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Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research was conducted
at the University of Oslo and at DNV, under the supervision of Professor Arne
Huseby and Professor Fred Espen Benth from the University of Oslo, together
with Dr. Frank Børre Pedersen and Dr. Simen Eldevik from DNV. This work
was supported by the Norwegian Research Council through grant 276282 and
DNV Group Research and Development.

In this thesis we explore how phenomenological knowledge can be exploited
to alleviate some of the challenges with applying data-driven modelling in safety-
critical systems. The thesis is a collection of six papers, concerning development
of methods, theory and algorithms associated with probabilistic modelling of
safety-critical systems, for applications where phenomenological knowledge and
data can be combined. The papers are preceded by an introductory part that
provides motivation, background and context for the work.
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Chapter 1

Introduction
The aim of this project is to provide some of the tools needed to make data-
driven modelling suitable for safety-critical systems. The thesis consists of six
papers, concerning development of methods, theoretical results and practical
algorithms that combine probabilistic modelling of safety-critical systems with
phenomenological knowledge and data.

In this chapter we first discuss the main motivation behind this project. We
then present what we mean by a probabilistic model, in particular probabilistic
machine learning, and what we mean by phenomenological knowledge. We also
expand on the type of applications we are interested in, which ultimately is to
help some decision maker act optimally under uncertainty.

In Chapter 2 we introduce some of the background theory and context for the
papers, and in Chapter 3 we provide a brief summary of the main contributions
of each paper. A discussion of challenges and relevant topics for future research
is given in Chapter 4, followed by the papers and two appendices. Appendix A
contains a conference paper supplementing the motivation for this project as
discussed in Section 1.1. Appendix B contains links to two python packages that
have been developed in the project.

1.1 Motivation

Artificial Intelligence (AI) and data-driven decisions based on Machine Learning
(ML) are making an impact on an increasing number of industries. As these
autonomous and self-learning systems become more and more responsible for
making decisions that may ultimately affect the safety of personnel, assets, or
the environment, the need to ensure the safe use of AI will be crucial. The use of
ML for high-risk and safety-critical applications in particular is problematic. In
the paper Pitfalls of machine learning for tail events in high risk environments,
included in Appendix A, we identify the following challenges:

• there is a reduced tolerance for erroneous predictions due to potentially
catastrophic consequences,

• critical consequences often relate to rare events where data is scarce, and

• relevant models are often complex, and a proper treatment of model
uncertainty is essential.

However, there are ways to address this – as that there is often additional
phenomenological knowledge available. This is the knowledge, often causal or
physics-based, that underpins our understanding of the underlying mechanisms
that drive the things we observe.
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1. Introduction

The origin of this doctoral project comes from the idea that in ML for physical
phenomena, statements such as "with a larger force comes a higher acceleration"
could be included to improve performance of the ML model, potentially allow for
some robust extrapolation, and at the same time reduce uncertainty, or at least
provide more realistic uncertainty estimates. In addition, it may provide some
additional means of falsification, as there may exist observations that do not
agree with the statement, in which case the data is erroneous, or the statement is
false and we have learned something fundamentally new about the phenomenon.

In this example, the phenomenological knowledge when stated mathematically
comes in the form of a bound on a partial derivative, which may be imposed
as a constraint on a probabilistic model of the system of interest. Throughout
the project, other forms of facilitating the use of phenomenological knowledge
in probabilistic modelling of safety-critical systems have been considered. The
following sections present these ideas in some more detail.

The project has been carried out in close collaboration with DNV, a global risk
management and quality assurance company. All of the papers produced in this
project are motivated by experience and challenges from real-world applications.

1.2 Probabilistic modelling of safety-critical systems

A model, in general, is a set of assumptions describing some system under
consideration. A probabilistic model may be defined likewise, as a set of
assumptions that specifies a probability distribution for the relevant quantities
of interest. When we are interested in modelling a physical phenomenon, the
probabilistic model specifies a stochastic representation of relevant physical
quantities and how they interact. And when a probabilistic model includes the
representation of some data-generating process, i.e. a stochastic representation
of something that could be observed, probabilities given by the probabilistic
model can be updated by conditioning on a set of such observations.

The task of conditioning a probabilistic model, where we find a posterior model
given a prior, a likelihood and a set of observations, is often termed Bayesian
updating or Bayesian inference in the statistics literature, and probabilistic ML
in the machine learning community. In essence, the term probabilistic ML usually
implies that there is a focus on obtaining a numerically tractable method for
estimation or approximation of the posterior model, and that the end goal is to
use the posterior for prediction. This probabilistic approach to ML is discussed
in more detail in Section 2.2.

A special type of probabilistic model that is particularly relevant for safety-
critical systems, and which plays a central role throughout this thesis, is the
probabilistic models used for failure probability estimation in structural reliability
analysis (SRA). These are probabilistic models of mechanisms that may cause
structural failure, for instance that a ship sinks or that a bridge will collapse given
a certain load scenario, and they are an important part of modern engineering
design and operation of safety-critical systems. These models are often specified
by a random variable X, representing some physical object and its environment,
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Figure 1.1: Illustration of a model for structural reliability analysis (SRA)
combined with a data model. Probabilistic ML is used to obtain P (Fail|Obs).

together with a causal physics-based model of failure, Fail|X. The failure
probability P (Fail) can be difficult to estimate, as it is usually a small number,
and various special purpose methods have been developed for efficient estimation
or approximation of this probability. We discuss some of these in Section 2.1.2.

In this project, we are particularly interested in applications where these
kinds of physics-based probabilistic models are connected with data as illustrated
in Figure 1.1. Here, a model of some observable quantity is connected with the
structural reliability model. The observable quantity depends on the physical
state X and some additional variable Y, representing for instance noise. The
model Obs|X,Y provides the likelihood of observations, which allows inference
about X|Obs, and ultimately the posterior failure probability P (Fail|Obs).

1.3 Reasoning under uncertainty

The purpose of probabilistic modelling is usually to help some decision maker
reason under uncertainty, which typically means that we want to find a decision
that is optimal in some way, with respect to future events that may occur and
their associated uncertainty. For engineering applications, this often boils down
to finding the right balance between cost and safety.

Ideally, the uncertainties associated with the random variable X and the
causal relation Fail|X in Figure 1.1 are all aleatory. This means that all
uncertainty is related to inherent variability of the physical phenomenon that
is being modelled. In this case, the failure probability pf = PX(Fail) (failure
probability with respect to the random variable X) is often used for decision
making. If X = X(d) depends on some deterministic design parameter d that
we can choose, we might be interested in minimizing costs associated with the
design d, under the constraint that the corresponding failure probability, pf (d),
does not exceed a specified target value.

In many situations we also need to consider epistemic uncertainties. Epistemic
uncertainty comes from lack of information or knowledge, for instance a physical
constant that we do not know the value of. These are uncertainties that in
principle can be reduced by gathering more information. In a safety-critical
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1. Introduction

system, a robust decision should be robust with respect to what we do not
know, i.e. with respect to epistemic uncertainty. Hence, when both aleatory and
epistemic uncertainty is present, there is a need for methodologies that allow for
these to be treated separately. When working with failure probabilities, pf (d)
could be viewed as an epistemic random variable (e.g. each realization of pf (d)
corresponds to a specific value of the physical constant), and a conservative
estimate of pf (d) could be used for making safety-critical decisions. In Paper III
and Paper IV we consider this scenario and present a rigorous formulation of
the separation of aleatory and epistemic uncertainty.

The introduction of epistemic uncertainty also gives rise to a new type of
optimization problem:

What is the optimal strategy for gathering new information, in order to reduce
epistemic uncertainty with respect to some specific objective, when information

acquisition comes at a cost?

For instance, performing experiments to infer a physical constant may reduce
epistemic uncertainty in pf (d), which may let us find a more cost efficient design.

If we expand the model illustrated in Figure 1.1 by introducing cost or reward
models, for instance models representing the cost of generating observations, and
costs or rewards associated with choices made in the design or operation of the
relevant physical asset, the probabilistic model can be used to provide guidance
in these kinds of decision-making problems. The papers that are part of this
thesis have all been produced with this type of application in mind, for scenarios
where additional phenomenological knowledge can be introduced. Ultimately, the
purpose of introducing phenomenological knowledge will be to reduce epistemic
uncertainty.

1.4 Phenomenological knowledge

In probabilistic modelling of real-world phenomena, data-driven modelling and
first principles modelling can be seen as two extremes. For a physical phenomenon,
the data-driven approach would be based on observations alone, making as few
restrictions or assumptions about the data-generating process as possible, whereas
the first principles approach could involve modelling the laws of physics combined
with a stochastic representation of relevant random quantities.

Take for instance the example of launching a rocket into space. The purely
data-driven approach would be to try and launch a large number of different
types of rockets under different conditions to learn about what works best. This
is, of course, not how rockets are designed. Instead, we could solve the system of
partial differential equations (PDEs) that govern the launch and flight of a rocket
under a specific set of conditions in theory. To find a robust solution, we would
have to account for different weather conditions, variations in material properties,
and in general all that is uncertain. We would then obtain a structural reliability
model like the one in Figure 1.1, where X is a random variable representing
everything about the physical system that is uncertain, and Fail|X is determined
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from a system of PDEs. The main uncertainty that then remains is related to how
well the model Fail|X fits reality, and we should include data, for instance from
controlled experiments, to understand the mismatch between physical simulation
and the real world. This is the first principled way in which data-driven and
theoretical modelling based on phenomenological knowledge is combined.

A problem that often arises in practice, when dealing with models of physical
phenomena that are computationally expensive (in money and/or time), is that
probabilistic computation becomes infeasible. For instance, sampling based
approaches that rely on computing Fail|xi for many realizations xi are useless if
each evaluation of the corresponding computer model takes minutes, or hours
or days, which is not uncommon for numerical models of complex physical
phenomena. A way to solve this problem is to replace Fail|X with a probabilistic
surrogate model. Given a computationally expensive function f(x), we can
establish a computationally cheap approximation f̂ ≈ f using only a small
number of evaluations f(xi). One of the most common approaches today is to let
f̂ be a Gaussian process fitted to observations of f(xi) (as will be described later
in Section 2.2.2). Of course, replacing a function f with some approximation
f̂ introduces additional uncertainty, and it is important that this uncertainty
is quantified. Furthermore, this uncertainty depends on the set of experiments
(evaluations of f(xi)) available, and a very relevant optimization problem is how
to best select these experiments.

Going back to the rocket launch example, imagine that we have access to a
physics-based computer simulation of the underlying mechanics, which gives us
Fail|X, as well as a distribution for X representing the relevant uncertainties.
Assume further that the physics-based computer simulation is too time consuming
for probabilistic analysis to be possible, so we replace it with a surrogate model
fitted to a finite set of observations D. At this point, the phenomenological
knowledge related to the failure mechanism in our model is represented by the
dataset D.

The purpose of introducing phenomenological knowledge is to reduce
epistemic uncertainty. In this example, the way we might include more phe-
nomenological knowledge is to increase the set D. In Section 1.3 we introduced
the problem of adding datapoints to D in an optimal manner, with respect to
the potential effect on future decisions and the cost of data collection. This
problem, which we call the problem of optimal information gathering, is one out
of a few different ways of introducing phenomenological knowledge that has been
considered in this project. Other methods that have been explored involve the
use of model constraints, exploiting the hierarchical structure of physics-based
models, and leveraging properties of the set of model inputs that correspond to
structural failure. In summary, the following concepts have been studied:

5



1. Introduction

Optimal information gathering
When we know what the model shall be used for, for instance how predictions
may affect decisions in the real world, we can study the effect of uncertainty
reduction. If we have available a model of some data-generating process,
i.e. a model of what we might observe if we decide to run some experiment,
we can also study the potential uncertainty reduction resulting from experi-
ments. It is then possible to evaluate the chance that running some specific
type of experiment is worthwhile. The task of optimizing over this kind of
information gathering activities is considered in Paper II, Paper III and Paper IV.

Linear constraints
A relevant form of linear constraint is that of monotonicity, which encodes
physics-related statements such as "If you increase the thickness of a steel plate
it gets stronger", but also, "kids grow taller" and "the probability that you are
eligible for a loan should increase as a function of your salary, all else equal".
All of these statements are of course equivalent to requiring that some partial
derivative is nonnegative, and this is something that can be incorporated in
probabilistic ML as a constraint.

A popular nonparametric probabilistic ML model for dealing with differ-
entiable (potentially latent) functions is the Gaussian process (see Section
2.2.2). A Gaussian process can be viewed as a distribution over functions, and
phenomenological knowledge may be included through bounds on derivatives, or
some other linear transformation of these functions. In Paper I we develop a
numerical procedure for this purpose.

Hierarchical modelling
Physics-based models of failure mechanisms are often hierarchical, given as
compositions of multiple models of different physical phenomena that together
determine the failure scenario. For instance; loads (wind, waves, or other forces
acting on the structure), load effects (stresses, strains), and the structural resis-
tance (material capacity with respect to e.g. stress or strain) may be determined
from separate special-purpose models. If some of these are computationally
expensive, we need to replace them with surrogates. It is then beneficial to
preserve the representation of how these sub-phenomena are interlinked, by
combining multiple surrogate models instead of replacing the global model
Fail|X with a single surrogate. The method in Paper III is developed for this
scenario.

Convex failure sets
For many applications, it is reasonable to assume that the failure set is convex.
That is, if x1 and x2 are two realizations of X leading to failure, then any
interpolation λx1 + (1−λ)x2 on the line between x1 and x2 will also correspond
to a failed state. The theory related to environmental contours (see Section
2.1.2) which we consider in Paper VI is developed under this assumption.
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Chapter 2

Background
In this chapter we present some relevant background for understanding the papers,
and to give some context for seeing how they relate to the main scope of the
thesis. We start by presenting the overarching topic of uncertainty quantification
(Section 2.1) with a specific focus on structural reliability, which we connect with
probabilistic machine learning (Section 2.2), and then end with a discussion on
some relevant problems related to optimal decision making under uncertainty
(Section 2.3).

2.1 Uncertainty Quantification

In Section 1.4 we considered the example of designing a rocket. We assumed
that a numerical model of the physical phenomenon was available, but that the
inputs are uncertain. This could be related to variability of the inputs or
fixed model parameters whose exact values are unknown. But even if the input
could be determined exactly, the numerical model does not necessarily provide a
true representation of the real physical phenomenon. This form of uncertainty
is often called model uncertainty related to model discrepancy, and stems
from the assumptions and simplification made in the mathematical model used
to approximate reality. If we want to estimate the model discrepancy using
data, there is usually also observational uncertainty involved, which we often
accredit to noise.

Additional uncertainties also arise when we try to make use of a mathematical
model, as further numerical approximation may be needed. For instance, if
model evaluation involves solution of PDEs, we would generally need to rely on
numerical schemes such as finite element or finite difference approximations which
introduces numerical errors. In addition, it is often necessary to introduce
surrogate models or emulators to account for the limited number of model
evaluations (PDE solves) that can be performed in practice, which introduces
additional interpolation uncertainties.

A further discussion and categorization of these uncertainties that arise when
dealing with simulation of physical phenomena can be found in e.g. (Kennedy
and O’Hagan 2001; Vernon et al. 2010). Broadly, the field of Uncertainty
Quantification (UQ) can be viewed as the collection of disciplines needed to
address all of these uncertainties combined.

Uncertainty quantification is the rational process by which proximity
between predictions and observations is characterized. It can be thought
of as the task of determining appropriate uncertainties associated with
model-based predictions.

7



2. Background

More broadly, it is a field that combines concepts from applied
mathematics, engineering, computational science, and statistics, producing
methodology, tools, and research to connect computational models to the
actual physical systems they simulate.

— Handbook of Uncertainty Quantification (Ghanem et al. 2017)

UQ is not a mature field, and there is currently no common theoretical
foundation for UQ. Traditionally, it has been treated somewhat differently within
applied mathematics and statistics, but recent initiatives are trying to bring
the two communities closer together (e.g. the INI Programme on Uncertainty
Quantification 2018). The main differences lie in how computationally expensive
models of physical phenomena are treated. Let y = f(x) be a model mapping
physical properties of a system, given by the vector x, to an output y which
represents some quantity of interest. In physical systems, the relationship
between x and y is often modelled using PDEs, and various methods have been
developed for the scenario where the variables involved are random. Sullivan
2015 gives an introduction to the relevant theory, and for some recent examples
see for instance (Bespalov et al. 2019; Capodaglio et al. 2021; Khan et al. 2018).

Within statistics, uncertainty quantification related to such models has roots
in the research on design of computer experiments by Sacks et al. 1989, and
the Bayesian treatment by Kennedy and O’Hagan 2001 which considers all of
the uncertainties involved when these models are used to simulate real-world
phenomena. With the statistical approach, the function f(x) is usually viewed
as a black-box model, where the only information available about the mapping
x → y is through a finite set of observations (x1, y1), . . . , (xN , yN ). Using a
computationally cheap approximation f̂ ≈ f , from which a large number of
samples (� N) can be obtained, statistical analysis can then be carried out.
The approximation f̂ is often called a surrogate model or emulator1, and one
of the most popular alternatives today is to make use of Gaussian processes as
introduced in Section 2.2.2.

The approach taken in this thesis lies somewhere in between these two views,
but closest to the statistical alternative. We make use of probabilistic surrogate
models, like the Gaussian process, which is agnostic to the type of physical
simulation that is implemented in the computer model. We do not assume that
the underlying mechanics comes in the form of a PDE that we have knowledge of,
but instead try to find other ways of incorporating phenomenological knowledge
to enhance the probabilistic surrogate.

2.1.1 Epistemic and aleatory uncertainty

Within UQ it is common to consider two different kinds of uncertainty:
Aleatory (stochastic) and epistemic (knowledge-based) uncertainty. We say
that uncertainty is epistemic if we foresee the possibility of reducing it through

1The name emulator is often reserved for surrogate models that can interpolate between
noiseless observations coming from a deterministic computer simulation, and where uncertainty
in predictions at untried inputs can be assessed.
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gathering more or better information. For instance, uncertainty related to a
parameter that has a fixed but unknown value is considered epistemic. Aleatory
uncertainty, on the other hand, is the uncertainty which cannot (in the modeler’s
perspective) be affected by gathering information alone. The characterization
of aleatory and epistemic uncertainty depends on the modelling context. It is,
for instance, possible to argue that the result of a coin flip is epistemic (given
all initial conditions etc.), but this might not be a suitable assumption with
respect to the purpose of the model. It is then most relevant to consider the coin
flip as aleatory. Kiureghian and Ditlevsen 2009 provide a detailed discussion of
the differences between aleatory and epistemic uncertainty, and also show that
by not separating between these two types of uncertainty in risk and reliability
assessment, one may either over- or underestimate the failure probability by a
significant magnitude (depending on the problem at hand). Hence, distinguishing
between aleatory and epistemic uncertainty is important for risk assessment.

In the uncertainty quantification literature, aleatory uncertainty is typically
modelled via probability theory. However, epistemic uncertainty is represented
in many different ways. For instance, Helton et al. 2010 considers four different
ways of modelling epistemic uncertainty: Interval analysis, possibility theory,
evidence theory (Dempster–Shafer theory) and probability theory.

In this thesis we take a probabilistic approach to both epistemic and aleatory
uncertainty. In Paper IV we give a detailed exposition of how the two types
of uncertainty can be treated within measure-theoretic probability, and how
Bayesian updating of epistemic uncertainty can be formulated.

For the problems addressed in this thesis, one common goal is to make use
of phenomenological knowledge to reduce epistemic uncertainty.

2.1.2 Structural reliability analysis and environmental contours

Structural reliability analysis (SRA) is the fundamental building block of modern
risk-based engineering methodologies. In probabilistic structural reliability
analysis, a model of a physical system and its environment is described by a
random variable X ∈ X and a function g : X → R. Here X is an arbitrary
measurable space, but we may think of X = Rn as the canonical scenario.

A value x ∈ X contains the parameters describing a particular structure,
such as the geometry, dimensions and material properties. These quantities may
be random, but can be influenced by the designer of the structure. For example,
the designer may choose to use a more expensive, but more durable material in
order to improve the structural properties of the system. In addition, X contains
the (random) parameters that characterize the systems environment, such as
wind speed, wave height etc., and parameters describing how well the model fits
reality (model uncertainties).

The failure probability
The function g(·) is called the limit-state function (sometimes the performance
function), with the property that g(x) ≤ 0 corresponds to system failure, and
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2. Background

g(x) > 0 corresponds to the system functioning. The set

Fg = {x ∈ X | g(x) ≤ 0} (2.1)

is the failure set associated with g. Structural reliability analysis generally
revolves around analysis of the failure probability

P (Fg) = E [1 (g(X) ≤ 0)] , (2.2)

where E [·] denotes the expectation with respect to P and 1 (·) is the indicator
function.

In most real-world applications one does not attempt to evaluate (2.2)
analytically, as this is generally not feasible. Instead, several numerical methods
have been developed for approximation and estimation of the failure probability.
Two traditional methods are the first- and second-order reliability method
(FORM/SORM), where the failure boundary ∂Fg is approximated using a Taylor
expansion up to the first or second order (centered at at failure point with high
likelihood). Different sampling procedures have also been developed, which often
make use of intermediate results obtained from FORM/SORM. See for instance
(Madsen et al. 2006).

The need for surrogate models in SRA today
Although non-deterministic methods for structural reliability analysis dates back
to the 1950s, it was only a few decades ago that it became possible to implement
full probabilistic approaches (Wu 2013). With methods such as Monte Carlo
simulation and FORM, evaluation of failure probabilities became possible, but it
was still restricted to structural models where a large number of evaluations could
be performed in reasonable time. According to Wu 2013, surrogate modelling
was first used to address this problem in the 1990s, using polynomial regression
which was referred to as the response surfaces method. Today, an important part
of SRA is the use of probabilistic surrogate models and emulators which are
flexible enough that they can represent modern simulations of physical systems,
which can be of high fidelity and high computational complexity. This is one of
the reasons why SRA is considered as a part of UQ today.

Environmental contours
A natural assumption in many physical systems is that the failure set Fg in (2.1)
is convex. That is, if x1,x2 ∈ Fg are two realizations of X leading to failure,
then any interpolation λx1 + (1− λ)x2 on the line between x1 and x2 will also
correspond to a failed state.

In this case, if we can find a convex set B such that g(x) ≥ 0 ∀x ∈ B, it
follows from convexity theory that there exists a supporting hyperplane Π that
separates B and Fg, i.e. B ⊆ Π− and F ⊆ Π+, where Π− and Π+ are the two
half spaces separated by Π. Moreover, it must hold that P (Fg) ≤ P (X ∈ Π+).

The idea behind environment contours is to find a set B with the property
that P (X ∈ Π+) = pe for all supporting half-spaces Π+ and some constant
target failure probability pe. The set B thus depends on the value of pe and the
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distribution of X, which one normally assumes is absolutely continuous with
respect to the Lebesgue measure on Rn. Then, if one can ensure that any value
of x in B is safe (g(x) > 0), the failure probability is bounded above by pe.
Figure 2.1 gives a visual illustration for the case where X is two-dimensional.
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Figure 2.1: Illustration of an environmental contour in R2. If the exceedance
probability for all supporting half-spaces Π+ of B is less than pe, then for any
convex failure region Fg that does not intersect the interior of B, the failure
probability P (Fg) is also less than pe.

Note here that we do not rely on specific knowledge about Fg, only the
assumption that Fg is convex. In order to be sure that the failure probability
is less than pe we need to validate that the structure does not fail within B,
but this is a different question than finding the failure set Fg. This is useful
when observations of safe behavior is more easily obtainable than that related
to failure.

The concept of environmental contours was first introduced by Haver 1980;
Haver 1987 as a means to study the joint distribution of significant wave height
and wave period of ocean waves (hence the name environmental). Since then,
efficient numerical procedures for constructing environmental contours have been
developed, see for instance (Huseby et al. 2015; Ross et al. 2020). Today, the
use of environmental contours is a well-established practice in design of marine
structures, and recommended in standards and recommended practices such as
DNVGL-RP-C205 2019 and NORSOK N-003 2017.

Because of the historical application towards 2-dimensional wave models, most
of the numerical methods developed so far have been restricted to X ∈ R2. But
conceptually the use of environment contours is relevant for other application
areas as well. In Paper VI we propose a method which is applicable in the
n-dimensional case.
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2. Background

2.2 Probabilistic machine learning

Probabilistic machine learning (ML) is concerned with inference and prediction
using probabilistic models conditioned on data gathered through experience. It
has a natural overlap with statistics, but with some differences with respect to
emphasis and terminology. For instance, probabilistic ML tend to focus more on
computational developments for dealing with complex models and/or large sets
of data, often motivated by some business objective involving prediction.

In probabilistic ML, we work with a probabilistic model of a data-generating
process. This model may be designed based on knowledge of the system (e.g. if
the data comes from a well understood process), or based on generic function
approximation (e.g. a neural network or a Gaussian process), or a combination.
This is the same setup used in UQ, and hence connecting these probabilistic
models of data and the physical system as in Figure 1.1 is a natural idea.

The probabilistic framework also provides a way to understand what learning
is, which gives some conceptual advantages as a normative theory for learning in
AI systems (Ghahramani 2015). For instance, if we want to derive a theory for
how an AI system should represent and update its beliefs about the world in light
of data, the celebrated Cox’s theorem shows that if the AI’s way of reasoning is
not equivalent to probability theory, then some basic logical or "common sense"
principles are violated (Cox 1961; Jaynes 2003). The probabilistic framework is
therefore considered as one of the principal theoretical and practical approaches
to ML and AI today.

2.2.1 The Bayesian formalism

In the Bayesian approach to machine learning, the "learning" part refers to
computing the posterior over unknown model parameters in the same way
the posterior of any unknown hypothesis is computed using Bayes’ theorem
(Ghahramani 2015; Murphy 2021).

Let P (D | θ,M) denote a probabilistic model of some data-generating process.
Here M denotes the class of all probabilistic models that we are considering,
each of which is represented by a value of the unknown parameter θ. For in-
stance, M can denote a certain type of Bayesian network, where the probability
distributions of the variables in the network depend on θ. P (D | θ,M) is the
likelihood of the parameter θ in model M , and together with this we will need a
prior distribution P (θ |M) representing our initial beliefs (or ignorance) about
θ. Then, the Bayesian formulation can be simply described as follows (see
Ghahramani 2015, p. 13).

Learning: Given data D, learning about the parameter θ means finding the
posterior

P (θ | D,M) = P (D | θ,M)P (θ |M)
P (D |M) , (2.3)

where
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Probabilistic machine learning

P (D | θ,M) is the likelihood of the parameter θ in model M ,
P (θ |M) is the prior probability of θ,

P (θ | D,M) is the posterior of θ given the data D.

With respect to learning we can interpret the denominator P (D | M) simply
as a term that ensures that (2.3) integrates to one (until we consider model
selection below). We can view learning as the transformation of prior knowledge
or assumptions about θ | M , via the data D, into the posterior knowledge
represented by P (θ | D,M). This posterior can then be used as a prior when
additional data becomes available.

Prediction: An updated model can be used to predict unseen data D∗

P (D∗ | D,M) =
∫
P (D∗ | θ,D,M)P (θ | D,M) dθ. (2.4)

Different models can also be compared by considering the Bayesian formulation
at the level of M , or by comparing the marginal likelihood P (D |M).

Model comparison: Given a prior over models P (M) we can evaluate

P (M | D) = P (D |M)P (M)
P (D) , (2.5)

P (D |M) =
∫
P (D | θ,M)P (θ |M) dθ. (2.6)

Here P (D | M) is also often called the model evidence, and (2.6) provides a
preference for simpler models known as Bayesian Ockham’s Razor (Jefferys and
Berger 1992; Rasmussen and Ghahramani 2001).

2.2.2 Gaussian processes

If θ is a finite vector of numbers, the setup in Section 2.2.1 gives an intuitive
illustration of how a probabilistic model can be updated based on data.
However, some of the most powerful probabilistic machine learning models
are nonparametric. In this case we can still think about probabilistic ML in
terms of updating θ, but where we have to interpret θ as an infinite-dimensional
vector or a function (see for instance the measure-theoretic formulation we
present in Paper IV).

A popular nonparametric alternative that plays an important role throughout
this thesis is the Gaussian process (GP). A GP is a collection of random variables
{f(x) | x ∈ X} defined on some index set X, such that for any finite subset
{x1, . . . ,xN} ⊆ X, the vector [f(x1), . . . , f(xN )] has a multivariate (possibly
degenerate) normal distribution. The GP is a fundamental object of study within
many areas of mathematics and statistics, and the available literature is vast.
We will assume that X = Rn and f ∈ R, which is the canonical scenario in the
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2. Background

machine learning context (Rasmussen and Williams 2005). In this case, we view
a GP as a distribution over functions2 from Rn to R.

A GP can be defined by a mean function µ and a positive-semidefinite
function K called the covariance function or kernel,

µ(x) = E[f(x)] : Rn → R, (2.7)
K(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))] : Rn × Rn → R, (2.8)

and we can write f ∼ GP(µ,K) for the associated GP f . For any finite set of
inputs x1 . . .xN , the vector f = [f(x1), . . . , f(xN )] is multivariate Gaussian,
f ∼ N (µ,K), with mean µ = [µ(x1), . . . , µ(xN )] and covariance matrix
K = [K(xi,xj)].

Given a set of observations D = {(x1, y1), . . . , (xk, yN )} assume that yi

corresponds to observing f(xi) together with additive Gaussian noise, yi =
f(xi) + εi, where the noise terms εi are i.i.d. εi ∼ N (0, σ2). Then the posterior
process, conditioned on the data D, is still Gaussian:

For a new set of input locations, x∗1, . . . ,x∗m, let f∗|D denote the posterior
process evaluated at each input x∗j , f∗|D = [f(x∗1), . . . , f(x∗m)]|D. Then
f∗|D ∼ N (µf∗|D,Σf∗|D) with

µf∗|D = µ∗ +K∗(K + σ2I)−1(Y− µ), (2.9)
Σf∗|D = K∗∗ −K∗(K + σ2I)−1(K∗)T . (2.10)

Here µ∗, µ and Y are vectors with elements µ(x∗i ), µ(xi) and yi respectively, I is
the N ×N identity matrix, and K∗ and K∗∗ have elements (K∗)i,j = k(x∗i ,xj)
and (K∗∗)i,j = k(x∗i ,x∗j ).

x

Input

f | x

GP

y | f

Output

Figure 2.2: Supervised machine learning with Gaussian processes. Given
observations {(x1, y1), . . . , (xk, yN )} and a likelihood P (y|f), we assign f |x
a GP prior and proceed to infer the function f |x. If the output yi corresponds
to observing f(xi) together with additive Gaussian noise, the posterior is still a
GP with the mean and covariance as in (2.9)-(2.10).

Figure 2.2 illustrates the probabilistic model for supervised learning with GPs.
The conjugate case with Gaussian likelihood, y|f ∼ N (f, σ2), is often applied in
UQ. In particular, the noiseless alternative is obtained simply by setting σ = 0,
and the corresponding GP represents an emulator which interpolates the data
(see Figure 2.3 below).

2Given a probability space (Ω,F , P ) on which the random variables f(x) are defined (for
all x), we can write f(x, ω) = f(x)(ω) : Rn × Ω → R. For each fixed ω ∈ Ω there is an
associated function f(·, ω) : Rn → R.
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Probabilistic machine learning

To give some examples of the kernel functions k(x,x′) often seen in the
literature, we can consider two stationary kernels of the form

k(x,x′) = s2k(r), r =

√√√√ n∑
i=1

(
xi − x′i
li

)2
, (2.11)

with variance parameter s2 and length scale parameters li for i = 1, . . . , n.
The two popular kernels, the radial basis function (RBF), also called squared
exponential kernel, and the Matérn 5/2 kernel are defined through the function
k(r) as

kRBF(r) = e−
1
2 r2

and kMatérn 5/2(r) = (1 +
√

5r + 5
3r

2)e−
√

5r.

Note that these kernels depend on a hyperparameter ψ = [s, l1, . . . , ln]. Figure
2.3 shows an example of a GP with µ = 0 and two different choices of ψ.
Naturally, the quality of the posterior process depends on the treatment of the
hyperparameter ψ, and this is also a part of the machine learning. In a fully
Bayesian approach we could specify a prior over ψ and proceed as discussed
in Section 2.2.1, but at the cost of losing the simple analytical expression for
the posterior. Because of this, it is common to instead find a plausible value
of ψ and act as if this was fixed. In ML one often relies on optimization of
hyperparameters using maximum likelihood or cross-validation, see (Rasmussen
and Williams 2005), and also (Kennedy and O’Hagan 2001) for a discussion with
regards to UQ.

2.2.3 Numerical methods

The probabilistic approach to ML is conceptually very simple, and theoretically
appealing, but a fully Bayesian approach poses several practical challenges.

One major obstacle is dealing with the integrals in (2.4) and (2.6), which
are generally analytically intractable. For deployment of these models in the
real world, there is therefore a need for robust and computationally efficient
numerical methods. This is one of the main drivers in current probabilistic ML
research.

In Section 2.2.2 we noted that if we want to express uncertainty with respect
to GP hyperparameters, in the fully Bayesian spirit, then the analytical posterior
computation is no longer tractable and alternative methods are needed (see
e.g. (Lalchand and Rasmussen 2020)). This is also true for the case with non-
Gaussian likelihood, for instance if the noise is not Gaussian, or if we want to
use the GP for classification where each output corresponds to a category. From
(2.9)-(2.10) we can also observe that exact computation of the posterior involves
inversion of an N ×N -matrix, which is O(N2) in memory and O(N3) in time,
and this becomes prohibitive if the number of observations, N , is large. One
way of dealing with these two problems which is used in practical applications
today, is by making use of sparse variational inference. Here, a sparse (smaller)
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Figure 2.3: Two GPs with µ = 0 and Matérn 5/2 kernels with different
hyperparameters ψ. Top row: ψ = (s2 = 2, l = 0.4), bottom row: ψ =
(s2 = 1, l = 0.2). The observations are assumed noiseless, i.e. yi = f(xi).

GP is used to approximate the intractable posterior, through minimizing the
Kullback-Leibler divergence between the approximating GP and posterior process
(G. Matthews et al. 2016).

The method of variational inference is a general approach to address
the intractable integrals that arise in Bayesian modelling. Another popular
alternative is to attack the problem with Markov chain Monte Carlo (MCMC),
often with implementations of Hamiltonian MC (Hoffman and Gelman 2014).
These are examples of general methods and algorithms for approximation or
estimation in probabilistic models. Probabilistic programming (van de Meent et al.
2018) aims to accelerate the process of applying these methods to any probabilistic
model. This is currently an active area of development in the machine learning
space, which may lead to a more widespread use of probabilistic modelling in
the years to come.

2.3 Optimal decision making under uncertainty

A probabilistic model is first useful when it affects a decision. With reference to
the discussion in Section 1.3, the probabilistic model is a tool for reasoning in an
uncertain environment, which in the engineering context may relate to finding
solutions that are both efficient, in terms of e.g. money or energy, and sufficiently
safe. For the probabilistic models discussed in Section 2.2, which can be updated
each time new information arrives, at discrete time steps, the discrete-time
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sequential decision-making problem is of particular interest. This is the scenario
where one gets the opportunity to make a decision, receive information related
to the consequences of this decision, and use this to inform the next decision,
and so on.

Below we describe in short two classes of decision-making problems that are
of particular relevance in this thesis.

2.3.1 Reliability-based design and operation of physical assets

In Section 1.3 we introduced the concept of optimization with respect to a failure
probability, where we have access to some deterministic design parameter d that
affects both the cost and the failure probability of a given structure. In the
structural reliability setting (see Section 2.1.2), assume that the random variable
describing the physical system depends on d, X = X(d), and that a cost function
c(x) and the limit state g(x) are given. Then the cost c(X(d)) and the structural
performance g(X(d)) are both random variables depending on d. Of course,
there are other ways of describing how these quantities of interest depend on d,
but here for simplicity we have packed everything into a single variable X.

We are interested in finding a value of d which is optimal, in some sense, with
respect to both cost and structural reliability. Valdebenito and Schuëller 2010
give some examples of different formulations. Some natural variants are obtained
by defining the expected cost C(d) = E[c(X(d))] and the failure probability
pf (d) = P (g(X(d)) ≤ 0) as functions of d, and proceed to minimize pf (d) under
a fixed budget constraint on C(d), or conversely minimize C(d) with some upper
bound on pf (d). Establishing the entire Pareto frontier of optimal combinations
would also be of interest, but note that these optimization problems can be
numerically challenging as they involve computation of pf (d).

For certain scenarios it is also necessary to take both aleatory and epistemic
uncertainty into account, something that further complicates matters. That
is, when X contains both aleatory and epistemic uncertainty that we want to
treat differently. This is something we discuss in great detail in Paper IV, but
for simplicity assume for now that X is purely aleatory and that we instead
introduce an additional epistemic variable e that does not depend on d. We
assume that the performance of the system depends on e, i.e. g = g(x, e) and
consequently pf = pf (d, e) = P (g(X(d), e) ≤ 0). There are different philosophies
for how uncertainty with respect to e should be treated, see for instance (Helton
et al. 2010). One simple alternative is to maximize pf (d)← max pf (d, e), which
introduces an additional optimization step in the design optimization loop.

2.3.2 Optimal information gathering and experimental design

For a probabilistic model of some physical system to be relevant and useful, one
needs to bring the epistemic uncertainty down to an acceptable level. This can
involve running experiments, physical or in simulation, collecting available data,
taking measurements etc. in order to learn more about the physical system and
its environment.
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One example of epistemic uncertainty is the GP uncertainty in Figure 2.3.
Here, we know that there exists some function, that coincides with the four
observations at those specific input values, but otherwise is unknown. The GP
represents our epistemic uncertainty about this function. Imagine that you get to
choose the next input location x, for which the output f(x) of the true function
will be revealed. Which value of x will be the most informative? Of course, this
depends on some specified objective. We could aim to minimize the maximum
local uncertainty (largest GP standard deviation for x ∈ [0, 1] in Figure 2.3), or
maybe define some global notion of uncertainty by integration with respect to x.
These are questions regarding design of experiments, a classical area of research
in statistics. However allowing for noiseless observations as in Figure 2.3 is a
complicating factor. The noiseless case is relevant for deterministic experiments
such as those coming from a computer simulation, and we refer to this scenario as
design of computer experiments, where (Sacks et al. 1989) is a classical reference.

Today, this problem of identifying the optimal experiment to perform, or
the optimal data to collect for updating/refining a model, is highly relevant
for machine learning applications. We often refer to this as adaptive or active
learning. See for instance (MacKay 1992; Ranjan et al. 2008; Seo et al. 2000)
for some different examples. Maybe the most widespread use of this idea today
is through Bayesian optimization (Brochu et al. 2010), which we could use to
find the maximum of the function in Figure 2.3. Where should we evaluate the
true function f(x) to find a large value using a small set of function evaluations?
We could consider x ≈ 0.6 which is close to the currently largest observation,
or maybe x ≈ 0.3 where the uncertainty is large and we might get lucky.
Balancing these two preferences is called the exploration/exploitation trade-off.
One method that is used in Bayesian optimization is based on maximizing the
upper confidence bound (UCB) of the GP, for instance by choosing the value
of x that maximizes the mean +2 standard deviations in Figure 2.3. Another
popular alternative is based on maximizing the expected improvement (EI),
which is based on how much the observed maximum is expected to increase,
given a new function evaluation at x. For the applications considered in this
thesis, we are mostly interested in the scenario where we select experiments to
provide information related to structural performance, in particular the failure
probability. This is somewhat different than the Bayesian optimization scenario,
but the core intuitive idea remains the same.

When we consider this type of information gathering, then the order of
information does not matter. That is, when we considered the example
related to Figure 2.3, the current set of information is the set D =
{(x1, f(x1), . . . , (x4, f(x4))}, and the posterior GP does not depend on any
ordering of these observations. We can typically assume this is true in
probabilistic modelling, i.e. that we interpret the data D in the likelihood
P (D|θ,M) in (2.3) as a set. This means that a model for predicting the next
observation given the history, here predicting f(x5) given D and x5, is Markovian.
That is, our model of the future when conditioned on the present is independent
of the past. This is a useful condition, since we can frame the problem of optimal
experimental design (or active learning in the ML terminology) using the Bellman
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optimality principle. This principle says that an optimal policy chosen at some
initial time, must be optimal when the problem is re-solved at a later stage given
the state resulting from the initial choice. As a result, the problem of finding an
optimal policy for how to select experiments, that considers what may happen
multiple steps into the future, can be addressed with dynamic programming
(Bertsekas et al. 1995).

The dynamic programming approach does however suffer from the curse of
dimensionality, in the sense that it becomes computationally intractable when
the space of possible states and/or actions becomes large, and if one wants
to consider a horizon beyond looking just a few steps ahead. Because of this,
most approaches to optimal experimental design are myopic, i.e. short-sighted,
meaning that they look only one (or zero) steps ahead. We have introduced
briefly the concept of Bayesian optimization, and two alternative approaches
called UCB and EI. The EI criterion is an example of a one-step lookahead
strategy, as it is based on what we expect will happen next. This corresponds
to the Bellman optimal solution if we only look one step into the future. There
are also methods based on heuristics, using only what is available at the current
time without trying to foresee what will happen next, which corresponds to a
zero-horizon approach. The UCB approach is one such example.

A completely different approach to deal with the curse of dimensionality in the
dynamic programming formulation, is to attempt to approximate a far-sighted
optimal policy instead of computing a short-sighted one exactly. This is the
most common route taken within reinforcement learning (RL), where machine
learning is applied to find and represent a good policy (Sutton and Barto 2018).
A popular alternative today is to make use of deep neural networks, which serve
as a very flexible function approximator, to represent either a policy or the value
of states and/or actions from which the optimal one can be determined. Within
this thesis we have considered both myopic and RL alternatives.
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Chapter 3

Summary of papers and main
contributions

3.1 Paper I

C. Agrell (2019). Gaussian Processes with Linear Operator Inequality
Constraints. Journal of Machine Learning Research. Vol. 20 no. 135
pp. 1–36.

This paper is motivated by machine learning applications for high-consequence
engineering systems, where a probabilistic approach is essential, and where
knowledge related to the physical system often can be framed as a set of linear
constraints.

We present an approach for constrained Gaussian Process (GP) regression
where we assume that a set of linear transformations of the process are bounded.
We consider a GP f over functions on X ⊂ Rn taking values in R, where the
process Lf is still Gaussian when L is a linear operator. Our goal is to model
f under the constraint that realizations of Lf are confined to a convex set of
functions. In particular, we require that a ≤ Lf ≤ b, given two functions a and
b where a < b pointwise. This formulation provides a consistent way of encoding
multiple linear constraints, such as shape-constraints based on e.g. boundedness,
monotonicity or convexity.

The results needed for stable numerical implementation are derived, together
with an efficient sampling scheme for estimating the posterior process. Through
a series of numerical examples, we demonstrate that the use of constraints has a
significant effect on uncertainty reduction and provides more realistic uncertainty
estimates (as the chance of some un-physical outcomes are removed).

3.2 Paper II

O. Gramstad, C. Agrell, E. Bitner-Gregersen, B. Guo, E. Ruth
and E. Vanem (2020). Sequential sampling method using Gaussian
process regression for estimating extreme structural response. Marine
Structures. Vol. 72, 102780.

In this paper, we develop a method for sequential design of experiments
for a specific maritime application, which involves estimating the maximum
(over time) response of a structure that is exposed to a stochastic metocean
environment.
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The long-term metocean induced extreme response of ships and offshore
structures is affected by both the long-term variability of the metocean
environment (e.g. waves, wind, currents, etc.) and the short-term variability of
the response in a given random sea state (e. g. wave induced bending moment
of a ship subject to random waves). Hence, for an accurate estimation of the
long-term extreme response, both the long-term variability of the metocean
environment and the short-term variability of the response need to be considered.
In principle, this can be achieved by running a full long-term analysis, but in
practice this is often not feasible when considering nonlinear responses and long
return periods like 25 or 100 years, which are typically used in design of ships
and offshore structures.

Our proposed methodology uses Gaussian process regression to estimate
parameters of the short-term response distribution, based on output from
computationally expensive hydrodynamic simulations. We present an adaptive
design strategy for sequential updating of the model, focusing on the metocean
conditions that contribute the most to the long-term extreme. With this approach,
only a limited number of hydrodynamic simulations are needed.

The suggested approach is demonstrated on the problem of estimating the
25-year extreme vertical bending moment on a ship, and we show that a relatively
small number of iterations (full hydrodynamic simulations) are needed. The
results suggest that the proposed method can be used as an alternative to
contour-based methods (see Section 2.1.2) which are commonly used in the
offshore industry today, or to other methods that consider a few sea states
using accurate numerical simulations, with little or no added complexity or
computational effort.

3.3 Paper III

C. Agrell and K. R. Dahl (2021). Sequential Bayesian optimal ex-
perimental design for structural reliability analysis. Statistics and
Computing. Vol. 31, no. 27.

This paper is concerned with optimal design of experiments for investigating
the reliability of a structure, in a similar spirit as Paper II, but where we target
the failure probability directly.

In many applications of structural reliability analysis, the limit-state function
g(x) is practically unknown, as function evaluation involves time consuming
numerical simulation or some other form of experiment that is expensive to
perform. This is the reality as the analysis of complex engineering systems is
becoming more and more involved. The problem we address in this paper is how
to optimally design experiments, in a Bayesian decision theoretic fashion, when
the goal is to estimate the probability P (g(X) ≤ 0) using a minimal amount
of resources. As opposed to existing methods that have been proposed for this
purpose, we consider a general structural reliability model given in hierarchical
form. We therefore introduce a general formulation of the experimental design

22



Paper IV

problem, where we distinguish between aleatory uncertainty related to the
random variable X and any additional epistemic uncertainty that we want to
reduce through experimentation.

In this paper, we differentiate between aleatory uncertainty that we want to
marginalize over (take an expectation with respect to) and additional epistemic
uncertainty that we want to reduce by performing experiments. We assume
that X is purely aleatory, and that the additional epistemic uncertainty comes
from replacing the true limit-state g(x) with a stochastic process ξ(x). Here, we
view ξ as a distribution over functions expressing our uncertainty about g. In
measure-theoretic terms, we formulate this by defining two σ-algebras A and E ,
representing aleatory and epistemic information respectively. We then assume
that X is A-measurable (purely aleatory) and that the ξ(x) is E-measurable
(purely epistemic) for each fixed x. Then ξ(X) is a real-valued random variable
which represents the structural performance of the system, and which contains
both aleatory uncertainty (from X) and epistemic uncertainty (from imperfect
information of structural performance given a fixed value x of X).

By conditioning on epistemic information we work with the conditional failure
probability, P (ξ(X) ≤ 0 | E), which is a E-measurable (purely epistemic) random
variable. The goal in this paper is to optimize over the types of experiments that
can be performed, in order to reduce the epistemic uncertainty with respect to
this failure probability. This is the design of experiments problem. We evaluate
effectiveness of a design strategy through a measure of residual uncertainty, and
propose an efficient numerical procedure for approximating this quantity. The
method we propose is based on importance sampling combined with the unscented
transform (Julier and Uhlmann 2004) for epistemic uncertainty propagation.
With this approach we can handle hierarchical SRA models and different types
of experiments under the same framework. For instance, there might be different
types of experiments involved related to modelling of load effects (e.g. stress
and strain) and capacity (material response to stress and strain). We implement
a myopic (one-step look ahead) algorithm and demonstrate the effectiveness
through a series of numerical experiments. We also discuss an example where
the use of short-sighted algorithms (see Section 2.3.2) is problematic, which
motivated the work leading up to a later paper (Paper IV).

3.4 Paper IV

C. Agrell, K. R. Dahl and A. Hafver (2021). Optimal sequential deci-
sion making with probabilistic digital twins. Submitted for publication.
arXiv: 2103.07405.

This paper is, in some ways, a continuation of Paper III, but with a broader
view than just failure probability estimation. If we allow for different types
of experiments that can have different costs, the myopic approach to design
of experiments can be problematic as we need to specify "how much a certain
amount of uncertainty reduction is worth". It is also possible to construct
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examples with delayed reward, i.e. where the effect on uncertainty reduction is
not immediate, and then the myopic route is no longer applicable. Based on this,
we wanted to study how reinforcement learning could be applied as a non-myopic
alternative. We also felt that the way epistemic uncertainty was handled in
Paper III could be generalized quite naturally, and we could then study the effect
of epistemic uncertainty reduction in a more generic setting using the same type
of framework. Instead of focusing on failure probability estimation specifically,
we therefore consider a rather generic setup of a probabilistic model of a physical
system, where the epistemic uncertainty is updated in discrete time.

We call this the probabilistic digital twin (PDT), the probabilistic analogue
of the digital twin that consist of simulation models and data associated with
a specific physical system. In the paper we treat epistemic uncertainty like
in Paper III, by assuming that we have available a σ-algebra E representing
epistemic information, and discuss how epistemic uncertainty can be updated in
a probabilistic model as new information becomes available. We consider the
general problem of sequential decision making, where we use the probabilistic
model (the PDT) to plan, i.e. find an optimal action or policy for achieving
some real-world objective, and propose a generic approximate solution using
deep reinforcement learning together with neural networks defined on sets.

3.5 Paper V

C. Agrell, S. Eldevik, O. Gramstad and A. Hafver (2021). Risk-based
functional black-box optimization – Contribution to the NASA Lan-
gley UQ challenge on optimization under uncertainty. Mechanical
Systems and Signal Processing. Vol. 164, 108266.

In this paper we present an approach to solve the NASA Langley UQ challenge
problem on optimization under uncertainty (Crespo and Kenny 2020).

NASA missions often involve the development of new vehicles and
systems that must be designed to operate in harsh domains with a wide
array of operating conditions. These missions involve high-consequence
and safety-critical systems for which quantitative data is either very sparse
or prohibitively expensive to collect. Limited heritage data may exist,
but is also usually sparse and may not be directly applicable to the
system of interest, making UQ extremely challenging. NASA modeling
and simulation standards require estimates of uncertainty and descriptions
of any processes used to obtain these estimates. The NASA Langley
Research Center has developed a UQ challenge problem in an effort to
focus a community of researchers towards common goals. While the
problem formulation is written in a discipline-independent framework,
the underlying application is consistent with the complexities of realistic
systems.

— Crespo and Kenny 2020
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The UQ problem deals with reliability optimization of a dynamical system
and inference using functional (time series) data. With respect to Figure 1.1,
X is here a random vector containing both aleatory and epistemic components,
and the observations are time series corresponding to a subsystem. A small set
of observations and a numerical black-box model of the physical system was
provided. The UQ challenge involved inferring an appropriate uncertainty model
for X, followed by reliability analysis, uncertainty reduction, and reliability- and
risk-based design optimization.

We took a Bayesian nonparametric approach to establish a distribution
representing aleatory uncertainty, and to determine plausible values of the
epistemic quantity. Similar to the method developed in Paper III, we make use
of the unscented transform (Julier and Uhlmann 2004) for efficient approximate
uncertainty propagation (computation of posterior moments after nonlinear
transformation).

According to NASA, the dynamic system at the core of this challenge problem
is highly relevant to a wide variety of systems and tasks related to e.g. aircraft
gust alleviation, aeroelastic control, flutter suppression, and spacecraft precision
pointing. The final results from the challenge were presented at the 2020
European Safety and Reliability (ESREL) conference, where we were able to
achieve the most stable and energy efficient solution.

3.6 Paper VI

A. Hafver, C. Agrell and E. Vanem (2020). Environmental contours
as Voronoi cells. Submitted for publication. arXiv: 2008.13480.

In this paper, we show that convex environmental contours (see Section 2.1.2)
may be regarded as boundaries of Voronoi cells. This geometric interpretation
leads to new theoretical insights and suggests a simple novel construction
algorithm that guarantees the desired probabilistic properties. The method
is illustrated with examples in two and three dimensions, but the results extend
to environmental contours in arbitrary dimensions.

Inspired by the Voronoi-Delaunay duality in the numerical discrete scenario,
we also derive an analytical representation where the environmental contour
is considered as a differentiable manifold, and a criterion for its existence is
established.
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Chapter 4

Discussion
Here we end with some final reflections, discussing some identified limitations
and a few ideas for further research.

4.1 Working with constraints

In Paper I we take a Bayesian approach to the inclusion of constraints. That is,
given some data D and a constraint C, we are interested in P (· | C,D). The
objective in Paper I is, with some abuse of notation, to establish a posterior
distribution over functions P (f | C,D), where P (f) is given by a Gaussian
process, D contains observations of f (potentially including noise), and C
represents a set of linear constraints applied to f .

For this kind of Bayesian computation to be possible, it is necessary that the
probability that the constraint holds, P (C|D), is not too small. Otherwise, the
method in Paper I "breaks", in the sense that there is no numerically tractable
way of sampling from a posterior distribution that agrees with both C and D.
In the paper we discuss a few ways of investigating this issue, by computing
the constraint probability P (C|D) directly, and by studying a regularization
parameter that can be interpreted as noise applied to observations of constraints.

This kind of computation answer questions such as "given data of the form
’f +noise’, how likely is it that f is monotone?". As a form of hypothesis testing,
this can provide useful insights. In the paper included in Appendix A we also
discuss how this kind of analysis could play a role when data and constraints are
combined in probabilistic modelling. A related interesting question is whether it
is possible to automatically discover constraints that hold with high probability,
given some set of observations.

The combination of nonparametric function approximation and constraints
that are supposed to hold globally poses some computational challenges. In
Paper I we try to find a small finite subset of the domain of f where the
constraints are enforced, such that the constraint holds globally with high
probability, which is sufficient for practical applications. Other alternatives
for how to enforce constraints have also been proposed (a summary is given in
Section 4 of Paper I), which are all based on some form of discretization, so
it seems that for high-dimensional applications, completely new ideas will be
needed.

In Paper I we also discuss the problem of optimizing the hyperparameters
of a Gaussian process when constraints are applied. We later found that it was
rather straightforward to derive the necessary equations for the Expectation
Maximization (EM) algorithm, which provides a much more stable alternative
than direct maximum likelihood estimation. It could be of interest to see how
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this compares with the current practice of optimizing the unconstrained Gaussian
process alone.

4.2 The unscented transform

In some of the papers we make use of the unscented transform (UT) for fast
approximation of moments (mean and covariance) of a random variable after
nonlinear transformation. UT is commonly applied in the context of Kalman
filtering, and it is based on the general idea that it is easier to approximate a
probability distribution than an arbitrary nonlinear transformation (Julier and
Uhlmann 2004; Uhlmann 1995).

Intuitively, given a random variable X with finite mean and covariance, we
may define a set of weighted sigma-points {(vi,xi)}, such that if {(vi,xi)} was
considered as a discrete probability distribution, then its mean and covariance
would coincide with X. For any nonlinear transformation Y = f(X), if X was
discrete we could compute the mean and covariance of Y exactly. The UT
approximation is the result of such computation, where we make use of a small
set of weighted points in the place of X. Specifically, for a random variable X
with mean µ and covariance matrix Σ, a set of sigma-points for X is a set of
weighted samples {(v1,x1), . . . , (vk,xk)} such that

µ =
k∑

i=1
vixi, Σ =

k∑
i=1

vi(xi − µ)(xi − µ)T . (4.1)

If y = f(x) is any (generally nonlinear) transformation, the UT approximation
of the mean and covariance of Y = f(X) are then obtained as

Ê[Y] =
k∑

i=1
viyi, Ĉov[Y] =

k∑
i=1

vi(yi − Ê[Y])(yi − Ê[Y])T , (4.2)

where yi = f(xi).
Naturally, the selection of appropriate sigma-points is essential for UT to be

successful. It is important to note that, although we may view the sigma-points
as weighted samples, vi and xi are usually fixed or given by some deterministic
procedure. Moreover, the definition of sigma-points given in (4.1) does not
require that the weights are nonnegative and sum to one. Although this conflicts
with the intuition of approximating X with a discrete random variable, the
unscented transform still makes sense as a procedure for approximating statistics
after nonlinear transformation. Also, different sigma points can of course be
selected for the approximation of mean and covariance in (4.2).

Since the introduction of UT to Kalman filters in the 1990s, many different
alternatives to sigma-point selection have been proposed (Menegaz et al. 2015).
One of the most common versions used in Kalman filtering, the method by van
der Merwe 2004, produces a set of 2n+ 1 points xi with corresponding weights
for the case where X is n-dimensional. In Paper III (Section 4.2 and Appendix
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C) we present a way to apply this method to continuous random variables with
values in Rn. We make use of the same procedure for the numerical experiments
also in Paper IV and Paper V. The main benefit with this approach is that only
2 ·dim(X)+1 evaluations of the function f(·) is required in order to approximate
the moments of f(X). Unless X is high-dimensional, this is much smaller than
for most methods based on Monte Carlo estimation. Also, the UT approximation
is extremely simple to implement, and we do not need to deal with computation
of gradients which is often needed for alternative methods that are based on
approximation of f(·).

But how suitable is it in practice? Of course, it is easy to construct
pathological examples where the UT approximation breaks down, for instance
by considering functions where {f(xi), . . . , f(xk)} is not representative for the
global behavior of f(·). Or if we just let f(·) be highly irregular, then we do
not expect UT to work well. In this thesis, we achieved satisfactory results
with the method by van der Merwe 2004 in all of our numerical experiments,
and no other alternative was investigated. One reason for this is that, for the
specific applications of UT that we have considered, we were mainly interested
in using it as a proxy for representing the "amount of variability" caused by a
nonlinear transformation. For this, a weighted sum of f(·) applied to a small
space-filling set of inputs seems reasonable, but the interpretation of the result
as an approximation of mean or covariance is maybe less important. On the
other hand, by introducing a bit of randomization, and some assumptions on
the regularity of f(·), it seems plausible that some theoretical guarantees can be
achieved, and maybe such results are already available. It would be interesting
to investigate this further.

4.3 New applications of environmental contours

Today, most applications of environmental contours are restricted to two-
dimensional contours. It is a well-established practice in the design of marine
structures, where the two dimensions correspond to significant wave height and
wave period of ocean waves. When an environment contour like the one in Figure
2.1 has been established, the task of the designer is to verify that the structure
will survive any environment represented by the contour. If B is the set in Figure
2.1, the environmental contour is the boundary ∂B. The prescribed upper bound
on the failure probability is achieved by verifying that

min
x∈B

g(x) > 0, (4.3)

where the function g(x) is the relevant limit-state. In design of marine structures,
this is often achieved by evaluating g(x) for some few worst-case inputs x ∈ ∂B,
from which (4.3) follows from known properties of the physical mode of failure.

One important takeaway from this approach, is that the reliability of the
system is assessed using only observations of safe behavior, i.e. that g > 0.
Extending this capability to other application areas was some of the motivation
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for Paper VI, where we consider how to construct environmental contours in
higher dimensions.

However, the question still remains of how to verify an n-dimensional contour.
Given the set B ⊂ Rn and a set of k observations, D = {g(x1), . . . , g(xk)}, can we
conclude whether (4.3) holds? If we represent the unknown limit-state g(·) using
a Gaussian process, the probability that (4.3) holds is the constraint probability
P (C|D) from Paper I, that we discussed in Section 4.1, with the linear inequality
constraint g > 0 on B. In Paper I we also present an approach for identifying the
input locations x ∈ B where the constraint, i.e. the statement g(x) > 0, is most
uncertain. This becomes a design strategy for reducing epistemic uncertainty
with respect to (4.3). It could be interesting to see if combining these ideas from
Paper I and Paper VI could open up for some new applications of environment
contours.

Another interesting intersection between Paper I and Paper VI, is that a
criterion for an environmental contour to have the desired property with respect
to exceedance probability of all supporting half-spaces, assuming that the contour
set itself is convex, is also given in the form of a linear constraint. This is a
linear constraint involving the second-order derivatives of the percentile function
corresponding to the input distribution under consideration, which has to be
estimated before an environmental contour can be constructed. It could be of
interest to see whether a constrained Gaussian process could be applied in this
estimation.

4.4 Trading rigour for speed

The probabilistic approach to machine learning and AI is theoretically very
appealing, but poses some numerical challenges for applications that involve
non-trivial models or large sets of data. In the discussion of ML applied to safety-
critical systems, it is tempting to refer to the theoretical guarantees promised by
the Bayesian framework. But in practice, with the methods available today, a
tradeoff between rigour and numerical efficiency has to be made.

For instance, in Paper I we developed a sampling scheme for posterior
computation which is exact in the limit. We selected this approach over
approximation methods such as Laplace approximations, variational Bayesian
inference, expectation propagation etcetera. However, we chose to not consider a
fully Bayesian approach to hyperparameter estimation, which is generally much
more numerically demanding.

It is important to note that the motivation for Paper I was to develop a
method suitable for prediction, and that this is different than when we consider
problems related to optimization. In Paper III, Paper IV and Paper V we
make use of the unscented transform, which introduces the issues discussed
in Section 4.2, and in Paper IV we even rely on reinforcement learning with
artificial neural networks to search for an optimal solution. But the key here
is that we search, and with these methods we choose to optimize over many
alternatives approximately instead of a few exactly. In the optimization game
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everything is allowed, as long as there is a way to verify that the proposed
solution is acceptable. For instance, like in the examples we provide in Paper III
with respect to failure probability estimation. Hence, for further development of
the type of models and algorithms considered in this thesis, it seems reasonable
to stick with approaches where it is possible to "flip the switch" from efficiency
to accuracy when needed.
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Abstract

This paper presents an approach for constrained Gaussian Process (GP) regression where
we assume that a set of linear transformations of the process are bounded. It is motivated
by machine learning applications for high-consequence engineering systems, where this kind
of information is often made available from phenomenological knowledge. We consider a GP
f over functions on X ⊂ Rn taking values in R, where the process Lf is still Gaussian when
L is a linear operator. Our goal is to model f under the constraint that realizations of Lf
are confined to a convex set of functions. In particular, we require that a ≤ Lf ≤ b, given
two functions a and b where a < b pointwise. This formulation provides a consistent way of
encoding multiple linear constraints, such as shape-constraints based on e.g. boundedness,
monotonicity or convexity. We adopt the approach of using a sufficiently dense set of
virtual observation locations where the constraint is required to hold, and derive the exact
posterior for a conjugate likelihood. The results needed for stable numerical implementation
are derived, together with an efficient sampling scheme for estimating the posterior process.

Keywords: Gaussian processes, Linear constraints, Virtual observations, Uncertainty
Quantification, Computer code emulation

1. Introduction

Gaussian Processes (GPs) are a flexible tool for Bayesian nonparametric function estima-
tion, and widely used for applications that require inference on functions such as regression
and classification. A useful property of GPs is that they automatically produce estimates
on prediction uncertainty, and it is often possible to encode prior knowledge in a princi-
pled manner in the modelling of prior covariance. Some early well-known applications of
GPs are within spatial statistics, e.g. meteorology (Thompson, 1956), and in geostatistics
(Matheron, 1973) where it is known as kriging. More recently, GPs have become a popular
choice within probabilistic machine learning (Rasmussen and Williams, 2005; Ghahramani,
2015). Since the GPs can act as interpolators when observations are noiseless, GPs have also
become the main approach for uncertainty quantification and analysis involving computer
experiments (Sacks et al., 1989; Kennedy and O’Hagan, 2001).

c©2019 Christian Agrell.
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Often, the modeler performing function estimation has prior knowledge, or at least
hypotheses, on some properties of the function to be estimated. This is typically related
to the function shape with respect to some of the input parameters, such as boundedness,
monotonicity or convexity. Various methods have been proposed for imposing these types of
constraints on GPs (see Section 4.1 for a short review). For engineering and physics based
applications, constraints based on integral operators and partial differential equations are
also relevant (Jidling et al., 2017; Särkkä, 2011). What the above constraints have in
common is that they are linear operators, and so any combination of such constraints can
be written as a single linear operator. For instance, the constraints a1(x) ≤ f(x) ≤ b1(x),
∂f/∂xi ≤ 0 and ∂2f/∂x2

j ≥ 0 for some function (or distribution over functions) f : X → Y ,
can be written as a(x) ≤ Lf(x) ≤ b(x) for a(x) = [a1(x),−∞, 0], b(x) = [b1(x), 0,∞] and
L : Y X → (Y X)3 being the linear operator Lf = [f, ∂f/∂xi, ∂

2f/∂x2
j ].

The motivation for including constraints is usually to improve predictions and to obtain
a reduced and more realistic estimate on the uncertainty, the latter having significant impact
for risk-based applications. For many real-world systems, information related to constraints
in this form is often available from phenomenological knowledge. For engineering systems,
this is typically knowledge related to some underlying physical phenomenon. Being able
to make use of these constraint in probabilistic modelling is particularly relevant for high-
consequence applications, where obtaining realistic uncertainty estimates in subsets of the
domain where data is scarce is a challenge. Furthermore, information on whether these types
of constraints are likely to hold given a set of observations is also useful for explainability
and model falsification. For a broader discussion see (Agrell et al., 2018; Eldevik et al.,
2018).

In this paper, we present a model for estimating a function f : Rnx → R by a constrained
GP (CGP) f |D, a(x) ≤ Lf(x) ≤ b(x). Here D is a set of observations of (xj , yj), possibly
including additive white noise, and f ∼ GP(µ(x),K(x,x′)) is a GP with mean µ(x) and
covariance function K(x,x′) that are chosen such that existence of Lf is ensured. Due to
the linearity of L, both Lf |D and f |D,Lf remain Gaussian, and our approach is based
on modelling f |D,Lf under the constraint a(x) ≤ Lf(x) ≤ b(x). To model the constraint
that a(x) ≤ Lf(x) ≤ b(x) for all inputs x, we take the approach of using a finite set of
input locations where the constraint is required to hold. That is, we require that a(xv) ≤
Lf(xv) ≤ b(xv) for a finite set of inputs {xv} called the set of virtual observation locations.
With this approach the CGP is not guaranteed to satisfy the constraint on the entire
domain, but a finite set of points {xv} can be found so that the constraint holds globally
with sufficiently high probability.

The model presented in this paper is inspired by the research on shape-constrained
GPs, in particular (Wang and Berger, 2016; Da Veiga and Marrel, 2012, 2015; Riihimki and
Vehtari, 2010; Golchi et al., 2015; Maatouk and Bay, 2017; López-Lopera et al., 2018). We
refer to Section 4 for further discussion on these alternatives. In the case where L = ∂/∂xi,
our approach is most similar to that of Wang and Berger (2016), where the authors make use
of a similar sampling scheme for noiseless GP regression applied to computer code emulation.
Many of the approaches to constrained GPs, including ours, rely on the constraint to be
satisfied at a specified set of virtual locations. The use of virtual constraint observations
may seem ad hoc at first, as the set of virtual observation locations has to be dense enough
to ensure that the constraint holds globally with sufficiently high probability. Inversion
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of the covariance matrix of the joint GP may therefore be of concern, both because this
scales with the number of observations cubed and because there is typically high serial
correlation if there are many virtual observations close together. The general solution is
then to restrict the virtual observation set to regions where the probability of occurrence
of the constraint is low (Riihimki and Vehtari, 2010; Wang and Berger, 2016). According
to Wang and Berger (2016), when they followed this approach in their experiments, they
found that only a modest number of virtual observations were typically needed, that these
points were usually rather disperse, and the resulting serial correlation was not severe. We
draw the same conclusion in our experiments. There is also one benefit with the virtual
observation approach, which is that implementation of constraints that only hold on subsets
of the domain is straightforward.

For practical use of the model presented in this paper, we also pay special attention
to numerical implementation. The computations involving only real observations or only
virtual observations are separated, which is convenient when only changes to the constraints
are made such as in algorithms for finding a sparse set of virtual observation locations or
for testing/validation of constraints. We also provide the algorithms based on Cholesky
factorization for stable numerical implementation, and an efficient sampling scheme for
estimating the posterior process. These algorithms are based on derivation of the exact
posterior of the constrained Gaussian process using a general linear operator, and constitutes
the main contribution of this paper.

The paper is structured as follows: In Section 2 we state the results needed on GP
regression and GPs under linear transformations. Our main results are given in Section 3,
where we introduce the constrained GP (CGP) and present the model for GP regression
under linear inequality constraints. In particular, given some training data, we derive the
posterior predictive distribution of the CGP evaluated at a finite set of inputs, which is a
compound Gaussian with a truncated Gaussian mean (Section 3.1). Section 3.2 presents an
algorithm for sampling from the posterior, and parameter estimation is addressed in Section
3.3. Section 3.4 and Section 3.5 are dedicated to optimization of the set of virtual observation
locations needed to ensure that the constraint holds with sufficiently high probability. Some
relevant alternative approaches from the literature on GP’s under linear constraints are
discussed in Section 4, followed up by numerical examples considering monotonicity and
boundedness constraints. A Python implementation is available at https://github.com/

cagrell/gp_constr, together with the code used for the examples. We end with some
concluding remarks in Section 5.
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2. Gaussian Processes and Linear Operators

We are interested in GP regression on functions f : Rnx → R under the additional inequality
constraint a(x) ≤ Lf(x) ≤ b(x) for some specified functions a(x) and b(x), and the class
of linear operators {L|Lf : Rnx → Rnc}. Here nx and nc are positive integers, and the
subscripts are just used to indicate the relevant underlying space over R. We will make use
of the properties of GPs under linear transformations given below.

2.1 Gaussian Process Regression

We consider a Gaussian process f ∼ GP(µ(x),K(x,x′)) given as a prior over functions
f : Rnx → R, which is specified by its mean and covariance function

µ(x) = E[f(x)] : Rnx → R,
K(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))] : Rnx×nx → R.

(1)

Let x denote a vector in Rnx and X the N × nx matrix of N such input vectors. The
distribution over the vector f of N latent values corresponding to X is then multivariate
Gaussian with

f|X ∼ N (µ(X),K(X,X)),

where K(X,X ′) denotes the Gram matrix K(X,X ′)i,j = K(xi,x
′
j) for two matrices of

input vectors X and X ′. Given a set of observations Y = [y1, . . . , yN ]T , and under the
assumption that the relationship between the latent function values and observed output
is Gaussian, Y |f ∼ N (f, σ2IN ), the predictive distribution for new observations X∗ is still
Gaussian with mean and covariance

E[f∗|X∗, X, Y ] = µ(X∗) +K(X∗, X)[K(X,X) + σ2IN ]−1(Y − µ(X)),

cov(f∗|X∗, X, Y ) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2IN ]−1K(X,X∗).
(2)

Here f∗|X∗ is the predictive distribution of f(X∗) and f∗|X∗, X, Y is the predictive
posterior given the data X,Y . For further details see e.g. Rasmussen and Williams (2005).

2.2 Linear Operations on Gaussian Processes

Let L be a linear operator on realizations of f ∼ GP(µ(x),K(x,x′)). As GPs are closed
under linear operators (Rasmussen and Williams, 2005; Papoulis and Pillai, 2002), Lf is
still a GP 1. We will assume that the operator produces functions with range in Rnc , but
where the input domain Rnx is unchanged. That is, the operator produces functions from
Rnx to Rnc . This type of operators on GPs has also been considered by Särkkä (2011) with
applications to stochastic partial differential equations. The mean and covariance of Lf are
given by applying L to the mean and covariance of the argument:

E[Lf(x)] = Lµ(x) : Rnx → Rnc ,

cov(Lf(x),Lf(x′)) = LK(x,x′)LT : Rnx×nx → Rnc×nc ,
(3)

1. We assume here that Lf exists. For instance, if L involves differentiation then the process f must be
differentiable. See e.g. (Adler, 1981) for details on proving existence.
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and the cross-covariance is given as

cov(Lf(x), f(x′)) = LK(x,x′) : Rnx×nx → Rnc ,

cov(f(x),Lf(x′)) = K(x,x′)LT : Rnx×nx → Rnc .
(4)

The notation LK(x,x′) and K(x,x′)LT is used to indicate when the operator acts on
K(x,x′) as a function of x and x′ respectively. That is, LK(x,x′) = LK(x, ·) and
K(x,x′)L = LK(·,x′). With the transpose operator the latter becomes K(x,x′)LT =
(LK(·,x′))T . In the following sections we make use of the predictive distribution (2), where
observations correspond to the transformed GP under L.

3. Gaussian Processes with Linear Inequality Constraints

Following Section 2.1 and Section 2.2, we let f ∼ GP(µ(x),K(x,x′)) be a GP over real
valued functions on Rnx , and L a linear operator producing functions from Rnx to Rnc . The
matrix X and the vector Y will represent N noise perturbed observations: yi = f(xi) + εi
with εi i.i.d. N (0, σ2) for i = 1, . . . , N .

We would like to model the posterior GP conditioned on the observations X,Y , and on
the event that a(x) ≤ Lf(x) ≤ b(x) for two functions a(x), b(x) : Rnx → (R∪{−∞,∞})nc ,
where ai(x) < bi(x) for all x ∈ Rnx and i = 1, . . . , nc. To achieve this approximately, we
start by assuming that the constraint a(x) ≤ Lf(x) ≤ b(x) only holds at a finite set of inputs
xv1, . . . ,x

v
S that we refer to as virtual observation locations. Later, we will consider how to

specify the set of virtual observation locations such that the constraint holds for any x with
sufficiently high probability. Furthermore, we will also assume that virtual observations of
the transformed process, Lf(xvi ), comes with additive white noise with variance σ2

v . We
can write this as a(Xv) ≤ Lf(Xv) + εv ≤ b(Xv), where Xv = [xv1, . . . ,x

v
S ]T is the matrix

containing the virtual observation locations and εv is a multivariate Gaussian with diagonal
covariance of elements σ2

v .
We will make use of the following notation: Let C̃(Xv) ∈ RS×nc be the matrix with

rows (C̃(Xv))i = Lf(xvi ) + εvi for i.i.d. εvi ∼ N (0, σ2
vInc), and let C(Xv) denote the event

C(Xv) := ∩Si=1{a(xvi ) ≤ (C̃(Xv))i ≤ b(xvi )}. C(Xv) thus represents the event that the
constraint a(x) ≤ Lf(x) + εv ≤ b(x) is satisfied for all points in Xv, and it is defined
through the latent variable C̃(Xv).

In summary, the process we will consider is stated as

f |X,Y,Xv, C(Xv) := f |f(X) + ε = Y, a(Xv) ≤ Lf(Xv) + εv ≤ b(Xv),

where f is a Gaussian process, X,Y is the training data and Xv are the locations where
the transformed process Lf + εv is bounded. The additive noise ε and εv are multivariate
Gaussian with diagonal covariance matrices of elements σ2 and σ2

v respectively.
Here we assume that observations of all parts of Lf comes with i.i.d. white noise with

variance σ2
v . The reason for this is mainly for numerical stability, where we in computations

will choose a tiny variance to approximate noiseless observations. Similarly, σ2 may be
chosen as a fixed small number for interpolation in the standard GP regression setting. In
the following derivations, the results for exact noiseless observations can be obtained by
setting the relevant variance to zero.
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We also assume that any sub-operator of L is constrained at the same set of virtual
locations Xv. This is mainly for notational convenience, and this assumption will be relaxed
in Section 3.5. In the following, we let Nv denote the total number of virtual observation
locations. Here Nv = S · nc for now, whereas we will later consider Nv =

∑nc
i=1 Si where

the i-th sub-operator is associated with Si virtual observation locations.

3.1 Posterior Predictive Distribution

Our goal is to obtain the posterior predictive distribution f∗|X∗, X, Y,Xv, C(Xv). That is:
the distribution of f∗ = f(X∗) for some new inputs X∗, conditioned on the observed data
Y = f(X) + ε and the constraint a(Xv) ≤ Lf(Xv) + εv ≤ b(Xv).

To simplify the notation we write f∗|Y,C, excluding the dependency on inputs X,X∗

and Xv (as well as any hyperparameter of the mean and covariance function). The posterior
predictive distribution is given by marginalizing over the latent variable C̃:

p(f∗, C|Y ) = p(f∗|C, Y )p(C|Y ),

p(f∗|C, Y ) =

∫ b(Xv)

a(Xv)
p(f∗|C̃, Y )p(C̃|Y )dC̃,

p(C|Y ) =

∫ b(Xv)

a(Xv)
p(C̃|Y )dC̃,

where the limits correspond to the hyper-rectangle in RNv given by the functions a(·) and
b(·) evaluated at each xv ∈ Xv. The predictive distribution and the probability p(C|Y ) are
given in Lemma 1. p(C|Y ) is of interest, as it is the probability that the constraint holds
at Xv given the data Y .

In the remainder of the paper we will use the shortened notation µ∗ = µ(X∗), µ = µ(X),
µv = µ(Xv) and KX,X′ = K(X,X ′). For vectors with elements in Rnc , such as Lµv, we
interpret this elementwise. E.g. Lµv(Xv) is given by the column vector [Lµ(xv1)1, . . . ,
Lµ(xv1)nc , . . . ,Lµ(xvS)1, . . . ,Lµ(xvS)nc ].

We start by deriving the posterior predictive distribution f∗ at some new locations
X∗. The predictive distribution is represented by a Gaussian, f∗|Y,C ∼ N (µ(C),Σ), for
some fixed covariance matrix Σ and a mean µ(C) that depends on the random variable
C = C̃|Y,C. The variable C̃ = Lf(Xv) + εv remains Gaussian after conditioning on the
observations Y , i.e. C̃|Y ∼ N (νc,Σc) with some expectation νc and covariance matrix Σc

that can be computed using (3, 4). Applying the constraints represented by the event C on
the random variable C̃|Y just means restricting C̃|Y to lie in the hyper-rectangle defined
by the bounds a(Xv) and b(Xv). This means that C = C̃|Y,C is a truncated multivariate
Gaussian, C ∼ T N (νc,Σc, a(Xv), b(Xv)). The full derivation of the distribution parameters
of C and f∗|Y,C are given in Lemma 1 below, whereas Lemma 2 provides an alternative
algorithmic representation suitable for numerical implementation.

Lemma 1 The predictive distribution f∗|Y,C is a compound Gaussian with truncated Gaus-
sian mean:

f∗|Y,C ∼ N (µ∗ +A(C− Lµv) +B(Y − µ),Σ), (5)
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C = C̃|Y,C ∼ T N (Lµv +A1(Y − µ), B1, a(Xv), b(Xv)), (6)

where T N (·, ·, a, b) is the Gaussian N (·, ·) conditioned on the hyper-rectangle [a1, b1]×· · ·×
[ak, bk], and

A1 = (LKXv ,X)(KX,X + σ2IN )−1, B1 = LKXv ,XvLT + σ2
vINv −A1KX,XvLT ,

A2 = KX∗,X(KX,X + σ2IN )−1, B2 = KX∗,X∗ −A2KX,X∗ ,
B3 = KX∗,XvLT −A2KX,XvLT ,

A = B3B
−1
1 , B = A2 −AA1, Σ = B2 −ABT

3 .

Moreover, the probability that the unconstrained version of C falls within the constraint
region, p(C|Y ), is given by

p(C|Y ) = p (a(Xv) ≤ N (Lµv +A1(Y − µ), B1) ≤ b(Xv)) , (7)

and the unconstrained predictive distribution is

f∗|Y ∼ N (µ∗ +A2(Y − µ), B2).

The derivation in Lemma 1 is based on conditioning the multivariate Gaussian (f∗, Y, C̃),
and the proof is given in Appendix A. For practical implementation the matrix inversions
involved in Lemma 1 may be prone to numerical instability. A numerically stable alternative
is given in Lemma 2 below.

In the following lemma, Chol(K) is the lower triangular Cholesky factor of a matrix K.
We also let R = (P \ Q) denote the solution to the linear system PR = Q for matrices P
and Q, which may be efficiently computed when P is triangular using forward or backward
substitution.

Lemma 2 Let L = Chol(KX,X + σ2IN ), v1 = L \KX,XvLT and v2 = L \KX,X∗.

Then the matrices in Lemma 1 can be computed as

A1 = (LT \ v1)T , B1 = LKXv ,XvLT + σ2
vINv − vT1 v1,

A2 = (LT \ v2)T , B2 = KX∗,X∗ − vT2 v2,
B3 = KX∗,XvLT − vT2 v1.

Moreover, B1 is symmetric and positive definite. By letting L1 = Chol(B1) and v3 = L1\BT
3

we also have
A = (LT1 \ v3)T , B = A2 −AA1, Σ = B2 − vT3 v3.

The proof is given in Appendix B. The numerical complexity of the procedures in Lemma
2 is n3/6 for Cholesky factorization of n × n matrices and mn2/2 for solving triangular
systems where the unknown matrix is n×m. In the derivation of Lemma 1 and Lemma 2, the
order of operations was chosen such that the first Cholesky factor L = Chol(KX,X + σ2IN )
only depends on X. This is convenient in the case where the posterior f∗|Y,C is calculated
multiple times for different constraints C or virtual observations Xv, but where the data
X,Y remain unchanged.
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3.2 Sampling from the Posterior Distribution

In order to sample from the posterior we can first sample from the constraint distribution
(6), and then use these samples in the mean of (5) to create the final samples of f∗|Y,C.

To generate k samples of the posterior at M new input locations, [x∗1, . . . ,x
∗
M ]T = X∗,

we use the following procedure

Algorithm 3 Sampling from the posterior distribution

1. Find a matrix Q s.t. QTQ = Σ ∈ RM×M , e.g. by Cholesky or a spectral decomposition.

2. Generate C̃k, a Nv × k matrix where each column is a sample of C̃|Y,C from the
distribution in (6).

3. Generate Uk, a M × k matrix with k samples from the standard normal N (0, IM ).

4. The M × k matrix where each column in a sample from f∗|Y,C is then obtained by

[µ∗ +B(Y − µ)]⊕col [A(−Lµv ⊕col C̃k) +QUk],

where ⊕col means that the M × 1 vector on the left hand side is added to each column
of the M × k matrix on the right hand side.

This procedure is based on the well-known method for sampling from multivariate Gaus-
sian distributions, where we have used the property that in the distribution of f∗|Y,C, only
the mean depends on samples from the constraint distribution.

The challenging part of this procedure is the second step where samples have to be drawn
from a truncated multivariate Gaussian. The simplest approach is by rejection sampling,
i.e. generating samples from the normal distribution and rejection those that fall outside
the bounds. In order to generate m samples with rejection sampling, the expected number
of samples needed is m/p(C|Y ), where the acceptance rate is the probability p(C|Y ) given
in (7). If the acceptance rate is low, then rejection sampling becomes inefficient, and an
alternative approach such as Gibbs sampling (Kotecha and Djuric, 1999) is typically used.
In our numerical experiments (presented in Section 4.2) we made use of a new method
based on simulation via minimax tilting by Botev (2017), developed for high-dimensional
exact sampling. Botev (2017) prove strong efficiency properties and demonstrate accurate
simulation in dimensions d ∼ 100 with small acceptance probabilities (∼ 10−100), that take
about the same time as one cycle of Gibbs sampling. For higher dimensions in the thousands,
the method is used to accelerate existing Gibbs samplers by sampling jointly hundreds of
highly correlated variables. In our experiments, we experienced that this method worked
well in cases where Gibbs sampling was challenging. A detailed comparison with other
sampling alternatives for an application similar to ours is also given in (López-Lopera et al.,
2018). An important observation in Algorithm 3 is that for inference at a new set of input
locations X∗, when the data X,Y and virtual observation locations Xv are unchanged, the
samples generated in step 2 can be reused.
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3.3 Parameter Estimation

To estimate the parameters of the CGP we make use of the marginal maximum likelihood
approach (MLE). We define the marginal likelihood function of the CGP as

L(θ) = p(Y,C|θ) = p(Y |θ)p(C|Y, θ), (8)

i.e. as the probability of the data Y and constraint C combined, given the set of parameters
represented by θ. We assume that both the mean and covariance function of the GP prior (1)
µ(x|θ) and K(x,x′|θ) may depend on θ. The log-likelihood, l(θ) = ln p(Y |θ) + ln p(C|Y, θ),
is thus given as the sum of the unconstrained log-likelihood, ln p(Y |θ), which is optimized
in unconstrained MLE, and ln p(C|Y, θ), which is the probability that the constraint holds
at Xv given in (7).

In (Bachoc et al., 2018) the authors study the asymptotic distribution of the MLE for
shape-constrained GPs, and show that for large sample sizes the effect of including the
constraint in the MLE is negligible. But for small or moderate sample sizes the constrained
MLE is generally more accurate, so taking the constraint into account is beneficial. However,
due to the added numerical complexity in optimizing a function that includes the term
ln p(C|Y, θ), it might not be worthwhile. Efficient parameter estimation using the full
likelihood (8) is a topic of future research. In the numerical experiments presented in this
paper, we therefore make use of the unconstrained MLE. This also makes it possible to
compare models with and without constraints in a more straightforward manner.

3.4 Finding the Virtual Observation Locations

For the constraint to be satisfied locally at any input location in some bounded set Ω ⊂ Rnx

with sufficiently high probability, the set of virtual observation locations Xv has to be
sufficiently dense. We will specify a target probability ptarget ∈ [0, 1) and find a set Xv,
such that when the constraint is satisfied at all virtual locations in Xv, the probability that
the constraint is satisfied for any x in Ω is at least ptarget. The number of virtual observation
locations needed depends on the smoothness properties of the kernel, and for a given kernel
it is of interest to find a set Xv that is effective in terms of numerical computation. As we
need to sample from a truncated Gaussian involving cross-covariances between all elements
in Xv, we would like the set Xv to be small, and also to avoid points in Xv close together
that could lead to high serial correlation.

Seeking an optimal set of virtual observation locations has also been discussed in (Wang
and Berger, 2016; Golchi et al., 2015; Riihimki and Vehtari, 2010; Da Veiga and Marrel,
2012, 2015), and the intuitive idea is to iteratively place virtual observation locations where
the probability that the constraint holds is low. The general approach presented in this
section is most similar to that of Wang and Berger (2016). In Section 3.5 we extend this to
derive a more efficient method for multiple constraints.

In order to estimate the probability that the constraint holds at some new location
x∗ ∈ Ω, we first derive the posterior distribution of the constraint process.

Lemma 4 The predictive distribution of the constraint Lf(x∗) for some new input x∗ ∈
Rnx, condition on the data Y is given by

Lf(x∗)|Y ∼ N (Lµ∗ + Ã2(Y − µ), B̃2), (9)
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and when Lf(x∗) is conditioned on both the data and virtual constraint observations, X,Y
and Xv, C(Xv), the posterior becomes

Lf(x∗)|Y,C ∼ N (Lµ∗ + Ã(C− Lµv) + B̃(Y − µ), Σ̃). (10)

Here L, v1, A1, B1 and L1 are defined as in Lemma 2 , C is the distribution in (6) and

ṽ2 = L \KX,x∗LT , B̃2 = LKx∗,x∗LT − ṽT2 ṽ2,

Ã2 = (LT \ ṽ2)T , B̃3 = LKx∗,XvLT − ṽT2 v1,

ṽ3 = L1 \ B̃T
3 ,

Ã = (LT1 \ ṽ3)T , B̃ = Ã2 − ÃA1, Σ̃ = B̃2 − ṽT3 ṽ3.

The proof is given in Appendix D. The predictive distribution in Lemma 4 was defined
for a single input x∗ ∈ Rnx , and we will make use of the result in this context. But we could
just as well consider an input matrix X∗ with rows x∗1,x

∗
2, . . . , where the only change in

Lemma 4 is to replace x∗ with X∗. In this case we also note that the variances, diag(Σ̃), is
more efficiently computed as diag(Σ̃) = diag(LKX∗,X∗LT )−diag(ṽT2 ṽ2)−diag(ṽT3 ṽ3) where
we recall that diag(vT v)i =

∑
j v

2
i,j for vT = [vi,j ].

Using the posterior distribution of Lf in Lemma 4 we define the constraint probability
pc : Rnx → [0, 1] as

pc(x) = P (a(x)− ν < ξ(x, Xv) < b(x) + ν) , (11)

where ξ(x, Xv) = Lf(x∗)|Y for Xv = ∅ and ξ(x, Xv) = Lf(x∗)|Y,C otherwise. The
quantity ν is a non-negative fixed number that is included to ensure that it will be possible to
increase pc using observations with additive noise. When we use virtual observations C̃(x) =
Lf(x∗) + εv that come with noise εv ∼ N (0, σ2

v), we can use ν = max{σvΦ−1(ptarget), 0}
where Φ(·) is the normal cumulative distribution function. Note that σv, and in this case ν,
will be small numbers included mainly for numerical stability. In the numerical examples
presented in this paper this noise variance was set to 10−6.

In the case whereXv = ∅, computation of (11) is straightforward as ξ(x, Xv) is Gaussian.
Otherwise, we will rely on the following estimate of pc(x):

p̂c(x) =
1

m

m∑

j=1

P (a(x)− ν < (Lf(x)|Y,Cj) < b(x) + ν) , (12)

where C1, . . . , Cm are m samples of C given in (6).
We outline an algorithm for finding a set of virtual observation locations Xv, such that

the probability that the constraint holds locally at any x ∈ Ω is at least ptarget for some
specified set Ω ⊂ Rnx and ptarget ∈ [0, 1). That is, minx∈Ω pc(x) ≥ ptarget. The algorithm
can be used starting with no initial virtual observation locations, Xv = ∅, or using some
pre-defined set Xv 6= ∅. The latter may be useful e.g. if the data X,Y is updated, in which
case only a few additions to the previous set Xv might be needed.

Algorithm 5 Finding locations of virtual observations Xv s.t. p̂c(x) ≥ ptarget for all x ∈ Ω.

1. Compute L = Chol(KX,X + σ2IN ).
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2. Until convergence do:

(a) If Xv 6= ∅ compute A1 and B1 as defined in Lemma 2, and generate m samples
C1, . . . , Cm of C given in (6).

(b) If Xv = ∅ compute (x∗, p∗) = (arg min pc(x), pc(x
∗)). Otherwise compute (x∗, p∗) =

(arg min p̂c(x), p̂c(x
∗)) with p̂c defined as in (12), using the samples generated in

step (a).

(c) Terminate if p∗ ≥ ptarget, otherwise update Xv → Xv ∪ {x∗}.

The rate of convergence of Algorithm 5 relies on the probability that the constraint
holds initially, P (a(x) < (Lf(x)|Y ) < b(x)), and for practical application one may monitor
p∗ as a function of the number of virtual observation locations, |Xv|, to find an appropriate
stopping criterion.

With the exception of low dimensional input x, the optimization step x∗ = arg min p̂c(x)
is in general a hard non-convex optimization problem. But with respect to how x∗ and p∗

are used in the algorithm, some simplifications can be justified. First, we note that when
computing p̂c(x) with (12) for multiple x = x1,x2, . . . , the samples C1, . . . , Cm are reused.
It is also not necessary to find the the absolute minimum, as long as a small enough value is
found in each iteration. Within the global optimization one might therefore decide to stop
after the first occurrence of p̂c(x) less than some threshold value. With this idea one could
also search over finite candidate sets Ω ⊂ Rnx , using a fixed number of random points in
Rnx . This approach might produce a larger set Xv, but where the selection of x∗ is faster in
each iteration. Some of the alternative strategies for locating x∗ in Algorithm 5 are studied
further in our numerical experiments in Section 4.2.

With the above algorithm we aim to impose constraints on some bounded set Ω ⊂ Rnx .
Here Ω has to be chosen with respect to both training and test data. For a single bounded-
ness constraint, it might be sufficient that the constraint only holds at the points x ∈ Rnx

that will be used for prediction. But if we consider constraints related to monotonicity
(see Example 1, Section 4.2), dependency with respect to the latent function’s properties
at the training locations is lost with this strategy. In the examples we give in this paper
we consider a convex set Ω, in particular Ω = [0, 1]nx , and assume that training data, test
data and any input relevant for prediction lies within Ω.

3.5 Separating Virtual Observation Locations for Sub-operators

Let L be a linear operator defined by the column vector [F1, . . . ,Fk], where each Fi is
a linear operator leaving both the domain and range of its argument unchanged, i.e. Fi
produces functions from Rnx to R, subjected to an interval constraint [ai(x), bi(x)]. Until
now we have assumed that the constrain holds at a set of virtual observation locations Xv,
which means that ai(X

v) ≤ Fif(Xv) ≤ bi(Xv) for all i = 1, . . . , k.
However, it might not be necessary to constrain each of the sub-operators Fi at the same

points xv ∈ Xv. Intuitively, constraints with respect to Fi need only be imposed at locations
where p(Fif(x) /∈ [ai(x), bi(x)]) is large. To accommodate this we let Xv be the concate-
nation of the matrices Xv,1, . . . , Xv,k and define LT f(Xv) = [FT1 f(Xv,1), . . . ,FTk f(Xv,1)]T .
This is equivalent to removing some of the rows in L(·)(Xv), and all of the results in this
paper still apply. In this setting we can improve the algorithm in Section 3.4 for finding the
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set of virtual observation locations by considering each sub-operator individually. This is
achieved using the estimated partial constraint probabilities, pc,i(x), that we defined as in
(11) by considering only the i-th sub-operator. We may then use the estimate

p̂c,i(x) =
1

m

m∑

j=1

P (ai(x)− ν < (Lf(x)|Y,Cj)i < bi(x) + ν) , (13)

where (Lf(x)|Y,Cj)i is the univariate Normal distribution given by the i-th row of (Lf(x)|Y,Cj),
and C1, . . . , Cm are m samples of C given in (6) as before. Algorithm 5 can then be im-
proved by minimizing (13) with respect to both x and i = 1, . . . k. The details are presented
in Appendix C, Algorithm 7.

3.6 Prediction using the Posterior Distribution

For the unconstrained GP in this paper where the likelihood is given by Gaussian white
noise, the posterior mean and covariance is sufficient to describe predictions as the posterior
remains Gaussian. It is also known that in this case there is a correspondence between the
posterior mean of the GP and the optimal estimator in the Reproducing Kernel Hilbert
Space (RKHS) associated with the GP (Kimeldorf and Wahba, 1970). This is a Hilbert
space of functions defined by the positive semidefinite kernel of the GP. Interestingly, a
similar correspondence holds for the constrained case. Maatouk et al. (2016) show that for
constrained interpolation, the Maximum A Posteriori (MAP) or mode of the posterior is the
optimal constrained interpolation function in the RKHS, and also illustrate in simulations
that the unconstrained mean and constrained MAP coincide only when the unconstrained
mean satisfies the constraint. This holds when the GP is constrained to a convex set of
functions, which is the case in this paper where we condition on linear transformations of a
function restricted to a convex set.

3.7 An Alternative Approach based on Conditional Expectations

Da Veiga and Marrel (2012, 2015) propose an approach for approximating the first two mo-
ments of the constrained posterior, f∗|Y,C, using conditional expectations of the truncated
multivariate Gaussian. This means, in the context of this paper, that the first two moments
of f∗|Y,C are computed using the first two moments of the latent variable C. To apply this
idea using the formulation of this paper, we can make use of the following result.

Corollary 6 Let the matrices A, B, Σ and the truncated Gaussian random variable C
be as defined in Lemma 1, and let ν,Γ be the expectation and covariance of C. Then the
expectation and covariance of the predictive distribution f∗|Y,C are given as

E(f∗|Y,C) = µ∗ +A(ν − Lµv) +B(Y − µ),

cov(f∗|Y,C) = Σ +AΓAT .
(14)

Moreover, if Ã, B̃ and Σ̃ are the matrices defined in Lemma 4, then the expectation and
variance of the predictive distribution of the constraint Lf(x∗)|Y,C are given as

E(Lf(x∗)|Y,C) = Lµ∗ + Ã(ν − Lµv) + B̃(Y − µ),

var(Lf(x∗)|Y,C) = Σ̃ + ÃΓÃT .
(15)
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The results follows directly from the distributions derived in Lemmas 1 and 4, and
moments of compound distributions. A proof is included in Appendix E for completeness.

Da Veiga and Marrel (2012, 2015) make use of a Genz approximation (Genz, 1992, 1997)
to compute ν,Γ for inference using (14). They also introduce a crude but faster correlation-
free approximation that can be used in the search for virtual observation locations. With
this approach, (15) is used where ν,Γ are computed under the assumption that cov(C̃|Y )
is diagonal. We can state this approximation as follows:

νi ≈ mi + si
φ(ãi)− φ(b̃i)

Φ(b̃i)− Φ(ãi)
, Γi,i ≈ s2

i


1 +

ãiφ(ãi)− b̃iφ(b̃i)

Φ(b̃i)− Φ(ãi)
−
(
φ(ãi)− φ(b̃i)

Φ(b̃i)− Φ(ãi)

)2

 ,

where mi is the i-th component of E(C̃|Y ) = Lµv + A1(Y − µ), si =
√

cov(C̃|Y )i,i =√
(B1)i,i, ãi = (a(Xv)i − mi)/si, b̃i = (b(Xv)i − mi)/si, φ and Φ are the pdf and cdf of

the standard normal distribution and Γ is diagonal with elements Γi,i. We will make use of
these approximations in some of the examples in Section 4.2 for comparison.

3.8 Numerical Considerations

For numerical implementation, we discuss some key considerations with the proposed model.
One of the main issues with implementation of GP models in terms of numerical stability
is related to covariance matrix inversion, which is why alternatives such as Cholesky factor-
ization are recommended in practice. This does however not alleviate problems related to
ill-conditioned covariance matrices. This is a common problem in computer code emulation
(zero observational noise) in particular, where training points might be ’too close to each
other’ in terms of the covariance function, leaving the covariance matrix close to degenerate
as some of the observations become redundant. A common remedy is to introduce a ’nugget’
term on the diagonal entries of the covariance matrix, in the form of additional white noise
on the observations. This means using a small σ > 0 instead of σ = 0 in Equation (2),
even when the observations are noiseless. In terms of matrix regularization this is equiv-
alent to Tikhonov regularization. See for instance Ranjan et al. (2010) and Andrianakis
and Challenor (2012) which give a detailed discussion and recommendations for how to
choose appropriate value for σ. In practice, a fixed small value is often used without further
analysis, as long as the resulting condition number is not too high. This approach can be
justified since the use of a nugget term has a straightforward interpretation, as opposed to
other alternatives such as pseudoinversion. In our experiments on noiseless regression we
fix σ2 = 10−6, as the error introduced by adding a variance of 10−6 to the observations is
negligible.

Similarly, for the virtual observations used in this paper we make use of the noise
parameter σv to avoid ill-conditioning of the matrix B1 defined in Lemma 1. B1 is the
covariance matrix of the transformed GP, C̃|Y , and B−1

1 together with (KX,X + σ2IN )−1

are needed for all the posterior computations that involve constraints. The virtual noise
parameter σv has a similar interpretation as σ, but where the artificial added noise acts
on observations of the transformed process. Here σv = 0 means that the constraints are
enforced with probability 1, σv > 0 implies that the constraints are enforced in a soft way,
and σv → ∞ provides no constraint at all. In the numerical examples presented in this
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paper, a fixed value σ2
v = 10−6 has been used to approximate hard constraints with an error

we find negligible.
As for computational complexity, we may start by first looking at the operations involved

in computing the posterior predictive distribution at M inputs x∗1, . . . ,x
∗
M (including covari-

ances), using Lemma 2. We first make note of the operations needed in the unconstrained
case, i.e. standard GP regression with Gaussian noise, for comparison. If there are N ≥M
observations in the training set, then the complexity is dominated by the Cholesky fac-
torization L = Chol(KX,X + σ2IN ), which require an order of N3 operations and N2 in
memory. The Cholesky factor may be stored for subsequent predictions. Then, to compute
the posterior predictive distribution at M new inputs, the number of operations needed
is dominated by matrix multiplication and solving triangular systems, of orders NM2 and
N2M . When a number Nv of virtual observation locations are included, we are essentially
dealing with the same computations as the standard GP regression, but with N +Nv num-
ber of observations. I.e. the computations involved are of order (N + Nv)

3 in time and
(N + Nv)

2 in memory. The order of operations in Lemma 2 was chosen such that the
Cholesky factor L that only depends on the training data can be reused. For a new set Xv

of size Nv, the computations needed for prediction at M new locations X∗ will only require
the Cholesky factorization L1 = Chol(B1) of order N3

v . When both L and L1 are stored,
the remaining number of operations will be of order N2M or N2

vM for solving triangular
systems, and NM2, NvM

2 or NMNv for matrix multiplications.
In order to sample from the posterior using Algorithm 3, some additional steps are re-

quired. After the computations of Lemma 2 we continue to factorize the M ×M covariance
matrix Σ and generate samples from the truncated Gaussian C̃|Y,C. The complexity in-
volved in sampling from this Nv-dimensional truncated Gaussian depends on the sampling
method of choice, see Section 3.2. We can combine k of these samples with k samples
from a standard normal N (0, IM ) to obtain samples of the final posterior, using an order of
MNvk+M2k operations. The total procedure of generating k samples atM ≤ N new inputs
is therefore dominated by matrix operations of order (N +Nv)

3, MNvk and M2k, together
with the complexity involved with sampling from a Nv-dimensional truncated Gaussian.
For subsequent prediction it is convenient to here also reuse the samples generated from
the truncated Gaussian, together with results that only involve X and Xv. This means
storing matrices of size Nv × k, N × N and Nv × Nv. The remaining computations are
then dominated by operations of order N2M , N2

vM , NM2, NvM
2, NMNv, MNvk, and

M2k. In the algorithms used to find virtual observation locations, Algorithm 5 and 7, we
make sure to reuse computations that only involve the training data in each iteration of
Nv = 1, 2, . . . . This means that in addition to the previously stated operations, we need to
perform Cholesky factorization of order N3

v and generate samples from a Nv-dimensional
truncated Gaussian. This is initially very cheap, but becomes the main numerical challenge
when Nv grows large. As the purpose of these algorithms is to find a small set Xv, that also
avoids sampling issues due to serial correlation, we found it useful to output the minimal
constraint probability p∗ found in each iteration to reveal if the stopping criterion used (in
terms of ptarget or a maximum number of iterations) was unrealistic in practice.
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4. Gaussian Process Modelling with Boundedness and Monotonicity
Constraints

In this section we present some examples related to function estimation where we assume
that the function and some of its partial derivatives are bounded. This is the scenario con-
sidered in the literature on shape-constrained GPs, and alternative approaches to GPs under
linear constraints are usually presented in this setting. We start by a brief discussion on
related work, followed by some numerical experiments using boundedness and monotonicity
constraints. The numerical experiments were performed using the Python implementation
available at https://github.com/cagrell/gp_constr.

4.1 Related Work

We give a brief overview of some alternative and related approaches to constrained GPs.
For the approaches that rely on imposing constraints at a finite set of virtual observation
locations, we recall that the constraint probability can be used in the search for a suitable
set of virtual observation locations. The constraint probability is the probability that the
constraint holds at an arbitrary input x, pc(x) given in (11). Some key characteristics of
the approaches that make use of virtual observations are summarized in Table 1.

The related work most similar to the approach presented in this paper is that of Wang
and Berger (2016) and Da Veiga and Marrel (2012, 2015). Wang and Berger (2016) make use
of a similar sampling scheme for noiseless GP regression applied to computer code emulation.
A Gibbs sampling procedure is used for inference and to estimate the constraint probability
pc(x) in the search for virtual observation locations. The approach of Da Veiga and Marrel
(2012, 2015) is based on computation of the posterior mean and covariance of the constrained
GP, using the equations that are also restated in this paper in Corollary 6. They make use
of a Genz approximation for inference (Genz, 1992, 1997), and also introduce a crude but
faster correlation-free approximation that can be used in the search for virtual observation
locations. The approach of Da Veiga and Marrel (2012, 2015) is discussed further in the
numerical experiments below, where we illustrate the idea in Example 1 and in Example 2
study an approximation of the posterior constrained GP using the constrained moments with
a Gaussian distribution assumption. A major component in (Da Veiga and Marrel, 2012,
2015), (Wang and Berger, 2016) and this paper is thus computation involving the truncated
multivariate Gaussian. Besides the choice of method for sampling from this distribution,
the main difference with our approach is that we leverage Cholesky factorizations and noisy
virtual observations for numerical stability.

A different approach that also make use of virtual observations is that of Riihimki
and Vehtari (2010), where a probit likelihood is used to represent interval observations
of the derivative process to impose monotonicity. They then make use of Expectation
Propagation (EP) to approximate the posterior with a multivariate Gaussian. As pointed
out by Golchi et al. (2015), the Gaussian assumption is questionable if the constraint (in
this case monotonicity) does not hold with high probability a priori. Golchi et al. (2015)
proceeds to develop a fully Bayesian procedure for application to computer experiments by
the use of Sequentially Constrained Monte Carlo Sampling (SCMC). A challenge with this
approach however is that finding a suitable set of virtual observation locations is difficult.
Our experience, in agreement with (Wang and Berger, 2016; Da Veiga and Marrel, 2012,
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Virtual obs.
likelihood

Inference strategy Strategy for finding Xv

Agrell (2019) Indicator Sampling Based on estimating pc(x)
+ noise (Minimax tilting) from samples

Wang and Berger (2016) Indicator Sampling (Gibbs) Based on estimating pc(x)
from samples

Da Veiga and Marrel Indicator Moment approxima- Based on approximating pc(x)
(2012, 2015) tion (Genz) assuming Gaussian posterior

distribution

Riihimki and Vehtari Probit Expectaion Propaga- Based on approximating pc(x)
(2010) tion assuming Gaussian posterior

distribution

Golchi et al. (2015) Probit SCMC NA

Table 1: Summary of alternative approaches that make use of virtual observations. The
table compares the likelihood used for virtual observations, the method used for
inference and to determine the set of virtual observation locations Xv.

2015; Riihimki and Vehtari, 2010), is that for practical applications in more than a few
dimensions, such a strategy is essential to avoid numerical issues related to high serial
correlation, and also to reduce the number of virtual observation locations needed. It
is also worth noting that a strategy that decouples computation involving training data
and virtual observation locations from inference at new locations is beneficial. For the
approaches discussed herein that rely on sampling/approximation related to the truncated
multivariate Gaussian, the samples/approximations can be stored and reused as discussed
in Section 3.8.

There are also some approaches to constrained GPs that are not based on the idea of
using virtual observations. An interesting approach by Maatouk and Bay (2017), that is also
followed up by López-Lopera et al. (2018), is based on modelling a conditional process where
the constraints hold in the entire domain. They achieve this through finite-dimensional
approximations of the GP that converge uniformly pathwise. With this approach, sampling
from a truncated multivariate Gaussian is also needed for inference, in order to estimate
the coefficients of the finite-dimensional approximation that arise from discretization of the
input space. The authors give examples in 1D and 2D, but note that due to the structure
of the approximation, the approach will be time consuming for practical applications in
higher dimensions. There are also other approaches that consider special types of shape
constraints, but where generalization seems difficult. See for instance (Abrahamsen and
Benth, 2001; Yoo and Kyriakidis, 2006; Michalak, 2008; Kleijnen and Beers, 2013; Lin and
Dunson, 2014; Lenk and Choi, 2017).

4.2 Numerical Experiments

In this section we will make us of the following constraints:
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• a0(x) ≤ f(x) ≤ b0(x)

• ai(x) ≤ ∂f/∂xi(x) ≤ bi(x)

for all x in some bounded subset of Rnx , and i ∈ I ⊂ {1, . . . , nx}. Without loss of gen-
erality we assume that the constrains on partial derivatives are with respect to the first k
components of x, i.e. I = {1, . . . , k} for some k ≤ nx.

As the prior GP we will assume a constant mean µ = 0 and make use of either the RBF
or Matérn 5/2 covariance function. These are stationary kernels of the form

K(x,x′) = σ2
Kk(r), r =

√√√√
nx∑

i=1

(
xi − x′i
li

)2

, (16)

with variance parameter σ2
K and length scale parameters li for i = 1, . . . , nx. The radial

basis function (RBF), also called squared exponential kernel, and the Matérn 5/2 kernel
are defined through the function k(r) as

kRBF(r) = e−
1
2
r2 and kMatérn 5/2(r) = (1 +

√
5r +

5

3
r2)e−

√
5r.

In general, the kernel hyperparameters σ2
K and li are optimized together with the noise

variance σ through MLE. In the examples that consider noiseless observations, the noise
variance is not estimated, but set to a small fixed value as discussed in Section 3.8. With the
above choice of covariance function, existence of the transformed GP is ensured. In fact, the
resulting process is infinitely differentiable using the RBF kernel (see Adler, 1981, Theorem
2.2.2) and twice differentiable with the Matérn 5/2. These prior GP alternatives were chosen
as they are the most commonly used in the literature, and thus a good starting point for
illustrating the effect of including linear constraints. We note that although it is not in
general possible to design mean and covariance functions that produce GPs that satisfy the
constraints considered in this paper, one could certainly ease numerical computations by
selecting a GP prior based on the constraint probability p(C|Y, θ) in (7), and for instance
make us of a mean function that is known to satisfy the constraint.

If we let F0f = f , F if = ∂f/∂xi, and Xv,i be the set of Si virtual observations
corresponding to the i-th operator F i, then we can make use of the formulation in Section
3.5 and equations from Appendix C to obtain

Lµv = [µ1S0 ,0S[1,k]
]T ,

where 1S1 is the vector [1, . . . , 1]T of length S1 and 0S[1,k]
is the vector [0, . . . , 0]T of length

S[1,k] = −S0 +
∑
Si. Furthermore,

KX,XvLT =
[
KX,Xv,0 , (K

1,0
Xv,1,X

)T , . . . , (Kk,0
Xv,k,X

)T
]

,

KX∗,XvLT =
[
KX∗,Xv,0 , (K

1,0
Xv,1,X∗)

T , . . . , (Kk,0
Xv,k,X∗)

T
]

,

LKXv ,XvLT =




KXv,0,Xv,0 (K1,0
Xv,1,Xv,0)T . . . (Kk,0

Xv,k,Xv,0)T

K1,0
Xv,1,Xv,0 K1,1

Xv,1,Xv,1 . . . K1,k
Xv,1,Xv,k

...
...

. . .
...

Kk,0
Xv,k,Xv,0 Kk,1

Xv,k,Xv,1 . . . Kk,k
Xv,k,Xv,k



,
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where we have used the notation

Ki,0(x,x′) =
∂

∂xi
K(x,x′) and Ki,j(x,x′) =

∂2

∂xi∂x′i
K(x,x′).

The use of constraints related to boundedness and monotonicity is illustrated using three
examples of GP regression. Example 1 considers a function f : R→ R subjected to bound-
edness and monotonicity constraints. In Example 2 a function f : R4 → R is estimated
under the assumption that information on whether the function is monotone increasing or
decreasing as a function of the first two inputs is known, i.e. sgn(∂f/∂x1) and sgn(∂f/∂x2)
are known. In Example 3 we illustrate how monotonicity constraints in multiple dimensions
can be used in prediction of pressure capacity of pipelines.

4.2.1 Example 1: Illustration of Boundedness and Monotonicity in 1D

As a simple illustration of imposing constraints in GP regression, we first consider the
function f : R→ R given by f(x) = 1

3 [tan−1(20x− 10)− tan−1(−10)]. We assume that the
function value is known at 7 input locations given by xi = 0.1 + 1/(i + 1) for i = 1, . . . , 7.
First, we assume that the observations are noiseless, i.e. f(xi) is observed for each xi.
Estimating the function that interpolates at these observations is commonly referred to
as emulation, which is relevant when dealing with data from computer experiments. Our
function f(x) is both bounded and increasing on all of R. In this example we will constrain
the GP to satisfy the conditions that for x ∈ [0, 1], we have that df/dx ≥ 0 and a(x) ≤
f(x) ≤ b(x) for a(x) = 0 and b(x) = 1

3 ln(30x+ 1) + 0.1. The function is shown in Figure 1
together with the bounds and the 7 observations.

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5
f(x)
Data
Bounds

x

y

Figure 1: Function to emulate in Example 1

We select an RBF kernel (16) with parameters σK = 0.5 (variance) and l = 0.1 (length
scale). To represent noiseless observations we set σ2 = 10−6, where σ2 is the noise variance
in the Gaussian likelihood. The assumed noise on virtual observations will also be set to
10−6. To illustrate the effect of adding constraints we show the constrained GP using only
boundedness constraint, only monotonicity constraint and finally when both constraints
are imposed simultaneously. Figure 2 shows the resulting GPs. Algorithm 7 was used with
a target probability ptarget = 0.99 to determine the virtual observation locations that are
indicated in the figures, and the posterior mode was computed by maximizing a Gaussian
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kernel density estimator over the samples generated in Algorithm 3. For both constraints,
17 locations was needed for monotonicity and only 3 locations was needed to impose bound-
edness when the virtual locations for both constraints where optimized simultaneously. This
is reasonable, as requiring f(0) > 0 is sufficient to ensure f(x) > 0 for x ≥ 0 when f is
increasing, and similarly requiring f(xv) < b(xv) for some few points xv ∈ [0.6, 1] should
suffice. But note that Algorithm 7 finds the virtual observation locations for both con-
straints simultaneously. Here xv = 0 for boundedness was first identified, followed by some
few points for monotonicity, followed by a new point xv for boundedness etcetera.

For illustration purposes none of the hyperparameters of the GP were optimized. More-
over, for data sets such as the one in this example using plug-in estimates obtained from
MLE generally not appropriate due to overfitting. Maximizing the marginal likelihood for
the unconstrained GP gives a very poor model upon visual inspection (σK = 0.86, l = 0.26).
However, it was observed that the estimated parameters for the constrained model (us-
ing Eq. (8)) gives estimates closer to the selected prior which seems more reasonable
(σK = 0.42, l = 0.17), and hence the inclusion of the constraint probability, p(C|Y, θ), in
the likelihood seems to improve the estimates also for the unconstrained GP.

We may also assume that the observations come with Gaussian white noise, which in
terms of numerical stability is much less challenging than interpolation. Figure 3 shows the
resulting GPs fitted to 50 observations. The observations were generated by sampling xi ∈
[0.1, 0.8] uniformly, and yi from f(xi)+εi where εi are i.i.d. zero mean Gaussian with variance
σ2 = 0.04. Both GPs were optimized using plug-in estimates of hyperparameters (σK , l, σ

2)
given by maximizing the marginal likelihood. These are (σK = 0.34, l = 0.32, σ2 = 0.053)
for the constrained case and (σK = 0.34, l = 0.23, σ2 = 0.040) for the unconstrained case.
We observe that the estimated noise variance is larger in the constrained model than the
unconstrained where this estimate is exact.
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Figure 2: The GP with parameters σK = 0.5 (variance) and l = 0.1 (length scale) used in
Example 1. The virtual observation locations are indicated by markers on the
x-axis.

20



GPs with Linear Inequality Constraints

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

1.5

x

y

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

1.5

ss

ty

x

y

a b

[p10, p90]Mean Data

Xv - boundedness Xv - monotonicity

ModeMedian

Upper/lower bound

Figure 3: Unconstrained (a) and constrained (b) GPs fitted to 50 observations with Gaus-
sian noise. The predictive distributions are shown, i.e. the distribution of f(x)
where y = f(x) + ε.

Da Veiga and Marrel (2015) propose to use estimates of the posterior mean and variance
of Lf(x)|Y,C to estimate the constraint probability pc(x) assuming a Gaussian distribution.
They also introduce the faster correlation-free approximation, where the parameters are
estimated under the assumption that observations of Lf(x)|Y at different input locations
x are independent (see Section 3.7). In Figure 4 we plot estimates of pc,i(x), for the
boundedness and monotonicity constraint individually, using the approach in this paper
(13) and the two moment based approximations. The plots were generated first after a
total of 5 and then 10 virtual observations locations had been included in the model with
both constraints. As we are mainly interested in finding x∗ = arg min pc,i(x), Figure 4
indicates that the moment based approximations are appropriate initially. However, as
more virtual observation locations are included, the correlation-free assumption becomes
questionable. But it could still serve as a useful starting point, and in a strategy based
on checking the approximation error from time to time, it should still be possible to take
advantage of the computational savings offered by the correlation-free approximation.
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Figure 4: Constraint probability pc(x) computed using the estimate (13) together with the
moment based approximations from Da Veiga and Marrel (2015). The constraint
probability is shown for monotonicity and boundedness, where Nv is the total
number of virtual observation locations used in the model.

4.2.2 Example 2: 4D Robot Arm Function

In this example we consider emulation of a function f : R4 → R, where we assume that
the sign of the first two partial derivatives, sgn(∂f/∂x1) and sgn(∂f/∂x2), are known. The
function to emulate is

f(x) =

m∑

i=1

Li cos




i∑

j=1

τj


 ,

for m = 2, and x = [L1, L2, τ1, τ2]. The function is inspired by the robot arm function often
used to test function estimation (An and Owen, 2001). Here f(x) is the y-coordinate of a
two dimensional robot arm with m line segments of length Li ∈ [0, 1], positioned at angle
τi ∈ [0, 2π] with respect to the horizontal axis. The constraints on the first two partial
derivatives thus implies that it is known whether or not the arm will move further away
from the x-axis, as a function of the arm lengths, L1 and L2, for any combination of τ1 and
τ2.

In this experiment we first fit an unconstrained GP using 40 observations taken from
a Latin hypercube sample over the input space [0, 1]2 × [0, 2π]2. A Matérn 5/2 covariance
function is used with plug-in MLE hyperparameters. Then, a total of 80 virtual observation
locations are found using the procedure in Algorithm 7, where we search over a finite candi-
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date set of 1000 locations in the minimization of the constraint probability. We repeat this
procedure 100 times and report performance using the predictivity coefficient Q2, predictive
variance adequation (PVA) and the average width of 95% confidence intervals (AWoCI).

Given a set of tests y1, . . . , yntest and predictions ŷ1, . . . , ŷntest , Q
2 is defined as

Q2 = 1−
ntest∑

i=1

(ŷi − yi)2/

ntest∑

i=1

(ȳ − yi)2,

where ȳ is the mean of y1, . . . , yntest . In our experiments the predictions ŷi are given by the
posterior mean of the GP. The PVA criterion is defined as

PVA =

∣∣∣∣∣log

(
1

ntest

ntest∑

i=1

(ŷi − yi)2

σ̂2
i

)∣∣∣∣∣ ,

where σ̂2
i is the predictive variance. This criterion evaluates the quality of the predictive

variances and to what extent confidence intervals are reliable. The smaller the PVA is, the
better (Bachoc, 2013). In addition to this criterion, it is also useful to evaluate the size of
confidence intervals. For this we compute the average width of 95% confidence intervals

AWoCI =
1

ntest

ntest∑

i=1

(p
(i)
0.975 − p

(i)
0.025),

where p
(i)
0.975 and p

(i)
0.025 are the predicted 97.5% and 2.5% percentiles.

The result of 100 predictions for one single experiment is shown in Figure 5. As ex-
pected, the estimated prediction uncertainty is reduced significantly using the constrained
model, and single predictions given by the posterior mean are also improved. In Table 2
we summarize the results from running 100 of these experiments. In each experiment, Q2,
PVA and AWoCI was computed from prediction at 1000 locations sampled uniformly in
the domain. We also report the probability that the constraint holds in the unconstrained
GP, p(C|Y ) given in (7), and the CPU time in seconds used to generate 104 samples from
the posterior on an Intel R© CoreTM i5-7300U 2.6GHz CPU. For comparison, we also include
predictions from moment-based approximations using the approach of Da Veiga and Marrel
(2012, 2015). We study in particular their approach for finding the set of virtual observation
locations, as discussed in Section 3.7 and illustrated in the previous example. In total, the
following alternatives are considered:

1. Unconstrained: The initial GP without constraints.

2. Constrained: The constrained GP using the approach presented in this paper.

3. Moment approx. 1: Using the sampling scheme of this paper for inference, but
where the moment based approximation is used in the search for virtual observation
locations.

4. Moment approx. 2: Using moment approximation for both inference and searching
for virtual observation locations. This is one of the procedures from Da Veiga and
Marrel (2012, 2015).
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5. Correlation-free approx.: Same as Moment approx. 1 but where the correlation-
free approximation is used in the search for virtual observation locations.
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Figure 5: Figure a shows a qq-plot with 95% confidence band of 100 normalized residuals
(yi − µi)/(σi), where µi and σ2

i are the mean and variance of the predictive
distribution of the unconstrained GP. In Figure b, predictions vs the true function
value is shown together with a [0.025, 0.975] (95%) percentile interval for the
unconstrained GP. The same type of figure is shown in c for the constrained GP.

In Table 2 we see that the use of constraints is beneficial in terms of both a higher Q2

(better predictive performance) and a smaller PVA (higher quality of predictive variances).
With the exception of ’Moment approx. 2’, the inclusion of constraints provides significant
uncertainty reduction as the width of 95% confidence intervals (AWoCI) are reduce by
almost a factor of 2 on average. A box plot showing AWoCI from the 100 experiments is
also shown in Figure 6. We see that the different approaches for estimating the constraint
probability, pc(x), in the search for virtual observation locations work equally well. The
Gaussian assumption on the posterior f∗|Y,C on the other hand is not optimal, as it tends
to overestimate the uncertainty in this example.
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p(C|Y ) Ts PVA Q2 AWoCI

Unconstrained 3.03 0.7558 0.99
Constrained 4.1E-34 24.8 2.85 0.8842 0.54
Moment approx. 1 2.4E-36 25.2 2.84 0.8844 0.54
Moment approx. 2 2.4E-36 25.2 2.84 0.8844 0.83
correlation-free approx. 8.6E-37 21.1 2.91 0.8775 0.55

Table 2: Average values from 100 experiments of the robot arm function. Ts is the CPU
time in seconds used to generate 104 samples.

Unconstrained Constrained Correlation free approx. Moment approx. 1 Moment approx. 2
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Figure 6: Average width of confidence intervals (AWoCI) from 100 experiments of the robot
arm function.

4.2.3 Example 3: Pipeline Pressure Capacity

In this example we consider a model for predicting the pressure capacity of a steel pipeline
with defects due to corrosion. As corrosion is one of the major threats to the integrity
of offshore pipelines, experiments are carried out to understand how metal loss due to
corrosion affects a pipeline’s capacity with respect to internal pressure (Sigurdsson et al.,
1999; Amaya et al., 2019). These include full scale burst tests and numerical simulation
through Finite Element Analysis (FEA). Results from this type of experiments serve as
the basis for current methodologies used in the industry for practical assessment of failure
probabilities related to pipeline corrosion, such as ASME B31G or DNVGL-RP-F101. We
consider experiments related to a single rectangular shaped defect, which is essential to
these methodologies.

To simulate synthetic experiments of the burst capacity of a pipeline with a rectangular
defect, we will use the simplified capacity equation given in in (RP-F101 DNV GL, 2017).
The maximum differential pressure (capacity in MPa) the pipeline can withstand without
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bursting is in the simplified equation given as

Pcap(σu, D, t, d, l) = 1.05
2tσu
D − t

1− d/t
1− d/t

Q

, Q =

√
1 + 0.31

l2

Dt
,

where σu ∈ [450, 550] (MPa) is the ultimate tensile strength of the material, D ∈ [10t, 50t]
(mm) and t ∈ [5, 30] (mm) are the outer diameter and wall thickness of the pipeline, and
d ∈ [0, t] (mm) and l ∈ [0, 1000] (mm) are the depth and length of the rectangular defect.

From the physical phenomenon under consideration, we know that the capacity of the
pipeline will decrease if the size of the defect were to increase. Similarly, we know that the
pipeline capacity increases with a higher material strength or wall thickness, and decreases
as a function of the diameter, all else kept equal. In the form of partial derivatives we can
express this information as:

∂Pcap

∂d < 0,
∂Pcap

∂l < 0,
∂Pcap

∂σu
> 0,

∂Pcap

∂t > 0 and
∂Pcap

∂D < 0.
For convenience we will transform the input variables to the unit hypercube. Let x

denote the transformed input vector x = [x1, . . . , x5], where x1 = (σu − 450)/(550 − 450),
x2 = (D/t− 10)/(50− 10), x3 = (t− 5)/(30− 5), x4 = d/t and x5 = l/1000. We will make
use of the function

f(x) = Pcap(x) for x ∈ [0, 1]5,

and assume that the burst capacity observed in an experiment is f(x) + ε, where ε is a
zero mean Normal random variable with variance σ2 = 4. The constraints on the partial
derivatives after the transformation becomes: ∂f

∂x1
> 0, ∂f

∂x2
< 0, ∂f

∂x3
> 0, ∂f

∂x4
< 0 and

∂f
∂x5

< 0 for x ∈ [0, 1]5.
In this example we thus have five constraints available, represented by bounds on the

partial derivative of f(x) w.r.t. xi for i = 1, . . . , 5. Besides studying the effect of including
all five constraints, we will test some different alternatives using a smaller number of con-
straints, and also lower input dimensions. To simulate a lower dimensional version of the
capacity equation, we can consider only the fist nx input variables and keep the remaining
variables fixed. We consider nx = 3, 4 and 5 where we fix xi = 0.5 for all i > nx. For each
of these scenarios we will consider nx and nx − 1 number of constraints. We let nc denote
the number of constraints, where using nc constraints means that the bound on ∂f/∂xi is
included for i = 1, . . . , nc.

In each experiment we start by generating a training set of N = 5nx or N = 10nx
LHS samples from [0, 1]nx . As in the previous example in Section 4.2.2, we fit a zero
mean GP using a Matérn 5/2 covariance function and plug-in hyperparameters by MLE.
We search over a candidate set consisting of 2500 uniform samples from [0, 1]nx iteratively
to update the set of virtual observation locations, until the constraint probability at all
locations in the candidate set, and for each constraint, is at least 0.7. To check whether
this is a reasonable stopping criterion we finish by minimizing the constraint probability for
each constraint, using the differential evolution (Storn and Price, 1997) global optimization
algorithm available in (SciPy Jones et al., 2001–).

Table 3 shows the results for different combinations of input dimensionality nx, number
of constraints nc and number of training samples N , where the results in each row is
computed from 100 experiments. As in the previous example we report p(C|Y ), PVA, Q2

and AWoCI, and the CPU time spent generating samples for prediction (Ts). We also
report the average CPU time used in the search for a new virtual observation location and
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nx nc N Nv Tv p(C|Y ) pc,min Ts PVA Q2 AWoCI

3 2 15 3.6 0.6 2.6E-01 0.79 0.05 0.94 (0.89) 0.95 (0.95) 3.9 (6.2)
3 2 30 3.5 0.6 2.5E-01 0.78 0.04 0.89 (0.87) 0.97 (0.97) 3.0 (4.8)
3 3 15 5.8 0.9 1.2E-01 0.74 0.09 1.47 (1.23) 0.95 (0.95) 3.7 (6.1)
3 3 30 3.9 0.9 2.2E-01 0.76 0.04 0.79 (0.79) 0.97 (0.97) 3.1 (5.0)
4 3 20 11.8 0.9 1.5E-02 0.67 0.19 1.40 (1.29) 0.87 (0.92) 5.5 (9.4)
4 3 40 11.7 0.9 6.6E-03 0.71 0.18 0.51 (0.52) 0.97 (0.97) 4.1 (6.9)
4 4 20 13.6 1.2 6.9E-03 0.65 0.49 1.56 (1.31) 0.91 (0.91) 5.5 (9.6)
4 4 40 12.8 1.2 2.7E-03 0.69 0.19 0.50 (0.48) 0.97 (0.97) 4.0 (6.7)
5 4 25 14.8 1.2 6.3E-03 0.66 0.22 1.03 (1.08) 0.85 (0.83) 8.3 (14.3)
5 4 50 17.4 1.2 1.2E-03 0.66 0.26 0.73 (0.78) 0.90 (0.90) 6.8 (11.5)
5 5 25 15.5 1.5 3.1E-03 0.65 0.24 1.12 (1.10) 0.82 (0.81) 8.4 (14.4)
5 5 50 20.2 1.6 1.1E-03 0.61 0.35 0.67 (0.77) 0.90 (0.90) 6.5 (11.3)

Table 3: Average values from 100 experiments with input dimensionality nx, number of
constraints nc and number of training samples N . Values in parenthesis corre-
spond to the unconstrained model. Here pc,min is the minimum of the constraint
probability for any constraint over the entire domain after a total of Nv virtual
observation locations have been included. Tv is the average CPU time in seconds
used to find each of the Nv points using 103 samples, and Ts is the CPU time in
seconds used to generate 104 samples of the final model for prediction.

the minimum constraint probability, pc,min = mini=1,...nc minx∈[0,1]nx p̂c,i(x) (13), computed
with differential evolution. Here we make use of 103 samples to compute the estimate p̂c,i(x),
whereas 104 samples are used for the final prediction.

From Table 3 we first notice that the number of virtual observation locations (Nv) de-
termined by the searching algorithm is fairly low. One might interpret this as an indication
that the unconstrained GP produces samples that are likely to agree with the monotonicity
constraints, except for at a few locations. As a result, computation that involve sampling
from the truncated multivariate Gaussian is efficient. Still, we see that inclusion of the con-
straints has an effect on uncertainty estimates as the AWoCI is reduced by a factor of around
1.6 in each experiment, whereas PVA and Q2 are fairly similar for the unconstrained and
constrained model overall. We also notice that the smallest constraint probability found in
the domain using a global optimization technique is reduced when the number of constraints
or dimensionality is increased. This is expected, as we only considered a finite candidate
set and not the entire domain when searching for the location minimizing the constraint
probability. Hence, if we really want to achieve a minimal constraint probability larger than
0.7 in 5 dimensions, more than 2500 samples in the candidate set would be needed with this
strategy, or a global optimizer could be used to identify the remaining virtual observation
locations needed.

For the application considered in this example, where uncertainty in the prediction is key
to risk assessment, we argue that the effect the constraints have on uncertainty estimates
makes the inclusion of constraints worthwhile. Modern engineering methodologies that
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make use of capacity predictions as the one illustrated in this example are usually derived
in the context of Structural Reliability Analysis (SRA), where the capacity is combined
with a probabilistic representation of load (in this case differential pressure) to estimate the
probability of failure (Madsen et al., 2006).

Alternative methods based on conservative estimates to ensure sufficient safety margin
between load and capacity are also common. For the application considered herein, this
would typically mean using a lower percentile instead of the posterior mean in order to
represent a conservative capacity. The inclusion of constraints can therefore help to avoid
unnecessary conservatism due to unphysical scenarios, that are not realistic but have positive
probability in the unconstrained model.

Finally, we note that the constraints used in this example are not from differentiating
the equation used as stand-in for experiments, but from knowledge related to the underlying
physical phenomenon. The constraints therefore remain applicable, were the experiments
to come from physical full-scale tests. This naturally also holds in applications to computer
code emulation, where we would set the noise term ε to zero in this example if we were
to assume that the capacity experiments came from a numerical (FEA) simulation. With
results from this type of numerical simulation, a noise parameter is usually added to the
simulation output as well, to represent model uncertainty as the numerical simulation is not
a perfect representation of the real physical phenomenon. Very often the model uncertainty
is represented by a univariate Gaussian. An interesting alternative here is to instead account
for the model uncertainty as observational noise in the GP, where the use of constraints
may help to obtain a more realistic model uncertainty as well.

5. Discussion

The model presented in this paper provides a consistent approach to GP regression under
multiple linear constraints. The computational framework used is based on a sampling
scheme which is exact in the limit. However, sampling strategies like the one in this paper
can be too numerically demanding as opposed to approximation methods such as Laplace ap-
proximations, variational Bayesian inference, expectation propagation etcetera. The choice
of using a sampling-based approach came from the author’s intended use, which relates
to machine learning for high-risk and safety-critical engineering applications (Agrell et al.,
2018). For these applications, a proper treatment of uncertainty with respect to risks and
the overall reliability of the system under consideration is essential. Making predictions
based on past observations in this setting is challenging, as the consequence of wrong pre-
dictions may be catastrophic. In addition, critical consequences often relate to infrequent
or low probability events, where relevant data is naturally scarce. However, there is usually
additional knowledge available, and todays methods for assessing risk tend to rely heavily
on understanding the underlying physical phenomenon. We gave an example in Section
4.2.3 considering prediction of the burst capacity of a pipeline, that may serve as a compo-
nent in a larger model of system reliability. Such models are often graphical, e.g. Bayesian
networks, that are derived from known causal dependencies. In this scenario it is essential
that the accuracy of numerical estimation- or approximation methods can be assessed. In
the case where simulation-based methods cannot be used due to computational limitations,
they still serve as a useful benchmark that can help in the development and assessment of
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suitable approximation-based algorithms. As for the simulation scheme in this paper, the
only computational burden lies in sampling from a truncated multivariate Gaussian. As
this is a fairly general problem, multiple good samplers exist for this purpose. We found the
method of Botev (2017) to work particularly well for our applications, as it provides exact
sampling in a relevant range of dimensions where many alternative sampling schemes fail.
Based on a comparison made by López-Lopera et al. (2018), we see that the method based
on Hamiltonian Monte Carlo by Pakman and Paninski (2012) may also be appropriate.

As we discuss briefly in Section 3.3, estimation of hyperparameters becomes challenging
when the term p(C|Y, θ) enters the likelihood. Moreover, as our approach is based on the
use of virtual observation locations, we are aware that the task of estimating or optimiz-
ing model hyperparameters in general is not well defined. This is because the likelihood
depends both on the hyperparameters and the set of virtual observation locations (Eq. 8).
This problem is neglected in the literature on shape-constrained GPs, where it is either
assumed that the virtual observation locations are known a priori (for low input dimension
selecting a space filling sufficiently dense design is unproblematic), or the hyperparameters
are addressed independently of these. To our knowledge the problem of simultaneously
estimating hyperparameters and virtual observation locations has not yet been addressed.
A rather simplistic approach is to iterate between estimating hyperparameter and the set
of virtual observation locations. However, for higher input dimensions this might be prob-
lematic altogether, in which case sparse approximations may be needed to deal with a large
set of virtual observation locations. In this setting, it might be more fruitful to view the
virtual observation locations as additional hyperparameters, in a model approximating the
posterior corresponding to an sufficiently dense set of virtual observation locations, e.g. as
in the inducing points framework for scaling GPs to large data sets (de G. Matthews et al.,
2016). This is a topic of further research.

With the approach in this paper, we make use of the probability p(C|Y ), which is
interesting in its own for investigating whether constraints such as e.g. monotonicity are
likely to hold given a set of observations. Alternatively, inference on the constraint noise
parameter σv can provide similar type of information. Ideally, we choose a small fixed value
for σv to avoid numerical instability, as discussed in Section 3.8. But in extreme cases, with
conflicting constraints or observations that contradict constraints with high probability, the
model may still experience numerical issues. We argue that models that ’break’ under these
circumstances are preferred as it reveals that either 1) there is something wrong with the
observations, or 2) there is something wrong with the constraints and hence our knowledge
of the underlying phenomenon (Agrell et al., 2018). It would nevertheless be better if
more principled ways of investigating such issues were available. In our experiments we
observed that the conditional likelihood, p(Y |C), in general is decreasing as a function of
σv, whereas this was not the case for an invalid constraint assuming a monotonic decreasing
function in Example 1. Hence, σv might provide useful information in this manner. The
estimated partial constraint probabilities p̂c,i(x) can also be useful for revealing such issues,
for instance by monitoring the intermediate minimum values p∗i computed in Algorithm 7
as new virtual observation locations are added.

Finally, we note that as the model presented in this paper relies on conditioning on a
transformed GP with values in Rnc , it could be extended to multi-output GPs over functions
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f : Rnx → Rny in a natural way. But for non-Gaussian likelihoods, or applications with large
or high-dimensional data, other approximation based alternatives are needed.
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Appendix A. Proof of Lemma 1

Proof. We start by observing that (f∗, C̃, Y ) is jointly Gaussian with mean and covariance

E([f∗, C̃, Y ]T ) = [µ∗,Lµv, µ]T , (17)

cov([f∗, C̃, Y ]T ) =



KX∗,X∗ KX∗,XvLT KX∗,X

LKXv ,X∗ LKXv ,XvLT + σ2
vINv LKXv ,X

KX,X∗ KX,XvLT KX,X + σ2IN


 . (18)

By first conditioning on Y we obtain

f∗

C̃

∣∣∣∣Y ∼ N
([

µ∗ +A2(Y − µ)
Lµv +A1(Y − µ)

]
,

[
B2 B3

BT
3 B1

])
, (19)

for A1 = (LKXv ,X)(KX,X + σ2IN )−1, A2 = KX∗,X(KX,X + σ2IN )−1, B1 = LKXv ,XvLT +
σ2
vINv −A1KX,XvLT , B2 = KX∗,X∗ −A2KX,X∗ , and B3 = KX∗,XvLT −A2KX,XvLT .

Conditioning on C̃ then gives

f∗|Y, C̃ ∼ N
(
µ∗ +A(C̃ − Lµv) +B(Y − µ),Σ

)
, (20)

for A = B3B
−1
1 , B = A2 −AA1 and Σ = B2 −ABT

3 .

Similarly, we may derive C̃|Y by observing that the joint distribution of C̃, Y is given
by removing the first row in (17) and the first row and column in (18). Hence,

C̃|Y ∼ N (Lµv +A1(Y − µ), B1) . (21)

The constrained posterior of C̃ is obtained by applying the constraint C to the posterior, and
hence C̃|Y,C becomes a truncated Gaussian with the same mean and variance as in (21),
and the bounds a(Xv) and b(Xv) given by C. Similarly, f∗|Y,C is obtained by replacing C̃
in (20) with C̃|Y,C. Finally, the probability p(C|Y ) is just the probability that C̃|Y given
in (21) falls within the bounds given by C, and the unconstrained distribution remains the
same as (2).
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Appendix B. Proof of Lemma 2

Proof. The equations in Lemma 2 can be verified by simply inserting L, v1 and v2 and
check against the expressions in Lemma 1. We show this for A1 and B1, and the results for
the remaining matrices are proved by applying the same procedures. In order to factorize
B1, we use that B1 is the covariance matrix of a Gaussian random variable (see Equation
21 in Appendix A), and must therefore be symmetric and positive definite.

To show that A1 = (LT \ v1)T we use that v1 = L \ KX,XvLT ⇒ Lv1 = KX,XvLT .
Hence,

A1 = (LT \ v1)T

⇒ LTAT1 = v1 = L \KX,XvLT

⇒ LLTAT1 = KX,XvLT

⇒ A1 = ((LLT )−1KX,XvLT )T = (LKXv ,X)(KX,X + σ2IN )−1,

where we have used that (KX,XvLT )T = LKXv ,X and LLT = KX,X + σ2IN .

To show thatB1 = LKXv ,XvLT+σ2
vINv−vT1 v1 we need to show that vT1 v1 = A1KX,XvLT ,

which is trivial

vT1 v1 = (L−1KX,XvLT )T (L−1KX,XvLT )

= LKXv ,X(LLT )−1KX,XvLT

= A1KX,XvLT .

Appendix C. Algorithm for Finding Virtual Observation Locations based
on Individual Sub-operators

We present the details of the algorithm for finding virtual observation locations introduced
in Section 3.5. Here we let L be a linear operator defined by the column vector [F1, . . . ,Fk],
where Fi produces functions from Rnx to R, subjected to an interval constraint [ai(x), bi(x)].
We would like to impose constraints related to the i-th sub-operator only at locations where
p(Fif(x) /∈ [ai(x), bi(x)]) is not sufficiently small. For this we let Xv be the concatenation
of the matrices Xv,1, . . . , Xv,k and define LT f(Xv) = [FT1 f(Xv,1), . . . ,FTk f(Xv,1)]T . The
matrices needed to make use of Lemma 1 and Lemma 2 are Lµv, KX,XvLT , KX∗,XvLT ,
and LKXv ,XvLT . Using that Fif(Xv) = Fif(Xv,i), these are given by

Lµv =



F1µ(Xv,1)

...
Fkµ(Xv,k)


 , KX,XvLT =



KX,Xv,1FT1

...
KX,Xv,kFTk


 ,

where KX∗,XvLT also is given by the above equation for X = X∗. Finally, LKXv ,XvLT is
the block matrix with blocks

(LKXv ,XvLT )i,j = FiKXv,i,Xv,jFTj .
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We want to improve the algorithm in Section 3.4 for finding the set of virtual observation
locations by considering each sub-operator individually. To do this we make use estimated
partial constraint probabilities (given in (13) and restated below).

p̂c,i(x) =
1

m

m∑

j=1

P (ai(x)− ν < (Lf(x)|Y,Cj)i < bi(x) + ν) ,

where (Lf(x)|Y,Cj)i is the univariate Normal distribution given by the i-th row of (Lf(x)|Y,Cj)
and C1, . . . , Cm are m samples of C given in (6) as before. For the individual sub-operators
Fi, the set of virtual observations Xv

i needed to ensure that p̂c,i(x) ≥ ptarget can then be
found using the following algorithm.

Algorithm 7 Finding locations of virtual observations Xv
i s.t. p̂c,i(x) ≥ ptarget for all

x ∈ Ω and all sub-operators F1, . . . ,Fk.

1. Compute L = Chol(KX,X + σ2IN ).

2. Until convergence do:

(a) If Xv 6= ∅ compute A1 and B1 as defined in Lemma 2, and generate m samples
C1, . . . , Cm of C given in (6).

(b) If Xv = ∅ compute (x∗i , p
∗
i ) = (arg min pc,i(x), pc,i(x

∗)). Otherwise compute
(x∗i , p

∗
i ) = (arg min p̂c,i(x), p̂c,i(x

∗)), for all i = 1, . . . , k with p̂c,i defined as in
(13) using the samples generated in step (a).

(c) Let (x∗, p∗, j) correspond to the smallest probability: p∗ = p∗j = mini p
∗
i .

(d) Terminate if p∗ ≥ ptarget, otherwise update Xv
j → Xv

j ∪ {x∗}.

Appendix D. Proof of Lemma 4

Proof. This follows exactly from the proofs of Lemma 1 and Lemma 2 by replacing
f∗ → Lf(x∗), which implies µ∗ → Lµ∗, KX∗,X → LKx∗,X , KX∗,X∗ → LKx∗,x∗LT and
KX∗,XvLT → LKx∗,XvLT .

Appendix E. Proof of Corollary 6

Proof. We show the derivation of the expectation and covariance of f∗|Y,C as the deriva-
tions for Lf(x∗)|Y,C are equivalent. From Lemma 1 we have that

f∗|Y,C ∼ N (µ∗ +A(C− Lµv) +B(Y − µ),Σ).

If we let ν,Γ be the expectation and covariance of C, then

E[f∗|Y,C] = EC [E[f∗|Y,C]] = EC [µ∗ +A(C− Lµv) +B(Y − µ)]

= µ∗ +A(ν − Lµv) +B(Y − µ),
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and

cov[f∗|Y,C] = EC [cov[f∗|Y,C]] + covC[E[f∗|Y,C]]

= EC[Σ] + covC[µ∗ +A(C− Lµv) +B(Y − µ)]

= Σ + covC[AC] = Σ +AΓAT .
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A B S T R A C T   

A methodology for estimating extreme response statistics for marine structures, that takes both 
the long-term variability of the metocean environment and the short-term variability of response 
into account is presented. The proposed methodology uses Gaussian process regression to esti
mate parameters of the short-term response distribution, based on output from computationally 
expensive hydrodynamic simulations. We present an adaptive design strategy for sequential 
updating of the model, focusing on the metocean conditions that contribute the most to the long- 
term extreme. With this approach, only a limited number of hydrodynamic simulations are 
needed. 

The suggested approach is demonstrated on the problem of estimating the 25-year extreme 
vertical bending moment on a ship. We show that a relatively small number of iterations (full 
hydrodynamic simulations) are needed to converge toward the “exact” results obtained by 
running a large number of simulations covering the entire range of sea states. 

The results suggest that the proposed method can be used as an alternative to contour-based 
methods or other methods that consider a few sea states using accurate numerical simulations, 
with little or no added complexity or computational effort.   

1. Introduction 

The long-term metocean induced extreme response of ships and offshore structures is affected by both the long-term variability of 
the metocean environment (e.g. waves, wind, currents, etc) and the short-term variability of the response in a given random sea state (e. 
g. wave induced bending moment of a ship subject to random waves). Hence, for an accurate estimation of the long-term extreme 
response, both the long-term variability of the metocean environment and the short-term variability of the response need to be 
considered. In principle, this can be achieved by running a full long-term analysis, but in practice this is often not feasible when 
considering nonlinear responses and long return periods like 25 or 100 years, which are typically used in design of ship and offshore 
structures. 

A commonly used practice in the offshore industry is to use contour-based methods, for which a contour corresponding to the 
desired probability level is found in the metocean parameter space. Then, short-term simulations are run for selected points along the 
contour, from which the maximum responses over a duration of e.g. 3 h are found. Note that due to the stochastic nature of the 
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environmental loads the 3-h maximum is a random variable defined by some probability distribution. Typically, the median (50% 
percentile) or the mode (most probable maximum) of the distribution is estimated for each case, and the maximum value over all the 
selected combinations of environmental parameters along the contour is selected as the long-term extreme response. 

The obvious drawback of this approach is that the short-term variability of the response is not accounted for. Several approaches 
have been proposed to include this uncertainty [1–3]. Winterstein et al. [4] suggested to use an “inflated” return period based on the 
FORM omission factors introduced by Madsen [5]. Other approaches suggest increasing the short-term percentile of the response 
derived along the contours. That is, instead of the mode or median of the distribution, to use a higher fractile level, or apply a 
correction factor to the mode or median. Values reported in the literature are fractiles 75%–90% for 100-year response, and multi
plying factors 1.1 to 1.3 [2,6]. The problem of applying such methods is that the appropriate fractile levels and multipliers are 
case-specific, and depend of the type of structure and structural response. A recent investigation of different methods to correct for the 
lack of short-term variability in the context of line tensions of offshore units was presented in Ref. [3]. 

An alternative to contour based methods is to run a full long-term analysis taking both long- and short-term variability into account, 
by applying a linear approximation to the problem so that the computational effort allows for a long-term analysis, and combining it 
with selected nonlinear response calculations. As suggested by Baarholm and Moan [7] in the context of ship vertical bending moment, 
one can identify the most important sea states in a scatter diagram by using linear analysis. Then nonlinear simulations can be per
formed on selected sea states to calculate the long-term responses. These can then be used to apply a correction factor to the linear 
results. 

In this paper we propose an alternative method for estimating extreme responses, that takes both the long- and short-term vari
ability into account, and uses an active learning/experimental design approach based on Gaussian Process (GP) regression to limit the 
number of time-consuming simulations needed in the analysis. For experimental design (i.e. deciding which experiments/simulations 
to perform), the Gaussian process framework has proved particularly useful [8–11], especially for applications involving complex 
computer simulations [12,13]. In the context of extreme response statistics, an approach based on Gaussian processes was recently 
presented by Mohamad and Sapsis [14]. In the present paper, we utilize Gaussian Process regression models to represent the distri
bution parameters describing the extreme response under consideration, and repeated sampling from the distributions is utilized to 
estimate the long-term responses. A similar approach was applied by Wang et al. [15], who also used a GP/Kriging based model to 
study the long-term extreme of an FPSO mooring system. 

The proposed method is applied to a real problem of estimating the 25-year extreme ship vertical bending moment (VBM) on an 
LNG tanker, taking nonlinearities in both the wave description and the ship-response into account. The same case study was considered 
in a recent paper [16], also using GP-models to estimate the long-term extreme VBM. In the present paper, however, we address two 
limitations of the approach in Vanem et al. [16], by including short-time variability as well as applying an active learning approach, 
which is shown to drastically reduce the number of simulations needed for obtaining accurate results. 

The paper is organized as follows. First, in section 2, a brief introduction to Gaussian process regression is given. In section 3, the 
proposed sampling method using GP regression to estimate the long-term extreme response is presented. The case study, for which the 
methodology is applied to estimate the 25-year extreme wave induced bending moment on an LNG-tanker is described in section 4. 
Finally, some discussion and conclusions are given in section 5. 

2. Gaussian process regression 

A Gaussian process f � G P ðμðxÞ; kðx; x’ÞÞ, given as a prior over functions f : RD → R, is specified by its mean and covariance 
function 

μðxÞ¼ E½f ðxÞ� : RD → R; (1a)  

kðx; x’Þ¼E½ðf ðxÞ � μðxÞÞðf ðx’Þ � μðx’ÞÞ� : RD�D → R: (1b) 

The defining property of the Gaussian process is that for any finite collection ½x1;…; xn� of points xi 2 RD, the distribution of ½fðx1Þ;

…; fðxnÞ� is multivariate Gaussian with mean ½μðx1Þ;…; μðxnÞ� and covariance K given as the Gram matrix Ki;j ¼ kðxi;xjÞ. One important 
feature of the multivariate normal distribution is that if a set of random variables are jointly multivariate normally distributed, then the 
marginal distribution of subsets of the random variables will be Gaussian. Moreover, if some of the variables are observed, the con
ditional distribution of the remaining variables will also be normal. In GP-regression, these properties are exploited to make pre
dictions of fðx*Þ at unobserved points x* in the input space. 

More specifically, given some training data D ¼ fðxi; yiÞg
N
i¼1 and a likelihood function pðyjfÞ, we want to infer the distribution of 

fðx*ÞjD . This is trivial when we assume that observations come with additive white noise (Gaussian likelihood function), which means 
that yi ¼ fðxiÞ þ εi where the noise term εi follows a normal distribution. We will assume that εi are i.i.d. zero-mean Gaussian with 
common variance c2. The predictive posterior distribution at n new inputs, f *��D ¼ ½fðx*

1Þ;…;fðx*
nÞ�
�
� fyi ¼ fðxiÞ þ εig

N
i¼1, is then given in 

closed form: 

f *��D � N
�
μf * jD ;Σf* jD

�
; (2)  

with mean and covariance 
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μf* jD ¼ μ* þ K*
�
K þ c2I

�� 1
ðy � μÞ; (3a)  

Σf * jD ¼K** � K*
�
K þ c2I

�� 1KT
* : (3b) 

Here μ*, μ and y are vectors with elements μðx*
i Þ, μðxiÞand yi respectively, I is the N� N identity matrix, and K* and K** have el

ements ðK*Þi;j ¼ kðx*
i ; xjÞ and ðK**Þi;j ¼ kðx*

i ;x*
j Þ. 

In order to train a Gaussian process model, one needs to specify a mean function μðxÞ and the type of covariance function kðx;x’Þ. In 
this study we have used the Mat�ern 3=2 kernel, which can be written in the form 

kðx; x’Þ¼ σ2
�

1þ
ffiffiffi
3
p

r
�

e�
ffiffi
3
p

r where r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i¼1

D
ðxi � xi’Þ2

li

v
u
u
t : (4) 

The kernel variance σ2, correlation length-scales li and the white noise variance c2 are hyperparameters of the GP model that can be 
estimated from the training data, typically by maximum likelihood or Bayesian methods [17]. We could also include additional 
hyperparameters from the mean function, e.g. μðxjβÞ ¼ xTβfor some unknown vector β, but in this paper we do not make use of mean 
functions that come with additional hyperparameters. For a more comprehensive introduction to Gaussian process regression, see e.g. 
Ref. [18]. 

In the application presented in this paper, we represent multiple variables using GP regression models. The most straightforward 
way to achieve this is to fit independent GP models for the desired output variables, corresponding to fitting independent covariance 
kernels for each case. A limitation of this approach is that one does not take into account possible dependencies between the output 
variables. In the case that the considered output variables are statistically dependent, the ability to model this dependency may lead to 
an improved model. The construction of multi-output GPs is based on the intuitive idea that if f1 and f2 are multivariate Gaussian, then 
the joint distribution ½f 1; f 2� is also multivariate Gaussian. In particular, if f1 � Nðμ1;K1Þ and f2 � Nðμ2;K2Þ, then 

�
f 1
f 2

�

� N

 �
μ1
μ2

�

;

"
K1 K1;2

KT
1;2 K2

#!

;

where K1;2 is the cross-covariance between f 1 and f 2. This extends naturally to the case where f 1 and f 2 are GPs, with mean and 
covariance functions. When the cross-covariance K1;2 ¼ 0, this multi-output GP over functions f : RD → R2 is equivalent to two in
dependent GPs modeling two functions f1;f2 : RD → R. The relevant theory related to multi-output GPs thus revolves around designing 
a valid (positive definite) kernel function that can transfer information between the processes. This usually goes under the name of 
multi-task learning, vector-valued learning or transfer learning within machine learning, or cokriging in statistics. We refer to Ref. [19] for a 
detailed overview. The model we will consider in this paper is a type of a linear model for coregionalization (LCM) for 2-dimensional 
output, based on the assumption that two processes, f1 and f2, are both linear transformations of a common set of latent GPs: 

fdðxÞ¼ μdðxÞ þ
XQ

q¼1

XRq

i¼1
aid;qu

i
qðxÞ; (5)  

for d ¼ 1; 2. Here ai
d;q are scalar coefficients (hyperparameters) and ui

q are zero-mean GPs with covariance functions cov½ui
qðxÞ;

ui’
q’ðx’Þ� ¼ kqðx; x’Þ if i ¼ i’ and q ¼ q’. In the case study presented in section 4 we consider a natural extension of the scenario with 

independent GPs for our LCM model, by selecting Q ¼ 2 and Rq ¼ 1 where kqðx; x’Þ for q ¼ 1;2 are both of the Mat�ern 3= 2 class (4) but 
with different parameters σ2 and li. 

3. Estimating long-term extreme response by direct sampling 

3.1. Definition of the long-term extreme response 

We consider a dynamical system whose extreme value y over a time-period Ts, for a given state x ¼ ðx1;⋯; xnÞ follows some 
probability distribution gYjXðyjxÞ. It is further assumed that the states X follow a joint probability distribution fXðxÞ. 

For example, taking the case study that is presented in section 4, fXðxÞ ¼ fHs ;Tz ðhs; tzÞ is the long-term distribution of sea states with 
respect to significant wave height Hs and zero-crossing wave period Tz, and gYjXðyjxÞ is the short-term distribution of maximum vertical 
ship bending moment (VBM) during a sea-state duration Ts ¼ 3 hours. 

If both fXðxÞ and gYjXðyjxÞ are known, the marginal distribution of Y for a random state can be found by integrating over all states X, 

gYðyÞ¼
Z

gYjXðyjxÞfXðxÞ dx: (6) 

In practice, evaluating this integral directly may be difficult. In many cases gYjXðyjxÞ is not known analytically, but samples from the 
underlying distribution may be obtained, for example by numerical simulation of the underlying dynamical system. Again, taking the 
case study presented herein as an example, obtaining a sample from gYjXðyjxÞmeans running a hydrodynamic numerical simulation of a 
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ship in random waves, from which the maximum VBM can be calculated. 
We now assume that the quantity of interest is the Ny-year extreme value of Y, denoted YNy in the following. Assuming that gYðyÞ is 

known explicitly from (6), this may be estimated as the 1 � 1=ð365:25 � 24 �Ny =TsÞ-fractile of gYðyÞ, or as the mode of the corresponding 
extreme value distribution of the Ny-year maximum, defined in terms of its cumulative distribution function GYNy ðyÞ ¼

GYðyÞ365:25 �24 �Ny=Ts . 
In the case that gYðyÞ is not known, but that samples from both fXðxÞ and gYjXðyjxÞ can be obtained, the distribution of the Ny-year 

extreme value can be estimated by the following sampling approach, summarized in Algorithm 1.  

Algorithm 1 Direct sampling method for estimating the Ny-year extreme value of Y   
1. Draw Ns ¼ 365:25 � 24 �Ny=Ts random states fx1;⋯; xNs g from fXðxÞ.  
2. For each state xj , draw a corresponding yj from gYjXðyjxÞ.  
3. Find the maximum of all samples: yðmaxÞ

Ny
¼ maxfy1;⋯;yNs g.  

4. Repeat step 1–3 to obtain N samples of the Ny-maximum.   

Note that this procedure takes into account the variability of both the states X and the dynamical response Y. For the case study 
presented below this means that the variability in both the wave-environment description (i.e. accounting for that every Ny-year period 
will have different realizations of sea states) and the short-term variability of the ship response (i.e. that a given sea state may give 
different maximum VBM, due to randomness of the waves) are accounted for. 

3.2. The probabilistic surrogate model 

The problem of applying the procedure outlined in Algorithm 1 in practice, is typically that obtaining a very large number of 
samples from gYjXðyjxÞ is too computationally expensive. The crude Monte Carlo procedure given in Algorithm 1 will require running 
N� Ns numerical simulations of the relevant dynamical system. We could make use of variance reduction techniques such as 
importance sampling to reduce the required number of samples, but the total number of samples would still be much larger than what 
we can achieve within reasonable time in practice. 

To overcome such a problem it is common to use environmental contours, where a contour in the X-space is constructed to 
represent the desired probability level, and that samples from gYjXðyjxÞ are obtained only for a few states along this contour. However, 
with the contour approach some of the inherent randomness is lost, since contribution to the long-term extreme may come from a wide 
range of states, in particular if short-term variability of the dynamical system is important. 

Here we suggest an alternative approach, which aims to estimate the extreme response by a limited number of samples from the 
distribution gYjXðyjxÞ, but where the variability of gYjXðyjxÞ is properly accounted for. The suggested procedure relies on the assumption 
that the distribution gYjXðyjxÞ can be modeled by some parametric distribution bgðy; θÞ with distribution parameters θðxÞ ¼ ðθ1ðxÞ;⋯;

θmðxÞÞ. Again taking the case study presented in 4 as an example, θðxÞ might be the parameters of a Weibull distribution representing 
the structural response in sea-states x ¼ ðHs;TzÞ. Assuming that drawing random samples from bgðy; θÞ is trivial, the problem reduces to 
obtaining the distribution parameters θðxÞ for all possible values for x. 

The following approach is based on the simple idea of representing the unknown distribution parameters θðxÞ by a surrogate model 
that is constructed using Gaussian Process (GP) regression, which is trained on samples from gYjXðyjxÞ for a limited number of inputs x. 
The use of a probabilistic surrogate model is a common technique when dealing with expensive computer models. The purpose of a 
surrogate, is to serve as an approximation that is cheap to evaluate numerically. The probabilistic component is needed to express 
uncertainty in the approximation, i.e. given some input x, the output of the surrogate should be a distribution representing possible 
outcomes of running the expensive computer model. Surrogates based on Gaussian Processes have this property, and are used 
extensively for problems related to uncertainty quantification (UQ) involving expensive computer simulations [12,13]. For a broader 
overview of relevant methods from the UQ literature, we refer to Ref. [20], where the theory related to uncertainty propagation is most 
relevant for the type of problem we address in this paper. We also note that most of the UQ literature is dealing with deterministic 
computer models. This is not the case for the model we consider in this paper, as our numerical model of the dynamical system 
produces samples from gYjXðyjxÞ, from which we estimate the parameter θðxÞ. We make use of a Gaussian Process surrogate, and can in 
general handle both cases. In particular, the observational noise in our GP model is represented by the constant variance c2, and letting 
c ¼ 0 would correspond to the deterministic alternative (although a small fixed c � 0 is usually used for numerical stability). In our 
non-deterministic situation, we infer the observational variance c2 directly from the data. Typically, the parameters used in training of 
the GP model are estimated from the raw data by e.g. maximum-likelihood or Bayesian inference. In our implementation we rely on 
maximum-likelihood (plug-in) estimates of all the GP parameters. However, if we had any prior knowledge about the uncertainties of 
the distribution parameters, a better alternative would be to include this in the GP model explicitly. 

In many practical problems there exists an approximation of the underlying dynamical system, for which approximate distribution 
parameters ~θðxÞ � θðxÞ are known from theory, or can be efficiently calculated by simulating a simplified model. Typically, such an 
approximation can be obtained as a linearization of the full model, and may be useful as prior information to the GP-model. Hence, in 
the following we assume that the distribution parameters are represented as 

θðxÞ � G P ð~θðxÞ; kðx; x’ÞÞ; (7) 
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where ~θðxÞ is a known (or easy to calculate) function obtained from an approximate model, and kðx; x’Þ is the covariance function (4). 
The training data for the GP is a set of observations D ¼ fθi; xig

M
i¼1, where θi is estimated using samples1 from gYjXðyjxÞ at x ¼ xi. To 

estimate the parameter θðxÞ at any x, we use the posterior predictive distribution (2), which we denote pðθjD ; xÞ. To represent the 
marginal distribution of maximum vertical ship bending moment during a sea-state duration of Ts ¼ 3 hours, gYðyÞ given in (6), we 
then have the following approximation 

bgYðyÞ¼
Z

bgðyjθÞpðθjD ; xÞfXðxÞ dθdx: (8) 

By comparing the distributions (6) and (8), we see that the approximation relies on two assumptions. First, that the conditional 
distribution gYjXðyjxÞ can be modeled by a parametric distribution bgðyjθðxÞÞ, and second, that the parameter θðxÞ for any x can be 
inferred from a finite set of observations D . For the latter, we will present an approach for updating set of observations D iteratively, 
so that this can be justified using only a moderate number of observations. We note also that if no approximate model (prior mean) is 
available, ~θðxÞ ¼ 0 can be used, together with a few initial runs to initialize the GP-model. The effect of having a prior mean on the 
convergence of the method is further discussed in section 4.4.2. 

In order for the approximation (8) to be accurate, the distribution pðθjD ; xÞmust be well represented by the GP model. However, in 
particular for small number of observations D , accurate estimation of the uncertainty of the distribution parameters θðxÞ may be 
difficult. This may again lead to inaccuracies in the estimated extreme response, when the uncertainty in the distribution parameters is 
integrated out, as is the case in (8). 

Another alternative is to ignore the uncertainty in the distribution parameters and use the predictive mean of the GP models instead 
of sampling from the GP. That is, instead of (8), we may use 

bgYðyÞ¼
Z

bgðyjE½θjD ; x�ÞfXðxÞ dx: (9) 

The effect of including the uncertainty in the distribution parameters is briefly discussed in section 4.4.1. 

3.3. Sequential sampling strategy 

The update of the GP model is done in a sequential manner so that samples from gYjXðyjxÞ are obtained in regions in the x-space that 
influence the end result the most. In other words, the sampling points are chosen so that the surrogate model is most accurate in regions 
of the x-space that contribute to the long-term extreme value of Y. 

We make use of a one-step lookahead (myopic) strategy, where the inputs x are selected sequentially as maximizers of a specified 
acquisition function. See for instance Refs. [8–10,21] that discuss this type of strategies in more detail, although for different objectives 
than the one presented in this paper. 

We propose an acquisition that makes a balance between exploring new regions in the x-space where the response is unknown, and 
areas that are expected to have a large influence on the long-term extreme response. It is defined as a weighted product of the pre
dictive variance of θðxÞ that comes from the Gaussian Process, and the probability density of x

�
�bYðxÞ ¼ bYNy . Here bYðxÞ is the response 

given by the probabilistic surrogate (8), with corresponding marginal Ny-year extreme value bYNy . A detailed description of the 
acquisition function, and the complete sequential sampling approach for estimating the Ny-year extreme value of Y, is summarized in 
Algorithm 2.  

Algorithm 2 Sequential sampling method for estimating the Ny-year extreme value of Y   
1. Initialize θðxÞ as a GP-model (7) using the prior mean ~θðxÞ and chosen covariance function kðx;x’Þ. In the case that no good linear prior is known, let ~θðxÞ ¼ 0 and 

instead use a few selected initial runs (samples from gYjXðyjxÞ) to initialize the GP model.  
2a) Draw Ns ¼ 365:25 �24 �Ny=Ts random states fx1;⋯; xNs g from fXðxÞ.  
2b) For each state xj, find the corresponding distribution parameters θj from the GP model (7) either by random sampling from the GP (corresponding to (8)) or by 

using the predictive mean of the GP model (corresponding to (9)), and draw corresponding yj from bgðy; θjÞ.  

2c) Find the maximum of all samples: yðmaxÞ
Ny

¼ maxfy1;⋯;yNs g.  
3. Repeat steps 2a)-2c) N times to obtain an ensemble C of N Ny-year maxima together with a set S of states xðmaxÞ in which these maxima occurred: 

C ¼
n
yðmaxÞ
Ny ;1 ;⋯; yðmaxÞ

Ny ;N

o
; S ¼

�
xðmaxÞ

1 ;⋯; xðmaxÞ
N

�
: (10)     

4. From the sets C and S , estimate the empirical distribution of the Ny-year maxima cðyðmaxÞ
Ny
Þand the multivariate distribution sðxðmaxÞÞ of states in which the 

Ny-year maximum occurs. These distributions can typically be estimated using kernel density estimation.  
5. Choose a new sea state for training of the GP model θðxÞ, based on the uncertainty of the GP estimates and the estimated distribution sðxðmaxÞÞ. That is, we select a 

new training point as follows: 

(continued on next page) 

1 The samples generated by running a Ts ¼ 3 hour time-domain simulation in sea state x ¼ xi. 
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(continued ) 

xðnewÞ ¼ argmax
x

sðxÞ1� ν
�
�σθðxÞjν; (11)   

where σθ ¼ ðσθ1 ;⋯; σθm Þ is the vector of standard deviations of the GP estimates for the distribution parameters. These uncertainties will typically be small close to 
the existing training data points, and larger in regions far from existing training data. Hence, (11) represents a trade-off between training in regions that have a high 
probability of contributing to the extreme value, and to reduce the uncertainty of the parameter estimates θ. The parameter ν 2 ½0;1�may be chosen to give desired 
weighting between reducing uncertainty in the most important regions and exploring “new” regions.  
6. Obtain a sample from the underlying distribution gYjXðyjxÞ for the state selected in point 5, and update (train) the GP models with this new observation.  
7. Repeat step 2 to 6 until the change in subsequent estimates of the distribution cðyðmaxÞ

Ny
Þ is smaller than some desired tolerance.   

4. Case study: long-term extreme vertical bending moment on a tanker 

The ultimate strength of the hull girder is one of the most important characteristics for reliability of a ship structure. It determines 
the reliability against the most critical structural failure mode identified as sagging failure of a ship in severe weather conditions. The 
potential consequence is total loss of the ship, cargo and crew. Thus, the accurate estimation of the long-term extreme wave bending 
moment contributing to dimensioning the hull girder is very important for ship structural design and reliability assessment [22]. 

The use of a linear analysis for the wave bending moment in extreme weather is a simplification. However, it is difficult to conclude 
on a “correct” model uncertainty to account for non-linear effects; e.g. due to green water on deck or slamming. Many investigations 
have been performed to find a measure for nonlinear correction of linear calculations, but the results show large scatter. This un
certainty has significant impact on probability of ship structure failure as demonstrated e.g. by Hørte et al. [22]. 

Some methods for taking the nonlinear effects into account require only one time domain simulation in a selected wave trace, 
which is assumed to induce the extreme wave loads, often called a most likely extreme response (MLER) wave. Other approaches 
require time domain simulation in a variety of conditions [23]. Often numerical calculations are supported by experimental tests. 
During the development of the IACS Common Structural Rules for Tankers (CSR) non-linear effects of wave vertical bending moment 
were accounted for in the Structural Reliability Analysis (SRA) through introduction of a nonlinear uncertainty factor [22]. 

As mentioned in the introduction, many methods such as contour-based methods [4], typically ignore the short-term variability of 
the response. However, short-term variability can be accounted for in an ad-hoc manner when using contour methods [2,24]. 

In the following, we use the methodology described in the previous section, and show that we are able to take the short-time 
variability into account in a consistent manner and achieve accurate results in similar computational time and number of nonlinear 
simulation as when using contour-based methods. The basic parameters of the LNG tanker considered in the case study are given in 
Table 1. 

Using the notation introduced in the previous section on the problem of estimating the 25-year extreme VBM, we define X ¼ ðHs;

TzÞ, where Hs is the significant wave height and Tz is the zero-crossing wave period associated with a random sea state. The long-term 
distribution of sea states is then fXðxÞ ¼ fHs ;Tz ðhs; tzÞ. For a given sea state X ¼ ðHs;TzÞ we let gYjXðyjxÞ ¼ gYjXðyjhs; tzÞ represent the 
probability distribution of maximum VBM during 3 h. More details are given below. 

4.1. Long-term wave description 

In the following we consider two different cases for the long-term wave description. For the first case (hereafter referred to as 
“NAS”) it is assumed that the long-term distribution fHs ;Tz ðhs; tzÞ of sea states is modeled by a marginal three-parameter Weibull dis
tribution for Hs and a conditional log-normal distribution for Tz, see Ref. [25], as follows: 

fHs ðhsÞ¼
β
α

�
hs � γ

α

�β� 1

exp
�

�

�
hs � γ

α

�β�

; (12)  

fTz jHs ðtzjhsÞ¼
1

σðhsÞtz
ffiffiffiffiffi
2π
p exp

�

�
ðlntz � μðhsÞÞ

2

2σðhsÞ2
�

; (13) 

Table 1 
Parameters of the LNG tanker used in this study.   

Unit Value 

Length (Lpp) [m] 186.90 
Breadth (B) [m] 30.38 
Depth (D) [m] 18.20 
Draught (T) [m] 8.40 
Displacement (Δ)  [kg] 35 674 800 
COGx  [m] 94.8675 
COGy  [m] 0 
COGz  [m] 8.26  
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where 

μ¼EðlnTzÞ¼ a1þ a2ha3
s ; σ¼ stdðlnTzÞ¼ b1 þ b2 eb3hs : (14) 

The distribution parameters for the case considered in this study are taken from the North-Atlantic scatter diagram [2], which are 
fitted to about 37 years of visual observations from the North-Atlantic [26]. 

The second case (hereafter referred to as “DATA”) is based on a dataset of wave hindcast simulations from one location in the North 
Atlantic Ocean. The data consist of three sets of 30-year data for the period January 1971–December 2000 corresponding to three 
ensemble members from wave model runs using the WAM wave model with wind input from the EC-EARTH climate model, as 
described in Ref. [27]. The data are taken from the location 57.62 �N, 20.28�W. It is assumed that the three model runs are independent 
and equally likely realizations of the ocean wave climate on this location, so that the combined data represents 90 years of wave 
climate data for a stationary wave climate. Note that for this case, we do not use a parametric distribution for the wave environment 
distribution, but use bootstrap sampling directly from the dataset. 

4.2. Short-term description of VBM 

The 3-h extreme bending moment is calculated with the improved nonlinear version of the time-domain sea-keeping code WASIM 
[28], using wave input from the nonlinear wave model DNV GL HOSM. The nonlinear WASIM is a 3-D panel method, which considers 
nonlinear Froude-Krylov and hydrostatic forces [29]. The DNV GL HOSM code implements the higher order spectral method (HOSM), 
described in West et al. [30], with nonlinear calculation of water particle kinematics, using the H2-operator method presented in 
Bateman et al. [31]. The nonlinear order in calculation of waves and kinematics is in this study set to M ¼ 5. Verification of WASIM 
combined with DNV GL HOSM has been presented in Refs. [16,29,32]. 

As mentioned above, for a given sea state X ¼ ðHs;TzÞ we let gYjXðyjhs; tzÞ represent the probability distribution of maximum VBM 
during 3 h. Naturally, the distribution gYjXðyjhs; tzÞ is not known, but samples of the distribution is obtained by running a WASIM 
simulation. 

Following the methodology outlined in section 3, we assume that gYjXðyjhs; tzÞ can be approximated by a distribution bgðy; θÞ. A 
common statistical model for representing VBM for a ship in random waves is the Weibull distribution, and in the following we will 
assume that the individual VBM maxima can be described by a two-parameter Weibull distribution with probability density function 
hðmÞ and cumulative distribution function HðmÞ, given as 

hðmÞ¼
β
α

�m
α

�β� 1
e
�

�
m
α

�β

; HðmÞ¼ 1 � e
�

�
m
α

�β

; (15)  

where distribution parameters α ¼ αðHs;TzÞ and β ¼ βðHs;TzÞ are functions of sea state parameters. 
Given the distribution of individual VBM maxima (15), it is easy to show that the extreme VBM during a sea-state duration Ts has 

cumulative distribution function and probability density function given respectively as 

bGðyÞ¼HðyÞNw ¼

 

1 � e
�

�
y
α

�β!Nw

and bgðyÞ¼NwHðyÞNw � 1hðyÞ; (16)  

where Nw ¼ Ts=TðvbmÞ
z is the number of individual response cycles during the sea state duration. Using the notation introduced in 

section 3, we let bgðy; θÞ be defined by (16) with θ ¼ ðαðHs;TzÞ; βðHs;TzÞ;TðvbmÞ
z ðHs;TzÞÞ. We also note that random samples from the 

distribution bgðyÞ can easily be obtained as 

Y ¼ bG
� 1
ðUÞ¼ α

�
� ln

�
1 � U1=Nw

��1=β
; (17)  

where U is a uniformly distributed random variate on ð0;1Þ, and where bG
� 1 

is the inverse function of bG. 
A priori the distribution parameters α, β and TðvbmÞ

z as function of sea state parameters ðHs;TzÞ are unknown, and must be estimated 
by running nonlinear WASIM simulations. However, in the case of linear random waves and linear ship response, subject to the 

relevant response amplitude operator (RAO) of the ship, it is known that α ¼
ffiffiffi
2
p

σrðHs;TzÞ, β ¼ 2 and TðvbmÞ
z ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðvbmÞ
0 =mðvbmÞ

2

q

, where 

σr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

mðvbmÞ
0

q

and where 

mðvbmÞj ¼

Z

ωjHðωÞ2SðωÞdω: (18)  

HðωÞ and SðωÞ are the RAO and wave spectrum, as functions of the angular wave frequency ω, respectively. Note also that under the 
linear assumption, (15) reduces to a Rayleigh distribution with scale parameter σr. 
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4.3. Gaussian process regression models 

Applying the method suggested in section 3, and using the Gaussian process regression framework described in section 2, we 
introduce GP regression models to represent the distribution parameters θ ¼ ðαðHs;TzÞ; βðHs;TzÞ;TðvbmÞ

z ðHs;TzÞÞ using (7) with 

~θ¼
�
ffiffiffi
2
p

σr ; 2;2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðvbmÞ0 =mðvbmÞ2

q �

(19) 

As mentioned in section 2 we consider both the case that all three output variables are modeled independently, and the more 
advanced approach where the dependence between α and β are included in the GP model by using the LCM model [19] available in the 
GPy software [33]. We have not considered the possible dependence between TðvbmÞ

z and α and β. Thus, TðvbmÞ
z is modeled independently 

in both cases. 
For comparison purposes we have also considered the simpler approach adopted in Ref. [16]. In this case, one GP-model is used to 

represent the most probable extreme value, xc, of the vertical bending moment in a sea state, which for a given Weibull distribution 
with parameters α and β is given by the mode xc of the extreme distribution bg: 

xc¼αðlogNwÞ
1
β: (20) 

Then a GP-model is used to represent the most probable extreme as a function of Hs and Tz. For any sea state ðHs;TzÞ, the GP is used 
to find the most probable extreme VBM in this sea state. Note that a limitation of this approach compared to the methodology presented 
in this paper is that it does not take the short-term variability of the response into account. Note also that in Vanem et al. [16], the 
GP-model for the most probable extreme was fitted using all available WASIM runs (95 in total), but herein we adopt the same 

Fig. 1. Estimated mean 25-year extreme VBM at different iteration steps, for hogging and sagging for NAS (upper) and DATA (lower) cases. Linear 
result corresponds to the value at iteration 1 (for which the hogging and sagging moments are the same). Dotted and solid lines show the results with 
and without modeling the dependency between α and β. Dashed lines show the results using the most probable extreme (no short-term variability), 
and thin horizontal lines show the “exact” results obtained by using all 95 available WASIM simulations in fitting of the models. The corresponding 
results of contour method [16] using the most probable maximum are shown for the DATA case. 
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sequential update of the GP-models also for this case. 

4.4. Results 

Using the methodology described above, and applying Algorithm 2 with N ¼ 1000 and ν ¼ 0:5 we obtain, for each iteration, N ¼
1000 samples of the Ny ¼ 25-year extreme VBM. In the following we let the mean of the N ¼ 1000 realizations of the 25-year period be 
an estimate of the Ny ¼ 25-year extreme VBM. Alternatively, one could, for example, have used the mode or median instead of the 
mean. 

The resulting estimates of the 25-year extreme VBM as a function of the number of iterations, are shown in Fig. 1. The dotted and 
solid lines show the results with and without modeling of the dependency between α and β, respectively. The dashed lines show the 
results of the approach for which the short-term variability is ignored (using the most probable maximum in each sea state). 

The “true” values of the extreme VBM, shown by horizontal lines in Fig. 1, are in the following comparisons taken as the results 
obtained by fitting GP models on all available WASIM runs, consisting of 95 runs evenly distributed over the entire scatter diagram, see 
also Vanem et al. [16], for more details. 

For the DATA-case, the results obtained by Vanem et al. [16] using contour-based method on the same dataset are indicated by 
⋆-symbols. The contour based results were obtained by first fitting a 3-parameter Weibull/conditional lognormal distribution to the 
ðHs;TzÞ dataset, and then using the most probable maximum over selected sea states along the 25-year contour line. 

As seen from the figures, the iterative method converges quite rapidly to the “exact” results that is obtained by running a much 
larger number of WASIM simulations. We also note that the method of Vanem et al. [16] that does not take the short-term variability 
into account significantly underestimates the extreme VBM. Hence, the present results highlights the importance of including the 
short-term variability of the response. Also, we stress that by applying the active learning approach, with a sequential update of the 
GP-models, accurate results may be obtained only by a few nonlinear simulations. 

The effect of modeling the dependence between the output variables can be assessed by considering the difference between the 
dotted and solid lines in Fig. 1. Generally, the difference between the two approaches is small, and they converge towards the same 
results for large number of iterations. Since the noise parameter c2 is shown to be quite small, and since all observations come from the 
same locations in the input space (isotopic data), this is not unexpected. This is related to the phenomenon of autokrigability, which 

Fig. 2. Fitted GP models αðHs;TzÞ, βðHs;TzÞ and TðvbmÞ
z ðHs;TzÞ for the NAS-case after 6 (upper) and 20 (lower) iterations. Red dots show the sea states 

used for the training (fitting) of the models with their order in the sequential approach indicated. Note that the linear results (prior mean) is 
subtracted so that the plots show the difference from linear results. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

O. Gramstad et al.                                                                                                                                                                                                     



Marine Structures 72 (2020) 102780

10

means that when Q ¼ 1 in (5), then predictions are equivalent to independent prediction over each output if observations are noise- 
free and isotopic. 

The fitted GP models for αðHs;TzÞ, βðHs;TzÞ and TðvbmÞ
z ðHs;TzÞ after 6 and 20 iterations are shown in Fig. 2. Note that although the 

fitted GP surfaces after 6 and 20 iterations differ significantly for Hs-Tz combinations for which there are no training data, the 
important part of the Hs-Tz is reasonable well represented already after 6 iterations. This is also reflected in the fact that the resulting 
estimates of the 25-year extreme VBM have converged after about 5–10 iterations, as seen from Fig. 1. 

An advantage of the present sampling approach, where the extreme value is estimated from a large number (here N ¼ 1000) 
realization of the considered 25-year period, is that one also obtains information about the distribution of the considered extreme 
value. The estimated distributions of the 25-year extreme VBM are shown in Fig. 3. Again, we observe good agreement with the “exact” 
results after six iterations. We observe a slightly better agreement in the distributions after six iterations for the DATA case than for the 
NAS case. This may be explained by the fact that for the DATA-case a dataset of sea states are used directly, and hence sampling from 
this dataset can only yield sea states present in the dataset. For the NAS-case, however, sampling is performed from a parametric 
distribution, which means that in some of the N ¼ 1000 realizations of the 25-year period will give extreme sea states for which the GP 
model is more inaccurate. 

As mentioned previously, several methods have been suggested to correct for the lack of short-time variability in e.g. contour based 
methods. Such approaches are also mentioned in DNV GL recommended practice [2] and the NORSOK standard [24]. One approach is 
to use a higher percentile of the response distribution instead of using the mode or the median. To investigate this further, we have run 
the method of Vanem et al. [16] that does not take the short-term variability into account and that was shown to underestimate the 
extreme VBM significantly, but replaced the most probable maximum with the 90% percentile of the 3-h maximum VBM. The results 

Fig. 3. Estimated distributions of the 25-year extreme VBM for the NAS (upper) and DATA (lower) cases, based on N ¼ 1000 realization of the 25- 
year period, for iteration 1 (linear prior), iteration 6 as well as the result obtained by using all 95 WASIM runs. 
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are shown in Fig. 4. As seen from the figure, when using the 90% percentile, the results are much closer to the results of the full 
sampling approach. However, the agreement depend from case to case, and the DATA case is still somewhat underestimated when 
using the 90% percentile. 

4.4.1. The effect of including uncertainty in the distribution parameters 
In the above results, the distribution parameters α, β and TðvbmÞ

z are for each sea state taken as the predictive mean of the GP models, 
corresponding to (9). This has the consequence that the uncertainty of the distribution parameters are not included in the sampling 
approach itself, but only in the decision criterion (11) for the next sea state for which to include in the training of the GP models. 
However, since the GP models also provide the variance of the distribution parameters for each sea state, an alternative is to use 
random samples from the GP models instead of using the predictive mean. The effect of this on the 25-year extreme VBM is shown in 
Fig. 5. As seen from the figure, this mainly influence the beginning of the iteration process, likely where the uncertainty of the GP 
estimates is larger. 

4.4.2. Effect of linear prior 
In the results presented above the prior information provided by the linear analysis is utilized in the fitting of the GP models, in the 

sense that the linear results is used as the prior mean in the GP models. This ensures a good initial guess for the first steps of the iteration 
process and also provides reasonable results for sea states far from existing training data. However, in some cases good prior infor
mation may no be available. In such cases, a natural approach is to fit the GP models directly on the nonlinear results. Then, the GP 
models should be initialized by results from a few selected sea states. 

The effect of initializing the GP-models by four selected sea states instead of using the linear model as a prior is shown in Fig. 6, 
which shows the result with and without the linear prior. Note that in the case of no linear prior, iteration 1 corresponds to using GP 

Fig. 4. Estimated mean 25-year extreme VBM at different iteration steps, for hogging and sagging, for the NAS (upper) and DATA (lower) cases, 
using the full sampling approach (solid lines) compared to the results using the 90% percentile of the 3-h extreme distribution (dashed line). 
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models trained on the following four sea states ðHs ¼ 10;Tz ¼ 8Þ; ðHs ¼ 10;Tz ¼ 12Þ; ðHs ¼ 16;Tz ¼ 10Þ; ðHs ¼ 16;Tz ¼ 14Þ. 
As is clearly seen from Fig. 6, the effect of using the linear prior information is small, and good convergence is obtained when 

initializing the GP model with four initial points rather than using the linear prior as the GP mean. This shows that for the application 
considered here, the proposed methodology does not rely on the existence of a good linear approximation of the system. However, we 
note that it might still be reasonable to include a (computationally cheap) prior model for quality assurance, as disagreement with the 
prior may reveal issues with the (expensive) model. But one should not expect a significant performance increase, in terms of the 
number of simulations needed. 

5. Discussion and conclusions 

This paper considers the estimation of long term extreme response statistics for marine structures. A new approach is presented for 
which the underlying short-term response is described by some chosen probability distribution, and where the parameters of the 
distribution, as functions of environmental parameters, are represented using Gaussian process regression models. The proposed 
method has two main advantages over commonly used alternative methods, such as contour-based methods. Firstly, the short-term 
variability of the response is fully taken into account by applying repeated sampling from both the underlying long-term distribu
tion of the environment and the short-term distribution of the response. Secondly, the Gaussian process approach allows for a 
sequential update of the surfaces describing the model parameters as functions of environmental parameters, with the model auto
matically suggesting a new point for which to obtain an accurate sample of the response statistics, which typically means performing a 
time-domain hydrodynamic simulation. 

The methodology is applied to a case study of estimating the 25-year extreme wave induced vertical bending moment of a ship. We 

Fig. 5. Estimated mean 25-year extreme VBM at different iteration steps, for hogging and sagging, with and without taking the uncertainty in the 
distribution parameters into account. That is, using the predictive mean of the GP model versus random sampling from the GP models. Horizontal 
lines show the corresponding “exact” results where all 95 WASIM runs are used to fit the GP models. 
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show that the proposed method converges in just a few iterations to the “exact” result obtained from running a large number of 
hydrodynamic time-domain simulations over the entire scatter diagram. This means that the proposed method is comparable to e.g. 
contour methods, when it comes to computational cost. 

Comparison with Vanem et al. [16], which also uses GP-regression to represent the short term response as a function of sea state 
parameters, but that does not consider the short-term variability, shows that not including the short-term variability leads to signif
icant underestimation of the extreme response. This result is well known, and we also confirm that the lack of short-term variability can 
be compensated for by using a higher percentile of the response statistics. For the present case study, we show that by using the 90% 
percentile of the distribution of 3-h maxima yield results much closer to the analysis taking the short-term variability into account. 
However, the actual percentile to use will be case specific, and is difficult to determine a priori. The method proposed herein provides 
the short-term variability explicitly, with little added computational cost, as the bottleneck of the analysis is still the hydrodynamic 
sea-keeping simulations. 

Finally, as a numerical model of the dynamical system is not the ground truth, one might foresee the possibility of combining 
numerical simulations with measurements from full-scale or laboratory tests. From the relevant literature dealing with this scenario, 
see for instance Refs. [13,34,35], the natural way forward would be to extend the probabilistic surrogate model presented in this paper 
with an additional Gaussian Process, to capture the discrepancy between numerical simulations and the real physical phenomenon. 
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Fig. 6. Estimated mean 25-year extreme VBM at different iteration steps, for hogging and sagging, with and without using the linear results as prior 
mean in the GP models. 
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Abstract
Structural reliability analysis is concerned with estimation of the probability of a critical event taking place, described by
P(g(X) ≤ 0) for some n-dimensional random variable X and some real-valued function g. In many applications the function
g is practically unknown, as function evaluation involves time consuming numerical simulation or some other form of
experiment that is expensive to perform. The problem we address in this paper is how to optimally design experiments, in a
Bayesian decision theoretic fashion, when the goal is to estimate the probability P(g(X) ≤ 0) using a minimal amount of
resources. As opposed to existingmethods that have been proposed for this purpose, we consider a general structural reliability
model given in hierarchical form.We therefore introduce a general formulation of the experimental design problem, where we
distinguish between the uncertainty related to the random variableX and any additional epistemic uncertainty that we want to
reduce through experimentation. The effectiveness of a design strategy is evaluated through a measure of residual uncertainty,
and efficient approximation of this quantity is crucial if we want to apply algorithms that search for an optimal strategy.
The method we propose is based on importance sampling combined with the unscented transform for epistemic uncertainty
propagation. We implement this for the myopic (one-step look ahead) alternative, and demonstrate the effectiveness through
a series of numerical experiments.

Keywords Optimal experimental design · Structural reliability · Probability of failure · Epistemic and aleatory uncertainty ·
Unscented transform

1 Introduction

In order to ensure sufficient reliability of engineered sys-
tems, such as buildings, ships, offshore structures, aircraft
or technological products, uncertainties with respect to the
system’s capabilities and the system’s environment must be
accounted for. In probabilistic structural reliability analysis,
this is achieved through a probabilistic modelof the system

B Christian Agrell
chrisagr@math.uio.no; christian.agrell@dnvgl.com

Kristina Rognlien Dahl
kristrd@math.uio.no

1 Department of Mathematics, University of Oslo, Oslo,
Norway

2 DNV GL Group Technology and Research, Høvik, Norway

and its environment. A primary objective with such a model
is to estimate the probability that the system will fail (e.g.
collapse, sink, crash or explode).1

A probabilistic structural reliability model is commonly
defined through a performance function (also called a limit-
state function) g(X) depending on some random variable X.
Here, g(X) < 0 corresponds to system failure, and g(X) ≥ 0
corresponds to the system functioning. Typically,X contains
the parameters describing a particular structure, such as the
geometry, dimensions and material properties. These quan-
tities may be random, but can be influenced by the designer
of the structure. For example, the designer may choose to
use a more expensive, but more durable material in order to
improve the structural properties of the system. In addition,
X contains the (random) parameters that characterize the sys-

1 This is rarely interpreted as a frequentist probability. As the model
is not the real world, it is common to design models such that the
failure probability can be interpreted as a conservative estimate, or as a
consistentmeasure of robustness for comparisonwith other ’acceptable’
systems.
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tems environment, such as wind speed, wave height etc., and
parameters describing how well the model fits reality (model
uncertainties). GivenX and the function g(·), the probability
of failure is defined as the probability P(g(X) < 0). Mod-
ern engineering requirements for safe design and operation
of such systems are usually given as an upper bound on this
probability (Madsen et al. 2006).

Hence, for many practical applications, the failure prob-
ability computation is an important task. This is often chal-
lenging for complex systems, as a computationally feasible
stochastic model of the complete system and its environment
is not available. To capture this in our modelling framework,
we consider additional epistemic uncertainties, i.e. uncertain-
ties due to limited data or knowledge that in principle can be
reduced by gathering more information.

1.1 Epistemic and aleatory uncertainty

The concept of epistemic uncertainty is commonly used
in uncertainty quantification (UQ) and in reliability anal-
ysis. One often considers two different kinds of uncer-
tainty: Aleatory (stochastic) and epistemic (knowledge-
based) uncertainty. Aleatory uncertainty is uncertaintywhich
cannot be removed by collecting more or better information.
For instance, the result of throwing a dice is an example
of aleatory information, because there is a range of possi-
ble outcomes even if we understand the experimental setup.
Epistemic uncertainty, on the other hand, is uncertaintywhich
can be affected by collecting more and/or better information.
For example, if a quantity or parameter has a definite value,
but this value is unknown to us, then the uncertainty con-
sidered epistemic. Likewise, uncertainty about the form of a
model for a physical phenomenon is epistemic, becausemore
research or experiments could be performed to improve the
model.

We note that this characterization of uncertainties will
have to depend on the relevant modelling and decision-
making context. Given the aleatory example of throwing a
dice, one could argue that given sufficient information about
initial conditions together with a detailed physics model, it
should be possible to predict the outcome (and the uncer-
tainty is therefore epistemic). But based on the modelling
context this may not be relevant or a realistic assumption at
all. See for instance (Der Kiureghian and Ditlevsen 2009) for
a broader discussion.

The following example illustrates that a random variable
may contain both epistemic and aleatory uncertainty.

Example 1 Consider two experiments:

Experiment 1 Consider a fair dice that is to be thrown,
and denote the outcome A. Since the distribution of dice

throwing is known (P(A = i) = 1/6 for i=1, …, 6), the
uncertainty in the random variableA is (purely) aleatory.
Experiment 2Consider another dice that has been thrown,
but where the dice has been covered so that the result is
not visible.Now there is uncertainty about the value of the
hidden dice. Call this random variableE. The uncertainty
in E is (purely) epistemic because it could be reduced by
gatheringmore information (removing the cover from the
dice).

Assume the (random) quantity of interest is the sum,
S = A + E, of the result of the two die. If E is given, then
the remaining uncertainty is the aleatory (stochastic) uncer-
tainty in throwing a dice. Without knowing the value of the
hidden dice, the uncertainty in the sum S is both aleatory and
epistemic.

In Example 1 we had the option of uncovering the sec-
ond dice, an experiment that would remove all epistemic
uncertainty in S. Generally, we will consider experiments
that reduces (but not necessarily completely removes) epis-
temic uncertainty. For instance, in the context of Example 1,
an experiment that would reveal whether E was an even or
odd number, or whether E > 1. Or, the sum S (but not the
value of A) from a few repeated throws of the aleatory die,
fromwhich inference aboutE could bemade. Reducing epis-
temic uncertainty usually comes at a cost, where the more
informative experiments are more expensive. In this paper
we are interested in how to decide on which experiments to
perform, where the cost and potential effect of experiments
are balanced in an optimal manner.

In the context of structural reliability modelling, the epis-
temic uncertainty usually comes from one of the two reasons:

1. The function g(·) or the distribution of X depends on
parameters that we do not know the value of.

2. Evaluating g(x) at some single realizationx ofX is expen-
sive in terms of money and/or time.

The second part comes from the complex physical nature of
failure mechanisms, where experiments are needed to eval-
uate the function g(x). This includes numerical computer
simulations and physical experiments in a laboratory, which
are both time consuming and expensive. Hence, due to the
limited number of experiments that can be performed in prac-
tice, any method for estimating P(g(X) < 0) that relies on a
large number of evaluations of g(·) is practically infeasible.
This problem is usually solved by replacing the performance
function g(·) with a computationally cheap surrogate model
or emulator2, constructed from a small set of experiments.

2 The word emulator is often used for a surrogate model that can
interpolate between noiseless observations coming from a determin-
istic computer simulation.
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When the surrogate model is a stochastic process (viewed
as a distribution over functions), we can quantify the added
epistemic uncertainty that comes from this simplification.

We will assume that epistemic uncertainty is introduced
in a structural reliability model, and that there is a way to
reduce this uncertainty by performing experiments.

The problem we address in this paper is how to optimally
estimate P(g(X) < 0) using as little resources as possible. In
particular, wewant to find an optimal strategy for the scenario
where we can perform experiments sequentially, i.e. where
each experiment may depend on the preceding ones.

Remark 1 (Why separate between epistemic and aleatory
uncertainties?) Note that if there is no epistemic uncertainty
in our model, then there is no incentive for performing
experiments to collect more information, since the uncer-
tainty cannot be reduced no matter what experiment we do.
Hence, for our problem formulation to make sense, it is
crucial to know that there is epistemic uncertainty present.
In Example 1 we can consider the conditional probability
P(S|E = e), which for any fixed realization e is a property
of the aleatory uncertainty alone. When we do not know the
value of E, the quantity P(S|E) becomes a random variable
of purely epistemic uncertainty. We are going to treat the
failure probability P(g(X) < 0) in this way, by conditioning
on epistemic information, so that we can study the potential
effect of experiments.

Furthermore, Der Kiureghian and Ditlevsen (2009) show
that by not separating between these two types of uncertainty
in risk and reliability assessment, one may either over- or
underestimate the failure probability by a significant magni-
tude (depending on the problem at hand), and conclude that
distinguishing between aleatory and epistemic uncertainty in
risk assessment is important. This is also supported by the
examples we present in Sect. 6.

1.2 Hierarchical modelling

The scenario where g(·) is replaced by a surrogatemodel cre-
ated from a finite set of observations {g(xi )}ni=1 has already
been studied extensively (Bect et al. 2012; Echard et al.
2011; Bichon et al. 2008; Sun et al. 2017; Jian et al. 2017;
Perrin 2016; Schueremans and Gemert 2005). The most
common approach is to approximate g(·) using a Gaussian
process, and make use of the convenient fact that a surro-
gate model given by the posterior predictive distribution of
the Gaussian process has a closed form solution. However,
structural reliability models are often hierarchical, and the
reason why g(·) is expensive comes from one or more expen-
sive sub-components3. An example is shown in Fig. 1, where

3 For instance, g(x) is often a function of a structures capacity and
the effect of loads acting on the structure, where each of which are
determined from separate types of experiments.

Fig. 1 Left: Single layer model. Right: Example of an hierarchical (2
layer) model where g(x) = g(y1(x), y2(x))

g(x) = g(y1(x), y2(x)). Assume here that x ∈ Rm , then the
index set of theGaussian process approximation of g(x) ism-
dimensional. Naturally, the number of experiments needed is
highly dependent on m. If g(x) is expensive, then this must
be because one (or more) of the functions, y1(x), y2(x) or
g(y1, y2) is expensive. Very often, the effective domains4 of
these functions have dimensionality much smaller thanm, so
fitting a Gaussian process to observations of g(x) is not very
efficient. There is also some practical inconvenience here,
which is that some of the expensive sub-components (for
instance load models) may be applicable in different struc-
tural reliability models, so there is a potential for re-use if
we create a surrogate model for, say y1(x), instead of g(x).
Kyzyurova et al. (2018) also consider a similar scenario and
give some examples, for the 2-layer case where each com-
ponent is replaced by a Gaussian process emulator.

In this paper we will work with hierarchical models (not
necessarily with the structure illustrated in Fig. 1), where we
assume that some of the intermediate variables are stochastic
processes with epistemic (potentially reducible) uncertainty.
Note that this also covers the case where we just intro-
duce additional epistemic variables into the model. Actually,
in the approximate numerical solution we propose in this
paper, these two problems become equivalent. Moreover, as
Gaussianity generally is lost in the hierarchical setting, we
will only make assumptions on existence of second order
moments of the stochastic processes used as surrogates. We
will present a general formulation of the problem of find-
ing an optimal strategy for performing experiments based on
Bellman’s principle of optimality, and discuss some alterna-
tive routes for solving such problems. For the myopic (one
step look-ahead) strategy, we propose an efficient numerical
procedure, based on finite-dimensional approximation of the

4 If for instance y1(x) : Rm → R depends only on x1, . . . , xn for
n ≤ m, the effective domain of y1 is n-dimensional.
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stochastic processes and uncertainty propagation using the
unscented transform.

1.3 Structure andmain contributions of the paper

The structure of the remaining part of the paper is as follows:
Through Sects. 2 and 3 we develop the Bayesian optimal
experimental design problem for a general structural reli-
ability model. We introduce a framework for separation of
aleatory and epistemic uncertainties using conditional expec-
tations, from which we can express any type of experiment
associated with a structural reliability problem. For the pur-
pose of estimating a failure probability, we consider three
alternative optimization objectives, and in Sect. 3 we discuss
how the experimental design problem may be tackled using
dynamic programming and the one-step lookahead approx-
imation. Optimization problems of this form will involve
evaluation of ameasure of residual uncertainty, and in Sect. 4
we present an approach for approximating this quantity. We
implement this in Sect. 5 to develop an efficient numerical
procedure for the one-step lookahead case, which we illus-
trate through a series of examples in Sect. 6. Finally, our
concluding remarks are given in Sect. 7, and some support-
ing material used throughout the paper is included in the
Appendices.

2 Problem formulation

Given a probabilistic surrogate of a structural reliability
model, we are interested in how to optimally improve the
model for failure probability estimation, given a fixed exper-
imental budget. More generally, given a structural reliability
model with epistemic uncertainty (e.g. as introduced when
using a surrogate), and a set of possible experiments than
can be performed, we want to select the experiments in an
optimal manner. The choice of experiment is called a deci-
sion, d ∈ D where D is a space of feasible decisions. Note
that this set may include different kinds of decisions, such as
performing computer experiments, lab experiments or per-
forming physical measurements in the field.

In the following subsections we present a rigorous formu-
lation of the Bayesian optimal experimental design problem
for structural reliability analysis. Here we will need a way to
express uncertainty about the performance function used in
structural reliability models, and a way to model uncertainty
about future outcomes of potential experiments that can be
made. For this purpose we will define a model (ξ, δ), where

– ξ is a stochastic representation of the performance func-
tion g(x) evaluated at some fixed input x.

– δ(d) is a predictive model of experimental outcomes
given a decision d. In other words, δ models the data
generating process of potential experiments.

We will consistently write X as a random variable with val-
ues inX ⊆ Rm , and let x be a deterministic realization. ξ and
δ are stochastic processes, indexed over inputs x and deci-
sions d, respectively. In structural reliability analysis, we are
interested in the random variable g(X), and likewise we will
consider ξ(X), but now where ξ(x) is also random for any
fixed x. Here, for notational convenience, we suppress the
ω ∈ Ω when referring to the random variable X : Ω → X
or the stochastic process ξ(x) : X × Ω → R. That is, we
define the notation ξ(X) := ξ(X(ω), ω) to describe the ran-
dom variable ξ(X) : Ω → R.

Remark 2 Note that ξ(x) is a stochastic representation of the
performance function g(·). When making decisions d, we
aim to reduce the uncertainty in ξ(X), where also the input
X is random. Hence, the process δ(d) is linked with ξ(X)

through its reduction of uncertainty (see Sect. 2.3).

As the purpose of performing experiments will be to pro-
vide information about ξ , note that ξ and δ are generally
not independent. A detailed description of how (ξ, δ) is con-
structed is provided in the following subsections.

2.1 Structural reliability analysis

Let X ⊆ Rm , and let X be a random variable on the proba-
bility space (Ω,F , P) with values in X and g : X → R a
measurable function. We call g the performance function or
limit state, with the associated failure set

Fg = {x ∈ X | g(x) ≤ 0}.

In structural reliability analysis, we are interested in esti-
mating the failure probability, which we here denote ᾱ. It is
defined as

ᾱ(g) = P(Fg) = E [1 (g(X) ≤ 0)] , (1)

where E [·] denotes the expectation with respect to P and
1 (·) is the indicator function.

In most real-world cases it is difficult to derive an analyt-
ical expression for the failure probability. To overcome this,
several approximation and simulation methods have been
suggested, see e.g. Madsen et al. (2006) or Huang et al.
(2017). Two traditional methods are the first- and second-
order reliability method (FORM/SORM), where the failure
boundary is approximated at a specific point using a Tay-
lor expansion up to the first and second order, respectively.
Different sampling procedures have also been developed,
which often make use of intermediate results obtained from
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FORM/SORM. Other relevant techniques involve the con-
struction of environmental contours and the estimation of
buffered failure probabilities as in (Dahl and Huseby 2019).
In this paper, our focus is different from these methods in
the sense that we are mainly interested in how to estimate
the failure probability as well as possible, given a limited
experimental budget. To do so, we need to separate between
different kinds of uncertainty in our model.

2.2 Separating epistemic and aleatory uncertainties

Ideally, the uncertainty related to the random variable g(X)

in (1) is aleatory, in the sense that that it relates to inher-
ent variability of the physical phenomenon that is being
modelled, but in reality we must also include epistemic
uncertainty due to lack of information or knowledge. For
instance, assume that g(x, e) depends on the aleatory vari-
able x and some fixed but unknown parameter e. Assume
further that X is the aleatory random variable representing
variability in x, E is the epistemic random variable repre-
senting our belief about e, and that X and E are independent
with laws Px and Pe. It is then relevant to view the failure
probability as a random quantity with epistemic uncertainty,
α(E) = ∫

1 (g(x,E) ≤ 0) Px (dx). For engineering applica-
tions, onewould then typically be interested in some specified
upper percentile values of α(E), i.e. ensuring that the epis-
temic uncertainty is under control.

In the following, we will assume that we have a per-
formance function ξ(·) that depends on a strictly aleatory
random variable X, and some other random quantity with
epistemic uncertainty. We will need to formulate this with a
bit of generality, in order to cover the different ways epis-
temic uncertainty can be introduced in a structural reliability
model.

As in Sect. 2.1 we will work with (Ω,F , P) as the global
probability space, capturing all forms of uncertainty.We then
letA andE be two subσ -algebras representing, respectively,
aleatory and epistemic information i.e.,

A ,E ⊆ F . (2)

Though all uncertainty in our model is assumed to be either
epistemic or aleatory, Example 1 illustrates that random vari-
ables may contain both aleatory and epistemic information.

We will assume that X is A -measurable. Furthermore,
for any x ∈ X we assume that ξ(x) is E -measurable. That is,
ξ : X × Ω → R is a stochastic process indexed by x ∈ X
(this is also called a random field), and ξ(X) is a real-valued
random variable. We will write ξ(·) instead of g(·)whenever
epistemic uncertainty has been introduced, as for instance in
the canonical case where a deterministic performance func-
tion g(·) is approximated with a probabilistic surrogate ξ(·).

We can now define the failure probability with epistemic
uncertainty as the E -measurable random variable

α(ξ) = E [1 (ξ(X) ≤ 0) | E ] . (3)

Note that (3) coincides with (1) in the case where the perfor-
mance function is not affected by epistemic uncertainty, and
in general as ᾱ(ξ) = E [α(ξ)] because

E [α(ξ)] = E [E [1 (ξ(X) ≤ 0)] | E ]
= E [1 (ξ(X) ≤ 0)]
= ᾱ(ξ),

(4)

where the second equality uses the double expectation prop-
erty.

In the following we will just write α or ᾱ without the
dependency on ξ when there is no risk of confusion.

Example 2 Assume ξ is a deterministic function of the
aleatory randomvariableX and epistemic randomvariableE,
both defined on (Ω,F , P). ThenA = σ(X) andE = σ(E),
i.e., the σ -algebras generated by the random variables X and
E, respectively.

Note that the converse of Example 2 also holds true, as we
can always view ξ as a deterministic function applied to two
random variables X and E. That is, where ξ(x, e) is a deter-
ministic function for x and e fixed, and we can write the
stochastic process ξ(x, ω) as ξ(x,E). It is sometimes useful
to think of ξ in this way. In particular, the numerical approx-
imation we propose later in this paper is based on obtaining
a finite-dimensional approximation of E.

Example 3 Let g be given as in the hierarchical model in
Fig. 1, and X a random variable defined on some measure
space (Ωx ,Fx , Px ). Assume that y1 and y2 are expensive
to evaluate, so we replace them with surrogate models in
the form of two stochastic processes ỹ1 and ỹ2 defined on
another measure space (Ωy,Fy, Py). Note that we assume
that both ỹ1 and ỹ2 are defined on the same measure space.
Then, themeasure space for the experimental design problem
is given by (Ω,F , P) = (Ωx × Ωy,Fx ⊗ Fy, Px × Py),
A = Fx and E = Fy (up to isomorphism), and we would
write ξ(x) = g(ỹ1(x), ỹ2(x)).

2.3 Decisions, outcomes and experiments

We are interested in the case where the epistemic uncertainty
in α can be reduced by running experiments. For instance,
in Example 2 the epistemic variable E could be a fixed but
unknown parameter, and maybe additional measurements
could be performed to reduce the uncertainty in E. Or in
Example 3, additional experiments could be performed to
infer the values of y1 or y2 at some given input x′, in order
to reduce uncertainty in the surrogate models ỹ1 and ỹ2.
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These are examples of possible decisions we could make
to reduce epistemic uncertainty. We will let D denote the set
of all possible decisions, and O the set of all possible out-
comes. For any decision d ∈ D, the corresponding outcome
is uncertain a priori, and in order to evaluate the potential
impact of a decision we will need to specify (possibly sub-
jectively) a distribution representing the possible outcomes.
We will let δ(d) denote the random outcome of a decision
d ∈ D with values in O. For any realization o ∈ O of δ(d),
we will refer to the pair (d, o) as an experiment.

In our modelling framework, we will assume that ξ(x) as
defined in Sect. 2.2 is provided together with (Ω,F , P) and
the sub σ -algebrasA and E , and that a decision process δ(d)

is given where δ(d) is E -measurable for any d ∈ D. Table 1
gives an overview of the notation we have introduced so far,
in order to define the problem of optimal experimental design
for structural reliability analysis.

Example 4 Continuing from Example 3, assume that noise
perturbed observations of y1 can be made. Let d(x) =
{observe y1(x)}, and define D as the union of such events
for all x. If we assume that observations come with additive
noise, o(x) = y1(x)+ ε(x), for some specified noise process
ε, then we can let δ(d(x)) = ỹ1(x) + ε(x). In a similar fash-
ion, D and δ(d) could be extended to include observations of
y2 as well.

We will note that the noise-free alternative to Example 4,
i.e. the case where ε ≡ 0, is a common scenario when deal-
ingwith deterministic computer simulations. Another related
scenario that is also of relevance here, is that of muiltifidelity
modelling (Fernandez et al. 2017), in which case inaccurate
estimates of y1(x) could be available at the same time, but at
a lower cost.

2.4 Sequential model updating

Now, having defined a random variable X and the two
processes {ξ(x)}x∈X and {δ(d)}d∈D, we want to perform a
sequence of experiments, (d0, o0), (d1, o1), . . . , and update
ξ and δ accordingly.

We let Ik := {(d0, o0), . . . , (dk−1, ok−1)} denote the
information or history up to the kth experiment, and define
Ek as the σ -algebra generated by E and Ik . Hence, Ek is all
the information regarding epistemic quantities that is avail-
able after k experiments.We introduce the notation Pk(·) and
Ek [·] to denote the conditional distribution P(· |Ek) and con-
ditional expectation E [· | Ek] given the updated information
Ek . For convenience we define I0 = ∅, so that we can use
the index k = 0 with these definitions for the scenario before
any experiment has been made. We will write ξk and δk as
the updated processes ξ |Ik and δ|Ik corresponding to Pk . Per
definition,

(ξk+1, δk+1) = (ξk, δk) | dk, ok = (ξ0, δ0) | Ik, dk, ok .

In the following example, we show how this sequential
update can be done via Bayes’ theorem.

Example 5 Let k ∈ N. Assume (ξ, δ) admits a joint proba-
bility density at any finite subset of X × D with respect to
Pk , which we write pk(ξ, δ) for short. E.g. pk(ξ) means

Pk
((

ξ(x(1)), . . . , ξ(x(n))
)

=
(
ξ (1), . . . , ξ (n)

))

for some x(1), . . . , x(n) ∈ X and ξ (1), . . . , ξ (n) ∈ R. Then
pk(ξ) = p0(ξk), pk(δ) = p0(δk), and the update of the
probabilities is done by using Bayes’ theorem:

pk+1(ξ) = pk(ξ |dk, ok) = pk(ok |ξ, dk)pk(ξ)

pk(ok |dk) ,

pk+1(δ) = pk(δ|dk, ok) = pk(ok |dk, δ)pk(δ)
pk(ok |dk) ,

(5)

where pk(·|·) is the relevant density with respect to Pk .

Example 6 For a specific problem there will typically be sim-
pler ways of updating themodel than the generic formulation
given in the previous example. Continuing again fromExam-
ples 3 and 4, assume δ(d) = δ(x, ỹ1, ỹ2) corresponds to
observing ỹ1(x) + ε1(x) or ỹ2(x) + ε2(x). Then ỹ1 and ỹ2
can be updated directly, and we let ξ |Ik = g(ỹ1|Ik, ỹ2|Ik)
and δ|Ik = δ(x, ỹ1|Ik, ỹ2|Ik).

In fact, if ỹ1 and ỹ2 and the noise terms ε1 and ε2
are all Gaussian processes, then ỹ1|Ik and ỹ2|Ik are also
Gaussian and closed form representations are available (see
Appendix A). Note that in this case the model update could
include updating the Gaussian process hyperparameters as
well.

2.5 Optimization objective

Following the formulation of Bect et al. (2012, 2019), a strat-
egy for uncertainty reduction startswith ameasure of residual
uncertainty for the quantity of interest after k experiments.
This is a functional

Hk = H (Pk) (6)

of the conditional distribution Pk . In this paper we will con-
sider three specific alternatives for Hk .

Assume k experiments have been performed, resulting in
the updated probabilistic model (ξk, δk). The updated failure
probability according to (3) can then be defined as

αk = α(ξk) = Ek [1 (ξ(X) ≤ 0)] , ᾱk = E [αk] . (7)
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Table 1 Overview of the framework for the optimal experimental design problem for structural reliability analysis

Symbol Description Type

X Parameters describing structure and environment Rm -valued random variable

x Deterministic realization of X values in Rm

g(x) Performance function of structure real-valued

Fg Failure set of g(·) subset of Rm

ᾱ(g) The failure probability, P(Fg) values in [0, 1]
ξ(x) Stochastic approximation of g(·) real-valued stochastic process

α(ξ) The failure probability with epistemic uncertainty values in [0, 1]
d Decision contained in set of decisions D
o Outcome of experiment contained in set of outcomes O
(d, o) Summary of an experiment contained in D × O
δ(d) Model of experiment outcomes O-valued stochastic process

E Parameters for epistemic uncertainty, independent of X random variable

A Aleatory information σ -algebra

E Epistemic information σ -algebra

(ξ, δ) The model (R × O)-valued

As we are interested in reducing uncertainty in α, a nat-
ural optimization objective is to minimize Var(αk) =
E
[
(αk − ᾱk)

2
]
. However, computation of Var(αk) can be

problematic in practice. Most of the proposed methods for
design of experiments in (non-hierarchical) structural reli-
ability models therefore make use of alternative heuristic
optimization objectives. That is, some alternative function
Hk(·) that is easier to compute than Var(αk), and where the
design that minimizes Hk(·) hopefully also performs well
with respect to Var(αk).

Bect et al. (2012) present a few such criteria, some of
which will also be considered in this paper. Let

pk(X) = Pk(ξ(X) ≤ 0),

γk(X) = pk(X)(1 − pk(X)).
(8)

Observe that

Var(1 (ξk(x) ≤ 0)) = E
[
(1 (ξk(x) ≤ 0))2

]−
E [1 (ξk(x) ≤ 0)]2

= E [(1 (ξk(x) ≤ 0))] − pk(x)2

= pk(x) − pk(x)2

= γk(x),

(9)

and also that γk(x)/2 is the probability that two i.i.d. samples
from ξk(x) have the same sign. Hence, γk provides a measure
of how accurate ξk(x) is around the critical value ξk = 0. We
will introduce two measures of residual uncertainty based on
taking the expectation of γk with respect the distribution ofX,
which we denote PX. In total, we will consider the following
three alternativesfor Hk :

H1,k = Ek

[
(α − ᾱ)2

]
,

H2,k =
∫

X
γk dPX = E

[
γk
]
,

H3,k =
(∫

X

√
γk dPX

)2

= E
[√

γk
]2

.

(10)

Here H2,k and H3,k can also be motivated by realizing that
they serve as upper bounds on H1,k . In fact, H1,k ≤ H3,k ≤
H2,k (see Proposition 3 in Bect et al. 2012).

For optimal design of experiments we will consider loss
functions given by the above measures of residual uncer-
tainty, potentially in combination with an additional penalty
term that represents the cost of performing a given experi-
ment. In the Bayesian decision-theoretic framework, given
such a loss functiondependingon apolicy for selecting exper-
iments π , we can evaluate the policy by looking n-steps
ahead. For instance, a relevant loss function for minimizing
uncertainty in α after n additional experiments, following
after the current experiment k, could be given as Jk(π) =
Ek
[
H1,k+n

]
where Ek+n corresponds to following the pol-

icy π . The additional notation introduced with respect to the
measure of residual uncertainty and sequential model updat-
ing is summarized in Table 2.

3 Modelling information and experimental
design

In this section, we introduce the experimental design frame-
work and explain how the development of information
is modelled in this context. In the following, let k =
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Table 2 Overview of the framework for the optimal experimental design problem for structural reliability analysis with sequential model updating

Symbol Description Type

Ik Information up to k’th experiment Sequence of decisions and outcomes

Ek Information given ξ and Ik σ -algebra

Pk Conditional probability given ξk Values in [0, 1]
ξk Update of ξ given Ik Stochastic process indexed by k

δk Update of δ given Ik Stochastic process indexed by k

Hk = H (Pk) Measure of residual uncertainty Functional from space of probability distributions to R
αk Updated epistemic failure probability Values in [0, 1]
ᾱk Updated expected failure probability Values in [0, 1]

0, 1, . . . , K − 1 be the experiment index which keeps track
of the number of performed experiments.

3.1 The dynamic programming formulation

Huan and Marzouk (2016) introduce a general framework
for sequential optimal experimental design: Let the state5 of
the system after experiment k−1 be denoted by sk . The input
(decided by the experimental designers) to experiment k is
denoted by dk . We want to determine a policy

π := (π0, π1, . . . , πK−1)

where dk = πk(sk). That is, given the current state of the
system, the policy is a function which tells the experimental
designer the input to the next experiment.

From each experiment, we get observations ok . These
observations may include measurement noise and modelling
errors. Associated to each experiment, we have a stage
reward Rk(sk, ok, dk). The stage reward reflects the cost of
doing the experiment (measured in e.g. money or time) plus
any additional benefits or penalties of doing the experiment
(measured in the same unit). Furthermore, we have a termi-
nal reward RK (sK ) only depending on the final state of the
system.

In order to model the development of the system of exper-
iments, we have the system dynamics:

sk+1 = V (sk, dk, ok)

where V (·) is some function specifying the transition from
a current state to a new state based on the performed experi-
ment. The optimal experimental design problem can then be
formulated as follows:

5 In (Huan and Marzouk 2016) the state is written as sk = (s(b)
k , s(p)

k ),

where s(b)
k denotes the uncertainty state and s(p)

k denotes the physi-
cal state that describes any additional deterministic decision-relevant
variables. Herein we will not write sk specifically in this form.

Maximize

Eo0,...,oK−1

[
K−1∑

k=0

Rk(sk, ok, πk(sk)) + RK (sK )

]

such that sk+1 = V (sk, dk, ok),

(11)

and the maximization is done over all policies π that do not
look into the future (in the sense that information about future
results of experiments are used in current policy making).
That is, when deciding policy πk , only what is known up to
experiment k − 1 can be used. Another way of saying this is
that the policyπ should be adapted to the filtration generated
by the processes {sk}, {ok} and {dk}.

To adapt this framework to the experimental design prob-
lem for structural reliability analysis, we write

sk = (ξk, δk, Ik), dk = πk(sk), ok = δk(dk), (12)

and where the dynamics sk+1 = V (sk, dk, ok) is given by
updating ξk , δk and Ik with respect to the experiment (dk, ok)
as described in Sect. 2.4.

Remark 3 Note that the expectation in (11) is with respect
to future outcomes o0, . . . , oK−1 which a priori are uncer-
tain, and where each outcome ok depends on the previous
outcomes o0, . . . , ok−1. An equivalent formulation can be
given in terms of conditional expectations. Let each reward
be defined by backwards induction:

Rk = max
d

Ek
[
Rk+1|dk = d

]
, k = K − 1, . . . , 0,

where RK = RK (sk) only depends on the final state of the
system. Then, the policy defined by selecting for each k the
decision

d∗
k = argmaxd∈D Ek

[
Rk+1|dk = d

]

= argmaxd∈D Ek
[
max Ek+1 · · · EK RK |dk = d

]

is optimal. This corresponds with the formulation used by
Bect et al. (2012).
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Problem (11) is a dynamicprogrammingproblem.Though
theoretically optimal, such problems are known for suffering
form the so-called curse of dimensionality. That is, possible
sequences of design and observation realizations grow expo-
nentially with the dimension of the state space. According to
Defourny et al. (2011), the curse of dimensionality implies
that dynamic programming can only be solved numerically
for state spaces embedded in Rd with d ≤ 10. Therefore,
such problems can often only be solved approximately via
approximate dynamic programming, see (Huan andMarzouk
2016). Note also that this type of formulation is based on a
Markovianity assumption, i.e., that there is no memory in
the dynamics of the system. This assumption is necessary
in order to perform the simplification to only having depen-
dency on the current state of the system in Remark 3. If the
system is not Markovian, in the sense that the decision at
any time depends not only on the current state of the system,
but also on some of the previous states, we cannot solve the
experimental design problem by backwards induction. The
reason for this is that the Bellman equation, which backwards
induction is based on, does not hold in this case. In such cases,
the experimental design problem can for instance be solved
via the maximum principle, see e.g. Dahl et al. (2016) for an
example of systems with memory in continuous time.

Remark 4 An alternative solution method to dynamic pro-
gramming for problem (11) is to use a scenario tree based
approach, see Defourny et al. (2011). Scenario tree based
approaches are not sensitive to curse of dimensionality based
on the state space, but based on the number of experiments.
Hence, a scenario based approach can be attempted when-
ever there are few experiments (less than or equal 10), but
potentially a large dimensional state space. If the number of
experiments is large (greater than 10), but the state space
dimension is small (less than or equal 10), dynamic pro-
gramming is a viable solution method. If both the state space
dimension and the number of experiments is large, one can try
approximate dynamic programming (see Huan andMarzouk
(2016)) or a one-step lookahead (myopic)6 formulation as an
alternative to the dynamic programming one. In Sect. 3.2, we
consider such a one-step lookahead formulation.

Note that problem (11) is maximization problem of a
reward, but can trivially be transformed to a minimization
problem with some loss function Lk = −Rk instead. For the
application considered in this paper, we are interested inmin-
imization problems associated with the residual uncertainty
described in Sect. 2.5.

6 Some authors, for instance Huan and Marzouk (2016) and Bect et al.
(2012), remark that all strategies which consider fewer terms in the
summation aremyopic. Other authors usemyopic only in the case where
no future decisions are taken into account, i.e. the horizon is zero.
When we say myopic in this paper, we mean one-step lookahead.

Example 7 Let λ(dk) denote the cost of decision dk . A rel-
evant set of loss functions could then be: Lk(sk, dk, ok)
= 0 for k < K and LK = HK · ∑k<K λ(dk), where
HK = H1,k, H2,k or H3,k as described in Sect. 2.5. Or, let-
ting Lk(sk, dk, ok) = ηkλ(dk)Hk for k < K where η is
some discount factor, η ∈ (0, 1), would produce a similar
but more greedy policy. Another relevant alternative is to
define LK =∑k<k∗ λ(dk) as the sum of costs up to the iter-
ation k∗ where some target level, Hk < H∗ for k > k∗, has
been reached.

3.2 The one-step lookahead formulation

Asmentioned in Sect. 3.1, the dynamic programming formu-
lation suffers from the curse of dimensionality. An approx-
imation to the dynamic programming formulation which
mends this problem, is the myopic formulation or one-step
lookahead. This corresponds to truncating the dynamic pro-
gramming sum in (11) and only looking at one time-step
ahead.

In this section, we define the the one-step lookahead opti-
mal decision d ∈ D at step k as theminimizer of the following
function

Ji,k(d) = λ(d)Ek,d
[
Hi,k+1

]
for i = 1, 2, or 3. (13)

Here Hi,k are the measures of residual uncertainty defined
in Sect. 2.5, and Ek,d represents the conditional expectation
with respect to Ek with dk = d. Hence, Ek,d

[
Hi,k+1

]
repre-

sents how desirable decision d is for reducing the expected
remaining uncertainty in α at experiment k + 1, if the next
experiment is performed with input d. We let λ(d) be a
deterministic function representing the cost associated with
decision d, and we will refer to a function Ji,k(d) as the
acquisition function formyopic (one-step lookahead) design.
Other ways of introducing additional rewards or penalties
associated with an experiment are of course also possible. In
fact, there is no particular reasonwhywewrite (13) as a prod-
uct of cost and the measure of residual uncertainty, besides
emphasizing that Ji,k(d) should be a function of these two
terms.

Remark 5 We have assumed here that a total number K of
experiments that are to be performed, where we want to per-
form each experiment optimally. But in practice it is relevant
to consider stopping before the K th experiment, when some
objective has been reached, or when the potential gain of new
experiments diminishes. Section 5.3 we introduce a criterion
for stopping when the variance in the failure probability is
sufficiently low.
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4 Approximating themeasure of residual
uncertainty

Assume k experiments have been performed, resulting in the
updated probabilistic model (ξk, δk). A simple method for
estimating the measures of residual uncertainty described
in Sect. 2.5, is by a double-loop Monte Carlo simulation:
Let N1, N2 ∈ N and let h(k)

i, j = 1
(
ξk, j (xi ) ≤ 0

)
, where

x1, . . . , xN1 are N1 i.i.d. samples ofX and ξk,1(xi ), . . . ξk,N2(xi )
are N2 i.i.d. performance functions sampled from ξk and eval-
uated at each xi . Then H1,k can be obtained as the sample
variance of the N2 samples of the form α̂k, j = 1

N1

∑
i h

(k)
i, j .

Similarly, H2,k and H3,k can be estimated from p̂k(xi ) =
1
N2

∑
j h

(k)
i, j .

This approach is problematic for several reasons. First of
all, α̂k, j is an unbiased estimator of the failure probability
αk, j = α(ξk, j ) corresponding to the deterministic perfor-
mance function ξk, j . When αk, j is small, the variance of this
estimator is var(α̂k, j ) = αk, j (1−αk, j )/N1 ≈ αk, j/N1. If we
want to achieve an accuracy, of say

√
var(α̂k, j ) < 0.1αk, j ,

and αk, j = 10−m , then the number of samples required
would be approximately N1 = 10m+2. The failure probabili-
ties considered in structural reliability analysis can typically
be in the range from 10−6 to 10−2.

When N1 is large, it can also be a practical challenge
to obtain the samples ξk, j (x1), . . . , ξk, j (xN1) simultaneously
for a fixed j . Moreover, the total number of samples needed
to evaluate themeasures of residual uncertainty Hi,k is N1N2,
and we are interested in optimization over Hi,k that will
require multiple simulations of this kind.

In this section we present a procedure for efficient approx-
imation of the measures of residual uncertainty. We will start
by introducing a finite-dimensional approximation of ξk(x),
given as a deterministic function ξ̂k(x,E) depending on x
and a finite-dimensional Ek-measurable random variable E.
Then, in Sect. 4.2 we consider how the mean and variance,
E [ f (E)] and var( f (E)), can be approximated for any Ek-
measurable function f (e) using the unscented transform. In
Sects. 4.3 and 4.4we present an importance sampling scheme
for the case where f (e) is defined in terms of an expecta-
tion over X. Finally, in Sect. 4.5 we consider the case where
f (e) = α(ξ̂k(X, e)), which provides the approximations
α̂k = f (E) and Ĥ1,k = var( f (E)), and where approxima-
tions of H2,k and H3,k are obtained in a similar manner.

In summary, this kind of approximation which we will
refer to asUT-MCIS fromnowon,makes use of the unscented
transform (UT) for epistemic uncertainty propagation and
Monte Carlo simulation with importance sampling (MCIS)
for aleatory uncertainty propagation. The motivation behind
this specific setup is that a technique such as MCIS is
needed to obtain low variance estimates of α(ξ̂k(X, e)),
whichwill typically be a small number. The sampling scheme

we propose is also designed to be efficient in the case
where subsequent estimates corresponding to perturbations
of α(ξ̂k(X, e)) are needed, which is relevant for estimation
of e.g. α(ξ̂k+1(X, e)) or α(ξ̂k(X, e′)) for some e′ �= e if
α(ξ̂k(X, e)) has already been estimated. As for epistemic
uncertainty propagation, when α(ξ̂k(x,E)) is viewed as an
Ek-measurable random variable, the UT alternative which is
both simpler and more efficient seems like a viable alterna-
tive, in particular for the purpose of optimizationwith respect
to future decisions.

4.1 The finite-dimensional approximation of �k

In our framework, we have defined ξk as a Ek-measurable
stochastic process indexed by x ∈ X (often called a ran-
dom field), and we view ξk as a distribution over some
(generally infinite-dimensional) space of functions. The spe-
cial case where ξk = ξk(x,E) for some finite-dimensional
Ek-measurable random variable E can be very useful for
simulation. That is, if samples e j of E can be generated effi-
ciently, then random functions ξk, j (x) = ξk(x, e j ) can be
sampled as well. As long as ξk is square integrable, such a
representation of ξk is always available from the Karhunen-
Loéve transform:

ξk(x) − E [ξk(x)] =
∞∑

i=1

Eiφi (x),

where the functions φi are deterministic and Ei are uncor-
related random variables with zero mean. The canonical
ordering of the terms Eiφi (x) also provides a suitablemethod
for approximating ξk(x), by truncating the sum at some finite
i = M , and we could then let E = (E1, . . . , EM ) (see for
instance Wang 2008).

But obtaining the Karhunen-Loéve transform can also be
challenging. Because of this, we present an extremely simple
approximation, that just relies on computation of the first two
moments of ξk . We letE be a 1-dimensional random variable
with E [E] = 0 and E

[
E2] = 1, and define

ξ̂k(x) = E [ξk(x)] + E
√
var(ξk(x)). (14)

This is indeed a very crude approximation, as essentially we
assume that the values of ξk at any set of inputs x are fully
correlated. But for probabilistic surrogates used in structural
reliability models, this is actually not that unreasonable, and
as it turns out, for the examples we consider in Sect. 6 it
seems sufficient.

Remark 6 Note that to update the approximate model ξ̂k(x)
in (14) given some new experiment (dk, ok), we only need
to update the mean and variance functions. This is in line
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Fig. 2 Illustration of the finite-dimensional approximation (14)

with the numerically efficient Bayes linear approach (Gold-
stein andWooff 2007), where random variables are specified
only through the first two moments, and where the Bayesian
updating given some experiment corresponds to computation
of an adjusted mean and covariance. An application of the
Bayes linear theory to sequential optimal design of experi-
ments can be found in (Jones et al. 2018).

We note also that in the case where Gaussian processes are
used as surrogate models, the classical and linear Bayesian
approaches are computationally equivalent. Moreover, in the
following section we will introduce the unscented transform
for approximation of the updated/adjusted moments, and as
a consequence the complete prior probability specification
of E becomes less relevant.

In the case where we are dealing with a hierarchical
model, it might not be convenient to compute E [ξk(x)] and
var(ξk(x)). If ξk(x) = g(Yk(x)) where Yk(x) is a stochastic
process with values in Rn for any x ∈ X, we would instead
approximate Yk with

Ŷk = E [Yk] + LE, (15)

whereE is n-dimensional with E [E] = 0, E[EET ] = I , and
the matrix L satisfies LLT = (Yk −E [Yk])(Yk −E [Yk])T .
The approximation of ξk is then obtained as ξ̂k(x) =
g(Ŷk(x)). The same goes for the scenario withmore than two
layers in the hierarchy, for instance ξk(x) = g(Zk(Yk(x))),
where we would approximate both Zk(y) and Yk(x). In any
case, we end up with a finite-dimensional random variable
E, and we can define the approximation ξ̂k(x,E).

4.2 The unscented transform for epistemic
uncertainty propagation

The unscented transform (UT) is a very efficient method for
approximating the mean and covariance of a random vari-
able after nonlinear transformation. UT is commonly applied
in the context of Kalman filtering, and it is based on the
general idea that it is easier to approximate a probabil-
ity distribution than an arbitrary nonlinear transformation
(Uhlmann 1995; Julier andUhlmann 2004). Intuitively, given
any finite-dimensional random variable E we may define a
set of weighted sigma-points {(vi , ei )}, such that if {(vi , ei )}

was considered as a discrete probability distribution, then
its mean and covariance would coincide with E. For any
nonlinear transformation Y = f (E), if E was discrete we
could compute the mean and covariance of Y exactly. The
UT approximation is the result of such computation, where
we make use of a small set of weighted points {(vi , ei )}.

Specifically, letE be a finite-dimensional random variable
with meanμ and covariance matrix�. A set of sigma-points
for E is a set of weighted samples {(v1, e1), . . . , (vn, en)}
such that

μ =
n∑

i=1

viei , � =
n∑

i=1

vi (ei − μ)(ei − μ)T . (16)

If y = f (e) is any (generally nonlinear) transformation, the
UT approximation of the mean and covariance of Y = f (E)

are then obtained as

Ê[Y] =
n∑

i=1

viyi ,

Ĉov[Y] =
n∑

i=1

vi (yi − Ê[Y])(yi − Ê[Y])T ,

(17)

where yi = f (ei ).
Naturally, the selection of appropriate sigma-points is

essential for UT to be successful. It is important to note that,
althoughwemay view the sigma-points asweighted samples,
vi and ei are fixed or given by some deterministic procedure.
Moreover, the definition of sigma-points given in (16) does
not require that the weights are nonnegative and sum to one.
Although this conflicts with the intuition of approximating
E with a discrete random variable, the unscented transform
still makes sense as a procedure for approximating statistics
after nonlinear transformation.

Since the introduction of UT to Kalman filters in the
1990’s, many different alternatives to sigma-point selection
have been proposed (Menegaz et al. 2015). These mostly
focus on applications where E follows a multivariate Gaus-
sian distribution, but we do not see this as a restriction since
we will assume that E can be represented as a transfor-
mation E = T −1(U) of a multivariate Gaussian variable
U . For the applications considered in this paper, we will
let {(vi ,ui )} denote a set of sigma-points that are appro-
priate for the multivariate standard normal U ∼ N (0, I )
where dim(U) = dim(E). If T is the corresponding iso-
probabilistic transformation, i.e. T (E) ∼ N (0, I ) (see
AppendixB.1),wewill use {(vi ,T −1(ui ))} as a set of sigma-
points for E. Equivalently, we could also view this as taking
the UT approximation of U under a different transformation
given by f ◦ T . For the numerical examples we present in
this paper, we have made use of the the method developed by
Merwe (2004), which produces a set of n = 2 · dim(E) + 1
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points ei with corresponding weights7. Determining sigma-
points with this procedure is quite straightforward, and the
details are given in Appendix C. We note again that for any
structural reliability model, as long as we do not change
dimensionality of E, determining the sigma-points is a one-
time computation, and any subsequent UT approximation of
Y = f (E), for some nonlinear transformation f (·), is com-
putationally very efficient.

Remark 7 Note that it is not necessary that the sigma points
used in the approximation of the mean and covariance in (17)
are the same. In fact, the method presented in Appendix C
makes use of two different sets of weights for these approx-
imations. As this is not of any relevance for the remaining
part of this paper, we will keep writing {vi , ei } as a single set
of sigma-points to simplify the notation.

4.3 Generating samples inX

In order to estimate the measures of residual uncertainty, we
will need a set of samples of X. We will generate a finite
set of 3-tuples {(xi , wi , η̂i )}, where {(xi , wi )} are weighted
samples inX suitable for obtaining importance sampling esti-
mates of failure probabilities, and η̂i is a number describing
how influential a given sample (xi , wi ) is expected to be in
such an estimate. In other words, {xi } should be constructed
to ”cover the relevant regions in X”, and for estimation we
will onlymake use of a subset of {(xi , wi )}. The relevant sub-
set will be determined from the measure of insignificance
|η̂i |, where we will only consider samples (xi , wi ) where
|η̂i | is below some threshold. We start by describing how the
weighted samples {(xi , wi )} are generated.

4.3.1 Importance sampling

The general idea behind importance sampling is that if we
select some random variable Q ≥ 0 with law PQ , such that
EPX[Q] = 1 and Q �= 0 PX-almost surely, then

EPX[ f (X)] = EPQ [ f (X)/Q], (18)

for anyA -measurable function f (x). This is often useful for
estimation, for instance when sampling from PX is difficult,
and in the case where we can find a Q such that estimates
with respect to the right hand side of (18) are better (have
lower variance) than estimating EPX[ f (X)] directly.

7 Other alternatives for sigma-point selection could also be applied,
potentially with better performance. The method by Merwe (2004)
depends on a set of parameters, and it could also be relevant to refine
or learn the appropriate parameter values as in (Turner and Rasmussen
2010).However, in our current implementationwe have only considered
the fixed set of sigma-points given in Appendix C.

In the case where X admits a probability density pX, we
can let qX be any density function such that qX(x) > 0 when-
ever pX(x) > 0. Let x1, . . . , xN be i.i.d. samples generated
according to qX, and definewi = pX(xi )/qX(xi ). The impor-
tance sampling estimate of EPX[ f (X)] with respect to the
proposal density qX is then obtained as

EPX[ f (X)] = EPQ

[

f (X)
pX(X)

qX(X)

]

≈ 1

N

N∑

i=1

f (xi )wi . (19)

We now assume that the stochastic limit state can be written
as ξk(x,E) for some finite-dimensional random variable E,
and for any deterministic performance function ξk(x, e) we
will write αk(e) = α(ξk(X, e)) as the corresponding failure
probability.An importance sampling estimate ofαk(e) is then
given by (19) with f (x) = 1 (ξk(x, e) ≤ 0), that is

α̂k(e) = 1

N

N∑

i=1

1 (ξk(xi , e) ≤ 0) wi . (20)

In order to obtain a good estimate of αk(e), we would like the
proposal distribution qX to produce samples such that there
is an even balance between the samples where ξk(x, e) ≤ 0
and ξk(x, e) > 0, where at the same time pX is as large
as possible. One way to achieve this is to generate samples
in the vicinity of points on the surface ξk(x, e) = 0 with
(locally)maximal density. A point with this property is called
a design point8 ormost probable failure point in the structural
reliability literature. We will let qX represent a mixture of
distributions, centered around different design points that are
appropriate for different values of e. The full details are given
in Appendix B, where we also describe a simpler alternative
than can be used in the case where design point searching is
difficult or not appropriate.

4.3.2 The measure of insignificance |�i|

Assume {(xi , wi )} is a set of samples capable of providing a
satisfactory estimate of αk(e), and we now want to estimate
αk(e′) for some new value e′. If we know that the sign of
ξk(xi , e) and ξk(xi , e′) will coincide for many of the sam-
ples xi , then the estimate of αk(e′) can be obtained more
efficiently by not computing all the terms in the sum (20).
This is typically the case when e and e′ are both sampled
from E. It is also true in the case where we want to estimate
αk+1(e′) given some new experiment (dk, ok), if we assume
that updating with respect to (dk, ok) has local effect (i.e.
there are always regions in X where ξk+1(x) ≈ ξk(x)), or if

8 The most common definition of a design point is that it is the point
on the limit state surface with maximal density after transformation to
the standard normal space. See Appendix B.1
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the experiment is carried out to reduce the uncertainty in the
level set ξk = 0 (which is what we intend to do).

In other words, we consider some perturbation of the
performance function ξk(x, e), and we are interested in
identifying the samples xi where 1 (ξk(xi , e) ≤ 0) does not
change under the perturbation. For this purpose we define the
function

η(x, ξ) = E [ξ(x)] /
√
var(ξ(x)), (21)

and let ηi = η(xi , ξk) be defined with respect to the relevant
process ξk . Here ηi describes how uncertain ξk(xi ) is around
the critical value ξk = 0, in the sense that if |ηi | is small (close
to zero) then ξk(xi ) > 0 and ξk(xi ) ≤ 0may both be probable
outcomes. Conversely, if |ηi | is large then either P(ξk(xi ) ≤
0) ≈ 0 or P(ξk(xi ) ≤ 0) ≈ 1, and the input xi is insignificant
as it is unnecessary to keep track of changes in 1 (ξk(xi ) ≤ 0).
We will use ηi to prune the sample set {(xi , wi )}, by only
considering the sampleswhere |ηi | is below a given threshold
τ . Although this is an intuitive idea, we may also justify the
definition of η and selection of a threshold τ more formally
by making use of the following proposition.

Proposition 41 Given any process ξ(x), let η(x) = η(x, ξ)

be defined as in (21) and let τ >
√
2. Assume ξ (1) and ξ (2)

are two i.i.d. random samples from ξ(x). Then,

P
(
1
(
ξ (1) ≤ 0

)
�= 1

(
ξ (2) ≤ 0

) ∣
∣
∣ |η| ≥ τ

)

≤ 2

τ 2

(

1 − 1

τ 2

)

.
(22)

Proof Let p = P(ξ(x) ≤ 0) and γ (p) = p(1 − p) for
short (note also that this is (8) for ξ = ξk), and observe
that P

(
1
(
ξ (1) ≤ 0

) �= 1
(
ξ (2) ≤ 0

)) = 2γ (p). Assume first
that η > 0. Then E[ξ ] > 0 and by Chebyshev’s one-sided
inequality we get

η = τ ⇒ p ≤ var(ξ(x))
(var(ξ(x)) + E[ξ(x)]2) ≤ 1

τ 2
,

and as τ >
√
2we also get p ≤ 1/2. Since γ (p) is increasing

for p ∈ [0, 1/2], we must have γ (p) ≤ γ (1/τ 2).
Conversely, if −τ = η < 0 then p ≥ 1 − 1/τ 2 ≥ 1/2,

and as γ (p) is decreasing for p ∈ [1/2, 1] we have that
γ (p) ≤ γ (1 − 1/τ 2) = γ (1/τ 2). Hence, combining both
cases we get |η| = τ ⇒ γ (p) ≤ γ (1/τ 2), and (22) is proved
by observing that γ (1/(τ + ε)2) ≤ γ (1/τ 2) for any ε > 0.
��

Although Proposition 41 holds in general, tighter (and prob-
ably more realistic) bounds can be obtained by making
assumptions on the form of ξ(x). For instance, in the case

where ξ(x) is Gaussian we obtain

P
(
1
(
ξ (1) ≤ 0

)
�= 1

(
ξ (2) ≤ 0

) ∣∣
∣ |η| ≥ τ

)

≤ 2Φ(τ)Φ(−τ),
(23)

where Φ(·) is the standard normal CDF.
We will make use of η̂i obtained as the UT approximation

of ηi . That is, η̂i is in general obtained from the finite-
dimensional approximation described in Sect. 4.1, combined
with the UT approximation (17) with Y = ξ̂k(x,E).

4.4 Importance sampling estimates with pruning

Let {(xi , wi , η̂i ) | i ∈ I }, I = {1, . . . , N0} be a set of
samples generated as described in Sect. 4.3.Given somefixed
threshold τ > 0, we define the subset of pruned samples as
the ones corresponding to the index set Iτ = {i ∈ I | η̂i <

τ }, and define Īτ = I \Iτ . If f (x) is some A -measurable
function where we know a priori the value of fi = f (xi ) for
all i ∈ Īτ , then we can immediately compute

h̄ = 1

N0

∑

i∈Īτ

fiwi , (24)

and the importance sampling estimate of the expectation of
f (X) becomes

Ê[ f (X)] = h̄ + 1

N0

∑

i∈Iτ

f (xi )wi . (25)

If we let

sh̄ = 1

N0

∑

i∈Īτ

(
fiwi − Ê[ f (X)])2 , (26)

then an unbiased estimate of the sample variance is given as

v̂ar(Ê[ f (X)]) = sh̄
N0 − 1

+ 1

N0(N0 − 1)

∑

i∈Iτ

(
f (xi )wi − Ê[ f (X)])2 ,

(27)

which shows the general idea with this pruning, namely that
low variance estimates of E[ f (X)] can be obtained with a
small number of evaluations f (xi ), assuming that the subset
Iτ is small compared to I (and that the assumed values fi
are correct).

One drawback with this procedure is that we do not have
control over the number of pruned samples, which still might
be very large. In order to set an upper bound on the number
of evaluations f (xi ), we letI n

τ ⊆ Iτ contain the first n ele-
ments ofIτ (or some other subset, as long as the elements of
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{xi | i ∈ I n
τ } remain independent). An importance sampling

estimate of E[ f (X)] using only samples from I n
τ is given

as

Ê[ f (X)] = h̄ + r̄ , r̄ = Nτ

nN0

∑

i∈I n
τ

f (xi )wi , (28)

where Nτ = |Iτ |, and we may estimate the sample variance
as

v̂ar(Ê[ f (X)]) = 1

N0 − 1
(sh̄ − h̄2)

+ Nτ

nN0 − Nτ

⎛

⎝−r̄2 + Nτ

nN0

∑

i∈I n
τ

( f (xi )wi )
2

⎞

⎠ .

(29)

Obtaining consistency results is easy under the ideal assump-
tion that n(N0 − Nτ )/Nτ is an integer, and the formulas in
(28)–(29) comes as a consequence of the following result.

Proposition 42 Assume n(N0 − Nτ )/Nτ ∈ N. Then (28) is
an unbiased estimate of E[ f (X)] and (29) is an unbiased
estimate of the sample variance.

Proof Let Ī n
τ be a set of n(N0 − Nτ )/Nτ elements selected

uniformly random from Īτ and define I n = I n
τ ∪ Ī n

τ .
Then {xi | i ∈ I n} is a set of size |I n| = nN0/Nτ , contain-
ing i.i.d. samples from the proposal distribution with density
q(x). To show consistency we replace each sample xi with
i.i.d. random variablesXi distributed according to q.We then
define μ̂ = μ̂1 + μ̂2 where

μ̂1 = 1

|I |
∑

i∈I

1 (η(Xi ≥ τ)) f (Xi )w(Xi ),

μ̂2 = 1

|I n|
∑

i∈I n

1 (η(Xi < τ)) f (Xi )w(Xi ),

and where w(x) = p(x)/q(x), and we can observe that μ̂ =
Ê[ f (X)] when Xi = xi .

To show that Ê[ f (X)] is unbiased it is enough to
observe that Eq [μ̂] = Eq [1 (η(X ≥ τ)) f (X)w(X)] +
Eq [1 (η(X < τ)) f (X)w(X)] = Eq [ f (X)w(X)] = E[ f (X)].

As for the variance, we first observe that var(μ̂) =
var(μ̂1)+ var(μ̂2) where var(μ̂1) = var(1 (η(X ≥ τ)) f (X)

w(X))/|I | and var(μ̂2) = var(1 (η(X < τ)) f (X)w(X))/|
I n|. Replacing var(μ̂1) and var(μ̂2) with unbiased sample
variances using the samples Xi = xi we obtain

v̂ar(μ̂1) = 1

|I |(|I | − 1)

∑

i∈I

(
1 (η(xi ≥ τ)) f (xi )w(xi ) − h̄

)2

= 1

|I | − 1

⎛

⎝−h̄2 + 1

|I |
∑

i∈I

(1 (η(xi ≥ τ)) f (xi )w(xi ))
2

⎞

⎠

= 1

|I | − 1
(−h̄2 + sh̄),

and similarly

v̂ar(μ̂2) = 1

|I n| − 1

⎛

⎝−r̄2 + 1

|I n|
∑

i∈I n
τ

( f (xi )w(xi ))2

⎞

⎠ ,

where we have used that h̄ and r̄ are unbiased estimates of
Eq [μ̂1] and Eq [μ̂2], respectively. The expression in (29) is
then obtained as v̂ar(μ̂1)+ v̂ar(μ̂2) using that |I | = N0 and
|I n| = nN0/Nτ . ��

4.5 The UT-MCIS approximation of H1,k, H2,k and
H3,k

Using the tools introduced in the preceding subsections, we
now present how the measures of residual uncertainty, H1,k ,
H2,k and H3,k , can be approximated using Monte Carlo sim-
ulationwith importance sampling (MCIS) combinedwith the
unscented transform (UT) for epistemic uncertainty propa-
gation.

We first let ξ̂k(x,E) be the finite-dimensional approx-
imation introduced in Sect. 4.1, with the corresponding
failure probability α̂k(E) = α(ξ̂k(x,E)). We then let
{(xi , wi , η̂i ) | i ∈ I }, I = {1, . . . , N0} be a set of sam-
ples generated as described in Sect. 4.3, where η̂i is obtained
using the UT approximation of ξ̂k(xi ,E). We will make use
of importance sampling estimates as introduced in Sect. 4.4,
where Iτ = {i ∈ I | η̂i < τ }, and estimation is based on
a small subset {(xi , wi , η̂i ) | i ∈ I n

τ } where I n
τ ⊂ Iτ and

|I n
τ | = n < Nτ = |Iτ |.

4.5.1 Approximating H1,k

Let fi = 1
(
η̂i ≤ 0

)
for i ∈ Īτ and compute h̄1 as in (24).

Wewill let {(v j , e j ) | j = 1, . . . , M} denote the set of sigma-
points as introduced in Sect. 4.2.

For any fixed e j , the corresponding importance sampling
estimate of the failure probability α̂k(e j ) is obtained as

α̂
j
k = h̄1 + Nτ

nN0

∑

i∈I n
τ

1
(
ξ̂k(xi , e j ) ≤ 0

)
wi , (30)

and we let Ĥ1,k be given by the UT approximation

Ê[α̂k] =
M∑

j=1

v j α̂
j
k ,

Ĥ1,k = v̂ar[α̂k] =
M∑

j=1

v j (α̂
j
k − Ê[α̂k])2.

(31)
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4.5.2 Approximating H2,k and H3,k

Both H2,k and H3,k are defined through the function γk(x),
which represents the uncertainty in the sign of ξk(x). We will
approximate γk(xi ) with the following function

γ̂ i
k = Φ(η̂i )Φ(−η̂i ), (32)

where Φ(·) is the standard normal CDF. There are two ways
of interpreting this approximation. First of all, γ̂k,i corre-
sponds to the case where ξ̂k(xi ,E) is Gaussian, whichmay or
may not be an appropriate assumption. Alternatively, we can
think of γk(x) as a measure of uncertainty in 1 (ξk(x) ≤ 0),
and any γ (x) ∝ −|η(x)| = −|E[ξk(x)]|/√var(ξk(x)) is
reasonable. In this scenario it is natural to consider γ =
s(η)s(−η) for some sigmoid function s(·), and the function
Φ(·) in (32) is one such alternative.

For a single approximation of H2,k or H3,k it is really
not necessary to split the importance sampling estimate as
in (24)–(28), but we will present it in this form as it will
be convenient when we consider strategies for optimization.
Given γ̂ i

k as in (32), we approximate H2,k and H3,k by

Ĥ2,k = h̄2 + Nτ

nN0

∑

i∈I n
τ

γ̂ i
kwi ,

Ĥ3,k =
⎛

⎝h̄3 + Nτ

nN0

∑

i∈I n
τ

√
γ̂ i
kwi

⎞

⎠

2

,

(33)

where we let h̄2 = h̄3 = 0. Alternatively, if the intention is
to use H2,k and H3,k as upper bounds on H1,k , we could let
h̄2 = 1

N0
Φ(τ)Φ(−τ)

∑
wi , h̄2 = 1

N0

√
Φ(τ)Φ(−τ)

∑
wi

where the sums are over i ∈ Īτ .

5 Numerical procedure for one-step
lookahead optimization

In the one-step lookahead case, the optimal decision dk at
each time step k is found by solving the following optimiza-
tion problem

dk = argmind∈D Ji,k(d) for i = 1, 2, or 3, (34)

where Ji,k(d) is the relevant acquisition function as defined
in (13). We propose a procedure where we make use of a
UT-MCIS approximation of Ji,k(d) to find an approximate
solution to (34). This will build on the approximation of Hi,k

introduced in Sect. 4, but where we now also make use of the
predictive model δ to approximate expectations with respect
to future values of Hi,k+1.

In Sects. 5.1 and 5.2we present how theUT-MCIS approx-
imation of Ji,k(d) is obtained, and in Sect. 5.3 we propose a
criterion for determining when the sequence of experiments
should be stopped. The final algorithm is summarized in
Sect. 5.4

5.1 The probabilistic model (�̂k, ı̂k)

Starting with some probabilistic model (ξk, δk), recall that
ξk represents uncertainty about the performance of the sys-
tem under consideration, and δk represents uncertainty with
respect to outcomes of certain decisions. We have already
discussed how to obtain a finite-dimensional approximation
of ξk , and likewise, this will also be needed for δk .

Assuming δk is square integrable, we will make use of the
same type of finite-dimensional approximation as the one
introduced for ξk in Sect. 4.1. In this way, we end up with
two finite-dimensional Ek-measurable random variables Eξ

andEδ ,which in turndetermine the approximations ξ̂k(x,Eξ )

and δ̂k(d,Eδ), where both ξ̂k(x, e) and δ̂k(d, e) are determin-
istic functions for e fixed. Here Eξ and Eδ are generally not
independent.

Remark 8 Note that if δ(d) is a function of some of the uncer-
tain sub-components of ξ , then we might already have a
finite-dimensional approximation of δ available.

Consider for instance the model in Example 4 and the
discussion in the end of Sect. 4.1. In this case, ξ̂ is obtained as
a function of the finite-dimensional approximation ŷ1(x,E)

of a sub-component ỹ1(x), and δ(d) is given as δ(d(x)) =
ỹ1(x)+ε(x). Hence, allwe need is to find afinite-dimensional
representation of the noise ε(x). But observational noise such
as ε(x) is often described as a function of x and some 1-
dimensional random variable, in which case no additional
approximation will be needed.

We will let (ξ̂k, δ̂k) denote the finite-dimensional approx-
imation of (ξk, δk) corresponding to a finite-dimensional
random variable E = (Eξ ,Eδ), and where (ξ̂0, δ̂0) is the
initial model that is used as input for determining the first
decision d1.

Remark 9 In the canonical case where a surrogate ỹ(x) is
used to represent some unknown function y(x), an initial set
of experiments is often performed to establish ỹ(x) before
any sequential strategy is started. For instance, in the case
where evaluation of y(x) means running deterministic com-
puter code, it is normal to set up a space-filling initial design
using e.g. Latin Hypercube Sampling.

When ỹ(x) is a Gaussian process model as described in
Appendix A, specific mean and covariance functions may
also be selected based on knowledge or assumptions about
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the phenomenon that is being modelled by y(x). For esti-
mation of failure probabilities it is also convenient to make
use of conservative prior mean values. That is, prior to any
experiment ỹ(x) will correspond to a value associated with
poor structural performance (small ξ ), such that α(ξ) will
be biased towards higher failure probabilities in the absence
of experimental evidence. This reasonable from a safety per-
spective, and also numerically as larger failure probabilities
are easier to estimate.

5.2 Acquisition function approximation

To find an approximate solution to the optimization problem
(34), we will replace the acquisition function Ji,k(d) with an
approximation Ĵi,k(d). Recall that Ji,k(d) as defined in (13)
is a function of Ek,d

[
Hi,k+1

]
, where Ek,d is the conditional

expectation with respect to Ek with dk = d. In Sect. 4 we
introduced an approximation Hi,k , and we will make use of
the same idea to approximate Ek,d

[
Hi,k+1

]
.

Assume k experiments have been performed, giving rise
to the model (ξk, δk) and the approximation (ξ̂k, δ̂k). If we
consider the kth decision dk = d, then Hi,k+1 is a priori
a δk(d)-measurable random variable. That is, Hi,k+1 is a
function of δk(d), and we are interested in the expectation
Ek,d

[
Hi,k+1

] = E
[
Hi,k+1(δk(d))

]
. To approximate this

quantity, we can make use of (ξ̂k, δ̂k) in the place of (ξk, δk),
in which case Hi,k+1 becomes a function of E and we can
approximate its expectation using UT.

The approximate acquisition functions are then given as

Ĵi,k(d) = λ(d)Êk,d [Ĥi,k+1], (35)

where Êk,d [Ĥi,k+1] is obtained as follows:

5.2.1 Generating samples of �̂k+1

Let {(vξ
j , e

ξ
j ) | j = 1, . . . , Mξ } and {(vδ

m, eδ
m) | m =

1, . . . , Mδ} denote sigma-points as introduced in Sect. 4.2
forEξ andEδ , respectively.We then let {(xi , wi , η̂i ) | i ∈ I },
I = {1, . . . , N0} be a set of samples generated as described
in Sect. 4.3, where η̂i is obtained using theUT approximation
of ξ̂k(xi ,Eξ ). As for the approximation of Hi,k discussed in
Sect. 4.5, we let Iτ = {(xi , wi , η̂i ) |η̂i < τ } and define the
subset I n

τ ⊆ Iτ of size n.
The approximations of Ek,d

[
Hi,k+1

]
for i = 1, 2 and 3

will all be based on samples of ξ̂k+1 of the form

ξ̂
m,i, j
k+1 = ξ̂k+1(x, e

ξ
j , d, eδ

m), (36)

where ξ̂k+1(x, e
ξ
j , d, eδ

m) is the finite-dimensional approx-

imation of ξk |dk = d, ok = δ̂(eδ
m) evaluated at (x, eξ

j ).

The scalar ξ̂
m,i, j
k+1 is computed for all j = 1, . . . , Mξ ,

m = 1, . . . , Mδ and i =∈ I n
τ . As in Sect. 4.5 we set

h̄2 = h̄3 = 0 and compute h̄1 as in (24) with fi = 1
(
η̂i ≤ 0

)

for i /∈ Iτ .

5.2.2 The UT-MCIS approximation of Ek,d
[
H1,k+1

]

The approximation Êk,d [Ĥ1,k+1] is just a weighted sum of
the terms in (36), but for clarity we present it in the following
three steps

MCIS of α(ξ̂k+1) :
α̂
m, j
k+1 = h̄1 + Nτ

nN0

∑

i∈I n
τ

1
(
ξ̂
m,i, j
k+1 ≤ 0

)
wi , (37)

UT of H1,k+1 :

Ĥm
1,k+1 =

Mξ
∑

j=1

v
ξ
j (α̂

m, j
k+1)

2 −
⎛

⎝
Mξ
∑

j=1

v
ξ
j α̂

m, j
k+1

⎞

⎠

2

, (38)

UT of Ek,d
[
H1,k+1

] :

Êk,d [Ĥ1,k+1] =
Mδ
∑

m=1

vδ
m Ĥ

m
1,k+1. (39)

5.2.3 The UT-MCIS approximation of Ek,d
[
H2,k+1

]
and

Ek,d
[
H3,k+1

]

The weighted sums that gives the approximations of
Ek,d

[
H2,k+1

]
and Ek,d

[
H3,k+1

]
can be obtained as follows

UT of E[ξ̂k+1(xi )] : μ̂
i,m
k+1 =

Mξ
∑

j=1

v
ξ
j ξ̂

m,i, j
k+1 , (40)

UT of var[ξ̂k+1(xi )] :

(σ̂
i,m
k+1)

2 =
Mξ
∑

j=1

v
ξ
j (ξ̂

m,i, j
k+1 − μ̂

i,m
k+1)

2, (41)

Using Φ to approximate γ̂k+1(ξi ) :
γ̂
i,m
k+1 = Φ(η̂

i,m
k+1)Φ(−η̂

i,m
k+1), η̂

i,m
k+1 = μ̂

i,m
k+1/σ̂

i,m
k+1 (42)

MCIS of H2,k+1 :
Ĥm
2,k+1 = h̄2 + Nτ

nN0

∑

i∈I n
τ

γ̂
i,m
k+1wi , (43)
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MCIS of H3,k+1 :
√
Ĥm
3,k+1 = h̄3 + Nτ

nN0

∑

i∈I n
τ

√
γ̂
i,m
k+1wi , (44)

and where Êk,d [Ĥ2,k+1] and Êk,d [Ĥ3,k+1] are obtained with
the same formula as for Êk,d [Ĥ1,k+1] in (39).

Remark 10 The number of model updates and function eval-
uations needed to generate the set {ξ̂m,i, j

k+1 } are Mδ and
nMξ Mδ . We can view this as a discretization of the system
dynamics, where there are only Mδ possible future scenarios
corresponding to the decision dk = d, which are given by the
model updates ξk → ξk+1(eδ

m) = ξk |dk = d, ok = δ̂k(eδ
m).

The samples in (36) are the ones needed for approximat-
ing the measure of residual uncertainty corresponding to
ξk+1(eδ

m) for each m = 1, . . . , Mδ .
Moreover, although the approximations Êk,d [Ĥi,k+1] are

presented as weighted sums of the nMξ Mδ terms ξ̂
m,i, j
k+1 , this

can also be obtained from a sequence of nested loops for a
more memory efficient implementation. See for instance the
schematic illustration in Fig. 3.

5.3 Stopping criterion

For design strategies that make use of heuristic acquisition
functions, it can be challenging to determine an appropriate
stopping criterion. Here, we have considered the approxima-
tion Ĥ1,k which has a natural interpretation. Hence, even if
we make use of a criteria such as Ĥ2,k or Ĥ3,k to determine
the next optimal decision, it makes sense to use Ĥ1,k as an
indicator of when the potential uncertainty reduction from
future experiments is diminishing.

We will let Ê[α̂k] and Ĥ1,k be given as in (31), and define

V̂k =
√
Ĥ1,k

Ê[α̂k]
. (45)

Then V̂k is the UT-MCIS approximation of the coefficient of
variation of the failure probability αk with respect to epis-
temic uncertainty. We will let V̂k ≤ Vmax for some threshold
Vmax serve as a criterion for stopping the iteration procedure,
in the casewhere a predefinedmaximumnumber of iterations
Kmax has not already been reached.

Remark 11 The coefficient of variation is often used as a
numerical criterion for convergence in Monte Carlo simula-
tion. In structural reliability analysis, a coefficient of variation
below 0.05 is often used as an acceptable level for failure
probability estimation.

Note also that the criterion V̂k ≤ Vmax for arbitraryVmax ≥
0 implicitly assumes that the epistemic uncertainty can be
reduced to zero in the limit. If this is not the case, one might

instead consider stopping when V̂k is no longer decreasing.
A different stopping criterion is also considered in Sect. 6.4.

5.4 Algorithm

The complete procedure for myopic/one-step lookahead
optimization is summarized in Algorithm 1. Note that for
simplicity the number of MCIS samples N0 and n are speci-
fied as input, but one may also consider deciding these using
(28) and (29). Using a standard technique in Monte Carlo
simulation, one could keep increasing N0 and n until the
coefficient of variation (std/mean) of the relevant estimator
is sufficiently small.

Algorithm 1: One-step lookahead optimization

input: Model and sigma-points: (ξ̂0, δ̂0) and {(vξ
j , e

ξ
j )},

{(vδ
j , e

δ
j )}.

Number of samples for UT-MCIS and threshold:
N0, n ∈ N and τ > 0,
Max number of iterations and convergence criteria: Kmax
and Vmax.

for k = 0 to Kmax − 1 do
(1) Generate samples {(xi , wi , η̂i )} as described in
Section 4.3 and compute h̄1 = 1

N0

∑
|η̂i |≥τ 1

(
η̂i ≤ 0

)
wi .

(2) Compute V̂k as in (45)

if V̂k > Vmax then
(3) Compute the set {ξ̂m,i, j

k+1 } as in (36) and define the

function Ĵi,k(d) as in (35)
(for i = 1, 2, or 3 depending on the acquisition function of
choice)

(4) Find the optimal decision: dk = argmind∈D Ĵi,k(d)

(5) Make decision dk and obtain (dk , ok)

(6) Update model (ξ̂k+1, δ̂k+1) = (ξ̂k , δ̂k)|(dk , ok)
else

Break. Convergence has been reached before Kmax
iterations.

6 Numerical experiments

Here we present a few numerical experiments using the algo-
rithm for one-step lookahead optimal design presented in
Sect. 5.4. Four experiments are presented, each with its own
objective:

(1) Section 6.1: A toy example in 1d for conceptual illustra-
tion of the sequential design procedure.

(2) Section 6.2: A hierarchical model with multiple ’expen-
sive’ sub-components.

(3) Section 6.3: A non-hierarchical benchmark problem for
comparison against alternative strategies.

123



   27 Page 18 of 29 Statistics and Computing            (2021) 31:27 

Fig. 3 Illustration of how Êk,d [Ĥ1,k+1] is obtained using UT over epistemic uncertainties. Here Ĥ1,k+1(eδ
m) for m = 1, . . . , Mξ is obtained from

the MCIS estimates of α(ξ̂k+1(e
ξ
j ))

(4) Section 6.4Amodel that ismore in resemblance of a real-
istic application in structural reliability analysis, where
we introduce different types of decisions by considering
both probabilistic function approximation and Bayesian
inference of model parameters through measurements
with noise.

All numerical experiments have been performed using Algo-
rithm 1 with the parameters τ = 3, N0 = 104, n = 103 and
Vmax = 0.05. This choice of Vmax corresponds to a 5% coef-
ficient of variation on the estimated failure probability, and
τ = 3 should give a reasonable coverage for importance
sampling (from Proposition 41 the probability of misclas-
sification is less than 0.2 in the extreme case (Chebyshev)
and less than 0.003 under the Gaussianity assumption). The
number of samples, N0 and n was chosen to make evalu-
ation of the acquisition function reasonably cheap, and the
choice N0 = 104, n = 103 worked well in all of our experi-
ments. Note that for final estimates of the failure probability,
after an optimal decision has been found, a larger number of
samples may be used for increased accuracy. The probabilis-
tic surrogate models used in the examples are all Gaussian
process (GP) models with Matérn 5/2 covariance. A short
summary of the relevant Gaussian process theory is given in
Appendix A.

6.1 Example 1: Illustrative 1d example

To illustrate the one-step lookahead procedure, we present
a simple 1d example similar to the one given in (Bect et al.
2012), where we aim to emulate the limit state function

g(x) = 1 − ((0.4x − 0.3)2 + exp(−11.534|x |1.95)
+ exp(−5(x − 0.8)2)

)
.

(46)

We assume that g(x) can be evaluated at any x ∈ R without
error, but that function evaluations are expensive. We will let
ξ(x) be the probabilistic surrogate in the form of a Gaussian
process, where we use a prior mean μ(x) = −0.5 together
with aMatérn 5/2 covariance functionwith fixed kernel vari-
ance σ 2

c = 0.1 and length scale l = 0.5.
We assume that X follows Normal distribution with mean

μX = −0.5 and standard deviation σX = 0.2, and our goal is
to estimate α(g) = P(g(X) ≤ 0) using only a small number
of evaluations of g(·). The set of decisions is therefore D =
∪x {evaluate g(x)} with respective outcomes o(x) = g(x),
and a predictive model for outcomes given as δ(x) = ξ(x).

Using a large number of samples of g(X) we estimate
α(g) ≈ 0.0234, and we will consider this as the ’true’ failure
probability for comparison.

We initiate ξ by evaluating g(x) at x = μX . For sub-
sequent function evaluations, we minimize the expected
variance in the failure probability. I.e. weminimize the acqui-
sition function J1,k given in (13) with λ ≡ 1. For comparison
we also evaluate J2,k and J3,k , and in this example it seems
that all three acquisition functions would perform equally
well. Figure 4 shows ξk and the corresponding three acquisi-
tion functions for the first few experiments, and Fig. 5 shows
how α(ξk) evolves before converging after k = 3 iterations.

6.2 Example 2: A 3 layer hierarchical model with 7d
input

In this example we consider the structural reliability bench-
mark problem given as problem RP38 in (Rozsas and Slobbe
2019). Here, x = (x1, . . . , x7) ∈ X = R7, and the limit
state function g(x) can be written in terms of intermediate
variables as follows:
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Fig. 4 (Example 1) The top row shows the true limit state function
g(x), the probability density of X , and the mean ± 2 standard devia-
tions of the GP ξk for k = 0, 1 and 3. The samples indicated with × on

the x-axis are used in the importance sampling estimates of J1,k , J2,k
and J3,k that are shown in the bottom row

y1(x) = x1x32
2c4x33

, y2(x) = x24
c2

,

y3(x) = −4x5x6x
2
7 + x4(x6 + 4x5 + 2x6x7),

y4(x) = x4x5(x4 + x6 + 2x6x7),

z1(y) = c4y1y2
c3

, g(y, z1) = 1 − c2c3z1 + c4y1y3
c1y4

,

where c1, c2, c3 and c4 are constants: c1 = 15.59 · 104, c2 =
6 · 104, c3 = 2 · 105, c4 = 1 · 106.

Figure 6 shows a graphical representation of how g(x)
depends on the intermediate variables z1, y1, y3 and y4. We
will assume that the functions y2(x) and z1(y) will require
probabilistic surrogates, where y2(x) and z1(y) can be evalu-
ated without error for any input x and y. We will also assume
that there is no difference in the cost associated with evaluat-
ing y2 or z1, and our goal is to estimate the failure probability
α(g) while keeping the total number of function evaluations
of y2(x) and z1(y) as small as possible. Note that the effec-
tive domain of y2 is 1-dimensional and the effective domain
of z1 is 2-dimensional. Hence, using surrogates for y2 and z1
should be much more efficient than building a single surro-
gate for g using samples g(xi ).

As for the randomvariableX = (X1, . . . , X7), we assume
that all Xi ’s are independent and normally distributed, Xi ∼
N (μi , σi ), with means μ1 = 350, μ2 = 50.8, μ3 = 3.81,

μ4 = 173,μ5 = 9.38,μ6 = 33.1,μ7 = 0.036, and standard
deviation σi = 0.1μi . The ’true’ failure probability we aim
to estimate is α(g) ≈ 8.1 · 10−3.

Assuming y2 and z1 are expensive to evaluate, we intro-
duce two Matérn 5/2 GP surrogates, ỹ2 and z̃1. The initial
kernel parameters are (σ 2

c = 0.03, l = 20) and (σ 2
c =

2, l = [0.5, 0.5]) for ỹ2 and z̃1, respectively. These parame-
ters may be updated by maximum likelihood estimation, but
not until a few observations (resp. 2 and 5) have been made.
We know that large values of y2 or z1 will result in poor
structural performance (small g(x)), so we initiate the GP
models with conservative prior means of μ(x) = 1 for ỹ2
and μ(y) = 5 for z̃1. Both models are initially updated with
one observation each, ỹ2(μ4) = y02 and z̃1(y01 , y

0
2 ) = z01 for

y01 = y1(μ1, μ2, μ3), y02 = y2(μ4) and z01 = z1(y01 , y
0
2 ).

In this example,wewould thendefine ξ(x) = g(y1, z̃1, ỹ2,
y3, y4). With respect to z̃1, there is a set of possible decisions
for uncertainty reduction, namelyD = ∪y1,y2{evaluate z1(y1,
y2)}, with a corresponding set of observations O = ∪y1,y2
{z1(y1, y2)}, and a predictive model δ(y1, y2) = z̃1(y1, y2).
Similarly, we obtain a set of decisions, outcomes and a pre-
dictive model for ỹ2, and we can update D, O and δ(d)

accordingly.
Convergence was reached at iteration k = 10, after 2

additional evaluations of y2 and 8 additional evaluations of
z1. Figure 7 shows the updated surrogate models, ỹ2|Ik and
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Fig. 5 (Example 1) Top: Mean ± 2 standard deviations of αk after k
iterations, as computed using the approximation described in Sect. 4.
Bottom: The distribution of αk at the final iteration k = 3, estimated
from a double-loop Monte Carlo (i.e. by sampling from α(ξk) without
any approximation)

Fig. 6 (Example 2)Hierarchical representation of g(x).We assume that
the intermediate variables y2(x) and z1(y) are expensive to evaluate

z̃1|Ik for k = 10, and Fig. 8 shows how α(ξk) evolves with
each iteration. At each iteration, the next experiment was
decided by minimizing the acquisition function J3,k with
respect to updating each of the two surrogate models.

6.3 Example 3: The 4 branch system

Here we consider the ’four branch system’, a classical 2D
benchmark problem given by the limit state

g(x) = min

⎧
⎪⎪⎨

⎪⎪⎩

3 + 0.1(x1 − x2)2 − (x1 + x2)
√
2;

3 + 0.1(x1 − x2)2 + (x1 + x2)
√
2;

(x1 − x2) + 6
√
2;

(x2 − x1) + 6
√
2

⎫
⎪⎪⎬

⎪⎪⎭
, (47)

and where x1 and x2 are independent standard normal vari-
ables. In this examplewewill notwrite (47) as an hierarchical
model, in order to compare ourmethodwith other alternatives
that are tailored to to non-hierarchical setting. We therefore
let ξ(x) be a Gaussian process surrogate of g(x), constructed
from observations (xi , g(xi )). For the initial ’conservative’
Gaussian process we select a prior mean of−1, aMatérn 5/2
kernel with parameters of (σc = 1, l = 3), and condition on
the initial observation (0, g(0)).

According to Huang et al. (2017), the method called AK-
MCS developed by Echard et al. (2011) is considered a
typical and mature approach, and should therefore be a suit-
able candidate for comparison. In addition, Echard et al.
(2011) also provide the results from using a number of other
alternatives proposed in Schueremans and Gemert (2005).
Table 3 gives a summary of the results from Echard et al.
(2011), together with the those obtained using the approach
presented in this paper.

Our results in Table 3 are obtained using Algorithm 1with
three different stopping criteria, Vmax = 0.1, Vmax = 0.05
and Vmax = 0.025. Instead of point estimates we pro-
vide prediction intervals, which in this example contain the
’true’ failure probability obtained with Monte Carlo in each
scenario. From a practical perspective, even the estimates
obtained using only 35 evaluations (Vmax = 0.1) of (47)
seems acceptable. If we were to use the mean + 2 standard
deviations as a conservative estimate, the relative error with
respect to the ’true’ failure probability is still less than 3 %.
After an additional 30 iterations, this number drops to 0.65
%. Hence, our approach performs well with respect to the
alternatives considered in (Echard et al. 2011; Schueremans
andGemert 2005). It should also be noted that theDirectional
Sampling alternative in Table 3 is a method that is especially
suitable for the specific ’radial’ type of limit state surfaces
as considered here, and a this level of performance is not
expected in general.

Optimizationwas performedusing the approximate acqui-
sition function Ĵ3,k , and Fig. 9 shows how the sequence of
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Fig. 7 (Example 2) The top row shows the GP models ỹ2 and z̃1 with respect to Pk for k = 10. The number above each observations is the iteration
index k, and convergence was obtained after 2 evaluations of y2 and 8 evaluations of z1. The final acquisition functions are shown in the bottom
row

Table 3 (Example 3) Table 2 from Echard et al. (2011), where we
have appended the method from this paper (UT-MCIS) in the bottom
row. The reported failure probabilities ( p̂ f ) are the estimated mean ± 2
standard deviations of α(ξk) for k = 35 (stopped at V̂k ≤ 0.1), k = 48
(stopped at V̂k ≤ 0.05), and k = 65 (stopped at V̂k ≤ 0.025)

Method Ncall p̂ f × 103

Monte Carlo 106 4.416

AK-MCS+U 126 4.416

AK-MCS+EFF 124 4.412

Directional Sampling (DS) 52 4.5

DS + Response Surface 1745 5.0

DS + Spline 145 2.4

DS + Neural Network 165 4.1

Importance Sampling (IS) 1469 4.9

DS + Response Surface 1375 4.5

IS + Spline 428 4.5

IS + Neural Network 52 5.7

UT-MCIS (Vmax = 2.5%) 65 (4.347−4.444)

UT-MCIS (Vmax = 5%) 48 (4.288−4.470)

UT-MCIS (Vmax = 10%) 35 (4.163−4.547)

observations are located with respect to the failure set g = 0.
The resulting sequence of failure probabilities after each iter-
ation is illustrated in Fig. 10.

6.4 Example 4: Corroded pipeline example

To give an example of a scenario where there are differ-
ent types of experiments, we consider a probabilistic model
which is recommended for engineering assessment of off-
shore pipelines with corrosion (DNV GL 2017). The failure
mode under consideration is where a pipeline bursts, when
the pipeline’s ability to withstand the high internal pressure
has been reduced as a consequence of corrosion.

6.4.1 The structural reliability model

Figure 11 shows a graphical representation of the structural
reliability model. Here, a steel pipeline is characterised by
the outer diameter (D [mm]), the wall thickness (t [mm])
and the ultimate tensile strength (s [MPa]). In this example
we let D = 800, t ∼ N (μ = 20, cov = 0.03), and s ∼
N (μ = 545, cov = 0.06), where cov is the coefficient of
variation (standard deviation / mean).

The pipeline contains a rectangular shaped defect with
a given depth (d [mm]) and length (l [mm]), where l ∼
N (μ = 200, σ 2 = 1.49) and where d will be inferred from
observations. Given a pipeline (D, t, s) with a defect (d, l),
we can determine the pipeline’s pressure resistance capacity
(the maximum differential pressure the pipeline can with-
stand before bursting). We let pFE [MPa] denote the capacity
coming from aFinite Element simulation of the physical phe-
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Fig. 8 (Example 2) Top: Mean ± 2 standard deviations of αk after k
iterations, as computed using the approximation described in Sect. 4.
Bottom: The distribution of αk at the final iteration k = 10, estimated
from a double-loop Monte Carlo (i.e. by sampling from α(ξk) without
any approximation)

nomenon. From the theoretical capacity pFE, we model the
true pipeline capacity as pc = Xm · pFE, where Xm is the
model discrepancy, Xm ∼ N (μm, σ 2

m). For simplicity we
have assumed that Xm does not depend on the type of pipeline
and defect, and we will also assume that σm = 0.1, where
only the mean μm will be inferred from observations of the
form pc/pFE. Finally, the pressure load (in MPa) is mod-
elled as a Gumbel distribution with mean 15.75 and standard
deviation 0.4725. The limit state representing the transition
to failure is then given as g = pc − pd .

6.4.2 Different types of decisions

We consider the following three types of decisions

1. Defect measurement We assume that unbiased measure-
ments of the relative depth d/t can be obtained.

Fig. 9 (Example 3) The limit state (47) together with the expected fail-
ure surface E[ξ65] and the 65 observations collected before convergence
at V̂65 < 0.025. The proposal distribution qX used for importance sam-
pling is a mixture of Gaussian random variables centered at the four
design points (×) as described in Appendix B. The pruned samples
shown in the figure are mostly located around E[ξ65] = 0 and in other
regions where the level set ξ65 = 0 is uncertain

The measurements come with additive Gaussian noise,
ε ∼ N (0, σ 2

d/t ), and we will assume that three types
of inspection are available, corresponding to σd/t =
0.02, 0.04 and 0.08.

2. Computer experiment Evaluate pFE at somedeterministic
input (D, t, s, d, l).

3. Lab experiment Obtain one observation of Xm.

In order to generate synthetic data for this experiment,
we assume that the true defect depth is d = 0.3t = 6mm
and that μm = 1.0. Instead of running a full Finite Element
simulation to obtain pFE, we will make use of the simplified
capacity equation in (DNV GL 2017), in which case

pFE = 1.05
2ts

D − t

1 − d/t

1 − d/t
Q

, Q =
√

1 + 0.31
l2

Dt
.

6.4.3 Results

To define the initial model ξ0 we need a prior specification
over the epistemic quantities d, μm and pFE. We let d be
a priori normal with mean 0.5 and standard deviation 0.15,
and μm normal with mean 1.0 and standard deviation 0.1.
Consequently, the posteriors of d andμm (and also Xm) given
any number of observations are all normal. The function pFE
is replaced by a GP surrogate with prior mean μ = −10 and
σc = 10, l = [1, 1, 1, 1] Matérn 5/2 parameters, which we
initiate using a single observations at the expected value of
the input.
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Fig. 10 (Example 3) Top: Mean ± 2 standard deviations of αk after k
iterations, as computed using the approximation described in Sect. 4.
Bottom: The distribution of αk at the final iteration k = 65, estimated
from a double-loop Monte Carlo (i.e. by sampling from α(ξk) without
any approximation)

Fig. 11 (Example 4) Graphical representation of the corroded pipeline
structural reliability model. The shaded nodes d, pFE andμm have asso-
ciated epistemic uncertainty that can be reduced through experiments

We assume that the computer experiments are cheap
compared to the lab experiments, and that the direct mea-
surements of d/t is most expensive. To reflect these varying
costs, we specify the acquisition function

Ĵi,k(d) = c(d)
Êk,d [Ĥi,k+1]

Ĥi,k
, (48)

where c(d) is the cost of a given decision. (Note that in (48)
the variable d refers to a decision, but for the remaining part
of this example d will only refer to the defect depth). In (48)
we have normalized the expected future measure of residual
uncertainty with the current, which gives an estimate of the
expected improvement given a certain decision. The numer-
ical values representing difference in costs is given by c = 1
for computer experiments, c = 1.1 for lab experiments, and
c = 1.11, 1.12, 1.13 for measurements of d/t with accuracy
σd/t = 0.08, 0.04 and 0.02, respectively.

In structural reliability analysis, the objective is not always
to obtain an estimate of the failure probability that is as accu-
rate as possible.A relevant problem inpractice is to determine
whether a structure satisfies some prescribed target reliability
level αtarget . In this example, we aim to either confirm that
the failure probability is less than the target αtarget = 10−3

(in which case we can continue operations as normal), or
to detect with confidence that the target is exceeded (and we
have to intervene). For this purpose we intend to stop the iter-
ative procedure if the difference between the expected and
target failure probability is at least 4 standard deviations. In
addition to the standard stopping criterion for convergence
(45), we therefore introduce the stopping criterion

|Ê[α̂k] − αtarget | < 4
√
Ĥ1,k . (49)

Figure 12 showshow theUT-MCIS approximation of the fail-
ure probability evolves throughout 100 iterations. We have
made use of i = 3 in (48) as we found the correspond-
ing acquisition surface for pFE smoother than the alternative
i = 1, and hence easier to minimize numerically. The stop-
ping criterion (49) is reached after k = 25 iterations, and
Fig. 13 shows the corresponding posteriors of the relative
defect depth d/t and the model discrepancy Xm.

Throughout the examples in this paper we have initi-
ated GP surrogate models using a single observation at the
expected input. A different approach that is often found in
practical applications is to initiate the GP surrogate with a
space-filling design. A very common alternative is to make
use of a Latin Hypercube sample (LHS), of size nomore than
10 × the input dimension (although the appropriate number
of samples naturally depends on how nonlinear the response
is expected to be, see e.g. Loeppky et al. 2009).

Table 4 shows a summary of the results from running this
example with and without an initial design consisting of 10
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Fig. 12 (Example 4) Top: Mean ± 4 standard deviations of αk after k
iterations, as computed using the approximation described in Sect. 4.
The stopping criterion (49) is reached after 25 iterations. Bottom: The
acquisition functions (48) for each type of experiment during the first
50 iterations

Table 4 (Example 4) Averages over 100 runs, using 1 versus 10 initial
observations of pFE

Initial Stop at Cov of αk Number of observations

Design Target (V̂k) pFE Xm d/t

E[X] Yes 1.39 23 + 1 10 2

No 0.63 46 + 1 47 7

LHS 10 Yes 1.37 12 + 10 8 2

No 0.90 45 + 10 48 7

LHS samples. For this example it does not seem to make any
significant difference, but we see why the stopping criterion
(49) is useful, as on average we can conclude that the fail-
ure probability is below the target value after around 30-40
iterations.

Fig. 13 (Example 4) The posterior distributions of d/t and Xm when
the stopping criterion (49) is reached at k = 25

We leave this numerical experiment with an important
remark, which is that specifying an appropriate cost in (48)
can be difficult. If for instance the cost related to a measure-
ment of d/t is set very high, then the decision to measure
d/t will never be taken. In this example, it is not possi-
ble to reach the stopping criterion given in (49) without at
least one such measurement, and hence, the one-step looka-
head strategy will keep requesting measurements of Xm

and evaluations of pFE indefinitely, accumulating a poten-
tially infinite cost. This is indeed a drawback of the one-step
lookahead strategy. Note that a full dynamic programming
implementation is typically not feasible in practice as it is
too computationally expensive, and this may also be the
case for implementations looking only a few more steps
ahead. An idea for dealing with this is to study the prob-
lem via reinforcement learning instead. This is a work in
progress.
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7 Concluding remarks

We have presented a general formulation of the Bayesian
optimal experimental design problem based on separation
of aleatory randomness associated with a physical system,
and the epistemic uncertainty that we wish to reduce through
experimentation. The effectiveness of a design strategy is
evaluated through ameasure of residual uncertainty, and effi-
cient approximation of this quantity is crucial if we want to
apply algorithms that search for an optimal strategy.Wemake
use of a pruned importance sampling scheme for subsequent
estimation of (typically small) failure probabilities for a given
epistemic realization, combined with the unscented trans-
form epistemic uncertainty propagation. In our numerical
experiments, we made use of a rather naive implementation
of the unscented transform, in the sense that the number of
sigma-points is very low, and that these are determined a pri-
ori with a deterministic procedure. Since the alternative by
Merwe andWan (2003) produced satisfactory results in all of
our numerical examples, no further consideration was made
with respect to alternativemethods for sigma-point selection.
From applications to Kalman filtering, it has been observed
that this version of the unscented transform has a tendency
to over-estimate the variance, which is something we notice
also in our experiments.

For the application we consider in this paper, we empha-
size that the unscented transform is used as a proxy for the
measure of residual uncertainty to be used in optimization, as
a numerically efficient alternative that should be proportional
to the true objective. Hence, we view the unscented transform
as a tool to find the best decision or strategy, where we get
the possibility of exploring many decisions approximately
rather than a few exactly. Once an optimal strategy is found,
we estimate the corresponding measure of residual uncer-
tainty using a pure Monte Carlo alternative which is exact in
the limit. We note that for global optimization of acquisition
functions, we have used a combination of random sampling
and gradient based local optimization. With this procedure,
an optimization objective given by H3,k (and also H2,k) is
generally more suitable than H1,k , as it is less susceptible to
noise coming fromMonte Carlo estimation (see for instance
Fig. 7). On the other hand, H1,k has a natural interpretation
(the variance of the failure probability), and is therefore a bet-
ter measure for evaluating convergence, or for early stopping
as discussed in Sect. 6.4.

In Example 4 (Sect. 6.4), we briefly discussed the com-
mon alternative of applying a space-filling design, and we
observed that starting with an initial LHS design did not
make any significant difference, when the remaining design
was determined using the one-step lookahead strategy. Sim-
ilarly, we may compare the one-step lookahead strategy to
a naive LHS design, to investigate how useful it is to apply
this strategy at all. The number of experiments needed to

converge at Vmax = 0.05 in Examples 1, 2 and 3 in Sect. 6
was 4, 10 and 48. If we instead were to use a (maximin) LHS
design over the set of inputs with non-negligible probability
density, the expected number of experiments needed to reach
Vmax ≤ 0.05 is 30, 150 and 400. Hence, in these examples,
the number of experiments is reduced by roughly a factor of
10 by applying the one-step lookahead strategy instead of a
space-filling design.

Although we focus on the estimation of a failure prob-
ability in this paper, many of the main ideas we present
should also be applicable for other estimation objectives
using models where a hierarchical structure can be utilized.
For instance, when αk is some other quantity of interest
depending on the random variable g(X), not necessarily
given by an indicator function as in (1). In general, the prob-
lem we consider in this paper is estimating the volume of the
excursion set {x ∈ X|g(x) ≤ 0}, under some specified mea-
sure on X ⊆ Rm . For the specific applications considered in
this paper, we have assumed that an isoprobabilistic transfor-
mation ofX to a standard normal variable is available, which
is often the case in structural reliability models. We make
use of this assumption only to apply some well known tech-
niques for failure probability estimation, but note that other
alternatives, for instance the one presented in Appendix B.3,
can be used instead.

There are several ways to improve the methodology
presented in this paper. For instance, other alternatives of
the unscented transform could be applied, see for instance
Menegaz et al. (2015), or the parameters determining the set
of sigma-points used in this paper could be optimized as in
(Turner and Rasmussen 2010).

As seen in Sect. 6.4, the one-step lookahead/myopic strat-
egy, can make it impossible to reach the stopping criterion
of the algorithm. As mentioned, a way to avoid this problem
is by looking at the whole dynamic programming formula-
tion (11). However, this formulation suffers from the curse
of dimensionality. Since themyopic formulation corresponds
to truncating the sum in the dynamic programming formula-
tion (11) to only one term, it is of interest to study methods
where more terms of the sum are included (multi-step look
ahead). How much better do the estimations get by includ-
ing an extra term, and how much does the computation time
increase? Is it possible to determine an optimal choice of
truncation where we weigh accuracy and computation time
against one another? Different ways of finding approximate
solutions to the complete dynamic programming problemhas
been the focus of much research within areas such as oper-
ations research, optimal control and reinforcement learning,
and trying out some of these alternatives is certainly inter-
esting avenue for further research.

Another interesting topic worth investigating is how the
numerical examples in this paper compare to the case where
we estimate the buffered failure probability instead of the
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classical failure probability. Buffered failure probabilities
were introducedbyRockafellar andRoyset (2010) as an alter-
native to classical failure probabilities in order to take into
account the tail distribution of the performance function. See
Dahl and Huseby (2019) for an application of this concept to
structural reliability analysis.

Onemayalsodiscusswhether usingheuristic optimization
objectives chosen to approximate the variance is reasonable.
By essentially focusing on minimizing the variance of the
failure probability, we say that all deviations from the true
value is equally bad. In reality, overestimating the failure
probability can be costly, but is not nearly as problematic as
underestimating the failure probability. Because of this, the
variance may not be the most appropriate measure of risk.
It would be interesting to also derive heuristic optimization
objectives based on approximating other risk measures.

These questions are of interest, but beyond the scope of
the current paper, and the topics are left for future research.
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Appendices

A Gaussian process surrogatemodels

Here we briefly review the Gaussian process (GP) surro-
gatemodel in its canonical form, for Bayesian nonparametric
function estimation. For a broader overview of the relevant
theory see e.g. Rasmussen andWilliams (2006). For applica-
tions related to uncertainty quantification (UQ) dealing with
deterministic computer simulations, Kennedy and O’Hagan
(2001) is a classical reference.

Let f : X → R denote a function thatwewant to estimate,
and assume that a set of k observations (x1, y1), . . . , (xk, yk)

have been made. For instance, evaluating f (x) could cor-
respond to running a deterministic (and time consuming)
computer simulation, in which case noiseless observations,
yi = f (xi ), can be obtained. Alternatively, f (xi ) could cor-
respond to some physical experiment, resulting in a noise
perturbed observation yi . A GP surrogate model ξ of f is
a tool to make inference about the value of f (x∗) for any
new input x∗ ∈ X, conditioned on the set of observations
(x1, y1), . . . , (xk, yk).

A Gaussian process ξ indexed by some set X is defined
by the property that for any finite subset {x1, . . . , xN } of
X, (ξ(x1), . . . ξ(xN )) is an N -dimensional Gaussian random
variable. We will view ξ as a Gaussian distribution over real-
valued functions defined on X (such as f (x)). Here X can
be arbitrary but typically X is a subset of Rn . The GP ξ

is uniquely defined by its mean function μ(x) = E[ξ(x)]
and covariance function c(x, x′) = E[(ξ(x)−μ(x))(ξ(x′)−
μ(x′))]. Hence, any function μ : X → R paired with a
positive semidefinite function c : X × X → R defines a GP,
which we will denote ξ ∼ G P(μ, c).

Let X = (x1, . . . , xk),Y = (y1, . . . , yk) denote the obser-
vations and assume that yi comes with additive Gaussian
noise, yi = f (xi )+εi where εi are i.i.d. zero-meanGaussian
with common variance σ 2. In this scenario, the conditional
process ξ |X ,Y is still a Gaussian process. In particular, if
X∗ = (x∗

1, . . . , x
∗
m) contains m new input locations in X,

then the distribution of ξ∗ = ξ(X∗) = (ξ(x∗
1), . . . , ξ(x∗

m))

given the observations X ,Y is Gaussian with the following
mean

E[ξ∗|X ,Y ] = μ(X∗)
+ c(X∗, X)[c(X , X) + σ 2 Im]−1(Y − μ(X)),

(50)

and covariance

Cov(ξ∗|X ,Y ) = c(X∗, X∗)
− c(X∗, X)[c(X , X) + σ 2 Im]−1c(X∗, X)T .

(51)

Here μ(X∗) and μ(X) are vectors with elements μ(x∗
i ) and

μ(xi ) respectively, Im is the m × m identity matrix, and
c(X∗, X∗), c(X∗, X) and c(X , X)have elements c(X∗, X∗)i, j =
c(x∗

i , x
∗
j ), c(X∗, X)i, j = c(x∗

i , x j ) and c(X , X)i, j =
c(xi , x j ).

For the scenario where observations are noiseless, yi =
f (xi ), the distribution of ξ∗|X ,Y is obtained with σ = 0 in
(50)–(51).

To define a GP prior ξ ∼ G P(μ, c) over functions
f : X → R, we need to specify the mean and covariance
function. These are generally given as μ(x|θ) and c(x, x′|θ),
conditioned on some parameter θ . An appropriate value for θ
is usually found through maximum likelihood estimation or
cross validation using the set of observations X ,Y . A fully
Bayesian approach could also be pursued,where the posterior
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calculations typically involve Markov chain Monte Carlo as
the formulation in (50)–(51) is not sufficient. In the numerical
experiments presented in this paper, we have made use of a
constantmean function and aMatérn 5/2 covariance function
using plug-in hyperparameters θ = (σc, l1, . . . , ln) deter-
mined frommaximum likelihood estimation. TheMatérn 5/2
covariance function for x, x′ ∈ Rn is defined as

c(x, x′) = σ 2
c (1 + √

5r + 5

3
r2)e−√

5r ,

r =
√√
√
√

n∑

i=1

(
xi − x ′

i

li

)2

.

(52)

B The sampling distribution qX

Here we present some further details on how the set of
samples {xi , wi } in Sect. 4.3 can be generated. We start by
reviewing some classical techniques from structural reliabil-
ity analysis that are based on finding ’important’ regions in
X. The sampling distribution qX used in this paper is then
defined in Section B.2. It is based on the assumption that
X can be transformed to a standard multivariate Gaussian
variable U , and that qU can be constructed by solving a set
of constrained optimization problems in U-space. For the
scenario where these assumptions do not hold, we present
an alternative approach in Section B.3, which is based on a
naive exploration of the X-space. Although this will require
evaluation of a larger set of samples of X, no optimization is
required and numerical implementation is straightforward.

B.1 Local approximations in SRA

In Sect. 4 we briefly discussed the challenges with estimation
of the failure probability ᾱ(g) in (1). A different alternative
often used in structural reliability analysis, is to approximate
the performance function g(x) with a function ĝ where ᾱ(ĝ)
can be computed analytically. In this scenario, it is convenient
to transform X to a standard normal variable U . We will let

X
T−→ U ∼ N (0, I ) (53)

denote an isoprobabilistic transformation, where U =
T (X) is multivariate standard Gaussian with dim(U) =
dim(X). Note that for any univariate random variable X
with CDF F(X), a transformation of this type available
as T (X) = Φ−1(F(X)). The generalization to multi-
variate X is the Rosenblatt transformation, where Ui =
Φ−1(Fi (Xi |X1, . . . ,Xi−1)). In structural reliability prob-
lems, it is often natural to define X in terms of the marginal
distributions and a copula, in which case the isoprobabilistic
transformation (53) can be simplified. A common alternative

is to use a Gaussian copula, where (53) can be obtained using
the Nataf transformation (Lebrun and Dutfoy 2009).

In the following we let g(u) denote the function g(·)
applied to x = T −1(u).Methods such as FORM(FirstOrder
Reliability Method) and SORM (Second Order Reliability
Method) make use of local approximations in the form of a
linear or quadratic surface fitted to g(u∗) at a certain point
u∗ ∈ Rn . This point u∗ is often called the design point or
most probable point (MPP), and it is defined as

u∗ = argminu∈Rn {‖u‖ | g(u) ≤ 0}. (54)

Observe that if ĝ(u) is the first-order Taylor approximation
of g(u) at u∗, i.e. ĝ(u) = g(u∗) + ∇ug(u∗)(u − u∗), then
ᾱ(ĝ) = Φ(−‖u∗‖), and this is an upper bound on the failure
probability if the failure set is convex in U-space.

In Sect. 4.3 we discussed the importance sampling esti-
mate of the failure probability given some proposal distribu-
tionq. A natural candidate is to letq be a distribution centered
around the design point, u∗ in U-space or x∗ = T (u∗) in
X-space. The alternative where the estimation is performed
inU-space with qU (u) = φ(u+u∗) is often used in practice.
For a more detailed discussion around this kind of sampling,
the local approximations and structural reliability analysis in
more general, see for instance (Madsen et al. 2006) or (Huang
et al. 2017).

The constrained optimization problem (54) plays an
important role in structural reliability analysis. Although any
general-purpose algorithm can be used, customized algo-
rithms that take advantage of the special form of the objective
function are recommended. Various alternatives have been
developed for this purpose, see for instance (Gong and Yi
2011) and the references therein. For the applications in this
paper we have made use of the iHL-RF method from (Zhang
and Der Kiureghian 1995).

B.2 The design point mixture

We observe first that a solution to (54) is not necessar-
ily unique, and also that multiple local minima may exists
when the performance function is nonlinear.Most algorithms
designed to solve (54) numerically start with some initial
guessu0, and take iterative steps until aminimum is obtained.
To reduce the risk of overestimating ‖u∗‖, multiple restarts
with different (possibly randomized) initial guesses u0 is
often applied.

Given a finite-dimensional approximation of a perfor-
mance function ξ̂ (x,E), we want to find a proposal distribu-
tion q that is appropriate for a range of different realizations
e of E. In particular, if {(v j , e j ) | j = 1, . . . , M} is the set
of sigma-points for E as introduced in Sect. 4.2, we want
a set of samples from q to be applicable for estimation of
α(ξ̂ (x, e j )) for any 1 ≤ j ≤ M .
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For any e j , we will let u∗
1, j , . . . ,u

∗
N , j denote N design

points in U-space corresponding to ξ̂ (x, e j ), obtained using
randomized initialization. (Note that for methods such as
iHL-RF, it is also reasonable to use u∗

i, j as an initial guess
in the search for u∗

i, j+1). We then define Q as the equal-
weighted Gaussian mixture of the NM random variables
Qi, j = Ui, j + u∗

i, j , where Ui, j are i.i.d. standard multi-
variate Gaussian. Sampling from Q is then straightforward,
and importance sampling estimates can be obtained in theU-
space using pU (u) = φ(u) and qU (u) = 1

NM

∑
i, j φ(u −

u∗
i, j ), where φ is the multivariate standard normal density.

B.3 A simple alternative

The sampling strategy presented in Sect. 4.3 is based on (1)
generating a set of samples that should ”cover relevant loca-
tions” in the input space X, and (2) prune the set of samples
using a threshold on the measure of insignificance (21).

The ”relevant locations” in the first step is typically some-
where in the ”tail” of the distribution of X, where also the
(uncertain) performance function ξ̂k(x)may be close to zero.
In Section B.2 we made use of importance sampling around
design points, which is a common technique in structural
reliability analysis. As a simple alternative, we can let q be
any distribution from which it is easy to generate samples
covering the effective support of pX (i.e. a bounded domain
where X lies with probability ≈ 1). For instance, assuming
U is n-dimensional standard normal (e.g. U = T (X) if the
isoprobabilistic transformation is still applicable), we could
let q be a uniform density on the hypercube [−b, b] where
b = Φ−1(1 − pmin) for some absolute lower bound on the
failure probability pmin .

Because the initial set of N samples fromq will be reduced
to a fixed number of n samples after the pruning step, this
is a viable alternative. However, in order to obtain similar
importance sampling variances [see (29)] as with the method
in Section B.2, the initial number of samples N (and hence
the number of evaluations of the pruning criterion η(x)) will
have to be larger.

C Selecting sigma-points for the unscented
transform

Here we briefly review the method for sigma-point selection
by Merwe (2004) and present the sigma-points used for the
numerical experiments in Sect. 6.

According to Labbe (2014), research and industry have
mostly settled on the version published in (Merwe 2004).
Here, the sigma-points are given as a function of themean and
covariance matrix of the input variable, together with three
real-valued parameters α, β and κ . In the case where U is a

standardized n-dimensional random variable with E[U] = 0
and E[U2] = I , we obtain 2n + 1 points ui are as follows

u0 = 0,

ui = α
√
n + κνi ,

ui+n = −ui ,

for i = 1, . . . , nwhere νi = (0, . . . , 1, . . . , 0) is the standard
unit vector in Rn . Two different sets of weights are used with
this procedure, one for the mean and one for the covariance
in (17). We denote these vmi and vci respectively, and they are
given as

vm0 = 1 − n

α2(n + κ)
, vc0 = vm0 + 1 − α2 + β,

vmi = vci = 1

2α2(n + κ)
for i = 1, . . . , 2n.

For Gaussian distributions, it is often recommended to set
β = 2, κ = 3 − n and let α ∈ (0, 1]. In the numerical
examples presented in this paper we have used this set of
parameters with α = 0.9.

References

Bect, J., Ginsbourger, D., Li, L., Picheny, V., Vazquez, E.: Sequential
design of computer experiments for the estimation of a probability
of failure. Stat. Comput. 22(3), 773–793 (2012)

Bect, J., Bachoc, F., Ginsbourger, D.: A supermartingale approach
to Gaussian process based sequential design of experiments.
Bernoulli (2019)

Bichon, B., Eldred, M., Swiler, L., Mahadevan, S., McFarland, J.: Effi-
cient global reliability analysis for nonlinear implicit performance
functions. AIAA J. 46, 2459–2468 (2008)

Dahl, K., Mohammed, S.E., Øksendal, B., Røse, E.E.: Optimal con-
trol of systems with noisy memory and BSDEs with Malliavin
derivatives. J. Funct. Anal. 271(2), 289–329 (2016)

Dahl, K.R., Huseby, A.B.: Buffered environmental contours. Safety and
Reliability - Safe Societies in a Changing World Proceedings of
ESREL 2018 (2019)

Defourny, B., Ernst, D., Wehenkel, L.: Multistage stochastic pro-
gramming: A scenario tree based approach to planning under
uncertainty. Decis. Theory Model. Appl. Artif. Intell.: Concepts
Solut.(2011)

Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? does it mat-
ter? Struct. Saf. 31(2), 105–112 (2009)

DNV, G.L.: Recommended Practice: Corroded Pipelines DNVGL-RP-
F101. DNV GL, Høvik, Norway (2017)

Echard, B., Gayton, N., Lemaire, M.: AK-MCS: An active learning
reliabilitymethod combiningKriging andMonteCarlo simulation.
Struct. Saf. 33(2), 145–154 (2011)

Fernandez, G., Park, C., Kim, N., Haftka, R.: Review of multi-fidelity
models. arXiv:1609.07196v3 (2017)

Goldstein,M.,Wooff, D.: Bayes Linear Statistics: Theory andMethods.
John Wiley & Sons, New York (2007)

Gong, J.X., Yi, P.: A robust iterative algorithm for structural reliability
analysis. Struct. Multidiscip. Optim. 43, 519–527 (2011)

123



Statistics and Computing            (2021) 31:27 Page 29 of 29    27 

Huan, X., Marzouk, Y.: Sequential bayesian optimal exper-
imental design via approximate dynamic programming.
arXiv:1604.08320v1 (2016)

Huang, C., ELHami, A., Radi, B.: Overview of Structural Reliability
Analysis Methods-Part I, II, p. 17. III, Incertitudes et fiabilité des
systémes multiphysiques (2017)

Jian, W., Zhili, S., Qiang, Y., Rui, L.: Two accuracy measures of the
Kriging model for structural reliability analysis. Reliab. Eng. Syst.
Safety 167, 494–505 (2017)

Jones,M.,Goldstein,M., Jonathan, P.,Randell,D.:Bayes linear analysis
of risks in sequential optimal design problems. Electron. J. Stat.
12, 4002–4031 (2018)

Julier, S., Uhlmann, J.: Unscented filtering and nonlinear estimation.
Proc. IEEE 92, 401–422 (2004)

Kennedy,M.C.,O’Hagan,A.:Bayesian calibration of computermodels.
J. Royal Stat. Soc.: Ser. B (Stat. Methodol.) 63(3), 425–464 (2001)

Kyzyurova, K.N., Berger, J.O., Wolpert, R.L.: Coupling computer
models through linking their statistical emulators. SIAM/ASA J
Uncertain Quantif. 6(3), 1151–1171 (2018)

Labbe, R.: Kalman and Bayesian Filters in Python. In: https://github.
com/rlabbe/Kalman-and-Bayesian-Filters-in-Python, GitHub
eBook (2014)

Lebrun, R., Dutfoy, A.: A generalization of the Nataf transformation
to distributions with elliptical copula. Probab. Eng. Mech. 24(2),
172–178 (2009)

Loeppky, J., Sacks, J., Welch, W.: Choosing the sample size of a com-
puter experiment: A practical guide. Technometrics 51, 366–376
(2009)

Madsen, H., Krenk, S., Lind, N.: Methods of Structural Safety. Dover
Civil and Mechanical Engineering Series. Dover Publications,
New York (2006)

Menegaz, H.M.T., Ishihara, J.Y., Borges, G.A., Vargas, A.N.: A sys-
tematization of the unscented kalman filter theory. IEEE Trans.
Autom. Control 60(10), 2583–2598 (2015)

Merwe, R.: Sigma-Point Kalman Filters for Probabilistic Inference in
Dynamic State-Space Models. PhD thesis, OGI School of Science
and Engineering (2004)

Merwe, R., Wan, E.: Sigma-point kalman filters for probabilistic infer-
ence in dynamic state-space models. Proceedings of theWorkshop
on Advances in Machine Learning (2003)

Perrin, G.: Active learning surrogate models for the conception of sys-
tems with multiple failure modes. Reliab. Eng. Syst.Safety 149,
130–136 (2016)

Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine
Learning. The MIT Press, Cambridge (2006)

Rockafellar, R.T., Royset, J.O.: On buffered failure probability in design
and optimization of structures. Reliab. Eng. Syst. Safety 95(5),
499–510 (2010)

Rozsas,A., Slobbe,A.: Repository andBlack-boxReliabilityChallenge
2019. https://gitlab.com/rozsasarpi/rprepo/ (2019)

Schueremans, L., Gemert, D.V.: Benefit of splines and neural net-
works in simulation based structural reliability analysis. Struct.
Saf. 27(3), 246–261 (2005)

Sun, Z., Wang, J., Li, R., Tong, C.: LIF: A new Kriging based learning
function and its application to structural reliability analysis. Reliab.
Eng. Syst. Safety 157, 152–165 (2017)

Turner, R., Rasmussen, CE.: Model based learning of sigma points in
unscented kalman filtering. In: 2010 IEEE InternationalWorkshop
on Machine Learning for Signal Processing, pp 178–183 (2010)

Uhlmann, J.: Dynamic map building and localization : New theoretical
foundations. PhD thesis, University of Oxford (1995)

Wang, L.: Karhunen-Loéve expansions and their applications. PhD the-
sis, London School of Economics and Political Science (2008)

Zhang, Y., Der Kiureghian, A.: Two Improved Algorithms for Reliabil-
ity Analysis, pp. 297–304. Springer, US, Boston, MA (1995)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123





Paper IV

Optimal sequential decision
making with probabilistic digital
twins

Christian Agrell, Kristina Rognlien Dahl, Andreas Hafver
Submitted for publication. arXiv: 2103.07405

IV

125

http://arxiv.org/abs/2103.07405




Paper V

Risk-based functional black-box
optimization – Contribution to the
NASA Langley UQ challenge on
optimization under uncertainty

Christian Agrell, Simen Eldevik, Odin Gramstad, Andreas
Hafver
Mechanical Systems and Signal Processing (2021) Vol. 164 108266.

V

151





Mechanical Systems and Signal Processing 164 (2022) 108266

Available online 31 July 2021
0888-3270/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier.com/locate/ymssp

Risk-based functional black-box optimization
Contribution to the NASA Langley UQ challenge on optimization
under uncertainty
Christian Agrell a,b,∗,1, Simen Eldevik a,1, Odin Gramstad a,1, Andreas Hafver a,1

a DNV Group Research and Development, Norway
b Department of Mathematics, University of Oslo, Norway

A R T I C L E I N F O

Communicated by J.E. Mottershead

Keywords:
Model calibration
Functional data
Epistemic uncertainty
Robust optimization

A B S T R A C T

This paper presents an approach to solve the 2019/2020 NASA Langley UQ challenge problem
on optimization under uncertainty. We define an uncertainty model (UM) as a pair

⟨
𝑓𝑎|𝑒, 𝐸

⟩
,

where 𝑓𝑎|𝑒 is a probability density over 𝑎 for each 𝑒 ∈ 𝐸, and proceed to infer 𝑓𝑎|𝑒 in a
Bayesian fashion. Special attention is given to dimensionality reduction of the functional (time-
series) data, to obtain a finite dimensional representation suitable for robust Bayesian inversion.
Reliability analysis is performed using 𝑓𝑎|𝑒, whereas for design optimization we approximate
𝑓𝑎|𝑒 using truncated Gaussians and a Gaussian copula. We apply an unscented transform (UT)
in the standard normal space to estimate moments of the limit state, which is numerically
very efficient. Design optimization is performed with this procedure to obtain negligible failure
probability in 𝑔1 and 𝑔3 and acceptable failure probability and severity in 𝑔2.

1. Introduction and notation

This paper2 presents an approach to solve the NASA Langley UQ challenge problem on optimization under uncertainty [2]. We
recall just the main problem setup and notation herein, and refer to [2] for a complete description.

In the first part of the problem, the goal is to establish a probability distribution for an aleatory random variable 𝑎 ∈ 𝐴 = [0, 2]5,
that will depend on another variable 𝑒 ∈ 𝐸0 = [0, 2]4 with epistemic uncertainty. Inference is based on a set of time series,
𝐷 = {𝑦𝑖(𝑡)}𝑁𝑖=1, that are the result of a functional mapping 𝑌 ∶ 𝐴 × 𝐸0 → 𝑦(𝑡) where 𝑦(𝑡) ∶ [0, 5] → R. The time series data 𝐷
correspond to 𝑦𝑖(𝑡) = 𝑌 (𝑎𝑖, 𝑒𝑡𝑟𝑢𝑒)(𝑡) for some fixed (but unknown) 𝑒𝑡𝑟𝑢𝑒 ∈ 𝐸0 and 𝑁 = 100 i.i.d. samples 𝑎𝑖 of 𝑎 ∈ 𝐴.

We assume that the random variable 𝑎 can be represented by a joint density 𝑓𝑎, that we wish to infer given the set of observations
𝐷. A numerical model of the data generating process, 𝑌 (𝑎, 𝑒) ≈ 𝑌 (𝑎, 𝑒), is provided, and will be the basis for inference on the aleatory
random variable 𝑎, as well as finding plausible values of the epistemic variable 𝑒. As we do not know the true value 𝑒𝑡𝑟𝑢𝑒 used to
generate the data, we will find a set 𝐸 ⊆ 𝐸0 of possible candidates for 𝑒, together with a family of probability distributions {𝑓𝑎|𝑒},
parametrized by 𝑒 ∈ 𝐸 (see Tables 1–3).

∗ Corresponding author at: Department of Mathematics, University of Oslo, Norway.
E-mail address: chrisagr@math.uio.no (C. Agrell).

1 All authors contributed equally.
2 This is an updated and extended version of the paper [1] which was prepared for the 30th European Safety and Reliability (ESREL) 2020 Conference.
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Table 1
Variables.

Variable Domain Description

𝑎 𝐴 = [0, 2]5 Aleatory input variable
𝑢 R5 Standard normal variable
𝑒 𝐸0 = [0, 2]4 Epistemic input variable
𝜃 R9 Control variable

Table 2
Physical system.
𝑦(𝑡) = 𝑌 (𝑎, 𝑒)(𝑡) Subsystem
𝑦̂(𝑡) = 𝑌 (𝑎, 𝑒)(𝑡) Numerical model

𝑧(𝑡) = (𝑧1 , 𝑧2)(𝑡) = 𝑍(𝑎, 𝑒, 𝜃)(𝑡) Integrated system
𝑧̂(𝑡) = 𝑍̂(𝑎, 𝑒, 𝜃)(𝑡) Numerical model

𝑔(𝑎, 𝑒, 𝜃) = (𝑔1 , 𝑔2 , 𝑔3)(𝑎, 𝑒, 𝜃) Limit-state
𝑤(𝑎, 𝑒, 𝜃) = max𝑖=1,2,3 𝑔𝑖(𝑎, 𝑒, 𝜃) Limit-state

Table 3
Uncertainty model.⟨

𝑓𝑎|𝑒 , 𝐸
⟩

Uncertainty model
𝑓𝑎|𝑒 Probability density of 𝑎 given (fixed) 𝑒
𝑓 𝛼
𝑎|𝑒 Parametric approximation of 𝑓𝑎|𝑒 with parameter 𝛼

𝐸 Hyper-rectangular set
𝜁 (𝑎, 𝑒) Parameter mapping
𝑓𝜁 Probability density of 𝜁

The pair
⟨
𝑓𝑎|𝑒, 𝐸

⟩
is referred to as the uncertainty model (UM) of (𝑎, 𝑒). Once

⟨
𝑓𝑎|𝑒, 𝐸

⟩
has been established, the remaining

tasks are related to structural reliability analysis (SRA) of a larger physical system, where the mechanics given by 𝑌 (𝑎, 𝑒) is a sub-
component. This includes estimation of failure probabilities for a set of provided limit-state functions, sensitivity analysis and design
optimization. We leave further details on the specific tasks to the relevant subsections below.

Our notation is aligned with the problem description, with some few additions. In particular, we may write 𝑦(𝑎, 𝑒, 𝑡) as 𝑌 (𝑎, 𝑒)(𝑡)
to clarify when we are working with the functional mapping 𝑌 vs a given function of time 𝑦. We also write 𝑌 and 𝑦̂ to emphasize
when 𝑌 and 𝑦 are computed using the provided numerical model, and similarly for the integrated system 𝑧(𝑎, 𝑒, 𝜃, 𝑡). An overview
of the notation used is given below, and the following sections, Section 2 to Section 7, correspond to respective subproblems in the
UQ challenge. The final results are collected in Section 8, and we end with some concluding remarks in Section 9.

2. (A) model calibration & uncertainty quantification of a subsystem

Given a numerical model of the physical subsystem, 𝑌 (𝑎, 𝑒) ≈ 𝑌 (𝑎, 𝑒), we seek to characterize the parameters (𝑎, 𝑒) from a limited
set of observations {𝑦𝑖(𝑡)}. An observation 𝑦𝑖 corresponds to 𝑌 (𝑎𝑖, 𝑒𝑡𝑟𝑢𝑒) where 𝑒𝑡𝑟𝑢𝑒 is fixed (but unknown) and 𝑎𝑖 are i.i.d. samples
from some (unknown) distribution 𝑓𝑎. Our approach here is based on fitting a distribution to the observations, 𝑦1(𝑡),… , 𝑦100(𝑡), from
which the conditional distribution 𝑓𝑎|𝑒 can be determined.

2.1. Dimensionality reduction

As we wish to fit a density to the observations, we first need to compress the functional data to a finite-dimensional (preferably
low-dimensional) representation. Various alternatives were considered, from the naive approach of evaluating 𝑦(𝑡) at a finite set of
times {𝑡1,… , 𝑡𝑁}, to more sophisticated function approximation techniques. The Karhunen–Loéve transform as used in functional
principal component analysis [3] was first considered. This approach is based on finding an orthonormal eigenbasis of 𝐿2 (all square
integrable functions) from the estimated covariance function corresponding to the observations. By projecting each observation 𝑦𝑖(𝑡)
onto the subspace spanned by the first 10 eigenfunctions, we observed that the residual (the projection onto the complement space),
had negligible 𝐿2 norm.

As both observations 𝑦𝑖(𝑡) and samples from 𝑌 (𝑎, 𝑒)(𝑡) consistently showed two or three distinct frequency components when
performing a Fast Fourier Transform (FFT), it was also deemed appropriate to consider damped complex exponentials as the function
basis. With this approach we write

𝑦𝑒𝑥𝑝(𝑡) =
𝑘∑
𝑖=1

𝐵𝑖 cos(𝜔𝑖𝑡 + 𝜙𝑖)𝑒𝑑𝑖𝑡, (1)

where the coefficients (𝐵𝑖, 𝜔𝑖, 𝜙𝑖, 𝑑𝑖) can be estimated efficiently using Prony’s method (see for instance [4]). Unlike the eigenfunc-
tions used in the Karhunen–Loéve transform, the damped complex exponentials do not form an orthonormal basis. But we noticed
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that any of the observations 𝑦𝑡(𝑡), as well as any function 𝑦̂(𝑡) computed using the numerical model 𝑌 (𝑎, 𝑒) for some (𝑎, 𝑒) ∈ 𝐴 × 𝐸0,
could be represented as the sum of 𝑘 = 3 damped complex exponentials, up to machine precision.

Given some parametric function approximation, we define the parameter mapping

𝜁 (𝑎, 𝑒) ∶ 𝐴 × 𝐸0 → R𝑛𝜁 . (2)

We will write 𝜁 (𝑎, 𝑒) or 𝜁 (𝑦) interchangeably, depending on whether we consider a specific function 𝑦(𝑡) or variables (𝑎, 𝑒), for which
𝜁 (𝑎, 𝑒) = 𝜁 (𝑌 (𝑎, 𝑒)). If 𝜁 (𝑎, 𝑒) is the parameter vector corresponding to the damped complex exponentials, then 𝜁 (𝑎, 𝑒) is given by
(some of) the 4𝑘 parameters needed in Eq. (1). In the case where the Karhunen–Loéve transform is used to represent 𝑌 (𝑎, 𝑒)(𝑡), we
could let 𝜁 (𝑎, 𝑒) correspond to the projection coefficients (FPCA scores) of the first 𝑛𝜁 eigenfunctions with the largest eigenvalues.

The reason for introducing 𝜁 (𝑎, 𝑒) is that, if we can fit a probability density 𝑓𝜁 (𝜁 ) to 𝜁 , then we can establish a distribution 𝑓𝑎|𝑒(𝑎)
as

𝑓𝑎|𝑒(𝑎) =
1
𝐶
𝑓𝜁 (𝜁 (𝑎, 𝑒)), (3)

where 𝐶 is a normalizing constant that assures that 𝑓𝑎|𝑒 integrates to 1. Eq. (3) comes from a Bayesian formulation, assuming that
𝑒 = 𝑒𝑡𝑟𝑢𝑒 and a uniform prior on 𝑎 (with constant density that goes into 𝐶), and where for a fixed 𝑒, the density 𝑓𝜁 defines a (improper)
likelihood for any 𝜁 (𝑎, 𝑒) which we assign to 𝑎.

The reason why we define 𝑓𝑎|𝑒(𝑎) as in (3), by first fitting a probability density 𝑓𝜁 (𝜁 ) to the (transformed) observations, is because
we find it easier to determine the appropriate amount of regularization needed to avoid overfitting. Note that this approach to
inversion is not the same as computing the distribution corresponding to a transformation of 𝑓𝜁 through 𝜁−1 (if 𝜁 was bijective),
which would include the Jacobian of 𝜁 in the right hand side of (3).

Because of this, together with the fact that the number of observations is limited, we need some means of ensuring that the
distribution 𝑓𝑎|𝑒(𝑎) is conservative, in the sense that it does not assign negligible probability to values of (𝑎, 𝑒) that could be plausible.
For this, some qualitative judgment is usually needed. With our approach, we address this by fitting a high-entropy distribution
to 𝑓𝜁 .

We observed that both the eigenfunction approximation and the damped complex exponentials could provide a reasonable
dimensionality reduction, from the relevant space of functions 𝑦(𝑡) to a set of 10-12 parameters. We chose to go with the damped
complex exponentials, as it turned out to provide lossless compression of the functional data. We also found that it was more
straightforward to fit a density 𝑓𝜁 to 𝜁 (𝑎, 𝑒) using this approach.

2.2. Model discrepancy

The problem of assessing model discrepancy without controlled experiments, i.e. when only observed output of the physical
system is available, is generally ill-posed. This is due to problems with identifiability, and additional assumptions on the accuracy
of the numerical model, as well as other sources of uncertainty in the true physical process, are generally needed. See for instance [5]
and the discussions therein.

We will assume that there are no other sources of uncertainty in the physical subsystem besides input uncertainty. That is,
variability in the observed 𝑦′𝑖𝑠 is due to variability in aleatory input 𝑎 alone. Similarly, we would like to assume zero model
discrepancy as well.3 i.e. 𝑌 (𝑎, 𝑒) = 𝑌 (𝑎, 𝑒) for all (𝑎, 𝑒) ∈ 𝐴×𝐸0. However, we found that we needed to assume some model discrepancy
in order for inference on (𝑎, 𝑒) to be possible.

If we want to fit a probability density to 𝜁 , and use this to create a distribution on the input 𝑎 assuming zero error in 𝑌 (𝑎, 𝑒),
then we must first verify that the parameter vector of the observations, 𝜁 (𝑦𝑖), are within the range of 𝜁 (𝑎, 𝑒) (i.e. each 𝑦𝑖 can be
reproduced from 𝑌 ). Otherwise, the resulting distribution 𝑓𝑎|𝑒 could assign zero probability to almost all 𝑎 ∈ 𝐴.

In practice, we will not make use of all components of 𝜁 when fitting a distribution, in order to impose some regularization. But
before we do this, it is useful to use the complete 𝜁 to investigate if there is any model discrepancy. As noted in Section 2.1, if we
let the parameter mapping be defined as 𝜁 (𝑎, 𝑒) = [𝜁1, 𝜁2, 𝜁3], where 𝜁𝑖 = [𝐵𝑖, 𝜔𝑖, 𝜙𝑖, 𝑑𝑖] are the parameters of the 𝑖th wave component
in Eq. (1), then 𝜁 provides a bijection between the range of the numerical model, 𝑌 (𝐴,𝐸0), and a subset of R12. We can therefore
investigate whether the observations 𝑦𝑖 are within the range of 𝑌 through 𝜁 . We found that this was not the case, as it turns out that
𝜁 (𝑦𝑖) falls outside 𝜁 (𝐴,𝐸0) in the subspace spanned by (𝑑1, 𝜔1), see Fig. 1. If we exclude the parameter 𝑑1 from 𝜁 , the set 𝜁 (𝐴,𝐸0) will
include all transformed observations 𝜁 (𝑦𝑖). In practice, the exclusion of 𝑑1 corresponds to the assumption that the response from the
true physical subsystem, 𝑦 = 𝑌 (𝑎, 𝑒), is a bit less ‘‘damped’’, compared to what would be expected were the response to agree with
the numerical model 𝑌 (𝑎, 𝑒). Of course, this may be an assumption that is not appropriate, and generally one would assess such an
assumption based on knowledge related to the physical phenomenon and information regarding what kind of model discrepancy
(or observational noise/error) to expect.

Fig. 2 shows effectively what the assumed model discrepancy looks like under this assumption. Here, to give one example, one
of the observations (# 71) was fitted using (1), and we vary 𝑑1 within the relevant range from Fig. 1. Any amount of damping that
keeps the time series within the blue shaded area is considered negligible in terms of model discrepancy. In Fig. 3 we see some
examples of functions 𝑦̂(𝑡) that are not equivalent with this observation, which illustrates that the assumed model discrepancy is
rather small. We note that the assumed model discrepancy is probably negligible for all practical purposes, but it is necessary for
inference on the model input (𝑎, 𝑒) to be possible.

3 In reality it would be natural to make use of some model uncertainty, either estimated or assumed, when the UM we aim to establish will be used for
SRA of a safety-critical system.
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Fig. 1. Frequency (𝜔1) vs damping (𝑑1) coefficients of the first wave component in Eq. (1), corresponding to observations (𝑦𝑖) and output from the numerical
model (𝑦̂).

Fig. 2. Example of assumed model discrepancy. Any function 𝑦̂(𝑡) is interpreted as equivalent to the observation 𝑦𝑖=71 (red) if it is more damped (compressed
in the 𝑦-direction) than 𝑦𝑖=71, as long as 𝑦̂(𝑡) falls within the blue shaded area.

Fig. 3. Examples of functions 𝑦̂(𝑡) that do not agree with the observation 𝑦𝑖=71 (red), with respect to the assumed model discrepancy. There are relevant features
of the time series that make the samples and the observation significantly different.

Remark 2.1. The results presented in this paper may be sensitive to the assumed model discrepancy. If the criterion illustrated
in Figs. 2 and 3 is too strict, i.e. larger deviations between the data generating process 𝑌 (𝑎, 𝑒) and the computer model 𝑌 (𝑎, 𝑒) is
expected, the resulting UM may be overly optimistic. That is, as inputs (𝑎, 𝑒) are deemed less plausible, the volume of 𝐸 and the
entropy of 𝑓𝑎|𝑒 are reduced.

This assumed model discrepancy is based on: (1) no model error has been specified for 𝑌 (𝑎, 𝑒), and (2) with the relaxed assumption
on damping of the time series data, it is for each observation 𝑦𝑖 possible to find inputs (𝑎, 𝑒) such that 𝑌 (𝑎, 𝑒) agrees with 𝑦𝑖.

2.3. The uncertainty model
⟨
𝑓𝑎|𝑒, 𝐸

⟩

We will establish an uncertainty model
⟨
𝑓𝑎|𝑒, 𝐸

⟩
based on the parameter mapping (𝜁) given by the damped complex exponentials

with 𝑘 = 3. As discussed in Section 2.2, the component 𝑑1 is excluded to account for some model discrepancy, and 3 other parameters
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Fig. 4. Marginal of two components of 𝜁 , where 𝑓𝜁 is obtained from the 100 observations 𝑦𝑖 (left), and a subset of 50 observations (right).

Fig. 5. Marginal of 𝑓𝑎|𝑒 in the (𝑎2 , 𝑎3)-subspace for 9 different values of 𝑒.

are excluded after principal component analysis (PCA) where we found that 99% of the variance could be described by the final 8
parameters. From the final parameter vector 𝜁 ∶ 𝐴 × 𝐸0 → R8, we fit a mixture of two Gaussians to the 100 observations 𝑦𝑖 under
the transformation 𝜁 (𝑦𝑖).

Fig. 4 shows the marginal distribution corresponding to two of the components of 𝜁 . Some conservatism was included by
increasing the variance of the fitted distribution, in order to account for the limited number of observations. Starting from a
maximum likelihood fit, the variance was increased by a constant to produce a more conservative (higher entropy) distribution.
Hence, the corresponding distribution 𝑓𝑎|𝑒 will likely underfit the data, which is intentional. The method used to fit a distribution
to 𝜁 is fairly robust to the number of observations. By sampling subsets of size 50 out of the total 100 observations, we find that the
resulting distributions fitted to {𝜁 (𝑦𝑖)} are fairly consistent as illustrated in Fig. 4.
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Fig. 6. Parametric distributions fitted to marginals of 𝑓𝑎|𝑒. The dotted curve shows a mixture of two truncated normal distributions versus the one single truncated
normal.

Using the distribution 𝑓𝜁 , we can assess the likelihood 𝑓𝜁 (𝜁 (𝑎, 𝑒)) for any (𝑎, 𝑒) ∈ 𝐴 × 𝐸0. For a point 𝑒 ∈ 𝐸0 to be plausible, it
should be possible to find some 𝑎 ∈ 𝐴 such that 𝑓𝜁 (𝜁 (𝑎, 𝑒)) is large. That is, there must exist some 𝑎 ∈ 𝐴 such that 𝜁 (𝑎, 𝑒) lies within
the main bulk of the distribution shown in Fig. 4. In fact, there must exist some 𝑎𝑖 ∈ 𝐴 such that 𝜁 (𝑎𝑖, 𝑒) corresponds with 𝜁 (𝑦𝑖), for
all observations 𝑦𝑖, in order for 𝑒 to be plausible. However, such a strategy for finding the set 𝐸 would require computing 𝜁 (𝑎, 𝑒) for
all 𝑎 ∈ 𝐴. As a practical alternative, we generate a large set of samples (𝑎, 𝑒)𝑖 ∈ 𝐴×𝐸0, and filter out all samples with likelihood ≈ 0.
We then estimate the set 𝐸̂ of plausible 𝑒-values from the remaining samples, and determine 𝐸 as the smallest hyper-rectangular
set containing 𝐸̂. This is the initial strategy we use when 𝐸 is determined for the first time. For further uncertainty reduction we
will use a refined strategy discussed in Section 3.1.

From the fitted distribution 𝑓𝜁 , we obtain the non-parametric distribution 𝑓𝑎|𝑒 as in Eq. (3). An illustration is given in Fig. 5 where
some 2d marginals of 𝑓𝑎|𝑒 are plotted for a few different values of 𝑒. It will also be useful to establish a parametric approximation
to 𝑓𝑎|𝑒, and for this we use a multivariate truncated Gaussian over (𝑎1, 𝑎2, 𝑎3, 𝑎5), with 𝑎4 uniform on the interval [0, 2]. We write the
parametric approximation as

𝑓 𝛼
𝑎|𝑒 ≈ 𝑓𝑎|𝑒, (4)

with distribution parameter 𝛼. We define the parametric approximation in terms of the marginals

𝑎𝑖 ∼ 𝑇𝑁(𝜇𝑖, 𝜎𝑖, 0, 2) for 𝑖 = 1, 2, 3, 5,
𝑎4 ∼ 𝑈 ([0, 2]),

(5)

and a Gaussian copula specified by a 5 × 5 correlation matrix 𝑅 = [𝜌𝑖,𝑗 ], where 𝜌𝑖,𝑗 is the Spearman rank correlation coefficient
between 𝑎𝑖 and 𝑎𝑗 . Here 𝑎𝑖 ∼ 𝑇𝑁(⋅) denotes that 𝑎𝑖 has a univariate normal distribution, conditioned on the event 𝑎𝑖 ∈ [0, 2], and
𝛼 is the vector of all parameters, 𝜇𝑖, 𝜎𝑖 and 𝜌𝑖,𝑗 . Note that all of these parameters depend on 𝑒, i.e. 𝛼 = 𝛼(𝑒), and we will estimate 𝛼
based on samples (MCMC) from 𝑓𝑎|𝑒.

Fig. 6 shows an example of the parametric distribution for a given value of 𝑒, using a maximum likelihood estimate of 𝛼. It
turns out that for many values of 𝑒 ∈ 𝐸, a mixture of two truncated Gaussians would provide a better fit. Other alternatives for
the marginals could also be considered. However, we only intend to use the parametric distribution for initial estimates of failure
probabilities, to help with importance sampling, and to approximate moments of 𝑔(𝑎, 𝑒, 𝜃) (in particular, as a crude approximation
of how the variability of 𝑔 changes with 𝑒 and 𝜃). And for this purpose, this simple model seems sufficient.

From the correlation matrix 𝑅 we observe that there is usually some correlation between 𝑎1, 𝑎2 and 𝑎3. Fig. 7 shows 2D marginals
of some of these pairs (𝑎𝑖, 𝑎𝑗 ). Note that the value of 𝑒 used to generate the plots in Figs. 6 and 7 may be far from the correct one,
but cannot be ruled out by the observations {𝑦𝑖} alone.

In reliability analysis, it is often useful to work with the random variables in the standard normal space. From the selected
parametric distribution, we can perform the Nataf-type of transformation

𝑎
𝑇𝑒
←←←←←←←←←←→ 𝑢 ∼ 𝑁(0, 𝐼),
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Fig. 7. 2D marginal distributions of (𝑎1 , 𝑎2) and (𝑎1 , 𝑎3), from the non-parametric distribution 𝑓𝑎|𝑒 (left) and parametric approximation (right), for a fixed value
of 𝑒.

which has the property that, for any 𝑒 ∈ 𝐸0 and 𝑎 ∼ 𝑓 𝛼
𝑎|𝑒, 𝑢 = 𝑇𝑒(𝑎) is 𝑛𝑎-dimensional standard normal. The transformation is obtained

by first letting 𝑧𝑖 = 𝛷−1(𝐹𝑖(𝑎𝑖)) where 𝛷 is the standard normal CDF and 𝐹𝑖 is the CDF of 𝑎𝑖. Then 𝑧 = (𝑧1,… , 𝑧𝑛𝑎 ) ∼ 𝑁(0, 𝑅0) with
covariance matrix

[𝑅0]𝑖,𝑗 = 2 sin
(𝜋𝜌𝑖,𝑗

6

)
.

See for instance [6] for details. The standard normal variable is then obtained by 𝑢 = 𝐿−1
0 𝑧 where 𝐿0𝐿𝑇

0 = 𝑅0.

Remark 2.2. Different values of 𝑒 have been used to generate the plots in Fig. 5, Fig. 6 and Fig. 7, in order to illustrate some
different versions of 𝑓𝑎|𝑒 and 𝑓 𝛼

𝑎|𝑒. These are not necessarily plausible values of 𝑒.

3. (B) uncertainty reduction

3.1. Ranking of epistemic parameters

To rank the epistemic parameters according to their ability to improve the predictive ability of 𝑌 , we study how 𝑓𝑎|𝑒 changes
with respect to 𝑒 ∈ 𝐸. To measure the effect of one component of 𝑒 = (𝑒1, 𝑒2, 𝑒3, 𝑒4), say 𝑒1, we estimate the expected Kullback–Leibler
divergence

E[(𝑓𝑎|𝑒 ∥ 𝑓𝑎|𝑒′ )] = E
[
∫𝐴 𝑓𝑎|𝑒(𝑎) log

𝑓𝑎|𝑒(𝑎)
𝑓𝑎|𝑒′ (𝑎)

𝑑𝑎
]
.

Here 𝑒′ represents a small perturbation of 𝑒1, 𝑒′1 = 𝑒1 + 0.1, and the expectation is taken over the other parameters (𝑒2, 𝑒3, 𝑒4) that
are assumed uniform within the bounds set by 𝐸.

From Fig. 8 we conclude that 𝑒3 is more influential than 𝑒2 and 𝑒4, in the sense that small perturbations of 𝑒3 has a larger effect
on the related distribution 𝑓𝑎|𝑒. The same is true for 𝑒1, if 𝑒1 is large in the first place. When deciding on the uncertainty reductions
to make, we must also take into account that we may only request to increase or decrease the bounds of the initial set 𝐸0 = [0, 2]4.
We observed that 𝑒 ∈ 𝐸 ⇒ 𝑒1 ≪ 2, and so decreasing the upper bound on 𝑒1 might not provide any new information. Hence, we
combine the information from Fig. 8 with the initial uncertainty reduction described in Section 2.3, where we assess the plausability
of 𝑒. When also considering which 𝑒𝑖 is close to the border of 𝐸0, we decided to request uncertainty reduction on the lower bound
on 𝑒3 and 𝑒4 ({𝑒−3 , 𝑒

−
4 }).

3.2. First UM update

Our initial method for defining a set 𝐸 of plausible 𝑒-values was based on the simple procedure described in Section 2.3, where
we generate samples in 𝐴×𝐸0 and filter out those with negligible likelihood. Now, when the bounding intervals have been reduced
by this method, together with additional refinement provided by the request {𝑒−3 , 𝑒

−
4 }, we switch to a more detailed method for

further refinement of 𝐸 → 𝐸1. The first updated UM is then
⟨
𝑓𝑎|𝑒, 𝐸1

⟩
.

We may assess whether any 𝑒 ∈ 𝐸 is plausible by generating samples {𝑎(𝑗)} from 𝑓𝑎|𝑒, computing 𝑦𝑗 = 𝑌 (𝑎(𝑗), 𝑒), and comparing the
set {𝑦𝑗} with the provided observations {𝑦𝑖}. In practice we will work in the reduced space, comparing 𝜁 (𝑎(𝑗), 𝑒) against {𝜁𝑖} = {𝜁 (𝑦𝑖)}.
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Fig. 8. Kullback–Leibler divergence between respective distributions 𝑓𝑎|𝑒 for 𝑒 ∈ 𝐸, when component 𝑒𝑖 is perturbed by 𝑒𝑖 → 𝑒𝑖 + 0.1. The figure shows mean
and mean ± 1 standard deviation, when the remaining components, 𝑒𝑗 for 𝑗 ≠ 𝑖, are uniform within 𝐸.

There are different ways of defining plausability of 𝑒, and we decided to go with a simple approach, where we compare the median
of the probability density of 103 samples of 𝜁 (𝑎(𝑗), 𝑒), with the density of the observations {𝜁𝑖} given by (3). We use this approach,
because of its simplicity, and because it was easy to find a suitable threshold that could be used to determine when a value of 𝑒
was implausible. This procedure is more refined than the one presented in Section 2.3, where we filtered out the values of 𝑒 with
likelihood ≈ 0. But we note that the initial filtering was necessary, as there would be numerical issues with sampling from 𝑓𝑎|𝑒 for
the extremely unlikely values of 𝑒.

Our strategy for reducing the size of 𝐸 is based on this procedure, where we check whether 𝑒(𝑘) is plausible for a representative
set {𝑒(𝑘)} ⊂ 𝐸, and let 𝐸1 be the smallest hyper-rectangular set containing all plausible 𝑒(𝑘). The representative set {𝑒(𝑘)} is given as
the union of the following two sets:

• a Latin Hypercube (LHS) sample within 𝐸,
• samples gathered form a Bayesian Optimization (BO) targeted at finding the most plausible 𝑒 ∈ 𝐸.

Bayesian optimization (see for instance [7]) is a method for finding the maximum of a function using a small number of function
evaluations, and we use it here as a technique to locate the most plausible candidates in 𝐸. We use this procedure as evaluating the
plausability of a single value of 𝑒 is based on sampling from 𝑓𝑎|𝑒 and many computations of 𝜁 (⋅), which takes a bit of time.

Remark 3.1. The updated set 𝐸 is determined from a threshold on the likelihood of the epistemic variable 𝑒. Initially we consider
a threshold that is not overly conservative when we perform the model calibration. This makes it easier to find a design 𝜃 which
is both acceptable with respect to improbable values of 𝑒, and closer to optimal with respect to the more realistic values of 𝑒. In
Section 7 we discuss this in more detail, and we will also verify that the final design is acceptable even for a more conservative
(larger) set 𝐸.

4. (C) reliability analysis of baseline design

The reliability analysis is performed for multiple designs, 𝜃baseline, 𝜃new, 𝜃final and 𝜃𝑟̂%risk, and the final results are collected in
Section 8.

4.1. Numerical procedure for estimation of failure probabilities

To estimate failure probabilities, we will work with the density 𝑓𝑎|𝑒 given in Eq. (3). For some of the subproblems we address,
it is not necessary to compute the normalizing constant 𝐶, and we define the proportional density

̇𝑓𝑎|𝑒(𝑎) = 𝑓𝜁 (𝜁 (𝑎, 𝑒)), (6)

such that 𝑓𝑎|𝑒(𝑎) = ̇𝑓𝑎|𝑒(𝑎)∕𝐶. In particular, from ̇𝑓𝑎|𝑒(𝑎) we may estimate moments of 𝑓𝑎|𝑒(𝑎) using importance sampling, or generate
samples using Markov chain Monte Carlo (MCMC).

Given a limit state function 𝑔𝑖(𝑎, 𝑒, 𝜃), the simplest way to estimate the failure probability 𝑝𝑓 is by crude Monte Carlo (MC)
sampling,

𝑝̂𝑓,𝑀𝐶 = 1
𝑛

𝑛∑
𝑗=1

1{
𝑔𝑖(𝑎𝑗 ,𝑒,𝜃)≥0}, (7)
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where 𝑎1,… , 𝑎𝑛 are i.i.d. samples from 𝑓𝑎|𝑒. The unbiased sample variance can be estimated by

𝑣𝑎𝑟(𝑝̂𝑓,𝑀𝐶 ) =
𝑝̂𝑓,𝑀𝐶 (1 − 𝑝̂𝑓,𝑀𝐶 )

𝑛
. (8)

A common technique to reduce the sample variance is by importance sampling, where we make use of some importance distribution
𝑞(𝑎), with the property that 𝑞(𝑎) ≠ 0 whenever 𝑓𝑎|𝑒(𝑎) ≠ 0. The importance sampling estimate and the estimated sample variance are
given by

𝑝̂𝑓,𝐼𝑆 = 1
𝐶𝑛

𝑛∑
𝑗=1

1{
𝑔𝑖(𝑎𝑗 ,𝑒,𝜃)≥0}

̇𝑓𝑎|𝑒(𝑎𝑗 )
𝑞(𝑎𝑗 )

,

𝑣𝑎𝑟(𝑝̂𝑓,𝐼𝑆 ) =
1

𝐶2𝑛
⋅

𝑛∑
𝑗=1

(
1{

𝑔𝑖(𝑎𝑗 ,𝑒,𝜃)≥0}
̇𝑓𝑎|𝑒(𝑎𝑗 )
𝑞(𝑎𝑗 )

− 𝐶𝑝̂𝑓,𝐼𝑆

)2

,

(9)

where 𝑎𝑗 are sampled from 𝑞(𝑎).
We will use two different strategies for failure probability estimation, depending on whether the failure probability is large

(> 0.01) or small (< 0.01). For large failure probabilities, we will rely on the MC estimate Eq. (7), where 𝑛 is chosen such that the
relative error is acceptable. To generate the samples 𝑎𝑗 we make use of the Affine Invariant Markov chain Monte Carlo (MCMC)
Ensemble sampler provided by [8].

For smaller failure probabilities, sampling directly from 𝑓𝑎|𝑒 will be inefficient. Here we use the importance sampling estimate
Eq. (9), where we select 𝑞(𝑎) from the design point of a FORM analysis. This is achieved by first running a FORM analysis using
the parametric approximation 𝑓 𝛼

𝑎|𝑒. FORM is based on obtaining a linear approximation to the limit-state at a point 𝑎∗ called the
design point. The design point is the point on the limit state, 𝑔𝑖 = 0, with largest probability density. See for instance [9] for further
details. We define 𝑞(𝑎) as a modified version of 𝑓 𝛼

𝑎|𝑒, where the distribution is shifted such that E[𝑞] = 𝑎∗ (it may also be useful to
increase the variance slightly). The distribution 𝑞(𝑎) obtained in this way should then be able to produce samples 𝑎𝑗 where both
𝑔𝑖(𝑎𝑗 , 𝑒, 𝜃) ≥ 0 and 𝑓𝑎|𝑒(𝑎𝑗 ) is large, which is needed to reduce the variance of the estimated failure probability. When the failure
probability for 𝑔1, 𝑔2 and 𝑔3 have been estimated, the samples used for each individual limit state can also be used for 𝑤 in order
to reduce the total number of function evaluations of 𝑔(⋅).

To estimate the range of the failure probability for 𝑒 in some set 𝐸, we compute the failure probability for a finite subset
{𝑒(𝑘)} ⊂ 𝐸 as described in Section 3.2. In order to capture the relevant ranges of failure probabilities, we found that around 100
𝑒-values, |{𝑒(𝑘)}| ≈ 100, seemed sufficient.

4.2. Ranking of epistemic uncertainties

To rank the epistemic uncertainties according to the contraction of the failure probability 𝑝𝑓,𝑤(𝑒, 𝜃) = P(𝑤(𝑎, 𝑒, 𝜃) ≥ 0), we estimate
the change in the minimum and maximum of {𝑝𝑓,𝑤(𝑒, 𝜃)}𝑒∈𝐸 when we replace 𝐸 with a reduced set 𝐸′. Again we make use of the
finite subset {𝑒(𝑘)} ⊂ 𝐸 for which 𝑝𝑓,𝑤(𝑒, 𝜃) is already available. The results are given in Section 8, where we let 𝐸′ be the set given
by increasing the lower bounds and decreasing the upper bounds of 𝐸 with 25%.

5. (D) reliability-based design

5.1. Optimality criterion

As we do not have any information on the criticality of each failure mode, i.e. whether some limit state 𝑔𝑖 should be seen as
more important than the others, we will seek a design 𝜃 where 𝑔𝑖(𝑎, 𝑒, 𝜃) is as ‘‘small as possible’’ for all 𝑖 = 1, 2, 3. Our optimality
criterion will be based on the characteristic values

𝑐𝑖(𝑒, 𝜃) = E
[
𝑔𝑖(𝑎, 𝑒, 𝜃)

]
+ 2 Std(𝑔𝑖(𝑎, 𝑒, 𝜃)), (10)

where the expectation and standard deviation (Std) are taken with respect to 𝑎 ∼ 𝑓𝑎|𝑒. From the characteristic values 𝑐𝑖, we define
the following loss function:

𝐿(𝑒, 𝜃) =
3∑
𝑖=1

exp[𝛾𝑖𝑐𝑖(𝑒, 𝜃)]. (11)

Here 𝛾𝑖 > 0 are constants needed to bring each 𝑐𝑖 to the same scale, as the output of each 𝑔𝑖 are of different orders of magnitude. In
our implementation we have used 𝛾1 = 10, 𝛾2 = 200 and 𝛾3 = 1.

Given some set 𝐸 of plausible 𝑒-values, we define the reliability-optimal design as a solution 𝜃∗ of the optimization problem

𝜃∗ ∈ arg min
𝜃

{max
𝑒∈𝐸

𝐿(𝑒, 𝜃)}. (12)

We will make use of an approximation to Eq. (11) described below, and the final results are collected in Section 8.
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Fig. 9. UT approximation of the loss function Eq. (11) vs estimated (MCMC) loss.

5.2. Numerical UT approximation

For numerical efficiency, we introduce an approximation of the loss function Eq. (11) based on the Unscented Transform (UT).
UT is an efficient method for estimating the mean and covariance of a random variable after nonlinear transformation. In short,
given some random variable 𝑥 we define a set of weighted sigma-points ({𝑤𝑖, 𝑥𝑖}), such that if ({𝑤𝑖, 𝑥𝑖}) were considered as a discrete
probability distribution, then its mean and covariance would coincide with 𝑥. For any nonlinear transformation 𝑦 = ℎ(𝑥), if 𝑥 is
discrete we may compute the mean and covariance of 𝑦 exactly. The UT approximation is the result of such computation, when we
approximate 𝑥 with ({𝑤𝑖, 𝑥𝑖}). For details see e.g. [10].

To select the set of sigma-points in UT, we make use of the method developed by [11], which produces a set of 2𝑛𝑎 + 1 sigma-
points and weights in R𝑛𝑎 . These points are generated under the assumption that 𝑥 follows a 𝑛𝑎-dimensional standard normal
distribution. The sigma-points corresponding to the parametric distribution 𝑓 𝛼

𝑎|𝑒 can then be obtained by the transformation discussed
in Section 2.3. From here, the characteristic values 𝑐𝑖 in Eq. (10) can then be estimated by just 11 evaluations of the limit state.

Fig. 9 shows the UT approximation of the loss 𝐿(𝑒, 𝜃) for some different values of 𝜃 and 𝑒. With the goal of minimizing the loss
estimated using samples from 𝑓𝑎|𝑒, the UT approximation seems like a viable proxy, and the optimization problem in Eq. (12) can
then be solved by standard tools for numerical optimization.

6. (E) model update and design tuning

Here we rely on the same procedure for dimensionality reduction as discussed in Section 2.1, in order to refine the UM based
on samples from the integrated system

{
𝑧(𝑖)

}
, together with the numerical model 𝑍̂(𝑎, 𝑒, 𝜃). Hence, we obtain an updated density 𝜁

fitted to two sets of parameter vectors, corresponding to the complex exponential representation of the two datasets
{
𝑦(𝑖)

}
and

{
𝑧(𝑖)

}
.

We found it difficult to assess potential model discrepancy in 𝑍̂(𝑎, 𝑒, 𝜃). We suspect that there is more discrepancy in 𝑍̂(𝑎, 𝑒, 𝜃) than
in 𝑌 (𝑎, 𝑒), but chose to update the UM under the assumption that 𝑍̂(𝑎, 𝑒, 𝜃) still provides an accurate model of the data generating
process. However, if this is not the case then our second refined UM may be too optimistic (see Remark 2.1). Based on the same
type of assessment as in Section 3.1, we decided to again request the uncertainty reduction {𝑒−3 , 𝑒

−
4 }.

We refer to the second updated UM as
⟨
𝑓𝑎|𝑒, 𝐸2

⟩
, where 𝐸2 ⊂ 𝐸1 and 𝑓𝑎|𝑒 is given by Eq. (3) where 𝑓𝜁 is the updated based

on
{
𝑧(𝑖)

}
.

7. (F) risk-based design

As discussed in Remark 3.1, the set 𝐸2 used to find 𝜃final is based on a threshold on the likelihood of the epistemic variable
𝑒 which is not overly conservative. Now, we will introduce a set 𝐸0%risk where 𝑒 ∉ 𝐸0%risk is assumed impossible. We say that
𝑒 ∉ 𝐸0%risk if there is at least one observation 𝑦𝑖 which cannot be explained by 𝑌 (𝑎, 𝑒), for any 𝑎 ∈ 𝐴. (But note that the comments
in Remark 2.1 still apply).

When we define smaller sets 𝐸𝑟%risk ⊂ 𝐸0%risk, corresponding to neglecting a portion of ‘‘𝑟% risk’’, we let 𝐸𝑟%risk be the set
containing the (1 − 𝑟)% values of 𝑒 with largest likelihood. In practice we use a finite sets of points {𝑒𝑖} to represent these sets, and
so the shape of 𝐸𝑟%risk is not necessarily rectangular. But we can still associate to each set 𝐸𝑟%risk the smallest hyper-rectangular
set containing it, as illustrated in Fig. 10. The set 𝐸2 defined in Section 6, which is used in the optimization of 𝜃final, is the set
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Fig. 10. Illustration of the risk-based sets 𝐸𝑟%risk. The set 𝐸2 used in the optimization of 𝜃final is 𝐸2 = 𝐸50%risk. The projection onto 𝑒3–𝑒4 is the same for all three
sets.

Fig. 11. The gain (13) for 𝜃final and 𝜃𝑟̂%risk.

corresponding to 𝑟 = 50% risk. Now we will also find an optimal design 𝜃𝑟̂%risk for 𝑟̂ = 5%, corresponding to 𝐸5%risk. Both 𝜃final and
𝜃𝑟̂%risk will then be evaluated with respect to the conservative scenario 𝐸0%risk and the more optimistic scenario 𝐸50%risk in Section 8.

To quantify the gain 𝑙(𝑟, 𝜃) resulting from taking the risk 𝑟, we let

𝑙(𝑟, 𝜃) = max
𝑒∈𝐸0%

𝐿(𝑒, 𝜃) − max
𝑒∈𝐸𝑟%

𝐿(𝑒, 𝜃), (13)

where 𝐿(𝑒, 𝜃) is the loss function defined in (11). The evaluation of the design 𝜃𝑟̂%risk that maximizes 𝑙(𝑟̂, 𝜃) for 𝑟̂ = 5% is presented
in Section 8, Table 6, and the gain 𝑙(𝑟, 𝜃) for both 𝜃final and 𝜃𝑟̂%risk is shown for a range of values 𝑟 in Fig. 11.

Here we note that a 5% reduction of the epistemic space has very little effect, and optimization over 𝐸5%risk is practically the
same as optimization over 𝐸0%risk. We may therefore consider 𝜃𝑟̂%risk as the design optimized for the worst-case scenario, which we
can compare against the more optimistic 𝜃final corresponding to 𝑟 = 50%. In Fig. 11 we would expect that the curve for 𝜃final had
the steepest slope, i.e. that there is more to be gained by reducing the epistemic set 𝐸 for 𝜃final than 𝜃𝑟̂%risk, but in practice it is
difficult to determine if there is any significant difference in the two designs at all. This is also reflected in the evaluation of failure
probabilities in Section 8.

8. Final results

8.1. Failure probability and severity

We planned to make use of crude MC for initial computation of failure probabilities that are not too small, and switch to
importance sampling after UM refinement and design optimization where more accurate estimation is needed. However, after the
optimization and UM refinement, the failure probabilities are no longer computable. This happens when it is not possible to find
any (𝑎, 𝑒) ∈ 𝐴 ×𝐸 where 𝑔𝑖 ≥ 0. And this seems to be the case for the second refined UM and 𝜃final, as we were not able to find any
(𝑎, 𝑒) ∈ 𝐴×𝐸2 where 𝑔𝑖(𝑎, 𝑒) ≥ 0 for 𝑖 = 1 and 𝑖 = 3 through numerical global optimization (maximization). We could of course tune
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Table 4
Failure probability — First refined UM.
𝜃 Limit-state 𝑝𝑓 min 𝑝𝑓 max Severity

𝜃 b
as

el
in

e
𝑔1 – 0.145 0.030
𝑔2 0.010 0.715 0.003
𝑔3 – 0.507 0.246
𝑤 0.048 0.727 NA

𝜃 n
ew

𝑔1 – 0.045 1.8 ⋅ 10−4
𝑔2 – 0.522 1.1 ⋅ 10−3
𝑔3 – – –
𝑤 – 0.522 NA

*MC estimates. Missing 𝑝𝑓 values (–) can be assumed < 10−3.

Table 5
Failure probability — Second refined UM.
𝜃 Limit-state 𝑝𝑓 min 𝑝𝑓 max Severity

𝜃 b
as

el
in

e

𝑔1 – 0.224 2.1 ⋅ 10−2
𝑔2 0.019 0.162 4.5 ⋅ 10−4
𝑔3 – 0.021 1.1 ⋅ 10−2
𝑤 0.026 0.341 NA

𝜃 n
ew

𝑔1 – 0.001 3.9 ⋅ 10−6
𝑔2 0.006 0.030 2.9 ⋅ 10−5
𝑔3 – – –
𝑤 0.006 0.030 NA

𝜃 f
in

al

𝑔1 0 0 0
𝑔2 – 0.008 1.6 ⋅ 10−5
𝑔3 0 0 0
𝑤 – 0.008 NA

*MC estimates. Missing 𝑝𝑓 values (–) can be assumed < 10−3, and 0 indicates that max𝑎∈𝐴,𝑒∈𝐸2
𝑔𝑖 < 0.

Table 6
Failure probability — Risk-based evaluation.
𝜃 Limit-state Full 𝐸 Reduced 𝐸

𝑝𝑓 max Severity 𝑝𝑓 max Severity

𝜃 𝑟
%

ris
k

𝑔1 – – – –
𝑔2 0.055 1.2 ⋅ 10−4 0.021 3.8 ⋅ 10−5
𝑔3 – – – –
𝑤 0.055 NA 0.021 NA

𝜃 f
in

al

𝑔1 – – 0 0
𝑔2 0.061 1.6 ⋅ 10−4 0.008 1.6 ⋅ 10−5
𝑔3 – – 0 0
𝑤 0.061 NA 0.008 NA

*MC estimates. Missing 𝑝𝑓 values (–) can be assumed < 10−3, and 0 indicates that max𝑎∈𝐴,𝑒∈𝐸 𝑔𝑖 < 0. Full 𝐸 and reduced 𝐸
correspond to 𝐸0% and 𝐸50% in Fig. 10.

the optimization of 𝜃final further, putting less wight on 𝑔1 and 𝑔3, but chose to with the current alternative under the assumption
that 𝑔1 and 𝑔3 are the most critical failure modes.

The range of the failure probability, 𝑝𝑓 (𝑒, 𝜃), for each of the limit-states 𝑔1, 𝑔2, 𝑔3 and 𝑤, is shown in Tables 4 and 5 for the first
and second refined UM’s respectively. The tables also include the severity of each individual requirement violation.

8.2. Ranking of epistemic uncertainties

The resulting ranking as described in Section 4.2 is given in Table 7.

8.3. Transition to failure

Based on a set of plausible 𝑒 ∈ 𝐸1, the design point 𝑎∗ (most probable point on 𝑔𝑖 = 0) has been estimated based on MCMC.
Fig. 12(a) shows an example of the failure regions for 𝑎1, 𝑎3. The black lines represent the transition boundary 𝑔1 = 0 for plausible
𝑒’s, while the shaded area represent the failure regions where 𝑔1 > 0. 𝑎1 and 𝑎3 has been varied across the entire possible range
[0, 2] while 𝑎2, 𝑎4, 𝑎5 has been kept fixed at each 𝑒’s design point 𝑎∗ plotted as red dots. The blue dots are samples from 𝑓𝑎|𝑒 for
different values of 𝑒. Note that, even though some of the blue dots are located inside the failure domains, this does not necessarily
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Table 7
𝑒-ranking — First refined UM.
𝜃 #1 #2 #3 #4

First refined UM
𝜃baseline 𝑒3 𝑒4 𝑒1 𝑒2
𝜃new 𝑒3 𝑒1 𝑒2 𝑒4

Second refined UM
𝜃baseline 𝑒1 𝑒2 𝑒4 𝑒3
𝜃new 𝑒3 𝑒4 𝑒1 𝑒2
𝜃final 𝑒4 𝑒3 𝑒1 𝑒2

Fig. 12. Transition to failure.

Fig. 13. 𝑍̂(𝑎∗ , 𝑒, 𝜃final) for 𝑒 ∈ 𝐸2.

mean that these are failure points, it is just their projection down in 𝑎1, 𝑎3. But it gives an indication of where the main mass of the
distribution lies with respect to the failure regions.

The failure boundaries in Fig. 12(a) are quite co-located in the 𝑎1, 𝑎3 space, which shows that for the e-box 𝐸1 the failure region
is reasonably stable in this parameter space. Other parameter spaces do not have a similar clear failure region.

Fig. 12(b) shows a similar plot of the 𝑔2 failure region and transition boundary for plausible 𝑒 ∈ 𝐸2 in the 𝑎1, 𝑎3 parameter space,
and Fig. 13 shows the corresponding time responses of the integrated system.

9. Concluding remarks

We conclude by summing up some of the key lessons learned through the challenge. A central part of the problem is dealing
with functional (time-series) data, which makes inference challenging, especially without underlying knowledge about what the data
represents. In particular, the nonparametric route can give challenges with MCMC, and ensuring that this works as correctly can
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be time consuming. With some assumptions regarding the input distribution (if correct), we could make use of a more numerically
stable alternative.

The combination of epistemic and aleatory uncertainty also makes the Bayesian inference challenging. Especially with a set of
observations that is relatively small, combined with a nonlinear mapping that makes the true input distribution unidentifiable. That
is, there could be different values of the epistemic variable 𝑒, combined with quite different distributions over the aleatory variable
𝑎, that could explain the data equally well. But for the objectives posed in this challenge, inferring the correct distribution of 𝑎 is
not really important, as long as we can find designs that are robust to any of the plausible distributions 𝑓𝑎|𝑒.

Our initial attempt was to try an entropy-based approach based on information geometry. Here we would let the aleatory
distribution be the distribution with maximum entropy that satisfies some constraints set by the data. This is possible, but numerically
challenging, and we did not find a way to develop a numerically stable method that could handle time-series data. As discussed
in Section 2.1, we did FPCA (Functional Principal Component Analysis) on the time-series data, which gives a set of uncorrelated
features that can be used for dimensionality reduction. Interestingly, these features still had a very complicated dependency structure,
and the theoretical motivation for using FPCA was then not so relevant.

We define the different epistemic sets 𝐸 using a threshold on the likelihood (plausibility) of the epistemic variable 𝑒, and this
threshold value is something that we set manually. We chose a non-conservative set (𝜃50%risk in Section 7) to use in the initial
design optimization, followed by a verification of the design using a larger conservative set (𝜃0%risk) of epistemic values. The idea
behind this, is that there may be many designs that are acceptable with respect to a large set 𝐸, and out of these we want to
select one that has good performance with respect to the most likely values of 𝑒. We considered a more generic methodology, by
establishing an criterion that gives a suitable balance between acceptable performance in the worst-case scenario and optimality in
the high-likelihood scenarios. Alternatively by considering Pareto optimality with respect to a criterion for acceptable worst-case
performance. But we found it difficult to come up with a meaningful criterion, especially without knowledge about the true physical
system.

As discussed in Section 2.2, it is important that model discrepancy is handled appropriately. For inference to be possible, we need
to decide when two time series are ‘‘basically the same’’. The choice of metric will have to be made based on some assumptions,
which could have a large effect on subsequent analysis. Since we assume noiseless observations, we did not want to impose too
much regularization, as this might ‘‘wash out’’ the information given in the relatively small set of observations. As a result, we
had to spend some time investigating model discrepancy. In the end, in order to assume zero observational error, we needed to
assume a small model discrepancy in order for any form of inference to be possible. As we comment in Section 6 and Remark 2.1 in
Section 2.2, our final results may be sensitive to this assumption. But in a real-world scenario, involving either observational noise,
model discrepancy, or both, this part of the challenge would of course be treated quite differently.
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Environmental contours as Voronoi cells

Andreas Hafver · Christian Agrell · Erik Vanem

Abstract Environmental contours are widely used as basis for design of structures exposed to
environmental loads. The basic idea of the method is to decouple the environmental description
from the structural response. This is done by establishing an envelope of joint extreme values
representing critical environmental conditions, such that any structure tolerating loads on this
envelope will have a failure probability smaller than a prescribed value.

Specifically, given an n-dimensional random variable X and a target probability of failure pe,
an environmental contour is the boundary of a set B ⊂ Rn with the following property: For any
failure set F ⊂ Rn, if F does not intersect the interior of B, then the probability of failure,
P (X ∈ F), is bounded above by pe. As is common for many real-world applications, we work
under the assumption that failure sets are convex.

In this paper, we show that such environmental contours may be regarded as boundaries of
Voronoi cells. This geometric interpretation leads to new theoretical insights and suggests a simple
novel construction algorithm that guarantees the desired probabilistic properties. The method is
illustrated with examples in two and three dimensions, but the results extend to environmental
contours in arbitrary dimensions. Inspired by the Voronoi-Delaunay duality in the numerical dis-
crete scenario, we are also able to derive an analytical representation where the environmental
contour is considered as a differentiable manifold, and a criterion for its existence is established.

Keywords Multivariate extremes · Convexity · Computational geometry · Differential geometry

1 Introduction and background

1.1 A brief review of environmental contours

The use of environmental contours is a well-established practice in design of marine structures,
and helps the designer identify design sea states corresponding to extreme environmental loads
associated with a certain return period. The concept of environmental contours is an efficient
method for estimating multivariate extreme conditions, and it is an alternative to full long-term
response analysis in situations where this is not feasible. An environmental contour is a set con-
structed based on a joint probability distribution for the relevant input parameters, for example
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significant wave height and wave period. The environmental contour method is recommended in
standards and recommended practices such as [14,45].

The concept of environmental contours was first introduced by [19,20] as a means to study
the joint distribution of significant wave height and wave period of ocean waves. These early envi-
ronmental contours were based on constant densities, but the concept of environmental contours
was developed further by [61] by using the Inverse First Order Reliability Method (IFORM) and
considering exceedance probabilities in the transformed standard normal space [22]. The IFORM
method avoids unnecessary conservatism in the equi-density contours [30], and has since then be-
come the most applied contour method. Several applications of the environmental contour method
in marine engineering and design are reported in the literature [44,62,5,51,6,3,4,29,21,42]. A com-
parison study presented in [1] investigated the influence of the choice of contour method on some
vessel responses.

Environmental contours continues to be an active area of research, and several modified ap-
proaches have been suggested in recent years, e.g., a dynamical IFORM method [34], a modified
approach to account for non-monotonic behaviour of the responses [32], an approach including pre-
processing and principal component analysis prior to estimating IFORM contours [15], contours
for sub-populations such as directional sectors or seasonality [56,24], contours for a combination of
circular and linear variables [17], contours for copula-based joint distributions [53,39] and contours
based on a direct IFORM approach [13]. Contours for buffered failure probabilities were proposed
in [12] and contours based on a particular version of the inverse second order reliability method
(ISORM) were derived in [11]. Recently, the initial equi-density method was revisited in [18].
The uncertainties associated with environmental contours due to uncertainties in the underlying
joint distribution model and due to sampling variability are investigated in [41] and [59], respec-
tively, and weighted environmental contours based on combining data from different datasets were
explored in [57]. Reviews of various contour methods are presented in e.g. [36,49].

An alternative approach to constructing environmental contours that avoids the transformation
into standard normal space, but rather defines exceedance probabilities in the original parameter
space, was proposed in [26,28]. This is based on Monte Carlo simulations from the joint distribution
of environmental parameters, and initial inaccuracies due to insufficient number of Monte Carlo
samples were overcome by a scheme for tail sampling as outlined in [27]. It is argued that the
contours obtained in this way have more well defined probabilistic properties, and an evaluation
of the properties of the IFORM-based environmental contours is presented in [25]. However, in
some situations it is found that the direct sampling contours may contain irregularities in the form
of small loops, as discussed in [28]. One reason for this is related to the Monte Carlo variance and
the fact that the contours are estimated based on a finite sample from the joint distribution, and
the issue may be resolved by increasing the number of Monte Carlo samples. However, the reason
may also be genuine features of the underlying joint distribution, i.e. that the joint distribution
does not admit a proper convex environmental contour. A comparison study on the IFORM and the
Monte Carlo-based approach to environmental contours was presented in [58], which demonstrated
that in certain cases, notably different contours are obtained. The comparison study was extended
to consider various simple structural problems in [54] and to compare contour-based methods to
response-based methods in [60].

Even though many structural problems depend on more than two environmental variables, most
applications of environmental contours are restricted to two-dimensional contours. For example, in
the multivariate problem addressed in [43], environmental contours were only calculated for pairs of
variables. However, some examples of three-dimensional contours based on the IFORM approach,
are shown in [33,50,47,40]. An extension of the direct sampling approach to three-dimensional
problems was outlined in [55], and this method was applied to the tension in a mooring line of
a semi-submersible in [48]. However, even though extensions of the direct sampling approach to
environmental contour to higher dimensional problems is indeed possible, calculating the contours
becomes increasingly cumbersome in higher dimensions.

1.2 Contribution of this paper

In this paper, an alternative way of constructing environmental contours is proposed, that easily
generalises to arbitrary dimensions. With this method, environmental contours can be described
as boundaries of Voronoi cells, which may easily be found from standard software packages at rea-
sonable computational costs. The method makes use of Monte Carlo samples from the underlying
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distribution, but overcomes the common loop-problem of direct sampling methods, and can be
used to produce convex contours with the desired probabilistic properties.

In Section 2 we briefly review the mathematical definition of environmental contours. In Section
3 we give a general introduction to Voronoi cells, before showing in Section 4 that environmental
contours may be interpreted as boundaries of Voronoi cells. In Section 5 we generalise results from
Section 4 to the continuous limit, deriving additional theoretical insights, including an analytic
formula for environmental contours in terms of a given percentile function. Section 6 details the
practical application of the proposed algorithm, and examples in two and three dimensions are
provided in Section 7. Some concluding remarks are provided in section 8. For brevity, proofs are
contained in appendices.

2 Definition of environmental contours

We consider a structure or component exposed to some environmental loads. The environmental
loads can be represented by a vector of variables X ∈ X ⊆ Rn, distributed according to some mul-
tivariate probability distribution fX(x). We further define a performance function g(x), where x
is a specific environmental state, such that the structure or component remains intact/functioning
as long as g(x) ≥ 0, and fails if g(x) < 0.

The failure region F = {x ∈ X : g(x) < 0} and the corresponding failure probability pf =
P (X ∈ F) =

∫
F fX(x)dx are generally unknown. However, in many cases, one may argue based on

physics that F must be convex. Therefore, if we can find another convex set B such that g(x) ≥ 0
∀x ∈ B, it follows from convexity theory that there exist a supporting hyperplane Π that separates
B and F (i.e. B ⊆ Π− and F ⊆ Π+, where Π− and Π− are the two half spaces separated by Π),
and pf ≤ P (X ∈ Π+) =

∫
Π+ fX(x)dx.

In particular, we may construct the set

Bpe =
⋂

u∈U
Π−pe(u), (1)

where U denotes the set of all unit vectors in Rn, i.e.

U = {u ∈ Rn | ‖u‖ = 1}, (2)

and Π−pe(u) is the half-space normal to u with the property that P (X ∈ Π−(u)) = 1− pe. More
precisely,

Π−pe(u) = {x : u · x ≤ Cpe(u)}, (3)

where Cpe denotes the pe-level percentile function, defined by

Cpe(u) = inf{c : P (u ·X > c) ≤ pe}. (4)

We will assume that the distribution of X is absolutely continuous with respect to the Lebesgue
measure on Rn, so the function Cpe(u) in (4) is well defined. We note also that (1) uniquely defines
a convex set, as all half-spaces Π−pe(u) are convex.

Depending on the distribution of X, the definition of Bpe in (1) does not imply that all hyper-
planes Πpe(u) intersect Bpe . (See for instance the discussion in Section 4 or the example given in
Figure 7.) In the case where all hyperplanes Πpe(u) intersect Bpe , the authors in [28] state that
X admits a pe-contour. We will make use of the equivalent definition below.

Definition 1 Let Bpe be a nonempty convex set in Rn and pe ∈ (0, 0.5). If

P (X ∈ Π+) ≤ pe (5)

for any supporting half-space Π+ of Bpe , we say that ∂Bpe is a valid environmental contour of
X with respect to the target probability pe. If (5) holds with equality for all the supporting
half-spaces Π+, then ∂Bpe is also a proper environmental contour.

In the case where a proper convex environmental contour exists, it is necessarily given by the
representation in (1). This follows from the fact that any closed convex subset B ⊂ Rn is the
intersection of all supporting half-spaces that contain B (see e.g. Theorem 3.6.18 in [31]). If all
those half-spaces satisfy (5) with equality, then the representation in (1) follows. For reference we
state this in a separate proposition.
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Proposition 1 Assume that the random variable X admits a proper convex environmental con-
tour ∂Bpe with respect to a target probability pe ∈ (0, 0.5). Then the closure of Bpe is uniquely
defined by (1).

In the following we will start by assuming that X admits a proper convex environmental con-
tour, and also that the probabilities P (X ∈ Π+) can be computed without error. After introducing
the connection with Voronoi cells and an algorithm for constructing Bpe , we present an approach
that can be used when these assumptions are relaxed.

3 Voronoi cells

The Voronoi diagram is a fundamental data structure in computational geometry that has found
applications in a variety of fields, including physics, biology, cartography, crystallography, ecology,
geology, anthropology, and meteorology to mention some [46]. Given a set of points p1, . . . pk in a
metric space X , the Voronoi diagram is defined as the partitioning of X into regions R1, . . . Rk,
such that Ri contains all points in X whose distance to pi is not greater than their distance to
any other pj for j 6= i. The region Ri is often referred to as the Voronoi cell of pi (with respect to
the remaining points pj , j 6= i).

In its canonical form, a Voronoi diagram is constructed from a set of points in Rn endowed
with the Euclidean metric, and other alternatives are usually referred to as Generalised Voronoi
diagrams [35,2]. In this paper, we will consider the Voronoi cell of a point o ∈ Rn with respect to
a set S ⊂ Rn. We denote the Voronoi cell by Vor(o, S), and it is the set containing all points that
are at least as close to o as any point in S, measured by the Euclidean distance in Rn.

Vor(o, S) =

{
x ∈ Rn | ‖x− o‖ ≤ inf

s∈S
‖x− s‖

}
. (6)

The distance function used to define Vor(o, S) could also be interpreted as the Hausdorff distance
between the singleton set {o} and S, but we will not make use of this property in this paper.
To motivate the algorithm presented in this paper we will make use of the rather trivial property
that if the set S is finite, then it is equivalent to the canonical definition of (point) Voronoi cells
as illustrated in Figure 1. In the following section we show that an environmental contour can
be represented as a Voronoi cell of the form (6). A numerical approximation is then achieved by
replacing the set S in (6) with a finite subset, where available algorithms developed for canonical
(point) Voronoi diagrams can be used. In this case we will also make use of the Delaunay trian-
gulation of the finite point set, that correspond to the dual graph of the Voronoi diagram. This is
illustrated for points in the plane in Figure 1, and we refer to [46] for further details.

a) b) c)

Fig. 1: Illustration of Delaunay triangulation and Voronoi diagram of a set of points. a) A Delaunay triangulation
of the 8 black points is defined as a triangulation such that no point lies inside the circumcircle of any triangle.
The red points are the centers of each circumcircle. b) The Voronoi diagram (red lines) corresponds to the graph
with the circumcenters as edges. c) The Voronoi cell of one of the points.
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4 Environmental contours as boundaries of Voronoi cells

In this section we give a representation of the environmental contours described in Section 2 using
Voronoi cells of the form (6). We start by introducing the general construction and present some
theoretical properties, in anticipation of a practical procedure for approximation of environmental
contours that will follow in Section 6.

In Section 2 we defined the environmental contours in terms of half-spaces that were parametrized
by their perpendicular distance to the origin. However, a half-space may equivalently be parametrized
in terms of perpendicular distance to any other point o ∈ Rn, i.e.

Π−pe(u) = {x : u · (x− o) ≤ Co
pe(u)}, (7)

with

Co
pe(u) = inf{c : P (u · (X− o) > c) ≤ pe}. (8)

By comparing (1) and (8) it is evident that

Co
pe(u) = Cpe(u)− u · o, (9)

and that the two definitions of Π−pe(u) given in (3) and (7) are equivalent.
Using this alternative parametrization for Π−pe(u), we define the set Sope(U) as

Sope(U) = {so,upe = o + 2Co
pe(u)u}u∈U , (10)

where U is a subset of the unit vectors in Rn.
A point so,upe ∈ Sope(U) represents the reflection of the point o ∈ Rn with respect to the

boundary of the half-space Π−pe(u) (i.e. with respect to Πpe(u)). Stated differently, the half-space
Π−pe(u) contains all points that are closer to o than to so,upe . Intuitively, if o is in the interior of
Bpe , then all points in the convex set Bpe should be closer to o than to any point in Sope(U). This
means that Bpe is the Voronoi cell of o with respect to the set of points Sope(U). The latter insight
is stated formally as a lemma below.

Lemma 1 Let Bpe be defined as in (1). Then

o ∈ Bpe ⇐⇒ Co
pe(u) ≥ 0 ∀ u ∈ U ,

o ∈ Bpe \ ∂Bpe ⇐⇒ Co
pe(u) > 0 ∀ u ∈ U .

Furthermore, if o ∈ Bpe \ ∂Bpe we have for any subset U ⊆ U that

Vor(o,Sope(U)) =
⋂

u∈U
Π−pe(u),

where Vor(·, ·) is the Voronoi cell as defined in (6).

The proof is given in Appendix A. Using this result we arrive at the following proposition that
motivates the algorithm presented in this paper.

Proposition 2 Let Bpe be defined as in (1), and let U1 and U2 be sets of unit vectors in Rn, such
that U1 ⊆ U2 ⊆ U . If o ∈ Bpe \ ∂Bpe then the following holds:

Bpe = Vor(o,Sope(U)) ⊆ Vor(o,Sope(U2)) ⊆ Vor(o,Sope(U1)).

This proposition follows directly from Lemma 1 (see Appendix B for details). The first interesting
observation is that the environmental contour, ∂Bpe , can be represented as the boundary of the
Voronoi cell Vor(o,Sope(U)). This insight immediately suggests a new algorithm for numerical
approximation of environmental contours, by replacing the set of unit vectors U with a finite
subset U = {ui | ui ∈ U , i = 1, . . . , k}, as illustrated in Figure 2. The proposition also states that
any such approximation of a proper convex environmental contour will be conservative, in the
sense that the resulting Voronoi cell is guaranteed to contain Bpe . Accordingly, any approximation
will be a valid convex environmental contour. Moreover, including more unit vectors in the set
U improves the approximation (or at least does not make it worse). Intuitively, the error in the
approximation can be made arbitrarily small, although this naturally will depend on the sampling
strategy used.
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A natural procedure for approximating Bpe could therefore be as follows:

Step 1 Select a set of unit vectors U = {uj}Mj=1.
Step 2 Compute Cpe(u1), . . . , Cpe(uM ).
Step 3 Compute Sope(U) for some o ∈ Bpe \ ∂Bpe .
Step 4 Compute the Voronoi cell of o with respect to Sope(U).

Fig. 2: Construction of environmental contour using the Voronoi method. The black point is the chosen origin
o ∈ Bpe \ ∂Bpe . The red points correspond to the finite set So

pe . The boundaries of the half planes Π−
pe (u) half

way between o and the respective points so,upe ∈ So
pe

are drawn as light grey lines, and their perpendicularity on

the black lines from o to so,upe is indicated with small squares. The boundary of the Voronoi cell of o with respect
to So

pe
is drawn in blue, and it can be seen that the grey lines are tangential on the Voronoi cell.

Under the assumption that a proper convex environmental contour exists (for the given random

variable X and target probability pe), the set B̂pe = Vor(o,Sope(U)) is guaranteed to contain Bpe ,
and the difference can be made arbitrarily small by including sufficiently many unit vectors in U .
For practical application, however, it is not reasonable to assume that the function Cpe(u) can be
computed exactly, and we might not have a priori a point o ∈ Bpe \ ∂Bpe . We will postpone these
questions to Section 6. For now, we will assume that a point o ∈ Bpe \ ∂Bpe is given and that
the function Cpe(u) can be evaluated without error, in order to study the final major assumption.
Namely, that the random variable of interest X admits a proper convex environmental contour
for the target probability pe.

In practice, it might not be possible to determine a priori whether a proper convex environ-
mental contour exists. To see how we might account for this issue, we first study what will happen
if X does not admit a proper convex environmental contour. In Figure 3 we reproduce the ex-
ample given in [28], illustrating the scenario where a supporting half-space can have exceedance
probability larger than pe. That is, one of the hyperplanes Π−pe(u) in (1) does not intersect Bpe .
Hence, if a scenario such as the one in Figure 3 a) occur, this means that a proper environmental
contour cannot exist (for the selected target probability pe). As we illustrate in the figure, there is
an interesting connection with the dual representation of the Voronoi cell, the Delaunay triangu-
lation, that can be exploited when studying this problem. We recall that every edge on a Voronoi
cell corresponds to the circumcenter of a Delaunay triangle (in general a Delaunay simplex for
higher dimensions), and we say that a Delaunay triangulation connects two points a,b ∈ X if
both a and b are part of the same triangle (simplex) in the triangulation. With this terminology,
we may state the observation made in Figure 3 formally as follows.

Proposition 3 Assume ∂Bpe is a proper convex environmental contour with Bpe defined as in
(1). Let Sope(U) be defined as in (10) for some finite set U ⊂ U , and o ∈ Bpe \ ∂Bpe .

Then, for all s ∈ Sope(U), there exists a Delaunay triangulation of the point set {o} ∪ So
pe(U)

that connects s and o.
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a) b) c)

o o o

Π3 Π3 Π3

Π2

Π2

Π2Π1 Π1 Π1

s1 s1 s1

s3 s3 s3

s2

s2

s2

Fig. 3: Three points from So
pe

(U) with corresponding hyperplanes, si = s
o,ui
pe and Πi = Πpe (ui) for three unit

vectors U = {u1,u2,u3}. The Voronoi cell Vor(o,So
pe (U)) corresponds to the shaded area in each figure, and the

dual Delaunay triangulation is indicated with dashed lines. a) Π2 is not a supporting hyperplane of Vor(o,So
pe

(U))
since s2 is not connected to o by any Delaunay edge. b) All planes Πi intersect Vor(o,So

pe (U)) as si is connected
to o by a Delaunay edge for all i. c) The Delaunay triangulation is not unique, and Π2 only intersects a vertex of
Vor(o,So

pe (U)).

A proof of Proposition 3 is given in Appendix C, where we refer to [46] for results regarding
the Voronoi-Delaunay duality. We may also make use of the fact that a Delaunay triangulation
of a point set is unique if the points are in general position. In the general n-dimensional case,
a set P of points is in general position if the affine hull of P is n-dimensional, and there is no
subset of n + 2 points in P that lie on the boundary of a ball whose interior does not intersect
P. Figure 3 c) shows a scenario where this condition is violated. Here, the affine hull of the set
P = {o, s1, s2, s3} is clearly 2-dimensional, but the four points in P all lie on a circle (whose interior
does not contain any points in P). Hence, the Delaunay triangulation is not unique. There are
in fact two possible Delaunay triangulations as illustrated in Figure 3 c), {{o, s1, s3}, {s1, s2, s3}}
and {{o, s1, s2}, {o, s2, s3}}. Using this condition for uniqueness together with Proposition 3, we
immediately achieve the following convenient result.

Corollary 1 Under the assumptions of Proposition 3, if also the points in {o} ∪ So
pe(U) are in

general position, then the Delaunay triangulation is unique and connects all points s ∈ Sope(U)
with o.

Corollary 1 is useful as it gives a criterion for checking whether a proper convex environmen-
tal contour exists, and for identification of directions (for which unit vector u) there might be
problems. The general idea is also illustrated in Figure 4, where we can conclude that no proper
convex environmental contour exists, for the given distribution of X and target probability pe, as
the grey shaded triangle contains a point s ∈ So

pe(U) which is not connected with o.

5 Voronoi contours in the continuous limit

From the illustrations in Figure 3 and Figure 4, we could also imagine what happens as more points
are added, moving to the limit as So

pe(U) → So
pe(U). Consider the Delaunay triangle {o, s2, s3}

in Figure 3 b). This triangle has the property that its circumcircle contains no other points from
So
pe(U) in its interior. As the points s2 and s3 move arbitrarily close together, the circumcircle of

this ”triangle” is the circle that contain o and is tangential to s2 ≈ s3. Moreover, the center of this
circle is a point on ∂Bpe . From this intuition we arrive at the geometric property of proper convex
environmental contours, which is illustrated in Figure 5. We state this formally in Proposition 4,
with a proof given in Appendix D.

Proposition 4 Assume ∂Bpe is a proper convex environmental contour with Bpe defined as in
(1). Let Sope(U) be as in (10) and define, for any b ∈ ∂Bpe and o ∈ Bpe \ ∂Bpe , the n-dimensional
ball Wo(b) = {x ∈ Rn | ‖x− b‖ ≤ ‖b− o‖}.

Then for any u ∈ U , there exists some b ∈ Πpe(u) ∩ ∂Bpe where Sope(U) ∩Wo(b) ⊆ ∂Wo(b),
and so,upe ∈ ∂Wo(b).
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Fig. 4: Illustration of the idea behind Proposition 3 and Corollary 1 in 2D. The dashed lines shows the Delaunay
triangulation of the points {o}∪So

pe
(U), which are in general position. The grey triangle contains a point s ∈ So

pe
(U)

that is not connected to o. Hence, no proper convex environmental contour exists for the selected probability pe
and the random variable X used to generate So

pe
(U).

b

∂Bpe

Bpe

o

So
pe

(U)

Πpe
(u)

u

so,upe

Fig. 5: Geometric illustration of Proposition 4 in 2D. For any u ∈ U there exists some b ∈ Πpe (u) ∩ ∂Bpe , such
that the circle centered at b that also contains o is tangent to So

pe
(U) at so,upe , and contains no points from So

pe
(U)

in its interior.

A consequence of the geometric property stated in Proposition 4 is that, given a parametriza-
tion of unit vectors in Rn, we will be able to derive a parametric characterization of ∂Bpe . The
key insight from Figure 5 is that, given certain regularity assumptions, the vectors tangential to
the set Sope(U) and the ballWo(b) coincide at so,upe . This will eventually let us derive a parametric
representation of the set ∂Bpe as a (n−1)-dimensional manifold. So now, motivated by the proper-
ties derived in the discrete scenario using tools from computational geometry, i.e. the Voronoi and
Delaunay tessellations, we will move to the continuous limit and study environmental contours in
the context of differential geometry.

We will start by assuming that the set Sope(U), viewed as a (n − 1)-dimensional manifold
embedded in Rn, is differentiable. We recall that a m-dimensional manifold S in Rn, for m ≤ n,
can be represented by a set of charts σi : Vi → S, where Vi are open non-empty subsets of Rm.
Any set of charts {σi, Vi}i that cover S, i.e. S = ∪iσi(Vi), is called an atlas of S. We will in
particular consider a regular parametrization of the unit (n−1)-sphere U , by which we mean a set
of charts {σi, Vi}i covering U where each σi is smooth and where the Jacobi matrix of σi has rank
n− 1 at any point in Vi. With the canonical alternative of spherical coordinates in mind, we will
let {ui(θ) | θ ∈ Θi}i denote an atlas of U with these properties. With some abuse of terminology,
we will also refer to {ui(θ) | θ ∈ Θi}i as a regular parametrization of U . Given such a regular
parametrization of U , we will continue to construct corresponding parametrizations of Sope(U) and
eventually ∂Bpe . But first we will need a preliminary result given in Lemma 2 below.
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Lemma 2 Assume ∂Bpe is a proper convex environmental contour with Bpe defined as in (1), let
o ∈ Bpe \ ∂Bpe and assume Sope(U) is a differentiable manifold.

If the pair (a,u), for some a ∈ Rn and u ∈ U , satisfies the following

1. ‖a− o‖ =
∥∥so,upe − a

∥∥, and
2. (so,upe − a) is orthogonal to Sope(U) at so,upe ,

then {a} = Πpe(u) ∩ ∂Bpe .

In the proof of Lemma 2, given in Appendix E, we also show that for any u ∈ U , Πpe(u)∩∂Bpe is
a singleton set, as Πpe(u)∩∂Bpe is nonempty when ∂Bpe is a proper convex environmental contour
and the pair (b,u) satisfies the conditions in Lemma 2 for any b ∈ Πpe(u) ∩ ∂Bpe . This means
that the set Bpe has no ”flat parts”, and that Bpe is in fact strictly convex. But besides this, the
conditions in Lemma 2 will also serve as a more practical criterion to verify that a given mapping
(soon to be given explicitly) gives a representation of the environmental contour ∂Bpe . This result
is summarised in Proposition 5 below, with a proof given in Appendix F.

Proposition 5 Let F : U → Rn be a mapping such that the assumptions and conditions of Lemma
2 hold for any pair (F (u),u). Then F (U) = ∂Bpe .

Now, the next step is to introduce a specific parametrization of ∂Bpe that we will use Propo-
sition 5 to verify. We will achieve this by mapping a parametrization of the unit (n − 1)-sphere
U to a parametrization of ∂Bpe . This idea has been explored in [28,23] for the 2-dimensional case
using the parametrization u(θ) = (cos(θ), sin(θ)), where also the existence of a proper convex en-
vironmental contour is determined from properties related to the parametrized percentile function
Cpe(θ) = Cpe(u(θ)). In the following we will extend this to the n-dimensional case.

Let {ui(θ) | θ ∈ Θi}i be the regular parametrization of U introduced previously. Suppressing
the index i, for any chart u(θ) : Θ → U we define the functions Co

pe(θ) and sope(θ) accordingly,

Co
pe(θ) = Co

pe(u(θ)) : Θ → R,
sope(θ) = o + 2Co

pe(θ)u(θ) : Θ → Rn,
(11)

where we will assume that both u(θ) and Co
pe(θ) are continuously differentiable as functions of

θ, and let ∇θ denote the Jacobian. That is, for functions f : Θ → Rm, ∇θf is the m × (n − 1)
matrix with entries [∇θf ]i,j = ∂fi/∂θj . The assumption that u(θ) is a regular parametrization
means that we also assume that ∇θu(θ) has rank n− 1 for any θ ∈ Θ.

Theorem 1 (Representation of proper convex environmental contours) Assume the n-
dimensional random variable X admits a proper convex environmental contour ∂Bpe with respect
to a target probability pe ∈ (0, 0.5), and assume that the pe-level percentile function Cpe(u) is
k-times continuously differentiable on the unit (n− 1)-sphere for k ≥ 1.

Then Bpe is strictly convex, and ∂Bpe is a (k − 1)-times differentiable manifold. Furthermore,
if {ui(θ) | θ ∈ Θi}mi=1 is a regular parametrization of the unit (n − 1)-sphere, then an atlas of
∂Bpe is obtained by {bi(θ) | θ ∈ Θi}mi=1, where bi(θ) is obtained from ui(θ) using the following
relation:

b(θ) = Cpe(θ)u(θ) +∇θu(θ)g−1(θ)(∇θCpe(θ))T , (12)

and where g(θ) = ∇θu(θ)T∇θu(θ) is the metric tensor of the (n − 1)-sphere induced by the
parametrization u(θ).

The proof of Theorem 1 is given in Appendix G. Note that Theorem 1 gives an analytic
expression for the environmental contour (i.e. bi(θ)) in terms of the pe-level percentile function
Cpe(θ). Thus, given a specific parametrization and a differentiable approximation of Cpe(θ) it is
possible to compute b(θ) directly, as an alternative to explicitly constructing a Voronoi cell as
described in section 4. One common parametrization in the n-dimensional case is given by u(θ) =

(u0, u1, . . . , un−1) with ui = cos θi
∏i−1
j=0 sin θj for i = 0, 1, . . . , n−2 and un−1 =

∏n−2
j=0 sin θj , where

θi ∈ [0, π) for i = 1, 2, . . . , n− 2 and θn−2 ∈ [0, 2π). The corresponding induced metric tensor has

entries g0,0 = 1, gi,i =
∏i−1
j=0 sin θj

2 for i = 0, 1, . . . , n− 2 and gi,j = 0 if i 6= j.
It would be desirable to have a criterion for Cpe(θ) that guarantees that bi(θ) represent a

proper environmental contour. To obtain such a criterion, we will need a couple of intermediate
results given in the following to Lemmas.
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Lemma 3 The random variable X admits a proper convex environmental contour with respect to
pe ∈ (0, 0.5) if and only if the following holds:

For any u′ ∈ U , there exists some o ∈ Πpe(u′) such that Co
pe(u) ≥ 0 for all u ∈ U .

Lemma 4 Assume the percentile function Cpe(θ) is twice differentiable and that u(θ) : Θ → U
is regular (∇u(θ) exists and has full rank for all θ). Let b(θ) be defined as in (12). Then

u(θ)Tb(θ) = Cpe(θ) and u(θ)T∇b(θ) = 0

for all θ ∈ Θ. This means that Πpe(θ) is tangential to b(Θ) at the point b(θ).

Lemma 3 comes as a consequence of Lemma 1, and the proof is given in Appendix H. In
Appendix I we present the proof of Lemma 4, which states that for any θ, the hyperplane Πpe(θ)
is tangential to b(Θ) at the point b(θ).

Armed with these results we can prove the following criteria for existence.

Theorem 2 (Existence of proper convex environmental contours) Let X be any n-dimensional
random variable where the percentile function Cpe(·) is differentiable on the unit (n − 1)-sphere.
Let {ui(θ) | θ ∈ Θi}mi=1 be a regular parametrization of the unit (n−1)-sphere, and define for any
u(θ) = ui(θ) the function

κ(θ|θ′) = Cb(θ′)
pe (θ) = Cpe(θ)− u(θ) · b(θ′), (13)

where Cpe(θ) = Cpe(u(θ)) and b(θ′) is given by (12) with θ = θ′.
Then the following are equivalent:

1. X admits a proper convex environmental contour.
2. The hypersurface given by the parametrization b(θ) in (12) is the boundary

of a closed convex set.
3. κ(θ|θ′) ≥ 0 for all u(θ) = ui(θ),θ,θ′ ∈ Θi, and i = 1, . . . ,m.
4. κ(θ|θ′) attains its global minimum at θ = θ′ for all u(θ) = ui(θ), i =

1, . . . ,m.

The proof of Theorem 2 is provided in Appendix J. In the 2-dimensional case with polar
coordinates, one can also show that existence is equivalent to the criterion that Cpe(θ)+C ′′pe(θ) > 0
for all θ ∈ [0, 2π) (see Theorem 3.13 in [23]). As a consequence of Theorem 2, we can obtain the
following similar result stated in Corollary 2 below.

Corollary 2 Assume the n-dimensional random variable X admits a proper convex environmental
contour, and that Cpe(θ) is two times differentiable. Then Hess(Cpe(θ)) + g(θ)Cpe(θ) is positive
semi-definite for all θ ∈ Θ, where Hess(·) is the Hessian operator on the (n− 1)-sphere and g(θ)
is the (n− 1)-sphere metric tensor.

The proof of Corollary 2 is given in Appendix K. Note that the metric tensor on the unit circle
is simply g = 1, so the 2-dimensional version of Corollary 2 states that Cpe(θ) + C ′′pe(θ) ≥ 0. As
a stronger version of the statement holds in the 2-dimensional case, we might conjecture that the
criterion in Corollary 2 with strict positive definiteness could hold as a necessary condition, but
we have currently not explored this further in any detail.

6 Practical application of the Voronoi method for environmental contour
approximation

In Section 4 we outlined a potential procedure for approximating environmental contours using the
Voronoi-representation. Based on this idea, we present the steps involved in Algorithm 3 below,
followed up by a discussion on how each step may be implemented in practice.

Algorithm 3 Approximating Bpe using the Voronoi method

1. Select a set of unit vectors U = {uj}Mj=1.

2. Estimate Ĉpe(uj) ≈ Cpe(uj) for each j = 1, . . . ,M .

3. Compute Ŝope(U), using Ĉo
pe(uj) in (10), for some o ∈ Bpe \ ∂Bpe .
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4. Compute the approximation B̂pe = Vor(o, Ŝope(U)).

5. Check that each point in Ŝope(U) is connected with o in the Delaunay triangulation of the point
set {o} ∪ So

pe(U).

Step 1: The algorithm will produce finer approximations as more unit vectors are included.
However, the main computational burden is usually related to the estimation of Cpe(uj) for each
unit vector, so the number of unit vectors is often decided by the desired run-time of the entire
algorithm. In applications such as design of marine structures, there might be knowledge related
to which directions that are the most informative, and the set U might be chosen on this basis.
Alternatively, a uniform selection may be applied. One way to generate uniform random samples
from the unit (n − 1)-sphere is to let uj = vj/ ‖vj‖ where vj = (v1,j , . . . , vn,j) and all v1,j are
i.i.d. Gaussian [37].

Step 2: In practice, we might not be able to compute Cpe(uj) exactly. However, this can be
estimated based on a finite number of Monte Carlo samples from the joint distribution, in the
same way as outlined in [26,28]. The estimation error will depend on the sample size and may in
principle be reduced to an acceptable level by increasing the number of samples, or for example
using the importance sampling scheme proposed in [27]. Moreover, if one were to apply conserva-

tive estimates, i.e. Ĉpe(uj) ≥ Cpe(uj), this would produce a conservative (larger) environmental
contour approximation as well.

Step 3: In order to compute Ŝope(U), we first need some point of reference o from the interior
of Bpe . The criterion that Co

pe(u) > 0 for any u ∈ U (see Lemma 1) can be used to identify if the
selected origin o is not in the interior of Bpe . We can then also observe that, in the case where
we want to replace the origin o with some new point o∗, the new set So∗pe can be computed using

that Co∗
pe (u) = Co

pe(u) + u · (o− o∗), and hence

so
∗,u
pe = so,upe + 2u · (o− o∗)u− (o− o∗). (14)

This means that the estimates Ĉpe(uj) can be reused, as going from Ŝope(U) to Ŝo∗pe (U) is a simple
linear transformation. We may also note the geometric interpretation, by observing that the added
term 2u · (o−o∗)u− (o−o∗) is the reflection of the point (o−o∗) with respect to the unit vector
u. As both checking whether Co

pe(u) > 0 and moving the origin Co
pe(u) → Co∗

pe (u) are cheap
computationally, one could derive an iterative procedure to determine o. Alternatively, finding the
point o with maximal distance to all hyperplanes under the restriction that Co

pe(uj) > 0, which is
equivalent to Cpe(uj) > uj ·o, for each j = 1, . . . ,M can be solved by linear programming. In our
implementation, the geometric median of a set of samples from the joint distribution of X (the
ones used to estimate Cpe(uj) in Step 2) was selected as the origin o. This choice of o will with
high probability lie inside Bpe for any pe > 0.5, and in our experiments we did not find the need
to iterate further beyond this initial guess.

Step 4: Some of the motivation for this paper comes from the fact that the Voronoi tessel-
lation is a well studied object. As a result, a wide range of software and programming languages
come with efficient procedures for computing Voronoi cells, including Python/Scipy, R, Wolfram
Language/Mathematica, Matlab and Octave. Moreover, Voronoi algorithms work in arbitrary di-
mensions, which is what makes the proposed algorithm agnostic to the dimensionality of X.

Step 5: This check comes as a consequence of Proposition 3 and Corollary 1. There are two
scenarios that may cause this check to fail. 1) When the selected probability distribution does
not admit a proper convex environmental contour with respect to the chosen target probability,
and 2) when the percentile function Cpe(u) is estimated with error. In the case where the check

fails due to noise in the estimates Ĉpe(uj), we can make refinements based on the relevant unit

vectors. For instance, if it is found that the point ŝk ∈ Ŝope(U) corresponding to unit vector uk

is not connected with o, the estimates Ĉpe(uj) can be refined for relevant indices j. The rele-
vant indices here, besides j = k, are the ones corresponding to points ŝj affecting the Delaunay
triangulation in the vicinity of ŝk, which are the points connected with ŝk and the neighbouring
Delaunay simplices. With reference to the previous step, we also note that the task of obtaining the
Delaunay triangulation usually ”comes for free”, in the sense that available algorithms used to ob-
tain the Voronoi tessellation do this by computing the Delaunay triangulation and taking the dual.

The goal of this numerical procedure presented in Algorithm 3 is to provide a good approxima-
tion in the case where a proper convex environmental contour exists. In the case where a proper



12 Andreas Hafver et al.

convex environmental contour does not exist, one might still be interested in finding a valid convex
environmental contour that is ”as small as possible”. That is, a convex set where the exceedance
probability of each supporting half-space is less than or equal to pe (where it cannot be equal to
pe for all supporting half-spaces as no proper convex environmental contour exists). We will end
this section with a modified version of the algorithm to accommodate this scenario.

The contour ∂Bpe corresponding to the boundary of a Voronoi cell V or(o,Sope) =
⋂

u∈U Π
−
pe(u)

is only a valid and proper environmental contour if ∂Bpe ∩Π−pe(u) 6= ∅ ∀u ∈ U . Otherwise, it is
invalid. We may however use an invalid Voronoi contour to create a valid improper contour by
the following algorithm:

Algorithm 4 Let V be a Voronoi contour computed by Algorithm 3 based on a set of unit vectors
U .

1. Initialise Z = V .
2. For each direction u ∈ U :

(a) Find the point v′ ∈ V that is furthest out in direction u, i.e. v′ = argmax
v∈V

{v · u}.
(b) Compute the projection of v′ onto the plane Πpe(u), i.e. z = v′ + (Cpe(u)− v′ · u)u.
(c) Update Z → Z ∪ {z}.

3. Compute the convex hull of Z. This is the corrected Voronoi contour.

The algorithm above guarantees a valid environmental contour with respect to U , because
it intersect all the hyperplanes Π−pe(u) ∀u ∈ U by construction. The projection algorithm is
illustrated in figure 6.

Fig. 6: Illustration of algorithm 4 to construct a valid environmental contour (red).

Figure 7 shows two examples using the above algorithms and also the direct method presented
in [26]. First, a scenario where a proper convex environmental contour exists, and then a scenario
where a proper environmental contour does not exist. The top row corresponds to a centered bivari-
ate normal distribution with covariance 0.16 · [1 0.5; 0.5 1], and the bottom row represents a Gaus-
sian mixture; X = 0.8X1 + 0.1X2 + 0.1X3 where X1 ∼ N ([0 0]T , 0.16I), X2 ∼ N ([0.5 1]T , 0.04I)
and X3 ∼ N ([−0.5 1]T , 0.04I). The contours are computed with pe = 0.15.

7 Examples

7.1 2D example

To illustrate the Voronoi approach in two dimensions, we use the same example as [26]. The
environmental variables of interest are the significant wave height, HS , and the zero-upcrossing
wave period, TZ . Their joint distribution is modelled using a conditional modelling approach [7,
10], and can be expressed as

fH,T (h, t) = fH(h)fT (t|h). (15)

Here, fH(h) is a 3-parameter Weibull distribution for significant wave height, with scale parameter
α, shape parameter β, and location parameter γ. fT (t|h) is a conditional log-normal distribution
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Fig. 7: Top: Contours for a multinormal distribution, constructed using the direct method of [26]. The loops
disappear as the number of samples increased, indicating that the loops is a sampling issue. Bottom: Contours for a
multimodal distribution constructed using the direct method of [26]. The top loops do not disappear as the number
of samples increase, indicating that the loops is a feature of the underlying distribution (i.e. the distribution does
not admit a proper convex contour for the selected target probability).

for wave period, where the model parameters are functions of significant wave height, as outlined
in e.g. [14,58], i.e.

µT (h) = E (lnTZ |HS = h) = a1 + a2h
a3

σT (h) = sd (lnTZ |HS = h) = b1 + b2e
b3h.

(16)

The parameter values used are listed in Table 1.

Table 1: Parameters assumed for the bivariate distribution of HS and TS .

3-p Weibull (HS) α β γ

2.776 1.471 0.8888

Conditional log-normal (TZ) i = 1 i = 2 i = 3

ai 0.1000 1.4890 0.1901
bi 0.0400 0.1748 -0.2243

Figure 8 shows comparisons of results for different methods. The number of samples that the
contours are based on is varied in the rows, but the samples are identical within each row. The
number of unit vectors used to compute the contours is varied in the columns.

The direct sampling method of [26] is drawn in black. This method does not guarantee convex
contours, but sometimes produce loops. Keeping the samples fixed, the loops tend to be larger as
the number of unit vectors increase, which is undesirable. However, the loops tend to get smaller
with increased number of samples. The convex hull of the black contours are drawn in red. Note
that for the same number of samples, these red contours tend to get larger when the number of
directions is increased, due to the larger loops.

Contours based on the Voronoi method are shown in blue. More precisely, blue regions are
plotted, where the inner boundary correspond to the simple Voronoi method (i.e. Algorithm 3),
and the outer boundary correspond to the corrected Voronoi method (i.e. Algorithm 4). Note that,
unlike the other methods, the contours produced by the Voronoi methods do not diverge as the
number of directions is increased. We also see that the shaded region is generally thin, indicating
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that the simple Voronoi method is a good approximation to the ’true’ environmental contour. The
inset shows the error, i.e. the difference between the two Voronoi methods in the various directions.
The directions with high error corresponds to directions where the direct method of [26] produces
loops, i.e. the Voronoi method provides a warning for directions where more sampling may be
needed.

Fig. 8: Comparison of results, for pe = 0.05. The samples that contours are computed from are shown in grey. The
grey curves represent the direct sampling method of [26] (visible only in the third column). The red curves represent
the convex hull of the grey curves. The blue regions represent the Voronoi methods; the inner boundary correspond
to the simple Voronoi method, and the outer boundary correspond to the corrected Voronoi method. The insets
show the error in different directions, i.e. the difference between the simple and corrected Voronoi methods.

7.2 3D example

To illustrate the Voronoi approach in three dimensions, we include an example from [55]. The
environmental variables of interest are the significant wave height, HS , the zero-upcrossing wave
period, TZ , and the 10-minute mean wind speed at a particular height, U10. Their joint distribution
is modelled using a conditional modelling approach [7,10], and can be expressed as

fH,T,U (h, t, u) = fH(h)fT (t|h)fU (u|h). (17)

fH(h) is a 3-parameter Weibull distribution for significant wave height, with scale parameter
α, shape parameter β, and location parameter γ.
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fT (t|h) is a conditional log-normal distribution for wave period, where the model parameters
are a function of significant wave height as outlined in e.g. [14,58], i.e.

µT (h) = E (lnTZ |HS = h) = a1 + a2h
a3

σT (h) = sd (lnTZ |HS = h) = b1 + b2e
b3h.

(18)

The parameters ai, bi, i = 1, 2, 3 are estimated from data.
fU (u|h) is a conditional 2-parameter Weibull distribution with parameters modelled as func-

tions of significant wave height as suggested by [14,9,8]. The scale parameter, λU , and shape
parameter, κU , are modelled as

λU (h) = c1 + c2h
c3

κU (h) = d1 + d2h
d3 .

(19)

For the significant wave height and wave period, parameters corresponding to average world
wide operations of ships according to appendix C of [14] are assumed, as summarised in Table 2.
For the conditional distribution of wind speed, the average sectoral parameters reported in [9,8]
will be assumed, as summarised in Table 2. It is noted that the parameter d3 is omitted in [9], so
this is simply set to 1 in this study.

Figure 9 shows the result of applying the Voronoi methods (simple and corrected) to the
example described above. As can be seen, the simple method and corrected method are very similar,
indicating that the simple Voronoi method is a good approximation for the ’true’ environmental
contour.

Table 2: Parameters assumed for the trivariate distribution of HS , TS and U10.

3-p Weibull (HS) α β γ

average World wide trade 1.798 1.214 0.856

Conditional log-normal (TZ) i = 1 i = 2 i = 3

average World wide trade
ai -1.010 2.847 0.075
bi 0.161 0.146 -0.683

Conditional 2-p Weibull (U10) i = 1 i = 2 i = 3

average directional sector
ci 2.58 0.12 1.60
di 4.6 2.05 1

Fig. 9: a) Approximate (invalid) environmental contour for 3D example, computed using the simple Voronoi method
(i.e. Algorithm 3). b) Valid (improper) environmental contour for 3D example, computed using the corrected Voronoi
method (i.e. Algorithm 4). c) Difference between the corrected and simple Voronoi methods, showing that the simple
method gives good approximation to a valid environmental contour.
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8 Concluding remarks

In this paper, a novel algorithm for constructing environmental contours has been presented, based
on a geometric interpretation of environmental contours as Voronoi cells. One advantage of this
approach is that many software libraries exist for Voronoi cell computation, making the algorithm
simple to implement. Another advantage is that the Voronoi method also makes it easy to compute
environmental contours in higher than two dimensions. The Voronoi environmental contours are
not guaranteed to be proper, but with a simple modification to the algorithm, valid environmental
contours can always be constructed from improper Voronoi environmental contours.

The Voronoi geometric interpretation also has given new intuition and theoretical insights
about environmental contours, including representation and existence theorems for proper convex
environmental contours. The presented analytical formula provides another alternative algorithm
to compute environmental contours. Interestingly, this formula has an analogy in shadow systems
and can be interpreted as an inverse Gauss map [52,16,38]. Further exploration of this correspon-
dence between environmental contours and shadow functions could potentially reveal new insights
in both domains, and potentially provide some information on the class of random variables for
which proper environmental contours exist.
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Appendices
A Proof of Lemma 1

Proving the first statement is trivial, as x ∈ Bpe by definition means that u · (x− o) ≤ Co
pe(u) for

any u ∈ U . So, in particular, we have that o ∈ Bpe ⇔ 0 = u · (o− o) ≤ Co
pe(u).

To prove the second statement we use that

x ∈ Bpe \ ∂Bpe ⇒ x ∈
⋂

u∈U

(
Π−pe(u) \ ∂Π−pe(u)

)
.

That is, a point x in the interior of Bpe is also in the intersection of all interior half-spaces. Hence,
x ∈ {x : u · (x− o) < Co

pe(u)} for all u ∈ U . And so by the same argument as above we have that
o ∈ Bpe \ ∂Bpe ⇒ 0 = u · (o− o) < Co

pe(u) ∀u ∈ U .

To prove the converse, we first observe that if o ∈ ∂Bpe , then then there exists some u∗ ∈ U
where o ∈ ∂Π−pe(u∗) (by the supporting hyperplane theorem) which means that Co

pe(u∗) = 0, and
if o /∈ Bpe then we have already shown that Co

pe(u∗) < 0 for some u∗. Putting this together we
get that o /∈ Bpe \Bpe ⇒ ∃u∗ ∈ U s.t. Co

pe(u∗) ≤ 0, and hence Co
pe(u) > 0 ∀u ∈ U ⇒ o ∈ Bpe \Bpe .

As for the final statement, we first recall that a point x is in Vor(o,Sope(U)) if and only if ‖x− o‖ ≤∥∥x− so,upe
∥∥, or equivalently ‖x− o‖2 ≤

∥∥x− so,upe
∥∥2, for any u ∈ U . We first observe that

∥∥x− so,upe
∥∥2 =

∥∥x− o− 2Co
pe(u)u

∥∥2 = ‖x− o‖2 + 4(Co
pe(u))2 − 4Co

pe(u)(x− o) · u, (20)

and so,

‖x− o‖2 ≤
∥∥x− so,upe

∥∥2 ⇔ Co
pe(u)(x− o) · u ≤ (Co

pe(u))2.

Hence, using the second statement of the Lemma, we have that if o ∈ Bpe \∂Bpe then Co
pe(u) > 0,

and so ‖x− o‖2 ≤
∥∥x− so,upe

∥∥2 ⇔ (x− o) · u ≤ Co
pe(u) for any u ∈ U which completes the proof.

ut
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B Proof of Proposition 2

First we recall that by definition Bpe =
⋂

u∈U Π
−
pe(u). Using Lemma 1 we then have Bpe =

Vor(o,Sope(U)), and also Vor(o,Sope(Ui)) =
⋂

u∈Ui
Π−pe(u) for i = 1, 2.

Since U1 ⊆ U2 ⊆ U the proof is completed by observing that

⋂

u∈U
Π−pe(u) ⊆

⋂

u∈U2

Π−pe(u) ⊆
⋂

u∈U1

Π−pe(u).

ut

C Proof of Proposition 3

The proof will follow from the Voronoi-Delaunay duality, which tell us that the Voronoi cells
are convex polytopes with vertices corresponding to circumcenters of the Delaunay simplices. In
particular, the vertices of Vor(o,Sope(U)) are the circumcenters of the simplices in {τ ∈ D | o ∈ τ},
where D is any Delaunay triangulation of the point set {o} ∪ So

pe(U).

Assume that D is such a Delaunay triangulation, and that there exists a point s∗ ∈ Sope(U)
such that s∗ and o are not connected by D. This means (by definition) that any simplex in D
containing o does not contain s∗, and vice versa. Hence,

Vor(o,Sope(U)) = Vor(o,Sope(U) \ {s∗}).

We now let u∗ ∈ U denote the unit vector corresponding to s∗, i.e. s∗ = so,u
∗

pe . Making use of
Lemma 1 we then observe that

Vor(o,Sope(U)) = Vor(o,Sope(U) \ {s∗})⇒
⋂

u∈U
Π−pe(u) =

⋂

u∈U\{u∗}
Π−pe(u). (21)

This means that, either 1) Πpe(u∗) ∩ Vor(o,Sope(U)) = ∅, or 2) that there exists some vertex
v∗ of Vor(o,Sope(U)) such that v∗ ∈ Πpe(u∗) ∩ Vor(o,Sope(U)). From Proposition 2 we have that
Bpe ⊆ Vor(o,Sope(U)). Since we assume that ∂Bpe is a proper convex environmental contour,
Πpe(u∗) ∩ Bpe 6= ∅, and so

Πpe(u∗) ∩Vor(o,Sope(U)) 6= ∅. (22)

From (21) and (22) we can therefore conclude that there exists some vertex v∗ of Vor(o,Sope(U))
such that v∗ ∈ Πpe(u∗) ∩Vor(o,Sope(U)).

We then observe that

v∗ ∈ Πpe(u∗)⇒ ‖v∗ − o‖ = ‖s∗ − o‖ . (23)

This follows from the definition of Πpe(·) and the set So
pe(U), which says that s∗ is the reflection

of o with respect to the hyperplane Πpe(u∗). Now, since v∗ is also a vertex of Vor(o,Sope(U)), then
v∗ is the circumcenter of a Delaunay simplex τ , with o ∈ τ . From (23) we see that s∗ also lies on
this circum-hypersphere, together with o. Hence, if the Delaunay triangulation D was unique, we
could conclude that {s∗,o} ⊂ τ ∈ D, which contradicts the initial assumption that s∗ and o are
not connected in D.

In the case where there is no unique Delaunay triangulation of the point set {o} ∪ So
pe(U),

the fact that s∗ and o lie on the same circum-hypersphere of some Delaunay simplex τ lets us
conclude that there exists some Delaunay triangulation D′ where s∗ and o are part of the same
simplex. We can therefore conclude that, if there exists a Delaunay triangulation D that does not
connect s∗ and o, then there must exist a different Delaunay triangulation D′ that connects s∗

and o.

ut
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D Proof of Proposition 4

For any u ∈ U we first recall that the existence of some b ∈ Πpe(u) ∩ ∂Bpe follows from the
definition of proper convex environmental contours. We then note that, as any element of Sope(U)
is of the form so,upe = o + 2Co

pe(u)u, we have that

∥∥so,upe − b
∥∥2 =

∥∥o− b + 2Co
pe(u)u

∥∥2 = ‖o− b‖2 + 4(Co
pe(u))2 + 4Co

pe(u)(o− b) · u.
= ‖o− b‖2 + 4Co

pe(u)
(
Co
pe(u)− (b− o) · u

)
.

(24)

Now if b ∈ Πpe(u) we have that (b − o) · u = Co
pe(u) (by definition), and hence

∥∥so,upe − b
∥∥2 =

‖o− b‖2, which means that so,upe ∈ ∂Wo(b).

The statement that Sope(U) ∩ Wo(b) ⊆ ∂Wo(b) means that there are no u′ ∈ U such that

so,u
′

pe lies in the interior of the ball Wo(b). Assume, on the contrary, that there exists some

so,u
′

pe ∈ Wo(b) \ ∂Wo(b). Then
∥∥∥so,u′pe − b

∥∥∥ < ‖o− b‖ by definition. From (24) we then have that

4Co
pe(u′)

(
Co
pe(u′)− (b− o) · u′

)
< 0. We have assumed that o ∈ Bpe \ ∂Bpe , and so by Lemma 1

Co
pe(u′) > 0. Hence,

so,u
′

pe ∈ Wo(b) \ ∂Wo(b)⇒ Co
pe(u′)− (b− o) · u′ < 0.

But this means that b ∈ Π+
pe(u′), which is impossible when b ∈ ∂Bpe .

ut

E Proof of Lemma 2

We first observe that the condition 1) is just a different way of stating that a point is on the
hyperplane Πpe(u) (alternatively, compute the norms as in (24) and note that Co

pe(u) > 0). That

is, for any x ∈ Rn, we have x ∈ Πpe(u)⇔ ‖x− o‖ =
∥∥so,upe − x

∥∥.

Hence, a ∈ Πpe(u) by condition 1). Then, by Proposition 4 there exists some b ∈ Πpe(u)∩∂Bpe
where Sope(U)∩Wo(b) ⊆ ∂Wo(b), and so,upe ∈ ∂Wo(b). This means that the n-dimensional closed
ball Wo(b), centered at b with radius ‖b− o‖ is tangent to Sope(U) at the point so,upe . As both
Sope(U) and Wo(b) are differentiable (n− 1)-dimensional manifolds, they share the same (n− 1)-
dimensional tangent space at so,upe . We let V = {v1, . . . ,vn−1} ⊂ Rn denote a basis for this tangent
space.

From the above argument, it is clear that also b satisfies both of the criteria in the Lemma,
as 1) b ∈ Πpe(u) and 2) (so,upe − b) is orthogonal to Sope(U) at so,upe since (so,upe − b) is orthogonal
to Wo(b) at so,upe .

Hence, starting with a pair (a,u) that satisfies the two conditions of the Lemma, we have
identified a point b ∈ Πpe(u) ∩ ∂Bpe such that (b,u) satisfies the same conditions. Using that
(a,u) and (b,u) satisfy these conditions simultaneously, we obtain

1. ⇒ a,b ∈ Πpe(u)⇒ a · u = b · u,
2. ⇒ (so,upe −a) ·v = (so,upe −b) ·v = 0 for any v ∈ V .

From these conditions we see that (a− b) · u = 0 and (a− b) · v = 0 for any v ∈ V . Hence, if u
is linearly independent of V , we can conclude that a = b.

Assume u =
∑n−1
i=1 αivi for some α1, . . . , αn−1 ∈ R. Then (b−so,upe )·u =

∑n−1
i=1 αi(b−so,upe )·vi =

0. Then, by definition of the hyperplane Πpe(u), Co
pe(u) = (b−o) ·u = (b− so,upe + so,upe −o) ·u =

(so,upe − o) · u. But this means that so,upe ∈ Πpe(u), which is impossible.

We may therefore conclude that a = b ∈ Πpe(u) ∩ ∂Bpe . By the same argument as above,
if b1 and b2 are two elements of Πpe(u) ∩ ∂Bpe , then since (b1,u) and (b2,u) both satisfy the
conditions of the Lemma, we must have b1 = b2. Πpe(u) ∩ ∂Bpe is therefore a singleton set, and
we can conclude that {a} = Πpe(u) ∩ ∂Bpe .

ut
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F Proof of Proposition 5

We first recall that if ∂Bpe is a proper convex environmental contour, then for any b ∈ ∂Bpe there
exists some u ∈ U such that b ∈ Πpe(u), and so ∂Bpe ⊂ ∪u∈UΠpe(u).

Then, if F : U → Rn is a mapping such that the assumptions and conditions of Lemma 2 hold
for any pair (F (u),u), Lemma 2 lets us conclude that {F (u)} = Πpe(u) ∩ ∂Bpe for any u ∈ U .

Hence, F (U) = ∪u∈U (Πpe(u) ∩ ∂Bpe) = ∂Bpe ∩ (∪u∈UΠpe(u)) = ∂Bpe .
ut

G Proof of Theorem 1

If the the pe-level percentile function Cpe(u) is continuously differentiable on the unit (n − 1)-
sphere, then as sope = o + 2(Cpe(u)− u · o)u, the set Sope(U) = {sope} is a differentiable manifold.
Hence, the assumptions of Lemma 2 are satisfied.

We first note that, as a consequence of Lemma 2, any supporting hyperplane intersects ∂Bpe
at a single point, which means that Bpe is strictly convex. For details we refer to the proof of
Lemma 2 in Appendix E, where we observe that Πpe(u) ∩ ∂Bpe is a singleton set for any u ∈ U ,
as the pair (b,u) satisfies the conditions in Lemma 2 for any b ∈ Πpe(u) ∩ ∂Bpe . (And for any
b ∈ ∂Bpe we have b ∈ Πpe(u) for some u as ∂Bpe is proper).

We will show that the proposed parametrization in the theorem is valid using Lemma 2 and
Proposition 5. That is, for any u = u(θ) ∈ U , we must show that

1. ‖b(θ)− o‖ =
∥∥∥so,u(θ)pe − b(θ)

∥∥∥, and

2. (s
o,u(θ)
pe − b(θ)) is orthogonal to Sope(U) at s

o,u(θ)
pe ,

for o ∈ Bpe \ ∂Bpe . To simplify the notation we will suppress writing out the dependency on θ,
and write

b = Cpeu +∇ug−1(∇Cpe)T .

Using (9) we can express b in terms of Co
pe :

b = Cpeu +∇ug−1(∇Cpe)T

= Cpeu + uuTo +∇ug−1(∇Co
pe)T +∇ug−1(∇u)To

= o + Co
peu +∇ug−1(∇Co

pe)T ,

where we made use of the property that uuT + ∇ug−1(∇u)T = I (i.e. the identity operator).
Note that the metric tensor g = (∇u)T∇u is invertible because we have assumed a regular
parametrization (and so ∇u has full rank).

To show condition (1) above, we can just compute the norms

‖b− o‖2 −
∥∥so,upe − b

∥∥2

=
∥∥Co

peu +∇ug−1(∇Co
pe)T

∥∥2 −
∥∥Co

peu−∇ug−1(∇Co
pe)T

∥∥2

= 4Co
peu · ∇ug−1(∇Co

pe)T

= 0.

Here we have used the fact that u · ∇u = uT∇u = 1
2∇(uTu) = ∇(1) = 0.

To show condition (2) we will use that the columns of ∇so,upe form a basis for the tangent
space of Sope(U) at so,upe . The orthogonality condition (2) is therefore equivalent to saying that

∇(so,upe )T (so,upe − b) = 0. But this follows from the definition of so,upe , as ∇so,upe = ∇(o + 2Co
peu) =

2(Co
pe∇u + u∇Co

pe), and hence

1

2
∇(so,upe )T (so,upe − b) =

(
Co
pe∇uT + (∇Co

pe)TuT
) (
Co
peu−∇uA−1(∇Co

pe)T
)

= (Co
pe)2∇uTu︸ ︷︷ ︸

0

−Co
pe ∇uT∇uA−1︸ ︷︷ ︸

I

(∇Co
pe)T

+ Co
pe(∇Co

pe)T uTu︸︷︷︸
1

−(∇Co
pe)T uT∇u︸ ︷︷ ︸

0

A−1(∇Co
pe)T

= −Co
pe(∇Co

pe)T + Co
pe(∇Co

pe)T

= 0.
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Using Proposition 5 we may then conclude that, given an atlas {ui(θ) | θ ∈ Θi}i on U where
each (ui, Θi) is a regular parametrization, the corresponding charts (bi, Θi) is an atlas on ∂Bpe .
Finally, differentiability of ∂Bpe then follows from the given expression for bi as a function of θ.

ut

H Proof of Lemma 3

We first observe that, as a direct consequence of Definition 1, X admits a proper convex environ-
mental contour if and only if every hyperplane Πpe(u) is a supporting hyperplane of Bpe . That is,
if and only if Bpe ∩Πpe(u) 6= ∅ for all u ∈ U .

Hence, if X admits a proper convex environmental contour, we can select o ∈ Πpe(u′) ∩ ∂Bpe
which (by Lemma 1) satisfies the condition.

If X does not admit a proper convex environmental contour, then there is some hyperplane
Πpe(u′) that does not intersect Bpe . Hence, for any o ∈ Πpe(u′) we have o /∈ Bpe , and by Lemma
1 there must exist some u∗ where Co

pe(u∗) < 0.
ut

I Proof of Lemma 4

Dropping the dependency on θ and pe for simpler notation, we may write

uTb = uT (Cu +∇ug−1∇CT ) = CuTu + uT∇ug−1∇CT = C,

as uTu = 1 and uT∇u = 1
2∇(uTu) = ∇(1) = 0. This means that b(θ) ∈ Π(θ). Similarly, we

observe that
∇uTb = C∇uTu +∇uT∇ug−1∇CT = ∇CT ,

as ∇uT∇u = g by definition. From the chain rule we then get uT∇b = ∇(uTb) − (∇uTb)T =
∇C −∇C = 0. Since the hyperplane Π(θ) has normal vector u(θ), we can conclude that Π(θ) is
tangential to b(Θ) at b(θ).

ut

J Proof of Theorem 2

To simplify notation, we drop the dependency pe and the index i of the parametrization.
Assume (2) is true and let B denote the closed convex set. Then Lemma 4 implies that all

hyperplanes Π(θ) are supporting hyperplanes of B, and so ∂B is a proper convex environmental
contour. The fact that (1) ⇒ (2) comes as a direct consequence of Theorem 1, so we have that
(1)⇔ (2).

To show that (1) ⇒ (3), we first note that when X admits a proper convex environmental
contour, then since b(θ) ∈ Π(θ) (see Lemma 4) it follows from Lemma 1 that κ(θ|θ′) ≥ 0 for all θ
and θ′. For the converse, assume that X does not admit a proper convex environmental contour.
Then from Lemma 3 there exists some u′ such that for any o ∈ Π(u′) we can find some u where
Co(u) < 0. In forms of the given parametrization, this means that we can find some θ and θ′

where Co(θ) < 0 for any o ∈ Π(θ′). As b(θ′) ∈ Π(θ′) we have that κ(θ|θ′) = Cb(θ′)(θ) < 0.
Hence (1)⇔ (3).

Finally, (3)⇔ (4) follows from the fact that b(θ′) ∈ Π(θ′) which means that κ(θ′|θ′) = 0.
ut

K Proof of Corollary 2

From statement (4) in Theorem 2, κ(θ|θ′) attains a local minimum at θ = θ′, which means that
the matrix A(θ) = ∇θ∇θκ(θ|θ′)|θ=θ′ is positive semi-definite ∀θ ∈ Θ. Suppressing the notation
θ and pe we can write

A = ∇∇C + bT∇∇u

= ∇∇C +
(
Cu +∇ug−1∇CT

)T ∇∇u

= ∇∇C + CuT∇∇u + (∇ug−1∇CT )T∇∇u.

(25)
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The second term in the last line of (25) above can be rewritten in terms of the metric tensor g:

CuT∇∇u = C∇
(
uT∇u

)
− C(∇u)T∇u = −gC,

because uT∇u = 0 and (∇u)T∇u = g.
The third term in the last line of (25) can be expressed as ∇Cg−T (∇u)T∇∇u. In index

form (using Einstein summation convention) we may write the matrix elements of this term as
c,mg

lmuk,luk,ij = c,mg
lmΓlij = c,mΓ

m
ij , where we have recognised the Christoffel symbols of the

first and second kind, i.e. Γlij = uk,luk,ij and Γmij = glmΓlij . Therefore we may write

Aij(θ) =

(
∂C(θ)

∂θi∂θj
− Γmij

C(θ)

∂θm

)
+ gij(θ)C(θ). (26)

The term in brackets correspond to the Hessian on a Riemann manifold, and we may therefor
write

A(θ) = Hess(C(θ)) + g(θ)C(θ). (27)

ut
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ABSTRACT: Most of today’s Machine Learning (ML) methods and implementations are based on 
correlations, in the sense of a statistical relationship between a set of inputs and the output(s) under inves-
tigation. The relationship might be obscure to the human mind, but through the use of ML, mathematics 
and statistics makes it seemingly apparent. However, to base safety critical decisions on such methods 
suffer from the same pitfalls as decisions based on any other correlation metric that disregards causality. 
Causality is key to ensure that applied mitigation tactics will actually affect the outcome in the desired 
way. This paper reviews the current situation and challenges of applying ML in high risk environments. It 
further outlines how phenomenological knowledge, together with an uncertainty-based risk perspective 
can be incorporated to alleviate the missing causality considerations in current practice.

do what they do might become a serious problem 
as computers become more responsible for mak-
ing important decisions”. The problem of acci-
dents in ML systems is discussed in detail in a 
paper led by Google Brain researchers Amodei, 
Olah, Steinhardt, Christiano, Schulman, & Mané 
(2016). Here the authors motivate the increasing 
need to address these safety problems by some 
general trends, one of which relates to the increas-
ing autonomy in AI systems. “Systems that sim-
ply output a recommendation to human users, 
such as speech systems, typically have relatively 
limited potential to cause harm. By contrast, sys-
tems that exert direct control over the world, such 
as machines controlling industrial processes, can 
cause harms in a way that humans cannot neces-
sarily correct or oversee.”

In this paper we turn our attention towards the 
introduction of ML in design and operation of 
complex engineering systems in high risk environ-
ments. These are systems where today’s methods 
for assessing risk relies heavily on understanding 
the underlying physical processes and our ability 
to model these. This is in contrast to e.g. mass pro-
duction of components where more data-driven, 
statistically founded methods can be applied to 
estimate rates of failure.

We acknowledge the need for ML technologies 
to address increasing complexity of engineering 
systems, and the challenges that follow in quantify-
ing uncertainty and risk based on detailed numeri-
cal simulation. However, this type of application 
reduces the tolerance for erroneous model behav-
ior. Most of the methods applied in ML are based 

1 INTRODUCTION

In this paper we highlight some pitfalls to avoid in 
the design of Machine Learning (ML) applications 
for high risk engineering applications. We also pro-
pose some recommendations to consider in model 
development, and emphasize the introduction of 
causality constraints based on phenomenological 
knowledge.

1.1 Background

ML is recognized as one of the key enablers for 
the fourth industrial revolution1. In this setting 
it is often communicated as a tool that, together 
with increased access to data and computational 
power, can unlock a huge potential for increased 
efficiency, new insights and ultimately new revenue 
streams. Success stories of businesses that have dis-
rupted entire industries are often shared to inspire 
investment in similar technologies. However, for 
operation of complex engineering systems in high 
risk environments, the new challenges that appear 
are often not clearly expressed.

Concerns have been raised regarding the reli-
ability and trustworthiness of  systems relying on 
Artificial Intelligence (AI) in general, and spe-
cifically related to the current main strategy of 
implementation. Knight (2017) emphasizes that 
“not knowing how the most advanced algorithms 

1For a broader discussion see e.g. Lu (2017) and Dopico, 
Gomez, De la Fuente, García, Rosillo, & Puche (2016).
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on historic statistical models, enhanced by recent 
breakthroughs in computer science. The assump-
tions, limitations and practical challenges of these 
statistical models still remain, and serve as recur-
ring pitfalls in the digital era.

For a given application both the statistical and 
ML mindsets may have its advantages and draw-
backs, but we argue that for the high risk engineer-
ing problems discussed in this paper, uncritical 
application of ML is unwarranted. We believe that 
experienced ML practitioners know this, and the 
main problem lies in how ML is communicated 
in the current digitalization boom, and how it is 
perceived by the increasing number of new prac-
titioners in the field that may also be strongly 
incentivized to develop solutions for cutting costs 
through automation.

1.2 Correlation and causation

Most of today’s ML methods and implementations 
are based on correlations, which we define in the 
general sense as any statistical relationship, whether 
causal or not, between random variables, i.e. the 
degree of which two or more variables tend to vary 
together.

“Correlation does not imply causation” is a well 
used phrase within statistics, and describes what 
still remains as one of the major pitfalls in the 
analysis of  data. The importance of this distinc-
tion depends on the degree to which one intends 
to intervene, and the consequence of erroneous 
intervention. See e.g (Pearl 2010). For many ML 
applications this may not be significant. But for 
the use cases considered in this paper it plays an 
important role, and we will argue that causal-
ity constraints from phenomenological knowl-
edge should be incorporated in ML models—to 
strengthen model performance for tail events, 
to increase model transparency, and to make it 
easier to falsify models that do not comply with 
observations.

1.3 Structure of this paper

Section 2 is included for readers that are unfamiliar 
or new to the field of ML, and gives a brief  intro-
duction to some core concepts and their relation 
to classical statistics. The experienced ML practi-
tioner may jump directly to Section  3, where we 
propose a set of model properties that should be 
accommodated for ML applications in high risk, 
low probability scenarios. Going beyond model 
selection, some general pitfalls are highlighted in 
Section 4 which gives an example illustrating the 
use of ML for anomaly detection and space explo-
ration in Structural Reliability Analysis (SRA). 
Finally, our conclusions and some final remarks 
are summarized in Section 5.

2 A BIT OF HISTORY

Often times discussions regarding ML and AI can 
become fairly opaque, colored by data science jar-
gon, cognitive analogies and marketing buzzwords. 
This section will clarify the relation between ML 
and statistical methods by comparing the classes of 
ML problems with their statistical counterparts, and 
tracing their origins. This section will only briefly 
present the statistical background that underpin 
the main classes of ML methods. See e.g. (Hastie, 
Tibshirani, & Friedman 2001) for a thorough intro-
duction, or (Domingos 2012) for a more informal 
description on how they are used in practice.

2.1 A formal definition of machine learning

Although the field of ML is often defined in cog-
nitive terms, as giving computers the ability to 
learn without being programmed, a more formal 
definition often cited is the one by Mitchell (1997). 
“A computer program is said to learn from experi-
ence E with respect to some class of  tasks T and 
performance measure P if  its performance at tasks 
in T, as measured by P, improves with experi-
ence E.” Further, ML is generally classified into 
two categories called supervised and unsupervised 
learning.

Supervised learning: For some unknown rela-
tionship between variables x → y(x) where N pairs 
of data are observed x yi i i

N
, ,( ){ } =1

 the goal is to esti-
mate y* for unobserved x*. Here, the experience E 
is the observed data, the task T is to predict y* and 
P is usually a measure of the difference between 
the predicted y* and the true value y(x*).

Unsupervised learning: The goal is to discover 
patterns in unlabeled data. For instance, based 
only on the x-values in the above example, xi i

N{ } =1
,  

estimate the distribution over the data or identify 
clusters, etc. With the task T of clustering in mind, 
the experience E is still the observed data and P 
might be a measure on cluster compactness or 
separability.

2.2 Machine learning and statistical modelling

The increasing popularity of ML today may be 
credited to recent advancements within computer 
science, although most of supervised and unsuper-
vised learning have roots in traditional statistical 
methods. An overview is illustrated in Figure  1. 
Supervised learning is based on prior knowledge, 
and covers regression and classification (discrimi-
nant analysis).

Regression considers a continuous dependent var-
iable represented by a model function fitted to data. 
Assumptions are generally made about the data gen-
eration process, e.g. homoscedasticity (equal finite 
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variance), independence and normality. The earliest 
form of regression was the method of least squares, 
published by Legendre (1805) and Gauss (1809).

Classification or discriminant analysis has the 
same objective as regression, but where the depend-
ent variable is discrete, and typically comes in a 
categorical form as labels from a finite set. Some 
of the earliest work was by Fisher (1936) leading to 
Fisher’s linear discriminant function. Other popu-
lar methods are Logistic regression that dates back 
to Verhulst (1838), decision trees (Morgan & A. 
Sonquist 1963) and k-nearest neighbors (Cover &  
Hart 1967).

Note that due to the close link between these 
two categories of supervised learning problems, 
regression models may be altered to work for dis-
criminant analysis and vice versa.

Unsupervised learning is related to data explo-
ration problems. The main exploratory methods 
are often classified as clustering or dimensionality 
reduction.

Clustering analysis considers the task of group-
ing objects into sets (clusters) such that objects in 
the same set are more similar to each other than 
to those in other sets. No precise definition of a 
cluster exists, and this is one of the reasons why 
there are so many different clustering algorithms 
(Estivill-Castro 2002). Some popular alternatives 
representing different approaches to the problem 
of clustering are k-means (MacQueen 1967), hier-
archical clustering (Sibson 1973), Gaussian mixture 
models using expectation-maximization (Dempster, 
Laird, & Rubin 1977) and Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) 
(Ester, Kriegel, Sander, & Xu 1996).

Dimensionality reduction is the procedure 
of reducing the number of input variables to a 
smaller set of principal variables. One fundamen-
tal approaches is principal component analysis 
 (Pearson 1901), developed by Karl Pearson, con-
sidered the father of modern statistics.

The methods mentioned above is by no means 
a complete list, and the references cited are meant 
to give indications on early work on the different 
subjects as true origins are often debatable and 
outside the scope of this paper. A lot of research 
has gone into extending or improving on these 
methods since first invented, which has spawned 
the large variety of models and algorithms used in 
ML today. There are also other popular methods 
and widely used techniques within ML that can 
be placed in more than one category in Figure 1, 
e.g. artificial neural networks dating back to Hebb 
(1950) and using the backpropagation algorithm 
developed by Werbos in 1974.

2.3 Model design vs. trial-and-error

Many of the similarities between statistics and 
ML are just hidden behind different terminology. 
For instance, where we in ML refer to features in 
a model and that model weights are learned from 
data, a statistician would refer to variables in a 
model where data is used to estimate model param-
eters. But there are also some important differences 
in how the (same) models are used, and whether 
the main emphasis is on designing a good model or 
obtaining good prediction by trial-and-error.

In classical statistics, the focus is often on testing 
hypothesis of causes and effects and interpretabil-
ity of the models applied. A common aphorism in 
statistics is that “All models are wrong, but some 
are useful”. The analyst should know when the 
model will break, how it breaks, and if  one can still 
use it anyways. The main goal is understanding the 
underlying mechanisms that drive the things we 
observe.

On the contrary, ML has more focus on pre-
dictive accuracy of models, with less attention 
towards model interpretation. Model selection is 
often based on trial-and-error through cross vali-
dation to evaluate goodness-of-fit criteria, where 
prediction accuracy is evaluated on data that was 
excluded in the learning process. Although the 
main goal is to obtain a good prediction, special 
considerations are made based on what the predic-
tion is used for in a given application. For high risk 
applications for instance, false positives may be far 
worse than false negatives (or vice versa), and the 
model optimization can be weighted accordingly. 
Still, it is based on observing the desired behavior 
in future or excluded data.

Although science always has been concerned 
with both prediction and explanation, the  different 

Figure 1. Machine learning vs. multivariate statistics.
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3.2 Recommendations on model development

The challenges stated above will make any ML 
or statistics based model prone to erroneous, 
and potentially dangerous, use. However, many 
of  the most common pitfalls in using such cor-
relation based or data-driven methods may be 
avoided by proper model selection and design. 
To increase confidence in the safe use of  ML 
models we propose some recommendations in 
this section.

For supervised learning, and when we want to 
use ML for prediction in general engineering appli-
cations, one should seek to adopt or develop mod-
els with the following attributes:

1. Flexibility: The models ability to represent a 
large class of functions.

2. Constrainability: The ability to impose model 
constraints based on phenomenological 
knowledge.

3. Probabilistic inference: Probabilistic represen-
tation of model output defined on the entire 
model range (i.e. the model output is repre-
sented by a distribution).

The first two concepts relate to the problem of 
underfitting and overfitting respectively. The third 
is important when the model is used in assessment 
of risk and reliability.

From an engineering perspective, flexibility is 
needed to capture the behavior of complex physical 
systems and their response. Most non-parametric 
models fulfill this requirement. The definition of 
“a large class of functions” in this context may not 
be precise, as it certainly depends on the problem 
at hand. A typical example may be all continuous 
or differentiable functions with a finite number of 
discontinuities.

Constrainability is beneficial for two main rea-
sons. First, it reduces the possibility of overfitting 
the data, thus increasing the robustness and the 
performance for application on future data. This 
is particularly important for tail behavior prob-
lems where data is scarce. The second reason is 
that imposing constraints based on phenomeno-
logical knowledge reduces model opaqueness, i.e. 
increases transparency.

By a transparent model we mean that the rela-
tionship between model inputs and outputs can 
be meaningfully understood by humans, and that 
model characteristic properties and limitations 
of the model can be understood without explicit 
numerical computation. The most straightforward 
example is simple linear regression with linear 
basis, i.e. fitting a line. In contrast, for an opaque 
model, the model behavior can only be investigated 
through computation. These models are often 
referred to as black boxes, where the only way to 
fully characterize the model’s properties is through 

philosophies have resulted in much debate between 
the statistics and machine learning communities. 
See for instance the discussion in Breiman (2001).

3 ML FOR HIGH RISK ENGINEERING 
APPLICATIONS

This section highlights some of the main challenges 
when using ML for high-risk and low probability 
scenarios. We continue by proposing recommen-
dations to consider in ML model development to 
address these challenges.

3.1 Tail events in high risk environments

Three of the main challenges with ML applied to 
high risk and low probability scenarios are related 
to the following:

•	 High risk reduces the tolerance for wrong predic-
tions. The consequence might be catastrophic.

•	 Critical consequences often relate to tail events—
for which data is naturally scarce. This increases 
uncertainty and reduces the accuracy of 
predictions.

•	 The ML models that are able to fit the data well 
are often opaque. This makes the model less falsi-
fiable, increasing uncertainty and reducing deci-
sion makers’ ability to trust the model.

The first point relates to the decisions that are 
made based on model predictions. When the high 
risk is associated with a catastrophic consequence, 
the tolerance for a wrong prediction is clearly low. 
Moreover, severe consequences are often related 
to a rare event. This introduces additional uncer-
tainty as data is scarce2. These first two points are 
in direct contrast to the typical ML applications 
today (e.g. non-consequential recommendation 
engines). In this respect, assurance of safety criti-
cal systems relying on ML is also recieving increas-
ing attention, see e.g. Brandsæter & Knutsen  
(In press).

The last point on model opaqueness (lack of 
transparency) relates to quantification of model 
discrepancy and the ability to falsify models that 
do not comply with observations. The added 
uncertainty from model opaqueness may at first 
seem purely subjective. However, as we will see in 
the following section, addressing this by increas-
ing model transparency may relax requirements on 
accuracy and vice versa.

2Scarce in the sense that the size of data is small compared 
to the number of relevant dimensions. This is because the 
event under consideration, e.g. structural failure, is rare 
and expensive to approximate by experiments.
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exhaustive computation; evaluating the model for 
all possible inputs.

The scientific method is based on the principle 
that any model, or hypothesis, should be falsifiable. 
All models, including ML models, are based on 
a set of assumptions. For a model or an assump-
tion to be falsifiable, it must, in principle, be pos-
sible to make an observation that would show the 
assumption to be false. Thus, model transparency 
is important as it enables one way of falsification. 
ML models are typically falsified by observing 
poor accuracy. That is, observations are made that 
differ significantly from model predictions. How-
ever, understanding why such discrepancies occur 
is often difficult in an opaque model. If  we assume 
that the observation is not erroneous (observed 
discrepancy is not related to noise), then the root 
cause might either be lack of relevant data, i.e. 
the model is built on too few datapoints close to 
the observed discrepancy—in which case a larger 
degree of uncertainty is expected. Or the root cause 
is related to violation of the underlying model 
assumptions—and the model must be changed.

In order to develop useful ML models for high 
risk applications, a compromise usually has to be 
made between model transparency and flexibility. 
To counteract the negative tradeoff of an initially 
opaque, but flexible model, we might impose con-
straints based on phenomenological knowledge 
related to causality. This can be thought of as 
“putting the black box inside a white box”, i.e. 
enabling deduction of bounding model properties 
through the imposed constraints.

Figure  2 illustrates constraints in the form of 
boundedness, monotonicity and convexity. Three 

datapoints have been observed, and for simplicity 
we assume the data does not contain noise. This 
means that we are looking for an interpolation 
model, a function passing through all three points. 
The shaded areas show where the function cannot 
enter due to the imposed constraints. Hence, start-
ing with the space of all functions passing through 
the three points, the constraints reduce the space 
of possible interpolation functions. Assuming 
that the constraints are based on phenomenologi-
cal knowledge that hold in reality, the constrained 
models are less prone to overfitting (more robust). 
In the case where an observation is made within 
the shaded area, the model is falsified immediately 
as the assumptions behind the constraints do not 
conform with an observed outcome. Hence, by 
imposing constraints based on phenomenological 
knowledge, either a) performance is increased, or b) 
the model is falsified and the modeler learn some-
thing fundamentally new about the phenomenon 
studied, which can be applied in future modelling.

The constrained models shown in Figure 2 may 
be restricted further by imposing multiple con-
straints, e.g boundedness and monotonicity or 
monotonicity and convexity. Note also that for 
noisy data, this means interpreting constraints in 
terms of probabilities using the assumed distribu-
tion of noise. The example is motivated by the more 
general class of constraints in the form of partial 
differential inequalities, for which phenomenologi-
cal knowledge related to causal effects in various 
physical phenomena may often be available.

Practically, imposing constraints such as the 
ones illustrated in Figure 2 means translating the 
phenomenological constraints to constraints in 
the ML optimization algorithm. Many techniques 
exist for including constraints in ML through opti-
mization, usually in order to obtain regularization 
effects, but we emphasize that developing the nec-
essary links between these constraints and phe-
nomenological knowledge will be highly beneficial. 
See for instance (Yu 2007) or (Maatouk & Bay 
2017) for some examples and further discussion.

Probabilistic inference on the ML model output 
is needed for risk and reliability analysis applica-
tions. This means that the model output should 
optimally be in the form of a distribution. Model 
predictions in the form of fixed values and best esti-
mates are not applicable. The dangers of express-
ing risk through expected values is well known, 
and modern definitions of risk usually relate to the 
distribution over possible outcomes. Hence, some 
quantification of prediction uncertainty is essen-
tial. It should be noted that this goes beyond the 
probabilities often used to report model accuracy 
for ML classifiers. The fact that an object is cor-
rectly classified 99% of the time might be insig-
nificant if  the outcomes of the remaining 1% is 
associated with severe consequences.

Figure 2. Effect of some different constraints for inter-
polation in data without noise. The interpolation func-
tion cannot enter the shaded areas.
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There is a traditional approach to this problem, 
where ML has played a role in mathematical mod-
els for calculation of risk and reliability. First, the 
models are scrutinized through human quality con-
trol to ensure that the model accuracy is sufficient 
or at least on the conservative side. This quickly 
becomes infeasible for higher dimensional mod-
els. Further, a single distribution representing the 
model uncertainty is often established from statis-
tical analysis of prediction accuracy alone, assum-
ing uniformly distributed data. This is no longer 
feasible for higher dimensional models or when the 
input data is far from uniformly distributed.

3.3 Working with constraints

Figure  3 illustrates of the workflow for building 
ML models with emphasis on constraints. For sim-
plicity we ignore work on data cleaning and fea-
ture selection that naturally comes prior to model 
development.

Any hypothesis on model constraints com-
ing from assumed causalities in the phenomenon 
under consideration must be tested to identify to 
what degree they hold in the observed data. Hence, 
the task of hypothesis testing is emphasized. There 
might also be valid constraints that are not imme-
diately identifiable from phenomenological knowl-
edge. It could therefore be valuable to search for 
possible constraints by unsupervised learning, to 
serve as hints to the modeler, and help identifying 
additional constraints before further testing and 
possible inclusion in the ML model.

This type of workflow will move the typical 
approach for building ML models today closer to 
traditional statistical modelling.

4 RELEVANT AREA OF  
APPLICATION – SRA

In this section we give a concrete example of an 
application area where ML is linked with engineer-
ing risk analysis – Structural Reliability Analysis 

(SRA), where the recommendations given Sec-
tion 3 are highly relevant. In addition, we highlight 
two general pitfalls related to a common, but pos-
sibly misconceived, idea on how ML may be used 
in this context.

4.1 Structural reliability analysis

Structural reliability analysis, or SRA for short, is 
the fundamental building block of modern risk- 
based engineering methodologies. For a thorough 
introduction reference is made to Madsen, Krenk, &  
Lind (2006). The underlying theory combines 
structural analysis with statistics and probabilistic 
modelling to assess uncertainties of information 
that contributes to the probability of structural 
failure.

SRA may generally be described as the problem 
of establishing the probability

P G x( ) ≤( )0  (1)

where x is a vector of stochastic variables, e.g. 
structural dimensions, material properties, loads 
and model uncertainties. The function G(x) is 
referred to as the limit state, and is defined such 
that G(x) ≤ 0 if  and only if  the scenario represented 
by x results in structural failure, see Figure 4. In 
the literature the limit state is often presented as

G R Lx x x( ) = ( ) − ( )  (2)

where R(x) and L(x) represent the structural resist-
ance, or capacity, and load effect respectively, 
although these are often not separable in practice.

The main tasks in a structural reliability analy-
sis is to establish a suitable limit state function and 
distributions of all the input parameters, so that 
one may estimate the failure probability given by 
Eq. 1 and analyse the sensitivity of parameters and 

Figure 3. ML workflow with emphasis on constraints.

Figure 4. Illustration of SRA in two dimensions.
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decisions that will affect the system. Informally, 
one might say that we use data and domain knowl-
edge to establish the input distributions describing 
the current state of the system, and extrapolate 
to states where the system has failed using very 
limited data related to system failure in combina-
tion with advanced phenomenological simulations 
based on first principle physics.

4.2 Machine learning in SRA

Some of the key challenges in SRA today relate to 
the rapid increase in structural complexity of engi-
neering systems, including more automation and 
software intensive control systems, together with a 
demand for higher system utilization and the need 
for more accurate and reliable models to support 
decision making under uncertainty. At the same time, 
ubiquitous sensor data provides new information 
that could potentially reduce the uncertainty if the 
information could be incorporated into the models.

In practice, this means that the function G(x) in 
Eq. 1 and the distribution over the input space x 
will take a more complicated form. To cope with 
this, the technologies we now label ML can be use-
ful, e.g. to address the following problems:

•	 Find x: Establish distribution over x using all 
relevant data.

•	 Find G: Through data related to structural 
behavior, combined with data from past experi-
ence, experiments and simulations of structural 
failure, establish the limit state function that 
classifies all x’s as Safe or Failure.

Note that in practice these two problems are gen-
erally intertwined, in the sense that inference about 
a model parameter (the x’es) may only be observable 
through its effect on the system response. E.g. some 
y(x) is observed, where the mapping y(⋅) is in our 
representation baked into the general function G.

The use of ML in SRA has traditionally been 
confined to smaller subcomponents where human 
quality control is possible, but for more complex 
systems this quickly becomes infeasible. The more 
general task of approximating functions like the 
limit state G(x) using ML together with a limited 
number of realisations (experiments or numerical 
simulations) has received increasing attention over 
the last decades, within the field of Uncertainty 
Quantification (UQ). See for instance (Sullivan 
2015). UQ aim to quantify the ML uncertainty 
introduced through approximation, as well as 
how uncertainty in input parameters propagates 
through such models.

4.3 General ML pitfalls in SRA

As for all ML applications, there are some gen-
eral pitfalls to look out for. This section highlights 

some of the challenges related to how introduc-
tion of ML in reliability analysis is often depicted. 
This relates to a growing appetite for ideas like the 
following

•	 Due to the increasing instrumentation of sys-
tems, more data is available about the loads and 
structural behavior of systems at any time. By 
combining this with historical data from many 
other similar systems where the structural integ-
rity is known (we know whether or not they have 
failed, and how), we could detect any abnormal 
behavior. With this information we could create 
warnings before potential failure occurs, and 
possibly also help the system back into normal 
operation.
Anomaly detection will probably play a larger 

role in risk assessment in the future, but there are 
some pitfalls that the industry needs to be aware of. 
The first relates to the quantification of the safety 
margin, which is often represented as a probability 
of failure or through some other metric relating 
the current physical condition with conditions cor-
responding to structural failure.
•	 For complex engineering systems, quantifying 

the margin of safety based on operational data 
alone is unlikely.
This statement might be obvious, from the many 

different ways a system may fail in practice and the 
assumption that these systems are designed not 
to fail. The next argument however is a bit more 
subtle
•	 From a data exploration perspective, when 

observing system states outside normal operation 
one might unknowingly have transitioned away 
from the default system behavior, leaving all previ-
ous observations biased, and possibly irrelevant.
This statement impacts the basic assumption 

in ML that future data will come from the same 
distribution as the data the model was trained on. 
This is illustrated by an example in Figure 5.

Following the SRA setting illustrated in Fig-
ure  4, we assume that the limit state is defined 
in terms of material over-utilization. Often the 
criteria for when ultimate failure occurs is diffi-
cult to express mathematically, and conservative 
approaches are applied by defining failure as some 
identifiable prior event. One such limit from mate-
rial science is the yielding criteria of ductile materi-
als such as steel. The stress-strain relationship of a 
material under some loading is linear up until the 
yielding point, and the material behaves elastic in 
this region. I.e. unloading the material will bring it 
back to its original unharmed state3. For continued 
loading beyond the yield point, the material will 
exhibit plastic behavior until rupture.

3Ignoring other failure modes such as fatigue.
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A limit state defined from the yield criterion 
can be illustrated as the dashed line in Figure  5, 
whereas the boundary of the structural failure set 
(black line) represents material fracture4. Imagine 
an anomaly detection agent that warns whenever 
the system behaves outside the normal operating 
envelope, and estimates procedures for moving the 
system back into normal operation. For elastic 
material response (leftmost point), the data used 
to train the model is still valid. But when materi-
als are pushed closer to their limits, some proper-
ties are fundamentally changed. The elastic limit 
will change due to work hardening, and the stress-
strain curve is no longer valid. Furthermore, when 
the material is over-utilized over a certain thresh-
old, the reduction of load may initiate failure 
modes previously non-relevant, and uninformed 
decisions may be catastrophic.

This example is an oversimplification, but illus-
trates some challenges with introducing purely 
data driven agents. Due to the increased compu-
tational capacities and scientific models available 
today there is an increased push to utilise systems 

closer to their limits. In the above example this 
means allowing operation closer to the true fail-
ure limit, and compensating by increased control, 
uncertainty reduction, and more detailed under-
standing of the failure modes.

5 CONCLUDING REMARKS

The field of ML is largely based on statistical meth-
ods, but with a focus that is shifted more towards 
predictive accuracy and with limited attention 
towards model interpretation and testing hypoth-
eses on causes and effects.

For tail events in high risk environments the 
modeler is faced with additional challenges, as 
the tolerance for error is reduced and accuracy 
is needed in distribution tails rather than where 
the main bulk of data is. Because of this, opaque 
black-box type models are difficult to work with as 
the means for falsification may be limited to obser-
vations of future performance.

Therefore, research and development of ML 
models for such applications should be guided 
towards enabling incorporation of causality con-
straints reflecting the modeler’s phenomenological 
knowledge.
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Appendix B

Source code
Two open source python packages have been developed in the project:

� GPconstr Python package for Gaussian process regression with constraints
used in Paper I. It is available at https://github.com/cagrell/gp_constr.

� HAL The HAL (Hierarchical Active Learning) python package contains
various modules needed for structural reliability analysis and design of
experiments, and was used for the numerical examples in Paper III and
Paper IV. It is available at https://github.com/cagrell/HAL.

207

https://github.com/cagrell/gp_constr
https://github.com/cagrell/HAL

	Preface
	List of Publications
	Contents
	Introduction
	Motivation
	Probabilistic modelling of safety-critical systems
	Reasoning under uncertainty
	Phenomenological knowledge

	Background
	Uncertainty Quantification
	Probabilistic machine learning
	Optimal decision making under uncertainty

	Summary of papers and main contributions
	paper:constrgp
	paper:marinestructures
	paper:SRADOE
	paper:PDTRL
	paper:UQchallenge
	paper:voronoi

	Discussion
	Working with constraints
	The unscented transform
	New applications of environmental contours
	Trading rigour for speed

	Bibliography
	Papers
	Gaussian Processes with Linear Operator Inequality Constraints
	Sequential sampling method using Gaussian process regression for estimating extreme structural response
	Sequential Bayesian optimal experimental design for structural reliability analysis
	Optimal sequential decision making with probabilistic digital twins
	Risk-based functional black-box optimization – Contribution to the NASA Langley UQ challenge on optimization under uncertainty
	Environmental contours as Voronoi cells
	Appendices
	Pitfalls of machine learning for tail events in high risk environments
	Source code



