutions for ATD, both approaches require further
investigation.

5.5.5 Microservice architecture maturity

Microservice architecture is still maturing. We notice that practitioners’
different understandings about what comprises a microservice lead to different
practical decisions. On the other hand, SOA is a more mature concept supported
by several standards, such as the family of WS-* standards for web services.
Microservices are a way of implementing SOA, but there are no standards such
as the WS-* to guide microservices’ implementation, making practitioners less
supported with best practices.

Large companies tend to have heterogeneous and experienced staff members
with distinct backgrounds. Such a variation among staff members may
generate different opinions about solving the same problems. Because emerging
architecture’s definitions and related technologies are still maturing, the different
opinions increase practitioners’ likelihood of struggling with ATD in such
environments. Consequently, knowing about frequent and costly ATD in
microservices is important.

89

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

5.5.6 Limitations

The sample size of respondents from companies is limited, particularly from
Companies F and G, with only one interviewee each (see Table 5.2). This might
create bias because we could not triangulate the data via additional perspectives
from other participants from the same company (source triangulation).

Furthermore, the fewer people we interviewed in a company, the fewer
smells may have been found. Note that not finding a particular debt does not
mean the debt does not exist—only that we were unable to find it.

Also, we selected our interviewees through convenience sampling. Thus, the
debts we found may not be representative of the respective companies.

Returning to the interviewees multiple times may make them biased during
the process, either in favor of the study or in favor of (or against) their system.
Still, the number of return interviews with the same interviewees was low, and
we primarily asked about problems other than those discussed before.

Questions 7, 9, 10, and 11 emerged during our interviews and were directly
related to the debts identified in the preceding interviews, so they may introduce
some bias to our results. We mitigated this issue by asking those questions
at the end of the interview after asking open questions about their existing
debt. By doing so, we avoided anchoring the subjects’ answers to specific debts.
Also, interviewees may be uncomfortable stating their thoughts for several
reasons and may not tell the whole truth. We mitigated the problem via source
triangulation. In cases with only one person (Companies F and G), it was
impossible to achieve source triangulation.

The purpose of a multiple-case study is to investigate a set of cases in
depth, not to generalize findings statistically. Yin [Yin18] states, “rather than
thinking about your case(s) as a sample, you should think of your case study
as the opportunity to shed empirical light on some theoretical concepts or
principles.” Practitioners may judge to what extent our findings apply to
their particular context based on similarities and differences between their
company and the investigated companies. A survey does not provide a rich
context-related insight but enables reporting results statistically. A natural
step further in our research is to conduct a survey where we collect opinions
from more people and companies regarding the identified ATDs, interests, and
principals.

5.6 Related Work

We identified a set of ATDs in microservices that could hinder the adoption
of microservices. A deeper study about barriers (and drivers) for adopting

90

Related Work

microservices comes from Knoche and Hasselbring [KH19], who identify issues
related to compliance, regulations, and licenses as barriers. We identified that
licensing and regulations might become an ATD (and a barrier) for microservice
architecture.

This article extends our previous work [de +19] by investigating six
additional companies. The current results confirm the found debts in our
previous single case study apart from business logic in the communication
among services. The current study resulted in cross-company insights and,
specifically, an update of our catalog of ATDs. Moreover, the originally-
proposed debts in de Toledo et al. [de +19] were changed as follows:

• “Too many point-to-point connections among services” is better explained
as a coupling issue (Debt 2) and is also related to Debt 3;

• “Business logic implemented in the communication layer” is now described
in Debt 9;

• “There is no approach to standardize the communication model among
services” is described in Debt 3;

• “Weak source code and knowledge management for different services” is
removed from our catalog because we found that it is better classified as
a distinct, non-architectural type of debt;

• “Unnecessary presence of different middleware technologies in the
communication among services” is merged into Debt 6, which is a more
general debt description.

Taibi et al. [TL18] interviewed 72 developers and built a catalog of bad smells
on microservices. More recently, Taibi et al. [TLP20] provided a taxonomy
of architectural and organizational anti-patterns in microservices and their
possible solutions. There is a close relationship among ATDs, architectural
smells, and architectural anti-patterns, but they are different concepts; not all
bad smells and anti-patterns are ATD: a code duplication may be considered
a bad smell, but not TD if there is no interest. Still, some of the ATDs we
have identified can be considered anti-patterns. However, describing them
as ATDs enables us to evaluate them in terms of interest and principal. For
example, some smells identified by Taibi et al. [TL18] overlap with ours: (i)
shared persistence, which overlaps with Debt 8.1; (ii) too many standards,
which overlaps with Debt 6; (iii) shared libraries, which overlaps with Debt
10.1; and (iv) Microservice Greedy, which overlaps with Debt 12. However, no

91

5. Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study

solution is offered other than careful consideration of services to create. They
present the same problems and solutions we found in our interviews, reinforcing
the importance of these problems. No other overlaps exist. Our study also
presents more details about the debt and its interest and principal.

Hasselbring and Steinacker [HS17] argue that transforming internal libraries
into open-source software may reduce issues with shared libraries (i.e., it may
solve Debt 10.1). Despite insufficient evidence to confirm their suggestion, we
believe more in-depth studies could confirm or refute such findings.

Bogner et al. [Bog+19a] performed a qualitative study with 10 companies
via 17 interviews to explore evolvability assurance processes for 14 microservice-
based systems. Many of the issues reported were related to ATD. Our work
differs in the research focus: they investigated evolvability assurance processes
and came across ATD issues, but we systematically investigated the debt,
interest, and principal in microservices’ architecture. Their work partially
overlaps with the following ATDs we found in our study: (i) technological
heterogeneity, in which they discuss that their participants are divided about
the use of several different technologies in microservices, which relates to Debt
6; (ii) inter-service dependencies and the ripple effect, which refers to Debt 2;
(iii) breaking API changes, which is an interest of Debt 4.1; and (iv) distributed
code repositories, in which they argue that it may complicate the access to the
source-code and relates to Debt 6 as well.

In summary, some related studies overlap with ours in a limited way, but
none is as extensive and comprehensive as ours concerning ATD in microservices.

5.7 Conclusions and Future Work

During software development, it is vitally important to manage ATD to avoid
extra costs in the long term. We provided a cross-company analysis to create
a catalog of ATDs in microservices, their consequences (interest), and their
solutions (principal). Moreover, we created a map of relationships among
ATDs, their interest and principal. Such a map may support practitioners in
identifying and avoiding ATDs and planning refactorings to remove them.

Regarding RQ1, we found ATDs that included business logic among services,
shared databases, lack of data-traceability mechanisms, poorly designed APIs,
and shared libraries. As for RQ2, we observed that such debts caused substantial
interest, such as unexpected breaks due to changes in the database schema
or other dependencies, unnecessary API complexity, coupling among services,
and dependencies among teams. Finally, for RQ3, we identified how companies
handle such ATDs and the ATD costs.

92

Conclusions and Future Work

Future work includes running a survey to increase our results’ generalizability
and collect additional information on repayment prioritization. Furthermore,
based on the insights reported in this article, we propose a new study that
investigates metrics for measuring debt, principal, and interest in microservice
architecture to quantify costs and benefits and support prioritization and
decision-making.

Acknowledgements. We are grateful to all the interviewees of this study. We
thank the anonymous referees for their comments.

Authors’ addresses

Saulo S. de Toledo University of Oslo, Postboks 1080 Blindern, 0316 Oslo,
Norway, saulos@ifi.uio.no

Antonio Martini University of Oslo, Postboks 1080 Blindern, 0316 Oslo,
Norway, antonima@ifi.uio.no

Dag I. K. Sjøberg University of Oslo, Postboks 1080 Blindern, 0316 Oslo,
Norway, dagsj@ifi.uio.no

93

mailto:saulos@ifi.uio.no
mailto:antonima@ifi.uio.no
mailto:dagsj@ifi.uio.no

Chapter 6

Improving agility by managing
shared libraries in microservices

Saulo S. de Toledo, Antonio Martini, Dag I. K. Sjøberg
Published in Lecture Notes in Business Information Processing (LNBIP),
June 2020, volume 396. DOI: 10.1007/978-3-030-58858-8_20.

2
Abstract

Using microservices is a way of supporting an agile architecture. However,
if the microservices development is not properly managed, the teams’
development velocity may be affected, reducing agility and increasing
architectural technical debt. This paper investigates how to manage
the use of shared libraries in microservices to improve agility during
development. We interviewed practitioners from four large international
companies involved in microservices projects to identify problems when
using shared libraries. Our results show that the participating companies
had issues with shared libraries as follows: coupling among teams, delays
on fixes due to overhead on libraries development teams, and need to
maintain many versions of the libraries. Our results highlight that the
use of shared libraries may hinder agility on microservices. Thus, their
use should be restricted to situations where shared libraries cannot be
replaced by a microservice and the costs of replicating the code on each
service is very high.

Contents

6.1 Introduction . 96
6.2 Background . 97
6.3 Methodology . 97
6.4 Results . 98
6.5 Discussion and Threats to Validity 103
6.6 Conclusions and Future Work 104

95

http://dx.doi.org/10.1007/978{-}3{-}030{-}58858{-}8_20

6. Improving agility by managing shared libraries in microservices

6.1 Introduction

A microservices architecture may be considered a kind of agile architecture.
Over the years, large companies such as Amazon and Netflix shared their success
histories with microservices on dozens of presentations1, always highlighting
how such architectural style helped them to be agile and surpass many of the
limitations and impediments they had in their previous monolithic software
solutions. Since then, many other companies and practitioners tried to learn
about microservices and adopted them in their projects.

However, systems that use microservices may become more complex than
monolith systems [STV18]. Practitioners are still struggling with the adoption
of this architectural style in their projects, and there is not much knowledge
about Architectural Technical Debt (ATD) in microservices [de +19].

ATD is a metaphor used to describe architectural suboptimal decisions that,
in exchange of benefits in the short term, incurs future additional costs for
the software. There are many studies on ATD in general but few on ATD in
microservices and no discussion about agility. Our previous study [de +19]
investigates what is ATD in microservices through a qualitative case study
in a single company, Lenarduzzi and Taibi [LT18] presents a position paper
about code debt on microservices, also in a case study in a single company,
Bogner et al. [Bog+19a] performed a qualitative case study in 10 companies to
explore evolvability assurance processes for microservice-based systems. The
three studies have distinct scopes.

In this study, we investigate the practice of using shared libraries in
companies that use microservices, and how do these companies manage such
libraries in order to improve agility. We define a shared library as a piece
of software developed in-house containing a collection of resources used by
several components. Externally developed components such as frameworks and
language support extensions are not considered shared libraries in this study.
Shared libraries are used as a black box by the different components, have
their own version management and are copied and bundled together with the
components.

Taibi and Lenarduzzi [TL18] have shown that the use of shared libraries
may be a microservice bad smell and have proposed solutions for removing
the smell. We extend that work by presenting an expanded list of issues and
solutions, and do it in the context of different companies.

We pose the research questions as follows:
1Examples of presentations are “Mastering Chaos” by Josh Evans (Netflix, 2016),

“Amazon and the Lean Cloud” by Werner Vogels (Amazon, 2011) and “What We Got
Wrong: Lessons from the Birth of Microservices” by Ben Sigelma (Google, 2018).

96

Background

RQ1: Which practical issues when using shared libraries in microservices
hinder agility in organizations?

RQ2: Which solutions do developers apply to solve such issues?
In order to answer these questions, we conducted a multiple-case study

in four large international companies that use microservices. The remainder
of this paper is structured as follows: Section 6.2 presents our background,
Section 6.3 our methodology, Section 6.4 our results, Section 6.5 our discussion
and threats to validity. Section 6.6 concludes and outlines future work.

6.2 Background

Using microservices architecture is an approach that decomposes a single
application into a collection of small and loosely coupled services; such services
are autonomous, independent of each other and run on separate processes [LF14].
A few other characteristics are also taken in consideration while defining
microservices, such as loose coupling, organization around business capabilities
and ownership by small teams.

Microservices may improve agility by allowing teams to focus on small
pieces of software, facilitating aspects like change, scalability and testing. As
it raises new ways of developing software, it also raises new kinds of ATD [de
+19]. If properly managed, the accumulation of ATD may be beneficial to the
software development, but it is necessary to know when the debt should be
avoided and how to prevent its accumulation [MB16b].

ATD is based on financial terms and has three main concepts [BMB18]:
debt, which describes a sub-optimal solution that yields short-term benefits, but
recurring to the later payment of some interest; interest, which is the additional
cost that has to be paid because of the accumulation of debt; and principal,
which is the cost of refactoring in order to remove the debt.

6.3 Methodology

We conducted a multiple-case study in four large international companies,
with more than 1000 employees. For confidentiality reasons, the companies
are named A, D, E and F, respectively. The studied projects operate in the
domains as follows, respectively: financial systems, healthcare systems, city
management and transport mobility.

We interviewed six architects: one from Company A, two from each of
Companies D and E, and one from Company F. We conducted semi-structured
interviews that lasted from 30 minutes to one and a half hours. We discussed

97

6. Improving agility by managing shared libraries in microservices

Table 6.1: Issues reported by companies as the result of using shared libraries

ID Issue Company

A D E F

1 Impossibility to update library in service due to priorities X X

2 Need to maintain too many versions of the library X X

3 Impossibility to update library in service due to breaking changes X

4 Delays while waiting for fixes X X X

5 Early adopters refusing to migrate X

6 Failures due to unknown use cases X X

7 Failures after library upgrades X X

8 Overhead to library maintainers X X X

9 Dependent agile teams X X X X

several aspects of architecture beyond the scope of this investigation, such as
architectural issues and solutions while using microservices. The questions in the
interview guide relevant to this study are available at https://bit.ly/ImprAgilitySL.
Three of the interviews were conducted face-to-face. The three other ones were
conducted through remote audio calls due to the physical distance between the
parts.

6.4 Results

6.4.1 The issues caused by using shared libraries

Table 6.1 shows which issues related to shared libraries were found in which
companies. We refer to the those issues by using their IDs between parenthesis
in the following paragraphs. The context related to the issues discussed below
is illustrated in Figure 6.1, an example reported by Company D: A team is
assigned to create and maintain a library for authentication and authorization.
Versions of the library are regularly released with fixes or new functionalities.
Other teams are assigned to develop microservices. Eventually and due to
several reasons, several microservices end up using distinct versions of the
library. We present below the causes and implications of such circumstances
for each company in the context of the projects we investigated.

98

https://bit.ly/ImprAgilitySL

Results

Fi
gu

re
6.
1:

Sh
ar
ed

lib
ra
rie

s
ex
am

pl
e

99

6. Improving agility by managing shared libraries in microservices

Company A could not migrate all the clients to a newer version of a library
right after its release. Distinct teams have different priorities: some services
are critical, some are secondary, some have more urgent updates (1). Such
a scenario required libraries maintainers to be active in supporting previous
versions of their libraries that were still being used in production (2). Even in
situations where the library was supposed to be updated soon, the company
experienced delays in the process due to other priorities (1). In addition, the
company also identified situations where early adopters resisted to migrate (5),
since a new version of the library was released right after they finished the
integration of the previous version in their project.

In Company D, the developers experienced a number of system breaks.
Later they identified that part of the breaks were caused by the use of libraries
in many unforeseen and untested situations (6). In addition, Company D also
noticed an overhead on library maintainers (8) and consequent delays. Since
the functionality was provided by the libraries, the teams using them had
to wait for the fixes, which caused delays in new microservices releases (4).
In some situations, the new versions of the libraries caused new issues that
prevented the microservices to be released in production right away (7).

Company E, similarly to Company A, found itself in a situation where it was
not possible to migrate all the clients, which required teams to support many
deprecated versions of libraries (2). Breaking changes and internal roadmap
priorities were some of the factors that prevented developers to use new versions
of the libraries (3 and 1). The use of shared libraries became a bottleneck,
causing failures on microservices (6 and 7), delays while waiting for fixes (4)
and an unexpected amount of extra work for library developers (8).

Company F reported delays in delivering new functionalities as the most
damaging issue connected to the use of shared libraries (4). The library
developers had to handle an extensive amount of change requests, including
requests for additional features and fixes (8). The microservices developers
were frequently blocked while waiting for the arrival of the new versions of the
libraries.

In all four companies, there was a clear dependency (coupling) among the
microservices developers and the library teams (9).

6.4.2 How to manage issues regarding the use of shared
libraries

All the companies reported that the use of shared libraries should be reduced
as much as possible. Company D reported that many libraries implemented

100

Results

trivial functionality that could be implemented by the microservices themselves,
and the fixes could be implemented by the teams, reducing the delays caused
by third-party developers. Company F suggested that well-defined and well-
documented interfaces of their own implementations were important for guiding
practitioners when they did not use shared libraries to provide required
functionality.

Figure 6.2 shows solutions proposed by the companies for the issues caused
by the use of shared libraries. Considering the example presented in Figure 6.1,
simple functionalities, such as extracting an ID or user name from a token,
could be implemented by the services themselves. Such a functionality is easy to
implement, usually by using a well-known technique that can be learned by the
developers, and that does not require the use of an entire library. On the other
hand, some functionalities are complex and could involve, as in our example,
many security steps. In such circumstances, an external microservice with a
well-defined interface, good documentation and a versioning policy should be
maintained by a separate team. Well-defined interfaces should not be changed
unless in exceptional cases, meaning that internal bug fixes may be conducted
without the other services noticing it, and new functionality may be added
without breaking previous behavior unless a breaking change is strictly necessary.
Such a scenario reduces the need for changes in the other microservices that
are using the aforementioned interfaces. Finally, if there are important reasons
for not using one of the approaches above, the use of shared libraries may
be acceptable. Similar approaches may be found in other migration reports.
Balalaie et al [BHJ16], for example, moved common libraries to microservices
when they migrated to such an architecture style. Hasselbring et al. [HS17]
argue that code should not be shared among microservices because teams and
applications should be as independent and loosely coupled as possible.

101

6. Improving agility by managing shared libraries in microservices

Fi
gu

re
6.
2:

H
ow

to
ha

nd
le

sh
ar
ed

fu
nc

tio
na

lit
y

102

Discussion and Threats to Validity

6.5 Discussion and Threats to Validity

Our results suggest that using shared libraries in some contexts impacts on
the development flow, causing delays, reducing development velocity and
hindering agility. In such cases, shared libraries are an ATD that may lead to
costly interest if not managed properly. By sharing the experience from other
practitioners on issues and solutions, we can prevent others from having to pay
high software maintenance costs later.

We answer the research questions introduced in Section 6.1 by listing
the issues (RQ1) raised by the use of shared libraries and by presenting
corresponding solutions (RQ2). The issues we identified do not seem connected
to any specific application domain; the practitioners from the different
companies complained about similar issues and solutions. We do not claim that
shared libraries should never be used. However, their use should be controlled
to prevent high costs. There are also drawbacks of such an approach. For
example, it may incur additional latency; performance may decrease due to
network as opposed to in-memory invocations; reliability may decrease since
the service might not be reachable; and complex functionality may not be
possible to be implemented in a distributed system. Such drawbacks should be
carefully considered in practical situations.

Companies should also consider the reasons for replacing their shared
libraries. There may be alternative solutions, such as improving processes for
development, testing and quality assurance, which should be considered when
the drawbacks of moving to services may be more costly than using shared
libraries.

Regarding the validity of this study, we consider the following threats: (i)
The interviewees may have interpreted the concept of shared libraries differently.
We mitigated this threat by asking the interviewees to clarify if they were
talking about libraries developed internally or about external dependencies; (ii)
Our sample of interviewees was small from each company, we do not know how
representative the opinions in this study were for the investigated companies.
Still, the sample was heterogeneous and the practitioners were located in three
different countries, with projects from four different companies; (iii) There
might be factors that the interviewees were not aware of or did not express in
the interviews, such as the quality of the implementations and management
issues.

103

6. Improving agility by managing shared libraries in microservices

6.6 Conclusions and Future Work

In four Europe-based companies, we identified a set of issues that reduce
development velocity and hinder team agility while using shared libraries in
microservices. We highlighted two solutions: creating additional microservices
or implementing the code in the microservices themselves. Although these
solutions have been reported by Taibi and Lenarduzzi [TL18], we went beyond
their work by presenting and discussing a more comprehensive list of issues,
and relating them all to the different companies. Our results suggest that the
use of shared libraries may increase the complexity of the system, which in turn
decreases development agility, cause delays and raises maintainability costs.
Our results do not indicate that shared libraries should not be used at all, but if
there are no acceptable alternatives, they should be used rather carefully as they
often generate costly interest. As an alternative to the use of shared libraries,
simple functionalities should be implemented by each microservice, whereas
complex functionalities should be implemented by external microservices with
well defined interfaces, good documentation and adequate versioning policies.

As future work, we propose a further investigation of the problem, increasing
the size of the sample and looking for practitioners with different experiences.
As part of this investigation, we propose to look for a decision process supported
by the factors that influence the trade-off between using a shared library and a
microservice. We would also like to investigate the problem and their solutions
with other architectural styles, like Service Oriented Architecture, in order to
identify whether there are other solutions proposed by practitioners that could
be used in microservices. In addition, we would like to investigate the external
dependencies and how moving to them could affect our results.

Authors’ addresses

Saulo S. de Toledo University of Oslo, Postboks 1080 Blindern, 0316 Oslo,
Norway, saulos@ifi.uio.no

Antonio Martini University of Oslo, Postboks 1080 Blindern, 0316 Oslo,
Norway, antonima@ifi.uio.no

Dag I. K. Sjøberg University of Oslo, Postboks 1080 Blindern, 0316 Oslo,
Norway, dagsj@ifi.uio.no

104

mailto:saulos@ifi.uio.no
mailto:antonima@ifi.uio.no
mailto:dagsj@ifi.uio.no

Chapter 7

Accumulation and prioritization of
Architectural Debt in three
companies migrating to
microservices

Saulo S. de Toledo, Antonio Martini, Phu H. Nguyen, Dag I.
K. Sjøberg
Published in IEEE Access, March 2022. DOI: 10.1109/AC-
CESS.2022.3158648.

3

Abstract

Many companies migrate to microservices because they help deliver value
to customers quickly and continuously. However, like any architectural
style, microservices are prone to architectural technical debt (ATD),
which can be costly if the debts are not timely identified, avoided, or
removed. During the early stages of migration, microservice-specific
ATDs (MS-ATDs) may accumulate. For example, practitioners may
decide to continue using poorly defined APIs in microservices while
attempting to maintain compatibility with old functionalities. The
riskiest MS-ATDs must be prioritized. Nevertheless, there is limited
research regarding the prioritization of MS-ATDs in companies migrating
to microservices. This study aims to identify, during migration, which
MS-ATDs occur, are the most severe, and are the most challenging to
solve. In addition, we propose a way to prioritize these debts. We
conducted a multiple exploratory case study of three large companies
that were early in the migration process to microservices. We interviewed
47 practitioners with several roles to identify the debts in their contexts.
We report the MS-ATDs detected during migration, the MS-ATDs that
practitioners estimate to occur in the future, and the MS-ATDs that
practitioners report as difficult to solve. We discuss the results in the

105

http://dx.doi.org/10.1109/ACCESS.2022.3158648
http://dx.doi.org/10.1109/ACCESS.2022.3158648

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

context of the companies involved in this study. In addition, we used
a risk assessment approach to propose a way for prioritizing MS-ATDs.
Practitioners from other organizations and researchers may use this
approach to provide rankings to help identify and prioritize which MS-
ATDs should be avoided or solved in their contexts.

Contents

7.1 Introduction . 106
7.2 Background . 110
7.3 Research design . 117
7.4 Results and discussion 125
7.5 Limitations . 160
7.6 Related Work . 161
7.7 Conclusion . 162

7.1 Introduction

Figure 7.1: New ATD found after the migration to microservices may hinder
the benefits of the new architecture.

MicroservicesPrevious
architecture

“Big ball of mud”

Old, known
Technical Debt

Migration

New, not known
Technical Debt

Provides

Agility

Continuous
deployment

Continuous
integration

Other benefits…

Scalability

hin
de
rs

When companies migrate their software towards a microservice architecture,
the software is split into a small set of independent services. Many of the
practical difficulties encountered in previous architectures can be mitigated
by using microservices. They support small and frequent releases, improve
scalability, and promote independence among teams. However, microservices

106

Introduction

also bring new management and technical demands, such as the need to be
business-domain driven and understand distributed systems [Fow15].

Like any architectural style, the microservice architecture is prone to
architectural technical debt (ATD), which may incur high costs [dMS21].
ATD is a type of technical debt (TD) consisting of sub-optimal architectural
solutions, which deliver benefits in the short-term but increase overall costs
in the long run [BMB16]. Some ATDs are specific to microservices [dMS21]
and might not be considered as problems in other architectures. For example,
microservices should communicate through a “dumb pipe” (i.e., there should
not exist any transformation logic between the services), while in previous
Service Oriented Architectures (SOA), a common approach is to have some
logic between services to transform data. In this paper, we consider ATDs only
in the context of microservices applications and thus name them MS-ATDs.

One of the reasons for companies to migrate to microservices is repaying
known ATDs from their previous architectures while, at the same time, obtain
the benefits of this new architectural style. Figure 7.1 exemplifies such a
migration: a company has a “Big Ball of Mud” architecture [FY97] and repays
ATDs in a migration to microservices. As the company believes that most
ATDs from before were paid, the new microservice architecture can be prone
to new, unknown MS-ATDs. The new microservice architecture is expected
to have better scalability and agility, allow enhanced continuous integration
and delivery pipelines, and provide many other benefits, such as allowing
independent teams to work in parallel, having more testable code, and better
control of costs in the cloud [Fow15; LF14]. However, the new MS-ATDs reduce
these benefits and can be more costly than previous debts.

107

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Fi
gu

re
7.
2:

R
el
at
io
ns
hi
p
be

tw
ee
n
th
e
re
se
ar
ch

qu
es
tio

ns
,
th
e
on

go
in
g
ar
ch
ite

ct
ur
e
(w

ith
th
e
m
ig
ra
tio

n
in

pr
og
re
ss
),
an

d
th
e
fin

al
m
ic
ro
se
rv
ic
e
ar
ch
ite

ct
ur
e
(a
s
en
vi
sio

ne
d
by

th
e
pr
ac
tit

io
ne

rs
).

108

Introduction

Migration to microservices has been investigated in previous studies from
different perspectives. Several authors have proposed tools and approaches for
assisting migration to microservices; see the systematic mapping by Bushong et
al. [Bus+21]. A few other studies have investigated TD and related concepts in
this new architectural style [dMS21; Len+20; TLP20]. However, none of these
studies have covered how ATD has accumulated during migration from a prior
architecture to microservices. A lightweight survey of the current literature
looking for the terms “microservices,” “micro-services,” “prioritization,” and
“technical debt” in some of the major research databases (ACM Digital Library1,
IEEE Xplore2, Scopus3) highlighted that there are no relevant papers on how
to prioritize MS-ATDs. Existing secondary studies on microservices [Bog+19b;
DLM19; DML17] do not address prioritizing MS-ATDs. Companies must
address the costs of such debts at a later stage of migration. Furthermore,
after observing ATDs from the old architecture being repaid during migration,
practitioners might have a false impression that the project is going well without
noticing new MS-ATDs.

During migration to a microservice architecture, practitioners have the
opportunity to identify MS-ATDs in a timely manner before they become
widespread in the entire architecture. Knowing the risky and costly MS-ATDs
facilitates practitioners in deciding which MS-ATDs to avoid, remove, and
prioritize repayment. This study investigates the following research questions
(RQs) in companies that have started their migration to microservices:

• RQ1: Which MS-ATDs do companies encounter during early migration
to microservices?

• RQ2: Which MS-ATDs do companies foresee in the future of the
migration?

• RQ3: Which MS-ATDs do the practitioners find difficult to solve?

• RQ4: How important do practitioners perceive MS-ATDs?

• RQ5: How can companies prioritize which MS-ATDs to avoid or repay?

To answer these questions, we conducted a multiple case study of three
companies in the early stages of migration to microservices. As shown in

1https://dl.acm.org/
2https://ieeexplore.ieee.org/
3https://www.scopus.com/

109

https://dl.acm.org/
https://ieeexplore.ieee.org/
https://www.scopus.com/

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Figure 7.2, we investigated the present and future stages of migration to
microservices in these companies. RQ1 aims to identify the debts that occur
in the early stages of migration (Present in Figure 7.2) to microservices:
TD is often introduced early and persists throughout the software life
cycle [BMB17a]. RQ2 investigates the debts estimated to occur in the
future, helping practitioners to avoid or mitigate them (Future in Figure 7.2).
Answering RQ3 highlights MS-ATDs that are difficult to remove and thus
may either require more effort to be repaid or remain in the system for a
long time. Answering RQ4 highlights which MS-ATDs practitioners consider
risky (important to them) and, thus, should be prioritized for removal or
mitigation. The difficulty and the risk of the MS-ATDs affect how practitioners
prioritize them. Finally, RQ5 investigates how companies can prioritize the
removal or mitigation of MS-ATDs identified and discussed in the previous
questions (see Figure 7.2). Prioritizing MS-ATDs is an important management
activity [LAL15].

The remainder of this paper is organized as follows. Section 7.2 provides the
background for this study. Section 7.3 describes our research design. Section 7.4
presents our results and discussion as well as implications for research and
practice. Section 7.5 discusses the limitations of this study. Section 7.6 presents
the related work. Section 7.7 concludes the paper and highlights future work.

7.2 Background

7.2.1 Migration to Microservices Architecture

Lewis and Fowler [LF14] defined the microservice architecture as “an approach
to developing a single application as a suite of small services, each running
in its own process and communicating with lightweight mechanisms.” In a
microservice architecture, each microservice is autonomous, allowing developers
to select the most appropriate set of tools and programming languages to
be used. Small services tend to reduce code complexity and increase code
maintainability. Moreover, because microservices are deployed independently,
each microservice has its own delivery pipeline, can be tested independently,
and can be scaled individually [LF14].

The microservice architecture is an alternative to monolithic applications,
which are developed as a single unit [New19]. Compared with monolithic
applications, microservices are easier to scale, have shorter cycles for testing,
building and release, and are frequently less affected by downtime [Fow15].
However, the microservice architecture also has drawbacks and challenges.
Having each service deployed separately introduces latency in communication,

110

Background

requires the management of network failures, increases operational complexity,
and demands the management of eventual consistency [Fow15]. During
migration to microservices, practitioners reported extended time to release
features, high coupling, and deficiencies in communication and knowledge
sharing, among others [DLM18].

Microservices may be considered as a way of implementing Service-Oriented
Architecture (SOA), although there are different opinions about whether
microservices are an instance of SOA [Zim17]. There is a clear overlap between
the characteristics of SOA and the microservice architecture. Many concepts
and techniques in microservices have been borrowed from SOA, such as service
discovery, service registries, API gateways, and circuit breakers [MW16]. Even
so, SOA describes applications that cannot be considered microservices. For
example, many SOA applications are still implemented using an Enterprise
Service Bus (ESB), a centralized software component providing infrastructure
to the services composing the application and mediating communication. An
ESB may intercept and modify the data, among other functions [NG05]. On
the other hand, microservices require a dump pipe for communication (i.e., a
communication layer used simply to transfer data) without any modifications
or transforming capabilities. Other characteristics apply for SOA but not for
microservices, such as: there is no such guidance about the service granularity
in SOA, while for microservices, each microservice should represent only one
capability, and SOA may support transport protocol transformations, while
microservices usually rely on REST over HTTP or a protocol supported by a
message bus [RSZ17].

Well-known companies, such as Amazon and Netflix, have been using
microservices to overcome difficulties with their previous monolithic archi-
tectures [LF14]. The success of microservices in these companies made other
companies embrace this architectural style and migrate to it from their previous
monolithic architectures. There are many reports on such migrations in the
industry and academia [DLM19].

There are several approaches for migrating monolithic architectures
to microservices, ranging from decomposition strategies to data-driven
approaches [Len+20]. Many patterns have also been discussed in academia
and industry to guide migration [New19; YM20]. Frequently, the migration
is advised to be incremental in that microservices gradually replace the
functionality in the monolith or new microservices are created to implement
new features [YM20]. An incremental migration results in both the original
and new architectures coexisting and working together.

111

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

7.2.2 Prioritization of Architectural Debt (ATD)

Technical debt (TD) denotes a suboptimal solution that delivers short-term
benefits at the expense of increased overall costs in the long run [Avg+16]. An
ATD is a type of TD related to a product’s architecture [BMB16]. Findings
from previous surveys identify ATD as one of the most challenging types of
TD to unveil and manage [BMB17a; Ern+15; KNO12].

Microservice architecture is prone to ATD. De Toledo et al. [dMS21] listed
16 ATDs specific to microservices (i.e., MS-ATDs), which were organized into
12 more general ATDs. Despite the possibility of finding these ATDs in other
architectural styles (e.g., APIs might be inadequately used in any architectural
style), their causes and consequences are different from those in microservices.

Table 7.1 shows seven MS-ATDs, an example for each, and a brief
explanation of what is specific to microservices in each debt. These MS-ATDs
are a subset of those initially reported by de Toledo et al. [dMS21], and were
selected according to the criteria described in Section 7.3.1. Table 7.1 also lists
the number of each MS-ATD in de Toledo et al. [dMS21] for correspondence.

MS-ATDs must be prioritized before repayment [LAL15]. One way of
prioritizing is through risk assessment [Guo+11; MB16b]. Risk represents
the possibility of loss (suffering the impact of the debt). The MS-ATDs that
pose the highest risk should be addressed first. Through risk assessment, we
developed a systematic approach to identify, analyze, and evaluate the risk of
each MS-ATD. We define the risk of a debt as the probability of the debt to
occur multiplied by its impact, as shown in Equation 7.1. We use this definition
in Section 7.3.4 to address the risk of the debts.

risk(debt) = probability(debt)× impact(debt) (7.1)

112

Background
Ta

bl
e
7.
1:

T
he

M
S-
AT

D
s
se
le
ct
ed

fo
r
th
is

st
ud

y.

#
N
am

e
an

d
de

sc
ri
pt
io
n

E
xa

m
pl
e

W
ha

t
is

ne
w

in
m
ic
ro
se
rv
ic
es
?

1
In
su
ffi
ci
en
t
m
et
ad
at
a
(#

1
in

[d
M
S2

1]
):

M
an

y
m
ic
ro
se
rv
ic
es

co
m
m
un

ic
at
e

th
ro
ug

h
m
es
sa
gi
ng

.
H
ow

ev
er
,
th
es
e

m
es
sa
ge
s

co
ul
d

ha
ve

ad
di
ti
on

al
m
et
ad

at
a
to

id
en
ti
fy

th
ei
r
pr
od

uc
er
s,

co
ns
um

er
s,

ta
rg
et
s,

an
d
ot
he
rs

in
so
m
e

ca
se
s.

In
su
ffi
ci
en
t
m
et
ad

at
a
m
ay

m
ak
e

it
ch
al
le
ng

in
g

to
tr
ac
k

de
pe

nd
en
ci
es

am
on

g
se
rv
ic
es

an
d
fin

d
th
e
pr
od

uc
er
s

fo
r

de
bu

gg
in
g

pu
rp
os
es
,
as

w
el
l
as

ot
he
r
is
su
es
.

H
sy
st
em

co
m
pr
is
es

m
an

y
m
ic
ro
se
r-

vi
ce
s
pr
oc
es
sin

g
da

ta
av
ai
la
bl
e
th
ro
ug

h
a
m
es
sa
ge

bu
s.

In
th
is

ex
am

pl
e,

a
m
es
-

sa
ge

ca
n
on

ly
be

co
ns
um

ed
by

on
e
se
r-

vi
ce

at
a
ti
m
e,

bu
t
th
er
e
is

no
gu

ar
an

-
te
ed

or
de
r.

If
th
e
m
es
sa
ge

ge
ts

m
al
-

fo
rm

ed
,t

he
re
as
on

m
ig
ht

be
re
la
te
d
to

a
sp
ec
ifi
c
co
m
bi
na

tio
n
of

m
od

ifi
ca
tio

ns
m
ad

e
by

pr
ev
io
us

se
rv
ic
es
.
If

th
er
e
is

no
m
et
ad

at
a
fo
r
tr
ac
ki
ng

th
e
ch
an

ge
s,

it
m
ig
ht

be
ch
al
le
ng

in
g
to

id
en
ti
fy

th
e

ca
us
es

of
th
e
is
su
e.

D
iff
er
en
t
SO

A
ap

pr
oa

ch
es

m
ig
ht

us
e

m
es
sa
ge
s
in

th
ei
r
co
m
m
un

ic
at
io
n,

bu
t

m
ic
ro
se
rv
ic
es

ar
e

m
or
e

fin
e-
gr
ai
ne
d

th
an

th
os
e,

w
hi
ch

in
cr
ea
se
s
th
e
nu

m
-

be
r
of

se
rv
ic
es

an
d,

co
ns
eq
ue
nt
ly
,t

he
im

pa
ct

of
th
e
de
bt
.
M
on

ol
ith

s
ar
e
se
lf-

co
nt
ai
ne
d
an

d
us
ua

lly
do

no
t
ne
ed

m
es
-

sa
gi
ng

ap
pr
oa
ch
es

to
es
ta
bl
ish

co
m
m
u-

ni
ca
tio

n
am

on
g
th
ei
r
m
od

ul
es
.
O
n
th
e

ot
he
r
ha

nd
,M

ic
ro
se
rv
ic
es

m
ig
ht

cr
it
i-

ca
lly

de
pe

nd
on

m
es
sa
ge
s
to

co
m
m
un

i-
ca
te

w
it
h
ot
he
r
se
rv
ic
es

be
ca
us
e
th
ey

fo
rm

a
di
st
ri
bu

te
d
sy
st
em

.

2
M
ic
ro
se
rv
ic
e
co
up

lin
g
(#

2
in

[d
M
S2

1]
):

M
ic
ro
se
rv
ic
e

co
up

lin
g

is
ab

ou
t
ho

w
ch
an

ge
s
in

on
e
se
rv
ic
e
re
qu

ir
e
ch
an

ge
s

in
an

ot
he
r
se
rv
ic
e.

T
he

co
up

lin
g
m
ig
ht

be
do

ne
in
te
nt
io
na

lly
to

sa
ve

de
ve
lo
p-

m
en
t
ti
m
e,

an
d
it
fr
eq
ue
nt
ly

in
cr
ea
se
s

te
am

de
pe

nd
en
cy
.
T
he
re

ar
e
di
ffe

re
nt

ty
pe

so
fc

ou
pl
in
g
[N

ew
19
],
bu

tw
e
fo
cu
s

on
th
e
se
rv
ic
es
’i
m
pl
em

en
ta
tio

n,
in
cl
ud

-
in
g
th
ei
r
co
nt
ra
ct
s
an

d
in
te
rf
ac
es

(e
.g
.,

A
P
I
en
dp

oi
nt
s
an

d
m
es
sa
ge

fo
rm

at
s)
.

H
fil
es

se
rv
ic
e

pr
ov

id
es

ac
ce
ss

to
a

se
t
of

fil
es

fo
r
au

th
or
iz
ed

us
er
s.

T
he

au
th
or
iz
at
io
n
is

cu
rr
en
tly

pe
rf
or
m
ed

at
th
e
us
er
s
se
rv
ic
e.

Fo
r
ev
er
y
re
qu

es
t

re
ce
iv
ed

by
th
e
fil
es

se
rv
ic
e,

an
ot
he
r

re
qu

es
t
is

m
ad

e
to

th
e
us
er
s
se
rv
ic
e
to

ve
rif
y
ac
ce
ss

to
th
e
fil
es
.
C
ha

ng
es

to
th
e

us
er
s
se
rv
ic
e’
sA

PI
m
ig
ht

aff
ec
tt

he
fil
es

se
rv
ic
e,

cr
ea
ti
ng

a
de
pe

nd
en
cy

am
on

g
th
e
de
ve
lo
pm

en
tt

ea
m
s.

T
he

fil
es

ac
ce
ss

au
th
or
iz
at
io
n
sh
ou

ld
po

ss
ib
ly

be
m
ov
ed

to
th
e
fil
es

se
rv
ic
e
in
st
ea
d.

Jo
up

lin
g

am
on

g
m
ic
ro
se
rv
ic
es

fr
e-

qu
en
tl
y

ca
us
es

de
pe

nd
en
cy

am
on

g
te
am

s,
re
du

ci
ng

te
am

s’
ve
lo
ci
ty

an
d

ag
ili
ty
.
W

hi
le

co
m
pa

ni
es

ha
ve

a
fa
ls
e

im
pr
es
si
on

th
at

th
ey

ha
ve

de
co
up

le
d

te
am

s
an

d
w
el
l-d

efi
ne
d
ag

ile
pr
ac
ti
ce
s,

th
ey

m
ig
ht

be
si
le
nt
ly

bl
oc
ke
d
by

co
u-

pl
in
g
am

on
g
th
e
m
ic
ro
se
rv
ic
es
.

C
on

ti
nu

ed
on

ne
xt

pa
ge

113

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

T
ab

le
7.
1
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

#
N
am

e
an

d
de

sc
ri
pt
io
n

E
xa

m
pl
e

W
ha

t
is

ne
w

in
m
ic
ro
se
rv
ic
es
?

3
In
ad
eq
ua

te
us
e

of
A
P
Is

(#
4

in
[d
M
S2

1]
):

M
an

y
se
rv
ic
es

co
m
m
un

ic
at
e
w
it
h
th
e

ot
he
r
se
rv
ic
es

th
ro
ug

h
A
P
Is
.

W
he
n

th
es
e

A
P
Is

ar
e

no
t
w
el
l
de
fin

ed
or

m
is
us
ed
,t
he
y
le
ad

to
is
su
es
.

H
n
A
PI

ex
po

se
d
th
ro
ug

h
H
T
T
P
th
at

is
no

t
fo
llo

w
in
g
re
qu

ir
ed

st
an

da
rd
s.

Fo
r

ex
am

pl
e,
re
m
ov
in
g
an

ite
m

fr
om

a
sh
op

-
pi
ng

ca
rt

is
do

ne
th
ro
ug

h
an

H
T
T
P

m
et
ho

d
ca
lle
d
G
E
T
,b

ut
it
sh
ou

ld
us
e

D
E
LE

T
E

in
st
ea
d.

T
hi
s
A
P
I’s

us
er
s

ha
ve

di
ffi
cu
lti
es

un
de
rs
ta
nd

in
g
it.

E
ac
h

m
ic
ro
se
rv
ic
e

ex
po

si
ng

an
A
P
I

m
ig
ht

be
de
ve
lo
pe

d
by

a
di
ffe

re
nt

te
am

,
in
cr
ea
si
ng

th
e
pr
ob

ab
ili
ty

of
ha

vi
ng

m
an

y
di
ffe

re
nt

A
P
I
st
an

da
rd
s.

T
he

in
ad

eq
ua

te
us
e
of

A
P
Is

im
pa

ct
s
th
e

fu
nc
ti
on

in
g
of

ot
he
r
se
rv
ic
es

an
d

de
-

ve
lo
pm

en
t
te
am

s.

4
E
xc
es
si
ve

di
ve
rs
ity

(#
6
in

[d
M
S2

1]
):

M
ic
ro
se
rv
ic
es

al
lo
w

m
ix
in
g

m
ul
ti
pl
e

pr
og

ra
m
m
in
g
la
ng

ua
ge
s,

da
ta
-s
to
ra
ge

te
ch
no

lo
gi
es
,s
up

po
rt
in
g
to
ol
s,
an

d
ot
h-

er
s.

H
ow

ev
er
,h

av
in
g
to
o
m
an

y
di
ffe

r-
en
t
te
ch
no

lo
gi
es

ac
ro
ss

th
e
sy
st
em

m
ay

cr
ea
te

di
ffi
cu
lti
es

w
ith

st
an

da
rd
iz
at
io
n

an
d
m
an

ag
em

en
t.

U
sin

g
co
nt
ai
ne
rs

is
a
co
m
m
on

te
ch
ni
qu

e
in

en
vi
ro
nm

en
ts

ru
nn

in
g
m
ic
ro
se
rv
ic
es
.

D
ev
el
op

er
sc

an
ea
sil
y
fin

d
st
ar
tc

on
ta
in
-

er
s
ru
nn

in
g
al
m
os
t
an

y
G
N
U
/L

in
ux

-
ba

se
d
sy
st
em

to
us
e
in

th
ei
r
pr
oj
ec
ts
.

H
ow

ev
er
,t

he
re

ar
e
se
ve
ra
lh

un
dr
ed
s
of

co
nt
ai
ne
rs

se
tu
ps
,
an

d
ea
ch

on
e
us
es

its
ow

n
di
st
in
ct

to
ol
s.

U
si
ng

to
o
m
an

y
di
st
in
ct

co
nt
ai
ne
rs

fo
r
so
lv
in
g
th
e
ex
ac
t

sa
m
e
pr
ob

le
m

re
qu

ir
es

te
am

m
em

be
rs

to
le
ar
n
a
di
ffe

re
nt

se
tu
p
ev
er
y
ti
m
e

th
ey

ch
an

ge
te
am

s.

H
m
on

ol
it
h
is

us
ua

lly
de
ve
lo
pe

d
us
in
g

a
lim

ite
d
se
to

fp
ro
gr
am

m
in
g
la
ng

ua
ge
s

an
d
to
ol
s.

O
n
th
e
ot
he
rh

an
d,

M
ic
ro
se
r-

vi
ce
s
ca
n
be

de
ve
lo
pe

d
w
ith

co
m
pl
et
el
y

di
st
in
ct

la
ng

ua
ge
s
an

d
se
tu
ps
,i
nc
re
as
-

in
g
th
e
lik

el
ih
oo

d
of

ex
ce
ss
iv
e
di
ve
rs
ity

.
O
th
er

SO
A

ap
pr
oa
ch
es

m
ig
ht

al
so

su
f-

fe
r
fr
om

th
is

pr
ob

le
m
,b

ut
th
e
nu

m
be

r
of

se
rv
ic
es

in
a
m
ic
ro
se
rv
ic
e
ar
ch
it
ec
-

tu
re

is
us
ua

lly
hi
gh

er
,m

ak
in
g
th
e
pr
ob

-
le
m

m
or
e
co
st
ly
. C
on

tin
ue
d
on

ne
xt

pa
ge

114

Background
T
ab

le
7.
1
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

#
N
am

e
an

d
de

sc
ri
pt
io
n

E
xa

m
pl
e

W
ha

t
is

ne
w

in
m
ic
ro
se
rv
ic
es
?

5
U
np

la
nn

ed
da
ta

sh
ar
in
g/
sy
nc
hr
on

iz
a-

tio
n
(#

8
in

[d
M
S2

1]
):

M
ic
ro
se
rv
ic
es

sh
ou

ld
ha

ve
th
ei
r
ow

n
da

ta
ba

se
s.

W
he
n

di
ffe

re
nt

m
ic
ro
se
r-

vi
ce
s

sh
ar
e

th
e

sa
m
e

da
ta
ba

se
,
un

-
ex
pe

ct
ed

is
su
es

su
ch

as
ca
sc
ad

in
g

br
ea
ki
ng

s
m
ay

oc
cu
r.

O
n

th
e
ot
he
r

ha
nd

,w
he
n
m
ic
ro
se
rv
ic
es

ha
ve

di
st
in
ct

da
ta
ba

se
s,

th
er
e
m
ig
ht

be
pr
ob

le
m
s

w
ith

da
ta

sy
nc
hr
on

iz
at
io
n.

Tw
o
m
ic
ro
se
rv
ic
es

sh
ar
e
a
da

ta
ba

se
an

d
us
e
a
ta
bl
e
of

us
er
s.

T
he
re

is
a
fie
ld

in
th
e
da

ta
ba

se
st
or
in
g
th
e
us
er
s’

fu
ll

na
m
es
.

T
he

de
ve
lo
pe

rs
in

th
e
fir
st

se
rv
ic
e
de
ci
de

to
sp
lit

th
e
fu
ll

na
m
e

co
lu
m
n
in
to

fir
st

na
m
e
an

d
la
st

na
m
e.

T
he

se
co
nd

se
rv
ic
e
m
ig
ht

st
op

w
or
ki
ng

be
ca
us
e
it

do
es

no
t
fin

d
th
e
or
ig
in
al

fie
ld

fo
r
th
e
fu
ll
na

m
e.

M
ic
ro
se
rv
ic
es

sh
ou

ld
ha

ve
th
ei
r
ow

n
da

ta
ba

se
s,

w
hi
ch

is
no

t
re
qu

ir
ed

fo
r

ot
he
r

ar
ch
it
ec
tu
ra
l
st
yl
es
,
in
cl
ud

in
g

ot
he
r
SO

A
ap

pr
oa

ch
es
.
T
he

w
ay

th
e

da
ta
ba

se
s
ar
e
de
si
gn

ed
fo
r
m
ic
ro
se
r-

vi
ce
s
is

al
so

di
ffe

re
nt
:
th
ey

sh
ou

ld
re
-

fle
ct

th
e
bu

si
ne
ss

do
m
ai
n,

w
hi
ch

le
ad

s
to

di
st
in
ct

do
m
ai
n-
re
la
te
d
iss

ue
s.

Sh
ar
-

in
g
da

ta
ba

se
s
or

sy
nc
hr
on

iz
in
g
th
em

m
ig
ht

le
ad

to
bl
oc
ki
ng

an
d
ot
he
r
iss

ue
s

am
on

g
te
am

s.

6
M
is
us
in
g

sh
ar
ed

lib
ra
ri
es

(#
10

.1
in

[d
M
S2

1]
):

M
an

y
co
m
pa

ni
es

en
ca
ps
ul
at
e
co
de

in
to

lib
ra
ri
es

an
d

di
st
ri
bu

te
th
em

to
be

us
ed

by
m
an

y
se
rv
ic
es
.
Su

pp
os
e
su
ch

a
di
st
ri
bu

ti
on

is
no

t
pr
op

er
ly

m
an

ag
ed
.

In
th
at

ca
se
,

m
an

y
lib

ra
ri
es

m
ay

le
ad

to
di
ffi
cu
lt
ie
s,
in
cl
ud

in
g
br
ea
ki
ng

ch
an

ge
s,

de
pe

nd
en
ci
es

am
on

g
te
am

s,
de
la
ys
,a

nd
ad

di
ti
on

al
co
st
s
to

up
da

te
al
l
th
e
se
rv
ic
es

us
in
g
th
e
lib

ra
ri
es

on
ev
er
y
ne
w

re
le
as
e.

H
da

ta
en
cr
yp

tio
n
lib

ra
ry

is
de
ve
lo
pe

d
by

a
se
pa

ra
te

te
am

in
th
e
co
m
pa

ny
an

d
us
ed

by
do

ze
ns

of
se
rv
ic
es

th
ro
ug

ho
ut

th
e
pr
oj
ec
t.

A
hi
gh

-s
ec
ur
ity

is
su
e
is

fo
un

d
in

th
e
lib

ra
ry
,
an

d
th
e
lib

ra
ry

de
ve
lo
pe

rs
re
le
as
e
a
ne
w

ve
rs
io
n
w
it
h

th
e
fix

.
Ev

er
y
se
rv
ic
e
sh
ou

ld
up

da
te

th
e

lib
ra
ry

to
th
e
la
st

ve
rs
io
n.

D
ue

to
ot
he
r

pr
io
ri
ti
es

an
d
fe
at
ur
e
de
ve
lo
pm

en
t,

it
is

no
t
po

ss
ib
le

to
up

da
te

th
e
lib

ra
ry

in
th
e
en
ti
re

or
ga

ni
za
ti
on

,
an

d
m
an

y
se
rv
ic
es

w
ill

re
m
ai
n
w
ith

th
e
is
su
e.

Li
br
ar
ie
sh

av
e
di
ffe

re
nt

co
ns
eq
ue
nc
es

in
di
st
in
ct

ar
ch
ite

ct
ur
al

st
yl
es
.
M
on

ol
ith

s,
fo
re

xa
m
pl
e,

bu
nd

le
th
em

in
a
sin

gl
e
de

-
pl
oy
m
en
t
pa

ck
ag
e,

w
hi
le

m
ic
ro
se
rv
ic
es

do
th
e
sa
m
e
fo
r
ea
ch

de
pl
oy

m
en
t.

A
sy
st
em

w
it
h
hu

nd
re
ds

of
se
rv
ic
es

m
ay

ha
ve

hu
nd

re
ds

of
de
pl
oy

m
en
ts

of
th
e

sa
m
e
lib

ra
ry
.
T
hu

s,
is
su
es

fo
un

d
in

a
sin

gl
e
lib

ra
ry

im
m
ed
ia
te
ly

aff
ec
td

oz
en
s

or
hu

nd
re
ds

of
se
rv
ic
es

an
d
te
am

s.

C
on

ti
nu

ed
on

ne
xt

pa
ge

115

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

T
ab

le
7.
1
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

#
N
am

e
an

d
de

sc
ri
pt
io
n

E
xa

m
pl
e

W
ha

t
is

ne
w

in
m
ic
ro
se
rv
ic
es
?

7
U
nn

ec
es
sa
ry

se
tt
in
gs

(#
11

in
[d
M
S2

1]
):

E
ac
h
m
ic
ro
se
rv
ic
e
us
ua

lly
ha

s
a
se
t
of

se
tt
in
gs

to
be

de
fin

ed
in

th
e
en
vi
ro
n-

m
en
t,

su
ch

as
th
e
da

ta
ba

se
ad

dr
es
s,

m
em

or
y
lim

it
s,

an
d
ot
he
rs
.
H
ow

ev
er
,

if
th
er
e
ar
e
m
an

y
un

ne
ce
ss
ar
y
se
tt
in
gs
,

th
e
pr
ob

ab
ili
ty

of
m
is
co
nfi

gu
ra
ti
on

is
m
or
e
sig

ni
fic
an

t,
po

te
nt
ia
lly

le
ad

in
g
to

cr
as
he
s
or

ot
he
r
is
su
es
.

O
ne

of
th
e
co
nfi

gu
ra
ti
on

se
tt
in
gs

fo
r

ac
ce
ss
in
g
da

ta
ba

se
si
st

o
in
fo
rm

a
“p

or
t

nu
m
be

r.”
D
at
ab

as
es

ru
n
in

a
de
fa
ul
t

po
rt

if
no

t
ch
an

ge
d.

Fo
r
ex
am

pl
e,

it
is

un
ne
ce
ss
ar
y
to

ha
ve

a
co
nfi

gu
ra
ti
on

se
tt
in
g
in

an
ap

pl
ic
at
io
n
to

in
fo
rm

th
e

de
fa
ul
t
po

rt
of

a
da

ta
ba

se
m
an

ag
em

en
t

se
rv
ic
e.

T
he

ap
pl
ic
at
io
n
co
ul
d
ha

ve
an

op
ti
on

al
co
nfi

gu
ra
ti
on

se
tt
in
g
th
at
,
if

no
t
pr
es
en
t,
au

to
m
at
ic
al
ly

fa
lls

ba
ck

to
th
e
de
fa
ul
t
va
lu
e.

T
he
re

ar
e
se
ve
ra
lt

im
es

m
or
e
se
tt
in
gs

in
m
ic
ro
se
rv
ic
es

th
an

in
m
on

ol
it
hi
c

ar
ch
ite

ct
ur
es
,i
nc
re
as
in
g
th
e
lik

el
ih
oo

d
of

un
ne
ce
ss
ar
y
se
tt
in
gs
.

T
he

im
pa

ct
of

th
os
e
se
tt
in
gs

in
a
di
st
rib

ut
ed

se
tu
p

is
hi
gh

er
th
an

in
a
si
ng

le
de
pl
oy

m
en
t

se
tu
p
be

ca
us
e
of

th
e
m
or
e
si
gn

ifi
ca
nt

am
ou

nt
of

se
tt
in
gs

an
d
th
e
po

ss
ib
ili
ty

of
ca
us
in
g
ca
sc
ad

in
g
fa
ilu

re
s.

116

Research design

7.2.3 MS-ATD during migration to microservices

After deciding to migrate to microservices, a company must consider completely
rewriting the software in the new architectural style or proceeding with an
incremental migration. A company must make this decision by considering its
context. However, a complete rewrite is often very costly. In that case, there are
approaches that companies may use to proceed with an incremental migration,
such as those proposed by Yoder and Merson [YM20] and Newman [New19].
The companies in our study executed an incremental migration.

MS-ATDs can occur during migration to microservices. For example,
unplanned data sharing may arise when practitioners share databases among
several microservices and the previous architecture, or microservice APIs
may be malformed because practitioners maintain compatibility with the
previous architecture. Knowing which MS-ATDs occur at different times
during migration might help practitioners overcome their difficulties before
they become too harmful, reduce costs, and speed up migration.

7.3 Research design

This section describes the process of our exploratory multiple-case study [Yin18],
which is summarized in Figure 7.3, and a detailed protocol is available online4.

Our study was conducted in three companies during the early stages of
migration to microservices. We scheduled three 45-minute presentations, one
for each participating company, with practitioners involved in microservice
projects in the respective companies. The goals of the presentations were to raise
practitioners’ awareness of MS-ATDs, ensure they had the same understanding
as the researchers regarding the debts, and collect initial data.

During the scheduled presentations, we introduced the practitioners to a list
of MS-ATDs based on a previous study (Step 2 of Figure 7.3). The identification
and selection (Step 1) of those MS-ATDs are described in Section 7.3.1. Next, we
asked interviewees to answer a set of predefined questions (Step 3). The results
from the interviews were analyzed, summarized, and presented to a subset of
the original participants in another round of three 45-minute presentations, one
for each company (Step 4). During the second interaction with the companies,
we collected additional information through semi-structured interviews (Step
5). We recorded all interactions with the participants for posterior analysis.

4https://bit.ly/3qVwFJq

117

https://bit.ly/3qVwFJq

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

7.3.1 Identification and selection of the MS-ATDs used in this
study

Practitioners from the participating companies granted us a limited amount of
time enough to prioritize seven MS-ATDs. We selected those MS-ATDs from a
list found in de Toledo et al. [dMS21], one of the most comprehensive studies
covering MS-ATDs in large companies running mature microservice projects.
The list from de Toledo et al. [dMS21] includes 12 debts, and we selected seven
debts according to the following criteria:

(i) We selected the debts reported by at least three companies in the previous
study, resulting in six out of the original 12 debts. We considered that
frequent MS-ATDs found by companies running microservices for several
years are likely to be found in other companies. The original study
divided the debt “reusing third-party implementations” into two distinct
sub-debts. For simplicity, we focused only on the sub-debt “misuse of
internal shared libraries” reported by multiple companies.

(ii) We previously knew that the companies involved in this study extensively
used asynchronous communication among services and were interested
in prioritizing any related MS-ATDs. Thus, we included an additional
debt in our list: “Insufficient metadata,” the only of the remaining debts
related to asynchronous communication among services, resulting in a
total of seven debts, as detailed in Table 7.1.

Other debts we did not consider in this study might be relevant to the
companies, including (but not limited to) the debts identified by de Toledo
et al. [dMS21]. However, additional debts might be considered in future
prioritization by practitioners and future research studies.

7.3.2 Studied companies

We studied three large software companies that had just started modernizing
their (large) legacy monolithic systems using a microservice architecture.
Figure 7.2 presents the relationship between the research questions, the ongoing
architecture (with the migration in progress), and the final microservice
architecture as presently visualized by the practitioners.

118

Research design

Fi
gu

re
7.
3:

A
n
ov
er
vi
ew

of
th
e
re
se
ar
ch

pr
oc
es
s.

119

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Company H provides business software and IT-related development and
consultancy, employs nearly a dozen thousand employees, and has hundreds
of thousands of customers, mainly in northern Europe. The participants in
our study are from the core teams that have been developing a dynamic ERP
system for large companies, which is one of the company’s flagship products.
It is a large monolithic system in which customers can buy licenses and install
them through Company H or its certified partners. Software teams have broken
down their monolithic ERP product towards using microservice architecture
and providing their product as a service on the cloud. One of their main goals
is to avoid pitfalls and (remove) debts while migrating their product.

Company I provides IT and product engineering services, with approxi-
mately twice as many employees as Company H. Company I serves thousands
of customers in more than 90 countries. The branch with which we conducted
our study focuses on financial services, such as banking solutions, and is located
in a Nordic country. They sell and maintain complex banking solutions for
many banks and have continuously developed and modernized their products,
focusing more recently on microservice architecture and modern software de-
velopment. MS-ATD is a considerable concern that software teams want to
control better.

Company J is one of the largest financial services groups in the Nordic
region (mainly banking) with 9000+ full-time employees serving several millions
of customers. The software teams we interacted with were at the core of their
in-house software department, specialized in architecture and technology. This
software department has a good tradition of handling TDs and has a reputation
for allowing engineers to take software engineering courses.

7.3.3 Data collection

The data collection occurred as illustrated in Steps 3 and 5 in Figure 7.3. A
total of 47 participants, distributed as shown in Table 7.2, participated in the
first data collection (Step 3). The participants had different backgrounds and
experiences with microservices. For each MS-ATD presented, we asked the
participants the following three questions:

(i) Have you encountered this MS-ATD in your current project? (RQ1)

(ii) Do you foresee this MS-ATD in the future of the project? (RQ2)

(iii) Do you know how to avoid or mitigate this MS-ATD? (RQ3)

120

Research design

The first two questions were answered with yes, not sure, or no. The
third question was answered with yes, partially, no, or not applicable (n/a).
Not applicable was used by the practitioners that considered the MS-ATD as
irrelevant or out of context in their projects. For example, insufficient metadata
in messages is not applicable to contexts in which messages are not used.

Table 7.2: Attendees for the first presentation.

Roles Number of attendees Total

Company H Company I Company J

Developer 1 14 7 22

Architect 6 1 11 18

Manager 2 2 1 5

Other 0 2 0 2

Total 9 19 19 47

We also asked the participants to report whether they understood the
explanation of the MS-ATD. Only three participants from Company I said that
they did not understand the explanation, which concerned MS-ATD 1, MS-
ATD 2, and MS-ATD 5, as described in Table 7.1. In general, our explanation
of the MS-ATDs was well accepted and understood by the participants.

The practitioners perceived some MS-ATDs as riskier than others and, as
such, more important to them. At the end of the presentation, we asked the
participants to rank the three most important MS-ATDs according to their
point of view on the project (RQ4).

After data analysis (Section 7.3.4), we invited the most experienced
interviewees from the previous session to a new group interview to discuss the
results of the previous interviews. These experts constituted approximately 30%
of the original participants. We presented the results, asked for clarifications
of context, and discussed the prioritization of MS-ATDs in future development
(RQ5). More specifically, we asked the following questions:

(i) What are your considerations regarding these results?

(ii) What are the causes of these results?

(iii) Do you agree with these results? Why?

121

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

These experienced interviewees had a good overview and understanding of
their projects and thus provided additional helpful information for our analysis.

7.3.4 Data analysis

Descriptive statistics were used to compare the results for the different
companies. We created rankings for each question, for example, from the
most found to the last found MS-ATD in RQ1. To create the rankings, we
transformed the categorical answers into numeric values, as follows:

• Every MS-ATD reported as found, foreseen, or difficult to solve was
counted as 1 for each answer.

• MS-ATDs reported as not found, unforeseen, not difficult to solve, or not
applicable to their context were counted as 0.

• Partial answers, i.e., “not sure” or “partially,” were counted as 0.5. This
value represents a 50% probability of a debt being found. It is reasonable
to assume that some practitioners are more confident than others when
answering these questions. Thus, 0.5 is an approximation to balance
all answers. Future studies may find better measures of practitioner
confidence in answering these questions.

The remainder of this section explains the analysis procedure in detail. The
set of MS-ATDs in Table 7.1 is denoted by D = {d1, d2, ..., d7}.

7.3.4.1 The ranking of the most encountered MS-ATDs

The question about the MS-ATDs encountered so far had three possible answers:
yes, not sure, and no. We counted the number of votes for each answer: eyes,
eno, and enot sure. We weighted each answer: 1 for yes, 0 for no (because they
represent MS-ATDs that were not encountered and, thus, are not relevant for
our ranking), and 0.5 for partially.

Based on the eyes, eno, and enot sure, and on the respective weights, we
computed the weighted sum of votes vei

for each MS-ATD encountered di ∈ D,
as defined in Equation 7.2.

vei
= (1× eyes) + (0.5× enot sure) + (0× eno) (7.2)

The set with all values vei
was used to compute the ranking Rencountered

of the MS-ATDs encountered by practitioners. The ranking is defined in

122

Research design

Equation 7.3 and represents the ordered set of debts d ∈ D according to the
respective values previously calculated: di is higher than dj if vi is greater than
vj , which means that di is encountered more than dj . For cases in which the
weighted sum of votes is numerically the same for more than one MS-ATD, we
consider as most encountered the debt with less uncertainty, i.e., with less “not
sure” answers.

Rencountered = order(D, {ve1 , ve2 , ..., ve7}) (7.3)

7.3.4.2 The ranking of the most foreseen MS-ATDs

The question regarding the most foreseen MS-ATDs in the project’s future had
the same possible answers (yes, not sure, and no) as for the question about
encountered MS-ATDs. We used the same reasoning as before to calculate
Equations 7.4 and 7.5.

vfi = (1× fyes) + (0.5× fnot sure) + (0× fno) (7.4)

Rforeseen = order(D, {vf1 , vf2 , ..., vf7}) (7.5)

7.3.4.3 The ranking of the MS-ATDs that the participants do not know
how to solve

The third question, which asked whether the participants knew how to solve
each MS-ATD, had four possible answers: no, partially, yes, and not applicable
(n/a). We aimed to have a final ranking in which the first MS-ATD was the one
in which the practitioners did not have the complete solution (since they could
also answer partially) or did not know how to avoid or mitigate. We counted
the number of votes for each answer, kno, kpartially, kyes, and kn/a, and applied
weights for them: 1 for no, 0 for yes and n/a (because they represent MS-ATDs
for which the companies already have a solution or that do not apply to their
cases), and 0.5 for partially (because they represent a solution that does not
entirely repay the MS-ATD, but that at least reduces its risk).

Based on kno, kpartially, kyes, and kn/a, and on the respective weights, we
computed the values vki for each di ∈ D, as defined in Equation 7.6, which
were used to compute the ranking Rknown of the MS-ATDs, as described in
Equation 7.7.

vki
= (1× kno) + (0.5× kpartially) + (0× kyes) + (0× kn/a) (7.6)

123

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Rknown = order(D, {vk1 , vk2 , ..., vk7}) (7.7)

7.3.4.4 The ranking of the importance of the MS-ATDs for the
participants

The ranking of the importance of the MS-ATDs given by the participants is
formed by the ordered set of MS-ATDs di ∈ D. di is higher than dj if vii is
greater than vij ; vii is the number of votes for MS-ATD i. In other words, we
have an ordered list from the most important to the least important MS-ATD
(see Equation 7.8).

Rimportance = order(D, {vi1 , vi2 , ..., vi7}) (7.8)

7.3.4.5 The final ranking of importance for the MS-ATDs

TD can be threatened as a software risk because of the uncertainty of interest
payments [Guo+11; MB16b]. Therefore, a risk analysis is appropriate for
prioritizing our MS-ATDs; the first MS-ATD to be paid is the one that poses a
higher risk to the company and the project. As presented in Equation 7.1, the
risk of an MS-ATD can be calculated as the probability of the debt to occur
multiplied by the impact of that debt. Therefore, we computed the priority
score pi for each MS-ATD i in Table 7.1 based on this risk definition. Such a
priority score is calculated using Equation 7.9: (i) the probability of having the
debt is calculated as the product of the number of practitioners who believe the
debt will happen in the future and the number of people who do not know how
to solve the debt; (ii) the impact is represented by the importance given by the
practitioners for the debt (we add 1 to the number of votes on the importance
to prevent multiplication by zero if no practitioner has voted for the debt as
important).

Our approach, represented by Equation 7.10, uses the priority scores to
compute the priority ranking. However, other authors may consider different
methods.

pi = (vfi
× vki

)× (1 + vii
) (7.9)

Rpriority = order(D, {p1, p2, ..., p7}) (7.10)

124

Results and discussion

7.3.4.6 Visualizing the priority ranking

We used the score defined in Equation 7.9 for the prioritization ranking. How-
ever, for visualization and readability purposes, we applied the transforma-
tion [Cle85] defined in Equation 7.11 to the score.

The maximum value of the priority score depends on the number of
participants and votes, and there is no upper limit. Therefore, we normalized
the score between 0 and 1 by dividing it by the maximum score. We used a
logarithmic transformation to reduce the differences between the values. Using
two as the logarithm base is reasonable when the data range is less than two
powers of 10 [Cle85]. We add 1 to the normalized value to ensure that we do
not have negative numbers after our transformation (if the priority is zero, we
have log2(1) = 0 as the minimal value possible). Finally, we transformed the
score into a scale between 1 and 10 by multiplying the results by 10.

si = log2

(
pi

max({p1, p2, ..., p7})
+ 1

)
× 10 (7.11)

7.3.4.7 The qualitative analysis

We used the recorded interviews to identify contextual information that could
explain the practitioners’ decisions. Owing to the limited interview time, the
practitioners focused on the MS-ATDs they considered the most important
while discussing each RQ. In a few cases, the practitioners also discussed debts
that were less important to them.

For each MS-ATD in our ranking, we looked for a mention of the debt
during the interviews. We found explanations and quotations that helped us
interpret the results. For example, when asked about the reasons for having
shared databases, one interviewee from Company H said, “We decided to share
the database at the beginning of the migration to speed up the process.” Thus,
the debt exists at the top of their rankings because they explicitly decided to
have it, and they are paying the respective costs.

7.4 Results and discussion

125

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Ta
bl
e
7.
3:

T
he

ra
w

an
sw

er
s
fo
r
th
e
m
os
t
en

co
un

te
re
d
M
S-
AT

D
s,

th
e
m
os
t
fo
re
se
en

M
S-
AT

D
s,

th
e
M
S-
AT

D
s

pr
ac
tit

io
ne

rs
do

no
t
kn

ow
ho

w
to

av
oi
d,

an
d
th
e
im

po
rt
an

ce
fo
r
ea
ch

M
S-
AT

D
ac
co
rd
in
g
to

pr
ac
tit

io
ne

rs
.

A
T
D

C
om

p.
M
S-
A
T
D
s

en
co
un

te
re
d

M
S-
A
T
D
s
fo
re
se
en

M
S-
A
T
D
s
pr
ac
ti
ti
on

er
s
do

no
t
kn

ow
ho

w
to

av
oi
d

V
ot
es

fo
r

im
p
or
ta
nc

e

Fo
un

d
N
ot

su
re

N
ot

fo
un

d
Fo

re
se
en

N
ot

su
re

N
ot

fo
re
se
en

N
o
P
ar
ti
al
ly

Y
es

N
/A

In
su
ffi
ci
en
t

m
et
ad

at
a

H
2

2
5

4
2

3
4

1
1

3
1

I
1

6
9

3
7

5
2

5
0

9
4

J
6

5
7

9
7

1
1

6
3

5
5

M
ic
ro
se
rv
ic
e
H

4
1

4
7

1
1

4
3

1
1

9

co
up

lin
g

I
8

4
4

12
4

0
6

5
1

5
8

J
10

1
3

10
1

2
5

6
2

1
13

In
ad

eq
ua

te
us
e
of

H
6

0
2

5
1

3
2

4
2

1
6

A
P
Is

I
6

3
5

7
4

2
0

6
5

3
6

J
9

1
3

11
1

1
0

12
1

0
4

E
xc
es
siv

e
di
-

ve
rs
ity

H
2

0
6

3
0

5
3

3
1

1
0

I
1

1
12

6
0

7
0

8
2

2
1

C
on

tin
ue
d
on

ne
xt

pa
ge

126

Results and discussion
T
ab

le
7.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

A
T
D

C
om

p.
M
S-
A
T
D
s
en

co
un

te
re
d

M
S-
A
T
D
s
fo
re
se
en

M
S-
A
T
D
s
pr
ac
ti
ti
on

er
s
do

no
t
kn

ow
ho

w
to

av
oi
d

V
ot
es

fo
r

im
p
or
ta
nc

e

Fo
un

d
N
ot

su
re

N
ot

fo
un

d
Fo

re
se
en

N
ot

su
re

N
ot

fo
re
-

se
en

N
o
P
ar
ti
al
ly

Y
es

N
/A

J
7

0
6

8
2

3
4

6
3

1
6

U
np

la
nn

ed
da

ta
H

6
1

2
5

3
1

1
7

0
1

7

sh
ar
in
g/
sy
nc
.I

7
4

3
10

3
0

4
6

1
2

7

J
4

4
6

6
4

3
3

7
2

2
6

M
is
us
in
g

sh
ar
ed

H
6

1
1

6
2

1
4

3
1

1
2

lib
ra
ri
es

I
10

0
3

11
1

1
5

6
2

0
10

J
9

0
3

11
3

0
6

6
1

1
3

U
nn

ec
es
sa
ry

se
tt
in
gs

H
6

0
1

6
1

1
1

4
3

1
2

I
9

2
4

8
1

5
5

4
3

1
3

J
9

2
2

10
1

2
2

9
1

1
2

127

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Table 7.3 shows our raw data with the number of participants who voted for
each answer in the first three RQs (i.e., for the MS-ATDs encountered so far,
foreseen in the future, and that the practitioners do not know how to avoid),
and the number of votes for importance, for each company. The raw data may
be used by the reader to replicate our study or to use them in different ways
as those proposed in this work.

Figures 7.4, 7.6, and 7.8 show the percentage of practitioners who voted for
each answer in each MS-ATD regarding the respective RQs.

Tables 7.4, 7.5, 7.6, and 7.7 present the rankings calculated from the data
in Table 7.3 using the formulas described in Section 7.3.4. These tables contain
colors to facilitate the identification of the MS-ATD for the distinct companies,
i.e., the same MS-ATD has the same color for all the rankings, facilitating
the comparison among them. We focused on the top-3 debts of the rankings
because they were the debts the companies mainly discussed in our follow-up
interviews and were thus most relevant to the companies.

7.4.1 Which MS-ATDs do companies encounter during early
migration to microservices? (RQ1)

Figure 7.4 shows the percentage of practitioners who voted for each answer.
Table 7.4 shows a ranking calculated as defined by Equation 7.3, ordered from
the most found MS-ATD to the less found MS-ATD. Figure 7.5 shows the
values used to calculate the rankings and is used to support our discussion.

128

Results and discussion
Fi
gu

re
7.
4:

Pe
rc
en
ta
ge

of
pr
ac
tit

io
ne

rs
w
ho

vo
te
d
fo
r
ea
ch

an
sw

er
re
ga

rd
in
g
th
e
de

bt
s
fo
un

d
on

ea
ch

co
m
pa

ny
.

N
ot

al
lp

ra
ct
iti
on

er
s
vo
te
d
fo
r
al
lq

ue
st
io
ns

fo
r
ea
ch

co
m
pa

ny
.

22
%

6%
33

%
44

%
50

%
71

%
75

%
43

%
69

%
25

%
7%

54
%

67
%

50
%

29
%

75
%

77
%

75
%

86
%

60
%

69
%

22
%

38
%

28
%

11
%

25
%

7%

21
%

8%

7%

11
%

29
%

29
%

13
%

13
%

15
%

56
%

56
%

39
%

44
%

25
%

21
%

25
%

36
%

23
%

75
%

86
%

46
%

22
%

21
%

43
%

13
%

23
%

25
%

14
%

27
%

15
%

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

A
B

C
A

B
C

A
B

C
A

B
C

A
B

C
A

B
C

A
B

C

In
su

ffi
ci

en
t m

et
ad

at
a

M
ic

ro
se

rv
ic

e
co

up
lin

g
In

ad
eq

ua
te

 u
se

 o
f A

PI
s

Ex
ce

ss
iv

e
di

ve
rs

ity
U

np
la

nn
ed

 d
at

a
sh

ar
in

g/
sy

nc
M

is
us

in
g

sh
ar

ed
lib

ra
rie

s
U

nn
ec

es
sa

ry
 s

et
tin

gs

Fo
un

d
N

ot
 S

ur
e

N
ot

 F
ou

nd

129

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Table 7.4: Ranking of the most encountered MS-ATDs calculated through
Equation 7.3. Each MS-ATD is associated with the same color to facilitate
identifying it across the rankings from the distinct companies.

Company H Company I Company J

1 Misusing shared libraries Unnecessary settings Microservice coupling

2 Unplanned data sharing/syn-
chronization

Misusing shared libraries Unnecessary settings

3 Unnecessary settings Microservice coupling Inadequate use of APIs

4 Inadequate use of APIs Unplanned data sharing/syn-
chronization

Misusing shared libraries

5 Microservice coupling Inadequate use of APIs Insufficient metadata

6 Insufficient metadata Insufficient metadata Excessive diversity

7 Excessive diversity Excessive diversity Unplanned data sharing/syn-
chronization

7.4.1.1 Misusing shared libraries

“Misusing shared libraries” is among the most encountered MS-ATDs for
Companies H and I, and fourth for company C. This debt has the least
uncertainty among the practitioners (see Figure 7.4). Only 13% of the
participants from Company H, the company with the fewest participants,
answered “Not sure.” Among the participants from all three companies, 75–
77% answered “Found.”

A practitioner from Company H said, “We have created a lot of smaller
projects ourselves that we use in our solutions as packages [as shared libraries]
in the monolith.” Another practitioner complemented with an example to justify
why they use shared libraries: “During the migration, we are still sharing the
database with the monolith. We have some encrypted data that must be accessed
by the same decryption algorithms available as a library. So, we share the
library among the microservices.” Thus, in this case, the need for such shared
libraries is caused by the dependency on the monolith.

Company I has internal restrictions on how many times a service should
be called, as explained by one interviewee: “If you try to run this external
validation several times an hour, suddenly you get a call from those running
that service saying that you cannot do this.” They work around these issues
using shared libraries instead of relying on external services, which makes them

130

Results and discussion

use more shared libraries and might indicate an infrastructure that is not yet
prepared for distributed systems.

For Company J, the weighted sum of votes for this debt is similar to that
for top-3 debts (see Figure 7.5c). Figure 7.4 shows that as many as 75% of the
practitioners encountered it in their projects. As a financial services company,
they have several legacy systems. These systems potentially share code with
microservices through libraries, increasing the likelihood of having this debt.

7.4.1.2 Unnecessary settings

“Unnecessary settings” is the only MS-ATD in the top-3 for all companies. The
number of practitioners unsure about the presence of this debt is relatively
small compared with other debts, and 60–86% of the practitioners reported it as
found (see Figure 7.4). Thus, this debt is relatively common across companies
and easy to recognize.

One interviewee from Company H said, “The situation regarding config-
uration settings today is chaotic” while trying to explain that there was no
approach to control the addition of unnecessary settings to the services, and,
thus, the debt was common to be found. Companies I and J reported that
this debt is so common that it must be accepted when using microservices.
One interviewee from Company I, for example, said, “This is an expected
consequence of having many small services, each with its own settings.” Only
practitioners from Company H reported that they would like to mitigate this
debt in the future.

7.4.1.3 Microservice coupling

“Microservice coupling” is among the three most encountered MS-ATDs for
Companies I and J. A considerable number of practitioners are unsure of
the existence of this debt (see Figure 7.4). Possible reasons are that the
practitioners did not perceive the costs of this debt in the current stage of their
projects, that they did not have a tool to make those dependencies visible, or
that they might not be sure about the design of their services.

Company H explained that the new microservices are one way to reduce
coupling from the previous system. However, they do not seem concerned with
coupling among the microservices themselves in the current stage because they
are in an early stage of migration, with only a small part of a monolithic
architecture migrated to microservices. Answering this question requires
observing Company H again in the future to understand the evolution of
microservice coupling.

131

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Companies I and J seem to have a higher number of microservices and
teams involved with the services than Company H. Therefore, it was easier for
them to visualize microservice coupling.

Our impression is that the practitioners only start to think about
microservice coupling at a later stage when more couplings have been created.

7.4.1.4 Unplanned data sharing/synchronization

Microservices recommend decentralized data management; however, some
practitioners do not entirely agree with this recommendation. When centralizing
data management, some additional services may have to share data with
other services in a way that was not previously planned. On the other
hand, practitioners might not properly plan the database synchronization
properly when decentralizing data management. These situations lead to
“unplanned data sharing/synchronization,” which only appears on the top-3 list
for Company H. This debt represents the difficulties of splitting a large database
that is running for a long time or synchronizing distinct databases. Many
practitioners were uncertain about the existence of this debt (see Figure 7.4),
indicating that identifying it is more challenging than identifying others.

Several practitioners have stated that they wondered whether sharing
databases across microservices is an incorrect decision. One reason for that is
the trade-off represented by this debt: splitting the database increases issues
with synchronization among services.

Company H decided to split the database at a later stage of its migration
to microservices. Thus, they deliberately acquired this debt to accelerate the
initial steps of their migration and plan to repay it later.

For Company I, despite this debt being ranked fourth, at least 50% of the
practitioners reported it and 29% were unsure (see Figure 7.4). This debt is
almost as important as the other debts.

It is not clear from our data why this debt is the last on the list for Company
J. It might be that the practitioners from Company J who participated in our
interviews were primarily involved in well-designed services that had their own
databases and did not have to synchronize with other services. This can only
be confirmed by a more in-depth study.

7.4.1.5 Inadequate use of APIs

“Inadequate use of APIs” only appears on the top-3 list for Company J.

132

Results and discussion

This debt was ranked fourth in Company H, but with as many as 75% of
developers reporting it, it was close to the top three debts. In Company I, this
debt has been reported less.

Company J could not explain why this debt was among the most found
when asked during the follow-up interviews. However, we might have identified
a disagreement between technical leaders and other practitioners. The company
will discuss it internally.

7.4.1.6 Insufficient metadata

“Insufficient metadata” is the debt with most uncertainty among all the debts.
In practice, many practitioners could not connect the debt with their examples.
It is unclear whether additional metadata can resolve the current issues. To be
repaid, this debt may require a global overview of the architecture. However,
many practitioners focus on their own services, and only a few have such a
global overview of the architecture.

7.4.1.7 Excessive diversity

“Excessive diversity” is the debt in which the majority of the participants had a
strong opinion about its existence: only 7% of the participants from Company
I reported not being sure about it, while all the other practitioners answered
“found” or “not found” (see Figure 7.4). However, in our interviews, we noticed
a lack of consensus on the extent to which this is a debt. Some practitioners
believe that such technology diversity is acceptable, while others believe it
incurs high costs.

Only 25% of the practitioners from Company H reported this debt as
found. Company H has a well-defined set of technologies and platforms for
the development of its microservices. Moreover, they have only migrated a
small part of their monolith to microservices, and used the same .NET Core
technology stack. Thus, Company H expected to have fewer complaints about
this debt than the other companies.

Company I was satisfied with its current policy on the diversity of
technologies while using microservices. On the other hand, Company J is
divided on their opinions; about half of the practitioners believe there is a
problem with their policy on diversity, but in spite of that, they did not want
to limit the technologies used by other teams.

133

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Main findings

F1. The use of shared libraries starts at the early migration stages and is
usually related to the convenience of reusing code from the original
architecture. However, companies may misuse the shared libraries.

F2. Unnecessary settings are common during the early stages of migration.
Some practitioners try to find ways to mitigate this debt (sooner or later),
while others find it more convenient to maintain the debt and its extra
cost.

F3. The costs of microservice coupling are not recognizable in the initial
stages of migration, and the debt is down-prioritized. Practitioners may
not prioritize this debt and may tend to postpone repayment.

F4. Compared to the other debts, insufficient metadata and unplanned data
sharing/synchronization are the debts in which more practitioners are
unsure about their existence, which might indicate that identifying these
debts is more challenging than identifying others.

134

Results and discussion

Figure 7.5: Values for the calculation of the ranking of MS-ATDs found for
each company.

(a) Company H

0 2 4 6 8 10 12 14

Excessive diversity

Insufficient metadata

Microservice coupling

Inadequate use of APIs

Unnecessary settings

Unplanned data sharing/sync

Misusing shared libraries

Weighted sum of votes

(b) Company I

0 2 4 6 8 10 12 14

Excessive diversity

Insufficient metadata

Inadequate use of APIs

Unplanned data sharing/sync

Microservice coupling

Misusing shared libraries

Unnecessary settings

Weighted sum of votes

(c) Company J

0 2 4 6 8 10 12 14

Unplanned data sharing/sync

Excessive diversity

Insufficient metadata

Misusing shared libraries

Inadequate use of APIs

Unnecessary settings

Microservice coupling

Weighted sum of votes

135

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Fi
gu

re
7.
6:

Pe
rc
en
ta
ge

of
pr
ac
tit

io
ne
rs

w
ho

vo
te
d
fo
re

ac
h
an

sw
er

re
ga

rd
in
g
th
e
de
bt
sf
or
es
ee
n
on

ea
ch

co
m
pa

ny
.

N
ot

al
lp

ra
ct
iti
on

er
s
vo
te
d
fo
r
al
lq

ue
st
io
ns

fo
r
ea
ch

co
m
pa

ny
.

44
%

20
%

53
%

78
%

75
%

77
%

56
%

54
%

85
%

38
%

46
%

62
%

56
%

77
%

46
%

67
%

85
%

79
%

75
%

57
%

77
%

22
%

47
%

41
%

11
%

25
%

8%

11
%

31
%

8%

15
%

33
%

23
%

31
%

22
%

8%
21

%
13

%

7%

8%
33

%
33

%

6%
11

%
15

%

33
%

15
%

8%

63
%

54
%

23
%

11
%

23
%

8%
13

%

36
%

15
%

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

A
B

C
A

B
C

A
B

C
A

B
C

A
B

C
A

B
C

A
B

C

In
su

ffi
ci

en
t m

et
ad

at
a

M
ic

ro
se

rv
ic

e
co

up
lin

g
In

ad
eq

ua
te

 u
se

 o
f A

PI
s

Ex
ce

ss
iv

e
di

ve
rs

ity
U

np
la

nn
ed

 d
at

a
sh

ar
in

g/
sy

nc
M

is
us

in
g

sh
ar

ed
lib

ra
rie

s
U

nn
ec

es
sa

ry
 s

et
tin

gs

Fo
re

se
en

N
ot

 S
ur

e
N

ot
 F

or
es

ee
n

136

Results and discussion

7.4.2 Which MS-ATDs do companies foresee in the future of the
migration? (RQ2)

Table 7.5: Ranking of MS-ATDs foreseen in each company calculated through
Equation 7.5. Each MS-ATD is associated with the same color to facilitate
identifying it across the rankings from the distinct companies.

Company H Company I Company J

1 Microservice coupling Microservice coupling Misusing shared libraries

2 Misusing shared libraries Misusing shared libraries Insufficient metadata

3 Unnecessary settings Unplanned data sharing/syn-
chronization

Inadequate use of APIs

4 Unplanned data sharing/syn-
chronization

Inadequate use of APIs Unnecessary settings

5 Inadequate use of APIs Unnecessary settings Microservice coupling

6 Insufficient metadata Insufficient metadata Excessive diversity

7 Excessive diversity Excessive diversity Unplanned data sharing/syn-
chronization

Figure 7.6 presents the percentage of practitioners who voted for each
answer regarding MS-ATDs foreseen in the next steps of migration. More
practitioners are not sure about the debts in the future than when compared
to the debts in the present, as detailed in Section 7.4.1. Such an increase in the
number of “not sure” answers is expected because practitioners are reasoning
about a possible future.

The remainder of this section discusses the most foreseen MS-ATDs
extracted from the results for each company according to our data and ranking
calculation defined in Equation 7.5. The rankings are presented in Table 7.5,
ordered from the most foreseen to the least foreseen debt. The values used to
calculate the rankings are shown in Figure 7.7.

7.4.2.1 Microservice coupling

“Microservice coupling” is the top item in the ranking for Companies H and I,
and the fifth debt in the ranking for Company J. Compared to the currently
found MS-ATDs in Section 7.4.1, 75–77% of the practitioners from all three
companies estimate that this debt will increase.

137

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

In the follow-up interview with Company H, senior practitioners did not
expect such a result because they planned to reduce microservice coupling in
the future. This result highlights that other participants may not share the
same point of view. Thus, they may internally discuss the reasons for such
concern, as explained by one of the practitioners: “These numbers inform us
that we have an important job in informing everyone about what we want to
do”.

One practitioner from Company I explained that this is expected: “We are
going to see more on coupling if nothing is done today to change [the process]”.

For Company J, “Microservice coupling” is among the less foreseen debts
(see Table 7.4). However, all debts had substantial votes by practitioners from
Company J: 77% of the practitioners reported this debt as foreseen, and only
8% were unsure (see Figure 7.6). However, our ranking provides a starting
point for prioritizing the debts.

7.4.2.2 Misusing shared libraries

“Misusing shared libraries” is in the top-3 for all companies in the ranking. We
present the reasons for this for each company below.

One interviewee from Company H said, “We have a lot of dependencies on
other parts of the system. Instead of implementing something new, we use
these dependencies to focus on the main goal. Most of these dependencies will
be addressed in the end, but you cannot address them all during the migration
process.” Therefore, they will still use libraries they believe are necessary and
will postpone their removal.

Company I reported no plan to reduce the usage of shared libraries today;
they foresee this debt coming again in the future.

Company J started a discussion on whether the shared libraries were an
issue. One practitioner said, “We first need to discuss whether shared libraries
are necessarily bad, are they?” They do not seem to have plans to change how
they use these libraries. Thus, they might prevent the costs of misusing shared
libraries by closely following library usage. Our discussion on this topic may
have increased practitioners’ awareness of the debt.

7.4.2.3 Unnecessary settings

“Unnecessary settings” is in the top-3 for Company H only.
Company H visualizes the need to reduce unnecessary settings in the future

but believes that the problem will first increase before they have a better

138

Results and discussion

approach to handle it. They wanted a solution to the problem, but that was
not a priority.

Companies I and J expect this debt, but they accept it and do not have
plans to mitigate it. They are not concerned with the costs of this debt. It is
possible that it is better to pay interest in this type of debt than to repay it.

7.4.2.4 Unplanned data sharing/synchronization

“Unplanned data sharing/synchronization” is in the top-3 for Company I only.
This debt is still among those with more participants who are unsure about
the debt. The reasons may be the same as those explained in Section 7.4.1:
practitioners are still questioning whether sharing databases is always a bad
practice because they foresee cases in which this seems to be a good solution
for the problem.

Company H decided to postpone the migration of the database to the
microservices. Thus, they currently have the costs of using a centralized
database and do not foresee the complete migration of the database. However,
Figure 7.7a shows that there is no difference in the value used to calculate the
rankings between this debt and the “Unnecessary settings,” one of the top-3
debts in the ranking for Company H.

Company I saw this debt as a challenge that will increase if nothing else
is done to reduce it. Thus, some practitioners have already observed that the
company needs to work on a solution for the debt.

It is unclear from our data why this debt goes to the bottom of the list for
Company J, a result similar to that described in Section 7.4.1.

7.4.2.5 Inadequate use of APIs

“Inadequate use of APIs” is in the top-3 for Company J only.
Company J explained the same as reported in Section 7.4.1: they could

not explain why this debt was among the most found when asked during
the follow-up interviews, so they went back to investigate this further with
developers. Companies H and I did not provide any further comments.

7.4.2.6 Excessive diversity

“Excessive diversity” is the debt in which the majority of the participants had a
strong opinion about its existence: only 15% of the participants from Company
J reported not being sure about it, while all the other practitioners answered
“found” or “not found” (see Figure 7.6). Compared with the described in

139

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Section 7.4.1, the participants from all companies believe that this debt will
increase in the future.

Company H has the fewest participants among the companies in this study.
Such a result is expected because they seem to have reasonable control of
technology diversity in their current stage of development.

Company I reported that they do not have proper control of such diversity,
which might lead to an increase in this debt in the future, indicating that they
should be aware of the issue and control it in advance.

Company J already saw the costs of this debt, and they believed that the
problem would increase because there was no plan to limit such diversity.

7.4.2.7 Insufficient metadata

“Insufficient metadata” keeps being the debt with the higher number of
practitioners not sure about it. The possible reasons are explained in
Section 7.4.1: practitioners have difficulties seeing this debt in their contexts
and are not sure whether additional metadata is the right solution for the cases
they observed. The number of practitioners who answered “not sure” increased
more than for other debts. Again, this debt seems difficult to identify and
estimate in the future and might concern architects more than developers, who
are only involved with the development of microservices.

Companies H and J foresee cases in which they need additional metadata
and consequently increase the probability of having this debt. On the other
hand, Company I is mostly uncertain about this debt.

Main findings

F1. The practitioners seem to foresee an increase in microservice coupling.
Microservice coupling might increase unnoticed in the early stages of
migration, and suddenly become visible with many microservices.

F2. The practitioners foresee the use of shared libraries because they plan to
use libraries to accelerate migration. Therefore, they may have to deal
with the misuse of such libraries later.

F3. The practitioners accepted the extra costs of “Unnecessary settings.”
Therefore, they foresee the presence of such debt.

140

Results and discussion

F4. The practitioners are most uncertain about to what extent “unplanned
data sharing/synchronization” is a debt. They foresee the debt because
they are unsure how to repay it.

Table 7.6: Ranking of MS-ATDs that companies do not know how to avoid
calculated through Equation 7.7. Each MS-ATD is associated with the same
color to facilitate identifying it across the rankings from the distinct companies.

Company H Company I Company J

1 Misusing shared libraries Microservice coupling Misusing shared libraries

2 Microservice coupling Misusing shared libraries Microservice coupling

3 Unplanned data sharing/syn-
chronization

Unnecessary settings Excessive diversity

4 Excessive diversity Unplanned data sharing/syn-
chronization

Unnecessary settings

5 Insufficient metadata Insufficient metadata Unplanned data sharing/syn-
chronization

6 Inadequate use of APIs Excessive diversity Inadequate use of APIs

7 Unnecessary settings Inadequate use of APIs Insufficient metadata

141

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Figure 7.7: Values for the calculation of the ranking of MS-ATDs foreseen for
each company.

(a) Company H

0 2 4 6 8 10 12 14

Excessive diversity

Insufficient metadata

Inadequate use of APIs

Unplanned data sharing/sync

Unnecessary settings

Misusing shared libraries

Microservice coupling

Weighted sum of votes

(b) Company I

0 2 4 6 8 10 12 14

Excessive diversity

Insufficient metadata

Unnecessary settings

Inadequate use of APIs

Unplanned data sharing/sync

Misusing shared libraries

Microservice coupling

Weighted sum of votes

(c) Company J

0 2 4 6 8 10 12 14

Unplanned data sharing/sync

Excessive diversity

Microservice coupling

Unnecessary settings

Inadequate use of APIs

Insufficient metadata

Misusing shared libraries

Weighted sum of votes

142

Results and discussion
Fi
gu

re
7.
8:

Pe
rc
en
ta
ge

of
pr
ac
tit

io
ne

rs
w
ho

vo
te
d
fo
r
ea
ch

an
sw

er
re
ga
rd
in
g
th
e
de

bt
s
pr
ac
tit

io
ne
rs

kn
ow

ho
w

to
av
oi
d
on

ea
ch

co
m
pa

ny
.
N
ot

al
lp

ra
ct
iti
on

er
s
vo
te
d
fo
r
al
lq

ue
st
io
ns

fo
r
ea
ch

co
m
pa

ny
.

44
%

13
%

7%
44

%
35

%
36

%
22

%
38

%
29

%
11

%
31

%
21

%
44

%
38

%
43

%
11

%
38

%
15

%

11
%

31
%

40
%

33
%

29
%

43
%

44
%

43
%

92
%

38
%

67
%

43
%

78
%

46
%

50
%

33
%

46
%

43
%

44
%

31
%

69
%

11
%

20
%

11
%

6%

14
%

22
%

36
%

8%

13
%

17
%

21
%

8%
14

%
11

%
15

%
7%

33
%

23
%

8%

33
%

56
%

33
%

11
%

29
%

7%
11

%

21
%

13
%

17
%

7%
11

%
15

%
14

%
11

%
7%

11
%

8%
8%

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

A
B

C
A

B
C

A
B

C
A

B
C

A
B

C
A

B
C

A
B

C

In
su

ffi
ci

en
t m

et
ad

at
a

M
ic

ro
se

rv
ic

e
co

up
lin

g
In

ad
eq

ua
te

 u
se

 o
f A

PI
s

Ex
ce

ss
iv

e
di

ve
rs

ity
U

np
la

nn
ed

 d
at

a
sh

ar
in

g/
sy

nc
M

is
us

in
g

sh
ar

ed
lib

ra
rie

s
U

nn
ec

es
sa

ry
 s

et
tin

gs

N
o

Pa
rt

ia
lly

Ye
s

N
/A

143

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

7.4.3 Which MS-ATDs do the practitioners find difficult to
solve? (RQ3)

Figure 7.8 presents the percentage of practitioners who voted for each answer
regarding MS-ATDs they did not know how to avoid. Most practitioners are
not confident about solving the problem, which means that they do not know
whether what they are using is a solution to prevent such debts in most cases.

The remainder of this section discusses the top-3 most found MS-ATDs
extracted from the results for each company, according to our data and ranking
calculation defined in Equation 7.7. The rankings are listed in Table 7.6. The
MS-ATD on the top of the list is the debt that most practitioners do not
know how to prevent. The values used to calculate the rankings are shown in
Figure 7.9.

7.4.3.1 Misusing shared libraries

“Misusing shared libraries” is in the top-3 for all companies in the ranking.
None of the companies seemed to have considered good alternatives for shared
libraries in the early stages of migration.

Company H reported that it is difficult to avoid these libraries because
of the dependencies they have on the original architecture. These libraries
ensure that all services behave in the same way when dealing with a centralized
database and old pieces of software. Thus, they believe that this is difficult to
deal with now, and their removal will be postponed.

Company I reported that the debt would increase because there is no plan to
reduce the usage of shared libraries today. One participant from this company
said, “There is really no gold solution; everything is a trade-off.” It is difficult
for them to avoid using shared libraries.

Company J was not convinced about reducing the usage of shared
libraries. When discussing the implementation of functionality as a service,
one practitioner said, “This will add latency everywhere.” For him, this is
unacceptable, and a shared library solves the problem without additional
latency. However, companies with more mature microservice architectures
have reported increased maintenance costs owing to the growing use of shared
libraries [dMS21]. Company J may have a different context from the companies
studied by de Toledo et al. [dMS21], and how they use shared libraries does
not lead to problems. However, it is also possible that they are just down-
prioritizing the debt, and they might incur high costs later. A more in-depth
study would be useful to help companies such as Company J achieve a good
trade-off between performance and maintainability while using shared libraries.

144

Results and discussion

7.4.3.2 Microservice coupling

“Microservice coupling” is in the top-3 for all companies in the ranking. This
result highlights that practitioners do not know how to properly prevent this
debt from occurring. Thus, it is important to invest in training and techniques
to prevent or reduce coupling in the early stages and, therefore, to reduce the
growth of the debt interest.

Company H reported that coupling is difficult for practitioners to solve,
and that more code reviews should help to reduce it.

Companies I and J reported that they did not have a good approach to
solving this debt.

7.4.3.3 Unplanned data sharing/synchronization

“Unplanned data sharing/synchronization” is among the top-3 for Company H
only.

Company H had a complex database that was difficult to split. Practitioners
postponed splitting the database because it is challenging and costly to do so
immediately.

Company I has this debt as fourth in its ranking. However, as shown in
Figure 7.9b, there is no difference in its value with the third element in the
ranking despite more votes for partial solutions (see Figure 7.8). Nevertheless,
the differences are minimal (a small difference in uncertainty compared to the
third debt in the list), and this debt is almost as important as the third one in
the list for Company I.

Several practitioners from Company J also voted for this debt as difficult
to solve despite the existence of other debts with more votes (see Figure 7.8).

7.4.3.4 Unnecessary settings

“Unnecessary settings” is in the top-3 for Company I only.
Company H did not discuss how it planned to reduce unnecessary settings

in their services.
Company I had difficulties finding solutions for the increasing number of

unnecessary settings, and considered the debt difficult to handle. One of the
practitioners said, “Approaches to control the growth of these settings, such as
peer review, might introduce time-demanding formal procedures, such as waiting
for external teams’ reviews and additional coordination.” Thus, Company I
does not see good approaches to dealing with this issue, placing this debt as
one of the top-3 in the list.

145

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Company J has this debt as the fourth in the ranking, but it is as difficult
as the third in the ranking (see Figure 7.9c).

7.4.3.5 Excessive diversity

“Excessive diversity” is in the top-3 for Company J only.
For Company H, this debt is fourth in the ranking, but it is as difficult as

the third in the same ranking (see Figure 7.9a). They only migrated a small
part of the monolithic architecture to microservices and used the same .NET
Core technology stack, reducing the diversity of technologies. However, they
also reported having outsourced teams, and the new microservice architecture
would allow other teams to use other technology stacks. The debt may worsen
in the future.

Company I seems to have this diversity controlled, but it is not clear how
they performed this control. The diversity of technology stacks for Company
I stems from their various projects for different customers, but not from the
same project with diverse microservices using different stacks.

Company J, on the other hand, reported that it is difficult to limit the
technologies and languages without receiving complaints from teams already
using a distinct set of technologies throughout the company. They accepted
the debt now, but might need to develop company-level guidelines to keep it
under control in the future. This seems to be a social rather than technical
problem that is difficult to solve.

7.4.3.6 Insufficient metadata

Answers for “insufficient metadata” carries a lot of uncertainty. Since
practitioners have difficulties visualizing the solution in practice, they are
not sure whether solving it is difficult.

Company H was the company in which most practitioners who voted for the
debt were sure about it being difficult to solve (see Figure 7.8). Since Company
H is also the company with the fewest microservices in the migration, it has
had a hard time seeing cases where this debt applies.

Companies I and J seem to have more microservices that use messages in
which the debt could apply. Thus, they seem to have a better overview of how
the metadata could be implemented in their cases than Company H. However,
they were uncertain about whether what they thought as a solution would help
them solve the problem. Therefore, there is a large amount of uncertainty.

146

Results and discussion

7.4.3.7 Inadequate use of APIs

The “inadequate use of APIs” is a debt with a high degree of uncertainty, but it
is also one of the debts with more participants answering they know how to solve.
Practitioners from all companies reported that this was a matter of education
and training for creating good APIs. During our follow-up interviews, senior
practitioners and architects reported knowing the good practices for developing
APIs. They informed us that they were already investing in spreading knowledge
on the subject throughout the companies. One possible interpretation of these
results is that the companies still have practitioners learning about topics such
as how to control API versioning and deprecation. Such cases generated some
uncertainty in the teams, but they knew how to repay the debt.

Main findings

F1. Practitioners consider “microservice coupling” difficult to solve. Therefore,
it is important to invest in training and techniques to prevent or reduce
this debt early on in a project.

F2. Companies share libraries to reuse code from the original architecture.
However, they do not consider the costs of misusing them in the early
stages of migration, which might incur high costs later.

F3. “Excessive diversity” is a debt that is difficult to mitigate after
practitioners start using distinct technologies. Having some agreement
regarding the technologies to use in the early stages of migration would
facilitate dealing with this debt later.

147

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Figure 7.9: Values for the calculation of the ranking of MS-ATDs the
practitioners know how to avoid for each company.

(a) Company H

0 2 4 6 8 10 12 14

Unnecessary settings

Inadequate use of APIs

Insufficient metadata

Excessive diversity

Unplanned data sharing/sync

Microservice coupling

Misusing shared libraries

Weighted sum of votes

(b) Company I

0 2 4 6 8 10 12 14

Inadequate use of APIs

Excessive diversity

Insufficient metadata

Unplanned data sharing/sync

Unnecessary settings

Misusing shared libraries

Microservice coupling

Weighted sum of votes

(c) Company J

0 2 4 6 8 10 12 14

Insufficient metadata

Inadequate use of APIs

Unplanned data sharing/sync

Unnecessary settings

Excessive diversity

Microservice coupling

Misusing shared libraries

Weighted sum of votes

148

Results and discussion
Fi
gu

re
7.
10
:
Im

po
rt
an

ce
of

th
e
M
S-
AT

D
s
as

pe
rc
ei
ve
d
by

th
e
pr
ac
tit

io
ne

rs
ca
lc
ul
at
ed

by
th
e
Eq

ua
tio

n
7.
8.

15
%

3%
0%

5%
8%

7%
13

%
10

%
4%

8%
26

%
7%

10
%

15
%

22
%

15
%

18
%

26
%

33
%

21
%

33
%

0%5%10
%

15
%

20
%

25
%

30
%

35
%

C
B

A
C

B
A

C
B

A
C

B
A

C
B

A
C

B
A

C
B

A

Ex
ce

ss
iv

e
di

ve
rs

ity
U

nn
ec

es
sa

ry
 s

et
tin

gs
In

su
ffi

ci
en

t m
et

ad
at

a
M

is
us

in
g

sh
ar

ed
lib

ra
rie

s
In

ad
eq

ua
te

 u
se

 o
f A

PI
s

U
np

la
nn

ed
 d

at
a

sh
ar

in
g/

sy
nc

M
ic

ro
se

rv
ic

e
co

up
lin

g

149

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

7.4.4 How important do practitioners perceive MS-ATDs? (RQ4)

Table 7.7: Ranking of the most important MS-ATDs according to the
practitioners calculated through Equation 7.8. Each MS-ATD is associated
with the same color to facilitate identifying it across the rankings from the
distinct companies.

Company H Company I Company J

1 Microservice coupling Misusing shared libraries Microservice coupling

2 Unplanned data sharing/syn-
chronization

Microservice coupling Excessive diversity

3 Inadequate use of APIs Unplanned data sharing/syn-
chronization

Unplanned data sharing/syn-
chronization

4 Unnecessary settings Inadequate use of APIs Insufficient metadata

5 Misusing shared libraries Insufficient metadata Inadequate use of APIs

6 Insufficient metadata Unnecessary settings Misusing shared libraries

7 Excessive diversity Excessive diversity Unnecessary settings

Figure 7.10 and Table 7.7 show the importance of the MS-ATDs as perceived
by the practitioners and calculated using Equation 7.8 for each company.
Figure 7.10 groups the answers by MS-ATD and shows the percentage of votes
per company. Table 7.7 presents the MS-ATDs ordered by the company.

There are clear differences among the companies, indicating that the
importance of MS-ATDs is context dependent. For example, “excessive
diversity,” the last in the rankings for Companies H and I, is in the top-
3 for Company J. Two debts are consistently among the most important
for all three companies: “microservice coupling” and “unplanned data
sharing/synchronization.” The remainder of this section discusses each MS-ATD
and possible reasons for these results.

7.4.4.1 The debts that were important for all three companies

All three companies highly reported two MS-ATDs: “microservice coupling”
and “unplanned data sharing/synchronization” (see Table 7.7). These debts
are explicitly mentioned in the definition of microservices: low-coupled services
with their own databases. One possible interpretation of these results is that
practitioners may clearly identify debts against the definition of microservices.

150

Results and discussion

As reported in Section 7.4.1, Company H reported that “microservice
coupling” does not exist at present, and they do not see its costs. However,
with the increasing complexity of the software, they foresee it coming (see
Section 7.4.2) and recognize it as difficult to solve (see Section 7.4.3). On the
other hand, companies B and J have reported “microservice coupling” as found
in the present, expected in the future, and difficult to solve. Therefore, this
debt was expected to be considered important by practitioners.

Regarding “unplanned data sharing/synchronization,” we found that all
three companies reported it as important, but they have very distinct answers
to the previous RQs. Company H postponed working on the database; thus, it
is important to address this issue soon. Company I reported this debt for all
previous rankings, but they considered other debts more important than this
one. One possible interpretation of this result is that some of the practitioners
in Company I believe that database sharing or synchronization approaches
are adequate for their needs. In contrast, others are more skeptical of those
approaches: they seem to discuss data sharing/synchronization approaches,
but not all agree on doing so. Our method identified a disagreement among
practitioners from the company. With this information, they could now discuss
it internally. Company J, on the other hand, has this debt as the last for
the first two rankings (found and foreseen) and as one of the last debts in
the ranking of difficulty to solve. However, they consider this debt one of the
three most important for them. One possible interpretation of the results from
Company J is that they believe that this debt is important, but they have it
under control. They shared databases and performed synchronizations among
different services, but deliberately did so in situations they presumed they were
right. Thus, they seemed to have planned these cases carefully.

7.4.4.2 The debts the practitioners mostly disagree

There are three debts for which the companies have distinct points of view:
“misusing shared libraries,” “inadequate use of APIs,” and “excessive diversity.”
The causes of these differences may be the context of the projects or other
unknown factors.

Company H has already reported the use of shared libraries to accelerate
the development process (see Section 7.4.2). Company J reported that it
was common to use such libraries. Companies H and J reported that it was
challenging to remove misused shared libraries later. However, they do not
consider this debt very important because they believe most of the shared
libraries’ use was correct. If this is the case, an in-depth study would help
identify good practices while using shared libraries in microservices. If this

151

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

is not the case, they may suffer from the costs of this debt in the future, as
reported by companies with more mature microservice architectures [dMS21].
On the other hand, Company I identifies “misusing shared libraries” as one of
the most important debts to be mitigated.

“Inadequate use of APIs” varies among companies. For Company H, this
is one of the three most important debts; for Company I, it has medium
importance; and for Company J, this debt is one of the three less important
debts. In general, practitioners reported that it is important to have good
APIs, but they did not make further comments regarding that specific debt,
even though we asked.

Regarding the “Excessive diversity,” there are considerable differences among
companies. No practitioner from Company H voted for this debt. Company
H seems to have good control of diversity, which might explain the number
of votes for that debt (see Figure 7.10). Company I reported that they have
some diversity but that it is not important. They did not have any costly
issues related to this debt. Finally, Company J reported a very distinct result
compared to the other companies: this debt was one of the most important
to them. Company J appear to be the company with the most diverse set of
technologies. Some practitioners have reported concerns regarding their current
policy of not limiting the technologies used by their microservices.

7.4.4.3 The less important debts

Other two debts were considered less important by practitioners: “unnecessary
settings” and “insufficient metadata.” However, there are some differences
among the companies. We discuss these differences below.

None of the three companies is concerned with the “unnecessary settings”
because they report it as a problem that cannot be avoided in microservices.
Company H was the only company to comment that might try to mitigate it
in the future, without explaining how, since it is a future concern.

“Insufficient metadata,” on the other hand, seems to be more context-
dependent and had distinct votes from the different companies. The low
number of votes might be related to the uncertainty in the previous responses
(see Sections 7.4.1 and 7.4.2).

152

Results and discussion
Fi
gu

re
7.
11

:
Pr

io
rit

y
ra
nk

in
g
ca
lc
ul
at
ed

th
ro
ug

h
Eq

ua
tio

ns
7.
9
an

d
7.
10

,n
or
m
al
iz
ed

be
tw

ee
n
1
an

d
10

.
R
ed

ba
rs

in
di
ca
te

de
bt
s
w
ith

hi
gh

pr
io
rit

y.
O
ra
ng

e
ba

rs
in
di
ca
te

de
bt
s
w
ith

m
ed

iu
m

pr
io
rit

y.
G
re
en

ba
rs

in
di
ca
te

de
bt
s
w
ith

lo
w

pr
io
rit

y.

4,
6

0,
6

0,
8

3,
3

1,
8

2,
0

2,
3

2,
9

2,
9

3,
7

2,
3

6,
0

3,
9

6,
8

7,
5

4,
7

9,
6

3,
7

10
,0

10
,0

10
,0

0,
0

2,
0

4,
0

6,
0

8,
0

10
,0

C
B

A
C

B
A

C
B

A
C

B
A

C
B

A
C

B
A

C
B

A

Ex
ce

ss
iv

e
di

ve
rs

ity
In

su
ffi

ci
en

t m
et

ad
at

a
U

nn
ec

es
sa

ry
 s

et
tin

gs
In

ad
eq

ua
te

 u
se

 o
f A

PI
s

U
np

la
nn

ed
 d

at
a

sh
ar

in
g/

sy
nc

M
is

us
in

g
sh

ar
ed

 li
br

ar
ie

s
M

ic
ro

se
rv

ic
e

co
up

lin
g

153

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

7.4.5 How can companies prioritize which MS-ATDs to avoid or
repay? (RQ5)

Table 7.8: Priority rankings of the proposed MS-ATDs calculated through
Equation 7.10.

Company H Company I Company J

1 Microservice coupling Microservice coupling Microservice coupling

2 Unplanned data sharing/syn-
chronization

Misusing shared libraries Misusing shared libraries

3 Inadequate use of APIs Unplanned data sharing/syn-
chronization

Excessive diversity

4 Misusing shared libraries Unnecessary settings Unplanned data sharing/syn-
chronization

5 Unnecessary settings Inadequate use of APIs Inadequate use of APIs

6 Insufficient metadata Insufficient metadata Insufficient metadata

7 Excessive diversity Excessive diversity Unnecessary settings

As mentioned in Equation 7.1, the risk of an MS-ATD is the probability
of its occurrence multiplied by its negative impact. The more people foresee
the debt, the more likely it is to happen, and the fewer people know how to
solve the debt, the more likely it is to persist for a longer time. Therefore, we
combine (multiply) the weighted sum of votes for the foreseen debts (defined in
Equation 7.4) and the weighted sum of votes for the debts practitioners do not
know how to solve (defined in Equation 7.6) as the probability of an MS-ATD
to occur. Additionally, we used the importance given by the practitioners as
the impact of the debt because it is more likely that practitioners consider
important debts that have a more significant impact on their contexts. This
interpretation is the basis for the calculation of Equation 7.5.

Figure 7.11 presents both the ranking calculated from Equation 7.10 and the
normalized priority scores for each company and debt defined at Equation 7.11.
Additionally, Figure 7.11 shows colors for the debts with high, medium, and low
priorities. Table 7.8 presents another visualization of the ranking calculated
from Equation 7.10 for each company.

Companies can use our ranking to prioritize their debts in their own contexts.
Below, we present four examples to explain how our prioritization ranking can
be helpful.

154

Results and discussion

Based on the information presented by practitioners, our method found
that microservice coupling is a major concern for all three companies. This
debt received many votes from all companies as foreseen, difficult to solve,
and important to avoid. Combining these votes into our ranking makes this
debt stand out with the higher priority score among all the studied MS-
ATDs. Other companies with mature microservice architectures have also
reported this MS-ATD to be important [dMS21]. Thus, the results of this
study underscore that microservice coupling arises very early and should be
addressed as soon as possible to prevent the debt from increasing. As the
number of microservices increases, it becomes increasingly difficult to remove
the coupling in microservices.

The next example shows how our method can capture contextual information
regarding MS-ATDs. “Excessive diversity” is the last MS-ATD recommended
for Companies H and I, but it is one of the three first debts recommended to be
prioritized for Company J. Our qualitative data revealed that Company J had
internal concerns regarding diversity, but the leaders did not want to enforce
any limitations on the teams. The same concerns did not exist for Companies
H and I. On the other hand, for Company J, our method captured internal
concerns, allowing them to discuss how to address the issue internally.

In the next example, “Insufficient metadata” was identified as having a low
priority. Practitioners were not convinced that this debt could be a problem
in their projects. This debt involves understanding the big picture of the
microservices, including their communication and the impact of the costs across
many microservices and teams. Practitioners in the early stages of migration
to microservices may not have enough information to be certain about this
debt. They might not have a good overview of the architecture because they
are focused on their own services, or they might not have enough microservices
for this debt to be visible. Whatever the case, there is much uncertainty, and
this debt does not seem to be sufficiently significant at the current stage of
development.

Finally, as the last example, “Misusing shared libraries” was recommended
with high priority to Company J, despite only a small percentage of practitioners
having voted for it as important 7.10. This is an interesting result because our
method found reasons to believe this debt could be a problem and properly
warned practitioners of such concerns. This debt is the most foreseen (see
Table 7.5) and difficult to solve (see Table 7.6) for Company J. There is a
high probability that this debt will arise and have high costs if not properly
mitigated. The costs reported by mature companies regarding this debt are
considerable [dMS21], and the practitioners were properly warned and may
discuss it internally.

155

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

7.4.6 Overall remarks

Practitioners tend to ignore “unnecessary settings.” They believe that this debt
cannot be removed while using microservices and they just accept it. A similar
circumstance happens with the “excessive diversity,” another debt practitioners
do not give much importance. When the debt arrives, it is difficult to repay
because practitioners might resist not using the technologies they have adopted
until the present date.

Other debts are deliberately taken during the migration to microservices:
“unplanned data sharing/synchronization” and “misusing shared libraries.”
Several practitioners have reported that using existing databases instead
of creating new ones for the microservices may accelerate the migration
process. Therefore, they neither plan to have separate databases nor plan
the data sharing adequately. There has been less discussion regarding the
synchronization of separated databases because they mostly share it to
avoid synchronization issues. Regarding the debt “misusing shared libraries,”
practitioners hardly believe that the libraries they use are misused. Still, they
use them to accelerate the development process and avoid dealing with latency
across services. Practitioners rarely think about the number of libraries being
used, nor track down the libraries that have constant updates and might block
several teams on the project. Practitioners should consider alternatives and
use shared libraries when none of the other options is feasible.

Debts such as “insufficient metadata” are difficult to identify. A possible
reason is that this is a context-dependent issue or that a broader view of the
project is required, usually shared by its architects, and frequently overlooked
by microservice developers, who are more concerned with the single services
they are developing. Such a situation is both an advantage and a disadvantage
of the microservice architecture: practitioners may focus on developing their
own microservices without worrying about the work of other teams; however,
they lose the overview of the big picture of the project.

“Inadequate use of APIs” is a debt easy to remove and that is always in
the middle of our rankings: it is never the most found or foreseen debt, but it
is also never in the bottom of the rankings. Therefore, it is a common debt of
medium importance. This debt can be mitigated through good practices in
developing APIs.

Finally, “microservice coupling” is one of the most important issues that
need to be avoided by teams. Our previous study [dMS21] also encountered the
problem of coupling in more mature microservice projects than those studied
here. One possible cause of coupling might be insufficient experience by teams
on how to delimit microservice boundaries, but other causes may also be worth

156

Results and discussion

investigating.
The companies found our results useful in helping them address MS-ATDs

in their contexts. As future work, it would be interesting to draw a threshold
in our priority ranking above which the debts should be fixed and below which
it is safe to postpone debt repayment.

7.4.7 Modeling uncertainty

As presented in Table 7.3, some practitioners answered “not sure” for the
MS-ATDs found (RQ1) and foreseen (RQ2). In our analysis (Section 7.3.4), we
considered those answers to have a 50% probability of the MS-ATD occurrence.
Such a decision entails that two “not sure” count as one “yes.” However,
practitioners may have meant more or less than 50%. Although we do not have
more information to model this uncertainty, we could have chosen other more
or less conservative weights. Here, we discuss the changes in our prioritization
when “not sure” is assigned such other weights.

Other areas of research, such as health research (see, for example, the results
for the Behavioral Risk Factor Surveillance System, BRFSS, a health-related
survey from U.S. residents [Cen20]), completely ignore the uncertainty in their
analysis. On the other hand, in our case, the practitioners wanted to express
a chance of the debt to happen, although they were not entirely sure. In
other words, they expressed a chance, a probability that leads us to the next
subject to discuss: the value of the probability. Nevertheless, we want to see
what would change if we use this approach in our prioritization. Therefore, we
compile the results where “not sure” is given a value of 0.

In addition to the previous consideration, we want to see what would change
if we consider that the participants are almost sure about the existence of the
debt. Therefore, we used a probability of 0.8. Similarly, we want to see the
changes if we consider that participants are skeptical about the existence of
the debt. For the last case, we used a probability of 0.2. Table 7.9 shows
the changes in all our rankings, including the final prioritization proposal, for
all these values compared to the value of 0.5, which we used in our previous
analysis. The numbers indicate the changes in the positions in the ranking.
The arrows indicate the direction of the change, up or down, in the ranking.

157

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Ta
bl
e
7.
9:

T
he

ch
an

ge
s
in

th
e
ra
nk

in
gs

w
he

n
us
in
g
di
ffe

re
nt

pr
ob

ab
ili
tie

s
(0
,0

.2
,a

nd
0.
8)

fo
r
th
e
un

ce
rt
ai
nt
y

(“
no

t
su
re
”)

an
sw

er
s,

in
co
m
pa

ris
on

w
ith

th
e
re
su
lts

w
ith

pr
ob

ab
ili
ty

0.
5,

fo
r
ea
ch

M
S-
AT

D
.

D
eb

t
C
om

p.
M
S-
A
T
D
s
en

co
un

-
te
re
d
(s
ee

T
ab

le
7.
4)

M
S-
A
T
D
s
fo
re
se
en

(s
ee

T
ab

le
7.
5)

F
in
al

pr
io
ri
ti
-

za
ti
on

ra
nk

in
g

(s
ee

T
ab

le
7.
8)

0
0.
2

0.
8

0
0.
2

0.
8

0
0.
2

0.
8

H I
1

↓
1

↓
In
su
ffi
ci
en
t
m
et
ad

at
a

J
3

↓
1

↓
1

↑
H I

2
↑

1
↓

1
↓

M
ic
ro
se
rv
ic
e
co
up

lin
g

J
2

↑
2

↑
1

↑
1

↑
H

1
↑

1
↑

1
↑

I
1

↓
1

↓
In
ad

eq
ua

te
us
e
of

A
P
Is

J
1

↑
1

↑
1

↑
1

↑
H

E
xc
es
si
ve

di
ve
rs
ity

I
1

↑
1

↑
J H

1
↑

1
↑

1
↑

1
↑

I
1

↑
1

↑
U
np

la
nn

ed
da

ta
sh
ar
in
g/

sy
nc
hr
on

iz
at
io
n

J
1

↑
1

↓
1

↓
H

1
↓

1
↓

1
↓

I
1

↑
1

↑
2

↓
1

↓
1

↑
1

↑
M
is
us
in
g
sh
ar
ed

lib
ra
ri
es

J
2

↓
1

↓
H

1
↓

1
↓

1
↓

1
↓

I
1

↓
1

↓
1

↓
1

↑
1

↑
U
nn

ec
es
sa
ry

se
tt
in
gs

J
1

↓
1

↓
1

↓

158

Results and discussion

As shown in Table 7.9, most of the changes are plus or minus 1, and there
are even fewer changes in the final prioritization rankings. Therefore, our
approach is not highly affected by changes in the uncertainty probabilities.
Since we only collected which participants were unsure, we believe that 0.5
would give us a better chance to balance out skeptical and pessimistic opinions
from all possible values. The construction of the final prioritization ranking
required us to select one of these values. Otherwise, showing different rankings
with different probabilities would confuse participants.

As a future improvement, we suggest using a Likert scale to gather more
precise data on practitioners’ uncertainty. One could model values or categories
from “very improbable” to “very probable.” Additionally, a “do not know”
option would help to exclude invalid answers to RQ1 and RQ2, if any. However,
these additions require caution because they demand more attention and time
from practitioners on each debt. Therefore, they might increase the participants’
response times and affect their participation ratings in the questionnaire.

7.4.8 Implications for research and practice

We received positive feedback from practitioners, indicating that our approach
is helpful in decision-making regarding the prioritization of MS-ATDs. A
few examples: “We would like to try it again with a more mature project.”
(Company H); “We are of course interested in going deep. (...) [We need] a
serious internal discussion among the developers, architects, and management.”
(Company I). Company J is going to adjust its priorities based on the MS-ATDs
we discussed and asked for additional information on the debts.

Our prioritization method is lightweight and can be applied periodically
by companies to manage the risk of ATD during the development process, for
example, within an agile architecture framework such as CAFFEA [MB16a].
The risk of a debt changes according to project needs and should be re-evaluated.
The requirements for this method are to have a list of MS-ATDs that can
be discussed (for example, as in this study, one can use an existing catalog
[dMS21]) and one facilitator (researcher or practitioner) who is familiar with
the debts and can present them to the remaining participants, collect the
answers, and compute the rankings.

Researchers may apply the prioritization method in this study to investigate
ATDs from other studies. We envision that the technique can be applied not
only for MS-ATDs, but also for any ATD within an organization. However,
more research is needed. Researchers also have the raw data available to
facilitate comparisons with their own findings. Additionally, there are several
suggestions for future and in-depth work that might be useful for research

159

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

purposes, such as supporting the early identification of microservice coupling,
shared libraries, and database sharing and synchronization, which are some
of the most costly debts in our list, or investigating the benefits of using our
prioritization approach continuously in agile development processes.

7.5 Limitations

Given the availability constraints of companies and practitioners, we used
a subset of MS-ATDs identified in a previous study. Therefore, the final
prioritization results may be partial. Still, we selected the most common MS-
ATDs found in seven companies experienced with microservices from de Toledo
et al. [dMS21]: we considered them also to be the most likely to be relevant to
the companies participating in this new study. In addition, the practitioners
in this study acknowledged the importance of the selected MS-ATDs during
the interviews. The companies involved can also follow a similar procedure to
prioritize additional debts and enrich the existing prioritization list. In this
case, there is no need to collect the answers for RQ1 again, RQ2, and RQ3 for
the MS-ATDs investigated previously.

The prioritization procedure presented here is based on our interpretation
of the research context. The value 0.5, used for the answers “not sure” and
“partially” impacts our results, especially for responses that are mainly composed
of those options. Our interpretation of this result is that, since it is not possible
to obtain a better approximation of the uncertainty or the partiality of a
solution, the probability of the value being close to 0.5 is high because some
practitioners might be very uncertain. By contrast, others might be very sure
of their answers. Therefore, on average, the values tend to be 0.5. Further
studies could attempt to obtain a more precise estimation of this probability.

The practitioners might not know the debts or might have a different
understanding of a specific debt (e.g., shared databases might be understood
as coupling by some practitioners and as a very distinct debt by others), which
might affect their answers regarding the existence of the debt, or whether they
know how to solve it. To reduce this threat, we presented and described each
MS-ATD before asking questions. The practitioners were asked to provide
their answers immediately after the explanation. We also collected information
on practitioners’ satisfaction with our descriptions and interpretations. Only
three interviewees reported difficulties in understanding our explanations for
one question each.

It was also challenging to interpret the situations in which the participants
answered: “not sure” or “partially.” We considered those as a 50% probability

160

Related Work

of the answer being “yes.” However, this interpretation may not be accurate.
Practitioners and researchers should interpret these rankings cautiously. For
example, the second element in the priority ranking might be the best to
start with for a specific company. However, such an interpretation is a
reasonable approximation of all the answers because some practitioners have
more knowledge than others and some solutions are less partial than others.
Therefore, we considered that, on average, the answers converged to 50%. Our
rankings are suggestions for discussion by practitioners and researchers. The
raw data are provided in Table 7.3 for further interpretation.

Finally, it is possible that other companies not included in our study have
successfully implemented a different prioritization or refactoring strategy and
applied it to different MS-ATDs than those discussed in this work. However,
none of the companies in this or previous studies reported a similar prioritization
approach. We performed a lightweight literature review at the beginning of this
study, but we did not find any other strategies for prioritizing MS-ATDs. Our
work is exploratory and can be considered a starting point for future research.
More studies are necessary to investigate additional MS-ATDs and to further
validate and potentially improve our approach.

7.6 Related Work

Lenarduzzi et al. [Len+20] monitored the evolution of code TD in a small to
medium-sized company that migrated a monolithic system to microservices.
They concluded that the migration reduced the overall code TD. The authors
did not study architectural TD, which was the focus of this study.

Taibi et al. [TLP20] defined a taxonomy of 20 microservice anti-patterns,
based on 27 interviews with experienced practitioners. Several of these anti-
patterns are related to migration: “no DevOps tools,” “too many technologies”
(the same as excessive diversity in our paper), “I was taught to share” (which
we defined as misusing shared libraries), “static contract pitfall” (i.e., APIs that
are not properly versioned), “mega-service,” “shared persistence” (part of our
unplanned data sharing or synchronization), “sloth” (too many coupling among
the microservices, resulting in a distributed monolith), and “trying to fly before
you can walk” (i.e., migrating to microservices while the practitioners lack the
necessary skills). In our study, we considered the overlapping anti-patterns
to be MS-ATDs. (For discussing the relationship between architectural anti-
patterns and ATDs, see de Toledo et al. [dMS21]). Additionally, we created
rankings for the identified MS-ATDs and investigated how to prioritize them.

Martini et al. [Mar+18] identified and prioritized ATDs through architec-

161

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

tural smells in a multiple case study. They analyzed four software projects
in the same company. Their approach consisted of using a tool called Ar-
can [Fon+17] to identify architectural smells leading to ATD and then asking
the practitioners to prioritize the debts found. Their approach was limited
to ATDs that can be identified through architectural smells. On the other
hand, our approach was tested with microservice-specific ATDs and used a
risk-based approach for prioritization, combining information from the present,
the foreseen future, and the importance given by practitioners.

Pigazzini et al. [PAM19] presented an approach also supported by
Arcan [Fon+17] to identify candidate microservices in monolithic Java projects.
The approach begins with the identification of architectural smells that can
hinder migration. Despite their relation to migration, the identified anti-
patterns were detected in the monolithic architecture before migration. By
contrast, we only considered ATDs in microservices during and after migration.

Panichella et al. [PRT21] proposed metrics to compute and visualize the
coupling between microservices, which may help evaluate the cost of coupling
in a given context. Their approach can help practitioners find and measure
microservice coupling, but it is focused on a single MS-ATD and does not
propose ways to prioritize debts. Our case study highlights situations in which
practitioners might not have promising approaches for measuring microservice
coupling. The method proposed by Panichella et al. [PRT21] may be useful in
such cases.

7.7 Conclusion

This paper presents our investigation of how ATD issues specific to microservices,
MS-ATDs, accumulate in three companies that are migrating to such an
architectural style. We carefully conducted our study with the practitioners
by giving them presentations on the MS-ATDs and double-checking that
they were on the same page with the explanation of the MS-ATDs. We
then asked practitioners which MS-ATDs they considered difficult to remove
(tackle) and which ones were the riskiest in the present and future of their
projects. We discussed the answers given by the practitioners considering their
contexts and created rankings for the most found, foreseen, difficult to solve,
and important MS-ATDs for each of the participating companies. We also
proposed an approach to prioritize MS-ATDs based on risk and discussed it
with participants. The participants also reported that the results and the
prioritization method were useful and may be used in their contexts. For
example, participants from one company said that our approach would help

162

Conclusion

people become aware of the issues they have not yet seen. Thus, they are
be able to take action to mitigate the negative consequences (interest) of the
debts.

Our most important findings related to individual MS-ATDs were as
follows: (i) “Misusing shared libraries” is a common debt during migration to
microservices. Companies start using shared libraries because of the convenience
of reusing code from their original architectures. However, these companies may
be good candidates for high costs due to misuse of such libraries in the future, as
identified in previous studies [dMS21; TLP20]. (ii) It is common for companies
to share databases during the early stages of migration to microservices to
accelerate the migration process. (iii) Microservice coupling occurred frequently,
possibly related to practitioners’ lack of experience in creating microservices.
However, they postpone the discussion of the debt to the late stages, possibly
because the costs of the debt are small at the beginning of the migration. One
possible interpretation of this result is that practitioners might not have proper
ways or tools to measure the growth of microservice coupling.

Given that “Misusing shared libraries” and “Microservice coupling” were
common MS-ATDs in our study, other organizations may also consider them.
The procedure of creating rankings reported in this paper may help other
organizations prioritize fixing or avoiding MS-ATDs during migration before
their costs increase. Overall, we believe that our results will help understand
the relationship between ATDs and microservices.

Our study is fully replicable by researchers. The raw data are also available,
allowing researchers to use such data in their approaches and facilitating
comparison of the results.

Future work includes: running in-depth studies on the companies participat-
ing in this study to understand the consequences of their current architectural
decisions; analyzing other companies migrating to microservices; investigating
possible metrics; quantifying debts and costs; exploring deeper the aspects that
practitioners emphasize when they consider an MS-ATD important.

Authors’ addresses

Saulo S. de Toledo University of Oslo, Postboks 1080 Blindern, 0316 Oslo,
Norway, saulos@ifi.uio.no

Antonio Martini University of Oslo, Postboks 1080 Blindern, 0316 Oslo,
Norway, antonima@ifi.uio.no

Phu H. Nguyen SINTEF, Forskningsveien 1, 0373 Oslo, Norway
phu.nguyen@sintef.no

163

mailto:saulos@ifi.uio.no
mailto:antonima@ifi.uio.no
mailto:phu.nguyen@sintef.no

7. Accumulation and prioritization of Architectural Debt in three companies
migrating to microservices

Dag I. K. Sjøberg University of Oslo, Postboks 1080 Blindern, 0316 Oslo,
Norway, dagsj@ifi.uio.no

164

mailto:dagsj@ifi.uio.no

Chapter 8

Reducing Incidents in
Microservices by Repaying
Architectural Technical Debt

Saulo S. de Toledo, Antonio Martini, Dag I. K. Sjøberg, Agata
Przybyszewska, Johannes Skov Frandsen
Published in Proceedings of the 47th Euromicro Conference on Soft-
ware Engineering and Advanced Applications, SEAA 2021, 2021. DOI:
10.1109/SEAA53835.2021.00033.

4

Abstract

Introduction: Architectural technical debt (ATD) may create a substan-
tial extra effort in software development, which is called interest. There
is little evidence about whether repaying ATD in microservices reduces
such interest.

Objectives: We wanted to conduct a first study on investigating the
effect of removing ATD on the occurrence of incidents in a microservices
architecture.

Method: We conducted a quantitative and qualitative case study of
a project with approximately 1000 microservices in a large, international
financing services company. We measured and compared the number of
software incidents of different categories before and after repaying ATD.

Results: The total number of incidents was reduced by 84%, and the
numbers of critical- and high-priority incidents were both reduced by
approximately 90% after the architectural refactoring. The number of
incidents in the architecture with the ATD was mainly constant over
time, but we observed a slight increase of low priority incidents related
to inaccessibility and the environment in the architecture without the
ATD.

Conclusion: This study shows evidence that refactoring ATDs, such
as lack of communication standards, poor management of dead-letter

165

http://dx.doi.org/10.1109/SEAA53835.2021.00033

8. Reducing Incidents in Microservices by Repaying Architectural Technical
Debt

queues, and the use of inadequate technologies in microservices, reduces
the number of critical- and high-priority incidents and, thus, part of its
interest, although some low priority incidents may increase.

Contents

8.1 Introduction . 166
8.2 Background . 167
8.3 Methodology . 175
8.4 Results . 182
8.5 Discussion . 188
8.6 Related work . 190
8.7 Conclusions and future work 190

8.1 Introduction

Software is a competitive factor for many companies. They compete to
deliver value faster and timely and frequently prioritize feature delivery over
architecture work. Such prioritization, in turn, may lead to unexpected rework
costs in the future, which will gradually reduce the value of the product over
time, culminating in technical debt (TD).

TD is a metaphor coined to explain the trade-offs between short-term and
long-term decisions in software development [Avg+16]. TD can be found in all
software lifecycle phases, from requirements and architecture specification to
development and testing [KNO12]. A TD is a sub-optimal solution with short-
term benefits that incur an extra cost called interest. The cost of developing
or refactoring a solution to avoid the debt is called the principal [Avg+16].

A challenging and costly type of TD is architectural technical debt (ATD),
which is caused by architectural decisions that affect quality attributes such
as maintainability and evolvability [Avg+16], and other qualities such as
reliability [BMB17b]. Core financial software services, for example, must be
reliable to ensure the money of their clients is handled correctly. Otherwise,
the monetary losses may spread to the clients, the company, and its investors.

Some of the most recently embraced software development techniques to
deal with the growing complexity of software in large companies are related to
adopting a microservices architecture. Such an architecture has been successful
in splitting an entire software solution into smaller and more manageable
pieces of software called microservices, which are easier to develop, test, and
deploy than larger pieces of software like a monolith. However, like any other

166

Background

architectural style, it has drawbacks, such as extra operational complexity and
an extra effort to manage distributed systems [Fow15]. There is scarce evidence
on ATD in Microservices.

In this paper, we conducted a case study in a financing company to
investigate whether repaying ATD in microservices increases the reliability of a
system measured in terms of the number of incidents. Incidents are unwanted
or unexpected interruptions of a system’s services or a reduction in its quality.
They cause extra maintenance costs, decreasing teams’ productivity, software
reliability, and availability. Thus, they are part of the interest of the debts
that cause them. The company in this study repayed ATD with a refactored
architecture. We propose the following research questions (RQs) in the context
of microservices architecture:

1. RQ1: Does repaying the ATD change the type of incidents that occur?

2. RQ2: Does repaying the ATD reduce the number of critical- and high-
priority incidents?

3. RQ3: Does repaying the ATD change the distribution of the incidents
over time for the original and refactored architectures?

RQ1 investigates whether the types of incidents change after the removal of
ATD. An overview of the types of incidents in both architectures is important
to understand which types of incidents have decreased and which ones have
increased.

RQ2 investigates the priority of the incidents. A single incident with
high priority might be much more costly than several lower priority incidents.
Therefore, answering this question helps us understand whether the refactoring
caused a substantial cost change in the project due to critical- and high-priority
incidents.

RQ3 investigates the distribution of the various types of incidents over time.
We aim to understand which types of incidents happen when, and whether
they are recurrent or periodic. Such information may help us understand how
ATD removal affects the occurrence of the different types of incidents.

8.2 Background

8.2.1 Microservices architecture

The microservices architectural style is used by many companies, including
the one participating in this study. Lewis and Fowler [LF14] define it as “an

167

8. Reducing Incidents in Microservices by Repaying Architectural Technical
Debt

approach to developing a single application as a suite of small services, each
running in its own process and communicating with lightweight mechanisms.”
The microservices architectural style is frequently described as an alternative
to monolithic applications built and deployed as a single unit. Microservices
have some advantages over monoliths: they are easier to scale, they have
shorter cycles for test, build and release, and are less frequently affected by
downtime [Fow15]. Microservices are also particularly useful for continuous
delivery because they are usually independent of each other and may be
tested and delivered separately, reducing lead time. There are, however, some
drawbacks and challenges with microservices, such as the extra effort for
handling distributed systems (because each service is deployed separately) and
increased operational complexity [Fow15].

Another concept tightly related to microservices is Service Oriented
Architecture (SOA). In this paper, we consider microservices as one way of
implementing SOA, although there are different views about this topic [Zim17].
In fact, SOA might describe a set of applications that cannot be considered
microservices, such as those using an Enterprise Service Bus (ESB). An ESB
is an infrastructure that mediates requests among services, intercepting their
communications and providing transformation capabilities [NG05]. On the other
hand, microservices invest in a lightweight communication mechanism [LF14].
Both architectural styles share many concepts and techniques, such as circuit
breakers, service discovery, and service registry [MW16].

8.2.2 Architectural Technical Debt (ATD)

ATD is a type of TD that focuses on the product’s architecture. ATD might
slow down the addition of new functionalities and increase maintenance and
other costs. ATD is considered the most challenging type of TD to be unveiled
and managed [BMB17a; Ern+15; KNO12]. There are three main concepts on
TD: debt, interest, and principal [Avg+16]:

• Debt: The debt is a sub-optimal solution with short-term benefits but
will, however, require the payment of interest in the future. For example,
suppose that a development team can (i) spend time planning the software
architecture for scalability or (ii) start the development right away without
a well-designed architecture. Choosing (ii) has the benefit of having a final
version of the software ready earlier, but it might require the software to
be rewritten from scratch later when scalability is required in production,
for example.

168

Background

• Interest: The interest is the extra cost that must be paid because of the
presence of a debt or, from another perspective, the amount that will be
saved if there is no such debt. In the example for the debt above, the
interest is the extra cost for dealing with the lack of scalability, such as
deploying additional servers for supporting more users and costs with
their maintenance.

• Principal: The principal is the cost of developing a solution that avoids
the debt or refactoring a solution to remove the debt. In the previous
example, the principal is the cost in time or any other resources required
to plan the software architecture for scalability in advance.

The importance of ATD motivated static analysis tools to offer a way
of measuring it, mostly through architectural smells [Avg+21]. However, the
interest of ATD has proven difficult to measure, and only a few tools and studies
attempt to quantify it. For example, Martini et al. [MSM18] use productivity
loss, while Xiao et al. [Xia+16] use bugs to quantify the ATD interest. These
approaches do not capture the whole interest because they focus on specific
artifacts. In fact, the whole interest generated by ATD may consist of several
factors [Len+21], ranging from productivity loss to reliability issues to the
degradation of developers’ morale.

Part of the interest in ATD might be visible in the form of incidents, which
decrease the software reliability and availability and cause extra maintenance
costs, which also slows down teams. Other interests, such as delays in lead
time or feature delivery, impossibility to create new features, and others,
are not quantified in this paper. We investigate the effect of repaying ATD
in microservices on the types and number of incidents after refactoring a
microservices architecture (see Figure 8.1).

8.2.3 Company context

This study was conducted in a large, multinational financial services company
with a complex and heterogeneous IT system landscape. The core business
is about performing financial services within the boundaries of risk and
compliance.

8.2.3.1 Company business

The financial sector is subject to a series of tight regulations. Different
governance bodies have different legislations (Basel, MiFID1 I, MiFID II,

1Markets in Financial Instruments Directive

169

8. Reducing Incidents in Microservices by Repaying Architectural Technical
Debt

Figure 8.1: The old microservices architecture had many incidents caused by
the presence of ATD. Our goal is to quantify how many of these incidents were
removed by repaying the debts.

FRTB2) that are prerequisites to having a banking license. Such regulations
define how to report on risk timely; how the company should be exposed
in different markets, currencies, and clients; the limits on risk; data lineage;
and how to report trade activities to authorities. The company operates in
several countries with different national legislations. On top of those, there are
super-national regulations such as those given by the European Union (EU)
that raise another dimension of IT complexity.

The risk computations give a significant business advantage if properly
managed. That is, they should be performed as close to real time as possible,
and the different computation-heavy simulations should be performed in as
much detail as feasible. The business demand on computing needs to be
consistent across a data set of around 20 million daily transactions.

8.2.3.2 Company organization

The company has introduced a separation of duties, where employees either
belong to business, IT, or operations. Every application has (i) an application
owner in the business that is the responsible sponsor and drives the business
requirements, and (ii) an application provider in the IT organization that
is responsible for the application development and delivery. Finally, the

2Fundamental Review of the Trading Book

170

Background

operations team takes accountability for operating the application/service,
being responsible for the Service Level Agreement (SLA) [PMI13]. The majority
of the teams are virtual and operate across national borders.

Over the years, the company faced many organizational changes and merges,
resulting in heterogeneous IT systems, a lack of ownership for older artifacts,
and orphaned business logic in the IT systems.

8.2.3.3 Software architecture

The software architecture of the company’s division that was part of our study
consists of about 1,000 microservices, of which about 150 are business-critical
and form the core of the solution. The services communicate in different ways:
a legacy communication layer solution, a new communication layer solution,
point-to-point service calls, database pumps, direct database connections, file
transfers and mails, external banking networks, and mainframe gateways. The
connectivity layers often contain logic that performs ETL3 and sometimes
business logic.

8.2.3.4 Company process

The need for new compliance and legislation requirements and the inability to
upgrade systems when needed because of TD’s accumulation led to the start
of a large program that built the new communication layer solution introduced
before. The program aimed to simplify some of the complexity, reduce TD and
restore business agility and business reliability.

The focus of the new program was the data foundation and fixing the lack of
accountability, as appointed by the data asset owners, who were responsible for
governing and mandating the processing of various data assets throughout the
organization. A DevOps culture was introduced to deal with the challenging
changes in the process required by the new complications in the logic and
difficulties to test changes.

Originally, the company’s governance model was waterfall-based, inspired
by the PRINCE2 methodology [AXE17], with a series of approval gates: early
architecture approval, solution design approval, and a run gate. Changes were
not possible after a project was in its run state.

The new governance model moved away from the traditional waterfall
methodology to agile with Scrum. Later, the new program embraced the Scaled

3Extraction, Transformation, and Loading; three steps to combine data from multiple
sources.

171

8. Reducing Incidents in Microservices by Repaying Architectural Technical
Debt

Agile Framework (SAFe) with its Agile Release Trains (ART) construct because
of the need to coordinate many projects.

8.2.4 ATD removal (repayment)

The company had an overwhelmingly complex old architecture with thousands
of point-to-point interfaces and a complex and orphaned logic in the integration
among them. Such characteristics led to the occurrence of several incidents,
which created issues related to reliability, availability, and evolvability,
increasing maintenance costs, and reducing time for developing new features.
In a previous study [dMS21], we qualitatively identified a set of debs, their
interest, and principal in several companies, including the one in this paper.
Particularly for the company in this study, the interviewees reported that the
following ATDs were the main causes of several incidents:

• ATD 1: Poor dead-letter queue growth management, in which many
messages were lost, creating incidents.

• ATD 2: Microservice coupling, one of the main causes of cascading
failures, propagating and multiplying incidents.

• ATD 3: Lack of communication standards among microservices, in which
the conversions of formats would cause incidents.

• ATD 4: Use of business logic in communication among services, which
would cause incidents if not properly updated when the involved services
were changed.

• ATD 5: Unnecessary diversity in the technologies chosen to handle
communication among the services, in which they had many queuing
mechanisms from different vendors spread across the services, leading to
complexity, difficulties in communication among services, and potential
incidents.

• ATD 6: Many services using different versions of the same internal
shared libraries, potentially leading to incidents due to incompatibilities
or deprecation.

Additional details regarding those ATDs, such as how we identified them,
their interest, and their principal, might be found in [dMS21].

172

Background
Fi
gu

re
8.
2:

So
lu
tio

n
to

so
lv
e
AT

D
s
2,

4,
an

d
5.

173

8. Reducing Incidents in Microservices by Repaying Architectural Technical
Debt

The company decided to remove such ATDs by simplifying the architecture
and transforming data access to a publish/subscribe model (reducing ATD 2),
where data is published once in a standard format (removing ATDs 3 and 4,
the last because there was no need for business logic for transforming data)
and made available via a distributed streaming platform (in this case, Kafka4,
solving ATD 5). Figure 8.2 presents an overview of the refactoring for some of
the ATDs.

The publish-subscribe pattern was promoted by changing the architecture
into a message-driven style where data was made accessible as messages in a
uniform message format. These messages were to be consumed by microservices
either in real-time or from data stores. The data quality and the canonical
message formats were the accountability of Data Owners, a new role introduced
into the organization.

The queues were decentralized other than the dead-letter queue, which
was removed. The responsibility for the message deliveries was moved to the
microservices themselves, solving ATD 1. Additionally, the company reduced
the use of internal shared libraries, reducing ATD 6.

The refactored architecture was implemented with the following design
goals:

• Always up: Create a message broker that is always online, avoiding the
complex logic of ensuring that a recipient of a message is alive for every
single point-to-point integration. A continuously online message broker
addresses the operational stability issues caused by the microservices’
time coupling.

• Never lose a message: Guarantee message delivery, addressing the
cascading failures issues of which lost messages, time coupling, and
communication failures were the cause.

• Self-service: Bake in responsibilities and governance to a self-service
to help ensure that data ownership, access, and data quality issues
are followed through the technical implementation. Such a self-service
addresses the lack of organizational accountability issues.

• No gossip: Publish all messages in a canonical message format curated
by a responsible data owner. A system is allowed to share only facts
about the information of which the system itself is the golden source.

4https://kafka.apache.org/

174

https://kafka.apache.org/

Methodology

Other information is passed by reference. These guidelines address the
poor-data-quality issues.

Currently, the refactored architecture is serving 100 million daily messages.

8.3 Methodology

We conducted an exploratory single-case study of a large international financial
services company. The research consisted of quantitative and qualitative
analyses of the number of incidents before and after refactoring an old
microservices architecture. During our research, parts of the system remained
in the old architecture, while other parts were migrated to the refactored one.

8.3.1 Case study design

We compared an old architecture with a refactored architecture in the same
product in the studied company. Both architectures were still in use over the
period of this study. The refactored architecture was developed to repay ATDs
identified as the source of several issues, including incidents. According to the
company, incidents are unexpected events causing malfunction in the system,
such as network, credential, and database issues.

We designed our case study as follows: (i) a set of interviews to identify
the ATDs; (ii) additional interviews with architects to discuss incidents; (iii)
quantitative data collection on incidents; (iv) interpretation and validation
of the quantitative data with interviewees from (ii); and (v) results and
interpretation of the data.

This case study is particularly useful because: (i) despite some migration
happening from one architecture to another (which is expected in such cases),
both architectures were being used by the same group of users at the same
time; (ii) the system used to report the incidents for both architectures is the
same, making it easier to compare the data; and (iii) both architectures share
the same vocabulary, such as incidents, priorities, and others.

8.3.2 Data collection

Figure 8.3 presents an overview of our data collection. Each box is explained
in the subsections below.

175

8. Reducing Incidents in Microservices by Repaying Architectural Technical
Debt

8.3.2.1 Preliminary interviews

We started by interviewing 10 subjects from the company to identify the ATDs,
their interest, and their principal. The detailed results from these interviews
are reported in [dMS21]. A summary of the ATDs reported in those previous
interviews related to the incidents is presented in Section 8.2.4. Later, we
interviewed again one architect among those previous subjects and another
architect that we have not met before to understand what kind of information
we could use to measure the interest of the ATD.

All the interviewees were selected by convenience sampling according to their
involvement with the project and availability. The interviews were recorded
and lasted about one hour each.

8.3.2.2 Quantitative data collection

The company provided an architect involved in the project to collect the data
requested by the authors. We requested data specific to incidents in both
architectures as reported in our preliminary interviews. We obtained two
datasets, one for each architecture.

We collected 8330 incidents registered in the company’s internal project
management tool from October 2016 to June 2019, a period in which both
architectures were in operation. Among the incidents, 7571 were reported in
the version with the old architecture, and 759 were reported in the refactored
architecture. The incidents were recorded in two ways: automatically by an
end-to-end monitoring tool or manually for those that could not be identified
by the monitoring tool. The incidents for both architectures were reported with
the same management tool, in the same time frame, and by the same teams,
using similar processes and assessment methods, making the two datasets easily
comparable.

The incidents collected contained the date of the report, a descriptive
summary, the report submitter (a tool used by the company or a person), the
priority (critical, high, medium, or low), and the related architecture (the old
or the refactored one).

8.3.2.3 Data filtering and cleaning

The data we collected was filtered and cleaned based on the interviewees’
information and our understanding of the data we received, as detailed in the
remainder of this section. We finished this phase with a total of 3,383 incidents
to be used in our investigation.

176

Methodology
Fi
gu

re
8.
3:

D
at
a
co
lle

ct
io
n
ov
er
vi
ew

.

177

8. Reducing Incidents in Microservices by Repaying Architectural Technical
Debt

We started by removing repeated incidents. The automatic tools were
running continuously and reported many incidents repeatedly until new versions
were deployed into production by the developers.

According to our preliminary interviews, cascading failures should be
considered a single incident. In fact, the automatic tools reported the same
incident at the same date and time for multiple services. We proceeded by
reducing those incidents to a single one. Our interviewees reported that the
probability of having two or more incidents that were not related was very low,
so it was safe to proceed with this step.

After the previous step, smaller sets of incidents had distinct messages
but were reported at the same minute. Thus, we reduced those sets to single
incidents because the interviewees identified them as cascading incidents with
the same root cause. In the cases where we had distinct priorities, we selected
the incident with the most critical priority.

Furthermore, we grouped the same incidents with different thresholds (e.g.,
more than 80% of disk usage or queue fill percentage). In fact, for example, the
same incident was reported with 80%, 90%, and 100% of disk usage or queue
fill percentage.

Finally, we considered all incidents that had the exact same description
within the same day as single incidents. This was supported by our interviewees.
They said that in those cases, considering the same day, the probability of
having different incidents was irrelevant given the tools they were using for
such reports. This consideration was reasoning that the same incident could
be repeatedly reported until it was fixed. If the incident was reported the next
day, there was a possibility that it was a new incident because they should
have fixed the issue within the same day. Despite the existence of exceptions,
it was not safe to remove those incidents on different days.

8.3.2.4 Member checking

The incidents were categorized according to the process described in Sec-
tion 8.3.3. The results and the categories were discussed and validated in
follow-up interviews with the last two subjects from the preliminary interviews,
a technique known as member checking [Run+12]. In the new interviews, which
were recorded and lasted one hour each, the interviewees visualized a sample
of the data. They were asked if they agreed with the categories created to
group the incidents and whether the incidents we considered as duplicates were
indeed the same.

178

Methodology
Fi
gu

re
8.
4:

C
at
eg
or
ie
s
of

in
ci
de

nt
s.

179

8. Reducing Incidents in Microservices by Repaying Architectural Technical
Debt

8.3.2.5 Adjustments

As a result of previous steps, we updated some categories of incidents and
slightly adjusted how the data was cleaned up.

8.3.3 Data analysis

RQ1: Does repaying ATD change the type of incidents that occur?
We organized the incidents into categories according to our understanding

of the data and the information acquired in the first interviews using thematic
analysis [Run+12]. We used the incident descriptions to classify the incidents
into nine categories represented by rounded squares in Figure 8.4. Such
categories were created iteratively by reviewing the incidents, as in the following
example. Suppose we have the list of incidents below:

1. Unable to login at service-01

2. Service connectivity lost

3. Access denied

We will start with the first incident by identifying it as a “credential
incident,” our first category. We consider the second incident as a “connectivity
incident” for the second category. When analyzing the third incident, we notice
that it can be categorized as a “credential incident,” so there is no need to
create a new category. After repeating such steps for all the incidents in our
database, we created nine different categories. The categories were reviewed
during the process and later validated with one interviewee who worked with
those incidents. A few incidents were reclassified after the interviews.

We explain the types of incidents below. The numbers in parentheses refer
to the yellow indications in Figure 8.4:

• Credential incidents: those that happen when users or services try
to authenticate themselves into a service (1), such as login failures or
certificates expiration.

• Unexpected behavior incidents: unexpected results, such as incorrect
data processing, invalid results, and queue errors, whenever a user runs a
procedure (2).

180

Methodology

• Environment incidents: those related to the environment on which
the service was running. Examples are incidents related to containers,
HTTP servers, virtual disks and machines, and environment variables.
Such incidents might happen, for example, when a service tries to load
or save the information in an environment variable (3).

• Full queue incidents: those that may cause data loss or other problems
due to full queues. Queues are used widely by both systems for
communication among the services and other tasks (4).

• Inaccessibility incidents: those reported when a service is unreachable,
such as when a service tries to communicate with another service (5).

• Connectivity incidents: those reported when the target service is
available, but there are issues in the connectivity, such as package loss
and long delays. It might happen when a service starts to communicate
with another service (5) or when it waits for a response from that service
(6).

• Disk space incidents: those regarding lack of space in the disk for
services that use the disk (7) to save data.

• Crash incidents: those that happen when a service aborts unexpectedly,
usually when a user or a service tries to run a procedure (2) but fails.

• Unknown incidents: any kind of incident that we could not classify
appropriately because insufficient information was available.

We compared the architectures by counting the number of different types
of incidents for both architectures.

RQ2: Does repaying the ATD reduce the number of critical- and high-priority
incidents?

The company’s internal incident management team defines four different
priority levels for the incidents that are used to prioritize the efforts and allocate
personal to solve the issues caused by the incidents. The levels are presented
below.

• Critical: a widespread incident on a business-critical application, making
it inaccessible to users or other services.

• High: an incident making a system partially inaccessible in a single
location.

181

8. Reducing Incidents in Microservices by Repaying Architectural Technical
Debt

• Medium: a non-critical incident causing inconveniences in a particular
system.

• Low: a non-critical incident affecting a single user.

Critical- and high-priority incidents are particularly damaging to the
company because of potential monetary losses and have a high cost for fixing,
such as extra personnel, infrastructure, and time costs. Medium and low
priority incidents cause non-critical issues that will not prevent end-users from
using the system. The issues may not even be visible to the end-users.

The priority for each incident is already in our dataset. We analyzed the
number of incidents for each priority level for both the old and the refactored
architectures.

RQ3: Does repaying ATD change the distribution of the incidents over time
for the original and repaid architectures?

After the refactored architecture was ready, the services were migrated
progressively over time. Consequently, we should expect to see different events
at different points in time. Therefore, we aim to find key events related to the
refactoring and repayment of ATD. External events may increase some kinds
of incidents, such as the need for adequacy to a new regulation. Before we
start our analysis, we presuppose the following patterns:

(a) If the incidents are equally distributed over time, they have a recurrent
cause that may be analyzed.

(b) If the incidents are concentrated at the same point in time, a common
cause might be investigated. If they were found particularly in the last
months in our data, it is possible that new causes just emerged, and we
might expect an increase of this type of incidents in the future.

We then grouped the incidents by quarters of the year.

8.4 Results

Table 8.1 summarizes the data we will discuss in Sections 8.4.1 and 8.4.2
regarding RQ1 and RQ2, respectively, and introduces the basis for answering
RQ3 in Section 8.4.3.

182

Results
Ta

bl
e
8.
1:

In
ci
de

nt
s
by

gr
ou

p
an

d
pr
io
rit

y
in

bo
th

ar
ch
ite

ct
ur
es

an
d
th
ei
r
di
ffe

re
nc

es
.
G
re
en

in
di
ca
te
s
a

re
du

ct
io
n
in

th
e
re
fa
ct
or
ed

ar
ch
ite

ct
ur
e;

re
d
an

in
di
ca
te
s
in
cr
ea
se

in
th
e
re
fa
ct
or
ed

ar
ch
ite

ct
ur
e.

C
ri
tic

al
H
ig
h

M
ed
iu
m

Lo
w

T
ot
al

P
ri
or
it
y

C
at
eg
or
y

O
ld

R
ef
.
D
iff
.
O
ld

R
ef
.
D
iff
.
O
ld

R
ef
.
D
iff
.
O
ld

R
ef
.
D
iff
.

O
ld

R
ef
.
D
iff
.

C
re
de
nt
ia
ls

0
0

0
0

0
0

5
4

-1
1

0
-1

6
4

-2

E
nv
ir
on

m
en
t
0

0
0

0
0

0
8

53
45

11
1

-1
0

19
54

35

In
ac
es
si
bi
lit
y

5
1

-4
8

1
-7

12
2

82
-4
0

94
12
5

31
22
9

20
9

-2
0

C
on

ec
tiv

ity
0

0
0

5
1

-4
9

3
-6

1
0

-1
15

4
-1
1

U
ne
xp
ec
te
d

2
0

-2
5

0
-5

30
7

-2
3

35
0

-3
5

72
7

-6
5

be
ha
vi
or

D
is
k
sp
ac
e

0
0

0
0

0
0

25
64

39
32

11
7

85
57

18
1

12
4

Q
ue
ue

fu
ll

0
0

0
0

0
0

92
0

-9
2

96
0

-9
6

18
8

0
-1
88

C
ra
sh
es

1
0

-1
13

0
-1
3

40
2

0
-4
02

18
91

0
-1
89
1

23
07

0
-2
30
7

U
nk
no

w
n

0
0

0
2

1
-1

7
7

0
10

4
-6

19
12

-7

T
ot
al

8
1

-7
33

3
-3
0

70
0

22
0

-4
80

21
71

24
7

-1
92
4

29
12

47
1

-2
44
1

183

8. Reducing Incidents in Microservices by Repaying Architectural Technical
Debt

8.4.1 RQ1: Does repaying the ATD change the type of incidents
that occur?

From our analysis, we can notice three main highlights regarding RQ1:

1. The total of incidents decreased: A total of 2912 was reported in
the old architecture, against 471 in the refactored one. This represents a
reduction of 84% in the total number of incidents.

2. Despite the overall reduction, two categories of incidents
actually increased: The refactored architecture has more environment
and disk space incidents than the old one. This is due to the new way
the disk and the environment are managed in the new architecture.

3. Two categories of incidents were completely removed: From the
2912 incidents in the old architecture, 2307 were crashes, and 188 were
full queues. Those categories of incidents do not happen anymore in the
refactored architecture. These incidents’ disappearance indicates that
the refactored architecture has better recovery from failures and that the
queues’ decentralization eliminated full queues incidents.

Figure 8.5 presents the remaining types of incidents distributed over time
for both architectures, organized by categories. In summary, we observed a
shift from some types of incidents to others after the ATD repayment.

8.4.2 RQ2: Does repaying the ATD reduce the number of critical-
and high-priority incidents?

The total number of critical- and high-priority incidents for both architectures
is 45, less than 2% of the total number of incidents. Still, according to our
interviewees, the impact of a single critical- or high-priority incident is much
more than the impact of several medium- and low-priority incidents together
because they cause downtime. Moreover, medium- and low-priority incidents
are much easier to fix than critical- and high-priority ones. Thus, we can
highlight the following results regarding RQ2. There was a reduction of the
number of:

1. critical incidents: Only one critical incident was reported in the
refactored architecture against eight in the old one.

184

Results

Figure 8.5: Incidents by category found in both architectures.

0

50

100

150

200

E
nv

iro
nm

en
t

C
on

ne
ct

iv
ity

In
ac

ce
ss

ib
ili
ty

C
re

de
nt

ia
ls

D
is

k
sp

ac
e

U
ne

xp
ec

te
d

be
ha

vi
or

U
nk

no
w

n
(O

th
er

)

Group

T
o

ta
l Architecture

Old
Refactored

2. high-priority incidents: Only three high-priority incidents were
reported in the refactored architecture against 33 in the old one.

8.4.3 RQ3: Does repaying ATD change the distribution of the
incidents over time for the original and repaid
architectures?

Figure 8.6a shows that the incidents are, to some extent, uniformly distributed
over time for the old architecture, whereas Figure 8.6b shows occasional peaks
in the refactored architecture. The data we have for June 2019 (part of the
second quarter of that year) is incomplete. Despite this, it is unlikely that there
is a huge increase of incidents in the missing two weeks of data. Considering
that the missing days would have the same number of incidents as the previous
period, we expect to have missed about 17% more incidents in that period,
keeping the same trends as before. Such an interpretation is also supported by
one of the interviewees who helped us review the results. Some categories of
incidents deserve special attention in the old architecture.

185

8. Reducing Incidents in Microservices by Repaying Architectural Technical
Debt

Fi
gu

re
8.
6:

In
ci
de

nt
s
pe

r
ty
pe

di
st
rib

ut
ed

ov
er

tim
e
fo
r
bo

th
ar
ch
ite

ct
ur
es
.

0

2
5

5
0

7
5

2016 − 4th
2017 − 1st 2017 − 2nd
2017 − 3rd
2017 − 4th
2018 − 1st 2018 − 2nd
2018 − 3rd
2018 − 4th
2019 − 1st 2019 − 2nd

Q
u
a
rt

e
r

p
e
r

y
e
a
r

Total

(a
)

O
ld

 a
rc

h
it

e
c
tu

re
.

0

2
5

5
0

7
5

2016 − 4th
2017 − 1st 2017 − 2nd
2017 − 3rd
2017 − 4th
2018 − 1st 2018 − 2nd
2018 − 3rd
2018 − 4th
2019 − 1st 2019 − 2nd

Q
u
a
rt

e
r

p
e
r

y
e
a
r

Total

(b
)

R
e
fa

c
to

re
d
 a

rc
h
it

e
c
tu

re
.

G
ro

u
p

C
o

n
n

e
c
ti
v
it
y

C
re

d
e

n
ti
a

ls

D
is

k
 s

p
a

c
e

E
n
v
ir
o

n
m

e
n

t

In
a

c
c
e

s
s
ib

ili
ty

U
n

e
x
p

e
c
te

d
 b

e
h

a
v
io

r

U
n

k
n

o
w

n
 (

O
th

e
r)

186

Results

• The unexpected behaviors had a slight increase in the second quarter
of 2017. According to one of our interviewees, a new regulation was
established, and many services had to be updated. Thus, the changes
required by the regulation increased the probability of unexpected
incidents. Thus, there is a chance that such an increase was an occasional
event.

• Unknown causes triggered an increase in disk space incidents during the
second quarter of 2017. Those incidents, however, seem to have been
resolved later.

• Inaccessibility incidents seem to have been common during the whole
lifetime of the old architecture.

On the other hand, Figure 8.6b shows that only three categories of incidents
require immediate attention in the refactored architecture.

• Disk space incidents, which, for reasons unknown to our interviewees, had
a decrease over six months between 2017 and 2018 but have increased
substantially since the second quarter of 2018.

• Inaccessibility incidents increased in number from the first quarter of
2018 onward but lowered again toward the end of the second quarter of
2019.

• Environment incidents had an increase from the second quarter of 2018
but had a sharp decrease in the last months of our data collection. Also,
these incidents seem to be more common in the refactored architecture
than in the old one.

In summary:

1. The refactored architecture has a lower total number of
incidents: Only 471 compared to 2912 from the old architecture.

2. The incidents that increased are not critical- or high-priority:
Although the refactoring seems to have increased some categories of
incidents, those incidents were not high-priority. The priority of the
incidents is assessed internally by the company according to the number
of services impacted and their criticality for the company and clients.

187

8. Reducing Incidents in Microservices by Repaying Architectural Technical
Debt

3. There are many fewer critical- and high-priority incidents after
the refactoring: There was a shift from a considerable number of
critical- and high-priority incidents to more medium- and low-priority
ones.

4. Other considerations: Only the disk space incidents keep increasing
over time in our dataset. Inaccessibility and environment incidents seem
to have been reduced in the second quarter of 2019.

8.5 Discussion

8.5.1 Did removing ATD decrease the number of incidents?

We observed a huge reduction in the number of incidents for most categories,
especially on critical- and high-priority incidents, reducing downtime and
maintenance costs, and increasing the system’s overall reliability.

The number of environment and disk space incidents increased (see
Table 8.1), and the inaccessibility incidents, although their total is lower
in number in the refactored architecture, are concentrated in the same period
of time (see the first quarter of 2018 in Figure 8.6b). Still, those incidents
have a lower priority level, which led our interviewees to affirm that such a
trade-off was acceptable for migrating to the refactored architecture. One of
our interviewees also mentioned that most of those incident increases resulted
from the migration from the old architecture. Such a fact might explain why
the environment and inaccessibility incidents reduced in the second quarter of
2019 (see Figure 8.6b).

On the other hand, disk space incidents deserve more attention due to a
constant increase in our data and might be a source of problems if not properly
controlled. We remind, however, that disk space incidents are triggered by
thresholds and do not necessarily point to a real problem but a possible one.
This also explains why such incidents have lower priorities in our dataset.

8.5.2 The actual cost of the interest

The ultimate goal of measuring ATD is to calculate a monetary gain. This
paper does not provide such a calculation for confidentiality reasons. However,
a cost can be associated with the various types of incidents and the effort spent
on refactoring.

As an example regarding critical incidents, a one-day disruption of forex
trading services, with a revenue stream of 80 million Euro/year, can cost about

188

Discussion

200,000 Euro/day. Similar costs per day would be incurred by disruption to
other business-critical services. Medium- and low-priority incidents also have an
internal cost for fixing them, despite being much lower than when a disruption
is the consequence. Thus, we can infer that decreasing the number of incidents
reduced a high interest cost generated by the ATD.

8.5.3 Implications for research

Refactoring a huge microservices architecture is costly. Without proper cost-
benefit evidence, companies tend not to risk proceeding with the refactoring,
making cases like the one we studied hard to be accessible by researchers.
Our case study reports empirical evidence for researchers regarding one such
valuable case and provides arguments researchers may use to justify further
research on repayment of ATD in microservices, which might be successful and
reduce development costs, and its progress might be followed by a decrease
in the number of incidents. Measuring part of the interest in ATD by using
incidents may be a promising approach.

Our results also present a concrete and reproducible approach researchers
may use to quantify part of the interest in ATD in microservices.

8.5.4 Implications for industry

Many practitioners seek ways to quantify the benefits of removing ATD and
reducing debt costs. However, measuring the impact of architectural changes
is challenging, and there is a lack of approaches in the literature about how to
do it. The current case study shows empirical evidence from an industry case
that it is possible to pay less interest by refactoring microservices. Companies
with a similar context may consider these results relevant for understanding
their cases and promoting refactoring, for example. The study also presents
a concrete and reproducible approach for companies to quantify part of the
interest in ATD in microservices by using incidents to visualize part of the
ATD interest.

8.5.5 Limitations and threats to validity

Our approach is based on several incidents and a limited set of interviews.
We are not considering other variables in which we could measure the effect
of refactoring ATD, such as the number of changes in the system and the
experience of individuals and teams with the technologies involved.

189

8. Reducing Incidents in Microservices by Repaying Architectural Technical
Debt

Another limitation is the lack of data to analyze the causes for the peaks
seen in Figure 8.6b, especially the increase of disk space incidents. We asked
our interviewees about good reasoning for those cases, but they could not point
to any specific information we could verify in our dataset. These are good
starting points for practitioners to investigate some possible future issues.

The removal of the ATD might also have other effects that we have
not considered in this work, such as the number of changes required, the
maintenance, and the management effort. Investigation of such effects in future
works would require different case study setups.

8.6 Related work

de Toledo et al. [dMS21] is a qualitative study reporting the ATDs, their
principal, and their interest found in seven large companies, including the one
in this study. A subset of the ATDs reported by the company in that previous
study was identified here as the studied ATDs that were generating incidents.

Xiao et al. [Xia+16] propose an approach to quantify the ATD interest
by mining error-prone files from a project’s revision history. They propose a
mathematical approach to calculate the interest based on what they define
as the Design Rule Space, “a new form of architectural representation that
uniformly captures both architecture and evolution structures to bridge the gap
between architecture and defect prediction.” Our approach quantifies the interest
in terms of the number of incidents. We also focused on microservices and
looked into the different categories of incidents.

Nord et al. [Nor+12] use qualitative expert judgment to calculate rework
and total ownership costs based on the software architecture to assist ATD
management. Lenarduzzi et al. [Len+20] quantify the TD in microservices
using SonarQube, a tool for inspection of code quality. Their goal is to quantify
the TD before and after a migration from a monolithic to a microservices
architecture to report whether the migration reduced the costs with TD. Since
they use source code, they do not focus on the software architecture. Fontana
et al. [FFZ15] use architectural smells to evaluate ATD. None of these works
quantify the actual interest. Our work, instead, uses quantitative data from
incidents to quantify the interest of the ATD.

8.7 Conclusions and future work

We reported a case study providing evidence that refactoring ATD in
microservices might reduce incidents and downtimes. A reduced amount

190

Conclusions and future work

of incidents leads to an increase in overall system reliability and availability,
consequently reducing maintenance effort and development costs.

We also proposed a way to quantify parts of the interest of ATD in
microservices through the occurrence of incidents. We hope such an approach
is useful for practitioners and researchers while investigating measurements on
ATD.

A few directions remain to be investigated in future works. The first one
is related to the sudden increase of incidents in the refactored architecture
between 2018 and 2019; we need more information to be able to investigate the
causes for it. Another direction is to investigate additional interest costs using
other data sources besides the incidents, such as the costs of implementing new
functionalities and features, which may increase or decrease with a refactored
architecture. Finally, a last direction is to investigate the principal of the ATD,
which comprises the costs for architecture refactoring.

Authors’ addresses

Saulo S. de Toledo University of Oslo, Postboks 1080 Blindern, 0316 Oslo,
Norway, saulos@ifi.uio.no

Antonio Martini University of Oslo, Postboks 1080 Blindern, 0316 Oslo,
Norway, antonima@ifi.uio.no

Dag I. K. Sjøberg University of Oslo, Postboks 1080 Blindern, 0316 Oslo,
Norway, dagsj@ifi.uio.no

Agata Przybyszewska IT University of Copenhagen, Copenhagen, Denmark
agpr@itu.dk

Johannes Skov Frandsen Copenhagen, Denmark johannesfrandsen@me.com

191

mailto:saulos@ifi.uio.no
mailto:antonima@ifi.uio.no
mailto:dagsj@ifi.uio.no
mailto:agpr@itu.dk
mailto:johannesfrandsen@me.com

Chapter 9

Discussion and Conclusions
In this chapter, we discuss the contributions of this thesis concerning the RQs
introduced in Chapter 3. Later we highlight possible future work and present
our conclusions.

9.1 Research questions and contributions of the thesis

9.1.1 RQ1: What are MS-ATDs?

We investigated this first research question (RQ1) into the following sub-
questions:

• RQ1.1: What are the most critical MS-ATDs?

• RQ1.2: What is the negative impact of such MS-ATDs?

We dedicated two studies to answer RQ1: Studies 1 and 2. In Study 1, we
created a catalog of the most critical MS-ATDs in the context of companies using
microservices (RQ1.1) through a cross-company study. Our catalog included 16
MS-ATDs. Some examples are microservice coupling, lack of communication
standards among services, poor API design, and misuse of shared libraries.
Previous authors created related catalogs but with different purposes. Taibi et
al. [TL18] proposed a catalog of bad smells on microservices. Taibi et al. [TLP20]
defined a taxonomy of microservice anti-patterns (including solutions) based
on interviews with experienced practitioners. Bogner et al. [Bog+19a] reported
several issues related to MS-ATDs in a qualitative study with companies to
explore evolvability on microservices. However, none of these works discuss
the extent to which the bad smells and anti-patterns reported are related to
MS-ATDs. Bad smells and anti-patterns are debts if they have an interest.
In some cases, they do not need fixing. In other cases, their cost is high
and requires immediate attention. Additionally, the costs and solutions vary
according to the context of the project. This thesis differs from those works
by systematically investigating debt, interest, and principal in microservices
architectures. Additionally, we identified several MS-ATDs that were not
related to any of the previously identified bad smells or anti-patterns.

193

9. Discussion and Conclusions

We performed exploratory studies, and it was not possible to calculate
precise values for the interest and the principal of the debts. We asked for
quantitative data to support such a calculation, but practitioners could not
provide it. However, we represented each debt’s interest by negative impact
and each debt’s principal by possible solutions (RQ1.2). The actual costs for
principal and interest may vary according to the context of the project. However,
our description of the impact and solutions may help practitioners mitigate
costs with MS-ATDs in their projects even without a precise calculation that
would not be valid in other contexts anyways.

Study 2 presented a deeper investigation of one of the MS-ATDs from Study
1. We discussed the impact of the debt under investigation in the development
agility. The topic is important because the microservice architecture should
improve development agility.

Among the negative impact of some MS-ATDs in our catalog, we found
potential breaks on microservices, dependencies among teams (which may
impact their efficiency), management overhead, and difficulties in providing
new features. We presented solutions reported by the informants for many of
the debts, such as investing in a good API design, identifying and replacing
shared libraries with microservices, or defining standards for communication.

9.1.2 RQ2: How do MS-ATDs occur?

We investigated this second research question by answering (RQ2) the following
sub-questions:

• RQ2.1: How do MS-ATDs occur in early-stage microservices?

• RQ2.2: How do MS-ATDs occur in mature microservice
systems?

We answered RQ2.1 in Study 3 and RQ2.2 in Studies 1 and 2.
Previous work described bad smells [TL18], anti-patterns [TLP20], and

other issues [Bog+19a] in microservices. Still, they did not investigate whether
those issues are related to MS-ATDs, their relation with the company contexts,
and what are the causes of the accumulation of debts. MS-ATDs have interest
and principal that may vary depending on the project context. For example,
companies may decide to share databases among services due to licensing costs.
The licensing fees might be greater than the costs of sharing the database.
However, failures in the database may affect all services at the same time.
Therefore, the companies must decide what to do based on the project needs.

194

Research questions and contributions of the thesis

This thesis investigates the MS-ATDs and their reasons in early-stage and
mature microservice architectures.

Some MS-ATDs in mature microservice systems were more common than
others, and some debts seem to be more context-dependent. Several companies
reported the existence of unnecessary settings and microservice coupling, but
only a few reported the inadequate use of APIs, for example. Microservice
coupling seems to be a debt less context-dependent than the inadequate use
of APIs. Although we cannot claim causality, it seems reasonable to think
that companies making extensive use of particular APIs are more susceptible
to using them in a non-optimal way than companies that do not use them.
Therefore, practitioners may find it helpful to start reading our report guided
by the MS-ATDs from companies with a context similar to their companies.
Similarly, researchers may find it beneficial to understand the occurrence of
the debts according to different contexts. They may use the contexts to drive
new research in new companies.

Many research studies on microservices investigate migration techniques
from previous architectures to microservices [DLM19], but we did not find
studies investigating the accumulation of MS-ATDs in early stages of migration.
Study 3 investigated the accumulation of MS-ATDs in three companies in
the early stages of migration to microservices that aimed to modernize their
software architecture (from monolithic, SOA, etc.). We examined a subset of
MS-ATDs from Study 1 in the context of these other companies. There were not
many microservices for the companies in Study 3 since they were in the early
stages of migration. However, we found evidence that some MS-ATDs may
already occur in those early stages. Therefore, some MS-ATDs may be avoided
or mitigated in the early stages of migration before they get too costly. On the
other hand, some debts speed up the migration process, but practitioners must
be aware of their costs to address them timely.

Study 3 may also help researchers address the occurrence of MS-ATDs in
the early stages of migration to microservices. They can extend the study in
other companies, add more debts, or choose one or more of those reported
debts for further investigation.

Studies 1, 2, and 3 combined help us know which debts occur earlier and
their costs. These studies give us an overview of MS-ATDs in companies
experienced with microservices and companies starting to use this architectural
style. This knowledge may help practitioners manage the MS-ATDs repayment
since they know more about which debts are likely in the short and long terms
and may be ready for those MS-ATDs beforehand.

195

9. Discussion and Conclusions

9.1.3 RQ3: How to prioritize MS-ATDs?

Prioritization is one of the main activities for managing ATD [LAL15]. Previous
studies addressed the prioritization of ATD from distinct points of view. Martini
and Bosh [MB16b] proposed a method and a tool (AnaConDebt) to support
prioritization and decision-making for ATDs. The proposed method applies
to ATD in general and has a learning curve. The tool is commercial and
currently not accessible to the general public. We looked for a simpler method
to prioritize MS-ATDs in this work. Martini et al. [Mar+18] identified and
prioritized ATDs through architectural smells identifiable by another tool called
Arcan [Fon+17]. Arcan can detect a limited set of architectural smells and did
not detect smells specific to microservices at the time of that research.

For Martini and Bosch [MB16b], ATD management is mainly a risk
assessment practice. Therefore, we investigated RQ3 from a risk (of the
interest) perspective and assessed methods to prioritize MS-ATDs. We can
divide RQ3 into the following sub-questions, both addressed in Study 3:

• RQ3.1: Which MS-ATDs do practitioners consider risky?

• RQ3.2: Which methods can companies use to prioritize the
avoidance or repayment of MS-ATDs?

Some MS-ATDs are riskier than others. The risk of the debt also depends
on the context of the project. For example, the impact caused by a confidential
data leak due to using an insecure authorization library in the code is more
significant in an application publicly exposed than in an application used in a
private, secure network.

Study 3 answers RQ3.1 by calculating a risk score for MS-ATDs based on
the probability of the MS-ATDs to occur, the difficulty of repaying it, and
the importance of the debt for the practitioners. We found which debts are
riskier than others according to the project context. Our method also highlights
that some MS-ATDs are less context-dependent than others. For example, the
microservice coupling as MS-ATD has the higher risk scores for all companies
in Study 3. In contrast, the debt “excessive diversity” has different risk levels
for distinct companies. Finally, Study 3 provides a method for prioritization of
the MS-ATDs based on the risk scores. The approach proposed in Study 3 is
new and completely different from previous approaches for debt prioritization.
It is also lightweight and does not require tools to be used.

Practitioners involved in the study well accepted the approach, which can
be easily adapted to other projects in their contexts. Researchers may also

196

Research questions and contributions of the thesis

benefit from the study by having a new approach for prioritizing MS-ATDs
and several discussion points that can support further research. Researchers
can also investigate the usefulness of our approach with different instances of
MS-ATDs, such as the others presented in the catalog from Study 1 and not
studied during Study 3.

9.1.4 RQ4: What are the solutions and effects of repaying or
avoiding MS-ATDs?

After deciding what MS-ATDs to repay, practitioners must know how to do
it (or avoid it in the future). Additionally, knowing the effects of the MS-
ATD repayment may help practitioners understand better how to make this
repayment. Studies 1, 2, and 4 investigate RQ4 from the perspective of the
following sub-questions:

• RQ4.1: What are possible solutions to repay or avoid MS-
ATDs?

• RQ4.2: What are the effects of repaying MS-ATDs on their
interest?

Studies 1 and 2 present several solutions for the MS-ATDs identified in
RQ1 and thus answer RQ4.1. Taibi et al. [TLP20] also proposed solutions
for microservices anti-patterns that are related to MS-ATDs. However, our
catalog is distinct from theirs, and we focused on MS-ATDs, while they focused
on anti-patterns. The list of solutions we described is not exhaustive, i.e.,
there might exist other solutions beyond those presented. However, it comes
from mature and large microservice projects, so it might be helpful for other
practitioners. Examples of solutions are:

• Redesigning microservices to use messaging approaches to communicate
when there are many complex API calls.

• Limiting the set of technologies when the technology diversity becomes
hard to manage from a project perspective.

• Replacing specific shared libraries with microservices to avoid cascading
upgrades. Or replacing other shared libraries with code within the services
for smaller changes, i.e., when the effort is less costly than the cascading
upgrades.

197

9. Discussion and Conclusions

• Using an API first approach to design the microservices to reduce the
coupling generated by poorly designed interfaces among the services.

Companies running microservices may avoid redesigning working software
if they find that the cost of MS-ATDs interest is lower than the cost of
their principal. Therefore, Study 4 presented the reduction of incidents after
repayment of the debts in a large company. There were no similar studies
regarding MS-ATDs. The incidents were a proxy of part of the debts’ interest.
Our study shows that the solutions applied by the studied company drastically
reduced the number and the criticality of incidents.

Study 4 is mainly informative to practitioners as an example that MS-ATDs
repayment may be beneficial in the long run. On the other hand, researchers
may use it as an example to indirectly measure interest, a proposal that is
also new in TD research. No previous work on TD used indirect measures
to measure debt interest. Measuring the interest of MS-ATDs is difficult in
practice, and Study 4 uses the occurrence of incidents as a proxy of the interest.

9.2 Future work

This thesis contributed to the body of knowledge of ATD and microservice
areas. However, that also opened room for several other research questions
that remain open and require future work. Future research can expand the
catalog introduced in Study 1 with new debts, costs, and solutions in contexts
that we have not studied. Additionally, a survey to gather more data about
the MS-ATDs already reported would help increase the data’s generalizability.
It is also possible for future works to dive deep into each of the MS-ATDs
to investigate measures for costs, methods for identification and mitigation,
impact from different perspectives (such as on Agility as done in Study 2), or
the characteristics of the debt in different contexts. All those suggestions may
also target supporting decision-making on MS-ATDs repayment.

Future research may also improve the prioritization approach proposed in
Study 3. Our first suggestion is to replace the answers with a Likert scale. So
the method can capture a more precise measure of the respondents’ uncertainty
when they answer “partially” or similar responses. Study 3 also does not identify
which debts must be paid from those that do not need repayment. In a list of
seven debts, the practitioners have a priority ranking but not an indication of
how many of the top items need immediate repayment. Further research may
try to improve such recommendations to practitioners. Additionally, long-term
studies on companies using our prioritization approach would help understand

198

Conclusion

the implications of adopting it. Future work may extend our method by
considering additional prioritization aspects.

Measuring the costs of any ATD is hard, and researchers have the challenge
of finding measures that do not require too much overhead, learning or process
changes in organizations’ software development. Study 4 used incidents as
a proxy to measure part of MS-ATDs’ interest indirectly. Future research
may investigate the approach in other studies or find other proxies measures.
Further work may also investigate the principal. Finally, repaying MS-ATDs
may impact other areas not explored in the study, such as software maintenance
or management effort. Future works may take those aspects under consideration.

9.3 Conclusion

Microservices are being widely adopted by software development organizations.
The market competitiveness and pressure to meet business requirements demand
applications to evolve continuously, adding new features and being always
available. The maintenance windows that were typical in many software
applications in the past are no longer acceptable today. Microservices allow
companies to meet these and many other requirements.

However, software development organizations are still learning how to use
microservices. Their inexperience with this architectural style leads to debts
with high interest. We created a catalog containing 16 different MS-ATDs,
their costs, and solutions to help practitioners and researchers understand
MS-ATDs and reduce the current knowledge gap that leads to high costs. We
also proposed an approach for prioritizing MS-ATDs that practitioners and
researchers can use.

Finally, we reported a case study providing evidence that repaying MS-ATDs
might reduce incidents and software downtime. Fewer incidents increase system
reliability and availability, thus reducing maintenance effort and development
costs. We also used incidents to quantify part of the MS-ATDs’ interest.
Practitioners and researchers can use such a novel approach to measure ATD.

In this thesis we presented new knowledge about occurrences of MS-ATDs,
their negative costs and solutions, and proposed a prioritization approach for
MS-ATDs and a proxy for quantifying the MS-ATD interest based on incidents.

199

Bibliography

[AB13] Alzaghoul, E. and Bahsoon, R. “CloudMTD: Using real options to
manage technical debt in cloud-based service selection”. In: 2013
4th International Workshop on Managing Technical Debt, MTD
2013 - Proceedings. IEEE Computer Society, 2013, pp. 55–62.

[Alv+14] Alves, N. S. R. et al. “Towards an ontology of terms on technical
debt”. In: Proceedings - 2014 6th IEEE International Workshop
on Managing Technical Debt, MTD 2014. Institute of Electrical
and Electronics Engineers Inc., Dec. 2014, pp. 1–7.

[Alv+16] Alves, N. S. R. et al. “Identification and management of technical
debt: A systematic mapping study”. In: Information and Software
Technology vol. 70 (Feb. 2016), pp. 100–121.

[Avg+16] Avgeriou, P. et al. “Managing Technical Debt in Software
Engineering (Dagstuhl Seminar 16162)”. In: Dagstuhl Reports
vol. 6, no. 4 (2016). Ed. by Avgeriou, P. et al., pp. 110–138.

[Avg+21] Avgeriou, P. C. et al. “An Overview and Comparison of Technical
Debt Measurement Tools”. In: IEEE Software vol. 38, no. 3 (2021),
pp. 61–71.

[AXE17] AXELOS. Managing Successful Projects with PRINCE2. Ed. by
The Stationery Office. 6th ed. The Stationery Office, 2017, p. 400.

[Bes+18] Besker, T. et al. “Embracing Technical Debt, from a Startup
Company Perspective”. In: 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, Sept.
2018, pp. 415–425.

[BHJ16] Balalaie, A., Heydarnoori, A., and Jamshidi, P. Microservices
Architecture Enables DevOps: Migration to a Cloud-Native Archi-
tecture. May 2016.

[BMB16] Besker, T., Martini, A., and Bosch, J. “A Systematic Literature
Review and a Unified Model of ATD”. In: Proceedings - 42nd
Euromicro Conference on Software Engineering and Advanced
Applications, SEAA 2016. IEEE, Aug. 2016, pp. 189–197.

201

Bibliography

[BMB17a] Besker, T., Martini, A., and Bosch, J. “The pricey bill of Technical
Debt: When and by whom will it be paid?” In: Proceedings - 2017
IEEE International Conference on Software Maintenance and
Evolution, ICSME 2017. IEEE, Sept. 2017, pp. 13–23.

[BMB17b] Besker, T., Martini, A., and Bosch, J. “Time to pay up: Technical
debt from a software quality perspective”. In: CIbSE 2017 -
XX Ibero-American Conference on Software Engineering. 2017,
pp. 235–248.

[BMB18] Besker, T., Martini, A., and Bosch, J. “Managing architectural
technical debt: A unified model and systematic literature review”.
In: Journal of Systems and Software vol. 135 (Jan. 2018), pp. 1–16.

[Bog+19a] Bogner, J. et al. “Assuring the Evolvability of Microservices:
Insights into Industry Practices and Challenges”. In: IEEE
International Conference on Software Maintenance and Evolution
(ICSME). Cleveland, Ohio, USA, 2019, pp. 546–556.

[Bog+19b] Bogner, J. et al. “Towards a Collaborative Repository for the
Documentation of Service-Based Antipatterns and Bad Smells”.
In: Proceedings - 2019 IEEE International Conference on Software
Architecture - Companion, ICSA-C 2019. Institute of Electrical
and Electronics Engineers Inc., May 2019, pp. 95–101.

[Bus+21] Bushong, V. et al. “On Microservice Analysis and Architecture
Evolution: A Systematic Mapping Study”. In: Applied Sciences
vol. 11, no. 17 (Aug. 2021).

[Cen20] Centers for Disease Control and Prevention. Calculated Variables
in the 2019 Behavioral Risk Factor Surveillance System (BRFSS)
Data File. Department of Health and Human Services, July 2020.

[Cle85] Cleveland, W. S. The Elements of Graphing Data. Ed. by
Monterey. California, United States: Wadsworth Advanced Books
and Software, 1985, p. 323.

[CLM21] Ciolkowski, M., Lenarduzzi, V., and Martini, A. 10 Years of
Technical Debt Research and Practice: Past, Present, and Future.
Nov. 2021.

[CS15] Corbin, J. M. and Strauss, A. L. Basics of qualitative research:
techniques and procedures for developing grounded theory. Fourth
edition. SAGE, 2015.

[Cun92] Cunningham, W. “The WyCash portfolio management system”.
In: SIGPLAN OOPS Messenger vol. 4, no. 2 (1992), pp. 29–30.

202

Bibliography

[DB12] De Silva, L. and Balasubramaniam, D. “Controlling software
architecture erosion: A survey”. In: Journal of Systems and
Software vol. 85, no. 1 (Jan. 2012), pp. 132–151.

[de +19] de Toledo, S. S. et al. “Architectural Technical Debt in Microser-
vices: A Case Study in a Large Company”. In: 2019 IEEE/ACM
International Conference on Technical Debt (TechDebt). Montreal,
Quebec - CA: IEEE, May 2019, pp. 78–87.

[DLM18] Di Francesco, P., Lago, P., and Malavolta, I. “Migrating Towards
Microservice Architectures: An Industrial Survey”. In: Proceedings
- 2018 IEEE 15th International Conference on Software Architec-
ture, ICSA 2018. IEEE, Apr. 2018, pp. 29–38.

[DLM19] Di Francesco, P., Lago, P., and Malavolta, I. “Architecting with
microservices: A systematic mapping study”. In: Journal of
Systems and Software vol. 150 (Apr. 2019), pp. 77–97.

[DML17] Di Francesco, P., Malavolta, I., and Lago, P. “Research on
Architecting Microservices: Trends, Focus, and Potential for
Industrial Adoption”. In: 2017 IEEE International Conference on
Software Architecture (ICSA). Apr. 2017, pp. 21–30.

[dMS21] de Toledo, S. S., Martini, A., and Sjøberg, D. I. K. “Identifying
architectural technical debt, principal, and interest in microser-
vices: A multiple-case study”. In: Journal of Systems and Software
vol. 177 (July 2021).

[Dra+17] Dragoni, N. et al. “Microservices: Yesterday, today, and tomorrow”.
In: Present and Ulterior Software Engineering. Cham: Springer
International Publishing, 2017. Chap. 12, pp. 195–216.

[Ern+15] Ernst, N. A. et al. “Measure it? Manage it? Ignore it? Software
practitioners and Technical Debt”. In: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering -
ESEC/FSE 2015. New York, New York, USA: ACM Press, 2015,
pp. 50–60.

[Eva04] Evans, E. Domain-driven design: tackling complexity in the heart
of software. Addison-Wesley Professional, 2004, p. 529.

[FFZ15] Fontana, F. A., Ferme, V., and Zanoni, M. “Towards Assessing
Software Architecture Quality by Exploiting Code Smell Rela-
tions”. In: Proceedings - 2nd International Workshop on Software
Architecture and Metrics, SAM 2015. IEEE, July 2015, pp. 1–7.

203

Bibliography

[Fon+17] Fontana, F. A. et al. “Arcan: A Tool for Architectural Smells
Detection”. In: 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW). IEEE, Apr. 2017, pp. 282–285.

[Fow15] Fowler, M. Microservice Trade-Offs. July 2015.
[Fur+18] Furda, A. et al. “Migrating Enterprise Legacy Source Code to Mi-

croservices: On Multitenancy, Statefulness, and Data Consistency”.
In: IEEE Software vol. 35, no. 3 (May 2018), pp. 63–72.

[FY97] Foote, B. and Yoder, J. W. “Big Ball of Mud”. In: 4th Pattern
Languages of Programming Conference (PLoP 1997). Monticello,
Illinois, USA, 1997.

[GS11] Guo, Y. and Seaman, C. “A portfolio approach to technical debt
management”. In: ACM Press, 2011, pp. 31–34.

[GS87] Garcia-Molina, H. and Salem, K. “Sagas”. In: ACM SIGMOD
Record vol. 16, no. 3 (1987), pp. 249–259.

[Guo+11] Guo, Y. et al. “Tracking technical debt - An exploratory
case study”. In: IEEE International Conference on Software
Maintenance, ICSM. 2011, pp. 528–531.

[HS17] Hasselbring, W. and Steinacker, G. “Microservice architectures for
scalability, agility and reliability in e-commerce”. In: Proceedings
- 2017 IEEE International Conference on Software Architecture
Workshops, ICSAW 2017: Side Track Proceedings. Institute of
Electrical and Electronics Engineers Inc., June 2017, pp. 243–246.

[HW12] Hohpe, G. and Woolf, B. Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions. 1st. Addison-
Wesley, 2012.

[KH19] Knoche, H. and Hasselbring, W. “Drivers and Barriers for Mi-
croservice Adoption - A Survey among Professionals in Germany”.
In: Enterprise Modelling and Information Systems Architectures
(EMISAJ) vol. 14 (Jan. 2019), pp. 1–35.

[KNO12] Kruchten, P., Nord, R. L., and Ozkaya, I. “Technical debt: From
metaphor to theory and practice”. In: IEEE Software vol. 29, no. 6
(2012), pp. 18–21.

[LAL15] Li, Z., Avgeriou, P., and Liang, P. “A systematic mapping study
on technical debt and its management”. In: Journal of Systems
and Software vol. 101 (Mar. 2015), pp. 193–220.

204

Bibliography

[Len+20] Lenarduzzi, V. et al. “Does migrating a monolithic system to
microservices decrease the technical debt?” In: Journal of Systems
and Software vol. 169 (Nov. 2020).

[Len+21] Lenarduzzi, V. et al. “A systematic literature review on Technical
Debt prioritization: Strategies, processes, factors, and tools”. In:
Journal of Systems and Software vol. 171 (Jan. 2021).

[LF14] Lewis, J. and Fowler, M. Microservices: a definition of this new
architectural term. Mar. 2014.

[Li+19] Li, W. et al. “Service Mesh: Challenges, state of the art, and future
research opportunities”. In: Proceedings - 13th IEEE International
Conference on Service-Oriented System Engineering, SOSE 2019,
10th International Workshop on Joint Cloud Computing, JCC
2019 and 2019 IEEE International Workshop on Cloud Computing
in Robotic Systems, CCRS 2019. Institute of Electrical and
Electronics Engineers Inc., May 2019, pp. 122–127.

[LLA14] Li, Z., Liang, P., and Avgeriou, P. “Architectural Debt Man-
agement in Value-Oriented Architecting”. In: Economics-Driven
Software Architecture. 2014, pp. 183–204.

[LLA15] Li, Z., Liang, P., and Avgeriou, P. “Architectural Technical
Debt Identification Based on Architecture Decisions and Change
Scenarios”. In: IEEE, May 2015, pp. 65–74.

[LT18] Lenarduzzi, V. and Taibi, D. “Microservices, Continuous Architec-
ture, and Technical Debt Interest: An Empirical Study”. In: Eu-
romicro SEAA. Work in Progress (Oct. 2018). arXiv: 1810.10855.

[MA18] Marquez, G. and Astudillo, H. “Actual Use of Architectural
Patterns in Microservices-Based Open Source Projects”. In:
Proceedings - Asia-Pacific Software Engineering Conference,
APSEC. Vol. 2018-Decem. IEEE Computer Society, July 2018,
pp. 31–40.

[Mar+18] Martini, A. et al. “Identifying and prioritizing architectural debt
through architectural smells: A case study in a large software
company”. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Vol. 11048 LNCS. Madrid, Spain, 2018,
pp. 320–335.

205

http://arxiv.org/abs/1810.10855

Bibliography

[MB15] Martini, A. and Bosch, J. “Towards Prioritizing Architecture
Technical Debt: Information Needs of Architects and Product
Owners”. In: IEEE, Aug. 2015, pp. 422–429.

[MB16a] Martini, A. and Bosch, J. “A multiple case study of continuous
architecting in large agile companies: current gaps and the
CAFFEA framework”. In: Proceedings - 2016 13th Working
IEEE/IFIP Conference on Software Architecture, WICSA 2016.
Institute of Electrical and Electronics Engineers Inc., July 2016,
pp. 1–10.

[MB16b] Martini, A. and Bosch, J. “An empirically developed method to
aid decisions on architectural technical debt refactoring: AnaCon-
Debt”. In: Proceedings of the 38th International Conference on
Software Engineering Companion - ICSE ’16. New York, New
York, USA: ACM Press, 2016, pp. 31–40.

[MB17] Martini, A. and Bosch, J. “On the interest of architectural technical
debt: Uncovering the contagious debt phenomenon”. In: Journal
of Software: Evolution and Process vol. 29, no. 10 (2017), pp. 1–18.

[MBC15] Martini, A., Bosch, J., and Chaudron, M. “Investigating Archi-
tectural Technical Debt accumulation and refactoring over time:
A multiple-case study”. In: Information and Software Technology.
Vol. 67. Elsevier, Nov. 2015, pp. 237–253.

[McB07] McBride, M. R. “The software architect”. In: Communications of
the ACM vol. 50 (5 May 2007), pp. 75–81.

[Mo+19] Mo, R. et al. “Architecture Anti-patterns: Automatically De-
tectable Violations of Design Principles”. In: IEEE Transactions
on Software Engineering (Apr. 2019), pp. 1–1.

[Mos+18] Mosqueira-Rey, E. et al. “A systematic approach to API usability:
Taxonomy-derived criteria and a case study”. In: Information and
Software Technology vol. 97 (May 2018), pp. 46–63.

[MSM18] Martini, A., Sikander, E., and Madlani, N. “A semi-automated
framework for the identification and estimation of Architectural
Technical Debt: A comparative case-study on the modularization of
a software component”. In: Information and Software Technology
vol. 93 (Jan. 2018), pp. 264–279.

[MVA18] Márquez, G., Villegas, M. M., and Astudillo, H. “A pattern
language for scalable microservices-based systems”. In: ACM
International Conference Proceeding Series. 2018, pp. 1–7.

206

Bibliography

[MW16] Montesi, F. and Weber, J. “Circuit Breakers, Discovery, and API
Gateways in Microservices”. In: CoRR vol. abs/1609.0 (2016).
arXiv: 1609.05830v2.

[New17] Newman, S. Building Microservices: Designing Fine-Grained
Systems. 1st. O’Reilly Media, Inc., 2017.

[New19] Newman, Sam. Monolith to Microservices: Evolutionary Patterns
to Transform Your Monolith. 1st. O’Reilly Media, Inc., 2019,
p. 221.

[NG05] Niblett, P. and Graham, S. “Events and service-oriented archi-
tecture: The OASIS web services notification specifications”. In:
IBM Systems Journal vol. 44, no. 4 (2005), pp. 869–886.

[Nor+12] Nord, R. L. et al. “In search of a metric for managing architectural
technical debt”. In: Proceedings of the 2012 Joint Working
Conference on Software Architecture and 6th European Conference
on Software Architecture, WICSA/ECSA 2012. IEEE, Aug. 2012,
pp. 91–100.

[PAM19] Pigazzini, I., Arcelli Fontana, F., and Maggioni, A. “Tool support
for the migration to microservice architecture: An industrial case
study”. In: LNCS. Vol. 11681 LNCS. Springer Verlag, Sept. 2019,
pp. 247–263.

[PMI13] PMI, ed. A Guide to the Project Management Body of Knowl-
edge (PMBOK Guide). 5th ed. Newtown Square, PA: Project
Management Institute, 2013.

[PRT21] Panichella, S., Rahman, M., and Taibi, D. “Structural Coupling
for Microservices”. In: Proceedings of the 11th International Con-
ference on Cloud Computing and Services Science. SCITEPRESS
- Science and Technology Publications, May 2021, pp. 280–287.
eprint: 2103.04674.

[RH08] Runeson, P. and Höst, M. “Guidelines for conducting and reporting
case study research in software engineering”. In: Empirical
Software Engineering vol. 14, no. 2 (Dec. 2008), p. 131.

[Ric16] Richards, M. Microservices vs. Service-Oriented Architecture. Ed.
by Barber, N. and Roumeliotis, R. First. O’Reilly Media, Inc.,
2016, p. 45.

207

http://arxiv.org/abs/1609.05830v2
2103.04674

Bibliography

[RK98] Reddy, P. K. and Kitsuregawa, M. “Reducing the blocking in two-
phase commit protocol employing backup sites”. In: Proceedings -
3rd IFCIS International Conference on Cooperative Information
Systems, CoopIS 1998. Vol. 1998-Augus. Institute of Electrical
and Electronics Engineers Inc., 1998, pp. 406–415.

[Rob02] Robson, C. Real World Research: A Resource for Social Scientists
and Practitioner-Researchers. 2nd ed. Blackwell Publishing, 2002.

[RSZ17] Rademacher, F., Sachweh, S., and Zundorf, A. “Differences be-
tween model-driven development of service-oriented and microser-
vice architecture”. In: Proceedings - 2017 IEEE International
Conference on Software Architecture Workshops, ICSAW 2017:
Side Track Proceedings. Institute of Electrical and Electronics
Engineers Inc., June 2017, pp. 38–45.

[Run+12] Runeson, P. et al. Case Study Research in Software Engineering:
Guidelines and Examples. 1st. Wiley Publishing, 2012.

[SB21] Sjøberg, D. I. K. and Bergersen, G. R. “Construct Validity in
Software Engineering”. In: (Mar. 2021).

[Sch13] Schmid, K. “A formal approach to technical debt decision making”.
In: QoSA 2013 - Proceedings of the 9th International ACM Sigsoft
Conference on the Quality of Software Architectures. New York,
New York, USA: ACM Press, 2013, pp. 153–162.

[SDJ07] Sjøberg, D. I. K., Dybå, T., and Jørgensen, M. “The future of
empirical methods in software engineering research”. In: FoSE
2007: Future of Software Engineering. 2007, pp. 358–378.

[SS20] Schwaber, K. and Sutherland, J. The Scrum Guide: The Definitive
Guide to Scrum. 2020.

[STV18] Soldani, J., Tamburri, D. A., and Van Den Heuvel, W. J. “The
pains and gains of microservices: A Systematic grey literature
review”. In: Journal of Systems and Software vol. 146 (Dec. 2018),
pp. 215–232.

[Thö15] Thönes, J. “Microservices”. In: IEEE Software vol. 32, no. 1 (Jan.
2015), p. 116.

[TL18] Taibi, D. and Lenarduzzi, V. “On the Definition of Microservice
Bad Smells”. In: IEEE Software vol. 35, no. 3 (May 2018), pp. 56–
62.

208

Bibliography

[TLP20] Taibi, D., Lenarduzzi, V., and Pahl, C. “Microservices anti-
patterns: A taxonomy”. In: Microservices: Science and Engineer-
ing. Ed. by Bucchiarone, A. et al. Cham: Springer International
Publishing, 2020, pp. 111–128.

[UKS19] Unger-Windeler, C., Klunder, J., and Schneider, K. “A Mapping
Study on Product Owners in Industry: Identifying Future Research
Directions”. In: IEEE, May 2019, pp. 135–144.

[VB02] Van Gurp, J. and Bosch, J. “Design erosion: Problems and causes”.
In: Journal of Systems and Software vol. 61, no. 2 (Mar. 2002),
pp. 105–119.

[Ver+21] Verdecchia, R. et al. “Building and evaluating a theory of
architectural technical debt in software-intensive systems”. In:
Journal of Systems and Software vol. 176 (June 2021), p. 110925.

[VML18] Verdecchia, R., Malavolta, I., and Lago, P. “Architectural technical
debt identification: The research landscape”. In: Proceedings -
International Conference on Software Engineering. 2018, pp. 11–
20.

[Vog08] Vogels, W. “Eventually consistent”. In: Queue vol. 6, no. 6 (Oct.
2008), pp. 14–19.

[Xia+16] Xiao, L. et al. “Identifying and quantifying architectural debt”.
In: Proceedings - 38th IEEE International Conference on Software
Engineering. Austin, Texas, USA: IEEE Computer Society, May
2016, pp. 488–498.

[Yin18] Yin, R. K. Case Study Research and Applications: Design and
Methods. 6th ed. Sage Publications, Inc, 2018, p. 352.

[YM20] Yoder, J. W. and Merson, P. “Strangler Patterns”. In: Proceedings
of the 27th Conference on Pattern Languages of Programs. The
Hillside Group, 2020, p. 25.

[Zim17] Zimmermann, O. “Microservices tenets: Agile approach to service
development and deployment”. In: Computer Science - Research
and Development vol. 32, no. 3-4 (July 2017), pp. 301–310.

209

Appendices

Appendix A

Study 1 Interview guide
We present the interview guide for Study 1 in Table A.1.

213

A. Study 1 Interview guide

Table A.1: Interview guide for Study 1.

ID Question

1 Tell us about the organization and its divisions.

2 Describe the project, its duration, its size, its technologies, its goals and your role on
it.

3 Talk more about the parts of the project that use microservices or another service-
oriented architecture.

4 What challenges regarding the architecture have you faced recently? What were their
causes and impacts? Did you manage to avoid any of them? How?

5 Are you migrating from an old solution? What challenges did you face during the
migration? What were the costs of the migration? What were the costs of not
migrating?

6 Did you have challenges regarding the communication among services? Did you have
business logic outside the services in their communication? How did you manage to
handle it?

7 Did you use any standard for the APIs/message format? Did you have any issues due
to your choice of using/not using such standards? How did you manage to solve it?

8 How did you manage your source code and documentation?

9 Did you have any issues regarding third-party licenses? What were the costs and how
did you manage to solve it?

10 Did you have any issues regarding shared libraries? What were the costs and how did
you manage to solve it?

11 Did you have any issues regarding data storing? What were the costs and how did
you manage to solve it?

12 Could you mention other situations with issues that (including why and how you
managed to solve it):
• reduce development speed?
• cause more bugs?
• have a negative impact on other system qualities?
• impact many developers?
• will become worse in the future?

13 Do you have any additional issues we did not covered before?

214

	Abstract
	Acknowledgments
	List of Publications
	Contents
	List of Figures
	List of Tables
	Introduction
	Background and related work
	Technical Debt
	Microservice Architecture
	Technical Debt and the development with microservices

	Research Questions and the Thesis Studies
	Research studies addressing the definition of MS-ATDs (RQ1)
	Research studies addressing the occurrence of MS-ATDs (RQ2)
	Research studies addressing the prioritization of MS-ATDs (RQ3)
	Research studies addressing the repayment of MS-ATDs (RQ4)

	Research Methodology
	Research context
	Case study research
	Interviews
	Document analysis
	Validity and reliability

	Papers
	Identifying architectural technical debt, principal, and interest in microservices: A multiple-case study
	Introduction
	Background
	Methodology
	Results
	Discussion
	Related Work
	Conclusions and Future Work

	Improving agility by managing shared libraries in microservices
	Introduction
	Background
	Methodology
	Results
	Discussion and Threats to Validity
	Conclusions and Future Work

	Accumulation and prioritization of Architectural Debt in three companies migrating to microservices
	Introduction
	Background
	Research design
	Results and discussion
	Limitations
	Related Work
	Conclusion

	Reducing Incidents in Microservices by Repaying Architectural Technical Debt
	Introduction
	Background
	Methodology
	Results
	Discussion
	Related work
	Conclusions and future work

	Discussion and Conclusions
	Research questions and contributions of the thesis
	Future work
	Conclusion

	Bibliography
	Appendices
	Study 1 Interview guide

