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Abstract. Musical Rhythms can be modeled in different ways. Usually
the models rely on certain temporal divisions and time discretization. We
have proposed a generative model based on Deep Reinforcement Learn-
ing (Deep RL) that can learn musical rhythmic patterns without defining
temporal structures in advance. In this work we have used the Dr. Squig-
gles platform, which is an interactive robotic system that generates mu-
sical rhythms via interaction, to train a Deep RL agent. The goal of the
agent is to learn the rhythmic behavior from an environment with high
temporal resolution, and without defining any basic rhythmic pattern
for the agent. This means that the agent is supposed to learn rhythmic
behavior in an approximated continuous space just via interaction with
other rhythmic agents. The results show significant adaptability from
the agent and great potential for RL-based models to be used as creative
algorithms in musical and creativity applicationsEI
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1 Introduction

Creating music by Al is a growing topic in music technology and computer
science in recent years. The significant capabilities of the Deep Neural Networks
in pattern recognition, combined with Reinforcement Learning (RL) algorithms,
attracted many researchers to utilize them for developing generative models. Are
such generative models able to learn to create musical rhythms by interacting
with other musical agents?

RL algorithms can learn to obtain a goal by interacting with an environment.
Deep reinforcement learning (Deep RL) is a method for training an agent to
perform certain actions given certain states. The agent consists of a neural net
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that learns a policy to take desired actions (Sutton & Bartol [2018)). After it was
first introduced, Deep RL has been used for various tasks and achieved human
level results (Mnih et al.l [2015; Lillicrap et al., 2015; |/Arulkumaran, Deisenroth,|
Brundage, & Bharath, 2017; Mnih et al. [2013). To answer if rhythmic patterns
can emerge in robot systems through interaction, the system is required to take
actions that makes us perceive it as rhythmic. Deep RL is a good tool to make an
agent learn to take actions given a state, especially when the states may be from
an infinite set. The set of possible states will change according to the agent’s
actions, and the other robot agents within the environment.

There have been significant works into music technology, and into the field
of creating music, trying to develop algorithms for rhythm generation. Within
the area of creating rhythm, Kaliakatsos-Papakostas, et. al have used Evolution-
ary algorithms to create rhythmic patterns by deriving them from a base beat
(Kaliakatsos-Papakostas, Floros, & Vrahatis, 2013). Markis et. al have taken ad-
vantage of combining a Recurrent Neural Network with a Feed-Forwards Neural
Network, to generate a drum beat based on a bass line (Makris, Kaliakatsos-|
[Papakostas, Karydis, & Kermanidis| 2017)). There have also been previous works
using Reinforcement Learning-based algorithms for Music Generation (Lan, Tgrrésen,
[& Jensenius|, 2019 [Kotechal, 2018} [Fryen, Eppe, Nguyen, Gerkmann, & Wermter],
2020; Le Groux & Verschure, 2010} Derbinsky & Essl| [2012;
sayag, Bloch, Chemillier, Cont, & Dubnov, [2006). Common for these approaches
is that they give their architecture a pre-existing idea of what the rhythm should
consist of, in the form of a discrete output that is made to fit 4/4 bars. A goal
would be to create an architecture that doesn’t require this knowledge, and that
could generate a beat in a practically continuous environment.

The main contribution of this work is to introduce a generative model based
on Deep Reinforcement Learning which can learn to create musical rhythms by
interacting with other musical agents. The model learns rhythmic patterns from
scratch via interaction with other musical agents. The key question is if any
rhythmic pattern can emerge in a robotic system just through interaction with
other musical agents, without having any predefined rhythmic patterns.

2 Method

2.1 Dr. Squiggles Platform

Dr. Squiggles is an interactive robot that generates rhythmic patterns by tapping
(Krzyzaniakl [2021). It listens to rhythms played by humans or other robots,
and attempts to play along. The robots can also listen to each other and play
together. The robots use a histogram-based algorithm for generating rhythm by
dividing time intervals into 16 parts and calculating the probability of playing
notes in each part. In this work, we use a simulated Dr. Squiggles platform as
the environment for our agent to learn rhythmic patterns. In this setting, we
use two Dr. Squiggles robots with a histogram-based algorithm listening to each
other and the agent. The agent will listen to one of the robots and try to follow
its rhythm using the Deep Reinforcement Learning model (Figure 1).
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Fig. 1. Dr. Squiggles robots setting. We have used two Dr. Squiggles robots with a
histogram-based rhythm generating algorithm in the environment. The agent is the
third robot and uses a DRL algorithm to learn the rhythmic patterns from the envi-
ronment.

2.2 Deep Reinforcement Learning Model

A Deep RL algorithm is based on ordinary RL methods which receive rewards
from the environment after each action and learns to maximize the expected
cumulative rewards in the long term. In Deep RL, a Deep Neural Network is
used to estimate the expected reward (or value) and is updated in each trial
(Sutton & Barto, 2018; Arulkumaran et al., |2017)).

The algorithm consists of four parts: The agent, the environment, the obser-
vation space, and the rewards, which will be described in the sections below:

The Agent For the agent, a Deep Q-Learning Network (DQN) is used. This
consists of an epsilon-greedy policy and a rather small network, used to determine
the action: To tap or not to tap. That is, the output of the agent is either 0 for
not tapping, or 1 for tapping. The agent plays the role of the third Dr. Squiggles
robot shown in Figure 1, by using a DRL algorithm for playing.

The choice of using a DQN was motivated by having the agent able to learn
the policy having a continuous observation space. We used a feed-forward net-
work in this work consisting of five hidden layers. A small network is essential
for avoiding overfitting.

The Environment The environment can be any kind of musical performer
that generates rhythm. We used two Dr. Squiggles as the environment for the
agent. For modeling the environment, we should define the state and reward
signals. These are the feedback signals that the agent will use to be trained and
also make actions. They are described in their own sections below.

The DRL concepts related to the environment are step, episode, reward,
observation space and action space. They are defined as follows:
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1. Step: Every 10 ms, the agent chooses an action that is executed within the
environment. A reward is calculated and sent back, completing one step.
10 ms was chosen as it is beyond the scope of human reaction, making the
system effectively continuous.

2. Episode: An episode is a set number of steps before the environment ter-
minates, and resets itself. In this project’s environment, an episode is 1000
steps, or 10000 ms / 10 seconds, but the agent will be able to play for any
given length when fully trained. The reason for choosing 10 seconds is that
at the start of each episode the tempo is randomized, so having the episode
be 10 seconds allows the agent to be trained on many different tempos.

3. Reward: In each step, the agent is given a reward based on its action and
previous environment state, that is used to update the agent’s policy. This
is described in detail in Section [2.2] below.

4. Observation space: The current state representation given to the agent for
it to choose an action to perform. This is described in detail in Section [2.2]
below.

5. Action space: The set of actions the agent can perform. Here, the set contains
the actions 1 and 0, 1: Tapping, 0: Not tapping.

For each episode, the environment starts off with a randomized value for the
time between each 16th note, from 100ms to 200ms. This is done to give it a
random tempo. The environment is started with random histograms for each
Dr. Squiggles.

The reason for having a random tempo is to make the agent more dynamic,
so it’s not limited to having to follow along with one specific tempo. More im-
portantly, it is crucial that the agent does not train to become a neural network
that detects when one input is e.g. 20, but instead actually observes the time
between each onset by itself and adjusts accordingly. If it can do this, it would
help prove that it was synchronizing to the Dr. Squiggles in the environment,
and playing rhythmically because of their behavior.

Observation space For generating rhythms, time-based and frequency-based
features can be considered (Sethares, 2007). In our setting we want the agent
to learn rhythmic patterns in real time. Time-based features can be used more
effectively in real time applications since the agent can not access the whole
time history of the rhythms in advance to extract the frequency-based features.
Although it is possible to use frequency based features in real time, using time-
based features is faster and demands less computational complexity. A simple
time-based feature that can be used in each step can be the time that has passed
since each of the last n times the robot in the environment has played. Here, n
can be any arbitrary number, but with a larger n we will need a larger network
and it makes the model more complex. By using these states, the agent is looking
to the previous events and uses some kind of memory. Using memory is essential
for rhythm generation because at each moment playing a note or not depends
on previously played notes and their timing.
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Fig. 2. A visualization of the observed states for one episode.

Figure 2 shows an example of the observed states in an episode by considering
the 2 last notes. In addition to the basic counters from when the environment
last played, there have also been attempts with having n-1 states that represent
the time difference between each of the states. This would allow the agent to get
knowledge of the temporal structure of the environment, that could be used to
determine when to play.

The Rewards Defining the reward function is the key for the algorithm to
learn the behavior that is desired. The goal for the agent is to learn rhythmic
behavior from the environment. One way is to give rewards when the agent is
playing at the same time as the environment, however in this case the agent only
learns to repeat the notes. Here, we introduce a different strategy to define the
reward function. The agent receives positive reward when it mirrors the last two
notes played by the environment. In this case the rhythmic patterns played by
the agent and the environment can create new rhythmic behavior when playing
together. The reward function is explained in more detail in Appendix [A]

3 Result

The model and the environment are simulated using the TensorFlow library. The
network used for training in each case consists of five linear layers with twenty
nodes each. The agent is trained for 20000 time steps in each case, randomly
selected from a replay buffer.

The agent shows a rhythmic pattern that follows the rhythm of the environ-
ment, and does not just play when the environment is playing. However, it also
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Fig. 3. The average rewards during training for 5 different runs.

only plays one note after the environment stops playing, and then gets lost. This
result was achieved by giving a reward for when it mirrored the environment
and when it otherwise stayed quiet, as well as punishments for when it missed a
mirrored onset and tapped when it should be quiet.

The training is run for 20000 time steps and the agent can converge with
an appropriate definition for the reward function. Figure 3 illustrates the aver-
age cumulative reward per episode collected during training, and it eventually
converging to a stable pattern that gets similar amounts of reward.

Several other reward functions were tried that did not work. Specifically, any
reward based on actions taken in the past were not effective, e.g. giving negative
rewards based on playing the same note continuously/not playing for a long
time. It seems the agent is not able to connect the reason for this punishment,
even when given how long ago it played itself. Additionally, these punishments
can be inevitable to encounter/avoid when the random chance of an epsilon
greedy exploration is involved, as the agent cannot ‘restrain’ itself to the action
it chooses. Therefore it might work better if on-policy learning is used, but that
might risk the agent converging early, as it can’t explore.

As for the states, having the steps since the environment has played and the
difference between when the environment played seems to have been helpful, and
let the agent get some idea of the rhythm. n has been kept small, and there does
not appear to be a huge benefit to increasing the number of n. As for feeding
the agent’s output into itself the next step, even though it was included, does
not seem to have had a huge effect compared to previous experiments. Lastly,
giving the agent the number of steps since it last played does not appear to
have been very effective, for the same reason giving punishments due to playing
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Fig. 4. The output of the agent and the environment after training. The blue and
orange squares indicate tapping by the environment and the agent respectively. The
dashed lines indicate the time divisions according to the histogram-based algorithm (a
video sample is available here: https://youtu.be/GSArvObZxeU)

too much/too little, in that it’s often dodged in training, so it is not properly
considered before validation.

Additionally, we trained standard classifiers on a balanced data set of labeled
observations and saw what we could achieve with that approach. The classifiers
were tuned through a grid-search where they were evaluated on a score equal to
the lowest class precision. The score was chosen to help the classifiers get the
right balance between the labels.

Using classifiers to learn the observation space did not help to converge to
any rhythmic behavior. In table 1, the performance on an episode of the agent
and the four classifiers can be seen, where they were both evaluated on lowest
class precision. The agent frequently gets full score, while the classifiers deliver
unreliable and low-scoring performances. In terms of behavior, the classifiers
were too noisy, but showed promise to learn the mirroring pattern.

Apart from the complexity of the data, the dynamic behavior of the envi-
ronment which responds to the action of the agent and changes the rhythmic
pattern according to what it hears from the agent makes it almost impossible for
the classifiers to learn the rhythmic behavior. This indicates why an interactive
algorithm, like the Deep RL model we used, is needed for this problem. A Deep
RL model also lets the model avoid the pitfalls of an unbalanced data set, as the
rewards and low learning rate allows the agent to escape from the local maxima
of classifying everything as a 0 or 1.

4 Discussion

The results show that the Deep Reinforcement Learning model can be effectively
used for training an agent to generate musical rhythms through interaction. The
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Table 1. Table of lowest class precision for sci-kit Random Forest, Multi-Layer Per-
ceptron, K-Nearest Neighbor and a Support Vector Classifier. All classifiers fit to a
balanced data set of 40000 labeled observations.

Trial Agent RFC MLP KNN SVC

1 1.0 0.4473  0.3245 0.0 0.5404
2 0.6 0.3333  0.5421 0.536 0.3333
3 1.0 0.1053  0.369 0.1053 0.5219
4 0.9888 0.0 0.5333 0.5939 0.5333
5 1.0 0.2 0.4154 0.2 0.4338
6 1.0 0.0 0.3241 0.4796 0.5245
7 1.0 0.1594  0.1222 0.411 0.2246
8 1.0 0.0 0.2775 0.0 0.3422
9 0.999 0.0 0.4618 0.5056 0.5861
10 1.0 0.3722  0.1526 0.0 0.3804

flexibility of the Deep RL algorithm enables the agent to learn musical rhythms
without pre-programming the rhythmic patterns or discretizing the temporal
features or action space. This is the main advantage of this approach which is
not limited to certain defined rhythms.

Additionally, the algorithm is based on interaction with the environment
and is helpful when we have an interaction between humans and robots. This
approach makes the robots adaptive to the environment and more creative and
maybe more entertaining for humans.

This algorithm can be improved and expanded in different ways. One impor-
tant thing to be improved more precisely is the reward function.

An interesting expansion of the agent would be to add in an LSTM-layer, as
this would allow the agent to retain an idea of the overall structure of what it
is playing, which could be beneficial when it comes to producing an overarching
rhythmic structure. The RNN component might be helpful to model the tem-
poral dynamics of the environment with more complexity. It could also allow
the agent to keep playing without depending on the environment for an input.
However, the training of the RNN networks takes more time and using it in
real-time interactive applications is a big challenge.

5 Conclusion

A musical agent trained with Reinforcement Learning was able to adapt to rhyth-
mic behavior with no primary knowledge about the characteristics of the musical
rhythm. The results show that the model is able to find the basic rhythmic pat-
terns from the environment. However, the rhythm played was still quite simple,
and the agent seems to be blind to the dynamical behavior of the environment
which is a complex task. There is further work to be done, both in expanding
the complexity of the agent, and in creating better reward functions that can
lead to more creative rhythms.
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A Reward Function

Here is the detailed reward function we used:

2/t if a=0 and s(3) # s(1)+1, good silence

(s, a) = 1/t if a=1 and s(3) = s(1)+1, mirroring last two notes
—1.57(t —1)/t if a=0 and s(3) = s(1)+1, should be mirroring
—1.85/t if a=1 and s(3) # s(1)+1, plays off beat

In this function a is the agent’s action and ¢ is the episode’s allowed minimum
time between the environment making sound. s is the observed state, s(3) is the
time difference between the last two notes played by the environment, and s(1)
is the time since the environment last produced an onset. Note that the agent
must predict a step ahead.

It is especially important to get the ratio of the rewards and punishments
right, so that the agent could not simply stay silent and receive more reward
than if it played, or vice versa. Additionally, the tempo would change between
each episode, making it crucial that the balance was scaled in such a way that
each episode would have the same need to make noise on the beat and otherwise
stay quiet to get the best cumulative reward. This is why the rewards are scaled
with ¢.

Another issue is that the agent’s action space is not constrained in any way,
making it prefer to beep continuously instead of tapping once. The desired be-
havior is rhythmic, requiring it to tap sparingly, and so the balance of rewards
between silent and not silent is used to achieve single taps. It might be the case
that an agent that has constraints on its actions would produce more rhythmic
behavior.
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