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ABSTRACT
The diagonal nonadiabatic term arising from the Born–Oppenheimer wave function ansatz contains contributions from a vector and scalar
potential. The former is provably zero when the wave function can be taken to be real valued, and the latter, known as the diagonal
Born–Oppenheimer correction (DBOC), is typically small in magnitude. Therefore, unless high accuracy is sought, the diagonal nonadi-
abatic term is usually neglected when calculating molecular properties. In the presence of a magnetic field, the wave function is generally
complex, and the geometric vector potential gives rise to a screening force that is qualitatively important for molecular dynamics. This screen-
ing force is written in terms of the Berry curvature and is added to the bare Lorentz force acting on the nuclei in the presence of the field. In
this work, we derive analytic expressions for the Berry curvature and DBOC using both first- and second-quantization formalisms for the case
of generalized and restricted Hartree–Fock theories in a uniform magnetic field. The Berry curvature and DBOC are calculated as a function
of the magnetic field strength and the bond distance for the ground-state singlets of H2, LiH, BH, and CH+. We also examine the stability and
time-reversal symmetry of the underlying self-consistent field solutions. The character of the DBOC and Berry curvature is found to depend
on the magnetic field and varies between molecules. We also identify instances of broken time-reversal symmetry for the dissociation curves
of BH and CH+.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0079304

I. INTRODUCTION

A crucial component for performing Born–Oppenheimer
molecular dynamics (BOMD) in the presence of a magnetic field
is the Berry curvature,1–5 which is used to calculate a screening
force due to the electrons in the molecular system.6–12 This screen-
ing force serves to counteract the bare Lorentz force acting on the
nuclei by accounting for electronic shielding. For example, in neutral
systems, exact cancellation of the bare Lorentz force and screening
force is achieved for center-of-mass motion.7,8,10–12 It is, therefore,
qualitatively important to include the Berry curvature for dynamics
simulations in a magnetic field.

Recently, the Berry curvature was calculated for molecular
systems using a finite-difference method,11 accounting for the

arbitrary global phase of the perturbed electronic wave functions.
This scheme was applied to the dynamics of the H2 molecule in
uniform magnetic fields.12 While the finite difference scheme was
shown to be successful in calculating the Berry curvature, it is
advantageous to calculate the Berry curvature analytically. Analytic
calculation circumvents possible issues related to stability and step
size, and also obviates the need to account for the global phase of the
wave function.

Another related quantity, the diagonal Born–Oppenheimer
correction (DBOC), is a scalar potential that modifies the
Born–Oppenheimer (BO) potential used in BOMD. The DBOC
has been calculated both numerically13–16 and analytically17–19 for
molecules in the absence of a field. It is typically small and has
been shown to have a mostly negligible impact on many quantities
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of interest.13–19 As such, it is usually neglected when performing
calculations in quantum chemistry unless a high level of quanti-
tative accuracy is sought. However, to the best of our knowledge,
little is known about the behavior of the DBOC in a magnetic field.
For this reason, it is desirable to calculate the DBOC and study its
dependence on the magnetic field.

Here, we present derivations of the analytic Berry curvature
and DBOC in a uniform magnetic field, using both the first- and
second-quantization formalisms. The resulting expressions were
implemented in the software package LONDON.20 The LONDON
program has the capability to perform ab initio molecular electronic-
structure calculations in the presence of a magnetic field, using
London atomic orbitals (AOs) [also known as gauge-including
atomic orbitals (GIAOs)]21–28 for gauge-origin invariant calcu-
lation of energies and molecular properties at various levels
of theory including Hartree–Fock theory,25,26,29 (current)density
functional theory,30,31 full-configuration-interaction theory,32,33

coupled-cluster theory,34 and linear-response theory.35

This work is organized as follows: Sec. II contains a presenta-
tion of the effective nuclear Hamiltonian in a magnetic field and
the attendant equations of motion, and an overview of the gener-
ally complex coupled perturbed Hartree–Fock (CPHF) equations
and the first- and second-quantization derivations of the analytic
Berry curvature and DBOC. Section III presents Berry curvature
and DBOC results for H2, LiH, BH, and CH+ at the Restricted
Hartree–Fock (RHF) level of theory. Summary of the work and
future directions are given in Sec. IV.

II. THEORY
We consider a joint system of nuclei and electrons. Through-

out this work, I and J serve as indices for the Nnuc nuclei, and their
lowercase counterparts i and j will serve as indices for the Nel elec-
trons. We use the notations MI , ZI , and RI for the mass, atom
number, and position of nucleus I, respectively. We use ri and pi for
the position operator and momentum operator of electron i, respec-
tively. The vectors of collective nuclear and electronic coordinates
are denoted by R and r, respectively. The vector potential of a uni-
form magnetic field B at position u is given by A(u) = 1

2 B × (u −G),
where G is the gauge origin.

A. Screened Lorentz force and Berry curvature
All relevant equations in this subsection have been previously

derived.11,12 Our purpose is to present the equations that will be
important for all material that follows.

The nonrelativistic Hamiltonian of a molecular system in a
uniform magnetic field can be written according to

Hmol = Tnuc +Hel + Vnuc. (1)

Here, the nuclear kinetic-energy operator is given by

Tnuc =
Nnuc

∑
I=1

Π2
I

2MI
, ΠI = PI − ZIeA(RI), (2)

where PI = −ih∂/∂RI is the canonical momentum and ΠI is the
physical momentum of nucleus I, while the nuclear repulsion
operator is given by

Vnuc =
Nnuc

∑
I>J=1

ZIZJe2

4πε0∣RI − RJ ∣
, (3)

where e is the elementary charge and ε0 is the vacuum permittivity.
The electronic Hamiltonian is given by

Hel =
1

2me

Nel

∑
i=1
(pi + eA(ri))

2

+

Nel

∑
i>j=1

e2

4πε0∣ri − rj∣
−

Nel

∑
i=1

Nnuc

∑
I=1

ZIe2

4πε0∣ri − RI ∣
. (4)

The molecular wave function satisfies the time-dependent
Schrödinger equation,

Hmol∣Ψ⟩ = ih̵
∂

∂t
∣Ψ⟩. (5)

In the Born–Oppenheimer (BO) approximation, the total
ground-state wave function can be written as a product of nuclear
and electronic wave functions,

Ψ(r, R, t) = ψ(r; R)Θ(R, t), (6)

where Θ(R, t) is the nuclear wave function and ψ(r; R) is the elec-
tronic wave function. From here onward, we suppress the arguments
of the wave functions. The BO nuclear Schrödinger equation in a
magnetic field takes the form

H∣Θ⟩ = (T +U)∣Θ⟩ = ih̵
∂

∂t
∣Θ⟩, (7)

where the kinetic- and potential-energy operators, respectively, are

T =
Nnuc

∑
I=1

1
2MI

Π2
I , (8)

U = UBO +UDBOC. (9)

In Eq. (8), ΠI is the effective nuclear physical momentum,

ΠI = ΠI + χI

= PI − ZIeA(RI) + χI , (10)

where χI is the geometric vector potential,

χI = ⟨ψ∣PI ∣ψ⟩. (11)

In Eq. (9), UBO is the BO scalar potential obtained from solving the
electronic Schrödinger equation at a given nuclear configuration and
UDBOC is the diagonal BO correction (DBOC),

UDBOC =
Nnuc

∑
I=1

1
2MI

ΔI , (12)
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where

ΔI = ⟨PIψ∣PIψ⟩ − χ2
I . (13)

Note that ΔI is invariant to geometric gauge transformations of
the electronic wave function ψ of the sort,

ψ′ = e−iF(R)/h̵ψ, (14)

where the gauge function F is a real-valued differentiable function of
the nuclear coordinates R.

Starting from Eq. (7) and using Ehrenfest’s theorem and local-
ity assumptions regarding the nuclear wave function, the nuclear
equations of motion become11,12

MI R̈I = FBO
I (R) + FL

I (Ṙ) + FB
I (R, Ṙ), (15)

where we have introduced the BO force

FBO
I (R) = −∇IUBO(R), (16)

the (bare) Lorentz force

FL
I (Ṙ) = −eZI B × ṘI , (17)

and the Berry (screening) force

FB
I (R, Ṙ) = ∑

J
ΩIJ(R) ṘJ . (18)

The∇I in Eq. (16) differentiates with respect to RI andΩIJ in Eq. (18)
is the Berry curvature,

ΩIαJβ = ∇JβχIα −∇IαχJβ

= ih̵[⟨∇Iαψ∣∇Jβψ⟩ − ⟨∇Jβψ∣∇Iαψ⟩]

= −2h̵Im⟨∇Iαψ∣∇Jβψ⟩, (19)

where Iα is a composite nuclear-Cartesian index. The screened
Lorentz force on nucleus I is the sum of the bare Lorentz force and
the Berry force on this nucleus. Henceforth, we omit the arguments
R and Ṙ to the forces. Finally, note that the Berry curvature is gauge
invariant.11 For further information on the Berry curvature and
its physical meaning in the context of molecular dynamics, see
Refs. 10–12.

B. Diagonal nonadiabatic matrix elements
in first quantization

The coupled perturbed Hartree–Fock (CPHF) equations are
used to calculate the derivatives of orbital coefficients, which will be
necessary when calculating the analytic Berry curvature and DBOC.
The CPHF equations are well known,36–39 and there is relatively
little modification to the structure of the equations in the presence

of a uniform magnetic field. Nevertheless, here we give an overview
of the derivation for the generally complex CPHF equations in the
spinor basis, for the Generalized Hartree–Fock (GHF) level of the-
ory, later specialized to the Restricted Hartree–Fock (RHF) level of
theory.

Before deriving working equations, we note that there are
different conventions concerning the nomenclature for coupling ele-
ments and the Born–Oppenheimer approximation. Some authors
use “Born–Oppenheimer” to refer to the case where all nonadia-
batic coupling elements are neglected; see, for example, Refs. 40 and
41. On the other hand, some authors use “Born–Oppenheimer” to
refer to the case where the diagonal nonadiabatic coupling elements
are included in the nuclear equation; see Refs. 42 and 43. Addition-
ally, “nonadiabatic” coupling elements are understood by certain
authors to mean coupling between different electronic states exclu-
sively, but couplings between the same electronic state (diagonal)
may be referred to as “nonadiabatic” as well; see Refs. 6, 40, 41, and
42. Here, we use the convention that “Born–Oppenheimer” refers
to the nuclear equation neglecting all couplings, and we refer to the
diagonal couplings as “nonadiabatic.”

1. Coupled perturbed Hartree–Fock theory
In what follows, p, q, r, s refer to general spinor indices, i, j, k, l

refer to occupied spinors, and a, b, c, d refer to virtual spinors.
Throughout this section, superscript Greek letters τ, κ,η, and ξ all
refer to a spin index, which is to say τ, κ,η, ξ ∈ {↑, ↓}.

We adopt the chemist’s notation for two particle integrals,

(μν∣λσ) = ∫ dr1dr2ϕ∗μ (r1)ϕν(r1)r−1
12 ϕ

∗
λ (r2)ϕσ(r2), (20)

and adopt the Coulomb-exchange shorthand notation,

(μν∥λσ) = (μν∣λσ) − (μσ∣λν). (21)

A spinor is written as a linear combination of basis functions ϕ(r)
according to

Φi(r) = ∑
μτ

cτμiϕμ(r). (22)

Thus, for N basis functions, there are 2N terms in the sum in
Eq. (22), and the Fock and density matrices are blocked 2N × 2N
matrices in the atomic orbital (AO) basis. The Fock matrix in a
uniform magnetic field can be written as

Fτκμν = hμνδτκ +Gτκ
μν(P) +

ZFτκμν, (23)

where hμν is the one-electron matrix element in the presence of a
magnetic field and Gτκ

μν(P) is the two-electron matrix element given
by

Gτκ
μν(P) = ∑

λσηξ
Pηξλσ[(μν∣σλ)δτκδηξ − (μλ∣σν)δτηδκξ], (24)

Pηξμν = ∑
i

cημic
ξ∗
νi , (25)
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and the blocked AO basis representation of the spin-Zeeman
contribution to Eq. (23) is given by44

ZF =
1
2

⎛
⎜
⎝

BzS (Bx − iBy)S

(Bx + iBy)S −BzS

⎞
⎟
⎠

, (26)

where the overlap matrix elements are given by

Sμν = ∫ drϕ∗μ (r)ϕν(r). (27)

Taking the derivative of a spinor coefficient with respect to
some component of the nuclear position vector Rx, we have

∂cτμp

∂Rx
= cτ,x

μp = ∑
n

cτμnUx
np, (28)

where the sum is over all spinors n and the Ux matrix is the solution
to the CPHF equations in the MO basis. In the case of noncanonical
MOs, the overlap matrix is diagonal and the Fock matrix is block
diagonal,

Spq = (C†SC)pq = δpq, (29)

Fai = (C†FC)ai = 0. (30)

Since these equations must hold at all geometries, their differentia-
tion gives the equations that determine the Ux matrix.

Differentiating the overlap matrix in Eq. (29) in the spinor rep-
resentation and setting the resulting expression equal to zero gives
the conditions

Sx
pq = Ux∗

qp + 𝒮
x
pq +Ux

pq = 0, (31)

𝒮 x
pq = ∑

μντκ
cτ∗μp Sx

μνc
κ
νqδτκ, (32)

and we have made use of Eq. (28) to arrive at Eq. (31). For the
off-diagonal elements of the Ux matrix, further conditions will be
obtained by differentiating the virtual-occupied elements of the Fock
matrix, while the diagonal elements Ux

pp may be chosen freely to
satisfy the conditions

Ux∗
pp +Ux

pp + 𝒮
x
pp = 0, (33)

implying that they are determined only up to an imaginary constant
(corresponding to a phase factor).

Differentiating the virtual-occupied elements of the Fock
matrix in Eq. (30) and using Eq. (28), we obtain

Fx
ai = ∑

j
Ux∗

ja Fji +ℱ
x
ai +∑

b
Ux

biFab = 0, (34)

which may be rearranged to give

∑
j

Ux
ajFji −∑

b
Ux

biFab = ℱ
x
ai −∑

j
𝒮 x

ajFji, (35)

where the first term on the right-hand side contains the contribu-
tions from the derivative AO Fock matrix,

ℱ x
ai = ∑

μντκ
cτ∗μa Fτκ,x

μν cκνi. (36)

It may be decomposed in the manner

ℱ x
ai = ℱ

(x)
ai +𝒢 ai(Px

), (37)

ℱ (x)ai = hx
ai +

Zℱ x
ai+𝒢

x
ai(P), (38)

where the terms entering ℱ (x)ai depend only on derivative integrals,
not on derivatives of coefficients,

hx
ai = ∑

μντκ
cτ∗μa (h

x
μν)c

κ
νiδτκ, (39)

Zℱ x
ai = ∑

μντκ
cτ∗μa (

ZFτκ,x
μν )c

κ
νi, (40)

𝒢 x
ai(P) = ∑

μντκ
cτ∗μa (G

τκ,x
μν (P))c

κ
νi, (41)

Gτκ,x
μν (P) = ∑

λσηξ
Pηξλσ[(μν∣σλ)

xδτκδηξ − (μλ∣σν)
xδτηδκξ]. (42)

By contrast, the second contribution to ℱ x
ai in Eq. (37),

𝒢ai(Px
) = ∑

μντκ
cτ∗μa (G

τκ
μν(P

x
))cκνi, (43)

depends on Ux through its dependence on the derivative density
matrix Px, whose elements are given by

Pηξ,x
μν = ∑

i
cη,x
μi cξ∗νi +∑

i
cημic

ξ,x∗
νi . (44)

To make the dependence on Ux explicit, we use Eq. (28) to expand
the coefficient derivatives in Eq. (44) in terms of the response matri-
ces. Separating out the sum over n in Eq. (28) into occupied and
virtual parts and using Eq. (31), we obtain

Pηξ,x
μν = −∑

ij
cημi𝒮

x
ijc
ξ∗
νj +∑

bi
cημbUx

bic
ξ∗
νi +∑

bi
cημiU

x∗
bi cξ∗νb . (45)

Substituting this result in Eq. (43) and evaluating Gτκ
μν(Px

) according
to Eq. (24), we obtain

𝒢ai(Px
) = −∑

kl
𝒮 x

kl(ai∥lk) +∑
bj
[(ai∥jb)Ux

bj + (ai∥bj)Ux∗
bj ], (46)

completing our discussion of Eq. (37).
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We are now ready to set up the CPHF equations. Substituting
the expression for ℱ x

ai given in Eq. (37) in Eq. (35) and rearranging,
we obtain

∑
bj
[Fabδij − Fjiδab + (ai∥jb)]Ux

bj +∑
bj
(ai∥bj)Ux∗

bj

= −ℱ (x)ai +∑
j
𝒮 x

ajFji +∑
kl
𝒮 x

kl(ai∥lk). (47)

These equations are not sufficient to determine Ux
bj and Ux∗

bj as inde-
pendent linear parameters. To obtain a sufficient set of equations, we
take the complex conjugate of both the sides of Eq. (47) and arrive at
the following system of linear equations for Ux

bj and Ux∗
bj :

HX = b, (48)

where H is the complex GHF Hessian matrix45 and has the block
structure,

H =
⎛
⎜
⎝

A B

B∗ A∗
⎞
⎟
⎠

, (49)

with matrix elements

Aai,bj = Fabδij − Fjiδab + (ai∥jb), (50)
Bai,bj = (ai∥bj). (51)

The solution and right-hand side vectors are blocked as

X =
⎛
⎜
⎝

Ux

Ux∗
⎞
⎟
⎠

, b =
⎛
⎜
⎝

b0

b∗0

⎞
⎟
⎠

, (52)

where the elements b0 are given by

(b0)ai = −ℱ
(x)
ai +∑

j
𝒮 x

ajFji +∑
kl
𝒮 x

kl(ai∥lk). (53)

We observe that there is little difference in the basic structure
between the standard CPHF equations and those presented here.
Aside from the spin Zeeman term, the main difference is that
any simplifications predicated upon assuming real-valued quantities
cannot be undertaken in the context of magnetic fields.

2. Berry curvature and DBOC
To calculate the Berry curvature and DBOC, we will be inter-

ested in wave function overlaps of the forms ⟨∇Iαψ∣∇Jβψ⟩ and
⟨ψ∣∇Iαψ⟩. Expressing the electronic wave function in terms of
a Slater determinant of spinors and evaluating the overlaps, we
obtain

⟨ψ∣∇Iαψ⟩ = ∑
i
⟨Φi∣ΦIα

i ⟩, (54)

⟨∇Iαψ∣∇Jβψ⟩ = ∑
i
⟨ΦIα

i ∣Φ
Jβ
i ⟩ −∑

i
∑
j≠i
⟨ΦIα

i ∣Φj⟩⟨Φj∣ΦJβ
i ⟩

−∑
i
∑
j≠i
⟨Φi∣ΦIα

i ⟩⟨Φj∣ΦJβ
j ⟩, (55)

where we have introduced the notation

∂Φi

∂RIα
= ∇IαΦi = ΦIα

i . (56)

Note that the sum in Eq. (54), and each term in the sum, must
either be zero (for the real-valued case) or pure imaginary. This fol-
lows from the differentiation of the normalization condition for the
electronic wave function and the spinors.

We wish to evaluate the Berry curvature and DBOC in terms of
CPHF quantities. To begin, we note

ΦIα
i = ∑

μτ
cτμi

∂ϕμ
∂RIα

+∑
μτ

∂cτμi

∂RIα
ϕμ

= Φ(Iα)i +∑
r

UIα
ri Φr , (57)

where the term Φ(Iα)i is the derivative of the spinor differentiat-
ing only the basis functions and leaving the coefficients unchanged
[denoted by the superscript (Iα)] and UIα

ri is the solution to the
CPHF equations. Substituting Eq. (57) in Eq. (55) and carrying out
the requisite algebraic manipulations, we find

⟨ψ∣∇Iαψ⟩ = ∑
i
(⟨Φi∣Φ(Iα)i ⟩ +UIα

ii ) (58)

and

⟨∇Iαψ∣∇Jβψ⟩ = ∑
i
⟨Φ(Iα)i ∣Φ(Jβ)i ⟩ +∑

ir
(⟨Φr∣Φ(Iα)i ⟩ +UIα

ri )
∗

× (⟨Φr∣Φ(Jβ)i ⟩ +UJβ
ri ) −∑

ir
⟨Φ(Iα)i ∣Φr⟩⟨Φr∣Φ(Jβ)i ⟩

−∑
i≠j
(⟨Φj∣Φ(Iα)i ⟩ +UIα

ji )
∗
(⟨Φj∣Φ(Jβ)i ⟩ +UJβ

ji )

−∑
i≠j
(⟨Φi∣Φ(Iα)i ⟩ +UIα

ii )(⟨Φj∣Φ(Jβ)j ⟩ +UJβ
jj ), (59)

which may be rearranged to give

⟨∇Iαψ∣∇Jβψ⟩ = ∑
i
⟨Φ(Iα)i ∣Φ(Jβ)i ⟩ +∑

ia
(⟨Φa∣Φ(Iα)i ⟩ +UIα

ai )
∗

× (⟨Φa∣Φ(Jβ)i ⟩ +UJβ
ai ) −∑

ir
⟨Φ(Iα)i ∣Φr⟩⟨Φr∣Φ(Jβ)i ⟩

−∑
ij
(⟨Φi∣Φ(Iα)i ⟩ +UIα

ii )(⟨Φj∣Φ(Jβ)j ⟩ +UJβ
jj ). (60)

Since the diagonal elements UIα
ii and UJβ

ii are determined only up
to an imaginary constant (phase factor), the first- and second-order
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nonadiabatic matrix elements are determined up to imaginary and
real constants, respectively.

Focusing on the Berry curvature, we see from the expression
ΩIαJβ = −2h̵Im⟨∇Iαψ∣∇Jβψ⟩ given in Eq. (19) that any provably real-
valued contributions to Eq. (60) may be discarded. As such, the Berry
curvature can be written as

ΩIαJβ = −2h̵Im[∑
i
⟨Φ(Iα)i ∣Φ(Jβ)i ⟩ +∑

ia
(⟨Φa∣Φ(Iα)i ⟩ +UIα

ai )
∗

× (⟨Φa∣Φ(Jβ)i ⟩ +UJβ
ai ) − ∑

ir
⟨Φ(Iα)i ∣Φr⟩⟨Φr∣Φ(Jβ)i ⟩]

= −2h̵Im
⎡
⎢
⎢
⎢
⎢
⎣

∑
i
⟨Φ(Iα)i ∣Φ(Jβ)i ⟩ +∑

ia
⟨Φa∣Φ(Jβ)i ⟩UIα∗

ai

+∑
ia
⟨Φ(Iα)i ∣Φa⟩U

Jβ
ai +∑

ia
UIα∗

ai UJβ
ai

− ∑
ij
⟨Φ(Iα)i ∣Φj⟩⟨Φj∣Φ(Jβ)i ⟩

⎤
⎥
⎥
⎥
⎥
⎦

, (61)

which is independent of the phase factors in Eq. (60).
We finally turn to the analytical calculation of the DBOC, which

according to Eq. (13) is given by

ΔIα = ⟨∇Iαψ∣∇Iαψ⟩ + ⟨ψ∣∇Iαψ⟩2. (62)

From Eqs. (58) and (60), we see that the first-order nonadiabatic
matrix elements remove the phase factors from the second-order
nonadiabatic matrix element, giving the following DBOC:

ΔIα = ∑
i
⟨Φ(Iα)i ∣Φ(Iα)i ⟩ −∑

ir
∣⟨Φ(Iα)i ∣Φr⟩∣

2
+∑

ia
∣⟨Φa∣Φ(Iα)i ⟩ +UIα

ai ∣
2
.

(63)

Like the Berry curvature given in Eq. (61), the DBOC depends only
on the occupied-virtual elements of UIα.

3. Closed-shell CPHF and stability considerations
Beginning from the CPHF equations in the spinor basis in

Sec. II B, it is straightforward to generate the corresponding unre-
stricted Hartree–Fock (UHF) or RHF equations. For the purposes
of this work, we are interested in examining singlet surfaces in
a magnetic field. As such, we have only implemented the closed-
shell CPHF equations. These equations are identical in structure to
those already presented, but for the sake of completeness, we write
them here. Restricting the indices i, j, k, l to doubly occupied spatial
orbitals and a, b, c, d to doubly occupied-virtual orbitals, the linear
system of equations to be solved in the RHF case is given by

H1X1
= b1, (64)

where H1 is the complex RHF Hessian or stability matrix45 and has
the block structure

H1
=
⎛
⎜
⎝

A1 B1

B1∗ A1∗
⎞
⎟
⎠

, (65)

with

A1
ai,bj = Fabδij − Fjiδab + 2(ai∣ jb) − (ab∣ ji), (66)

B1
ai,bj = 2(ai∣bj) − (aj∣bi). (67)

The solution vector X1 and right-hand side b are also blocked, with

X1
=
⎛
⎜
⎝

Ux

Ux∗
⎞
⎟
⎠

, b1
=
⎛
⎜
⎝

b1
0

b1∗
0

⎞
⎟
⎠

, (68)

where the elements b1
0 are given by

(b1
0)ai = −ℱ

(x)
ai +∑

j
𝒮 x

ajFji +∑
kl
𝒮 x

kl[2(ai∣lk) − (ak∣li)]. (69)

Note that the derivative terms appearing in Eq. (69) can be calculated
from the analogous expressions appearing in Sec. II B, accounting
for the obvious restrictions in the spin. Additionally, the final RHF
Berry curvature and DBOC expressions in terms of doubly occupied
spatial orbitals are exactly the same as those in terms of spinors, with
the exception that in the RHF case, each term appearing in Eqs. (61)
and (63) needs to be multiplied by a factor of two.

There is an important benefit to solving Eq. (64) for singlet sur-
faces, which is access to the complex RHF stability matrix given in
Eq. (65). Diagonalization of the complex RHF stability matrix and
subsequent examination of the eigenvalues allows for the classifica-
tion of the self-consistent field (SCF) stationary point with respect
to other complex RHF solutions.45 Positive-definite stability matri-
ces indicate minima, mixed positive/negative eigenvalues indicate
saddle points, and zero eigenvalues are indeterminate, though often
associated with symmetry breaking.46

C. Diagonal nonadiabatic matrix elements in second
quantization

In the present section, we derive expressions for nonadiabatic
matrix elements using the formalism of second quantization.
As we shall see, the resulting second-quantization expression is
equivalent but not identical to the first-quantization expression
derived above, with slightly different linear equations to be solved.
Although the second-quantization formulation is here given only
for Hartree–Fock theory, it can easily be extended to many-body
theories such as coupled-cluster theory, for which the second-
quantization treatment is particularly well suited. Second quanti-
zation has previously been used to derive an expression for the
atomic axial tensor in vibrational circular dichroism (VCD) for
multi-configuration self-consistent field (MCSCF) wave functions,47

but without the use of the natural connection, as done here. For a
discussion of the natural connection, see Refs. 48 and 49.

1. Electronic Hamiltonian in the natural connection
Since the second-quantization formalism is most transparent

and easy to manipulate in an orthonormal basis, we begin by
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constructing a set of MOs that are manifestly orthonormal at all
geometries.50–52 For this purpose, let

Φp(r; R) = ∑
μ

c(0)μp ϕμ(r; R) (70)

be a set of MOs that are constructed to be orthonormal at the
reference geometry R = R0,

S(R0) = I, (71)

while S(R) ≠ I for R ≠ R0. At each R ≠ R0, a set of orthonormal-
ized MOs (OMOs) are obtained by the orthonormalization of the
unperturbed reference MOs,

Φ̃p(r; R) = ∑
q

Tqp(R)Φq(r; R), (72)

where the Tqp(R) are the elements of the connection matrix
T(R),48,51,52 which satisfies

T†
(R)S(R)T(R) = I⇔ T(R)T†

(R) = S−1
(R) (73)

at an arbitrary geometry R with the special case

T(R0) = I. (74)

We may choose T(R) = S−1/2
(R), but this symmetric connection50 is

not optimal, introducing unnecessarily large changes in the orbitals
as we distort the geometry. Instead, we use the natural connection,48

with the connection matrix

T(R) =W−1
(R)[W(R)S−1

(R)W†
(R)]

1/2
, (75)

where W contains overlaps between MOs at R0 and R,

Wpq(R) = ⟨Φp(R0)∣Φq(R)⟩. (76)

In terms of the OMOs, we may now construct the second-
quantization Hamiltonian in the usual manner,50

H̃(R) = ∑
pq

h̃pq(R)ã†
p(R)ãq(R)

+
1
2∑pqrs

g̃pqrs(R)ã†
p(R)ã

†
r (R)ãs(R)ãq(R), (77)

associating a creation operator ã†
p(R) with each OMO. Together

with the corresponding annihilation operators ãp(R), they satisfy
the usual anticommutation relations of second quantization at all
values of R. Here and in the following, we use tilde to denote
quantities (operators and integrals) in the OMO basis, at a general
geometry R.

At R ≠ R0, the MOs Φp(R) at R in Eq. (70) cannot be exactly
represented in the basis of the MOs Φp(R0) at R0. Introducing the

orthogonal complement of the space spanned by the MOs at R0, we
can write the resolution of identity in the manner

∑
p
∣Φp(R0)⟩⟨Φp(R0)∣ +∑

u
∣Φu(R0)⟩⟨Φu(R0)∣ =1, (78)

where index p is used for MOs in the primary basis of Eq. (70)
and index u is used for the MOs in its complement. Differen-
tiating the condition in Eq. (73) and W as defined in Eq. (76)
with respect to some (unspecified) nuclear coordinate at R0, we
obtain T′ + S′ + (T′)† = 0 and W′

+ (W′
)
†
= S′, respectively, which

in combination give the following expression for the first derivative
of the connection matrix at the unperturbed geometry:

T′(R0) = −W′
(R0), (79)

where

W′
rq(R0) = ⟨Φr(R0)∣Φ′q(R0)⟩. (80)

Next, differentiating the OMOs in Eq. (72) and using the expression
for the differentiated connection matrix in Eq. (79), we arrive at the
following expression for the first derivative of the OMOs:

Φ̃′q(r; R0) = Φ′q(r; R0) −∑
r

W′
rq(R0)Φr(r; R0). (81)

We now establish an important consequence of the natural con-
nection. Multiplying Eq. (81) from the left by Φ∗p (r; R0) and by
Φ∗u(r; R0), and integrating and invoking the orthonormality of MOs,
we obtain, respectively,

⟨Φp(R0)∣Φ̃′q(R0)⟩ = 0, (82)

⟨Φu(R0)∣Φ̃′q(R0)⟩ = ⟨Φu(R0)∣Φ′q(R0)⟩. (83)

In the natural connection, therefore, the first-derivative OMOs at R0
have no component in the original MO basis, belonging entirely to the
orthogonal complement.49 We may now write the first derivative of
the OMOs and of the corresponding creation operators as

Φ̃′p(r; R0) = ∑
u
⟨Φu(R0)∣Φ′p(R0)⟩Φu(r; R0), (84)

(ã†
p)
′
(R0) = ∑

u
⟨Φu(R0)∣Φ′p(R0)⟩a†

u(R0), (85)

where the summations are only over MOs in the orthogonal
complement.

2. Hartree–Fock diagonal nonadiabatic
matrix elements

Suppressing the dependence of the creation and annihilation
operators on R, an N-electron single-determinant wave function at
R may be written as a unitarily transformed product of N OMO
creation operators,

∣R, κ⟩ = eiκ̃
∣0̃⟩ = eiκ̃

N

∏
i=1

ã†
i ∣vac⟩. (86)
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The unitary operator eiκ̃ is expressed in terms of the Hermitian
orbital-rotation operator κ̃ = κ̃† given by

κ̃ = ∑
p>q
κpqã†

p ãq +∑
p>q
κ∗pqã†

q ãp +∑
p
κppã†

p ãp, (87)

where the κpq are the elements of a Hermitian matrix κ, whose
off-diagonal elements are related as κpq = κ∗qp, while the diagonal
elements κpp are real. In the following, we will treat κpq and κ∗pq with
p > q and κpp as independent variational parameters.

Differentiating the expression for the HF state given in Eq. (86)
with respect to some (unspecified geometric parameter) at R0, we
obtain

∣0′⟩ = iκ′∣0⟩ +∑i(ã
†
i )
′ai∣0⟩, (88)

where

∣0⟩ =
N

∏
i=1

a†
i ∣vac⟩ (89)

is the variationally optimized HF wave function at R = R0, which
is parameterized such that κ̃ = 0. Since ∣0′⟩ is calculated at R0, the
OMOs reduce to the MOs. We have, therefore, removed the tilde
from the operators except in (ã†

i )
′, since the derivative is calculated

for the OMOs.
In Eq. (88), the first term represents a unitary transformation

of MOs within the orbital basis, and the second term represents the
change in the orbital basis. Note that the second term in Eq. (88)
represents a sum of states, where in each state, one of the creation
operators in the HF state has been replaced by the correspond-
ing differentiated operator (in agreement with the rule for the
differentiation of a product).

Using Eq. (87) (noting that only the first term contributes) and
Eq. (85) and noting that

a†
i aj∣0⟩ = a†

i aa∣0⟩ = a†
aab∣0⟩ = 0, (90)

where i ≠ j, we arrive at the following more explicit expression for
the first-order wave function:

∣0′⟩ = (∑
ai

iκ′aia
†
aai +∑

ui
⟨Φu∣Φ′i⟩a

†
uai)∣0⟩. (91)

The overlap with the unperturbed wave function becomes

⟨0∣0(Iα)⟩ = ∑
i

iκIα
ii , (92)

while the overlap between two such states is

⟨0(Iα)∣0(Jβ)⟩ = ∑
aibj
κIα∗

ai κJβ
bj ⟨0∣a

†
i aaa†

baj∣0⟩ +∑
ij
κIα

ii κ
Jβ
jj

+ ∑
uivj
⟨Φ(Iα)i ∣Φu⟩⟨Φv ∣Φ(Jβ)j ⟩ ⟨0∣a†

i aua†
vaj∣0⟩

= ∑
ai
κIα∗

ai κJβ
ai +∑

ij
κIα

ii κ
Jβ
jj +∑

ui
⟨Φ(Iα)i ∣Φu⟩⟨Φu∣Φ(Jβ)i ⟩.

(93)

Invoking the resolution of the identity, we obtain

⟨0(Iα)∣0(Jβ)⟩ = ∑
ai
κIα∗

ai κJβ
ai +∑

ij
κIα

ii κ
Jβ
jj +∑

i
⟨Φ(Iα)i ∣Φ(Jβ)i ⟩

−∑
ip
⟨Φ(Iα)i ∣Φp⟩⟨Φp∣Φ(Jβ)i ⟩, (94)

which is our final expression for the second-order nonadiabatic
matrix element. It remains to evaluate the derivatives of the
orbital-rotation parameters κIα

ai and κJβ
ai .

3. Hartree–Fock response equations
For each R and each κ, the expectation value of the Hamiltonian

in the state ∣R, κ⟩ of Eq. (86) may be expanded as

E(R, κ) = ⟨R, κ∣H̃∣R, κ⟩

= ⟨0̃∣H̃∣0̃⟩ − i⟨0̃∣[κ̃, H̃]∣0̃⟩ −
1
2
⟨0̃∣[κ̃, [κ̃, H̃]]∣0̃⟩ + ⋅ ⋅ ⋅ . (95)

As is easily verified, the only terms in Eq. (87) that contribute to
the expansion of the HF energy are occupied-virtual orbital-rotation
operators,

κ̃ = ∑
ai
κaiã†

a ãi +∑
ai
κ∗aiã

†
i ãa. (96)

At the reference geometry R0, the HF energy satisfies the following
zero- and first-order stationary conditions with respect to these
parameters:

∂E(R0, κ)
∂κai

∣
κ̃=0
= 0,

d
dR

∂E(R0, κ)
∂κai

∣R=R0
κ̃=0
= 0. (97)

From the expansion in Eq. (95), we find that the zero-order
conditions (Hartree–Fock stationary conditions) at R0 are given by

i⟨0∣[a†
aai, H]∣0⟩ = 0, (98)

i⟨0∣[a†
i aa, H]∣0⟩ = 0, (99)

where H = H̃(R0). Evaluating the commutators, we find that

⟨0∣[a†
i aa, H]∣0⟩ = −⟨0∣[a†

aai, H]∣0⟩∗ = Fai, (100)

where Fai is a virtual-occupied element of the Fock matrix, which
vanishes for the optimized HF state.

We next consider the first-order stationary conditions in
Eq. (97) at the reference geometry R = R0. From the expansion in
Eq. (95), we obtain the HF response equations

⟨0∣[a†
aai, [H, κ̃′]]∣0⟩ = i⟨0̃∣[ã†

a ãi, H̃]∣0̃⟩∣
′
R=R0

, (101)

⟨0∣[a†
i aa, [H, κ̃′]]∣0⟩ = i⟨0̃∣[ã†

i ãa, H̃]∣0̃⟩∣
′
R=R0

. (102)
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In setting up these equations, we have used the fact that
⟨0∣[κ̃, [a†

aai, H]]∣0⟩ = ⟨0∣[a†
aai, [κ̃, H]]∣0⟩, as is easily verified.

By some further straightforward but tedious algebra, we find that

⟨0∣[a†
i aa, [H, a†

baj]]∣0⟩ = Aaibj, (103)

⟨0∣[a†
i aa, [H, a†

j ab]]∣0⟩ = −Baibj, (104)

where Aaibj and Baibj are defined in Eqs. (50) and (51), respec-
tively. To evaluate the right-hand side of the response equations, we
note that

⟨0̃∣[ã†
i ãa, H̃]∣0̃⟩ = F̃ai = h̃ai +∑

k
(ai∥kk) (105)

is a virtual-occupied element of the Fock matrix in the OMO basis
at R. Differentiation at R0 gives

F̃′ai = F′ai −∑
j
⟨Φ′a∣Φj⟩Fji −∑

b
Fab⟨Φb∣Φ

′
i⟩

−∑
jp
(ai∥pj)⟨Φ′j ∣Φp⟩ −∑

jp
(ai∥jp)⟨Φp∣Φ′j⟩, (106)

where the first term is the derivative of the MO Fock matrix, and
the remaining terms arise from the differentiation of the connection
matrix. We may now write the response equations in the form

−∑
bj

B∗aibjκ
′
bj +∑

bj
A∗aibjκ

∗′
bj = (iF̃

′
ai)
∗, (107)

∑
bj

Aaibjκ
′
bj −∑

bj
Baibjκ

∗′
bj = iF̃′ai. (108)

Letting f′ be the vector containing the elements F̃′ai, we obtain the
matrix equations

⎛
⎜
⎝

A B

B∗ A∗
⎞
⎟
⎠

⎛
⎜
⎝

iκ′

(iκ)∗′
⎞
⎟
⎠
= −
⎛
⎜
⎝

f′

f′∗
⎞
⎟
⎠

, (109)

whose solutions are needed to evaluate the nonadiabatic matrix
elements in Eq. (94).

4. Comparison with first-quantization formulation
To compare with the closed-shell CPHF equations, let w′ be the

vector containing the unoccupied–occupied elements W′ in Eq. (80)
so that w′ai = ⟨Φa∣Φ′i⟩. Then,

⎛
⎜
⎝

A B

B∗ A∗
⎞
⎟
⎠

⎛
⎜
⎝

w′

w∗′
⎞
⎟
⎠
=
⎛
⎜
⎝

Δ′

Δ∗′
⎞
⎟
⎠

, (110)

where

Δ′ai = ∑
b

Fab⟨Φb∣Φ
′
i⟩ −∑

j
Fji⟨Φa∣Φ′j⟩

+∑
bj
(ai∥jb)⟨Φb∣Φ

′
j⟩ +∑

bj
(ai∥bj)⟨Φ′j ∣Φb⟩. (111)

Adding Eqs. (106) and (111) and rearranging, we find

f ′ai + Δ
′
ai = F′ai −∑

j
S′ajFji −∑

jk
(ai∥jk)S′kj, (112)

which we recognize as minus the elements on the right-hand side b0
of the CPHF equations; see Eq. (53),

f ′ai + Δ
′
ai = −(b0)ai. (113)

Consequently,

⎛
⎜
⎝

A B

B∗ A∗
⎞
⎟
⎠

⎛
⎜
⎝

iκ′ −w′

(iκ′)∗ −w′
∗

⎞
⎟
⎠
=
⎛
⎜
⎝

b′0
b′∗0

⎞
⎟
⎠

. (114)

Comparing with the CPHF equations in Eq. (48), we conclude that

iκ′ai = U′ai + ⟨Φa∣Φ′i⟩. (115)

Introducing this expression in Eq. (94) and choosing the phase
factors,

iκ′ii = U′ii + ⟨Φi∣Φ′i⟩, (116)

we obtain the CPHF expression in Eq. (60). We note that U′ii are
determined by Eq. (33) only up to an imaginary constant, in agree-
ment with the fact that the phase factors κ′ii are undetermined in the
second-quantization formalism.

III. RESULTS
A. Computational details

Calculations were performed on a series of diatomic molecules
H2, LiH, BH, and CH+. All results presented here were performed
with the decontracted Lcc-pVTZ basis set, denoted as Lu-cc-pVTZ,
where “L” indicates the use of London orbitals and “u” indicates
decontraction. Berry curvature, RHF energy, and DBOC surface cal-
culations were performed for a uniform magnetic field of varying
strength orientated along the z-axis, with the molecular orientations
perpendicular to the magnetic field along the x-axis. The analytic
evaluation of the Berry curvature and DBOC was validated against
finite difference results.11

Calculations were performed for the RHF singlet state starting
from a bond distance of 0.05 Å for H2, 0.6 Å for LiH, and 0.58 Å for
BH and CH+. Data were generated on a grid using a step size of 0.04
Å, with cubic spline interpolation being used for plotting purposes,
except in the case of the DBOC values of CH+ at 1 × 10−4B0, for
which a linear spline was used. The strength of the magnetic field
ranged from 0.0B0 to 1.0B0 for the calculations of SCF energies and
DBOC and from 1 × 10−4B0 to 1.0B0 for the Berry curvature. As a
result of the findings stated in Sec. III B., the upper limit for bond-
distance ranges at different field strengths is (6.0 − 2.75∣B∣/B0) Å,
with the exception of 1 × 10−4B0 for BH and CH+, for which the plot
of the Berry curvature truncated earlier due to divergent behavior, as
discussed below.
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The following conversion factors were used: 1 amu
= 1.660 539 066 60 ×10−27 kg, Eh = 219 474.631 363 2 cm−1, and me
= 5.485 799 090 65 ×10−4 amu (2018 CODATA recommended
values). The nuclear masses used in calculating the DBOC were
derived by subtracting electron mass from atomic masses published
in the online NIST database of atomic masses,53 except in the
case of the protonic mass, which was converted directly from the
2018 CODATA value of mp = 1.672 621 923 69 ×10−27 kg. For the
magnetic field strength, one atomic unit is B0 = 2.35 × 105 T.

B. Stability analysis
Ideally, when examining singlet states, one wishes to generate

a surface where every point maintains spin symmetry (guaranteed
by the RHF calculation itself) and also corresponds to a global min-
imum in the RHF space. When generating potential-energy surfaces
(PESs), so long as the curve appears smooth, it could be taken for
granted that the underlying self-consistent field (SCF) calculations

have converged to a minimum at every step, whether or not this is
actually the case as revealed by the diagonalization of the relevant
stability matrices.

With this in mind, we have examined the lowest eigenvalues
of the complex RHF stability matrix given in Eq. (65) for all SCF
calculations. As shown in Fig. 1, it was observed that, in general, the
lowest eigenvalue of the complex RHF stability matrix decreases in
magnitude as a function of bond distance and field strength, with the
effect becoming amplified with increasing field strength. Addition-
ally, depending on the molecular species and bond distance, it was
possible to find RHF saddle points that were nearly degenerate with
minima (on the order of a microhartree), making it difficult, in prac-
tice, to guarantee SCF minima along the entire curve. This situation
does not always visibly manifest itself when examining the energy
alone; indeed, many curves may have smooth PES profiles while
converging to stationary points of different characters at various
points along the curve.

FIG. 1. Lowest eigenvalue of the RHF Hessian/stability matrix given in Eq. (65) for H2 (a), LiH (b), BH (c), and CH+ (d) molecules calculated as a function of bond distance
for various magnetic field strengths. Raw data are generated on a grid using a step size of 0.04 Å, and a cubic spline interpolation is used for plotting purposes. The plot
legends display magnetic field strengths given in units of B0.
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Additionally, we observed that the DBOC and Berry curvature
can exhibit discontinuous and/or erratic behavior when the eigen-
values of the RHF stability matrix approach zero. This phenomenon
was recently observed by Thorpe and Stanton54 when studying the
DBOC for the NO and NO2 radicals. In Ref. 54, it was observed
that it is not necessarily the sign of the eigenvalue but rather its
magnitude that is important when calculating solutions to the CPHF
equations. Our results agree with this observation.

Because the eigenvalues of the RHF stability matrix generally
decrease as a function of increasing bond distance and increas-
ing field strength, we have presented results for each field strength
only within a bond-distance range for which true minima could be
reliably obtained with standard convergence techniques and for
which the eigenvalues of the RHF stability matrix do not become
extremely small. These ranges increase as field strength decreases.

All important and notable features of the SCF energy, DBOC,
and Berry curvature are retained within the truncated bond-
distance ranges at a higher field due to molecular compression with
increasing field strength.

Finally, for CH+ and BH, it was observed at the zero field that
there was an occurrence of broken time-reversal symmetry. Beyond
a certain bond distance, the lowest energy SCF solution became
associated with a complex-valued RHF wave function and a singular
RHF stability matrix. This point is further elaborated on in the
relevant subsection for each species.

C. Berry curvature charge interpretation
For diatomic molecules with a uniform magnetic field along the

z-axis and a molecular orientation perpendicular to the field along

FIG. 2. SCF [(a) and (b)] and DBOC [(c) and (d)] energies of H2 for the RHF singlet state with the Lu-cc-pVTZ basis set for a series of magnetic field strengths. The magnetic
field is oriented along the z-axis with the molecule oriented along the x-axis. The Lu-cc-pVTZ basis set is comprised of the decontracted Lcc-pVTZ basis. Equilibrium bond
distances given by the vertical dashed lines in each plot are 0.734 Å (B = 0.0), 0.734 Å (B = 1 × 10−4), 0.731 Å (B = 0.1), 0.723 Å (B = 0.2), 0.711 Å (B = 0.3), 0.697 Å
(B = 0.4), 0.682 Å (B = 0.5), 0.666 Å (B = 0.6), 0.651 Å (B = 0.7), 0.637 Å (B = 0.8), 0.624 Å (B = 0.9), and 0.611 Å (B = 1.0). Raw data are generated on a grid using a
step size of 0.04 Å, and a cubic spline interpolation is used for plotting purposes. The plot legends display magnetic field strengths given in units of B0. The minima of the
curves in (a) and (b) have been shifted to zero.
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the x-axis, the general form of the Berry curvature is given by

Ω =
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, (117)

where the elements of Eq. (117) are calculated according to
Eq. (19), and Eq. (117) obeys the overall symmetry Ω12 = −ΩT

21.
In the homonuclear diatomic case, we have that Ω11 = Ω22 and
Ω12 = −ΩT

21 = Ω21. Therefore, in this particular case, all blocks are
anti-symmetric, and the equations of motion become11,12

MIR̈I = FBO
I −∑

J
(eδIJZIB − ωA

IJ) × ṘJ , (118)
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Introducing screening charges QIJ defined as

QII = −
ω11

eBz
, QIJ = −

ω12

eBz
, (120)

the equations of motion can be rewritten as

MIR̈I = FBO
I −∑

J
e(δIJZI +QIJ)B × ṘJ , (121)

where the screening charges add up to the partial charge on each
atom,

qI = ∑
J

QIJ = ∑
J

QJI . (122)

In general, however, the symmetric part of the Berry curvature does
not vanish, and we cannot express the force in terms of screening
charges.

In the heteronuclear diatomic case, unlike the homonuclear
diatomic case, we haveΩ12 ≠ −ΩT

12 andΩ21 ≠ −ΩT
21. The Berry force

of a heteronuclear diatomic, therefore, cannot be expressed in a
cross-product form. For interpretation purposes, we, nevertheless,
calculate the electronic partial charges of atoms 1 and 2 from an
average of ω12/ω21,

q1 = Q22 +Q12 = −
ω11

eBz
−
ω12 + ω21

2eBz
, (123)

q2 = Q22 +Q21 = −
ω22

eBz
−
ω21 + ω12

2eBz
. (124)

Note that Eqs. (123) and (124) reduce to Eq. (120) in the
homonuclear diatomic case. Strictly speaking, our electronic partial
charges q1 and q2 need only to obey total charge conservation, or
q1 + q2 = −Ne.

D. H2 molecule
As shown in Figs. 2(a) and 2(b), the equilibrium bond distance

systematically decreases as the field strength is increased, while the
bond simultaneously stiffens. Both the shape and magnitude of the
DBOC shown in Figs. 2(c) and 2(d) change as a function of field
strength. At the zero field, the DBOC monotonically decreases in
the vicinity of equilibrium. As the field strength is increased, the
magnitude of the DBOC increases and the curvature of the DBOC
changes. In a finite magnetic field, the DBOC values tend to increase
as a function of bond distance, with the effect becoming amplified at
higher field strengths. This behavior is correlated with the trend in
Hessian eigenvalues observed in Fig. 1(a). The eigenvalues approach
zero more quickly as a function of bond distance at higher field
strengths.

The partial charges corresponding to Berry curvature elements
are shown in Fig. 3. The curves tend toward a value of −0.5

FIG. 3. Screening charges for H2 as defined in Eqs. (123) and (124) in the text.
The partial charge on hydrogen one is given by q1 = Q11 + Q12, while the partial
charge on hydrogen two is given by q2 = Q22 + Q21. From symmetry, Q11 = Q22
and Q12 = Q21. All calculations were performed on the RHF singlet state with
the Lu-cc-pVTZ basis set for a series of magnetic field strengths. The magnetic
field is oriented along the z-axis with the molecule oriented along the x-axis. The
Lu-cc-pVTZ basis set is comprised of the decontracted Lcc-pVTZ basis. Equilib-
rium bond distances given by the vertical dashed lines in each plot are 0.734 Å
(B = 1 × 10−4), 0.731 Å (B = 0.1), 0.723 Å (B = 0.2), 0.711 Å (B = 0.3), 0.697 Å
(B = 0.4), 0.682 Å (B = 0.5), 0.666 Å (B = 0.6), 0.651 Å (B = 0.7), 0.637 Å
(B = 0.8), 0.624 Å (B = 0.9), and 0.611 Å (B = 1.0). Raw data are generated
on a grid using a step size of 0.04 Å, and a cubic spline interpolation is used for
plotting purposes. The plot legends display magnetic field strengths given in units
of B0.
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Ω/(eB) in the small bond-distance limit, corresponding to half
the value of any one partial charge q1 or q2. In the dissociation
limit, Q11 tends to −1Ω/(eB), and the coupling term Q12 tends
to zero. All curves exhibit antiscreening/superscreening behavior,
where at certain bond distances, the values of Ω12 become positive
(antiscreening) and the values of Ω11 become less than −1eB
(superscreening). The domain over which either antiscreening or
superscreening is exhibited becomes shorter as the field is increased,
with the extrema also being shifted toward a shorter distance as
the field is increased, indicating a correlation with the compres-
sion of the molecule. This behavior was observed previously for field
strengths of 0.1B0 and 1.0B0 with the finite-difference procedure11

FIG. 4. Low energy (a) and high energy (b) vibrational fine structures for H2 with
(blue) and without (red) the inclusion of the DBOC in the PES. Calculations are
performed with the analytic Berry curvature and the Lu-cc-pVTZ basis set for a
magnetic field strength of 0.1B0.

and is verified and expanded upon here with the analytic Berry
curvature.

To investigate the role that the DBOC plays in dynamics, rovi-
brational spectra were generated for magnetic field strengths of 0.1B0
and 1.0B0 using the analytic Berry curvature, both with and with-
out DBOC contributions included in the PES. The simulations were
conducted (as recommended for H2 in Ref. 12) using the auxiliary
coordinates and momenta method with the RK4 integrator, with a
step size of 0.5 fs and a total simulation time of 200 ps. As described
in Ref. 12, we precalculated all necessary ab initio data on a two-
dimensional grid of the internal coordinates using the Lu-cc-pVTZ
basis set. During the simulations, the energy, forces, Berry curvature,

FIG. 5. Low energy (a) and high energy (b) vibrational fine structures for H2 with
(blue) and without (red) the inclusion of the DBOC in the PES. Calculations are
performed with the analytic Berry curvature and the Lu-cc-pVTZ basis set for a
magnetic field strength of 1.0B0.
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and DBOC were obtained from spline fits generated from the precal-
culated data. The DBOC gradient was calculated directly from the
DBOC energy spline fit as its derivative.

As seen in Fig. 2, the character of the DBOC depends on the
magnetic field strength. Changes in the spectra as a result of includ-
ing the DBOC can, therefore, manifest themselves differently from
the zero-field case. However, because the DBOC of H2 is still a
relatively small correction near equilibrium (even at the upper end
of the magnetic field strengths reported here), there is little impact
on the spectra.

For a magnetic field strength of 0.1B0, the DBOC shifts the
lower-energy (rotational) peaks in Fig. 4 to a lower energy by roughly
1 cm−1, while the (vibrational) peaks at higher energy in Fig. 4(b)
are blue-shifted by about 3 cm−1. Small changes are also observed

in the spectrum at the stronger field of 1.0B0 shown in Fig. 5, where
the low-energy libration is red-shifted by about 1 cm−1, while the
higher-energy vibrational peaks are blue-shifted with the inclusion
of the DBOC. These observations are in line with the impact of the
DBOC on the PES. For a more complete and detailed analysis of
spectra, see Ref. 12.

E. LiH molecule
As shown in Figs. 6(a) and 6(b), the equilibrium bond dis-

tance systematically decreases with increasing field strength, while
the bond simultaneously stiffens, as also observed for H2. The
trends in the DBOC curves shown in Figs. 6(c) and 6(d) also
follow a similar pattern to that of H2, where the zero-field DBOC

FIG. 6. SCF [(a) and (b)] and DBOC [(c) and (d)] energies of LiH for the RHF singlet state with the Lu-cc-pVTZ basis set for a series of magnetic field strengths. The magnetic
field is oriented along the z-axis with the molecule oriented along the x-axis. The Lu-cc-pVTZ basis set is comprised of the decontracted Lcc-pVTZ basis. Equilibrium bond
distances given by the vertical dashed lines in each plot are 1.606 Å (B = 0.0), 1.606 Å (B = 1 × 10−4), 1.583 Å (B = 0.1), 1.528 Å (B = 0.2), 1.458 Å (B = 0.3), 1.386 Å
(B = 0.4), 1.317 Å (B = 0.5), 1.254 Å (B = 0.6), 1.197 Å (B = 0.7), 1.147 Å (B = 0.8), 1.102 Å (B = 0.9), and 1.062 Å (B = 1.0). Raw data are generated on a grid using a
step size of 0.04 Å, and a cubic spline interpolation is used for plotting purposes. The plot legends display magnetic field strengths given in units of B0. The minima of the
curves in (a) and (b) have been shifted to zero.

J. Chem. Phys. 156, 044121 (2022); doi: 10.1063/5.0079304 156, 044121-14

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

monotonically decreases near equilibrium; as the field strength
increases, the magnitude of the DBOC increases and the curvature
of the DBOC changes, eventually becoming monotonically increas-
ing in the vicinity of equilibrium. Additionally, the magnitude of the
DBOC is larger for LiH than for H2. In a magnetic field, the DBOC
values tend to increase as a function of bond distance, with the

FIG. 7. Averages of Berry curvature tensor elements associated with partial
charges of lithium (a) and hydrogen (b) as defined in Eqs. (123) and (124) in
the text. The partial charge on lithium is given by qLi = QLiH + QLiLi, while the
partial charge on hydrogen is given by qH = QHLi + QHH. All calculations were
performed on the RHF singlet state with the Lu-cc-pVTZ basis set for a series
of magnetic field strengths. The magnetic field is oriented along the z-axis with
the molecule oriented along the x-axis. The Lu-cc-pVTZ basis set is comprised of
the decontracted Lcc-pVTZ basis. Equilibrium bond distances given by the vertical
dashed lines in each plot are 1.606 Å (B = 1 × 10−4), 1.583 Å (B = 0.1), 1.528 Å
(B = 0.2), 1.458 Å (B = 0.3), 1.386 Å (B = 0.4), 1.317 Å (B = 0.5), 1.254 Å
(B = 0.6), 1.197 Å (B = 0.7), 1.147 Å (B = 0.8), 1.102 Å (B = 0.9), and
1.062 Å (B = 1.0). Raw data are generated on a grid using a step size of
0.04 Å, and a cubic spline interpolation is used for plotting purposes. The plot
legends display magnetic field strengths given in units of B0.

effect becoming amplified at higher field strengths. This behavior is
correlated with the trend in Hessian eigenvalues observed in
Fig. 1(b). The eigenvalues approach zero more quickly as a function
of bond distance at higher field strengths.

Examining the Berry curvature in terms of screening charges
in Fig. 7, we note again that the general shape of each curve is
conserved as a function of field strength, but compressed toward the
origin as the field strength increases, which may be expected given
the trends in equilibrium bond distance. We have from Eqs. (123)
and (124) that QLiH = QHLi, which is observed in Fig. 7, and we also
see that these values of the off-diagonal coupling tend toward zero
as the bond is stretched. The off-diagonal elements QLiH become
antiscreening beyond the equilibrium bond distance, while the
diagonal elements QLiLi and QHH behave differently. For QLiLi, super-
creening is never achieved since the value of the data is never less
than −3. By contrast, almost all QHH data exhibit superscreening
for all investigated bond lengths, notably including the domain of
equilibrium bond lengths. This is probably a result of the polarity of
the Li–H bond.

The partial charges qH and qLi are shown in Fig. 8. Again, we
note a compression of the curves as the field strength increases, as
well as reflection symmetry across the axis of −2Ω/(eB) = −Ne/2,
which is necessary because qH + qLi = −Ne must hold at any given
bond distance. As the bond length changes, the partial charges
fluctuate, unlike for homonuclear diatomics such as H2, where the
partial charges on each atom remain constant. As a general trend, the

FIG. 8. Partial charges of lithium and hydrogen as defined in Eqs. (123) and (124)
in the text. The partial charge on lithium is given by qLi = QLiH + QLiLi, while the
partial charge on hydrogen is given by qH = QHLi + QHH. All calculations were
performed on the RHF singlet state with the Lu-cc-pVTZ basis set for a series
of magnetic field strengths. The magnetic field is oriented along the z-axis with
the molecule oriented along the x-axis. The Lu-cc-pVTZ basis set is comprised of
the decontracted Lcc-pVTZ basis. Equilibrium bond distances given by the vertical
dashed lines in each plot are 1.606 Å (B = 1 × 10−4), 1.583 Å (B = 0.1), 1.528 Å
(B = 0.2), 1.458 Å (B = 0.3), 1.386 Å (B = 0.4), 1.317 Å (B = 0.5), 1.254 Å
(B = 0.6), 1.197 Å (B = 0.7), 1.147 Å (B = 0.8), 1.102 Å (B = 0.9), and 1.062 Å
(B = 1.0). Raw data are generated on a grid using a step size of 0.04 Å, and a
cubic spline interpolation is used for plotting purposes. The plot legends display
magnetic field strengths given in units of B0.
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difference in magnitude between qH and qLi increases for increasing
field, reflecting a less polar Li–H bond in this regime.

F. BH molecule
As shown in Figs. 9(a) and 9(b), the equilibrium bond distance

of BH systematically decreases with increasing field strength. The
trends in the DBOC curves of BH depicted in Figs. 9(c) and 9(d)
represent a significant departure from those exhibited by H2 and
LiH. In Fig. 9(c), the curves become more closely spaced and
even intersect, with the zero-field DBOC values being higher than
those at field strengths of 0.1B0 to 0.6B0. The magnitude of the
DBOC decreases from 0.1B0 to 0.3B0, then remains fairly constant

at about 0.6B0, where it finally begins to increase with increasing
field strength. As observed in Fig. 9(d), in a finite magnetic field, the
DBOC values tend to increase as a function of bond distance, with
the effect becoming amplified at higher field strengths. This behav-
ior is correlated with the trend in Hessian eigenvalues observed in
Fig. 1(c). The eigenvalues approach zero more quickly as a function
of bond distance at higher field strengths.

The Berry-curvature behavior in terms of screening charges
is shown in Fig. 10. The curves do not evolve as incrementally as
those of H2 and LiH. Instead, as for the DBOC, the evolution of
the curves as a function of field strength shows differing trends for
lower fields and higher fields, although certain features are always
conserved. For example, we see that the values of the off-diagonal

FIG. 9. SCF [(a) and (b)] and DBOC [(c) and (d)] energies of BH for the RHF singlet state with the Lu-cc-pVTZ basis set for a series of magnetic field strengths. The magnetic
field is oriented along the z-axis with the molecule oriented along the x-axis. The Lu-cc-pVTZ basis set is comprised of the decontracted Lcc-pVTZ basis. Equilibrium bond
distances given by the vertical dashed lines in each plot are 1.221 Å (B = 0.0), 1.221 Å (B = 1 × 10−4), 1.209 Å (B = 0.1), 1.187 Å (B = 0.2), 1.158 Å (B = 0.3), 1.128 Å
(B = 0.4), 1.098 Å (B = 0.5), 1.070 Å (B = 0.6), 1.046 Å (B = 0.7), 1.027 Å (B = 0.8), 1.013 Å (B = 0.9), and 1.009 Å (B = 1.0). Raw data are generated on a grid using a
step size of 0.04 Å, and a cubic spline interpolation is used for plotting purposes. The plot legends display magnetic field strengths given in units of B0. The minima of the
curves in (a) and (b) have been shifted to zero.
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coupling QBH tend toward zero as the bond distance is increased
(except at 1 × 10−4B0). Additionally, we see from Eqs. (123) and
(124) that QBH = QHB, although QHB is not shown in Fig. 10(b) due
to the large overlap of the data being difficult to visually parse. The
off-diagonal elements QBH exhibit antiscreening behavior both near

FIG. 10. Averages of Berry curvature tensor elements associated with partial
charges of boron (a) and hydrogen (b) as defined in Eqs. (123) and (124) in
the text. The partial charge on boron is given by qB = QBH + QBB, while the
partial charge on hydrogen is given by qH = QHB + QHH. All calculations were
performed on the RHF singlet state with the Lu-cc-pVTZ basis set for a series
of magnetic field strengths. The magnetic field is oriented along the z-axis with
the molecule oriented along the x-axis. The Lu-cc-pVTZ basis set is comprised of
the decontracted Lcc-pVTZ basis. Equilibrium bond distances given by the vertical
dashed lines in each plot are 1.221 Å (B = 1 × 10−4), 1.209 Å (B = 0.1), 1.187 Å
(B = 0.2), 1.158 Å (B = 0.3), 1.128 Å (B = 0.4), 1.098 Å (B = 0.5), 1.070 Å
(B = 0.6), 1.046 Å (B = 0.7), 1.027 Å (B = 0.8), 1.013 Å (B = 0.9), and 1.009 Å
(B = 1.0). Raw data are generated on a grid using a step size of 0.04 Å, and a
cubic spline interpolation is used for plotting purposes. The plot legends display
magnetic field strengths given in units of B0.

and far from the equilibrium, depending on the field strength. This
is in contrast to H2 and LiH, which only exhibit antiscreening out-
side the equilibrium bond-distance ranges. For QBB, superscreening
is achieved depending on the field strength and bond distance. In
the vicinity of equilibrium, the weaker field strengths from 0.1B0
to 0.5B0 do not give values below −5, while the values at a higher
field are all in the superscreening range. The QHH curves also
show superscreening depending on field strength and bond dis-
tance, although the domains are different than those in the case
of QBB.

The partial charges qH and qB are shown in Fig. 11. We note
the reflection symmetry across the axis of−3Ω/(eB) = −Ne/2, which
is necessary because qH + qB = −Ne must hold at any given bond
distance. As the bond length changes, the partial charges fluctuate,
and there is a significant overlap of lower field strength qH curves
with higher field strength qH curves and of lower field strength
qB curves with higher field strength qB curves. The difference in
magnitude between qH and qB increases for increasing field strength
until 0.6B0, from which point this difference decreases with increas-
ing field strength. Thus, the polarity of the B–H bond seems to
depend on the magnetic field strength. Note that the weak-field
curves associated with 1 × 10−4B0 behave quite differently from
those in stronger fields, as is evident for both the screening charges
and partial charges. The partial charges begin to exhibit divergent
behavior around 4 Å. For this reason, data were not plotted past
4.5 Å for the screening charges and partial charges.

FIG. 11. Partial charges of boron and hydrogen as defined in Eqs. (123) and (124)
in the text. The partial charge on boron is given by qB = QBH + QBB, while the
partial charge on hydrogen is given by qH = QHB + QHH. All calculations were
performed on the RHF singlet state with the Lu-cc-pVTZ basis set for a series
of magnetic field strengths. The magnetic field is oriented along the z-axis with
the molecule oriented along the x-axis. The Lu-cc-pVTZ basis set is comprised of
the decontracted Lcc-pVTZ basis. Equilibrium bond distances given by the vertical
dashed lines in each plot are 1.221 Å (B = 1 × 10−4), 1.209 Å (B = 0.1), 1.187 Å
(B = 0.2), 1.158 Å (B = 0.3), 1.128 Å (B = 0.4), 1.098 Å (B = 0.5), 1.070 Å
(B = 0.6), 1.046 Å (B = 0.7), 1.027 Å (B = 0.8), 1.013 Å (B = 0.9), and 1.009 Å
(B = 1.0). Raw data are generated on a grid using a step size of 0.04 Å, and a
cubic spline interpolation is used for plotting purposes. The plot legends display
magnetic field strengths given in units of B0.
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Finally, beyond 4.66 Å, it was found that the time-reversal
symmetry of the system was broken in the case of zero magnetic
field, with the wave function becoming complex valued and the
RHF stability matrix becoming singular. Real-valued wave functions
associated with higher energy beyond this point could be opti-
mized by using the final density from geometry n − 1 as a guess for
geometry n. The RHF stability matrix has negative eigenvalues for
real-valued wave functions in this regime [see Fig. 1(c)]. In Fig. 1(c),
the weak-field curve at 1 × 10−4B0 deviates from the zero-field curve
at 4.66 Å, coinciding with a hump in the weak-field DBOC at roughly
the same bond distance [Fig. 9(d)] and with discontinuities in the
weak-field Berry curvature (Figs. 10 and 11) as previously stated.

For the purposes of this work, broken time-reversal symmetry
for the zero magnetic field is of no practical importance as it occurs

away from the equilibrium bond distance and is, thus, inconsequen-
tial for applications such as molecular dynamics. Nonetheless, it is
an interesting observation given that the Berry-curvature values in
such a domain will become finite even though there is no magnetic
field. Moreover, the onset of time-reversal symmetry breaking in the
zero-field case is correlated with the onset of divergent behavior of
the DBOC and partial charges in the weak-field case of 1 × 10−4B0.
This phenomenon, therefore, has the potential for future study but
is beyond the scope of the present study.

G. CH+ molecule
Unlike for the other molecules, the bond distance of CH+ first

increases with increasing field strength until at about 0.3B0, it begins
to decrease as the bond stiffens; see Figs. 12(a) and 12(b). The trends

FIG. 12. SCF [(a) and (b)] and DBOC [(c) and (d)] energies of CH+ for the RHF singlet state with the Lu-cc-pVTZ basis set for a series of magnetic field strengths.
The magnetic field is oriented along the z-axis with the molecule oriented along the x-axis. The Lu-cc-pVTZ basis set is comprised of the decontracted Lcc-pVTZ basis.
Equilibrium bond distances given by the vertical dashed lines in each plot are 1.113 Å (B = 0.0), 1.113 Å (B = 1 × 10−4), 1.123 Å (B = 0.1), 1.123 Å (B = 0.2), 1.113 Å
(B = 0.3), 1.097 Å (B = 0.4), 1.078 Å (B = 0.5), 1.058 Å (B = 0.6), 1.039 Å (B = 0.7), 1.019 Å (B = 0.8), 1.001 Å (B = 0.9), and 0.984 Å (B = 1.0). Raw data are generated
on a grid using a step size of 0.04 Å, and a cubic spline interpolation is used for plotting purposes for all the curves except the 1 × 10−4B0 curve in (d), which was not spline
interpolated due to the divergent behavior. The plot legends display magnetic field strengths given in units of B0. The minima of the curves in (a) and (b) have been shifted
to zero.
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in the DBOC curves in Fig. 12(c) are similar to those exhibited
by BH. The curves intersect, and the zero-field DBOC values
are actually higher than all others, whereas for BH, the stronger
field DBOC values eventually became larger in magnitude than the
zero-field values over most of the domain. The magnitude of the
DBOC decreases with increasing field strength from 0.1B0 to about
0.5B0. Beyond 0.5B0, the curves remain close in energy but do
increase in magnitude with increasing field strength.

Away from the equilibrium, the DBOC trends for CH+ in a
magnetic field differ from the other molecules presented here; see
Fig. 12(d). Rather than increasing as a function of bond distance and
field strength, it decreases. This is correlated with the behavior of
the Hessian, and we observe in Fig. 1(d) that the lowest Hessian
eigenvalues do not systematically approach zero with increasing
bond distance and field strength, instead approaching finite values at
longer bond distances for most field strengths or approaching zero
relatively slowly.

The Berry-curvature behavior in terms of screening charges
is shown in Fig. 13. In Fig. 13(a), the curves evolve as a function
of field strength and bond distance in a more incremental fashion
than the corresponding BH curves. The main differences, beyond
the behavior in the short bond-distance region, are that the QCH
and QCC curves are more tightly packed than their BH counterparts,
with the QCH curves being especially close together. We again note
that the values of the off-diagonal coupling QCH tend toward zero as
the bond distance increases (except for the case of 1 × 10−4B0). We
have from Eqs. (123) and (124) that QCH = QHC, although QHC is
not shown in Fig. 13(b) due to the large overlap of the data being
difficult to visually parse. The off-diagonal elements QCH exhibit
antiscreening behavior away from equilibrium except at 1 × 10−4B0
and 0.1B0, which strongly exhibit antiscreening behavior at equi-
librium. For QCC, superscreening values less than −6 are achieved
depending on the field strength and bond distance, though always
outside the equilibrium except for the case of 1 × 10−4B0.

The partial charges qH and qC are shown in Fig. 14. We note
the reflection symmetry across the axis of−3Ω/(eB) = −Ne/2, which
is necessary because qH + qC = −Ne must hold at any given bond
distance. This axis of the symmetry is the same for CH+ and BH
given that the two species are isoelectronic. As the bond length
changes, the partial charges fluctuate, but there is far less overlap
of low/high field strength qH and qC curves than in the case of
BH. Note that the weak-field curves at 1 × 10−4B0 behave quite dif-
ferently from those in stronger fields. This is evident for both the
screening charges and partial charges. The partial charges begin to
exhibit divergent behavior around 2 Å. For this reason, data were
not plotted past about 3 Å.

Finally, beyond 2.26 Å, time-reversal symmetry is broken at
zero magnetic field, with the wave function becoming complex
valued and the RHF stability matrix becoming singular. This is
a similar trend as was observed for BH, although in the case of
CH+, the bond distance at which broken symmetry occurs is much
closer to the equilibrium. Real-valued wave functions associated
with higher energy beyond this point could be achieved by using the
final density from geometry n − 1 as a guess for geometry n. The
RHF stability matrix has negative eigenvalues for real-valued wave
functions in this regime [see Fig. 1(d)]. In Fig. 1(d), the weak-field
1 × 10−4B0 curve deviates from the zero-field curve at ≈2.26 Å, and
this coincides with a singularity in the weak-field DBOC at roughly

the same bond distance [Fig. 12(d)] as well as singularities in the
weak-field Berry curvature (Figs. 13 and 14) as previously stated.

For the purposes of this work, broken time-reversal symmetry
for the zero magnetic field is of no practical importance as it occurs
outside the range of equilibrium, despite the fact that for CH+, the

FIG. 13. Averages of Berry curvature tensor elements associated with partial
charges of carbon (a) and hydrogen (b) as defined in Eqs. (123) and (124) in
the text. The partial charge on carbon is given by qC = QCH + QCC, while the
partial charge on hydrogen is given by qH = QHC + QHH. All calculations were
performed on the RHF singlet state with the Lu-cc-pVTZ basis set for a series
of magnetic field strengths. The magnetic field is oriented along the z-axis with
the molecule oriented along the x-axis. The Lu-cc-pVTZ basis set is comprised of
the decontracted Lcc-pVTZ basis. Equilibrium bond distances given by the vertical
dashed lines in each plot are 1.113 Å (B = 1 × 10−4), 1.123 Å (B = 0.1), 1.123 Å
(B = 0.2), 1.113 Å (B = 0.3), 1.097 Å (B = 0.4), 1.078 Å (B = 0.5), 1.058 Å
(B = 0.6), 1.039 Å (B = 0.7), 1.019 Å (B = 0.8), 1.001 Å (B = 0.9), and 0.984 Å
(B = 1.0). Raw data are generated on a grid using a step size of 0.04 Å, and a
cubic spline interpolation is used for plotting purposes. The plot legends display
magnetic field strengths given in units of B0.
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FIG. 14. Partial charges of carbon and hydrogen as defined in Eqs. (123) and
(124) in the text. The partial charge on carbon is given by qC = QCH + QCC, while
the partial charge on hydrogen is given by qH = QHC + QHH. All calculations are
performed on the RHF singlet state with the Lu-cc-pVTZ basis set for a series
of magnetic field strengths. The magnetic field is oriented along the z-axis with
the molecule oriented along the x-axis. The Lu-cc-pVTZ basis set is comprised of
the decontracted Lcc-pVTZ basis. Equilibrium bond distances given by the vertical
dashed lines in each plot are 1.113 Å (B = 1 × 10−4), 1.123 Å (B = 0.1), 1.123 Å
(B = 0.2), 1.113 Å (B = 0.3), 1.097 Å (B = 0.4), 1.078 Å (B = 0.5), 1.058 Å
(B = 0.6), 1.039 Å (B = 0.7), 1.019 Å (B = 0.8), 1.001 Å (B = 0.9), and 0.984 Å
(B = 1.0). Raw data are generated on a grid using a step size of 0.04 Å, and a
cubic spline interpolation is used for plotting purposes. The plot legends display
magnetic field strengths given in units of B0.

onset is much closer to the equilibrium than for BH. Additionally, we
are presently interested in studying the Berry curvature only in the
presence of a magnetic field. Nonetheless, as was the case for BH, it
is an interesting observation given that the Berry curvature values in
such a domain will become finite even though there is no magnetic
field. Moreover, the onset of time-reversal symmetry breaking in the
zero-field case is correlated with the onset of divergent behavior of
the DBOC and partial charges in the weak-field case of 1 × 10−4B0.
This phenomenon, therefore, has the potential for future study, but
is beyond the scope of the present study.

IV. CONCLUSIONS
In this work, we have derived the expressions for the analytical

calculation of the DBOC and Berry curvature of a molecule in
a uniform magnetic field using GHF and RHF wave functions.
The RHF equations were implemented in the program package
LONDON,20 which uses London atomic orbitals for gauge-origin
invariant calculations of molecules in a magnetic field.

The RHF energy, DBOC, Berry curvature, and Hessian eigen-
values of H2, LiH, BH, and CH+ were studied as functions of bond
distance and magnetic field strength up to 1.0B0. Additionally, for
H2, molecular dynamics simulations were performed at selected field
strengths using the analytic Berry curvature, with and without the
inclusion of the DBOC.

All the investigated quantities are affected by varying the
strength of the magnetic field, but the specific behavior is system
dependent. The DBOC was found to depend on the external mag-
netic field but was, in general, small and behaved less systematically
than the BO potential. Additionally, the magnitude of the DBOC
was related to the magnitude of the eigenvalues of the correspond-
ing Hessian matrices, with near-zero Hessian eigenvalues being
correlated with erratic or singular DBOC values.

Molecular dynamics simulations were performed on H2 using
the analytic Berry curvature both with and without the inclusion
of the analytic DBOC for field strengths of 0.1B0 and 1.0B0. It
was found that inclusion of the DBOC had little impact on the
spectra even at stronger fields where the DBOC was higher in mag-
nitude. This is expected given that the absolute value of the energy
correction represented by the DBOC is still quite small at higher field
strengths, and the DBOC curves tend to flatten out around equilib-
rium at higher field strengths for this system. However, given that
the DBOC was observed to change in magnitude as a function of
field strength, it may be more important to include in the dynamics
of other molecular systems in a magnetic field. In addition, the
DBOC is calculated from the same ingredients as the Berry curvature
and, therefore, can be included in the dynamics at no additional
cost.

The Berry curvature results were, in general, highly system
dependent, with each molecular species exhibiting unique screen-
ing charges and partial charges as a function of bond distance and
magnetic field strength. However, certain common features are
present. They are (1) conservation of total electronic charge, where
the magnitude of the partial charges q1 and q2 must sum to the total
number of electrons for any combination of field strength and bond
distance and (2) off-diagonal screening charges Q12 = Q21 approach-
ing zero in the limit of long bond distances (except for the 1 × 10−4B0
case for BH and CH+, where each exhibited divergent behavior past
which no data are reported). The presence of superscreening and
antiscreening was also observed for the screening charges across all
species.

Finally, broken time-reversal symmetry was observed for zero
field wave functions for BH and CH+. The onset of broken time-
reversal symmetry coincides with the deviation of the weak field
(1 × 10−4B0) SCF energy values, DBOC values, and lowest Hessian
eigenvalues from their corresponding zero field counterparts.
Additionally, the onset of broken time-reversal symmetry also
coincides with divergent DBOC and Berry curvature values in the
weak field case. These trends are partially explicable in terms of the
lowest Hessian eigenvalues for the weak field case being near zero,
and the fact that the broken time-reversal symmetry solution in the
zero field corresponds to a truly singular Hessian, with the weak-field
case approximating the broken symmetry solution. However, the
presence of broken time-reversal symmetry itself in the zero
magnetic field and the implications for the Berry curvature remain
as a topic for future investigation.

Calculation of the Berry curvature and DBOC analytically
allows for the accurate inclusion of the screening force due to the
electrons in ab initio molecular dynamics simulations as demon-
strated by the findings presented here, as well as previous work.11,12

Additionally, analytic calculation of the DBOC and Berry curvature
provides benefits over the same quantities calculated via a finite
difference. These benefits are potential savings in computational
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expense, increased accuracy and overall stability, and circumvention
of the phase problem that accompanies finite difference calculations
with generally complex orbitals.11 For these reasons, analytic calcu-
lation of the Berry curvature is desirable in the context of molecular
dynamics in magnetic fields.
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