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Abstract

In this thesis I investigate the gender gap in the discouragement effect of
losing. I analyse data from the Abel competition, which is an advanced
mathematical competition for upper secondary students in Norway. Girls have
a lower participation rate than boys and perform significantly worse conditional
on participating. To study the gender gap in discouragement, I rely on the multi-
round structure of the Abel competition, where each upper secondary student
can participate for a maximum of three consecutive years. Using a regression
discontinuity design, I estimate the treatment effect of advancing to the second
round of the competition on the probability of participating the following year.
My results provide evidence of a positive and statistically significant treatment
effect for girls, but not for boys. These results imply the existence of a gender gap
in discouragement.
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Chapter 1

Introduction

Girls in Norway, and most OECD countries, have on average higher levels of
academic achievement than boys (Borgonovi et al., 2018). They obtain higher
grades in the most difficult mathematics subjects in upper secondary school in
Norway, but there is still a lack of women succeeding within the STEM (Science,
Technology, Engineering and Mathematics) fields. In Norway, women only make
up 25 per cent of the work force within the non-medical STEM fields (Foss, 2020)
and 23 per cent of the professors within mathematics and the natural sciences
(NIFU, 2020b).

One explanation that has been suggested for this paradox is that women
are inherently less competitive and more easily discouraged by disappointment.
Succeeding in business or academia requires participating in competitive settings
in order to advance and not quitting or changing paths as a reaction to losing.
Gender differences in these attributes might therefore partially explain why fewer
women succeed in STEM fields, and within business and academia in general.
Both experimental and observational research have found evidence in support of a
gender gap in these attributes. Evidence from laboratory experiments show that
girls are less likely to select into competitive settings (Niederle & Vesterlund, 2007;
Saccardo et al., 2018), perform worse once in competitive settings (Gneezy et al.,
2003; Shurchkov, 2012) and are more discouraged by losing (Buser & Yuan, 2019;
Gill & Prowse, 2014). Observational research has found that women that do not
obtain an A in a class are more likely to drop out of an academic path within that
field than men (Katz et al., 2006; Owen, 2010), and that tournament participation
and performance are more affected by previous performance for female athletes
than for male athletes (De Paola & Scoppa, 2017; Legge & Schmid, 2013).

Both Buser and Yuan (2019), and Ellison and Swanson (2021) use a regression
discontinuity (RD) design to study the gender gap in this discouragement effect in
mathematics competitions in the Netherlands and the United States, respectively.
The former study finds that not advancing to the second round of the competition
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decreases the probability of girls choosing to compete again the following year by
between 10 and 20 percentage points and the latter study finds a reduction in this
probability of 5.1 percentage points. When it comes to the estimates for boys the
two papers find opposing results; Buser and Yuan (2019) find no discouragement
effect for boys, and Ellison and Swanson (2021) find a reduction in the probability
of competing again next year of 2.9 percentage points for boys.

In this thesis I aim to re-investigate this topic in a Norwegian setting using
data from the Abel competition, which is a an advanced mathematical competition
for upper secondary students in Norway. According to The Global Gender Gap
Index1, Norway is the country in the world with the third lowest gender gap with
an index of 0.849 in 2021 (World Economic Forum, 2021). The United States and
the Netherlands, the settings studied by the aforementioned papers, are ranked
number 30 and 31 with scores of 0.763 and 0.762, respectively. Hence, this thesis
adds to the literature by studying this topic in a country that is considered to
have one of the highest levels of gender equality in the world. Girls have a lower
participation rate with boys making up 65 per cent of the participants on average.
They also perform significantly worse conditional on participating and there has
only been two female winners since 2007. After participating, girls are also less
likely to participate again the following year independently of what score they
obtained. Gender differences within advanced mathematics are clearly still present
in Norway and studying what causes these differences is therefore highly relevant.

The Abel competition consists of two rounds and a final, where the top
performing decile from the first round move on to the second round. Similarly
to Buser and Yuan (2019) and Ellison and Swanson (2021), I use an RD design
to study whether there is a discouragement effect of not advancing to the second
round on the probability of participating next year, and whether this effect differs
between boys and girls. An RD design makes it possible to identify a treatment
effect by comparing observations that lie right below and right above a cutoff
for receiving a treatment. The treatment in this setting is defined as knowing
you made it to the second round of the competition. Observations that lie close
to the cutoff should be similar on average and the observations below the cutoff
can therefore be used as a control group. If the expected potential outcomes are
continuous around the cutoff, a jump in the outcome variable at the cutoff provides
evidence of a significant effect of the treatment.

I analyse data from the Abel competition between 2011 and 2019. There is
a different cutoff each year depending on the difficulty of the test that year. I
therefore use a multi-cutoff RD design in order to take advantage of the data from
all years. Three different methods are employed to combine the year-specific data

1The Global Gender Gap Index is created by the World Economic Forum and is based on
gender gaps within economic opportunities, education, health and political leadership.

2



into one estimate for each gender. Firstly, I use a pooled regression where the
running variable is pooled and centered around the cutoff, and then the data
is treated as a standard single-cutoff RD design. Secondly, I use a weighted
regression where I take a weighted estimate of the year-specific estimates using
the number of observations relative to total observations as the weights. Lastly,
I use a stacked approach that weigh the year-specific estimates by the inverse of
the relative variance of each year to the sum of these year-specific variances.

I find evidence of a positive and significant effect for girls of advancing to the
second round on participation next year using all three methods; the estimates
range between 15.4 and 25.3 percentage points. These estimates roughly translate
to a 37 to 60 per cent increase in the probability of competing next year if the
female student advances to the second round for participants that score close to
the cutoff. This encouragement effect of making it to the second round can also be
interpreted as a discouragement effect for the students that did not advance to the
second round, meaning that students that scored right below the cutoff are between
37 and 60 per cent less likely to compete again the following year. The estimates
for boys are also positive, but smaller and not statistically significant. The gender
difference in this encouragement effect is therefore positive for all specifications.
However, when testing for statistical significance of the gender difference, it is only
significantly different from zero for the weighted and stacked specifications.

This thesis is organised in the following way: In Chapter 2, I present research
aiming to explain why girls have lower participation rates and perform worse in
the Abel competition than boys. I have divided this chapter into three sections
aiming to study three different potential explanations, which are gender gaps in
mathematics, competitiveness and discouragement. In this thesis I specifically
investigate the gender gap in discouragement empirically. Chapter 3 contains a
description of the process of constructing my data sample and presents the data
with various descriptive statistics. In Chapter 4, I present the framework of an
RD design and discuss the estimation of the treatment effect in my analysis, as
well as present validity checks of the assumptions the estimation is based on. The
results are presented in Chapter 5 using RD plots and regression tables. Lastly, I
conclude and provide some policy implications in Chapter 6.
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Chapter 2

Literature Review

2.1 Gender Gap in Mathematics
In this section I will discuss the gender gap in mathematics and how it develops
as students reach higher levels of education and in their careers. Girls in Norway,
and most OECD countries, have higher levels of academic achievement on average
than boys, and the gender gap has increased (Borgonovi et al., 2018). This has
been a topic of recent public discussion, both in Norway and abroad. The report
“New chances – better learning” explores the gender gap in Norwegian schools
and has received a great deal of attention after it was published in 2019 on order
by the Norwegian Ministry of Education and Research. It presented evidence of
girls obtaining higher grades than boys in all subjects except physical education,
more boys dropping out of upper secondary school than girls and more women
than men obtaining higher education (Ministry of Education and Research, 2019).
Girls score on average 0.3 points above boys in R1 and R2 (on a 6 point scale),
which are considered to be the most difficult math subjects of upper secondary
school (Norwegian Directorate for Education and Training, 2022). However, girls
do have a slightly lower participation rate making up approximately 45 per cent
of the class.

Some education researchers argue that the portrayal of the gender gap in the
public debate has been too simplistic, specifically in regards to girls within high
level mathematics that might enable them to pursue further studies and careers
within the STEM subjects (Foyn, 2019). Female participation in mathematics
decreases as they reach higher levels in academia. 40 per cent of the students at
the Faculty of Mathematics and Natural Sciences at the University of Oslo are
female, but this percentage varies with the program of study; the share of female
students is 70 per cent for life sciences and pharmacy and 20 per cent for physics,
mathematics and computer science (Snickare & Holter, 2021). Women earned
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39 per cent of the doctoral degrees in mathematics and natural sciences (NIFU,
2020a) and make up only 23 per cent of the professors within these subjects (NIFU,
2020b) in Norway in 2020. Female employees make up 44 per cent of the work
force within STEM fields, but when only considering non-medical STEM fields the
share drops to 25 per cent (Foss, 2020).

Traditionally mathematics has been perceived as a male domain, but this is
in the process of changing (Reisel et al., 2019). Plenty of research has been done
on this topic studying students of different ages, from different locations and at
different times. Researchers find evidence of students perceiving mathematics as
a male domain among primary school students in Switzerland (Keller, 2001) and
Israel (Forgasz & Markovits, 2018), lower secondary school students in Sweden
(Brandell & Staberg, 2008) and students in higher education in Norway (Thun,
2018). Betz and Sekaquaptewa (2012) argue that women in the STEM fields
are labeled as unfeminine, which could discourage female students to choose to
study mathematics in their higher education. Contrary to these studies, some
researchers find no evidence of such a perception, such as Kurtz-Costes et al.
(2014) for American students in primary and lower secondary school, and Van
der Vleuten et al. (2016) for Dutch secondary school students. Math anxiety is
another aspect that affects participation and performance in mathematics, which
is defined by Devine et al. (2012, p. 1) as "a state of discomfort associated with
performing mathematical tasks". A great deal of research has found that girls
experience a higher level of math anxiety than boys in primary school (Gunderson
et al., 2018), lower secondary school (Devine et al., 2012; Else-Quest et al., 2010)
and upper secondary school (Xie et al., 2019). However, Ma and Xu (2004) find no
gender difference among upper secondary students. The results found regarding
the gender difference in the effect of math anxiety on performance are mixed
(Devine et al., 2012; Ma & Xu, 2004; Wang et al., 2020).

As discussed above, there is a lack of women succeeding in STEM fields, which
could have an effect on how girls perform in high level mathematics. According
to cognitive social learning theory, role models can have a significant impact on
academic choices by showing younger students that a career in STEM subjects is
a valid possibility for girls (Else-Quest et al., 2010). Several studies have found
evidence of female role models within the STEM field increasing enjoyment of
mathematics and the probability for students to identify themselves with the
STEM field (González-Pérez et al., 2020; Young et al., 2013). However, Betz and
Sekaquaptewa (2012) found that having a feminine STEM role model actually
reduces the interest of girls in mathematics because the combination of femininity
and success within a STEM field appears too unattainable.

Mathematics being considered as a male domain, a higher level of math
anxiety among girls and a lack of female role models within advanced mathematics
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might all be explanations for why fewer girls participate and succeed in the Abel
competition. However, the fact that girls obtain higher grades on average than boys
in mathematics in upper secondary school implies the existence of a gender gap in
other factors, such as competitiveness and discouragement, which is discussed in
the two following sections.

2.2 Gender Gap in Competitiveness
This section presents experimental research on gender differences in competitive-
ness and discusses the results. A gender gap in competitiveness might explain why
fewer women choose more competitive career paths and why few women reach top
positions in business and academia (Buser & Yuan, 2019; Gill & Prowse, 2014;
Gneezy et al., 2003). Some researchers have measured the performance of both
men and women carrying out different kinds of tasks under varying levels of com-
petitiveness, and have found that increasing the level of competitiveness increases
performance for men and not for women (Gneezy et al., 2003; Günther et al., 2010;
Shurchkov, 2012). However, this research is carried out using tasks considered to
be male oriented, when including gender neutral tasks and female oriented tasks
the results change. Both men and women increase their performance with the
level of competitiveness for the gender-neutral task and only women increase their
performance with the level of competitiveness for the female oriented task (Gün-
ther et al., 2010). These results might be explained by the concept of stereotype
threat, which is a psychological threat that arises when one is in a situation where
a negative stereotype of the group one belongs to applies and can affect one’s
performance (Steele & Aronson, 1995). Hence, women might perform worse in
competitive settings where they think they will lose because the task is considered
to be male oriented, which causes women to be less confident (Bordalo et al.,
2019). This might partially explain why girls perform worse in the Abel competi-
tion than boys as high level mathematics often is considered to be a male domain
as discussed in Section 2.1.

Another aspect of competitiveness is the choice of entering into competitions,
which can be researched by studying how individuals self-select into environments
of varying levels of competitiveness. Experimental research has found that men are
twice as likely to choose a competitive setting than women (Niederle & Vesterlund,
2007), and the share of women choosing to compete decreases as the level of
competitiveness increases (Saccardo et al., 2018). These results imply that women
experience a disutility of being in a competitive setting. However, some studies
find that this disutility can be compensated for by increasing the expected payoff
of winning (Datta Gupta et al., 2013; Ifcher & Zarghamee, 2016; Petrie & Segal,
2015).
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This gender gap in competitiveness is likely to partially explain why boys
make up about 65 per cent of the students participating in the Abel competition.
However, to what extent girls and boys drop out of the competition will also have
a significant effect on the number of girls participating. Students might drop out
for different reasons, but one explanation is that they are discouraged after being
disappointed by not advancing to the second round. Discouragement of losing is
closely related to competitiveness, but is here explored in its own section as it is
the specific effect I test for empirically in this thesis.

2.3 Gender Gap in Discouragement
This section discusses research done on the topic of gender differences in
discouragement as a reaction to losing. Some experimental research has been
done on the topic and found that women are more discouraged by losing than
men, which can affect both participation and performance in the next round or
next competitive setting. Buser (2016) carries out a laboratory experiment with
tournaments where two people compete in an arithmetic task. After finding out
their score in the first round, participants choose a performance target for the
next round; a higher target leads to a higher reward, but if they do not reach the
target, they earn nothing. The results show that men react to losing by choosing a
higher target the next round and women react by lowering their performance in the
next round. Similarly, Gill and Prowse (2014) carry out a similar lab experiment
and find that women reduce their effort in the next round after losing. Men only
reduce their effort if the prize at stake is large enough. Both these studies find
that women react to a loss by lowering their performance, but losing can also
affect the probability of competing again. Buser and Yuan (2019) carry out a
math competition in a lab and find that girls are less likely than boys to choose
to compete again after losing in the first round.

Observational research has also been done on the topic by studying different
competitive settings. Owen (2010) uses an RD design to study gender differences in
the effect of receiving an A in introductory economics classes on choosing to major
in economics later. She finds evidence of an encouragement effect among female
students; receiving an A as a final grade was associated with a significant increase
in the probability of choosing economics as your major, even when controlling for
the percentage grade achieved. Similar results have been found among Bachelor’s
students studying computer science (Katz et al., 2006).

Evidence of a gender gap in discouragement of losing has also been found within
sports. Legge and Schmid (2013) use an RD design to study competitive alpine
skiers and their results suggest that missing the podium by a very small margin
has a significant negative effect on ensuing race times, and the effect is larger
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for female skiers compared to male skiers. Similar results are also found within
tennis; female tennis players are more likely than male players to play poorly in
their second set if they lose the first set, and this gender gap increases in high
stake matches (De Paola & Scoppa, 2017). However, some research do not find
any evidence of a gender gap in the reaction to disappointment. Both male and
female tennis players are more likely to participate in tournaments after they have
performed well (Wozniak, 2012). Similarly, Rosenqvist (2019) find that both male
and female golf players perform worse in the next tournament after experiencing
failure. Competitive sports are generally divided by gender and hence these results
do not necessarily apply to competitions that are mixed-gender because of how
individuals might be affected by the gender of their competitor as suggested in
Section 2.2.

It is therefore useful to study competitions with both male and female
participants, such as Buser and Yuan (2019) and Ellison and Swanson (2021)
do. These papers are based on the Dutch Math Olympiad and the American
Mathematics Competition respectively, which are both similar competitions to the
Abel competition. All these competitions occur every year and are used to select
the representatives for their respective countries to compete in the International
Mathematics Olympiad. The criteria for advancing from the first to the second
round of the competitions are very similar for the Dutch Math Olympiad and the
Abel competition as the cutoff score vary by year depending on the difficulty of the
test. The rules are more intricate for the American Mathematics Competition as
they consist of multiple paths to qualify for the second round. Another difference
between the studies is that Ellison and Swanson (2021) have a significantly larger
sample with more than 100,000 observations compared to Buser and Yuan (2019)
that have about 11,000. They are therefore able to include more observations
within the bandwidths used in their analysis, which increases the preciseness of
their estimates. The data I use in my analysis of the Abel competition consists of
approximately 30,000 observations, which is more than Buser and Yuan (2019), but
less than Ellison and Swanson (2021). The structure of these three competitions
provide an appropriate setting to implement an RD design. Both these papers
analyse the effect of scoring right above the cutoff on participation next year.
Buser and Yuan (2019) find that not advancing to the second round decreases the
probability of girls choosing to compete again the next year by between 10 and 20
percentage points, and they find no evidence of such an effect for boys. Ellison and
Swanson (2021) find evidence of an effect for both boys and girls. Their estimate of
losing on the probability of participating next year is a reduction by 5.1 percentage
points for girls and 2.9 percentage points for boys. A comparison of these results
to the results of my analysis is provided in Section 5.2.

Many of the studies presented in this section find substantial gender differences

8



in discouragement, but there is a lack of knowledge about the mechanisms behind
it. Buser and Yuan (2019) suggest that families or teachers might react differently
to loss in the Dutch Math Olympiad depending on whether the student is a boy
or a girl. However, they also point out that they find the same results in the lab
experiment where there was no influence from others. Ellison and Swanson (2021)
argue that high-achieving girls are likely to have more skills and talents outside
of mathematics compared to boys, and therefore choose to focus on these other
skills when their pursuit of mathematics seems less likely to succeed. There is also
evidence from the psychology literature trying to explain these gender differences.
Ryckman and Peckham (1987) find that girls are less likely to attribute success
in mathematics to their own ability than attributing failures to their own ability.
They find the same pattern to a lesser extent for boys, and that in general boys
attribute success to their own ability more often than girls. These findings can
partially explain the gender gap in reactions to losing; if girls fail, they are more
likely to believe that they are not able enough while boys are more likely to believe
that external factors caused the failure, and are hence more likely to try again next
time.
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Chapter 3

Institutional Setting and Data

In this chapter, I will present the data used in this analysis. Section 3.1 explains
how the Abel competition works. In Section 3.2, I discuss the construction of my
data sample and the limitations of my data. Lastly, in Section 3.3 I present some
descriptive statistics about the gender gap in the Abel competition.

3.1 The Abel Competition
The Abel competition is an annual mathematics competition for students in upper
secondary school in Norway and is owned by the Norwegian Mathematical Society.
In this section, I will review the rules of the competition and describe the process of
competing. The competition was arranged for the first time in 1921, and since then
it has had varying formats and generally a low level of participation. In 1994 the
current structure of the competition was implemented and participation has since
then increased. This structure involves two rounds held locally at upper secondary
schools and a final held at the Norwegian University of Science and Technology
in Trondheim. A cutoff is set after the first round so that approximately the top
decile advances to the second round. The 20 best students from the first two rounds
combined make it to the final and the top students from the final are selected to
compete in the Nordic Mathematical Contest and the International Mathematics
Olympiad. Participation primarily consists of upper secondary students, but lower
secondary students are allowed to participate as well. The test was paper based
until 2018 when a new digital format was introduced. In 2018 and 2019, the
schools could choose whether to carry out the test digitally or using pen and
paper, and from 2020 the competition was only carried out digitally. There has
been about 3500 participants each year since 2011, except for a decrease to about
2500 participants in 2020 and 2021. This is likely due to the corona pandemic.

Both rounds are 100 minute tests and calculators are not allowed. In the first
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round there are 20 multiple choice questions; a correct answer is worth 5 points,
a wrong answer is worth 0 points and a question left blank is worth 1 point. The
second round consists of 10 questions, which all have answers that are integers
between 0 and 999. In this round the students get 10 points for a right answer
and 0 points for a wrong or blank answer. Results from the first and second round
are made publicly available online for the top performing third of the students,
they also receive a diploma. Before 2018 the results for all students were sent out
to the teachers at the schools who informed the students about their scores, after
the test went digital the students were able to access their results by using their
student login.

3.2 Data and Sample Construction
In this section I will discuss the process of collecting the data and constructing
the sample used in my analysis. I obtained data covering the years 2011-2019, but
the fact that it was not fully digital those years lead to multiple problems when
matching students over time. When I received the data, all students with the same
first name, last name and school ID had been matched. However, this method
did not identify students that had spelling mistakes in their name, students that
wrote their name differently over time, students who changed schools or students
at schools that merged with other schools. To increase the level of matching of
students, I manually reviewed all the names. Many problems arose concerning
whether similar names were due to spelling mistakes or just two similar sounding
names, and whether students with the same name and different school IDs were
the same students which had changed schools or different students with the same
name. To deal with these challenges, I based my matching on how common the
names were, which I looked up using Statistics Norway’s data base (Statistics
Norway, 2022). I believe that few students were wrongly matched, but it is likely
that some students were not matched. The data therefore slightly underestimates
the share of students competing again the following year. However, because this
underestimation is independent of the score of the students, it should not have a
significant effect on the results of my RD analysis.

Another problem with the data emerged as some of the participating students
studied the International Baccalaureate Diploma Programme, which is a two-year
programme. It is common to refer to those years as IB1 and IB2, but these would
be the 2nd and 3rd year of Norwegian upper secondary school. I therefore requested
data regarding whether students were IB students and changed the grades of those
that had written IB1 and IB2 to grade 12 and 13.

Many observations were also excluded for different reasons. Firstly, I decided to
exclude lower secondary students because there were quite few of them and because
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they are likely to differ from upper secondary students in terms of motivation, skill
and access to the competition. In 2018 and 2019 students did not have to inform
of which grade they were in when they took the test digitally. Therefore there are
no information on grades for the students who participated digitally, but for some
students there is information on their birth year from which it is possible to back
out what grade they were in, assuming they were on track. However, there were
still many observations with no information about grade or birth year in 2018 and
2019. I have excluded these observations because my analysis depends on knowing
what grade the students were in to know if they had graduated the following
year and therefore did not compete. There are therfore fewer observations from
2018 and 2019 than there were actual participants. The missing data should be
randomly distributed across the score of the students as it only depended on which
school they attended, and hence should not bias the data. I have therefore decided
to keep 2018 and 2019 in both my descriptive statistics and my analysis in order to
have as much data material to analyse as possible. Some observations from other
years also did not include the grade of the students because the students did not
write it down or due to a mistake when processing the data. I also excluded these
observations.

Furthermore, I removed observations with different genders in different years.
This could be due to mistakes in the data or students who have changed what
gender they identify with. Regardless of the reason, I found it sensible to remove
these observations as they are not relevant for my analysis. Furthermore, there
were a few of the students that had a score for round two even though they were
below the cutoff in round one. I decided to remove these observations as well
because they must be due to mistakes in the data as the students had to score
above the cutoff in the first round to be able to participate in the second round.
After removing all the observations described, which added up to about 2,000
observations, I was left with a data sample of about 30,000 observations. This
data sample is used in both the descriptive statistics in the next section and in the
RD analysis.
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3.3 Descriptive Statistics
In this section, I present descriptive statistics on the data sample. I first present
a table of summary statistics and then line graphs on participation, histograms
of the scores obtained and lastly a graph on the probability of competing next
year. Table 3.1 summarises the sample data and displays the gender differences
in participation and performance. There are almost twice as many boys as girls
that have competed in round 1 between 2011 and 2019, but for round 2 there are
more than four times as many boys as girls. The mean score is about four points
lower for girls than for boys in both rounds. The standard deviation of the score
in both rounds are lower for girls than for boys, meaning that the scores obtained
by girls are more centered around the mean than the scores obtained by boys.

Table 3.1: Summary statistics

Round N Mean Std. Dev. Min Pctl. 25 Pctl. 50 Pctl. 75 Max
Both genders

1 29,071 34.18 13.77 0 25 32 42 100
2 2,777 24.89 19.29 0 10 20 40 100

Gender: Female
1 10,065 31.47 12.10 0 23 30 39 100
2 521 21.15 18.36 0 10 20 30 100

Gender: Male
1 19,006 35.61 14.37 0 25 34 44 100
2 2,256 25.75 19.40 0 10 20 40 100

Notes: The table shows summary statistics of the data sample, constructed as explained
in Section 3.2, for the scores of both genders combined and separate.

The number of participants over time by their gender and grade is displayed
in Figure 3.1. In the graph there appears to be significantly less students
participating in 2018 and 2019, this is due to my data set lacking the grade for
many observations in 2018 and some in 2019 as explained in Section 3.2. The
ratio of girls to boys is quite constant with boys making up about 65 per cent of
the participants on average over the years in my data. The fact that this ratio
does not appear to change much is noteworthy as one might have expected that
the gender participation gap would have lessened over time as the gender gap in
school in favour of girls have increased as discussed in Section 2.1. It might imply
that participation in the Abel competition is quite independent of performance
in school. There are also gender differences in how participation changes as the
students age. Among the boys, grade 11 participation is lower than for grade 12
and 13 in all years except 2014. Participation for grade 12 and 13 follows each
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other quite closely. This implies that boys that did not participate the first year of
upper secondary school might try their second year. For girls on the other hand,
participation for grade 11, 12 and 13 follow each other more closely with grade 11
being highest for multiple years. This suggests that girls are more likely to drop
out than boys, which is further explored in Figure 3.5.

Figure 3.2 is similar to Figure 3.1, but plotted for the students scoring above
the cutoff in the first round. From 2011 to 2019 only 19 per cent of the students
scoring above the cutoff are girls. There was a significant dip in the number of
boys scoring above the cutoff in 2015, but the number of boys increased again
in 2016. The lines illustrating the number of boys clearly shift upwards as the
students age, but the pattern is not as clear for girls where the curves for grade
12 and 13 follow each other more closely. This indicates that boys improve more
from year to year compared to girls, which partially explains why boys in general
outperform girls in the Abel competition.

Boys obtain higher scores than girls in the Abel competition in both the first
and second round. The histogram in Figure 3.3 shows that the relative frequency
for girls is lower than for boys in the upper tail above -10 and higher below -10. The
density for girls is higher around the mean than for boys, which means that there
are a higher proportion of girls in the middle of the distribution. The students
with a centered score of 0 or above can participate in the second round and 91 per
cent of the students choose to do so, this share is the same for both boys and girls.
Figure 3.4 presents a similar histogram for points obtained in the second round of
the Abel competition. In the second round there are 10 questions where you get
10 points for a right answer and 0 points for a wrong or blank answer. Hence, it
is only possible to score a multiple of ten. This test is highly demanding, which
is evident in the distribution having a low mean and a positive skew. The gender
gap in performance is portrayed clearly in this graph as girls have a significantly
higher frequency for the scores of 0 and 10, the two lowest possible scores.
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Figure 3.1: Number of students participating over time by gender and grade

Notes: The line graph shows the number of students participating in the first round of the Abel
competition each year separated by gender and grade.

Figure 3.2: Number of students in the top decile over time by gender and grade

Notes: The line graph shows the number of students scoring above the cutoff in the first round
of the Abel competition each year separated by gender and grade.
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Figure 3.3: Relative frequency of points in round one by gender

Notes: The histogram displays the relative frequencies of points obtained in the first round
centered around the cutoff by gender.

Figure 3.4: Relative frequency of points in round two by gender

Notes: The histogram displays the relative frequencies of points obtained in the second round
by gender. For the test in the second round it is only possible to score a multiple of ten and
therefore there are fewer bars than in Figure 3.3.
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The share of students that choose to participate again the year after competing
is 33 per cent on average, with 37 per cent for boys and 25 per cent for girls.
This gender difference is displayed in Figure 3.5, which plots the probability of
participating again next year against the score obtained in the first round centered
around the cutoff. The graph shows that boys on average have a higher probability
of competing next year than girls, independently of the score obtained in the first
round. This means that girls are not able to improve as much as boys over time,
which is likely to partially explain why boys outperform girls.

Figure 3.5 displays a strong, positive relationship between the variables for
both genders, meaning that students with higher scores are more likely to
participate again the following year. There is more variability in the probability of
participating again next year for the students above the cutoff. This is probably
due to few observations at these high performance levels and possibly due to some
individuals not being matched to an observation next year due to the difficulties
with matching students as explained in Section 3.2. Whether we see a jump around
the cutoff in this relationship is further explored graphically in the RD plots in
Section 5.1.

Figure 3.5: Probability of participating the following year

Notes: The scatter plot displays the average probability of participating again the following year
plotted against the points obtained in round one centered around the cutoff by gender. The
probability is higher for boys than girls along almost all values of the score.
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Chapter 4

Empirical Approach

The naive approach of estimating the effect of making it to the second round
on participation next year would be to simply compare the participation rates
the following year of students above and below the cutoff. However, this would
overestimate the effect because of selection bias. Students above the cutoff will
have higher levels of mathematical ability, which will partially determine their
participation rates next year, as shown in Figure 3.5. To address this problem,
I use an RD design where introducing a set of assumptions makes it possible to
identify a treatment effect because students right below and above the cutoff should
on average be similar in terms of mathematical ability and other characteristics.
In Section 4.1, I present the theoretical framework of the RD design and in Section
4.2 I discuss the estimation used in my analysis. Section 4.3 presents the results
of manipulation tests and Section 4.4 presents the results of balance tests.

4.1 Regression Discontinuity Design
The RD design is a non-experimental approach that was first used by Thistleth-
waite and Campbell (1960) to study the effect of receiving a Certificate of Merit
in a scholarship competition, which was given to students with scores above a
certain threshold. Since then, the use of RD designs has increased and expanded
past education policy. An RD design consists of three fundamental parts; a score,
a cutoff and a treatment (Cattaneo et al., 2019). All individuals receive a score
and the individuals with a score above a certain cutoff are offered a treatment. In
this analysis, the score is the score obtained by the students in the first round of
the competition, the cutoff is the cutoff score for making it to the second round
and the treatment is knowing you made it to the second round. The outcome
variable of interest in this analysis is the binary variable of whether the individual
participates in the Abel competition the following year.
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There are two types of RD design: sharp and fuzzy. The sharp RD design is a
design where the treatment condition assigned is exactly the same as the treatment
condition received for all individuals, and if compliance with treatment assignment
is not perfect it is a fuzzy RD design (Cattaneo et al., 2019). In this analysis I
define the treatment as knowing you achieved a score higher than the cutoff and
had the opportunity to participate in the second round. There is a possibility that
some students who scored above the cutoff never found out about their score, but
I consider this to be unlikely and assume that all students were informed of their
score. On average 91 per cent of students above the cutoff choose to compete
in the second round, but whether a student actually chooses to compete in the
second round is not relevant as the treatment is considered to be knowing that
you made it to the second round. This analysis is therefore a sharp RD design as
all individuals above the cutoff receive treatment and none of the students below
the cutoff receives treatment.

I will present the RD design using a potential outcomes framework where
an individual’s potential outcomes are defined as Yi(1) if an individual receives
treatment and Yi(0) if an individual does not receive treatment. The observed
outcome can then be defined as

Yi = (1 − Ti) · Yi(0) + Ti · Yi(1) =

Yi(0), Xi < c

Yi(1), Xi ≥ c
(4.1)

where Ti is a dummy variable for receiving treatment, Xi is the score of
the individual and c is the cutoff score. The treatment effect of knowing you
made it to the second round is then defined as τi = Yi(1) − Yi(0). However,
this treatment effect is not possible to estimate because one cannot observe the
potential outcome for scoring above and below the cutoff for the same individual.
This is impossible to do as only one of the outcomes will be realised, which is known
as the the fundamental problem of causal inference (Holland, 1986). The RD design
therefore relies on local extrapolation by comparing individuals above and below
the cutoff (Cattaneo et al., 2019). How to approach this comparison depends on
which framework of assumptions the analysis is based on. The continuity-based
framework builds on the assumption of continuity of the conditional expectations
of the potential outcomes around the cutoff and the local randomisation framework
is based on the assumption that the treatment is assigned randomly in a window
around the cutoff (Cattaneo et al., 2019, forthcoming). In my analysis, the running
variable is discrete, which the latter framework is more robust to. However
the former framework might still be appropriate if the number of mass points
is sufficiently high (Cattaneo et al., forthcoming). The running variable in my
analysis has 104 unique values, which should be sufficiently large to use the
continuity-based framework, which I have chosen to do. I also use methods
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from the local randomisation framework as a robustness test, the results largely
confirm the results from the baseline estimates and are reported in Table A.1 in
the appendix.

The continuity assumption implies that if the treatment had not occurred,
there would not be a jump in expected potential outcomes at the cutoff. Hence,
the continuity assumption rules out competing interventions occurring at the
cutoff. Because we do not have data on potential outcomes, it is not possible to
evaluate the continuity assumption directly and therefore institutional knowledge
is vital to evaluate whether there could be other changes occurring at the
cutoff (Cunningham, 2021). In this analysis, I find it likely that the continuity
assumption holds as it is implausible that any omitted variables would cause the
probability of competing next year to jump at the cutoff. However, it is possible
to do some statistical tests to evaluate the validity of the continuity assumption.
I have therefore done manipulation and balance tests, which are are presented in
Section 4.3 and Section 4.4, respectively.

The continuity assumption holds if the conditional expectation functions,
E[Yi(1) | Xi = x] and E[Yi(0) | Xi = x], are continuous at Xi = c. If that is
the case, Hahn et al. (2001) defines the average treatment effect as the difference
between the limits of the average observed outcomes as the score approaches the
cutoff from above and from below:

E[Yi(1) − Yi(0) | Xi = c] = lim
x↓c

E[Yi | Xi = x] − lim
x↑c

E[Yi | Xi = x] (4.2)

Estimating this average treatment effect under the continuity-based framework
is typically done by fitting separate polynomials above and below the cutoff. This
can be done using both parametric and non-parametric methods. The parametric
method uses all the observations in the data to estimate the polynomials on
each side of the cutoff and the non-parametric method only uses observations
within a set of chosen bandwidths around the cutoff. Early empirical work often
used the parametric method with high order polynomials, but this approach is
not commonly used anymore because the estimates might be highly affected by
observations far from the cutoff and thus unreliable (Cattaneo et al., 2019). In this
analysis I therefore use the non-parametric approach, which involves choosing the
length of the bandwidths for which to include observations above and below the
cutoff. The choice of bandwidth is considered to be a tradeoff between bias and
variance (Cattaneo et al., 2019). Choosing a short bandwidth will create less bias
because the functional form will be determined more locally around the cutoff, but
higher variance due to less observations in the interval. However, choosing a longer
bandwidth will lead to a lower variance, but increased bias because individuals far
away from the cutoff are likely to be different from the individuals very close to
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the cutoff. The most common approach for selection of the optimal bandwidth is
to minimise the mean squared error (MSE), which is the sum of the squared bias
and the variance of the estimator (Calonico et al., 2014; Imbens & Kalyanaraman,
2012). I use this approach in my analysis and allow for different bandwidths above
and below the cutoff because there are few observations above the cutoff compared
to below in my data sample.

Fitting the local polynomials above below the cutoff also requires choosing the
order of the polynomial, which involves a tradeoff between accuracy and reliability.
A higher order polynomial improves the accuracy of the approximation, but tends
to lead to over-fitting of the data, which can cause unreliable results near the
cutoff. Researchers tend to prefer local linear RD estimators as a polynomial
of order zero would be undesirable and a polynomial of order two could lead to
over-fitting (Cattaneo et al., 2019). I therefore use local linear regressions in my
analysis. Another important aspect of the RD design is how to weigh the different
observations based on distance to the cutoff. The observations that lie closer to the
cutoff are likely to be more alike and therefore those are usually weighted heavier
than the observations further away. I have chosen to use a triangular kernel to
weigh the observations as recommended by Cattaneo et al. (2019). The triangular
kernel maximises the weight of observations at the cutoff and the weight decreases
linearly as the observations move further away from the cutoff. Observations
outside the bandwidths are not included. The weights are calculated using function
K(u) = 1− | u |, where u is the score, Xi, centered around the cutoff, c , divided
by the bandwidth length, h; u = (Xi − c)/h.

4.2 Estimation
To estimate the effect of scoring above the cutoff on participation next year, I run
local linear regressions of this form for each gender g:

Yi = α + γ1[xi ≥ 0] + f0(xi)1[xi < 0] + f1(xi)1[xi] ≥ 0] + ϵi (4.3)
where α is the intercept, f0(xi) is the linear polynomial fitted below the cutoff,

f1(xi) is the linear polynomial fitted above the cutoff and ϵi is the error term.
Both f0(xi) and f1(xi) are included to allow for different functional forms below
and above the cutoff. The treatment effect is estimated by γ. Although these
estimates are in themselves interesting, the main estimate of interest in this
analysis is the estimate of the gender difference in this effect; γf − γm where
g = f , m(female, male). This regression relies on one cutoff value along the
running variable, but the data from the Abel competition includes multiple years
with different cutoffs for each year. I therefore run separate regressions for each
year, but these estimates lack statistical power because they are based on few
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observations. To take advantage of data from all years, I use three different
methods to combine the year-specific data into one estimate; a pooled regression,
a weighted regression and a stacked regression.

Firstly, I will discuss a pooled regression where the running variable is pooled
and centered around the cutoff (Cattaneo et al., 2016). The data is then treated
as a standard single-cutoff RD design with c = 0. The treatment effect is then
defined, similarly to Equation 4.2, as

τP = lim
ε↓0

E[Yi | X̃i = ε] − lim
ε↑0

E[Yi | X̃i = ε] (4.4)

with the running variable being centered around the cutoff; X̃i = Xi − ci.
The pooled approach is very common, but it might not take full advantage of all
the information contained in an RD setup with multiple cutoffs (Cattaneo et al.,
2016). The level of difficulty of the questions in the Abel competition vary by
year and that variation might affect participation next year. For example, if the
test was considered to be quite difficult and participants obtained low scores, the
cutoff would be quite low. Experiencing the test as very difficult might make it less
likely that participants want to compete again next year even though they made
it to the second round. Hence, the cutoff might have an effect on the dependent
variable and the treatment effect might be different depending on the cutoff level.
If there is a chance for the treatment effect to depend on the cutoff level, doing
separate regressions for each year and combining the results is useful as it allows
for different linear polynomials to be fitted for each year.

Secondly, I therefore present the weighted estimate, which is calculated by
taking a weighted average of the coefficients for each year. These coefficients
are estimated using bandwidths and fitted polynomials calculated separately for
each year. The weights used are calculated by dividing the number of effective
observations for year t by the sum of total effective observations in all the years;
Weightt = Nt/Ntotal. In contrast to the pooled approach, this way of combining
estimates from each year into one allows for different bandwidths and different
local polynomials each year, which therefore might be more accurate (Cattaneo
et al., 2021).

Thirdly, I do a stacked regression where the year-specific estimates are weighted
based on the inverse of the variance of the year-specific estimate relative to the sum
of the variances of all the year-specific estimates; Weightt = V ar(γt)/V ar(total).
Hence, the weight of the year-specific estimates decreases as the year-specific
variance increases, which means that more precise estimates are weighted more
heavily. This is done by running the following regression:

yit =
2018∑

t=2011
[f0t(xit) + f1t(xit) + αt] + γ1[xit ≥ 0] + ϵit (4.5)
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The treatment effect is then estimated by γ. The variance of the estimator
will decrease as the sample size increases, therefore the weighted and stacked
approaches are similar. However, the variance will also be affected by the
variability of the data and hence the weights used in the stacked specification
are affected by both the sample size and the variability of the data within the
different years.

The results of the RD analysis using these three methods are reported in
Section 5.2 with clustered standard errors. Clustering standard errors is generally
important when the data used for analysis contain both individual and aggregate
data because errors for individuals within the same clusters might be correlated
(Cameron & Miller, 2015; Hansen, 2007). However, within an RD design with a
discrete running variable, Lee and Card (2008) recommends clustering standard
errors by the running variable in order to obtain confidence intervals that reflect
the imperfect fit of the fitted polynomials away from the cutoff. I therefore cluster
the standard errors in all the specifications in my analysis by the points obtained
in the first round centered around the cutoff.

For the year-specific and pooled regressions I report results based on three
different procedures to estimate the treatment effects; conventional estimates with
conventional standard errors, bias-corrected estimates with conventional standard
errors and bias-corrected estimates with robust standard errors. The conventional
estimate is based on the assumption that there is no misspecification error around
the cutoff if the bandwidth chosen is narrow enough. This assumption is generally
quite unrealistic when using MSE-optimal bandwidths because choosing MSE-
optimal bandwidths involves a tradeoff between bias and variance as discussed in
Section 4.1, which means that there will be some level of bias. If the polynomial
gave an exact approximation of the conditional expectation functions, E[Yi(1) |
Xi = x] and E[Yi(0) | Xi = x], there would be no bias. But because these
functions are unknown, that assumption is not possible to verify and will rarely be
credible (Cattaneo et al., 2019). I therefore also include bias-corrected estimates,
where the bias term has been estimated and subtracted from the conventional
estimate as first proposed by Calonico et al. (2014). The bias-corrected estimate
with conventional errors often have poor performance in applications because the
variability introduced by including the bias estimator is not accounted for in the
conventional standard errors used (Cattaneo et al., 2019). Therefore, using bias-
corrected estimates with robust standard errors might be a superior approach.
The robust standard errors incorporate the variability that came with the bias
correction and will therefore always be larger than the conventional standard errors
(Calonico et al., 2014).

The estimates for the weighted and stacked specifications are reported in Table
5.4. I am not able to calculate bias-corrected standard errors for the stacked
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estimator, as available software for bias-correction does not allow me to implement
this estimator. Due to the same reason, I cannot calculate conventional standard
errors for the weighted estimate and I therefore report a conventional estimate
with robust, bias-corrected standard errors. For the stacked estimates I report
only conventional, cluster robust inference. It is important to emphasize that this
estimate is only valid if the model is correctly specified and the true relationship
between the running variable and the outcome variable is linear close to the
cutoff. However, the difference between the conventional, bias-corrected and robust
approaches are not particularly large for the pooled results, as shown in Table
5.3, and hence would likely not be very different for the weighted and stacked
approaches either.

4.3 Manipulation Tests
A explained in Section 4.1, my analysis relies on the continuity assumption. This
assumption does not hold if individuals are able to manipulate their value of the
running variable. Manipulation testing in RD designs was first introduced by
McCrary (2008) and has since become very common in the RD literature. In this
section, I present the results of two different density tests, based on Cattaneo et al.
(2020) and Frandsen (2017), to detect sorting around the cutoff.

Because the cutoff score in the Abel competition is set at a different level each
year and the students do not know this level before taking the test, manipulation
of their own score seems implausible. If students knew the cutoff before taking
the test, some students might be able to manipulate their score by choosing to
answer an extra question instead of leaving it blank to increase their score to
be just above the cutoff. This would violate the continuity assumption because
students just below and above the cutoff would on average be different. As this is
not the case, manipulation should not be a problem, but I still test for a smooth
distribution around the cutoff as is customary in an RD design.

In order to visually inspect the distribution of the points before carrying out
the tests, I created a histogram of the scores from the first round from 2011-2019.
Figure 4.1 shows that the density function is not particularly smooth, which is
likely to affect the results of the manipulation tests. There are clearly some points
with a particularly high density, which can be explained by how the points are
awarded and how students answer the questions. As explained in Section 3.1, the
test contains 20 multiple choice questions where a correct answer is worth 5 points,
a wrong answer is worth 0 points and a question left blank is worth 1 point. The
six most common scores are 20, 25, 30, 35, 40, 45, which are all multiples of five.
This implies that many students attempt all the 20 questions and therefore get
either five points for a right answer or zero points for a wrong answer, thus making
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it much more likely to obtain scores that are multiples of 5.

Figure 4.1: Distribution of points in round one

Notes: The histogram displays the distribution of points obtained in round 1 for 2011-2019.
Some values of the score have a particularly high density. These are multiples of five, implying
that many students try to answer all questions.

Firstly, I use the density test based on Cattaneo et al. (2020), which employs
local polynomial regressions on either side of the cutoff to evaluate the hypothesis
test of continuity of the density function around the cutoff. The hypothesis test is
formalised in this manner:

H0 : lim
x↑c

h(x) = lim
x↓c

f(x) versus H1 : lim
x↑c

h(x) ̸= lim
x↓c

f(x) (4.6)

where h(x) is the density function. However, when the running variable is
discrete, this test might perform poorly because there are few observed support
points near the cutoff (Frandsen, 2017). I therefore also use the test proposed by
Frandsen (2017), which is similar to the test by Cattaneo et al. (2020), but only
uses points of support immediately adjacent to the cutoff and therefore does not
need to rely on extrapolation far above and below the cutoff.

The results of both tests for each year are reported in Table 4.1. For the test
based on Cattaneo et al. (2020), the p-values are lower than 0.05 for five of the
years, meaning that we reject the null hypothesis of equal density on both sides
of the cutoff for these years. For the test based on Frandsen (2017) the p-values
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are lower than 0.05 for only three of the years, which is less than the former test,
but there is still evidence of discontinuities around the cutoffs. The results for
both tests carried out for each gender separately are reported in Table B.1 in the
appendix, these results also provide evidence of discontinuities around the cutoff
for some of the years.

Table 4.1: Results of manipulation tests

2011 2012 2013 2014 2015 2016 2017 2018

Cutoff 48 56 51 60 50 43 51 59

Cattaneo et al. (2020) p-value 0.000 0.056 0.017 0.095 0.000 0.029 0.272 0.042

Frandsen (2017) p-value 0.311 0.609 0.587 0.289 0.000 0.028 0.046 0.343

Notes: The table shows the results of the manipulation tests based on Cattaneo et al. (2020) and
Frandsen (2017) for each year.

In order to understand how these density tests reject the hypotheses of equal
densities around the cutoff in a setting where manipulation is clearly implausible,
I also perform a Monte Carlo simulation with a discrete running variable that
mimics the features of my data.

I draw a sample of 30,000 students, each with a random proficiency that reflect
the underlying skills of that student. For each student, I randomly assign either 0,
1 or 5 points based on the probabilities of students getting questions wrong, right
or leaving them blank in 2019-2011 for which I obtained that data, and then I sum
up these points across the 20 questions. A histogram showing the distribution of
the scores in the simulated data set is included in Figure C.1 in the appendix.

When carrying out the two different manipulation tests on this data using the
different cutoffs for each year, I get a low p-value for most cutoffs and hence reject
the null hypothesis. These results are reported in Table C.1 in the appendix. This
can be interpreted as suggestive evidence of the discontinuity around the cutoff
in the data being due to the way the points are added up in the competition and
not manipulation of the scores, which could explain why these manipulation tests
perform poorly.

4.4 Balance Tests
It is standard in analyses using the RD design, to provide evidence of similarity
between the treatment and control group along relevant covariates (Lee & Lemieux,
2010). The RD design is valid if there are no discontinuities in any of the covariates
around the cutoff (Cunningham, 2021). I find the existence of a jump in any
pretreatment characteristics at the cutoff to be unlikely in my setting. However, I
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test for balance in gender and the grade the students are in at the time of the test
as is customary in an RD design. I perform the test by running an RD analysis as
explained in Section 4.1 with the covariate as the outcome variable. The results
for the balance tests for each covariate and year are presented in Table 4.2. None
of the estimates are statistically significant and hence there is no evidence of an
imbalance in these covariates around the cutoff

Table 4.2: Results of balance tests

2011 2012 2013 2014 2015 2016 2017 2018

Covariate: gender

Coefficient 0.083 -0.073 0.15 0.139 0.127 0.007 0.024 0.156

P-value 0.315 0.387 0.147 0.187 0.130 0.935 0.771 0.369

Covariate: grade

Coefficient -0.133 0.073 0.146 0.117 0.138 0.044 -0.042 0.165

P-value 0.196 0.466 0.215 0.263 0.188 0.662 0.618 0.315

Notes: The table shows the results of balance tests for each year along gender and what
grade the students are in when taking the test.

The results of these manipulation and balance tests provide evidence in support
of the continuity assumption not being violated in my setting.
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Chapter 5

Results

In this chapter I present the results of my analysis. Section 5.1 presents and
discusses RD plots illustrating the difference in the treatment effect between girls
and boys, and Section 5.2 presents the RD results.

5.1 Regression Discontinuity Plots
Graphical representation of the RD design is useful for summarising the results
intuitively. It is common to divide the running variable into bins and plot the
means within each bin. This is done to increase the effectiveness of the illustration
compared to a regular scatter plot. Choosing the number and type of bins in
an ad hoc manner can give different representations of the underlying data, it is
therefore important to make an informed decision (Calonico et al., 2015). There
are two types of bins: evenly-spaced bins have equal length with a varying number
of observations in each bin and quantile-spaced bins contain the same number
of observations in each bin with varying bin lengths. And there are two main
methods for choosing the optimal number of bins: the Integrated Mean-squared
Error (IMSE) method chooses the number of bins that minimises an asymptotic
approximation to the IMSE of the local means estimator and the mimicking
variance method chooses the number of bins such that the binned means have
have an asymptotic variability approximately equal to the variability of the data
(Cattaneo et al., 2019). The mimicking variance method creates plots with more
variability than the IMSE method, but less variability than the raw data. I
have chosen to use the mimicking variance method with both evenly-spaced and
quantile-spaced bins as recommended by Cattaneo et al. (2019). The RD plots
with evenly-spaced bins are displayed in Figure 5.1 and the the RD plots with
quantile-spaced bins are displayed in Figure 5.2. The polynomials in the RD plots
are of the fourth order and fitted separately above and below the cutoff using the
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unbinned data. Both methods show that the fitted polynomial of the probability
of competing next year is continuous around the cutoff for boys, but jumps at
the cutoff for girls. Thus, the figures indicate that there is a gender gap in the
discouragement effect of not advancing to the the second round. The size and
significance of this effect is discussed further in Section 5.2.

Figure 5.1: Pooled RD plots by gender: evenly-spaced bins

(a) Boys (b) Girls

Notes: The RD plots are based on pooled data from all years. The bins are evenly-spaced and
the optimal number of bins is calculated using the mimicking variance method. The plots are
divided by gender, and provide evidence of a gender difference in the treatment effect.

Figure 5.2: Pooled RD plots by gender: quantile-spaced bins

(a) Boys (b) Girls

Notes: The RD plots are based on pooled data from all years. The bins are quantile-spaced and
the optimal number of bins is calculated using the mimicking variance method. The plots are
divided by gender, and provide evidence of a gender difference in the treatment effect.
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5.2 Regression Discontinuity Results
In this section I will present the results using the different specifications and
methods discussed in Section 4.2. Firstly, I will present separate RD regressions
done for each year in Table 5.1 for boys and in Table 5.2 for girls. The tables include
the number of observations and size of the optimal bandwidths calculated for each
year, as well as reporting conventional, bias-corrected and robust estimates as
explained in Section 4.2. The standard errors for boys are lower than the standard
errors for girls for all years because there were fewer observations for girls. When
it comes to the signs and significance of the estimates, there is no clear difference
between girls and boys. Most estimates are positive, but not significantly different
from zero. Only estimates for two separate years are statistically significant; the
estimates for 2011 and 2013 for boys, and 2011 and 2017 for girls. The estimates
for these years are all positive and slightly higher for girls than boys. The bias-
corrected estimates are higher for girls than boys for 5 out of the 8 years, but they
are lower for the other 3 years and estimates for some of the years are negative
for both genders. These results do not provide evidence of a significant treatment
effect or a difference between the genders, but they lack statistical power due to
few observations for each year and gender around the cutoff. I therefore combine
the statistical power contained in each year into one estimate using three different
methods as explained in Section 4.2.

Firstly, I present the results of the pooled RD regression in Table 5.3. The
estimates for both girls and boys are positive, but the estimates for boys are less
than half the size of those for girls. For all three different procedures, the estimates
for girls are significantly different from zero, in contrast to the estimates for boys,
which are not. The bias-corrected estimate for girls is 0.173, which means that
girls are 17.3 percentage points more likely to compete again next year if they
score just above the cutoff than if they score just below the cutoff. The proportion
of girls within the bandwidths that compete again next year is 42 per cent. Hence,
the effect of just missing the cutoff translates to a reduction in the probability of
participating next year by 41 per cent. The gender difference between the bias-
corrected estimates is γf − γm = 0.173 − 0.083 = 0.09, which can be interpreted
as girls being 9.8 percentage points more likely to compete next year if they score
just above the cutoff compared to boys. To test whether this difference between
the genders is significantly different from zero, I first calculate the standard error
of the difference. Because the estimates are from two independent samples, the
covariance equals 0 and the standard error is

√
0.0502 + 0.0482 = 0.067. I divide

the difference by this standard error to obtain the t-value: 0.09/.067 = 1.343,
which gives a p-value of 0.18. Hence, the gender difference is not significantly
different from 0 at the 5 per cent level.
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Table 5.3: Pooled RD results for boys and girls

Conventional Bias-corrected Robust
bias-corrected

Boys

Total num. of observations 10 978
Num. of effective observations 2122
Bandwidth below cutoff 8.80
Bandwidth above cutoff 8.16
Mean of outcome variable 0.37

Coefficients 0.063 0.083∗ 0.083∗

Standard errors 0.044 0.044 0.048
P-values 0.148 0.058 0.086
95 % CI [-0.022,0.149] [-0.003,0.168] [-0.012,0.177]

Girls

Total num. of observations 6252
Num. of effective observations 1017
Bandwidth below cutoff 10.34
Bandwidth above cutoff 13.40
Mean of outcome variable 0.25

Coefficients 0.154∗∗ 0.173∗∗∗ 0.173∗∗∗

Standard errors 0.050 0.050 0.050
P-values 0.002 0.000 0.000
95 % CI [0.057,0.252] [0.076,0.271] [0.076,0.271]

Notes: The table shows the results of pooled RD regressions by gender; conventional, bias-
corrected and robust estimates are reported. A triangular kernel is used. Bandwidths are
MSE-optimal and are calculated separately above and below the cutoff. Standard error are
clustered by the running variable. *** p<0.01, **p<0.05, * p<0.1

The results from both the weighted and the stacked regressions are reported
in Table 5.4. Similarly to the pooled specification, the estimates are positive for
both genders, but only statistically significant for girls. The standard errors are
here also higher for girls. The gender difference between the weighted estimates is
γf − γm = 0.253 − 0.064 = 0.189, which is significantly different from zero at the
5 per cent level when calculating the p-value of the difference as explained above.
The gender gap of the stacked estimates is γf − γm = 0.166 − 0.049 = 0.117. When
calculating the p-value, I find that the gender difference is significantly different
from zero at the 5 per cent level. Both the gender differences of the weighted
and the stacked regressions are larger than the gender difference from the pooled
regression.

My results provide evidence of a significant gender gap in discouragement,

33



Table 5.4: Weighted and stacked RD results for boys and girls

Weighted Stacked

Boys Girls Boys Girls

Coefficient 0.064 0.253∗∗∗ 0.049∗ 0.166∗∗∗

Standard errors 0.037 0.060 0.026 0.042
P-value 0.092 0.000 0.056 0.000
95 % CI [-0.009,0.137] [0.135,0.371] [-0.001,0.099] [0.084,0.248]

Notes: The table shows the results of weighted and stacked RD regressions by gender.
A triangular kernel is used for both regressions. Bandwidths of both regressions are
MSE-optimal and are calculated separately above and below the cutoff. Standard
errors are bias-corrected for the weighted estimate and conventional for the stacked
estimate, and clustered by the running variable for both regressions. *** p<0.01,
**p<0.05, * p<0.1

and they are largely confirmed by the results of analysis done using the local
randomisation framework, which are reported in Table A.1 in the appendix. The
conventional estimates from the different specifications using the continuity-based
framework are summarised in Table 5.3, with the error bars representing the 95
per cent confidence intervals.

Examining the overlap of confidence intervals to decide whether the difference
between two estimates is statistically significant is often done, but the approach
is more conservative than the standard method of testing significance (Schenker
& Gentleman, 2001), which I used above. Hence, the fact that the error bars
for boys and girls are overlapping for all specifications does not mean that the
gender differences are not statistically significant. Based on the standard method,
the gender difference in the estimates for the stacked and weighted approach are
significantly different from zero. The estimates based on these approaches might be
more accurate as they allow for separate bandwidths and polynomial fits for each
year as discussed in Section 4.2. However, as the estimates for these specifications
are not bias-corrected with bias-corrected, robust standard errors as for the pooled
approach, they might also be less reliable as discussed in Section 4.2.

The results presented in this chapter are estimates of local average treatment
effects because the RD design only allows for estimating a casual effect among
individuals with scores close to the cutoff (Angrist & Imbens, 1994; Cunningham,
2021). Hence, these estimates might not be valid for very high- or low-performing
individuals as they are likely to differ from individuals with scores at the cutoff
in terms of their ability, motivation and persistence. This does not affect the
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Figure 5.3: Results by gender for three different specifications

interpretation of the gender gap at the cutoff level, but it is worth keeping in mind
that it might vary along the running variable.

My estimates of the treatment effect range between 15.4 and 25.3 percentage
points for girls, and are not significantly different from zero for boys. The
proportion of girls that participate again next year within five points below and
above the cutoff is 47 per cent, and therefore these results translate to a reduction
in the probability of competing next year due to not advancing to the second
round of between 33 and 54 per cent. These results are slightly higher than the
findings of Buser and Yuan (2019), who find estimates for girls that range between
10 and 20 percentage points, and 20 to 40 per cent. However, my estimates are
significantly higher than the findings of Ellison and Swanson (2021), who estimate
an effect of 5.1 percentage points for girls. My results being more similar to those
by Buser and Yuan (2019) than the results of Ellison and Swanson (2021), could be
because both studies are set in Europe, which implies a different culture and set of
norms than in the US. However, the fact that estimates for Norway are higher than
those for the Netherlands and the US, is an interesting finding because Norway
is considered to have a higher level of gender equality (World Economic Forum,
2021).
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Chapter 6

Conclusion

In this thesis I have used data from the Abel competition to investigate the gender
gap in the discouragement of losing. I used an RD design to analyse the gender
gap in the effect of advancing to the second round one year on the probability of
participating the following year. The cutoff for advancing to the second round is
different each year due to varying levels of difficulty of the test. I therefore use
a multi-cutoff RD design with three different specifications: a pooled approach,
a weighted approach and a stacked approach. The results provide evidence of a
positive and statistically significant treatment effect for girls within the range of
15.4 to 25.3 percentage points. In contrast, the estimated treatment effect for
boys was not statistically significant. The gender difference of the estimates is
significantly different from zero for the weighted and the stacked specification,
but not for the pooled specification. One limitation of my data is the observations
lacking for 2018 and 2019 as discussed in Section 3.2. However, it is highly unlikely
that this would affect the results, as the missing data is randomly distributed.

This gender gap in discouragement of losing might help explain why there are
few girls succeeding in the Abel competition. Many girls who had the potential
to succeed in the future drop out of the competition and thus miss out on that
opportunity. Students scoring just below the cutoff have performed very well,
and would likely perform even better and maybe advance to the second round the
following year. Hence, an important measure to reduce gender differences would be
to to encourage girls to try again next year even if they do not succeed. This might
be done by informing students competing in the Abel competition of the existence
of the gender gap in discouragement documented in this thesis. Being aware of
these differences might encourage girls to participate again as they are more likely
to acknowledge their own competence and gain the required self-confidence to try
again the following year. However, the mechanisms behind this gender gap are still
unclear and it is therefore difficult to know exactly what girls are thinking and
what might motivate them. Hence, further research on the mechanisms behind
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these gender differences is important to improve the approach to creating a more
level playing field for girls and boys within advanced mathematics.

By applying the results of this thesis to a career setting, one might contribute
to the explanation of why the share of women decreases as they advance in business
and academia within the STEM fields. In order to succeed in these competitive
fields, being able to handle disappointment and rejection is imperative. If, as is
suggested by the findings of this thesis, unfavorable outcomes are more detrimental
to the motivation of women than men, bad luck in the early stages of one’s career
could help explain the "leak" of women in business and academia within the STEM
fields. It should be noted that the results of this thesis might lack external validity
due to the research objects solely being upper secondary students and the research
setting being a mathematics competition. Therefore, future research should re-
investigate this gender gap in the reaction to losing among older population groups
in other settings in order to learn more about how this gender gap affects the
careers of women everywhere. Focusing on the mechanisms behind this gender
gap might also make it easier to design policies and programs to enable women to
advance their careers in business and academia in general.

Future research should also investigate the gender gap in discouragement
documented in this thesis among children. Knowing how this gender gap develops
as children age is crucial to implementing effective early-stage interventions to
mitigate it.
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Appendix A

Results based on Local
Randomisation Framework

Table A.1: Results from local ran-
domisation analysis

Boys Girls

Difference in means 0.032 0.164
P-value 0.411 0.000

Notes: The table reports the Fisherian
simulation-based results based on the
local randomisation framework. Only
observations within a data-driven selec-
ted interval around the cutoff are used,
in which local randomisation is assumed
to hold.
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Appendix B

Results from Manipulation Tests
by Gender

Table B.1: Results from manipulation tests by gender

2011 2012 2013 2014 2015 2016 2017 2018

Cutoff 48 56 51 60 50 43 51 59

Boys

Cattaneo et al. (2020) P-value 0.101 0.159 0.009 0.160 0.030 0.217 0.390 0.244

Frandsen (2017) P-value 0.596 0.770 0.161 0.332 0.000 0.117 0.088 0.206

Girls

Cattaneo et al. (2020) P-value 0.263 0.280 0.000 0.023 0.000 0.008 0.708 0.650

Frandsen (2017) P-value 0.184 0.211 0.039 0.426 0.000 0.039 0.462 0.578

Notes: The table reports the p-values for the manipulation tests of equal densities around the cutoff
based on Cattaneo et al. (2020) and Frandsen (2017) by year and gender. Many p-values are lower
than 0.05 and hence the manipulation tests provide evidence of a discontinuity around the cutoff.
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Appendix C

Results from Simulation Density
Tests

Table C.1: Results of manipulation tests for simulated data

Cutoff 48 56 51 60 50 43 59

Cattaneo et al. (2020) p-value 0.000 0.000 0.000 0.015 0.000 0.043 0.001

Frandsen (2017) p-value 0.862 0.955 0.120 0.046 0.002 0.206 0.498

Notes: The table reports the results of the manipulation tests based on Cattaneo et al.
(2020) and Frandsen (2017) for the simulated data set described in Section 4.3. The values
of the cutoffs used are the ones that appear in the data between 2011 and 2018. The test
based on Cattaneo et al. (2020) reject the null hypothesis for all cutoffs except one, and
the test based on Frandsen (2017) only reject the null hypothesis for two values of the
cutoff. Manipulation of the running variable cannot be present in the simulated data as it
is randomly drawn. The fact that I still find evidence of discontinuities in density around
the cutoff inn this data suggests that the discontinuities detected in the tests arise because
of how the score is added up and not because students actually manipulate their scores.
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Figure C.1: Histogram of simulated scores

Notes: The histogram displays the frequency of scores from the simulated data set. The
histogram does not contain points with particularly high density as seen in Figure because
the simulated data set is random and therefore does not include that many students that try to
answer all the questions.
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