
UNIVERSITY OF OSLO
Department of Informatics

Combining the
Xymphonic
transaction model
with versioning
features

Stian Bakken

Cand Scient Thesis

5th May 2002

Preface

This thesis is a mandatory part of the five year Cand. Scient. degree at
the University of Oslo, Norway. The workload of writing the thesis is
designated to be one year’s worth of full-time studies.

My interest and fascination for database systems was seriously ignited
when as an undergraduate student, I attended a course named "Data ori-
ented systems development and relational databases". The course was
taught by Professor Ragnar Normann, who is well known for his inspira-
tional lectures. After this experience, I continued to pursue my interest
in database systems.

This interest made it natural for me to look for probable thesis top-
ics in the same field, and when I became aware of an available thesis
description on transaction management I jumped on it.

I would like to thank my advisor, Ole Jørgen Anfindsen, an expert on
transaction management. Most of all for his kind, constructive criticism,
but also for debating my ideas with me, for offering me a part-time the-
sis related job, and finally for giving me the degree of freedom under
which I like to work.

Also, my friends and family deserve my gratitude, particularly my par-
ents for their neverending support.

Finally, I would like to thank my wife, Silje, for her love, patience and
support. She has also earned kudos for coping with my non-standard
working hours in the final stages of this writing.

Oslo, May 5, 2002
Stian Bakken

Abstract

It is a well known fact in the database community that the ACID prop-
erties of transactions are too restrictive for long lasting collaboration
efforts. Anfindsen (1997) shows that the only ACID property we really
want to compromise is that of isolation. He presents a solution to the
problem of long lasting transactions, namely the Xymphonic transac-
tion model.

It is argued in this thesis that there are many good reasons for being
able to create versions in general, and more specifically in connection
with Xymphonic transactions. The main result of this thesis is a solution
of how the Xymphonic model can be combined with features from the
field of versioning. It is shown through a prototype implementation that
the proposed solution is fully functional. The solution, however, does
not claim to be either optimal nor complete, and a chapter is devoted
to outlining some interesting areas of further work.

Contents

Preface i

Abstract iii

1 Introduction 1
1.1 Problem definition . 1
1.2 Research methods employed 1
1.3 Thesis structure . 2

2 Database management concepts 3
2.1 Database properties . 3
2.2 Database management system properties 3

2.2.1 Database systems . 5
2.2.2 Motivation for using database systems 5
2.2.3 Evolution . 6

2.3 The concept of transactions . 8
2.3.1 A definition of transaction 8
2.3.2 The ACID properties . 8
2.3.3 Long lasting transactions 10

2.4 Transaction histories . 11
2.4.1 The serialization graph 11
2.4.2 Timestamp ordering . 12
2.4.3 Locking . 12
2.4.4 Classical types of failure 13

2.5 Chapter summary and conclusions 14

3 The Xymphonic model 15
3.1 A clarification of terms . 16
3.2 Motivation for using the Xymphonic model 16
3.3 Lock types and their reciprocal compatibilities 18
3.4 Conditional Conflict Serializability 20
3.5 Nested Conflict Serializability 21

3.5.1 Spheres of control . 21
3.5.2 Nested transactions . 22

vi CONTENTS

3.5.3 Xymphonies . 25
3.6 Nested Conditional Conflict Serializability 28
3.7 Chapter summary and conclusions 29

4 Version management concepts 31
4.1 Defining versioning . 31
4.2 Some versioning terminology 33

4.2.1 Version . 33
4.2.2 Revision . 33
4.2.3 Variant . 33
4.2.4 Configuration . 34
4.2.5 Merging . 34
4.2.6 Version graph . 38
4.2.7 Deltas . 39
4.2.8 Version granularity and delta granularity 39
4.2.9 State-based versus change-based 39
4.2.10 Extensional versus intensional 40

4.3 Good reasons for versioning . 40
4.3.1 Reflections around reasons for versioning 41

4.4 Some version models . 42
4.5 Areas well suited for versioning 42
4.6 Chapter summary and conclusions 43

5 A Xymphonic model for versioning 45
5.1 Introduction . 45
5.2 Group types . 48

5.2.1 The VSOC . 49
5.2.2 The version repository 49
5.2.3 An example . 49

5.3 Locking . 49
5.4 Versioning of resources . 53

5.4.1 Relations between resources 54
5.4.2 Identifying versions . 56
5.4.3 Selecting a version . 57
5.4.4 Creating new versions 58
5.4.5 Performing merges . 60
5.4.6 Commiting and aborting versions 61
5.4.7 Manipulation of versioning granularity 63
5.4.8 Combining CCSR and MCC 66
5.4.9 Resource versioning summary 68

5.5 Versioning of configurations 68
5.5.1 Relations involving configurations 69
5.5.2 Composing a configuration 70
5.5.3 Identifying versions . 70

CONTENTS vii

5.5.4 Selecting a version . 71
5.5.5 Creating versions, recording change 71
5.5.6 Performing merges . 75
5.5.7 An idea of a typical work pattern 75
5.5.8 Configuration versioning summary 75

5.6 Relation to other models . 76
5.7 Chapter summary and conclusions 77

6 Further work 79
6.1 Version locks and concurrency 79
6.2 Change of versioning semantics 80
6.3 Further work on configurations 81
6.4 Intent locks and configurations 81
6.5 User interaction patterns . 81
6.6 Process support, active databases 82
6.7 Change oriented features, deductive databases 83
6.8 Temporal databases . 83
6.9 Distributed databases . 83
6.10 Further implementation . 84
6.11 User interfaces . 84
6.12 Chapter summary and conclusions 84

7 Thesis summary and conclusions 85
7.1 Creating versions . 86
7.2 Configuration control . 87
7.3 Implementability . 88
7.4 Main problem . 88

A Proof-of-concept implementation 89
A.1 Overview . 89

A.1.1 Programming language 90
A.1.2 Database backend . 90

A.2 Architecture . 91
A.3 Client . 91

A.3.1 Structure . 91
A.3.2 Functionality . 92

A.4 Server . 95
A.4.1 Structure . 95

A.5 Persistent classes . 96
A.5.1 The Resource class . 97
A.5.2 Storage strategy . 98

A.6 Lock manager . 100
A.7 Chapter summary and conclusions 101

viii CONTENTS

B Formal notation 103
B.1 EBNF rules for nesting . 103
B.2 Notation for versions . 105
B.3 Notation for relations . 106
B.4 Chapter summary and conclusions 107

References 109

Chapter 1

Introduction

1.1 Problem definition

Main problem

Is it possible to combine Xymphonic transactions with principles from
the field of version management in a way that is beneficial for one or
both fields?

Adherent problems

In order to give a satisfying answer to the main problem, some other
problems need to be solved along the way. At least the following three
questions should be considered:

1. How, if at all, can versions be generated in a controlled fashion in
a tree of transactions and Xymphonies?

2. How, if at all, can configuration control be incorporated into this
scheme?

3. Is it possible to create a model which is also feasible to implement?

1.2 Research methods employed

• Litterature studies
In order to draw knowledge from existing versioning models and
techniques, an extensive study of research litterature has been car-
ried out.

• Theoretical experimentation
Unfortunately, the best idea is seldom also the first. In the pursuit

2 Introduction

of combining Xymphonic transactions with versioning, different
approaches have been tested.

• Practical programming and experimentation
A prototype implementation was also carried out. This resulted in
some slight modifications of the model.

1.3 Thesis structure

• Chapter 2 constitutes the prerequisite reading in transaction mod-
els for the rest of the thesis. It does not contain any new informa-
tion or discoveries, but rather gives an overview of relevant prob-
lems, models and techniques in transaction handling.

• Chapter 3 gives an overview of the Xymphonic model, the ad-
vanced transaction model which serves as the basis for the work
presented in the thesis.

• Chapter 4 is chapter 2’s version management counterpart. It gives
a quick overview of the most common terms, techniques and mo-
tivations for versioning.

• Chapter 5 gives a description of a conceptual model which in-
tegrates version and configuration management with Xymphonic
transactions.

• Chapter 6 suggests some possible lines of further research stem-
ming from the discoveries presented in chapter 5.

• Chapter 7 summarizes the main contributions of the thesis. It also
ties the thesis together in a conclusion with respect to the pro-
pounded problems.

• Appendix A lays out a description of a concrete, practical imple-
mentation of the model. It also describes some relevant concerns
experienced during the course of the implementation and an ar-
gumentation for the different implementation specific choices.

• Appendix B presents notation for describing allowable nesting, as
well as instances of versions and relations between versions, in a
more formal manner.

Chapter 2

Database management
concepts

2.1 Database properties

In the beginning paragraphs of "An introduction to database systems"
by Date (1995), a database (DB) is metaphorically defined as a "kind of
electronic filing cabinet". A DB can range from a collection of files, to
arbitrarily complex structures. Informally, a DB is to be regarded as a
collection of persistent data in some order. By persistent is implied that
the data will survive the termination of instances of applications con-
nected to the database.

In addition, we would like to access the DB in a safe and controlled
manner. This includes concurrency control between independent actors
in the system, and the existence of mechanisms to recover data in the
case of some failure. Our interaction with the DB is controlled by the
database management system (DBMS) which is described below.

2.2 Database management system properties

Most textbooks on database fundamentals have a good description of
DBMSs. Established sources are for example (Date 1995, Elmasri & Na-
vathe 1989).

The DBMS should provide certain services regarding management of
the DB. This management can be decomposed into the following items:

• Access layer
The DBMS should provide application programmers and users with

4 Database management concepts

an interface layer through which they can access the data in the
DB.

• Security
It is desirable to have functionality, such as management of users,
authentication and authorization, and cryptography features. This
should be provided by the DBMS.

• Concurrency control
In a multi user environment where user interactions with the DB
are running in parallell or pseudo-parallell, there is bound to be
entanglements of access patterns. The DBMS should make sure
that these patterns don’t result in inconsistencies or other unde-
sirable effects on the DB.

• Recovery
The DBMS should provide us with a safety-net in case of failure. It
is, however, impossible for the DBMS to guard against all possible
kinds of failure. Date (1995, page 380) divides database failures
into two categories:

– System failures
System failures affect the users accessing the DB and their
work which has not yet been commited. But it does not cause
any damage to the DB itself. Examples of system failures can
be power failure, operating system halt/crash, etc.

– Media failures
This class of failures differ from the system type in that oc-
curences of it causes physical damage to the DB. At a min-
imum, it causes damage to the work in progress of users
which need access to the affected portion. Examples encom-
pass hard drive failure and catastrophes of nature.

Media failures can not be avoided with the help of a DBMS; they
must be remedied by restoring a backup of the affected region of
the DB. This can, for instance, be either a tape backup or a RAID-
based solution. The DBMS should, however, be able to help in case
of a system failure. Due to this, system failures are sometimes re-
ferred to as soft failures while media failures are considered hard
failures.

Of the mentioned items, the latter two, namely concurrency control and
recovery, are handled by the use of database transactions and will be
explained later in this chapter.

Database management concepts 5

2.2.1 Database systems

There are different types of database systems (DBS), e.g. distributed
and centralized. In a distributed setting, the users may need to con-
nect to many different DBSs. Distributed database systems (DDBS) raise
many complicated issues regarding synchronization, which centralized
database systems (CDBS) do not. For the sake of simplicity (and to
keep the workload at a reasonable level), the focus of this thesis will
be on CDBS scenarios. Material on distributed database transactional
concepts is found, for example, in (Kim 1995, chapter 28).

2.2.2 Motivation for using database systems

To begin with, using electronic storage methods for data, as opposed to
traditional paper document handling, gives the following benefits (Date
1995):

• Compactness
No need to store heaps of paper in filing cabinets as they can be
crammed in volumes into the DB.

• Speed
Both storage, retrieval and esp. queries can be done a lot faster
with electronic storage.

• Automation
Tedious, manual tasks can be programmed to be performed auto-
matically.

• Currency
Accurate access to the most recent data.

A natural next step is to compare the use of a DBS to conventional file-
system methods. The following arguments, in favor of database sys-
tems, are taken from (Kjølstad 20011, Date 1995):

• The features of a DBMS are powerful arguments:

– Access layer
The access layer provides us with data abstraction. That is,
the storage of the data is de-coupled from the actual applica-
tions. This makes it easy for different types of applications to
access the same data, and a change in an application does not
implicate a change in the conceptual way the data is stored
and accessed.

1Which in turn references (Silberschatz et al 1997, Elmasri & Navathe 1994).

6 Database management concepts

– Security
To provide authorization/authentication and privilege levels
is a powerful feature.

– Concurrency
A DBS lets users connect and perform parallel operations
in an interleaved, controlled manner. This eliminates data
inconsistencies between applications and increases perfor-
mance.

– Recovery
If we are interrupted in the middle of a task due to some soft
failure, we can be sure that the the DBS has mechanisms to
recover to a previously recorded consistent state.

• Features more closely related to the storage of the data:

– Reduced redundancy
Compared to applications which each have its own private
files, a DBS will yield less redundant storage.

– Enforcement of standards
Standardized data storage can be enforced when there is cen-
tral control of the DBS. This is particularly important for in-
terchange of data between systems. Date (1995) also men-
tions data naming and documentation standards as very de-
sirable properties for data sharing and understandability.

– Data integrity
Integrity can be ensured by applying the proper constraints
to the schema of the DB. For example, it is undesirable that
an employee is marked to be working in a department which
does not exist2. Note that integrity only becomes important
when we have a DB with redundancy.

2.2.3 Evolution

In the earlier days of DBMSs, when the inverted list, network and hi-
erachical datamodels were the competing standards, applications and
DBMSs were tightly coupled in the sense that for an application to in-
teract with the DB, it would have to use procedural access directly on
the DB strucure. On the network datamodel, (Bachman 1965) is a classi-
cal source. This low level interface model made the task of creating an
application and maintaining a database controllable, but still tedious

2For a relational database system, this would typically be a case where we would
like a foreign key constraint to ensure that only departments from a list of valid de-
partments could be added to other relations.

Database management concepts 7

and time consuming.

With the publication of Codd’s article (1970) on structuring the data
based on mathematical relations, DBSMs gained some very powerful
features. The article suggested a tabular ordering of the data. Database
management systems based on these ideas are known as relational
(RDBMS). Compared to the earlier efforts, RDBMSs provide a higher level
of abstraction and add mathematical rigor to the underlying datamodel.
Important features of RDBMSs include the following:

1. The data were now stored with a structure based on mathematical
relations which made it natural to view the data in a tabular or-
dering. For implementations of RDBMSs, pointers and lower level
mechanisms were of course still in use, but this was now transpar-
ent to users and application programmers.

2. It was possible to attach relational constraints to ensure data in-
tegrity.

3. The data could be queried in a nested fashion, because each opera-
tion would return a table which again could be queried in the same
expression. The most widely used query language is the structured
query language (SQL). Other examples are query language (QUEL)
and the less formal query by example (QBE).

The next leap forward came with the merging of object oriented (OO)
and DBS concepts. The OO paradigm was invented and developed in the
1960’s with the programming language Simula67, see (Dahl et al 1970,
Birtwistle et al 1973). Later, with successor languages such as C++, Java,
Smalltalk, Eiffel, C# and many more, OO programming proved to be a big
success. Based on the good experiences with the OO methodology and
the desire to reap the advantages listed below, object oriented DBMS’s
(OODBMS) were constructed.

Advantages of OODMSs include:

1. They retain many of the desirable features of RDBMSs.

2. Customizable datatypes are easily constructed.

3. They make it possible to connect datatypes in the DB with each
other in more complex ways.

4. Natural integration with programming languages.

Examples of OODBMSs are O2, Objectivity, Poet FastObjects, Object-
Store, Versant and numerous others. There have also been attempts to

8 Database management concepts

provide RDBMS with OO mechanisms and this class of DBSs is known
as object relational DBMSs (ORDBMS).

In the future, the demands on database mechanisms, scalability and
algorithms are expected to change dramatically. This is based on the
rapid growth of data, internetworking, distributed computing, and the
expectation of the emergence of new technologies (Silberschatz et al
1991, Eisenberg & Melton 1999).

If we take a look at the kind of tasks the DBMSs were designed for in
the beginning days, we see that the companies that realized the powers
of using a DBMS were typically of the financial/commercial type3 who
needed to store data about their customers, their purchases, purchase
history, and internal data concerning funds, disposals, and so on.

The data processing tasks these companies relied on were commonly
very fast and operated on relatively small fields of data. Consequently,
if two employees were to access the same field in the DB, the waiting
time the second one had to endure would be negligible.

As the DBMSs evolved and got more sophisticated, so did the applica-
tion areas. Not all these new application domains were well catered for
by the traditional concurrency mechanisms, as will be explained next.

2.3 The concept of transactions

2.3.1 A definition of transaction

Basically, a transaction is a sequence of operations we can decompose
to read and write operations. These operations are to be performed on
one or more databases by a DBMS. However, to ensure consistency and
recoverability of our data, we need a handling strategy for transactions.
A classical strategy is the ACID approach.

2.3.2 The ACID properties

The ACID acronym stands for Atomicity, Consistency, Isolation and
Durability. It originates from an article by Härder and Reuter (1983).
In their discussion of what a transaction is, they state:

The concept of a transaction . . . requires that all of its ac-
tions be executed indivisibly: Either all actions are properly

3Examples of which are banking, airline and insurance.

Database management concepts 9

reflected in the database or nothing has happened. . . . To
achieve this kind of indivisibility, a transaction must have
four properties:

Atomicity. It must be the all-or-nothing type desribed above,
and the user must, whatever happens, know which state he
or she is in.

Consistency. A transaction reaching its normal end (EOT, end
of transaction), thereby commiting its results, preserves the
concistency of the database. In other words, each success-
ful transaction by definition commits only legal results. This
condition is neccessary for the fourth property, durability.

Isolation. Events within a transaction must be hidden from
other transactions running concurrently. If this were not the
case, a transaction could not be reset to its beginning for
the reasons sketched above. The techniques that achieve iso-
lation are known as synchronization, and since Gray et al.
[1976] there have been numerous contributions to this topic
of database research [Kohler 1981].

Durability. Once a transaction has been completed and has
commited its results to the database, the system must guar-
antee that these results survive any subsequent malfunction.
Since there is no sphere of control constituting a set of trans-
actions, the database management system (DBMS) has no
control beyond transaction boundaries. Therefore the user
must have a guarantee that the things the system says have
happened have actually happened. Since, by definition, each
transaction is correct, the effects of an inevitable incorrect
transaction (i.e. the transaction containing faulty data) can
only be removed by countertransactions.

These four properties, atomicity, consitency, isolation, and
durability (ACID), describe the major highlights of the trans-
action paradigm, which has influenced many aspects of de-
velopment in database systems. We therefore consider the
question of whether the transaction is supported by a partic-
ular system to be the ACID test of the system’s quality.

These are definitely well thought over properties, and they are desirable
in most database application areas. However, for certain application ar-
eas, isolation becomes too strict a demand (Anfindsen 1997, 6-16).

10 Database management concepts

2.3.3 Long lasting transactions

Especially in the 1990’s, the need for long lasting transactions (LLT)
evolved due to new kinds of applications utilizing DBMSs (Kaiser 1995,
Nodine & Zdonik 1992).

Computer aided design (CAD), computer aided manufacturing (CAM),
computer aided software engineering (CASE), software configuration
management (SCM), document collaboration and different kinds of in-
teractive services are often mentioned as good examples of such appli-
cations.

With the isolation level provided by the ACID compliant transaction
models used by the earlier DBMSs, the duration transactions spent wait-
ing to access data resources was intolerable. Without modifactions made,
DBMSs would be useless for these new application areas. There has been
considerable work done in the area of LLTs, for example:

Approaches described by Kaiser (1995):

• Versions and checkout/checkin, as in e.g. SCCS (Rochkind 1975)
and RCS (Tichy 1985).

• Configurations of versions, as in e.g. domain relative addressing
(Walpole et al 1988).

• Semantic coordination, as in e.g. Smile (Kaiser & Feiler 1987) and
Infuse (Kaiser et al 1989).

• Optimistic coordination, as in e.g. NSE (Honda 1988).

• Walter’s control spheres (1984).

• Notification, as in e.g. the Gordion database system (Ege & Ellis
1987).

• Split-join, dynamic restructuring of transactions by Kaiser and Pu
(1992).

• Transaction groups for collaboration, by Hornick and Zdonik (1987).

The Xymphonic model for collaborative transactions will be explained
more in-depth in the next chapter. In essence, it caters to LLTs by:

• Customizing the isolation levels.

• Making dynamic sharing of resources possible by exposing them
to other users through xymphonies.

Database management concepts 11

2.4 Transaction histories

This section explains some characteristics of transactions and different
classes of transaction histories, also known as transaction schedules.
For a more detailed treatment, see (Anfindsen 1997). Bernstein et al
(1987) have a formal and thorough treatment of transactions. A less
technical approach is found in Date (1995) esp. pages 374 to 410.

The most central concept in the field of transaction theory is that of
serializability (SR). A serial history is merely a history where no inter-
leaving of operations from different transactions are allowed. In order
for a transaction history to be serializable, it must be equivalent to a
serial history by some criteria.

As suggested, there are different kinds of serializability, most notably
view (VSR) and conflict (CSR), where VSR has only theoretical interest,
since determination involves solving an NP-complete problem. In prac-
tice, all systems are CSR based.

So, what do we do to make our transaction history CSR, and what does it
mean that two histories are conflict equivalent? Anfindsen (1997) states
that two histories are conflict equivalent if:

1. They contain the same transactions and the same operations.

2. Conflicting operations of non-aborted transactions are ordered
the same way in both histories.

For a more precise definition of what it means for two operations to be
in conflict, see (Buchmann et al 1992).

In order for a transaction history to be CSR, we need DBMS mechanisms
which can guarantee this. Examples of which are:

1. Serialization graph (SG) testing

2. Timestamp ordering

3. Locking

2.4.1 The serialization graph

The serialization graph of a transaction history is constructed by mak-
ing a node for each commited transaction. For each conflicting opera-
tion issued there should be an edge going from the node issuing the
first of the conflicting operations to the latter.

12 Database management concepts

If we have a cycle, it follows that conflicting transactions can’t be CSR
ordered. Consider the simplest example with two transactions where
number two has issued a conflicting operation causing an edge from
one to two. This is ok. But if afterwards, transaction one were to issue a
conflicting operation with transaction two, this would imply that trans-
action two must precede transaction one, while on the other hand the
first edge implies that transaction one must precede transaction two in
a serial history. This is absurd and the history is not CSR.

The observation that a transaction history can only be serializable iff
the SG is acyclic is formalized in what is known as the fundamental
theorem of serializability (Bernstein et al. 1987, page 33).

2.4.2 Timestamp ordering

Timestamp ordering (TO) works by assigning timestamps to each trans-
action and also assigning to each data item the timestamp of the trans-
action which last read or wrote them. By comparing these timestamps
(Anfindsen 1997, 9), an acyclic SG can be guaranteed.

The TO rules can be summed up as follows: Firstly, a transaction can
only read an item whose write timestamp is older than that of the trans-
action. Secondly, a transaction can not write a data item unless both its
read and write timestamps are older than that of the transaction. For
a cycle in the SG to occur, a transaction would need to have a times-
tamp less than its own timestamp. This is impossible, and a serializable
history is guaranteed (Bernstein et al 1987, 114).

2.4.3 Locking

Locking is by far the most commonly used means of concurrency con-
trol, and the common algorithm is referred to as two phase locking
(2PL).

The concept of locking is that in order to perform an operation on a
data item, the transaction must be holding an appropriate lock on the
particular item. Different lockmodes are explained in section 3.3.

2PL divides the lifespan of a transaction into two separable phases. In
the first phase, the transaction acquires locks. At this stage, actions are
allowed to be performed as long as the transaction holds the relevant
locks, but no locks are allowed to be released.

Database management concepts 13

When the transaction releases its first lock, it enters the second phase.
It can still perform actions under the same restrictions as before, but
under no circumstances can it request a new lock, as this would com-
promise the guarantee of a CSR history.

2.4.4 Classical types of failure

When many users access the database simultaneously, different kinds
of anomalies may occur if there is no control on the execution:

• The lost update problem
We have two transactions (trA and trB), four points in time (t1 . . . t4
| t1 < . . . < t4), and three values for a data item in the DB (v1 . . . v3).
At t1, trA reads v1 from the DB (with an intent to later update it
with a new value). At t2, trB also reads v1 (before trA has updated
it, but also with an intent to update its value). At t3, trA updates
v1 to v2. The problem occurs at t4 when trB updates the same
entry with its new value, v3, overwriting v2, written by trA (which
assumes the update went ok, and that the value is v2). The update
is lost, hence the name. Note that this situation is impossible if we
can guarantee a CSR schedule.

• The uncommited dependency problem / dirty read
For the actions taken by a transaction to be reflected permanently
in the database (durability), we must guarantee atomicity. This is
done by commiting the changes made by the transaction at the end
of its lifespan. Let us also here consider two intertwining transac-
tions, trA and trB. At some point in time before its commit, trA
writes some value v1 into the DB. Then (also before trA is com-
mited) trB reads that value, assuming its validity. A problem arises
if trA needs to be aborted. In that case trB has made itself depen-
dent on an uncommited value, which in this case also is invalid.
We can say that it has performed a dirty read. If we have a series
of dirty reads and the first transaction aborts, we get cascading
aborts, which is considered a very undesirable outcome. If trans-
actions are not allowed to read lock values written by uncommited
transactions, we would avoid cascading aborts, and the transac-
tion history would belong to the class ACA (Anfindsen 1997, page
19)

• The inconsistent analysis problem
This problem typically arises when some transaction, trA, is per-
forming an aggregate function on some collection of values from
the DB. Simultaneously some other transaction, trB, performs a
transfer of a value by decrementing one item and incrementing

14 Database management concepts

the other, in this situation from an attribute already read by trA
to an attribute not yet read by trA. This makes the outcome of the
analysis performed by trA inconsistent with the contents of the
database.

• The unrepeatable read
This occurs when a transaction reads an item twice and the item is
changed by another transaction between the reads, i.e. the reading
transaction is unable to repeat its first read.

• Phantom rows
Suppose a transaction first retrieves a set of rows all satisfying a
predicate. Then another transaction inserts a new row satisfying
that same predicate. If the first transaction now runs the query
again, a new row appears which did not exist the first time. This
new row is called a phantom.

These problems are explained in more detail, with illustrations, in (Date
1995, 393-399).

2.5 Chapter summary and conclusions

This chapter has contained a summary of some basic elements, tech-
niques and problems from the field of transaction management. It has
provided a suitable backdrop for the next chapter, which elaborates on
the Xymphonic transaction model.

Chapter 3

The Xymphonic model

The purpose of this chapter is to give an overview of the features, con-
cepts and ideas of the Xymphonic transaction model1. It is an advanced
model tailored to meet the demands of collaborative, long lasting activ-
ities. These demands include a desire to cut down the duration poten-
tially spent waiting to access a resource with a traditional model, and
also the ability to communicate the quality (e.g. maturity) of data items.

Carefully note that there are many types of collaborative activities, and
that the Xymphonic model is designed for those we call data-centric.
That is, they evolve around the molding and processing of data.

Other approaches, apart from the Xymphonic, have been proposed to
solve the dilemma of long lasting collaborative transactions. In his chap-
ter on related work, Anfindsen (1997, 97-102) gives a short description
of 17 other models whereof these are a subset: Sagas (Garcia-Molina &
Salem 1987), Acticities/Transaction Model (Dayal et al 1991), ConTract
(Wächter & Reuter 1992) and Split transactions (Kaiser & Pu 1992).

This chapter will not give any detailed description of other models than
the Xymphonic, neither will it rate Xymphonic transactions against any
of the approaches mentioned above. This is based on the fact that the
thesis will not be expanding Xymphonic transaction with features from
other transaction models, but rather augment it with versioning fea-
tures.

Structurally, this chapter is designed to first clarify some terms of the
Xymphonic model and give a motivation for its features. The chapter
then proceeds to describe the major contributions of the model. Where

1The words Xymphonytm and Xymphonictm are registered trademarks of Xymphonic
Systems AS.

16 The Xymphonic model

appropriate, related and incorporated concepts will be introduced. A
short summary is given at the end of the chapter.

3.1 A clarification of terms

In order to avoid any possible later misunderstandings, this section is
intended to sort out some possible sources of confusion with respect
to Apotram and Xymphonic.

Apotram is an abbreviation for application oriented transaction model.
It is the topic of Anfindsen (1997), Phd thesis and defines a new trans-
action model with special support for long lasting, collaborative data-
centric transactions. The "application oriented" part of the name is due
to its ability to change isolation levels between transactions depending
on the specific need of the application. Also, it has support for situa-
tions where more than one actor wants to edit a resource (although not
at once) through the use of nested transactions and databases.

The name Xymphonic was later invented in connection with the com-
mercialization of Apotram technology. In this thesis, Xymphonic trans-
actions will replace the older term Apotram and Apotram transactions.
Also, to make Apotram technology more appealing and intuitive for the
end-user, nested database was replaced by Xymphony but they are con-
ceptually identical. The Xymphonic parlance and concepts are described
in a white paper by Anfindsen (2002), and in (Andfindsen & Storløpa
2001).

Throughout this thesis, Xymphonic and Xymphony will replace the cor-
responding terms in older Apotram papers. This is based on the desire
to stay current with development and papers from Xymphonic Systems
AS.

3.2 Motivation for using the Xymphonic model

The first goal of this section is to show the major shortcomings of tra-
ditional ACID transactions when it comes to collaborative LLTs. These
shortcomings will then be related to a corresponding solution in the
Xymphonic model.

The second goal is to show shortcomings of standard version manage-
ment models and how they are alleviated by Xymphonic transactions.
As a rule of thumb, ACID has too strict isolation while version manage-

The Xymphonic model 17

ment systems tend to be too permissive.

Anfindsen (1997, 6-7) points out that the only property of ACID one
should want to compromise is isolation". In order to clearly see why,
desirable properties of a collaborative system will be compared to those
of ACID.

We would like the following:

1. To look at uncommited results in a safe, customizable manner.
This means that we do not desire this reading to result in any
inconsistencies and that it would also be beneficial to be able to
give directions as to what state the data should be in before we
read it.

2. To write to resources held in a conflicting mode by other users in
a safe, controlled manner. Just as the preceeding item, we don’t
want the operation to lead to inconsistencies.

With ACID transactions, those wishes are impossible to grant due to the
impenetrable isolation between transactions. In section 3.3, the most
common lockmodes and their compatibilities are described. Because
the Xymphonic model uses locking for concurrency control, locking and
lock incompatibilities are the natural way of showing how Xymphonic
transactions differ from ACID.

If we look at item 1 listed above, we must realize that this is impossible
to accomplish with ACID due to the fact that reading and writing are
conflicting operations that they must be completely isolated from each
other, end of story. With Xymphonic, this conflict is solved by making
the conflict conditional based on a choice of lock parameter set. This
solution is descibed in more detail in section 3.4.

Just as reading and writing conflict, nobody should be surprised that
write operations conflict with each other, and that they thus are im-
permissible when the ACID properties are the correctness criteria em-
ployed. Alas, ACID does give room for leniency in the situation in item
2 listed above. Xymphonic transactions solve this type of conflict with
what is known as nested conflict serializability. This solution is de-
scribed in section 3.5.

In order to consider version management models and their solutions
according to the two desired features, we must unfortunately general-
ize a bit. Note, however, that efforts have been made as to construct a
unified framework for version configuration management (Westfechtel

18 The Xymphonic model

et al 2001, Belkhatir & Conradi 1996).

The overall impression is that of the actors in the general myriad of
different version management tools, most would merely allow a dirty
read, using the eqivalent compatibilities of what is known as a browse
lock, see section 3.3 to provide reading of write locked items. Two draw-
backs are that we do not get any metadata about the data element, and
that we mostly do not get as current data as we would like.

As for the controlled write cooperation, this would normally be han-
dled by creating parallel versions known as variants, or branches, of
the data. Variants are useful in many situations, but for the situation in
item 2 listed above, the following are some of the drawbacks:

• The variants would later have to be merged, and there is no general
algorithm to perform this without user interaction.

• Merging is tedious and also error prone in that it is possible to
overwrite the work of others.

• The parallel writers have no clue as to what the other one is writ-
ing. They may not even know that they are working in parallel and
performing potentially conflicting edits.

3.3 Lock types and their reciprocal compatibilities

Read and write locks will be extended later in this chapter with param-
eters, and in chapter 5 two new types of locks will be introduced. As
an introduction, the traditional lock matrix as presented in (Anfindsen
1997, 20) and its lock types will be explained. Intent locks are used
when we would like to apply locks at different granularities from a
single transaction. The general algorithm involves placing a lock on a
higher level resource with a recorded intent to maybe later lock lower
level resources in a more exclusive mode.

The traditional lock matrix

The matrix, shown in figure 3.1, is symmetric, indicating that the lock-
modes are symmetric, i.e. it does not matter which lock is set first when
deciding if modes conflict. However, schemes with asymmetric locking
are conceivable (Anfindsen 1997, 105-106).

The following list gives a short summary and explanation of the dif-
ferent lockmodes in the matrix:

The Xymphonic model 19

B IR R U IW RIW W X
B × × × × × × ×
IR × × × × × ×
R × × × ×
U × × ×
IW × × ×

RIW × ×
W ×
X

Figure 3.1: The traditional lock matrix with intent locks.

• B - Browse
Browse locks are intended to be used in situations when we would
like to allow dirty reads.

• IR - Intention to read
This lockmode is used with different granularities and indicates
an intent to read lock a resource on a lower level.

• R - Read
Read locks are used when we want to read the contents of a re-
source and avoid dirty reads.

• U - Upgrade
The purpose of this lockmode is increased concurrency. It is mo-
tivated by the fact that it is unfair to block readers in cases where
we would like to read contents and maybe later perform some
write operations . Then other readers can read in the meantime
until we decide to upgrade our read lock to write.

• IW - Intention to write
This lockmode is used to signal an intent to write lock a resource
on a lower level.

• RIW - Read with an intent to write
The RIW lock is used to place a read lock on a higher level resource
with the intent to later write lock lower level data.

• W - Write
This is the standard lockmode used for writing to a data object.

• X - Exclusive
Exclusive locks are used when absolutely no other access can be
allowed to a resource. This can for example be when we want to

20 The Xymphonic model

drop a table in an RDBMS or delete a collection of objects from an
OODBMS.

The intent locks are described in more detail by Gray and Reuter (1993,
406-409). In short, they are used to increase concurrency and to avoid
to occurence of phantom rows.

3.4 Conditional Conflict Serializability

Conditional conflict serializability (CCSR) is a generalization of CSR as
defined in chapter 2, and it is defined in (Anfindsen 1997, 29-43). This
generalization is done by applying parameter sets to the different lock-
modes and deciding for which combinations of locks and parameter
sets there should be a conflict. Clearly, this relaxes the isolation prop-
erty of ACID.

The general rule is that for two arbitrary parameter sets,A and B, within
an arbitrary parameter domain, D, we say that the read lock, R, with pa-
rameter set A, denoted R(A), conditionally conflicts with the write lock,
W, with parameter set B, denoted W(B), unless B ⊆ A.

In order to see how this is a generalization of CSR, consider the situ-
ation where A is the empty set, ∅, and B is ∗, an arbitrary superset
of D. Consequently the locks R(∅) and W(∗) will always conflict as we
would expect for write and read locks in a CSR history. That is, CSR is
retained as a special case.

Two transaction histories are defined to be conditional conflict equiva-
lent by adding the word conditional to the definition for conflict equiv-
alence:

• They contain the same transactions and the same operations.

• Conditionally conflicting operations of non-aborted transactions
are ordered the same way on both histories.

In order to extend the definition for two histories to be CCSR, the prop-
erty conditional is added. Anfindsen (1997) gives the following defini-
tion:

A history is defined as conditional conflict serializable (CCSR)
iff it is conditional conflict equivalent to a serial history.

More specifically, to determine whether two operations are condition-
ally conflicting or not, consult the lock matrix on page 32 in (Anfindsen
1997). Among the advantages of CCSR over standard CSR, the following
may be noted:

The Xymphonic model 21

• Read/write conflicts are made conditional thereby providing for a
controllable level of isolation.

• CSR is still retained as a special case.

• Users have the opportunity to communicate the quality, e.g. matu-
rity, of their work.

• It makes new types of queries based on access parameters possi-
ble (Anfindsen 2002)

As a conclusion of this section, a small example will be given. In the
example, the following parameter sets are used: A = { incomplete }, B =
{ complete }, C = { incomplete, complete }. Consider Alice and Bob who
are working on a project together. Bob has a W(A) lock on resource R. If
Alice wants to look at Bob’s work she will have to accept the fact that R
is in an incomplete state and hence choose to ignore it or otherwise lock
it with an arbitrary set equal to or superior of A. If Alice is only willing
to accept R(B) the lock can not be granted. R(C) and R(A) are examples
of conditionally compatible locks, and can thus be granted.

3.5 Nested Conflict Serializability

In order to provide a structured solution to conflicts between writers,
nested conflict serializability was invented (Anfindsen 1997). It relies
on the concepts of sphere of control (SOC) (Davies 1978) and nested
transactions (Davies 1973, Moss 1981). The solution employs nesting of
sets of data with special properties, these are called Xymphonies.

3.5.1 Spheres of control

The following explanation of the concept of SOC is largely based on
(Andindsen 1997, 45) and (Gray & Reuter, 174-180). Central to SOC is
the concept of an abstract data type (ADT). Ford & Topp (1996) charac-
terize ADTs by the following properties:

• It exports a type.

• It exports a set of operations. This set is called the interface.

• Operations of the interface are the only access mechanisms to the
type’s data structure.

• Axioms and preconditions define the application domain of the
type.

22 The Xymphonic model

Spheres of control relate ADTs to transactional concepts. Gray & Reuter
(1993) write on page 174 that:

Any system that wants to employ the idea of spheres of con-
trol must be structured into a hiearchy of abstract datatypes.

It is understood that each invocation on these ADTs is an atomic op-
eration from the perspective of the caller. Also, it should be possible
to dynamically expand SOCs to hold results from invocations, pending
commitment of data.

SOCs shall not be amplified to any greater extent here, except the im-
portant observation that SOCs are a powerful vessel of logical data di-
vision, and at the same time keeping track of dependencies between
shared data and messages. This makes the SOC a powerful and highly
customizable concept, but as Gray & Reuter (1993) point out on page
180, it has never been fully formalized. However, in connection with
Xymphonic transactions it will provide us with a logical view of the re-
sources on which we have read locks (RSOC), and the resources we have
write locked (WSOC)2.

Note that the transaction in itself may be viewed as a SOC, as can a
query. The following section will contain some more concrete examples
of SOCs.

3.5.2 Nested transactions

The concept of nested transactions date back to Davies (1973) and the
first comprehensive design was the work of Reed (1978). However, Reed
used timestamps for synchronization and it is was not before the Phd
thesis of Moss (1981) and the use of locks that nested transactions re-
ceived any greater attention.

Gray & Reuter paraphrase3 Moss’ (1981) definition of nested transac-
tions as:

1. A nested transaction is a tree of transactions, the sub-
trees of which are either nested or flat transactions.

2. Transactions at the leaf level are flat transactions. The
distance from the root to the leaves can be different for
different parts of the tree.

2RSOC and WSOC are examples of data SOCs.
3The expression flat transaction is used to denote the standard form of transactions

as described in section 2.3.

The Xymphonic model 23

3. The transaction at the root of the tree is called the top-
level transaction; the others are called subtransactions.
A transaction’s predecessor in the tree is called a parent;
a subtransaction at the next lower level is also called a
child.

4. A subtransaction can either commit or roll back; its com-
mit will not take effect, though, unless the parent trans-
action commits. By induction, therefore, any subtrans-
action can finally commit only if the root transaction
commits.

5. The rollback of a transaction anywhere in the tree causes
all its subtransactions to roll back. This, taken with the
previous point, is the reason why sub-transactions have
only A, C, and I, but not D.

In this thesis, root transactions will be named top level transactions
(TLT). It should also be noted that nesting of transactions come in two
different types. Namely open nesting and closed nesting. Open nest-
ing is characterized by subtransactions executing and commiting inde-
pendently of their parent transactions. This may require compensating
transactions in case of rollback. With closed nesting, subtransactions
must begin after their parent transaction and finish before them. Also,
the commitment of subtransactions will be dependent on the outcome
of the parent. Unless otherwise stated, closed nesting is assumed.

An example of a nested transaction

T

a

aa ab ac

aaa aab aac

aaca

T T

T T T

T

T

Figure 3.2: A tree with nested transactions.

24 The Xymphonic model

The root transaction of this simple tree is Ta. The transactions Taa,
Tab and Tac are the children of Ta and therefore subtransactions. Care-
fully note that all transactions in the tree except the root, Ta, are sub-
transactions. Taaa, Taab and Taac are an example of siblings because
they belong to the same level in the tree. The transactions Taaa, Taab,
Taaca and Tac are the leaf transactions. The transaction Taa is the parent
transaction of Taaa. In the model by Moss (1981), only leaf transactions
may perform work, the others function as control structures.

Advantages of nested transactions over flat transactions

This section paraphrases reasons given in (Anfindsen 1997, 25-27).

• Increased performance
If we take advantage of nested transactions, tasks within the trans-
action may be executed in parallell if they are assigned different
transactions in the tree. This is called intratransaction parallel-
lism. Attempts have been made to provide flat transactions with
parallellism, but this approach has flaws as described by Anfind-
sen (1994). It should also be pointed out that using nested transac-
tions does not provide help with parallellism among TLTs, called
intertransaction parallellism.

• Distribution
Each transaction in the tree provides us with a suitable unit for
distribution.

• Access control
It is conceivable that a parent transaction can control its child
transactions in various ways. This can, for example, be with re-
spect to resource access privileges.

• Encapsulation
A parent transaction does not have to know anything about the
interior or further spawning of subtransactions of a subtransac-
tion, only that it gets the desired result, so it is fair to say that
subtransactions are encapsulated.

• Recovery control
If a part of a flat transaction fails, we can always recover to a previ-
ous savepoint. This affects the entire transaction of course. How-
ever, with nested transactions this is not the case. If a subtransac-
tion experiences failure, it can do a rollback like a flat transaction
but this has no effect on any other part of the nested transaction.
Also, if it has to abort, it does not neccessarily need to have a

The Xymphonic model 25

catastrophic effect. Due to this, transactions in the nested struc-
ture are commonly said to have firewalls.

• Security
A transaction in the nesting provides a suitable unit for authoriza-
tion control.

A practical example of using nested transactions

This is a small example on ordering spare parts for a broken car. A TLT
called Torderparts is started, and also subtransactions called Tsuspension,
Tmotor , Tantenna. Later it turns out that the transaction in charge of or-
dering new suspensions, Tsuspension, was aborted. Fortunately, this does
not have any bearing on the other transactions in the tree as far as the
model of nested transactions is concerned, and they can continue their
work without any notice. The TLT may wish to start a new Tsuspension,
and wait until all the subtransactions have commited before itself com-
mits.

It should be noted that it would be extremely desirable for the trans-
actions in this nesting to be able to share their data and communicate
their progress. This is provided for by using Xymphonies, which is ex-
plained in the next section.

3.5.3 Xymphonies

The treatment of nested transactions should leave something to be de-
sired. For many application domains we must expect (sub)transactions
to be interested in sharing their data, and even collaborating on editing
efforts across traditional transaction boundaries. The answer to this
with regard to the Xymphonic model is given with the concept of Xym-
phonies.

Recall section 3.5.1 where SOCs were defined. It would certainly be ad-
vantageous if a transaction was able to convert a set of write locked
resources, i.e. a WSOC, to another type of data SOC with similar seman-
tics as the global database. This is exactly what a Xymphony is designed
to be.

A Xymphony has the following characteristics:

• It must be owned by a transaction.

• In order to be created, a WSOC of a transaction must be converted
to a Xymphony.

26 The Xymphonic model

• Users may be invited to participate in the Xymphony and acquire
locks and thus create RSOCs and WSOCs as they would in normal
interactions with the global DB.

• The invited users may convert their local WSOCs to new Xym-
phonies within the Xymphony. This yields a recursive nesting of
Xymphonies.

• A Xymphony will be locked with a special type of lock, called a DB
lock. This lock has the same conflict properties as a write lock.

• When a participant in a Xymphony commits a WSOC, the work is
commited to the Xymphony, not the global DB. It can therefore be
perused by the Xymphony owner, who has the power to ratify or
deny, i.e. commit or abort, the work.

• A Xymphony can only be eliminated when no locks are held within
it (Kjølstad 2001, 40).

The correctness criterion NCSR

Nested conflict serializability (NCSR) is the second correctness criterion
in the Xymphonic model. For NCSR, CSR should be enforced as correct-
ness criterion in a nested manner. Anfindsen (1997) defines NCSR on
page 49 by making the following requirements:

• Xymphonies can be nested to arbitrary depths.

• Transaction histories in Xymphonies are CCSR.

• Transactions in Xymphonies commit to the Xymphony owner.

This definition and explanation will suffice for the use of NCSR in this
thesis. It should also be clear from the definition that CSR is a special
case of NCSR.

An example of collaboration through NCSR Xymphonies

Let us consider a small scenario with three human actors, Alice, Bob
and Stan. Figure 3.3 illustrates a common database scenario where no
Xymphonies are in use.

However, for some good reason Alice would like to delegate some of
her work to Bob. In order to accomplish this, she converts part of her
WSOC to a Xymphony and invites Bob, who correspondingly starts off a
subtransaction inside the Xymphony and creates a WSOC by write lock-
ing some resources, see figure 3.4. Stan was not invited to participate in

The Xymphonic model 27

the Xymphony and continues his work as before.

When Bob finishes his part of the collaboration, he commits the sub-
transaction TBobaa and its WSOC is commited to TAlicea−Xyma . Alice de-
cides to ratify Bob’s work and his changes will therefore be reflected in

Alice Bob

Stan

Alice Bob

Stan

T
aDatabase

RSOC

T

T

a

a

RSOC

WSOC
RSOC

WSOC

Figure 3.3: Common database scenario, no Xymphonies.

Alice

Stan

Alice
Bob

Stan

T

a

Database

RSOC

T

a

a

RSOCWSOC

RSOC

WSOC

WSOC

BobT

BobT

aa

Xym

a

Figure 3.4: Xymphonic cooperation scenario, NCSR.

28 The Xymphonic model

the contents of the Xymphony. When Stan decides to commit his trans-
action, the resulting action is that the contents of his WSOC are reflected
in the global DB.

3.6 Nested Conditional Conflict Serializability

If we combine the two correctness criterions CCSR and NCSR we get
nested conditional conflict serializability (NCCSR), which is the third
and final correctness criterion of the Xymphonic model. This combi-
nation implies that histories of Xymphonies should use CCSR instead
of CSR as correctness criterion. This seems to be only a minor adjust-
ment, but in effect it results in a powerful solution of both read/write,
write/read conflicts due to CCSR and also write/write conflicts due to
NCSR. Anfindsen (1997) defines NCCSR on page 50 by making the fol-
lowing requirements:

• Xymphonies can be nested to arbitrary depths.

• Transaction histories in Xymphonies are CCSR.

• Transactions in Xymphonies commit to the Xymphony owner.

If those requirements are met, we have a NCCSR transaction history. It
should be clear from the definition that CSR, CCSR and NCSR are special
cases of NCCSR.

An example of collaboration through NCCSR Xymphonies

This example will expand the example given in section 3.5.3, where we
considered collaboration through the use of NCSR histories to also al-
low NCCSR histories. In figure 3.4, only Bob was invited to TAlicea−Xyma .
In this case Stan will also be invited as portrayed in figure 3.5.

Let us imagine that Stan and Bob were invited in order to collaborate
on some design where Alice is the project manager. This can, for ex-
ample, be the design of the suspension of an automobile design. Alice
has grouped the pertinent data in her Xymphony, and Bob and Stan are
both actively participating in the Xymphony. It is not hard to imagine
that after a while, Bob would like to see how things are going with Stan’s
design and vice versa. By allowing Xymphony histories to be CCSR, they
can use parametrized lock modes and browse each others work in a
controlled fashion.

The Xymphonic model 29

Alice

Stan

Alice
Bob

Stan

T

a

Database

RSOC

T

a

RSOC

RSOC

WSOC

WSOC

BobT

BobT

aa

Xym

a

WSOC

StanT
a

aa

WSOC

RSOC

Figure 3.5: Xymphonic cooperation scenario, NCCSR.

Maybe at some later point, Bob realizes that he does not have the re-
quired skills to complete parts of his work. Then, by allowing NCSR
histories, he can just convert the particular elements to a new, nested
Xymphony and invite the users with suitable skills and knowledge to
complete the part.

3.7 Chapter summary and conclusions

In this chapter the basic underpinnings, motives and foundation for the
Xymphonic transaction model have been explained. The purpose of the
chapter has been to show why we need Xymphonic collaboration, what
it takes to extend traditional transactions to allow for Xymphonic his-
tories and finally how this has been accomplished.

The three correctness criteria of the Xymphonic model have all been in-
troduced. Conditional conflict serializability, CCSR, is a generalization
of CSR which makes read/write and write/read conflicts conditional,
based on user preference. Nested conflict serializability, NCSR, intro-
duces the notion of Xymphonies as a solution for write/write conflicts.
Finally, nested conditional conflict serializability, NCCSR, is explained
as a sensible combination of CCSR and NCSR which remedies all oc-
curences of write and read conflicts.

Chapter 4

Version management concepts

When I started working on my thesis, I was under the impression that
versioning was a quite small and well understood area in computer sci-
ence. I soon realized that I had been gravely mistaken. The management
of versions is a large and diversified field, and it has implications on all
development projects of any degree of seriousness which involves the
use of computers. Also, I soon found that considerable research still
needs to be performed in this area, and that it was not so well under-
stood as I had initially thought. Fortunately for me and my work, there
exist articles summarizing and classifying work done in the field of ver-
sioning models, in particular (Conradi & Westfechtel 1998, Dart 1991,
Feiler 1991).

During this chapter in particular, and the rest of the thesis in general,
I will use the following lingual conventions when talking about version-
related subjects: Firstly, object in this context means basically every
kind of entity we can work on and save in computer storage. Secondly
development will refer to general modifications pertaining to these ob-
jects.

This chapter is structured to introduce the definitions early, and then
proceed to the discussion of the different approaches to versioning.
This is to make the terminology clear first, because the later sections
depend on a good understanding of the basics.

4.1 Defining versioning

It is not easy to give a very precise definition of versioning, since it is
quite dependent on the versioning model, and the context it is used

32 Version management concepts

in. This compressed definition however, is based on the one given by
Munch (1993):

Versioning is the managing (storage and retrieval) of versions
of objects, as opposed to just managing the objects them-
selves. By object, anything versionable is implied.

Note that versioning can also be used as a term for the user’s act of
creating multiple versions of the same object.

Most people will have an intuitive understanding of what is meant by
"version", so it will not be attempted to formalize an absolute defini-
tion. Informally, a version can’t exist by itself, but must be understood
as being a version of something. What I mean is that based on collected
version information, we are able to construct a concrete instance of
some object. This construction can be performed in different ways, de-
pending on versioning strategy.

One of the articles mentioned in the beginning of this chapter, (Feiler
1991) divides SCM models into the following four categories1.

1. Checkout / checkin
Versions are transferred between the repository (where the ver-
sion data is kept) and the workspace (where you work on the data).

2. Composition
The composition model supports version selection through rules
and assists the user in selecting consistent combinations of con-
ponent versions.

3. Long transaction
The long transaction model where the user connects to a long last-
ing transaction and operates on a configuration version.

4. Change set
The change set model describes a configuration in terms of change
sets, each of which aggregates all modifications performed in re-
sponse to some change request.

1Note that this is in the field of software configuration management (SCM) which is
more or less versioning applied to software components in the form of textual source-
code, as opposed to for example CAD models in (sometimes) binary form.

Version management concepts 33

4.2 Some versioning terminology

4.2.1 Version

A version is a potentially concrete instance of some object. Therefore,
we may have to express which version we are interested in, for exam-
ple what the features of the version are. Based on this information, a
concrete instance may be constructed (if it exists). The version may be
constructed in terms of other versions (version oriented) or in terms of
the set of features (change oriented).

4.2.2 Revision

The oldest and simplest way to create new versions is to make each new
version a modification to the most recent one in a sequential manner.
This way, the versions form a single, linked list. This list is what is
usually called a revision chain. Revisions can have different meanings
(Tichy 1988) but I will not differentiate between them in my thesis.

ver. 1 ver. 2 ver. 3

Figure 4.1: An example of a possible chain of revisions.

4.2.3 Variant

Variants, as opposed to revisions, provide you with more than one alter-
native for the "current" version. Instead of replacing the object like the
revision, it provides you with more alternatives in a parallell fashion.
There are good reasons for wanting to use temporary variants instead
of revisions. These are taken from (Tichy 1988):

• Temporary fixes
A small change is needed to a revision which is not the latest one.
We will need to branch off a variant of this earlier revision, so that
we don’t disrupt the later ones. The change may later be incorpo-
rated into a newer revision through merging.

• Special modifications
Local modifications by customers or users should be kept separate
from the main branch of development.

34 Version management concepts

• Simultaneous development
Occasionally, two ore more workers may be doing changes to the
same objects, changes that are supposed to end up in one common
revision later. While the updates are under way, variants will have
to be used. This situation can happen by accident, as one can’t
always know in advance which objects need to be modified, and
when. It can also have been planned deliberately, to save time. It is
often better to go ahead with two partially independent revisions,
than for one to have to wait for the other one to finish first.

• Parallel exploration
When one can’t decide in advance which alternative design or im-
plementation strategy is best, a possible solution may be to follow
both paths, and then keep the best one. While these alternatives
are being followed, variants will distinguish them.

Revisions and variants are usually combined into a common structure
called the version graph (see section 4.2.6).

4.2.4 Configuration

A configuration is a composed object. It is composed of a complete and
consistent collection of objects with respect to a particular criterion. We
may have other types of composite objects as well, but configurations
are created to serve a special purpose; it is not a random collection. For
example, a particular instalment of a software package may be referred
to as a configuration.

4.2.5 Merging

Merging comes into play when we want to splice two or more variants
into a common revision. Note that it is not always desirable to merge
variants. For instance, to merge an English and a Finnish-Ugrian vari-
ant of a manual makes poor sense. There are different ways to do this
merge, but in most cases it is an area where computer-aided help is
scarce, and human intervention is required. Only in the simplest text-
merge situations and in a few other special cases do we have algorithms
which can do this task automatically with a guaranteed correct result.

In (Conradi and Westfechtel, 1998) the different approaches to merg-
ing are classified as (note that these classes are not mutually exclusive):

• Raw merge
Raw merging applies a change in a different context. For instance,
if change c2 was performed independently of change c1, but later

Version management concepts 35

combined with c1, we have a raw merge. Raw merging was first
supported by the classic document versioning tool SCCS (Rochkind
1975).

• 2-Way merge
The 2-way merge takes two different versions and merges them
into a single version. If there are any differences, the algorithm
has no foundation for making a decision, and a manual guidance
is needed to select the appropriate alternative.

• 3-way merge
The 3-way merge is the natural extension of the 2-way merge. In
addition to the two versions we want to merge, there is a com-
mon ancestor, called a baseline which must be taken into account.
This is very useful in deciding how the merged version should
look. Generally speaking, if we are merging two textfiles with line-
granularity (that is, compared line by line), we have the following
rules: If both lines in both versions match the baseline, we have no
problem. But if a line is the same in the baseline and only one of
the variants, we would keep the edited one in the second variant.
If a line is different in all three versions there is no way of deciding
automatically, and we have to decide manually. Still this is a major
improvement over the 2-way merge.

• Operation-based merge
Operation based merging (Lippe and van Oosterom, 1992) takes
two sequences of change operations and combines them into a sin-
gle sequence, detecting both inconsistencies and conflicts. The ap-
plication of this algorithm is complex because it generates a huge
search space of potentially merged operation sequences which
all must be considered. Because of its operation/change oriented
bias, it is applicable to change oriented versioning (Munch 1996),
see section 4.2.9.

36 Version management concepts

ver. 1

ver. 2 ver. 3

ver. 4

c1 c2

c2

Raw merge 2−way merge

3−way merge

ver. 1 ver. 2

ver. 3

ver. 1

ver. 2 ver. 3

ver. 4

Figure 4.2: Different approaches to merging.

Version management concepts 37

If we have some additional knowledge about what kind of compo-
nents we are merging, which is called product space in SCM, we can get
some additional help from the merge-tool:

• Textual merge
Textual merge can be applied when we know that what we are
merging are text files (Adams et al 1986), and can in some cases
even be used to merge program code. It sounds like a very weak
merge, but gives good results in practice (Leblang 1994).

• Syntactic merge
Syntactic merges can be made with versions of program code,
where we have the syntactic rules of the language in a repository,
given for instance in extended Backus-Naur form (EBNF). Its goal is
to yield syntactically correct merges, but has been realised in very
few research prototypes (Buffenbarger 1995, Westfechtel 1991). In
addition, it is a big obstacle to expand this form of merge from
context-free to context-sensitive uses of the individual program-
ming language.

• Semantic merge
A semantic merge takes the semantics of the language into ac-
count. However, it is very hard to come up with a definition of
semantic conflict which is neither too strong nor too weak (and is
decidable). Semantic mergetools have so far not been implemented
with advanced programming languages such as C or C++ but only
with simple languages used for research purposes. Good sources
on semantic merging are (Berzins 1994, 1995, Binkley et al 1995,
Horwitz et al 1989).

38 Version management concepts

4.2.6 Version graph

This version graph is adopted from Munch (1993). The arrows point
forward in time and development progression.

ver. 1.0 ver. 1.1 ver. 1.2 ver. 1.3 ver. 3.0 ver. 3.1

ver. 2.1 ver. 2.2 ver. 2.3

Revisions Merge

Variants

Figure 4.3: An example of a version graph.

Version management concepts 39

4.2.7 Deltas

An informal description of a delta could be that it is the difference
(change) between two versions. Conradi and Westfechtel (1998) divide
deltas into the following subgroups:

1. Directed deltas
Using directed deltas (Tichy 1982), a version is constructed by ap-
plying a sequence of changes to some base version. These changes
come as a sequence of elementary change operations.

2. Symmetric deltas
A symmetric delta between two versions, v1 and v2, consists of the
properties2 (v1 \ v2) ∪ (v2 \ v1). In practice this is called embed-
ded deltas and all versions are stored in an overlapping manner
so that common fragments are shared. Either each version points
to its fragments (Fraser and Myers 1986), or the fragments have
control expressions for determining in which versions they are
visible. This is called interleaved deltas (Rochkind 1975, Leblang
and McLean 1985).

There are many different ways to compute deltas, and a survey of the
efficiency differences between diff, bdiff and vdelta is given in (Hunt et
al 1998). The conclusion is that both bdiff and vdelta are far superiour
to the old UNIX diff, and that in most cases vdelta is a notch above bdiff.

While it is one thing to compute the diffs, it is quite another to store
them efficiently. A recent example of diff storage format is the generic
vcdiff by Korn and Vo (2001) which is designed to be an improvement
over the standard vdelta storage format.

4.2.8 Version granularity and delta granularity

Version granularity refers to the size of a version and delta granularity
refers to the size of those units in terms of which deltas are calculated.
In the text versioning tool RCS, for instance, version granularity is at
the level of text files, and delta granularity is at the level of text lines.

4.2.9 State-based versus change-based

State-based is the traditional delta-oriented approach to versioning (in
some literature this is called version oriented versioning (VoV)). This is
regardless of the way the deltas are calculated, and the way they are
applied. Change oriented versioning (CoV), is another paradigm, and is

2\ is set minus.

40 Version management concepts

based on recording changes. When using the CoV model, we do not refer
to a specific version number, but instead refer to a version as the result
from applying a specified change-set to a database of objects. CoV has
its formal foundation in the article (Lie et al 1989) and is implemented
in the EPOS-project, among others. Although state-based is the most
widely implemented and used model, and the more explored and easier
to implement than CoV, most of the recent version models are in some
way or other based on change-oriented concepts.

4.2.10 Extensional versus intensional

Extensional versioning is the classical way of versioning. All versioned
objects have a unique identifying version number. Typical use of an ex-
tensional versioning environment includes the following: All versioned
files must at some point be explicitly checked into the version space.
When working on a version, the object (v1) must be cheked out accord-
ing to its identifier. Later the object is checked back into the object base,
forming a new version (v+1).

Intensional versioning does not enumerate its members. They are in-
stead defined by a predicate. A version base is therefore constructed by
applying the predicate to specific attribute-values offered by the files in
the version space.

In general, extensional concepts are closely related to state based ver-
sioning, and intensional ideas are equally tied to the change oriented
model.

4.3 Good reasons for versioning

The following reasons for utilizing version management are thought to
be of a general nature. However, in section 4.2.3, there are some more
specific reasons for allowing variants in particular.

• Backtracking
While in the process of implementing upgrades, we must be able
retrieve a product "untouched" by this unfinished upgrade. And
if a particular modification was a failure, we should be able to go
back to a previous version and start again. This is where one would
use revisions.

• Exploration
We should be able to explore the history of the evolution of a
particular object

Version management concepts 41

• Exploratory development
Since authors can depend on the ability to revert to a known, "safe"
state of the system, versioning supports exploratory changes, where
the final impact is initially unknown.

• Comparison
It is sometimes desirable to compare two or more versions to see
what has changed between them.

• Safety I When a product has been delivered to a customer, or is
being used in other ways, we must be able to recontruct an exactly
identical copy later, either for delivery to another customer, or in
order to track down problems. If the customer reports a bug, we
can’t be sure to find and correct it if we can’t rebuild the version
that was delivered to this particular customer.

• Safety II
It is desirable to keep snapshots of software objects during vari-
ous stages of development. This is particularly so when major up-
grades are under progress and we still need more stable versions
for delivery to customers or for internal use.

• Rationale capture
Since the reason for making a particular change soon fades from
memory, versioning systems should allow a brief comment to be
associated with each change to capture this rationale. Over time,
these comments create a group memory for the object.

• Reuse
By preserving a specific version of an object, the entire object or
parts of it may be reused by others.

• Versatility
There is not neccessarily one canonical "current" version of any
product - we may want to have, for example, variations for differ-
ent platforms, languages, or adaptations for different customers.
This is catered to by using variants.

4.3.1 Reflections around reasons for versioning

Today it is inconcieveable to make a version management tool without
some form of database support for the versioned data. This is where
Xymphonic collaboration and versioning can form a powerful form of
symbiosis. The Xymphonic model, with its simplicity and generality,
seems to be extendable by versioning. This is the topic of the next chap-
ter in the thesis.

42 Version management concepts

4.4 Some version models

Versioning had its beginning in 1975 when Mark Rochkind developed
SCCS, the Source Code Control System (Rochkind 1975). SCCS relies on
interleaved delta storage for text files. It is also based on state based
versioning and uses the well known check-in, check-out model.

RCS (Tichy 1982, 1985) is a successor of SCCS, and it uses directed
deltas instead of the interleaved deltas we find in SCCS. RCS stores the
latest revision without deltas because, by experience, this is where we
usually want to continue working. If we want to continue work on an-
other version, it will be computed using backward deltas (and forward
if it is on another branch). RCS is one of the older version control sys-
tems. Due to this, it has played an imporant role in shaping ideas and
strategies of later systems. For example, a widely used version system
such as the concurrent version system (CVS) (Grune 1986) is based on
RCS ideas and storage strategy.

An early example of change based versioning is the PIE system (Gold-
stein & Bobrow 1980). Later examples include Aide-de-Camp (Cronk
1992, Software maintenance and development systems 1990) and EPOS
(Lie et al 1989, Munch et al 1993).

Later systems such as ClearCase (Leblang 1994) and ICE (Zeller & Snelt-
ing 1995) support a virtual file system to enable smooth tool integra-
tion. Zeller and Snelting (1997) explore a long transaction model in con-
junction with ICE. However, this does not compare well to version ex-
tended Xymphonic transactions because the long transactions ICE uses
are of a more liberal kind that those from database theory.

Conradi and Westfechtel (1998) claim that version models are converg-
ing to an increasing extent. They also believe that a version model
which integrates extensional and intensional versioning, state based
and change based versioning, revisions, variants and derived versions
can be distilled into a coherent framework. This framework should be
customizable to suit the needs of specific applications, that is, it should
be application oriented.

4.5 Areas well suited for versioning

Today, most projects are suitable for versioning, including projects where
only very few people are cooperating. As projects grow larger, the need
for good versioning tools increase rapidly.

Version management concepts 43

The kinds of projects which can benefit the most from versioning in-
clude:

• SCM systems, which include programming projects and regular
text document cooperation.

• Hypertext systems (Whitehead 1997), which may be similar in some
respects to any structured (technical) documentation.

• CAD systems, which is discussed in (Katz 1990), and (Dart 1992)

4.6 Chapter summary and conclusions

In the course of this chapter a brief explanation of central concepts in
the field of version management has been given. Definitions have been
given for important terms such as configurations, revisions, variants,
deltas, merging and more. In addition, some version models have been
touched upon and motivations for applying versioning concepts to dif-
ferent fields of computer use have been listed.

Chapter 5

A Xymphonic model for
versioning

There is no single, easy answer to the question of what the desired
behavior for a version model is. While we would like to see as many
nice features incorporated as possible, it is important to keep the design
sleek and not stray too much from the original path, which was to see in
what way the Xymphonic model could conceptually be combined with
concepts from the field of versioning.

5.1 Introduction

This section introduces some new terms particular to this model. Some
definitions of transaction and version management will also be given in
order to provide a starting point for motivating a combination of the
Xymphonic model with versioning.

Anfindsen (1997) states the following on page 23:

A transaction model is a specification of allowable and manda-
tory behavior for transactions as well as their structure.

Of course this allowable and mandatory behavior should preferably give
us some attractive properties. For the Xymphonic model, these proper-
ties encompass controlled access to the resources in the DB, resulting
in serializable histories by a choice of Xymphonic correctness criteria.
What is normally understood by Xymphonic transactions is a transac-
tion history serializable by the NCCSR criterion. This gives users the
possibility to communicate, for example the maturity of data and also
to browse each others work in a controlled manner, solving the prob-
lem of read/write and write/read problems. Also, users can choose to

46 A Xymphonic model for versioning

convert write locked resources to Xymphonies and thus delegate recur-
sively and share write access with other users, solving write/write prob-
lems. Everything seems brilliant, so why bother this design with ver-
sioning features? To see why versions are indispensible in most cases of
long lasting cooperation, consider the following highlights from chapter
4:

• Backtracking when we need to go back to an earlier version

• Exploration of the evolution of an item

• Exploratory development is possible when we know we can revert
to a safe state

• Comparison is possible if we want to see what has changed from
one version to the next

• Safety in the sense that we can go back to a particular version and
fix errors there when they are discovered

• Safety in the sense that we have versions known to be stable when
a system is undergoing big changes

• Rationale capture by writing comments for each new version

• Reuse by being able to use suitable versions of objects in other
projects

• Temporary fixes to older revisions

• Special modifications which are not natural in the main line

• Parallel exploration when we do not know which approach is best

• Versatility when we need different variants for language, operat-
ing system, etc.

Note that savepoints may to some extent be regarded as versions; how-
ever, they are not comparable to this model because savepoints are only
manufactured in order to provide for transaction recovery in case of
failure, while the versions of resources manufactured by version ex-
tended Xymphonic cooperation are designed specifically to last beyond
the duration of the transaction (but only if it commits!).

The offset from the Xymphonic model to this extended model is the in-
vention of some new lockmodes, the version write locks VAR and REV,
the immutable version locks ΩVAR and ΩREV , and a versioning unlock
lock, the blank lock (BL). These new locks and their compatibilities with

A Xymphonic model for versioning 47

the traditional locks are explained in section 5.3 in particular, and the
rest of this chapter in general. To provide for the manufacturing and
storage of versions, a version SOC (VSOC) will be introduced alongside
a nested version repository.

In (Kim 1995, 414), Gail Kaiser makes an argument about the neccessity
of supporting configurations of resources. She states (added comments
in square brackets):

The key omission[of common traditional versioning] is not
keeping track of which versions of objects are consistent
with each other. For example, if each component (object)
of a program has multiple versions, it would be impossi-
ble to find out which versions of the components actually
contributed to producing a particular executable that is be-
ing tested. It is neccessary to group sets of versions that are
consistent with each other or otherwise together into config-
urations.

This model presents an outline of how management of configuration
versions can be carried out. This will be explained in more detail in sec-
tion 5.5.

As a final note in this introduction, a quotation from Anfindsen (1997,
104-105) about CCSR in relation to multiversion concurrency control
(MCC) is given:

However, some interesting combinations of CCSR and MCC
appear to be possible. Consider e.g. a designer who is in con-
trol of an LLT and is about to perform a number of related
updates. If this designer could carry out those updates in
a separate subtransaction that would create short-lived ver-
sions of the objects in question, parametrized readers ac-
cessing those objects could be protected from seeing incon-
sistencies due to work in the subtransactions being only par-
tially completed. That is, I believe it would be possible to
combine CCSR and MCC in such a way that related but un-
commited updates could be disclosed atomically, and that
such access to the previous version of the data items in ques-
tion is possible while the new version is under construction.

From this argument it would seem that Anfindsen would like the ver-
sions under construction to be delegated to a subtransaction and use
a special type of parameter set. The version mangement in question is
a subset of the functionality embodied in the modest extensions de-
scribed in this chapter. As a result, offering the functionality desired,

48 A Xymphonic model for versioning

amounts to creating a lock parameter for this special case. An example
of this will be given in section 5.4.8.

5.2 Group types

Group type implies any part of the model which may logically contain
or reference other parts. Based on that criterion, we have the following
group types:

• Transaction
Transactions may control WSOCs, RSOCs, Xymphonies and an ar-
bitrary nesting of subtransactions as specified in the Xymphonic
model. For versioning, Xymphonic transactions must also control
VSOCs and version repositories.

• WSOC
A data sphere containing write locked items.

• RSOC
A data sphere containing read locked items.

• VSOC
A special sphere for version management belonging to a transac-
tion and containing write locked items with versioning features.
We say that the elements in the VSOC are version write locked.

• Version repository
A version repository holds a set of immutable versions. It can be-
long to either a transaction or a Xymphony or it can reside in the
top level DB. Versions in the repository are locked on a permanent
basis with an Ω lock. Versions in repositories owned by transac-
tions are immutable only to the extent that they may not be edited,
but still may be aborted and thus deleted in case of transaction
abort.

• Xymphony
A Xymphony is used to denote a collection of resources held by a
transaction in the system by using a Xymphony lock. Other users
may join and participate in the Xymphony as described earlier in
chapter 3.

• Resource
The generic resource data type may reference other resources, for
example as version parent/child. Note that what will be referred
to as a resource throughout this chapter may be any type of data
element, e.g. a file, a relational table, tuple, etc.

A Xymphonic model for versioning 49

• Configuration
Configurations may reference both resources and other configura-
tions.

5.2.1 The VSOC

A transaction needs a VSOC to keep track of the current versions in
production. The VSOC thus holds resources and configurations with
version write locks, being either VAR or REV. Only transactions can be
holding VSOCs.

5.2.2 The version repository

A transaction needs a version repository to keep track of its yield of im-
mutable versions. Each Xymphony, on the other hand, needs a version
repository to keep track of the new versions its transactions turn over
when they commit.

An important notice is that only subtransactions may create version
successors of resources located in a repository owned by a transaction.
If this were not the case, we could get into a situation where an indepen-
dent transaction is working on a version successor and the transaction
holding the predecessor aborts. This will lead to inconsistencies and is
clearly undesirable. However, if only subtransactions can create succes-
sors, we know that they will either commit or abort before the ancestor
transaction and ergo no version inconsistencies will be created.

5.2.3 An example

Figure 5.1 shows a legal nesting of group types. The transaction TAlicea

has a VSOC and a version repository in addition to the traditional Xym-
phonic elements. Also note that the top level DB has a version reposi-
tory and that the Xymphony belonging to TAlicea also has a local reposi-
tory. Bob’s subtransaction TBobaa is working on some versioned resources
within the Xymphony and is accordingly holding a VSOC. When this
transaction commits, the new versions will be commited to the version
repository of the Xymphony.

5.3 Locking

In this section, the traditional lock matrix as described in section 3.3,
is extended by adding new locks for versioning. Immutable versions
are locked with Ω locks. We may create a child version of an Ω locked

50 A Xymphonic model for versioning

item by VAR or REV locking it. A more detailed description of the new
lockmodes will be given below.

The ΩVAR lock

The ΩVAR lock is used in order to mark an immutable resource ver-
sion for variant semantics. That is, resource versions locked with this
lock allow more than one version child to be created. If an unversioned
resource is locked with this type of lock, it is in effect moved to the ver-
sion repository of the acting transaction, made immutable, and marked
for variant semantics. This is provided that the acting transaction is
holding a write lock or stronger on the resource.

If a resource is VAR or REV locked, then only the transaction holding
the lock may apply an ΩVAR lock. Doing this means commiting a new
version to the local version repository of the transaction. The version
number of the version write locked resource is accordingly incremented
and the user can continue to work here until the transaction is either
commited or aborted. Informally, this equals taking a version snapshot
of the resource.

Ver. Rep.

Database

Alice Bob

T

Xymphony

VSOC

WSOC aa

AliceT

Bob

a

RSOC

RSOC

T
aBob

Ver. Rep.WSOC

VSOC

Ver. Rep.

Figure 5.1: An example of nesting

A Xymphonic model for versioning 51

Extended lock matrix
Granted lock

Requested lock ΩVAR ΩREV BL B R U W VAR REV Xymphony XΩVAR ×ΩREV ×
BL × ×
B × × × × × × × × × ×
R × × × × ×
U ×∗ ×∗ × ×
W ×

VAR × × ×
REV × × ×

Xymphony ×
X ×∗∗ ×∗∗

Figure 5.2: Versioning extended lock matrix.

Another situation occurs if a resource is locked to a repository with anΩREV lock and a user desires to branch it out into variants. One solution
is to apply an ΩVAR lock to the version. Doing this results in a version
child of theΩREV locked resource, to be commited to the version reposi-
tory of the transaction with an ΩVAR lock. This kind of action effectively
overrides the versioning semantics of the old version and should there-
fore probably be restricted to e.g. special situations or privileged users.

Because resources residing in repositories are immutable, granting read
locks is unproblematic. Note that the version being read in this fashion
may be an old copy as other transactions can have version write locked
successor versions. This problem of not getting the most current data
is one of the drawbacks of MCC as pointed out by Anfindsen (1997,
104). However, because versioning is not used as a means of concur-
rency control in this model, it will not be a problem as long as the user
realizes that the data may be stale.

The ΩREV lock

It and the ΩVAR lock have the bulk of their compatibilities and proper-
ties in common, except for the fact that ΩREV locks are used to mark
versions of resources and configurations for revision-only semantics.

If a transaction has the access privileges to reach an ΩREV locked re-
source version, and the version does not already have a successor, the
transaction may version write lock the resource. Because revisions may
only have one child, this cuts off other transactions from creating im-
mediate child versions.

52 A Xymphonic model for versioning

The BL lock

The BL lock is used to remove a resource from version control1. That
is, if a resource resides in a version repository and we would like the
successor of it to be removed from versioning and rather work on it
through standard Xymphonic procedures, we must use the BL lock.
Upon doing so, it could for instance be recorded that the resource was
removed from version management at the specified time by a particular
actor for a particular reason. Using the BL lock and removing a resource
from versioning can have drastic consequences, ergo should this lock
probably be restricted to particular users/usergroups or special sita-
tions.

Upon locking a resource with a BL lock, the transaction owner signals
a desire to write. Accordingly the BL lock has the same compatibilities
as a normal W lock. Note that in order to be able to set a BL lock in the
first place, the version must be held in a repository that the pertaining
transaction has access to. These can be either the top-level repository
residing in the DB, a repository belonging to the particular transaction
or an ancestor transaction, or a repository belonging to a Xymphony
where this transaction participates.

On the other hand, if the resource version resides in a VSOC, a BL lock
can not be granted because this means the resource is either VAR or
REV locked, and that we are in the middle of producing a brand new
version. However, after the version has been commited to a repository,
it will be Ω locked and a BL lock will be granted if the pertinent reposi-
tory can be reached.

The VAR and REV locks

The lock compatibilities of the VAR and REV locks are the same as those
of the write lock because we are in fact writing to a new version. When
an Ω locked version is locked by one of these locks, a mutable successor
is created, provided that the lock is granted. If it is granted, the version
write locked item is located in the VSOC of the transaction.

If the transaction is later aborted, the new version is erased. On the
other hand, by commiting the transaction it is implicitly signalled that
the version is ripe for commitment and it is then Ω locked to the ver-
sion repository of the parent transaction, enclosing Xymphony or top
level DB.

1It is not applicable to configurations because they are control structures particular
to version control.

A Xymphonic model for versioning 53

The X lock

On rare occasions, we may like to delete immutable versions, see for
example section 5.4.8 on combining CCSR with MCC. In order to do this,
we must lock the affected items with the X lock to make sure there is no
interference with the operation. Removing a version is a drastic thing to
do, and should probably be restricted by some criterion like the use of
the BL lock.

Comments to the lock matrix

∗ Upgrade mode is granted for Ω locked versions, but may only be
upgraded to either VAR or REV.

∗∗ In certain situations, we may want to delete an immutable version.
In order to do this, the version must be X locked.

Some remarks on versioning semantics

It is not a trivial task to decide what the outcome should be if a trans-
action performs one of the following actions:

1. Requsting a VAR lock on an ΩREV locked resource.

2. Requsting a REV lock on an ΩVAR locked resource.

3. Requsting an ΩVAR lock on a REV locked resource.

4. Requsting an ΩREV lock on a VAR locked resource.

All these four actions change the versioning semantics of a resource,
and should probably be restricted by some yet undefined criterion. This
problem will not be treated in this thesis, but it is noted as an item
which needs to be looked into, and is accordingly mentioned in the
chapter on further work, accompanied by some thoughts on possible
solutions.

5.4 Versioning of resources

Data elements will be referred to as resources. Examples of resources
are files of sourcecode, a method in a file of sourcecode, a CAD model,
a table in a relational database, a tuple, etc. In software configuration
management (SCM), the predominant resource and version granularity
is at the file-level. Configurations will not be treated as data elements.

Resources can be of different granularities. For instance, for a versioned

54 A Xymphonic model for versioning

filesystem, such as for example DSEE/ClearCase (Leblang 1994) or ICE
(Zeller & Snelting 1995, Zeller 1996), some resources will be the leaves,
typically the files, in a tree of resources. Other resources will be the in-
ner nodes, in this case the directories, of the corresponding tree. For a
relational DBMS this form of hierarchy could, for example, be table →
tuple → attribute.

The motivation for differentiating between inner nodes and leaves is
that, trivially, when we get to a resource leaf, we can either lock and
work on the whole of it, or not. This may be a waste of opportunity for
collaboration. Consider the situation where a piece of data has evolved
over time and accumulated a lot of data. This can, for example, be a file
of source code or a document which has evolved. There may be a num-
ber of people interested in writing to this file, but only one may write at
a time.

A current solution is to make the file available to other participants
through a Xymphony. This is fine, but still only one may write at a time.
What we would really like is to be able to dynamically split and merge
these leaf resources in a controlled manner, avoiding optimistic con-
currency and the problems of merging overlapping updates. This is not
given a comprehensive treatment in this thesis, but an outline of a so-
lution is given in section 5.4.7 and some ideas for further work is given
in the next chapter.

Note that when granularity is changed this way, a leaf will, at least for a
certain duration of time, no longer be a leaf, but instead in inner node.
However, it would still be nice to identify its "true" place in the hierar-
chy. To meet this end, leaf resources will not be referred to as leaves,
but instead as "outer" resources. This avoids any potential conflicts with
the normal meaning of leaves as the extremities of a tree. It is thought
that an outer resource may reference other outer resources. More on
this in the next section.

5.4.1 Relations between resources

In order to make a model of the relations, shown in figure 5.3, Nijssen
Information Analysis Model (NIAM), (Nijssen 1981) was used. An impor-
tant notice is that the figure is only intended to show the generic rela-
tions which are important for the management of versions. Of course,
in real life we would like a version of a resource to have a timestamp,
user comments, perhaps an easily identifiable alias, etc.

Resources can be in the following many-to-many relations:

A Xymphonic model for versioning 55

• Reference list:
This relation can mean two things based on the value of the type
attribute. If we have either inner→inner or inner→outer relations
we have a relation of hierarchic ownership, but if we have the
outer→outer relation it means we have a situation where one outer
resource owns another and is (partly) composed of it, i.e. the gran-
ularity is changed.

• Version list:
This relation gives a list of the edges between resources in the
version graph.

The type attribute can have two values, either "inner" or "outer" as ex-
plained in the beginning of this section. Note that if we do not desire
the ability to change granularity dynamically, the attribute has no func-
tion and should be omitted.

Not all combinations of connections in the reference list between re-
sources with different type attributes are permissible, and they all carry
different meanings:

• Inner → inner:
This can for instance be the parent/child relation between two
directories.

• Inner → outer:
As an extension of the former item, this could be the parent/child

Type Resource Version

Reference list Version list

references is referenced version parent version child

(number)

{ inner, outer }

Branch
Name

(name)

Version

Figure 5.3: NIAM model of resource relations.

56 A Xymphonic model for versioning

relation between a directory and a file.

• Outer → outer:
This denotes that a resource is composed of editable fragments
and should occur when the granularity of a resource is changed.

• Outer → inner:
This is impermissible.

5.4.2 Identifying versions

In a DBMS setting, it could for example be possible to run queries on the
attributes of versions. In most cases, one would want to continue work
on the version of a resource satisfying a particular predicate. If queries
are availiable, it would mean that one is able to identify versions both
intensionallly (by predicate) and extensionally (through explicit enumer-
ation).

It must be decided how it can be identified that a version is a variant
of another version. With the suggested relations between versions of
resources, some additional attributes would suffice. ClearCase (Leblang
1994), for example, assigns names to the edges of the version graph:
mysocket.c@@/main/test denotes a path in the version graph of the
resource mysocket.c. In this particular case, the path identifies this
variant of mysocket.c to belong in the test branch parallell to the main
branch.

Another scheme used by e.g. Adele (Estublier & Casallas 1994) and the
attributed file system of SHAPE (Mahler 1994), is to create attribute/value
pairs. For example, one variant may have an attribute, say, language set
to English, while another has the adherent value of Norwegian for the
attribute. Considering our attribute oriented definition bias, this seems
like a good solution in the case of our model and will be employed in
the implementation chapter, appendix A in the thesis.

A consequence of this is that it may not be possible to uniquely iden-
tify a resource version by version number alone. Consider the version
graph in figure 5.4. It is commonsensical that when requesting version
4 of manual.pdf, we will get a set containing the two variants in return.
These can then be separated on the basis of the value of the language
attribute.

In any case, a combination of resource identifier/name (e.g. manual.pdf),
version number and a variant identifier should be sufficient to uniquely

A Xymphonic model for versioning 57

identify any version.

Also note that versioning systems such as RCS (Tichy 1982, 1985) and
SCCS (Rochkind 1975) use numbering levels to identify temporary vari-
ants, e.g. 1.1 and 1.2 are variants stemming from 1. This could seem
useful for a solution of combining CCSR and MCC, but because this will
be solved by using attributed variant identifiers, tailoring the scheme to
Xymphonic versioning will not be attempted.

manual.pdf

vnum : 3

language : generic

definition

vnum : 4

manual.pdf

manual.pdf

vnum : 4

language : English
language : Norwegian

Figure 5.4: An example of variant versions with branch identifiers.

5.4.3 Selecting a version

Selecting a version of a resource for work is a two stage operation: First
we must identify the version we would like to work on, then we must
attempt to lock the resource with the desired lock. In order to be able
to create a new version, the following conditions must be met:

1. We must be able to reach the old version of the resource, that
is, it must reside in a version repository within the reach of our
transaction. These are:

• The repository of the top level DB.

• The repository of our transaction or an ancestor transaction.

• The repository of a Xymphony our transaction has access to.

2. The desired lockmode must be granted.

3. If the old version is locked in ΩREV mode (remember that Ω locks
sticks for eternity), a successor can not already have been created.

58 A Xymphonic model for versioning

4. If the old version is locked in ΩVAR mode, a successor can not
already have been created on the branch we wish to continue.

If all these tests are successful, we are granted a version write lock on
the successor resource which we can work on in the VSOC of our trans-
action. However, setting a BL lock will remove the versioning status of
the child version2 and give standard W lock and unversioned resource
semantics. This unversioned resource does accordingly not belong in
the VSOC, but rather in the WSOC of the transaction.

If our desire is to acquire a read lock on the version, we do not have
to care about items 3 and 4 in the enumeration, but the other two con-
ditions must be satisfied. A special case occurs if we wish to read the
contents of an Ω locked resource, we only have to care about the first
item, being able to reach the version. This is based on the fact that Ω
locked versions are immutable, i.e. they may never be edited again. Ac-
cordingly, there is no chance of a read/write conflict.

5.4.4 Creating new versions

Once a version has been commited to a version repository, it is per def-
inition immutable and can itself never be edited again3. When we want
to continue on the next version by selecting it and getting the appropri-
ate version write lock, we get a mutable copy, a version child to begin
working on. An example of creating versions is given below. It begins by
version locking a resource in the version repository of the top level DB.

The initial setup can be seen in situation 1 in figure 5.5. First we try
to version write lock version 3 of the resource rs, denoted as RS3. Sup-
posing this went ok, the version child reference from RS3 is by some
means marked as occupied if it is ΩREV locked. How this is done is con-
sidered implementation specific, but it should be kept in mind that the
operation must be rolled back in case of transaction abort. On the other
hand, if RS3 is ΩVAR locked, we must record that a child version is in
progress on a given branch in order to prevent others from creating
versions that would collide on the same branch.

Provided all this went ok, a mutable copy of RS3, denoted RS4 with a
version write lock is then transferred to the VSOC of our transaction.
We may edit it for some time until we decide to do one of the following:

2It will not remove the stored graph of versions, it will merely create an unversioned
successor.

3It can, however, be deleted either after X locking it, or if the repository belongs to
a transaction or Xymphony which aborts.

A Xymphonic model for versioning 59

1. Record this version, but continue working on the next version
child.

2. Allow others to create version children by making it immutable
and adding it to a Xymphony.

3. Perform an action is which triggers the creation of a new version.

4. Commit the transaction

5. Abort the transaction

We will discuss the first three possibilities here, and items 4 and 5 will
be considered in section 5.4.6.

If we have reached a particular goal or if for some other reason it is
a suitable situation for recording a version, we can do this either by
commiting the entire transaction, or by locking RS4 with one of the Ω
locks.

If we have other work we would like to commit as well, it might be
a suitable action to commit the entire transaction. However, in some
cases, this may be viewed as a somewhat drastic measure. If we would
like to merely create a new version, but keep editing the successor, RS5,
we would apply an Ω lock. When RS4 is locked with one of the Ω locks,
its contents are made immutable, the user may be prompted for ver-
sion information, and a timestamp is applied, etc. The immutable RS4

is then moved to the local version repository of the transaction and, if
automated, the successor RS5 with a version write lock, residing in the
VSOC is returned, see situation 2 in figure 5.5. Keep in mind that both
RS4 and RS5 will be eradicated if the transaction aborts.

If we would like others to contribute to this part of the version graph
of the resource, we could make it accessible through a Xymphony. Let
us consider the situation where we have RS4 version write locked in the
VSOC. In order to make it available to others, we must in essence make
it immutable and commit it to the version repository of the Xymphony.
Users invited to the Xymphony may access this repository in the same
way as the repository of the top level DB was accessed, see situation 3
in figure 5.5. The resource should be made immutable in this situation
because:

• It would not make sense to locate a version write locked resource
to a Xymphony, because this means the resource version is write
locked to one transaction and thus unavailable for others.

60 A Xymphonic model for versioning

• Converting the VAR/REV lock to a Xymphony lock would remove
the versioning semantics and should not be allowed (in this case
we should BL lock the version first).

• It must be assumed that the resource in question is in a stable
state when it is handed over to the Xymphony. This should be
recorded.

• We would like to track one change to one person/transaction.

Events triggering the automatic creation of a new version could, for ex-
ample, be changing the lock parameter set, a version snapshot could be
taken every half hour, etc. There is probably an abundance of possible
product-space specific version-creation triggering actions.

Database

Ver. Rep.

3

Database

User

Ver. Rep

4

5
Ver. Rep.

3

RS

RS

RS

RS

T
a

User
Database

User

Ver. Rep

4

VSOC

5
Ver. Rep.

3

RS

RS

RS

T
a

Ver. Rep

Xymphony

User

1

2 3

Figure 5.5: Version creation overview, first figure.

5.4.5 Performing merges

In many cases, there can be no question about the usefulness of allow-
ing variants of resources, see esp. section 4.2.3. Once more, it should
be stressed that the Xymphonic transaction model caters to all concur-
rency control. Versions are not intended to be used as a means of this.

A Xymphonic model for versioning 61

But for some reasons, also given in section 4.2.3, we would sometimes
like to be able to merge variants. This is not a core topic of the thesis,
but a solution will be outlined.

We should get version write locks on the versions we want to merge.
This will result in a collection of version children locked to the VSOC
of our transaction. After the required version write locks have been ob-
tained, a merge process can then be applied to the versions, resulting
in a common version child.

Regrettably, this is not an optimal solution because it yields some re-
dundant versions, i.e. the ones we get version write locks on first and
then merge will be recorded as new versions although their contents
have not been altered. It is highly probable that improvements can be
made on this, maybe involving automatic X locking and deletion of the
redundant versions. Another possible solution is a version idempotency
detector, i.e. if a new version is created which is identical to its parent,
it could be discarded.

Why merges can not be performed in a straightforward manner by get-
ting read locks and creating a merge based on the contents we can read
deserves an explanation: Unfortunately, that approach will result in a
creating brand new resource, which without special considerations will
be completely disconnected from its ancestors. Alas, read locks are not
intended to automatically produce new version numbers or resource
version relationship bonding.

However, it is conceivable that if we notify the immutable parent ver-
sions that a child version is on its way as we would do automatically
when version write locking as explained in section 5.4.3, the approach
with read locks could work. Due to this special notification, we may call
the operation, for example, a read-to-merge4.

5.4.6 Commiting and aborting versions

Both commit and abort of transactions carrying versions will be consid-
ered in this section. The two situations considered will be extensions of
those depicted in section 5.4.4 and illustrated in figure 5.5.

For the commit of transaction TUsera in the situation where it holds RS4

in its version repository and RS5 in its VSOC, the result is shown in situ-

4It should probably not be called a read with intent to merge because it is indeed
not an intent lock, just a normal read lock with some extra requirements.

62 A Xymphonic model for versioning

ation 2 in figure 5.5. If we should choose to abort this transaction, all of
its edits are lost. This includes the contents of its repository and VSOC.
We are thus back to square one, situation 1 in figure 5.5. It is also impor-
tant to roll back the expectations of the version parents, which assume
there is a new version child on its way, when it is in fact aborted.

The second situation, where the transaction owns a Xymphony, we shall
first consider the commit of the Xymphony. This results in the transac-
tion regaining prior control over the contents of the repository owned
by the Xymphony. If no one has been continuing work on the version, we
are returned to situation 1 in figure 5.6. Commit in this situation adds
the new versions to the repository of the top level DB and is shown in
situation 2 of figure 5.6.

If a transaction had been continuing work on the version in the reposi-
tory of the Xymphony, we would get a situation of nested cooperation.
Just like TUsera commits to the repository of the top level DB, transac-
tions in the Xymphony would commit their new versions to its version
repository. When the Xymphony is commited, these will be added to
the version repository of TUsera which may or may not further choose to
commit the data.

Database

User Ver. Rep

4

5

Ver. Rep.

3

RS

RS

RS

T
a

User

4 5
RS RS

3
RS

Database

Ver. Rep

1 2

Figure 5.6: Version creation overview, second figure.

If the Xymphony is aborted, on the other hand, the principle is that its
results should be rolled back. However, it would be required for TUsera

to regain control over the version it commited to the repository of the
Xymphony. In our example, this would actually result in the outcome
being as shown in situation 1 in figure 5.6.

A Xymphonic model for versioning 63

The described outcome makes sense because, if the Xymphony had not
been created, we would instead have commited the version directly to
the repository of the transaction. Also note the complete overlap in
outcome between commiting a Xymphony where there has been no col-
laboration, and abortion of the same Xymphony.

5.4.7 Manipulation of versioning granularity

Sometimes, resource and version granularity is at an undesirably high
level. Although finding solutions to this in connection with Xymphonic
collaboration has been considered interesting work in connection with
the other ideas in this thesis, it never made it sufficiently high on the
priority list to receive a comprehensvie treatment. Nevertheless, an out-
line of a possible solution is given below.

One solution could be to allow transactions to create fragments, but
only to commit complete versions of resources in respect to the version
parent.

An example scenario consists of Alice, VAR locking a version of a re-
source. Note that when her VAR locked version is commited, either to
her local repository by applying an Ω lock, or through commiting her
transaction, the Ω locked version parent of her VAR locked version ex-
pects to get a suitable version child. By suitable is implied a version
child of the same type and granularity, in order to make computation
of e.g. delta offset trivial.

Alice may want to split the version into fragments if:

• She decides that it contains too much data, making it unfair for
her to keep posession of it entirely.

• Other users explicitly ask her for write access to parts of it.

Whether this fragmentation is performed manually, or due to a spe-
cialized description is not the issue here. When a desire to fragment
is signalled, the VAR locked resource is Ω locked to the version repos-
itory of Alice’s transaction and VAR locked fragments are created in
her VSOC. These fragments can now be viewed as any normal form of
resources and may be made available to others through a Xymphony.
Transactions in the Xymphony may choose to fragment the fragments
further in a recursive manner.

When other users have commited their work on the fragments, Alice

64 A Xymphonic model for versioning

may be in the situation of figure 5.7 regarding the original version and
its fragments.

The fragments were created as, and should still be disjoint segments of
the original resource version. This makes it safe to merge the fragments
to new versions automatically, probably most intuitive in a breadth-first
traversal manner. Let us assume that the resource version Alice origi-
nally locked was revision 3. In the following example F (0) 0 will mean
fragment 0 in version 0. As shown in figure 5.8, this makes { f1.v0 , f2.v0
, f3.v0 , ... } into version 4, { f1.v1 , f2.v0 , f3. v1 } into version 5, { f1.v1 ,
f2.v0 , f3. v2 } into version 6. This demonstration shows the general idea.

When Alice decides to commit her fragments, a new chain of versions
of the resource is commited as expected.

Unresolved issues are creation of variants of fragments and merging
fragments. A preliminary idea may be to create variant (complete) ver-
sions in the merge process at points where variant fragments occur
and, if merged, create merged versions (originating from the fragment
variants) where fragments are merged. An example of fragmentation in-
cluding variants and a merge is shown in figure 5.9, and figure 5.10 has
a high level view of the new resource versions.

Original
Resource
Version

Fragment layer (version)

0 1 2

F
ra

gm
en

t n
um

be
r

0

1

2

Figure 5.7: Resource after work on fragments.

A Xymphonic model for versioning 65

Original
Resource
Version

Fragment layer (version)

0 1 2

F
ra

gm
en

t n
um

be
r

0

1

2

Resource revision

3 4 5 6

Figure 5.8: Merging fragements.

Original
Resource
Version

Fragment layer (version)

0 1 2

F
ra

gm
en

t n
um

be
r

0

1

a

b

3 4 5 6

Resource revision

Figure 5.9: Prospective merges in a situation where fragments are in
variant and merge relations.

3 4 6

5a

5b

Figure 5.10: High level view of the situation in figure 5.9.

66 A Xymphonic model for versioning

5.4.8 Combining CCSR and MCC

In his PhD thesis (1997), Ole J. Anfindsen argues on pages 104 and 105
that a combination of the CCSR correctness criterion of the Xymphonic
model and MCC as found in for example the Oracle DBMS, could be
beneficial for short lived updates. The idea is that while one user is
performing these updates, others could view an older version of the
data in question. This filtration should be performed by the means
of parametrized access, and the updates should be created atomically
through a subtransaction.

This section rests on an example based on the five steps illustrated
in figure 5.11 and outlined below:

1. In step one, TUsera has a write lock on the resource RS but would
like to do some quick edits and employ versions to do this.

2. In the second step, TUsera ΩREV locks RS, resulting in the creation
of RS version 0 and places it in the local version repository.

3. In step three, TUsera spawns a subtransaction, TUseraa . The subtrans-
action then REV locks RS, resulting in the placement of RS version
1 in its VSOC. It will use a special lock parameter, for example "ver-
sioned update", "short update", or "unstable". At this time other
users may read the Ω locked contents, but because the version is
in fact ΩREV locked they may not create version children.

4. In step four, the subtransaction commits, adding version 1 of RS
to the version reposotory of TUsera . The short update is finished;
we must now tie some loose ends.

5. In the fifth step, the version commited by the subtransaction is
BL locked, resulting in a fresh, updated RS placed in the WSOC. In
order to clean up after this MCC operation, the transaction may
want to X lock the versions in the repository and delete them.

There is probably room for improvements here. For example, some
steps should be combined into atomic actions. In particular step 2 and
3 should be combined into an atomic unit to ensure that no other trans-
action snatches the version child reference from the ΩREV locked ver-
sion. Also, the cleanup in steps 4 and 5 should be combined into an
atomic unit to avoid other transactions read locking the new version
and thereby creating a conflict with the BL lock we want to set.

A Xymphonic model for versioning 67

User
T

a

User

RS

Database

Ver. Rep

RS

User

User
T

Database

User
T

a

User

RS

Database

WSOC 0

User
T

a

aa

Ver. Rep.

RS
0

VSOC

1

User
T

a

User

RS

Database

Ver. Rep

0

RS
1

User
T

a

User

RS

Database

Ver. Rep

RS
0 1

RS

WSOC

1 2

3 4

5

Figure 5.11: An example of combined CCSR and MCC.

68 A Xymphonic model for versioning

5.4.9 Resource versioning summary

The resource datatype denotes an arbitrary type of data item. It can, for
example, be a file, a table, a tuple or a persistent Java object. This part
of the model chapter has shown how to create revisions and variants of
resources by using new types of locks.

These new locks are the version write locks VAR and REV, the im-
mutable version locks ΩVAR and ΩREV and a special lock to remove re-
sources from versioning, the BL lock.

What kinds of properties these new versions have has also been de-
scribed. This behavioral model includes how new versions move from
the version sphere, the VSOC, to version repositories when they are
made immutable, and how things work when transactions and Xym-
phonies commit and abort.

Toward the end of this part of the chapter, two problems were given
some special attention. First, an outline of how versioning granularity
can be dynamically altered by fragmenting and merging pieces of ver-
sions was given. After that, a possible combination of CCSR and MCC
was described.

5.5 Versioning of configurations

Note that the ideas presented in this part of the chapter, about config-
urations and their use in Xymphonic versioning place some very strict
demands on the requred locks to perform configuration versioning ac-
tions, and that they should be viewed as a possible starting point for
further efforts.

A definition of the conceptual idea of configurations was given in sec-
tion 4.2.4. As the name indicates, the purpose of configurations is to
hold consistent collections of resources according to a given criterion.
Configurations should also be able to hold information about a certain
collection at a certain point in time, that is, of a particular version. For
example, one version of a configuration could be a fix5 of a certain bug
involving the resources in a particular (version of a) configuration.

In the introduction to this chapter, a quotation from Kaiser (1995) was
given as an argument in favor of configurations. Additional examples

5Or it could be a part of the evolution of a fix, or an enhancement, extra feature, etc.

A Xymphonic model for versioning 69

of the usefulness of connecting a collection of resources to a common
change are:

• ASGARD (Micallef & Clemm 1996)
which is implemented on top of ClearCase and allows changes to
different resources to be collected in an acitvity.

• Stellation/Coven (Chu-Carrol 2001)
is an IBM research prototype which uses the notion of consistent
project versions. To achieve this, updates to individual artifacts are
recorded as an atomic change.

The difference between a configuration and an inner resource referenc-
ing other resources should be made clear. Basically, an inner resource
references the resources it hierarchically, logically owns and belongs
with. These connections usually survive through versions of the indi-
vidual resources.

Versions of configurations, on the other hand, may want to reference
collections of trees of resources, i.e. many inner resources, in order to
logically group all the involved resources of a particular change.

5.5.1 Relations involving configurations

From the NIAM model of required relations shown in figure 5.12, we can
extract the following many-to-many relations:

Resource
Version

Version list

references is referenced

version parent version child

(number)

Configuration

Configuration composition list

Branch

Name

(name)

Version

Version

Figure 5.12: NIAM model of configuration relations.

70 A Xymphonic model for versioning

• The configuration composition list
This relation gives a list of which version(s) of which resources are
referenced from which version(s) of which configurations.

• The version list
This list contains the edges in the version graph of configurations.

5.5.2 Composing a configuration

In order to compose a configuration, we must first identify the resources
we would like to include. Identification of resources is described in sec-
tion 5.4.2. Based on an extensional list or intensional predicates or a
combination of the two, we may construct a new configuration.

Note that with the scheme described here, it is required that the transac-
tion creating the configuration version should version write lock the in-
volved resource versions. This is required because generating versions
of the configuration is dependent on all involved resources finally being
commited to the controlling transaction. It may be considered natural to
create configurations in TLTs. A small example of a newly constructed
configuration, C referencing the resources RCn, RCCn, RSn and RSSn is
shown in figure 5.13.

User
T

a

User

Database

VSOC

RS

C

RSS

RC

RCC

n

0

n

n

n

Figure 5.13: An example of a newly composed configuration.

5.5.3 Identifying versions

The process of identifying a configuration is quite similar to that of
resources. That is, we can ask for a version number or create a query
based on values of attributes. This query may include a choice of branch
if variants exist.

In addition to those methods in common with the resources, we should

A Xymphonic model for versioning 71

be able to identify configurations, at least partly, based on which (ver-
sions of) resources are contained and what the reationale behind cre-
ating the configuration was, e.g. we may want to find the configuration
adding a feature called zap-zap to a laser design.

5.5.4 Selecting a version

Selecting a version of a configuration is thought to be performed in
the same manner as for resources. Version write locking a version of a
configuration requires acquiring version write locks on the referenced
resources of the particular version of the configuration as well.

5.5.5 Creating versions, recording change

We should separate between situations we may or may not prefer to re-
sult in a new version of a configuration, and the situations which must
result in a new version. A new version of a configuration must be cre-
ated in the following situations:

1. Applying an ΩVAR or ΩREV lock to the configuration
If the configuration is version write locked, this commits the con-
figuration version in the local VSOC to the local repository.

2. Transaction or Xymphony commit
This commits the configuration version(s) to the version reposi-
tory of the enclosing environment. If we are commiting a trans-
action, this may either be a Xymphony, a parent transaction, or
the top level DB. If we are commiting a Xymphony, it has to be a
transaction.

3. Altering the contents of the resource collection
Adding or removing a resource from the configuration should pro-
duce a new version.

If we apply either an Ω lock to a configuration which is version write
locked in the VSOC of a transaction, this explicitly creates a new im-
mutable version of the configuration as well as the referenced (chain of)
resource versions. To be able to perform this, the transaction must have
write control of the configuration as well as all the referenced resource
versions.

Recall from section 5.2.2 that substransactions may create new versions
from the contents of the repository of an ancestor transaction. This
makes it possible for a subtransaction to create a variant or a version
child of a configuration residing in a repository owned by a transaction

72 A Xymphonic model for versioning

higher in the hierarchy. When creating a variant, it follows that variants
of the referenced resources of the configuration must also be created,
thus it is required that resources referenced from a configuration al-
lowing variants must also allow variants. These new variants should be
tagged according to the attribute/value scheme as explained for variant
resources in section 5.5.3. An example of creating a configuration vari-
ant is given in figure 5.14.

When the subtransaction of figure 5.14 successfully commits to the par-
ent transaction, the result is as shown in figure 5.15. It is implicitly as-
sumed that the resource variant versions referenced from configuration
C version 1, variant b also have the variant attribute b to separate them
from those in the other branch.

Note that if a subtransaction version write locks a resource referenced
from a configuration residing in a version repository, this does not nec-
cessitate the creation of a configuration version to accompany it. If the
subtransaction commits, the new resource revision will be reachable
from the configuration by version graph traversal. It is an open issue
how this should be handled when a new configuration is created.

If we wish to make a configration available to other selected users through
a Xymphony, we may commit the configuration and referenced resources
in the VSOC to a Xymphony-owned version repository. For example, if
we would like other users to contribute to the configuration in part 1 of
figure 5.16, the situation would be as shown in figure 5.17.

An example of adding or removing a resource from a configuration
is shown in figure 5.16. The initial state is shown in part 1 of figure
5.16. When we remove a resource, as in situation 2 of the same figure,
we must record the state of the configuration before this addition in
order to later track down this transition. This means recording the cur-
rent versions of the resources as well as the configuration to the version
repository. The case of adding a resource as shown in part 3 of figure
5.16 is based on the same principle.

A Xymphonic model for versioning 73

User
T

a

User

Database

VSOC

RS

C

RSS

RC

RCC

RS

C

RSS

RC

RCC

n

0

n

n

n

Ver. Rep.

n + 1

n + 1

n + 1

n + 1

1

1

User
T

User
Database

VSOC

RS

C

RSS

RC

RCC

RS

C

RSS

RC

RCC

n

0

n

n

n

Ver. Rep.

n + 1

n + 1

n + 1

n + 1

1

User
T

a

aa

b

VSOC

RS

C

RSS

RC

RCC

n + 1

n + 1

n + 1

n + 1

1

2

Figure 5.14: Creating a variant of a configuration and working on it in a
subtransaction.

User
Database

RS

C

RSS

RC

RCC

RS

C

RSS

RC

RCC

n

0

n

n

n

Ver. Rep.

n + 1

n + 1

n + 1

n + 1

1

User
T

a

b

RS

C

RSS

RC

RCC

n + 1

n + 1

n + 1

n + 1

1

VSOC

Figure 5.15: The situation after the subtransaction in figure 5.14 has
commited.

74 A Xymphonic model for versioning

User
Database

RS

C

RSS

RC

RCC

n

0

n

n

n

User
T

a

VSOC

Initially : 1

User
Database

RS

C

RSS

RC

n

0

n

n

Ver. Rep.

User
T

a

RS

C

RSS

RC

n + 1

n + 1

1

VSOC

RCC

n + 1

Removing : 2

n

User
Database

RS

C

RSS

RC

n

0

n

n

n

Ver. Rep.

User
T

a

RS

C

RSS

RC

RCC

n + 1

n + 1

n + 1

1

VSOC

Adding : 3

RCC

n + 1

Figure 5.16: Adding or removing a resource from a configuration.

User

Database

Xymphony

Ver. Rep.
T

RS

RSS

RC

a
n

n

n

0
C

User

Figure 5.17: Delegating a configuration to a Xymphony.

A Xymphonic model for versioning 75

5.5.6 Performing merges

In order to merge configurations the following questions should be an-
swered:

• If the configurations reference different versions of some of the
same resources, should the newer replace the older, should they
also be merged in some way, or should they coexist in some form?

• If (some of) the configurations stem from a common ancestor,
what consequences should this have?

• What consequences should it have if they do not stem from a com-
mon ancestor?

It is probably fair to assume that the transaction responsible for the
merge must either have version write locks on all involved resources
and configurations, or the idea with read-to-merge locking as described
in section 5.4.5 should be employed in some form.

5.5.7 An idea of a typical work pattern

We have seen that the creation of a new version of a configuration places
quite drastic demands on lock requrements. However, creating a new
version of a referenced resource should not neccessarily lead to the
creation of a new configuration. Based on this, a sensible work pattern
could, for example, be the following:

1. Create a new configuration, responding to a particular task, in the
TLT.

2. Delegate the resource versions through xymphonies/subtransactions.

3. When the TLT regains write control of all the referenced versions,
including new resource versions produced, we may conclude that
this would equal an iteration in development. Accordingly, the TLT
owner may choose whether to commit this increment, and thus
create a new version of the configuration. Or she may Ω lock the
configuration version (and the resources with it), and start on the
next iteration by once more delegating the (latest) resource ver-
sions.

5.5.8 Configuration versioning summary

As argued both in the introduction of this chapter and in the beginning
of section 5.5, configurations are an indispensable ingredient in any se-
rious version management system. Currently, to create a new version of

76 A Xymphonic model for versioning

a configuration, the acting transaction must have a version write lock
on both the configuration version and the resource versions referenced
from the configuration, or employ a special read lock trick.

This may be considered an unduly strict demand, but it should be
pointed out that creating a new version of a referenced resource does
not neccessitate the creation of a new configuration version. An idea of
a typical work pattern was presented in the preceeding section.

5.6 Relation to other models

The task of comparing the ideas behind and consequences of the model
presented in this chapter with other models is not as easy as one might
think. This is due to two facts:

1. Not many other models for long lasting transactions incorporate
versioning concepts.

2. Not many other versioning models incorporate concepts from trans-
action management, esp. long lasting transactions.

To accentuate these two current facts, a quotation from Conradi and
Westfectel (1998) helps:

It has been recognized for a long time that the ACID principle
cannot be transferred from short to long transactions [Bargh-
outi and Kaiser 1991; Kaiser 1995; Feiler 1991a]. Rather, pre-
commit cooperation is required in order to coordinate long-
lasting development and maintenance tasks. Customizable
policies have been developed to control cooperation. Many
approaches to long transactions do not take versioning into
account [Barghouti and Kaiser 1991]. This is a severe restric-
tion since versions play a crucial role in cooperation control
[Estublier and Casallas 1995]. So far, only a few SCM systems
support long transactions [Conradi and Malm 1991; Godart
et al. 1995]. Many others merely provide workspaces and
mechanisms for controlling change propagation between them
[Estublier 1996].

Transaction models for long lasting transactions seldomly incorporate
versioning concepts and when they do, it is as far as I have been able
to ascertain, in order to help concurrency. In our case, concurrency is
already handled by Xymphonic transactions. Ergo, there is no appropri-
ate taxonomy available for giving a true comparison between the model
presented in this thesis and other transaction models. Note however

A Xymphonic model for versioning 77

that in (Anfindsen 1997, 93-102), the Xymphonic model itself is com-
pared to related models and techniques.

It should also be noted that version management tools which claim to
support transactions mostly do so by crude locking and isolation of
workspaces of individual participants. Variants may in some cases be
created and later merged into the main line of development. As pointed
out by Zeller (1996) this technique is mostly inefficient and has several
disadvantages. It seems promising that a Xymphonic model for version
management could be a valuable contribution in this respect.

5.7 Chapter summary and conclusions

This chapter has described of a possible combination of the Xymphonic
transaction model with versioning concepts. It is based on some new
lockmodes, a new SOC and a storage container called the version repos-
itory. The new lockmodes serve the following purposes:

• To give compatibility answers.

• To denote if a version is immutable. If so, it is locked with one of
the Ω locks. If it allows only one version child, a single revision, it
is locked with the ΩREV lock. On the other hand, if it allows poten-
tially any number of parallel version children, variants, it should
be locked with the ΩVAR lock.

• To denote that we are writing on a new version. If this new ver-
sion is going to allow only one version child unless explicitlyΩREV
locked sometime, it should be REV locked. Conversely, if we want
to allow variants we should use the VAR lock or else later use theΩVAR lock explicitly.

• To remove a resource from versioning we would try to BL lock it.

When a resource is version write locked by either the VAR or REV lock,
it is located in the new SOC, called the version SOC (VSOC), of the own-
ing transaction. When a versioned resource is commited, it is made im-
mutable and ΩVAR or ΩREV locked to be stored in a version repository.
This version commit can be performed either explicitly by manually set-
ting the Ω lock or implicitly by commiting the transaction.

Along the way, solutions to the problems of dynamic version fragmen-
tation and the issue of combining CCSR and MCC were outlined.

78 A Xymphonic model for versioning

To summarize, the features offered by the enhanced model include:

• Well known Xymphonic functionality such as:

– Long lasting collaborative Xymphonic transactions.

– Delegation of work through Xymphonies.

– Communication of state and relaxation of the ACID serializa-
tion properties through parametrized locks.

• New versioning functionality such as:

– Creation of versions of data items, resources.

– Choice of variant or revision semantics.

– Variants through branch identity.

– Representation of version histories through version graphs.

– Outlined support for configurations.

Chapter 6

Further work

This chapter presents some possible future lines of research based on
the results presented in the thesis. It also contains some questions
which for some reason, typically lack of time, were never investigated
to the degree they deserved but nevertheless, would be interesting to
pursue.

6.1 Version locks and concurrency

As pointed out in section 6.2, chapter 5 does not discuss when it is
preferrable to use variant or revision semantics. An identified prob-
lem is that sometimes, a user may want to ensure that branches are
not allowed, thus prohibiting people from working on parallel versions
in different transactions. Note that concurrency is still assumed to be
handled by the Xymphonic model, and variants are allowed to provide,
for example, temporary fixes, special modifications and parallel explo-
ration, as explained in section 4.2.3 and versatility as described in sec-
tion 4.3.

The problem of using variants as a vessel for undesirable concurrency
can be partly avoided by making sure the immediate version parent of
the object locked by the transaction is ΩREV locked in the pertinent
Xymphony, ancestor transaction, or the top-level DB. However, this so-
lution does not preclude transactions from creating variants of earlier
versions if they have been commited with variant semantics.

One possible solution could be to introduce a view containing informa-
tion about active transactions in the process of creating versions, their
policies regarding variant cooperation from other transactions, possi-
bly in addition to a larger rule-base of allowable variant creation. For
another transaction to create a variant it would, for example, have to

80 Further work

satisfy both the requirements set forth by the active transaction as well
of those of a more static character in the rule-base. A solution in this
direction would make it natural to reduce the VAR and REV lockmodes
to only one version lock, and the ΩVAR and ΩREV to one Ω lock, and
instead control their semantics by for example the means proposed in
this section.

6.2 Change of versioning semantics

As it is pointed out on page 53, the consequences of the changing be-
tween the different combinations of versioning semantics is yet unde-
fined. For example, attempting to REV lock a resource version with vari-
ant semantics signals a desire to restrict possibilities. This may be fine.
But what should happen later if it is discovered that it is imperative that
this particular version produces variants? One possible solution may be
to allow attributes of versions to be altered by placing an X lock on it.
This should, no doubt, be restricted by some criterion.

Although we may run into trouble by restricting the semantics to revision-
only, it seems probable that the problems could be worse if a version
with revision semantics is altered to allow variants. One problem is that
allowing variants may not be what was initially thought desirable. How-
ever, after changing to variants and creating a possibly large branch
leads to a problem when someone suddenly realizes that it , for ex-
ample, goes against some business rule. It seems highly undesirable to
delete the whole tree and thus discard the work done. On the other
hand, merging the variants with the main line of work may not either
be easy, perhaps not even possible.

Based on the arguments made in these two paragraphs, it would seem
advisable to adhere some restrictions on the change of versioning se-
mantics. If the Xymphonic versioning model were ever to be used in
practice, this should be investigated further, but a fair guess is that
making the restrictions dependent on e.g. project strategies and goals
are sound requirements. Also note that if the ideas in the preceeding
section were to be followed up, that is, the VAR and REV locks being
replaced by a single version lock and the two Ω locks being reduced to
one, the concerns pointed out in this section would probably be solved
along the way.

Further work 81

6.3 Further work on configurations

As stated in the preceeding chapter, work remains to be done on con-
figurations. This includes exploring the following:

• How to loosen up some of the most rigid requirements. Alterna-
tively, perhaps, finding that they are indeed neccessary.

• A discussion of possible approaches to and outcomes of merging
configurations.

6.4 Intent locks and configurations

Intent locks, also known as granular locks, are a means to increase con-
currency by weighing lock management overhead against concurrency,
and they also remove the serializability failure of phantoms (Gray &
Reuter 1993, 406). The intent locks introduced in section 3.3 are the
following:

1. IR - Intent to read.

2. IW - Intent to write.

3. RIW - Read with intent to write.

It would seem worthwile to investigate the pros and cons and possible
efficiency gains of using intent locks with configurations of resources. It
may become even more important if we were to allow for configurations
to further reference configurations in a recursive manner.

6.5 User interaction patterns

A common demand (esp. in open-source development) on SCM systems
is the ability to approve changes before they are commited. There are
many solutions to this, but none of them is as elegant as the Xymphonic,
where one simply commits the changes back to the supervisor which
may or may not approve, or may chose to delegate the approval to a
board of peers.

Presently a standard technique is to send commits in a human-readable
diff form (compared to the parent revision) by email(s) to mailinglists1,
or posts to newsgroups where they are reviewed/corrected by a com-
mittee and eventually commited or discarded. This is a common way of

1One example is the Subversion (http://subversion.tigris.org/) project.

82 Further work

discriminating between the different trust levels of developers. Those
less trusted must commit through email and be reviewed while the ones
with proven skills have access to commit new versions directly to the
repository.

While these procedures do not have the elegance and functionality of
Xymphonies and NCCSR, they are much simpler both to understand and
implement, and everyone with a mail client can potentially participate.
However, if a system with Xymphonic functionality is properly imple-
mented, it is fair to assume that the complexity of use would favor the
Xymphonic approach.

It seems a worthwile endeavor to investigate the applicability of dis-
tributed Xymphonic transactions with versioning in this kind of envi-
ronment, with many participants who are loosely connected and have
different trust levels.

6.6 Process support, active databases

It would seem that without altering the transaction model, the respon-
sibility of using one process model or another lies on the project par-
ticipants. There is no special support described in this thesis, but it is
conceivable that it could either be added as a separate layer in an im-
plementation, or as an addition to the model itself.

This model enhancement could, for example, be based on configura-
tions. An example is a version of a configuration being equal to one
rotation in a cycle of iterative, incremental development. It would be
interesting to see what kind of opportunities lie in this direction.

Another approach could be based on active database systems technol-
ogy. As stated in the chapter on further work in (Anfindsen 1997), active
database systems could provide interesting research in connection with
Xymphonic transactions. Anfindsen gives examples of areas where it
seems probable that the Xymphonic model is in a position to enrich the
field of active databases, particularly with visibilities between transac-
tions of interacting heterogenous components, and also the problem of
rule execution and serializability.

In the name of process support, it would be interesting to turn things
the other way around and see in what ways ideas of active database sys-
tems could be used to enrich Xymphonic collaboration, especially with
versioning in mind. For example, if a transaction has created some new

Further work 83

versions of an object and commits its results, it is conceivable that we
may want these new versions to trigger actions in a process support
scheme. It has to be further explored whether or not this is a usable
idea.

6.7 Change oriented features, deductive databases

Conradi and Westfechtel (1998) write the following:

Deductive databases [Das 1992; Ramamohanarao and Har-
land 1994; Ramakrishnan and Ullman 1995] provide for per-
sistent storage of facts and rules and are usually based on a
Prolog-like data model. Deductive capabilities are urgently
needed for intensional versioning. On the other hand, de-
ductive databases have been employed only rarely in SCM
[Zeller 1995; Bernard et al. 1987; Lavency and Vanhoede-
naghe 1988]. Rather, many SCM systems incorporate home-
grown deductive components that have been developed in an
ad hoc manner.

It would be interesting to see if change oriented versioning features
could be integrated into the Xymphonic model for versioning, and work
together with the ideas of this thesis. In connection with an effort in
this direction, it would be natural to see in what way deductive database
systems could be used to provide the DB functionality.

6.8 Temporal databases

Temporal database systems are entirely focused on the time dimension,
they do not, for example, cover variants. However, the Adele SCM sys-
tem (Estublier & Casallas 1994) uses temporal database functionality to
store revisions, and other mechanisms to handle e.g. variants. It would
be interesting to study the degree of usefulness of temporal databases
for Xymphonic transactions and versioning.

6.9 Distributed databases

The Xymphonic model in connection with distributed databases is the
topic of (Anfindsen 1997, 85-92). If pursuing the possibilities outlined
in (ibid), it would be natural to also investigate whether the ideas of
this thesis have any bearing, positive or negative, on the usefulness of
Xymphonic transactions in a distributed setting.

84 Further work

6.10 Further implementation

Although this thesis presents a prototype implementation of the most
important versioning ideas presented, interesting implementation ques-
tions remain to be answered. The prototype presented in appendix A
does not concern itself with parameter sets, neither is it intended to be
optimal with respect to speed and storage efficiency. Also, configura-
tions are only implemented to a very limited degree (they are not even
visible to the end-user).

This raises at least three new questions:

• Can configurations be implemented in an efficient and useful man-
ner?

• How can parameter treatment be implemented alongside version-
ing, what practical program design questions does this raise, and
how can it be solved?

• What is the best way to go about optimizing an implementation
of Xymphonic versioning for speed and storage efficiency? Can
any new algorithms or datastructures be discovered which are of
particular use for this model?

Finally, it would be appealing to investigate the possibilities of imple-
menting a virtual file system with Xymphonic versioning functionality.
This has been done for the ClearCase and ICE SCM tools, but can it be
practically implemented with Xymphonic functionality?

6.11 User interfaces

What are the best ways of presenting Xymphonic versioning functional-
ity to an end user? In the case of creating a serious implementation, it is
important to have qualified ideas about how they will react to different
forms of interfaces.

6.12 Chapter summary and conclusions

This chapter has presented some new possibilities which have arisen in
the course of finding a suitable way of adding versioning features to the
Xymphonic model. It also includes items which due to time limitations
were never explored and solved to a satisfactory degree.

Chapter 7

Thesis summary and
conclusions

This thesis had as a main objective to discover a solution of combining
versioning concepts with the Xymphonic transaction model in such a
way that it was beneficial for either one or both of the fields involved. To
provide background for these enhancements, chapters on transactions
and database concepts as well as concepts of version management and
an overview of the Xymphonic model were presented in the beginning
of the thesis.

In order to motivate a combination of the Xymphonic model with ver-
sioning, it was pointed out that there are valuable properties to be
gained which were not a already a part of the transaction model. When
allowing revisions to be created in a controlled manner, the following
benefits are gained:

• Backtracking when we need to go back to an earlier version

• Exploration of the evolution of an item

• Exploratory development is possible when we know we can revert
to a safe state

• Comparison is possible if we want to see what has changed from
one version to the next

• Safety in the sense that we can go back to a particular version and
fix errors there when they are discovered

• Safety in the sense that we have versions known to be stable when
a system is undergoing big changes

• Rationale capture by writing comments for each new version

86 Thesis summary and conclusions

• Reuse by being able to use suitable versions of objects in other
projects

At least to a certain degree, these advantages would also be availiable
by tailoring the Xymphonic model for use with a temporal database sys-
tem. However, it is a great asset to be able to allow for version branches,
variants, of objects to be created. This is not at the present time sup-
ported by temporal databases. Allowing variants gives the following
benefits:

• Temporary fixes to older revisions

• Special modifications which are not natural in the main line

• Parallel exploration when we do not know which approach is best

• Versatility when we need different variants for language, operat-
ing system, etc.

The problem definition of the thesis, divided the main problem into
three adherent problems:

1. How, if at all, can versions be generated in a controlled fashion in
a tree of transactions and Xymphonies?

2. How, if at all, can configuration control be incorporated into this
scheme?

3. Is it possible to create a model which is also feasible to implement?

To provide for a natural progression towards an answer to the main
problem, the adherent questions will be answered one by one.

7.1 Creating versions

To allow for revisions and variants to be created, two new lockmodes
were introduced: The VAR lock for creating variants, and the REV lock
for creating revisions. Also, when a version of a resource is commited,
either within its transaction or as a consequence when the owning trans-
action commits, the version is made immutable. This is marked by theΩ lock. When it is not implicit whether an immutable version allows
only one child version (revision) or more than one (variants), the Ω lock
is subscripted with REV or VAR respectively. Also outlined is how a re-
source can be removed from versioning by locking it in exclusive mode
and then applying a blank (BL) lock.

Thesis summary and conclusions 87

When a versioned resource is locked for writing by a transaction, it be-
longs to the version SOC (VSOC) of the transaction. The VSOC is a means
of explicitly separating the write locked versioned items from those that
are unversioned in order to increase clarity in explanations. The write
locked unversioned items will belong to the WSOC of the transaction as
before.

If we would like to create more than one version of an item within the
lifetime of a transaction, we can Ω lock the item explicitly, as opposed
to implicitly Ω locking it on transaction commit. This will make the ver-
sion immutable, move it to the version repository of the transaction,
and return a version lock on a new child version. The version repository
is a store of immutable, Ω locked objects.

It is also possible for a group of collaborators to cooperate on creat-
ing new versions through Xymphonies. Each Xymphony also has a ver-
sion repository. A user may chose to make an item he has in his VSOC
available to other users by Ω locking it to the version repository of the
Xymphony. Other users may VAR and REV lock version children of the
item in the domain of the Xymphony.

It must be concluded that, yes, versions can be generated in a controlled
fashion in a tree of transactions and Xymphonies.

7.2 Configuration control

As pointed out by Barghouti and Kaiser (1991) and later by Kaiser (1995),
an important part of versioning systems should be configuration con-
trol. That is, a means of marking which resources are consistent with
each other in some respect. This can for example be to enable software
developers to tell which parts of a program were included in adding
a particular feature. Some support for configurations is included, but
so far only a minor part of the solution for version extending Xym-
phonic transactions. Regrettably, configurations were easily integrated
only with special, restrictive considerations being made regarding lock-
ing. As reflected in the chapter on further work, configurations require
further efforts to be an effective tool for the Xymphonic versioning
model.

It can be claimed that a partial solution has been found for the problem
of configurations. Some further lines of research were identified in this
respect.

88 Thesis summary and conclusions

VAR, REV Version write locksΩVAR, ΩREV Version locks for immutable versions
BL Lock which removes a resource from versioning
Configurations Maintaining consistent collections of resources

to suit special purposes
VSOC Sphere of control for VAR and REV locked items
Version repository Store for immutable versions located

in transactions, Xymphonies and top
level DB

Figure 7.1: Main contributions of the thesis

7.3 Implementability

The theoretical work culminated in a prototype implementation of the
most central concepts, namely the VSOC, the version repository, the
VAR and ΩVAR locks. Even though configurations were implemented
only to a limited degree, this serves as a proof that the ideas presented
were of a practical nature and also feasible to implement. A high-level
description of the implementation is given in appendix A.

7.4 Main problem

Based on the results obtained by theoretical experimentation, presented
in chapter 5, and the prototype implementation presented in appendix
A, it should be fair to claim that versioning and Xymphonic collabora-
tion form a powerful symbiosis.

Of the three adherent questions to the main problem, two out of three
were given a solution. Unfortunately, configurations were not as easily
integrated as one might have hoped, but if further time and research is
vested on the subject, elegant solutions might be produced.

The main theoretical results of the thesis are shown in figure 7.1.

Appendix A

Proof-of-concept
implementation

The technical content of this chapter is restricted due to confidentiality
agreements signed by Xymphonic Systems AS and me on February 16,
2001, and March 4, 2002.

A.1 Overview

It is a well known fact that theory becomes increasingly interesting and
relevant when it is backed up by concrete experiments and data. In or-
der to provide this, a subset of the functionality outlined in chapter 5
was implemented in a proof-of-concept program. The intention of the
implementation was to create some functionality of a distributed, Xym-
phonically transaction managed filesystem with versioning capabilities.
The implementation does not claim to be bug-free.

The implementation consists of about 11300 lines of code divided among
three major parts: Client(≈ 4400 lines), server(≈ 3100 lines) and lock
manager(≈ 3800 lines). The lock manager with versioning capabilities
was based on an exisiting implementation of Xymphonic locking by An-
findsen which was about 2500 lines. Admittedly, these figures would
be different if some of the code had been refactored, particularly in the
client, and functionality had been relocated, particularly from lock man-
ager to server.

The major parts of the implmentation are organized in the following
packages:

• Client
com.xymphonic.clientfrontend

90 Proof-of-concept implementation

• Server
com.xymphonic.versionserver

com.xymphonic.persistentdata

Where versionserver contains the server functionality and per-

sistentdata contains the data classes to store in Objectivity.

• Lock manager
com.xymphonic.lockmanager

A.1.1 Programming language

Based on previous positive experiences, Java was chosen as program-
ming language. These reasons include the following:

• Nice syntax

• Powerful / expressive enough

• Automatic garbage collection

• Platform independence

• Good supply of bindings to DBMS’s

• Ok API for programming GUI with the swing components

A.1.2 Database backend

Objectivity, an OODBMS, was used to provide the base DB functionality.
This choice was also based on previous good experiences. Important
reasons for choosing Objectivity were:

• Flexible, object oriented storage of data.

• Query facilities, including both SQL and an Objectivity proprietary
language on object attributes.

• Good DB browsing and query capabilities with an Objectivity pro-
gram called the ooAssistant (using an Apache HTTP server). This
is convenient when debugging.

• It has a good language binding with Java, and this gives us the
following benefits:

– We can marshal database objects over the network to the
client through Java RMI.

– Integration with server code is seamless and thus reduces
complexity and improves programmer productivity.

Proof-of-concept implementation 91

A.2 Architecture

Figure A.1: The implementation architecture

All parts are implemented using Java. The lock manager is built on
a standard Xymphonic lock manager, which is extended with version
locking. It has ties to Objectivity because when a version lock is granted,
a new persistent object is created. The server receives remote method
invocations from the client and acts on these. This can, for example, be
either to query Objectivity in order to update some client side view, or
it can be operations on the lockserver. The implementation is based on
file data, which is imported into Objectivity. This is also done on the
server side. The client side provides a front end for giving commands
and editing and viewing files and lock manager status.

A.3 Client

The client module, com.xymphonic.clientfrontend , does not contain any
particularly exciting implementation details. It provides a graphical in-
terface to the functionality provided by the server and the lock man-
ager. An explanation of the structure and functionality as well as some
screenshots will be given.

A.3.1 Structure

This section lists the central classes of the client and explains their
purpose.

92 Proof-of-concept implementation

• ClientGUI

This is the main class of the client.

• EditorDialog

It is used to edit file contents. To do this, a standard JTextPane is
used. If the user is holding a read lock it may be used to view the
contents of the file.

• ResourceHistoryPanel

This class subclasses JPanel and is used to show the version his-
tory of a resource. It also contains buttons to lock a version of the
resource or create a new variant.

• The client package also contains some subclasses of JDialog in or-
der to ask the user about different data as well as listener classes.

A.3.2 Functionality

Figure A.2: The client GUI at startup. Explanations are given for the
encircled parts.

a Display of resources (files and directories) and the contents of the
lock manager is done with JTrees. The root node of a JTree can

Proof-of-concept implementation 93

not be altered at runtime, so a static root called Rtree is used in
the Resources pane.

b A JTabbedPane is used to switch between the view of resources
(figure A.3) , resource history (figure A.5) and lock manager state
(figure A.4).

c A JMenuBar holding the command options.

d A user may have more than one transaction in progress. This
JComboBox is used to choose in which one a chosen command
should operate.

e The name of the logged in user, <null> if not logged in.

The command options offered are the following (for each choice on the
menubar):

• File

– Login - Locates and opens a connection to the RMI server.

– Resource editor - Opens up an editor if we have selected a
resource with the proper lock in the lock manager tab in the
tabbed pane.

– Exit - Exit the program.

• Lock Management

– Begin Transaction

– Commit Transaction

– Abort Transaction

– Begin Xymphony

– Commit Xymphony

– Abort Xymphony

– Lock Resource

• Misc

– Reload lock manager tree

In addition to the commands listed here, the Resource History pane has
a button to create and lock a variant of a resource, if possible.

94 Proof-of-concept implementation

Figure A.3: The resources in the DB. In this case it contains the Objec-
tivity 7.0 trial version for Java. The file README is selected. Note that
c:\objy70\apache\README refers to the location the file was imported
from, not where it now resides.

Figure A.4: The user, Alice, has started a top level transaction called
AliceTLT and locked the resource from figure A.3 with VAR and Omega
locks and also created a branch called test.

Proof-of-concept implementation 95

A.4 Server

The server module, com.xymphonic.versionserver , is responsible for in-
teracting with the lock manager, querying Objectivity and creating datas-
tructures suitable for display on the client, and creating and inserting
initial resources into the DB. This functionality is exported to clients
through a subclass of the UnicastRemoteObject implementing a remote
interface.

A.4.1 Structure

The most important classes of the server are the following two:

• Init

This class is used to create storage containers used by this imple-
mentation in a blank Objectivity DB.

• MainClass

This class is responsible for receiving method calls from clients,
delegating and replying to these in a proper format.

Figure A.5: The version history of c:\objy70\apache\README after Al-
iceTLT has been commited.

96 Proof-of-concept implementation

A.5 Persistent classes

These classes are located in the com.xymphonic.persistentdata pack-
age. In order for a class to be accepted as persistent by Objectivity, it
must either subclass com.objy.db.app.ooObj or if it is already subclass-
ing another class, or if there are other reasons, it must implement one
of the persistent enabling interfaces defined by Objectivity. Note that
most standard Java classes and types such as String, int and Date are
automatically made persistent if referenced from a persistent objectin
Objectivity. If a value should not be persistent, the keyword transient

must be used in the variable declaration.

Some code listing will be given in later sections. The persistent classes
of this implementation include the following core classes:

• Resource

This class holds the contents and identification of a version of a
resource.

• Branch

Contains the name of the branch of a version.

• VersionNumber

Contains the name of the branch of a version.

• Rid

Contains the resource id, e.g. c:\objy70\apache\README. Together
with the version number and branch, this identifies a version of a
resource.

• Contents

Contains the byte contents of a file. For a directory it will be null.

• Configuration

References a number of versions of resources to serve a partic-
ular purpose. In this implementation, the Configuration class is
used only for easy access to stored resources by the server classes.
Users do not have the opportunity to create and act on configura-
tions.

In the design phase, it was decided to keep the names and class inter-
facing as generic as possible for possible later reuse with items other
than straight files and dirs. For example, the Resource class is not called
PersistentFile and it was also chosen not to integrate the branch, ver-
sion number and resource id directly into the Resource class in the
form of String / int values. This fits well with the software design

Proof-of-concept implementation 97

paradigm of high cohesion/low coupling. That is, conceptually the ob-
jects are tailored to fill well defined roles (high cohesion) and at the
same time, they provide accessor methods to separate communication
from concrete variables and storage (low coupling).

A.5.1 The Resource class

Note that this codelisting only shows the relevant fields of the class. The
methods, constructors and variables used for temporary book-keeping
are omitted. A few notes are given for some of the fields.

public class Resource extends ooObj {
// persistent fields :
protected Contents contents;
protected Rid RID;
protected Resource[] versionAncestors;
protected Resource[] versionSuccessors;
protected Resource[] resourceParents;
protected Resource[] resourceChildren;
protected int type; // 0 = inner, 1 = outer 10
protected LockParameters lockParameters;
protected VersionNumber versionNumber;
protected Date timeStamp;
protected Alias alias;
protected Branch branch;
protected User responsibleUser;
protected String versionDescription;

// Type of omega lock :
// 0 = unversioned, 1 = revisions only, 2 = revisions and variants 20
protected int semantics;

// legal values for semantics field
public static final int UNVERSIONED = 0;
public static final int REVISION = 1;
public static final int VARIANT = 2;

// legal values for type field
public static final int INNER = 0;
public static final int OUTER = 1; 30

}

Resource references

These are the resourceParents[] and resourceChildren[] arrays. They
are used to denote the hierarchical relationship between resources. To

98 Proof-of-concept implementation

provide generality, resources can have multiple resource parents and
children. Because this implementation is based on standard files and
directories, the resourceParents array will point to the parent directory
and thus never use more than the first index. If it is a file, all indexes in
resourceChildren will be null.

Objectivity has functionality for describing and managing relations be-
tween objects. It would have been appropriate to use a ManyToMany re-
lationship in this case. But in order to get the implementation up and
running quickly, with a low complexity, a simple array strategy was cho-
sen.

Version references

These are the versionAncestors[] and versionSuccessors[] arrays. The
implementation does not support merging of versions, so at most the
first index of versionAncestors will be used. This method of represent-
ing a graph, i.e. by having a list of edges at each node, is known as
the adjacency list datastructure, and it is the preferrable structure for a
sparse graph1.

Finding versions is not done by traversing the graph, but by using the
query facilities of Objectivity.

A.5.2 Storage strategy

Ojects in the implementation are stored uncompressed in an Objectivity
DB. That is, each resource version is stored in full without any compres-
sion in terms of common parts with versioning relatives. However, there
are possibilities of later enhancing the program with deltified storage.
Note that the following discussion assumes directed deltas. The Con-

tents class has the following fields:

protected byte[] contents;
protected boolean deltified;
protected DeltaModelInterface deltaModel;

Disk usage

It is thought that if the deltified variable has the value true , the bytes
of the contents field are compressed in terms of other versions’ con-
tents using methods in a delta model satisfying the requirements of a

1In most cases we can not assume that a version will have more than one or two
children and one or two parents

Proof-of-concept implementation 99

DeltaModelInterface . The uncompressed form can then be constructed
by calling methods of the same object, passing contents of suitable ver-
sions as parameters.

Also, it is possible to compress the contents in terms of itself, for exam-
ple with the utilities in the java.util.zip package. An interesting note
is that it was shown in the Vdelta technique (Korn & Vo 1995) that com-
pression is a special case of deltification. This means it is feasible to im-
plement a general diffencing and compression engine which could then
be used to provide very good flexibility in terms of delta computation.
The resultant data can, for example, be saved in the vcdiff compression
format (Korn & Vo 2000). A brief explanation of deltification is given in
section 4.2.7.

Version reconstruction

Reconstruction of older versions is a tradeoff between disk space usage
and speed. The following are examples of strategies:

• Store a delta between each revision and leave it at that. If we leave
it at this, the time needed to reconstruct old revisions can become
considerable.

• Storing every nth version without compression, allowing us to
start reconstructing closer to the revision in question. This gives
us a much shorter chain of computations but takes more space.

• The skiplist (Pugh 1989) is a datastructure with probabilistic per-
formance depending on a good randomizer function. It offers good
space-time tradeoff by randomizing how many deltas each version
should have. The higher number of deltas, the further back we can
jump just by using one delta. For example, in figure A.6 we only
have to apply three deltas to get from revision eight back to num-
ber one.

1 2 3 4 5 6 7 8

Figure A.6: An example of a skiplist.

100 Proof-of-concept implementation

A.6 Lock manager

The lock manager code is located in the com.xymphonic.lockmanager mod-
ule. Due to the confidentiality agreements referred to in the beginning
of this chapter, the descriptions given here will be of a limited character.
The versioning lock manager was based on an existing implementation
with Xymphonic functionality. Before any changes were performed, the
lock manager had the following functionality:

• Transaction begin/commit/abort

• Lock/unlock items with most of the traditional lockmodes explained
in (Anfindsen 1997, 20), including Xymphony locking.

• Xymphony begin/commit/abort

The following features were added:

• Tying control objects of the lock manager to implementation ob-
jects stored in the Objectivity DB.

• Adding VAR, REV, and Omega locks with their adherent compat-
ibilities and behavior. The REV lock is not available in the client
implementation, and neither is unversioned writing.

• Removing a resource version from versioning by using a BL lock
was added, but has not been thoroughly tested.

• Creating and storing versions.

• Version repositories.

It should be noted that Objectivity has a lock manager of its own. This
resulted in the implementation having to begin and commit/abort Ob-
jectivity sessions, roughly equal to transactions, when accessing the
contents of the database. These sessions either aborted, if a fatal prob-
lem was encountered, or commited, when the server method returned
(or sooner).

Due to this, it was attempted to store the whole Xymphonic lock man-
ager in Objectivity to provide easy, serializable method invocation and
persistence on the lock manager and its data. Unfortunately, this was
impossible due to the massive use of a third party datastructure imple-
mentation in the old lock manager, which was incompatible with some
of the rules for object storage in Objectivity. Replacing this datastruc-
ture with a compatible one would in effect mean writing a new lock
manager from scratch, and this was reasoned as not being worth the

Proof-of-concept implementation 101

extra work.

The patchwork of synchronization resulted in Objectivity regulating the
short term database access, Java synchronized blocks handled concur-
rency in the lock manager, while the version extended Xymphonic lock
manager was responsible for the long term locking and collaboration.

A.7 Chapter summary and conclusions

This chapter has presented a proof-of-concept implementation of the
central concepts of the version extended Xymphonic model. These con-
cepts include version locking with the VAR lock, and explicit and im-
plicit immutable locking with the Omega lock. In addition to these locks,
nested version repositories were implemented and used for transac-
tions and Xymphonies.

Based on the experiences gained by programming the prototype as pre-
sented in this chapter, it is fair to claim that version extensions to Xym-
phonic transactions are well suited for implementation.

Appendix B

Formal notation

When creating example scenarios and explanations, it was a frustrating
experience to spend so much time and effort in order to make decent
figures and subsequent verbal explanations. It was also suspected that
there was a lack of clarity which was hard to overcome using the clas-
sical figure/explanation approach. This incited a testing of alternatives
for explaining structure and dependencies. The result was the develop-
ment of an EBNF1 grammar and a notation for versioned items.

Unfortunately this compactness severely degraded the readability of
chapters which were supposed to explain, clarify and motivate central
ideas and solutions. Anyhow, because someone might some day need
this notation as a starting point from where to perform more formal
experiments on the version extended Xymphonic model, or may find
other uses for it, it is included in this appendix.

B.1 EBNF rules for nesting

The following standard EBNF syntax is used:

| Separates alternatives.
? A (meta)symbol or grouping can occur 0 or 1 times.
∗ 0 or more times.
+ 1 or more times.
[[. . .]] Grouping of symbols.

1Extended Backus-Naur form

104 Formal notation

The grammar:

< resource > ::= C | R‡

< resourcelist> ::= Rlst { [[< resource > [[,C | ,R]]∗]]? }
< xym > ::= XYM { < resourcelist > , < vrep > , < txs >β }
< xymlist > ::= Xlst { [[< xym > [[, < xym >]]∗]]? }
< wsoc > ::= WSOC < resourcelist>
< rsoc > ::= RSOC < resourcelist >
< vsoc > ::= VSOC < resourcelist >
< vrep > ::= VREP < resourcelist>
< tx > ::= T† { < txlist >α , < xymlist > ,

< wsoc >? , < rsoc >? , < vsoc >? , < vrep >? }
< txlist > ::= Tlst { [[< tx > [[, < tx >]]∗]]? }
< userview > ::= U§ { < txlist > }

‡ The C and R denote configuration and resource respectively, and
should follow the rules of notation suggested in the next section.

† This T should be on the form Tn Um where n is the transaction
identifier and Um is a user with identity m.

§ Should be on the form Um where m is the identity of the user.

α These are the subtransactions of the tx.

β These are the active transactions in the (sub)Xymphony.

Formal notation 105

An example of nesting

This textual syntax representation is equivalent to situation 3 in fig-
ure 5.11 where the generic "User" has been replaced with Alice. Note
also that the graphical figure was produced with simplicity in mind and
therefore, some information was omitted. The notation of the resource
versions, RS0 and RS1, is thus not completely compliant with the pro-
posed notation in the next section.

UAlice

{
Tlst
{

Ta UAlice

{
Tlst
{

Taa UAlice

{
Tlst { }
Xlst { }
WSOC { }
RSOC { }
VSOC
{

RS1

}
VREP { }

}
}
Xlst { }
WSOC { }
RSOC { }
VSOC { }
VREP
{

RS0

}
}

}
}

B.2 Notation for versions

Resource and configuration versions can be identified by the following
attributes:

106 Formal notation

• id, e.g. a filename or a name of a configuration

• Version number

• Branch name

This can be written with the following notation:

C(id)βα for configigurations and R(id)βα for resources, where
id represents the id of the resource or configuration, α is
the version number and β is the branch,. If lockmode is rel-
evant, the following notation is proposed: C(id)βα − L ϑ and

R(id)βα − L ϑ where L is the lock type, e.g. W, and ϑ is the lock
parameter set, e.g. { complete draft }, if present.

B.3 Notation for relations

The following notation gives neccessary information about relationships.
Lockmodes and parameters of the resources and configurations are
omitted.

1. References:

(a) Empty reference set
C(bug#23)main

0
r
-→∅

This means that the configuration C(bug#23)main
0 holds no

references.

(b) Configuration referencing resources
C(bug#23)main

1
r
-→ {R(a.java)main

0 , R(b.java)main
1 }

This means that C(bug#23)main
1 references R(a.java)main

0 and
R(b.java)main

1 .

(c) Configuration referencing both resources and configurations
C(nice feature)main

7
r
-→ {R(a.java)main

12 , R(b.java)main
5 ,

C(subfeature A)test
1 C(subfeature A)main

2 }
This means that C(nice feature)main

7 holds references to R(a.java)main
12 ,

R(b.java)main
5 , C(subfeature A)test

1 , and C(subfeature A)main
2 . A

configuration should be able to hold references to a mix of
both resources and configurations.

(d) Hierarchical structure
R(c :\rocket\science)main

0
ro
-→ {R(a.java)main

37 }
This means that R(c : \rocket\science)main

0 is the hierarchical
owner of R(a.java)main

37 , that is, a.java in revision 37 on the
main branch.

Formal notation 107

(e) Fragmentation

R(a.java)main
3

rf
-→ {R(a.java :: Propulsion.calculate())main

2 }
This means that R(a.java)main

3 is the owner of the fragment
(a.java :: Propulsion.calculate())main

2 . A resource may own more
than one fragment. This fragment notation is not a proposi-
tion, it is just to show how a fragment id may look.

2. Version ordering:

(a) Revision
R(a.java)main

0
v
-→ {R(a.java)main

1 }
(b) Variants

C(subfeature A)main
0

v
-→ {C(subfeature A)main

1 , C(subfeature A)test
1 }

(c) Merge
{C(subfeature A)main

1 , C(subfeature A)test
1 } v

-→ C(subfeature A)main
2

B.4 Chapter summary and conclusions

This chapter has presented an EBNF grammar describing allowable com-
positions of Xymphonic transactions as well as a notation for resources
and configurations. A possible notation of their relational mappings was
also described.

References

Adams, E, Gramlich, W, Muchnick, S, Tirfing, S. 1986. SunPro: Engineer-
ing a practical program development environment. In Proceedings of
the International Workshop on Advanced Programming Environments
(Trondheim, June), R Conradi, T M Didriksen, D H Wanvik, Eds., LNCS
244, Springer-Verlag, 86-96

Anfindsen, O J. 1997. Apotram - an application oriented transaction
model. PhD thesis, University of Oslo, Norway, 1997.

Anfindsen, O J. 1994. SQL transaction management. SQL3 change pro-
posal, ISO/IEC JTC1/SC21/WG3 DBL SOU-94.

Anfindsen, O J. 2000. Collaborative transactions. Memo on the commer-
cial potential of Apotram, http://www.apotram.com

Anfindsen, O J, Storløpa, R. 2001. Supporting xymphonic transactions
on top of Oracle. Proceedings of the International Conference on ad-
vances in infrastructure for electronic business, science and education
on the Internet (SSGRR). 2001.

Anfindsen, O J. 2002. The power of Xymphonic Collaboration. Whitepa-
per, Xymphonic Systems AS. 2002.

Bachman, C W. 1965. Integrated Data Store. DPMA Quarterly, Jan. 1965.

Barghouti, N S, Kaiser, G E. 1991. Concurrency control in Advanced
Database Applications. ACM Computing Surveys, Vol. 23, No. 3, 269-
317.

Belkhatir, N, Conradi, R. 1996. SCOOP: A Unified Model for Cooperative
Transactions in Software Engineering, Proc. 8th Int’l Conf. on Comput-
ing and Information (ICCI’96), 19-22 June, 1996, Waterloo, Canada.

Bernstein, P A, Hadzilacos, V, Goodman, N. 1987. Concurrency control

110 References

and recovery in database systems. Reading, Mass., Addison-Wesley.

Berzins, V. 1994. Software merge: Semantics of combining changes to
programs. ACM Trans. Program. Lang. Syst. 16, 6 (Nov.), 1875-1903.

Berzins, V, Ed. 1995. Software Merging and Slicing. IEEE Computer Soci-
ety Press, Los Alamitos, CA.

Binkley, D, Horwitz, S, Reps, T. 1995. Program integration for languages
with procedure calls. ACM Trans. Softw. Eng. Methodol. 4, 1 (Jan.), 3-35.

Birtwistle, M G, Dahl, O J, Myhrhaug, B, Nygaard, K. 1973. Simula Be-
gin. Petrocelli / Charter, New York, NY, 1973.

Buchmann, A, Özsu, M T, Hornick, M, Georgakopoulus, D, Manola, F
A. 1992. A transaction model for active distributed object systems. In:
Database transaction models for advanced applications. A Elmagarmid
(ed). San Mateo, Calif., Morgan Kaufman Publishers, 123-158.

Buffenbarger, J. 1995. Syntactic software merging. In Software Config-
uration Management: Selected Papers SCM-4 and SCM-5 (Seattle, WA,
April), J Estublier, Ed., LNCS 1005, Springer-Verlag, 153-172.

Chu-Carroll, M C. 2001. Separation of Concerns in Software Configura-
tion Management. ICSE 2001 workshop on software configuration man-
agement (SCM 10), March 2001

Codd, E F. 1970. A relational model of data for large shared data banks.
Communications of the ACM, 13, (6), 377-390.

Conradi, R, Malm, C. 1991. Cooperating transactions and workspaces
in EPOS: Design and preliminary implementation. In Proceedings of the
Third International Conference on Advances in Information Systems En-
gineering (CAISE 9́1) R. Andersen, J A. Bubenko, and A. Solvberg, Eds.
(Trondheim, May), LNCS 498, Springer-Verlag, 375-392.

Conradi, R, Westfechtel, B. 1998. Version Models for Software Config-
uration Management. ACM Computing surveys, 30, (2), June 1998.

Cronk, R D. 1992. Tributaries and deltas. BYTE 17, 1 (Jan.), 177-186.

Dahl, O J, Myhrhaug, B, Nygaard, K. 1970. SIMULA-67 Common Base
Language. Technical Report N S-22, Norwegian Computing Centre, Oslo,
Norway, 1970.

References 111

Dart, S. 1991. Concepts in configuration management systems. In Pro-
ceedings of the Third International Workshop on Software Configura-
tion Management (Trondheim, Norway, June), P H Feiler, Ed., ACM Press,
New York, 1-18.

Dart, S A. 1992. The past, present, and future of configuration manage-
ment. Tech. Rep. CMU/SEI-92-TR-8 (july), Software Engineering Institute,
Carnegie-Mellon University, Pittsburgh, PA.

Date C J. 1995. An introduction to database systems, (6th edition). Read-
ing, Mass., Addison-Wesley.

Davies, C T. 1973. Recovery demantics of a DB/DC system. Proceed-
ings of the ACM National Conference 28, 136-141.

Davies, C T. 1978. Data processing spheres of control. IBM systems jour-
nal, 17, (2), 179-198.

Dayal, U, Hsu, M, Ladin, R. 1991. A transactional model for long- running
activities. Proceedings of the 17th International Conference on Very
Large Databases - VLDB’91. Barcelona, Spain, 113-122.

Ege, A, Ellis, C A. 1987. Design and Implementation of Gordion, an Ob-
ject Base Management System. Third International Conference on Data
Engineering. 226-234. Los Angeles.

Eisenberg, A, Melton, J. 1999. SQL:1999, formerly known as SQL3. SIG-
MOD Record 28, (1), 131-138.

Elmagarmid, A K (ed). 1992. Database transaction models for advanced
applications. San Mateo, Calif., Morgan Kaufmann Publishers

Elmasri, R, Navathe, S B. 1989. Fundamentals of database systems. Red-
wood City, Calif., Benjamin / Cummings.

Elmasri, R, Navathe, S B. 1994. Fundamentals of database systems. Red-
wood City, Calif., Benjamin / Cummings. Second edition.

Estublier, J, Casallas, R. 1994. The Adele configuration manager. In (Tichy
1994), chapter 4, pages 99-133.

Estublier, J, Casallas, R. 1995. Three dimensional versioning. In Software
Configuration Management: Selected Papers SCM-4 and SCM-5 (Seattle,

112 References

WA, April), J. Estublier, Ed., LNCS 1005, Springer-Verlag, 118-135.

Estublier, J. 1996. Workspace management in software engineering envi-
ronments. In Software Configuration Management: ICSE9́6 SCM-6 Work-
shop (Berlin, March) I. Sommerville, Ed., LNCS 1167, Springer-Verlag.

Feiler, P H. 1991. Configuration management models in commercial en-
vironments. Tech. Rep. CMU/SEI-91-TR-7 (March), Software Engineering
Institute, Carnegie-Mellon University, Pittsburgh, PA.

Ford, W, Topp, W. 1996. Data Structures with C++. Prentice-Hall, Inc.,
1996. ISBN 0-02-420971-6.

Fraser, C, Myers, E. 1986. An editor for revision control. ACM Trans.
Program. Lang. Syst. 9, 2 (April), 277-295.

Garcia-Molina, H, Salem, K. 1987. SAGAS. Proceedings of ACM SIGMOD
International Conference. 249-259.

Godart, C, Canals, G, Charoy, F, Molli, P. 1995. About some relationships
between configuration management, software process, and cooperative
work: The COO environment. In Software Configuration Management:
Selected Papers SCM-4 and SCM-5 (Seattle, WA, April), J. Estublier, Ed.,
LNCS 1005, Springer-Verlag, 173-178.

Goldstein, I P, Bobrow, D G. 1980. A layered approach to software de-
sigh. Tech. Rep. CSL-80-5, XEROX PARC, Palo Alto, CA.

Gray, J N, Lorie, R A, Putzolu, G R, Traiger, L I. 1976. Granularity of
locks and degrees of consistency in a shared database. In: Proceedings
of IFIP Working Conference on Modelling of Data Base Management Sys-
tems. Freuenstadt, Germany. 695-723. Also in Modelling in Data Base
Management Systems, G M. Nijssen, (ed), Elsevier Noth-Holland, 1976,
365-395.

Gray, J, Reuter, S. 1993. Transaction processing: concepts and tech-
niques. San Mateo, Calif., Morgan Kauffman Publishers.

Grune, D. 1986. Distribution of the original shell script version of cvs in
the comp.sources.unix volume 6 release in 1986.

Härder, T, Reuter, A. 1983. Principles of transaction-oriented database
recovery. ACM Computing Surveys, 15, (4), 287-317.

References 113

Honda, M. 1988. Support for Parallel Development in the Sun Network
Software Environment. Second International Workshop on Computer-
Aided Software Engineering, 5-5–5-7.

Hornick, M F, Zdonik, S B. 1987. A Shared Segmented Memory System
for an Object-Oriented Database, ACM Transactions on Office Automa-
tion Systems, Vol. 5, No. 1, 70-95.

Horwitz, S, Prins, J, Reps, T. 1989. Integrating non-interfering versions
of programs. ACM Trans. Program. Lang. Syst. 11, 3 (July), 345-387.

Hunt, J J, Kiem-Phong, V, Tichy, W F. 1998. Delta Algorithms: An Empir-
ical Analysis. ACM Transactions on Software Engineering and Method-
ology, 7, (2), April 1998, pages 192-214.

Kaiser, G E. 1995. Cooperative transactions for multiuser environments.
In: Modern database systems, Kim, W (ed). Reading, Mass, Addison Wes-
ley, 409-433.

Kaiser, G E, Feiler, P H. 1987. Intelligent Assitance Without Artificial
Intelligence. Thirty-second IEEE Computer Society International Confer-
ence, 236-241. IEEE Computer Society Press, San Fransisco.

Kaiser, G E, Perry, D E, Schell, W M. 1989. Infuse: Fusing Integration Test
Management with Change Management. COMSPAC 89: The Thirteenth
Annual International Computer Software and Application Conference,
552-558. IEEE Computer Society Press, Orlando.

Kaiser, G E, Pu, C. 1992. Dynamic restructuring of transactions. Database
transaction models for advanced applications. Elmagarmid A (ed). San
Mateo, Calif., Morgan Kauffman Publishers, 265-290.

Katz, R H. 1990. Toward a unified framework for version modelling in
engineering databases, ACM Comput. Surv. 22, 4 (Dec.), 375-408.

Kim, W. 1995 (ed). Modern database systems. The object model, interop-
erability and beyond. ACM Press / Addison Wesley Publishing Company.
ISBN 0-201-59098-0.

Kjølstad, A G. 2001. Issues concerning parameter sets in Apotram. MSc
thesis, University of Oslo, Norway, May 2001.

Kohler, W H. 1981. A survey of techniques for synchronization and re-
covery in decentralized computer systems. ACM Computer Surveys, 13,

114 References

(2), 149-183.

Korn, D, Kiem-Phong, V. 2000. Vdelta: Differencing and Compression,
Practical Reusable Unix Software, B Krishnamurthy, Ed., John Wiley &
Sons, Inc., 1995.

Korn, D, Kiem-Phong, V. 2000. The VCDIFF Generic Differencing and
Compression Data Format. IEEE Internet-Draft, March 2000.

Kulkarni, U R, Ramirez, R G. Independently updated views. IEEE Trans-
actions on knowledge and data engineering, 9, (5), 1997.

Leblang, D. 1994. The CM challenge: Configuration management that
works. In Configuration Management, W F Tichy, Ed., Vol. 2 of Trends in
Software, Wiley, New York, 1-38.

Leblang, D B, McLean, G D. 1985. Configuration management for large-
scale software development efforts. In Proceedings of the Workshop on
Software Engineering Environments for Programming-in-the-Large (Har-
wichport, MA, June), 122-127.

Lie, A, Conradi, R, Didriksen, T, Karlsson, E, Hallsteinsen, S O, Holager,
P. 1989. Change oriented versioning. In Proceedings of the Second Euro-
pean Software Engineering Conference (Coventry, UK, Sept.), C Ghezzi
and J A McDermid, Eds., LNCS 387, Springer-Verlag, 191-202.

Lippe, E, van Oosterom, N. 1992. Operation-based merging. In Proceed-
ings of ACM SIGSOFT ’92: Fifth Symposium on Software Development
Environments (SDE5), (Tyson’s corner, VA, Dec.) ACM SIGSOFT Softw.
Eng. Not. 17, 5, 78-87.

Mahler, A. Variants: Keeping things together and telling them apart. In
(Tichy 1994), chapter 3, 39-69.

Merchant, A, Wu, K-L, Yu, P S, Chen, M-S. Performance analysis of dy-
namic finite versioning schemes: storage cost vs. obsolescence. IEEE
Transactions on knowledge and data engineering, 8, (6), 1996.

Micallef, J, Clemm, G M. 1996. The Asgard system: Acitvity-based con-
figuration management. Proc. 6th International Workshop on Software
Configuration Management, volume 1167 of Lecture Notes in Computer
Science, Berlin, Germany, March 1996. Springer- Verlag., 175-186.

Moss, J E B. 1981. Nested transactions - an approach to reliable dis-

References 115

tributed computing. PhD thesis, MIT Dept. of Elect. Eng. and Comp. Sci
Technical Report 260.

Munch, B P. 1993. Versioning in a Software Engineering Database - the
Change Oriented Way. PhD Thesis, Division of Computer Systems and
Telematics, The Norwegian Institute of Technology, Norway, Sept. 17,
1993.

Munch, B P, Larsen, J -O, Gulla, B, Conradi, R, Karlsson, E -A. 1993.
Uniform versioning: The change-oriented model. In Proceedings of the
Fourth International Workshop on Software Configuration Management
(Baltimore, MD, May), S Feldman, Ed., (Preprint) 188-196.

Nijssen, G M. 1981. An Architecture for Knowledge base Software. Con-
trol Data / University of Brussels, July 1981.

Nodine, M, Zdonik, S. 1992. Cooperative transaction hierarchies: Trans-
action support for design applications. VLDB Journal, 1, (1), 41-80.

Pugh, W. 1989. Skip Lists: A Probabilistic Alternative to Balanced Trees,
Proceedings of the Workshop on Algorithms and Data Structures, Ot-
tawa Canada, August 1989.

Reed, D P. 1978. Naming and synchronization in a decentralized com-
puter system. PhD thesis, MIT Dept. of Elect. Eng. and Comp. Sci Tech-
nical Report 205.

Rochkind, M J. 1975. The source code control system. IEEE Trans. Softw.
Eng. 1, 4 (dec.), 364-370.

Silberschatz, A, Stonebraker, M, Ullman, J (eds). 1991. Database sys-
tems: achievements and opporttunities. Communications of the ACM,
34, (10), 110-120.

Silberschatz, A, Korth, H, Sudarshan, S. 1997. Database System Con-
cepts. McGraw-Hill computer science series. McGraw-Hill, third edition.
Software Maintenance And Development Systems. 1990. Aide-de-Camp
Product Overwiew. Software Maintenance and Development Systems,
Concord, MA.

Tichy, W F. 1982. Design, implementation, and evaluation of a revision
control system. In Proceedings of the Sixth International Conference on
Software Engineering (Tokyo, Sept.), IEEE Computer Society Press, Los
Alamitos, CA, 58-67.

116 References

Tichy, W F. 1985. RCS-A system for version control. Softw. Pract. Ex-
per. 15, 7 (July), 637-654.

Tichy, W F. 1988. Tools for Software Configuration Management, In Proc.
of the ACM Workshop on Software Version and Configuration Control,
Grassau, FRG, Berichte des German Chapter of the ACM, Band 30, 466
p., Stuttgart, January 1988, B G Teubner Verlag, pages 1-20.

Tichy, W F. 1994. Configuration Management, volume 2 of Trends in
Software, Ed. John Wiley & Sons, Chichester, UK, 1994.

Walpole, J, Blair, G S, Malik, J, Nicol, J R. 1988. A Unifying Model for
Consistent Distributed Software Development Environments. ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, 183-190. P Henderson, Ed.

Walter, B. 1984. Nested Transactions with Multiple Commit Points: An
Approach to the Structuring of Advanced Database Applications. Tenth
International Conference on Very Large Data Bases, 161-171. Morgan
Kauffman, Singapore.

Wächter, H, Reuter, A. 1992. The ConTract model. Database transaction
models for advanced applications. A Elmagarmid (ed). San Mateo, Calif.,
Morgan Kauffman Publishers, 219-264.

Westfechtel, B. 1991. Structure-oriented merging of revisions of soft-
ware documents. In Proceedings of the Third International Workshop
on Software Configuration Management, (Trondheim, Norway, June), P
H Feiler, Ed., ACM Press, New York, 68-79.

Westfectel, B, Munch, B P, Conradi, R. 2001. A Layered Architecture for
Software Configuration Management, IEEE Transactions of Software En-
gineering, vol. 27, no. 12, p. 1111-1133 (December 2001).

Whitehead, J E Jr. 1997. World Wide Web Distributed Authoring and Ver-
sioning (WebDAV): An Introduction. StandardView, Vol. 5, No. 1, March
1997.

Wieczerzycki, W. 1998. Database and Transaction Model for Dynamic
and Cooperative Workflows, Journal of Computing and Information Tech-
nology, CIT 6, 1998, 1, 73-88.

Zeller, A, Snelting, G. 1995. Handling version sets through feature logic.

References 117

In Proceedings of the Fifth European Software Engineering Conference
(Barcelona, Sept.), W Schäfer and P Botella, Eds., LNCS 989, Springer-
Verlag, 191-204.

Zeller, A. 1996. Configuration Management with Version Sets. A Unified
Software Versioning Model and its Applications. PhD thesis, Technis-
chen Universität Braunschweig, Germany, November 1996.
http://www.cs.tu-bs.de/softech/papers/zeller-phd/

