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Abstract: We propose a novel semi-supervised learning method to monitor the
State of Health of lithium-ion batteries, a prominent technology for the electrifi-
cation of the transport sector. Our approach enables State of Health monitoring
of batteries with no labeled data, starting from a minimal set of labeled data
from another similar battery. This can be achieved by exploiting the relation be-
tween a pseudo-capacity measure and the total capacity of the labeled data. Our
results with operational data from maritime batteries show that the approach
is valid and can lead to significant progress in failure prevention, operational
optimization, and for planning batteries at the design stage.
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1 Motivating Problem and Data Description

Monitoring of the State of Health (SoH) of lithium-ion (Li-ion) batteries is
crucial for maritime applications. In fact, over time and over usage Li-ion
batteries undergo ageing mechanisms that ultimately lead to battery fail-
ure; the consequences for a vessel at sea can be potentially catastrophic,
therefore it is compelling to assess the battery conditions with good accu-
racy.
One way of quantifying the SoH is based on the degradation of the battery
capacity (Vanem et al., 2021):

SoHi =
Cavailable

Cnominal

× 100 (%), (1)

where Cavailable is the actually available capacity, and Cnominal is the nominal
capacity of the battery. However, estimating the capacity itself is often a

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).

85



Bertinelli Salucci et al.

demanding exercise. It is common practice in the maritime field to carry out
annual tests, that enable an estimate of the battery capacity. Such tests,
however, are burdensome and time-consuming, and provide very sparse
capacity assessments. Further, as they are performed under different con-
ditions (temperature, durations, etc.), they can hardly be related to each
other, resulting to some extent inaccurate. An efficient method for con-
tinuous battery diagnostic, thus, is strongly needed. Data-driven methods
can be greatly advantageous as they are agnostic to the real and highly
complex physical problem, they are ductile and can be used for different
batteries (Vanem et al., 2021).
Operating data for this analysis are provided by a leading supplier of energy
storage systems for maritime applications. The data pertain to the battery
systems of three vessels, which we regard as three different datasets. For
each of them, we have high-frequency sensor data: temperature, voltage
and current intensity measurements, together with the battery State of
Charge (SoC) which we regard as sensor data insofar as it is provided by
the company with good accuracy. Such variables are continuously measured
from the beginning of operation until 4.5 or 5.5 years later, though there
are periods of missing data in all datasets.
Our minimal set of labeled data consists of three data-points for one of the
vessels, obtained from three SoH tests conducted in years that are not nec-
essarily consecutive. Our approach is based on relating the discharge phases
of the batteries while they age over years: thus, we pre-process the data
to go from continuous measurements series to single events, the discharge
cycles, identified on the basis of changes of sign in the SoC derivative.

2 Semi-Supervised Learning Methodology

We will refer to the three datasets according to the following:

� Reference data: data from the dataset with the three labeled data-
points (vessel A);

� Target data: data from the other two datasets (vessels B and C).

Consequently, the labeled cycles from vessel A will be called reference cy-
cles, while all cycles from the other two vessels are target cycles; our aim
is to predict the total capacity of the battery at the target cycles.
Our approach relies on a fundamental assumption: the SoH can be consid-
ered constant for a time window around the day where the measurement
was taken. The assumption is valid as the SoH is known to degrade gently
and almost linearly in the first years of operations, after an initial short
stage in which the degradation is more pronunced, and before a final stage
where the decay is faster and non-linear (Edge et al., 2021). This enables us
to enlarge the set of reference cycles. The method develops in three steps:
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1. Cycle classification: using a tree-like classification, cycles with similar
characteristics are grouped together, and each class is treated inde-
pendently. This is important to account for the large impact that
different conditions (temperature, SoC range, C-rate, etc.) have on
the estimated capacity. At the end of this step, the data are organised
in tables containing cycles with similar characteristics. An example
is provided in Table 1, where the first two cycles are from the refer-
ence dataset, and hence they have an estimated SoH, and three other
similar cycles in datasets B and C have been matched.

2. Model training: using the reference cycles, we train a linear model
in each class. The total capacity of the battery as from the SoH test
is our dependent variable; the number of features entering the model
depends on how many reference cycles we have in the considered class.
In all cases we input the pseudo-capacity,

C̃ =

∫ tend

tstart

I(t) dt; (2)

optionally, cycle characteristics such as duration, initial time, variance
in the C-rate and temperature etc. are also included in the model.
We discard all classes having models with R2 < 0.6.

3. Total capacity estimation: in each class, we get capacity estimates for
all target cycles from the model trained at step 2.

The capacity estimates from different classes are then gathered together
and converted to the SoH scale. In real applications it is often convenient to
have weekly or monthly SoH estimates, therefore we do a weighted average
of the estimations where the weights are the reciprocal of the uncertain-
ties estimated by the model. This is done in order to ensure that highly
uncertain estimates contribute very little to the final estimate.

TABLE 1. Example of a few cycles from the same class: the first two rows are
cycles from the reference dataset, and hence they have an estimated SoH. Other
three similar cycles in datasets B and C have been matched and are a target for
capacity estimation.

SoC1 SoC2 avg cRate max temp min temp SoH dataset

89% 73% -0.372 28◦ 24◦ 92.4% A
89% 73% -0.379 27◦ 23◦ 92.4% A
90% 73% -0.374 27◦ 24◦ – B
89% 72% -0.379 27◦ 23◦ – B
89% 71% -0.377 27◦ 24◦ – C
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3 Multivariable Fractional Polynomials for SoH
modelling

The semi-supervised approach provides SoH estimates which transform the
large unlabelled datasets into training data for modelling the battery degra-
dation: the Multivariable Fractional Polynomials (MFP) approach (Sauer-
brei and Royston, 1999) has been chosen for the purpose, in view of the
encouraging results achieved on lab data in a previous work (Bertinelli
Salucci et al., 2022). The response variable of the model is the monthly
change in the battery SoH with respect to the initial value SoH(t0),

y = ∆SoH(t) = SoH(t0)− SoH(t), (3)

while the set of candidate covariates is derived from the battery sensor data
for all charge and discharge cycles, including a few significative interaction
terms. All features are cumulative over each month (e.g. sum of durations
of charge or discharge phases, average C-rates, ...), except for the equiva-
lent full cycles measure (efc) which is cumulative over the whole history of
the battery system. The MFP algorithm selects the most suitable polyno-
mial transformations of the covariates among a set of possible choices, and
variable selection is also performed (significance level P < 0.05) to achieve
potential variance reduction and ease the model interpretability. The re-
gression model has been trained on data from vessel B and tested on vessel
C.

4 Results and Conclusions

Monthly averaged results obtained with the semi-supervised learning ap-
proach are shown in Figure 1 and Figure 2 for the two target ships. The
unavailability of frequent and reliable labels makes it difficult to provide
a specific accuracy assessment for the method; however, our results are in
line with the typical degradation patterns of Li-ion batteries depicted by
Edge et al. (2021), as well as with battery experts’ expectations.
The left panel of Figure 3 shows the results obtained in predicting the SoH
degradation of vessel C with the MFP model trained on data from vessel
B (Table refbertinellisalucci:tab2). The plot confirms the effectiveness of
MFP regression for modelling SoH degradation of lithium-ion batteries:
the predicted values are all very close to the estimates obtained with the
semi-supervised approach, with a normalized Root Mean Squared error of
0.85%. The right panel of the figure presents an histogram of the normalised
absolute error: most of the errors are below 1.5%, and all errors below 2%.
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FIGURE 1. Montly averaged SoH estimates for vessel B on full scale (left) and
reduced scale 80-100% (right).
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FIGURE 2. Montly averaged SoH estimates for vessel C on full scale (left) and
reduced scale 80-100% (right).
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FIGURE 3. Left: State of Health degradation results for vessel C using the MFP
regression model. Right: histogram of the normalised absolute error.
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TABLE 2. MFP regression model trained on data from vessel B. The features
entering the model after the variable selection mechanism are reported together
with their estimated coefficients, standard errors and corresponding p-values: efc
is a measure of the equivalent full cycles of the battery; Vin,disch. is the average
initial voltage of the discharges cycles in one month; Tmin,3 and Tmin,1 are the
monthly averages of the minimum values of two temperature sensors.

est. coefficient std. error p-value

Intercept -6.395 1.62 0.0002

efc/105 83.31 20.91 0.0002

Vin,disch. : efc/10
5 -16.53 4.42 0.0005

Tmin,3/10 -26.19 8.25 0.0025

Tmin,1/10 30.14 8.93 0.0014
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Data-driven state of health modelling—A review of state of the art
and reflections on applications for maritime battery systems. Journal
of Energy Storage, 43, 103158.

90




