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Regional asymmetry in the response of global
vegetation growth to springtime compound
climate events
Jun Li 1,2, Emanuele Bevacqua 1, Chi Chen3,4, Zhaoli Wang 2,5✉, Xiaohong Chen6, Ranga B. Myneni7,

Xushu Wu2,5, Chong-Yu Xu 8, Zhenxing Zhang9 & Jakob Zscheischler 1✉

Compound climate events can strongly impact vegetation productivity, yet the direct and

lagged vegetation productivity responses to seasonal compound warm-dry and cold-dry

events remain unclear. Here we use observationally-constrained and process-based model

data and analyze vegetation productivity responses to compound events of precipitation and

temperature in spring and summer across global mid-to-high latitudes. We find regional

asymmetries in direct and lagged effects of compound warm-dry events. In high-latitudes

(>50°N), compound warm-dry events raise productivity. In contrast, in mid-latitudes

(23.5–50°N/S), compound warm-dry events reduce productivity and compound warm-dry

springs can cause and amplify summer droughts, thereby reducing summer productivity.

Compound cold-dry events impose direct and lagged adverse impacts on productivity in mid-

to-high latitudes, exceeding the impacts from individual cold and dry events. Our results

highlight the benefits of a multivariate perspective on vegetation vulnerability as precipitation

and temperature often covary and jointly drive vegetation impacts.

https://doi.org/10.1038/s43247-022-00455-0 OPEN

1 Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany. 2 School of Civil Engineering and
Transportation, State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, China. 3 Department of Earth and
Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. 4 Department of Environmental Science, Policy and
Management, UC Berkeley, Berkeley, CA 94720, USA. 5 Guangdong Engineering Technology Research Center of Safety and Greenization for Water
Conservancy Project, Guangzhou, China. 6 Center for Water Resource and Environment, Sun Yat-Sen University, Guangzhou 510275, China. 7 Department of
Earth and Environment, Boston University, Boston, MA 02215, USA. 8Department of Geosciences, University of Oslo, Oslo, Norway. 9 Illinois State Water
Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA. ✉email: wangzhl@scut.edu.cn; jakob.zscheischler@ufz.de

COMMUNICATIONS EARTH & ENVIRONMENT |           (2022) 3:123 | https://doi.org/10.1038/s43247-022-00455-0 |www.nature.com/commsenv 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-022-00455-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-022-00455-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-022-00455-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-022-00455-0&domain=pdf
http://orcid.org/0000-0003-1412-5261
http://orcid.org/0000-0003-1412-5261
http://orcid.org/0000-0003-1412-5261
http://orcid.org/0000-0003-1412-5261
http://orcid.org/0000-0003-1412-5261
http://orcid.org/0000-0003-0472-5183
http://orcid.org/0000-0003-0472-5183
http://orcid.org/0000-0003-0472-5183
http://orcid.org/0000-0003-0472-5183
http://orcid.org/0000-0003-0472-5183
http://orcid.org/0000-0002-8118-802X
http://orcid.org/0000-0002-8118-802X
http://orcid.org/0000-0002-8118-802X
http://orcid.org/0000-0002-8118-802X
http://orcid.org/0000-0002-8118-802X
http://orcid.org/0000-0003-4826-5350
http://orcid.org/0000-0003-4826-5350
http://orcid.org/0000-0003-4826-5350
http://orcid.org/0000-0003-4826-5350
http://orcid.org/0000-0003-4826-5350
http://orcid.org/0000-0001-6045-1629
http://orcid.org/0000-0001-6045-1629
http://orcid.org/0000-0001-6045-1629
http://orcid.org/0000-0001-6045-1629
http://orcid.org/0000-0001-6045-1629
mailto:wangzhl@scut.edu.cn
mailto:jakob.zscheischler@ufz.de
www.nature.com/commsenv
www.nature.com/commsenv


C limate extremes can strongly impact vegetation
productivity1. Vegetation impacts arising from individual
climate extremes such as droughts or heatwaves have been

well documented1–5, including vegetation resistance and resi-
lience to extreme drought6,7 and lagged summer plant-
productivity responses to warm spring8. Given that vegetation
is synergistically affected by variability of both temperature and
precipitation9, compound anomalies in temperature and pre-
cipitation, such as simultaneous dry and hot conditions, can
strongly impact vegetation productivity10,11. In fact, at the
regional scale there is evidence for direct impacts on vegetation
productivity from co-occurring dry and hot extremes12–16. A
well-known example is the 2003 European dry and hot summer
that decreased vegetation productivity by 30%, thereby offsetting
four years of net uptake of atmospheric CO2 over this region15.
Similarly, the 2010 European drought and heatwave caused
record-breaking reductions in plant-productivity due to heavy
precipitation deficit and strong heat stress12,16. Notably, while
several studies analyzed and projected the impact of simultaneous
dry and hot conditions on vegetation productivity3,17,18, little
attention has been devoted to investigating the lagged response of
vegetation productivity to compounding climate conditions such
as summertime vegetation productivity responses to springtime
compound events, and regional asymmetries of such responses.

Cold spell is another form of extreme event that can cause
vegetation damage by leaf frostbite, shortening growing season,
and reducing photosynthetic carbon uptake19,20. The vegetation
productivity responses to compound events that include cold
extremes have received little attention so far. Despite ongoing
global warming, understanding the impact of cold-related
extreme events to vegetation productivity is important, espe-
cially because cold extremes still occur frequently21 and may even
increase in frequency in the near future in mid-latitudes as a
response to rapid arctic warming21–23.

Here, we investigate the direct and lagged responses of
vegetation productivity to seasonal compound warm-dry
(CWD) and cold-dry (CCD) events across global mid-to-high
latitudes over the last three decades. We used seasonal com-
pound event indices to model concurrent climates in spring and
summer. To characterize vegetation growth and productivity,
we employed satellite-derived normalized difference vegetation
index (NDVI) and leaf area index (LAI) in combination with
observationally-constrained and state-of-the-art model-based
gross primary productivity (GPP). Furthermore, high-
resolution observational and model-based soil moisture and
runoff were used to investigate key mechanisms associated with
the hydrological responses.

Results
Illustration of the compound event indices. Building on earlier
studies24,25, we develop two univariate indices to model concurrent
climate conditions, i.e., a CWD index that varies from compound
cold-wet conditions to CWD conditions, and a CCD index that
varies from compound warm-wet conditions to CCD conditions
(see “Methods”). The two indices incorporate the dependence
between temperature and precipitation and are a measure of how
warm/cold and dry a point is relative to the distribution of climate
conditions at a given location. We illustrate the two indices on two
grid points that have strong but opposite temperature-precipitation
correlation. In the case where temperature and precipitation are
strongly negatively correlated, the CWD index is well aligned with
the primary axis of the bivariate distribution (Fig. 1a). In the case
where temperature and precipitation are strongly positively cor-
related, the same holds for the CCD index (Fig. 1d). As illustrated
for several concurrent hot-dry and cold-dry events that occurred

around the globe, the two indices well capture these events (Sup-
plementary Figs. 1 and 2).

Notably, in the case where precipitation and temperature are
strongly positively correlated, the CWD index indicates the
relative anomalies of bivariate joint distribution, and some
counterintuitive situations might occur relative to the univariate
marginals (Fig. 1b). For instance, points might be labeled as
strong CWD events (CWD index > 1.5) even though temperature
is anomalously cold (temperature anomalies < 0, red dots in lower
left quadrant of Fig. 1b). The CCD index exhibits similar behavior
(Fig. 1c). This indicates an interesting property of the compound
indices to identify strong compound conditions relative to
bivariate distribution that are not necessarily extreme from a
univariate perspective3,24,26,27.

Widespread direct and lagged impacts of springtime com-
pound climate conditions. To evaluate the lagged summer
vegetation responses to spring compound climate conditions, we
compute partial correlation between CWD (CCD) spring and
subsequent summer vegetation variation by controlling for the
influence of summer compound climate conditions on these
correlations (see “Methods”). Results show widespread negative
associations between CWD spring and subsequent summer
vegetation in the mid-latitudes (<50°N; 19% of the total study
area, p < 0.05), indicating that CWD spring inhibits summertime
vegetation growth. In contrast, positive associations are found in
the high latitudes (>50°N; 8%, Fig. 2a). When considering CCD
events, CCD spring primarily exhibits negative lagged effects
(18%) whereas positive lagged effects are rare (1%, Fig. 2b).
Notably, in line with the fact that vegetation is often impacted by
both temperature and precipitation28, our results indicate that
considering springtime temperature and precipitation con-
currently can slightly better explain summertime vegetation
variability than considering temperature or precipitation in iso-
lation. Specifically, CWD climate conditions in spring are sig-
nificantly correlated (p < 0.05) with summer vegetation growth in
27% of the total study area compared to 15% for temperature only
and 24% for precipitation only (Fig. 2a and Supplementary
Fig. 3).

To investigate the direct responses, we then calculate correla-
tions between CWD (CCD) indices and vegetation growth in
spring and summer separately (Supplementary Fig. 4). There are
widespread direct positive responses to CWD climate conditions
in spring (52% of the study area, p < 0.05) and summer (30%) in
the Northern hemisphere, while negative responses for spring
(10%) and summer (22%) are distributed in mid-latitudes
(Supplementary Fig. 4a, c). CCD climate conditions predomi-
nantly show negative correlations in spring (25%) and summer
(20%, Supplementary Fig. 4b, d). We further compare the direct
effects of compound climate conditions with that of individual
temperature or precipitation and find that CWD climate
conditions can well incorporate the direct effects of both
temperature and precipitation (Supplementary Fig. 4a, c and
Fig. 5).

Process-based dynamic global vegetation models are com-
monly used tools to simulate the responses of vegetation growth
and ecosystem productivity to climate extremes8,29. We thus
assess the ability of the current set of state-of-the-art vegetation
models (TRENDYv6)30 to capture the lagged responses to spring
compound climate conditions (Supplementary Fig. 6). Overall, we
find that the models tend to overestimate the areal extent with
positive lagged effects to CWD springs, and the areas with
negative lagged effects to CCD springs (Supplementary Fig. 6a, d).
In contrast, the models and observation-based products generally
show good agreement on the areal extent that experience negative
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lagged effects to CWD springs (Supplementary Fig. 6b, c). When
considering LAI, the results are similar (Supplementary
Fig. 6e–h).

We finally assess the ability of TRENDYv6 models to replicate
direct response to compound climate conditions. Overall, the
models overestimate the coverage that is significantly negatively
correlated to CCD climate conditions (Supplementary Fig. 7a–d).
In contrast, the areal extents with significant correlations to CWD
climate conditions are generally well captured by vegetation
models (Supplementary Fig. 7e–h). The results are similar when
employing LAI (Supplementary Fig. 7i–p).

Regional asymmetries in direct and legacy effects of CWD
event. Our results above indicate widespread positive vegetation
responses to CWD climate conditions in high latitudes (>50°N),
and a negative response in mid-latitudes (23.5–50°N/S). CCD
climate conditions mostly exhibit negative effects in mid-to-high
latitudes. To understand the effects of CWD and CCD events in
more detail and the corresponding physical mechanisms, we
perform a regional analysis, focusing on the areas in Fig. 2a where
summer vegetation responds positively (r ≥ 0.22) and negatively
(r ≤−0.22) to spring CWD climate conditions, and the areas in
Fig. 2b where summer vegetation responds negatively (r ≤−0.22)
to spring CCD climate conditions. Across the focus areas, we
investigate the composites of average anomalies in GPP, LAI, soil
moisture, runoff, and terrestrial water storage (TWS) (see
“Methods”). Notably, over these areas, we find that the direction
of direct and lagged productivity responses between the models
and observation-based products overall shows good agreement,
despite the difference in response magnitude (Figs. 3–5).

CWD events increase vegetation productivity in high latitudes.
We first analyze the direct responses of productivity to springtime
and summertime CWD events across high latitudes (>50°N,
Fig. 3). Productivity increases during CWD spring and summer
(Fig. 3a–c), which is consistent with vegetation responses (Sup-
plementary Fig. 8a–c). Despite elevated spring greenness, spring
water overall shows positive anomalies during CWD spring
(Fig. 3d, f, g, i). This result indicates that spring greenness during
CWD conditions is not associated with dry spring across high
latitudes, which is further confirmed by similar anomalies in
springtime TWS (Supplementary Fig. 8d, f). In contrast, severe
water reduction is found in CWD summer (Fig. 3e, f, h, i). This
suggests that despite the beneficial effects of CWD events on
productivity in summer, they are associated with summer water
deficit.

Next, to analyze the lagged effects of springtime CWD events,
we investigate the productivity anomalies in summer under three
cases, namely CWD spring but non-CWD summer, non-CWD
spring but CWD summer, and consecutive CWD spring and
summer. Our results indicate that springtime CWD events have
positive lagged effects on summer productivity across high
latitudes (Fig. 3). Specifically, we find that during non-CWD
summer (that is not favorable for summer vegetation growth)
preceded by CWD spring, positive anomalies are still found in
summer productivity (Fig. 3a). In contrast, during CWD summer
(preceded by non-CWD spring), some models and observation-
based products exhibit a reduction in summer productivity
(Fig. 3b). We further find that summer productivity highly
increases during consecutive events (Fig. 3c). Vegetation
anomalies show similar behaviors (Supplementary Fig. 8a–c).
Regarding the lagged responses of hydrological variables, CWD

Fig. 1 The relationship between precipitation and temperature and compound indices. a Scatter plot of summer precipitation and temperature anomalies
(z-score) with corresponding CWD index in color (see “Methods”). The location is at 97.25°W and 33.75°N from 1901 to 2018. b The same as a but for
spring at 84.75°E and 66.75°N. c Same distribution as in a but colored based on the CCD index. d Same distribution as in b but colored based on the
CCD index.
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springs followed by non-CWD summers do not lead to water
dryness, despite increased vegetation greenness (Fig. 3d, g). The
magnitude of summer water deficit is similar for both cases that
include CWD summer (Fig. 3e, f, h, i) and is consistent with
summer TWS anomalies (Supplementary Fig. 8e, f). These results
imply that in high latitudes, summer water reductions character-
ized by TWS, soil moisture, and runoff are not associated with
increased spring greenness but are primarily caused by summer
precipitation deficit.

The productivity responses to compound climate conditions
may be stronger than that to individual events through the
synergistic effects of temperature and precipitation28. To
investigate this, we compute the average anomalies in GPP and
soil moisture associated with univariate events across the focus
areas, which are then compared with the effects of CWD and
CCD events in high latitudes (see “Methods”). Warm events can
not only directly increase productivity but also show positive
lagged effects (Supplementary Fig. 9a, b). In contrast, dry events
reduce productivity (Supplementary Fig. 9e, f). This indicates that
the direct and lagged positive effects of CWD events across high
latitudes are mainly dominated by the warm component, while
dry conditions have negative effects. Therefore, the warm-
induced increase in productivity slightly exceeds that associated
with CWD events (Supplementary Fig. 9b). Soil moisture under
warm springs shows positive anomalies (Supplementary Fig. 9c,
d), while they slightly decline during dry spring (Supplementary
Fig. 9g, h). This suggests that the positive anomalies in soil water
during CWD spring are driven by the warm component.

CWD events reduce vegetation productivity in mid-latitudes.
Here, we first investigate the direct effects of springtime and
summertime CWD events across mid-latitudes (23.5–50°N/S).
Springtime productivity exhibits little changes during CWD
spring (Fig. 4a, c), despite dry spring (Fig. 4d, f, g, i). When
considering the direct effects of CWD events in summer, the
results are similar, whereas the negative magnitude of pro-
ductivity in summer is larger than that in spring (Fig. 4b, c). This
difference suggests CWD conditions in summer show more
adverse effects on productivity than that in spring in mid-
latitudes. The anomalies in vegetation and TWS are consistent
(Supplementary Fig. 10).

Next, the lagged effects of springtime CWD events in mid-
latitudes are assessed. In cases with CWD spring but non-CWD
summer, summer productivity exhibits slight anomalies (Fig. 4a),
with slightly decreased summer water (Fig. 4d, g). Summer
productivity and water show much higher reductions in case with
consecutive events (Fig. 4c, f, i) than for the case with only CWD
summer (Fig. 4b, e, h). These results are supported by the
responses of vegetation indices and TWS (Supplementary Fig. 10),
revealing that springtime CWD events in mid-latitudes have
negative lagged effects on summer productivity and water
availability.

The direct and lagged effects of individual events are finally
compared with that of CWD events in mid-latitudes. Dry
conditions in spring and summer directly decrease productivity
and cause soil water dryness (Supplementary Fig. 11a–d). More-
over, dry spring depletes soil moisture earlier, which, in turn,
causes dry summer and reduction in productivity during non-dry
summer (Supplementary Fig. 11a, c). This indicates that dry
springs have negative lagged effects on summer productivity. In
contrast, productivity and soil water show positive anomalies
during warm springs, while they show negative anomalies in
summer (Supplementary Fig. 11e–h). These results suggest that
the direct and lagged negative effects of CWD springs are
dominated by the dry component in mid-latitudes, while the
warm component mitigates the negative effects of the dry
component in spring. Accordingly, the decline in productivity
due to dry conditions thus exceeds that triggered by CWD events
(Supplementary Fig. 11b).

Decreased vegetation productivity due to the negative syner-
gistic effects of CCD events. Here, we first investigate the direct
effects of CCD events across mid-to-high latitudes. Productivity
reductions are found during springtime and summertime CCD
events (Fig. 5a–c) concurrent with water reductions (Fig. 5).
Vegetation and TWS show similar behaviors during CCD spring
and summer (Supplementary Fig. 12). These results reveal that
CCD events in spring and summer can impose direct adverse
impacts on productivity and soil water across mid-to-high lati-
tudes. The productivity reductions in spring and summer are
similar in magnitude (Fig. 5a, b), indicating that CCD events
between spring and summer can cause similar damage to
productivity.

We then analyze the lagged effects of springtime CCD events.
Our results indicate that springtime CCD events show negative
lagged effects on summer productivity and cause summer water
reductions in mid-to-high latitudes (Fig. 5). Specifically, we find
that in cases with CCD spring but non-CCD summer, summer
productivity and water exhibit strongly negative anomalies
(Fig. 5a, d, g). Moreover, summer anomalies are higher during
consecutive events (Fig. 5c, f, i) than the cases including only
CCD summer (Fig. 5b, e, h). Vegetation indices and TWS show
similar responses (Supplementary Fig. 12). Our results further
indicate that CCD spring has more severe negative lagged effects

Fig. 2 Summer vegetation lagged responses to spring compound climate
conditions. a Grid-based partial correlations between yearly spring CWD
climate conditions and summer NDVI (a proxy for vegetation growth)
during the period 1981–2015, computed based on partial correlation
analysis (see “Methods”). b The same as a, but for spring CCD climate
conditions. Absolute values of the partial correlation coefficients (r)
correspond to significance levels of p= 0.2 (r= 0.22), p= 0.1 (r= 0.28), or
p= 0.05 (r= 0.33). For each map, frequency histograms show the areal
coverage corresponding to positive and negative correlations. Light gray
areas, i.e. cropland, urban, barren, and permanent snow, and ice, are not
included in the analysis.
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on productivity than CWD spring. That is, we find that in
comparison to cases with preceding CWD spring and consecutive
CWD events, summer productivity shows higher reduction in
cases with preceding CCD spring and consecutive CCD events
(Fig. 4a, c versus Fig. 5a, c). Moreover, in cases with CCD spring
but non-CCD summer (Fig. 5a, d, g), summer anomalies are close
to those in scenarios with non-CCD spring but CCD summer
(Fig. 5b, e, h). The vegetation and TWS anomalies further
confirm this situation (Supplementary Fig. 12a, b, d, e). These

results suggest that the lagged effects of CCD spring can be of
similar magnitude as their direct adverse effects.

We finally compare the direct and lagged effects of individual
events with that of CCD events in mid-to-high latitudes. Cold
conditions in spring and summer directly reduce productivity but
show weak effects on soil moisture (Supplementary Fig. 13a–d),
and cold spring shows negative lagged effects on summer
productivity (Supplementary Fig. 13a). Dry events show direct
and lagged negative effects on productivity and soil moisture

Fig. 4 The responses of vegetation productivity and hydrological variables to CWD events in mid-latitudes (23.5–50°N/S). a–c The average
standardized anomalies (z-score) of GPP during CWD spring but subsequent non-CWD summer (a), non-CWD spring but subsequent CWD summer (b),
and consecutive CWD spring and summer (c) for areas in Fig. 2a where summer vegetation responds negatively (r≤−0.22) to spring CWD climate
conditions. d–f The same as a–c, but for soil moisture. g–i The same as a–c, but for runoff. The bar plots with dash lines (without dash line) indicate the
average anomalies of multiple observation-based (model-based) products, and the circles indicate the average anomalies of each product. For details on
data see Fig. 3.

Fig. 3 Seasonal evolution of vegetation productivity and hydrological variables during CWD events in high latitudes (>50°N). a–c The average
standardized anomalies (z-score) of GPP during CWD spring but subsequent non-CWD summer (a), non-CWD spring but subsequent CWD summer (b),
and consecutive CWD spring and summer (c) for areas in Fig. 2a where summer vegetation responds positively (r≥ 0.22) to spring CWD climate
conditions. d–f The same as a–c, but for soil moisture. g–i The same as a–c, but for runoff. The bar plots with dash lines (without dash line) indicate the
average anomalies of multiple observation-based (model-based) products, and the circles indicate the average anomalies of each product. GLASS, LUE,
NIRv, Flux-CRU, and Flux-ERA5 are observation-based GPP products, while model simulations are taken from TRENDYv6. GLEAM is observation-based soil
moisture. GRUN represents observation-based runoff. GLDAS-VIC, GLDAS-Noah, GLDAS-Catchment, and FLDAS indicate assimilatory soil moisture and
runoff that incorporate satellite- and ground-based observational products.
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(Supplementary Fig. 13e–h). These results imply that the negative
lagged effects of CCD springs are dominated by both cold and dry
components. The effects of CCD events on productivity mostly
exceeds the individual dry or cold impacts (Supplementary
Fig. 13a, b, e, f).

Discussion and conclusions
Our combined use of observation- and model-based datasets
suggests that in high latitudes (>50°N), CWD events can directly
and indirectly enhance vegetation productivity. Vegetation in
high latitudes is primarily controlled by temperature, though lack
of precipitation can suppress plant growth to some degree2.
Hence, CWD events can directly increase productivity, despite
the inhibitory effects of dry conditions. CWD events in spring can
promote summer productivity by enhancing spring productivity
via increased leaf area which can help to sustain higher photo-
synthesis levels over summer and thus increase summer
productivity29. Notably, we find that spring greenness under
CWD conditions is not associated with water dryness. Despite
decreased precipitation during CWD spring, increased tempera-
ture across high latitudes may thaw frozen water in soils, off-
setting the lack of water input31,32. In contrast, summer water
availability is reduced by CWD summer conditions. This suggests
that summer (soil) dryness is primarily related to summer pre-
cipitation deficit in high latitudes. We further find that the
warming-induced increase in productivity exceeds that caused by
CWD events. Accordingly, the direct and lagged positive effects of
CWD events are dominated by the warm component whereas the
dry component can constrain productivity to some degree, par-
tially offsetting the warm-induced positive effects.

Across mid-latitudes (23.5–50°N/S), we find that springtime
CWD events can cause and amplify summer drought, leading to
summer productivity reduction. Water variation in mid-latitudes
strongly responds to precipitation33. The lack of precipitation
combined with increased ET during CWD spring results in
depleted spring soil moisture earlier34. Such preconditions ulti-
mately contribute to summer water limitations and reduce
summer productivity14,35,36. Notably, although extremely high
temperatures usually negatively impact productivity in mid-

latitudes, this does not hold during spring, where the negative
effects of dry events are greater than that of CWD events.
Anomalously warm spring temperatures can increase vegetation
growth, partially offsetting the drought-related negative effects.
Accordingly, increased vegetation greenness during the warmer
spring can largely alleviate the negative impacts of dry events on
vegetation photosynthesis during the subsequent summer34,37.
Generally, elevated but non-extreme temperatures seem to com-
pensate some of the effects of decreased precipitation in tempe-
rate and boreal areas38,39.

In mid-to-high latitudes, we find directly and lagged adverse
synergistic effects of CCD events on productivity. Temperate and
boreal vegetation are most vulnerable to cold extremes19, which
often negatively affect productivity and result in extensive
reductions in productivity20. Moreover, our results suggest that
the lagged effects of CCD spring can be of similar magnitude as
direct adverse effects. Spring cold events are regarded as climatic
extremes with high ecological and evolutionary importance.
Destruction of foliage, flowers and unripe fruits caused by spring
cold is a sustainable damage for plants because it negatively
impacts on nutrient storage, growth, reproduction, leaf develop-
ment, and even ultimately survival in subsequent years19. The
coupling of cold with dry condition thus can cause long-term
negative effects on vegetation due to vegetation carryover effects.

Terrestrial biosphere models tend to overestimate the area that
experiences positive lagged effects to CWD spring, negative lag-
ged effects associated with CCD spring, as well as direct negative
effects to CCD conditions. This could affect the model’s ability to
predict future carbon dynamics under climate changes. However,
it is still unclear why these models do not well replicate the
observed response to environmental conditions. The bias between
observational-based and model products could be due to imper-
fect model parametrizations and lack of important physical
mechanisms. One major factor could be that the seasonal vege-
tation growth is not well represented in the models. Our results
also show a large discrepancy between the areal proportions of
negative responses of LAI to CCD condition in observational and
modeled products. The overestimation of LAI in the models in
their negative response to CCD conditions could be a sign of this
bias. Sensitivity analyses and validation of model parameters by

Fig. 5 The effects of CCD events on vegetation productivity and hydrological variables in mid-to-high latitudes. a–c The average standardized
anomalies (z-score) of GPP during CCD spring but subsequent non-CCD summer (a), non-CCD spring but subsequent CCD summer (b), and consecutive
CCD spring and summer (c) for areas in Fig. 2b where summer vegetation responds negatively (r≤−0.22) to spring CCD climate conditions. d–f The same
as a–c, but for soil moisture. g–i The same as a–c, but for runoff. The bar plots with dash lines (without dash line) indicate the average anomalies of multiple
observation-based (model-based) products, and the circles indicate the average anomalies of each product. For details on data see Fig. 3.
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satellite and ground measurements could help to narrow down
the discrepancies.

Overall, our analyses provide comprehensive insights into how
vegetation productivity directly and indirectly responds to com-
pound climate conditions. The results can serve as a basis for more
reliable predictions of the summer productivity dynamics based on
information from preceding springtime weather conditions.

Methods
Data sources. Long-term and multiple indicators were used as proxies for vege-
tation growth and photosynthetic activity, namely normalized difference vegetation
index (NDVI), leaf area index (LAI), and gross primary productivity (GPP). NDVI
dataset was obtained from the Global Inventory Monitoring and Modeling Studies
(GIMMS) third-generation NDVI product (NDVI3g) based on retrievals from
sensors on the Advanced Very High Resolution Radiometer (AVHRR)40. The
NDVI3g dataset from Jul. 1981 to Dec. 2015 is available at an 8-km spatial reso-
lution and a biweekly temporal resolution. The NDVI dataset has been corrected to
minimize various deleterious effects, such as sensor degradation, orbital drift, and
volcanic eruptions40.

Three types of global LAI datasets, including GIMMS, Global LAnd Surface
Satellite (GLASS), and Global Mapping (GLOBMAP) LAI, were collected from
1982 to 2016. The biweekly GIMMS LAI with a spatial resolution of 8 × 8 km2 were
derived from the GIMMS-NDVI3g data using a set of neural networks41,42. The
GIMMS LAI has been proved to be excellently accurate by validating against field
measurements and other satellite-derived LAI products42. Using general regression
neural networks, the GLASS LAI from 1981 to 1999 was generated from AVHRR
reflectance data, while during 2000–2016 was derived from Moderate Resolution
Imaging Spectroradiometer (MODIS) reflectance data, which are available at a
0.05° spatial resolution and 8-day temporal resolution43. The high quality and
accurate GLASS LAI product is characterized by its spatial and temporal continuity
(no gaps or missing values), temporal stability, and representation of vegetation
phenology44. GLOBMAP LAI dataset with 0.08° spatial resolution was obtained by
quantitative fusion of MODIS and AVHRR data; it has 15-day and 8-day temporal
resolutions from 1981–2000 and 2001–2016, respectively. The GLOBMAP LAI
dataset has been validated with field measurements and other products,
demonstrating low temporal noise and high quality45.

Five types of GPP data from 1982–2016 were used and previous studies
demonstrate that they reflect the impact of climate condition anomalies on
vegetation productivity8,29. The first monthly GPP data with 8 km spatial
resolution was based on the Monteith light use efficiency (LUE) equation but was
improved with optimized spatially and temporally explicit LUE values derived from
selected FLUXNET tower site data46. The GLASS GPP (0.05° spatial resolution,
8-day temporal resolution) was derived from the latest version of Eddy Covariance-
LUE model47. Satellite-based near-infrared reflectance (NIRv) GPP was generated
from AVHRR data and hundreds of flux stations around the world, which is
available at a 0.05° spatial resolution and monthly scale48. In addition, the
ensemble estimates of monthly FLUXCOM GPP (0.5° spatial resolution) from
machine learning methods together with two flux partitioning methods driven by
ERA5 or CRU meteorological forcing (here abbreviated as Flux-ERA5 and Flux-
CRU GPP) are used49.

Soil moisture from the Global Land Evaporation Amsterdam Model (GLEAM)
was used to investigate key mechanisms associated with the hydrological responses,
which has a 0.25° spatial resolution with monthly time step from 1982–201650. The
GLEAM data are strongly constrained by observations through assimilating
multisource satellite-observed soil moisture, vegetation optical depth (as a proxy
for water stress), and snow water equivalents from different satellite sensors. The
GLEAM data have been widely employed to investigate hydrological variation due
to climate extremes or vegetation dynamics35.

Two types of global reconstructed terrestrial water storage (TWS) anomalies
and observation-based global gridded runoff with 0.5° spatial resolution and
monthly temporal resolution from 1982–2016 were also used to investigate major
mechanisms related to soil water resources responses. The first TWS anomalies
dataset was reconstructed by a statistical model trained with GRACE observations
and forced with meteorological datasets51. The second TWS anomalies dataset that
can reproduce the strong El Niño signal were reconstructed by combining machine
learning with time series decomposition and statistical decomposition
techniques52. The global runoff dataset (here abbreviated as GRUN) was developed
by machine learning algorithms that were trained with observation streamflow,
which was assessed with cross-validation against in-situ streamflow, indicating high
accuracy and quality53.

Gridded monthly precipitation and temporal data were obtained from the
Climatic Research Unit (CRU TS4.03) at 0.5° spatial resolution54. In addition,
landcover data used in this study were based on the MODIS MCD12Q1 Version 6
data product, and land cover classification relies on the annual international
geosphere-biosphere program. We aggregated the original classes into forest,
shrubland, grassland, wetland, cropland, urban and others (e.g., barren and water
body), with 0.5° spatial resolution. We only selected grid cells for which the
dominant vegetation type occupied >60% of the grid area. We masked ecosystems

dominated by cropland, urban and others, as vegetation growth in these areas is
highly affected by human activity.

The fine-scale and/or coarse-scale spatial dataset used in this study were all
resample to 0.5° spatial resolution using bilinear interpolation.

Terrestrial ecosystem models. We also used the monthly GPP, LAI, runoff, and
soil moisture simulations for 1982–2016 from ten process-based terrestrial bio-
sphere models participating in the TRENDY (trends in net land–atmosphere
carbon exchange) v6 project (TRENDYv6)30. The models used in this study are
CABLE, CLM4.5, DLEM, ISAM, JSBACH, JULES, LPJGUESS, LPXBern,
ORCHIDEEMICT, and VISIT. All models were run by the CRU-NCEP V8 cli-
matic datasets, which are based on a convergent product of CRU observational
climate data. Global atmospheric CO2 concentrations were collected from a
combination of ice-core records and the NOAA monitoring observations30. In
TRENDYv6, the same set of factorial simulations was derived by following a
standard experimental protocol. TRENDY simulation S2 that was forced by
varying both atmospheric CO2 and climate was used in this study. A detailed
introduction on these models is shown in Supplementary Table 1.

Land data assimilation system. We also used the monthly soil moisture and runoff
for 1982–2016 from the Global Land Data Assimilation System (GLDAS)55 and
Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation
System (FLDAS)56. GLDAS is a global offline (uncoupled to the atmosphere) ter-
restrial modeling system, developed by the Hydrological Sciences Laboratory, NASA.
GLDAS uses data assimilation to incorporate satellite and observation in advanced
land surface models, including Noah, Catchment, the Variable Infiltration Capacity
model (VIC) land surface model, to generate optimum land surface states and fluxes.
The GLDAS-2.0 used the Princeton meteorological dataset for the forcing data, and
the forcing of the GLDAS-2.1 was NOAA-Global Data Assimilation System atmo-
spheric fields55. GLDAS provides a monthly global hydrological components dataset
at 1° and 0.25° resolution from 1948 to the near present.

The FLDAS is a variant of the NASA Land Information for optimizing
agricultural drought assimilation. The meteorological forcing is derived from
Modern-Era Retrospective analysis for Research and Applications version 2.
FLDAS produces monthly multi-model and multi-forcing estimates of hydro-
climate conditions from 1982 to the near present in a 0.1° resolution56. In this
study, the root zone soil moisture from GLDAS and top 1 m soil moisture from
FLDAS were used.

Compound event indices. Though directly counting individual climate extremes is
a straightforward approach to investigate simultaneous extreme events57, it results
in very few samples, requires very long time series, and can not measure the degree
to which compound conditions deviate from the average conditions58. The func-
tion of probability distribution is a common and effective tool to model the
hydrometeorological climate anomalies59. For example, the standardized pre-
cipitation index, one of the most commonly used indices worldwide for detecting
and characterizing meteorological droughts, is developed using univariate dis-
tribution, such as gamma probability distribution60. Recently, bivariate and mul-
tivariate probability distributions, such as copula theory61, have been used to
construct hydrometeorological indices involving multiple factors to better model
more complex individual hazards and compound events10,24,25,58. Using copula
theory61 to model the dependence structure of temperature and precipitation is an
effective way to capture compound events10,24,25,58. Here, we compute two uni-
variate indices to identify compound warm-dry (CWD) and compound cold-dry
(CCD) events, i.e. a CWD index that tailored to the variation along compound
cold-wet conditions to CWD conditions, and a CCD index that tailored to the
variation along compound warm-wet conditions to CCD conditions. The two
indices do not only identify concurrent extremes, but characterize the degree to
which compound conditions deviate from average conditions of bivariate
distribution24,25,62. Both indices are thus univariate quantities following standard
normal distribution24,25. When talking about CWD and CDD events we use the
following definition: CWD index ≥ 0.8 indicates CWD climate conditions, CWD
index ≤−0.8 indicates compound cold-wet climate conditions, CCD index ≥ 0.8
indicates CCD climate conditions, and CCD index ≤−0.8 indicates compound
warm-wet climate conditions. The introduction on the two indices in detail is
described in the Supplementary Material.

Statistical analysis. Our study areas only cover the global mid-high latitudes (i.e.
23.5° to 90°N, and 23.5° to 90°S) because of their distinctive vegetation seasonality35.
Vegetation productivity usually shows strong seasonality, and high productivity
mainly occurs in summer season. Moreover, summer productivity is associated with
spring climate conditions to some degree8. Therefore, we focus on the impacts of
spring and summer compound climate conditions on summer productivity. To
evaluate direct and lagged responses of vegetation productivity, we firstly defined the
spring in the Northern (Southern) Hemisphere as the period from March to May
(September to November), and the summer in the Northern (Southern) Hemisphere
as the period from June to August (December to February).

To investigate the lagged responses of vegetation productivity to compound
climate conditions, we compute the partial correlation coefficient (r) between the
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summer response variables of interest (NDVI, LAI or GPP) and spring CWD index
and CCD index, separately. Partial correlation analysis can robustly measure the
degree of association between two random variables, with the effect of controlling
random variables removed8,35. All variables were detrended before performing
partial correlation analysis, and in these partial correlations, the covarying
influences of summer CWD index (or CCD index) on the correlations between
spring CWD index (or CCD index) and subsequent summer response variables
have been removed. Similar partial correlation analyses are performed for spring
temperature (or precipitation) to compare the lagged effects of individual climate
conditions with that of spring compound climate conditions, in which the
covarying influences of summer temperature and precipitation on the correlations
between spring temperature (or precipitation) and subsequent summer NDVI have
been removed. In addition, the areal coverage corresponding to different
correlations values is calculated as a fraction of total study area that was calculated
by a function of latitude.

To understand direct and lagged responses of vegetation productivity to CWD
and CCD events in detail and investigate key mechanisms associated with
hydrological responses, we performed a regional analysis, focusing on the composites
of anomalies in GPP, LAI, soil moisture, runoff, and TWS during specific spring and
subsequent summer across the areas with positive (negative) partial correlations
under three scenarios from 1982 to 2016. All variables were detrended and then were
transformed into standardized anomalies. The standardized anomaly (z-score) uses

the formula of Zi ¼ ðXi�X
σ Þ, where Zi denotes spring (or summer) anomaly of

response variable in year i, X denotes the spring (or summer) average value of the
response variable for the entire study period; σ stands for the spring (or summer)
standard deviation of the response variable for the entire study period. The three
scenarios are defined as: Scenario I) springtime CWD index ≥ 0.8 and summertime
CWD index < 0.8, Scenario II) springtime CWD index < 0.8 and summertime CWD
index ≥ 0.8, and Scenario III) both spring and summer CWD index ≥ 0.8. The three
scenarios of specific springs and subsequent summers are also employed to the CCD
index. The three scenarios are summarized in Supplementary Table 2. The
constraints of compound climate conditions can affect vegetation productivity despite
not very strong association (i.e. p < 0.2), the regional analysis is thus performed across
the areas in Fig. 2a with positive (r ≥ 0.22) and negative (r ≤−0.22) lagged responses
to spring CWD climate conditions, and the areas in Fig. 2b showing negative
(r ≤−0.22) lagged responses to spring CCD climate conditions. Because few areas
show positive correlations between spring CCD climate conditions and summer
NDVI (Fig. 2b), these areas are not included in the regional analysis. The mean
anomalies of response variables were finally computed across positive (negative)
correlated areas by averaging all cases meeting the requirement for each scenario
from 1982 to 2016.

In comparison to the direct and lagged effects of CWD and CCD events, the mean
anomalies of response variables (GPP and soil moisture) associated with individual
events (i.e., warm, cold, and dry events) were calculated across the focus areas under
scenarios I and III. The springtime and summertime dry events were identified by the
standardized precipitation index ≤−0.8; the springtime and summertime warm
events were characterized by the standardized temperature index (STI) ≥ 0.8; the
springtime and summertime cold events were identified by STI ≤−0.8.

Data availability
All observation and model data that support the findings of this study are available as
follows. The AVHRR GIMMS NDVI3g data are available at https://www.cen.uni-
hamburg.de/en/icdc/data/land/gimms-ndvi3g.html; The AVHRR GIMMS LAI3g data
are available at http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html; The FLUXCOM GPP
product is available at http://www.fluxcom.org/; The MODIS land-cover maps are
available at https://lpdaac.usgs.gov/products/mcd12q1v006/; The climatic variables from
the CRU TS4.03 data are available at https://crudata.uea.ac.uk/cru/data/hrg/; The soil
moisture from the GLEAM v3.2a data is available at https://www.gleam.eu/; The runoff
and soil moisture from the GLDAS and FLDAS are available at https://disc.gsfc.nasa.gov/
datasets?page=1; The GLASS LAI and GPP products are available at http://www.glass.
umd.edu/Download.html; The GLOBMAP LAI are available at https://zenodo.org/
record/4700264#.Ya8sJ9CZNPY; The LUE GPP data are available at https://daac.ornl.
gov/VEGETATION/guides/Global_Monthly_GPP.html; Model outputs generated by
TRENDY v6 ecosystem models are available from Stephen Stich (s.a.sitch@exeter.ac.uk)
or Pierre Friedlingstein (p. friedlingstein@exeter.ac.uk) upon request. The data to
reproduce the main results presented can be accessed from https://doi.org/10.6084/m9.
figshare.19558675.v1.

Code availability
The processing R codes are available from Jun Li upon request.
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