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Abstract

Question Answering (QA) systems promise to enhance both usability and
accuracy when searching for knowledge. This thesis presents a prototype
QA system built to leverage the extraction capabilities of a modern, context-
aware search platform; Fast ESP. Questions in plain English are transformed
to queries which target specific entities in the text that correspond with the
identified answer types. A small set of unified patterns is demonstrated as
adequate to classify a wide variety of syntactic constructs. For the purpose
of verifying the answers, a semantic lexicon is compiled using an automated
procedure. The whole solution is based on pattern matching and presents
this as a viable alternative to deeper linguistic methods.
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Chapter 1

Introduction

Question Answering (QA) has become a hot topic of research due to the ever
increasing popularity of search engines for information access. These engines
are able to quickly locate useful documents among myriads of sources too
numerous for humans to administer. But using them reliably usually requires
either a guesswork of keyword combinations or specialized and complicated
syntax. Further, information on the document level is frequently too verbose
for quick knowledge probing sessions. QA promises to alleviate these issues
by allowing users to interact with the engines in their own languages and
receive concise answers in return.

I present a prototype of a Question Answering system built on top of
Fast ESP — a modern search platform. My system is able to take questions
in plain English and translate them to queries optimized for the underlying
engine. Rather than discarding the context and structure inherent in ques-
tions, this information is leveraged to better interpret the intent of the users.
The effect is more reliable answers.

While there have been many earlier attempts at QA systems, most of
these have had to operate with plain keyword searches. I’m in a privileged
position because of the underlying search engine’s ability to recognize useful
items of knowledge, contextual entities, in the text. Questions can thus be
mapped to queries that are more likely to retrieve answers of the right type.

My specific contributions are:

1. Generic syntactic patterns for question classification. I demonstrate
how a few, unified patterns can recognize a multitude of different ques-
tion types. These patterns can replace both syntactic parsing and part-
of-speech tagging. They can also recognize simple semantics based on
particular syntactic constructs.

2. Specifier dictionaries that are able to map answer types to general

13



14 CHAPTER 1. INTRODUCTION

entities recognized by the engine. While the retrieved answers may not
be correct, they can at least be guaranteed to be of the right, general
type.

3. Patterns that extract frequent syntactic relationships from text indica-
tive of “kind-of” or hyponym/hypernym relations. These are utilized
to build a semantic lexicon that can verify the specific facets of an an-
swer entity in accordance with the identified question focus. The same
patterns can also be used to compile new dictionaries of entities and
specifiers.

1.1 Document structure

• Chapter 1. Introduces the topic of Question Answering (QA) and the
goals of the thesis. Explains my background and motivation for choos-
ing this particular field of research. Also briefly introduces some basic
terminology (mainly linguistic) that is used throughout the text.

• Chapter 2. Presents the essential concepts and techniques of the field of
Information Retrieval (IR). Explains how a basic search engine works.
Demonstrates, through query examples, why these engines are unsuited
to provide answers. The chapter ends with a brief presentation of
Information Extraction (IE) and how it can improve the answering
ability of a search engine. Explains how Fast ESP (Enterprise Search
Platform) does exactly this and thereby provides a solid foundation for
QA.

• Chapter 3. Details the promise, the challenges and the state-of-the-art
of Question Answering (QA). Evaluates semi-automated approaches
(Q&A) as an alternative to full automation. Further explains the con-
siderations that have to be made when designing a QA system. Out-
lines TREC, the Text REtrieval Conference, which has become a crucial
benchmark for worldwide QA research. Also presents specific systems
and how these perform (mostly in light of TREC). The chapter ends
with an explanation of the importance of semantics in QA and how
this property can be assured.

• Chapter 4. Describes the goals and achievements of my QA implemen-
tation. Presents the general functionality of my system and the design
behind it. Further introduces a selection of my entity extractors and
the procedure I devised for building them. Details my question clas-
sification patterns and what they are able to capture. Explains how I
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map answer types to entities and then transform questions into suit-
able scope queries. Finally outlines how answers can be extracted and
presents my semantic verification of these by using an automatically
built lexicon. The chapter ends with a brief list of future enhance-
ments.

• Chapter 5. Concludes my work. Briefly summarizes my achievements.
Discusses my discoveries and what I’ve learned.

1.2 Motivation

Every day, people have questions that need answers. They might need to
know what something means, where they can find something (or someone),
how something works, when something happens or who is involved in some-
thing. Some of these questions are trivial, while others are crucial to the
proper operation of a business or even a government. Since knowledge is
one of modern society’s most valuable commodities, efficient acquisition of
up-to-date intelligence is of the utmost importance. What, then, is the best
way to find answers today?

Looking for answers

The traditional choice of turning to a library or bookstore still applies. Books
exist on nearly every topic imaginable. But acquiring a good book and
reading it takes effort. This route requires a surplus of time, energy and
dedication. It is thus best reserved for occasions when thoroughly researching
some topic. Also, the information is only as recent as the publication date of
the book. For more recent knowledge, newspapers and magazines are better.
But they’re not particularly well organized with regard to specific topics.
Neither the freshness nor the structure of these traditional sources are their
biggest problem, however, but rather their speed. Printed material is simply
too slow to retrieve and consume for quick answers.

There is a clear demand for instant access to up-to-date information. To-
day, this demand has largely been satisfied by digitalization and networking.
Many current sources of knowledge exist in digital form for more convenient
consumption. Some of these, e.g. books and magazines, are often digitalized
versions of their printed counterparts. Many others, e.g. discussion forums,
weblogs, news feeds, e-mails, FAQs and entire sites, exist only in digital form.
A great share of these new mediums have spawned as a direct consequence of
the communication possibilities allowed by networked computers. The result
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of having all these available sources is that people frequently turn to com-
puters to find their answers. Specifically, they turn to the world-spanning
network of machines; the Internet.

There is no shortage of digitalized information available online. It is
the single, most comprehensive source of knowledge ever conceived. Indeed,
generous estimates of the size of the publicly accessible World Wide Web has
been as high as 11.5 billion pages [17] as of early 2005. For the most part,
this estimate does not even include all the information available through the
deep web. That is, the parts of the web that e.g. requires registration to
access, uses other protocols than HTTP (e.g. FTP), is not linked to by any
other source, or is simply contained in file formats or knowledge repositories
not based on HTML. In 2000, a study concluded that the deep web was at
least 400 to 550 times larger than the indexed web [6]. While this particular
estimate may no longer hold, the general consensus is that the deep web is
magnitudes larger than the commonly recognized surface web. In short, the
scope of information available to the general public today is mind-numbingly
vast.

Searching for answers

Navigating through this immense jungle of facts, fiction, opinions and discus-
sions would be painfully impractical if not for the existence of search engines.
These engines allow speedy and convenient access to all their sources through
uniform interfaces. They help locate documents of interest and separate the
relevant from the irrelevant. Of course, not all of these sources are avail-
able through any one engine. For instance, web search engines are mostly
restricted to the surface web. But many of the knowledge repositories in
the deep web are likely to have local search functionality of their own. Re-
gardless of any particular engine, searching represents a paradigm shift in
information access. It has largely replaced the conventional route of actively
looking for knowledge. Instead, information is presented to the user on de-
mand and allows for the discovery of valuable treasures that would otherwise
stay hidden.

For many purposes, search engines have today become the primary tool
of the information seeker. But they are far from the ultimate achievement in
information access. Particularly, they suffer from the following problems:

• Too comprehensive. While search engines do help retrieve documents of
potential interest, they still can’t access and present any of the answers
located in those documents. Users are left to scrutinize the documents
themselves. And even if it is has become easier than ever to locate
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relevant information, the human mind has not become any more effi-
cient at digesting, sorting and making sense of it. Information on the
document level is simply too verbose. Due to time constraints and
busy schedules, people are often far better off with quick, to-the-point
facts or short summaries rather than comprehensive dissertations with
myriads of details. In general, the more accurate the information, the
better.

• Too unreliable. An abundance of information necessarily also implies
an abundance of poor information. This is especially true on the Inter-
net, where everyone can publish their thoughts and opinions. A large
part of the 11.5 billion pages mentioned above is bound to be spam
or just plain noise, e.g. arbitrary, dynamically generated pages [3].
While the quantity of information has increased by orders of magni-
tude, the quality has arguably dropped proportionally. Search engines
do not particularly discriminate their sources nor assess the informa-
tion content. Finding good, reliable information can thus take a lot
of effort, and often several sources have to be consulted to establish
some degree of accuracy and truth. The ability to collect answers from
multiple sources and have these presented in a meaningful fashion for
comfortable evaluation, would prove a considerable boon to the dis-
cerning information critic.

• Too awkward. With regard to access speed, searching is an improve-
ment over looking. But it is an artificial way for humans to interact.
Searching, i.e. querying, is a form of communication that takes place
largely on the computer’s premises. In that regard, it can even be con-
sidered a step backwards from the traditional approach of, for instance,
going to a library. In the latter case, it has always been possible to ask
a librarian if one does not know where to start looking or how to use
the library. This is not an option when searching. Here, users are ex-
pected to understand the intricacies of successful query generation. It’s
far easier to just enter a couple of keywords, but that doesn’t give the
computer much to work with.

Asking for answers

The challenge, then, lies in being able to automatically retrieve exact and
trustworthy answers from a mountain of information. The answers are out
there, but they’re often buried deep. The process of uncovering them is te-
dious, even with the tools available today. As will be demonstrated through-
out this thesis, a substantial amount of the knowledge contained within these
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sources is fairly easy to recognize once located. This means a computer should
be able to aid users far more efficiently than what is being utilized today.

Further, humans communicate best through their own languages. The
most natural and productive route to answers is simply to ask someone.
Even if users know exactly how to formulate their information needs into
explicit questions, there is no readily available tool that can utilize those
questions sensibly. In other words, a new paradigm shift is needed: Users
should be able to ask for answers rather than have to search for them.

Consequently, some kind of automated tool that could better understand
the inquiries of the users and better pinpoint the answers would be tremen-
dously helpful. Sadly, no such tool has yet surfaced that is practically viable.
The ideal system would be one that could accept a question in its most nat-
ural form. That is, formulated just as if asking another person. It would
respond with meaningful answers and rank them based on an examination
of all the sources of the system. These information nuggets would be exact,
but also able to present their context upon request. This context is required
to provide necessary support for the given statements.

Given these specifications, the overall goal of this thesis is hence twofold:

1. To explore how such a system could be created. What technology would
be required? How far has research come in this direction?

2. To assemble a prototype of such a system built on already existing
technology. In my case, mainly the industry-leading contextual search
engine of Fast ESP.

1.3 Background

This thesis has been a major undertaking for me. Coming from a general
computer science background, I was unfamiliar with most of the knowledge
required for satisfying work in language processing. Basically, I’ve had to
learn and comprehend the essential concepts, ideas and techniques from six
different fields, none of which I had any particular knowledge in advance:

1. Linguistics

2. Computational Linguistics (CL)

3. Natural Language Processing (NLP)

4. Information Retrieval (IR)
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5. Information Extraction (IE)

6. Question Answering (QA)

NLP is also heavy on statistics (probability theory in particular), an area
which I unfortunately had too little time to explore well enough to utilize
in this work. I’ve studied through the significant chapters of at least one
comprehensive book on each of these subjects. Then there’s all the specific
papers and articles. Much of this material, namely that which I’ve used
directly in some way, is listed in the bibliography.

Needless to say, researching background material has been a major part of
the work that went into this thesis. The research was a necessary foundation
for comprehending the aspects of QA, but I did not have the opportunity to
utilize as much of it as I would like. Due to time and space restrictions, I’ve
had to focus my presentation and discussion on IR and QA, both of which
get a separate chapter in this thesis. IE also gets a short treatment at the end
of the IR chapter. But even if it’s not explicitly mentioned, all I’ve learned
through my research has influenced the work in one way or the other.

1.4 Basic terminology

Here I will briefly explain essential terms that will be used throughout the
thesis:

• Anaphora. A lexical unit referring back to a previous lexical unit,
typically a pronoun. E.g. “them” referring to “cookies” in “I like
cookies. Do you like them?”.

• Anaphora resolution. A technique for identifying which lexical unit a
particular anaphora refers back to. Difficult when there are multiple
such units.

• Corpus. A collection of texts. Frequently used as a basis for language
processing and testing.

• Entity. Any interesting item in a text worth recognizing. E.g. a person
name.

• Factoid. An unverified “fact” which is generally accepted as true be-
cause of frequent repetition.

• Grammar. Collective term for all the rules governing a language, in-
cluding syntax and semantics.
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• Hypernym. A word that is more specific than a given word. E.g. “flute”
versus “instrument”.

• Hyponym. A word that is more general than a specific word. E.g.
“instrument” versus “flute”.

• Language model. A probability distribution of words in a sentence.
Used to predict the next word in a sentence given the previous words.
An example model is n-grams.

• N-gram. A sub-sequence of n items from a given sequence. E.g. both
“we are” and “are happy” are bigrams of the sentence “we are happy”.

• Noun phrase (NP). A phrase whose head (main word) is a noun. E.g.
“president of the United States of America”.

• Part-of-speech (POS). A word class such as nouns, verbs, prepositions,
adjectives, etc. Every word can be classified into a POS. Some words
have multiple POSes. E.g. “play” can be both a verb and a noun
depending on the syntax.

• POS tagging. A technique for detecting the POSes of all words in a
sentence and tagging them accordingly. Detection is based on both the
definition and the context of the word. Accuracy is difficult because
several words have multiple POSes.

• Parsing. A technique for building a syntactic tree (possibly annotated
with semantics) representing a sentence. Computationally expensive
due to the ambiguity inherent in human languages.

• Preposition phrase (PP). A phrase whose head (main word) is a prepo-
sition. E.g. “in the jungle of Congo”.

• Semantics. The meaning of a word, phrase, sentence or a whole text.

• Semantic lexicon. A dictionary of words annotated with semantic
meaning. Typically contains links between the words to establish their
semantic correspondence or semantic classes.

• Syntax. The set of rules governing how words can be combined in a
language to form sentences.

• Verb phrase (VP). A phrase whose head (main word) is a verb. E.g.
“developed the Macintosh computer”.
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• Word sense. One of the meanings of a word. E.g. the verb “play”
can mean to take part in recreation (“play a game”), to use a musical
instrument (“play the piano”), to act in drama (“play a character”),
etc.

• Word sense disambiguation. A technique for identifying the sense of a
word in a sentence based on context.
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Chapter 2

Information Retrieval

2.1 Introduction

These days, when looking for specific information, the normal procedure is to
use a search engine. Search engines are the main tangible products of decades
of research within the field of Information Retrieval (IR). The main goal of
this field is to present information to the user in response to a given query.
In their various incarnations, search engines index billions of web pages and
also act as portals to the vast amounts of text stored within libraries and
other knowledge repositories.

This information is typically unstructured, meaning it hasn’t been care-
fully collected, sorted and organized in advance. Rather, the information is
usually the result of human communication exchanges. For instance, in the
form of articles, reports, essays, e-mails, weblogs or even whole books. Nearly
all of this material is written in natural languages, which is the scientific term
for human languages to separate them from artificially constructed languages
like programming languages. Since people communicate most conveniently
through natural languages, the information is rarely tagged or otherwise pre-
pared for machine consumption. This lack of structure means databases and
other traditional forms of storage are unsuited tools of access beyond the
document level (e.g. a database of manually categorized articles). The infor-
mation contained within these articles is not easily accessible without some
kind of functionality that can operate on plain text.

This is where search engines come in. Unlike databases they are built to
work directly on text which has no structure beyond that which is inherent in
natural language itself. As such, they don’t require any careful preparation
of the texts in advance. But computers are, by their very nature, nowhere
near as proficient with human languages as humans. Search engines are thus

23
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usually built to leverage information processing speed rather than finesse.
This means the current generation of engines has some severe limitations in
the language processing department, but they are nevertheless solid founda-
tions for further advanced processing. Their limitations aside, current search
engines are nonetheless invaluable tools for the information seeker. Without
search tools the task of sifting through all the available information today
would become unmanageable.

For answering questions, though, current search engines are quite inade-
quate. This chapter will explore why. First, I will give a short query example
(2.1.1) in a popular search engine to demonstrate my point. Then, I will ex-
plain how these engines work (2.2, 2.3, 2.4) to shed some light on the reasons
for these limitations. Finally, I will return with more detailed query examples
(2.4.3) and discuss inadequacies and areas of potential improvement (2.5).
The chapter also has a section in the end that presents the possibilities of
Information Extraction in contrast with IR limitations (2.6).

2.1.1 A short query example

For the purpose of demonstrating query examples in this chapter, I will use
Google [54]. This is one of the most well-known and frequently used search
engines today and thus a highly likely tool of choice for someone looking for
information. Further, by using this accessible engine all examples are easily
verifiable by any interested party. Note that the results may differ slightly
as this is a live engine, but the general type of results will be the same.

Let’s say we want to know the title of the first episode of the Futurama
animated series. The most intuitive formulation of our information need is
in a question like What is the title of the first Futurama episode? . Example
2.1 shows what happens if trying to input the question directly to Google.
These are the top 5 hits from the result set.

(2.1) Can’t Get Enough Futurama: Episode Capsule: 3ACV20 - Godfellas
Futurama Capsules are meant as complete guidelines for the episodes.
... Title: Godfellas First aired: 03/17/02 Production Code: 3ACV20 ...
www.gotfuturama.com/Information/Capsules/3ACV20/

Can’t Get Enough Futurama: Episode Capsule: 3ACV21 - Futurestock
Futurama Capsules are meant as complete guidelines for the episodes.
... Title: Futurestock First aired: 03/31/02 Production Code: 3ACV21 ...
www.gotfuturama.com/Information/Capsules/3ACV21/
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”Futurama” (1999)
Doomsville (USA) (working title) Runtime: 30 min (72 episodes)
Country: USA ... The last first-run episode of the show aired on 10
August 2003. ...
www.imdb.com/title/tt0149460/

List of Futurama episodes - Wikipedia, the free encyclopedia
The first number represents the production season. ACV is FOX’s series
code for Futurama. The second number is the episodes number ...
en.wikipedia.org/wiki/List of Futurama episodes

Futurama - Wikipedia, the free encyclopedia
The title of the episode itself is also an obvious reference. ... In the USA
(DVD Region 1), the first season of Futurama was released on DVD on
March 25, ...
en.wikipedia.org/wiki/Futurama (TV series)

These entires are not very helpful. The answer we’re looking for is the
simple title Space Pilot 3000 , but it’s nowhere to be seen. In fact, it’s not
even on the first five result pages. Instead we get all kinds of references to
titles, episodes, seasons and releases. Most of these are Futurama related
so at least it’s a good starting point. But we’re left with either starting to
dig through the page links or trying to rephrase the query. Understanding
the reason behind these rather poor results means understanding how search
engines work, which is the topic of this chapter.

2.1.2 Search engine overview

All search engines are built around providing rapid access to information.
This speed increase is accomplished mainly by centralized indexing, which
will be explained shortly (section 2.2.2). The user interacts with the engine
through a query interface. Each query is preprocessed (and possibly trans-
formed) by the engine before being submitted for retrieval, thereby assuring
better results. The queries (or rather, the keywords comprising them) are
then matched against the index. Finally, documents containing matches are
ranked according to expected relevancy (to the user’s query) and returned to
the user as an ordered list of page links. In short, we can say that information
retrieval systems are composed of three different parts:

• the document subsystem (section 2.2)

• the retrieval subsystem (section 2.3)
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• the user subsystem (section 2.4)

Each of these subsystems will be now be explained in turn.

2.2 Organizing documents

2.2.1 Crawling

Any search engine must contain information to be useful. This information
can come from several sources, typically the Internet (i.e. web sites), in-
tranets or databases (e.g. a library of books, or an encyclopedia). In cases
where the sources are innumerable, unpredictable and dynamic — particu-
larly on the web — the information must first be gathered somehow. This is
normally accomplished by a crawler (a.k.a. “web crawler”, “spider”, “web
spider” or sometimes just “robot”). The crawler follows hyperlinks and vis-
its pages systematically, downloading selected textual content and storing it
in a local repository for later use. Whether the information is crawled (e.g.
the web) or readily accessible (e.g. a local database) it must be normalized
to some common form. A lot of meta-data will be stripped in this process.
Optionally, this additional data can be exploited to better process the text.

When constructing a crawler, several efficiency considerations have to
be made. One is when to refresh the index, which means recrawling specific
sites for updates. This recrawling is important to avoid stale information and
erroneous links, but if the crawlers were to constantly poll the same servers
for information then these servers would be overloaded and their response
time severely increased. Also, by continuously refreshing, the crawlers would
never be able to reach new servers, but would be polling the same servers
again and again. Some balance consequently has to be reached between
information freshness and workload.

A crucial observation here is that certain kinds of pages are updated more
often than others, and thus should be prioritized for recrawling. Figuring out
this frequency for a given site is thus extremely valuable, but by no means
trivial. The task would become much easier if some update statistics from
each server was readily accessible, but unfortunately no such kind of data
exchange is standardized. Servers do have a special file (i.e. “robots.txt”) in
which they can specify which pages not to crawl. However, there is currently
debate as to whether certain crawlers purposefully disregard this file.

Another consideration is how to traverse the links between pages. The
two traditional approaches are breadth first and depth first. In the former
case, all pages linked to by a given page are visited first, leading to a wide
but shallow coverage. This approach tends to yield a huge number of rapid
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requests which can quickly slow down a server. In the latter case, the first link
of a page is followed as far as possible before returning recursively, resulting
in a narrow but deep coverage. With the advent of algorithms analyzing
page connectivity, i.e. how frequently pages link to each other, approaches
started to favor traversing the “best” pages first. Others indicators of quality
are the pages’ general popularity and relevance to the page currently being
explored. These algorithms will be discussed in section 2.3.3.

2.2.2 Indexing

When a sufficiently large local copy of interesting documents is available the
actual process of preparing the information for rapid access can begin. If,
when given a query, the search engine were to search sequentially through all
the text in this huge collection, retrieval would take a very long time indeed.
Instead, one or more indices are built around the words contained in all the
documents in the whole collection. An index of this kind basically provides
the same functionality as the index in the back of a traditional book. That is,
it comprises a list of the important words in the text and directs the reader
to the pages where these words occur in a significant, often defining, context.

The computerized version is often called an inverted file because the words
now refer back to the documents containing them. An inverted file is much
more comprehensive than a book index. It typically contains the complete
vocabulary (e.g. the set of all words) of the entire collection of documents.
Each word in the index has pointers back to every instance of its occurrence.
In opposition to book indices an inverted file thus aims for quantity rather
than quality (i.e. aiming for all occurrences of a word, not just the “best”
ones). Quality of information is instead assured in a later step when ranking
the hits of a given query, as will be explained later in section 2.3.3. To make
it easier to rank the documents, each indexed word is further accompanied
by values representing its frequencies of occurrence in every document.

The inverted files of current search engines typically also employ full in-
version. In short, this entails that words point to the relative position of their
occurrence in a document instead of simply to the document as a whole (or
to any other logically structured segment). Full inversion in this manner pro-
vides a foundation for operations on relative word positions, like phrase and
proximity queries, both which will be described under section 2.4.1 shortly.

An index with distinct words is not only much smaller than whole docu-
ments, but also much quicker to access. For one thing it can be kept entirely
in the main memory of dedicated servers, avoiding costly disk operations.
Further, incoming query keywords can be directly mapped to their indexed
counterparts. All relevant documents can thus be decided in one lookup.
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Finally, the index can be stored in an efficient data structure, such as a B-
tree, for speedy access. However, performance degrades as the number of
keywords increases. Each keyword has to be looked-up separately resulting
in multiple list of documents. These lists then have to be merged and the
resulting entries prioritized sensibly.

In addition to pure words an index can also contain additional meta data,
and some of this data may be searchable through the query interface. Exam-
ples of such meta data are document titles, teasers, categorization keywords,
summaries or even various page statistics. The big advantage of this kind of
indexing is, of course, again the speed of access. Instead of retrieving and
parsing the necessary information at query time it can simply be looked up
in the index instead. Advanced engines like Fast ESP can even index named
entities and phonetic information (i.e. a representation of pronunciation)
opening up whole new possibilities within intelligent retrieval.

2.2.3 Preprocessing

Tokenization

Tokenization is the process of properly dividing the input text into token
units. Most importantly by identifying the words of a sentence. This might
sound like a trivial task; after all, aren’t words simply strings of characters
separated by whitespace? Well, consider the sentence “Mr. Adams isn’t
home, sweetheart.”. If we match all characters except whitespace, the letters
“isn’t” will be picked up as one word, even though they actually form two
words; “is” and “not”. And by the same approach “home,” will also be
considered a word, including the comma, which will make it distinct from
the word “home”, without a comma. If, on the other hand, we only consider
alphanumeric characters, “home” will be identified properly but “isn’t” will
now be picked up as the two words “isn” and “t”, which is clearly wrong.
And what about strings like “C++”, “3.5%”, “4th of July”, “first-class” and
“30-year-old”?

Deciding which characters should separate tokens is clearly not just a
matter of whitespace. Words often consist of various punctuation characters
and delimiters such as periods, commas, semicolons, hyphens and apostro-
phes. Figuring out which of these to keep isn’t obvious, but nonetheless
crucial. An IR system needs to be able to properly tokenize the input text
since all further processing is based on this step, both on the query side and
the document retrieval side. Once the tokens are identified the work can pro-
ceed on counting and comparing words, create frequency statistics and index
the text. These results provide the foundation for ranking the documents,



2.2. ORGANIZING DOCUMENTS 29

comparing them, classifying them and mining them for information.

Stopwords

Even though all words of a sentence are necessary bearers of information,
they’re not equally important in an IR sense. Some of them are simply there
to form syntactically correct constructs and carry no significant meaning, like
“the”, “in”, “of”, “around” etc. The most “describing” words are thus far
better at distinguishing one document from another, and consequently more
valuable when comparing these. This begs the question of how the value of
a word can be measured. As it so happens, the most frequent words are also
usually the ones we tend to subconsciously regard as least important. This
attitude corresponds nicely with the statistical point of view, wherein the
most unique words are considered the most distinctive and thus valuable.

A stopword list is a list of words identifying the least significant ones
of which we have no real use. A common way to create such a list is to
index all the words in a corpus and calculate their frequency counts. The
first few hundred highest ranking words will be mere “fillers” and can safely
be regarded as stopwords. Amongst the first thousands there will also be
many words of questionable value, but these will have to be more carefully
considered as their frequencies might only be representative of the indexed
information. While not useful as stopwords they might at least be considered
as poor distinguishers of documents in that particular index. This informa-
tion can also be exploited when processing queries, but here anti-phrasing is
more likely to be used (see section 2.4.2).

Stopwords were traditionally not indexed by IR systems due to the desire
to keep the indices compact. Current systems do index these words, however,
because they’re needed to support phrase and proximity searches. This is
often called doing full-text indexing. In the extreme case, a query on the
famous phrase “to be or not to be” would be impossible without indexing
stopwords as it consists of only stopwords. Stopwords are nevertheless usually
disregarded when used as stand-alone keywords in a query, unless the query
is somehow interpreted as a phrase.

Stemming

Stemming is the process of reducing a word to its baseform, or grammatical
stem, thereby stripping away any morphological suffixes. This leads to fewer
word forms being present in the vocabulary, and so a query on one form of a
word will also yield matches on occurrences of its other forms. A stemmed
index is also considerably more compact than a full one due to the merg-
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ing of word forms. Examples of stemming are “cars” reduced to “car” and
“beginning” reduced to “begin”.

Popular stemmers, like the Porter stemmer [34], operate mainly with
heuristics and not dictionaries. As such they must be trained on a corpus
and tuned to perform with the right balance between too light and too heavy
stemming. They will still make errors and often fail on cases like “thieves”
becoming “thiev” and “amiably” becoming “amiabl”. For pure searching
purposes these errors aren’t significant, as the user doesn’t see the stemmed
forms anyway. But when stemming is used for automatic labeling, for in-
stance, the user will be presented many strange and invalid names. These
failures become crucial if trying to process the stems linguistically, for exam-
ple to detect their parts-of-speech (POS), as these invalid forms of the words
will not be recognized. Even worse, stemming may result in a new word with
a different meaning altogether. For example by altering the POS of the noun
“happening” to the stemmed verb “happen”. Or worse yet, by altering a
word to an entirely unrelated meaning, as in “witness” reduced to “wit”.

As natural language is highly irregular, stemming algorithms based on
heuristics are error-prone and of limited use. They are also costly perfor-
mance wise, as the suffix rules often have to be applied iteratively to reach
the base. These rules naturally have to be executed at indexing time, but
here runtime isn’t critical. The problem is that the words from a query
can’t be matched against the base forms in the index unless stemming is
also performed at query time. And any increase in query latency is highly
undesirable.

Lastly, recent research [22] has been unable to uncover any huge benefits
from applying stemming, and indeed shows it has little impact on retrieval
as a whole. Its use generally yields higher recall but in return the precision
is severely hurt due to its errors and generalizations. As such, the biggest
advantage of stemming is perhaps the significant reduction in index size.

Lemmatization

A more promising alternative to stemming is that of lemmatization. In a
sense, these two approaches can be viewed as the reverse of one another. In
lemmatization, instead of reducing all forms of a word to its base, the idea
is to expand the base to all its inflectional forms (or “lemmas”, referring to
each distinct form of a word). An example is expanding the adjective “large”
to “larger” and “largest”. This expansion consequently yields roughly the
same increase in recall as stemming, because all forms of the word now maps
to each occurrence of each form. Of course, this expansion also increases the
size of the index, in direct opposition to stemming.
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The real gain lies with the precision. Because lemmatization uses dictio-
naries for its expansion, this technique is very accurate and doesn’t risk cor-
rupting words as may happen with stemming. Also, all forms of a word still
exist in the index and can be distinguished when necessary. This increase in
recall, while still largely maintaining precision, is an important enhancement
to retrieval systems. The runtime performance during indexing is compara-
ble to that of stemming, but as there’s no longer any need to reduce query
words to a common form there is no similar increase in query latency. If the
increased index size is a tolerable condition, then lemmatization can be seen
as preferable to stemming for the purposes of document retrieval.

If increasing the index is not desirable, lemmatization can alternatively
be implemented on the query side. Selected words in the query can then be
expanded to all their forms and these be included in the query as equals (e.g.
by boolean OR’ing them). This, of course, increases the query processing
latency, but reduces the index processing runtime similarly. As lemmatiza-
tion can be deployed either on the index or the query time, it is thus more
flexible than stemming which requires processing on both sides.

Language detection

No significant linguistic processing can be performed without first detecting
the language of the input text. The obvious reason is that the words them-
selves are different across languages, thereby demanding separate dictionaries
and stopword lists for each language. But equally important is the fact that
all languages have distinct rules for how words and sentences are formed. As
most of the linguistic research is being performed on the English language the
resulting algorithms might be completely inappropriate for other languages.

For instance, in many Asian languages, like Japanese, there are no marked
boundaries between words. Tokenization can become quite a challenge when
whitespace has no significance. Here, each letter (or morpheme) might be a
word, but might also just be part of a word. The situation is context depen-
dent and proper word segmentation requires processing beyond tokenization.

Further, in Germanic languages, like Norwegian, compound nouns tend
to be joined together into one word. For instance “livsforsikringsselskap”,
meaning “life insurance company”. These compounds create many variations
over the same nouns that might be better to process individually, hence the
need to recognize the constituents of the compounds of these languages.

Finally, languages like Finnish and Turkish have much more complex mor-
phology than English. In morphological terms, these languages are classified
as agglutinative, which simply means that words are formed by joining (or
“gluing”, hence the expression) morphemes (the smallest meaningful units of
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a word) together. For instance, in English the verb “walked” consists of the
morphemes “walk” and “ed”, the last unit denoting the tense of the verb.
Turkish is far more complex. Here a word can simultaneously be inflected
(i.e. modified) for tense, person, case and number. Thus, a single word can
function as a sentence by itself and may need to be decomposed to be of any
use. These complex rules also make stemming and lemmatization harder.

2.3 Retrieving documents

2.3.1 Models of comparison

Search engines are valuable not only because of their retrieval speed, but also
because of their ability to help us separate relevant from irrelevant informa-
tion. In doing so they must be able to compare incoming queries with the
stored documents to calculate their mutual correspondence of terms. Basi-
cally, the better a document corresponds with a query, the more relevant it is
believed to be. Several models have been proposed for estimating this resem-
blance. For reasons of brevity I will mention only the two most influential
ones. This section is mostly based on [4].

Boolean model

The Boolean model is perhaps the easiest model to understand and imple-
ment. Its logical foundations, being based on the mathematics of set theory
and Boolean algebra, are proven and sound. The model is also naturally
suited to handling queries with Boolean operators, a traditionally popular
form of query logic (see section 2.4.1). For these reasons the model was one
of the first conceived and successfully deployed.

In essence, queries using Boolean logic specify which keywords must be
present in, or absent from, the documents of interest. Finding relevant docu-
ments is then simply a matter of locating documents fulfilling these require-
ments. Simple, but efficient. Unfortunately, this simplicity is also the major
drawback of the model. Since the query terms are considered absolute, the
decision criterion is purely binary; either a document is relevant or it is not.
There is no degree of relevancy, no such thing as a partial match. This view
leads to a model that is too narrow in practice:

• Users are unlikely to know beforehand which exact terms a relevant
document will contain or not. Their queries must thus largely be con-
sidered approximations, and not as exact blueprints of target terms
(which strict Boolean logic tends to enforce).
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• All terms are considered equally important. This is hardly the case,
as some words are definitely more frequent, and hence less describing,
than others. These variations should be accounted for in the model.

• Many users have trouble translating their information needs to Boolean
logic. This means that poor results will be obtained from any engine
that expects explicit logic from the user.

• The model doesn’t support any apparent way to rank documents. All
relevant documents are treated equally, requiring the user to browse
through all returned documents to find the most relevant ones.

The result is a model that corresponds nicely with logic but is largely
mismatched against users’ abilities and the particulars of human languages.
Enhancements have been proposed, for instance by using fuzzy logic to allow
degrees of truth, but today the model has largely been abandoned in favor
of the following model.

Vector model

The desire for a graded measure of relevance led to the vector model, which
is probably the most trusted and wide-spread model in use today. Here the
documents (and queries) are represented as vectors of the terms they consist
of. Each term is assigned a weight according to its expected importance.
These term weights thus not only quantify the vector coordinates, allowing
the vectors to be computed upon, but they also account for the different
distributions of words in the text.

Let ~d be the vector of term weights for the document d and let ~q be the
vector of term weights for the user query q. Their similarities can now be
estimated by comparing their directions in t-dimensional vector space, where
t is the total number of terms in the index.

More precisely, their similarities can be calculated by finding the cosine
of the angle (θ) between the two vectors, as given by the following equation
(2.2).

sim(d, q) =
~d • ~q

|~d| × |~q|
(2.2)

By computing these similarities, documents can now be ranked according
to their degrees of relevance to the query. Further, documents which only
partially match the query, i.e. that only correspond in some of the terms, can
nonetheless be included in the result set. Their ranks might even be high, as
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the cosine measure is not only determined by term correspondence, but also
by term weights. The exact requirement for inclusion can be controlled by
demanding that similarities measure above some set threshold. By accepting
keywords as input, and figuring out their importance by document statistics
instead of explicit user input, this model hence allows for much simpler usage
and elegantly solves the above-mentioned problems of the Boolean model.

The specifics of how the term weights are computed greatly affects the
behavior of the model. The most common way to compute the weights is by
using some variant of the tf · idf formula (see equation (2.3).

Here, the term frequency (tf) refers to the frequency of a term within
a given document and thus measures how well that term describes the doc-
ument. It’s balanced out by the inverse document frequency (idf), which
measures how frequent the term is in the whole collection of documents.
This latter factor is important because terms that are frequent across many
documents are poor at distinguishing between those documents.

tf · idf =
ni∑
k nk

× log
D

dj

(2.3)

As seen by equation 2.3, tf is found by dividing the number of occurrences
of a given term (ni) by the number of occurrences of all terms (

∑
k nk).

Similarly, idf is often found by dividing the total number of documents (D)
by the number of documents containing the given term (dj) and taking the
logarithm of this number.

2.3.2 Measuring performance

To be able to measure the performance of a search engine some kind of metric
must be established. In data retrieval systems the interesting properties are
usually response time and storage requirements. In IR systems, however, the
information retrieved is rarely exact nor complete. At best it’s an approxi-
mation of what the user is likely to consider most relevant to the query. The
most interesting property is thus how accurate the result set is in relation to
the query. This accuracy is commonly measured as two separate components:
precision and recall.

Consider a collection of documents. Given a query, let |R| be the subset
of all documents relevant to this query. Further, let |A| be the subset of
documents returned by the system in response to the query (i.e. the answer
set). We want |A| to include as many documents as possible from the relevant
set, but as few as possible from the rest of the collection (the irrelevant set).
The system doesn’t actually know which documents are relevant (contained
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in |R|), though. Therefore, let |Ra| be the set of relevant documents the
system did return, i.e. the intersection of |R| and |A|.

Recall is now the fraction of relevant documents returned, i.e.:

Recall =
|Ra|

|R|
(2.4)

Precision, on the other hand, is the fraction of documents returned that
are relevant, i.e.:

Precision =
|Ra|

|A|
(2.5)

In other words, recall measures how many documents from the relevant
set we managed to return. Precision measures how many of the documents
we did return that were relevant, as the answer set is likely to include many
documents from the irrelevant set.

Because these two measures are so intertwined, many felt the desire to
measure these two aspects using a single metric. The harmonic mean, or
F-measure, was created for this purpose:

F =
2 × precision × recall

(precision + recall)
(2.6)

In its most basic form, the balanced F-measure simply weights precision
and recall evenly. For many purposes, though, one or the other might be
more important, and so the general version can be tuned to suit a particular
purpose:

Fα =
(1 + α) × precision × recall

((α × precision) + recall)
(2.7)

Here, (equation 2.7) α represents the balance between precision and recall.
In the harmonic F-measure above (equation 2.6), α is simply 1 (F1). Other
popular versions are F0.5 and F2 which weights precision twice as much as
recall, and half as much as recall, respectively.

In addition to providing relevant results, web retrieval engines must also
be able to retrieve and present documents in response to hundreds of millions
of queries each day. Thus, while accuracy is commonly considered the most
important property, speed must be regarded a close second.

2.3.3 Result ranking

The main purpose of ranking algorithms is to maximize expected relevance
in the result set. That is, sort the results in order of decreasing relevance.
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Due to the sheer number of web pages indexed by modern search engines,
any given query is likely to yield an insurmountable number of hits. With-
out properly sorting this list the user would likely have to wade through
hundreds, if not thousands, of documents just to find something of interest.
In addition to precision and recall, ranking completes the trinity that defines
how relevance is measured and maintained in IR.

Of course, subjective relevance varies from person to person and can’t be
established on an individual basis without some form of personalization in
the search engine. But current engines do at least try to determine some
objective measure of relevance based on a number of methods. These uti-
lize statistics and frequency counts from the index to establish the value of
a particular word, or a particular combination of words. But more impor-
tantly, they utilize the hypertext link structure between web pages and the
corresponding anchor texts in their algorithms. These links can be consid-
ered a vast interconnected net which describes how the information flows on
the Internet as a whole. Generating some statistics on these links can help
identify popular information and current trends. Further, the anchor text is
often a useful indicator of the content of the linked web page.

Unfortunately, it’s difficult to find solid information on the exact models
of ranking used in current search engines as these models are proprietary
and considered a major competitive factor. But some of the algorithms have
been published and are well-known.

PageRank

Google’s PageRank [10] is an example of an algorithm that analyzes hyper-
links between documents to help determine relevance. Google was by no
means the only company providing such an algorithm, but due to relevant
results, good timing and clever marketing the engine soon became one of the
most popular for web information retrieval.

The theory behind PageRank is that the more frequently a page is linked,
the more important it is considered to be on the whole. In essence, a link to
a page is considered a “vote” for that page. The value of the vote depends
directly on the PageRank of the referring page, but it’s divided amongst all
the outgoing links from that page.

This kind of ranking scheme has proven to correspond well with users’
idea of relevance. Due to its objective measures the original PageRank was
also considered fairly neutral. Today this algorithm has long since been
recognized as too open for manipulation in its basic form. It’s worth taking
a moment to explain this practice.

Because “votes” are the main commodity in PageRank, many web masters
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try to collect these to increase the rankings of their pages. This means con-
stantly modifying their pages to correspond with the changes in the ranking
algorithm. A large number of dedicated sites even exist with the sole purpose
of generating or exchanging links for profit. This practice has turned into a
whole industry; Search Engine Optimization (SEO). The methods used are
many and varied. Some are approved by the search engine companies and
mainly focus on building better sites. The illegitimate exploits, however,
largely defeat the neutrality, ranking scheme and hence also value of the al-
gorithms. These common attempts at manipulation must also be considered
a major reason for the secrecy surrounding companies’ specific ranking al-
gorithms. Today, PageRank is only one of hundreds of factors in Google’s
ranking scheme.

ExpertRank

Ask’s ExpertRank (formerly known as the Teoma algorithm) builds on the
idea and popularity of PageRank. But instead of just counting the number
of incoming links to a page it tries to also assess the quality of the referrers.
This is accomplished by clustering sites on their topics and identifying the
most authoritative sites on each given topic. The links from these sites are
given more weight than regular links from unverified sources. The details of
the algorithm are unpublished, but given Ask’s history of reliance on human
input there is likely considerable manual effort involved in this process.

2.4 Interfacing with the user

2.4.1 Querying

The user interacts with the search engine through a query interface. This
interface is usually centered around an input box where the user can type in
keyword queries. Some kind of custom notations are also usually accepted to
give the user better control over the keywords. This kind of enhanced func-
tionality is often available explicitly in an “advanced” interface, comprising
multiple input mechanisms. These allow users to take advantage of the func-
tionality without having to remember, or even understand, the syntax or the
notations. I will now briefly describe the most common notations a modern
query interface supports.
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Boolean operators

Boolean logic has traditionally been popular in the IR community. Most
query interfaces support some form of Boolean operators, although they
might not present them as such to avoid confusing the user. For instance,
Google allows specifying that a keyword must be present in all documents
(e.g. +mickey mouse), that a keyword should not be present (e.g. -minnie
mouse) or that a word may be used in place of another (e.g. mickey OR
minnie mouse). Other engines use the boolean operators explicitly, i.e. AND,
OR and NOT.

The AND operator is usually implicit for all keywords, and thus only
useful for special cases, e.g. for words that would normally be ignored, like
stand-alone stopwords. The NOT operator is mostly useful for filtering out
undesired hits, but it’s often better to just add a few additional keywords
to point the search in the right direction. The OR operator is largely being
surpassed by query expansion techniques (see section 2.4.2). For instance,
Google has an operator for expanding the query with semantically related
words. For instance, mickey mouse ˜movie, will also yield results with “film”
or “DVD” in place of “movie”).

Though powerful in theory, the value of explicit Boolean operators is
becoming increasingly questionable as search engines mature. When also
considering the potential alienation of the average user, Boolean logic may
be increasingly phased out of the interfaces in the future.

Phrase searches

Many interfaces allow specifying relative positioning when using multiple key-
words in a query. The most common variant is the phrase search. Phrases
are simply keywords enclosed in quotation marks, e.g. ”mickey mouse”, im-
plying that the keywords must appear in that particular order in documents.
Additionally they can’t be separated by anything but whitespace. This con-
struct is handy when searching for compound nouns or if the exact wording
in a target sentence is known. But it tends to be too limiting for general
purposes, as natural language is highly unpredictable and words may appear
in other orders and contexts than those specified. These properties make
phrase searches best suited for cases of high precision and low recall.

Proximity searches

A more relaxed variant of phrasing is the proximity search. Here it’s enough
that the keywords are “near” each other. Their order is not important and
they might be separated by other words, but they have to occur together.
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This kind of search is useful when knowing the words of interest but not
their exact co-occurrence. Some interfaces provide this functionality through
a NEAR keyword. Others, such as Fast ESP, also allow expressing how far
apart words may be.

In Google’s case, proximity searches are accomplished using a wildcard
character. Querying for ”mickey * movie” for instance finds any phrase en-
closed by “mickey” and “movie”, like “Mickey Rourke movie”. The query
horse * finds co-occurring words like “horse racing”, “horse breeding” etc.
Entering more asterisks increases the minimum number of words required
as fillers. Some interfaces also allow searching for prefixes and suffixes in
this manner. For instance, for* matches words like “format”, “forensics”,
“foreigner”, and so on.

Custom notations

Modern interfaces usually provide many custom notations. For instance to
restrict the search to certain domains, languages, file types or dates lending
the additional benefit of allowing the engine to perform specific optimiza-
tions within these parameters. Similarly, structural searches require that the
keywords appear within a certain structural element, for instance in a title or
as a hypertext. Additionally, certain commands or constructs often trigger
special behavior. Some examples from Google are mathematical operations
(e.g. 13% of 133), definitions (e.g. define: procrastination) or currency and/or
measurement conversions (e.g. 133 norwegian kroner in british pounds).

Custom query languages

Some specialized search engines go one step further and accomodate their
own custom query languages. These are generally very powerful and perfectly
tailored to suit each engine’s particular functionality. For instance, the Fast
Query Language (FQL) allows addressing much of the advanced functionality
of the Fast ESP engine directly through the query interface. This saves im-
plementors the trouble of writing custom code or going through configuration
files to set up complex searches. These custom languages are therefore being
utilized successfully by developers and implementors as high-level interfaces
to specialized engines.

However, the threshold for reaching proficiency within these custom lan-
guages can be very high for the average user. As such, they have not catched
on for general purpose search engines. These are instead tailored mostly to-
wards pure natural language keywords. The idea is to try to adapt the engine
to suit the user instead of the other way around. Thus, instead of requiring
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the user to specify his query using an advanced syntax, current engines are
increasingly trying to employ smarter techniques to interpret the query.

2.4.2 Query processing

Even with detailed knowledge of the retrieval environment, it’s a challenge
formulating queries that will produce good results. For instance, the user
doesn’t know which documents the engine has indexed, how it ranks them
or the exact terminology used in interesting documents. Neither is it appar-
ent what might be good keywords, or combinations of such, given the word
distribution in the corpus as a whole. The user is thus likely to spend much
time experimenting with and reformulating queries in order to achieve useful
results.

Consequently, initial queries can largely be regarded as first guesses and
far from optimal. A modern retrieval system is thus usually designed to aid
the user by leveraging its direct access to the index and superior information
processing capabilities. Some examples will follow shortly. The query can
then be improved in one or more of the following ways:

• expanding the query (adding keywords)

• rewriting the query (replacing, removing or correcting keywords)

• reweighting the keywords in the query (reshuffling by importance)

• presenting additional queries (similar, relevant topics)

The necessary input for these enhancements can be gathered either from
the users, from general word usage statistics or from the indexed documents.

Relevance feedback

A popular way to gather information from the user is through relevance
feedback. The idea is that the user, when presented the results of the initial
query, can provide feedback on which documents seem most relevant. The
engine can then modify the query with important keywords from the selected
documents. A benefit of this approach is that the actual query reformulation
is automatic and completely hidden from the user. In practice, though, the
average user can’t be expected to tag multiple documents. A common variant
of relevance feedback thus instead displays a “similar documents” link besides
each returned hit. Clicking this link triggers a new search using the salient
keywords of the document. The search is thus likely to retrieve information
on the same topic. Still, any such explicit feedback mechanism makes the
user interface more complex.
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Query log analysis

An alternative to direct feedback is to gather usage statistics from the query
log, which contains all the queries having been submitted to the engine. By
comparing the keywords of the incoming query with popular queries in the
query log, new queries can be suggested that are most likely related. Of
course, without any additional feedback statistics on the value of these vari-
ous queries, there’s no guarantee that popular queries are also good queries.
But at least this is a cheap way to discover and present semantically related
keywords and phrases. For instance, a search for “apple pie” could present
a list of popular searches like “apple pie recipes”, “baking apple pie”, “ap-
ple pie filling”, “apple pie crusts” and so on. These suggestions might help
the user more accurately specify his intent, or even discover new, intriguing
topics. Of course, the presence of undesirable noise and junk in the log will
have to be handled somehow.

Query segmentation

Users often don’t bother creating phrases and instead just list up all in-
teresting keywords in sequence. Explicit phrasing usually provides better
results, though, by specifying which words are supposed to occur together.
For instance in the noun phrase “account manager”. Finding a match on this
phrase is likely more relevant than simply matching the words “account” and
“manager” separately, which can occur in many irrelevant contexts. Phrases
also help disambiguate between different meanings. Take for instance “pop-
ular motion picture festival”. Here the intent is to find a popular “motion
picture” festival, not a “picture festival” with a “popular motion”. Stating
the proper relation between terms could be crucial for the accuracy of the
search.

Query segmentation is a technique to automatically recognize meaningful
phrases and segment the query accordingly. Segments are decided by con-
sulting a dictionary of e.g. common noun phrases and proper nouns. The
query log of a search engine can also be mined for frequent collocations. [38]
demonstrates an algorithm for accomplishing this by validating candidate
segments against frequency of co-occurrence in the log.

Anti-phrasing

Anti-phrasing can be seen as an enhanced form of stopword removal that
applies to queries. The intent is the same, i.e. removing words that are
unlikely to benefit the query. In this case, though, whole phrases are tried
filtered out. For instance, a question like “Where can I find information about
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Information Retrieval?” will probably be reduced to the query “information
retrieval”.

Anti-phrasing can be implemented by compiling a dictionary of common,
information-poor phrases. These can be automatically generated by rules
that construct variations over known, poor phrases. Candidates for inclusion
can also be gathered from the stopword lists or mined in the same way (see
section 2.2.3).

Spell-checking

Some of the keywords in a query are likely spelled wrong; either due to typing
errors or the lack of language proficiency on the part of the user. In any case,
suggesting alternatives to suspicious words is a useful, non-obtrusive feature
employed by many search engines. In its basic form, spell checking simply
entails matching each word against a dictionary. If a match can’t be made,
or the keyword is very similar to another frequent word, an alternative is
suggested.

Word similarity is often measured by some variation of the Levenshtein
metric, wherein the cost of modifying one word to become another denotes
their similarity. E.g. “rogue” can become “rouge” by replacing “g” with “u”
and vice versa, thus these two words differ only by a cost of 2. Changing
“horse” to “towel” on the other hand requires 4 operations (i.e. replacing
all characters except “o”). These modification operations, i.e. insertions,
deletions and replacements, can be weighted differently and the algorithm
tuned to favor fixing typical writing mistakes (e.g. making the required
operations cost less).

Synonyms and thesauri

Stemming and lemmatization have already been described in section 2.2.3
as techniques that can be used to map a query word to all forms of its
morphology. This has the benefit of improving recall, but at the cost of
reducing precision. Recall can be improved even further by also considering
synonyms and related words. The drawback is that synonyms tend to have
slightly different meanings (e.g. “to speak” vs “to state”). Ambiguity can
further result in two unrelated words having a synonym in common (e.g.
“state” as in “government” vs “state” as in “condition”). This creates an
undesirable link between two different concepts. Sticking to the correct word
sense and conceptual meaning is thus vital in maintaining precision. The
utilization of a proper semantic dictionary such as WordNet [62] can prove
helpful in this effort.
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2.4.3 Query examples

Let’s try a few typical questions in Google to see how it responds and to
unravel its abilities as an answer-finding tool.

Example 1

Let’s return to the question from the introductory example. It’s time to ex-
plain the rather poor results from example 2.1. First of all, due to filtering
mechanisms like stopword removal (2.2.3) and anti-phrasing (2.4.2) the ques-
tion is basically reduced to a query like title first futurama episode. Indeed,
the results from this query (example 2.8) differ little from the results from
the initial question.

While both of these queries seem very natural to us, Google doesn’t know
that the object in question is actually an episode title. Nor would it know how
to identify one in the text. And it definitely doesn’t know that we’re looking
for the first of these. Instead, it just finds pages containing all keywords in
near proximity of each other. In many cases this is enough; such pages are
likely to contain sentences mentioning the desired target and will hopefully
even include one such sentence in the teaser. In this case we’re less fortunate.

(2.8) ”Futurama” (1999)
Doomsville (USA) (working title) Runtime: 30 min (72 episodes) ... I’ll
admit that I too was among the people crying foul when Futurama first

came out, ...
imdb.com/title/tt0149460/

Can’t Get Enough Futurama: Episode Capsule: 3ACV09 - The Cyber ...
Futurama Capsules are meant as complete guidelines for the episodes.
These documents are produced by ... Title: The Cyber House Rules First

aired: 04/01/01 ...
www.gotfuturama.com/Information/Capsules/3ACV09/

Can’t Get Enough Futurama: Episode Capsule: 4ACV13 - Bend Her
Futurama Capsules are meant as complete guidelines for the episodes.
... Title: Bend Her First aired: 07/20/03 Production Code: 4ACV13
Written by Mike Rowe ...
www.gotfuturama.com/Information/Capsules/4ACV13/

List of Futurama episodes - Wikipedia, the free encyclopedia
The first number represents the production season. ACV is FOX’s series
code for Futurama. The second number is the episodes number ...
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en.wikipedia.org/wiki/List of Futurama episodes

Futurama - Wikipedia, the free encyclopedia
The title of the episode itself is also an obvious reference. ... In the USA
(DVD Region 1), the first season of Futurama was released on DVD on
March 25, ...
en.wikipedia.org/wiki/Futurama (TV series)

The title of the first entry is indeed a movie title, but it refers to the
Futurama series as a whole, rather than to a specific episode. The reason
this entry comes first is largely because the link to the page contains the word
“title”. This explicit mention is a strong indication that the page discusses
the subject indicated by the keyword. A clever ranking scheme knows to
exploit this. Especially since this keyword is the first in the query, thus
regarded as the most important one. The high rank is also due to the title
containing the word “Futurama”. The teaser further contains all the words
from the query, but in a quite different context than intended. There is no
mention of a first episode at all.

The next two entries do contain titles in the teaser, which are gathered
from tables and explicitly marked as such on the form “Title: Bend Her”.
Because the search engine has no notion of a title, this explicit mention
of the word “title” is again the most likely way that a title will indeed be
presented. It won’t be marked as such though, although the reader will have
little trouble identifying it. Again, there is no mention of a first episode, but
rather a first airing.

The fourth entry refers to a list of Futurama episodes. Neither the title
nor the teaser names any specific episode, but the corresponding web page is
very likely to contain the desired episode title. A quick check confirms that
the title in question, “Space Pilot 3000”, is indeed mentioned in the top of
the list of that page. Finding this information requires opening and browsing
the page though. There’s no sign of a first episode in the teaser here either,
but instead it mentions a first number.

The fifth entry is completely off mark and doesn’t contain any interesting
information at all. It does mention a first season though, which is coinciden-
tally the closest match to a first episode yet. But it’s quite apparent from
these results that the engine has no notion of the kind of information we’re
after but rather tries its best to match our keywords.

This example demonstrates that in many cases, if we want the answer, we
have to open the page and look for it ourselves. This is as expected though.
Google, like search engines in general, was never intended to present exact
results. The teaser is only there to give an indication of whether the page is
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relevant, and must not be confused with an explicit answering mechanism.

Example 2

Let’s try shuffling the query words a bit to see if this helps retrieval. As seen
above, the engine clearly missed the connection between the words “first” and
“episode”. Thus we might try juxtapositioning them to make our purpose
more clear. The query title futurama first episode presents us a result set
where the desired title is mentioned in the teaser of one of the top 5 hits
(example 2.9).

(2.9) Futurama - Wikipedia, the free encyclopedia
In the USA (DVD Region 1), the first season of Futurama was released on
DVD on March 25, ... Title sequence extracted from the Space Pilot 3000
episode. ...
en.wikipedia.org/wiki/Futurama (animated series)

Once again this seems to be coincidental as there is no explicit mention
of a first episode, nor any mark-up of the target. Instead the title appears
in a string referring to an audio extract from an episode which happens to
be the first aired. The specific string is “Title sequence extracted from the
Space Pilot 3000 episode”. The rest of the top 5 hits have nothing to do with
titles.

Example 3

A further refinement entails being even more explicit and providing our own
phrasing, as in title futurama ”first episode” (example 2.10).

(2.10) Can’t Get Enough Futurama: Episode Capsule: 4ACV12 - The Sting
A huge site dedicated to the show Futurama. Includes Futurama

downloads, Futurama ... LT; in the first episode space pilot 3000, when
professer fransworth ...
www.gotfuturama.com/Information/Capsules/4ACV12/

Again the desired title is mentioned in the top 5, but this time finally
in the right context, namely that of a first episode. When the connection
between these two words is explicitly defined, a hit is finally returned where
all the pieces of the query fall together.
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Example 4

In the above examples, the word “title” was entered as part of the query.
Even though the engine didn’t know what a title looks like, this nevertheless
increased our likelihood of actually matching a title. Let’s try a query where
the answer type is not explicit, namely Who dies in the ”Half Blood Prince”?
(example 2.11).

(2.11) Harry Potter and the Half Blood Prince

Harry Potter And the Half-Blood Prince... Which Characters Died In
Book 6? In the land of magic, death is a relative phenomenon. While there
are characters ...
www.chiff.com/a/harry-potter-hbp-deaths.htm

Harry Potter and the Half-Blood Prince

Pottermania has arrived. Fans are finding out the answers to...WHO
DIES? WHO IS THE HALF-BLOOD PRINCE? But now want to
know, WHO IS RAB and rumors on book 7.
www.chiff.com/a/harry-potter-hbp.htm

Harry Potter and the Half Blood Prince Rumors for Book 6
Who dies in the Half Blood Prince? Fred? George? New: Harry Potter
Book 7 Rumors, Theories and Facts Index New Quiz: Harry Potter and
the Half Blood Prince ...
parentingteens.about.com/od/ harrypotterrumors/a/harry rumor6104.htm

Harry Potter Book 6 Rumors and Facts Index for the Half Blood Prince

Who Dies in Harry Potter and the Half Blood Prince? ... So, who
dies? Maybe the Half Blood Prince? Email me and tell me who you
think dies in Harry Potter ...
parentingteens.about.com/ od/harrypotter/a/harryrumor 6i.htm

Blogcritics.org: Harry Potter and the Half Blood Prince Review
Snape is the half blood prince. Dumbledore dies and its Snape who kills
him ... If someone had told you who the half blood prince was or who
dies, ...
blogcritics.org/archives/2005/07/17/011055.php

Again, this question essentially yields the same results as the query dies
”Half Blood Prince”. But this time it’s more interesting to examine the results
from the question, because the word “who” turns out to be detrimental to
the query.
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As can be seen, many hits just repeat the question blindly. The presence
of the word “who” doesn’t aid the engine towards a person but rather dis-
tracts it towards matching actual questions. This is a major problem with
entering questions directly in keyword-based query engines. While the pres-
ence of a question might indeed indicate the presence of an answer, that
answer will likely be hidden somewhere in the resulting page. As we’re in-
terested in the answer, not the question, this behavior is not very useful.

Also note that the engine focuses on the verb “die”, and does not try to
expand upon this verb by using synonyms or a related noun such as “death”.
This means potentially missing useful constructs using these synonyms. On
the other hand, this restriction is a cheap way to assure high precision which
is more critical than recall given the amount of data web search engines
normally have access to.

The teaser of the fifth and last result correctly presents the information
that Dumbledore is the one that dies in the book. Given the previous blank
shots, this relation again seems coincidental rather than intentional.

If Google could at least be made to understand that we’re looking for
the name of a person we would probably get far more relevant results. Un-
fortunately this level of sophistication is beyond the current crop of search
engines. As can be seen, “who” is just treated like any other keyword. The
verb “dies” is not recognized as having to do anything with a person either.
And adding the noun “person” won’t make the engine any wiser. As it is, if
we’re lucky the name is revealed as part of the teaser, but if not we’re again
left to browse through the returned documents in search of it ourselves.

Even if the engine were to recognize person names, these results demon-
strate a potential trap. Harry Potter, being the star of the series, is mentioned
frequently in relation with the Half Blood Prince. If the system were to base
its answer primarily on frequency of occurrence, Harry Potter is almost guar-
anteed to be picked as the answer.

2.5 Discussion

Search engines work with queries, not questions. When supplied questions,
they will simply reduce them to queries through various filtering steps. This
process ignores the context that provides clues as to what the questions
are all about. Instead of interpreting this context, the questions are simply
converted to vectors of ambiguous keywords. These vectors are then matched,
word by word, against potentially useful documents. Behavior of this kind
is obviously detrimental if the system is to be able to handle questions.
Such filtering techniques may thus have to be disabled if the engine is to be
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enhanced to handle questions properly.
By completely ignoring the meaning of the words and how they relate to

each other, the ability to identify useful knowledge is sacrificed for speed and
language independence. Passages containing answers are only likely to be
retrieved if these use the same set of words as the questions. Further, there
is no way to specify the type of answer that needs to be located. Even if it
were, the engine wouldn’t know how to identify it. Unless the answer type
(e.g. “title”) is mentioned explicitly somewhere, the engine won’t know that
it’s dealing with the right type. This kind of ignorance is bound to miss a lot
of perfectly good answers. Also, it will likely return many seemingly good
matches that are totally irrelevant from a semantic perspective. In short, the
engine doesn’t really know what to look for.

But while current search engines may not be very good at answering ques-
tions, at least experiments conducted by e.g. Radev et al. [36] demonstrates
that they show great potential as components in a QA system. When feeding
simple fact-based questions to nine popular web search engines, 75% of the
time they all managed to return at least one document, among the top 40,
that contained the correct answer. Identifying and extracting that answer is,
of course, not trivial. But at least the amount of documents that have to be
scanned more thoroughly are reduced to a manageable fraction.

In general, the trend seems to be moving from powerful query languages
to smarter engines. This shift has been made possible by steady advances in
a number of fields dealing with natural language processing. These advances
have again become viable due to cheaper and faster computer hardware.
The result is that the focus is increasingly moving from easing the task of
the computer to easing the task of the user. Instead of the user having to
struggle with complex query languages to make the computer understand the
object of desire, the computer is increasingly being taught to identify what
the user wants to know. Proper question answering technology is a natural
extension to this line of thought. It allows the use of a language that is both
powerful and easy to use at the same time, with the ability to be very specific
when needed: the human language.

In conclusion, while current Information Retrieval systems are very good
at telling users where to look, they can’t provide them with any answers.
In this aspect they resemble efficient librarians more than knowledgeable
experts. Users still have to manually read through the returned documents
until they hopefully find some solid answers. This process can be very time
consuming and tiring. While IR is inarguably a crucial step in the right
direction, it’s not enough by itself.
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2.6 Information Extraction

IR was never intended to provide answers. The original goal was simply to
aid users in retrieving the documents that best match their queries. With
full-text inversion came the ability to show users where within these texts
their query keywords are being mentioned. This ability is rarely utilized to
help users navigate the documents, though, but rather to generate teasers.
If users are lucky, these short snippets of information contain the answer
they look for. But teasers are really only intended to help users determine
whether a given document is relevant. This is far from providing answers,
and merely a gradual narrowing down towards the part of a document that
is most likely to be interesting.

Focusing on the words that constitute a document is sufficient for re-
trieval, but not for making sense of the text. A related field of research
instead tries to aid users in more easily getting access to the actual knowl-
edge contained within a given text. This field is called Information Extraction
(IE). While IR concentrates on finding interesting passages of text, IE focuses
on the meaning contained within these boundaries. IE is motivated by the
desire to collect hard facts from natural language texts and present these to
the users. More specifically by discovering entities, i.e. items of interest such
as persons, companies or locations, and how these relate. For instance, by
creating an overview of which persons are employed by companies in which
locations. This kind of automation is very beneficial as it saves the users
from having to read through all the information themselves. This repetitive
process would be immensely time consuming and tiring for a human, but is
perfect for a computer. Of course, it all comes down to how adept the tool
is at interpreting the text. But even if lacking in the language department,
it will nevertheless be useful in providing a rough overview quickly.

IE can even be used to supplement existing tools. Because there are
already many other tools available for organizing, mining and discovering
important information in large sets of data. For instance, advanced data-
bases, data warehouses, topic maps and semantic networks. But the efficient
operation of these tools relies on vast amounts of information already having
been collected and given structure somehow. IE is a promising technology
for providing this kind of structure automatically by recognizing the very
structure inherent in natural language.

2.6.1 Pattern matching

IE typically works by scanning through the text looking for patterns that
match certain predefined sequences of characters, digits or symbols known to
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represent an instance of a given entity. For instance, “22:35” can be recog-
nized as specifying a certain time of day, given the valid hour and minute
components separated by a colon. Similarly, “John Adams” can be recog-
nized as a typical person name given a suitable dictionary containing such
names. Recognizing these kinds of entities is called Entity Extraction (EE)
and is a critical component of IE. Modern regular expressions are often used
for this purpose (section 2.6.3).

Recognizing entities is useful in finding instances of a given type, but it’s
not enough by itself. Let’s say, for example, that a user is trying to gather a
list of employees at a certain company. Using EE it’s possible to find both
persons and job titles co-occurring with said company within some specified
boundary of text. However, this proximity in no way implies that the entities
have anything to do with each other. Specifically, it does not imply that the
mentioned person has the mentioned job title and works in the mentioned
company. For instance, the person in the sentence John Adams said that the
CEO of XYZZYSoft has no real strategy is clearly not the CEO of the company.
On the other hand, John Adams was recently appointed CEO of XYZZYSoft
contains highly interesting information. For knowledge gathering purposes
it is thus not enough to recognize entities by themselves, but they must also
appear in valid syntactic relations.

These relations can be recognized by utilizing the same form of pattern
matching as on the entities. In this case, a pattern such as “PERSON was
... appointed JOBTITLE of COMPANY”. Here the uppercase words repre-
sent entities and the dots represent a sequence of arbitrary words that don’t
invalidate the relation, like e.g. a negation (“not appointed”) would. These
kinds of patterns are often called templates, since they represent predefined
templates with empty slots that need to be filled in with actual instances to
be complete. These slots can be filled by any entity of the right type. Once
all slots are populated, the template is said to constitute an extracted fact
or piece of knowledge.

Of course, it would be a lot of work creating patterns manually for all pos-
sible valid relations. Instead, IE systems typically employ machine learning
components. Riloff [37] describes one such system. AutoSlog-TS generates
templates (called “case frames” in this system) automatically by learning
from examples. Training is performed by running syntactic analysis on two
sets of texts, relevant and irrelevant. This analysis is performed automat-
ically and allows the system to discover valid patterns. The templates are
then ranked (basically by dividing relevant matches by total matches) and
submitted for manual review. While mostly automatic, the process still re-
quires manual effort in identifying relevant examples and discarding defunct
templates. Machine learning components are thus mostly useful for present-
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ing possible suggestions, but these will still have to be quality assured by a
manual process.

Entities and facts extracted in this manner constitute solid information
that can be utilized either directly (for knowledge gathering or text mining)
or used to populate a structured knowledge base (e.g. a database system)
for later data mining. Even more interesting, however, are the possibilities
that open up when enhancing a modern search engine with an IE component.
Specifically, the potential for extracting answers in response to queries.

2.6.2 Fast ESP

Fast ESP (Enterprise Search Platform) [53] is a modern search engine en-
hanced with IE capabilities. These enhancements are collectively referred to
as Contextual Insight [18], because they allow users to explore all kinds of
contextual information relating to their queries. I will not go into details
on how this specific engine functions, as I’ve already covered the most im-
portant aspects of proper IR operation. Nor will I explain here how entity
extraction is integrated with the system. This integration will instead be
presented when discussing my implemented extractors in section 4.3.

However, it’s useful explaining briefly how IE can be utilized for QA pur-
poses by using this specific engine. The promise lies with how the entities
are processed. While Fast ESP is able to identify dozens of entities of var-
ious kinds, the real benefits come from being able to index these entities
as meta-information. Mining and indexing entities means that they can be
queried upon just like a keyword. But unlike a keyword, which is basically
a meaningless sequence of characters, an entity contains meaning. That is,
once an entity is matched, it represents an instance of the semantic type
of that specific entity, e.g. a person. It’s thus possible to specify a search
for a person and only get presented results that contain this kind of entity.
Further, the results are not required to mention the word “person”, or any
equivalent term, as the person names will be recognized by their implicit
semantics, not by the explicit mention of type.

Searching for entities is possible in Fast ESP by using a scope search.
Scopes are predefined portions of text in a document, typically a paragraph,
a sentence or an XML tag (e.g. a body-tag in a HTML page). But a scope
can also be an entity. It’s thus possible to query for a certain instance
of an entity, e.g. person(John Adams), or simply require that a person is
present in the result, e.g. scope(person). These constructs are components
of the Fast Query Language (FQL), and can only be addressed through this
custom language. This means FQL queries must be written to utilize scopes,
which adds an undesirable element of complexity compared to simple keyword
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searches. But more importantly, the engine will not be able to provide an
answer to a question unless the user translates the question to FQL using a
scope search for the intended answer entity type.

As it is, questions can’t be utilized directly in Fast ESP. That is, they
can be submitted but will just be handled as queries. The engine contains
the basic requirements for returning answers of the right type, but only if an
explicit search for that type is deployed. This limits the general usability of
the engine for QA purposes. To be able to provide answers, the engine would
need to automatically determine the focus of the question and translate this
to a proper scope search. If this kind of functionality was realized, it could
greatly enhance the value of search engines for the average user. This is the
big promise of using Fast ESP for QA and it is the primary target for my
implementation.

2.6.3 Modern regular expressions

Since pattern matching is frequently based on regular expressions (regexes),
it’s useful to briefly mention these here. It’s important to note that regexes
are no longer what they used to be. The definition of a regular language
is one that can be processed by a finite state machine, also known as an
automaton. Modern regexes go quite far beyond this definition, and can even
surpass context-free languages. The definition of a regex today thus depends
on whether speaking of formal language theory or pattern matching. I use
the term in the latter sense.

The theories of automatons and formal languages had been conceived
long before computer systems existed that could make any practical use of
them. The well-known mathematician Stephen Kleene refined these theories
into the formal notation of regular sets. This notation was then popularized
in the 1960s by Kenneth Thompson’s work on the QED and ed editors for
Unix. As such, regexes have been around for decades and is a mature tech-
nology with a solid mathematical foundation. Today, the regex is the prime
mechanism behind pattern matching techniques and plays a significant role
in most successful information extraction systems.

Traditional regular languages provide limited forms of expression. The
resulting patterns are usually combinations of alternations, groupings and
quantifications. Modern regex libraries like PCRE [59] (Perl Compatible
Regular Expressions), go beyond these conventional boundaries. In doing so
they support clever constructs that greatly increase their area of applicabil-
ity. Basically, a modern regex is like a specialized programming language
operating on text. It even allows named back references (“variables”) and
conditionals. These added features make modern regexes very powerful and
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versatile. Today they’re usable for all kinds of matching and extraction tasks.
But the added functionality also means the expressions are strictly not reg-
ular anymore. They’re still commonly referred to as such, though, for lack
of a better term.

Using modern regexes it’s thus possible to write quite sophisticated ex-
tractors without having to resort to complex and slow syntactic parsers (for
natural languages). The results from this “simple” pattern matching can
then be used for more advanced processing later on if needed. A typical
use is to run “shallow” matching on large amounts of text to pinpoint the
interesting areas and then process these areas more thoroughly by using
“deeper” techniques. This enhanced functionality comes, of course, at the
cost of processing efficiency. By breaking out of traditional boundaries, mod-
ern regexes demand complexity beyond that which can be provided by finite
state machines alone. Even so, they display both an ease-of-use and an exe-
cution speed that is still far ahead of syntactic parsers.

Regular expression support in library form (like in PCRE) is ideal for
embedding within a framework tailored to entity extraction. A remarkable
proof of this is the Matcher framework of Fast ESP which will be detailed in
4.3.1, followed by examples of effective patterns and the procedure used for
conceiving them.
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Chapter 3

Question Answering

3.1 Introduction

Looking for answers by searching for and reading through relevant informa-
tion is a valid course of action. Both IR and IE provide helpful tools in this
effort, and both fields have made much progress. But the simplest and most
intuitive route to answers has been largely avoided; that of asking. Of course,
success traditionally depends on having someone knowledgeable available for
questioning. And the more difficult and important the question, the harder
it is to find that someone.

But what if a system could be created that automatically responded to
questions? IR already fills the role of an efficient librarian. IE can further
assist in pin-pointing the answer. What is needed now is the tool that ties
these two fields together: The knowledgeable expert that can directly answer
questions — someone who’s available all the time and responds immediately
and tirelessly. Researching the foundations for such a system has formed a
new field of science; Question Answering (QA).

QA has sprung up in recent years as a technology with the potential
to provide easier and more intuitive access to information. The goal is to
allow users to pose questions in their own natural language (e.g. During
which season do most thunderstorms occur? ) and receive concise, to-the-point
answers in return (e.g. Spring). Allowing such questions as input could save
users lots of time that would otherwise be spent trying to figure out the right
combination of search keywords that yields a good result set. And often,
further effort must be expended on manually examining the documents in
this set.

Currently, there is a large language mismatch between users and engines.
For successful results, the users have to carefully rethink and reformulate
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their questions into queries that suit the engine’s retrieval model. Alterna-
tively, if inputting questions directly, the engine will simply strip the ques-
tions of useful contextual information. Or even worse, misinterpret some
of these structural words as important matches in the resulting documents.
Major benefits of a QA system would thus be the ability to accept questions
directly, thereby avoiding this error-prone, and often complex, translation
step. Accepting questions also helps users focus on their exact information
needs, and aids them in expressing these needs more precisely to the system.
The system, in return, can deduce more easily what the user wants to know.
Intuitively, these factors can help improve both user satisfaction and retrieval
accuracy.

This chapter will explore QA in detail, both from an academic and a
commercial perspective. I open with some short background on the evolution
of the field (3.1.1) and go on to introduce the semi-automated approach
(3.2). Then I explain important considerations when designing a QA system
(3.3) and how performance can be evaluated (3.4). The latter section also
has detailed information on QA evolution in light of the TREC conference.
Finally, I present some actual systems (3.5) and some thoughts on semantic
answer verification (3.6). I end with a discussion on the limitations and
possibilities of QA (3.7).

3.1.1 Background

QA has existed in some form or the other since the 1960s. The first incarna-
tions were used as natural language interfaces to expert systems. These are
rule-based systems able to automatically infer solutions to problems within
their domain. At their finest, they’re able to produce solutions equal to, or
better than, human experts. This power would largely be wasted unless users
could comfortably state their problems, hence the interface enhancement.

QA is now increasingly attracting attention from the related fields of IR
and IE. The same promise of allowing users to interact with existing systems
in a more natural way is again one of the main attractions. In exchange, QA
has been made more viable due to the results achieved within these fields.
The benefits of merging are thus mutual.

QA can be seen both as an extension to these fields, and as a kind of
intersection between them. In QA and IE, unlike in IR, retrieving a whole
document is unacceptable. And in QA and IR, unlike in IE, no restrictions
are placed on the type and domain of questions. QA can thus combine the
openness of IR with the exactness of IE, and could prove to be a useful bridge
between them.

While QA has only fairly recently started to receive full attention, part of
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the required functionality has long existed within other fields. Database (DB)
systems, for instance, already supported returning exact answers, but also
demanded strict structuring of both the data (e.g. tables and relations) and
the query (e.g. SQL). Given a properly structured (and populated) knowl-
edge database, however, finding an answer is only a matter of formulating
the right query. For instance, a question such as The Hindenburg disaster
took place in 1937 in which New Jersey town? could be formulated as seen in
example 3.1.

(3.1) Question:
SELECT location FROM disasters WHERE name = ”Hindenburg” AND
year = ”1937” AND location IN (SELECT * FROM towns WHERE state
= ”New Jersey”)

Answer:
Lakehurst

These severe structure requirements, and the high complexity of the
query, don’t exactly form an ideal base for QA. When IR systems started to
mature they soon abolished these restrictions on both data and queries. By
allowing unstructured text and keywords as source and input, respectively, a
far better foundation for QA had been achieved. The same question example,
now targeted at an IR engine, can be seen in example 3.2.

(3.2) Question:
Hindenburg disaster ”New Jersey” 1937

Answer:
Hindenburg Disaster One such event happened to reporter Herb Morrison
on May 6th, 1937 in Lakehurst, New Jersey. The mighty German
passenger Zeppelin, ...

Focusing on efficient retrieval meant losing the property of exactness,
though. These systems could consequently only return documents, or at best
passages of text, which hopefully contained the needed information. But the
ability to find exact pieces of information soon resurfaced within the field of
IE.

Advances in IE soon made it possible to locate exact entities in the same
kind of unstructured text as that provided by IR. By enhancing IR with IE,
proper question answering has moved one step closer. Few search engines
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actually employ IE directly, though, and instead leave this kind of process-
ing to some other tool. Fast ESP is a notable exception. Here, these two
fields have been successfully combined into a powerful symbiosis. But most
QA systems have to rely on a plain IR engine and integrate their own IE
component as part of the answer extraction process.

A big obstacle is how to access these entities unintrusively through an in-
terface similar to the simple keywords-based query box. Currently, a search
for entities can only be specified accurately through structured queries in
some custom language. For instance, example 3.3 demonstrates how the
question could look in the Fast Query Language (FQL). Due to the merg-
ing of IR and IE, the answer can be provided with or without contextual
information. This results in a long or a short answer; a passage or an entity.

(3.3) Question:
and(”Hindenburg”, ”disaster”, ”New Jersey”, scope(location),
date(1937))

Short answer:
Lakehurst

Long answer:
The research examined the disaster of the airship Hindenburg, which
occurred at Lakehurst, New Jersey, on May 6, 1937.

As concluded in the IR chapter (section 2.5), pure keyword-based queries
often contain too little information for the engine to be able to recognize the
user’s intended target of inquiry. On the other hand, custom query languages,
as just demonstrated with FQL, are just marginally more user friendly than
traditional structured languages like SQL. Current search engines can thus
greatly benefit from a query language with the simplicity of IR queries and
the power of IE queries.

QA thus provides the last piece of the puzzle by allowing users to place
inquiries in their own, unmodified, natural language. By interpreting and
translating the user’s question to the structured form accepted by the engine,
both power of expression and preciseness of intent are maintained. An engine
that could properly support a question answering paradigm would thus prove
most beneficial to the information seeker. Just to complete the example, 3.4
shows the simplicity allowed by QA.

(3.4) Question:
The Hindenburg disaster took place in 1937 in which New Jersey town?
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Answer:
Lakehurst

This evolution of technology from databases to QA is summarized in table
3.1.

Field Answer Source Query
DB exact data structured
IR inexact text keywords
IR w/IE exact text structured
QA exact text question

Table 3.1: Evolution towards question answering

3.2 Q&A: The semi-automated approach

Question answering is essentially an AI-complete problem, meaning that it
can only be solved in its entirety by creating an “intelligent” agent able to
fully comprehend human language and understanding of the world. Creating
such an agent has proven mind-numbingly complex and the current state-of-
the-art is nowhere near this level of ability. Some companies have thus taken
the question answering paradigm quite literally and base their solutions on
answers provided by humans. These solutions can either be fully manual or
semi-automated.

While not strictly QA systems, these are nonetheless worth mentioning
briefly as they provide a realistic alternative to automation. After all, the
ability of humans to successfully answer questions should not be underesti-
mated. The legitimacy of automated systems should thus be reviewed in this
light. There is not much sense in creating an automated system if a manual
one performs adequately.

Still, the QA community seems largely to have avoided this aspect. I’ve
been unable to find solid research on the topic, and the implementations I’ve
seen have all been commercially motivated. I see this as all the more reason
to describe how these solutions work. To distinguish them from QA systems,
however, they will be referred to as Q&A services (Questions & Answers).

There are several variants of these solutions, but they all share the prop-
erty that humans provide the answers to questions submitted by the users.
They differ mostly in the following aspects:
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• Dynamic or static. A dynamic solution is one where humans answer
new questions continuously as they’re submitted to the system. A
useful knowledge base of Q&A is thus gradually compiled over time as
new answers are entered. A static solution, in contrast, is one where the
knowledge base consists of precompiled collections of Q&A pairs, such
as FAQs. Of course, a collection of FAQs might be updated regularly
but will still be static compared to the frequent flow of answers in a
dynamic solution.

• Answer source. Dynamic solutions mainly have two possibilities. First,
the answers could come from information experts which are proficient
at locating useful information quickly. These are likely to a number
of information gathering tools from the fields of IR and IE at their
disposal. Secondly, answers could be exchanged between users which
are simply interested in the same topics. Finally, the source of static
solutions is the source that generated the Q&A pairs in the first place.

• Cost of service. Information experts normally demand a fee for their
work while users are likely to exchange answers free of charge. The
quality of the answers is naturally tied to this aspect. A FAQ collection
or similar is likely freely available, but might be private and charge a
fee for access.

• Openness. Answers might be provided exclusively to the person asking
the question or submitted for public use. The former case primarily
makes sense in a commercial setting. If answers are exclusive they
can be provided upon charge on an individual basis. This hinders the
gradual compilation of an accessible knowledge base for general use. Or
rather, it means this knowledge will be kept private by the providers
of the service.

So far a system with the properties described can be fully manual in na-
ture, except for a thin layer of functionality driving the service. Automation
comes into the picture for those systems that try to match new questions
against known Q&A pairs. The purpose is, of course, to increase efficiency
by automatically responding to already answered questions. This kind of
solution is automated in the sense of retrieving known answers to known
questions. But it’s manual in the sense of actually locating the answers in
the first place. It can thus be called a semi-automated system.

The easiest way to accomplish this is simply to make the knowledge base
searchable by a standard keyword based search engine. The keywords from a
question can then simply be matched against the answers. Basing retrieval on
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keyword matching against answers does, of course, bring the inadequacies of
these engines as questions answerers to the surface. Just because a question
shares terms with an answer doesn’t mean that they form a good pair.

There is another possibility, however. Instead of matching questions
against known answers they can be matched against known questions. After
all, the best way to assure a correct answer is by assuring that the question
actually asks for that answer. But matching against questions is challenging
in two important ways:

1. Questions are far shorter than answers and thus contain far fewer words.
This gives keyword searches very little to work with.

2. Questions having the same semantic meaning can be phrased differ-
ently. That is, they might use different words and have different syn-
tactic structures. This means question similarity can’t be compared on
syntax alone.

These two properties demand that questions are interpreted semantically
in some way to account for word brevity and differences in syntax and vo-
cabulary. An algorithm such as [23] is an effective way to accomplish this.
Briefly, the idea is to compare questions semantically by examining their
answers. The answers from a training set of Q&A pairs are compared by
several measures, including cosine similarity (see the vector model in section
2.3.1) and a probability based language model. This last model is used to
generate a likely question from an answer, and then to find similar answers
by computing the likelihood that these answers would generate the target
question.

3.2.1 Presentation of solutions

As seen, there are many variants of Q&A services. Some of the most char-
acteristic ones will now be presented in increasing order of automation.

Yahoo! Answers

Yahoo! Answers [63] is based on leveraging the community built around the
company’s search and directory services. This service is provided at no cost
and is completely user driven. It’s also open so that anyone can read the
answers.

Basically, users submit their questions to the system which posts them on
something resembling a forum. Anyone can answer questions but no question
is guaranteed an answer. Submitted answers are appended to their respecting
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questions like forum postings. In this manner the service resembles a mod-
ern front-end to a traditional user-moderated forum with open discussions.
Existing answers are searchable by keyword queries.

Though quality is attempted assured by a rating and reputation system,
the lack of moderation means the service is plagued by spam and poorly
written answers. In fact, Ask (formerly known as Ask Jeeves) previously
attempted a similar service called AnswerPoint. This service has now been
disbanded, but allegedly the conclusion was that the free nature of the ser-
vice provided people with little incentive to answer other people’s questions,
especially the harder ones ([35]).

Google Answers

Google Answers [55] try to ensure quality by providing a kind of marketplace
for questions & answers.

In this solution, customers specify how much they want to pay for an
answer and how fast they need it. Then they wait for someone to pick up
their “order”. The first person answering the question gets rewarded the sum
assigned to the order. The better-payed and/or easier answers will naturally
be picked up by someone more quickly.

The service is open and the answers are available to, and searchable
by, anyone. Not everyone can write answers, though. Potential answer-
ing candidates must first prove their abilities by going through a screening
process. This weeds out the most unsuitable elements. This restriction,
and the payment incentive, are important differences from Yahoo!’s system.
Consequently, both the quality and the response time of the answers seem
notably improved.

Info Angels

Info Angels [56] is an example of a fully manual service. It’s also commercial
and closed, which means each answer is only available to the person asking
the question. In other words, there is no reusable knowledge base of Q&A
open to the users.

The solution is based on employing a large number of full-time, certified
information researchers. These can be contacted by any means, for instance
by e-mail, phone (voice or SMS) or the web. Each customer will be assigned a
personal information researcher for the session, referred to as an Angel. These
individuals will immediately set to work figuring out the answer to their
respective customer’s question. They can even be instructed to locate and
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purchase items or services matching their customer’s specifications. Payment
is handled by paying for the time the Angels spend on research.

The success of this approach is difficult to judge due to the closed nature
of the service. The major benefit of this solution, however, seems to be the
response time. As each user is assigned a personal assistant an answer will be
returned fairly quickly. The major drawback is, of course, the expensiveness
of full-time employment. And answers are still not instantaneous.

Ask Jeeves

In addition to the previously mentioned AnswerPoint service, Ask Jeeves
initially tried pursuing an advertisement-driven search engine based on ques-
tions rather than queries. This service, aptly named Ask Jeeves, was launched
in 1996. Thus it was not only the first commercial QA engine for the web,
but in fact one of the first web search engines in general.

In their approach, the submitted questions were automatically matched
against manually annotated, precompiled question patterns for which editors
had already discovered answers. All questions were monitored and those
which the system could not find an answer to were marked as such. The
editors would then try to find suitable answers on the web. The most popular
questions were answered first in this manner. When a question had received
an answer it was added to the knowledge base for future automatic lookup.
Questions which could not be matched against known ones were transferred
to a keyword-based search engine; Teoma.

The semi-automated QA approach proved to be most valuable within
limited, specific domains. An example is technical support. Here, customers
could efficiently be served useful answers in response to frequent questions
without having to wait for a customer representative. This relieved frustra-
tion on both sides. When this part of the company was sold to Kanisa (now
KNOVA [58]) in 2002, the service focused on Teoma, their keyword-based
engine. This is the driving force behind the new Ask [48].

Though the original Ask Jeeves is disbanded, traces of the QA service
can still be witnessed in the Ask for Kids [49] service. It’s probably branded
as such due to its severely limited coverage and focus on trivia. The new Ask
service also has a limited form of QA, though of a different kind which will
be discussed in section 3.5.6.

FAQ Finder

FAQ Finder [11] is a well-known example of a static solution based on pre-
compiled knowledge. When operative it was open and non-commercial in
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nature. It was based on two stages:

1. Questions were keyword matched against entries in selected FAQ files.
This had the main purpose of narrowing down the set of interesting
Q&A pairs.

2. This set was then inspected further by more carefully matching the
questions against the selected answers. Similarity was determined both
statistically by comparing term-vectors (see the vector model in section
2.3.1) and semantically by consulting WordNet’s synonym sets. Thus,
the system accounted for differences in vocabulary.

The main purpose of the system was to provide automated navigation
through FAQ files, not to answer every thinkable question. As such it could
be restricted to a static collection. As neither the collection, nor the system,
has been updated since 1996, it has long since been surpassed by more modern
variants. These are largely based on the same principles though, differing
primarily in their similarity measures.

3.2.2 Evaluation of Q&A

The primary attraction of Q&A solutions is the knowledge base of read-
ily available answers. Since these answers have been carefully crafted and
paired with questions, no extensive parsing or semantic understanding of the
questions have to be performed in order to find suitable answers. Nor is it
necessary to prepare or compile the answers. It’s enough to find a similar
question and retrieve the corresponding answer.

As should be apparent by now, Q&A services have a large number of
potential problems:

• Response time. If an answer to a given question isn’t readily available,
the submitter might have to wait a long time before someone answers.
This is main drawback of a dynamic Q&A service and defeats the
purpose of any QA system; that of the always available expert. In
contrast, automated solutions are instantaneous. For simple questions
it’s probably far more efficient to search for answer using a regular
search engine than to wait for a manual response.

• Limited coverage. It goes without saying that a system based on manual
answers can’t hope to cover anywhere near the multitude and variety
of an automated solution. This is the main drawback of a static Q&A
service, but also a major problem for the dynamic ones. For an answer
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to be available someone has necessarily had to go through the trouble
of finding or researching it and submitting it. Due to this limitation
these services are often supplemented by some kind of keyword-based
engine. Questions which can’t be mapped to the knowledge base are
then passed on to this engine.

• Poor quality. This aspect applies mainly to user-driven solutions with-
out quality assurance. Answers from experts, on the other hand, are
likely to surpass automated ones. It’s fairly easy to assure some level
of quality from automation, though, by mining answers from reliable
sources. As such, sabotage and spam is less likely than in a free-for-
all service where anyone can answer. It’s similarly easy to control the
knowledge in a static solution, of course.

• Lack of trust. As the person asking the questions doesn’t know the
answer, it’s fairly easy to be misguided by a deliberate false answer.
For instance, on discussion forums answers are rarely backed up by
adequate references or evidence. Unless the reply is given by someone
that can be verified as an authority on the subject, it’s just a state-
ment of belief by some random person. An automated system, on the
other hand, can easily present the context and source of its matches
for verification.

• Lack of incentive. As concluded by the AnswerPoint team, people
have little incentive to answer hard questions. Even when rewarded by
payment, as in the case of Google Answers, there’s a tendency to prefer
answering many easy questions rather than a few tough ones. This
tends to pay better in the long run. On the other hand, harder questions
are also more difficult to find answers to by automated systems.

3.3 Dimensions of automation

In light of the problems with Q&A solutions, most research teams have ap-
parently turned their attention towards full automation. The promise of
instant answers from multiple sources is luring. As shall soon be apparent,
though, automating question answering is by no means trivial. I mentioned
in section 3.2 that question answering can only be realized in its entirety by
creating a system able to rationalize over the full extent of human thoughts
and languages. Fortunately, the problem doesn’t have to be solved exhaus-
tively in order to achieve useful results. Much progress has already been
made simply by limiting the scope of the problem to manageable tasks.
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Any significantly complex problem has many potential solutions, though,
and QA is no different. Thus, a lot of widely different ideas have been ex-
plored for QA purposes. To be able to discuss and compare these approaches
it’s important to identify the most significant dimensions through which the
systems differ. By “dimensions” I mean the various considerations that has
to be made when planning a QA system. The following dimensions will be
detailed:

• Domain

• Question type

• Answer type

• Method

• Scale

• Processing

3.3.1 Domain

The answering ability of the system is largely dependent on the heterogeneity
of the domain in which it’s going to be applied. If the domain is limited to
a specific set of interesting topics, the system can be perfectly tuned to
recognize common answers within those precise topics. The more varied the
topics, and hence also the terminology, the more work is required to reach
the same answer quality and coverage as in a more homogeneous domain.
This problem is especially significant if the system relies heavily on manually
developed rules or otherwise hand-crafted knowledge. But as long as it only
has to handle one domain, or at least not more than a few, this work is still
manageable. Such a specialized system is called domain dependent, and is
referred to as dealing with closed domain topics.

The real challenge starts when the system needs to handle topics from an
open domain. The system is now domain independent and general purpose,
rather than specialized. The fact that the domain is “open” means that
it’s essentially no longer possible to determine every kind of topic it has to
handle. Basically, the heterogeneity has exploded and become nonassessable.
Relying solely on hand-crafted knowledge is thus no longer an option, no
matter the amount of work invested. It it possible, though, to identify the
most important questions and topics (e.g. through user feedback, expert
opinions or usage statistics) and focus the work on these. To be able to
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reach an acceptable level of coverage the system then has to provide some
kind of fall-back solution to handle unsupported inquiries.

An example of a successful domain-dependent QA system is the reading
comprehension system, e.g. Deep Read [21]. These systems are used to
measure how well human subjects understand the texts they have just been
reading. While useful, these systems only work on specific texts and accept
only a limited set of questions. To be genuinely valuable, this answering
ability has to be expanded to work on large, full-text collections without any
domain restrictions. This is the big promise granted by the merging of QA
with IR and IE.

3.3.2 Question type

Ways to ask a question

What topic a question asks for is linked to the domain the question targets.
But while there is an unlimited number of possible topics there are only a
few different manners in which to phrase a question. These are bound by the
specific ways in which human languages are used to produce inquiries.

A question can be classified by the way it addresses the person for which
the question is intended. Table 3.2 shows a few examples.

Question Type
Who invented Trivial Pursuit? Direct
Do you know in which city the River Sein is? Indirect
Tell me when Elvis Presley died. Commanding
I want to know who killed J.F.K. Intention

Table 3.2: Ways to ask a question

Only a direct question is interesting from the perspective of carrying
meaningful information content. The others are just ways of expressing sub-
tleties in human communication and socialization. For a computer these
are simply unnecessarily complex ways to get to the point. For instance,
Tell me when Elvis Presley died could just as easily be phrased as When did
Elvis Presley die? . Every type of question that is not on a direct form can
thus preferably be reduced to this form, e.g. by anti-phrasing, before being
processed further.

Note that all of the questions in this table use so-called wh-words. That
is, they all use one of the interrogative words starting with the letters “wh”.
In modern English these words consist of who, (whom, whose), what, which,
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where, when, why and how. A question that is not direct might not neces-
sarily contain one of these words, as in the example Give me the address of
the Opera. This kind of question is essentially a “what” question, though, as
can be seen by the rephrasing What is the address of the Opera? .

Multi-sentence questions

So far, the example questions have been rather straightforward. That is,
they’ve been concise and have contained all necessary information within
a sentence. Once questions start spanning multiple sentences they are far
more difficult to handle. The topic of the question might no longer be part
of the same sentence as the interrogative word, if there is such a word at
all. Further, there might even be any number of topics, and these might be
intertwined with suggestions, observations or partial solutions. Consider the
following question from a technical support forum:

(3.5) Since upgrading to the final 6.3.0 version I am having the following
problem: When I browse the music folder and add music to the play list
the right side pane turns white and does not show the chosen music until
I manually refresh the page. This does not occur when using any of the
other browse functions. I have tested this in Firefox 1.5 and Internet
Explorer with the same result. It seems to be skin related. It
malfunctions with dark, purple, bagpuss, NBMU, and touch, but not with
default or default2. Suggestions?

While this is indeed a question it might be notoriously difficult for a com-
puter to identify as such. Compared to the previous examples it is not even
phrased as a proper question. The only real indication is the question mark
at the end. Automatically finding the focus of this question demands severe
language processing and is likely beyond the abilities of current technology.
The question is obviously meant for human consumption though. Most of
the information is meant to aid in understanding the problem and formulat-
ing a proper response. This information is irrelevant for the sole purpose of
locating an existing answer to the question. If it were to be targeted at a
computer it could thus be greatly simplified, for instance as:

(3.6) Why is the right side pane blank when I browse the music folder in
version 6.3.0.?

In short, it might be necessary to put some limitations on the way ques-
tions can be phrased when addressed to a computer. While some of the
promise of QA is for the users to be able to phrase questions in their own
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languages, it’s not realistic to expect current technology to understand overly
complex constructions. Indeed, another human might even have difficulty un-
derstanding what such a question is all about. This kind of restriction is not
necessarily a drawback though. By forcing the users to phrase clear questions
it might even aid them in understanding the essence of their inquiries.

3.3.3 Answer type

Questions can also be classified based on the complexity of the expected
answer type. There’s an important class distinction between those questions
that can be regarded as closed and those which are correspondingly open. A
question is referred to as closed as long as it’s possible to answer by identifying
some distinct item in the text as the target of inquiry. Examples of closed
questions are seen in table 3.3.

Question Answer type
Where do apple snails live? Location
In which city would you find the Louvre? City
How big does a pig get? Measurement
What metal has the highest melting point? Metal
Who was the first person to reach the North Pole? Person
When was the telephone invented? Date

Table 3.3: Closed questions

In contrast, an open question is one which might require an explanation,
a procedure, an opinion or some kind of causal relationship to explain. These
kinds of questions often use the interrogatives “how” and “why”. Table 3.4
gives examples of open questions.

Some questions are seemingly answerable by a simple “yes” or “no”. An
example is Does a shark lay eggs? from table 3.4. One might thus be led
to think that it belongs to the closed class. Answering this kind of question
is not an act of finding an actual “yes” or “no” in the text, though, but
rather of finding a statement confirming or denying the proposition. The
particular nature of this statement is indeterminable This example question
is particularly deceptive, as the answer is either yes or no depending on the
shark. A good answer is thus one which asserts this fact. Such an answer
looks decidedly close to an explanation, though, which only confirms the
open nature of the question. Indeed, an explanation might be valuable in
supporting any “yes/no” question.
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Question Answer type
Does a shark lay eggs? Yes/no
Who was Galileo? Description
Will there be a new world war? Opinion
Why did the U.S. invade Iraq? Opinion
How accurate are HIV tests? Explanation
How popular is the iPod Nano? Sentiment
What does CPR stand for? Definition

Table 3.4: Open questions

So far the questions have asked for a single answer. Closed-classed ques-
tions might also explicitly ask for multiple entities (table 3.5). These are
often called list questions, as the system is required to return a list rather
than a specific entity.

Question Answer type
Which presidents were republicans? Persons
List the names of cell phone manufacturers. Companies
What are Canada’s two territories? Locations
Name foods high in zinc. Nourishments

Table 3.5: List questions

It’s understandably easier for a QA system to answer closed-class ques-
tions than open ones. Identifying a specific entity is far simpler than some
loose description. Most current QA systems consequently focus their atten-
tion on the closed class.

Finally, a very important attribute of any system is the ability to assert
that an answer does not exist. This is an Achilles heel of many system based
on deductive logic. While highly proficient at finding a proof (e.g. an answer)
they are rather hopeless at figuring out that there is no such proof. Instead
they will just try new chains of inference, possibly indefinitely. Determining
whether an answer exists was identified as critical enough to warrant its own
measure in the TREC conferences from 2001 and onwards (section 3.4.1).
Systems that are based on identifying potential answer candidates in advance
(i.e. offline) rather than on-the-fly (i.e. online) have a natural advantage in
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this department. If a question does not match one of the candidates, an
answer does not exist (e.g. can not be recognized).

3.3.4 Automation

There are primarily two ways to go when working with patterns: heuristics
or machine learning. Both of these have advantages and disadvantages, and
the choice of which to pick largely depends on the domain of use. There are,
of course, also many variants in between which utilize automation to various
degrees.

Heuristics

Heuristics, or hand-coded rules, are especially effective for domain-dependent
systems as they can be tailored specifically to each domain. Basically, this
route implies analyzing questions and answers manually and then writing
custom rules to handle the cases identified. Methods based on regular ex-
pressions and pattern matching fall naturally under heuristics.

There have been a few attempts, though, at applying machine learning
also to entity extraction [64]. The intent has been to automatically discover
new patterns that can be used for recognizing entities Machine learning can
potentially yield higher recall as it can identify and cover more cases within
a limited time frame. This is especially true in situations where there is a
huge variation in the material to be processed, or just too much material to
deal with in an orderly fashion. But, on the other hand, heuristics tend to be
more precise and are perfect for cases of low variation. Humans can come up
with much more clever, not to mention creative, schemes than an automated
algorithm. As long as it’s practical to apply heuristics, both accuracy and
general performance is likely to surpass automated methods. For instance,
a recent comparison in ontology building [40] uncovered that the additional
rules discovered by machine learning had significantly lower precision than
the original manual ones.

Machine learning

Heuristics are not very flexible, though, and they usually require a substantial
of manual labor to construct. Systems that employ them are thus often
supplemented with learning algorithms. As the name implies, these learn
from examples, either automatically (unsupervised) or semi-automatically
(supervised). When properly trained they can detect patterns that would
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otherwise go unnoticed and can classify information based on parameters
not available to a rule set

As an example of a learning algorithm, Tritus [1] uses three stages:

1. It classifies the questions based on their similarity to questions in a
training set.

2. It uses the answers to those questions in the same set to construct
queries likely to match similar patterns.

3. It tweaks the system to use different search engines based on which
engine performs best with which type of questions. This tweak is per-
formed by running test questions through each engine and comparing
their results with the test answers.

Learning algorithms have another advantage. Using NLP as a basis usu-
ally implies language dependence, as both the grammar (the valid constructs
of a language) and the lexicon (the words of a language) are unique. By
providing training material in the desired target language, a learning algo-
rithm can adapt to that language. As an example, Tritus learns the patterns
of answers, and thus can be trained on many languages with only minor
modifications.

3.3.5 Scale

Answers to questions must be extracted from some corpus of text material.
The scale of this corpus has a major influence on the type of processing that
will be required (section 3.3.6). It will also influence the applicability of the
system, the trustworthiness of the sources and the quality of the answers.

Small-scale benefits

Domain-dependent systems are usually of a rather small scale because of
their very specific natures. But a small-scale system might just as well be
open-domain. There’s no direct dependency between domain and scale. For
instance, early open-domain systems had no choice but to limit their scale
as there was simply not enough text material readily available in digitized
form. Even today, with the vast and accessible web, small-scale answering
has its uses:

• If one is interested in providing answers from a specific collection of
documents, these can be selectively indexed by an IR engine. For



3.3. DIMENSIONS OF AUTOMATION 73

instance, a business might be interested in discovering new facts from its
private archives. Or it might want to provide some form of automated
support to its employees or customers. This means the corpus should
be limited to the corporation’s knowledge base. As another example,
a university might want to restrict its answering system to sources
containing material known to be correct and useful to its students.
They can thus avoid the rants, opinions and general noise present on
the web. In other words, a small-scale system can provide selective
source control for sensible or specialized information.

• Certain kinds of material is better suited for answer mining than oth-
ers. For factual information, for instance, an encyclopedia is likely to
contain more useful information per page than the average web site.
Likewise, on any given topic there’s bound to be a number of special-
ized sites that are guaranteed to contain much more relevant knowledge
on that topic than the web in general. Identifying and selectively in-
dexing high quality sites can improve overall answer quality. Another
useful source is sites or pages providing manually prepared answers,
e.g. FAQ-style information. Semi-automated Q&A solutions (section
3.2) have already proven the worth of focusing on such sources.

When the source of answers must be controlled in some way, the scale
will naturally have to be limited accordingly. This rules out using general,
web-based search engines for document retrieval, because these don’t allow
detailed source control. Rather, a specific engine must be set up to index only
desired content, but such an engine might not be available for all purposes.
Finally, a small-scale likely has negative impact on the general coverage of
the system but will, on the other hand, provide benefits in the form of better
and more reliable answers.

Large-scale benefits

The vast amounts of information available on the web makes it an attractive
resource for answering a variety of questions. The sheer number of pages
almost ensures that no matter the question, there is bound to be an answer
out there somewhere. Not only that, but the answer is likely to be phrased in
several different ways. Some of these will be far easier to identify than others.
By focusing on the simplest ones, the effort needed to find good answers can
thus be greatly reduced. If simple patterns are adequate for matching these
there is no need for further structure and meaning analysis.

An example will make this clear. Let’s say the system is given the question
“Who is the king of Norway?”. This relation can be expressed in numerous
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ways, not necessarily using the terms in the question. But by searching
through enough documents we’re eventually bound to find a sentence con-
taining the exact wording “X is the king of Norway”. The difficult task of
semantically relating different terms to the same concept can thus be by-
passed.

Clarke et al. [13] noticed that the number of accurately extracted an-
swers increased as the corpus grew. However, he also remarked that this
advantage is somewhat counterbalanced by the poor quality of the individ-
ual documents. Fortunately, redundancy can act as a safeguard against poor
quality and erroneous information; the more sources say the same thing, the
more likely it is to be true. Similar answers can thus “vote” for each other,
and the highest voted candidate can be returned as the most likely answer.
But repeating something frequently doesn’t necessarily mean its true. Clarke
et al. thus also demonstrate how to use information gathered from the web
to instead boost answers from a primary, more authoritative source. This
source may, for instance, come from a small-scale controlled index as de-
scribed above.

Banko et al. [5] further suggested that redundancy could be useful even
when no obvious answer strings are to be found. Relationships could be
discovered between entities if they occurred frequently and likely answers
could be guessed at based on the question-type and distance to the nearest
likely answer entity. This idea was not investigated further in the mentioned
paper, but an example of use is given.

3.3.6 Degree of NLP

A major separating factor between the implementations is the degree of NLP
involved. Even though an absolute boundary can’t be drawn between NLP
heavy and NLP light systems, the designers’ intentions can at least be in-
terpreted as either desiring to use NLP as a major component of their ap-
proaches or not. The resulting implementations can then be classified into
respectively deep or shallow approaches, referring to the depth at which they
process the language.

The decision of which approach to pick seems to be largely based on the
amount of data available for processing. The general rule of thumb is that
the more data available, the less sophistication required. This rule follows
intuitively from the observation that given enough heterogeneous data even
simple pattern-based techniques are bound to discover something of interest
(section 3.3.5).

This relation between processing power and data storage is not a new dis-
covery. Decades of research within wholly separate areas of computer science
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has concluded that processing power can to a large degree compensate for
data deficiency and vice versa. In other words, algorithms can estimate and
rebuild missing data, and pre-generated data can boost simple algorithms.
In this case, thoroughness can compensate for information poverty, and in-
formation abundance can compensate for superficial behavior. The methods
always have to be adapted to the resources available within the target do-
main.

The question of whether to choose a deep or a shallow approach is a
recurring theme in recent QA literature. Some examples are [13], [15], [7]
and [12]. These teams have all agreed in their conclusions: Deep processing
is best suited to detailed questions within specific domains while shallow
pattern matching is better suited to general open-domain questions. With the
huge, ever-growing information repository of the Internet, this topic is now
more relevant than ever. Indeed, an increasing number of systems submitted
to recent QA conferences (not the least TREC (section 3.4.1)) have based
their implementations on information from the Web.

Given the increasing availability of free information, much of the current
research trend (i.e. spanning the last five to ten years) seems to be moving
steadily from deep semantic processing to clever, shallow pattern matching.
In exploring the potency of this trend, as well as sketching out the foundations
for my own QA implementation, I’ve read and compared papers presenting
both points of view. Systems from proponents of both schools of thought
will thus be presented in section 3.5.

3.4 Comparing and evaluating systems

3.4.1 TREC: The QA conference

To be able to compare QA systems to each other and establish potential
benefits of the various approaches, it’s imperative to have a common set of
data upon which to test. These kinds of sets exist, and the Text REtrieval
Conference (TREC) provide some of the most widely used ones. In addition
to large test sets, TREC provides a controlled environment for scoring and
comparison, as well as a forum for discussion and cooperation.

The conference has proved a major success, with hundreds of partici-
pants from both academic, commercial and governmental groups. The per-
formances of submitted systems have improved considerably through the
years and much of this open research has directly benefited the community.
Several of the innovations have also been commercially viable - some even
leading to the establishment of new businesses.
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TREC is conducted by the U.S. National Institute of Standards and Tech-
nology (NIST) with support from the U.S. Advanced Research and Devel-
opment Activity (ARDA), and has run yearly since 1992. There are many
tracks running in parallel, each trying to solve different issues within informa-
tion retrieval and processing. The QA track started in 1999, and the stated
goal was to be able to return exact answers, from open domains, in response
to questions phrased in natural language.

Evolution of the QA track

In a recently released book about the TREC conferences [47], a concise his-
tory of all the yearly tracks (up to and including 2003) is given. The evolution
of the QA track is interesting as it shows how the systems become progres-
sively more sophisticated as the track grows more demanding. Through
this evolution, many useful insights have surfaced that are of interest to my
own research. Further, the stated goals of each year’s track provides some
background for the systems that participated in that track. I will soon be
presenting some of these systems (section 3.5). For these reasons it is prudent
to provide a short outline of the annual tracks.

TREC-8

In TREC-8 each participant was given a series of questions and a collection of
documents. For each question, the task was to be able to locate an answer in
the collection. Each question was guaranteed to contain an explicit answer as
all the questions were simply back-formulations from sentences in the corpus.
E.g. a question like Who wrote Hamlet? would have been generated from an
existing sentence like Shakespeare wrote Hamlet by a simple rephrasing.

Due to this straightforward correspondence, finding an answer was fairly
trivial. The general approach of most systems was consequently to classify
questions according to the interrogative word and the expected answer type
(e.g. “who” refers to a “person”). Documents were then retrieved (by tra-
ditional IR) and shallow parsed for entities of the right type occurring near
interrogative words. For instance matching a person name like “Shakespeare”
occurring near “wrote Hamlet” in the example above.

Not all questions revealed the entity type of the answer. Questions like
What language is commonly used in Bombay? or Name a film in which Jude
Law acted couldn’t readily be answered by using this approach, and the
systems struggled accordingly. The more robust ones reverted to general
entity extraction with varied results.
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TREC-9

TREC-9 used essentially the same document collection but expanded upon
it by approximately 50% more material. The biggest difference from before
was that questions were now drawn from actual log files instead of simply
being back-formulations from the documents. In other words, these were real
questions from real users of online encyclopedias and other sources. Answers
were still guaranteed to exist in the corpus, but they wouldn’t necessarily be
phrased similarly to the questions.

Some questions were now also more abstract than mere factoids, e.g.
Who is Mahatma Gandhi? . And syntactic variations were created to test the
robustness of the question parsing components. E.g. What is the name of
the tallest mountain? might be accompanied by a rewrite such as What is the
highest peak in the world? .

To be able to handle these variations the systems were refined to classify
questions based on factors besides the interrogative word. Many started
using machine readable dictionaries like WordNet to account for synonyms
and related words and to verify that the extracted answer was of the right
entity type.

An unintentional side-effect of these syntactic rewrites were the slight
semantic variations that unintentionally followed. E.g. a “peak”, from the
example above, doesn’t necessarily refer to a “mountain”, but could be ba-
sically be any protruding structure. This proved to be one of the toughest
challenges both for the systems and the judges.

TREC 2001

In 2001, the QA track still used the same corpus as the previous year, but
brought two significant additions to the questions:

1. Questions were no longer guaranteed to have an answer in the provided
corpus. In these cases, a system was expected to return NIL to signify
its belief that no answer existed. Systems that always reverted to
returning their best guess were thus penalized.

2. A new type of question appeared that required processing the data in
new ways; the list question. This kind of question was deemed different
enough to warrant its own, separate task. Basically, the purpose of
the task was to respond to questions having more than one entity as
answer. Further, the exact amount of entities to be returned was stated
explicitly. An example of such a question is Name 9 novels written by
Isaac Asimov . To be successful systems had to compile information from
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multiple sources and recognize duplicates (even if they were formulated
differently) to reach the target number.

By the time of this track, systems could be observed to belong to one of
two main categories based on their general approach. Those which had con-
tinued improving on the general technique mentioned earlier had now become
quite sophisticated, and used increasingly complex linguistic methods. But
a second kind of system had also started appearing — using a quite different
strategy. Instead of digging deep into the text and trying to reason upon the
data, these relied on examining huge amounts of data using simple patterns
in the belief that a match would eventually be found. The advantages of
each of these two strategies were detailed in section 3.3.6.

TREC 2002

The track held in 2002 switched to an entirely new corpus; the AQUAINT
Corpus of English News Text. And once again, two significant changes to the
questions were made:

1. Answers were required to be exact rather than portions (e.g. a sen-
tence) of text with the answer contained somewhere within. The idea
behind this change was for the systems to provide precise answers that
could be used automatically for further processing. Previously it had
been enough that a human was able to identify the answer from the
returned snippet. For a discussion of the effects of this change, see
section 3.4.3.

2. Each answer had to be bundled with a confidence score, representing
the systems’ degree of certainty that the answer is correct. Further,
each question and answer pair were to be ranked according to this
score (explained in section 3.4.2 below).

TREC 2003

By 2003, it was decided to combine the two previous question types, factoid
and list, into one task. Most participants had previously focused their efforts
on factoids, and the intent was to encourage interest in a broader range of
questions. Besides, list questions also ask for factoids — only several at the
time. Additionally, a new class of questions was introduced: the definition
question.

A definition question, e.g. What is acetaminophen? is more difficult to
answer than merely locating some entity. The answer usually requires pro-
viding a description of some kind — at the very least a short noun phrase
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like a crystalline compound . The answer should preferably also explain the
purpose of the compound, like in the more complete phrase: a crystalline
compound used in chemical synthesis and in medicine to relieve pain and reduce
fevers.

List questions were also modified so that they did not inquire about any
specific number of targets, but instead expected the systems to return all
interesting entities matching the question; e.g. in response to a question like
Which novels are written by Isaac Asimov? . This change made the list class
more generally useful, but also more difficult to evaluate because the systems
might return different entities to the same question (see section 3.4.2).

TREC 2004

Since the QA track’s introduction it had primarily focused on plain fac-
toid questions. Through several iterations, the best participating systems
had matured to the point that they could answer more than 80% of these
open-domain questions [43]. As the QA track evolved, it was argued that,
while useful for certain tasks, factoid answers was only part of what real
users needed. When observed, users tended to ask more knowledge gather-
ing questions than query about specific facts. Because of this tendency, list
and definition questions were gradually introduced. But the real departure
came in 2004 [45]:

1. Questions were no longer independent and self-contained, but were in-
stead grouped together based on some topic. Only the topic itself
contained the subject. The questions merely referred back to the topic
using anaphora. For example, given the topic Insane Clown Posse one
of the questions was Who are the members of this group? , and another
was What is their biggest hit? . These questions are useless without
considering the topic.

2. The definition questions were replaced with a new class that was infor-
mally dubbed “other”. Basically, this “other” meant providing addi-
tional, related information that was not explicitly asked for nor spec-
ified. The idea was, for a given topic, to present users with valuable
knowledge that they would not have thought of asking themselves. The
answer extraction process thus required the ability to separate essential
descriptions from peripheral ones.

To allow for this new knowledge-centric view, the structure of the test set
also had to change. The test set moved from a custom, but basically plain,
list of questions to an XML-based hierarchy. Here, the type of question (i.e.
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factoid, list or “other”) could be specified and a group of questions could be
bundled together with the topic into a question series.

TREC 2005

Due to the major modifications of the previous year’s track, the participants
needed more time to adjust their systems to the new paradigm. It was thus
decided to run the 2005 track largely unchanged from the previous one. Still,
one noteworthy change was made:

Events were introduced to the class of topics. The previous track had only
focused on “things” with substance; e.g. persons or vehicles. Questions might
now also pertain to some intangible happening. For example, given the topic
Russian submarine Kursk sinks, one of the questions was How many crewmen
were lost in the disaster? . This class was added because of the newswire
nature of the corpus in which events played a major role. Further, subsequent
questions now started inquiring about the answers from previous questions,
e.g. Which countries expressed regret about the loss? . This reaffirmed the
session paradigm.

The track also wanted to research the role of document ranking in QA.
That is, whether ranking affects the quality of the final answers and if so, in
what way. A new task to measure this property was added; the document
ranking task. Participants in this task were not required to present answers,
which opened the task to the IR community.

It was also decided to focus further on the “bigger picture” of knowledge
gathering. This resulted in yet another task; the relationship task. Here, the
systems would be presented a description of the information need rather than
a series of questions. For example The analyst is interested in the Al Qaeda
terrorist network. We know Osama Bin Laden is in charge, but what other
organizations and people are involved with Al Qaeda? . This kind of “question”
is a mix of topic, known facts and inquiries for specific targets.

TREC 2006

As the 2006 track is currently under progress and closed to non-participants,
the following information has been gathered mostly from recent discussions
on the TREC QA mailing list [60].

The main task of 2006 will again be similar to the previous two years. The
major change in this track will be the addition of the ciQA task for complex,
interactive Question Answering. This track is partly a replacement for last
year’s relationship task and partly a way to formally introduce interactivity
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(i.e. user feedback) into the QA process. Questions will consist of a template
and a narrative as in:

(3.7) Template: What is the relationship between [person: Colombian
businessmen] and [organization: paramilitary forces]?

Narrative: Specifically, the analyst would like to know of evidence
that business interests in Colombia are still funding the AUC
paramilitary organization.

The purpose of the template is primarily to ease the task of the partici-
pants. The performance leaders in the tracks up to and including 2005 were
the few systems that were heavy on semantic processing, e.g. PowerAnswer
(see 3.5.4). These were naturally more proficient at finding semantically cor-
rect answers than the others. In an attempt to level out the playing field,
the templates will explicitly state the entity types.

The free-form narrative gives the participating systems a chance to de-
duce additional meaning. They can subsequently provide any valuable knowl-
edge they deem fit. This opportunity will benefit the semantically adept
systems and takes over from the relationship task.

Finally, the interactivity is optional and entails allowing participants one
round of interaction with their systems. That is, they’re allowed providing
feedback once per question to their respective systems and let the final an-
swers stand. The intent is to explore how this kind of interactivity affects
answer quality and user satisfaction.

The future of the tracks

The major departures introduced since 2004 essentially mean the tracks have
departed from the traditional search paradigm of separate and independent
queries. Instead they have moved increasingly towards supporting a kind of
dialogue with the user, where the contexts from earlier questions maintains
their validity in the succeeding ones. This kind of functionality in a multi-
user environment requires maintaining some kind of session to keep track of
which questions belong to which users. Also, the system must be able to
recognize when the topic changes.

Further, the systems are now intended to locate and present helpful
knowledge on a given topic. They’re consequently becoming more knowledge-
gathering rather than fact-specific which requires a different design from pre-
viously. This shift is probably a good thing, as the focus is moving from mere
system performance to also include user benefits, as requested by participants
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(section 3.4.3). But as this is a major departure from traditional QA systems,
this view will not be discussed any further in this thesis.

3.4.2 Measuring performance

As should be apparent by now, TREC is providing a genuinely useful baseline
of progress and achievements within the field of QA as a whole. Another
important aspect of the conferences is their establishment of several useful
measures for evaluating the performances of the participating systems. These
measures are representative of the general consensus for effective comparisons
within the field. As such they are beneficial to explain, and again it’s useful
to follow their evolution from the beginning.

In 1999 (TREC-8), two answers for each question was required. One of 50
bytes and the other of 250 bytes length. The systems thus merely returned
an excerpt of the appropriate length from the sentence(s) containing the
answer. Pure IR (i.e. passage retrieval) proved quite adequate for 250-byte
answers, while IE techniques were required to successfully pin-point a 50-
byte answer. The same results were observed the following year, and so the
250-byte answers were retired in 2001.

In 2000 (TREC-9), each extracted answer was required to provide a sup-
porting document in the corpus from which the answer was found. It was
no longer enough to stumble upon the right entity by chance. Two scoring
schemes were devised; a lenient score for unsupported answers, and a strict
score for supported ones.

In 2001, the main difference was the inclusion of a separate measure for
answers correctly marked as NIL (e.g. not found in the provided corpus).

For the first three years (1999-2001), participants were instructed to re-
turn an ordered list of five answers to each question. The main scoring metric
was the mean reciprocal rank or MRR. Basically, each answer-list was scored
by the reciprocal (or inverse) of the first correct answer. For instance, if the
first correct answer was the third one, the answer-list was scored with 1/3 of
the maximum, i.e. 0.33 (as the maximum is 1). The score for each system
as a whole was then the mean of all these individual reciprocals.

Due to the impreciseness of the expected target of certain questions, mul-
tiple correct answers could be returned. For instance, consider the questions
What is the deepest lake? and Where is the Eiffel Tower? . The answers depend
on what scale is considered, e.g. a city, a country or the world. This was
handled by granting a full score, regardless of scale, as long as the answers
were deemed sensible by a judge.

In 2002, the scoring scheme was revised further. Answers now had to be
exact and were judged either wrong, unsupported (but correct), inexact (but
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correct) or right. Only the answers judged right counted in the final score.
By 2002, systems also had to rank their answers according to their confi-

dence in their correctness (as previously noted in section 3.4.1). This result-
ing confidence-weighted score rewarded correct answers more the higher the
confidence had been set. Specifically, for the total amount of questions Q in
the test set with ri being the number of correct answers for the first i ranks,
answers were rewarded according to the following equation:

1

Q

Q∑

i=1

ri

i
(3.8)

Evaluating list answers

In 2002, list answers were evaluated based on their accuracy, that is:

number of distinct entities located

total number of entities present
(3.9)

This was sufficient as long as each question stated the number of entities
present in the collection.

By 2003, list questions were expected to be answered by the maximum
number of correct entities found. As this number would vary from system to
system a new measure was required. List questions were thus instead eval-
uated according to their instance precision (IP ) and instance recall (IRe).
This is a measure similar to the balanced F-measure from IR (section 2.3.2).
In this case:

F =
2 × IP × IRe

(IP + IRe)
(3.10)

List answers could now be scored on a balance between how many correct
instances they managed to locate, and how many instances were correct of
the ones returned.

Evaluating definition answers

Definition questions proved more difficult to evaluate than factoids, as several
answers might be deemed correct. Correct answers might further contain
various degrees of information. Because answers were no longer entities they
could no longer be required to be exact. In fact, they were allowed to contain
any amount of elaboration as long as it had some kind of focus. To be able
to evaluate this focus the possible answers to a question were divided into
information nuggets; each a separate, measurable fact. The judges would
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then classify these nuggets as vital or not. Finally, each answer would be
checked for which vital nuggets it covered and scored accordingly.

Recall alone soon proved insufficient as a measure because this always
prioritized longer answers. The more information returned the higher the
score would become. A guaranteed road to success would then be to return
the whole document. To reward selectiveness some measure of precision had
to devised. It was decided upon a maximum allowance of characters and to
reward shorter answers higher than longer ones as long as it covered the same
vital facts. Precision would now be measured thusly:

Precision = 1 −
length − allowance

length
(3.11)

As only vital nuggets were considered in this computation the non-vital
ones were simply regarded as neutral.

The final score was again an F-measure, but this time rewarding recall
by 5 times as much as precision, due to the judges preference for recall and
the crudeness of the precision estimation. Hence, according to the general
F-measure given in section 2.3.2:

F (β = 5) =
26 ∗ precision ∗ recall

(25 ∗ precision) + recall
(3.12)

Comparing performance on the web

Many systems competing in TREC have started using the web as a source
to leverage the advantages inherent in its massive corpus (section 3.3.5).
Comparing these systems would be difficult if relying on the web exclusively
to provide the test material. The web is vast and ever changing, creating
a tough environment for controlled experiments. To compare their systems,
teams have instead turned to predefined data sets like the ones provided by
TREC. Of course, as the environments are very different, the results can’t
be directly translated to performance on the web. The immense corpora of
the web offers vastly more resources than the TREC sets, and is much more
heterogeneous.

In order to take advantage of the web and still be able to measure their
results against a test corpora, some teams have created a workaround. Katz
et al. [26] employs a technique they refer to as answer projection. In essence
this is an extra step that which can be used to combine the wealth of infor-
mation on the web with the reliable data in smaller sources like TREC or
encyclopedias. The general idea is to mine the large and noisy sources for
candidate answers, and then verify these answers by searching for them in
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smaller but more reliable collections. In this way, trusted sources can be used
for verification, either by finding support directly or by issuing new queries
and mining for confirming answers, even though the corpus wasn’t actually
used in retrieving the answer.

As the TREC collection is very different from the web, the scores from
these conferences must be viewed in light of that limitation and not as a fair
comparison of deep versus shallow approaches.

3.4.3 Answer length and the role of context

Despite numerous performance advances within QA, the area of user interface
exploration has almost been neglected.

Satisfied with current discoveries, the TREC QA track moved from al-
lowing passage-style answers toward demanding exact answers [44]. The
primary reason was to push the technological envelope toward more sophis-
ticated and accurate algorithms. It’s also easier to compare the efficiency
of systems when they extract and return the exact answers rather than just
returning passages containing the answers in some form. While these rea-
sons probably justify the shift, little effort has been made to explore how this
trend might affect actual users of these kinds of systems.

Lin et al. [30] tried to shed some light on this issue and explore the role
of context in QA. They point out the fact that improvements in performance
don’t necessarily translate into increased usability, and that ultimately the
benefits to the end users are what matters. Additionally, results gathered
from IR interface studies can’t be directly translated to QA. The interaction
in IR mainly consists of browsing results and navigating quickly and com-
fortably without too much cognitive load. In QA context plays a different
role; namely that of providing additional information and lending credibility
to the answer.

They also wanted to find out to what degree the trustworthiness of the
source affected the users’ acceptance of the answers. Initially users believed
that source reliability and context would be equally important to their ac-
ceptance. After the test, however, the importance of reliability had dropped
noticeably while the importance of context had risen comparably, leaving
a statistically significant gap between them. Interviews revealed that users
didn’t really mind where the answers came from, and that they preferred
to read some portion of the text to establish the answers’ trustworthiness
regardless of source reliability.

User-testing was performed with four categories of answers, each with
increasing amounts of context: exact (answer only), sentence, paragraph
and document. Intriguingly more than half the users (53.33%) preferred a



86 CHAPTER 3. QUESTION ANSWERING

paragraph sized response. One in five (23.33%) preferred the whole document
and likewise (20.00%) for sentences. Almost none (3.33%) were satisfied with
just the answer, which is alarming given that this kind of response is preferred
in TREC QA. Users explained that paragraphs usually gave them the right
amount of information, exact answers were too little and the entire document
too much. Sentences weren’t thought to provide much benefit over just the
answers. While more experimentation is certainly needed, this finding should
definitely be taken into consideration when designing a QA interface.

Lin et al. also tested multi-question scenarios, in which users were asked
to complete, as quickly as possible, a scenario with closely-related questions
on the same topic. Testing revealed that the completion time remained prac-
tically equal regardless of the amount of context. On the other hand, the
more context users were given, the fewer questions they had to ask to com-
plete the whole scenario. In fact, they needed to ask more than twice as many
questions when given exact answers as opposed to being handed the whole
document. The team thus concluded that given additional surrounding text,
users will read it when they want to learn more. Context helps users validate
the answers as well as provide additional feedback on related questions.

3.5 Presentation of specific approaches

A selection of QA solutions will now be presented. Each represents a different
take on the general issues and achieves individual benefits compared to the
others.

3.5.1 General architecture

Depending on how a particular system balances the dimensions (section 3.3)
to suit its specific purpose or intent, quite distinctive designs will result.
A few examples of this variety will be explored in a moment. Individual
peculiarities aside, though, in the end they all have to accomplish the same
thing: Providing an answer to a natural language question. While the details
of how this is achieved differs, the general steps that have to be undertaken
are essentially the same for every system. These steps will now be briefly
presented.

There are four main components in any QA system which operate in the
following sequence:

1. Question classification. The topic of the question and the expected
answer type is determined.
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2. Query transformation. The question is rephrased into a query likely to
improve the search (or lookup), typically keyword-based.

3. Document retrieval. Documents containing potential answers are re-
trieved for closer inspection. This step is often implemented by inter-
facing with a standard IR search engine.

4. Answer extraction. A suitable answer is attempted located within the
retrieved documents.

3.5.2 AskMSR

Brill explores how far it’s possible to get using only simple pattern matching
techniques [7]. He refers to these as data-driven methods [9] to emphasize
their reliance on large amounts of data rather than on sophisticated heuris-
tics.

He argues that large online text resources, like the World Wide Web,
makes the extraction job harder for complex NLP systems trained on limited
domains due to increased heterogeneity The performance potential of plain
open-domain pattern matchers, on the other hand, is increased in this very
same environment.

Method

To prove his point he refers to his own QA system AskMSR (Ask Microsoft
Research) ([8]), where pattern matching against the web is the primary
driving factor. AskMSR has many resemblances to the contemporary Mulder
system [28], which might be more familiar to some.

In particular he utilizes two main techniques:

1. Simple query rewrites. Questions are rewritten to better resemble an-
swers. For instance, given an example question What imaginary line is
halfway between the North and South Poles? , the system tries to find an
answer on the form of e.g. The equator is halfway between the North and
South Poles.

2. Answer mining. This provides a solution when query rewrites don’t
yield any results. The answer can then be guessed by mining all candi-
dates of the expected data type occurring near the question keywords
and choosing the most frequent one. This completely ignores any syn-
tactic relations between the words.
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Though the solution is fairly simplistic, this is also the beauty of the
approach, as it’s very easy to implement. The biggest drawback is that it
relies almost exclusively on large amounts of data to function properly.

It’s also interesting to note that AskMSR does not apply any form of
part-of-speech (POS) tagging, further emphasizing the straightforwardness
of the approach. Word classes and morphology are instead decided using
plain dictionaries, thereby inducing the traditional risk of ambiguities.

Performance

In [15] the applicability and performance of AskMSR is measured on the small
corpus of the TREC (section 3.4.1) collection. Not only is this an interesting
analysis, as the system is mainly tuned to exploit large amounts of data, but
it’s also a necessity. Without some common, controlled corpus there is no
way to compare the performance of the various contending approaches.

That said, AskMSR appears to fare reasonably well in the small TREC
collection, performing slightly below average in the TREC 2001 QA track
[42]. This is nevertheless a good achievement given the simple inner workings
of the system. The team argues that their system parameters could also
be tuned to work better in this kind of environment, but the accuracy of
the system will in any case be far below the theoretical estimate given the
mismatch between system and environment.

The team notes that their approach seems least applicable in applications
that involve proprietary data. In these cases, they regard their redundancy
method as inappropriate. Instead, sophisticated analysis is identified as nec-
essary to map user queries to the lexical surface forms that occur in the text
collection.

3.5.3 Aranea

Search engines provide neat access to vast amounts of unstructured data.
QA systems using these engines as a foundation can leverage the massive
amounts of redundancy on the web to answer many types of questions, even
uncommon ones, and use quantity to somewhat make up for the lack of
quality. One system built to exploit the web is Aranea.

Aranea [29] is a factoid QA system based on heuristics. It was first
submitted to TREC 2002 by a team from the MIT Artificial Intelligence
Laboratory. In many ways it is the next-generation iteration of AskMSR,
detailed above, and the earlier START system [25]. As a result, the team
has consisted of the original creators of both of these systems at various times
during its iterations.
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The system uses the web as a source. Here, two components run in
parallel to find answers:

• The knowledge mining component uses a traditional search engine to
locate useful information, which is then mined for answers.

• The knowledge annotation component simulates a virtual database and
queries several knowledge repositories on the web.

The team’s opinion is that these two approaches are complementary, as
their strengths lie in different types of questions. Each component will now
be described in turn.

Knowledge mining

The knowledge mining component has a serialized data flow through eight
modules:

1. Questions are translated to queries. Two types of queries are built: in-
exact and exact. These differ in that inexact queries are simply bags of
words while exact queries are rewritten to match the syntactic patterns
of likely answers.

2. The queries are executed using Google as the search engine. Whole
summaries are extracted for inexact queries, while for exact queries an
answer is only extracted if it fulfills predefined positional constraints.
Answers returned by exact queries are also given preference.

3. N-grams (where 1 ≤ n ≤ 4) are generated exhaustively from the re-
turned text, and these serve as candidate answers. In other words,
all combinations of up to 4 following words are regarded as potential
answers, sidestepping the need for complex parsing.

4. The n-grams vote for each other so that frequently occurring answers
are given more weight (leveraging redundancy).

5. Heuristic filters are applied to discard poor candidates. For instance,
answers containing words from the question are disregarded (as they
needlessly repeat the question), and answer types are checked against
fixed lists to make sure they’re of the right type.

6. Longer answers subsuming shorter ones are given more weight because
they contain more detail. This is in line with the general scoring scheme
of TREC QA.
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7. Candidates are scored using a formula that balances out prior likeli-
hoods of individual keywords.

8. All answers are verified against the web to counter any artifacts gener-
ated by any of the modules.

Knowledge annotation

Given the lack of structure on the web, similar components based on search
engines are implemented in several web QA systems. The team from MIT
went one step further though. They’ve developed a technique they call knowl-
edge annotation that takes advantage of the structure that does exist on the
web. The foundations of this concept were lain in [24] as early as 1988 and
pioneered by the START web QA system [25] in 1997.

Central to their idea is the fact that amongst the hyperlinked, unorga-
nized tangle of the web there are pockets of structured knowledge. These
sites provide solid information within their chosen domains of specialization.
Examples of such sites are Wikipedia [61], the Internet Movie Database [57],
the CIA World Factbook [50], Dictionary.com [51] etc. Each of these sites
has its own means of access, thereby often rendering the knowledge contained
within inaccessible to search engine crawlers.

Further, this knowledge resource as a whole can’t be tapped effectively
until its components are uniformly accessible. Fortunately, this problem of
integrating heterogeneous sources has already been dealt with successfully
within the domain of databases. The concept of a federated database system
is ideally suited in this case, and techniques developed within this domain
for managing semistructured data can be borrowed advantageously.

Federation has several benefits: Queries can be delegated to specialized
and trustworthy sources, thereby assuring answer quality. The information is
more up-to-date than that provided by web crawling. Answers to definition
questions are formulated concisely and to-the-point. Detailed answers are
easier to acquire than with knowledge mining, as the latter approach would
have to rely on discourse processing and multi-document summarization.

Federation doesn’t happen by itself though. The big challenge is the man-
ual labor required to make it work. As each site provides a custom method of
access to its resources, individual wrappers have to be crafted for each spe-
cific site. Although seemingly a daunting task, the team mentions promising
existing solutions in the form of helpful authoring tools and machine learning
techniques that can automate wrapper generation.

Another issue with annotation is that the knowledge available for querying
is limited by the domains covered by the sources. However, through analyzing
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the test sets of questions used in developing and evaluating existing QA
systems, the team discovered an interesting property: many similar questions
occurred frequently. This made them well suited for translation to database
queries.

To accomplish this translation the team uses schemas that map the se-
mantics of questions into their respective database terms. This is possible
due to the existence of semantic parsers with very high degrees of accuracy,
e.g. [20]. This discovered pattern of user querying is helpful in that relatively
few schemas are needed in order to cover most users’ questions. The rest can
be answered by the knowledge mining component.

Answer boosting

The results from both the annotation and the mining components are chan-
neled into an answer boosting module. Here answers are processed heuris-
tically based on the type of questions they answer, and boosted (i.e. given
more weight) if identified as likely candidates. This module is more extensive
than the previous filtering module of the mining component, and recognizes
complex entities like geographic locations (e.g. on the north shore of Lake
Ontario).

Performance

Aranea has continuously run against the other TREC systems since 2002 and
has generally performed slightly above average ([43], [44], [45], [46]).

The system was built to find answers on the web, though, and TREC
demands that answers should be located within the test corpus. Aranea thus
found correct answers that were nevertheless invalidated resulting in a lower
overall score. This demonstrates the potential difficulty in evaluating an
open system with a closed data set. Because the team judged these shackles
unfair, they also presented their own results with significantly higher scores.

Analysis of the components showed that annotation yielded much higher
accuracy, while mining yielded much broader coverage. The manual effort
involved in annotation was further regarded small given its good performance.
The team is especially proud of their annotation component. While attempts
have been made before to unify heterogeneous web sources, these have usually
required specifying queries in some formal language like SQL. A solution
based on natural language promises to be far more accessible, and the team
considers their research in this direction as their unique contributions to the
community.

Katz et al. developed an extension [26] to Aranea, in accordance with
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TREC 2003, that also tries to handle definition and list questions. This
extension works in a similar sequential manner to the knowledge mining
component, but will not be explored here.

3.5.4 PowerAnswer

Language Computer Corporation (LCC) [31] demonstrate the feasibility of
deep processing within open domains. Their methods are based on reasoning
over general knowledge of concepts rather than on hand-writing rules.

PowerAnswer, their commercial QA system, has been the undisputed
leader of factoid answers in the TREC QA track for many years. It has
consistently performed far beyond most of the other participants’ systems in
this area ([43], [44], [45], [46]). To be able to reach this level of accuracy
their system utilizes a large arsenal of NLP techniques, including entity ex-
traction, part-of-speech (POS) tagging, deep syntactic parsing, word sense
disambiguation and semantic lexicons.

The core of their system though — the very distinguishing factor of their
approach that has contributed significantly to their success — is the auto-
mated reasoning component. This component essentially tries to establish
the meaning contained in natural language sentences. By doing so, it can
infer whether answers corresponding to the concepts of the question. This
feat is accomplished by the three following modules:

• The Logic Form Transformer transforms the syntactic parse tree into
a logical form that can be automatically reasoned on and subsequently
used to identify relations between the terms in the sentence. While the
English language is too complex to cover all syntactic rules, adequate
performance is reached by focusing on the 10% of the rules being used
90% of the time, as identified by the team.

• The Lexical Chainer aims to solve the problem of different terms being
used to describe the same concept, e.g. “to die” versus “to pass away”.
If the question uses one term and the answer the other, the lexical link
between them is obscured. It can be recovered using a manually anno-
tated and machine readable dictionary like eXtended WordNet (XWN)
[52]. Here chains of semantically related concepts can be followed that
provide the missing links between two different, but conceptually sim-
ilar, words. By resolving these chains of synsets (synonym sets), the
correspondence between questions and answers can be established even
though they have few terms in common.
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• The Logic Prover feeds the output from these two previous steps into
a proof engine based on inference rules. This engine can deduce that
a statement is a semantically correct answer to a given question even
though the statement is phrased completely different from the question.

LCC are convinced that deep semantic analysis and logical reasoning are
requirements for advanced QA. They plan on building upon that foundation
by enhancing their system to cope with more complex questions than mere
factoids. They also mention the desire in the future to handle implicit knowl-
edge in this same manner; basically by reasoning out a fact that is not stated
explicitly in the text, but follows logically from other statements. This is
an area which has been practically untouched since the advent of AI. While
that remains to be seen, their approach is unquestionably powerful.

Still, the amount of work that has gone into building PowerAnswer is
daunting, and the system is critically reliant upon encoded knowledge of the
world. These factors limit the portability and applicability of the system to
languages, not to mention topics, carefully prepared for machine consump-
tion. Unless methods are devised to automatically enrich these kinds of
knowledge bases, this kind of system is bound to demand continuous human
resources to keep up with the evolution of human languages.

3.5.5 Beyond factoids

Heuristics have proven very effective for answering factoid questions, and
have been used with great success by many systems in the TREC QA tracks.
Still, many argue that factoid questions are rarely what users ask, and that
these kinds of answers are relatively easy to find anyway using a search engine
or an encyclopedia.

Research is thus starting to move beyond factoids [44]. But as the com-
plexity of the answers increase, so does the heuristic requirements. Many
more rules have to be crafted to cover all the new possibilities, and the ap-
plication of heuristics is starting to look a lot less attractive. Still, many
systems competing in TREC are building heuristic-based layers on top of
their factoid systems to answer tougher questions.

Soricut & Brill [41] tried another solution. Complex questions (e.g. How
does a movie qualify for an Academy Award? ) can’t be answered with en-
tities, nor simple definition lookups, but require (often long) explanations.
Reformulating the question to resemble answers is thus pretty much a dead
end, and indeed the team experienced that this technique often worsened
performance rather than increasing it.
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Further, the task of detecting question types was identified as overwhelm-
ingly more complex than for factoid questions, and this idea was also aban-
doned. The team instead decided upon a solution motivated by statistics.
The idea was to identify answers by their similarity to answers in a training
corpus, given a comparable question.

For this idea to work they had to accumulate massive amounts of ques-
tion/answer pairs somehow. Like others before them they turned to FAQs
for this data. But unlike previous attempts, which were based on FAQ collec-
tions, they instead harvested the web directly, searching for pages containing
the string “faq” in the URL. By identifying question/answer pairs using sim-
ple lexical cues (high recall), and filtering out noise afterward (high precision),
they were able to harvest no less than 1 million question/answer pairs. This
yielded a corpus orders of magnitude larger than previous attempts, like the
30,000 pairs of Tritus [1].

With the training data collected, they turned to query formulation using
two search engines, MSNSearch and Google, as the foundation. Instead of re-
formulating questions they applied statistical chunking. Basically this means
dividing the questions into chunks (or phrases) based on phrases learned from
answers in the training corpus. The idea is that these phrases will give better
results than keywords. A nice side effect is that chunking is language inde-
pendent, given a training set of the desired language, as opposed to question
reformulation.

Answers were extracted using two techniques: n-grams and a noisy chan-
nel model. The latter model assumes that an answer has been “corrupted” by
noise into a question, and hence tries to rediscover the answer. In practice,
this noise is due to a likely answer being generated and then transformed
into a question. The system then estimates the probability of this question
given the answer. With this “inverse” probability, Bayes’ law can be used
to discover the probability of an answer given this question. Actual answers
can then be extracted with high probabilities of matching the questions.

When testing the system, the team noted that chunking resulted in signif-
icantly better response than plain keywords, as expected. More importantly,
about 40% of questions asked returned satisfying answers. As a first attempt
at an open-domain, language-independent QA system without question-type
restrictions, this is a promising achievement. The downside is the massive
amounts of QA pairs that need to be collected and fed to the system during
training to increase the chances of question matching.

The team identified several areas in their system that could be improved,
most notably the construction of a question typology targeted at FAQs. But
it is not clear from the text how this typology might be crafted without
simultaneously abandoning language independence, thereby eliminating one
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of the major advantages of this approach in the first place.

3.5.6 Fact mining

Most big, commercial actors have traditionally focused on manual or semi-
automated QA, as shown in section 3.2. Presumably because these solu-
tions have been easier to implement and to determine any direct value from.
Things are beginning to change, however. Current commercial search engines
are gradually starting to move beyond merely providing increasingly refined
IR functionality. They’re presently being enhanced with a form of implicit
fact lookup. While not strictly QA, this form of automation can answer a
limited set of inquiries.

The technique is based on identifying certain limited patterns in queries
which indicate that the users want to find some kind of factoid. For instance,
the query population of Japan can easily be recognized as asking about the
population count of a nation. If entered into Google, the resulting first hit is
in the form of a short measurement factoid:

(3.13) Japan Population: 127,417,244

According to

http://www.cia.gov/cia/publications/factbook/rankorder/2119rank.html

Google is now also able to answer simple definition questions, such as
Who is Abraham Lincoln? . This query results in the following topmost hit:

(3.14) Abraham Lincoln ... sometimes called Abe Lincoln and nicknamed

Honest Abe, the Rail Splitter, and the Great Emancipator, ...

According to http://en.wikipedia.org/wiki/Abraham Lincoln

Note that such queries must be entered at the official site [54], not one of
the many internationalized versions, as this feature has yet to be implemented
beyond the official one.

Google calls their feature Google Q&A. Yahoo!, MSN and Ask have their
own competing services and call these Yahoo! Shortcuts, Encarta Answers
and just plain Ask. MSN seems to prefer their own favorite encyclopedia
(Encarta) for all answers, while Yahoo has a tendency to consult Wikipedia
frequently. Ask seems to look up the information in their own knowledge
base, but provides links to supporting sites. Google apparently tries to route
all questions to the most appropriate source on the web. The encyclopedia-
centric approach (e.g. MSN) is probably superior on general coverage, since
questions can be answered without having to be tuned to a separate source.
But the web-centric approach (e.g. Google) is likely better on specialized
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and fresh information. It’s also more flexible and trustworthy since it’s using
multiple sources.

I chose Google’s solution for further inspection. Here, the answer type
decides which source a fact is extracted from. For instance, the question
above about population counts (example 3.13) is mapped to the CIA World
Factbook [50]. Answers are identified by the specific structure in which
they occur on the target pages. For instance, the population count is listed
in a table with the unambiguous syntax Population: 127,463,611 . Answer
extraction is thus only a matter of creating a simple wrapper that targets
this specific syntax on that specific page. This approach of hand-coding
wrappers to specific sites can be seen as a form of knowledge annotation, as
utilized by Aranea (section 3.5.3).

Of course, in all of the above-mentioned services the fact lookup is likely
based on previously extracted and compiled knowledge rather than live web
pages. Each vendor bases its answers on trusted sources rather than general
web pages. These approaches work great for well-established facts, as such
inquiries are adequately answered with just one source. In this manner the
services function as a kind of automated encyclopedias. This saves users the
trouble of seeking out appropriate resources and looking up the knowledge
themselves. But the solution severely limits the answering ability for disputed
factoids where it’s nice to see several sources. The answers are also limited
to the concepts recognized by the system and thus wrapped to the format of
a corresponding source.

These solutions are effective for many simple facts, but can’t really be
called QA systems. They’re not open-domain, as they’re limited to the spe-
cific concepts recognized by the implementors. And they’re mostly restricted
to measurements and definitions. Further, the answers are not discovered
automatically. Someone has to create a wrapper for each specific answer
type. In this manner, the solutions resemble enhanced Q&A services (sec-
tion 3.2) more than true QA. They are thus specialized, and fairly limited,
fact enhancements to existing engines rather than general purpose QA.

3.6 Semantic verification of answers

No matter which techniques a particular QA system employs, the end result
is usually an entity of some sort believed to constitute an answer of the
right type. For instance, take the answer to a question like “What mineral
helps prevent osteoporosis?”. Let’s say the system has been lucky and found
the corresponding string “calcium helps prevent osteoporosis”. The word
“calcium” is picked as a likely candidate for an answer. But how can the
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system know that this is actually a mineral? That is what the question asks
for, after all. Likewise, how can the system know that “regular exercise” from
the string “regular exercise helps prevent osteoporosis” is not a mineral?

Figuring this out is often called semantic verification. When utilized, this
is usually implemented as an additional step performed after extraction, with
the purpose of validating the semantic class of the extracted entity.

In the early TREC QA tracks, few systems employed this kind of verifi-
cation. Initially, it was only mentioned in the list of future enhancements of
far-sighted participants. The first crude implementations were added mostly
as after-thoughts. During later tracks, however, the notion became increas-
ingly popular. Today, in the QA field as a whole, many view it as a crucial
step in assuring high precision answers. After all, finding a nice-looking
answer is one thing. Verifying that it is of the right type is quite another.

Verification is especially important for shallow systems, which are primar-
ily based on surface patterns or statistical processing. These might locate
entities in any number of ways, none of which are likely to rely on syntactic
parsing to any significant degree. As such, they often can’t base their verifi-
cation on the syntactic structure of the answer. In some cases, this kind of
structure is adequate if the answer explicitly mentions the entity type. For
instance, take the sentence “H. P. Lovecraft, the famous author of horror
fiction, invented the Cthulhu mythos”. The right syntactic rule can easily
relate “H. P. Lovecraft” to the defining noun “author”, thus answering a
question like “Which author invented the Cthulhu mythos?” in one step.
Shallow systems, on the other hand, might only identify that the proper
noun phrase “H. P Lovecraft” occurs near “Cthulhu mythos”. Or even that
they frequently appear together in a corpus. In such cases a separate step is
needed to verify the entity type.

Determining the semantic class of a word isn’t trivial. Words don’t carry
any semantic information by themselves, and only get their meaning from
the observer’s learned associations. A machine doesn’t have this kind of
knowledge. The only apparent way to automate the process is thus to look
up each word and verify it. Basically, by validating each candidate against a
list of phrases known to constitute instances of the particular semantic class.
The key to semantic discovery is thus having access to a thorough semantic
lexicon.

3.6.1 Semantic lexicons

Of course, machine-readable dictionaries (e.g. WordNet [62]) were created
largely for the purpose of providing this kind of semantically tagged infor-
mation. A lot of QA systems have therefore turned to them for verification
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purposes. But by being manually constructed they are rather limited in
coverage.

There are major advantages of analyzing large amounts of texts com-
pared to simply looking up relations in a machine-readable dictionary such
as WordNet [62]:

• Manual ontologies contain many rare and misleading senses due to a
goal of being as thorough as possible. E.g. “to die” is arguably more
often used in the sense of ceasing to exist than in the sense of using a
die (i.e. dice) as a tool. Manual ontologies treat all senses equally but
automation prefers the most frequent ones.

• Manual ontologies lack many domain-specific terms since every domain
can’t be covered thoroughly. Automation can be tailored to a specific
domain.

• Automation allows discovering interesting relations from the same doc-
uments that will later be queried upon.

• Automation can cover far more material and more variations. The
manual dictionaries are mostly limited to common nouns.

• Automation can discover unique, special or up-to-date concepts highly
unlikely to occur in manually prepared dictionaries.

• Automation allows loose language dependence. It’s far easier to rewrite
and tune the patterns to support a new language than to manually
assemble a thorough dictionary with the right relations. Further, the
chances of locating a solid and specially prepared dictionary in a given
language is slim, as these are not exactly abundant.

It would therefore be far more future-proof, not to mention interesting,
to find a way to discover these semantic classes automatically.

There are two general paths to automating the assemblage of a semantic
lexicon:

1. The bottom-up approach tries to establish semantic relations directly
by looking at the syntactic structure of sentences. Common patterns
are searched for that imply trusted relations between semantic classes
and its members. As a consequence, each match is essentially treated
separately from the others.
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2. The top-down approach tries to look at the entire text collection as a
whole. It focuses on discovering complete semantic classes rather than
separate relations. This is accomplished by comparing the usage pat-
terns and contextual cues of all candidate words. The thoroughness of
this process naturally makes it very demanding. It is typically based on
clustering or latent semantics. That is, by establish relations between
words based on their mutual co-occurrences with other words.

The goals of both of these approaches is similar but the method is entirely
different. The main strength of the former approach lies in the accuracy of
the patterns. Because of the very specific syntax used to describe these
relations in natural language, only one instance has to be found to establish
fair certainty of a valid relationship. On the other hand, a large amount text
is needed to find enough of these trusted relations. The latter approach, on
the other hand, can find some kind of relation with relatively little text. But
this relation is nowhere near safe unless verified by a large amount of similar
occurrences.

I only had time to properly explore one of the approaches and settled on
the bottom-up one. I chose it because it’s better suited to integration with
the large-scale pattern matching allowed by search engines. The other path
required a whole different set of tools than what I had available. For details
of a very promising top-down solution, see [32] and [33]. A presentation of a
bottom-up solution now follows.

3.6.2 Lexico-syntactic patterns

Researchers in computational linguistics have long since discovered [2] that
pattern matching can outperform parsing both in accuracy and efficiency for
the purpose of finding simple semantic relations. A natural consequence of
this discovery was trying to determine what kind of patterns might be useful
in extracting candidate phrases for building semantic lexicons.

Hearst [19] is often cited as a pioneer in this bottom-up, pattern-based
approach to semantic discovery. She identified the following properties as
crucial for any generally useful lexico-syntactic patterns:

• They must occur frequently and in many different kinds of text mate-
rial. Otherwise they won’t result in enough instances.

• They must always indicate the correct relation of interest (or at the
least; fail to do so very rarely). Erroneous relations lead to erroneous
systems.
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• They must be recognizable with little or no pre-encoded knowledge.
Their very purpose is in discovering this kind of knowledge, not relying
on other tools to provide it for them.

By using a method detailed in her paper, she manually identified 6 pat-
terns fulfilling these requirements. My version of the patterns is detailed in
my implementation in section 4.7.3. However, she saw no apparent way to
automate the pattern discovery process as it depends on a good portion of
intuition and semantic understanding.

All of her patterns are based on relations between hypernyms and hy-
ponyms. Essentially, a hypernym is a word that is more generic than a given
word. A hyponym, in contrast, is more specific. For instance, “vehicle” is a
hypernym of the hyponym “car”. That is, a car is a vehicle, but a vehicle
is not necessarily a car. Similarly, “Abraham Lincoln” is a hyponym of the
hypernym “president of the United States”.

According to her evaluations, her patterns turned out to have high preci-
sion but low recall. Other more insecure patterns could be added to increase
recall, but she does not recommend gambling on these. Instead she proposes
using only the (likely few) patterns proven to be secure and increase the size
of the corpus. In my opinion this principle corresponds nicely with large-scale
pattern matching (section 3.3.5), and suggests a natural synergy with these
kinds of systems.

The value of her approach has been confirmed by many parties, recently
including Snow et al. [40]. They originally intended to explore a way to au-
tomate hyponym classification based on learning hyponym patterns from
WordNet. Here, lexico-syntactic patterns are represented as dependency
paths, i.e. syntactic relations between two words. They used Hearst’s pat-
terns as a frame of reference. After thorough testing, they basically ended
up with the same patterns. A few others were discovered but these were of
considerably lower precision. It was confirmed that all of Hearst’s patterns
were near optimal in a balance of precision and recall. They thus concluded
that hand-selected patterns are at least as suited for building lexicons as
automatically discovered ones.

Additional queries

Another pattern-based verification scheme is also worth mentioning. Rather
than building a lexicon it is based on verifying answers on the fly. Specifi-
cally, [27] tried using a separate query, generated from the question, to find
semantic support for the answer. For example, given a question like What
type of currency is used in Australia? they generated dual queries with one
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looking for answers, e.g. X is used in Australia, and the other verifying the
answer, e.g. X is a type of currency . Only returned entities matching both
patterns were regarded as verified.

This kind of solution tends to be precise but also has several limitations:

• It has low recall due to its very specific reuse of syntactic structures
from the question, rather than the above-mentioned, common, lexico-
syntactic style of patterns. Of course, if the latter were used then the
query processing time would likely increase with these high-frequency,
general matches. Also, the precision would be expected to decline with
the introduction of false positives. Only simple syntactic rewrites are
affordable as new queries.

• Query-time verification generally limits coverage to the same corpus
as the answer. That is, the corpus must not only contain the answer
but also some kind of explicit type definition stating that the answer
entity is of the right kind. A corpus likely to contain answers might
not necessarily be likely to contain definitions, and vice versa.

• Running on-the-fly semantic queries is costly as it requires running a
whole new set of queries just to verify the answer. The response time
of the system degenerates accordingly.

3.7 Discussion

This chapter has presented Question Answering in light of related areas of
science, and has explored some of the recent research within this field. While
much has been accomplished, QA is still in its early stages.

Current systems are very good at handling relatively straight questions
(like factoids), but struggle with more complex ones, like definition and list
questions [44]. Some systems (section 3.5.5), try to circumvent language com-
plexity by relying on statistics instead. They have yet to reach performance
near factoid levels. For answering capability, nothing currently beats deep
processing (section 3.5.4) although pattern matching solutions are maturing
and gradually catching up (section 3.5.3).

While factoid answering has its uses, it might also be regarded as some-
what redundant. Keyword-based search engines and encyclopedias handle
these types of questions adequately, and the advantages gained by pure fac-
toid answering are thus limited. Still, the major search engines are presently
being enhanced with implicit fact lookups (section 3.5.6) because the com-
panies see value in the efficient answers this functionality allows.
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The ability to respond with multiple answers on a given question could
prove to be a valuable addition to the factoid answering paradigm. Especially
if the list was ranked according to confidence in each answer, and support for
each answer was easily accessible in the text. Users can quickly locate well-
known facts by consulting the appropriate knowledge bases, but it’s much
more difficult finding reliable statements on current events, disputed factoids
or novel topics. There is thus considerable benefit in a system that can gather
all answers to any given subject and let the user survey them, even if these
answers are mere factoids. This functionality goes beyond what current fact
lookup services can provide, since these are tuned to established facts and
singular sources.

Further, the value of QA would be much increased if it could handle
complex questions that are not readily answerable by lookups. Two notable
examples are explanations and opinions. Systems handling these kinds of
questions are necessarily significantly more difficult to implement. Good ex-
planations demand solid discourse processing and might even require some
kind of dialogue to match the advantages of asking a human expert. Opin-
ion recognition demands some model of human emotions, and the ability to
separate factual statements from irony as well as to recognize metaphors,
idioms and other subtle manners of speech. However, the implementations
don’t have to actually understand the answers as long as they can at least
identify the type of answer. It’s better to leave thorough semantic analysis
to the human readers and concentrate on aiding them in that task rather
than trying to outperform them.

The power of humans to answer questions, especially complex ones, should
not be underestimated. A response will take a lot longer but will also be
much more thorough when provided by an expert rather than a machine.
Unfortunately, there’s little incentive in answering difficult questions on an
individual basis unless there’s some potential for profit. Many people seem
willing to pay for this kind of service, however. Still, there’s no reason why
humans should be bothered with researching simpler questions when a ma-
chine could be tuned to perform at an equal level. Both the semi-automated
and the fully automated solutions have their place in the market.

All things considered, QA systems have the potential to provide a clean
and intuitive interface to several different sources of information, whether
they’re located on the web, in the users’ own file systems, in databases or even
in specialized applications such as topic maps. Currently these technologies,
to be effective, require the users to learn both a formal query language and an
ontology to get to grips with the complicated interface. Or they must provide
several iterations of feedback to disambiguate and narrow down the search.
A QA interface could greatly improve the usability of these applications as
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well as significantly lower the entry requirements. QA could be the key to
providing a uniform point of access to these combined resources, tying them
together transparently.
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Chapter 4

Implementation of a QA
prototype

4.1 Introduction

When describing my initial motivation for this thesis (section 1.2), I stated
that my overall goal was to research the foundations for a QA system and
start work on implementing a prototype. The previous chapters have pre-
sented and discussed crucial technologies required for a working system. They
have also listed important considerations that have to be made when design-
ing the system. It is now time to present my implementation and the features
I targetted.

This chapter opens with a brief overview of the design goals for my sys-
tem (4.1.1). I then introduce my initial analysis of the specific functionality
required and the potential benefits of this design (4.2). This section also out-
lines the system components and how they interact (4.2.2). Next, I present
my procedure for building entity extractors and give examples of a few ex-
tractors (4.3). This is followed by a thorough analysis of questions and a
detailed presentation of the patterns I use to classify these (4.4). I further
explain how to transform these questions to queries (4.5) and how to extract
answers from the results (4.6). Finally, I present my views on semantic verifi-
cation (4.7) and the extractor I built for compiling a semantic lexicon (4.7.3).
The chapter ends with a short list of potential future enhancements (4.8).

4.1.1 Goals and achievements

I wanted to base my solution on the general architecture of a pattern-based
QA system because this model is best suited to integrate with a search engine.
My implementation would be tailored to the specialized contextual scope
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search paradigm of Fast ESP (section 2.6.2). The evolution of the TREC QA
tracks were used as a general guideline for features. The system was intended
to provide functionality comparable to the solutions of the first conferences.
With this foundation, advanced functionality from later conferences could be
progressively added in future upgrades.

QA systems based on pattern matching have a fairly solid track record.
These systems have already performed admirably (section 3.5), as measured
by conferences like TREC. But I had no intention of competing directly
against these systems:

1. They were created by experienced teams through several iterations.
An initial one-man effort couldn’t reasonably be expected to cover the
same kind of functionality within the allotted time frame.

2. I would not have time to build a fully functional system. At best, I
hoped to be able to present simple answers to a limited set of questions.
My priorities lay with researching and presenting my solution properly,
not with implementing all the various details required for successfull
performance.

Still, by using Fast ESP with its extractors as a basis, much of the nec-
essary ground work had already been completed. I already had access to a
full-fledged search engine with several available entity extractors that could
be used for answer extraction. Also, by integrating the QA component di-
rectly with the engine, I could avoid the need for writing wrappers and in-
termediary code. This would have been required if using a separate engine
through a general API.

These are the specific design goals I set for my system:

• Pure pattern matching approach. I did not want to rely on syntactic
parsing or part-of-speech (POS) tagging. I wanted a simple grammar
that only had to be accurate enough to classify questions.

• Open-domain questions. My system should be able to respond to ques-
tions on any topic. I saw no benefit in limiting the questions to certain
domains. Rather, my intent was to demonstrate the extent of questions
that could be covered by simple patterns.

• Loose language dependence. I wanted a design based on simple heuris-
tics with patterns that could easily be converted to other languages.
I also aimed for automated ways to generate dictionaries by using a
process that could be replicated across languages.
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• Semantic verification. Creating a basis for semantics was a crucial
component in my intended system all along. I did not target extensive
semantic support, but wanted to show that patterns and dictionaries
could provide a basic foundation.

• Multiple answers. I wanted a design for providing multiple answers,
ranked by confidence in each answer. These should also provide neces-
sary context to help users evaluate and consider the answers.

• Flexible scale. The system should be equally adept at handling QA
on a large scale (e.g. web) as on a smaller, local scale (e.g. selective
indexing). This required balancing precision and recall in the patterns.

As will become clear throughout this chapter, all of the above goals have
been successfully met.

4.2 Preliminary analysis

To be able to realize my QA prototype I first had to accomplish two prelim-
inary steps:

1. I had to analyze questions and answers to see what was actually process-
able. Without some general idea of what could be accomplished I would
not be able to devise any specific approach.

2. I had to figure out which components I needed and how to interface
them with the underlying search engine. This meant accounting for
both the requirements of the dimensions I would focus on and the
possibilities allowed by Fast ESP.

4.2.1 General approach

I started examining the questions from the TREC QA tracks and figuring
out which steps were needed for proper answer extraction. I was particularly
careful to pick steps that could be made fully machine automated. That is,
steps that would not require human intervention but would rather be repro-
ducible by algorithms. Specifically, I targeted steps that corresponded with
the processing pipeline of Fast ESP. As it turns out, the general architecture
of a QA system is well suited for implementation in Fast ESP. Note that the
following overview is very abstract. Each step will be presented and discussed
in detail in its respective section later. This is the general approach:
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1. Classify the question. That is, determine answer type, word classes
and other elements that might be useful for the particular question.

2. Build and run a scope query for the general type of entity the question
asks for. In the query, include any elements from the question that
might improve the search.

3. Extract entities of the right general type from the result set.

4. Verify that the answer entities appear in a syntactic relation that cor-
responds with the question. Also verify semantically that the entities
are of the right, specific type.

To clarify, consider the sample question What French ruler was defeated at
the battle of Waterloo? . This question would be processed in the following
manner:

1. The answer type is determined as “French ruler”. The noun “ruler”
is recognized as describing a person. This is reinforced by the verb
“defeated” which implies a conscious entity. The verb phrase “was de-
feated” is further recognized as passive, meaning the person in question
will be the syntactic object in the answer – the one receiving the defeat,
not dealing it.

2. A scope query for a person is built which includes the verb “defeated”
and the nouns “battle” and “Waterloo”. The answer type term (“French
ruler”) is not included as there’s no guarantee that the answer entity
will be described as such in the answer. The noun “defeat” is derived
from the verb and included as an alternative to the verb. The resulting
query is and(battle, Waterloo, or(defeated, defeat), scope(person)).

3. The extracted answer entities (i.e. person names) are verified to be
syntactic objects in accordance with the verb. Negations (e.g. “not
defeated”) and speculations (“if defeated”) are also filtered out. Ex-
amples of valid relations are given in example 4.1 below and invalid
relations in example 4.2.

4. Finally, the extracted answer entities are tried verified semantically.
That is, by finding some link between an entity and the term “French
ruler”, e.g. from a sentence such as Napoleon is recognized as the ruler
of France or Napoleon Bonaparte, the former French ruler .
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(4.1) French emperor Napoleon was defeated
X was defeated

Napoleon is defeated at the Battle of Waterloo
X is defeated

Napoleon Bonaparte, defeated then and even more decisively
X, defeated

defeated Napoleon at the Battle of Waterloo
defeated X

Napoleon Bonaparte received a crushing military defeat
X received ... defeat

Napoleon’s final defeat
X’s ... defeat

(4.2) he was defeated again by Wellington
defeated ... by X

defeat at Waterloo against an allied force under Wellington
defeat ... under X

Henry V decisively defeated a much larger French army
X ... defeated

in case Wellington were defeated
in case X were defeated

In order to realize this process in full, the following components are
needed:

• Question classification patterns that are able to determine answer type,
POS of words, active and passive use of verbs and more.

• Entity extractors that can recognize the most important, general an-
swer types that are needed to reach sufficient open-domain coverage.
At the very least persons, dates and locations, as these represent some
of the most frequently asked about entities in the TREC QA test set.
They’re also the only types with their own interrogative words; who,
when and where.
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• Dictionaries that can map an answer type to an appropriate entity
extractor. That is, patterns able to identify that e.g. “ruler” and
“emperor” refers to a person and “city” to a location.

• A dictionary of verbs that denote action, e.g. “defeated”, “fought”,
“gave” and “elected”. This dictionary can be used to disambiguate
nouns like “ruler”, but might also be useful in separating conscious
from unconscious entities based on the verb.

• A dictionary that can translate verbs like “defeated” to nouns like
“defeat” and vice versa. This will be useful in enhancing the query
since these two forms are often used interchangeably, e.g. “Elvis died”
vs “Elvis’ death”.

• Relation verification patterns that are able to separate syntactic sub-
jects from syntactic objects. Preferably also able to recognize negation,
speculation and more.

• Semantic verification patterns that can establish that an entity belongs
to a desired class. Possibly indirectly through synonyms. That is, they
should recognize both “is a”-relations like “Napoleon is an emperor”
and “kind of”-relations like “an emperor is a kind of ruler”.

4.2.2 System outline

My QA system interfaces with Fast ESP in the following ways:

• Question processing. When a query is submitted to the Fast ESP query
interface, this query can be intercepted and modified before being sent
to retrieval. This step in the ESP engine is called Query Transforma-
tion (QT) and it’s the point where my classification patterns interface
with the engine. That is, I take the original query (i.e. question) as
input, classify the question, generate a scope query for the right entity
and resubmit the query. These classification patterns are detailed in
section 4.4. A custom ESP module handles question normalization,
term expansion and scope query generation.

• Document retrieval. Once the scope query is substituted for the original
question, document retrieval ensues. The search engine is responsible
for finding text that fulfills the requirements of the query and rank
it according to a best-fit measure. This is where my implementation
stops. Due to time restrictions, I’ve had to focus on question classifi-
cation, not answer extraction. I simply take the returned results and
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present them in their raw format. The rest of the steps illustrate how
my system was intended to proceed from here.

• Answer processing. The retrieved results are formatted in XML. For
each entry there’s an XML tree that contains both the retrieved text
and a lot of meta-data tags. These represent all the interesting infor-
mation (e.g. structure) identified in the text, including entities. The
entities are thus readily available for further processing. Basically, any
passage containing both an entity of the right type and the keywords
from the question would constitute a potential answer. To verify the
results before they’re presented to the user, two custom steps would be
interfaced at the document retrieval point in the ESP engine. A set of
patterns would verify the syntactic relation between the candidate an-
swer entity and the verb. These patterns would again be implemented
in the Matcher framework. An additional module would verify the se-
mantic class of the candidate answer by verifying it against a semantic
lexicon. I have implemented an automated way to build such a lexicon
although I will not be able to demonstrate it in answer processing.

• Result presentation. The answers would be presented in a user-friendly
manner. Specifically, they would be presented as a list of entities ranked
by probability of being correct. This probability would be calculated
based both on frequency of occurrence in the retrieved documents, and
on the semantic correspondence between the extracted answer entity
and the answer type identified in the question. This list would, in fact,
be an ESP navigator. This is a component which allows drill-down into
the result set. In short, this entails being able to click on an answer
entity in the list and see all the contexts in which the entity appears.
This provides the necessary support for the entity that the user needs
in assessing the credibility of the answer.

4.2.3 System dimensions

To explain my system in light of the dimensions identified in section 3.3,
these are the main attributes of my solution:

Domain. The system was designed to be domain-independent in that it
will accept questions on any open topic. This was the only sensible choice
given the general-purpose nature of the underlying search engine. Open-
domain as it may be, however, it will not provide equally good answers on
every topic. Thorough answer processing requires support in the form of
entity extractors. Those answer types for which there are readily available
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extractors will thus be better covered than those that have to be identified
by general noun phrase extraction.

Question type. TREC, up until 2004, was used as a guideline for the
kind of questions the system would support. Almost all of these questions
are direct, while a few are commanding. The questions are further single-
sentence and contain all necessary information within each sentence. That
is, there is no need for anaphora resolution or access to question history
to interpret a given question. Each question is thus independent and self-
contained. This is the dominating search paradigm today and the one I
wanted to support. I deliberately avoided the question sets from 2004 and
beyond because they broke these properties and were tailored more towards
dialogue systems.

Answer type. The supported answer types are also based on TREC. That
is, I primarily targeted factoid, closed-class questions with some support for
definition and list questions. My system is also able to classify many ad-
vanced question types although there is little support for identifying and
extracting the corresponding open-class answers. Being able to recognize
what kind of answer is required is a solid step in the right direction though.
Additionally, the system is able to determine if a question is unanswerable
given the offline entity indexing approach of Fast ESP. More on this advan-
tage in section 4.2.5.

Automation. Because my system is built on entity extractors and pattern
matching it is purely based on heuristics. Rather than attempting to pre-
maturely implement some learning algorithm, I decided instead to apply the
skills I had developed from constructing entity extractors. I knew that there
would only be a rather limited set of variations I would need to support and
wanted full control over the matching process. This approach allowed me to
thoroughly analyze questions and answers and figure out the best, unified
patterns.

Scale. Interfacing with a local IR engine allows full control over the docu-
ments to be indexed. In contrast with systems based on web search engines,
my system can be easily tailored to provide answers from any selected source.
Because it is domain independent, switching sources is only a matter of initi-
ating a new indexing process. This freedom has allowed me to balance scale
(i.e. information richness) versus trust (i.e. source reliability). I can thus
favor a high quantity of high quality sources like encyclopedias, specialist
sites and FAQs.

Degree of NLP. My system focuses on shallow approaches because of
their speed, simplicity and flexibility. When I started writing extractors in
Fast ESP it became clear to me that a vast number of interesting properties
could be discovered merely by clever application of rules. I wanted to follow
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this line of thought further, and apply the same kind of pattern matching
throughout the QA system. It was thus only natural to build upon the
valuable techniques I had learned through the extractors.

4.2.4 Advantages of pattern matching

The main advantages pattern matching based on modern regexes (as defined
in section 2.6.3) has over syntactic parsing are:

• Speed. Regex technology is mature and has lightning-fast implementa-
tions. Checking for the existence of characters in a string in accordance
with various patterns is intuitively much quicker than building a whole
parse tree based on the intricacies of human language.

• Simplicity. Regexes allow quite complex rules. But their resource re-
quirements are nowhere near the vast demands of parsers. The lat-
ter must have access to syntactically sound rules and near-complete
dictionaries. Regex implementations are also broad and standardized
and easy to acquire. The syntax, while slightly intimidating at first,
is nonetheless easy to learn. And in contrast to parsers, their usage
doesn’t necessitate any previous experience in linguistics.

• Scalability. Regexes scale very well with large amounts of data. Whereas
the parse trees grow ever more elaborate with the length and number
of sentences, regexes just continue checking character by character.
Unless the expressions are exceptionally poorly written, performance
shouldn’t degrade significantly with an increase in data volume.

• Adaptability. Due to their simplicity, both in implementation and use,
regexes are easy to adapt to new domains and languages. Because they
only skim the surface of texts, adapting them is essentially just a matter
of adding rules that match the new, valid terms. A parser, in contrast,
is so heavily tied to the specific use of language that changing this use,
or worse; the whole language, necessitates a complete reworking of the
underlying model.

• Autonomy. Again, due to their simplicity, regexes are ideal candidates
for machine learning and automation. The syntax is so easy, formal
and precise that programs can be written without much effort that
automatically generate rules to match patterns often occurring in texts.
A noteworthy example of implementation is given in [14].
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Particularly, the benefits of using pattern matching in my solution are
these:

• Low response time is crucial in a commercial search engine. Patterns
are processed quickly.

• Atomic tools tend to be generally more useful for multiple purposes.
Patterns are more atomic, interchangeable and reusable than parser
rules.

• Fast ESP already has a solid framework for entity extraction of which
I’m deeply familiar. Parsing support is new and unfamiliar to me.

• Fast ESP has readily available extractors for many entity types, some of
which I’ve written myself. By using the same framework for processing
questions and answers as for extracting entities, the same rules and
techniques can be shared.

• Keeping all processing within the same framework reduces the risk of a
potential mismatch between the separate steps. The number of differ-
ent technologies that have to cooperate successfully is also minimized.

• An extractor-based QA layer should be easy to integrate directly with
Fast ESP. The engine already provides most of the necessary function-
ality.

4.2.5 Comparison with traditional QA

Due to the tight integration of the QA layer with Fast ESP, a system based
on this foundation can potentially provide several benefits over traditional
QA:

1. Retrieval performance. The index can be consulted to restrict retrieval
to sentences known to contain an entity of the right type. The number
of sentences that have to be checked for answers can thus be greatly
reduced.

2. Answer extraction performance. The interesting entities have already
been identified in the retrieved sentences (by index lookup) and don’t
need to be processed at query time.

3. Extraction accuracy. Index-time entity extraction allows much more
advanced and complete methods to be performed than what can be
afforded at query time.
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4. Ability to determine unanswerable questions. All entities of a given
type have already been reliably indexed. Thus, if the index does not
contain an entity of the required type, or if it does but the entity doesn’t
appear in the context of any term from the question, an answer is very
unlikely to exist in the document collection.

5. Discovering additional information. The same entity (or entities of the
same type) can easily be located in other sentences by consulting the
index. This can be used for providing additional information on the
same subject in response to a query. Or even to suggest new queries.

These assumptions are verified by research such as [16]. Of course, suc-
cessful extraction depends on there being an extractor able to identify in-
stances of the given entity type.

4.3 Building entity extractors

The whole foundation for my QA solution is based on the underlying en-
tity extractors of Fast ESP. These are crucial for classifying questions and
extracting correct answers. Because of the importance of these extractors,
their inner workings will now be presented before going further in explaining
my system. I will start with a general overview of the Matcher framework
of Fast ESP which is the environment the extractors are written in and run
under. Then I will explain the general procedure I’ve developed for creating
extractors efficiently. And finally I will give a few detailed examples of how
some of the extractors I’ve written work.

4.3.1 The Matcher framework of Fast ESP

The entity extractors in Fast ESP are implemented through matchers. Ba-
sically, a matcher is a component that is able to run a pattern on a given
text to find all places where the pattern matches. There are several classes
of matchers and these use different techniques and levels of sophistication
to recognize different types of patterns. The specifics are not important to
understand the extractors. Matchers can be utilized both on general texts
(e.g. for indexing), on queries and on retrieved results. These last two cases
are what my respective question classification and answer verification com-
ponents target.

For entity extraction purposes, each matcher provides all the necessary
foundations for efficiently implementing specific extractors of the given class.
Essentially, extractors are specified through a custom XML configuration.
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The patterns themselves are PCRE-style regular expressions enhanced with
certain functionality to increase expressiveness and ease the task of the im-
plementor. There are many different tags and parameters in this XML-tree,
but the most important are the master, the slave and the transformation
patterns:

• The master pattern represents the full expression and is the pattern
that will be used for matching. Since regexes can quickly become long,
complicated and hard to read, parts of the expression can be split up
into slave patterns.

• Slave patterns are typically shorter patterns, each representing some
atomic component of text. They can be included at appropriate posi-
tions in the master pattern, and can also include each other. They can
be thought of as variables in a programming sense, since their contents
are inserted at the point where they are addressed. They’re addressed
by using a dollar sign ($), e.g. ($some slave). A further benefit of slave
patterns is that they allow sub patterns to be shared instead of repli-
cated. The resulting patterns are far easier to maintain and modify
correctly.

• Transformation patterns can be used after a match has been made.
These patterns describe ways in which the extracted text should be
transformed before being returned. The typical use is to perform some
kind of normalization. E.g. to standardize times to a 24-hour ISO
format.

The extractors typically recognize entities from text in one of the following
ways:

• Structure inherent in the entity. E.g. a time such as “22:35”, which
consists of hours (a number between 0 and 23), minutes (a number
between 0 and 59) and a colon separator.

• Contextual information around the entity. E.g. “7 o’clock” or “director
John Adams”. Here, “7” is recognized as a time, and either “John
Adams” as a person or “director” as a title, depending on which of the
entities is used as context for the other.

• Dictionaries of known instances of a given entity type. For instance, a
dictionary of male person names would recognize “John Adams” as a
person without any context.
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• Partial matches can be expanded to full matches by utilizing previous
matches. E.g. if already having matched “John Adams”, the mention
of “John” or “Adams” in a following sentence is likely a reference to
the already recognized entity. These can thus be expanded to the full
name.

4.3.2 General procedure for building extractors

The following section will describe a general procedure applicable when build-
ing a new extractor, as well as detail the concepts behind a few successful
extractors. The basic procedure I followed for writing an extractor is this:

1. Gather material that is representative of the kind of texts that will
be targeted by the extractor. Focus on these texts rather than some
random sampling or much time will likely be wasted on writing unnec-
essarily complex (and slow) rules describing patterns that rarely occur
in typical material anyway. In other words, tailor the extractor to a
specific set of texts. The extractor can always be expanded with new
rules later.

2. Collect sentences from these texts containing the entities intended to
be matched and store them in a common reference file (e.g. plain text
or XML) for easy access. It’s important to gather whole sentences
as the context around the entities often is a helpful indicator of the
entities themselves. Try to collect sentences that specify these entities
in all the different kind of ways that are interesting to recognize. Also
collect a few sentences that don’t include these entities, especially if
they describe (similar) entities or constructions that are not desirable
to match. These “false” cases are useful to check the extractor against
to make sure it isn’t too general and won’t match too much noise.

3. Go through each sentence in the reference file and identify common pat-
terns describing the entities. Write down these patterns (using natural
language or (pseudo) regexes) and categorize them by their common
features. This is most likely to end up with a few general patterns
with lots of minor variations. Try to spot sub-patterns appearing in
more than one pattern, factor them out and reference them from each
super-pattern. This kind of hierarchical pattern building will make the
rules more tidy and will help recognize similarities between the pat-
terns. These similarities could potentially be used to reduce complex,
distinct patterns to one general pattern with several variations.
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4. Build the patterns step by step, one at a time, and run them frequently
on the reference file to see if they actually match the entities they’re
supposed to and stand clear of everything else. Most likely the extrac-
tor won’t match every variation of a pattern and will probably pick up
a few false positives. This is a trade-off that must be made between
coverage (e.g. precision and recall) and complexity (e.g. clarity, ex-
pandability and speed). Focus on the most common patterns first and
add increasingly infrequent ones. This process eventually comes to a
point where a rare pattern would require significant work to recognize
for only some small gain. This is the place to stop.

If it’s difficult identifying the common features that constitute a class of
entities, try a completely different approach. There are many ways to
describe a pattern and the best ones may not be obvious at first. This
will become clear through the examples that will follow shortly. It’s
also an idea to think differently if ending up with far too complicated or
performance heavy rules. Simplicity is the key here, and the simplest
pattern that will work is likely to be the superior one.

5. Run the extractor on huge amounts of test data and browse through
the results to verify the correctness of the rules. Modify and rerun the
extractor accordingly until it reaches the desired level of performance.
It’s useful to develop some kind of framework first for creating and
testing the patterns, as this cycle will need to be repeated a lot.

Now for some examples of the extractors I’ve written by using this ap-
proach. I have constructed many more extractors than will be mentioned
here, but I feel these are the most prominent and characteristic ones.

4.3.3 My entity extractors

Time Extractor

Times are specified in many ways, the arguably most common being the
digital 24-hour format, e.g. 20:40 . In this format, the time consists of four
digits separated by a colon, or sometimes a dot (e.g. 20.40). Checking for
valid digits and a separator goes a long way, but without further information
it’s hard to be certain that the item is a time and not, for instance, an
interval or a decimal number. Hours and minutes specified this way might
also designate length (e.g. the playtime of a song) instead of a moment in
time. Therefore, it’s necessary to look at some additional context in front
of or behind the entity. A valid time followed by a timezone (e.g. 20:40
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CET or 20:40 +05:00) or an AM/PM designator (for the 12-hour format,
e.g. 8:40 pm) is a safe bet. Many prepositions also typically precede times,
for instance at 18:45 or around 7:30 and can be used as prefix indicators.
Some keywords can also be used to help separate AM from PM, like at 8:30
this evening where evening clearly means PM.

Additional time formats that are easy to detect (due to their keywords)
are military hours (e.g. 1500 hours) and whole hours followed by o’clock (e.g.
5 o’clock). These are generally rare but nevertheless occur frequently within
certain domains. An interesting observation is that o’clock used in military
texts more often refers to a position (e.g. an enemy at 12 o’clock) than actual
time, demonstrating that discretion is advisable when choosing which rules
to apply for an extractor within a certain domain.

When the time-entities are extracted, they will occur in many different
forms, as seen above. It can thus be useful to normalize them into a common
format, for instance the 24-hour, ISO standardized format. Here the timezone
is specified as an offset of UTC (Universal Time Coordinated), making events
searchable relative to each other on a global scale. Normalization will make
the extracted information far easier to work with in later processing steps,
like when gathering statistics or checking for the occurrence of a certain
entity.

Sometimes the same context information can apply to several entities, for
instance we’ll meet at 8:00 or 8:15 pm, where both times are clearly PM. For
entities where this kind of multiple listing is typical, it’s an easy enhancement
to also detect typical words or constructs designating more than one item,
e.g. or , and , / etc.

Ticker Extractor

There is a practically infinite number of possible stock tickers. The stock
market changes on a daily basis and new tickers appear while old ones are
rendered obsolete or possibly recycled. Each stock exchange has its own
format which allows certain combinations of alphanumeric characters. This
heterogeneity effectively destroys any hope of detecting common patterns
that can safely identify tickers, except by making them too general to be
useful (e.g. any combination of alphanumeric characters).

To some extent this generality can be exploited by building a dictionary of
tickers and checking any valid alphanumeric string against it. This approach
is not without difficulties, though. Firstly, it requires building and maintain-
ing this dictionary of valid tickers from within a vast and dynamic domain.
Assuring good and accurate coverage will not be easy. Second, many valid
tickers are also plain words, acronyms or abbreviations. Filtering out the
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most common ones is an option, but for a certain document no guarantees
can be made that a sequence of letters is actually a ticker and not a plain
word. There is bound to be many false positives.

Again, like with the Time Extractor, it’s necessary to look at contextual
information. A useful observation is that tickers in free text commonly occur
together with their associated stock exchanges (e.g. Nasdaq: MSFT ). This
allows detecting tickers with high accuracy if first identifying the exchange.
Luckily, exchanges prove to be much easier to detect safely than tickers.
For one, there are orders of magnitude fewer exchanges than tickers, making
maintaining a dictionary manageable. Their existence also stays somewhat
constant as new exchanges don’t pop up all the time. Finally, they’re often
specified with names, which are substantially easier to recognize safely than
just combinations of alphanumeric characters.

The disadvantage of basing the extractor on exchanges is, of course, that it
won’t detect tickers specified without an exchange. For some ticker formats,
though, there is a remedy. Some exchanges namely extend their tickers with
a dot and additional characters to indicate which exchange they are traded
on. These tickers can thus be recognized with fair certainty if the extension
proves valid. Many tickers also trail certain keywords, like ticker symbol or
trading code, and these words can be used as designators.

Tickers are often specified in listings on financial pages. These listings
usually leave out any designators, like an exchange or a keyword, making
extraction difficult. But what they lack in context they somewhat make
up for with structure. These listings are often defined with strict layout
elements, using for instance tables. Tickers contained within these elements
can thus potentially be recognized based on the structure of their containing
element, but this kind of matching requires a completely different framework
than the one specified and will only be mentioned here as a possible future
enhancement.

Ultimately it would be best if whole documents could be determined to
contain financial information and certain rules only ran if this was the case.
This level of detection would allow better control over the performance of an
extractor, because potentially unsafe or expensive (but useful) rules would
only fire when they’re likely to yield good results. Document classification
is, of course, another field of research, and will not be explored further here.
But it’s worth mentioning that classification can be simulated to some extent
by conditional extraction. That is, if the rules are split up into separate
extractors then the rules of one extractor can be set to fire only when the
rules of another extractor have first yielded any results. The rules of the
first extractor thus effectively becomes the “classifier” upon which the second
extractor is based. For example, by only checking potential tickers against the
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ticker dictionary once a stock exchange has already been reliably identified
(thus implying that the text is financial in nature).

Job Title Extractor

Job titles can constitute everything from a simple abbreviation (e.g. CEO)
to a complex construct spanning multiple words (e.g. financial director of
harvesting and production in mining operations). Keeping the domain out of the
job title (e.g. extracting only financial director) simplifies the problem, which
can then be approached by compiling dictionaries of common abbreviations
and simple (e.g. two-word maximum) titles. Extraction then becomes just
a matter of doing lookups in a dictionary. On the other hand, ignoring the
domain means losing vital information about the function and extent of the
title. Without the domain several distinct titles can also seemingly imply the
same function (e.g. financial director of staff and financial director of operations
both being detected as just financial director).

Expanding the dictionary to cover titles past two-word constructs would
yield an improvement in coverage, but also significantly increase the complex-
ity of dictionary compilation. Supporting every possible n-word construct of
potential job titles quickly becomes unmanageable as n increases past two.
Especially since the additional words refer to arbitrary domains and not a
limited set of common title fragments.

A better solution is based on the recognition that job titles consist of a few
patterns with words from specific word classes, for instance executive director
of assembly having the pattern “adjective noun preposition noun”. Identify-
ing these word classes, and how they’re assembled to form valid constructs,
grants the option of splitting the dictionary into multiple dictionaries based
on word class. Note that nouns can further be distinguished semantically as
titles (e.g. director) and domains (e.g. assembly ), and can thus result in two
separate dictionaries. This distinction helps writing rules that only match
semantically valid job titles and avoids constructs like executive assembly of
directors, even though the pattern of word classes is the same as before.

The advantages of a class-based dictionary approach are multiple. First,
the dictionaries become simpler and easier to work with. One huge dictionary
with all sorts of complicated constructs can be replaced by multiple, well-
arranged single-word dictionaries. Allowing all syntactically (and optionally
semantically) sound combinations of words from these dictionaries, gives bet-
ter coverage while simultaneously assuring only valid constructs. The speed
performance of the extractor also likely increases, as it’s cheaper to check
one word at the time (and skipping the following ones if the first doesn’t
match) than handling multiple words in one big chunk. This potential speed
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increase depends largely on the implementation, of course.
Dealing with multiple dictionaries has one large drawback; the problem of

filtering words into the right dictionaries. If this has to be done manually one
can imagine a workload similar, or even greater, to that of quality assuring
a single multiple-word dictionary. Each word in a potential job title would
have to be manually checked and sorted. Luckily, with the proper dictionary
this filtering can be performed mostly automatically. If using comprehensive
lists of adjectives and nouns (and preferably also a list of titles, or at least
nouns applicable to persons), the task of creating a script that filters each
incoming word into the proper dictionary becomes easy.

Quotation Extractor

Quotations refer to something someone has exclaimed. These utterances
might have been communicated verbally or in writing (in any form, tradi-
tional or electronic). A first approximation for extracting them is therefore to
focus on identifying keywords referring to acts of communication. Examples
are said , told , wrote, claimed , protested , answered and so on. If one of these
keywords is preceded or followed by words encapsulated in quotation marks,
there’s a fair degree of certainty that the sentence deals with communica-
tion in some form. An example is: (“I won the election fair and square”, he
retorted). Covering all possible keywords referring to utterances is no small
feat, however, and there are many subtle and metaphorical ones.

A bigger problem is that it’s easy to get fooled by the placements of
quotation marks in relation to keywords, as in this example: (In “My Friend,
Robin” he wrote that rats are nice companions). Here, it’s easy for a loosely
defined extractor to erroneously interpret the quotation marks as referring
to an utterance instead of the title of a book. What is needed is a more
accurate way to separate actual utterances from titles, names and other noise.
Preferably without resorting to complex syntactic rules.

An important property to realize about quotations is that they are cited
literally, word-by-word, exactly as the person in question uttered them. In-
direct utterances, rephrasings or retells are not quotations. In an example
like he told the police that he saw a man driving a yellow car , the information
transmitted is accurate but not quoted. The defining property of a quotation
is thus the quotation marks and not the act of communication. By leaving
out the keywords, the extractor can be greatly simplified. But even by focus-
ing on the quotation marks there’s still need for a way to separate quotations
from noise. Two observations in particular can help out:

1. An interesting utterance can be assumed to contain more than 3 words.
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If it doesn’t, there’s a good chance it’s dealing with something else, like
a name or a definition.

2. In the English language most titles are written in title case, meaning
that all words except closed-class words are uppercased.

The closed-class words is the finite set of words that rarely changes dur-
ing the evolution of a language, like articles, prepositions and conjunctions.
Open-class words like nouns, on the other hand, receive additional entries
frequently as new terms are coined. Being constant, at least for all practi-
cal purposes, means that a dictionary of closed-class words can be compiled
easily. By requiring that at least one word in a potential utterance is lower-
cased, and that this word doesn’t belong to a closed class, most titles can be
avoided. Armed with these observations I wrote a fast and simple extractor
based on quotation marks that avoids the most common mistakes.

Example code

As an example of what the code behind an entity extractor looks like, I’ve
included the configuration file for my Time Extractor in appendix A.1. This
code may seem extensive for the functionality I described above, but keep
in mind that this degree of sophistication is required for solid performance
in actual text material. To show why, I’ve also included the reference file I
used to test the extractor with in appendix A.2. This file gives an idea of
the large amount of subtle variations an extractor must be able to handle.
All of the examples in the reference file have been collected from actual text.
The extractor recognizes all the time formats noted in the time tags in the
reference file. It also avoids the false examples listed at the end.

In the extractor code (appendix A.1), note that the transformation pat-
terns in the end are not part of the matching process. Rather, they’re respon-
sible for normalizing all the extracted time variations to the ISO standardized
24-hour format. Also note that the $ws slave simply matches whitespace.

4.4 Question classification

Even when pattern matching, there are many possible ways to process ques-
tions for classification. The particular approach that is chosen greatly affects
the quality of the answers.

• The simplest is to match only enough to determine answer type and
just convert the rest of the question to a plain keyword query. This
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kind of surface matching triggers on certain predefined sequences of
words and ignores syntax completely. All entities identified in the text,
which are of the right type and occur near the keywords, are returned
as answers.

• A more sophisticated solution is the syntactic one. This tries to recog-
nize how the constituents of a question relate, to better determine what
form the answers will take. Entities in the text must fulfill the same
requirements as in the surface approach and must additionally appear
in a valid syntactic relation to be considered answers. The actual se-
mantics of the answer is not considered though, nor of the question for
that matter.

• Finally, the semantic approach. The meaning of a question is deduced
and formalized. Potential answers (which again must fulfill the require-
ments of the surface approach) are similarly processed by deducing and
formalizing the meaning. Unless the semantics of the formalized struc-
tures of both the question and the answer agree, the answer will not be
considered correct. This solution typically relies on a syntactic compo-
nent, but not necessarily. Semantics can also be inferred from language
modelling and statistics.

These approaches are only rough outlines and there are many variations
over each type. There is no strict border between them either, and partic-
ular elements from each can be combined in various ways to suit a specific
purpose. My solution falls somewhere in between the syntactic and the se-
mantic approaches. I want to classify questions in such a way that answers
can be verified both syntactically and semantically. But my approach is nei-
ther strictly syntactic nor strictly semantic. It uses a variant of syntactic
patterns (tailored to my specific needs) to capture certain semantics in the
questions. The resulting classification can be used to verify answer types
semantically, and answer relations syntactically. The semantics of an answer
as a whole can not be deduced nor proven to coincide with the question. This
is not my intent either, as this relies far too much on semantic processing.

4.4.1 General discussion

Consider the question The Hindenburg disaster took place in 1937 in which
New Jersey town? . This is one of the more complex questions in the test set.
What kind of elements can be identified in this sentence to aid in finding an
answer to the question? I’ve identified the following traits:
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• The target of the question, i.e. the expected answer type, is a location.
This type is too general an answer, though. It further has to be a town
and it has to be seated in New Jersey. These semantic requirements
should be assured.

• The focus of the question is the Hindenburg disaster. This is the most
important aspect to include in a search and should be treated accord-
ingly. All the other words from the question are secondary, and might,
or might not, be useful in a keyword search. Note that “focus” has no
strict, linguistic definition. It’s merely what I’ve considered paramount
in a given question type. The focus may change between different ques-
tion types, but stays the same within the same type. It’s thus possible
to identify and match upon. Most often it is a noun phrase, but not al-
ways. Simply put, the focus of the question is the phrase that becomes
the focus of the query.

• The entity type of the focus noun head (i.e. “disaster”) is an event.
As the goal is to verify the answer, not the question, determining this
type has no immediate benefit. But it might be useful in e.g. limiting
the search to sentences mentioning a disaster (or a general event) given
that such an extractor exists. Or it might be used in assuring that
“Hindenburg” in a sentence refers to the disaster and not e.g. the
German general for whom the airship was named.

• The question is time dependent. That is, it specifies a particular in-
stance in time (i.e. 1937) to which the answer must refer. In this case
it’s not crucial, but it would be if there had been more than one such
disaster. To see this problem more clearly, a title such as “president”
refers to different persons through different periods of time.

• The interrogative word in the question (i.e. “which”) is not at the
beginning of the sentence. To classify the question, this word, and the
associated answer type, must be located within the sentence.

Premises

As I set out to analyze how I could best classify questions, I had the following
premises:

• I wanted to learn what constitutes a question. That is, how questions
are formed syntactically, what they have in common, what kind of
information can be gathered from them, by what measures they can
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be classified and so on. I had already browsed through a few sample
questions and noted observable attributes that could be made machine
recognizable. In doing so I saw that more could probably be done than
what the papers I had read suggested. To be certain I needed to explore
the same kind of questions without bias.

• I wanted to see to what extent I could process the questions using
pattern matching alone. Practically every system I had seen relied on
some form of POS tagging for accuracy, or even full syntactic parsing.
Through my work with the extractors I had become convinced that for
limited applications such as this (i.e. question processing), a compara-
tive level of performance could be reached with clever patterns. But I
also knew that I had a tool at my disposal that the other systems did
not; the Matcher framework. I wanted to exploit this opportunity.

Given these premises, I decided that the only way to thoroughly explore
the questions was to do it manually. That is, to organize them by some
property (or several such) and establish common traits. It would be nice to be
able to automate this process somehow, but automation is best applied when
already having analyzed and learned which properties can be automated
successfully. Premature automation is bound to miss crucial information.
Besides, as this was my first analysis of the questions I lacked the luxury of
intimate knowledge.

Further, due to my desire to use pattern matching, the choice of processing
method naturally fell on heuristics. As explained in section 3.3.4 the main ad-
vantages of machine learning are coverage and language-independence, while
heuristics win on accuracy and performance. Heuristics are also perfect for
cases of low variation such as for a limited set of questions. Besides, maxi-
mizing recall in this case is only a matter of generalizing the patterns to cover
each variation in question formulation. I demonstrate how when describing
my classification patterns in sections 4.4.2 and 4.4.3.

The question set

The questions used in the TREC QA tracks were used as a basis for analysis.
These are clean, varied, generally factoid in nature and freely available. Du-
plicating the effort of carefully compiling such a list of suitable questions for
machine consumption was thus pointless. Besides, since TREC was used as
a general outline for my implementation, it was prudent to tailor the system
to answer the same kind of questions as the participating systems of these
conferences.
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In section 4.3.2 I’ve described the general procedure I found effective
when building any new pattern matching component. The same procedure
was used as a guideline when building the QA component. But since the
TREC questions already represent the type of material that would need to be
matched, the main focus was on analyzing questions by looking for common
patterns.

As a basis for analysis I collected all the questions from three TREC QA
tracks, namely from the years 2001-2003. These contain a total of 1500 ques-
tions, which should be more than adequate as a starting point for manual
examination. I avoided the earlier two tracks partly because I felt I already
had enough questions to examine and partly because succeeding tracks main-
tained or surpassed the complexity of earlier ones anyway. By skipping them
I wouldn’t miss out on anything except quantity.

The reason I started at year 2001 was because this is the year the track
moved beyond standard factoids and introduced list questions. In 2003 the
definition questions were also added, and I wanted to explore these two
types. I stopped at 2003 because in the following year the question paradigm
changed drastically towards a more dialogue-centric, knowledge-gathering
type of system (section 3.4.1). This new paradigm demanded quite a differ-
ent overall design than what I was targeting, and was thus of no interest to
my goal.

Preparing for analysis

When I had filtered out the questions from the meta-data in these files and
merged them into one, it was time to prepare the questions for analysis. In
doing so I devised, and utilized, the following procedure:

1. Sort questions by entity type. That is, figure out what general type
of answer the question asks for (e.g. person, company, location, date)
and group questions by this type. This type is the main property by
which questions will be classified.

2. Separate questions with implicit from explicit answer type. That is,
split each group from above into two parts based on whether the answer
type is implicit in the interrogative word (e.g. “who”) or mentioned
as part of the question (e.g. “which city”). These two cases must be
handled separately.

3. Sort questions by syntactic similarity. That is, move questions with
similar phrasing together so that it’s easier to see shared features. E.g.
When was Algeria colonized? and When was Hiroshima bombed? belong
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naturally together. Ignore the actual meaning of the words. Only the
syntax is important. Sort by increasing complexity.

4. Find representatives of each syntactic variation. That is, pick a sen-
tence for each type of phrasing that is characteristic of the type. Be
careful to recognize, and represent, also minor variations, as these help
assure proper coverage. Gather these hand-picked sentences for further
analysis.

5. Find common patterns among the gathered sentences. This is where
the real work begins. Identifying shared features is not always easy,
and describing these formally is even harder.

The groups of example sentences, and corresponding patterns, that will
follow throughout this chapter have all been organized in this manner before
analysis. This will become apparent when seeing how they’re organized by
type, similarity and complexity.

Describing questions with patterns

I wanted to capture the part-of-speech (POS) of each word because these
POSes are useful for different purposes, e.g. for term expansion (section
4.5.2). As I would not be using a POS tagger I had to establish these word
classes by other means.

My starting point was a set of dictionaries organized by POS, e.g. verbs,
nouns, adjectives. The open-class dictionaries were already available for gen-
eral use in Fast ESP, but could just as well have been built on need by using
a syntactic parser on a large corpus of English texts. The closed-class dictio-
naries, e.g. prepositions, were extracted by myself from linguistic resources
available on the web.

Given such a set of dictionaries, the POS of a word can be determined by
consulting these for a match. A given word may well get multiple matches
though, as many words have multiple POSes. For instance, “play” is both
a verb and a noun. Dictionaries are thus not enough by itself. From my
experience with writing extractors I knew that context was invaluable in
properly classifying an entity. This is no different for POSes, as this is merely
another case of type classification. To take an example, in “play the game”,
the word “play” can be classified as a verb because it is followed by an article
and a noun. This relationship can be formalized into a rule.

Of course, context rules are already heavily used in POS tagging tools.
But these tools are meant to be usable on any type of sentence. As such, they
have to contain a huge set of rules covering all kinds of ways in which words
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can be used in relation to each other. Constructing these rules manually
would take tremendous effort, so instead the taggers are based on learning
these rules from a carefully tagged training corpus. In my case, however,
it’s not a matter of properly classifying every kind of sentence. I only have
a limited set to work with, namely the questions from the TREC test sets.
In other words, I only need rules that cover these limited ways in which
questions are asked. As this is manually achievable I chose to write these
rules myself. Besides, these rules are not only useful in determining POS but
also in describing the syntax of the whole question.

When classifying questions it’s not enough to merely look at the inter-
rogative nor the words immediately following it. I thus wondered: Why not
utilize the whole sentence structure? Normally, this would be difficult as it
requires setting up and employing some form of syntactic parser. In this
case, the process can be greatly simplified by integrating both POS tagging
and shallow parsing as part of the classification process. In other words, by
writing patterns that describe the various syntactic constructs that need to
be supported and tag POSes accordingly. Full syntactic parsing at query
time would greatly affect runtime performance, but in this case it’s only a
matter of running a set of quick matching rules.

Using a test set such as the TREC set is a golden opportunity as it
represents the various ways in which questions to the system will be phrased.
The heuristics of the system can thus be tailored to handle these exact kinds
of phrases. This does not restrict the topic of the questions. The questions are
still domain independent because the syntax does not influence the semantics.
But it does, on the other hand, keep question classification limited to a certain
set of phrases. This is not necessarily a bad thing though. As explained
in (section 3.3.2), placing some limitations on the syntax might well help
the users express their needs more clearly to the system. And it does aid
the implementation greatly as it assures that the syntactic variations are
deterministic. This creates a situation in which pattern matching thrives.
Specifically, the situation is ideal for building a classifier based on syntax.

Note that my question patterns are not fault tolerant. That is, they
assume valid grammar. Syntax mistakes will necessitate falling back to a
general set of patterns that mostly ignores syntax beyond capturing answer
type. Spelling mistakes can be handled by using Levenshtein matchers for
extraction. This kind of matcher is merely one of the various classes of
matchers mentioned in section 4.3.1. Its speciality is the Levenshtein algo-
rithm explained briefly in section 2.4.2. Shortly put, the matcher can be
configured to tolerate simple typing mistakes.
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Explanation of my pattern syntax

I’m using pattern matching as a form of shallow parsing. Because my needs
are “shallow” I can be satisfied with a linear representation of syntax. That
is, I don’t have to parse a sentence as a hierarchy, but can rather make do
with a sequence of words. I have no use for a “deep” parse tree as I don’t
need to understand every aspect of the syntax. I only need to parse enough
to classify the question and the POSes of the words within.

In doing so I’ve created my own set of shallow patterns capturing the vari-
ous elements of the questions I’ve found interesting. These patterns are based
on PCRE-style regular expressions combined with slave patterns. In the same
manner as my previous entity extractors, they run under the Matcher frame-
work of Fast ESP as explained in section 4.3.1. The slaves are based on
linguistic concepts of syntax and named accordingly, e.g. an $np is a noun
phrase. However, they must not be confused with precise renditions of these
concepts. They only capture enough of their respective grammatical aspects
to be useful for my purposes. They may very well be incorrect in a strict
linguistic sense, but are correct in the sense that they capture what they’re
supposed to. The slaves I use in my patterns are described in table 4.1.

Name Explanation
$adj adjective
$np noun phrase
$pron pronoun
$pp preposition phrase
$vp verb phrase
$np cn $np restricted to common nouns
$np pn $np restricted to proper nouns
$np cnpn $np on the form $cn $pn
$np prep $np which is part of a $pp
$np verb $np which is part of a $vp
$np type $np indicating answer type; always a $np cn
$np unit $np denoting unit of measurement
$be tenses of “to be”; i.e. is, are, was, were
$do tenses of “to do”; i.e. do, does, did
$have tenses of “to have”; i.e. have, has, had
$get tenses of “to get”; i.e. get, got, gotten

Table 4.1: Slave patterns for question classification

The patterns used to describe questions in the following sections all use a
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simplified syntax. That is, the actual patterns used in the matching process
are longer and more thorough. They need to be able to match actual ques-
tions and handle all the syntactic details. But this additional complexity is
not required to understand the patterns. On the contrary, including them
here will only induce confusion. I’ve thus kept the example patterns as clean
as possible to better explain the underlying concepts. For an example of
code, refer to section 4.4.5.

One exclusion that is worth mentioning, however, is that of the slave pat-
terns handling stopwords. These words will not be used for further processing
and are simply discarded. As such there will be more words present in the
questions than the patterns indicate. These words are handled, of course,
but have no value in explaining the interpretation of the questions.

The syntax will become clear with the examples in the following sections,
but a brief example here might be useful:

(4.3) When
when

is
$be

the official first day
$np

of summer?
$np prep+

In example 4.3 the phrase “the official first day” is recognized as one
single $np. The adjectives “official” and “first” are not matched separately
with $adj because they are not required to distinguish the pattern. As any
noun might have one or several adjectives, it makes sense to match these
as part of the NP. Articles, e.g. “the”, are also captured with the noun.
Further, there is no separate $pp for “of summer” either. Because only the
noun here (“summer”) is interesting in a query, the preposition (“of”) is
captured as part of the $np prep (“of summer”) and simply discarded. The
noun (“summer”) is of course kept. Also note that the trailing plus-sign
(+) indicates one or more instances as this is a regex. This means that two
$np prep constructs, for instance, might be chained such as in “of summer
in Jamaica”.

Finally, questions surrounded in parentheses are not from the TREC test
set. They are rather ones I’ve created to demonstrate some specific syntax.
They may or may not ask sensible questions:

(4.4) (Where
where

is
$be

the Hubble telescope?)
$np

4.4.2 Implicit answer type

Questions for which the general answer type can be determined from the
interrogative word will now be discussed. These have an implicit answer
type. The benefit of implicitness is, of course, that the questions can be
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immediately mapped to a corresponding entity extractor. There are three
kind of questions fulfilling this property; “when”, “where” and “who”. The
corresponding entities are roughly time/date, location and person. I say
“roughly”, because, as will soon become clear, their coverages are more broad
than these precise entity types.

“When” questions

Questions based on the interrogative word “when” all ask for some moment
in time. This moment can be designated in several ways. For instance, as
hours and minutes (22:45), as month and day (June 16th), as year (1937),
as time of day (noon), as a season (spring), or as a combination of several
of these (22:45 on June 16th, 1937). Semantically, these variations represent
different spans of time, i.e. different levels of accuracy on the time scale. A
year is a longer span than a day, for instance. Time might also be specified as
an interval, e.g. “22:45 to 23:45” or “June to August”. Again, the difference
lies in the span. The moment has to be specific, though, i.e. designated with
a starting point and an optional stopping point. A length of time, e.g. “3
hours”, does not fulfill this requirement and is, indeed, not a moment in time
but a unit of measurement. These are handled in section 4.4.3. Examples of
characteristic time-based questions from the TREC test set follow:

(4.5) When
When
when

is
was
$be

the summer solstice?
the first kidney transplant?
$np

When
When
when

is
is
$be

hurricane season
the official first day
$np

in the Caribbean?
of summer?
$np prep

When
When
when

was
was
$be

Abraham Lincoln
the first Wal-Mart store
$np

born?
opened?
$vp

The questions in example 4.5 are many and varied. Still, they can all
be collected in a unified pattern because they all ask for the same entity
type. Generalizing them into one common pattern is easy since they only
use variations over the same basic elements. The unified pattern (example
4.6) will handle all of these cases and more:
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(4.6) (When
when

was
$be

the first Wal-Mart store
$np

opened
$vp?

in Ohio)?
$np prep*

In addition to these questions there is another common syntactic variation
in the TREC set. This variation warrants a separate set of patterns (example
4.7 which can be unified into the pattern in example 4.8:

(4.7) When
When
when

did
did
$do

Elvis Presley
the Hindenburg
$np

die?
crash?
$vp

When
When
when

did
did
$do

Idaho
North Carolina
$np

become
enter
$vp

a state?
the union?
$np verb

(4.8) (When
when

did
$do

Michelangelo
$np

paint
$vp

the ceiling
$np verb?

of the Sistine Chapel?)
$np prep*

The reason the questions in example 4.7 should be separated from the
others is because the auxiliary verb ($do) has changed. Specifically, it has
gone from a tense of “to be” to a tense of “to do”. In contrast with the former,
the latter auxiliary verb requires a main verb, so that a $vp is no longer
optional but mandatory in the pattern. But more importantly, this auxiliary
verb changes the form of the main verb from passive, e.g. “was born”, to
active, e.g. “did enter”. A change in this form affects the verification of the
syntactic relations in the answer, since the target now becomes the syntactic
object rather than the syntactic subject. This can be seen by exploring
possible answers to the question When did North Carolina enter the union? .
Contrast the answer North Carolina entered the union in 1789 with The union
entered North Carolina in October . Only the former construct corresponds
with the active role of the main verb in “did enter” and is thus a valid
answer. The latter speaks of a whole different event.

There is one further variation worth mentioning: The active role of a verb
can change back to passive with the introduction of another auxiliary verb.
Consider the following example:

(4.9) When
when

did
$do

John F. Kennedy
$np

get
$get

elected
$vp

as President?
$np verb?
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Normally, the presence of “did” would imply an active role for the suc-
ceeding verb. But since the verb is also precluded by “get” the role remains
passive, i.e. Kennedy was elected by someone – he did not elect himself. In
other words, this type of question belongs with the passive verb questions in
example 4.6. This becomes clear when rewriting the question in the following
manner and pairing it with the unified pattern from example 4.6:

(4.10) (When
when

was
$be

John F. Kennedy
$np

elected
$vp?

President?)
$np prep*

Finally, the question could also be modified to an active form by one of
the following changes:

(4.11) (When
when

did
$do

Kennedy
$np

elect
$vp

the President?)
$np verb

(When
when

was
$be

Kennedy
$np

electing
$vp

the President?)
$np verb

The first case in example 4.11 will get caught by the unified pattern in ex-
ample 4.8. The second case is tricky, however. It will not be matched by any
of the previous patterns. It is close to the examples in 4.6, but that pattern
won’t handle transitive verbs, i.e. verbs with arguments (captured by the
sequence $vp $np verb). And rightly so as transitivity implies activity. This
new pattern is unique and will thus unambiguously handle similar questions.
The trickster in this case is not the transitivity, however, but the present
participle form of the verb, “electing”. This form also implies activity but
may not necessarily have an argument. This can result in a question like the
following:

(4.12) (When
when

was
$be

Kennedy
$np

talking?)
$vp

This example (4.12) will erroneously be interpreted as passive by my
patterns (example 4.6). Handling it correctly is only a matter of creating
a separate rule for verbs ending in “-ing”, which is the form of the present
participle. But as these last questions are already beyond what the TREC
set requires, I have not spent any more effort on handling them.
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Pattern Type
when $be $np $vp? $np prep* be
when $do $np $get? $vp $np verb? $np prep* do

Table 4.2: Unified “when” question patterns

“Where” questions

In much the same way as a “when” question refers to a point in the dimen-
sion of time, a “where” question refers to a point in the dimension of space.
As dimensions go, these two interrogative words are thus strikingly comple-
mentary. The answer type to this kind of question constitutes a location.
Such a location is often geographic and might further be political, e.g. a
country or a city, or natural, e.g. a mountain or a river. But just as “when”
might refer to any instant in time, or any span thereof, so might “where”
refer to any location in three-dimensional space. A location could thus just
as well be “behind the closet”, “on the finger”, “inside the house”, “atop the
tree”, “under the bush”, “up in the air” and so on. These kinds of spatial
locations can usually be identified by the preposition precluding them. But
in the most general case, any noun, tangible or not, that can either belong in
space or confine a space of its own, can constitute a location. Some examples
of characteristic location-based TREC questions follows:

(4.13) Where
Where
where

is
is
$be

the Eiffel Tower?
John Wayne airport?
$np

Where
(Where
where

was
is
$be

the first golf course
the city
$np

in the United States?
of Atlantis?)
$np prep

Where
Where
where

is
are
$be

Hitler
the British crown jewels
$np

buried?
kept?
$vp

The questions in example 4.13 can all be unified for the same reasons as
the “when” questions in example 4.5. Further, the unified patterns will be
identical except for the interrogative word:
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(4.14) (Where
where

was
$be

the decisive battle
$np

fought
$vp?

in the American Civil War)?
$np prep*

This resemblance between the unified patterns of 4.14 and 4.5 suggests
that a similar correspondence exists between the patterns of the active forms.
And indeed it does, as shown in examples 4.15 and 4.16 (unified).

(4.15) Where
Where
where

did
do
$do

Howard Hughes
apple snails
$np

die?
live?
$vp

(Where
(Where
where

did
does
$do

Robin Hood
a tree frog
$np

defeat
lay
$vp

Little John)?
eggs)?
$np verb

(4.16) (Where
where

did
$do

the Aztecs
$np

build
$vp

the pyramids
$np verb?

in South America?
$np prep*

This only demonstrates the interchangeable nature of questions about
time and space. They can essentially ask about the same events only differing
in the dimension in which the answer lies. The location questions in the
TREC set do contain a few hitherto unseen variations though. For instance,
consider the question:

(4.17) Where
where

is
$be

the volcano Mauna Loa
$np cnpn

located?
$vp

First of all, this example (4.17) shows that the verb is not always useful.
In this case it is, in fact, superfluous. Not only is a location already implied
by the interrogative word, but many potential answers are unlikely to state
explicitly that a location is in fact a such, e.g. Mauna Loa lies in Hawaii . Using
this verb in a query might thus prove detrimental rather than beneficial.
These kinds of obvious verbs might instead be identified and filtered out to
keep them from restricting the search. They can be recognized in much the
same manner as described in section 4.5.3.

Secondly, note that “Mauna Loa” is defined as a volcano in the question.
This is accomplished by the pattern $cn $pn and is captured by the corre-
sponding $np cnpn slave. Normally, this kind of information would probably
not be very helpful as it concerns the focus, not the target, of the question.
However, it can be useful in assuring that a potential answer refers to the
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volcano and not any other kind of similarly named entity. There is, for in-
stance, also a solar observatory and a brand of nuts with the same name.
Extracting the location of any of these would not be very useful.

The final example (4.18) demonstrates that an $np prep may well follow
immediately behind the interrogative word instead of trailing the question:

(4.18) Where
where

on the body
$np prep

is
$be

a mortarboard
$np

worn?
$vp

The meaning is the same, and likewise the result of processing, but the
patterns have to explicitly handle this case. This simply means the unified
patterns crafted so far must be updated to support an optional $np prep?
after the interrogative. I will not do this here, however, to avoid the clutter.

Pattern Type
where $np prep? $be $np $vp? $np prep* be
where $np prep? $do $np $get? $vp $np verb? $np prep* do

Table 4.3: Unified “where” question patterns

“Who” questions

Questions using the interrogative word “who”, or the related forms “whom”
or “whose”, typically inquire about persons. Such questions might refer to
one or several individuals, with one being the arguably most frequent variant.
But they might also refer to a collective of individuals as a whole if these
fit naturally under a common banner, e.g. a company, an organization or a
band. And it doesn’t stop there:

Humans have a tendency to lend human attributes to almost any living
(or simulated) organism able to perform an action (physical or not). This
phenomenon is called anthropomorphism. For instance, “who” might just as
well refer to a monkey, a dog, a hamster, a robot, a toy figure or a cartoon
character. These might be referred to by their given names (e.g. “Fluffy”)
or their collective names (e.g. “the dog”).

Finding the right answer entity depends on interpreting the context prop-
erly, which is why it’s so important to process the whole question. Since
“who” questions all refer to some kind of being, rather than points in a tem-
poral or spatial dimension, the question patterns naturally differ somewhat
from the “when” and “where” questions.
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Some examples from the TREC set will now be explored. Note that I will
refer to the answer type as “person” for simplicity, regardless of whether the
answer is an actual person or any other anthropomorphized organism.

(4.19) Who
Who
who

was
is
$be

Galileo?
Duke Ellington?
$np pn

A “who” question with a lone $np (4.19) is more complex to answer than
a similarly lacking “when” or “where” question. A thorough answer to who
someone is requires defining that person in some manner. This can result
in an arbitrarily long description. As such it can be viewed as a definition
question rather than a factoid question, and the target type is consequently
a definition rather than a person. Put differently, a “who is X” question is
essentially the person-centric equivalent to the more general “what is X” and
belongs with that class of questions. How to answer these will be discussed
in 4.4.4. Note that this property is restricted to proper nouns (hence the
$np pn). The situation gets more blurry when the focus is a common noun:

(4.20) (Who
(Who
who

is
is
$be

the president?)
a computer programmer?)
$np cn

Here (4.20) it is no longer certain whether to answer with person names
or definitions. The questions might ask either who fulfills these roles (e.g.
“George W. Bush”) or what functions the roles embody (e.g. “The president
is the governmental head of the republic”). In the latter case it’s more
accurate to change the question to a “what is X”, e.g. What is a computer
programmer? . Because this option is available to the users, my system will
interpret these questions as asking for a specific person. It doesn’t take much
to disambiguate the answer type, though, as the next example demonstrates:

(4.21) Who
Who
who

was
is
$be

the first female
a German
$adj+

U.S. Representative?
philosopher?
$np

What keeps these questions (4.21) from avoiding the same uncertainty in
answer type as in example 4.20 is the additional adjective. This adjective
makes all the difference in that it changes the focus from a general role to
a specific one, thus targeting the person (or persons) fulfilling that role. By
keeping an adjective mandatory in the pattern, a person answer is certified.
It doesn’t have to be an adjective, though. Adding a PP is also enough to
ensure a person answer:
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(4.22) Who
Who
who

was
was
$be

president
the original voice
$np

in 1913?
of Mickey Mouse?
$np prep

This example (4.22) also illustrates the first use of a time-dependent ques-
tion. These were mentioned briefly in section 4.4.1. The PP “in 1913” re-
stricts a valid answer to this specific point in time. Extracting a president
from any other period is not very useful. Finding a valid answer might be
difficult unless this exact year is stated explicitly in the answer. It’s not
enough that it’s included in some time period (e.g. “1910 to 1914”) as un-
derstanding this kind of implication requires specialized logic. Additionally,
there might even be several correct answers to such a question if multiple
entities fulfill the requirement. In this case they do, as 1913 was an election
year in which the presidency changed hands.

When including a verb in the question an interesting property can be
observed:

(4.23) Who
who

was
$be

the first person
$np type

to reach
$vp

the North Pole?
$np verb

Who
who

was
$be

the first American
$np type

to walk
$vp

in space?
$np prep

Who
who

was
$be

the first African American
$np type

to win
$vp

the Nobel Prize
$np verb

in literature?
$np prep

The semantics of the sentences in example 4.23 depart from what has
previously been seen. The focus of the sentence is no longer the NP but
rather the VP. I reiterate that this view has no linguistic foundation but is
merely my intuition as to which part of the question should be focused on in
query transformation.

To see my point, take the question Who was the first person to reach
the North Pole? . The significant information here is who reached the North
Pole, not who was the first person (in general). Of course, both pieces of
information are important, but a query for the former will likely yield better
results than a query for the latter, hence the focus. The fact that it was
a person is even implicit in the “who”. And that it was the “first” such
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is rather a modifier to the event. This becomes clear when rewriting the
question into the equivalent Who reached the North Pole first? .

A slightly more involved example can be seen in Who was the first American
to walk in space? . If rewriting it in the same manner as above it would become
Who walked in space first? . This clearly misses the integral part that the
person in interest is an American. A solution is to rewrite it into a “which”
question explicitly specifying the target type, i.e. Which American walked in
space first? . Questions with explicit types will be handled in section 4.4.3.
But note already now that I mark the NP as denoting answer type with the
slave pattern $np type. This type will always refer to a person given the
“who” nature of the question.

Using a verb as the focus of the question might be more understandable if
considering that a verb might easily be converted into a noun, as in the case
of “to walk” becoming “the walker”. Consequently, the question Who was
the first American to walk in space? might be rephrased as Who was the first
American walker in space? or even Who was the first American space walker? .
These kinds of modifications have benefits that will be explained in section
4.5.2.

The “who” questions in the TREC test set also introduce a new element
into the sentences; the pronoun:

(4.24) Who
who

was
$be

the abolitionist
$np type

who led
$vp

the raid
$np verb

on Harper’s Ferry
$np prep

in 1859?
$np prep

Who
who

is
$be

the actress
$np type

known
$vp

for her role
$np prep

in the movie ”Gypsy”?
$np prep

Both “who” from “who led” and “her” from “her role” are pronouns
referring to the person who is the answer to the question. These pronouns
might also be exchanged with “that” for “who”, i.e. “that led” and “a” for
“her”, i.e. “a role”. Since these pronouns are not utilized anywhere in the
system, they’re not matched separately but rather identified and discarded
as part of the VP or NP, respectively. This is in accordance with how the
other stopwords are treated.

All the “who” questions mentioned so far, except the definition questions
in example 4.19 may be unified in one single pattern:

(4.25) (Who
who

was
$be

the artist
$np type

that changed
($vp

his name
$np verb?)?

to a symbol?)
$np prep*
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As before, this unification (4.25) is possible because the questions all ask
for the same entity type and only use variations over the same constructs. If
a question contains neither a verb nor a preposition it reverts to the common
noun example of 4.20. The common noun here is assured by using $np type,
which is neither valid nor useful for proper nouns as these can’t determine
type.

The active “do” form seen in “when” (4.8) and “where” (4.16) questions
is conspicuously missing from the TREC test set. For sake of completion I’ve
included the unified pattern for the “do” form of “who” questions also:

(4.26) (Who
(Who
who

did
did
$do

Harry Potter
Harry Potter
$np

zap?)
give
$vp

the Wand
($np verb?

of Zap to?)
$pp)?

The final examples show the most interesting use of a verb in a “who”
question:

(4.27) Who
Who
who

discovered
developed
$vp

America?
the Macintosh computer?
$np verb

Who
Who
who

won
developed
$vp

Ms. American
the vaccination
$np verb

in 1989?
against polio?
$np prep

Who
Who
who

dies
lived
$vp

in the ”Half Blood Prince”?
in the Neuschwanstein castle?
$np prep

Because a question of this kind (4.27) refers to a person, someone who’s
able to perform actions, the main verb (the action) may come directly after
the interrogative. In other words, there’s no need for an auxiliary verb like
“did” to introduce the performer of the action. Further, like in example 4.23,
the focus of the question lies with the VP. These verbs may also be modified to
nouns in the same manner as before, e.g. Who discovered America? becoming
Who is the discoverer of America? .

These kinds of questions don’t have to specify an active role. They may
just as well be passive:

(4.28) Who
(Who
who

was
was
$be

elected
destroyed
$vp

president

$np verb?

of S. Africa in 1994?
in the Trojan War?)
$np prep*
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Finally, the questions from these last examples (4.27 and 4.28) may be
unified in a common pattern (4.29):

(4.29) Who
who ($be|$get)?

invented
$vp

Trivial Pursuit?
($np verb $np prep*|$np prep+)

Pattern Type
who $be $np type ($vp $np verb?)? $np prep* be
who $do $np $get? $vp ($np verb? $pp)? $np prep* do
who ($be|$get)? $vp ($np verb $np prep*|$np prep+) vp

Table 4.4: Unified “who” question patterns

4.4.3 Explicit answer type

Questions with an explicit answer type can’t be mapped to a corresponding
entity extractor without finding out what general type the question asks for.
How to accomplish this is detailed in section 4.5.3. This explicitness has
a benefit, though. Whereas the implicit types are more easy to determine
general type from, the explicit types are more specific. That is, once the
general type is decided the subtype is specified explicitly. Implicit types lack
this preciseness and could refer to any subtype within the general type.

“How X” questions

Questions starting with “how” are often used to inquire about an explanation
or procedure, e.g. How does a combustion engine work? or How did Wellington
defeat Napoleon? . When trailed by an adjective, though, the answer type
frequently changes to a measurement, e.g. How long is the Great Barrier
Reef? . An adjective by itself is no sure indicator, as the answer type might
also be a opinion or estimate, e.g. How dangerous is a killer whale? . But if
the adjective can be determined to specify a measurement, the question can
be translated to a corresponding scope query for measurement entities.

There is also a similar type of questions that asks for a quantity instead of
a measurement, e.g. How many Olympic Games were canceled because of World
War I? . Since the quantity indicator here is an adverb, not an adjective, it
is easy to recognize as such. Such a question might sometimes appear to ask
for a measurement, e.g. How many liters are there in a gallon? , but the answer
is in fact a quantity as it does not require the unit of measurement. That is,
3.79 is just as good as 3.79 liters.
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A few example of measurement questions will now follow. The new slave
pattern $measure only matches adjectives that are known to specify mea-
surements.

(4.30) How
How
how

close
long
$measure

is
is
$be

Mercury
the Great Barrier Reef?
$np

to the sun?

$np prep?

How
(How
how

far
long
$measure

is
is
$be

it
it
$pron

from Earth to Mars?
between the equinoxes?)
$np prep+

How
how

late
$measure

is
$be

Disneyland
$np

open?
$vp

Note the different meanings of the adjective “long” in example 4.30. It
might refer both to a distance and a duration. This ambiguity can to some
degree be dissolved by separating the patterns in which they occur, as just
exemplified. But in some cases they both use the same patterns. To be
absolutely sure, both types of units must be queried for.

Even when a measurement is unambiguously recognized, e.g. length or
temperature, these measures can be denoted using different units. For in-
stance, a length can be given in kilometers, feet or even astronomical units
(AU). Similarly, a temperature can be given in Celsius, Fahrenheit or Kelvin.
When no unit of measurement is specified, all of these are valid. But ques-
tions might also ask for a unit explicitly:

(4.31) How
(How
how

large
fast
$measure

in square miles
in kph
$np unit

is
is
$be

North Carolina?
the fastest speedboat?)
$np

In these cases (4.31), only the specified unit is interesting. Still, it might
be useful to also return other units as long as the desired unit is ranked
first. This unit may not be located, however. But if others are, a possible
feature enhancement is to automatically convert the measure to the desired
unit. This kind of specialized behavior is possible since the patterns are
sophisticated enough to recognize the unit semantics, and would not be as
easy if using only a POS tagger.

So far, the questions have all been of the form “to be”. These patterns
are similar enough to be unified (table 4.5). But the questions might also
use other forms, like “do”, “can” and “shall”:
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(4.32) How
how

big
$measure

does
$do

a pig
$np

get?
$get

How
how

hot
$measure

does
$do

it
$pron

get
$get

in Death Valley?
$np prep

How
how

long
$measure

did
$do

Rip Van Winkle
$np

sleep?
$vp

How
how

fast
$measure

can
$can

a king cobra
$np

kill
$vp

you?
$pron

How
how

cold
$measure

should
$shall

a refrigerator
$np

be?
$be

These patterns (4.32) can also be unified (table 4.5). Again, some of the
measures are ambiguous. “Long” this time refers to time, which is indicated
by the verb. “Big” can refer to both weight and length. In this case, prob-
ably weight, but both measures are useful to include since the question is
imprecise.

Table 4.5 summarizes the unified measurement patterns. Observe that
these are basically equal to the unified “be” and “do” patterns of “when” (ta-
ble 4.2) and “where” (table 4.3) questions, except that they also include pro-
nouns and auxiliary verbs of the form “can” and “should”. These additions
are useful for some of the more abstract measurement questions exemplified.

Pattern Type
how $measure $np unit? $be ($np|$pron) $vp? $np prep* be
how $measure $np unit? ($do|$can|$shall) ($np|$pron)

do
($be|$get|$vp ($np verb|$pron)?) $np prep?

Table 4.5: Unified “how” question patterns
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“Which X” and “what X” questions

The interrogatives “which” and “what” are often called determiners. This
term is highly appropriate in a classification sense, since the succeeding noun
effectively determines the answer type. These two interrogatives are used in-
terchangeably in the following example questions and are handled identically
by the system. For simplicity, though, I will just use “what” in the patterns
presented here regardless of which of the interrogatives is actually used in
the questions.

All of the previously mentioned question types have their representatives
in which/what questions. Each of these use their own specifier dictionary to
recognize valid answer types within their own domain.

Time questions are exemplified in (4.33):

(4.33) What
What
what

date
year
$date

was
was
$be

Dwight D. Eisenhower
the Mona Lisa
$np

born?
painted?
$vp

What
What
what

date
year
$date

did
did
$do

Neil Armstrong
Mussolini
$np

land
seize
$vp

power
$np verb?

on the moon?
in Italy?
$np prep*

What
what

is
$be

the date
$date

of Mexico’s independence?
$np prep+

What
what

was
$be

the last year
$date

that the Chicago Cubs won the World Series?
$clause

Note the possessive NP “Mexico’s independence”. This will be normalized
to “independence of Mexico” before question classification and will thus be
matched by the regular preposition patterns. This normalization is explained
in 4.5.1.

The first two patterns of (4.33) are basically identical to the unified “be”
and “do” patterns of the implicit “when” questions (table 4.2). This is only
natural since the interrogative words serve the same purpose in both the
implicit and the explicit case. This explicitness allows for better precision
by specifying the subtype of entity, e.g. “what year” versus simply “when”.
The similar nature of these question types can be seen clearly by rewriting
What year was the Mona Lisa painted? as When was the Mona Lisa painted? .
In terms of implementation, the benefit of this similarity is that the patterns
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can basically be merged since they differ only in the initial interrogative part
of the questions.

The last two patterns of (4.33) introduce a new and important way to
formulate questions permitted by the explicit type. When the type is men-
tioned as a noun (e.g. “the date”), the rest of the phrase can refer back to
this noun by using e.g. a preposition phrase or a relative pronoun.

The relative pronoun is the most important as it introduces a new slave
pattern; $clause. None of the earlier question examples have been complex
enough to have need of this pattern. It’s very useful, however, if the questions
use clauses. Shortly put, a clause is a sub phrase that can either stand on its
own (independent) or must be part of a whole (dependent). In this case, that
the Chicago Cubs won the World Series is a statement that has no meaning
on its own, since the relative pronoun “that” refers back to “the last year”.
These clauses can basically form new phrases of complexity equal to the
original phrases. A sentence containing such a clause is thus rightly called a
complex sentence.

With clauses, it’s not necessary to create separate sub patterns for each
specific pattern and possibly have to replicate these across all the patterns
needing them. Instead, I’ve collected all of these variations in a common
$clause pattern and simply refer to this wherever appropriate. This pattern
is shown in example 4.34 along with a few examples of the kinds of sub
phrases it matches (mainly from the TREC set):

(4.34) when he died
where the meteoroid hit the surface
when it comes into contact with a strong acid
that have returned looted Nazi art to their owners or descendants
$relpron ($pp $np|($np|$pron) $auxverb? $vp $np verb?) $np prep?

This pattern (4.34) introduces two new slave patterns of its own. $relpron
is the relative pronoun that introduces the sub phrase, represented by the
first term in the examples (4.34). $auxverb is just an auxiliary verb like “get”
or “do” that often introduces the main verb. I see no need to differentiate
these auxiliary verbs here.

Location questions are exemplified in (4.35):

(4.35) What
What
what

U.S. state’s motto
state
$location

is
is
$be

”Live free or Die”?
the geographic center
$np

of the lower 48 states?
$np prep*
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What
What
what

continent
province
$location

is
is
$be

Argentina
Montreal
$np

on?
in?
$pp

What
What
what

country
state
$location

did
did
$do

Ponce de Leon
the Battle of Bighorn
$np

come
take place
$vp

from?
in?
$pp?

What
What
what

is
is
$be

the location
the capital
$location

of the Sea of Tranquility?
of Ethiopia?
$np prep+

What
What
what

Canadian city
state
$location

has
has
$have

the largest population?
the least amount
$np

of rain per year?
$np prep*

These example patterns (4.35) can basically also be unified into patterns
equal to the “where” questions (table 4.3). The are a few differences, though:

• The new examples show that both “be” and “do” questions can end
with a single $pp rather than a full $np pron. This is especially im-
portant for location-based questions since prepositions typically refer
to locations. But it might also be a useful addition to other kinds of
questions, e.g. Who was the Golden Ticket given to? , and should thus
be introduces to all appropriate unified patterns.

• These examples introduce a new auxiliary verb; “have”. Syntactically
this form is essentially equal to the “be” patterns. Due to the differ-
ent semantics (having versus being) it is useful separating the patterns
though, to allow for separate treatment. This form is just as applica-
ble to other question types, e.g. Which former Austrian has the largest
biceps? , and should also be added to the unified patterns.

Person questions are exemplified in (4.36):
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(4.36) What
(What
what

French ruler
country leader
$person

was
was
$be

defeated
awarded
$vp

at the battle
the 2000 Nobel Peace Prize?)
$np verb?

of Waterloo?

$np prep*

(What
(What
what

student
jolly dwarf
$person

did
did
$do

Snape
the piano
$np

zap?)
fall
$vp ($np verb?

upon?)
$pp)?

What
Which
what

American composer
U.S.A. president
$person

wrote
appeared
$vp

the music

$np verb?

for ”West Side Story”?
on ”Laugh-In”?
$np prep*

The person patterns in (4.36) are also similar to the unified “who” ques-
tions in table 4.4, with some differences. The focus changes back from the
verb, e.g. Who developed..., to the noun, e.g. What developer.... The “be”
form of the questions require more than an $np to be complete. The “do”
form is glaringly absent from the TREC set, so a few examples have been
added. And there is no need for a $clause here, since it belongs more natu-
rally in a “who” question, e.g. What is the president that... versus Who is the
president that....

Measurement questions are exemplified in 4.37:

(4.37) What
What
what

is
is
$be

the atomic weight
the temperature
$measure

of silver?
of the sun’s surface?
$np prep*

What
What
what

is
is
$be

the average weight
the normal blood sugar range
$measure

of a Yellow Labrador?
for people?
$np prep*

What
what

is
$be

the distance
$measure

in miles
$np unit

from the earth to the sun?
$np prep*
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What
What
what

is
is
$be

the earth’s diameter?
the world’s population?
$measure $np prep*

In contrast with the earlier measurement questions of the “how” kind,
these explicitly mention the answer type just like the other “which” questions.
It’s thus only a matter of recognizing these nouns as measurements using a
regular specifier, and verify that the answer belongs to the right type.

The unified patterns for the explicit questions are summarized in table
4.6.

Time patterns
what $date $be $np $vp? $np prep*
what $date $do $np $get? $vp $np verb? $np prep*
what $be $date ($np prep+|$clause)

Location patterns
what $location $be $np $vp? ($np prep*|$pp)
what $location $do $np $get? $vp $np verb? ($np prep*|$pp)
what $location $have $np $np prep*
what $be $location ($np prep+|$clause)

Person patterns
what $person $be $vp $np verb? $np prep*
what $person $do $np $get? $vp ($np verb? $pp)? $np prep*
what $person ($be|$get)? $vp ($np verb $np prep*|$np prep+)

Measurement pattern
what $be $adv? $measure $np unit? $np prep*

Table 4.6: Unified “what” question patterns

4.4.4 Advanced questions

List questions

List questions in the TREC set are either explicit and commanding, e.g.
List female astronauts or cosmonauts., or implicit, direct and querying about
multiple entities, e.g. What are the colors of the German flag? . They can thus
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be recognized by these two properties, i.e. command (4.39) and/or plural
noun(s) in the answer type (4.38).

(4.38) What
What
what

are
are
$be

the colors
the two houses
$np type

of the German flag?
of the Legislative branch?
$np prep

What
what

gasses
$np type

are
$be

in the troposphere?
$np prep

Although a question may ask for a limited number of entities, e.g. “two
houses”, I see no point in restricting the answers to any predefined amount.
The system might as well return a complete list of all matching entities,
ranked according to importance, and let the users decide which are interest-
ing; most likely the top entries. Also, even though a question may seemingly
ask about a single entity, there may still be multiple valid answer entities.
For instance, the answer to What do you eat at a sushi restaurant? might be
“sushi”, “fish”, “maki”, “rice” or any other suited food. And in Who devel-
oped the Macintosh computer? both the persons involved and their company
are interesting answers; different entity types may all be correct. Not to
mention a question like How big does a pig get? which depends on the mea-
surement (length or weight) and unit (centimeters or inches, or kilograms or
pounds).

The commanding questions introduce a new aspect into the questions;
conjunctions:

(4.39) List
List
list

female astronauts or cosmonauts.
the names
$np

of cell phone manufacturers.
$np prep?

List
List
list

Hezbollah members
the names of casinos
$np

killed or apprehended
owned
$vp

by Israeli forces.
by Native Americans.
$np prep

An $np handles multiple phrases by recognizing coordinating conjunc-
tions (i.e. “and” and “or”) and marking each noun phrase separately, e.g.
“astronauts” and “cosmonauts”. The same applies to a $vp, e.g. killed or
apprehended split into the verbs “killed” and “apprehended”. Conjunctions
are translated directly to booleans in the scope query, meaning “or” creates
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a list of alternative keywords. Further, the phrases also handle comma sep-
arated listings created by conjunctions, e.g. dogs, cats, hamsters and mice,
although these are not used in the TREC set.

The biggest problem with conjunctions is figuring out whether the sur-
rounding elements apply to just one or all of the items in the clause. For
instance, in example 4.39 are the cosmonauts supposed to be female or only
the astronauts? Can the cosmonauts be male? And are the Hezbollah mem-
bers supposed to have been killed by Israeli forces or does this requirement
only apply to the apprehension? Can they have been killed by other means?
These kinds of ambiguities follow conjunctions all the time, but humans usu-
ally resolve them unconsciously because only one of the alternatives usually
makes sense. Encoding this sense into an algorithm is not easy, but a general
rule of thumb is:

• All elements are applied to all items in the clause unless they already
have elements of their own.

For instance, female astronauts or cosmonauts is likely to mean female
(astronauts or cosmonauts), while female astronauts or male cosmonauts means
just that. Likewise, killed or apprehended by Israeli forces is likely (killed or
apprehended) by Israeli forces. For simplicity, however, I capture adjectives
as part of the NP as usual, and treat verbs as equal alternatives. Thus,
the Hezbollah example is treated as stated while the astronaut example is
interpreted as (female astronauts) and cosmonauts. This is easier to implement
and also more clear due to requiring users to be explicit rather than making
assumptions that are bound to have unpredictable exceptions. If a different
behavior is required, the users can reformulate their questions or simply split
them into multiple questions without using conjunctions.

Definition questions

Definition questions are typically on the form “who is X” or “what is X”.
Example 4.40 shows some representative questions from the TREC test set:

(4.40) Who
Who
who

was
is
$be

Abraham Lincoln?
Duke Ellington?
$np

What
(What
what

is
is
$be

Teflon?
black magic?)
$np
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One way to answer definition questions is by looking the subject up in
a dictionary or encyclopedia. The new fact mining components of Google,
Yahoo and MSN do this (section 3.5.6). This approach will provide thorough
answers, but the answers will be paragraph sized or even page sized unless the
source has been tailored specifically to answer concisely. Such long answers
are probably useful for their contextual value (see 3.4.3) but might also be
too verbose if just looking for summarized facts. Of course, the text chunk
may be trimmed upon retrieval by only extracting the interesting parts from
the entry.

A drawback is that these sources tend to be sparse on information be-
yond common facts. That is, they work nicely for well-established and fairly
static concepts, like e.g. abbreviations, laws of nature or important historical
moments. But they often have bad coverage beyond these areas, for instance
with information that is state-of-the-art, disputed, specialized or simply lit-
tle known. Discussions on such topics tend to flourish around the open web,
though, which is ideal for solutions based on crawling and indexing. Besides,
all topics, even “undisputed” facts, are useful to get information on from
several sources and angles. An encyclopedia only provides one view; the one
which is favored by the author of the treatise. If only one source is used, one
might question why the users should go through the QA system at all. They
might instead search directly in the encyclopedia. This will probably be just
as quick.

Another problem with this solution is that the source of definition answers
is entirely separate from the corpus indexed by the engine. Since the corpus
doesn’t provide support for the answers, this rules out any benefit from
selective indexing. The definition component might as well be regarded as
an entirely separate auxiliary module. Again, it might be better for users to
simply go directly to the source, since the information isn’t live anyway.

For these reasons, it’s attractive to extract definition answers in the same
manner as other answers. The difficulty lies with the open nature of these
answers. Since it’s no longer a matter of finding entities, but rather sentences
of arbitrary length, traditional entity extraction is not applicable. It is no
trivial task recognizing what kind of sentences constitute solid information
worthy of being definitions, nor is indexing upon these. Proper definition
extraction probably requires sophisticated and costly result-time processing.
Of course, a quick solution is to simply return all phrases where the focus of
the question is the subject. This is likely to produce many irrelevant facts
though, such as Lincoln supported the Second Bank of the United States, Lincoln
was unsentimental about agriculture and Lincoln wished to share Douglas’s fame.
These extracts need context to be informative, but even then they’re likely
not very important in defining the person Abraham Lincoln.
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But a compromise can be made between these two approaches; that is,
between looking up and mining definitions. Definition questions typically
inquire about who or what someone or something is. This “is-a” relation-
ship is the exact premise upon which my semantic lexicon is built (section
4.7.3). In fact, the semantic lexicon can be viewed as a repository of defini-
tions mined from the corpus. Some examples from my lexicon are: Abraham
Lincoln: great United States president, Duke Ellington: notable black musician,
Teflon: low friction plastic and black magic: practice of witchcraft. Of course,
this restricts the answers to noun phrases rather than verb phrases. That
is, it will miss Galileo invented the telescope but catch Galileo, inventor of the
telescope. In a way, this solution entails using the lexicon in reverse – to look
up information rather than verify it. As such, the requirements on precision
are much stricter than what my current lexicon can fulfill. But the general
idea might be carried further.

4.4.5 Classification summary

This classification section demonstrates that it’s easy to create a few unified
patterns with broad coverage that can efficiently determine answer type and
POS at the same time. There are several other interesting aspects that can
be detected in the TREC answer set, but these were the ones I had time to
present.

The disadvantage of using syntactic patterns is that each type of phrase
must be explicitly supported, otherwise the system won’t understand the
question. This isn’t as bad as it may sound, though, as a few general patterns
with a fair share of variants can capture a lot of different phrases. Once valid
sub phrases have been identified, these can be reused and shared among the
patterns. Also, while questions may well be asked in cunning and peculiar
ways, there is an argument to be made for restricting users to phrase their
questions in a clear and precise manner. This will help both the users and
the system to focus.

It’s also fairly easy to implement a fall-back strategy for unsupported
phrases. A set of shorter patterns can be derived from the existing ones that
only match far enough to recognize the answer type. The rest of the question
can then simply be converted to a general keyword-based query. Since this
implies ignoring the contextual clues inherent in the questions, these clues
can’t be used when verifying the syntactic relations in the answer. Instead,
answer extraction will also have to utilize a fall-back step where entity types
are verified purely based on their semantic classes and their proximity to
important keywords.

So far, the syntactic structure of the sentence is not used for much except
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determining POS. Since the answer type can basically always be determined
in the start of the sentence, these extensive patterns may seem rather exces-
sive. It might appear better to just match enough to determine type and then
leave the rest to an optimized POS tagger. That way, the patterns wouldn’t
have to support every kind of syntactic variation. But this structure is, in
fact, useful for other purposes than POS tagging. Specifically, the slave pat-
terns I’ve created can be configured into new patterns that recognize certain
semantics in the questions. For instance, the unit conversion suggested in the
measurement questions. I’ll give more examples of how syntactic structure
can aid semantic discovery when creating scope queries in section 4.5.4.

When dealing with implicit answer type I simply translate the interroga-
tive word to the appropriate supported entities. This kind of simple syntactic
classification is not exact. For instance, “who” might refer to both a person
and an organization. For maximum precision, the system would have to be
able to distinguish which of these types is requested when unspecified. It’s
possible to go to great extents to accomplish this, and some solutions do just
that.

On the other hand, one might question whether this level of precision
really matters to the end user. For instance, given a question like Who
developed the Macintosh computer? both the persons and the company behind
the product are correct answers. The only difference is the scope of the
target, e.g. single individual or multiple. If multiple, they might be listed
individually or under some common banner (e.g. that of a company). If only
one of these is returned as the answer, it is, of course, important which one is
picked. But if multiple answers can be ranked and presented comfortably it’s
valuable seeing all applicable answers. Fast ESP navigators are perfect for
this purpose. The short answers (e.g. entities) can be presented as a list and
the user can drill down on the right entity type (e.g. persons vs companies)
and further drill down on individual entities to see the long answers that
support the particular entity.

If the user does not specify the type precisely, e.g. “which person” rather
than “who”, chances are that the specific type is not regarded as important.
If it is, the user can simply drill-down to the appropriate entity type or
even rephrase the question to be more specific. For instance, Which person
developed the Macintosh computer? or even Who was the person that developed
the Macintosh computer? . One advantage of QA technology is that it gives
users the power to be very specific without requiring a complex syntax. This
power also extends to e.g. specifying unit in a measurement questions like
How fast in kph is an African swallow? and for explicitly creating a definition
question like What is the president rather than Who is the president? . Given
this power, the responsibility for assuring precision largely falls to the users.
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As long as it’s just as easy to create a precise question as an imprecise one,
there’s no real reason to implement sophisticated logic to try to outguess the
users. Poorly formulated questions can be just as confusing to humans as
to an algorithm. An imprecise question will give a corresponding imprecise
answer, but in the world of ambiguous natural languages this is as it should
be.

Example code

To demonstrate how I’ve implemented the question classifiers, I’ve included
the configuration file for my person classifier in appendix A.3. This code is
able to recognize all the various person questions I described in section 4.4.2
and 4.4.3. Basically, the code is an implementation of the unified patterns in
table 4.4 (implicit questions) and table 4.6 (explicit person questions). Note
that this configuration file is rather sparse. This is because most of the work
is handled by the slave patterns I described in my pattern syntax in section
4.4.1. These slave patterns are required by all the classifiers, so I’ve collected
them in a common auxiliary file. The code for this file can be viewed in
appendix A.5.

4.5 Query transformation

4.5.1 Normalization

Language is complex and allows lots of variants and quirks. To lessen the
burden of having to deal with all these variants upon question classification,
it’s useful to normalize the questions before passing them along to these
matchers. This section will explain how and why this is done.

Interrogative sub phrases

Questions can be phrased in different ways. The most common way is by
starting with the interrogative word, such as in What state did the Battle of
Bighorn take place in? . Here, the first part, “what state”, indicates the target
of the question. But the target may well be precluded by other words. For
instance, by a preposition like “on” in On what continent is Egypt located? .
In fact, the interrogative words may even come last in the question, as seen
in the example The Hindenburg disaster took place in 1937 in which New Jersey
town? .

All of these variations have to be supported. But since the question will
not be parsed it’s difficult to rely on the syntactic structure of the sentence
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to identify the interrogative words. That is, there is no parse tree built that
will clearly state where the interrogative sub phrase starts regardless of how
the question is phrased. These variations will instead have to be handled by
patterns.

Writing separate patterns to match every variant is possible, as each ex-
tractor can easily handle multiple patterns. This is not a good solution,
though. It’s time consuming to write, hard to maintain because modifica-
tions must be applied to each pattern, and slow to execute because it entails
running each pattern in sequence until one matches.

A better idea is to retrieve the interrogative sub phrase separately, simply
by ignoring the other words. This requires matching twice, though; once for
the target and once for the subject. The problem here is that the Matcher
framework in Fast ESP is built to extract one element at a time. In other
words, two separate matchers will have to be set up and executed for each
question type. The same kinds of problems as above surface.

Ideally, both the target (e.g. “New Jersey town”) and the focus (e.g.
“Hindenburg disaster”) should be extracted by one and the same pattern.
Instead of adapting the extraction to the questions it might be possible to
adapt the questions to the extraction. By analyzing the question variations as
patterns, instead of as sentences, it becomes apparent that the interrogative
sub phrase is just shuffled around in each variation. This crucial realization
implies that the questions may be normalized before extraction by reshuffling
the sub phrases to create the same general pattern.

For example, On what continent is Egypt located? becomes What continent
is Egypt located on? . And In the Bible, who was Jacob’s mother? becomes
Who was Jacob’s mother in the Bible? . Of course, this transformation runs the
risk of invalidating the syntax, as when The Hindenburg disaster took place
in 1937 in which New Jersey town? is transformed into Which New Jersey
town the Hindenburg disaster took place in 1937 in? . This kind of deformation
produces questions that will not be matched unless the patterns are modified
to be more lenient, i.e. less dependent on syntax. For instance, by not
requiring an auxiliary verb (like “did”) to appear between two noun phrases.
Alternatively, the transformation can be enhanced to produce syntactically
valid constructs by implementing heuristics that rewrite general patterns of
one form to another form, regardless of question type or topic.

This solution still requires two matchers; one for normalizing the question
and one for extracting it. But reshuffling is trivial compared to writing
additional patterns and also identical for each type of question. Instead of
two custom steps for each and every question type there’s now only one
additional step that they all have in common. Best of all, the question
matching component can now treat each question pattern as a normalized
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phrase always starting with the interrogative word.

Contractions

English uses many contractions to shorten frequent phrases, e.g. “isn’t”,
“he’s” and “could’ve”. To avoid having to handle these variants it’s useful to
expand them before matching, i.e. “is not”, “he is” and “could have”. This
is especially important considering that interrogative words frequently use
contractions too, as in “who’s the actor” and “what’re the names”. Also, ex-
pansion is a cheap way to guarantee that these words will never be tokenized
into meaningless constructs like “isn” and “t” by a later step.

Possessive markers

The possessive marker (’) is used in English to denote possession in nouns,
e.g. “the dog’s collar”. Instead of handling these phrases as special cases
when processing nouns, it is more convenient to instead normalize them to
a form that is already supported. This kind of transformation is possible by
observing that the pronoun “of” can in most cases be used as a replacement
without changing the meaning, like in “the collar of the dog”. By expanding
the noun phrase with a preposition phrase the possessive form can thus be
removed. Note that the article “the” is inserted for common nouns. This
insertion doesn’t have to be grammatical as long as the resulting question
pattern is valid.

The questions in the TREC test set use the possessive form in three main
ways, three of which are expandable, but for different purposes:

• Consider What is Shakespeare’s nickname? . This is the regular case in
which the possessive occurs. A naive pattern would either regard the
words of the NP as separate, i.e. “Shakespeare” and “nickname”, or
use the NP as an exact phrase, i.e. ”Shakespeare’s nickname”. None of
these solutions make it clear that the answer type is a nickname. By
instead expanding the question to What is the nickname of Shakespeare?
it is immediately clear to my patterns that a nickname is the interesting
answer type here.

• Another useful case is seen in What city’s newspaper is called ”The En-
quirer”? . If expanding this phrase in the same way as above, it would
become newspaper of the city . This would indicate that the target is a
newspaper, which is wrong. The target is a city, but “The Enquirer”
refers to the newspaper, hence the formulation. The proper behavior is
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inserting the auxiliary verb “has” and removing the previous auxiliary,
i.e. What city has the newspaper called ”The Enquirer”?

• Consider St. Patrick’s Day and Harper’s Ferry . In these cases the pos-
sessive is part of the name. Proper nouns using possessive form should
thus stay unmodified.

• The exception from the above rule is if the NP contains an explicit
phrase, such as Mozart’s ”Don Giovanni” or Rowling’s ”Harry Potter”.
These cases should be expanded by the preposition “by” instead of
“of”; e.g. ”Don Giovanni” by Mozart.

Note that this kind of expansion has to work recursively. Consider the
question What was J.F.K.’s wife’s name? from the TREC test set. The target
here is not the wife but her name. Performing one expansion is inadequate as
it produces What was the wife’s name of J.F.K.? , which has quite a different
meaning. Repeating the step doesn’t help either, as this simply results in
What was the name of J.F.K. of the wife? . Iteration is not the proper tool
here, but recursion. The phrase “wife’s name” first has to be expanded to
“name of the wife”, then “J.F.K.’s name of the wife” to the final sentence
What was the name of the wife of J.F.K.? . Of course, this kind of recursion can
be simulated by iterating backwards. In this exact case, however, the work is
largely wasted. The person (the wife) and the name will likely result in the
same answer anyway (a person name). But replace “name” with “hobby”
and the functionality is justified.

Stopwords

As explained throughout section 4.4.1, stopword removal is handled as part
of the question classification process. The patterns that match the questions
are responsible for discarding any words deemed irrelevant, i.e. stopwords.

I first considered identifying just the answer type and then send the rest
of the question unmodified to the search engine. E.g. Who was the first
person to reach the North Pole? would become the query and(string(”the first
to reach the North Pole”, mode=”AND”), scope(person)). The idea was to
just rely on the stopword removal mechanism of the search engine instead of
creating one myself.

The big disadvantage of this approach was that I would have to rely on
the search engine to interpret the rest of the question. That is, the question
would just be treated as a plain keyword search. In other words, the only
real improvement over a combined IR and IE solution would be the ability to
automatically recognize the answer type. I wanted to do more. I saw great
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potential in utilizing the contextual information in the question to both direct
the search and verify the answer. It also looked promising to expand terms
based on what was useful for the particular question class, rather than just
providing general synonyms or some such. In other words, I quickly decided
that it was better to control my own stopword removal than rely on Fast
ESP to do so.

In this regard I first contemplated filtering out the stopwords at the start,
as part of the normalization step, and then send the filtered query for question
classification. Not having to deal with stopwords in the query would make
the processing easier, but it would also make it much more difficult both to
tag the remaining words properly and to figure out the intent behind the
question pattern. Thus I decided on the thorough question classification
procedure detailed in 4.4.

An added benefit of fully controlling my own stopwords is that negation
can be maintained. For instance, if the word “not” is filtered out from a sen-
tence, the meaning will effectively be inverted. Take for instance What are
the animals that don’t have backbones called? . If applying standard stopword
removal the query would end up with something like what animals have back-
bones called , which is very likely to return the exact opposite information
from what was intended. Of course, the negation will still have to be upheld
when verifying the answer, but recognizing it as part of question classification
allows just this.

4.5.2 Term expansion

Verb/noun conversion

As mentioned when discussing the subject of a “who” question in section
4.4.2 it’s quite easy to change the verb in a sentence into a noun. This was
the case in “to walk” becoming “the walker”.

This kind of transformation doesn’t only apply to verbs denoting activity.
It also works for passive verbs where, for instance, “to employ” might become
both “the employer”, for the active part, and “the employee” for the passive.
Further, the verb doesn’t have to be converted to a person but might in fact
become any other object or concept playing the part of a noun. For instance,
“to walk” might become “the walk”, referring to an event. And “to employ”
would similarly become “the employment”.

This close verb/noun relationship is not merely a curiosity but a central
part of how new words are formed from existing classes when the need arises;
e.g. to describe an action as a thing or vice versa. This transformation
property can be very useful. Consider the question When did Elvis Presley
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die? . A potential answer might not necessarily use a tense of the verb “die”,
as in Elvis died on August 16, 1977 . Instead, the event might be referred to
as a noun, as in ...death of Elvis in 1977 .

If this kind of relationship between a verb and a noun could be formally
established, it could be used in expanding the query with additional terms.
It would probably also be useful in finding potential answers by increasing
the amount of valid relations. That is, by looking for syntactic construct
using both verbs and nouns. These enhancements could prove quite useful in
boosting the recall of the answer extraction component. Note that this is not
the same as synonym expansion, as these alternate words are not synonyms
but rather different parts-of-speech (POS) of the same words. Synonyms are
well-known to sacrifice precision because of subtle nuances and unintended
word senses. In this regard, I believe term expansion using verb/noun con-
version could potentially be more precise as it’s essentially the same words
in different forms. I can’t confirm this assumption, though, as I’ve not found
any study on the topic. Of course, changing the POS also means that the
syntactic relations between the words change. Verbs and nouns can’t simply
be exchanged for one another in the same positions in a sentence. Rather,
different patterns have to be used to verify the relations based on the POS.

One reason I’ve not seen other systems use this kind of expansion, is
probably because the properties of synonyms have been researched and un-
derstood while this verb/noun relation has not. Also, synonyms are readily
available while this relation is hard to come by. Without a proper dictionary
containing the links between verbs and nouns the relation can’t be exploited.
The question, then, is how to build such a dictionary.

There seems to be no strict rule as to how a verb can form a noun and vice
versa. But there does seem to be a limited number of suffixes that are used
when going from one form to the other. I thus came up with an automated
method based on taking the stem of the word and expanding it with such
common suffixes. E.g. the verb “employ” could be expanded to a noun by
adding the suffixes “ment”, “er” or “ee”. Using these rules on “develop”
would give “development”, “developer” and “developee”. While “construct”
would give “constructment”, “constructer” and “constructee”. In the latter
case, the proper suffixes would be “ion” and “or”. As the amount of such
distinct suffixed seems to be limited, they could simply be mined and then
used exhaustively on every stem to generate possible nouns. Clearly, many
of these rules will yield invalid constructs on any particular stem, but it
doesn’t really matter. The generated words can simply be verified against
a dictionary of nouns and all invalid constructs discarded. Once a custom
dictionary of verb-to-noun relations has been built, going from noun to verb
is just a matter of reversing the relations.
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To explore this proposition further I started looking around for a manually
compiled list of verb/noun relations. This kind of information turned out
to be scarce. Eventually I found out that WordNet [62] contains quite a
few of these relations in addition to the regular synonym sets. The related
words are widely scattered throughout several custom-formatted database
files, though, and I needed to collect them all in an easily surveyable list.
For these purposes WordNet provides several interfaces for programmers but
none of them suited my particular need. I instead ended up examining the
WordNet file format specifications and writing my own script to extract the
exact relations I required. To make this work I had to interpret several
numerical and symbolical columns and follow links through three separate
files just to end up with a correct relation. Once completed, though, the
script found and extracted 4450 verbs having such relations, each with at
least one (frequently two or more) corresponding nouns. This was a mere
12% of the 36704 verbs in the verb dictionary I used, but it was a start.

Skimming through the compiled list revealed that basically all verbs used
the same kind of suffix rules in becoming nouns. If this list is representative
of the verb class as a whole, an automated stem-suffix expansion method
such as outlined here should be quite functional. I did not have time to
implement this method, though, but instead ended up using the list compiled
from WordNet to demonstrate the validity of the expansion idea.

Lastly, I identified two minor complications that have to be addressed
upon implementation:

• There are some notable exceptions to the stem-suffix rules where a verb
and its corresponding noun do not share a common stem, e.g. “die” vs
“death” and “born” vs “birth”. On the other hand, these two are the
only ones I spotted when skimming the 4450 verbs from the WordNet
list. There are probably others, but if so, they seem so rare that they
will likely have only a minor impact anyway.

• The list generated from WordNet only contains verbs in their infinitive
tenses. This means all verbs will have to be reduced to this form before
looking up the relation. When automatically generating such a list it
might be an idea to either use the stems for lookup or to expand the
verbs with lemmatization. Only the latter case avoids having to modify
the verbs on-the-fly before looking them up.

Lemmatization and synonyms

Lemmatization and synonym expansion are the most common ways to in-
crease recall in a search. Both of these techniques are supported directly in
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Fast ESP and utilizing them is just a matter of interfacing with the right
components. Alternatively, I could use the underlying dictionaries directly.
While lemmatization is generally regarded safe and beneficial, the problem
with synonyms, as always, is precision. But because proper answers are far
more demanding to locate than a chunk of related information, synonym
expansion is also more attractive in a QA context than in an IR one. The
answer verification step (which is non-existing in IR) can be used to ensure
precision. The underlying IR engine should thus focus on maximizing recall
and result ranking.

These expansion techniques are well-known and established and leave
little room for further research. As such they will neither be utilized nor
built upon in my system.

Mining for related terms

Verb/noun correspondence and synonyms are not the only interesting re-
lations that can be discovered between words. Nor is manual effort (e.g.
WordNet [62]) the only way to establishing these relations. Any procedure
that can be automated is highly interesting. Automation is likely to cover
orders of magnitude more words than possible by a team of linguists, at
least within a reasonable time frame. It also paves the way for a general
method that can be used across languages if tailored to the intricacies of
each particular language.

I’ve learned, through experimenting with extractors, that automation is
possible in many regards. For instance, many kinds of word correlation
classes can be mined automatically by identifying some representative that
would frequently co-occur with an instance of the class. For instance, a
person extractor can be used in finding verbs applicable to a person’s actions,
as in e.g. I eat..., she walks... and John said.... Similarly, the same extractor
can also identify verbs representing actions that can be done unto a person,
as in e.g. ...showed me, ...gave her and ...asked John. It doesn’t stop with
verbs, though. To find out what kinds of nouns are edible, for example,
phrases such as ...ate the apple and ...eating the shrimps can be collected. Or
to find out what kind of nouns cause deaths, a quick web search provides e.g.
death by stoning , death by hyperpyremia and even death by chocolate.

Of course, there are likely to be many false candidates caused by e.g. a
metaphor such as She ate the words, or a dubious phrasing such as death
by stereo. Some level of assurance is possible by counting the frequencies
in which these terms occur in the desired relationships. Only candidates
above some set treshold are considered safe. Still, to maintain precision it’s
crucial to at least establish the right POS and sense of a given word. For
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this case of general linguistic processing, both full POS tagging and parsing
could preferably be utilized. As performance is not an issue when building
offline dictionaries, nor recall given the near limitless amount of possible
texts available for scrutiny, the procedure guaranteeing the highest precision
should be used. Still, absolute precision is not crucial when the resulting
dictionaries will merely be used for verification and not for generating any
kind of output.

All of these automatically discoverable relations might be interesting in a
QA context. The more world-knowledge that can be utilized upon question
classification, the better. For instance, the above-mentioned list of edible
things might be useful if the target of the question is something edible. Or
the list of death causes might be applied when responding to a question of
how someone died. Due to time constraints I will not be able to follow this
work further, though.

4.5.3 Translating answer types to scopes

There’s not much use in having a lot of extractors if the answer types iden-
tified in the questions can’t be mapped to these. Unfortunately, questions
will rarely use terms that correspond directly with the supported entities,
e.g. “which person...” for person entities. Rather, this mapping from answer
type to general entity must go through an ontology that knows which terms
apply to which entities. I use dictionaries for this purpose and refer to them
as specifiers, since they specify the entity type.

These specifier dictionaries are organized by entity type, and ideally there
should be one per extractor. The only thorough dictionary I’ve had time to
acquire is the person specifier. It contains 7585 different terms that all apply
to persons. These terms were automatically mined by using a procedure that
will be described shortly. The rest of the specifiers only contain the most
essential terms that were identified manually through question analysis.

Specifiers indicate general types that corresponds with the existing ex-
tractors. Used alone, they are unlikely to produce an answer that is precise.
They don’t have to either, as semantic verification is utilized to further deter-
mine subtype. But verification can be costly if it has to be performed on all
kinds of phrases that might constitute an answer. Specifiers are thus useful
in narrowing down the answer candidates to only the entities that are worth
processing. In this regard, specifiers can be seen as a form of preliminary
verification for supported types.

Even if the subtype can’t be verified, specifiers are still highly valuable
as they will at least assure that the answers are of the correct, general type.
For instance, the answers to a question such as Which president was unmar-
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ried? will at the very least be persons, which is far more accurate than
simply returning all kinds of proper nouns, e.g. companies, product brands
or countries.

Mining for specifiers

The person specifier dictionary was mined by using the person extractor.
Specifically, by extracting common nouns directly preceding person names.
This kind of pattern has the interesting property that the common nouns
define the succeeding proper nouns. E.g. president Clinton, country musician
Willie Nelson and megalomaniac Trevor Goodchild . This property is not ex-
clusive to person, but can be used to identify specifiers for other kinds of
entities as well. For instance, locations like river Nile, volcano Mauna Loa and
city Alexandria.

Specific patterns can also be generated that match phrases which denote
the desired type. For instance, the pattern “in the $cn of $location” will
catch phrases such as in the state of New Jersey , in the suburbs of Chicago
and in the wilds of Connemara. The preposition “in” restricts the common
nouns to words that represent potential locations in one way or the other.

If instead starting out with a small dictionary of manually compiled spec-
ifiers, it can be enhanced automatically by creating a hyponym extractor of
the kind that will be described in section 4.7.3. Basically, by extracting
hypernym/hyponym relations that denote membership to a certain class of
concepts, e.g. rulers such as emperors, musicians, e.g. songwriters and towns
and other locations. This kind of dictionary boosting can, of course, also be
performed on the above-mentioned automated specifiers.

4.5.4 Building scope queries

The final step in query transformation is to build the actual scope queries.
The overall strategy here is to classify the answer type and use this to deter-
mine the appropriate entity to use in the scope search, e.g. person, location
or measurement. This answer type is recognized primarily by using the in-
terrogative word (for implicit types) or a specifier (for explicit types). For
example, the question What date was Dwight D. Eisenhower born? becomes
the query and(”Dwight D. Eisenhower”, or(born, birth), scope(date)).

Precision versus recall

When generating queries the goal is to increase recall by retrieving as many
potential answers as possible. To see why, consider creating queries to in-
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crease precision instead. The most precise answer is, of course, the one that
uses the exact same phrasing and vocabulary as the question. This means
the semantic agreement between question and answer will be maximized, as
in example 4.41.

(4.41) What French ruler was defeated at the battle of Waterloo?
The French ruler Napoleon Bonaparte was defeated at the battle of
Waterloo.

But this answer may not exist in the document collection. An answer
might instead come in the form of example 4.42.

(4.42) What French ruler was defeated at the battle of Waterloo?
At Waterloo in Belgium, Napoleon Bonaparte suffers defeat.

It is thus better to focus on retrieving as many candidates as possible,
and leave the task of figuring out whether these answers are correct to the
answer extraction phase. This rules out using an exact phrase search for
the kind of answer in example 4.41. The query must instead account for
possible syntactic and lexical variations. For instance, by avoiding excessive
phrasing (e.g. ”the battle of Waterloo”), by including the noun forms of the
verb (e.g. defeat) and by not requiring that the answer type (e.g. French
ruler) appears in the sentence. But the query must also stay within the
same frame of semantics. Extensive use of synonyms and lemmatization is
especially dangerous as these subtle variations in meaning and tense can
quickly sidetrack the search. Generating a lot of irrelevant hits will only
increase the processing demands of the answer extraction phase.

Answer type term inclusion

Some consider it natural to include the answer type term in the generated
query, e.g. “color” in the case of What color is a giraffe’s tongue? . There
is no guarantee that an answer will explicitly mention the answer type. For
instance, an answer to the above-mentioned question might well be A giraffe’s
tongue is blue-black. Nowhere does it mention that blue and black are colors.
If an appropriate extractor exists, in this case capturing color entities, it’s
better to require that the answer contains a color entity rather than the word
“color”. The IE component of Fast ESP allows just this. Even if a specific
extractor does not exist, a specifier can map the answer type to a general
extractor. The specific answer type can then be validated through semantic
verification. More on this in section 4.7.
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However, the answer type term is useful when there’s simply no appro-
priate extractor available. If neither the entity type nor the answer term is
included in the query it can easily become much too general, e.g. the ques-
tion What continent is Argentina on? becoming the query Argentina. The top
ranked results may not even contain a continent. Including the answer term
in these cases provides much needed focus to the search. I thus apply the
rule of including the term only if an appropriate extractor does not exist.

Capturing semantics

As mentioned in section 4.4.5, it would be beneficial to use the classifica-
tion patterns for something besides determining answer type and POS. This
“something” comes in the form of writing specific patterns that recognize
the particular semantics in a type of questions. These semantics can be used
both to create a better query and to better verify the answer. Some examples
of specific patterns that can capture semantics will follow.

Questions that use the preterite tense of the auxiliary verb “to do”, i.e.
“did”, use the present tense in the main verb. For instance, “sink” in What
year did the Titanic sink? . An answer is more likely to use the preterite tense
of the main verb, e.g. “sank” in The Titanic sank in 1912 . It’s thus useful
to recognize the tense of the auxiliary verb in patterns and change the tense
of the main verb to the preterite tense in these cases. The following pattern
can accomplish this and produce the desired scope queries:

(4.43) What
What
what

year
continent
$np type

did
did
did

the Titanic
Columbus
$np

sink?
discover?
$vp

and(Titanic, or(sank, sinking), scope(date, type=year))
and(Columbus, or(discovered, discoverer, discovery), scope(location,
type=continent))

Observe that I’ve included a parameter in the scopes (example 4.43), e.g.
“type=year” in scope(date, type=year). This parameter is not presently sup-
ported by scope searches, but I present it as an example of how the semantics
from question classification can be passed on to semantic verification. The
general entity that will be queried upon is a date, but the system is also told
that the specific type is a year. This type parameter is valuable when veri-
fying the answer type. It might also be used in the search if the extractors
were to be expanded with subtypes, as will be discussed in 4.7.2.

When one or more adjectives are used as modifiers to the answer type,
these adjectives are also useful to include as types for later verification. In
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this manner, all facets of the answer type can be provided for verification
(example 4.44):

(4.44) What French ruler was defeated at the battle of Waterloo?
and(battle, Waterloo, or(defeated, defeat), scope(person, type=ruler,
type=French))

Who was the first African American to win the Nobel Prize in literature?
and(”Nobel Prize”, literature, or(won, winner, winning), scope(person,
type=African, type=American))

If an $np prep is used in a “where” question, this phrase functions as
a modifier that narrows down the answer type to a certain scale. In other
words, the NP of the phrase can be considered a supertype attribute of the
scope:

(4.45) Where
where

was
$be

the first golf course
$np

in
$pp

the United States?
$super

Where
where

on
$pp

the body
$super

is
$be

a mortarboard
$np

worn?
$vp

and(”first golf course”, scope(location, super=”United States”))
and(mortarboard, worn, scope(location, super=body))

Note that “super” here (example 4.45) is different from the earlier “type”
parameter. For instance, the location of the golf course should be a part of
the United States, it should not be a United States. Similarly, the bodypart
for the mortarboard should be just that, a part of the body, not a body in
itself. There is an important semantic distinction between these two para-
meters.

This supertype parameter is even more interesting for explicit location
questions:

(4.46) What
what

U.S.
$super

state’s
$location

motto
$np

is
$be

”Live free or Die”?
$np

What
what

New York City
$super

structure
$location

is
$be

also known as
$vp

the Twin Towers?
$np
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and(motto, ”Live free or Die”, scope(location, type=state,
super=”United States”))
and(”Twin Towers”, scope(location, type=structure, super=”New York”)

In these examples (4.46), parameters for both subtype and supertype are
useful. This is because the questions reveal both the specific answer type
and the supertype to which they belong.

For measurement questions specifying unit, the unit warrants its own
parameter:

(4.47) How
how

large
$measure

in
$pp

square miles
$unit

is
$be

North Carolina?
$np

What
what

is
$be

the distance
$measure

in
$pp

miles
$unit

from the earth to the sun?
$np prep+

and(”North Carolina”, scope(measurement, type=size, unit=”square
miles”))
and(earth, sun, scope(measurement, type=distance, unit=miles))

If a certain entity type can be recognized as a modifier to the sentence,
it can be included as a specific scope in the query. This is the case with, for
instance, time modifiers in the time-dependent questions below:

(4.48) Who
who

was
$be

president
$person

in
$pp

1913?
$year

What
what

city
$location

had
$have

a world fair
$np

in
$pp

1900?
$year

and(scope(person, type=president), date(1913))
and(”world fair”, scope(location, type=city), date(1900))

Finally, verbs can also trigger scopes if they can be recognized by an
appropriate dictionary. This can result in quite powerful queries:

(4.49) What
what

do
$do

you
$pron

eat
$vp

at a sushi restaurant?
$np prep

What
what

prince
$np

said
$vp

”to be or not to be”?
$quote
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Who
who

works
$vp

at Microsoft?
$np prep

and(”sushi restaurant”, scope(food))
and(scope(person), quotation(”to be or not to be”))
and(scope(person), scope(jobtitle), scope(Microsoft))

Heuristics

There are some general heuristics that are useful to employ regardless of what
kind of information the question classification revealed. Some of these rules
were witnessed above. I summarize the most important rules I’ve identified
here:

• Explicit phrases are maintained. E.g. the question Who dies in the
”Half Blood Prince”? becomes the query and(or(dies, death), ”Half
Blood Prince”, scope(person)). There is no reason to lower precision
by breaking up phrases.

• NPs are converted to explicit phrases. E.g. Who painted the ceiling of
the Sistine Chapel? becomes and(”Sistine Chapel”, ceiling, or(painted,
painting, painter), scope(location)). This increases the likelihood of the
constituents of an NP being matched correctly, since they won’t be
split up and possibly matched in unrelated contexts. Note that this
phrasing is limited to nouns since no other POS are kept by my NP
patterns. This is the reason the above phrase does not become ”ceiling
of the Sistine Chapel”.

• Adjectives are included in the NP. E.g. How fast is an African swallow?
becomes and(”African swallow”, scope(measurement, type=speed)). By
tying the adjective to the NP, higher precision can be assured when
extensive syntactic relation verification can’t be utilized.

• If there are multiple adjectives, these are included as alternate phrases
with the NP. E.g. How much does the human adult female brain weigh?
becomes and(or(”human brain”, ”adult brain”, ”female brain”), human,
adult, female, scope(measurement, type=weight)). This achieves a com-
promise between recall and precision: One of the phrases is required for
precision, while the rest of the adjectives can occur outside the phrase
to increase recall.
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• Verbs are transformed to nouns, if possible, and used to boost the query.
E.g. Who founded American Red Cross? becomes and(”American Red
Cross”, or(founded, founder, foundation, founding)). This means answers
can be identified even if using the noun form of a word instead of the
verb.

• Any non-alphanumeric characters, white spaces and stopwords are ig-
nored. This does not require any explicit rule during transformation.
Rather, such noise will simply not be captured as part of question
classification.

4.6 Answer extraction

Due to time restrictions, I had to focus my efforts on question classification.
This meant abandoning the effort of designing and implementing a proce-
dure for extracting correct answers. I believe this was the right choice since
question classification is a crucial prerequisite for answer extraction. Though
abandoned, this section contains a brief description of my intended method
for assuring answer correctness.

4.6.1 Processing answers

The steps performed up until this point have all focused on the questions.
These questions have now been extensively classified and the proper answer
types identified. The questions have further been converted to scope queries
and expanded with relevant terms likely to improve retrieval. From now on,
the rest of the steps focus on the answers:

1. Passages of information relevant to the query must be retrieved for
inspection. This is the task of the underlying search engine, and will
not be discussed further beyond my general presentation in section 2.3.

2. Potential answer candidates must be extracted from these passages.
This means answers of the right, general type as identified in question
classification. This step is basically also handled by the underlying
engine, since it already knows which entities are present in the returned
passages.

3. Finally, the answer candidates must be verified as belonging to the
right, specific type. They must also occur in valid relations with the
search terms within the retrieved texts. In other words, answer types
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must be verified semantically, and answer relations syntactically. Both
types of verification rely on the information gathered from question
classification.

Since my queries are tailored to maximize recall, the task of maintain-
ing precision falls to verification. Both syntactic relation and semantic type
warrant their own verification step. Unfortunately, I did not have time to
properly explore relations. Semantic type assurance will, however, be dis-
cussed shortly in section 4.7.

4.6.2 Handling unsupported entities

The ability to extract entities at index time is crucial for answer accuracy.
Without indexed entities, answer mining would have to resort to some form
of generic noun phrase (NP) extraction. This kind of NP “entity” can’t be
reasonably indexed as there are simply too many NPs in any given text.
Basically, almost every sentence contains an NP. Most of these are hardly
useful and would merely clutter the index. This means answer extraction,
without entity indexing, would have to be performed in full when processing
the results. This, of course, is a lot more costly than doing a major share of
the work at indexing time. Also, the more processing performed, the longer
the users have to wait for their answers. For this same reason, index-time
entity extractors can afford to be painstakingly thorough, while query-time
extractors can not. When combined with an extensive semantic lexicon that
has been prebuilt offline, this thoroughness translates to both higher accuracy
and quicker response. Consequently, the foundation upon which my QA
solution is built has a solid advantage compared to traditional pattern-based
QA systems.

However, this indexing advantage only applies to supported entity types.
If a question asks about an entity type that is not indexed, this type obviously
can’t be looked up in the index. This means unsupported entities have to
be indentified and extracted from the answer passages. But this does not
necessarily imply generic NP extraction. Rather, the semantic lexicon can
be used as a guideline for extraction. Since only entities contained in the
lexicon can be verified, these known instances of a given type can simply be
pattern matched against the answer passages. If no match is found, then
there is no verifiable entity in the candidate answer anyway. Of course, this
rules out potentially correct candidates that are not contained in the lexicon.
Still, it’s an option that provides both speed and precision. For better recall,
though, my solution likely needs a fast, generic NP extractor that can be run
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under result processing. My NP heuristics from the hyponym extractor can
be modified for this purpose.

4.6.3 Returning multiple answers

In contrast with TREC, which has traditionally required single and exact
answers, I aim for returning multiple answers with additional supporting
context. Basically, my system is designed to treat every question as a list
question. This, in my opinion, is a benefit, not a limitation. It allows users to
view multiple aspects of a topic and choose interesting answers intelligently,
rather than having some algorithm trying to guess for them. The hard part
of finding answers is collecting sensible candidates. As I’ve just described,
the system can easily handle this task. Surveying a list of candidates after
retrieval does not detract from usability but rather has the potential to en-
hance it. If the topmost answer is not correct, one of the following ones may
be. Lists give users the chance to recognize those answers and even verify
their credibility by their contexts. There is a reason ranked results is the
established presentation paradigm of search engines.

As I’ve explained before, though, QA systems work with answers, not
just information. Returning passages of text is thus not precise enough,
even if the answer entities are highlighted in the passages. Rather, answers
need to be exact; i.e. on the entity level, not on the passage level. These two
properties are not mutually exclusive, though. Exact answer can be returned
with contextual information without cluttering up the results. Fast ESP has
built-in functionality in the user interface for this exact kind of purpose;
navigators. In light of my system, a navigator can basically be thought of as
a list of answer entities. When a user picks one of the entities, the full answers
will be presented in a ranked list with the entity instances highlighted. This
kind of navigation is called drilling down and provides a clean, hierarchical
way to access the result set.

The entities in a navigator represent an aggregation over all the matches.
They are ranked by probability of being correct. This probability has to be
computed somehow, though. There are two factors involved in this proba-
bility; answer verification and frequency of occurrence. If only dealing with
verified answers (i.e. verified semantic type and syntactic relation), answers
won’t make it to this list unless having been verified. This leaves ranking up
to the frequency measure. If, however, unverified answers are also accepted,
the list will contain a mix of verified and unverified answers. The verified
ones should thus be boosted using some weight to move them higher up in
the list. But this weight should be balanced against the frequency count,
since an unverified entity that is mentioned often should be considered a
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potentially correct answer. The fact that it can’t be verified does not mean
that it is not correct, merely that it is not supported in the semantic lexicon.

The frequency measure requires some explanation. It is based on the
following hypothesis.

4.6.4 Trusting redundancy

Shallow parsing often relies on redundancy as a rough form of verification.
The underlying hypothesis is that if enough sources state the same belief it
can be regarded as truth by virtue of consensus. In other words, potential
answers are ranked based on their frequency of occurrence, or “popularity”
in the source material. To carry any weight, this hypothesis necessarily
requires a large amount of distinct sources. If not, the source repeating itself
the most would simply always end up with the winning view. It must be
noted, however, that even though many implemented systems rely on this
hypothesis for verification, I’ve yet to locate any satisfying scientific evidence
backing it up.

Still, in my case, the hypothesis is fairly intuitive because the retrieval
process has made sure all of the potential answer entities appear in a fairly
reliable context. Of course, this property is by no means certain. This is the
reason for the verification process in the first place. But frequency can, in
fact, be useful in directing this verification attempt.

The users can’t be expected to suffer long delays while the results are
being processed. If there are lots of answer candidates all of them can’t be
verified thoroughly. In other words, it is crucial to pick the most likely can-
didates for this treatment. The frequency count of entity instances provides
a nice guideline as to which entities are worth processing further.

4.7 Semantic verification

Verification of semantics has been mentioned frequently throughout this the-
sis. It’s now time to explain how I intended this to work. I will first present
my general take on semantics before I go on to detail my semantic lexicon.

Consider the question What continent is Argentina on? . There is no guar-
antee that an actual answer will contain the word “continent”. An answer
might instead be phrased as e.g. Argentina, the second largest country in
South America. It would be wasteful to miss such a perfectly good answer
just because the answer type is not mentioned explicitly. QA systems that
rely on immense amounts of material (e.g. the web) do exactly this. That is,
they throw away many such opportunities in the quest for the perfect answer
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(see section 3.3.5). But smaller-scale or specialized QA systems can’t afford
to be that picky, especially not when trying to establish trustworthiness by
collecting and comparing answers.

This need for explicitness is one of the major shackles of current search
engine technology. If the answer isn’t stated explicitly (i.e. resembling the
question in syntax and vocabulary) it simply won’t be located. It will then
be up to the user to piece together the answer. This explicitness is enforced
by a deficiency in semantics. Specifically, a search for answer terms rather
than answer types can be viewed as an attempt to compensate for a lack of
semantic knowledge. A true semantic search would be able to locate actual
instances of the answer type (e.g. continents) rather than just the terms de-
scribing the answer type itself. This kind of search is, in fact, within reach.
Entity indexing, such as performed by Fast ESP, provides the necessary foun-
dations. The biggest obstacle on the road to main-stream deployment is the
level of detail. Or rather, the lack thereof.

The current entity extractors are simply too general, and hence too im-
precise. For instance, they do know about continents, in a sense, but only
because these are locations. They don’t know which locations are continents
or, hence, whether a location is a continent or not. Since all locations are
treated equally, the system naturally won’t be able to differentiate between
them. An exact search for a continent is thus impossible. This generalization
is intended to maximize recall, and accomplishes just that. For result navi-
gation it is more than adequate. But for QA purposes the precision is just
too low. An open-domain QA system won’t be very useful unless it covers
a large variety of answer types. Lack of variety will mean a lack of ability
to answer a lot of different questions. To be truly useful for QA, the level of
detail in a semantic search must thus be increased. This is where semantic
verification enters the picture.

4.7.1 Approaches

Semantic verification can either be regarded as implicit during entity extrac-
tion (i.e. when indexing) or explicit during result processing. The former
case means running a search for the exact type of entity that the question
targets, e.g. a continent. In the latter case, a general search for a location
is ran instead. The extracted locations are then verified against known con-
tinents (e.g. by using a semantic lexicon) when the results are processed.
These two approaches have different challenges that must be overcome:

• Increasing semantic precision in entities requires indexing entities with
much more detail than at present. For instance, in a search for What
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Canadian city has the largest population? it is not sufficient to look up a
location in the index, but it also has to be a city, and a Canadian one at
that. In short, the extracted entities must be denoted with subtypes as
well as a general type. When consulting the index it must be possible
to query for a type on all of these levels. This puts a lot of requirements
on the design of the entity extractors.

• Semantic result processing moves the problem from the extractors to
the semantic lexicon. The same search for a city will now be a search
for general locations instead. The correct level of detail must then be
verified by comparing the extracted locations against known instances
in the lexicon. If a location can be determined to be both a city and
Canadian (not necessarily both at once) the semantic type of the an-
swer is correct. This solution, of course, requires access to a thorough
semantic lexicon. Such a lexicon may not be available.

Each of these two approaches has its advantages and disadvantages. Both
will now be discussed in more detail.

4.7.2 Semantic entities

If relying exclusively on the extractors for semantics, the level of detail of the
extractors roughly equals the semantic precision of the system. One way to
increase precision in such an environment is to divide the existing extractors
into new, more specific ones. Another is to simply add more extractors.
Basically, for each entity type that is desirable to support, an appropriate
extractor must be written that locates instances of that particular type. As
a possible guideline, Sekine et al. [39] have identified roughly 150 common
entity types that occur frequently in general text material. To reach proper
coverage, a general-purpose QA system should aim to support a number of
extractors on this scale. Of course, that is a lot of extractors. Building
them all will require significant effort, especially if writing all the heuristics
manually.

But let’s say, for now, that this effort is expended and the result is 150
separate extractors. Initially, these might be implemented on the same level
as this is easiest to accomplish. This means there is no longer a location
extractor. Instead, there are separate extractors for cities, countries, rivers,
mountains, continents and so on. This kind of separation applies to all the
other entity types as well, resulting in a large multitude of separate extrac-
tors. Such a large mass of extractors is likely to be unwieldy and confusing.
A search for a general location, for instance, can no longer be performed
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without searching for all the separate subtypes that together constitute a
location. Clearly, having high precision extractors is not enough. For practi-
cal reasons the system needs to be able to handle entities on both a general
and a specific scale. This suggests that the extractors should be organized
as a hierarchy. In fact, the entities presented by Sekine et al. are already
structured in this manner, and this hierarchy could serve as a guideline.

Hierarchical entities

One way to implement a hierarchy is to abandon the linear extractor ap-
proach and instead create hierarchical extractors. This means that the ex-
tractors will be kept as general as possible but that each such extractor
divides its rules and dictionaries by subtype. To use the location extractor
as an example again, there will now be separate dictionaries (with corre-
sponding rules) for cities, countries, rivers, mountains, continents and so on.
When running the extractor, all matches will be returned as locations, but
they will also be marked with subtype based on which subset of rules that
triggered the match. E.g. a city will be marked both as a city and as a
location and can be queried upon as both.

The major benefit is that the heuristics of a general type is shared amongst
all the subtypes, since they’re essentially the same extractor. In other words,
there’s no redundant matching since the rules don’t have to be duplicated
across the extractors. To be usable from a scope search though, there will
also have to be a corresponding subdivision of types in the index. But since
each extractor specifies how its entities will appear in the index, the hierar-
chy can simply be mirrored in the index. The problem is that the framework
doesn’t allow an extractor to return more than one entity type, nor does the
index support hierarchical types. The solution thus requires some restruc-
turing and rewriting. Also, the solution is not very flexible with regard to
subtype division. For instance, a university is a facility, but is it not also an
institution and a location?

Hierarchical configuration

A more flexible solution is to separate the hierarchy from the extractors.
This means reverting back to a linear organization of extractors again. The
hierarchy still has to be specified somewhere, but this can be accomplished
in a separate configuration file. It’s important to realize here that the system
doesn’t use the extractors directly. That is, it doesn’t know about the internal
workings of the extractors. Rather, the extractors are presented to the system
through a common configuration file; the pipeline. Here, each extractor is
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made addressable as a separate unit. This linear organization can instead be
restructured to become hierarchical. In other words, all entities of the same
general type can be configured together under a common supertype to make
them addressable as a single unit. A city extractor, for instance, would then
only match cities, but since a city is a subtype of location in the pipeline,
the match will also be marked as a location.

This organization essentially moves the complexity from the extractors to
the configuration. The benefit is that changing or adding a subtype is now
only a matter of modifying a configuration line. A university extractor, for
instance, can now belong to both the facility type, the institution type and
the location type. When a school is matched it will be marked as belonging
to all these types. This allows a much higher degree of flexibility in how
the subtypes can be utilized. Also, there’s basically no limit to how many
supertypes a subtype can belong to. Of course, some rewriting is still required
to support a hierarchy both in the pipeline and in the index. And there’s
bound to be redundant matching again, since many extractors of the same
subtype have to run the same general rules.

The problem with entity semantics

Not every concept is suited to be organized in a strict hierarchy. This was
exemplified with the university extractor which could fit under several types.
Duplicating entries in the configuration hierarchy works to some degree, but
it can get quite messy. Sekine’s hierarchy suffers from classic problems of
classification. Should a planet really be considered a subtype of location? Is
a phone number an address? Is an address a location, and hence a phone
number a location? Is a vehicle a product? If so, isn’t a monument also a
product rather than a facility?

So far, only nouns have been discussed for semantics. It gets a lot worse if
also considering adjectives. Take for instance a question about a Norwegian
city. Clearly, there can’t be an extractor (linear or hierarchical) for this kind
of entity as it would mean every country would need it’s own city extractor.
The concept of Norwegian cities should not be a subtype of cities, but rather
a facet of cities. That is, it does not belong in a hierarchical relationship
with cities but rather as an aspect that some cities share and other don’t.
Similarly, political organizations could be regarded a facet of organizations,
and French rulers a facet of rulers. Adjectives, in general, translate well to
the facet concept. The type parameters to the scopes in section 4.5.4 can
be regarded as facets since they describe aspects of the scope. The question
is how to implement these facets. They clearly don’t belong in a hierarchy,
but should rather be attributes to the entities. I believe a semantic lexicon
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is the proper placement, as the very purpose of such a lexicon is to describe
the semantic aspects of each entry. This will be discussed shortly in section
4.7.3.

To summarize, there’s quite a bit of work involved if this approach is
to be followed. A lot of extractors have to be written and they must be
organized hierarchically to be addressable in a practical manner. Even if all
of this work is completed the extractors still only represent a small part of all
concepts a user may possibly ask about. This leads to the fact that it’s not
practically viable to use extractors exclusively for semantic precision. There
are simply too many semantic classes imaginable. Ultimately, every concept
thinkable can be regarded a separate class, and may or may not be queried
upon at some time. Implementing all these extractors is clearly not viable.

4.7.3 Semantic lexicons

My solution is to keep the extractors as general as possible, thus maximizing
recall, while leaving precision to the semantic lexicon. Some extractors may,
of course, be practical to divide into separate types. Sekine’s entity hierarchy
can again serve as a guideline. Note, for instance, that location is a hierarchy
while person is not. This is because locations have distinct subtypes, like
country and city, while dynamic person roles, like president and developer,
are better suited as facets.

Keeping the extractors general and supplementing with a semantic lexicon
means adequate coverage can be assured without using a lot of extractors.
New extractors can then be written as needed while the rest of the entities
are verified against the lexicon. Since specifiers indicate general entity, low
precision can be accepted beyond that. There’s no need to support every
specific entity directly.

The data structure of the lexicon is a plain text file, but it can be orga-
nized in several ways depending on what purpose it is to be used for. Since I
will use it primarily for verification, it is organized by entity instance. That
is, each line in the file starts with a specific entity followed by a comma
separated list of every semantic class this entity belongs to. For instance,
Napoleon is followed by important figures, great French soldiers, major histori-
cal figures, effective military leaders, famous men, .... The reverse organization
is useful if instead needing to find all instances of a given class, e.g. historical
figures followed by Napoleon, Nebuchadnezzar, Nero, Newton, ....

A lexicon is a rather poor substitute for a dedicated extractor, though. An
extractor can use quite sophisticated heuristics and contextual clues tailored
to each specific entity type. The lexicon, on the other hand, is built using
only a small set of common patterns that describe certain syntactic relations.



4.7. SEMANTIC VERIFICATION 179

These will miss all entities that do not occur in one of these relations. There
are more advanced ways to build lexicons, though. These use some form of
clustering or latent semantics and will likely recognize far more relations, but
I’ve not had the time to explore these options thoroughly.

The biggest disadvantage of using a semantic lexicon is that the entities
contained within can’t be looked up in the index. In other words, they can’t
be used to restrict the scope search. Instead, a pure keyword search has to be
ran and general noun phrases have to be matched and verified during result
processing. Also, the lexicon is not applicable to entity types that can’t be
verified by a distinct lookup, such as combinations of digits and symbols.

Once built, the lexicon can be organized by entity type. It can then be
seen as a replacement for the dictionary part of an extractor. That is, it can
be used to identify already known instances of entities in a text by dictionary
lookups. This can be performed both at result processing time, i.e. to find
known valid matches in a certain passage of text, and at indexing time, i.e.
to scan the whole text for these matches and index them. In the latter case,
the lexicon would have to be quality-assured manually and interesting entity
types hand-picked to avoid indexing every kind of strange relation that might
appear.

The procedure I used to build the semantic lexicon will now be described.

Building a semantic lexicon

A method based on accurate lexico-syntactic patterns, such as devised by
Hearst (section 3.6.2), is ideal for combining with the huge amounts of infor-
mation processable by a modern IR engine like Fast ESP. As these kinds of
patterns are limited by recall, not precision, they benefit from all the data
they can get.

Such patterns are all based on recognizing certain combinations of noun
phrases with common, but fairly safe, terms indicative of relations between
hyponyms and hypernyms. The problem, in this case, is how to accurately
determine a noun phrase since I’m neither using a POS tagger nor a syntactic
parser. I wanted to explore what is possible to achieve with powerful pattern
matching alone. Without any POS tagging I had to resort to contextual
information to try to determine the boundaries of a noun phrase.

I thus, once again, used the procedure I’d conceived for constructing
efficient patterns (section 4.3.2) to analyze what constituted a noun phrase.
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Noun phrase extraction

Traditional NP detection methods use some variant of POS tagging. While
this achieves high accuracy, it might be considered overkill for the sole pur-
pose of detecting NPs. After all, what is the purpose of classifying every
word in a sentence when only the nouns are needed? As long as NP detec-
tion is maximized it doesn’t matter whether the other POSes are identified
correctly or not.

A method based on dictionaries and regular expressions is bound to be
much faster (and far simpler to implement) than a full POS tagger. The
Matcher framework (section 4.3.1) of Fast ESP is ideal for this task. Through
my classification patterns, I’ve already demonstrated how NPs can be recog-
nized primarily by using dictionaries given proper context.

In this case, the context is provided by the syntactic patterns that consti-
tute a valid relation. I won’t be extracting NPs from random parts of a text
but only from those syntactic positions where NPs are likely to occur. In
other words, I don’t need a separate NP extractor when building the lexicon,
because NPs can be identified directly through the hyponym extractor.

It’s also useful to realize that only NPs identified in this manner are
interesting anyway. These are the only ones which have semantic support
and can thus be verified. This means that since the semantic lexicon is built
from a given corpus in advance, it already contains all the semantic classes
that can be verified. Instead of extracting general NPs from a potential
answer and verifying it against the lexicon, one might just as well reverse
the process and match known instances from the lexicon against the answer.
This alleviates the need for general NP extraction in the result processing
step also, and integrates it into the verification step. Of course, this kind
of matching requires a lexicon organized by semantic class (i.e. “these are
emperors”) rather than instances (e.g. “Napoleon is an emperor”), since
every known instance of a class will have to be matched against the answer.

Hyponym extraction

For the purposes of building my semantic lexicon, I created a combined hy-
ponym and hypernym extractor based on Hearst’s patterns. I unified her 6
patterns into 4 and added a few variations of my own. These 4 patterns are:

1. $hypernym such as $hyponyms. E.g. the bow lute, such as the Bambara
ndang . The trigger is “such as”.

2. such $hypernym as $hyponyms. E.g. such authors as Herrick, Goldsmith
and Shakespeare. Again, the trigger is “such as”, but the phrase is
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interjected by the hypernym.

3. $hypernym $sub phrase $hyponyms. E.g. all common-law countries,
including Canada and England and most European countries, especially
France, England and Spain. Hearst used separate patterns for these two
examples, one triggered by “including” and the other by “especially”.
But since the syntax is the same, and they only differ in the word
that indicates the sub phrase, I unified them into one. I also added a
few triggers of my own, namely “most? notably” and “particularly”,
because I observed frequent occurrencies of these terms when testing
the extractor. I did not have time to evaluate how these additional
triggers influence precision and recall values compared to the others
though.

4. $hyponyms (and|or) other $hypernym. E.g. wounds, broken bones or
other injuries and temples, treasuries, and other important civic buildings.
Again, these were originally separate patterns, triggered by “and other”
and “or other” respectively. For runtime efficiency I saw no reason to
keep them separate.

Note that there’s an important difference between mining for general
classes (e.g. an emperor is a ruler) and specific instances (e.g. Napoleon is
an emperor). The difference can often be recognized by whether the head
noun is proper or common, e.g. capitalized or not. When building my lexicon
I was interested in both cases and treated these as equal.

For this extraction to work I needed to recognize many different items in
the text, including NPs and other POS classes (to find the syntactic bound-
aries of the NPs). I therefore built an auxiliary extractor to contain various
common and useful multi-purpose patterns. This auxiliary file was also used
extensively in the question classification extractors.

The main aim of the hyponym extractor is to find NPs that appear in
the relations indicated by the patterns above. Recognizing an NP properly
without POS tagging is a challenge since many words have multiple senses.
Consider the sentence Marsupials such as kangaroos carry their offspring in a
pouch. Here, the hypernym is “marsupials” and the hyponym “kangaroos”.
However, the word “carry” can also be a noun, namely “a carry” which refers
to the means by which something is carried. An indiscriminate pattern would
thus capture “kangaroos carry” as the NP rather than just “kangaroos”. This
behavior can be avoided by, e.g. recognizing that the possessive pronoun
“their” can’t follow a noun. This won’t help in the case of Marsupials such
as kangaroos carry offspring in a pouch, though. Here, the NP is in danger of



182 CHAPTER 4. IMPLEMENTATION OF A QA PROTOTYPE

becoming “kangaroos carry offspring”, since all the words are nouns. This is
only one of many traps that must be avoided for proper extraction.

The same kind of problem surfaces when matching adjectives. For in-
stance, in Microsoft purchased sites it’s not easy to know whether “purchased”
is an adjective or a verb. In a strict grammatical sense the adjective should
be specified as “Microsoft-purchased”, but people are rarely strictly gram-
matical.

It’s also difficult knowing how much of an NP should be matched. Con-
sider the sentence searchable databases for the internal pages of large sites that
are dynamically created, such as the knowledge base on the Microsoft site. The
hypernym doesn’t have to contain all the words in front of the comma to be
useful, it’s enough with “searchable databases”. On the other hand, if follow-
ing the same rule on the hyponym, the resulting relation becomes searchable
databases, such as the knowledge base. Knowing that a knowledge base is
a searchable database is certainly useful, but it might be even more useful
knowing that this applies to the base on the Microsoft site. It depends on
whether mining for general relations or specific instances. Also, capturing
the first part of a hypernym NP is detrimental in the case of the most re-
cent generation of search engines such as Google. Here, the interesting NP
is “search engines” not “the most recent generation”. If following this rule
for the first example, the hypernym would become “large sites” rather than
“knowledge base”.

Further, conjunctions and comma-separated lists are challenging, since
conjunction (or comma) can indicate both the next element in the list or a
new sub phrase entirely. Take for instance large data producers such as the U.S.
Census Bureau, Securities and Exchange Commission, and Patent and Trademark
Office. Here, “Securities” is not a separate element from “Exchange”, nor
is “Patent” from “Trademark”. They must be recognized as parts of their
respective NPs. Another example is languages such as French and cities such
as Toulouse. Here, “French” is separate from “cities”. In fact, the latter is
a hypernym of a new relation. This situation can be avoided by disallowing
the last potential hyponym if it’s followed by a word that indicates a new
relation. Also, it might be useful recognizing proper noun hyponyms and
common noun ones separately.

Finally, the extractor is bound to capture many useless relations such as
this example: useless relations such as this example. The hypernym becomes
“useless relations” and the hyponym “this example”. Even if knowing what
“this” referred to, it’s not very valuable. Another example is elements on the
page, such as lists. A list can certainly be described as an element, but so
can most other things.
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I’ve now mentioned a few of the problems I had to deal with when building
the hyponym extractor. Some of these issues were handled satisfactorily
while others were not. No matter how much work is put into fine-tuning
the heuristics, an automatically created lexicon will never be as solid as a
manually compiled one. In the end, though, it doesn’t really matter. Most
of this noise will likely not be used anyway. It doesn’t matter how strange
or erroneous some of the relations are as long as no one asks about them.
When building the lexicon, it’s thus better to maximize useful relations than
to minimize useless ones.

Areas of use

Both the hyponym extractor and the resulting semantic lexicon are useful
for many purposes:

• When the general answer type is supported by an extractor, but not the
specific type, candidate entities in the results can be verified against
the lexicon to also assert the specific type.

• When the general answer type is unsupported, candidate entities must
be extracted from the results. The lexicon can then be used to verify
general NPs believed to be answers. Or better yet, to help locate
general NPs of the right type.

• The lexicon can be consulted both for answering instance-specific ques-
tions (e.g. Which emperor lost at Waterloo? yielding Napoleon) and
concept-specific questions (e.g. Who is Napoleon? yielding important
military leader). Noise is far more problematic for the latter case, since
it entails presenting this information to the user rather than merely
using it for verification. Each instance should thus be marked with a
frequency count to indicate reliability. That is, the more often a specific
hypernym/hyponym relation occurs, the more reliable it is.

• The lexicon could be used to expand queries instead of just to verify
answers. This requires better quality assurance. Each hyponym could
be included in a boolean “OR” separated list as candidates for the
hypernym.

• The relationships that the hyponym extractor discovers are also useful
for expanding the dictionaries of existing extractors, e.g. by adding
extracted authors. Further, interesting relations could even provide
the foundation for creating an entirely new extractor. For instance, if
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the hypernym “toxic substances” turns out to have many associated
hyponyms.

• The extractor can likewise be used to populate specifier dictionaries.
For instance by discovering various terms that are used to describe lo-
cations. The relations between connected terms will eventually become
a hierarchy, e.g. a king is a ruler, an emperor is a ruler, a ruler is a
person, which means both a king and an emperor are persons. By fol-
lowing the links in such a hierarchy, related terms can be mined from
the lexicon.

Due to the limited quality of the automatically generated lexicon, it
should not be used to discard unverified entities but rather to boost veri-
fied ones. That is, if an entity can’t be confirmed to belong to a subtype
through the lexicon, that does not mean that the entity is not an instance of
that subtype. It merely means the lexicon doesn’t contain such a relation.
The entity might still be a good answer. But if the entity can in fact be con-
firmed against the lexicon it should be boosted so that it ranks above all the
entities that could not be confirmed in the resulting list of answer entities.
After all, if an entity belongs to the correct general type (e.g. a person) the
exact subtype may not be critical.

Extractor code

The hyponym extractor configuration file is included in appendix A.4. Like
with the person classifier, most of the work is handled by the auxiliary pat-
terns in appendix A.5. The reference file used for testing the extractor is
too big to be included. For an example, refer instead to the time extractor
reference file in appendix A.2.

After testing the hyponym extractor on several smaller texts, I felt con-
fident enough to try it out on a larger scale. I ran it on a local crawl of
Wikipedia, which resulted in 101576 hyponyms, each with at least one hy-
pernym. As an example of output, I’ve included some random chunks from
the lexicon in appendix A.6. The output is organized by hyponym.

4.7.4 Unit-of-measurement verification

The lexicon I’ve built can be used to verify known entity instances but is not
applicable on measurements. E.g. “Napoleon” can easily be looked up as an
emperor, but “165.83 kg” can’t be verified against the lexicon as a kilogram
measure. In the latter case, however, only the unit of measure (“kg”) is
interesting to verify, as the number itself is valid simply by being a number.
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Verifying the right measure is not particularly difficult. Since there is
currently only one measurement extractor (i.e. not separate extractors for
e.g. weight and length), it must be run for every measurement question.
Answer verification then means accepting only measurements with the right
unit. If the specific unit (e.g. kilograms) is given in the question, it simply
means checking against all versions of this unit (i.e. “kilograms” and “kg”).
These versions can be retrieved from a corresponding hash-type dictionary
organized by unit. E.g. where the key “kilograms” contains the values “kilo-
grams” and “kg”. It’s also possible to accept other appropriate measures and
convert these to the given unit, as described in section 4.4.3 on measurement
patterns. If the question instead asks for a general measure (e.g. weight),
it’s again a matter of checking the unit against values corresponding with the
key “weight”. This same approach is not only applicable to measurements,
but can also be used on currencies, quantities and frequencies.

4.8 Future enhancements

There were many areas and techniques I would have liked to explore further.
This section will present the most important ones:

• Answer extraction. This is the main feature I had hoped to utilize
properly. Particularly relation verification. This would have allowed
me to test and verify my assumptions regarding answer correctness and
present the results properly formatted. I briefly tested my assumptions
manually on a handful of texts and the results showed promise. There
are lots of answers showing the same kind of relational patterns as
presented in example 4.1 in section 4.2.1.

• Fall-back patterns. My question classification patterns should have a
general fall-back step to handle unsupported syntax. This would also
allow short-hand questions like what famous monument in new york or
even famous monument new york. These can be mapped to appropriate
extractors without requiring the users to supply every stopword in be-
tween. Of course, these “questions” will not be as precise, and are likely
to result in multiple interpretations. But my suggestion for a ranked
list of entity types can nevertheless be used to cleanly present all the
resulting entities for each of the possible interpretations of a particu-
lar sequence. Since they are interpreted as contracted questions, more
meaning can be induced that simply treating them as keyword queries.

• Semantic lexicon expansion. My lexicon could be enhanced further by
adding CN/PN (common noun/proper noun) patterns to the hyponym
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extractor. These patterns extract the common noun in front of a proper
noun. E.g. a “president Clinton” statement defines Clinton as a pres-
ident. Fleischman [16] notes that CN/PN patterns occur roughly 40
times more often than the Hearst patterns, and could thus provide a
solid boost to recall. Further, semantics can be mined from questions
too. For instance, a question often reveals the entity type of its nouns.
E.g. “Who is Galileo” reveals that Galileo is a person. Retrieving lists
of questions (e.g. FAQs) and mining these using reliable patterns could
yield many valuable relations. This approach can be used to enhance
the lexicon with specific topics by selective mining question collections.

• Anaphora resolution. It would be most beneficial to recognize a valid
answer across multiple sentences. This requires resolving the pronoun
back-references. For instance, an answer to When was John Lennon
born? could thus recognize that “he” in He was born in 1940 means
“Lennon” and not “Cartney” in the previous sentence Lennon was a
friend of Cartney . This functionality is also useful for questions. For in-
stance, Who said that on the show? can’t be answered without knowing
what “that” and “the show” refers to.

• Deep NLP methods. A future Fast ESP release will be integrated with
a complete linguistic processing framework. It will then be possible
to work directly with grammars rather than patterns. It’s also possi-
ble to address specific attributes of words and capture precise syntax.
This framework provides the foundation for quite sophisticated NLP
approaches to QA. A corresponding solution would be most interest-
ing to compare against my pattern approach. Without this framework,
though, similar processing requires separate steps that have to be tied
together through some custom controlling module. It’s thus better to
wait until the framework is live.

• POS tagging. I would have liked to compare the POS tagging ability
of my question classification patterns with an approach based on full
POS tagging. Fast ESP provides a good Viterbi tagger and variants
of Brill’s tagger are freely available. These have to be trained on a
massive amount of appropriate tagged text though.

• General questions. The system should be able to respond to general
questions. That is, provide a compiled summary of the most relevant
facts given a topic. Since users tend to ask general questions when
they don’t know exactly what they are looking for, this could hopefully
provide all the information they need in one chunk.
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• Additional information. Entity indexing allows providing additional
information to answer “other” questions, as I suggested in 4.2.5. That
is, the system could be enhanced to infer additional questions from the
one given and return a coherent answer with all the related information
tied together.

I had also hoped to get more of the implementation ready. Even though
my system is not complete I believe that my prototype can serve as a solid
basis for future work:

• The necessary requirements for a complete QA system have been re-
searched and presented. There is no need to go through this work
again. Rather, the more of these requirements are fulfilled and imple-
mented, the closer the system will get to completion. A major part of
the system is ready for implementation and experimentation.

• A solid analysis of question classification has been presented with corre-
sponding patterns. These can already cover a wide variety of questions
and can easily be expanded further with the included pattern syntax.
Especially since I’ve detailed the procedure I followed when analyzing
questions and have presented thorough examples.

• I’ve explained how answers can be verified satisfyingly and outlined
the process. This step requires research before implementation, but
can utilize my hyponym extractor to build appropriate lexicons. The
question patterns can also be enhanced to capture more semantics, as
demonstrated.

• More entity extractors of all kinds can be written using the procedure
I devised. My examples serve as a guideline to the thought process
required to build them successfully. Every additional extractor will
increase the answering ability of the system.
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Chapter 5

Conclusion

Achievements. I have created a Question Answering prototype as a layer
on top of a state-of-the-art, contextual search engine. This fusion produces
a system that is able to accept questions in natural language and translate
them to queries optimized for the engine. Through the presentation of my
solution, I have shown how to create a few simple, unified patterns that are
able to recognize a wide variety of questions. I have also shown how to write
patterns that capture specific semantics. This information can be utilized
to better attune the queries to the engine and to find answers more reliably.
Further, I’ve demonstrated how answers can be verified both syntactically
and semantically. Specifically, I’ve shown how to build a semantic lexicon
useful for this purpose. The same method can be used to mine semantic
links between the entity types of the question and the answers. By using the
results from this procedure, answers can be verified to correspond with both
a general type of entity and with specific facets indicative of any particular
subtype. Answers can thus be ranked according to semantic confidence.

Limitations. My solution is based on manually created heuristics. It
would have been interesting to compare the performance of these rules with
probabilistic, statistical or machine-learning methods. In general, rule-based
methods seem to be adequate for simple tasks. They even have the poten-
tial to outperform automated ones, e.g. in the case of compiling semantic
lexicons. Automated methods, however, seem more appropriate for cases of
unpredictable data or overwhelming complexity. Even though I would not
have had the time to implement multiple solutions, I could have compared
my system against the contenders in the TREC conference.

Unfortunately, I did not have the time to implement all the steps neces-
sary for a complete QA process. There are several reasons for this:

189
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• It took long to focus my work and determine where the effort should
be spent. I did not achieve an equal balance between writing and
implementing. Nor did I recognize soon enough the extent of work
required for the implementation to function.

• I spent much time on researching and comparing the necessary founda-
tions for a complete system rather than picking a specific approach and
starting to implement. In the end, I had to concentrate all my efforts
on interpreting questions and abandoned answers.

• There were several technical problems that had to be resolved in order
to get the system to run as intended. Some of these required fixing
issues with the Fast ESP search platform that I did not have control
over. This is a disadvantage of basing a solution on an external resource.
I did not prioritize creating work-arounds to get the system to run.

Shortly put, I was not able to realize a complete solution, nor did I expect
to be able to. As I explained in my design goals (section 4.1.1), I focused on
research and design, not on implementation details. Consequently, I can’t
properly verify my assumptions nor produce tangible results as evidence of
the legitimacy of my approach. Still, I feel that I’ve presented my solution
clearly and argued my points logically. I’ve also shown support for my views
through references to other works.

To create a test bed for answer extraction, I indexed a local crawl of
Wikipedia. Sadly, I did not get to utilize it for that purpose. It did, nev-
ertheless, prove useful as a basis for extracting hyponyms for the semantic
lexicon. While I can not present results in the form of answers, I do present
an excerpt from this lexicon to show what kind of semantic knowledge it is
able to recognize (appendix A.6).

Discoveries. I’ve learnt that factoid answering isn’t too difficult to imple-
ment. Once implemented, it provides a solid foundation for answering harder
questions. Further, since the number of different question types is limited,
these can be successfully categorized. Fairly simple patterns can then be con-
structed to classify questions and locate answers given an adequate amount
of text material.

Though my question classification focus has been on the TREC ques-
tions, I recognize that these are not representative of questions in general.
Since my system has only been tailored to answer these kinds of questions,
it will necessarily require more work to function comparably on other sets
of questions. The TREC questions are, however, easily recognizable as com-
mon ways to phrase questions. Also, most of the examples I came across
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in solutions unrelated to TREC fell naturally into one of the existing cat-
egories. Further, my experience with writing patterns makes me confident
that additional question sets will display many similarities. This will make
them fairly easy to also generalize into unified patterns.

Some questions might not map directly to an extractable entity. This is
especially the case for open-class questions. But it’s nevertheless useful to
analyze the question properly to identify the semantic target. This might help
locate constructs that indicate probable answers in the documents. Even if
an answer can’t be pinpointed, the search can at least be tuned to accompany
the type of question asked. For instance, by expanding the query with helpful
constructs or by preferring certain sources when ranking the results. Such
behavior is still an improvement over pure keyword searching.

Finally, I recognize that not all information inquiries are easy to express
as explicit questions. QA is thus not a good solution for every type of infor-
mation access. I do not intend it as a full replacement for IR and IE either,
but rather as a useful addition for many situations. Plain queries still have
their uses in general information gathering.

Benefits. With new approaches like fact mining services (e.g. Google
Q&A), work of the kind I’ve performed on question classification is as im-
portant as ever. The focus, answer type and semantics of questions have to
be determined regardless of how, and from where, the answers are extracted.
Answers may, for instance, just as well be mined from specific structures
on certain pages as from unstructured text. They can even be looked up
in appropriate knowledge bases. In this regard, question classification is ar-
guably more important than answer extraction, and I’ve spent my efforts
accordingly.

My implementation is not web-based nor tailored exclusively for informa-
tion access on the large scale provided by the Internet. I intended my solution
to be useful also on smaller collections and for purposes beyond searching the
web. This meant crafting patterns that would help assure reliable answers
even if those answers did not resemble the questions. It also meant sacrific-
ing some precision to increase the recall. The same line of thought went into
building the semantic lexicon. But there it is always beneficial to have as
much information available as possible, due to the high-precision, low-recall
hyponym patterns. However, the lexicon can easily be supplemented with
data independently from the corpus intended for answer mining.

A method based on heuristics is necessarily language dependent. A lan-
guage processing tool that is not somewhat language dependent is, after all,
rather paradoxical. But I’ve tried to assure that my solution at least has
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loose language dependence. It is not heavy on rules, and the unified patterns
are few and composed of a small number of atomic parts. Most likely it
would thus be fairly easy to create similar heuristics for another language for
someone proficient in the particular language.

Final words. Coming from computer science, rather than computational
linguistics, has proven challenging in many areas of this work. But it has
also allowed me to explore solutions from a computer science perspective
instead of relying solely on established linguistic methods. This has primarily
manifested itself in my pattern matching approach to question classification.
Instead of parsing sentences syntactically, I’ve analyzed them from a pure
pattern perspective. This has achieved many of the same benefits while
avoiding the associated costs.

There are fields besides QA I could have explored that are more commer-
cially viable. But I wanted to use my master’s thesis as an opportunity to
pursue a topic that might not be granted time and money in a commercial
setting — a topic that might nevertheless prove valuable. And as I have
shown, the interest in QA is definitely not merely academic. There have
been several attempts at commercialization, some by major players within
the field of search. But regardless of the potential for profit, research in QA
has value in itself because of the benefits it promises to bring to people’s
daily quests for answers.

From what I’ve learned through this work, I sincerely believe that QA
done right will enhance the user experience. It can bring efficient acquisition
of knowledge to an entirely new level. But a solution has to build upon the
strengths inherent in computer processing. It should not try to compete with
the human mind in its ability to reason and comprehend. QA is primarily
helpful as a tool of convenience, not as a replacement for thought.
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Appendix A

Extractor examples

A.1 Time Extractor configuration

<?xml version=” 1.0 ”?>

< !−− Copyright (C) 2006 Fast Search &amp; Transfer ASA −−>

<con f i gu r a t i on>

<matcher type=”pattern ” debug=”no” verbose=”no”>
<pattern f l a g s 1=”0” f l a g s 2=”0”>

< !−− Inc lude common and reusab l e pa t t e rn s . −−>

<i n c l ude namespace=”” f i l ename=” etc / r e s ou r c e s /matching/ con f i gu r a t i on .
aux . xml”/>

< !−− Inc lude common UTF−8 symbols . −−>

<i n c l ude namespace=”” f i l ename=” etc / r e s ou r c e s /matching/ con f i gu r a t i on .
symbols . aux . xml”/>

< !−− Dig i t s f o l l owed by one of the se s i gn s are not t imes . −−>

<s l av e name=” s i g n p r e f i x ”>
<schema>< ! [CDATA[ ( ? < ! (\\$ |# | \ . | : ) ) (? < ! ($ pound |$ s e c t ) ) (? < ! ($ euro ) ) ] ]>

</schema>
</ s l ave>

< !−− Hours with one or two d i g i t s . −−>

<s l av e name=”hours ”>
<schema>$ s i g n p r e f i x ( (0?\d) | ( 1\ d) | ( 2 [ 0 −3 ] ) )</schema>

</ s l ave>

< !−− Hours with two d i g i t s . −−>

<s l av e name=” hou r s 2d i g i t ”>
<schema>$ s i g n p r e f i x ( (0\d) | ( 1\ d) | ( 2 [ 0 −3 ] ) )</schema>

</ s l ave>

<s l av e name=”minutes”>
<schema>[0−5]\d ( ? ! \d)</schema>

</ s l ave>

<s l av e name=” seconds ”>
<schema>$minutes</schema>

</ s l ave>

199
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<s l av e name=”am pm”>
< !−− Match AM/PM with or wi thout punctuat ion . −−>

<schema> ( ( [ ap ]m) | ( [ ap ] \ . ?m\ . ? ) ) ( ? ! [ a−z ] )</schema>

</ s l ave>

< !−− Dict ionary with timezone ab b r e v i a t i on s , e . g . ”EST” , ”PST” .−−>

<s l av e name=” timezoneabbr ”>
<schema> [A−Za−z ]{2 ,4}</schema>
<acceptor>

<matcher type = ” l even sh t e i n ” debug = ”no”>
< l e v en sh t e i n automaton = ” r e s ou r c e s / d i c t i o n a r i e s /matching/

timezoneabbr . aut ”
phonet i c s = ”no” exact = ”no”
match = ”complete ” s t a r t = ” beginning ”
p r e f i x = ”0” to l e r ance = ”0”>
<qua l i t y type = ”raw” penal ty = ”1” thr esho ld = ”0”/>

</ l ev en sh t e i n>

</matcher>
</ acceptor>

</ s l ave>

< !−− Dict ionary with timezone names , e . g . ”Eastern Standard ” , ”
Mountain ” .−−>

<s l av e name=”timezonename ”>
<schema> [A−Za−z ]+</schema>
<acceptor>

<matcher type = ” l even sh t e i n ” debug = ”no”>
< l e v en sh t e i n automaton = ” r e s ou r c e s / d i c t i o n a r i e s /matching/

timezonename . aut ”
phonet i c s = ”no” exact = ”no”
match = ”complete ” s t a r t = ” beginning ”
p r e f i x = ”0” to l e r ance = ”0”>
<qua l i t y type = ”raw” penal ty = ”1” thr esho ld = ”0”/>

</ l ev en sh t e i n>

</matcher>
</ acceptor>

</ s l ave>

<s l av e name=” timezone ” meta=”yes ”>
<schema>\b($ timezoneabbr |$ timezonename ( [ Tt ] ime ) ?) \b</schema>

</ s l ave>

< !−− A des i gnator i s e i t h e r am/pm or a timezone , and f o l l o w s the time .
−−>

<s l av e name=” de s i gna to r ”>
<schema>( ($am pm($ws$ timezone ) ?) | ( $ timezone ) )</schema>

</ s l ave>

<s l av e name=” de s i gna to r ”>
< !−− Match a des i gnator by i t s e l f OR a des i gnator surrounded by

punctuat ion . −−>

<schema>($ de s i gna to r | ( $ l e f t p un c t u a t i o n $ws?) ?$ de s i gna to r ($ws?$
r i gh t punc tua t i on ) ?)</schema>

</ s l ave>

< !−− Keywords used to i nd i c a t e t ha t a time f o l l ow s next . −−>

<s l av e name=” keyword pre f i x ” v i s i b i l i t y=”none”>
< !−− The p r e f i x word can be t r a i l e d by another word , e . g . ” a f t e r

PRECISELY” . The t r a i l i n g word/ space i s matched here to keep i t
ghos t ed .−−>

<schema>(?=[ abftu ] ) ( a ( f t e r | t | round | s o f ) | b( e f o r e | etween | y ) | from | to |
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un t i l ) $ws($word$ws) ?</schema>
</ s l ave>

< !−− Times s p e c i f i e d with a colon , e . g . ”10 :30 ” . −−>

<s l av e name=” t ime co l on ”>
<schema>( ($ hours ? : ?$ minutes ) ( ? : ?$ seconds ) ?)</schema>

</ s l ave>

< !−− Times s p e c i f i e d with a dot , e . g . ” 10.30 ” . −−>

<s l av e name=” time dot ”>
<schema>($ hours ?\ . ?$ minutes )</schema>

</ s l ave>

< !−− Times s p e c i f i e d concatenated , e . g . ”1030” . −−>

<s l av e name=” t ime cat ”>
<schema>($ h ou r s 2d i g i t $minutes )</schema>

</ s l ave>

< !−− Mi l i t a r y hours , e . g . ”1030 hours ” . −−>

<s l av e name=” t ime cat hour s ”>
<schema>($ t ime cat $ws?($ws?$more$ws?$ t ime cat $ws?) ∗$ws? hours )</

schema>
</ s l ave>

< !−− Words d i r e c t l y t r a n s l a t a b l e to t imes . −−>

<s l av e name=”time names ”>
<schema>(12 ) ?( noon | midnight )</schema>

</ s l ave>

<s l av e name=”weekdayword ”>
<schema>(?=[mtwfs ] ) ( (mon | t ( ue | hurs ) | wednes | f r i | s ( atur | un) ) day )</

schema>
</ s l ave>

<s l av e name=”dayword”>
<schema>(?=[ ty ] ) ( to ( day | night | morrow) | yes terday )</schema>

</ s l ave>

<s l av e name=”timeword ”>
<schema>(?=[maen ] ) ( morning | a f te rnoon | evening | night )</schema>

</ s l ave>

<s l av e name=” t imeword pos t f i x ”>
<schema>($ sub ?$ws?($ f i l l e r |$ dayword ) $ws?$ timeword )</schema>

</ s l ave>

< !−− Characters i n d i c a t i n g l i s t i n g s , e . g . ”10 :30 , 12 : 30 and 13 :30 pm” .
−−>

<s l av e name=”more”>
<schema>( / | , | ( $ ws) and ($ws) | ( $ ws) or ($ws) | \+ | \ x26 | ( $ ws) to ($ws) |\−)</

schema>
</ s l ave>

< !−− F i l l e r words between t imes and t h e i r timewords , e . g . ” th i s ” in ”
10 th i s evening ” .−−>

<s l av e name=” f i l l e r ”>
<schema>(?=[ i t o b l n ] ) ( i n | th ( e | i s | at ) | on | by | l a s t | next ) ($ws?$word ) ?</

schema>
</ s l ave>

< !−− Characters i n d i c a t i n g the s t a r t o f a subsentence .−−>

<s l av e name=”sub”>
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<schema>( [ ,\ −\ ( ] )</schema>

</ s l ave>

< !−− Legal formats o f t imes b e f o r e a des i gnator . −−>

<s l av e name=” des i gnator t imeformat ”>
< !−− Matching on $ t imecat alone y i e l d s too many f a l s e h i t s , e . g . ”

2004 UTC” −−>

<schema>($ t ime co l on |$ time dot |$ t ime cat hour s )</schema>
</ s l ave>

< !−− Legal formats o f t imes a f t e r a p r e f i x . −−>

<s l av e name=” pr e f i x t ime f o rmat ”>
< !−− Matching on $ t imedot i s unsafe here , e . g . ” from 6.25 kg” −−>

<schema>($ t ime co l on |$ t ime cat hour s |$ time names )</schema>

</ s l ave>

< !−− Legal formats o f t imes b e f o r e a p o s t f i x . −−>

<s l av e name=” pos t f i x t ime f o rmat ”>
<schema>($ t ime co l on |$ time dot |$ hours )</schema>

</ s l ave>

< !−− Time formats r e qu i r i n g a des i gnator ; e . g . ”7 :50 AM” , ” 11.45pm” , ”
1230 GMT” . −−>

<s l av e name=” t ime de s i gna to r ”>
<schema>($ des i gnator t imeformat $ws?($ws?$more$ws?$

des i gnator t imeformat $ws?) ∗$ de s i gna to r )</schema>
</ s l ave>

< !−− Time formats r e qu i r i n g a pr e f i x , e . g . ” a f t e r 8 : 45 ” −−>

<s l av e name=” t im e p r e f i x ”>
<schema>($ keyword pre f i x $ p r e f i x t ime f o rmat ($ws?$more$ws?$

p r e f i x t ime f o rmat ) ∗($ws?$ de s i gna to r ) ?($ t imeword pos t f i x ) ?)</
schema>

</ s l ave>

< !−− Time formats r e qu i r i n g a pos t f i x , e . g . ”6 tomorrow morning” −−>

<s l av e name=” t im e po s t f i x ”>
<schema>($ po s t f i x t ime f o rmat ($ws?$more$ws?$ po s t f i x t ime f o rmat $ws?)

∗($ dayword |$ws$ f i l l e r $ws?($ timeword |$ weekdayword ) ) )</schema>
</ s l ave>

< !−− Hours r e qu i r e am/pm, not j u s t timezone , to avoid e . g . ”2 et . ” . −−
>

<s l av e name=” hour s de s i gna to r ”>
<schema>($ hours ( ? ! \ d) $ws?($am pm($ws$ timezone ) ?) )</schema>

</ s l ave>

< !−− Whole hours f o l l owed by ”o ’ c l ock ” , e . g . ”5 o ’ c l ock t h i s evening ” .
−−>

<s l av e name=” t ime oc l ock ”>
<schema>($ hours $ws?($ws?$more$ws?$ hours $ws?) ∗o ’ c l ock ($ws$ de s i gna to r )

?($ t imeword pos t f i x ) ?)</schema>

</s l ave>

<!−− Al l o f the time va r i a t i o n s c o l l e c t e d in one pattern −−>

<s l av e name=”time”>
<schema>(? i )\b($ t ime de s i gna to r |$ hou r s de s i gna to r |$ t im e p r e f i x |$

t ime oc l ock |$ t im e po s t f i x )</schema>

</s l ave>

<master optimize=”yes”>
<schema>$time</schema>
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<!−− Bump to lower case . −−>

<t r ans f ormat i on sour ce =”ˆ.∗$” ta r g e t =”$0” command=”lowercase ”/>

<!−− Remove any ” f l u f f ” . −−>

<t r ans f ormat i on sour ce =”[() { } \ [ \ ] ] ” t a r g e t=””/>

<!−− Remove spaces in t imes . −−>

<t r ans f ormat i on sour ce=”\ s ∗ ( [ \ . : ] ) \ s ∗” ta r g e t=”$1”/>

<!−− Convert ”more” s epa r a to r s to ” ; ” . −−>

<t r ans f ormat i on sour ce=”\ s ∗(? : / | , | and | or |\+ |& | to |\−)\ s ∗”
ta r g e t =”; ”/>

<!−− Put a : between dot times , e . g . 15.30 −> 15 :30 . −−>

<t r ans f ormat i on ta r g e t =”$1 : $2”>

<source ><![CDATA[ (? < ! [ : \d ] ) (\d{1 ,2}) \ . (\ d{2}) ]]></ source>

</trans formation >

<!−− Put a : between cat times , e . g . 1530 −> 15 :30 . −−>

<t r ans f ormat i on ta r g e t =”$1 : $2”>

<source ><![CDATA[ (? < ! [ : \d ] ) (\d{2}) (\d{2}) (? : hours ) ?]]></ source>

</trans formation >

<!−− Add minutes to hour−only times , e . g . 8 pm −> 8 :30 pm. −−>

<t r ans f ormat i on ta r g e t =”$1 :00”>
<source ><![CDATA[ (? < ! [ : \d ] ) (\d{1 ,2}) (? : o ’ c l ock ) ? ( ? ! [ : \d ] ) ] ] ></

sour ce>
</ trans f ormat i on>

< !−− Add a 0 b e f o r e 1− d i g i t hours , e . g . 8 :30 −> 08 :30 . −−>

<t r ans f ormat i on ta r g e t=”0$1 : $2”>
<sour ce>< ! [CDATA[ ( ? < ! [ : \d ] ) (\d) : (\d{2}) ] ]></ sour ce>

</ trans f ormat i on>

< !−− Convert ” timewords ” to AM/PM.−−>

< !−− Note: The ”more” conversion above might have converted a ”sub”
to a ” ; ” . −−>

<t r ans f ormat i on sour ce=” ; ? ?(? : [ a−z ]+ ?) {1 ,2} morning” ta r g e t=”am”/>
<t r ans f ormat i on sour ce=” ; ? ?(? : [ a−z ]+ ?) {1 ,2} (? : a f t e r noon | evening |

night ) ” ta r g e t=”pm”/>

< !−− Convert 12 AM to 24−hour format . −−>

<t r ans f ormat i on ta r g e t=”00$1$2 ”>
<sour ce>< ! [CDATA[ ( ? < ! [ : \d ] ) (? : 12 ) ( ( ? : : \d{2}) {1 ,2}) ( . ∗ ? a \ . ? ?m\ . ? )

] ]></ sour ce>
</ trans f ormat i on>

< !−− Convert PM times to 24−hour format . −−>

<t r ans f ormat i on ta r g e t=”13$1$2 ”>
<sour ce>< ! [CDATA[ ( ? < ! [ : \d ] ) (? : 01 ) ( ( ? : : \d{2}) {1 ,2}) ( . ∗ ? p \ . ? ?m\ . ? )

] ]></ sour ce>
</ trans f ormat i on>

<t r ans f ormat i on ta r g e t=”14$1$2 ”>
<sour ce>< ! [CDATA[ ( ? < ! [ : \d ] ) (? : 02 ) ( ( ? : : \d{2}) {1 ,2}) ( . ∗ ? p \ . ? ?m\ . ? )

] ]></ sour ce>
</ trans f ormat i on>

<t r ans f ormat i on ta r g e t=”15$1$2 ”>
<sour ce>< ! [CDATA[ ( ? < ! [ : \d ] ) (? : 03 ) ( ( ? : : \d{2}) {1 ,2}) ( . ∗ ? p \ . ? ?m\ . ? )

] ]></ sour ce>
</ trans f ormat i on>

<t r ans f ormat i on ta r g e t=”16$1$2 ”>
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<sour ce>< ! [CDATA[ ( ? < ! [ : \d ] ) (? : 04 ) ( ( ? : : \d{2}) {1 ,2}) ( . ∗ ? p \ . ? ?m\ . ? )
] ]></ sour ce>

</ trans f ormat i on>

<t r ans f ormat i on ta r g e t=”17$1$2 ”>
<sour ce>< ! [CDATA[ ( ? < ! [ : \d ] ) (? : 05 ) ( ( ? : : \d{2}) {1 ,2}) ( . ∗ ? p \ . ? ?m\ . ? )

] ]></ sour ce>
</ trans f ormat i on>

<t r ans f ormat i on ta r g e t=”18$1$2 ”>
<sour ce>< ! [CDATA[ ( ? < ! [ : \d ] ) (? : 06 ) ( ( ? : : \d{2}) {1 ,2}) ( . ∗ ? p \ . ? ?m\ . ? )

] ]></ sour ce>
</ trans f ormat i on>

<t r ans f ormat i on ta r g e t=”19$1$2 ”>
<sour ce>< ! [CDATA[ ( ? < ! [ : \d ] ) (? : 07 ) ( ( ? : : \d{2}) {1 ,2}) ( . ∗ ? p \ . ? ?m\ . ? )

] ]></ sour ce>
</ trans f ormat i on>

<t r ans f ormat i on ta r g e t=”20$1$2 ”>
<sour ce>< ! [CDATA[ ( ? < ! [ : \d ] ) (? : 08 ) ( ( ? : : \d{2}) {1 ,2}) ( . ∗ ? p \ . ? ?m\ . ? )

] ]></ sour ce>
</ trans f ormat i on>

<t r ans f ormat i on ta r g e t=”21$1$2 ”>
<sour ce>< ! [CDATA[ ( ? < ! [ : \d ] ) (? : 09 ) ( ( ? : : \d{2}) {1 ,2}) ( . ∗ ? p \ . ? ?m\ . ? )

] ]></ sour ce>
</ trans f ormat i on>

<t r ans f ormat i on ta r g e t=”22$1$2 ”>
<sour ce>< ! [CDATA[ ( ? < ! [ : \d ] ) (? : 10 ) ( ( ? : : \d{2}) {1 ,2}) ( . ∗ ? p \ . ? ?m\ . ? )

] ]></ sour ce>
</ trans f ormat i on>

<t r ans f ormat i on ta r g e t=”23$1$2 ”>
<sour ce>< ! [CDATA[ ( ? < ! [ : \d ] ) (? : 11 ) ( ( ? : : \d{2}) {1 ,2}) ( . ∗ ? p \ . ? ?m\ . ? )

] ]></ sour ce>
</ trans f ormat i on>

<t r ans f ormat i on ta r g e t=”12$1$2 ”>
<sour ce>< ! [CDATA[ ( ? < ! [ : \d ] ) (? : 12 ) ( ( ? : : \d{2}) {1 ,2}) ( . ∗ ? p \ . ? ?m\ . ? )

] ]></ sour ce>
</ trans f ormat i on>

< !−− Remove AM/PM. −−>

<t r ans f ormat i on sour ce=” ? [ ap ] \ . ? ?m\ . ? ” ta r g e t=””/>

< !−− Convert named t imes to 24−hour format . −−>

<t r ans f ormat i on sour ce=”midnight” ta r g e t=”00 :00 ”/>
<t r ans f ormat i on sour ce=”noon” ta r g e t=”12 :00 ”/>

< !−− S t r i p ” time” from timezone name . −−>

<t r ans f ormat i on sour ce=” time ” ta r g e t=””/>

< !−− Normalize timezonename to t imezoneabbr . −−>

<t r ans f ormat i on sour ce=” (? : [ a−z ]{5 ,} ?)+ ?” transducer=” r e s ou r c e s /
d i c t i o n a r i e s /matching/ timezonenametrans . aut ” ta r g e t=”$0”/>

< !−− Normalize t imezoneabbr to UTC format . −−>

<t r ans f ormat i on sour ce=” [ a−z ]{2 ,4} ” transducer=” r e s ou r c e s /
d i c t i o n a r i e s /matching/ timezoneabbrtrans . aut ” ta r g e t=”$0”/>

</master>

</ pattern>

</matcher>
</ con f i gu r a t i on>
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A.2 Time Extractor reference file

<?xml version=” 1.0 ” encoding=” i so −8859−1”?>

< f i l e>

<s entence>Monday , June 13 , 2005 Posted: <time>8 :06 AM EDT</ time> (<time>
1206 GMT</ time>)</ sentence>

<s entence>Cit ing the logbook , which cover s al−Qahtani ’ s i n t e r r o g a t i o n s
from November 2002 to January 2003 , Time r epo r t s that da i l y i n t e r v i ews
began at <time>4 a .m.</time> and sometimes continued u n t i l <time>

midnight</time >.</sentence>

<sentence >At around <time>3 a .m.</time >, some men head f o r a break at the
1873 Cafe de Par i s .</ sentence>

<sentence >Fi l ed at 7/14/2004 <time >12 : 2 3 : 4 2 PM</time >.</sentence>

<sentence >Fi l ed at <time >12 :40 a .m. ET</time >. Modi f i ed at <time >20 :00 EST
</time >.</sentence >

<sentence >Tuesday <time >6.30−7.30pm</time></sentence>

<sentence >Wednesday <time >5.30 to 6 . 30pm</time></sentence >

<sentence >You get ther e about <time>3:40 , 3 :50 </time >, and the t ea che r s
are u sua l l y gone .</ sentence >

<sentence >Mr. BELL moved that h e r e a f t e r the Convention w i l l meet at <time
>9 A. M.</time >, take a r e c e s s from <time>2 o ’ c l ock P. M.</ time> to <

time>4 o ’ c l ock P. M.</time >, and a l s o from <time>6 P. M.</time> to <

time>7 P. M. UTC</time >.</sentence>

<sentence ><time >12 :50 </time> − the gun i s wheeled back and prepared f o r
l oad ing .</ sentence >

<sentence >A tongue − i n − cheek r e v e r s a l o f ’ vampyre ’ subcu l tur e with
young vampires who wear br i ght c l o thes , dr ink wine , and stay up un t i l
<time>noon</time >.</sentence>

<sentence >Launched on Apr i l 17 , 1989 , i t prov ides bu s i n e s s news
programming from <time>5 am</time> to <time>7 pm eas t e r n time</time >,
and ta l k shows from <time>7 pm</time> un t i l <time>midnight ea s t e r n
time</time >.</sentence >

<sentence >On July 2 , 1937 , at <time>midnight GMT</time >, Earhart and
Noonan took o f f from Lae.</ sentence>

<sentence >Not f o r pub l i c a t i on un t i l <time >1500 hours ( bst )</time> on
Thursday , 16 may 2002.</ sentence>

<sentence >They moved to attack at p r e c i s e l y <time >1700 hours GMT</time >,
and were soon de f eated (<time >1800 hours GMT</time >).</ sentence>

<sentence >Afternoon tea served between <time >1500 and 1700 hours </time >.</
sentence>

<sentence >”I t ’ s u sua l l y at <time>3 or 4 o ’ c l ock in the af ternoon </time >.
A l t e r na t i v e l y at <time>3 or 4 in the morning</time >.”</sentence>

<sentence >Beatty turned and f l e d towards the Grand Fl eet and from <time >18
: 30</time> u n t i l n i g h t f a l l at about <time >20 : 30</time> the two

huge f l e e t s were heav i l y engaged .</ sentence>

<sentence >J e l l i c o e broke contact with the Germans at about <time >16 . 45</
time> and Hipper turned back to Scheer around <time >18 . 00</time >,
but didn ’ t meet rendezvous un t i l <time>18 . 30</ time> .</ sentence>

<s entence>By <time>19 : 15</ time> , J e l l i c o e had c r o s s ed the ” T ” yet
again</ sentence>

<s entence>Web page r e t r i e v ed <time>15 : 30</ time> Oct 6 , 2004 ( UTC )</
sentence>

<s entence>Pres ident Bush w i l l make h i s addres s at <time>9 p .m. ET</ time> (
<time>0200 GMT</ time> Thursday )</ sentence>

<s entence>Nonethe l e s s Scheer s l i pped away as sunset (<time>20 :24</ time>)
approached .</ sentence>

<s entence>I t was p r e c i s e l y <time>7 .15 on Saturday night</ time> .</ sentence>
<s entence>About 3 km in the o u t s k i r t s o f Kitgum town at around <time>3

:00pm</ time> , <time>3 .00pm</ time> , the army spokesman in the north
sa id .</ sentence>
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<s entence>The s e c r e ta r y o f the commission drove in at about <time>6 . 30 PM
</ time> .</ sentence>

<s entence>< ! [CDATA[<b> ] ]><time>8:50AM</ time> Handleman r epo r t s Q4 r e s u l t s<
/ sentence>

<s entence>I ’ l l be ther e at <time>7:01 , 6 : 47 and 6 :25 </time >.</sentence>

<sentence>As you know , at <time>4:30 yes terday af ternoon </time >, Alaska
A i r l i n e s F l i gh t 261 crashed i n to the Pa c i f i c Ocean .</ sentence>

<sentence>We rece i v ed the i n i t i a l n o t i f i c a t i o n o f the downed a i r c r a f t from
the park ranger at <time>4:26 , yes te rday af ternoon </time >. At <time>4

:27 </time> we i s s u ed an urgent marine broadcast to a l l boater s in the
area to come to a s s i s t i n that p o s i t i o n .</ sentence>

<sentence>To the bes t o f knowledge as o f <time>6:00 , t h i s morning</time >,
we didn ’ t have any r epo r t s .</ sentence>

<s entence>We didn ’ t f i nd Rebecca un t i l <time >11 :45 that morning</time >.</
sentence >

<sentence>The f i r s t one beg ins at <time>8:45 Eastern t h i s evening </time
>.</sentence>

<sentence>That means <time>4:44 Par i s time</time >.</sentence >

<sentence>I t i s <time>8:15 </time> here on the East Coast , that makes i t
about <time>3:44 </time> l o c a l .</ sentence >

<sentence>So <time>4:00 Eastern</time >, we ’ l l be ab l e to br ing that to
you when i t happens .</ sentence>

<s entence>The fami ly w i l l be out here at <time>2 :00 Mountain time</ time> ,
<time>4 :00 Eastern</ time> .</ sentence>

<s entence>Just be f o r e <time>6 :00 A.M. East Coast</ time> time .</ sentence>

< !−− False examples −−>

<s entence>Secr etary o f State Col in Powel l now says 10 Americans were
k i l l e d in car bomb attacks .</ sentence>

<s entence>The week capped at $4.43 in today ’ s d o l l a r s .</ sentence>

<sentence>A drop from about 7 per cent today .</ sentence >

<sentence>We ate 5 sandwiches l a s t night .</ sentence >

<sentence>They are expected to s e l l at l e a s t 3 . 30 kg th i s evening .</
sentence >

<sentence>Mr Cos t e l l o t o l d the ABC’ s 7 . 30 Report l a s t night .</ sentence>
<s entence>Shares in Great Southern Plantat i ons were changing hands at

$3.15 on Tuesday a f te rnoon</ sentence>
<s entence>We l o s t 4 . 12 l a s t night , and 1 2 .20 t h i s evening .</ sentence>
<s entence>Customer p r o f i t a b i l i t y systems a f t e r 3 . 19 year s and customer

a c qu i s i t i o n cos t a f t e r 3 . 16 year s .</ sentence>
<s entence>Some Labor MPs b e l i e v e Labor may have to wait un t i l 2010 be f o r e

i t has a r e a l i s t i c chance o f r e c l a im ing power .</ sentence>
<s entence>In sp i r ed by the doc t r i n e embraced by the American admin i s t r at i on

a f t e r the 2001 t e r r o r i s t at tacks .</ sentence>
<s entence>The Nammer had nine s t o r e s pylons and could car ry up to 6 . 25

tonnes</ sentence>
<s entence>Which l ead s to a value o f p i equal to 3.16049</ sentence>
<s entence>Les a r t i c l e s 8 . 9 . 2 et 6 . 1 . 6 et propose des mod i f i c a t i on s .</

sentence>
<s entence>Where to s t a y : Drake Hotel (1150 Queen St r e e t West ;

416−531−5042) . .</ sentence>
<s entence>Most r i d e r s e i t h e r take a BMW R 1150 GS or a Kawasaki KLR 650 .</

sentence>
<s entence>Al t e r na t i v e Talk 1150am i s your home f o r UW Baseba l l and

So f t b a l l i n 2005!</ sentence>
<s entence>E l i t e Video P−1208 has a l amp l i f e o f about 2000 hours .</ sentence

>

<s entence>February 20 − 2001 UK foo t and mouth c r i s i s beg ins .</ sentence>
<s entence>Joe Montana , Mario Andrett i and Morgan Freeman , f o r example ,

have a l l zeroed in on the enemy at 12 o ’ c l ock high in prop p lane s with
co−p i l o t s provided by Air Combat USA, based in Ful l e r ton , Ca l i f .</

sentence >
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<sentence >A six−foot−t a l l br ide , r e sp l endent in white s i l k , r i p p l i n g
b i ceps and f i v e o ’ c l ock shadow .</ sentence>

<s entence>Purchasing power pa r i ty − $4 .8 b i l l i o n (2002 e s t . ) , $4 . 2
b i l l i o n (1999 e s t . )</ sentence>

<s entence>The sh ip was bu i l t i n 1930 at the ( f o rmer ly Royal ) Naval
Shipyard o f Castel lammare d i Stabia ( Naples ) .</ sentence>

<s entence>The average household s i z e i s 2 . 94 and the average f ami ly s i z e
i s 3 . 4 6 .</ sentence>

<s entence>Rashid Ramzi − Semi f ina l , 3 : 44 . 60 ( did not advance ) .</ sentence>
<s entence>Mohammed Abdelhak Zakar ia − Round 1 , 13 : 42 . 04 ( did not

advance ) .</ sentence>
<s entence>Track l i s t i n g ; #1 ”Wheels Of Confusion ” − 8 :00</ sentence>
<s entence>King Melchizedek o f Salem , i d e n t i f i e d by Rashi as being Shem the

son o f Noah by another name , i s the f i r s t person in the Torah to be
c a l l e d a Kohen ( Genes i s 14 : 18 ) .</ sentence>

</ f i l e>
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A.3 Person Classifier configuration

<?xml version=” 1.0 ”?>

< !−− Copyright (C) 2006 Fast Search &amp ; Transfer ASA −−>

<con f i gu r a t i on>

<matcher type=”pattern ” debug=”no”>
<pattern f l a g s 1=”0” f l a g s 2=”0”>

< !−− Inc lude common NLQ pa t t e rn s . −−>

< i n c l ude namespace=”” f i l ename=” etc / con f i g da ta /QRServer/ webc lus ter /
etc / q r s e r v e r / nlq / con f i gu r a t i on . nlq . aux . xml”/>

< !−− Spe c i f i e r d i c t i onary f o r persons −−>

<s l av e name=” p e r s o n s p e c i f i e r ”>
<schema>($word )</schema>
<acceptor>

<matcher type = ” l even sh t e i n ” debug = ”no”>
< l e v en sh t e i n automaton = ” r e s ou r c e s / d i c t i o n a r i e s /matching/nlq /

p e r s o n s p e c i f i e r s . aut ”
phonet i c s = ”no” exact = ”no”
match = ”complete ” s t a r t = ” beginning ”
p r e f i x = ”0” to l e r ance = ”0”>
<qua l i t y type = ”raw” penal ty = ”1” thr esho ld = ”0”/>

</ l ev en sh t e i n>

</matcher>
</ acceptor>

</ s l ave>

< !−− Person s p e c i f i e r −−>

<s l av e name=”person” v i s i b i l i t y=” su r f a c e ”>
<meta r epor t=” yes ” name=”person”/>
<schema>($ ad j e c t i v e $ws) ?$ p e r s o n s p e c i f i e r</schema>

</ s l ave>

< !−− $do $np $ ge t ? $vp ($ np verb ? $pp )? $np prep ∗ −−>

<s l av e name=” per son do par t ”>
<schema>$ws$do$ws$np($ws$ get ) ?$ws$vp ($ws$np verb ?$ws$pp) ?($ws$

np prep ) ∗</schema>
</ s l ave>

< !−− ($ be |$ ge t ) ? $vp ($ np verb $np prep ∗ |$ np prep+) −−>

<s l av e name=” per son vp par t ”>
<schema>($ws($ be |$ get ) ) ?$ws$vp ($ws$np verb ($ws$np prep ) ∗ | ( $ ws$

np prep )+)</schema>
</ s l ave>

< !−− who $ be $np type ($ vp $np verb ?)? $np prep ∗ −−>

<s l av e name=”who be”>
<schema>$who$ws$be$ws$np type ($ws$vp$ws$np verb ?) ?($ws$np prep ) ∗</

schema>
</ s l ave>

< !−− who $do $np $ ge t ? $vp ($ np verb ? $pp )? $np prep ∗ −−>

<s l av e name=”who do”>
<schema>$who$ per son do par t</schema>

</ s l ave>

< !−− who ($ be |$ ge t )? $vp ($ np verb $np prep ∗ |$ np prep+) −−>

<s l av e name=”who vp”>
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<schema>$who$ per son vp par t</schema>
</ s l ave>

< !−− what $person $be $vp $np verb ? $np prep ∗ −−>

<s l av e name=”which person be ”>
<schema>$which$ws$ person$ws$be$ws$vp ($ws$np verb ) ?($ws$np prep ) ∗</

schema>
</ s l ave>

< !−− what $person $do $np $ ge t ? $vp ($ np verb ? $pp )? $np prep ∗ −−>

<s l av e name=”which person do ”>
<schema>$which$ws$ person$ per son do par t</schema>

</ s l ave>

< !−− what $person ($ be |$ ge t ) ? $vp ($ np verb $np prep ∗ |$ np prep+) −−>

<s l av e name=”which person vp ”>
<schema>$which$ws$ person$ per son vp par t</schema>

</ s l ave>

<s l av e name=” pe r s on que s t i on ”>
<schema>($ who be |$ who do |$ who vp |$ which person be |$ which person do |$

which person vp )</schema>

</ s l ave>

<master optimize=” yes ”>
<schema>$ pe r s on que s t i on</schema>

< !−− Expand con t rac t i on s l i k e ” i sn ’ t ” to ” i s not ” to be ab l e to work
with f u l l words −−>

< !−− Might s p e c i f y genera l r u l e s l i k e −− sour ce=” ( [ a−z ]+)n ’ t ” ta r g e t
=”$1 not ” −− ins t ead of a d i c t i onary −−>

<t r ans f ormat i on sour ce=” [ a−z ]+ ’ [ a−z ]+ | cannot” ta r g e t=”$0” transducer
= ” r e s ou r c e s / d i c t i o n a r i e s /matching/ nlq / con t r a c t i on expans i on .

aut ” />

< !−− Remove e x c e s s i v e whi t e space −−>

<t r ans f ormat i on sour ce=”\ s+” ta r g e t=” ” />

< !−− Create a genera l scope query f o r a person . The matched terms
are repor t ed as meta−t ag s . −−>

< !−− This query w i l l be completed by the n l q 2 f q l module −−>

<t r ans f ormat i on sour ce=” ˆ .∗$ ” ta r g e t=” xml : s entence : and (∗NLQ∗ , scope (
person ) ) ” />

</master>
</ pattern>

</matcher>
</ con f i gu r a t i on>
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A.4 Hyponym Extractor configuration

<?xml version=” 1.0 ” encoding=”utf−8”?>

< !−− Copyright (C) 2006 Fast Search &amp ; Transfer ASA −−>

<con f i gu r a t i on>

<matcher type=”pattern ” debug=”no”>
<pattern f l a g s 1=”0” f l a g s 2=”0”>

< !−− Inc lude common NLQ pa t t e rn s . −−>

< i n c l ude namespace=”” f i l ename=” etc / con f i g da ta /QRServer/ webc lus ter /
etc / q r s e r v e r / nlq / con f i gu r a t i on . nlq . aux . xml”/>

< !−− Only repor t the ac t ua l noun( s ) o f the NP, not the PP, a l t hough
the whole phrase must be matched to be u s e f u l in a hypernym/
hyponym express ion . −−>

<s l av e name=”hypernym”>
<schema>$hypernym np ($ws$pp) ?</schema>

</ s l ave>

< !−− Report the noun( s ) o f the NP. We are only i n t e r e s t e d in common ( i
. e . not proper ) nouns as hypernyms . −−>

<s l av e name=”hypernym np”>
<meta r epor t=” yes ” name=”hypernym”/>
<schema>$np common</schema>

</ s l ave>

< !−− Avoid captur ing as a hyponym an NP tha t i s a l s o a hypernym at the
s t a r t o f a new phrase . −−>

< !−− E. g . ” c i t i e s ” in ” . . . l anguages such as French and c i t i e s such as
Toulouse . . . ” −−>

<s l av e name=”hyponym”>
<schema>$np ( ? ! , ? $ws\(? such ($ws) as | ( , $ ws |$ws \ ( ) $ sub phrase )</schema>

</ s l ave>

< !−− A sequence o f hyponyms separat ed by commas and/or con junc t ions −−
>

<s l av e name=”hyponyms” meta=”yes ”>
<schema>$hyponym($more$hyponym) ∗</schema>

</ s l ave>

< !−− Terms t ha t i nd i c a t e a subphrase o f hyponyms −−>

< !−− Other p o s s i b i l i t i e s : ”e . g . ” , ” i . e . ” , ” s . a . ” , e t c . −−>

<s l av e name=” sub phrase ”>
<schema>( i n c l ud i ng | e s p e c i a l l y | p a r t i c u l a r l y | ( most$ws) ? notably )</

schema>
</ s l ave>

< !−− Such $hypernym as $hyponyms −−>

< !−− E. g . ” . . . such authors as Herr ick , Goldsmith and Shakespeare . . . ”
−−>

<s l av e name=” such hyper as ”>
<schema> [ Ss ] uch$ws$hypernym ($ws ) as $ws$hyponyms</schema>

</ s l ave>

< !−− $hypernym such as $hyponyms −−>

< !−− E. g . ” . . . the bow lute , such as the Bambara ndang . . . ” −−>

<s l av e name=” hyper such as ”>
<schema>$hypernym , ?$ws\(? such ($ws) as $ws$hyponyms</schema>

</ s l ave>
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< !−− $hypernym $ subphrase $hyponyms −−>

< !−− E. g . ” . . . a l l common−law countr i e s , i n c l ud i ng Canada and England
. . . ” −−>

< !−− E. g . ” . . . most European countr i e s , e s p e c i a l l y France , England and
Spain . . . ” −−>

<s l av e name=”hyper sub ”>
<schema>$hypernym ( ,$ws |$ws \ ( ) $ sub phrase $ws$hyponyms</schema>

</ s l ave>

< !−− $hyponyms (and | or ) other $hypernym −−>

< !−− E. g . ” . . . wounds , broken bones or other i n j u r i e s . . . ” −−>

< !−− E. g . ” . . . temples , t r e a s u r i e s , and other important c i v i c bu i l d i ng s
. . . ” −−>

<s l av e name=”hypo other ”>
<schema>$hyponyms , ?$ws( and | or ) ($ws) other $ws$hypernym</schema>

</ s l ave>

<s l av e name=”hyponym sentence ”>
<schema>($ such hyper as |$ hyper such as |$ hyper sub |$ hypo other )</

schema>
</ s l ave>

<master optimize=” yes ”>
<schema>$hyponym sentence</schema>

< !−− Use a preprocessor to q u i c k l y f i l t e r out sen tences not
conta in ing c r u c i a l keywords f o r the hyponym ex t rac t o r −−>

<pr ep r oc e s s o r rad ius=”150”>
<matcher type=”verbatim” debug=”no”>

<verbatim match=”boundary ” s t a r t=”boundary ” swap=”yes ” l ower case
=” yes ”>

<e n t r i e s>
<entry><value>e s p e c i a l l y</ value></ entry>

<entry><value>i n c l ud i ng</ value></ entry>

<entry><value>notably</ value></ entry>

<entry><value>other</ value></ entry>

<entry><value>pa r t i c u l a r l y</ value></ entry>

<entry><value>such</ value></ entry>

<entry><value>Such</ value></ entry>

</ e n t r i e s>
</verbatim>

</matcher>
</ p r ep r o c e s s o r>

</master>

</ pattern>

</matcher>
</ con f i gu r a t i on>
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A.5 Auxiliary patterns configuration

<?xml version=” 1.0 ” encoding=”utf−8”?>

< !−− Copyright (C) 2004−2006 Fast Search &amp; Transfer ASA −−>

<con f i gu r a t i on>

<matcher type=”pattern ” debug=”no”>
<pattern f l a g s 1=”0” f l a g s 2=”0”>

< !−− Upper case charac t e r −−>

<s l av e name=”upperchar ”>
<schema> ( [A−Z ] )</schema>

</ s l ave>

< !−− Lower case charac t e r −−>

<s l av e name=” lowerchar ”>
<schema> ( [ a−z ] )</schema>

</ s l ave>

< !−− Upper case or lower case charac t e r −−>

<s l av e name=”anychar ”>
<schema> ( [A−Za−z ] )</schema>

</ s l ave>

<s l av e name=”pre ”>
<schema>< ! [CDATA[ (? < ! $ anychar ) ] ]></schema>

</ s l ave>

<s l av e name=”post ”>
<schema>( ? ! $ anychar )</schema>

</ s l ave>

< !−− Cap i t a l i z e d word −−>

< !−− E. g . ” Microso f t ” , ”AltaVista ” , ”eMentor” −−>

< !−− Also e . g . ”J . ” and ”Mr. ” to a l l ow cons t ruc t s l i k e : ”J . K. Rowling
” , ”Mr. Universe ” , ”Bush Jr . ” −−>

<s l av e name=”capword”>
<schema>($ pre ($ lowerchar ?$ upperchar ($ lowerchar +\ . ? |$ anychar + | \ . ) ) $

post )</schema>

</ s l ave>

< !−− Uppercase ab b r e v i a t i on s and acronyms −−>

< !−− E. g . ”FAQs” , ”F .A.Q. ” −−>

<s l av e name=”abbrword”>
<schema>($ pre ($ upperchar {2 ,} s ? | ( $ upperchar \ . ) +)$ post )</schema>

</ s l ave>

< !−− Word , c a p i t a l i z e d or not −−>

<s l av e name=”word”>
<schema>($ pre ($ upperchar |$ lowerchar ) $ lowerchar+$post )</schema>

</ s l ave>

< !−− Whitespace −−>

<s l av e name=”ws”>
<schema> [ \ t ]+</schema>

</ s l ave>

<s l av e name=”more”>
<schema>( , $ws( and$ws | or $ws) ? |$ws( and ($ws?[&/]$ws? or ) ? | or ) $ws |$ws

?[&/]$ws?)</schema>
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</ s l ave>

<s l av e name=” a r t i c l e ”>
<schema>($ pre ( an ? | the ) $ws)</schema>

</ s l ave>

<s l av e name=”stopword ”>
<schema>$word</schema>

<acceptor>
<matcher type = ”verbatim” debug = ”no”>

<verbatim automaton = ” r e s ou r c e s / d i c t i o n a r i e s /matching/ nlq /
stopwords . aut ”

match = ”boundary ” s t a r t = ”boundary ” swap = ”yes ” l ower case
= ” yes ”>

</verbatim>

</matcher>
</ acceptor>

</ s l ave>

< !−− Adj e c t i v e s −−>

<s l av e name=” a d j e c t i v e d i c t ”>
<schema>$word</schema>

<acceptor>
<matcher type = ” l even sh t e i n ” debug = ”no”>

< l e v en sh t e i n automaton = ” r e s ou r c e s / d i c t i o n a r i e s /matching/ nlq /
ad j e c t i v e s . aut ”

phonet i c s = ”no” exact = ”no”
match = ”complete ” s t a r t = ” beginning ”
p r e f i x = ”0” to l e r ance = ”0”>
<qua l i t y type = ”raw” penal ty = ”1” thr esho ld = ”0”/>

</ l ev en sh t e i n>

</matcher>
</ acceptor>

</ s l ave>

< !−− Ordinal numbers , e . g . ”1 st , 2nd , 3rd , 4th , . . . ” −−>

<s l av e name=” o r d i n a l s ”>
<schema>(\d∗1 s t | \d∗2nd | \d∗3 rd | \d∗[04−9]+th )</schema>

</ s l ave>

< !−− E. g . ” b e au t i f u l ” , ” user−a s s i s t e d ” , ” f u l l −text ” , ”SEC corporate ” ,
”23 rd” −−>

<s l av e name=” ad j e c t i v e ”>
<schema>( ($ capword$ws) ?($ noun dict−$a d j e c t i v e d i c t |$ a d j e c t i v e d i c t

(−$noun d i ct ) ? |$ o r d i n a l s ) )</schema>
</ s l ave>

<s l av e name=”adj meta ”>
<meta r epor t=”yes ” name=” ad j e c t i v e ”/>
<schema>$ ad j e c t i v e</schema>

</ s l ave>

<s l av e name=”adjs meta ”>
<schema>($ adj meta ( , $ws$ adj meta ) ∗)</schema>

</ s l ave>

< !−− Prepos i t i ons −−>

<s l av e name=” pr epo s i t i on ”>
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<schema>$word</schema>
<acceptor>

<matcher type = ”verbatim” debug = ”no”>
<verbatim automaton = ” r e s ou r c e s / d i c t i o n a r i e s /matching/ nlq /

p r e p o s i t i o n s . aut ”
match = ”boundary ” s t a r t = ”boundary ” swap = ”yes ” l ower case

= ” yes ”>
</verbatim>

</matcher>
</ acceptor>

</ s l ave>

<s l av e name=”pp word”>
<schema>$word</schema>
<r e j e c t o r>

<matcher type = ”verbatim” debug = ”no”>
<verbatim automaton = ” r e s ou r c e s / d i c t i o n a r i e s /matching/ nlq /

pp word r e j e c to r . aut ”
match = ”boundary ” s t a r t = ”boundary ” swap = ”yes ” l ower case

= ” yes ”>
</verbatim>

</matcher>
</ r e j e c t o r>

</ s l ave>

<s l av e name=”pp”>
<schema>($ p r epo s i t i on (($ ws | [−” ’ ] ) $pp word[−” ’ ] ? ) +(?= , |$ws \ ( ) )</

schema>

</s l ave>

<!−− Verbs −−>

<s l av e name=”ve rb d i c t”>
<schema>$word</schema>

<acceptor >

<matcher type = ”verbatim” debug = ”no”>
<verbatim automaton = ” r e s ou r c e s / d i c t i o n a r i e s /matching/ nlq / verbs

. aut ”
match = ”boundary ” s t a r t = ”boundary ” swap = ”yes ” l ower case

= ” yes”>
</verbatim>

</matcher>
</acceptor >

</s l ave>

<s l av e name=”verb”>
<schema>(( to $ws) ?$ ve r b d i c t )</schema>

</s l ave>

<s l av e name=”verb meta”>
<meta r epor t = ” yes ” name = ”verb”/>

<schema>$verb</schema>

</s l ave>

<!−− Nouns −−>

<s l av e name=”noun d i ct”>
<schema>$word</schema>

<acceptor >

<matcher type = ” l even sh t e i n ” debug = ”no”>
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< l e v en sh t e i n automaton = ” r e s ou r c e s / d i c t i o n a r i e s /matching/ nlq /
nouns . aut ”

phonet i c s = ”no” exact = ”no”
match = ”complete ” s t a r t = ” beginning ”
p r e f i x = ”0” to l e r ance = ”0”>

<qua l i t y type = ”raw” penal ty = ”1” thr esho ld = ”0”/>

</l evenshte in >

</matcher>
</acceptor >

</s l ave>

<s l av e name=”noun”>
<schema>$noun d i ct (?! −)</schema>

</s l ave>

<s l av e name=”sa f e noun d i c t ”>
<schema>$word</schema>

<acceptor >

<matcher type = ” l even sh t e i n ” debug = ”no”>
< l e v en sh t e i n automaton = ” r e s ou r c e s / d i c t i o n a r i e s /matching/ nlq /

sa f e nouns . aut ”
phonet i c s = ”no” exact = ”no”
match = ”complete ” s t a r t = ” beginning ”
p r e f i x = ”0” to l e r ance = ”0”>

<qua l i t y type = ”raw” penal ty = ”1” thr esho ld = ”0”/>

</l evenshte in >

</matcher>
</acceptor >

</s l ave>

<s l av e name=”sa f e noun”>
<schema>$s a f e noun d i c t (?! −)</schema>

</s l ave>

<s l av e name=”proper noun”>
<schema>$capword (($ ws |−)$capword ) ∗ (\ . com | ! ( ?= , ) )?</schema>

</s l ave>

<!−− Phrases in quotes −−>

<!−− E. g . ”Hal f Blood Pr ince ” , ”Gone with the Wind” −−>

<s l av e name=”phrase”>
<schema >(” .∗”)</schema>

</s l ave>

<!−− E. g . ”1989” , ”300 ,000” , ”256 000” , ”512.000” −−>

<s l av e name=”numex”>
<schema>$pre \d +( [ \ . , ] \d + | ( [ \ . , ]\d{3}) ∗) ?$ post</schema>

</s l ave>

<s l av e name=”any noun”>
<schema>($capword |$ noun |$ phrase |$numex)</schema>

</s l ave>

<!−− NPs captur ing long phrases , i n c l ud i ng PP and l im i t ed subphrases −−>

<s l av e name=”np pre”>
<schema>($ a r t i c l e ?($ ad j e c t i v e ( , $ws$ ad j e c t i v e ) ∗$ws) ?)</schema>

</s l ave>

<!−− The $ sa f e noun negat ive look−ahead at the end i s ther e to as sur e
we capture the l onge s t p o s s i b l e NP.−−>
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<!−− Otherwise s l a v e s r e f e r r i n g to t h i s one might be s a t i s f i e d with a
sho r t e r NP, and i n t e r p r e t the r e s t o f the phrase in another
context . −−>

<s l av e name=”np part”>
<schema>($ np pre ($ proper noun |$ noun ) ($ws$noun ) ∗($ws$abbrword ) ? ( ? ! $ ws

$ sa f e noun ) )</schema>

</s l ave>

<!−− NP inc l ud i ng ” o f ” , e . g . ” p r e s i d en t o f the United States ” −−>

<s l av e name=”np”>
<schema>($ np part ($ws( o f | on | i n ) $ws$ a r t i c l e ?$ np part ) ?)</schema>

</s l ave>

<s l av e name=”np common part”>
<schema>($ np pre ($ proper noun $ws) ?$noun ($ws$noun ) ∗($ws$abbrword )

? ( ? ! $ ws$ sa f e noun ) )</schema>

</s l ave>

<s l av e name=”np common”>
<schema>($np common part ($ws( o f | on | i n ) $ws$ a r t i c l e ?$ np part ) ?)</

schema>

</s l ave>

<!−− NPs captur ing shor t phrases , e . g . no PP or subphrases −−>

<s l av e name=”np sho r t p r e”>
<schema>($ a r t i c l e ?($ adjs meta $ws) ?)</schema>

</s l ave>

<s l av e name=”np shor t”>
<schema>($any noun (($ ws |−)$any noun ) ∗)</schema>

</s l ave>

<s l av e name=”np prep”>
<schema>($ p r epo s i t i on ($ws$ stopword ) ∗$ws$ np sho r t p r e $np prep meta )</

schema>

</s l ave>

<s l av e name=”np prep meta”>
<meta r epor t=”yes ” name=”np prep”/>

<schema>$np short </schema>

</s l ave>

<s l av e name=”np subj”>
<schema>($ np sho r t p r e $np subj meta )</schema>

</s l ave>

<s l av e name=”np subj meta”>
<meta r epor t=”yes ” name=”np subj”/>

<schema>$np short </schema>

</s l ave>

<s l av e name=”np verb”>
<schema>($ np sho r t p r e $np verb meta )</schema>

</s l ave>

<s l av e name=”np verb meta”>
<meta r epor t=”yes ” name=”np verb”/>

<schema>$np short </schema>

</s l ave>
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<s l av e name=”np type”>
<schema>($ np sho r t p r e $np type meta )</schema>

</s l ave>

<s l av e name=”np type meta”>
<meta r epor t=”yes ” name=”np type”/>

<schema>$np short common</schema>

</s l ave>

<s l av e name=”vp”>
<meta r epor t=”yes ” name=”vp”/>

<schema>$verb</schema>

</s l ave>

<!−− Auxi l i a ry verb c l a s s e s −−>

<!−− Tenses o f ” to be” −−>

<s l av e name=”be”>
<schema>( i s | are |w( as | er e ) )</schema>

</s l ave>

<!−− Tenses o f ” to do” −−>

<s l av e name=”do”>
<schema>(do ( es | i d ) ?)</schema>

</s l ave>

<!−− Tenses o f ” to get ” −−>

<s l av e name=”get”>
<schema>(g ( o | e ) t ?)</schema>

</s l ave>

<!−− Tenses o f ” to have” −−>

<s l av e name=”have”>
<schema>(ha ( ve | s | d) ?)</schema>

</s l ave>

<!−− Any aux i l i a r y verb −−>

<s l av e name=”auxverb”>
<schema>($be |$ do |$ get |$ have )</schema>

</s l ave>

<!−− I n t e r r o g a t i v e words −−>

<s l av e name=”who”>
<schema >([Ww] ho (m| se ) ?)</schema>

</s l ave>

<s l av e name=”when”>
<schema >([Ww] hen )</schema>

</s l ave>

<s l av e name=”where”>
<schema >([Ww] here )</schema>

</s l ave>

<s l av e name=”what”>
<schema >([Ww] hat )</schema>

</s l ave>

<s l av e name=”which”>
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<schema >([Ww] h ( at | i ch ) )</schema>

</s l ave>

<s l av e name=”why”>
<schema >([Ww] hy )</schema>

</s l ave>

<s l av e name=”how”>
<schema >([Hh ] ow)</schema>

</s l ave>

<master name=”dummy”>
<schema>dummy</schema>

</master>

</pattern>

</matcher>
</con f i gu r a t i on>
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A.6 Examples of extracted hyponyms

B o n f i g l i : s t y l e o f o l d e r Perugian pa i n t e r s
Bonf i r e n i g h t : s p e c i f i c t imes o f year
Bong:number
Bonham Road:myriad o f former Governors
Boni face :names
Bo n i f a c i o : t o u r i s t ar eas
Bon i f ac i o Bembo:miniatur i s ts o f Ferrara schoo l
Bonin I s l and s : g enu s o f t r e e nat ive
Bonington H a l l : h a l l s o f r e s i d ence
Bonn:Global protes t s , g l oba l protes t s , c i t i e s , demonstrat ions
Bonna r oo : f e s t i va l s
Bo n n e v i l l e : p r a i r i e s o f west , e s t a b l i s h i n g communities
Bonn i e : c r im ina l s , nicknames
Bonnie Joan:poems
Bonnie R a i t t : a r t i s t s
Bonnie S t : a r t i s t s
Bonnie T y l e r : a r t i s t s
Bonnyr igg:hous ing developments in ar eas
Bono:mythology o f Akan people
Bonobo ap e s : s p e c i e s
Bonus march on Wash ington : r i s i ng
Bonwit Tay l o r : bu s i n e s s e s
Bonzo Dog Doo Dah Band:only sour ce o f a r t i s t s
Bonzo Goes:movies
Boobytrap : l abe l s
Booch: techniques
Boogie Nights :appeared f i lm s
Book:commercial book clubs , works , document , p a r a l l e l
Book Exca l ibur : comics
Book Talk:groups
Book o f Abraham: s i gn i f i cant Latter Day Saint documents
Book o f Armagh: insular manuscr ipts
Book o f Da n i e l : e s c h a t o l o g i c a l s e c t i o n s o f B ib l e
Book o f Durrow:moti f s
Book o f Enoch:They o f f e r examples
Book o f Exodus:modern h i s t o r i a n s due
Book o f Fermoy:century manuscr ipts
Book o f Gen e s i s : e s t a b l i s h ed c h r i s t i a n doctr ines , t r a d i t i o n s
Book o f Gospe l s : i l l um ina t ed cod i c e s
Book o f Henoch:extra−canon i ca l books o f Judaism
Book o f J a s h e r : t r a d i t i o n s
Book o f Ke l l s : impor tan t books , t r ea su r e s , wel l−known manuscr ipts
Book o f Mormon:LDS s c r i p tu r e , names in LDS s c r i p tu r e , volumes o f s c r i p t u r e
Book o f Reve l a t i on : p r ophec i e s
Book o f Wisdom: inf luenced Alexandrian w r i t e r s
Booker : i n teg ra ted groups
Booker T. Wash ington : exp lo i tat i on o f Congo , H i s t o r i c a l f i g u r e s
Book l e t s : u s e f u l mate r i a l s
Books:media , mater i a l s , i tems
Martins Cr e ek : l o ca t i on s
Marty Fr i edman: car eer s o f dozens
Mar tyn :wr i te r s
Martyrdom of S eb a s t i a n : s ub j e c t s
Marvel:CCA sponsors , i n t roduct i on , s c r i p t mainstream comics , Large comic

book pub l i sher s , companies
Marvel Comics : r ecogn i zab l e work on var i ous comic books , p l aces , t i t l e s ,

pub l i c a t i on s , character s , members o f comic indus try r e l e a s e , comic−book
houses

Marvel D i r e c t o r y : o f f i c i a l Marvel pub l i c a t i on s
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Marvel Knights :par t o f Marvel Universe
Marvel Team−Up:Men character s , part o f Marvel Universe
Marvel UK:imprints
Marvel Univer s e : shar ed un i v e r s e s
Marvel c om i c s : c o r po r a t e pub l i s h e r s
Marvel vs:number o f f i g h t i n g games
Marvel l Technology Group:emerging companies
Marve l l ou s : t ime l e s s s i n g l e s
Marvels:number o f d i f f e r e n t t i t l e s
Marvian:Taj iks ance s to r s
Marv in :depr es s i ve cha r a c t e r s in l i t e r a t u r e
Marvin Gaye:hometown star s , famous musicians , concept albums , a r t i s t s
Marvin Hand f i e l d : i s l a nd s
Marvin Minsky: robot bodies , a r t i f i c i a l i n t e l l i g e n c e , f i g u r e s in computer

s c i e n c e
Marwar i :Rajasthani languages
Marx:phi losophers , German phi l o sopher s , Hegel ian ph i l o s opher s , s tudents ,

th i nke r s
Marx Brother s : comed ic s t a r s o f day , en t e r t a i n e r s , r ad i o per formers , var i ous

MGM f i lms , movies , f i lm s
Marxian:Modern va r i an t s o f Marxist economics
Marxian s c h o o l s : a n a l y s i s o f p o l i t i c a l a c t i on s
Marxism:Some i d e o l o g i e s , d i v e r s e t r ad i t i on s , economic ideo l ogy , views ,

th eo r i e s , c e r t a i n western s choo l s o f economic thought , ways o f thinking ,
cases , unr e l a ted f i e l d s o f app l i ed e th i c s , f o r e i g n i d e o l o g i e s , systems

Marxism−Len in i sm:var i ous d e r i v a t i v e s
Marxist Platform of BSP:Bulgarian groups
Marxist ph i l o s ophy : que s t i on s
Marxist theory : f o rms o f e xp l o i t a t i o n
f l i p p e r s : s t a nd a r d p i nb a l l parapherna l i a
f l i p s : a e r i a l s , a c r oba t i c maneuvers
f l i r t a t i o n :m e an s o f cooperat i on
f l o a t : b a s i c data types
f l o a t e r s : v i s u a l d i s turbances
f l o a t i n g : s h o r e bases , macroeconomic reforms o f Hawke government , water

c l o s e t improvements , e f f e c t s , monetary reforms
f l o a t i n g exchange rate : economic reforms
f l o a t i n g ke l p : f l o t s am
f l o a t i n g p o i n t : f e a t u r e s
f l o a t i n g point ar i thmet i c : advanced f e a t u r e s
f l o a t i n g point math s uppo r t : f u n c t i o n a l i t y
f l o a t i n g point numbers:numerous advances
f l o a t i n g point un i t : s e p a r a t e component
f l o a t i n g p r ac t i c e : two volume book
f l o a t i n g r e s e r v e : f i f t e e n d i v i s i o n s
f l o a t i n g r i b s : s o f t e r par ts o f body
f l o a t i n g s un g l a s s e s : r e l a t e d gear
f l o a t i n g t r e e trunks:man−made means
f l o a t i n g−point numbers:attempt
f l o a t i n g−point un i t s o f mainframe:computers
f l o a tp l ane s :Reconna i s ance a i r c r a f t
f l o a t s : f l o a t s
f l o ck : cogna t e s , thousands o f people
f l o c k o f one thousand f l amingos : spec imens o f magn i f i cent b i rd l i f e
f l o ck s : c ame
f l o c k s o f b i r d s : c r e a t u r e s
f l o c k s o f thousand: favoured s i t e s
f l o g g i n g : p r oh i b i t e d b r u t a l i t y in punishment , acts , forms o f impact play
f l o g g i n g Boudicca:number o f a t r o c i t i e s
f l o o d : n a t u r a l d i s a s t e r , emergencies , response , catas t rophe s
f l o od c o n t r o l : s e r v i c e s
f l o od sear ch r ou t i n g : d e t e rm in i s t i c r out ing scheme
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f l ooded basements :water damage
f l ooded f i e l d s : f r e s h water
f l ooded f i e l d s in winter :wet open lowlands
f l ooded qua r r y : l o c a l body o f water
f l o o d i n g : s o u r c e s , convent i ona l methods , behaviour therap i e s , support views

o f l a r g e l o c a l f l o o d s
f l o od i ng o f l a r g e ar eas : env i r onmenta l e f f e c t s
f l o od i ng o f r i v e r : s u c c e s s i v e r e cu r r ence s o f s ea s ona l event
f l o odp l a i n s : f ound , wel l−watered areas , va r i e ty o f open wet ar eas
f l o o d s : l o s s o f human l i f e , farmers , c a l am i t i e s , high v i s i b i l i t y , f r equent

natura l d i a s t e r s , hard times , During natura l d i s a s t e r s , na tura l
d i s a s t e r s , c a s e s o f emergency s i tua t i on s , l i v i n g quar ter s , even natura l
d i s a s t e r s , Mass emergencies , d i s a s t e r s , natura l phenomena

f l o od s in M i s s i s s i pp i : n ews o f l o c a l d i s a s t e r s
f l o o r : f l a t sur f ace , f u n c t i o n a l sur f ace , back on f i rm sur f ace , sur f ace ,

comfor tab l e l e v e l
goa t s : p l an t s , a r t i o d a c t y l herb ivor es , domest ic mammals , animals , l i v e s t o ck ,

mammals , Some forms o f l i v e s t o ck , descr ibed f a n t a s t i c animals on Moon ,
going , peop l e s us ing pigs , even−toed ungulates , widespread use o f
l i v e s t o ck , Other graz ing spec i e s , p r o c e s s e s goods , va r i e t y o f l i v e s t o ck ,
nu t r i t i o n o f ruminant animals , r a i s e smal l l i v e s t o ck , wi ld animals ,

herb ivor es , Other ruminant s p e c i e s
g o b l e t s : c o l l e c t a b l e s e t o f memorabi l ia
gob l in f o l k : c r e a t u r e s
gob l i n s :m i s ch i evou s demons , f a n t a s t i c a l c r eatur es , s t o r i e s , cos t s , races ,

mythical beings , t r a d i t i o n a l f antasy elements
gobo : a c c e s s o r y
g o b o s : l i s t
god : supernatu ra l concepts , supernatura l being
god complexes:number o f not i ons
god o f f i s h : s e a c r ea tu r e s
god o f metal s :underground items o f gr eat value
goddess :one , time
godde s s e s : b e i ng s
god l i k e be i ng : h i ghe r s t a t i o n
gods : t ime commitments permit one , v a r i e t i e s , archetypes , mythical sub j ect s ,

supernatura l beings , supernatura l concepts , a t t r i b u t e personhood , same
sor t , supernatura l ag enc i e s

gods o f Hinduism:mythology
gogg l e s : f o rms o f eye p r o t e c t i on
g o i n g : a c t i v i t i e s , b i gger goal , tasks , contemporary events , w r i t i ng on

chalkboard , going , use o f GOTO ins t r uc t i on s , i n q u i r i e s
going back:movies
going in th i ck : dange r
going on thr ee hunger s t r i k e s : s t r u g g l e
going swimming:cons idered s imple tasks
g o i t r e : i l l n e s s e s
roya l j ub i l e e s :mark s p e c i a l events
roya l k i tchens o f France : l ands
roya l pa l a c e s :Eng l i s h houses today
roya l p r e r oga t i v e s : cu s toms
roya l p r i n c e s : v a s t co r t eg e
roya l t h r e a d f i n : s p e c i e s
r oya l s : nob l e s , g i g an t i c p r o j e c t o f dra in ing England
r o y a l t i e s : t e rm s
r o y a l t i e s on number :bene f i t s
r oya l ty :mockery o f var i ous top i c s , keep
rubber : important sour ce o f supp l i e s , make products , s yn th e t i c mater i a l s ,

growth in non t r ad i t i ona l primary exports , c on s t r u c t i on mater i a l s , cab l e s
, trade in items , i ndu s t r i e s , t r o p i c a l plants , harves t ing goods , unusual
mater i a l s , mater i a l s , ex t r a c t i v e , odd sk in composition , cash crops ,

e l a s t omer i c mater ia l , e lastomers , demand , contrapt i ons , exo t i c goods ,
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s o f t l ay e r makes , p r o c e s s raw mater i a l s , s p e c i f i c mater i a l s , e l a s t omer i c
mater i a l s , products

rubber band : f a s tener , b inding
rubber bands : t e chno l og i e s
rubber bu l l e t s :weapons , l e t h a l rounds , natura l f o r c e
rubber g l ove s : r ubbe r products
rubber hammers:things
rubber mat : s l i p su r f a c e
rubber p l a n t s : p l a n t s
rubber−based p r oduc t s : ho s t
r ubb i n g : s o f t t i s s u e s o f body , show behaviours , responds
r ube l l a :mate r na l problems , common chi ldhood d i s e a s e s
rubidium:new elements
rubies :gems , A r t i f i c i a l l y produced gemstones , center o f gemstone mining
ruby : S eve r a l gemstones , p r e c i ou s stones , t r a c e s o f chromium
web s e r v e r : I n t e r n e t device , so f tware program , s e r v e r model
web s e r v e r so f tware :back−end database so f tware
web s e r v e r s : I n t e r n e t s e r v i c e s , a pp l i c a t i o n s
web s e r v i c e s : s e r v e r −s i d e app l i c a t i on s , new markets
web s i t e c on t e n t : c r e a t i v e works
web s i t e s : d i s c u s s i o n s , data , computer−based media , r e s ou r c e s
web t o o l : r e p e r t o r y g r i d
web t r a f f i c : c ommun i ca t i on channel
webbed hands :var i ous f e a t u r e s
w eb e r : d i s t r i b u t i n g standards
webmaster : admin i s t r at i ve person
webpage: resource
webpages : e s tab l i shment o f a pp l i c a t i o n s
webs : ar eas
webs in woodp i l e s : p l a c e s
webs i t e : p r o j e c t , p ub l i c i t y mater ia l , I n t e r ne t s erver , OR p r o f e s s i o n
webs i te a c c e s s : p r omot i ona l i tems
webs i te o f student newspape r : o r gan i za t i ona l webs i te s
w e b s i t e s : f o r e i g n sources , f i c t i o n
webz i n e : pub l i c a t i on s
wedd i ng : s im i l a r occas ion , set , attendees , s e r v i c e , event , pr i o r , Punjabi

s o c i a l occas ion , joyous occas i on
wedding band : f unc t i ona l a c c e s s o r i e s
wedding bands:wearing , a pp l i c a t i o n s in consumer products
wedding c e l e b r a t i o n s : p l a y i n g music
wedding d r e s s : p a r t o f very formal o u t f i t
wedding f e a s t s : i n du l g e n t a f f a i r s
wedding o f Bouncing Boy:events
wedding o f Char l e s :major roya l events
wedding r e c e p t i o n : s o c i a l o c ca s i on s
wedding r e c ep t i on s : S cou t a c t i v i t i e s , short−term renta l , formal events
wedding r i n g s : p e r s o n a l nature
wedd i ng s : c e l eb r a t i on s , wor ldly a c t i v i t i e s , l a r g e s o c i a l gather ings , s im i l a r

s e r v i c e s , s p e c i a l events , church , gather ings , d e s s e r t o f choice ,
f unct i ons , outdoor s o c i a l events , Jewish c e l eb r a t i on s , l i f e −cyc l e events
, formal occas i ons , events , days o f r e l i g i o u s ceremonies , intended ,
pub l i c use , l a r g e funct i ons , community events , ho l i days , s p e c i a l
po r t r a i t s , women in formal s i tua t i on s , extra s p e c i a l occas i ons ,
ceremonies , s o r t s o f Beti gather ings , number o f s o c i a l gather ings ,
important ceremonies , s p e c i a l occas i ons , i n d i v i d u a l s


